Pro
SQL Server 2019
Wait Statistics

A Practical Guide to Analyzing
Performance in SQL Server

Second Edition

Enrico van de Laar

Apress’


http://www.allitebooks.org

Pro SQL Server
2019 Wait Statistics

A Practical Guide to Analyzing
Performance in SQL Server

Second Edition

Enrico van de Laar

Apress’

vww .allitebooks.cond



http://www.allitebooks.org

Pro SQL Server 2019 Wait Statistics: A Practical Guide to Analyzing
Performance in SQL Server

Enrico van de Laar
Drachten, The Netherlands

ISBN-13 (pbk): 978-1-4842-4915-4 ISBN-13 (electronic): 978-1-4842-4916-1
https://doi.org/10.1007/978-1-4842-4916-1

Copyright © 2019 by Enrico van de Laar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,

e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484249154. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl



https://doi.org/10.1007/978-1-4842-4916-1
http://www.allitebooks.org

This book is dedicated to cats and pizza.
I had to leave both for a little while to write this book,
else it would probably still be a work in progress.

vww allitebooks.conl



http://www.allitebooks.org

Table of Contents

About the AULNOF ...t ————— XV
About the Technical REVIEWErS ........ccciuiissmmmmmmmmmmmmssssssssssssssssssssssssssssssssssssssssssnnnns XVii
Acknowledgments........cccccruiisssssmesmmmmmmssssssssssssssnmesssssssssssssnsnsesssssssssnnnnnsnsessssssnnnnnnsn XiX
INtroduction ... XXi
Part I: Foundations of Wait Statistics Analysis........ccccnmrmsssssmmnnmmssssssnannnsssssnnns 1
Chapter 1: Wait Statistics Internals...........ccccnnemmmmnnsnmmmmnsesnnmmssssmmssssssssmmm. 3
A Brief History of Wait StatiStiCS .....c.ccvcvvvvnirnr s 4
THE SQLOS ...ttt e e e e e e e e AR e 6
Schedulers, Tasks, and WOrker TRreads.........cccuceiviiinieiniiininisss s sssssssssssesssssssssssssssnnns 9
LTS [0 LR 10
REBQUESTS.....cceeeeee et r et r s s s e e e s ae s e e e e e e e e e e e e ae e ae e e e e e eneeaenaen 11

LE: 515G 3SR PSS 12
WOIKEr TRIBAUS ....ccveeveereresre st e nr e s 13
SCNEAUIBIS. ... ettt e e e e e b e e e R p et 16
PUtting [t All TOQETNEK ..o e 17

LT S LTS (O 19
1] 1= OSSOSO 23
Chapter 2: Querying SQL Server Wait Statistics ........cccnnnmmmmmmmmmnnnsnnssssssssssnnsessssnes 25
SyS.dM_0S_Wait_STALS.....ccccoiiiiirr i ——————— 26
SyS.dM_0S_WaItiNG_TASKS .....ecvrerieririrsirrere s s sr s s sa e e 29
Understanding sys.dm_oS_waiting_tasks .........cccucvrmrermrenmnnnmnsessnessnsse s ssssesenns 29
Querying sys.dm_0S_Waiting_1asks ........c.ccovrerrinrnnesnnesensse e 31

v

vww allitebooks.conl



http://www.allitebooks.org

TABLE OF CONTENTS

SYS.AM_BXEC_FBOUBSES...uerrirrererrerersersrssrsersersessssesse s ssssesse s sassa s e ssessesaesessesaesaesasensesaesssssnsesseses 33
Understanding Sys.dm_eXeC_FEQUESTS ......cccvvrvrrrrerieriensee e sesessse s sessessse s s e ssessesssessenns 33
Querying SYS.dM_EXEC_reQUESTS .....ccuvverrrirerrrre s e 35

Sys.dm_exXec_SeSSioN_Wait_STatS.........cccvrererrrririnnrrrere s s sesesse s 36

Combining DMVs to Detect Waits Right NOW ... 38

Viewing Wait Statistics USing PErfmon ...........ccovoorenrnsnncsneses s 43

Capturing Wait Statistics Using Extended EVENLS ........ccccccvvcvrienersssscsere e 45
Capture Wait Statistics Information for a Specific QUErY ..o 46

Analyzing Wait Statistics on a Per-Query Basis Using Execution Plans............c.cocuevinienenenernnne. 57

1134 7R 61

Chapter 3: The QUery StOre..........ccusmmmsnmssanmssansssnsssansssansssnsssansssansssnsssansssansssnnssansss 63

What IS the QUETY STOIE? ...t e s 63

QuEry Store ArChItECIUIE.........cocevrereeecrere e ne s 64

How Wait Statistics Are Processed in the QUery StOre ........c.ccovvervnrnnesnesesssesessesese e 65

Accessing Wait Statistics Through the Query Store Reports.........cccvevivninnnnnsnienennsensenens 68

Accessing Wait Statistics Through the Query Store DMVS........ccoocvvrvnnnsnenenensensesesessessensens 70

£ 1§14 7R 73

Chapter 4: Building a Solid Baseline ........cccsrsssseenssssssnssssssssnsssssssssssssssssnsssssssssnnsssss 75

What Are BaSEIINES? ........ccceeeererrieeseseressse s se s se s s sas s sesesassassssssesensans 76
Visualizing YOUr BaSeliNES .........ccuereiiiinicnininsinc s sn s srs s nnas 78
Baseline Types and StatiStiCS ......c.ouvvrrrerierrrrnerieresessereresss s e s e ssssessessessssessessees 79

BaSEling PIfallS .........cc.eoeereieeerecr s 81
To0 MUCh INFOrMALION........coeeeeeece e 81
KNOW YOUF MEIFICS.....ceeceeecereee e 81
Focus on the Big Measurement Changes.......c.cceoeververrerreererersesseessessessesssessessessessssssesesens 81
USE FiXEA INTEIVAIS ... 82

Building a Baseline for Wait StatisticS AN@lYSIS .........ccoerrrrrrsererenereserere e 82
Reset Capture Method...........cccrnncnin s 86
Delta Capture MEthOd...........ccovviererirrerrre e s a e ae e se s nn e snesaenae s 87



TABLE OF CONTENTS

Using SQL Server Agent to Schedule Measurements..........coucvnevnennnsesnsesnsesesneseses e 89

Wait Statistics Baseling ANAIYSIS ........ccocverernierenienininnennse s sss e stssesessssesenses 91
1] 4P OSSOSO 99
Part 1l: Wait TYPeS...uucceumrmmssssnnnnmmmsssssnnnnmsssssssnsnnsssssssnnnnsssssssnnnnnnssssssnnnnnsssnns 101
Chapter 5: CPU-Related Wait TYPES .....ccusuemmmmsssnnmmmsssssnsnsssssssnsssssssnnsssssssnnnsssssnnnnss 103
CXPACKET ...vovivititersssssssesesesesesesese s s s sttt ettt 103
What Is the CXPACKET Wait TYPE? ....ccceeeerrererrresesesesesesesesesesessssessssesessssesssssssssesesssssssenens 104
Lowering CXPACKET Wait Time by Tuning the Parallelism Configuration...............cccoeeeerene. 107
Lowering CXPACKET Wait Time by Resolving Skewed Workloads............ccccvvrererrererenerennes 111
Introduction of the CXCONSUMER Wait Type in SQL Server 2016 SP2 and 2017 CU3......... 112
CXPACKET SUMMAIY ...cvecrrrcerreerensesessesessesesessssesssssssssssssssssssssesssssssssssssssssssessssssssssssnsssenes 113
SOS_SCHEDULER_YIELD........ccocvtrieeeesssssssssssssssssssssssssesesesesesesessssssssssssssssssssssssssssssnsnsssnenes 114
What Is the SOS_SCHEDULER_YIELD Wait TYPE? .....ccocuvrrrrrrrrrririrereresesesesesesesessssssssssssssnnns 114
Lowering SOS_SCHEDULER_YIELD Waits..........cccoererermnmsssnnssssssnsnsssssnssssssesssesesesesessssesesens 117
SOS_SCHEDULER_YIELD SUMMAIY ......ccccvurererereseneeesssssssssssssssssssssssssssssssssssessssnsssssssasasas 122
THREADPOOL ....cucueueucueuesssssssssssssss s sssssss s s e e e e e sttt ss st s s e s snas 123
What Is the THREADPOOL Wait TYPE? .....cccoevererrrrssnnsssssssssssss s sesesssssssssssssssnnns 123
THREADPOOL EXAMPIE .....vvverirerereseseseseseesessssssssssssssssssssssssssssssssesesesssssssssssssssssssssssssssnnns 126
Gaining Access to Our SQL Server During THREADPOOL WaitS .......c.coecevenerrnserensesensenenennes 130
Lowering THREADPOOL Waits Caused by Parallelism .........c.coccovvrrnsesnsnensscnnsesessssenennes 132
Lowering THREADPOOL Waits Caused by User Connections ...........ccuvevvesesrnsesensesessssenennes 134
THREADPOOL SUMIMAIY ...vvevierirerereseeseessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsns 137
Chapter 6: 10-Related Wait TYPES ..oovveeerernrrmmmmmssssssmnsssmssssssssssssssssssssssssssssssnsssssnnss 139
ASYNC_IO_COMPLETION........cceurerereseesmesesssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssasssanns 139
What Is the ASYNC_IO_COMPLETION Wait TYPE? .....ccevrrrrrrrrrrrrerereresesesesesesssssssssssssssssssanns 140
ASYNC_IO_COMPLETION EXAMPIE.......ccevrereeessssssssssssssssssssssssssssssesessssssssssssssssssssssssssssanns 141
Lowering ASYNC_IO_COMPLETION WaILS........cccourerereesssnsnsrssnssssssssssssesesesesesesesesssssssanns 142
ASYNC_IO_COMPLETION SUMMAIY.....ccousurersssssssssssssssssssssssssssssssesssesssssssssssssssssssssssssanas 147

vii



TABLE OF CONTENTS

ASYNC_NETWORK_IO......ccotiererereresesesesesssssssssssssssssssssssssssssssssssesesesssssssssssssssssssssssssssssssssssanas 147
What Is the ASYNC_NETWORK_I0 Wait TYPE? ....c.ccveerrrrrrrrrriririsesesesesesesesessssessssssssssasanas 147
ASYNC_NETWORK_IO EXAMPIE ....cvveeeeeeesssssssssssssssssssssssesesssesesessssssssssssssssssssssssssanas 148
Lowering ASYNC_NETWORK_I0 WaLS.........ccvrerrerrererserserersssensesessesessessessessssessessesssssssessees 149
ASYNC_NETWORK_IO SUMMAIY......cceerermrmeeesssssssssssssssssssssssssesssesesessssssssssssssssssssssssssanas 151

CMEMTHREAD. ........ccoeeeeeeeesssssssssssssssssssssssssssss e e e e e e se s s s s s s ssssssssssssasssssnsssnsssssnsnsnsnenes 151
What Is the CMEMTHREAD Wait TYPE? ......ccovveeeeersrsrnrnsnsnssssssssesesesesesesssssssssssssssssssssssanas 151
Lowering CMEMTHREAD WaLS .......ccccvrerrererrersereresesseressessssessessesssssssessessssssssssessesssssssessenes 153
CMEMTHREAD SUMMAIY ....cucuiuirnrrrrererereresesesssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssasas 154

[0_COMPLETION........cceueeeeeenssssssssssssssssssssssssssssesesesesesesesesssssssssssssssssssssssssssssssssssssnsssnsnsnsnenes 154
What Is the [0_COMPLETION Wait TYDE? ......ccceervrrrrsrernrnrnrnsnssssssssssesesesesesssssssssssssssssssssnnns 155
I0_COMPLETION EXQMPIE .....vovvrrrrrrrrrirereseseseseseseseesssssssssssssssssssssssssssssssssssssessssssssssssssssanas 155
Lowering [0_COMPLETION WatS.......ccccerereererreriereserserseressssessessesssssssessessessssessessesssssssessees 157
I0_COMPLETION SUMMAIY....ccrertirerrersersessesersessessessssessessesssssssessesssssssessessesssssssessesssssssesseses 157

LOGBUFFER @nd WRITELOQG.........ccccuruumrmrnrnsnsnsnsnsssnesesesesesesesssssssssssssssssssssssssssssssssssssssssssnsnsnenes 157
What Are the LOGBUFFER and WRITELOG Wait TYpes?......cccccvrrinnnnnnnnsnsnsessesnssessensennns 158
LOGBUFFER and WRITELOG EXAMPIE ......cceererereseseesessssssssssssssssssssssssssssssesesssessssssssssssssanas 160
Lowering LOGBUFFER and WRITELOG WaitS.........c.ccoovierennninsenienssnnsene s sessessessssessessens 162
LOGBUFFER and WRITELOG SUMMAIY.......ccvusereseseesessssssssssssssssssssssssssssssssesssesssssssssssssssas 163

RESOURCE_SEMAPHORE ........cccceoiiumunrsrssnsnsnssssssssssesesesesesesesssssssssssssssssssssssssssssssssssssssnsnsnsnsnes 163
What Is the RESOURCE_SEMAPHORE Wait TYPE?.......cccocvrmrrrmrrrmerereneresesesesesessssssssssssssssnnns 163
RESOURCE_SEMAPHORE EXQMPIE .......cccurvrrrrrrrirrnsnerenesesesesesesessssssssssssssssssssssssssssssssnsnsnenes 165
Lowering RESOURCE_SEMAPHORE WaILS ..........ccocouremmmssnsssssnsnsnssssssssssssesesesesesesssesssssssens 170
RESOURCE_SEMAPHORE SUMMAIY ......cccouurmrnrmrnrnsnensnesesesesesesessssssssssssssssssssssssssssssssssssnenes 171

RESOURCE_SEMAPHORE_QUERY_COMPILE............ccoovurererererereeseesssssss s ssssssssssssssesenenes 171
What Is the RESOURCE_SEMAPHORE_QUERY_COMPILE Wait Type?........ccceeererererersaesesenens 172
RESOURCE_SEMAPHORE_QUERY_COMPILE EXample..........coeererereneeesssssssssnsnssssssesesenees 174
Lowering RESOURCE_SEMAPHORE_QUERY_COMPILE WaitS .........ccovrurerererersnseeseseressnsanens 177
RESOURCE_SEMAPHORE_QUERY_COMPILE SUMMACY .......cccoverrsmresereresssssesesesessssssssssenens 178

viil



TABLE OF CONTENTS

SLEEP_BPOOL_FLUSH .......cootiieiieeessnssssssss s ssss e e se s sssssssssssssssssssssssssssssssnsssssnenes 179
What Is the SLEEP_BPOOL_FLUSH Wait TYPE? .......cccccururrmrrrrrrriresesesesesesesesessssssssssssssasanas 179
SLEEP_BPOOL_FLUSH EXAMPIE .....cceueneinensrsrsrssnnsssssssssesesesesesesesssesssssssssssssssssssssssssssssssanas 182
Lowering SLEEP_BPOOL_FLUSH WaLS .......cccccvrererernerieresensersesessssessesessessssessessessssessessees 185
SLEEP_BPOOL_FLUSH SUMMANY .....cccoviierirnrsrsrnnsssssssssesesesesesesesssesssssssssssssssssssssssssssssssanns 185

WRITE_COMPLETION........ocviuirirsrnrnrnrsssssesssesesesesesesssssssssssssssssssssssssssssssssssssssnsssnsssssssssssssssasssas 186
What Is the WRITE_COMPLETION Wait TYPE? .....ccccvvrrmmrrrrrrrrrreresesesesesesesssesssssssssssssssssanas 186
WRITE_COMPLETION EXAMIPIE......ceurerereeeeeeesssssssssssssssssssssssssssssesesesssssssssssssssssssssssssanas 186
Lowering WRITE_COMPLETION WS ........coeerereresesesessssssssssssssssssssssssssssssesesesesesssssssssssanns 187
WRITE_COMPLETION SUMMAIY....ccurureresmeeessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssanas 187

Chapter 7: Backup-Related Wait Types.....c.cccrusmrmsssnsmsssnsesssnsssssnssssssnssssnnssssnnssssas 189

BACKUPBUFFER ........cotiteteeesssssssssssssssssssssssssssssse e e e e e e s s s s s sssssssssssssssssssssnsssnsnsssnsnsnsnsnes 190
What Is the BACKUPBUFFER Wait TYPE?.......cccoeremmrmsrmrmsssnsnssssssssesesesesesesessssssssssssssssssssnnns 190
BACKUPBUFFER EXAMPIE ......ccoeeuerrrsssssissnssssssssssssssese e sssssssssssssssssnsnsnsnenenes 193
Lowering BACKUPBUFFER WAILS .........cccccoivirnnennninnine s s sss e s s ssssesne s 194
BACKUPBUFFER SUMMAIY ....ccccviiiiiriireresissnsse e ses e s sss s st se e sse st ssssessesasssssessesnes 195

BACKUPIO.......cccitiereeeceeeeesssssss s s sss st se e e sttt ns s e e s 195
What Is the BACKUPIO Wait TYPE? ....ccceeereeererererenese e sesesesese e sessesessssessssesesssssssenens 196
BACKUPIO EXAMPIE......cciiiriirirereninsine s ses s sae st sas s nnes 196
Lowering BACKUPIO WAILS........cccocrrererenererenerensesesesessesesessesesss e sessesessssessssesesssssssssessnns 197
BACKUPIO SUMMAIY ....ceruecrrrerersesersesesessesessesessssessssssessssssssssssssesssssssssssssssssssssssssssnsssssssnnes 198

BACKUPTHREAD .........ccoeeeeeesssssssssssssss s sssssssss s s e s e e ss s s s s ssssnsssnsnsnsnenes 198
What Is the BACKUPTHREAD Wait TYPE? ....cccovvrmrrmrsssrnssssssssssssssssesesesesesssssssssssssssssssssnnns 198
BACKUPTHREAD EXAMPIE.......cccvererersssssssnsssssssssssssse e e sssssssssssssnsnsnenes 199
Lowering BACKUPTHREAD WAILS .......c.ccocoerenerenseresesesese s e sesse e sessesesnssessnnes 200
BACKUPTHREAD SUMIMANY ......coveueerrenerenesessesessssessssssessssssssssssssssssssssssssssssssssssssssssssssssssnnes 201

Chapter 8: Lock-Related Wait TYPesS .....uuscemrrssssnnnmmsssssnssmsssssnnsssssssnnssssssssnsssssssnnnss 203

Introduction to Locking and BIOCKING ........ccccevrererrerernienseniene s sesesesessessessessssessessessesssssssensens 205
Lock Modes and Compatibility .........ccccerrernnerieniernnnneniese s sessesesss s sessessessesssssssesnees 205
[0 ot T N T =T o 1 OO 207
ISOIALION LEVEIS......c.cireiiccccri s 208



TABLE OF CONTENTS

Querying Lock INfOrmation ...........covcevnenninninie st se s ssenes 212
LOK VLS ettt bbb p e e e 216
What Is the LCK_M_S Walit TYPE? ..c.uevveveeierrererererrereressssessessessessssessessessessssessessesssssssessesees 216
LCK_M_S EXAMPIE ...evuerrerrerererreseesessersessessssessessesessssessesassssssssessessssssssssssassssnsssessesssssnsenaeses 217
Lowering LOK_IM_S WalitS.......ccccrererrerierersnnerseressssessesessessssessessesssssssessessesssssssessesssssssessees 218
LCK_ VS SUMMAIY.....ciuirrererrererreresseressessssessessessessssessesssssssessessesssssssessssassssssssessesssssssessees 219
LOK _IML_U ottt b g g e nr s 220
What Is the LCK_M_U Wait TYPE? .....cceercereeerererreerereres e e ses e e ssesse s e s ssessessaesnesaesns 220

IO G L =3 T 4 222
Lowering LOK_IM_U WaES .....ccccevvverrererenensessereseesessesse e ssssessessesssssssessesaessssessessesssssssessees 223
LOK_M_U SUMMAIY .cvervevreerersereesessersessessssessessesssssssessesssssssessessesssssssessssassssssssessesssnsssesseses 223
0 L PR 223
What Is the LCK_M_X Wait TYPE? .....coeriirirerinr s sse s sns s snes 224
LCK_M_X EXAMPIE .....eereeeeeerereeseesererseeseesaesesssessessessesssessessessessesaesssssssssesasssssnsesassssnnen 224
Lowering LOK_M_X WALS........cccccererierrerreerererres e seesesesseesesessaessessessesssessesssssssssssaesnennens 225
IO T G011 226
LOK _IVL_IDXX] 1. ttrtrerereseenesenenesesssssssssssssssssssssssssssssss e e e e e snsssnsssnsnsnenenenen 226
What Is the LOK_M_I[XX] Wait TYPE? ....eoereecrrrererenesese s sesese s sessesessesessssessssesesssessenens 226
LCK_M_I[XX] EXAMPIE.....eiriirererierinsire e ses e se s sse sttt sn e s s 227
Lowering LCK_IM_I[XX] WaIES ......ccceeeerrerereserensesesese e ses s sese e s sessesesssesennes 229
LCK_M_I[XX] SUMIMAIY .....coviirereeereesesenesessesesessesessesessesesessesessssessssesessssssssnsssessssssssssssnsssenes 229
LCK_M_SCH_S and LCK_M_SCH_M.........ccocumrrmrrriririreresesesesesesesssssssss s ssssssssssssssssssssssssnenes 230
What Are the LCK_M_SCH_S and LCK_M_SCH_M Wait TYpes?.........cocvrvrmrerererersssssesesenens 230
LCK_M_SCH_S and LCK_M_SCH_M EXample.........cccerrrmrmrmmnmmmssnsssssssssesesesesesesesessesssens 231
Lowering LCK_M_SCH_S and LCK_M_SCH_M Waits...........ccccrierirnnnnininnnsnsenesessensesaens 233
LCK_M_SCH_S and LCK_M_SCH_M SUMMArY .........cccriirrrrinennsnnsenesessssesessessssesessens 233
Chapter 9: Latch-Related Wait TyPesS.....cccivrrmmmmsssmmmssmmmmssmssssssssssssssssssssssssssssssnnnes 235
Introduction t0 LatChes ... s 235
LI ] 0 T L 237

LI ] TN 238



TABLE OF CONTENTS

VAo [0 0 E T = (Y O 240
Page-Latch CONtENTION .........ccvcviereririere s s s sae e aeenes 241
PAGELATCH_XX] cvuvueeseseseesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnsssssnsnsnsnsnes 247
What Is the PAGELATCH_[XX] Wait TYPE? ......covceirrrrnrerne s sessessssenens 247
PAGELATCH_[XX] EXAMPIE .....cuveneeresnssssssssssssssssssese e e e ssssssssssssssssssssssssssssssssssnsssnenes 248
Lowering PAGELATCH_[XX] WalES......ccveererrererserereesensersersessssessessesssssssessesssssssessessesssssssessenes 252
PAGELATCH_XX] SUMIMAIY....cectrerererserersersssessessesssssssessesssssssessessesssssssessessessssessessssssssssesses 258
LATCH_[XX] 1. terererererereesesesessenssssssssssssssssssssssssnsssssssnsnssssssssssnsssassssssssssssssssssssssssssnsssssnsssnsnsnsnsnes 258
What Is the LATCH_[XX] Wait TYPE? .....oovcrcrerenr et ss s sns s snes 259
LATCH_[XX] EXAMPIE....ccueerirerireccrieserene et res e e s sae e ses e e ssssesss e ses e sessesessesesessesesassessnnes 259
Lowering LATCH_[XX] WaltS......ccccreiermerireserinserese s ses e sesse e s sessesessssessssesessesesnssessnnes 265
LATCH_[XX] SUMMAIY ....vcceririririererinsesese s e s e ses e se s sessessssssesss e sessessssssessssessssessssssessnnes 266
PAGEIOLATCH_[XX] +.vueueuesenesesessssssssssssssssssssssssssnsssnsnsnsssssnssssnssssssssssssssssssssssssssssssssssssnsssnsnsnsnsnes 266
What Is the PAGEIOLATCH_[XX] Wait TYPE?.....cccvvvcrrerirnrirsine s sss e snes 267
PAGEIOLATCH_[XX] EXAMPIE ....eerueriecirsircrerin s s s s se s s sassnssessennes 269
Lowering PAGEIOLATCH_[XX] WALS ......ccccorvrmrrerennninninie s sensesesss s s s e e s ssssessesnens 270
PAGEIOLATCH_[XX] SUMMAIY ...ccueiiiiriireresissenese s sss e e sse st ssssessesssssssessesessssssssesnes 277
Chapter 10: High-Availability and Disaster-Recovery Wait Types ........ccccsrusssnnnnas 279
DBMIRROR_SEND .......coereeiirsnssisssssssss st ss s se st snsnsss e en 280
What Is the DBMIRROR_SEND Wait TYPE? ......ccccvrrrrmrninissnsnssssssssesesesesesesesesssssssssssssssnnns 283
DBMIRROR_SEND EXAMPIE .....cceueurnrrrrisisisssssssissssss e e sssssssssssssssnenes 283
Lowering DBMIRROR_SEND WaitS........ccccvrvrrimniennnnnnennnis s sessesse s ssssessessessssessessens 285
DBMIRROR_SEND SUMMAIY......cccoertrrrsrsnnsnsssnssssssssssesesesesesesessssssssssssssssssssssssssssssssssssnsnes 286
HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE............c.cccostnmmmnmnsssssnsnsnsnsnsssssssesesesenes 287
What Are the HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE Wait Types?................ 287
HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE SUMMArY.......cccceosurmmmmmnnmrrrererererees 290
HADR_SYNC_COMMIT.......ccootimmsrsrsrsssnsnsssssssssssssesssesesesesssssssssssssssssssssssssssssssssssssssssssssssssnenes 290
What Is the HADR_SYNC_COMMIT Wait TYPE? .....cccovremrmrmrmrnrrrreresssesesesesssssssssssssssssssssssanas 290
HADR_SYNC_COMMIT EXAMPIE......ccccoeiirrrnrnrsrrisirinesssesesesesesessssssssssssssssssssssssssssssssssssssenes 291
Lowering HADR_SYNC_COMMIT WailS........ccverrerererrerierenensensesessssessesessesessessessesssssssessees 294
HADR_SYNC_COMMIT SUMMAIY.....cccouiirmrmrnrsrrnsssesesesesesesesessssssssssssssssssssssssssssssssssssssssssees 297

xi



TABLE OF CONTENTS

REDO_THREAD_PENDING_WORK........ccceoursrrrmrmmrmrererereresesesssssssssssssssssssssssssssssssssssssssssssssssssnenes 297
What Is the REDO_THREAD_PENDING_WORK Wait TYPE? .......cccvererererermrmresesesesssssssssssasnnns 298
REDO_THREAD_PENDING_WORK SUMMAIY.......cccererrrereresesesesesssssssssssssssssssssssssssssssssesssees 300

Chapter 11: Preemptive Wait TYPeS.....ccursemrrrssssnnsmsssssnssssssssssssssssssssssssssnssssssssnnnss 301

SQL SEIVEE ON LINUX....ccceurerreeesereresssssssesesesssssssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssassnsaes 302

PREEMPTIVE_0S_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE ................... 305
What Are the PREEMPTIVE_0S_ENCRYPTMESSAGE
and PREEMPTIVE_OS_DECRYPTMESSAGE Wait TYPES? ......ccvrrerererererereeseessssssssssssssssnsnnns 305
PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE
EXAMPIE....c.eeeee e e 306
Lowering PREEMPTIVE_0S_ENCRYPTMESSAGE and
PREEMPTIVE_OS_DECRYPTMESSAGE WAILS ........ccoverererererereresesesessssssssssssssssssssssssssnsssnsnenes 312
PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE
SUMIMAIY ..t e e s e E e e e R A e e e e e e Re e e e e e e Re e Re e e e nRenne s 313

PREEMPTIVE_OS_WRITEFILEGATHER ...........cooviieririririresesesesesesesesssssssssssssssssssssssssssssssnssenenes 313
What Is the PREEMPTIVE_OS_WRITEFILEGATHER Wait TYPe? ......ceeverererererereesssssssssnsnnns 313
PREEMPTIVE_OS_WRITEFILEGATHER EXampIE ........ccovererererererenenesessssssssssssssssssssssesenenes 314
Lowering PREEMPTIVE_OS_WRITEFILEGATHER Waits..........cccooummrmrnrnrnenenenesesesesenesesesssenens 315
PREEMPTIVE_OS_WRITEFILEGATHER SUMMAIY.......ccoverererereresesesesssssssssssssssssssssssssssenenes 316

PREEMPTIVE_OS_AUTHENTICATIONOPS..........ccovtrerirerirereseseseeesssssssssssssssssssssssssssssssnsssssnenes 316
What Is the PREEMPTIVE_OS_AUTHENTICATIONOPS Wait TYPE? ......cccoerererereeesssssssssnsnnns 317
PREEMPTIVE_OS_AUTHENTICATIONOPS EXample........coceevererereresesesssssssssssssssssssssesssenenes 318
Lowering PREEMPTIVE_OS_AUTHENTICATIONOPS WaitS .........ccovvrrrrrmemerererereseseseeeeseseaens 319
PREEMPTIVE_OS_AUTHENTICATIONOPS SUMMAIY ......ccceererereeresessssssssssssssssssssssssssensnsnenes 321

PREEMPTIVE_OS_GETPROCADDRESS..........ccoomtriririririreresesesesesesesssssssssssssssssssssssssssssssssssssenes 321
What Is the PREEMPTIVE_0S_GETPROCADDRESS Wait TYPE? .......cceerererereeeeesssssssssnsnnns 322
PREEMPTIVE_OS_GETPROCADDRESS EXampIE.........ceurerererereeeessssssssssssssssssssssssssssenenes 324
Lowering PREEMPTIVE_OS_GETPROCADDRESS Walits...........coovvurrrrrerenensreseneseseneseseseseeaens 325
PREEMPTIVE_0S_GETPROCADDRESS SUMMAIY.......cccceovmrrrrrnrnrninsssnesssesesesesesesessssssssaens 325

xii



TABLE OF CONTENTS

Chapter 12: Background and Miscellaneous Wait TYyPes......cccussannrrsssssnnssssssnnnnss 327
CHECKPOINT_QUEUE..........ccoeteeeeeeceeesssssssssssssssssssssss e e e e e ss s s sssssssssssssssssssssssssssnsnsnenes 328
What Is the CHECKPOINT_QUEUE Wait TYPE? .....cccovvurmrmrmmnrnrrsnsnesssesesesesesssesssssssssssssssssasanns 328
CHECKPOINT_QUEUE SUMMAIY.....ccesreerrereerersersersessssessessesssssssessesssssssessessesssssssessssssssssesseses 331
DIRTY_PAGE_POLL.........cceetteeeseesssssssssssssssssssssssse e e e e e e ss s sssssssssssssssssssssssssssssnsssnsnsnsnenen 332
What Is the DIRTY_PAGE_POLL Wait TYDE?.......cccourumsmmrnrnrnrsssenesesesesesesesesesssssssssssssssssanns 332
DIRTY_PAGE_POLL SUMMAIY .....cecveririerseereerersesseessesersesssessesessssssessessesssessessessssssssasssssenns 335
LAZYWRITER_SLEEP ..ot s e ne e s 335
What Is the LAZYWRITER_SLEEP Wait TYPE? ......ccccervemmrmnrnrsrssssssnesesesesesesesssssssssssssssssnnns 335
LAZYWRITER_SLEEP SUMMAIY .....cccccviereriinirsinesiesissesesse s sessessesssssssessesasssssessessesssssssesneses 337

T 0 PR RRRo 337
What Is the MSQL_XP Wait TYPE?.....coevvcrirerr st s sss e 337
MSQL_XP EXQMPIE ..ceuereereerererieesserersesssessessessesssessessssssssssssessesssesssssessssssessessessssssssasssessenns 338
Lowering MSQL_XP WaLS ......cccccoviriririennrinnene st sss e sne s 339
MSQL_XP SUMIMAIY ....ccoueirirererenereneresesessesessesesassesessesessssessssessssessssssessenessssessssenssssnessenes 340
OLEDB .......ootetrireresesesesesesee s e s s s s bbb e e AR b e e 340
What Is the OLEDB Wait TYPE?.......cceerereresernesesesese s e e sessesssssssssssesesssssssenens 340
OLEDB EXAMIPIE ....eveereerieriesirsere s ses e st st s s s s e sae st s s st st s st s sne st e s sne s 340
Lowering OLEDB WALS .........ccccvermrrnnesrnesessesessssesese e e sesssssssese s sessssnsssssssssesessssssssnsssnns 341
OLEDB SUMMAIY ....coveirieerisesessenessssesessesssssssssssssesssssssassssssssssssssssssssssssssssssssssssssssssssssnsssanes 342
TRACEWRITE ..ottt sttt st bbbttt 342
What Is the TRACEWRITE Wait TYPE? ......cccoerererrrrinrnsssssssssssssss s ss s s sssssssnnns 343
TRACEWRITE EXAMPIE ....vvviererirererereseseseseesessssss s ssssssssssssssssssssssssesesessssssssssssssssssssssssnnns 343
Lowering TRACEWRITE WAILS .......ccouverrnerenrsserrnsesssesesssessssesssssse s sessssssssssssssesessesssssssssnns 348
TRACEWRITE SUMMAIY ....voviviirirerereseseseseseessssssssssssssssssssssssssssssssssesesessssssssssssssssssssssssssnsns 351
WAITFOR ...t bbb b 351
What Is the WAITFOR Wait TYPE? ...ccevverieririereresirsere s s sese e ssssessessessessssessessesssssssessesees 352
WAITFOR EXAMPIE ...cveirereresesin e se s sa s s sae e sae st s e se s sae s ssesaesaesasnsssesaesnes 352
WAITFOR SUMIM@AIY.....coiiiriereriesenseresesiesessessessessssessessesssssssessessessssessessesassssessessesssssssessesaes 353

xiii



TABLE OF CONTENTS

Chapter 13: In-Memory OLTP-Related Wait TYPeS.....ccccrrrssnmmsrmssssnnnssssssnnssssssnnnnss 355
Introduction t0 IN-Memory OLTP ... enens 355

I OO 356
ISOIALION ... e e r e e R s 360
Transaction LOG CRANGES ......ceeverrerrerersnserserersessssessessessessssessessesssssssessessessssessessesssssssessesaes 360
WAIT_XTP_HOST_WAIT ...ttt s s st sr e st s s s 361
What Is the WAIT_XTP_HOST_WAIT Wait TYPE?.....ccccvirirrrrrrere s ssssessesseenes 361
WAIT_XTP_HOST_WAIT SUMMAIY ....coviviiiiriereresirsessese s sese e sessessesssssssessessessssssssssesnes 366
WAIT_XTP_CKPT_CLOSE.........cccrirriirire s sse s st st sne st s s s s sss s s s 367
What Is the WAIT_XTP_CKPT_CLOSE Wait TYPE? .....ccccevvrrrirrerrrr s sss s sessennas 367
WAIT_XTP_CKPT_CLOSE SUMMAIY .......cccovsererrenrrsirseresissessessessessssessessesssssssessessssssssssessesees 370
WAIT_XTP_OFFLINE_CKPT_NEW_LOG.......ccceomrerernnrrirseress s e s sessessesssssssessessssessessesseses 370
What Is the WAIT_XTP_OFFLINE_CKPT_NEW_LOG Wait Type?.......ccccrrrrrrrrierierensenserenens 370
WAIT_XTP_OFFLINE_CKPT_NEW_LOG SUMMAIY ......ccccevvrirrirrernnessessesessssessesesssssssessesseses 372
Appendix I: Example SQL Server Machine Configurations..........ccuusemnmnssssnnnnsssnnns 373
Default Test MACRINE..........ccviiircrircc e 373
HA/DR TeSt MACKHINES ......ccveerircririesirie ettt 374
Appendix II: SPINIOCKS ..uuiieesrrissssnnsessssnsssssssnnssessssnssssssssnnssssssssnnsssssssnnssssssnnnssssnnns 377
Appendix II: Latch ClasSeS ...cuuveerrrmssssnnmmssssnsnssssssnssssssssnsssssssssnnsssssssssssssssnnnsssssnns 381
INA@X.uetiiiisnnnnnnnsssnnnnmssssnnnnnssssnnnnessssnnnnsssssnnnnsssssnnnnssssnnnnssssssnnnessssnnnnnssssnnnnesssnnnnnsssn 391

Xiv



About the Author
Ll

Enrico van de Laar has been working with data in all
kinds of formats and sizes for over 15 years. He is a Data

= & Advanced Analytics Consultant for Dataheroes where
¢ u‘ ' he helps organizations optimize their data platform
environment and helps them with their first steps in the
world of Advanced Analytics.

Enrico is a Data Platform MVP since 2014 and a frequent

speaker on various data-related events all over the world.
He frequently writes about technologies, like Microsoft SQL
Server and Azure Machine Learning, on his blog at www.enricovandelaar.com. You
can contact Enrico through his Twitter handle @evdlaar or by sending him an e-mail at
enrico@dataheroes.nl.


http://www.enricovandelaar.com/

About the Technical Reviewers

Eelco Drost is a Data Platform Architect at Data
Masterminds, a company that he co-formed in 2017.

He has over two decades of experience with SQL Server
as a consultant DBA, programmer, and architect.

His areas of expertise are architecture, disaster
recovery, database administration, database programming,
performance tuning, and SQL Server Internals.

He speaks at user groups and other industry
international events. You can follow him on Twitter at
@eelcodrost, find him on LinkedIn at www. 1inkedin.com/in/eelcodrost, and drop him
an e-mail at eelcodrost@datamasterminds.io.

Borbala Toth-Apathy is a database developer and architect with over 15 years of
experience in the IT field. She got interested in performance tuning when starting to
work with SQL Server back in the day, and it’s still one of her favorite topics. Recently
she is most fascinated by the power of data analysis—how raw data can transform into
complete decision support systems and how this process can change the way people
think about data.

xvii


http://www.linkedin.com/in/eelcodrost
http://www.eelcodrost@datamasterminds.io/

Acknowledgments

First and foremost, I want to thank my family for supporting me while writing this book.
They had some experience in that area from when I worked on the first edition of this
book, but writing the second edition of this book still proved to be a big undertaking.

I want to thank Apress, especially Jonathan and Jill, for helping me write this book.
When Jonathan asked me whether I was interested in updating the first edition, I could
only answer with a “yes!” So many things in SQL Server changed in the 4 years between
the first edition and this book, and being able to update the book to reflect those changes
means a lot to me.

A big thanks goes out to the technical editors, Eelco Drost and Borbala Toth-Apathy.
The comments they provided helped clarify a lot of areas inside this book and resulted in
a far higher quality.

Finally, a massive shout-out to the SQL Server community. You are a technical
community that has no equal, and I am honored to be a part of it.

Xix



Introduction

Performance is a hot issue on a lot of database implementations. Many businesses

run into performance-related issues when their databases experience more load or
grow larger in size. There are many methods available for increasing the performance
of your SQL Server(s) on all types of levels. Many of these performance-optimization
methods we consider best practice, like running index maintenance to make sure
fragmented indexes don’t slow down your queries, or updating statistics so the SQL
Server Database Engine has the correct information to generate a good execution plan.
Besides these database maintenance methods, you can also choose to dive a little bit
deeper into specific query performance troubleshooting, optimizing queries by making
sure expensive operators are replaced by less expensive ones, for instance. And of course
there is always the “sledgehammer” approach, replacing your current hardware for
newer, better performing hardware, hoping that will solve the performance issues you
are experiencing.

No matter what approach you choose to optimize or troubleshoot SQL Server
performance, there are always two common resources involved: time and money.
Ideally we want to spend as little time and money as possible while we are working
on increasing performance. Knowing where to focus your time and money is very
important. If you can find the source of the performance problem and resolve it at that
level, you can save a lot of time and money that you would have spent on analyzing
symptoms.

In a way, we can compare our search for the heart of our performance issues with a
medical examination. Instead of giving out different types of medication until something
actually works, a physician is always trying to find the source of the problem so he or she
can prescribe the right medication that works best for that specific condition without
causing side effects. The same approach works for SQL Server. Implementing all types
of possible solutions without looking at the real source of the problem will probably
not solve the real underlying issue (unless you're really lucky) and can possibly make
matters worse.

xxi



INTRODUCTION

This is where wait statistics can help. Wait statistics are generated and maintained
at the heart of the SQL Server Database Engine where queries are being executed,
giving valuable insight into what is slowing down your queries. There are 921 different
types of wait statistics in the latest edition of SQL Server (SQL Server 2017), and with
every edition that number grows as new features are introduced or existing features are
modified or expanded. That is a lot of information that is freely available to help you
troubleshoot!

This book is my attempt to help you understand SQL Server wait statistics. It will go
into detail how wait statistics are being generated and how you can use that information
to optimize, or troubleshoot, the performance of your SQL Server installation. I will also
describe specific wait statistics and give you pointers on how you can resolve problems
yourself. In the case of this book, I personally believe the journey is more important than
reaching the destination. For that reason, I spend more time describing and explaining
what is causing the specific wait types to occur than I do writing down every possible
way you can lower their wait times. If you understand why a wait type is generated, and
to what part of SQL Server it is related, you will quickly discover methods of your own to
lower their wait times.

Because of the sheer number of different wait statistics, it is sadly impossible to
describe and discuss all of them. For this reason, I had to make a selection of wait
statistics to include in this book. The way I did this was by gathering wait statistics
information from many different SQL Server installations and selecting the most
common or most performance-degrading ones, resulting in a selection of 45 different (or
grouped) wait types.

Book Layout

As I wrote in the introduction, the goal of this book is to give you a deeper understanding
of SQL Server wait statistics and also to describe various wait statistics in detail. For this
reason this book has been split up into two parts, Part I describing the foundation of wait
statistics analysis and Part I describing various specific wait statistics in detail. I tried

to categorize the wait statistics in Part II by the part of the system they affect (i.e., CPU,
Memory, etc.). Some wait statistics aren’t that easily categorized, since they can affect
multiple system parts. In those cases, I tried to categorize them with the part they have
the most effect on.

xxii



INTRODUCTION

Part I: Foundations of Wait Statistics Analysis

Chapter 1: “Wait Statistics Internals” starts off with a brief history

of SQL Server wait statistics and a look at the SQLOS architecture.
Because wait statistics have a close relationship with the processor(s)
of your system, we will discuss schedulers, tasks, and worker threads
in detail.

Chapter 2: “Querying SQL Server Wait Statistics” introduces the
various ways you can access the wait statistics information inside the
SQL Server Database Engine by using DMVs, Extended Events, and
Perfmon.

Chapter 3: “The Query Store” explores a new SQL Server feature

that became available in SQL Server 2016, the Query Store. Since
the Query Store can have a massive impact on how you perform
performance analysis, I dedicated a chapter on how you can use this
amazing new feature.

Chapter 4: “Building a Solid Baseline” covers the importance of
building and using a baseline for performance troubleshooting.
Baselines are especially important when analyzing wait statistics, and
I will show you examples of how you can create one for wait statistics
analysis.

Part II: Wait Types

Chapter 5: “CPU-Related Wait Types” introduces wait types that are
CPU related.

Chapter 6: “IO-Related Wait Types” describes wait types that are 10
related.

Chapter 7: “Backup-Related Wait Types” presents the wait types that
are related to backup events.

Chapter 8: “Lock-Related Wait Types” starts off with a short
introduction to locking and blocking in SQL Server before diving into
the lock-related wait types.

xxiii



INTRODUCTION

XXiv

Chapter 9: “Latch-Related Wait Types” starts off with a close look

at latches, describing what they are and how they work inside SQL
Server. After this introduction we are ready to take a look at different
latch-related wait types.

Chapter 10: “High-Availability and Disaster-Recovery Wait Types”
describes wait types that are related to the various HA and DR
configurations available in SQL Server.

Chapter 11: “Preemptive Wait Types” presents different wait types
that have a direct relationship with the operating system of your SQL
Server.

Chapter 12: “Background and Miscellaneous Wait Types” includes
various wait types that are being generated by the SQLOS as a
background process. This is also the chapter where we will describe
wait types that couldn’t be categorized in one of the preceding
categories.

Chapter 13: “In-Memory OLTP-Related Wait Types” describes some
of the wait types that are related to the In-Memory OLTP feature
which was released in SQL Server 2014.

Appendix I: “Example SQL Server Machine Configurations” describes
the configuration of the virtual machines I used in the book.

Appendix II: “Spinlocks” explains the working of so-called lightweight
synchronization primitives called spinlocks and the impact they can
have on your SQL Server configuration.

Appendix III: “Latch Classes” contains a list of a large portion of
different latch classes inside SQL Server. The list is a combination of
information from Books Online and additional information about the
specific latch class.



INTRODUCTION

Word of Warning

The way we access wait statistics information in this book is mostly by SQL queries. For
this reason this book has quite a lot of lines of SQL code. Most of the queries in Part I of
this book deal with gathering or capturing wait statistics using Dynamic Management
Views (or DMVs) and as such are, unless stated otherwise, harmless. Some of the queries
in Part II, however, are written to actually harm performance so specific wait types can
be demonstrated. Please keep this in mind when you plan to use some of the scripts and
test them thoroughly on a test system.



PART |

Foundations of Wait
Statistics Analysis



CHAPTER 1

Wait Statistics Internals

SQL Server wait statistics are an important tool you can use to analyze performance-
related problems or to optimize your SQL Server’s performance. They are, however, not
that well known to many database administrators or developers. I believe this has to

do with their relatively complex nature, the sheer volume of the different types of wait
statistics, and the lack of documentation for many types of wait statistics. Wait statistics
are also directly related to the SQL Server you are analyzing them on, which means that
it is impossible to compare the wait statistics of Server A to the wait statistics of Server B,
even if they had an identical hardware and database configuration. Every configuration
option, from the hardware firmware level to the configuration of the SQL Server Native
Client on the client computers, will have an impact on the wait statistics!

For the reasons just mentioned, I firmly believe we should start with the foundation
and internals of SQL Server wait statistics so you can get familiar with how they are
generated, how you can access them, and how you can use them for performance
troubleshooting. This approach will get you ready for Part II of this book, where we will
examine specific wait statistics.

In this chapter we will take a brief look at the history of wait statistics through the
various versions of SQL Server. Following that, we will take a close look at the SQL
Operating System, or SQLOS. The architecture of the SQLOS is closely tied to wait
statistics and to performance troubleshooting in general. The rest of the chapter is
dedicated to one of the most important aspects of wait statistics: thread scheduling.

Before we begin with the foundation and internals of SQL Server wait statistics, I
would like to mention a few things related to the terminology used when discussing
wait statistics. In the introduction of this book and the preceding paragraphs, I only
mentioned the term wait statistics. The sentence “compare the wait statistics of Server A
to the wait statistics of Server B” is actually wrong, since we can only compare the wait
time (the total time we have been waiting on a resource) of a specific wait type

© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_1



CHAPTER 1 WAIT STATISTICS INTERNALS

(the specific wait type related to the resource we are waiting on). From this point on,
when I use the term wait statistics I mean the concept of wait statistics, and I will use the
correct terms wait time and wait type where appropriate.

A Brief History of Wait Statistics

SQL Server has been around for quite some time now; the first release of SQL Server
dates back to 1989 and was released for the OS/2 platform. Until SQL Server 6.0,
released in 1995, Microsoft worked together with Sybase to develop SQL Server.

In 1995, however, Microsoft and Sybase went their own ways. Microsoft and Sybase
stayed active in the database world (SAP actually acquired Sybase in 2010), and in
2019 Microsoft will release SQL Server 2019 while SAP released SAP Sybase ASE

16 in 2014 (but is still maintained today), both relational enterprise-level database
systems.

Between SQL Server 6.0 and SQL Server 2019, so many things have changed that
you simply cannot compare the two versions. One thing that hasn’t changed in all
these years is wait statistics. In one way or another, SQL Server stores information
about its internal processes, and even though the way we access that information
has changed over the years, wait statistics remain an important part of the internal
logging process.

In early versions of SQL Server we needed to access the wait statistics using
undocumented commands. Figure 1-1 shows how you would query wait statistics
information in SQL Server 6.5 using the DBCC command.



Query - 192.168.56.101\master\sa

CHAPTER 1

QwfE] Plos[rser ] ouees| 1 ooccsaurmronarsiars) %] b [

WAIT STATISTICS INTERNALS

o

Query

| e I

Statistics [0 |

[l'lait Statistic

Value

DataservSem waits/tran
Rlock requests-/tran
Rlock waits/tran

Rlock millisec/tran
FPagelock requests/tran
FPagelock waits/tran
Pagelock millisec/tran
Tablelock requests/tran
Tablelock waits-tran
Tablelock millisec/tran
Extlock requests-tran
Extlock waits/tran
[Extlock millisec/tran
Upwaits-tran

Appndlog waits/tran
Upwait millisec/tran
Uritelog vaits/tran
Writelog millisec/tran
EBufget diskreads/tran
Bufget millisec tran
Total millisec/tran

(21 row(s) affected)

DBCC execution completed.

4

o

1.5882

oo

5.1768

88235

82353

o000 00D0O00ONODHOOMND

OoO0000OoOWoOoOUNOoOOoOo

If DBCC printed error messages,

see your System Administrator

1

o]

Q||

[ Comections 1 _

1, 28028

Figure 1-1. SQL Server wait statistics in SQL Server 6.5

One of the big changes that were introduced in SQL Server 2005 was the conversion
of many internal functions and commands into Dynamic Management Views (DMVs),

including wait statistics information. This made it far easier to query and analyze the

information returned by functions or commands. A new way of performance analysis

was born with the release of the SQL Server 2005 Microsoft whitepaper “SQL Server 2005
Waits and Queues” by Tom Davidson.

In the various releases of SQL Server the amount of different wait types grew
exponentially whenever new features or configuration options were introduced. If you
take a good look at Figure 1-1 you will notice that 21 different wait types were returned.
Figure 1-2 shows the amount of wait types, as the number of rows returned, available in
SQL Server 2017.



CHAPTER 1 WAIT STATISTICS INTERNALS

SatQueytsal- v Acmnsuotor 55+ I

SELECT * FROM sys.dm_os_wait stats +
-

Ws% -

BB oot |G Mossages |
wu!_type rmal] waiting_tasks_count wai_time_ms ma_wait_time_ms  signal_wait_time_ms -

[MSCELLAREDUS | 0 0 0
LCK_M_SCH_S ] 0
LCK_M_SCH_M ] 0
LCK_M_S 8 1453
LCK_M_U 0 0
LCK_M_X ]

LCK_M_I5 ]

LCK_M_IU ]
5  LCK_M_IX 0
10 LCK_M_SIU 0
11 ICK M SIX n

@) Query executed successfully. EVDL-SQL2017-01 (14.0 RTM) = EVDL-5QL2017-01\Admini... master O0X00:00 921 rows

D B W P

Pooooe
:ao::c\-ooc\goc\c\-
Poooocoeme e

Figure 1-2. SQL Server wait statistics in SQL Server 2017

Those 921 rows are all different wait types and hold wait information for different
parts of the SQL Server engine. With the release of SQL Server 2019 Community
Technology Preview (CTP) 2.4, the number of wait types increased even further and
cross the line of more than 1.000 different wait types. The number of wait types will
continue to grow in future SQL Server releases, as new features are introduced or existing
features are changed. Thankfully there is a lot more information available about wait
statistics now than there was in SQL Server 6.5!

The SQLOS

The world of computer hardware changes constantly. Every year, or in some cases every
month, we manage to put more cores inside a processor, increase the memory capacity
of mainboards, or introduce entirely new hardware concepts like PCI-based persistent
flash storage. Database Management Systems (or DBMSs) are always one of the first
types of applications that want to take advantage of new hardware trends. Because of
the fast-changing nature of hardware and the need to utilize new hardware options as
soon as they become available, the SQL Server team decided to change the SQL Server
platform layer in SQL Server 2005.

6



CHAPTER 1 WAIT STATISTICS INTERNALS

Before SQL Server 2005, the platform layer of SQL Server was pretty restricted,
and many operations were performed by the operating system. This meant that it was
difficult for SQL Server to keep up with the fast-changing world of server hardware,
as changing a complete operating system in order to utilize faster hardware or new
hardware features is a time-consuming and complex operation.

Figure 1-3 shows the (simplified) architecture of SQL Server before the introduction
of the SQLOS in SQL Server 2005.

[ User Mode Scheduler |

Relational Engine

Query Optimizer Query Compiler

Storage Engine
Transaction Manager Access Methods Lock Manager
File Manager

[ 1/0 Manager |

Figure 1-3. SQL Server architecture before the introduction of the SQLOS

SQL Server 2005 introduced one of the biggest changes to the SQL Server engine
seen to this day, the SQLOS. This is a completely new platform layer that functions as
a user-level operating system. This new operating system has made it possible to fully
utilize current and future hardware and has enabled features like advanced parallelism.
The SQLOS is highly configurable and adjusts itself to the hardware it is running on, thus
making it perfectly scalable for high-end or low-end systems alike.

Figure 1-4 shows the (simplified) architecture of SQL Server 2005, including the
SQLOS layer.



CHAPTER 1 WAIT STATISTICS INTERNALS

Relational Engine

Query Optimizer Query Compiler

Storage Engine

sQLOsS

Lock Manager Thread Scheduler Memory Manager
I/O Manager

Figure 1-4. SQL Server 2005 architecture

The SQLOS changed the way SQL Server accesses processor resources by
introducing schedulers, tasks, and worker threads. This gives the SQLOS greater
control of how work should be completed by the processors. The Windows operating
system uses a preemptive scheduling approach. This means that Windows will
give every process that needs processor time a priority and fixed slice of time, or
a quantum. This process priority is calculated from a number of variables like
resource usage, expected runtime, current activity, and so forth. By using preemptive
scheduling, the Windows operating system can choose to interrupt a process when a
process with a higher priority needs processor time. This way of scheduling can have
a negative impact on processes generated by SQL Server, since those processes could
easily be interrupted by higher priority ones, including those of other applications.
For this reason, the SQLOS uses its own (cooperative) non-preemptive scheduling
mechanism, making sure that Windows processes cannot interrupt SQLOS
processes.



CHAPTER 1 WAIT STATISTICS INTERNALS

SQL Server 7 and SQL Server 2000 also used non-preemptive scheduling using
User Mode Scheduling (UMS). SQLOS brought many more system components
closer together, thus enabling better performance and scalability.

There are some exceptions when the SQLOS cannot use non-preemptive scheduling,
for instance, when the SQLOS needs to access a resource through the Windows
operating system. We will discuss these exceptions later in this book in Chapter 11,
“Preemptive Wait Types.”

Schedulers, Tasks, and Worker Threads

Because the SQLOS uses a different method to execute requests than the Windows
operating system uses, SQL Server introduced a different way to schedule processor time
using schedulers, tasks, and worker threads. Figure 1-5 shows the different parts of SQL
Server scheduling and how they relate to each other.

Worker Thread

Scheduler

4\]

Figure 1-5. SQL Server scheduling




CHAPTER 1 WAIT STATISTICS INTERNALS

Sessions

A session is the connection a client has to the SQL Server it is connected to (after it has
been successfully authenticated). We can easily access session information by querying
the sys.dm_exec_sessions DMV using the following query:

SELECT * FROM sys.dm exec_sessions;

Generally speaking, user sessions will have a session_id greater than 50; everything
lower is reserved for internal SQL Server processes. However, on very busy servers there
is a possibility that SQL Server needs to use a session_id greater than 50. If you are only
interested in information about user-initiated sessions, it is better to filter the results of
the sys.dm_exec_sessions DMV using the is_user process column instead of filtering
ona session_id greater than 50. The following query will only return user sessions and
will filter out the internal system sessions:

SELECT * FROM sys.dm_exec_sessions
WHERE is user process = 1;

Figure 1-6 shows a small part of the results of this query.

session_id login_time host_name program_name host_process_id  chent_version
1 51 | 201901-241921:22357 EVDL-SQL201701 SQLServerCEIP 4784 7
2 53 20190124 192205473 EVDL-SQL2017-01  Microsoft SGL Sarver Management Studio 4552 7
3 54 201901-24 19:2205440 EVDL-SQL201701  Microsoft SQL Server Management Studic 4652 7
4 55 201901-24 19:23:11.003  EVDL-SQL2017-01  Microsoft SQL Server Management Studic - Query ~ 4652 7

Figure 1-6. sys.dm_exec_sessions results

There are many more columns returned by the sys.dm_exec_sessions DMV that will
give us information about the specific session. Some of the more interesting columns
that deserve some extra explanation are the host_process_id, which is the Process ID
(or PID) of the client program connected to the SQL Server. The cpu_time column will
give you information about the processor time (in milliseconds) the session has used
since it was first established. The memory usage column displays the amount of memory
used by the session. This is not the amount in MB or KB, but the number of 8 KB pages
used. Another column I would like to highlight is the status column. This will show you
if the session has any active requests. The most common values of the status column

10



CHAPTER 1 WAIT STATISTICS INTERNALS

are “Running,” which indicates that one or more requests are currently being processed
from this session, and “Sleeping,” which means no requests are currently being
processed from this session.

Requests

A request is the SQL Server execution engine’s representation of a query submitted by a
session. Again, we can use a DMV to query information about a request; in this case, we
can run a query against the sys.dm_exec_requests DMV like the following query:

SELECT * FROM sys.dm exec_requests;

Figure 1-7 shows a portion of the results of this query.

session_id request_id start_time status command sgl_handle
25 25 0 2019-01-24 19:24:20.787  sleeping TASK MANAGER NULL
26 26 0 2019-01-24 19:24:20.787  sleeping TASK MANAGER NULL
27 27 ] 2019-01-24 19:24:20.787  sleeping TASK MANAGER NULL
28 28 0 2019-01-24 19:24:20.787  sleeping TASK MANAGER NULL
2 29 0 2019-01-22 10:15:38.823  background HADR_AR_MGR_NOTIFICATION... NULL
30 30 0 2015-01-24 19:20:05.200  sleeping TASK MANAGER NULL
3 31 0 201501-24 19:24:50.863  sleeping TASK MANAGER NULL
32 32 0 2019-01-22 10:15:39.167  background BRKR EVENT HNDLR NULL
33 3B 0 2015-01-22 10:15:39.167 background BRKR TASK NULL
M 42 0 2019-01-22 10:15:39.167  background BRKR TASK NULL
35 43 0 2019-01-22 10:15:39.167  background BRKR TASK NULL
36 50 0 2019-01-24 19:21:05.257  sleeping TASK MANAGER NULL
37 5 0 2019-01-24 19:25:03.973  running SELECT (:<02000...

Figure 1-7. sys.dm_exec_requests results

The sys.dm_exec_requests DMV is an incredibly powerful tool to use when you
are troubleshooting any performance-related issues. The reason for this is that it has
a lot of information about the actual queries being executed and can help you detect
performance bottlenecks relatively quickly. Because the sys.dm_exec_requests DMV
also displays wait statistics-related information, we will take a thorough look at it in
Chapter 2, “Querying SQL Server Wait Statistics.”

11



CHAPTER 1 WAIT STATISTICS INTERNALS

Tasks

Tasks represent the actual work that needs to be performed by the SQLOS, but they do
not perform any work themselves. When a request is received by SQL Server, one or
more tasks will be created to fulfill the request. The number of tasks that get generated
for a request depends on if the query request is being performed using parallelism or if
it’s being run serially.

We can use the sys.dm_os_tasks DMV to query the task information, like I did in the
following example query:

SELECT * sys.dm os_tasks;

Figure 1-8 shows a part of the results of the query.

task_state contest_switches_count pending_io_count pending_io_byte_count pending_io_byte_average  scheduler_id
1 | B0000007F7DOTCAES | | SUSPENDED 42911 0 0 0 0
2 D0000007F7DOICECB  RUNNING 4 0 0 0 0
3 :0000007F7D01CCA8  RUNNING 32 0 0 0 0
4 x0000007F7D01D468  RUNNING 3 0 0 0 0
5 0:0000007F7D01D848 DONE NULL NULL NULL NULL 0
6 <0000007F7D01DC28 SUSPENDED 615 515 0 0 0
7 (x<0000007F78B5C108  SUSPENDED 140339 0 0 0 0
8 Ox0000007F78B5C4EE  SUSPENDED 413 51 0 0 0
9 x0000007F78B5CEC8  SUSPENDED 132339 0 0 0 0
10  (x0000007F78B5D088 DONE NULL NULL NULL NULL 0
11 (x0000007F78B5CCA8 SUSPENDED 1 0 0 0 0
12 (xD000007F7453EBC8  SUSPENDED 1 0 0 1] 0

Figure 1-8. sys.dm_os_tasks results

When you query the sys.dm_os_tasks DMV you will discover it will return many
results, even on servers that have no user activity. This is because SQL Server uses
tasks for its own processes as well; you can identify those by looking at the session_id
column.

There are some interesting columns in this DMV that are worth exploring to see
the relations between the different DMVs. The task_address column will show you the
memory address of the task. The session_id will return the ID of the session that has
requested the task, and the worker address will hold the memory address of the worker
thread associated with the task.

12



CHAPTER 1 WAIT STATISTICS INTERNALS

Worker Threads

Worker threads are where the actual work for the request is being performed. Every task
that gets created will get a worker thread assigned to it, and the worker thread will then
perform the actions requested by the task.

A worker thread will actually not perform the work itself; it will request a thread
from the Windows operating system to perform the work for it. For the sake of
simplicity, and the fact the actual Windows thread runs outside the SQLOS, | have
left this step out of Figure 1-5. You can access information about the Windows
operating system threads by querying sys.dm_os_threads if you are interested.

When a task requests a worker thread SQL Server will look for an idle worker thread
and assign it to the task. In the case when no idle worker thread can be located and the
maximum number of worker threads has been reached, the request will be queued until
a worker thread finishes its current work and becomes available.

There is a limit to the number of worker threads SQL Server has available for
processing requests. This number will be automatically calculated and configured
by SQL Server during startup. We can also calculate the maximum number of worker
threads ourselves using these formulas:

e 32-bit system with less than, or equal to, 4 logical processors:
e 256 worker threads

e 32-bit system with more than 4 logical processors:

e 256 + ((number of logical processors - 4) * 8)

e 64-bit system with less then, or equal to, 4 logical processors:
e 512 worker threads

e 64-bit system with more than 4 logical processors:

e 512+ ((number of logical processors - 4) * 16)

Example: If we have a 64-bit system with 16 processors (or cores) we can calculate
the maximum number of worker threads using the formula, 512 + ((16 - 4) * 16), which

would give us a maximum of 704 worker threads.

13



CHAPTER 1 WAIT STATISTICS INTERNALS

The number of worker threads can be changed from the default of 0 (which means
SQL Server sets the number of max worker threads using the preceding formulas when it
starts) by changing the max worker threads options in your SQL Server’s properties, as
illustrated by Figure 1-9.

B Server Properties - EVDL-SQL2017-01 |- [=lx]
S T som ~ @

K Memory

: Enable processors

& C::zons [] Automatically set processor affinity mask for all processors

# Database Settings [w] Automatically set 1/O affinity mask for all processors

K Advanced

K Pemissions Processor Processor Affinity 1/0 Affinity

+

Connection

Server:

EVDL-SQL2017-01 Threads -

Connection: Maximum worker threads:

EVDL-5QL2017-01\Administrator

U -~
¢¥ View connection properties *

["] Boost SQL Server priority
[] Use Windows fibers flightweight pooling)

Progress

R — —
. (®) Configured values () Running values

ok ] [ Comn

Figure 1-9. Processors page in the Server Properties

Generally speaking, there should be no need to change the max worker threads
option, and my advice is to leave the setting alone, as it should only be changed in very
specific cases (I will discuss one of those potential cases in Chapter 5, “CPU-Related Wait
Types,” when we talk about THREADPOOL waits).

14



CHAPTER 1 WAIT STATISTICS INTERNALS

One thing to keep in mind is that worker threads require memory to work. For
32-bit systems this is 512 KB for every worker thread; 64-bit systems will need 2048 KB
for every worker thread. Thus, changing the number of worker threads can potentially
impact the memory requirements of SQL Server. This does not mean you need a massive
amount of memory just for your worker threads—SQL Server will automatically destroy
worker threads if they have been idle for 15 minutes or if your SQL Server is under heavy
memory pressure.

SQL Server supplies us with a DMV to query information about the worker threads:
sys.dm_os_workers. Figure 1-10 shows some of the results of this query:

SELECT * FROM sys.dm os workers;

worker_address status is_preemptive  is_fiber is_sick is_in_cc_exception is_fatal_exception is_inside_catch
1 | xDDDDDO7F7D020160 ; 2 0 0 0 0 0 0
2 0x0000007F7D022160 4 1 0 0 0 0 0
3 (x0000007F7D02A160 2 0 0 0 0 0 0
4 (x0000007F7D200160 2097156 1 0 0 0 0 0
5 <0000007F7D21C160 4 1 0 0 0 0 0
6 (x0000007F7D21E160 4 1 0 0 0 0 0
7 0x0000007F7D258160 O 0 0 0 0 0 0
8 0000007F7D064160 4 1 0 0 0 0 0
9 x0000007F7A62C160 O 0 0 0 0 0 0
10 (xDDODDO7F78ASE160 O 0 0 0 0 0 0
11 (x0000007F78A90160 4 1 0 0 0 0 0
12 (xDDODDO7F78AS2160 O 0 0 0 0 0 0

Figure 1-10. Results of querying sys.dm_os_workers

The sys.dm_os_workers DMV is a very large and complex DMV where many
columns are marked as “Internal use only” by Microsoft. In this DMV the columns
task _address and scheduler_address are available to link together the different DMVs
we have discussed.

Worker threads go through different phases while they are being exposed to the
processor, which we can view when we look at the state column in the sys.dm_os_
workers DMV:

e INIT: The worker thread is being initialized by the SQLOS.

e RUNNING: The worker thread is currently performing work on a
processor.

15



CHAPTER 1 WAIT STATISTICS INTERNALS

e RUNNABLE: The worker thread is ready to run on a processor.
o SUSPENDED: The worker thread is waiting for a resource.

The states the worker threads go through while performing their work are one of the
main topics of this book. Every time a worker thread is not in the “RUNNING” state, it has
to wait, and the SQLOS records this information into wait statistics, giving us valuable
insight into what the worker thread has been waiting on and how long it has been waiting.

Schedulers

The scheduler component’s main task is to—surprise—schedule work, in the form

of tasks, on the physical processor(s). When a task requests processor time it is the
scheduler that assigns worker threads to that task so the request can get processed. It

is also responsible for making sure worker threads cooperate with each other and yield
the processor when their slice of time, or quantum, has expired. We call this cooperative
scheduling. The need for worker threads to yield when their processor time has expired
comes from the fact that a scheduler will only let one worker thread run on a processor
at a time. If the worker threads didn’t need to yield, a worker thread could stay on the
processor for an infinite amount of time, blocking all usage of that processor.

There is a one-on-one relation between processors and schedulers. If your system
has two processors, each with four cores, there will be eight schedulers that the SQLOS
can use to process user requests, each of them mapped to one of the logical processors.

We can access information about the schedulers by running a query against the sys.
dm_os_schedulers DMV:

SELECT * FROM sys.dm os_schedulers;

The results of the query are shown in Figure 1-11.

scheduler_address parent_node_id scheduler id cpu_id status is_online is_idle preemptive_switches_court
1 | 00000007F7D180040 | 0 0 0 VISIBLE ONLINE 1 0 37589
2 (x0000007F7D1AD0Z0 O 1 1 VISIBLE ONLINE 1 1 59238
3 (x0000007F7D1C0040 0 1048578 0 HIDDEN ONLINE 1 0 0
4  (xD0DODD7F7DS0004D 64 1048576 0 VISIBLE ONLINE (DAC) 1 1 4
5  (x0000007F78960040 0 1048579 1 HIDDEN ONLINE 1 1 0
6  (x0000007F7D1E0040 0 1048580 0 HIDDEN ONLINE 1 1 5
7 (x0000007F78940040 0 1048531 1 HIDDEN ONLINE 1 1 0
8  (x0000007F76000040 0O 1048582 0 HIDDEN ONLINE 1 1 2

Figure 1-11. sys.dm_os_schedulers query results

16



CHAPTER 1 WAIT STATISTICS INTERNALS

The SQL Server on which I ran this query has one processor with two cores, which
means there should be two schedulers that can process my user requests. If we look
at Figure 1-11, however, we notice there are more than two schedulers returned by
the query. SQL Server uses its own schedulers to perform internal tasks, and those
schedulers are also returned by the DMV and are marked “HIDDEN ONLINE” in the
status column of the DMV. The schedulers that are available for user requests are
marked as “VISIBLE ONLINE” in the DMV. There is also a special type of scheduler
with the status “VISIBLE ONLINE (DAC).” This is a scheduler dedicated for use with
the Dedicated Administrator Connection (DAC). This scheduler makes it possible to
connect to SQL Server in situations where it is unresponsive; for instance, when there are
no free worker threads available on the schedulers that process user requests.

We can view the number of worker threads a scheduler has associated with it by
looking at the current_workers_count column. This number also includes worker
threads that aren’t performing any work. The active workers count shows us the
worker threads that are active on the specific scheduler. This doesn’t mean they
are actually running on the processor, as worker threads with states of “RUNNING,’
“RUNNABLE,” and “SUSPENDED” also count toward this number. The work_queue_
count is also an interesting column since it will give you insight into how many tasks are
waiting for a free worker thread. If you see high numbers in this column, it might mean
that you are experiencing CPU pressure.

Putting It All Together

All the parts of the SQL Server scheduling we have discussed so far are connected to
each other, and every request passes through these same components. The following text
is an example of how a query request would get processed.

A user connects to the SQL Server through an application. The SQL Server will create
a session for that user after the login process is completed successfully. When the user
sends a query to the SQL Server, a task and a request will be created to represent the unit
of work that needs to be done. The scheduler will assign worker threads to the task so it
can be completed.

To see all this information in SQL Server, we can join some of the DMVs we used.
The query in Listing 1-1 will show you an example of how we can combine the different
DMVs to get scheduling information about a specific session (in this case a session with
an ID of 55).

17



CHAPTER 1 WAIT STATISTICS INTERNALS

Listing 1-1. Join the different DMVs together to query scheduling information

SELECT
r.session id AS 'Session ID',
r.command AS 'Type of Request’,
qt.[text] AS 'Query Text',
t.task_address AS 'Task Address',
t.task state AS 'Task State',
w.worker address AS 'Worker Address',
w.[state] AS 'Worker State',
s.scheduler address AS 'Scheduler Address',
s.[status] AS 'Scheduler State'
FROM sys.dm exec_requests r
CROSS APPLY sys.dm exec_sql text(r.sql handle) qt
INNER JOIN sys.dm os tasks t
ON r.task address = t.task address
INNER JOIN sys.dm os workers w
ON t.worker address = w.worker address
INNER JOIN sys.dm os schedulers s
ON w.scheduler address = s.scheduler address
WHERE r.session_id = 55

Figure 1-12 shows the information that the query returned on my test SQL Server.
To keep the results readable, I only selected columns from the DMVs to show the relation
between them.

Session ID  Type of Request  Query Text Tasx Address Task State  Wiorker Address Wodker State  Scheduler Address
55 SELECT SELECT  rsesson_id AS Sesson ID O0000007F7453FB48 RUNNING  OxDO00007F701CAT60  RUNNING Ox0000007F 7D 180040

Figure 1-12. Results of the query from Listing 1-1

In the results we can see that Session ID 53 made a SELECT query request. I did a
cross apply with the sys.dm_exec_sql_text Dynamic Management Object to show the
query text of the request. The request was mapped to a task, and the task began running.
The task was then mapped to a worker thread that was then also in a running state. This
meant that this query began being processed on a processor. The Scheduler Address
column shows on which specific scheduler our worker thread was being run.

18



CHAPTER 1 WAIT STATISTICS INTERNALS

Wait Statistics

So far, we have gone pretty deep into the different components that perform scheduling
for SQL Server and how they are interconnected, but we haven'’t given a lot of attention
to the topic of this book: wait statistics.

In the section about worker threads earlier in this chapter, I described the states
a worker thread can be in while it is performing work on a scheduler. When a worker
thread is performing its work, it goes through three different phases (or queues) in the
scheduler process. Depending on the phase (or queue) a worker thread is in, it will get
either the “RUNNING,” “RUNNABLE,” or “SUSPENDED” state. Figure 1-13 shows an
abstract view of a scheduler with the three different phases.

Scheduler

Runnable Queue Waiter List

Figure 1-13. Scheduler and its phases and queues

When a worker thread gets access to a scheduler it will generally start in the Waiter
List and get the “SUSPENDED” state. The Waiter List is an unordered list of worker
threads that have the “SUSPENDED” state and are waiting for resources to become
available. Those resources can be just about anything on the system, from data pages
to alock request. While a worker thread is in the Waiter List the SQLOS records the type
of resource it needs to continue its work (the wait type) and the time it spends waiting
before that specific resource becomes available, known as the resource wait time.

Whenever a worker thread receives access to the resources it needs, it will move to
the Runnable Queue, a first-in-first-out list of all the worker threads that have access
to their resources and are ready to be run on the processor. The time a worker thread
spends in the Runnable Queue is recorded as the signal wait time.

19



CHAPTER 1 WAIT STATISTICS INTERNALS

The first worker thread in the Runnable Queue will move to the “RUNNING”
phase, where it will receive processor time to perform its work. The time it spends on
the processor is recorded as CPU time. In the meantime, the other worker threads in
the Runnable Queue will move a spot higher in the list, and worker threads that have
received their requested resources will move from the Waiter List into the Runnable
Queue.

While a worker thread is in the “RUNNING” phase there are three scenarios that can
happen:

o The worker thread needs additional resources; in this case it will
move from the “RUNNING” phase to the Waiter List.

o The worker thread spends its quantum (fixed value of 4 milliseconds)
and has to yield; the worker thread is moved to the bottom of the
Runnable Queue.

o The worker thread is done with its work and will leave the scheduler.

Worker threads move through the three different phases all the time, and it is very
common that one worker thread moves through them multiple times until its work
is done.

Figure 1-14 will show you the scheduler view from Figure 1-13 combined with the
different types of wait time and the flow of worker threads.

RUNNING

Scheduler

Runnable Queue Waiter List
-

Signal Wait Time Resource Wait Time

Figure 1-14. Scheduler view complete with wait times and worker thread flow

20



CHAPTER 1 WAIT STATISTICS INTERNALS

Knowing all the different lengths of time a request spends in one of the three
different phases makes it possible to calculate the total request execution time, and
also the total time a request had to wait for either processor time or resource time.
Figure 1-15 shows the calculation of the total execution time and its different parts.

Wait time

ICPU time +|8ignal wait time + Resource wait time

Total execution time

Figure 1-15. Request execution time calculation

Since there is a lot of terminology involved into the scheduling of worker threads in
SQL Server, I would like to give you an example on how worker threads move through a
scheduler.

Figure 1-16 will show you an abstract image of a scheduler like those we have already
looked at, but this time I added requests that are being handled by that scheduler.

SID 76

RUNNING

Scheduler
Runnable Queue Waiter List
Signal Wait Time - Resource Wait Time
SID 59 SID 83 LCK_M_S
SID 98 SID 51 CXPACKET
SID 74

Figure 1-16. Scheduler with running requests

21



CHAPTER 1 WAIT STATISTICS INTERNALS

In this example we see that the request from SID (Session ID) 76 is currently being
executed on the processor; this request will have the state “RUNNING.” There are
two other requests, SID 83 and SID 51, in the Waiter List waiting for their requested
resources. The wait types they are waiting for are LCK_M_S and CXPACKET. I won't
go into detail here about these wait types since we will be covering both of them in
Part II of this book. While these two sessions are in the Waiter List, SQL Server will be
recording the time they spend there as wait time, and the wait type will be noted as
the representation of the resource they are waiting on. If we were to query information
about these two threads, they would both have the “SUSPENDED” state. SID 59, SID 98,
and SID 74 have their resources ready and are waiting in the Runnable Queue for
SID 76 to complete its work on the processor. While they are waiting in the Runnable
Queue, SQL Server records the time they spend there as the signal wait time and adds
that time to the total wait time. These three worker threads will have the status of
“RUNNABLE!”

In Figure 1-17 we have moved a few milliseconds forward in time; notice how the
scheduler and worker threads have moved through the different phases and queues.

SID 59

RUNNING

Scheduler

Runnable Queue ! Waiter List

Signal Wait Time Resource Wait Time
S5ID98 SID 83 LCK_M_S
SID 74
SID51

Figure 1-17. Scheduler a few milliseconds later

22



CHAPTER 1 WAIT STATISTICS INTERNALS

SID 76 completed its time on the processor; it didn’t need any additional resources
to complete its request and thus left the scheduler. SID 59 was the first worker
thread in the Runnable Queue, and now that the processor is free it will move from
the Runnable Queue to the processor, and its state will change from “RUNNABLE”
to “RUNNING.” SID 51 is done waiting on the CXPACKET wait type and moved
from the Waiter List to the bottom of the Runnable Queue, changing its state from
“SUSPENDED” to “RUNNABLE”

Summary

In this chapter we took a look at the history of wait statistics throughout various versions
of SQL Server. Even though the method of analyzing SQL Server performance using wait
statistics is relatively new, wait statistics have been a part of the SQL Server engine for a
very long time.

With the introduction of the SQLOS in SQL Server 2005 a lot changed in how SQL
Server processed requests, introducing schedulers, worker threads, and tasks. All the
information for the various parts are stored in Dynamic Management Views (DMVs) or
Dynamic Management Functions (DMFs), which are easily queried and return a lot of
information about the internals of SQL Server.

Using these DMVs, we can view the progress of requests while they are being
handled by a SQL Server scheduler and learn if they are waiting for any specific
resources. The resources the requests are waiting for and the time they spend waiting for
those resources are recorded as wait statistics, which is the main topic of this book.

23



CHAPTER 2

Querying SQL Server
Wait Statistics

With the introduction of Dynamic Management Views (DMVs) in SQL Server 2005,
viewing and analyzing wait statistics has become a lot easier and less tedious.

In SQL Server versions prior to SQL Server 2005, we were limited to the DBCC
SQLPERF('WAITSSTATS') command to view wait statistics. Presently there are a
variety of DMVs that return wait statistics-related information, and in this chapter,
we will take a detailed look at four of the most useful DMVs: sys.dm_os _wait stats,
sys.dm_os_waiting tasks, sys.dm_exec_requests, and sys.dm_exec_session_
wait stats.

Viewing wait statistics information is not only limited to DMVs though. We can also
use the Windows Performance Monitor, or Perfmon, to view wait statistics information.
SQL Server 2008 introduced yet another option to view wait statistics, Extended Events.
While Extended Events were pretty complicated to work with in SQL Server 2008,
meaning you would have to write an entire Extended Event session in T-SQL, Microsoft
has drastically improved Extended Events in SQL Server 2012, making them a lot more
user-friendly and easier to use.

SQL Server 2016 SP1 introduced two new methods to access wait statistics: through
anew DMV called sys.dm_exec_session_wait_stats and by adding wait statistics
information on a per-query basis inside execution plans.

In SQL Server 2017 Microsoft took recording wait statistics another step forward by
including them inside the Query Store. The Query Store is a feature that was introduced
in SQL Server 2016 and acts like a flightrecorder for your query workload, logging query
statement, performance, and resource utilization.

25
© Enrico van de Laar 2019

E.van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_2



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

We will take a look at all of the sources that capture wait statistics that are mentioned
in the previous paragraphs inside this chapter, starting with the various DMVs. Because
the Query Store feature has such a big impact on how you can troubleshoot and analyze
query performance, including wait statistics in SQL Server 2017 and higher, we are going
to take a thorough look at it in Chapter 3, “The Query Store.”

Sys.dm_os_wait_stats

The sys.dm_os_wait_stats DMV is probably one of the most important DMVs regarding
wait statistics. This DMV is the replacement for the DBCC SQLPERF ('WAITSTATS")
command you would have had to use before SQL Server 2005. All of the information the
DBCC SQLPERF('WAITSTATS') command returned is included in the sys.dm os wait_
stats DMV, plus a little bit more.

The sys.dm_os_wait_stats DMV shows the total amount of wait time for every
wait type since the start (or restart) of your SQL Server. It is also cumulative, adding
wait time to the different wait types, resulting in an ever-increasing total. Querying the
sys.dm os wait stats DMV will give you insight into what your SQL Server has been
waiting on the most since the time it started or was restarted. This can be helpful if you
are looking for that grand total of wait time for every wait type, but many times you are
interested in the wait time for a specific time segment. In this case it is possible to reset
the sys.dm_os wait_stats DMV without having to restart your SQL Server by using the
DBCC SQLPERF('sys.dm os wait stats', CLEAR) SQL command. This will reset all
wait statistics information back to 0 again, meaning you will lose all information before
the reset. In Chapter 4, “Building a Solid Baseline,” we will take a look at a method that
does not completely reset the sys.dm_os _wait stats DMV.

As with every DMV in SQL Server, we can run a query against the sys.dm _os wait_
stats DMV just like we would against a table, in this case SELECT * FROM sys.dm os_
wait_stats. The results of this query are shown in Figure 2-1.

26



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms  signal_wait_time_ms

: MISCELLANEQUS |

0

W 00~ & 0 W N =

|| d | b —
W N = O

0
LCK_M_SCH_S 0
LCK_M_SCH_M 0
LCK_M_S 8
LCK_M_U 0
LCK_M_X 0
LCK_M_IS 0
LCK_M_IU 0
LCK_M_IX 0
LCK_M_SIU 0
LCK_M_SIX 0
LCK_M_UIX 0
LCK_M_BU 0

0
0
1433

DDDGGDQGDEDGQ
[— T — I — I — I — T — I — N — I — N * I — I — I — ]

[— I — I — I — I — R — R — I — I —

Figure 2-1. Sys.dm_os_wait_stats

Following are the available columns in the sys.dm_os_wait_stats DMV, along with

a description of what each column can tell you:

wait_type returns the wait type. The sys.dm_os wait stats will
always return one row for every wait type possible in that specific
SQL Server version.

waiting tasks count shows a total of how many times a worker
thread had to wait for that specific wait type.

wait_time ms returns the total wait time in milliseconds (1/1000 of
a second) for that specific wait type since the start of the SQL Server
instance or a manual reset of the DMV. This is the time a worker
thread has spent in the Waiter List in the “SUSPENDED” state. It also
includes the time the worker thread spent in the Runnable Queue

in the “RUNNABLE” state while waiting for the scheduler to grant it
processor time.

max_wait time ms shows the maximum wait time in milliseconds a
worker thread waited on that specific wait type.

signal wait_time_ms tells us the amount of time in milliseconds the
worker thread spent in Runnable Queue waiting for processor time.

27



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Signal wait times are unavoidable and normal in Online Transaction
Processing (OLTP) systems where a large number of queries are being
processed, all of them requesting time on the processor. The signal
wait time is also an important metric for detecting CPU pressure.
Generally speaking, as it depends on the hardware of your system,
seeing signal wait time metrics higher than 25% of the total wait time
can indicate CPU pressure, because the worker threads are waiting for
the processor to become available instead of using resources.

You may have noticed that the sys.dm _os wait stats DMV does not return a
column for the resource wait time. If we want to display the resource wait time as an
additional column, we will need to calculate the value ourselves.

Listing 2-1 shows a query you could use to analyze the sys.dm os wait stats
DMV. Besides the regular columns, it will add two more columns for every wait type

returned, the resource wait time and the average wait time.

Listing 2-1. sys.dm_os_wait_stats with additional information

SELECT
wait_type AS 'Wait Type',
waiting tasks_count AS 'Waiting Tasks Count',
(wait_time ms - signal wait time ms) AS 'Resource Wait Time',
signal wait time ms AS 'Signal Wait Time',
wait_time ms AS 'Total Wait Time',
COALESCE(wait_time ms / NULLIF(waiting tasks count,0), 0) AS 'Average
Wait Time'
FROM sys.dm os wait stats;

This query will return results as shown in Figure 2-2.

28



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Watt Type Waiting Tasks Count  Resource Wait Time  Signal Watt Time  Total Wait Time  Average Wait Time
43  ASYNC_IO_COM... 2 1 0 11 5
50  ASYNC_NETWO.. 726 420 18 438 0
51  SLEEP_BPOOL_.. 219 124 1 125 0
52  CHKPT 1 395 0 359 399
53 SLEEP_DBSTA.. 5 KL 0 35 78
54  SLEEP_MASTE.. O 0 0 0 0
55  SLEEP_MASTE.. 2 35 0 39 19
5  SLEEP_MASTE.. 1 386 2 388 388
57  SLEEP_TEMPD.. 0O 0 0 0 0
58 SLEEP_DCOMS.. 1 19 0 13 19
55  SLEEP_TASK 318142 177925507 12723 177542230 559
60  SLEEP_SYSTE.. 1 359 0 359 359
61 RESOURCE_SE.. 0O 0 0 0 0

Figure 2-2. sys.dm_os_wait_stats expended with more wait information

Having both the number of occurrences of a specific wait type and the total wait time
makes it possible to calculate an average wait time (represented by the Average Wait
Time column in Figure 2-2) for that specific wait type by dividing the wait_time ms value
by thewaiting tasks count value.

The sys.dm_os_wait_stats is a powerful DMV with which you can retrieve a lot
of information about the different wait types. It is also the basis of the wait statistics
baseline methodology outlined in Chapter 4, “Building a Solid Baseline.”

Sys.dm_os_waiting_tasks

While the sys.dm_os wait stats DMV gives you the cumulative wait statistics
information since server restart, the sys.dm_os_waiting tasks DMV can give you
information about what your SQL Server is currently waiting on. Querying this DMV will
give you an overview of all the tasks that currently have worker threads waiting in the
Waiter List or Runnable Queue for either resource or processor time.

Understanding sys.dm_os_waiting_tasks

Because the sys.dm_os_waiting_tasks DMV gives insight into what’s waiting currently,
it is usually the first DMV you query when using wait statistics to review the performance
of your SQL Server instance. It also supplies some additional information for certain wait
types that can be useful while troubleshooting.

29



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Figure 2-3 shows the results of a SELECT * FROM sys.dm_os waiting tasks; query.

session_id  exec_context_id  wait_duration_ms  wait_type resource_address blocking_task_address
1 4 ) 12 0 51066 XE_DISPATCHER_WAIT NULL NULL
2 D«0000007F7D01D468 NULL  NULL 70373146 XTP_PREEMPTIVE_TASK NULL NULL
3 (x0000007F7D01DC28 19 0 1550554 CHECKPOINT_QUEUE G<000000804BADEFAD  NULL
4 (x0000007F78B5C108 5 0 N7 LAZYWRITER_SLEEP NULL NULL
5 (x0000007F78B5C4EE 7 0 70372313 KSOURCE_WAKEUP NULL NULL
6 0<0000007F78B5C8CE 8 0 263 SLEEP_TASK NULL NULL
7 (x0000007F78B5CCAE 17 0 171239 SP_SERVER_DIAGNOSTICS_SLEEP Q0000000000000001  NULL
8 0<0000007F7453E8C8 29 0 70372659 HADR_NOTIFICATION_DEQUEUE <0000008100B4EFO0  NULL
9 (x0000007FEES428C8 32 0 70372323 BROKER_EVENTHANDLER NULL NULL
10 (xDO0O0O7FEES42CAE 9 0 863 BROKER_TO_FLUSH NULL NULL

Figure 2-3. sys.dm_os_waiting tasks

Following is a list of columns returned by the sys.dm_os waiting tasks DMV anda
description of the information they return:

o waiting task_address shows the address of the task that is currently
waiting.

o session_idgives us the ID of the session that is associated with the
specific task.

o exec_context id will return the ID of the execution context.
This value will only change from the default of 0 if the task is
being performed using parallelism. This means that the task is
being executed using multiple threads instead of a single
(serial) thread.

e wait_duration_ms shows us the time in milliseconds that the task
has been waiting. Just like in the sys.dm_os wait_stats DMV,
this time includes both the resource wait time and the signal wait
time.

e wait_typereturns the wait type the task is currently waiting on.

o resource_address returns memory address information about the
resource we are currently waiting for. Not all wait types will log this
memory address, so it will frequently be returned as NULL.

o blocking task_address will return the address of the task that
is currently blocking the waiting task. When the task is not being
blocked by another task, this column will return NULL.

30



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

blocking session_id returns the session ID of the session that is
currently blocking the task. Just like the blocking task_address,
this information is only included when this task is being currently
blocked by another task. It will return NULL when there is no blocking
or when the session information about the blocking task cannot

be retrieved or identified. We will explain blocking and locking in
Chapter 8, “Lock-Related Wait Types,” when we discuss lock wait

types.

blocking exec_context_ id is another column dedicated to
information regarding blocking. In this case it will return the ID of
the execution context. This will only return a result other than NULL
when a task gets executed using parallelism and one of the threads is
responsible for the block. The blocking_exec_context_id can then
be used to identify which one of the threads is responsible for the
block.

The last column of the DMV, resource_description, will give
additional information about the resource the task is waiting for.
There aren’t many wait types that will fill this column—most often
parallelism, lock-, or latch-related wait types. It can be a very useful
column, especially when analyzing lock- or latch-related wait types;
in those cases we can pinpoint the database object (data page,

row, table, etc.) whose availability we are waiting for. Some of the
examples later in this book (most notably Chapter 8, “Lock-Related
Wait Types,” and Chapter 9, “Latch-Related Wait Types”) will make
use of this column to gather extra information about the resource we

are waiting for.

Querying sys.dm_os_waiting_tasks

Because the sys.dm_os waiting tasks DMV returns a wealth of information, there are

various ways to query it depending on what you want to analyze or troubleshoot.

One query that I see a lot on various forums on the Internet is the following:

SELECT * FROM sys.dm_os waiting_tasks
WHERE session_id > 50;

31



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

This query will filter out all of the SQL Server internal session IDs and only returns
waiting tasks that originate from user sessions. The results of the query on my test SQL
Server are shown in Figure 2-4.

wating_task_address session ki exec context id wal_duraton_ms wak_type resource_address  bloclong_task_address

1 | 0<D000007F7453C108 | 54 0 0 ASYNC_NETWORK_IO  NULL NULL

Figure 2-4. sys.dm_os_waiting tasks where session_id is greater than 50

While the method of filtering out internal SQL Server processes will work fine for
many wait types and improves readability, there are specific wait types that will not be
returned when running this query.

One good example of this is the THREADPOOL wait type, which we will discuss in
Chapter 5, “CPU-Related Wait Types.” This wait type can have a large negative impact
on the performance of your SQL Server but will not be returned if you only query
the user sessions. This can impact your analysis because you are missing important
facts.

Another reason to query the DMV without filtering on session IDs is that there is a
big misconception about the relation of the session ID and whether or not the session ID
is a user or internal session. While session IDs larger than 50 are generally considered to
be user sessions, there is no guarantee that a session ID larger than 50 actually is a user
session. It is possible that there is a need for SQL Server to have more than 50 internal
sessions, in which case there is a chance you will see internal sessions with a session ID
higher than 50 that you can mistake for a user session.

I believe the best way to query the sys.dm_os waiting tasks DMV is by selecting
everything and only applying a filter if you are looking for a specific wait type or session.
This will return many more rows than filtering on session IDs larger than 50, as you
can see in Figure 2-5, but it will show you the complete picture and minimizes the
chance that you might miss important wait types. A good idea might be to sort on the
session_id column to make the results a little bit more readable without losing sight of
the internal sessions.

32



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

waiting_task_address session_id  exec_context_id wak_duration_ms  wait_type resource_address blocking_task_address
3 0<0000007F7D01DC28 19 0 90266 CHECKPOINT_QUEUE 0<0000008043ADEFAD  NULL
4 (x0000007F7885C108 5 0 986 LAZYWRITER_SLEEP NULL NULL
5 (<0000007F78B5C4EE 7 0 70567763 KSOURCE_WAKEUP NULL NULL
13 (<0000007F78BSCECE 8 0 893 SLEEP_TASK NULL NULL
7/ (<0000007F78B5CCAS 17 0 66638 SP_SERVER_DIAGNOSTICS_SLEEP (<0000000000000001  NULL
] (x0000007F7453E8C8 29 0 70568149 HADR_NOTIFICATION_DEQUEUE <000000810DB4EFD0  NULL
9 0<0000007FEE5428C8 32 0 70567773 BROKER_EVENTHANDLER NULL NULL
10 D«0000007FEES42CAS 9 0 3w BROKER_TO_FLUSH NULL NULL
11 (x0000007F70027088 10 0 1205 XE_TIMER_EVENT NULL NULL
12 :0000007F7D027348 1 0 70568596 WAIT_XTP_HOST_WAIT NULL NULL
13 (x0000007F7DO27C28 24 0 70568164 ONDEMAND_TASK_QUEUE 0<0000008046BDEBAD  NULL

Figure 2-5. sys.dm_os_waiting tasks

Sys.dm_exec_requests

The sys.dm_exec_requests DMV returns information about all the requests that are
currently getting processed by SQL Server.

Understanding sys.dm_exec_requests

Like the previous DMVs, we can query the sys.dm exec_requests DMV with a simple
SELECT * FROM sys.dm exec_requests; to return everything that is currently executing.
Figure 2-6 returns a small portion of the results on my test SQL Server.

session_id request_id stat_time status command sql_handle statement_start_offset
1 20190122 10:15:38.357 background  XTP_CKPT_AGENT NULL NULL
2 27 0 20190122 10:15:38.400 backaround  LOG WRITER NULL NULL
3 3 0 2019-01-22 10:15:38.417 background RECOVERY WRITER NULL NULL
4 4 0 2019-01-22 10:15:38.417 background  LOCK MONITOR NULL NULL
5 5 0 201901-22 10:15:38.417  background  LAZY WRITER NULL NULL
6 & 0 2019-01-22 10:15:38.417 background  XIO_RETRY_WORKER NULL NULL
7 7 0 201901-22 10:15:39.210  background ~ SIGNAL HANDLER NULL NULL
8 8 0 201901-22 10:15:38.417  background  XIO_LEASE_RENEWAL_WORKER NULL NULL
9 3 0 2019-01-22 10:15:39.167 background ~ BRKR TASK NULL NULL
10 10 0 2019-01-22 10:15:38.497 background  XE TIMER NULL NULL

Figure 2-6. sys.dm_exec_requests

33



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

The sys.dm_exec_requests DMV returns a lot more columns than the sys.
dm_os_wait_stats orsys.dm_os waiting tasks DMVs we discussed earlier. To keep
things readable I will only describe the columns we will frequently use for wait statistics
analysis. Here is the list:

e session_idreturns the ID of the session this request is associated
with.

o start time shows the date and time when the request got created.
This can be a different time and even date than the time and date
on which you are querying the DMV, especially when long-running
queries are being executed.

o command returns information about what kind of action the request
is performing. The most common commands are query related,
like SELECT, INSERT, UPDATE, and DELETE, but there are many more
commands depending on what is being executed by the request.

o sql _handle gives us a hash value of the SQL text that is being
executed in the request. Not all requests have an SQL handle, and
generally you should only see a SQL handle if the request was
initiated by a user session and an SQL query is involved. The SQL
handle hash can be used as input for the Dynamic Management
Function (DMF) sys.dm_exec_sql_text to retrieve the query that is
being executed by the request.

o plan_handle returns the hash value of the execution plan. An
execution plan will show you the operations that were performed by
SQL Server when executing the query and is a great source of query-
execution information. We can use plan_handle the same way as
the sql_handle, but instead of returning the query it will return the
execution plan of the query. We can use the hash value as input for
the DMF sys.dm_exec_query_ planin order to return the execution
plan of the query that is being executed by the request.

e wait_typereturns the current wait type if the request is either
“SUSPENDED” or “RUNNABLE.” The value will be NULL if the request
is currently being processed.

34



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

o Thelast wait_type column returns the last wait type the request
encountered if it had to wait during its execution.

o total elapsed time column returns the total time, in milliseconds,
it took to process the request from the moment it got created.

There are many more columns available in this DMV that all have their different
uses. A complete description is available on the Microsoft MSDN page at https://msdn.
microsoft.com/en-us/library/ms177648.aspx, and I encourage you to go through the
article. The sys.dm_exec_requests DMV is a great tool in your DBA toolkit and is one
of those DM Vs you will use frequently for all kinds of purposes besides analyzing wait
statistics.

Querying sys.dm_exec_requests

The sys.dm_exec_requests DMV is one of the DMVs that can give us access to query
statements and corresponding execution plans by returning the query and plan handles.
If you are interested in this information, and most of the time you probably will be, you
need to pass the sql_handle and plan_handle to their DMFs so the hashes turn into
something we humans can read and understand.

Listing 2-2 shows a query against the sys.dm_exec_requests DMV and also
retrieves the query statements and execution plans. I am excluding the session ID I
am executing the query on and ignoring session IDs lower than 50 so as to keep the
results small, and because I know for a fact that I am interested only in user queries
for this example.

Listing 2-2. Query sys.dm_exec_request and include query statement and plan

SELECT
r.session _id AS 'Session ID',
r.start_time AS 'Request Start’,
r.[status] AS 'Current State',
r.[command] AS 'Request Command',
t.[text] AS 'Query’',
p.query plan AS 'Execution Plan'
FROM sys.dm exec_requests r
OUTER APPLY sys.dm exec_sql text(r.sql handle) AS t

35


https://msdn.microsoft.com/en-us/library/ms177648.aspx
https://msdn.microsoft.com/en-us/library/ms177648.aspx

CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

OUTER APPLY sys.dm exec_query plan(r.plan_handle) p
WHERE r.session_id > 50 AND r.session_id <> @@SPID;

On my test system I got the results as shown in Figure 2-7.

Session 1D Reguest Start Curert State  Request Cormand  Query Execution Plan
54 20190124 200332173 suspended SELECT select “from Sales Salesorderdetal sod ner cShowPlanXML xming= e //schemas mecrosolt com

Figure 2-7. Results of Listing 2-2

Using the query in Listing 2-2, we can immediately see that session ID 55 is
performing a SELECT query, as the query column shows the complete statement that
is being executed. The Execution Plan column returns the execution plan in an XML
format. The great part of the SQL Server Management Studio is that we can click the XML
link that is returned to view the graphical execution plan, as shown in Figure 2-8.

& i3 E o 3 @ s
, Merge - ! Clustered Indes Scan (Clustersd
- Ompute Seales (Innes Compute Seales Conpute Sl [SalesCrdertieader] . (F¥_SalesOrderie
[« at Coss: O % Coss: 08 Coss: O % -
Comn: 3 W e 3 0
] ) _9!
lustered Indes Scam (Clustered
spute Seala Cungute Sea SalesCrderDetail] (FN_SalesCrderDe
Cows: 0 8 owt: 0 4 ————gyo

Figure 2-8. Execution plan

Using the execution plan we can get some insight into how the query is getting
executed by the SQL Server engine. We won't get into the details about execution plans
in this book, but you will be using them frequently when you are optimizing query
performance, so it is good to know how you can access them from the sys.dm_exec_
requests DMV. A good place to start if you want to learn more about execution plans
is Grant Fritchey’s Execution Plan Basics at waw.simple-talk.com/sql/performance/
execution-plan-basics/.

Sys.dm_exec_session_wait_stats

One of the latest additions to the wait statistic-related DMVs is the sys.dm_exec_
session_wait_stats DMV. It was introduced in SQL Server 2016 SP1 and returns wait
statistics information on a per session level. If you remembered reading Chapter 1,

36


http://www.simple-talk.com/sql/performance/execution-plan-basics/
http://www.simple-talk.com/sql/performance/execution-plan-basics/

CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

“Wait Statistics Internals,” of this book, a session is an active connection a user or process
has with SQL Server. A session can have multiple requests, which in turn can have
multiple tasks performing the actions required to execute a query.

Figure 2-9 shows the columns of the DMV as well as some wait statistics information
from my test system.

session_id  wait_type walting_tasks_count wait_time_ms max_wait_time_ms  signal_watt_time_ms
1] | PAGELATCH_SH 1 0 0 0
2 5 " PAGELATCH_EX 1 0 0 0
3 51 PAGEIOLATCH_SH 14 8 1 0
4 51 SOS_SCHEDULER_YIELD 2 0 0 0
5 51 MSQL_XP 2 1 1 0
6 51 PREEMPTIVE_OS_CRYPTOPS 1 0 0 0
7 51 PREEMPTIVE_OS_CRYPTACQUIRECONTEXT 4 0 0 0
g 51 PREEMPTIVE_OS_GETPROCADDRESS 2 0 0 0
3 51 PREEMPTIVE_OS_LOADLIBRARY 1 2 2 0
10 51 PREEMPTIVE_OS_REPORTEVENT 2 0 0 0

Figure 2-9. sys.dm_exec_session_wait_stats

Does the preceding figure look familiar? It probably does since it is practically
identical to the sys.dm_os_wait_stats DMV but with an additional column for the
session_id.

What is important to point out is that wait statistics information that is recorded
through this DMV is cumulative for all the actions that a specific session performed
while it was active. For instance, if you execute ten different queries inside a single
session, all the wait times that are returned by the DMV are the total wait time for those
ten queries. This means it is very important to understand what happened during
the lifetime of a session. Has the session already been busy executing large batches
of queries? Or has it only executed a single query statement? Knowing the answers to
these questions is very important before resorting to this DMV to analyze session wait
statistics.

Also, session IDs are reused after a session has been closed, meaning that if you are
not careful you can see the wait statistics for a new session that is reusing the session
ID. When a session ID gets reused (or reset when using connection pooling), all the wait
statistics information inside this DMV for that specific session is reset as well.

With the preceding information in mind, we can conclude this DMV is not directly
useful as a “first-place-to-look” when performance is reported to be slow. The DMV still
has its place though, especially if you can reproduce a specific performance issue with a

37



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

specific action where multiple queries are involved. In that situation you can zoom in on
a specific session ID and reproduce the issue, capturing wait statistics for everything that
happens during the execution of the queries.

Combining DMVs to Detect Waits Right Now

Now that we have taken a look at some of the most important DMVs for wait statistics
analysis, let’s go into an example of how you could use these DMVs to find out what is
slowing down your SQL Server. Gathering this information will not solve your problems
immediately, but it will give you a clue as to where to start looking for a solution.

Consider the following scenario: You are the database administrator (DBA) for a
large company that uses a single database to store all its sales information. The database
is running on a SQL Server 2014 instance, and every day a few hundred users query the
database.

Normally everything is running fine—users can access the information they want
quickly, and everyone who needs to work with the database is happy. Today, however,
is not a good day for you as the DBA. The phone hasn’t stopped ringing since 10 AM and
some users are gathering at the door of your office with an angry look in their eyes—
querying and inserting sales information is incredibly slow.

Since this book is about wait statistics, let’s take a look at how we could analyze wait
statistics information about the performance problem in the scenario.

We know the sys.dm_os_wait_stats DMV shows cumulative wait statistics
information, so for this scenario it wouldn’t be much help. A much better starting place
would be the sys.dm_os_waiting_tasks DMV, since it will show us all the tasks that are
waiting right now.

We run the following query against the sys.dm_os_waiting tasks DMV:

SELECT * FROM sys.dm_os waiting_ tasks
ORDER BY session_id ASC;

While scrolling down to the bottom of the results, we see a number of user sessions
with waiting tasks, as shown in Figure 2-10.

38



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

watting_task_address session_id exec_context_id  walt_duration_ms  wad_type resource_address blocking_task_address
16 [0000007F7DO1CECE 12 0 2928 XE_DISPATCHER_WAIT NULL NULL
17 [0000007F75AD24EE 16 0 1851 SQLTRACE_INCREMENTAL_FLUSH_SLE..  NULL NULL
18 (x0000007F78B5CCAR 17 0 65818 SP_SERVER_DIAGNOSTICS_SLEEP (x0000000000000001  NULL
18  x0000007F7D0NDC28 19 0 24115 CHECKPOINT_QUEUE Ox0000002042ADEFAD  NULL
20 (x0000007F7D027C28 24 0 70867308 ONDEMAND_TASK_QUEUE 0:0000008046BDESAD  NULL
21 (x00000O7F7453E8CE 29 0 70857254 HADR_NOTIFICATION_DEQUEUE 0000000810DB4EFO0  NULL
22 (xD000007FEE5428CE 32 0 70866918 BROKER_EVENTHANDLER NULL NULL
23 (xD000007F72FABSCE 33 0 365 HADR_FILESTREAM_IOMGR_IOCOMPLE...  NULL NULL
24  (x0000007F72FAB108 42 0 70856946 BROKER_TRANSMITTER NULL NULL
25 (x0000007F72FAB4EE 43 0 70856946 BROKER_TRANSMITTER NULL NULL
26 (x0000007F7453ECAS 52 0 15988 LCK_M_IS 0x0000007F72A88540  NULL
27 xD0DDOO7F7453C4EE 56 0 9308 LCK_M_IS 0:0000007F5897F980  (xDOOQ00TF7453ECAS
28 (x0000007F74530848 57 0 11157 LCK_M_IS 0:0000007F5837FC0  (:D000007F7453ECAS

Figure 2-10. Results of a query against the sys.dm_os_waiting tasks DMV

We notice that the wait times for sessions 52, 56, 57 are pretty high, and we also
notice that they are all waiting with a wait type LCK_M_S. Without going into too many
details about this particular wait type, it will be discussed in detail in Chapter 8,
“Lock-Related Wait Types,” it is enough to know that this wait type is related to locking.
Apparently, those sessions are waiting to place a lock, which means they are probably
being blocked by another process that has a lock on the same object. We can extract
locking and blocking information from the sys.dm _os waiting tasks DMF by looking
at the blocking_columns. For readability reasons I modified the preceding query to
return only blocking information from the sys.dm_os _waiting tasks DMV. Figure 2-11
shows those columns.

session_id  wait_type blocking_task_address  blocking_session_id  blocking_exec_context_id
21 29 HADR_NOTIFICATION_DEQUEUE NULL NULL NULL
2 32 BROKER_EVENTHANDLER NULL NULL NULL
23 33 HADR_FILESTREAM_IOMGR_IOCOMPLE... NULL NULL NULL
24 42 BROKER_TRANSMITTER NULL NULL NULL
25 43 BROKER_TRANSMITTER NULL NULL NULL
2% 52 LCK_M_IS NULL 54 NULL
27 56 LCK_M_IS Ox0000007F7453ECA8 52 NULL
28 57 LCK_M_IS Ox0000007F7453ECA8 52 NULL

Figure 2-11. Blocking information from the sys.dm_os_waiting_tasks DMV

From what we can see here, sessions 56 and 57 are being blocked by session 52.
Session 52, however, is being blocked by session ID 54. We don’t see this session ID
returned in the sys.dm_os_waiting_tasks DMV, which means the session is currently
executing and isn’t waiting on any resources.

39



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Let’s check another DMV, sys.dm_exec_requests, to get some information about
session 54:

SELECT * FROM sys.dm exec_requests
WHERE session id = 54;

Figure 2-12 shows the results of this query.
session_id request_id stat_time status command sgl_handle statement_stat_offset statement_end_offset plan_

Figure 2-12. Results of a query against sys.dm_exec_requests

Remember when I wrote the sys.dm_exec_requests DMV return information
about requests currently being processed? Apparently, session ID 54 doesn’t have an
outstanding request since no information is being returned.

If we want to find out more information about this session, we can use the sys.dm_
exec_sessions DMV we discussed in Chapter 1, “Wait Statistics Internals,” by executing
the following query:

SELECT

session_id,

[status],

[host_name],

[program name],

login_name,

is_user process,

open_transaction count
FROM sys.dm exec_sessions
WHERE session id = 54;

This query returns the results shown in Figure 2-13.

session_id  status host_name program_name logn_name s_user_process  open_transaction_count
54 sieepng EVDL-SQL201701 Mcrosolt SOL Server Management Studo - Query  EVDL-SQL2017-01\Adminstrstor 1 1

Figure 2-13. Results from sys.dm_exec_sessions

40



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

We can assume that session ID doesn’t currently have any running requests since
its status is “sleeping,” which is why the query against the sys.dm_exec_requests didn’t
return any information. If we look at the program _name column, we can see that this
session was initiated from the Microsoft SQL Server Management Studio program by the
EVDL-SQL2017-01\Administrator user.

Iincluded the is_user process column to make sure it is a user session, and
the open_transaction_count column shows us that this user session has an open
transaction.

We now know enough information to take corrective actions. We know who the user
is who is blocking our other tasks, and we can decide to give him a call about what he
is currently performing, or we can choose to end his session. Ending a user session by
using the KILL [session_id] command should always be your last resort because we
could be interrupting something important. Ending a session with the KILL command
will result in a rollback of the running transaction, undoing all the changes it performed,
which can take a long time to complete. In this case, I accept the risk of a rollback and
will end the session myself:

KILL 54;

Immediately after we kill session ID 54 users report that their queries are running
again. If we query the sys.dm_os_waiting tasks DMV to give us information about
those session IDs nothing gets returned, meaning they are no longer being blocked.

Hopefully this example has given you insight into how you can use the various DMVs
available in SQL Server to gather information about tasks that are currently waiting. In
this case the example consisted of a transaction that was blocking other queries, and
we decided to kill the user session that was responsible for the blocking lock. In many
situations the solution isn’t this relatively simple, but the method of gathering wait
statistics information to drill down to the bottom of the problem can be used in almost
every performance-related incident.

As I noted in the beginning of this section, just looking at the wait statistics alone will
not, in most cases, solve a performance problem, but it is a good starting point to begin
your investigation. To get a complete picture about the performance of your system, we
will often combine the wait statistics information with other metrics, like those from
the Windows Performance Monitor, other DMV, or vendor-specific information (like
storage metrics).

41



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Figure 2-14 shows a flowchart of how you could use wait statistics information to
analyze a performance problem.

Experiencing performance
degradation?

Sys.dm_os_waiting_tasks

High Wait Time on specific
Wait Types?

Gather metrics for those
Wait Types

Wait Statistics and other
metrics show problem

Resolve problem

Check if Wait Time goes
down

Figure 2-14. Wait statistics flowchart

We will expand upon this flowchart in Chapter 4, “Building a Solid Baseline,” where
we will introduce baselines to the wait statistics analysis method.

42



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Viewing Wait Statistics Using Perfmon

One of the most important tools for accessing the extra metrics we need when
analyzing wait statistics is the Windows Performance Monitor, or Perfmon. Perfmon
is available on every Windows Operating System and contains counters for just about
every part of the system, including SQL Server-related performance counters. You can

start Perfmon by executing the perfmon command from either a Windows Run dialog
or the command line.

In addition to giving us information about the performance of our system,
Perfmon can also be used to view wait statistics. You can view these counters under
the SQLServer:Wait Statistics category when adding counters inside the Perfmon
application, as shown in Figure 2-15.

Available counters Added counters
Select counters from computer: Counter Parent Inst.. Computer
<Local computer > v | 1 Browse...

SULSErverUser settable
SQLServer:Wait Statistics
Lodk waits
Log buffer waits
Log write waits
Memory grant queue waits
Network 10 waits ]
Mon-Page latch waits
Page IO latch waits W

Instances of selected object:

<All instances >

Average wait time (ms)

Cumulative wait time (ms) per second
Waits in progress

Waits started per second

Add >> Remove << |

"] Show description

Figure 2-15. Wait statistics counters inside Perfmon

43



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

One thing you'll notice in Figure 2-15 is that the wait statistics inside Perfmon are
grouped inside categories. We won'’t find information about specific wait types here,
so if we want to use Perfmon to analyze wait statistics we should have a general idea of
what category a specific wait type belongs to in Perfmon. It is able to display an average
wait time, cumulative wait time, the current total number of waits, and the amount of
new waits started for every wait statistics category. If we are interested in a higher-level
view—for instance, we want to know how many tasks are waiting for lock-related wait
types—we can use Perfmon to give us that information. If we want to have more detail
about specific wait type information, we should use the sys.dm os wait stats or sys.
dm_os waiting tasks DMVs we discussed earlier.

One nice feature of Perfmon is that it can convert the measurements directly into
graphs, giving us a more visual way to look at the information without having to create
the graphs ourselves. Figure 2-16 is an example of a graph where we are showing the
“Average wait time” and “Waits started per second” for the Lock waits category.

90
w-
m-
w.
50
40-
w.
20
[
10+ f
| \ \\
1:13:3am 1:13:;0PM l:lS:é-UPM l:H:ElJPM 1:11:;0PM 1:11:'20PM 1:11:'33PM 1:11::10PM l:!S:;UPM 1:13::’_0PM 1:13:29 PM
Last | e Average | e Minienum | P T Y I—— Duration | 1:4C
Show | Color | Scale | Counter | Instance [ Parent | Object | Computer |
I 1.0 Lock waits Average wait mj_rg_bsE = SOLServer:Wak Statistics
1.0 Lock waits Waks started per secof — SOLServer:Wak Statistics ]

Figure 2-16. Perfmon graph showing wait statistics information

During this book we will use Perfmon a lot for analyzing metrics related to specific
wait types, like CPU time, disk latency, and memory usage. We will not make much use
of the wait statistics counters inside Perfmon, because I believe the SQL Server DMVs are
better suited for this since they supply the level of detail needed for a complete analysis.

44



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Capturing Wait Statistics Using Extended Events

Most of the wait statistics information in SQL Server is recorded cumulatively, and
because so many internal processes also generate wait statistics it can be difficult to
detect what impact a single query has on them. This is where Extended Events come in;
with Extended Events it is possible to capture the exact wait times a query encountered
and on what wait types it had to wait. This information can help us analyze those queries
that have a large impact on our system and possibly optimize them so their impact
becomes smaller. Or we could capture queries that encounter a specific wait type while
executing.

Extended Events were introduced in SQL Server 2008 and are, more or less, a
replacement for the SQL Server Profiler. Microsoft has announced the deprecation of
the SQL Server Profiler and advises us to move to Extended Events. Extended Events
are much more powerful than the SQL Server Profiler, and the number of events we can
capture with Extended Events keeps growing with every release of SQL Server, while
the number of events in the SQL Server Profiler remains the same. Also performance is
a good reason to use Extended Events. Capturing Extended Events is more lightweight
than using the SQL Server Profiler.

Extended Events have a reputation of being difficult to work with, and, while this
was especially true in SQL Server 2008 when they were first introduced, working with
Extended Events became a lot easier in SQL Server 2012 when it became possible to
create Extended Event sessions using the GUI.

There are many different wait-related events available when working with Extended
Events. We can view these events by running a query against the sys.dm_xe_map_values
DMV, which holds all the different Extended Events event types:

SELECT *
FROM sys.dm xe map_values
WHERE name = 'wait_types';

Figure 2-17 shows a small part of the results of this query.

45



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

name object_package_guid map_key map_value
10 wait_types BDY7CCE3-3F38-4922-AAS3-607BD12E78B2 1173 ASSEMBLY_FILTER_HASHTABLE
11 wait_types BD97CCE3-3F38-4922-AA93-607BD12E7882 358 ASSEMBLY_LOAD
12 wait_types BD97CC63-3F38-4322-AA93-607BD12E78B2 115 ASYNC_DISKPOOL_LOCK
13 wait_types BD97CCE3-3F384922-AA93-607BD12E7882 98 ASYNC_IO_COMPLETION
14  wait_types BDY7CCE3-3F38-4922-AA93-607BD12E78B2 923 ASYNC_OP_COMPLETION
15  wait_types BDS7CCE3-3F38-4922-AA93-607BD12E78B2 921 ASYNC_OP_CONTEXT_READ
16 wait_types BD97CCE3-3F38-4922-AA93-607BD12E7882 922 ASYNC_OP_CONTEXT_WRITE
17  wait_types BDS7CC63-3F38-4922-AA93-607BD12E78B2 313 ASYNC_TRANSPORT_CONNECTION_DISPATCH
18 walt_types BD97CCE3-3F384922-AA93-607BD12E7882 3N ASYNC_TRANSPORT_DISPATCH
19  wait_types BD97CCE3-3F38-4922-AA93-607BD12E78B2 317 ASYNC_TRANSPORT_DISPATCH_MUTEX

Figure 2-17. Results of sys.dm_xe_map_values

In total there are about 1260 different wait statistics-related events available in SQL
Server 2019 CTP2.4. These events do not map one-on-one against the different wait
types, and, as a matter of fact, in some cases the names of the wait types do not match
those of the events, even though they have the same meaning. An example of this is
the ASYNC_NETWORK_IO wait type, which is named NETWORK IO by Extended Events.
Jonathan Kehayias wrote a blog post at SQLskills.com mapping some of the wait types
to Extended Events; you can take a look at it here: www.sqlskills.com/blogs/jonathan/
mapping-wait-types-in-dm_os wait stats-to-extended-events/.

While we won't go into details about Extended Events in this book, I would like to
show you how you can use them to capture wait statistics-related information using the
Extended Events GUI and T-SQL.

Capture Wait Statistics Information for a Specific Query

Let’s take a look at how we can configure an Extended Event session to capture wait
statistics information for a specific query. We will set a filter on a session ID that will
execute the query, then execute the query we want to analyze.

The first thing we are going to do is open up the SQL Server Management Studio
and connect to a SQL Server instance. Keep in mind that a GUI for Extended Events was
added in SQL Server 2012, so if you plan on following the steps here you will need a SQL
Server 2012 or higher SQL Server instance.

46


http://sqlskills.com
http://www.sqlskills.com/blogs/jonathan/mapping-wait-types-in-dm_os_wait_stats-to-extended-events/
http://www.sqlskills.com/blogs/jonathan/mapping-wait-types-in-dm_os_wait_stats-to-extended-events/

CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Once we are connected, we open the Management folder and then choose the
Extended Events option. We right-click the Sessions folder and select the option New
Session, as shown in Figure 2-18.

= Management
# & Policy Management
# Y& Data Collection
# B= Resource Governor
= {4] Extended Events

=

& Maint New Session Wizard
# SQL S New Session...
=i D.ata.h Start PowerShell
53 Distrit
# Legac Reports »
# Integratic
® B SQLServe _ Refresh

Figure 2-18. Adding new Extended Event session
The New Session dialog will appear where we can enter a name for this Extended

Event session and set some additional options. We will ignore those options for now, and
just fill in the name of the Extended Event session, as shown in Figure 2-19.

47



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

{8 Cannot create 2 session wihout any events.

Select a page LT Script - | i@ Help

& General

& Events

& Data Storage Session name: |Wak Stats Query |
& Advanced

Terplate: | <Blank>

Schedule:

[[] Start the event session at server startup.

[T Start the event session immediately after session creation.
["] Watch live data on screen as & is caplured.

Connection

v¥ EVDL-SQL2017.01
Y D a7 O Acmrisratr] | Causaitytacking:

[[] Track how events are related to one ancther,

o« |[ Cancel Help |

Figure 2-19. Configuring wait statistics Extended Event session

The next step is configuring which events this Extended Event session needs to
monitor, which we can do by selecting the Events page in the New Session dialog.
Since we are interested in wait statistics information, I searched for the wait_info

event in the Events Library and added it to the Selected Events box, as shown in
Figure 2-20.

48



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

I

Select a page LT Script ~ | @ Help
& General
& Evenls
: Data Storage 4 Select Select the events you want to capture from the event lorary.
Event kbrary: Selected events:
[wat_info o [Emnanam‘r "[ [ Name * ¥ Y!
[Name | Category [v] Channel [] !
wait_info_extemal scheduing  Anshtic
>
Connection = -
v# EVDLSQLZ01701 | |[ Event Fields Description wait_info L
[EVDL-SQL2017-01"\Acministrator] Occurs when there is a wait on a SQLOS
tcontrolled resourca. Lise this event to track
resource waits that occur during task
\ew cornection properies
Progress
Ready -
ok || cancel |[ Hep

Figure 2-20. Selecting an event to monitor

If we were to save this Extended Event session now, we would capture information
for every task that has to wait for a resource. Since we are interested in the wait statistics
associated with a specific query, we will configure a filter to only return wait statistics
information for a specific session. To do this we can click the Configure button in the
New Session dialog, which will open a new section where we can select Global Fields,
which will record extra information when await_info event is triggered. In this case,

I checked the sql_text global field, as shown in Figure 2-21, so we can view the actual
query when an event is captured.

49



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

e e =

Select a page
F General
& Evenls
& Data Storage
& Advanced

‘Connection

¥ EVDLSQL2017-01
[EVDL-SQL201 701" Administrator]

O script - | @ Help

Configure the events to collect addional fields and specify fiters.

Selected everts:

Evert confi

jon options:

Name * i

h'd

(wait_info

{0ccurs when thers is 3 wakt on a SQLOS
jcontrolled

# Giobal Fields (Actions) | 7 Fiter (Predicate) | Event Fieids |
[Name ™ ] Description

000000000 0ooKROoOooooo

session_id

SesSiON_resou...
SESSION_fES0U...

S8530N_Serve. .

sal_text
task_address
task _slzpsed...

task_resource...

task_resource...

task_time
transaction_id

Collects the SID of the Server Prinicipal in whos ..

Collect session 1D

Collect session’s NT usemame

Collact cument session rescurce group 1D
Collect curen session rescurce pool 1D

Collects the name of the Server Principal that oni.,

Collect SOL text

Collect curert system thread ID
Collect cument task address

Collect cument task quantum time
Collect cument task resource group 1D
Collect cument task resource pool ID
Collect cument task execution time
Collect transaction ID

5. Collect curent ¥ number

lsql_frame
tsq_stack
usemame
wivkcer addrass

Collect the sal_handle for the cumernt batch with...

Collect Transact-SGL stack.
Collect usemame
Collact casrant wodcar addrss

<

oK I| Cancel || Help

Figure 2-21. Setting the sql_text global field

Next up is the Filter (Predicate) tab. Here we will set a filter that will only capture
events from a specific session ID. We can do this by clicking inside the Field box and

selecting the sqlserver.session_id field, then setting the Value to the session ID we want

to monitor. In this case I configured the filter to only capture events for session ID 52,

as shown in Figure 2-22.

50



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

e e

Select a page LT Script » ) Help
F General
& Evenis r
& Data i i Confoure
. Storage Configure the events to collect acdgional fields and specify fiters. | Cocfiz 3

Selected everts: Evert configuration options:

Name * # 7 | | # Gobal Fields (Actions) | "7 Fiter (Predicate) | Event Fieids |

And'Or  Field DOperator Value
salserver session_id equal_uinté4 52
Click here to add a clause
Connection =
vF EVDLSQLZOITO1 pide 2|
[EVDL-SQLA0TH-OT Administrator] 10ccurs when thers is a wait on a SQLOS
tcontrolled resource. Uise this event to track
iresource waits that occur during task
<] [0 >
Miew connection oroperies
Progress =
Ready ~1 v
oK l| Cancel || Help

Figure 2-22. Setting an event filter

That’s all we need to configure for now, so we can click OK to close this dialog and
save the Extended Event session.

By default the Extended Event session will not be automatically started after it is
created. To do this we have to open up the Sessions folder again by navigating to the
Management » Extended Events folder in SQL Server Management Studio. We right-click

the Extended Event session we just created and select the Start Session option, as shown
in Figure 2-23.

51



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

= Management

] -R Policy Management
# Y5 Data Collection

| B Resource Governor

4+

)

= {¥] Bxtended Events Start Session
= Sessions Stop Session
@ T3 AlwaysOn_
@ M system_he Watch Live Data

@ & telemetry
% T XE_Audit
% Ta XE_Audit_F
) m Script Sessionas  »
& Maintenance Plan
@ W SQL Server Logs Start PowerShell

New Session...

Export Session...

Figure 2-23. Start Extended Event session

After we have started the Extended Events session it will begin collecting
information. We can view this information as it gets gathered by selecting the Watch Live
Data option. This will open up a new tab in SQL Server Management Studio where we
can watch the Extended Event session. Viewing live Extended Event data takes a little
overhead, but this is far lower than the overhead of using SQL Profiler. If you are worried
about the overhead of viewing live data, you could choose to write the Extended Event
session to an event file by adding a file location inside the Data Storage page of your
Extended Event session.

For this example I executed a simple query against the AdventureWorks database to
return everything in the Person.Person table, as follows:

SELECT *
FROM Person.Person;

I pay close attention when setting the filter in the Extended Event session to
match the session ID of the tab in SQL Server Management Studio where I am
executing the query. The session ID can be found when looking at the number
between parentheses on the tab. The Extended Events Live Data tab returned the

information shown in Figure 2-24.

52



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

EVDL-5QL2017-01 -...ts Query: Live Data + X [{@IKOIITER | W)
Displaying 11028 Events

‘ name timestamp
| 20190124 20:29:43 2561393 |
wait _info 2019-01-24 20:29:43 2562078 |
wat_info | 2019.01-24 20:29-43 2562207 |

Event: wait_info (2015-01-24 20:25:43 2561393)

Details
Field Value
duration 0
opcode Beagin
signal_duration 0
sql_text select * from person person
wait_resource 0
wait_type NETWORK_IO

Figure 2-24. Live wait statistics information from an Extended Event session

As you can see in Figure 2-24, our request encountered a NETWORK IO wait type.
This is one of those examples where the wait name in Extended Events doesn’t match
the one in the wait statistics DMVs. The NETWORK IO wait name is the same wait as the
ASYNC_NETWORK_IO wait type the SQLOS uses. We can view the query we executed in the
sql text field.

There are many more global fields you can include in the Extended Events session
that might be interesting to capture, like the Execution Plan handle or the Task Execution
Time. All of these global fields will give you additional information that is shown when
Extended Event session information is returned, giving you an impressive amount of
detail.

If, for some reason, you do not want to use the GUI to create and run an Extended
Event session or you are running SQL Server 2008, you can use T-SQL to create and
configure one. To create the same Extended Event session as we did using the GUI, you
can execute the query seen in Listing 2-3.

53



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Listing 2-3. Create wait statistics Extended Event session
CREATE EVENT SESSION [WaitStats Query] ON SERVER

ADD EVENT sqlos.wait_info

(
ACTION(sqlserver.sql text)

WHERE ([sqlserver].[session_id]=(52))
)

ADD TARGET packageo.event file

(
SET filename = N'E:\Data\WaitStats XE.xel', metadatafile = N'E:\Data\

WaitStats XE.xem'
)

We included the metadata file in the preceding script by setting the
metadatafile parameter. If you are running SQL Server 2012 or higher, this is no
longer required.

The easiest way to log the Extended Event session is by saving it to a file; in this
case my filename is E: \Data\WaitStats XE.xel (SQL Server will add a unique
numeric identifier to the filename, in this case the actual filename is WaitStats_
XE_0_130702270937280000.xel). I also included the filter on session ID 52 to capture
wait statistics generated by that session.

The next thing we want to do is start the Extended Event session, which we can do by
executing the ALTER EVENT SESSION command:

ALTER EVENT SESSION "WaitStats Query" ON SERVER STATE = start;

We then execute the same query as we did in the Extended Events GUI example
under the session ID we are filtering on. After letting the Extended Event session run for
a little while, we can stop it using the ALTER EVENT SESSION command:

ALTER EVENT SESSION "WaitStats Query" ON SERVER STATE = stop;

54



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Now that we have stopped the Extended Event session, we need to import the
information in the file (as XML) into a table so we can actually see what the session
captured; we do this using the sys.fn_xe file target read file function. We
can then parse the XML information to return the results in a more readable format.
The query in Listing 2-4 can be used to read an Extended Events file, import it into a
temporary table, and return the results as rows.

Listing 2-4. Return Extend Event file as rows

-- Check if temp table is present

-- Drop if exist

IF OBJECT ID('tempdb..#XE Data') IS NOT NULL
DROP TABLE #XE_Data

-- Create temp table to hold raw XE data
CREATE TABLE #XE_Data

(

XE_Data XML

);
Go

-- Write contents of the XE file
-- into our table
INSERT INTO #XE Data

(

XE_Data
)
SELECT
CAST (event data AS XML)
FROM sys.fn xe file target read file
(
"E:\Data\WaitStats XE_0_130702270937280000.xel’,
"E: \Data\WaitStats_XE_0_130702270940210000 .xem' B
null,
null
)5
GO

55



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

-- Query information from our temp table

SELECT
XE_Data.value ('(/event/@timestamp)[1]', 'DATETIME') AS 'Date/Time',
XE Data.value ('(/event/data[@name=“opcode”]/text)[1]", 'VARCHAR(100)")
AS 'Operation’,
XE_Data.value ('(/event/data[@name=“wait type”]/text)[1]',
'VARCHAR(100) ') AS 'Wait Type',
XE_Data.value ('(/event/data[@name=“duration”]/value)[1]', 'BIGINT') AS
"Wait Time',
XE Data.value ('(/event/data[@name=“signal duration”]/value)[1]",
'BIGINT') AS 'Signal Wait Time',
XE_Data.value ('(/event/action[@name=“sql text”]/value)[1]',
'"VARCHAR(1200) ') AS 'Query'

FROM #XE Data

ORDER BY 'Date/Time' ASC

)

The result of the query in Listing 2-4 can be seen in Figure 2-25.

Date/Time Operation  Wait Type Wait Time  Signal Wait Time  Query
13 2015-01-24 19:34:28.687 Begin SOS_SCHEDULER_YIELD 0 0 select * from person person
14 2015-01-24 19:34:28687 End SOS_SCHEDULER_YIELD 0O 0 select * from person person
15 2019-01-24 19:34:28.693  Begin SOS_SCHEDULER_YIELD 0 0 select * from person person
16 201901-24 19:34:28693 End SOS_SCHEDULER_YIELD 0 0 select * from person person
17 2019-01-24 19:34:28.693  Begin NETWORK_IO 0 0 select ~ from person person
18 201901-24 19:34:28697 End NETWORK_IO 3 0 select * from person person
19 201501-24 19:34:286597 Begin NETWORK_IO 0 0 select * from person person
20 201501-24 19:34:28657 End NETWORK_IO 0 0 select * from person person
21 2019-01-24 19:34:28.700  Begin NETWORK_IO 0 0 select * from person person
22 2019-01-2419:34:28707 End NETWORK_IO 3 0 select * from person person

Figure 2-25. Results of the query in Listing 2-4

Most of the columns speak for themselves in terms of the row data they return.

Two columns that deserve some extra explanation are the Operation and Wait Time

columns. The Operation column will show you the beginning or the end of the wait

event. The Wait Time column will return the wait time in milliseconds, but it will only be

recorded at the end of an operation.

56



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Analyzing Wait Statistics on a Per-Query Basis
Using Execution Plans

So far we have mostly looked at aggregated wait times that were generated by either
various background processes or by the queries we executed. Since I was the only one
that was executing queries against my test machine, it is very easy to correlate wait

times to my specific queries. Unfortunately, on busy systems where many queries are
constantly being executed by a large number of sessions, the various wait statistics DMVs
are almost useless to analyze wait types and wait times for specific queries.

Thankfully, the release of SQL Server 2016 SP1 changed that scenario and introduced
wait statistics capture inside query execution plans! This means you can easily see what
wait types and wait times your query encountered while running. Even though it might
seem obvious, this means that per-query wait statistics are only available when looking
at the actual execution plan, not the estimated execution plan.

The actual execution plan is the execution plan that was used during the execution
of the query. There is an option in SQL Server Management Studio to look at

the estimated execution plan. When used, the SQL Server engine compiles the
execution plan which is most likely to be used during the query’s execution;
however, it does not actually execute the query itself. Since there is no query
execution, there are also no wait statistics to record while compiling the estimated
execution plan.

The easiest way to expose per-query wait statistics is by enabling the Include
Actual Execution Plan option, shown in Figure 2-26, by clicking the “Query - Include
Actual Execution Plan” menu item or by using the key combination CTRL_M, and then
executing your query.

JaNEWQUeW u%un:n@:ﬁnﬁ‘%ﬂjfﬁ:9' = ‘
‘DExecute Debug JS'S\E'“E'SET*'Im'?ElﬁmrJ;? 9—-“E§="}~é

. SQLQuery1.sql - EV...Administrator (54))* 1 Include Actual Execution Plan (Ctrl+M) -

Figure 2-26. Include Actual Execution Plan option

57



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

When you execute your query with the Include Actual Execution Plan option
enabled, your query results will return with an additional tab called Execution plan.
Clicking the tab will return the visual representation of the execution plan that was used
while executing your query. Figure 2-27 shows an example of an actual execution plan.

FH Results | 2¥ Messages 2 Execution plan

Query 1l: Query cost (relative to the batch): 100%
SELECT * FRCM Person.Person

[===| {l'_hrs

fm———— Clustered Index Scan (Clustered)
[Person] . [PK_Person BusinessEntityl.

Cost: 100 %

Figure 2-27. Execution plan

With the actual execution plan opened, we can access the per-query wait statistics by
right-clicking the first operator, which in the case of Figure 2-28 is the SELECT operator,
and selecting Properties. This will open up the execution plan properties window inside
SQL Server Management Studio and reveals a wealth of information, like the degree of
parallelism used or the number of rows processed, about the query execution and the
various properties of the operator we selected.

58



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Properties v X
SELECT -
=[5, | &
E Misc
Cached plan size 24 KB
CardinalityEstimationModelVersic 120
CompileCPU 0
CompileMemory 132
CompileTime 0
Degree of Parallelism 1
Estimated Number of Rows 19972
Estimated Operator Cost 0 (0%)
Estimated Subtree Cost 2.87192
MemoryGrantinfo
Optimization Level TRIVIAL
B OptimizerHardwareDependentPr
QueryHash Ox88000AA488630C29
QueryPlanHash OxF27FB7B362CFETE3
QueryTimeStats
RetrievedFromCache true
SecurityPolicyApplied False
Set Options ANSI_NULLS: True, ANSI_PADDING: 1
Statement SELECT * FROM Person.Person
WaitStats

Figure 2-28. Execution plan properties

Since we are interested in wait statistics, the most interesting part of the execution
plan properties is recorded all the way at the bottom of the properties window. When
expanding the WaitStats properties you are able to see all of the wait types, and wait
times, this specific query ran into while executing. Figure 2-29 shows the per-query wait
statistics for this specific example query.

59



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Swasias =

= [1]

WaitCount

(RS S

WaitTimeMs
WaitType PAGEIOLATCH_SH
B [2]

WaitCount g1

w

P

WaitTimeMs
WaitType MEMORY_ALLOCATION_EXT
B [3]

WaitCount 8
1

o
LN

J

e

WaitTimeMs
WaitType ASYNC_NETWORK_IO

L

Figure 2-29. Per-query wait statistics in the execution plan properties

In this case our query encountered three different wait types while executing:
PAGEIOLATCH_SH, MEMORY_ALLOCATION_EXT and ASYNC_NETWORK_IO. For
each of these wait types you can see how much time was spend waiting, and how many
times we waited on the wait type. This information can be very useful when looking at
what an individual query encounters in terms of wait statistics during its execution, and
perhaps, can give you some insights in how you can tune the performance of the query.
For instance, if you see that a query frequently runs into storage-related wait statistics,
it might be worth it to investigate how you can minimize storage access for that specific
query so it can execute faster.

One thing that I like to point out again, the per-query wait statistics are only recorded
in the actual execution plan! The reason why I mention this again is that the actual
execution plan is only available by enabling it before execution of a query. There is no
other way to access an actual execution plan, not even through the Query Store as we
will see in the next chapter. As a matter of fact, the execution plans that are stored in the
plan cache of SQL Server are the estimated execution plans and not the actual plans.
This means that if you are expecting to retrieve per-query wait statistics through the plan
cache you are going to be disappointed.

60



CHAPTER 2  QUERYING SQL SERVER WAIT STATISTICS

Thankfully, even though the Query Store feature does not record the actual
execution plan, it does (with the release of SQL Server 2017) record wait statistics, and
other query runtime information, together with the estimated execution plan. Mixing
that information together means that through the Query Store we can look back in time
and see what queries encountered in terms of wait statistics!

Summary

In this chapter we reviewed the various ways we can access information about wait
statistics. We took an in-depth look at some of the most important DMVs regarding wait
statistics: sys.dm_os wait stats, sys.dm os waiting tasks, sys.dm exec_requests,
and sys.dm_exec_session_wait_stats. I described their functions and the data they
returned, and gave you some example queries you can use against those DMVs. We
also went through an example scenario where we combined some of the DMVs to
analyze what was slowing down the SQL Server in the example. The steps shown in the
example are a good way to analyze performance problems on your system when they
are occurring. Briefly, we looked at the Windows Performance Monitor, or Perfmon, and
how you can access wait statistics information from inside it. After that we took a good
look at Extended Events and how you can use them to capture wait-related information
for specific queries or sessions using the Extended Events GUI or T-SQL. We ended the
chapter by looking at execution plan recorded wait statistics.

61



CHAPTER 3

The Query Store

With the release of SQL Server 2016, Microsoft introduced an entirely new method to
analyze and troubleshoot query performance: the Query Store. The Query Store is often
marketed as the “flightrecorder” of SQL Server in that it gives insights into when queries
are being executed, how well they performed, and what execution plan was used during
execution of the query. While the Query Store did not initially expose wait statistics that
were encountered during query execution, the release of SQL Server 2017 included that
much awaited addition.

Since the Query Store is such a gamechanger in terms of query performance analysis
and tuning, I believe it deserves some additional attention so you can get the most from
this feature.

What Is the Query Store?

The Query Store feature was first released in SQL Server 2016 and had a goal of exposing
query performance in an easier and more accessible way. Before the Query Store, query
performance analysis was a challenging and time-consuming process that requires
very thorough knowledge of how SQL Server processes queries and how you can
analyze information through the various DMVs. While experience and knowledge of
query execution is still very helpful, the Query Store helps you access the performance
information you need in a more accessible and visual manner.

The Query Store is integrated directly inside the SQL Server engine. This means
that it can capture and analyze query executing where it is occurring. This is a major
difference compared to query analysis through other methods, like the execution plan
cache, where query runtime information is only available at a later stage. Another
advantage of the Query Store is that it persists query runtime information to disk. This
means you can build up a history of runtime metrics for your queries and allows easier
comparison between historic runtime statistics and current ones. This is a difference

63
© Enrico van de Laar 2019

E.van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_3



CHAPTER 3  THE QUERY STORE

compared to the DMVs, which only records information for the time SQL Server is
running and flushes all recorded information at a restart of SQL Server, meaning you
start back with all the counters at 0 again. To continue the comparison of the Query
Store vs. DMVs, while all the DMVs record information on the entire SQL Server Instance
level, the Query Store allows you to capture query runtime metrics on a per-databases
basis. This makes analyzing performance for a specific database inside an Instance with
multiple databases considerably easier and quicker.

There are more advantages of using the Query Store, for instance, the easy forcing of
execution plans, but since this is a book about wait statistics, I will not cover everything
that the Query Store has to offer. If you are interested in more in-depth look of the Query
Store, I wrote a series of articles that describes just about everything the Query Store
is capable of and it’s available here: www.red-gate.com/simple-talk/sql/database-
administration/the-sql-server-2016-query-store-overview-and-architecture/.

Query Store Architecture

To give you a good idea on how the Query Store works, I created the image in Figure 3-1
that shows how query runtime information is recorded and stored inside the Query Store.
This knowledge is important if you want to add the Query Store as a tool to analyze query

performance and wait statistics.

In-memory Async Writer Disk
Query Plan Query Plans || Direct,
and Text :

e
Caery 5 IR
e
----- -
Runtime Stats

Query
Runtime Stats

t
!

T
1
[

Data flush interval

Figure 3-1. Query Store architecture

64


http://www.red-gate.com/simple-talk/sql/database-administration/the-sql-server-2016-query-store-overview-and-architecture/
http://www.red-gate.com/simple-talk/sql/database-administration/the-sql-server-2016-query-store-overview-and-architecture/

CHAPTER 3  THE QUERY STORE

As soon as a query is starting its execution, and you have the Query Store enabled
on the database the query is being executed against, the Query Store splits the query
runtime information into three parts: the query execution plan, the query text, and the
runtime statistics of the query execution. Both the execution plan and the query text
are immediately recorded in the Query Store during the compilation of the execution
plan. The runtime statistics (including wait statistics information) are only available
after execution of the query, meaning they will be added to the Query Store after query
execution.

All of the Query Store metrics are first stored inside a reserved memory area of
SQL Server. This means they are directly available through queries or the built-in
reports, but are not hardened to disk yet (exception is new execution plans, these are
hardened directly). Based on a configurable setting inside the Query Store called the
“Data flush interval” you can configure how fast the Query Store should harden the
information to disk.

We can access all the information the Query Store records through two methods:
Query Store DMVs and the built-in reports. To expose the wait statistics inside the Query
Store, we will be using both options, though I believe the DMV approach is more useful
when looking at the wait statistics data.

How Wait Statistics Are Processed in the Query
Store

Before we can get started looking at how we can access the wait statistics information
recorded in the Query Store, we need to look at how the Query Store processes wait
statistics, since it is different compared to the process I described in Chapter 1, “Wait
Statistics Internals,” of this book. In that chapter I described that the SQL Server engine
keeps track of how long a query spends waiting on a specific resource, or wait type. This
information is recorded at a very granular level; for instance, the PAGEIOLATCH_SH
wait type indicates that the query is waiting for data pages to be read from disk to the
buffer cache and a PAGEIOLATCH_EX that the query is waiting for a data page to be
moved to the buffer cache for modification. Instead of recording wait times on such

a detailed level, the team behind the development of the Query Store decided that a
more high-level wait type overview was required to avoid performance and resource
utilization overhead. Ultimately, they chose to group various wait types together into
categories and record wait times on a category level instead of individual wait types.

65



CHAPTER 3  THE QUERY STORE

This means that searching for specific wait types inside the Query Store recorded
wait statistics is not possible and wait types that share the same category cannot be
distinguished from each other. To give you an example, both the CMEMTHREAD and
the RESOURCE_SEMAPHORE wait types (of which you will learn more in Chapter 6,
“IO-Related Wait Types”) are recorded inside the Memory category inside the Query
Store, even though both wait types indicate different things.

Table 3-1 shows the mapping between wait types and wait categories that are used
in the Query Store. The table is by no means a complete overview of the mappings but
should give you a good idea where to expect a certain wait type.

Table 3-1. Mapping Between wait types and Categories

Wait Category Associated Wait Types

Unknown Unknown

CPU SOS_SCHEDULER_YIELD

Worker thread THREADPOOL

Lock LCK_M_%

Latch LATCH_%

Buffer latch PAGELATCH_%

Buffer 10 PAGEIOLATCH_%

Compilation* RESOURCE_SEMAPHORE_QUERY_COMPILE

SQL CLR CLR%, SQLCLR%

Mirroring DBMIRROR%

Transaction XACT%, DTC%, TRAN_MARKLATCH_%, MSQL_XACT_%, TRANSACTION_
MUTEX

Idle SLEEP_%, LAZYWRITER_SLEEP, SOLTRACE_BUFFER_FLUSH,

SQLTRACE_INCREMENTAL_FLUSH_SLEEP, SQLTRACE_WAIT_ENTRIES,
FT_IFTS_SCHEDULER_IDLE_WAIT, XE_DISPATCHER_WAIT,
REQUEST_FOR_DEADLOCK_SEARCH, LOGMGR_QUEUE,
ONDEMAND_TASK_QUEUE, CHECKPOINT_QUEUE, XE_TIMER_EVENT

Preemptive PREEMPTIVE_%

(continued)

66



CHAPTER 3  THE QUERY STORE

Table 3-1. (continued)

Wait Category

Associated Wait Types

Service broker

Tran Log 10

Network 10

Parallelism

Memory

User wait

Tracing

Full text search

Other disk 10

Replication

Log rate governor

BROKER_% (but not BROKER_RECEIVE_WAITFOR)

LOGMGR, LOGBUFFER, LOGMGR_RESERVE_APPEND, LOGMGR_FLUSH,
LOGMGR_PMM_LOG, CHKPT, WRITELOGF

ASYNC_NETWORK_10, NET_WAITFOR_PACKET, PROXY_NETWORK_IO,
EXTERNAL_SCRIPT_NETWORK_IOF

CXPACKET, EXCHANGE

RESOURCE_SEMAPHORE, CMEMTHREAD, CMEMPARTITIONED,
EE_PMOLOCK, MEMORY_ALLOCATION_EXT, RESERVED_MEMORY _
ALLOCATION_EXT, MEMORY_GRANT_UPDATE

WAITFOR, WAIT_FOR_RESULTS, BROKER_RECEIVE_WAITFOR

TRACEWRITE, SQLTRACE_LOCK, SQLTRACE_FILE_BUFFER, SQLTRACE_
FILE_WRITE_I0_COMPLETION, SQLTRACE_FILE_READ_|0_COMPLETION,
SQLTRACE_PENDING_BUFFER_WRITERS, SQLTRACE_SHUTDOWN, QUERY _
TRACEOUT, TRACE_EVTNOTIFF

FT_RESTART_CRAWL, FULLTEXT GATHERER, MSSEARCH, FT_METADATA _
MUTEX, FT_IFTSHC_MUTEX, FT_IFTSISM_MUTEX, FT_IFTS_RWLOCK,
FT_COMPROWSET_RWLOCK, FT_MASTER_MERGE, FT_PROPERTYLIST _
CACHE, FT_MASTER_MERGE_COORDINATOR, PWAIT_RESOURCE_
SEMAPHORE_FT_PARALLEL_QUERY_SYNC

ASYNC_IO_COMPLETION, 10_COMPLETION, BACKUPIO, WRITE_
COMPLETION, I0_QUEUE_LIMIT, 10_RETRY

SE_REPL_%, REPL_%, HADR_% (but not HADR_THROTTLE_LOG_RATE_
GOVERNOR), PWAIT_HADR_%, REPLICA_WRITES, FCB_REPLICA_WRITE,
FCB_REPLICA_READ, PWAIT_HADRSIM

LOG_RATE_GOVERNOR, POOL_LOG_RATE_GOVERNOR, HADR_THROTTLE_
LOG_RATE_GOVERNOR, INSTANCE_LOG_RATE_GOVERNOR

67



CHAPTER 3  THE QUERY STORE

Accessing Wait Statistics Through the Query Store
Reports

The most user-friendly way to view the wait statistics that are available inside the Query
Store is through the built-in reports that are available inside SQL Server Management
Studio after you enabled the Query Store feature on a database. Figure 3-2 shows the
default, built-in, Query Store reports that are available at the time of writing this book.

=] Query Store
@ Regressed Queries
'@/ Overall Resource Consumption
& Top Resource Consuming Queries
& Queries With Forced Plans
'@/ Queries With High Variation
&4 Tracked Queries

Figure 3-2. Query Store reports

Asyou can see in Figure 3-2, there are no dedicated wait statistics reports (yet).
Instead of a dedicated report, we can view the wait categories as a query encountered by
specifically selecting the Wait Time (ms) metric inside the following three reports:

o Regressed Queries
o Top Resource Consuming Queries
e Queries with High Variation

To view the wait categories in any of the preceding reports, you first need to
configure the metric to Wait Time (ms), as shown in Figure 3-3.

68



Metric

Duration (ms)

CHAPTER 3  THE QUERY STORE

15-

10-

total duration

&

Execution Count

Duration (ms)

CPU Time (ms)

Legical Reads (KB)

Logical Writes (KB)

Physical Reads (KB)

CLR Time (ms)

DOP

Memory Consumption (KB)
Row Count

Log Memory Used (KB)
Temp DB Memory Used (KB)

[+] statstic [Total _[-] |(2]

ﬂ:ﬁlilil:lil:mr
h... 1. 2 50 52 1

]

| Wait Time (ms)

query id

Figure 3-3. Configuring the metric to Wait Time (ms)

This changes the graph to return (by default) the top 25 queries order by the total

wait time.

After changing the metric, you can mouseover on any of the queries that are shown

in the graph to retrieve the wait category information, as shown in Figure 3-4.

[+] statisic [Total_|-] |2 | ©

Metric | Wait Time (ms)
2]
1000-
800-
w
E| 600
x
E
B - Query Id 1
2l 00 Network 10 Wait Time 1020
Memory Wait Time 1
0| Buffer 10 Wait Time 2 — —
|| Total Wait Time (ms) 1033 [°  %° ¢
| Execution Count 1
Plan Count 1
Plan 1[not fQ
Query 1: SELECT * FROM Person.Person e batch): 1003
SFTFrT *# FRMM Parann Parann

Figure 3-4. Wait categories exposed in the Query Store

69



CHAPTER 3  THE QUERY STORE

As you can see from Figure 3-4, this specific query ran into various wait categories:
Network IO, Memory, and Buffer I0. We can see the wait time per category and the total
wait time across all of the categories, but as mentioned earlier, we have no idea about
which exact wait types were encountered by the query.

Accessing Wait Statistics Through the Query Store
DMVs

While the built-in Query Store reports are definitely helpful in visibly identifying queries
with high wait times, we can easily generate far more information by using a new

Query Store DMV that is available in SQL Server 2017: sys.query_store_wait_stats. The
columns that are returned by querying the DMV mainly show various statistics related to
the wait types of the various wait categories for a specific execution plan ID.

The Query Store uses its own unique identifiers for queries, execution plans, and
runtime intervals. With that in mind, you can identify queries by looking up the
Query ID inside the Query Store, or execution plans by searching on the Plan ID.

Figure 3-5 shows the different statistics that are recorded for each execution plan ID,
split up into different wait categories.

wait_category_desc  execulion_type  execution_type_desc  total_query_wal_time_ms  avg_guery_wal_tme _ms  last_query_wait lime_ms min_query_wai_time_ms max_guery_wat_time_ms

Latch 0 Fegular 2 2 21 21 21
Buffer 10 0 Fegular 5 5 5 5 5
de 0 Fegular 9 9 9 9 9
Network 10 o Regular 54 54 54 5 54
Parallelsm 0 FRegular 293 293 293 293 293
Memory o Regular 3 3 3 3 3
Inkricwn o Regular 4 1.33333333333333 2 o 2
CPU 0 Regular 18 [ 0 0 1
Idle 0 Fegular 15 5 5 &
Network 10 0 Regular 203 67 6666566666667 35 35 16
Parallelsm ] Fegular 854 284 666566656667 245 217 392

Figure 3-5. Wait categories statistics inside sys.query_store_wait_stats

While we can just query the sys.query_store_wait_stats DMV and look at the various
statistics for each, or a specific, execution plan ID, we can get far more information by
joining the various Query Store DMVs together.

70



CHAPTER 3  THE QUERY STORE

As an example, the following query joins various Query Store DMVs to return an
overview of queries that encounter high total wait times.

SELECT
gsws.plan_id,
gsq.query id,
gsws.runtime stats interval id,
gsqt.query sql text,
gsws.wait category desc,
gsws.total query wait time ms
FROM sys.query store wait stats qsws
INNER JOIN sys.query store plan gsp
ON gsws.plan_id = qsp.plan_id
INNER JOIN sys.query store query qsq
ON gsp.query id = gsq.query id
INNER JOIN sys.query store query text gsqt
ON gsq.query text id = gsqt.query text_ id
ORDER BY gsws.total query wait time ms DESC

The results of this query can be seen in Figure 3-6.

plan_id query_id runtime_stats_interval_id query_sql_text wait_category_desc  total_query_wait_time_ms

1 87 is 2 select top 1000 * from sales SalesOrderDetall order . Parallelism 854
2 10 10 2 select top 1007 *from sales SalesOrderDetail order . Parallelism 655
3 8 8 1 select top 1000 * from sales SalesOrderDetail order . Parallelism 293
4 10 10 2 select top 1001 * from sales SalesOrderDetail order ... Parallelism 284
5 14 14 2 SELECT* FROM sys.query_store_wait_stats gsws... Network 10 206
6 8 8 2 select top 1000 * from sales. SalesOrderDetail order ... Network 10 203
7 10 10 2 select top 1001 * from sales SalesOrderDetail order ... Network 10 159
8 15 15 2 SELECT qswsplan_id, gsq.query_id, gsat.que.. Network IO 120
9 17 17 2 SELECT aqswsplan_id, gsqauery_id, gswsru..  Network IO 105
10 13 13 2 select “ from sys.query_store_wait_stats Network 10 68

1 8 8 1 select top 1000 * from sales SalesOrderDetail order .. Network 10 54

12 10 10 2 select top 1001 *from sales SalesOrderDetail order ... Network 10 45

13 16 16 2 SELECT qswsplen_id, qsqquery_id. gsgt.que.. MNetwork IO 41

Figure 3-6. Wait statistics information from the Query Store

Using the preceding query, we can immediately see that the SELECT query against
the Sales.SalesOrderDetail table spends most of its waiting time on parallelism-related
wait types.

71



CHAPTER 3  THE QUERY STORE

Modifying the query a little bit by filtering on the queries Query ID allows us to
zoom in on a specific query and analyze its wait behavior. Following is the modified
query, and you'll see that I also added some additional columns that return various
useful statistics.

SELECT
gsws.plan_id,
gsq.query id,
gsws.runtime stats interval id,
qsqt.query sql text,
gsws.wait_category desc,
gsws.total query wait time ms,
qsws.avg_query wait time_ms,
gsws.last query wait time ms

FROM sys.query store wait stats qsws

INNER JOIN sys.query store plan gsp

ON gsws.plan id = gsp.plan_id

INNER JOIN sys.query store query qsq

ON gsp.query id = gsq.query_id

INNER JOIN sys.query store query text gsqt

ON gsq.query text id = gsqt.query text id

WHERE gsq.query id = 8

ORDER BY runtime stats interval id ASC

Figure 3-7 shows the output from running this version of the query.

pian_id wery;ld nuntime_stats_interval id  query_sql_text wak_category_desc :oid_uJery_WalJm_m avn_mm_.wm_ﬁMe_ms last_query_walt_time_ma
[ s 1 select oo 1000 *from sales SalesOrderDetaior..  Urknown 4 4 s
RN 1 select top 1000 * from sales SalesOrderDetaior...  Latch 2 21 Fd|
8 8 1 select top 1000 * from sales SalesOrderDetal or, Buffer 10 5 5 5
8 g 1 select top 1000 *from sales SalesOrderDetal or...  Idle 9 9 9

8 8 1 selact top 1000 *from sales SalesOrderDetal or..  Network 10 54 54 5
8 ] 1 selact top 1000 * from sales SalesOrderDetal or..  Parallelism 293 293 k]
8 g 1 select top 1000 " from sales SalesOrderDetal or..  Memory 3 3 3

8 8 2 select top 1000 *from sales. SalesOrderDetal or..  Unknown 4 1.33333333333333 r

8 8 2 select top 1000 * from sales SalesOrderDetai or..  CPU 18 B 0
B 8 2 select top 1000 * from sales SalesOrderDetalor...  Idle 15 5 5

Figure 3-7. Wait statistics information for a specific query

In the query and the query results shown in Figure 3-7, you can see I added an
additional column called runtime_stats_interval_id. The wait the Query Store groups
runtime, and also wait time, metrics is by aggregating them based on intervals. By default,

72



CHAPTER 3  THE QUERY STORE

these intervals are one-hour blocks, meaning that the wait statistics that are returned
for our specific query in the preceding example are the aggregated results of one, or
multiple, query executions inside the interval. While you can lower the intervals to
smaller time segments by setting the Statistics Collection Interval setting inside the
Query Store properties, this can have a negative impact on the performance of your SQL
Server Instance, so be careful when changing this setting.

I have only shown you a few examples of how you can retrieve wait statistics-
related metrics from inside the Query Store. With all the information that the Query
Store collects there is a whole ocean full of other information to combine with the wait
statistics metrics. For instance, you can filter on specific wait categories, or detect if
queries generate different execution plans and what their impact is on the waits for that
specific query. I definitely recommend everyone that is using SQL Server 2016 or higher
to enable the Query Store and explore all the amazing metrics it collects.

While the Query Store is only available from SQL Server 2016 and higher, William Durkin
(@sql_williamd on Twitter) and myself released a project called Open Query Store
which emulates Query Store data collection for SQL Server versions lower than 2016.
The project is completely open source and free and available through the project’s
GitHub page at https://github.com/OpenQueryStore/OpenQueryStore.

Summary

In this chapter we looked at a new query performance and analysis feature that was
introduced in SQL Server 2016: the Query Store. We looked at how the Query Store works
underneath the covers and how we can access query wait statistics information in the
built-in reports of the SQL Server 2017 version of the Query Store.

Finally, we looked at accessing Query Store wait statistics using the new Query Store
DMVs and showed some example queries that can help you get started on querying the
Query Store.

73


https://github.com/OpenQueryStore/OpenQueryStore

CHAPTER 4

Building a Solid Baseline

In Chapter 2, “Querying SQL Server Wait Statistics,” we spent a great deal of time
describing and using the various methods of accessing wait statistics information.
Most of those methods focused on using that information for detecting performance
problems that are presently occurring. While it is possible to find the exact cause of the
performance problem using these real-time methods, it requires a deep knowledge of
the various wait types and—most important—experience in the performance of your
SQL Server. If you are managing only one SQL Server instance, you can get yourself
familiar with the way it reacts under different circumstances relatively quickly. If you
are managing hundreds of SQL Server instances, getting yourself familiar with the

way they perform is impossible. Because SQL Server wait statistics are largely based

on the workload of your SQL Server instance, no two SQL Server instances will have
the same wait times for the same wait types. This makes detecting possible problems
difficult because we can’t just say “because the CXPACKET wait type has a wait time of
20,000 milliseconds we are having a problem.” It all depends on the configuration and
workload of your system. One SQL Server instance can have 20,000 milliseconds (20
seconds) of wait time every minute spent on the CXPACKET wait type and experience no
performance problems, while another instance has 1,000 milliseconds of wait time and
users are constantly complaining about performance.

If we want to perform an in-depth analysis of wait statistics, or any performance-
related data, we need a method of collecting performance-related metrics and giving
them meaning. Just detecting that you spend 10,000 milliseconds waiting for resources
doesn’t mean anything, since we do not know if it caused performance problems or
not. Yes, maybe your users are complaining that performance is horrible while you
notice that 10,000 milliseconds wait, but there is no way to be sure if that wait is actually
causing the performance problems your users are experiencing. In those cases we
frequently take a guess and just assume that the specific resource wait is the source of
the performance problem. I learned, after talking to many DBAs across the world, that

75
© Enrico van de Laar 2019

E.van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_4



CHAPTER 4  BUILDING A SOLID BASELINE

DBAs do not like to take guesses at what’s slowing down our SQL Server instances. We
want to be certain that the source of the performance problem actually is that resource
wait. This is where baselines can help.

Baselines will help you give meaning to performance metrics by providing you
with a definition of what the normal situation is on your system. Without a baseline
of our system, we have no idea if it is running optimally or terribly slow. Baselines are
incredibly important; in fact, they are so important that I decided to write a complete
chapter about them in this book. Without a solid baseline, your measurements mean
nothing! Even though this book focuses on wait statistics, baselines can be used for
every performance-related metric you can capture on your system, giving you a valuable
method of performance analysis.

If you read through the previous chapter concerning the Query Store, you might
be tempted to think that the Query Store can handle all your baseline needs (if you
are running SQL Server 2016 or higher). While the Query Store absolutely provides a
very useful tool in capturing and monitoring the performance of your query, it doesn’t
necessarily provide a performance overview of your entire SQL Server Instance. I
personally consider the Query Store an addition to the regular process of capturing and
monitoring baselines, not a replacement.

What Are Baselines?

If we look up the word “baseline” in the Oxford dictionary, we would get the following
definition: “A minimum or starting point used for comparisons.” This sentence captures
the essence of a baseline perfectly by using the important words “starting point”

and “comparisons.” A baseline will generally be the starting point, or in our case,
measurement, that we will compare later measurements against. Ideally, we will capture
our baseline measurement in a normal or standard situation. If we perform the same
measurement again at a later point in time, we can compare that measurement against
the baseline. If our measurements are not the same during the comparison, something
might have changed.

Even if you do not yet use baseline comparisons when analyzing performance, you
are still working with baselines constantly whether you realize it or not. For instance, if
you receive a salary every first day of the month, that would be your normal situation
or, in the context of this chapter, your baseline. If for some reason you didn'’t receive
your salary on the first day of the month, you would notice a deviation compared to the

76



CHAPTER 4  BUILDING A SOLID BASELINE

baseline. This might be a reason to investigate why you didn'’t receive your salary on
time. Maybe the day changed from the first to the fifth of the month or, in the worst case,
the company you work for can’t pay your salary anymore. In any of these cases, there are
actions we can take: either accept the change, and by doing so create a new baseline, or
revert the situation back to the baseline state again. Figure 4-1 shows this process.

Accept new baseline

Baseline ch ange New baseline

Undo change to revert
to baseline

Figure 4-1. Changes impact baseline

Defining and maintaining baselines is an iterative process. Every change occurring
on your system can impact your baseline. A new release of the application you are using
might change a number of queries, or your company might grant a new department
access to the database, increasing the number of connections. In both these examples
we would need to make adjustments to the baseline, since the normal situation would
have changed.

All of this adjusting and measuring baselines with every change to the system sounds
like a lot of work, and sometimes it is. But believe me—the benefits of having a baseline
far outweigh the costs. Baselines will help you detect problems far faster than just
looking at a single measurement, and in the case of wait statistics, it is the only way to
find a reliable, definitive answer to your problem. Let’s use a more technical example to
illustrate this using DBA Jim.

Jim maintains a SQL Server instance that hosts a single-user database. This
database is used by every sales person in the company and records every financial
transaction between the company and its customers. Users can access the database
through Application X. Application X is currently running version 2.4 and is very stable.
Performance is good, users are happy, and the money keeps rolling in. Sounds great,

77



CHAPTER 4  BUILDING A SOLID BASELINE

right? One day a consultant walks in and wants to upgrade Application X to the brand
new 3.0 version. The update to version 3.0 was a breeze and completed without any
problems, and all the users love the new features.

Two days later the phone is ringing, Chris’s manager just received word from the
sales team that the performance in version 3.0 is horrible and he demands it get resolved
right away.

Thankfully, Jim knew the importance of a baseline, and he created one before the
upgrade to version 3.0. Using the version 2.4 baseline, Jim compares the measurements
in the baseline to the measurements done in version 3.0 and immediately spots a large
difference in the lock wait time measurements. Since other measurements remain
more or less the same compared to the 2.4 baseline, Jim focuses on long-running locks
and identifies an update query that is locking a table. He rolls back the query, and the
situation returns to normal. He then contacts the application’s vendor and learns this
behavior was a result of a bug in the software.

Now this example might sound a little far-fetched, but it is actually a simplified
version of the method I use almost every day when measuring the impact of changes or
analyzing performance problems. If Jim didn’t have a baseline of the lock wait time and
just queried the lock wait time after the change to version 3.0, he wouldn’t know that
the wait time had increased, since he had nothing to compare against. He might have
chosen to look at other metrics instead of the lock wait time and would have wasted
valuable time and money.

The message here is simple: baselines will help you detect abnormal situations and
resolve performance problems faster!

Visualizing Your Baselines

Baselines are frequently visualized through graphs. The big advantage of turning your
baseline measurements into graphs is that a graph can make it easier for you to detect
those measurements that have the highest increase or decrease compared to your
baseline. Also, visualizing your data might help you get your point across easier if you
have to prove that a specific configuration is impacting performance. For example, you
need to convince your storage administrator that the change in the storage configuration
has impacted your performance. If you can hand him a graph that shows the normal
behavior compared to the behavior after the change, he might be more inclined to

help. The graph in Figure 4-2 shows the baseline measurements compared to the
measurements done at a later time.

78



CHAPTER 4  BUILDING A SOLID BASELINE

Transactions/sec

[
w
o

3000

2500

A

1500

1000

(LLl

500

Figure 4-2. Example of a baseline graph

As you can see in Figure 4-2, you would be able to identify the potential problem very
quickly. Apparently, between 08:00 and 12:00 the number of transactions per second is
higher than the normal situation, and it might be worth taking the time to investigate.

Baseline Types and Statistics

We will frequently use different types of baselines depending on the information we are
interested in. There usually isn’t one single baseline to fit all our needs, especially not
when you are using baselines for performance-troubleshooting purposes. For instance,
we can create a baseline for every single wait type, or we can choose to create only
baselines for wait types that impact our system the most. We can also choose to create a
baseline for specific days or time segments, like business hours, and create another for
after business hours.

Next to selecting or limiting the measurements we want to have baselines for, we also
have to make choices on how we calculate our baselines. These choices involve some
math and usually require calculating averages. In many cases our baseline consists of an
average of many data points, depending on how many measurements you performed. If
you collect measurements for a long period of time and calculate an average value from

79



CHAPTER 4  BUILDING A SOLID BASELINE

those measurements, you can create a more reliable baseline than you can when you
only have one day’s worth of measurements. Creating a baseline based on averages also
has its disadvantages. The most important one is that averages are heavily influenced
by skewed data. Without going too deep into statistical details, skewed data means that
there are very high or very low values that impact your average. Say, for instance, that

a group of students took an exam and we wanted to see how the group performed by
calculating the average result of the exam (the students are rated between 1 and 10, 1
being very poor and 10 being excellent; a 6 or higher is required to pass the exam).
Figure 4-3 shows the exam results in a graph.

Exam results
12

10

8 I | | |
0 I I I I I I

Student 1 Student 2 Student 3 Student4 Student5 Student & Student 7 Student 8 Student 9 Student 10

(=2

2]

(]

Figure 4-3. Exam results

As you can see in Figure 4-3, only four students scored higher than the required 6
to pass the exam. The rest of the group scored way below the requirement. However,
if we look at the average performance of the group, they actually didn’t do too badly
by scoring a 6. We could conclude the group is performing well enough by getting an
average score of 6, but then we would miss that the majority performed badly and only
four students actually passed the exam. This information is important to keep in mind
when you are dealing with average baselines. If you see a spike in your average baseline,
it is always something you should investigate, because it impacts your baseline.

80



CHAPTER 4  BUILDING A SOLID BASELINE

There are statistical methods available to deal with skewed data and averages, one
being the trimmed (or truncated) mean. This method removes x percent of the highest
and lowest measurements in your series, creating a more stable average. We won't
go any deeper into the trimmed mean for baseline use, but if you want to learn more
about it, I suggest you read Bob Newstadt’s blog post at www.sqlteam.com/article/
computing-the-trimmed-mean-in-sql. Even though the article is pretty dated, it shows
a method of calculating the trimmed mean using T-SQL.

Baseline Pitfalls

Hopefully the previous section convinced you that baselines are important, but
before you go and capture every performance metric and convert it into a baseline

measurement, there are some pitfalls you will want to avoid.

Too Much Information

Even though you are free to baseline everything in your system, this is generally
considered a bad idea. Gathering too much information can blind you in your search
for answers. If you have to compare 100,000 different metrics against your baseline
every time a performance problem occurs, you are wasting time. The advice here is to
keep your baselines small, including only performance metrics that matter the most for
your system. For instance, you can include performance metrics related to Availability
Groups, but if your system doesn’t use this feature, then there is no use including them.

Know Your Metrics

Another important aspect in the selection of performance metrics is understanding.
If you do not understand what a performance metric represents, it can be very difficult
to formulate a correct conclusion, or it can even lead you in the wrong direction.

Focus on the Big Measurement Changes

When comparing measurements against a baseline, always focus on the big increases or
decreases. Especially for wait statistics, very small increases in wait time (1-2%) aren’t a
cause for concern. If one of your wait time measurements goes up 20%, that would be a
good signal to start investigating.

81


http://www.sqlteam.com/article/computing-the-trimmed-mean-in-sql
http://www.sqlteam.com/article/computing-the-trimmed-mean-in-sql

CHAPTER 4  BUILDING A SOLID BASELINE

Use Fixed Intervals

When capturing wait statistics information you should always use a fixed interval. If we
were to capture wait times at random, it would be almost impossible to build a reliable
baseline. It would be like comparing apples against oranges. The best way to automate
the capture of wait statistics information is by using the SQL Server Agent and setting it
to a fixed interval, like every 15 minutes.

Building a Baseline for Wait Statistics Analysis

Now that we have familiarized ourselves with baselines, let’s get to work and create a
baseline we can use in our wait statistics analysis. As I mentioned at the beginning of this
chapter, baselines are incredibly important if you want to analyze performance problems
using wait statistics. Nobody has the same wait types and wait times compared to your
system, so it’s up to you to create a baseline you can compare against.

In this section I will show you a method I use to create, maintain, and compare
baselines and measurements. This does not necessarily mean this is the right way to do
it, and you might find other methods better suited to your needs.

Since we are going to capture SQL Server wait statistics measurements, I prefer to
store my measurements inside a separate database named “Baseline.” This way my
measurement information doesn’t get stored somewhere between user tables. Since wait
statistics are logged at the SQL Server instance level, it makes sense to create a separate
measurement database inside every SQL Server instance. Figure 4-4 shows you my
baseline database inside the SQL Server Management Studio.

82



CHAPTER 4  BUILDING A SOLID BASELINE

= @ EVDL-SQL2017-01 (SQL Server 14.0.1000.169 - EVDL-
= Databases
System Databases
Database Snapshots

@ AdventureWorks

.

Security

Server Objects

Replication

PolyBase

Always On High Availability

Management

F B FE H

B EH B E

[

= Integration Services Catalogs
# g3 SQL Server Agent
& [¥] XEvent Profiler

Figure 4-4. Baseline database

You can create the database yourself using the script in Listing 4-1, making sure
to change the file locations. The database data file will be 1.5 GB when it gets created,
which gives enough free space to capture weeks of wait statistics information.

Listing 4-1. Creating the Baseline database

-- Create Baseline database
CREATE DATABASE [Baseline]

ON PRIMARY
(
NAME = N'Baseline', FILENAME = N'E:\Data\baseline data.mdf' ,
SIZE = 1536000KB , FILEGROWTH = 10%
)
LOG ON
(
NAME = N'Baseline log', FILENAME = N'E:\Log\baseline log.ldf"' ,
SIZE = 102400KB , FILEGROWTH = 10%
)

GO

ALTER DATABASE [Baseline] SET RECOVERY SIMPLE
Go

83



CHAPTER 4  BUILDING A SOLID BASELINE

We will be using the sys.dm_os_wait_stats DMV as the source of our
measurements, which means that the table that will hold our measurements must be
able to handle the information returned from the DMV. We will not only store the wait
types and wait times but will also add additional information to enrich the data so that
we can easily create multiple baselines.

Listing 4-2 shows the query you can use to create a table, named WaitStats, to hold
the wait statistics information we will use for creating our baselines.

Listing 4-2. Create a wait statistics table

USE [Baseline]
GO

CREATE TABLE WaitStats
(
ws_ID INT IDENTITY(1,1) PRIMARY KEY,
ws_DateTime DATETIME,
ws_Day INT,
ws_Month INT,
ws_Year INT,
ws_Hour INT,
ws_Minute INT,
ws_DayOfWeek VARCHAR(15),
ws_WaitType VARCHAR(50),
ws_WaitTime INT,
ws_WaitingTasks INT,
ws_SignalWaitTime INT

)

As you can read in the listing, we capture the wait type, wait time, signal wait time,
and the number of waiting tasks. We also capture the date and time when we log the
wait statistics information. We also split the date and time into additional columns to
segment the data, making it easier to build specific baselines based on a specific day,
hour, month, and so forth, without having to convert the datetime data type every time.

Now that we have our table ready, it is time to capture some wait statistics and
insert them into our WaitStats table. Because the sys.dm os wait stats DMV returns
cumulative wait times, we have to use a method to only capture the difference in wait

84



CHAPTER 4  BUILDING A SOLID BASELINE

time between two capture moments. If we were to only capture the information directly
from the sys.dm_os _wait_stats DMV, we would always receive ever-increasing wait
times, and that would make comparisons useless. There are two paths we can take

to capture the change in wait time between two measurements, and both have their
advantages and disadvantages.

The first method, which I call the reset method, will capture the wait statistics
information from the sys.dm_os wait_stats DMV and then reset the DMV using the
DBCC SQLPERF('sys.dm os wait_stats', CLEAR) command. The main advantage of
this method is that it is very simple to use, as we only need to capture the information,
reset it again, and start the same procedure at the next measurement. There is no need
to calculate deltas, because after our first measurement the counters are reset to 0. The
disadvantage is that the DBCC SQLPERF('sys.dm os wait stats', CLEAR) command
resets the information inside the sys.dm_os wait stats DMV. This means that you will
lose the cumulative information inside the DMV, information you might not want to lose.
Figure 4-5 illustrates this method of wait statistics capturing.

el RSN RN

b

Figure 4-5. Capturing wait statistics using the reset method

The second option, which I named the delta method, involves not using the DBCC
SQLPERF('sys.dm os wait stats', CLEAR) command, but rather calculating the
difference, or delta, in wait time between two measurements. The advantage of not using
the DBCC command is that you will not lose the cumulative wait times inside the sys.dm_
os_wait stats DMV. Its main disadvantage is that it is a lot more complex to calculate
the deltas compared to the first method. It usually also involves a WAITFOR DELAY
command inside the T-SQL script to set the interval. This might mean that if you plan to
capture wait statistics information using the SQL Server Agent, you could end up with a
SQL Server Agent job that is running almost continuously. Figure 4-6 illustrates the delta
option of capture wait statistics.

85



CHAPTER 4  BUILDING A SOLID BASELINE

Capture information from
sys.dm_os_wait_stats

Log into temp table

WAITFOR DELAY

Capture information from e 2 .
P = Calculate Wait Time deltas Log information to table
sys.dm_os_wait_stats

Figure 4-6. Capturing wait statistics using the delta method

There are more methods available with which to capture wait statistics information,
but I most frequently see these two, or variations of them. What method you want to use
is up to you, as in the end both will return the same results.

Reset Capture Method

The reset wait statistics capture method consists of a single T-SQL script that will
capture the information from the sys.dm_os wait_stats DMV followed by a reset of
the counters inside the DMV. Listing 4-3 shows the T-SQL script you can use to fill the
WaitStats table we created earlier.

Listing 4-3. Reset capture method

USE [Baseline]
GO

-- Insert Wait Stats into Baseline table
INSERT INTO WaitStats
SELECT
GETDATE() AS 'DateTime',
DATEPART (DAY,GETDATE()) AS 'Day’,
DATEPART (MONTH,GETDATE()) AS 'Month',

86



CHAPTER 4  BUILDING A SOLID BASELINE

DATEPART(YEAR,GETDATE()) AS 'Year',

DATEPART (HOUR, GETDATE()) AS 'Hour',

DATEPART(MINUTE, GETDATE()) AS 'Minute’,

DATENAME (DW, GETDATE()) AS 'DayOfiWeek',

wait type AS 'WaitType',

wait_time ms AS 'WaitTime',

waiting tasks_count AS 'WaitingTasks',

signal wait_time ms AS 'SignalWaitTime'
FROM sys.dm os wait stats;

-- Clear sys.dm os wait stats
DBCC SQLPERF ('sys.dm os wait stats',CLEAR)
Go

Delta Capture Method

The delta capture method also consists of a single T-SQL script, but it is a little more
complex than the reset capture method. It uses a temporary table to store the first
measurement, then waits for 15 minutes, performs a second measurement, and calculates
the deltas. The result is inserted into the WaitStats table. Listing 4-4 shows the T-SQL
script you can use if you plan to use this method of collecting wait statistics metrics.

Listing 4-4. Delta capture method

USE [Baseline]
GO

-- Check if the temp table already exists
-- if it does drop it.
IF EXISTS

(
SELECT *

FROM tempdb.dbo.sysobjects
WHERE ID = OBJECT ID(N'tempdb..#ws Capture')

)
DROP TABLE #ws_Capture;

87



CHAPTER 4  BUILDING A SOLID BASELINE

-- Create temp table to hold our first measurement
CREATE TABLE #ws Capture

(

wst_WaitType VARCHAR(50),

wst WaitTime INT,

wst WaitingTasks INT,

wst SignalWaitTime INT

)5

-- Insert our first measurement into the temp table
INSERT INTO #ws_ Capture
SELECT
wait_type,
wait _time ms,
waiting_tasks_count,
signal wait_time_ms
FROM sys.dm os wait stats;

-- Wait for the next measurement
-- In this case we will wait 15 minutes
WAITFOR DELAY '00:15:00'

-- Combine the first measurement with a new
-- measurement and calculate the deltas
-- Write the results into the WaitStats table
INSERT INTO WaitStats
SELECT
GETDATE() AS 'DateTime',
DATEPART (DAY, GETDATE()) AS 'Day’,
DATEPART (MONTH,GETDATE()) AS 'Month',
DATEPART (YEAR,GETDATE()) AS 'Year',
DATEPART (HOUR, GETDATE()) AS 'Hour',
DATEPART (MINUTE, GETDATE()) AS 'Minute’,
DATENAME (DW, GETDATE()) AS 'DayOfiWeek’,
dm.wait_type AS 'WaitType',
dm.wait_time ms - ws.wst WaitTime AS 'WaitTime',

88



CHAPTER 4  BUILDING A SOLID BASELINE

dm.waiting tasks_count - ws.wst WaitingTasks AS 'WaitingTasks',
dm.signal wait_time_ms - ws.wst_SignalWaitTime AS 'SignalWaitTime'
FROM sys.dm os wait stats dm
INNER JOIN #ws_Capture ws
ON dm.wait type = ws.wst WaitType;

-- Clean up the temp table
DROP TABLE #ws_Capture;

Using SQL Server Agent to Schedule Measurements

After selecting a capture method, we need to run the capture T-SQL script to fill our
WaitStats table with wait statistics information. As described in the baseline pitfalls
section earlier, it is very important to always perform your measurements at a fixed
interval. This makes comparing measurements a lot easier, since you are always
comparing the same time segments. The best way to do this is by using a SQL Server
Agent job set to a fixed interval. The interval can be set to your choosing—the larger
you set the interval, the smaller the number of time segments you can compare against.
Setting the interval to be shorter will give you more time segments, but will also mean
an increase in data that you need to store. I personally prefer to set my interval to 15
minutes. This gives me enough time segments to compare in most cases.

I'won’t go into details here about how you can create a SQL Server Agent job to
capture wait statistics information, but I do want to point out how my job looks as an
example you can use. [ usually end up with a SQL Server Agent job with just one T-SQL
script step. In this step I copy the capture script, depending on which method I want to
use. Figure 4-7 shows a screenshot of my SQL Server Agent job.

89



CHAPTER 4  BUILDING A SOLID BASELINE

LT Sciipt ~ @ Help

Step name:
|Capture Wait Stats

Type:
| Transact-SQL script (T-5QL)

| Baseline

|- Insert Wait Stats into Baseline table

INSERT INTO WaitStats
SELECT
i DATEPARTIDAY GETDATEN AS D
| ay',

DATEPART(MONTH.GETDATE() AS Month’,
Server DATEPART(YEAR GETDATE() AS Year'
EVDL-SQL2017-01 DATEPART(HOUR, GETDATE() AS "Hour',
DATEPART(MINUTE, GETDATE() AS ‘Minute’,
Connection: DATENAME(DW, GETDATE() AS 'DayOfWeek',
EVDL-SQL2017-01\Administrator wait_type AS Wait Type',
" . i wait_time_ms AS Wait Time’,
¥¥ View connection properties wailing_tasks_count AS Waiting Tasks',

signal_wait_time_ms AS "SignalWait Time"
FROM sys.dm_os_wait_stats;

Figure 4-7. Capturing WaitStats SQL Server Agent job step

In this case I used the reset capture method to capture the wait statistics in my
WaitStats table.

Figure 4-8 shows the schedule I use to capture the wait statistics on a fixed interval.
As you can see, I have set it to every 15 minutes, every day.

90



CHAPTER 4  BUILDING A SOLID BASELINE

Wait Stats capture
I

Schedule type: |Recuring

Onedime occumence

211372019 v [ 9:04:46 PM 2

| Daily

1 @ day(s)
12:00:00 AM £

5 [ Starting at: 120000AM (5]

Ending at: 11:5959PM 5|

2/13/2019 v O End date: 2/13/2019 ]

® No end date:

Occurs every day every 15 minute(s) between 12:00:00 AM and 11:59:59 PM. Schedule wil be
used starting on 2/13/2019. I

Figure 4-8. SQL Server Agent job schedule

Again, you are free to choose your own capture interval, but make sure to always
capture at the same interval length.

After we have created a SQL Server Agent job to gather wait statistics information, we
need to let it run for a while. The longer the job runs, the more information we gather,
improving the quality of our baselines.

Wait Statistics Baseline Analysis

After letting the SQL Server Agent job collect wait statistics metrics for a while, we are
ready to actually create some baselines. The way we do this is by querying the WaitStats
table we created earlier. I will give you some examples of queries that will create a

91



CHAPTER 4  BUILDING A SOLID BASELINE

baseline you can compare against; these are not the only queries you can run, however,
and I encourage you to experiment with different queries to return the information you
are most interested in.

Before we get started with building the baseline, I want to return to Figure 2-14 in
Chapter 2, “Querying SQL Server Wait Statistics.” In this flowchart I showed you steps
you can take to analyze resource waits that occur right now. Since we now have access to
a baseline, we can add an extra step to the flowchart. Figure 4-9 shows how to complete
the flowchart, including the baseline comparison step.

Experiencing performance
degradation?

Sys.dm_os_waiting_tasks

High Wait Times or recurring
Wait Types?

Compare Wait Time against Gather metrics for those
baseline Wait Types

Wait Statistics and other
metrics show problem

Resolve problem

Check if Wait Time goes
down

Figure 4-9. Complete wait statistics performance-analysis flowchart

92



CHAPTER 4  BUILDING A SOLID BASELINE

The baselines you create are an extra input to the metrics you gather when looking
at a performance problem. They are a very valuable input because they will show you
information about the time the problem didn’t exist.

Let’s go through an example, using DBA Jim again, where we review all the steps
of the flowchart shown in Figure 4-9. In this example I will show you queries that
you can use against the WaitStats table so as to build a baseline that is useful for the
performance-analysis process.

Tuesday, around 9 AM, DBA Jim receives a phone call that the daily reporting against
the sales database is a lot slower than normal. The problem started around 8 AM, and
users are still experiencing performance problems. The reports are part of a scheduled
job that runs every workday, starting at 8 Am.

The first thing Jim does is query the sys.dm_os_waiting tasks DMV using the
following query:

SELECT * FROM sys.dm os waiting tasks
ORDER BY session_id ASC;

Jim focuses on user sessions (normally higher than ID 50) but doesn’t see any long
wait times on any of the user sessions, as shown in Figure 4-10.

waiting_task_address session_id exec_context_id wait_duration_ms wai_type resource_address
20  (xDOODOO39FAO27C28 19 0 6347173 ONDEMAND_TASK_QUEUE (x0000003AC3BBEF50
21 (xDODDQ039F152E4E8 27 0 287001609 HADR_NOTIFICATION_DEQUEUE (x0000003ACB1EEEDD
22 (x0000003SEEDSDO.. 3 0 677 SLEEP_TASK NULL
23 [O«0DDDDD3SEEDSCE.. 32 0 7008297 BROKER_EVENTHANDLER NULL
24  (O«00000039EBO3E4EE 33 0 287001105 BROKER_TRANSMITTER NULL
25  [«00000039EBO3EBCE 34 0 239 HADR_FILESTREAM_IOMGR_IOCOMPLE...  NULL
26 («00000039FAD27848 2060 0 4 PAGEIOLATCH_SH (<D000003ACACAECS0
27  («00000039FAD27848 4002 0 10 PAGEIOLATCH_SH (x0000003ACS0AEADD
28  («0000D0039FAD27848 4519 0 18 PAGEIOLATCH_EX (x0000003AC3BBEF50

Figure 4-10. sys.dm_os_waiting tasks

After executing the query against the sys.dm_os_waiting tasks DMV multiple
times, Jim notices that the wait type PAGEIOLATCH_SH is returned every time he queries
the DMV. Each time, the wait type is returned with a different session ID but with
relatively low wait times.

Jim uses the same T-SQL script to capture wait statistics metrics into the WaitStats
table, as we discussed earlier in this chapter. Because Jim has access to historic wait
statistics information, he decides to create a baseline of the PAGEIOLATCH SH wait times.

93



CHAPTER 4  BUILDING A SOLID BASELINE

The first thing he does is view the PAGEIOLATCH_SH wait times of today, filtered to show
measurements captured between 8 and 9 in the morning, using the query shown in
Listing 4-5.

Listing 4-5. Show wait times for PAGEIOLATCH_SH between 8 and 9 AM today

-- PAGEIOLATCH_SH waits, today between 8 and 9 AM
SELECT
CONVERT(VARCHAR(5), ws DateTime, 108) AS 'Time',
ws_WaitTime AS 'Wait Time'
FROM WaitStats
WHERE ws_WaitType = 'PAGEIOLATCH SH'
AND (ws_Hour >= 8 AND ws_Hour < 9)
AND CONVERT(VARCHAR(5), ws DateTime, 105) = CONVERT(VARCHAR(5), GETDATE(), 105)

The query returned the results shown in Figure 4-11.

Time Wait Time

1 0800 | 1528749
2 0815 1828749
3 0830 1658974
4 0845 1698547

Figure 4-11. PAGEIOLATCH_SH wait times of today

Now that Jim has the wait times for today of the PAGEIOLATCH_SH wait type, the next
step is to create a baseline from the historic measurements of the PAGEIOLATCH_SH wait
type so he can compare today’s measurements against the baseline. Jim uses the query
shown in Listing 4-6 to build his baseline.

Listing 4-6. PAGEIOLATCH_SH baseline

-- Baseline between 8 and 9 on workdays

-- Not including measurements done today

SELECT
CONVERT(VARCHAR(5), ws DateTime, 108) AS 'Time',
AVG(ws_WaitTime) AS 'Baseline’

94



CHAPTER 4  BUILDING A SOLID BASELINE

FROM WaitStats

WHERE ws_WaitType = 'PAGEIOLATCH SH'

AND ws_DayOfWeek IN ('Monday', 'Tuesday', 'Wednesday', 'Thursday','Friday")
AND (ws_Hour >= 8 AND ws_Hour < 9)

AND CONVERT(VARCHAR(5), ws DateTime, 105) < CONVERT(VARCHAR(5), GETDATE(), 105)
GROUP BY CONVERT(VARCHAR(5), ws_DateTime, 108);

This query builds a baseline with the following characteristics: return the average
wait time of PAGEIOLATCH_SH wait type captured on a workday between 8 Am and 9
AM, excluding today. The reason to exclude today is that the measurements that were
performed today, during the performance problem, might impact the average. Another
suggestion could be to filter only data captured in the last x weeks so as to limit the
amount of data that needs to be calculated in the average.

The results of the query shown in Listing 4-6 can be seen in Figure 4-12.

Time Baseline

1 0800 ; 313038
2 0815 391444
3 0830 498923
4 0845 570782

Figure 4-12. PAGEIOLATCH_SH baseline

As you can immediately see when you compare the wait times in Figures 4-11 and 4-12,
the measurements done today are a lot higher than those in the historic baseline. To
make it a little easier to see the difference, I created a graph of both measurements, as
shown in Figure 4-13.

95



CHAPTER 4  BUILDING A SOLID BASELINE

-
PAGEIOLATCH_SH Baseline

------ Baseline

e Today

Wait Time (ms)

Figure 4-13. Baseline comparison graph for the PAGEIOLATCH_SH wait type

Because there is such a difference in wait times for the PAGEIOLATCH_SH wait type

between the baseline and today, Jim believes the PAGEIOLATCH_SH wait type needs
further investigation.

We will take a detailed look at the PAGEIOLATCH_SH wait type in Chapter 9,

“Latch-Related Wait Types,” but to give you a (very) short explanation, long
PAGEIOLATCH_SH waits can indicate storage problems.

To investigate further, Jim starts the Windows Performance Monitor to look at
metrics related to the storage subsystem, and in particular the disk latency counters.
Asyou can see in Figure 4-14, the latency on the disk where the database data file
resides peaks to very high values, more than 4,000 milliseconds! For SQL Server to

perform optimally, the disk latency should be as low as possible, and at least below 20
milliseconds.

96



CHAPTER 4  BUILDING A SOLID BASELINE

104

mi

5 |

10:43:38 10:44:10 10:44:40 10:45:09 10:45:39 10:46:09 10:46:39 10:47:09 10:47:39 10:48:09 10:48:36

Last | 0,021 Average | 0,027 Minimum | 0,000 Maximum | 4,276 Duration | 5:00

Figure 4-14. Disk-read latency

With both the wait statistics baseline information and the Perfmon metrics, Jim
believes the problem is storage related and contacts the storage administrator. The
metrics Jim collected also help the storage administrator, since he can compare his
storage-related measurements against those Jim supplied. The storage administrator
confirms there is a problem related to the disk that contains the sales database, and
solves the problem by replacing a faulty disk in the disk array. After the disk gets
replaced, the disk latency returns to a 6 milliseconds average, and the high latency peaks
disappear. Jim queries the wait times again from the WaitStats table after the disk is
replaced and notices the wait times for the PAGEIOLATCH_SH wait type are close to the
baseline values again. Users also inform Jim that the reports are running normally again.

During this example Jim went through all the steps of the wait statistics
performance-analysis flowchart shown in Figure 4-9:

1. Users experience performance degradation while running reports.

2. Jim queries the sys.dm_os_waiting_tasks DMV to find out if
there are high wait times or frequently recurring wait types. The
PAGEIOLATCH_SH wait type seems to be recurring frequently.

3. Jim gathers metrics by capturing the PAGEIOLATCH_SH wait times
of today and comparing them to the baseline. He also gathers

additional metrics from Perfmon.

97



CHAPTER 4  BUILDING A SOLID BASELINE

4. All the metrics show Jim that the problem is most likely storage
related, and Jim contacts the storage administrator.

5. The storage administrator replaces a broken disk in the array.
Storage latency values drop to 6 milliseconds.

6. Jim checks the wait times of the PAGEIOLATCH_SH wait type again
and confirms that they are close to the baseline values.

Even though this example might seem very simple, it is actually based on a
performance problem I encountered in the real world. Using the steps from the wait
statistics performance-analysis flowchart combined with the baseline metrics, I was able
to identify and solve the problem very quickly.

In the example I showed you the query in Listing 4-6 that creates a baseline for the
PAGEIOLATCH_SHwait type. This query is just an example of what you can use against the
WaitStats table. You can modify it to suit your own needs; for instance, you can choose
to not limit the results for weekdays, and only show average wait times captured on a
specific day. Or you could request the actual wait times on a specific date.

If you are capturing wait statistics measurements for a long period of time, it might
be a good idea to split the results into multiple tables for easier and faster querying. For
instance, you could use the following query to insert all the wait statistics measurements
done in March into their own table:

SELECT *

INTO WaitStats March
FROM WaitStats

WHERE ws Month = 3;

This also gives us options to compare specific wait times during different periods of
time by joining the different tables together. Figure 4-15 shows the tables of my baseline
database that I usually end up with, sorting the data per month.

98



CHAPTER 4  BUILDING A SOLID BASELINE

= @ Baseline
[+ Database Diagrams
=] Tables
System Tables
FileTables
External Tables
Graph Tables
FH dbo.WaitStats
+ B8 dbo.WaitStats_February
# BB dbo.WaitStats_January
+ ER dbo.WaitStats_March

H #H

.+.

Figure 4-15. Wait statistics measurement split per month

You can decide how you want to split the measurements yourself; maybe you want
to store the wait statistics measurements in a separate table for every application version
you use, or store all the measurements of a specific wait type in a separate table. The
choice is yours.

This chapter hopefully gave you some ideas on how to store wait statistics
measurements and create baselines from those measurements. I tried to avoid telling
you exactly what to do and how to do it, because I believe one single approach doesn’t
work for everybody. You will need to write and adjust your own queries to create the
baselines you are interested in, but I hope this chapter showed you the foundations to
further build upon.

Summary

In this chapter we took a close look at baselines from both a theoretical and

a practical point of view. Baselines are incredibly important for any type of
performance analysis you perform. In the case of wait statistics, baselines are
frequently required if you want to troubleshoot SQL Server-related performance
problems. Since wait statistics are unique for your system, there is only one method
by which to compare wait times—baselines.

I gave you some examples and T-SQL scripts to create your own wait statistics
baseline table so you can start capturing wait statistics information right now. We also
went through an example of how you can query that baseline information and compare
it to actual measurements to troubleshoot a performance-related incident.

99



PART Il

Wait Types



CHAPTER 5

CPU-Related Wait Types

Processors have evolved enormously in the last few decades, and processor
manufacturers, like Intel or AMD, manage to build faster processors on a yearly basis.
And while the speed of processors is hitting a ceiling, the number of cores manufacturers
manage to build inside their processors has only grown. At the time of writing this book,
you can buy a single processor with 24 cores inside to power your system. Processors

are also one of the more difficult parts of your system to replace. While you can expand
your system’s memory relatively simply, replacing a processor for one that is faster or has
more cores frequently requires you to change your system’s motherboard as well due to
CPU socket incompatibility. This means we are usually stuck with our processors until
we replace the system altogether.

Processors are also very important for SQL Server. Higher processor speeds will
accelerate processor-related instructions, and more cores means more schedulers that
SQL Server can use to execute requests. But even all these upgrades in speed and cores
cannot prevent the fact that we sometimes have to wait on processor resources. In this
chapter we will take a look at some of those wait types that have a relation with your
system’s processor.

CXPACKET

The first CPU-related wait type is also the most common wait type in SQL Server
instances that run with the default, out-of-the-box, SQL Server configuration. It is also
one of the most misunderstood wait types and sometimes doesn’t even need lowering
in order to make your queries perform faster; as a matter of fact, lowering CXPACKET
wait times can sometimes degrade the performance of your queries! If you are running
SQL Server 2016 SP2 or SQL Server 2017, there have been some changes in how to
handle CXPACKET waits. We will discuss the impact of the changes, including the new
parallelism-related wait type CXCONSUMER, at the end of this section.

103
© Enrico van de Laar 2019

E.van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_5



CHAPTER 5  CPU-RELATED WAIT TYPES

What Is the CXPACKET Wait Type?

The CXPACKET wait type occurs whenever a query is being executed in parallel instead of
serial. Parallel queries can have a performance advantage compared to serial queries,

if the work can be divided among multiple worker threads. The advantage is bigger for
queries that are returning large result sets; queries that return only a few rows benefit far
less from parallelism, and in many cases parallelism can slow down those queries. This
doesn’t mean we should turn off parallelism immediately as I have yet to see a true OLTP
database where every query only returns a handful of rows. Many systems have to deal
with a mixed workload, usually dealing with many short queries but also large, longer-
running, reporting queries.

Parallel queries will use multiple worker threads to execute a request. Along with the
worker threads that are created to perform the work requested, a parallel query will also
use a 0 thread, called the control thread. This 0 thread’s task is to coordinate the work of
the other worker threads. While the 0 thread is waiting for the other worker threads to
finish the work they were assigned to perform, it will record wait times of the CXPACKET
wait type. To understand this relation a little bit better, take a look at Figure 5-1.

threads

\

Thread 2

|

Y

Y

time

Figure 5-1. Parallel query threading

As soon as the SQL Server Query Optimizer decides on an execution plan that uses
parallelism, you will see CXPACKET waits occur. This can be completely normal and is
nothing to worry about if you are expecting your queries to run in parallel and they are
performing as expected. In those cases you can ignore long wait times on the CXPACKET

104



CHAPTER 5  CPU-RELATED WAIT TYPES

wait type. There are, however, cases where you don’t want to use parallelism, or when
parallelism is negatively impacting the performance of your queries because of skewed
workloads.

Because the CXPACKET wait type is directly related to the parallelism settings of your
SQL Server instance, we can influence it relatively easily by adjusting these settings. We
can find the parallelism settings in the Server Properties » Advanced » Parallelism

section of your SQL Server instance, as shown in Figure 5-2.

Select a page 5
et -
g T Scipt v @ Hep
& Memory
J# Processors =14 | B
: Connedii 4 FILESTREAM ~
5 Database Settings FILESTREAM Access Level Disabled
5 ; FILESTREAM Share Name MSSQLSERVER -
o Miscellaneous
il Allow Triggers to Fire Others True
Blocked Process Threshold 0
Cursor Threshold -1
Default Full-Text Language 1033
Default Language English
Full-Text Upgrade Option Rebuild
Max Texd Replication Size 65536
Optimize for Ad hoc Workloads False =
Scan for Startup Procs False
Two Digit Year Cutoff 2049
Connection 4 Network
Sorv Network Packet Size 4096
er: 2
EVDL-5QL2017-01 , Remote Login Timeout 10
Connection: Cost Threshold for Parallelism 5
EVDL-5QL2017-01\Administrator Locks 0
¢¥ View connection properties Max Degree of Parallelism 0 L]
Query Wait -1 v
Allow Triggers to Fire Others
Controls whether a trigger can perform an action that initiates another trigger. When cleared.
tri fi i x
P ggers cannot be fired by another trigger.
Ready
® Configured values ) Running values

OK | [ Cancel

Figure 5-2. Parallelism configuration

Of these settings, the Cost Threshold for Parallelism and Max Degree of

Parallelism settings impact parallel queries the most.

105



CHAPTER 5  CPU-RELATED WAIT TYPES

The Cost Threshold for Parallelism setting configures the cost threshold of when a
query will be considered to be run in parallel by the Query Optimizer. If a serial query has
a cost higher than the value configured in the Cost Threshold of Parallelism, the Query
Optimizer might decide to generate a parallel plan instead of a serial one. By default, the
setting has a value of 5 and can be configured to have a value between 0 and 32,767.

The Max Degree of Parallelism setting configures the number of schedulers used
when executing a parallel plan. By default, this setting is configured to be 0, which means
all available schedulers can be used when a parallel plan is executed.

If you are running SQL Server 2016 or higher, you are also able to configure the
parallelism settings on a database level through database scoped configuration items, as
shown in Figure 5-3.

Select a page

g o IT Scipt v @ Help
K Files
J Filegroups Collation: ISQL_LathLGenecd_CPI_C!_AS Vl
: - Tracking Recovery model: 1§mple vl
& Pemissions Compatibility level: 1SQL Server 2014 (120) VI
J Bxtended Properties i
£ Miroring Containment type: ]None v]
& Transaction Log Shipping Other options:
S B =
4 Cursor -~
Close Cursor on Commit Enabled False
Defauit Cursor GLOBAL
4 Database Scoped Configurations
Legacy Cardinality Estimation OFF
Legacy Cardinalty Estimation For Secondary PRIMARY ’—
Max DOF 0 =
Connection Max DOP For Secondary
Server: Parameter Sniffing ON
EVDL-5QL2017-01 Parameter Sniffing For Secondary PRIMARY
Connection: &w gphmm i Pk
N i i 4 FILESTREAM
¥¥ View connection properties FILESTREAM Directory Name
FILESTREAM Non-Transacted Access Off
4 Miscellaneous
Allow Snapshot Isolation False =
P”I“” ANSENLIL Dz it Fales
Allow Snapshot Isolation
Ready

0K || Cancel

Figure 5-3. Database scoped parallelism configuration

106



CHAPTER 5  CPU-RELATED WAIT TYPES

The introduction of the ability to configure setting like parallelism on a per-database
level instead of the entire SQL Server instance is a very welcome change. Consider,
for instance, that you have multiple databases inside the same SQL Server instance.
Ideally each of those databases will use configuration settings that are perfected for their
query workload. Before SQL Server 2016, we weren’t able to configure that on a per-
database level, so generally you would stick with a form of a best-practice or generalized
configuration values. Now that database scoped configuration is possible, it is very
possible to configure the optimal setting for each individual database.

With the ability to add database scoped configuration values for parallelism settings,
there is a difference in how the SQL Server engine processes these configurations:

o The database scoped configuration setting will overwrite the current
instance setting only if the database scoped setting is set to a non-
default value;

o Ifthe database scoped configuration setting is set to its default value,
the instance-wide configuration setting will be used.

As an example, if the Max Degree of Parallelism setting is configured to be 4 on
the instance level and 0 (default) on the database level, queries that can be executed
in parallel can use four schedulers. If the database scoped setting is changed to be a
value of 2, queries executed against the database can use a maximum of two schedulers

overwriting the instance setting of 4.

Lowering CXPACKET Wait Time by Tuning the Parallelism
Configuration

There are various methods you can use to lower CXPACKET wait times, but before you go
and use them you have to be sure that CXPACKET waits are actually causing you problems.
Like I said earlier, CXPACKET waits are completely normal whenever you have parallelism
enabled for your SQL Server instance. One solution I read frequently on Internet forums
is to disable parallelism by setting the Max Degree of Parallelism option to a value of 1.
In most cases this is not a good idea. Disabling parallelism will make the CXPACKET waits
go away completely, but some of your queries might be performing a lot worse since they
cannot be run in parallel anymore.

107



CHAPTER 5  CPU-RELATED WAIT TYPES

A better approach to lowering CXPACKET waits is to tune the Cost Threshold for
Parallelism and Max Degree of Parallelism options so they match with your workload.
This way you can make sure only the queries that benefit the most from parallelism will
be run in parallel. A way to find this parallelism sweet spot is by comparing the runtime
of a query when it ran serially vs. in parallel. You should generally focus on queries that
access a lot of information and have a longer runtime in general, as those will be the
queries that benefit the most from parallelism.

Consider this example where we have a query against the Adventurelorks database
that requests information from the Sales.SalesOrderDetail table:

SELECT *
FROM Sales.SalesOrderDetail
ORDER BY CarrierTrackingNumber DESC;

We can check if this query would be a candidate to be run in parallel by checking
the estimated cost of the query. To view this information we need to take a look
at the estimated execution plan for if the query were to be run serially. To make
sure the query runs serially we must add the query option MAXDOP 1. We are also
interested in the runtime of the query, so we add the SET STATISTICS TIME ON
option to the query:

SET STATISTICS TIME ON

SELECT *

FROM Sales.SalesOrderDetail

ORDER BY CarrierTrackingNumber DESC
OPTION (MAXDOP 1);

SET STATISTICS TIME OFF

Figure 5-4 shows the estimated cost of the query when run serially.

108



CHAPTER 5  CPU-RELATED WAIT TYPES

Query 1: Query cost (relative to t!
SELECT * FROM Sales.SalesOrderDeta

SELECT
: Cached plan size 32K8 1
Estimated Operator Cost 0 (0%)
Degree of Parallelism 0
Estimated Subtree Cost 10.4907
Memory Grant 20528

Estimated Number of Rows 121317

Statement
SELECT*
@ Quer FROM Sales.SalesOrderDetail

ORDER BY CarrierTrackingNumber DESC
- OPTION (MAXDOP 1)

Figure 5-4. Estimated cost of the query with MAXDOP 1

In this case the estimated cost is 10.4907 on my test SQL Server. When I executed the
query, the execution time was 2256 milliseconds on my system.

Because the Cost Threshold for Parallelism is still configured on the default value of
5 on my test server, [ am pretty sure the query would be run in parallel if I were to remove
the MAXDOP query hint.

Figure 5-5 shows the actual execution plan after running the query without the
MAXDOP 1 option.

Query 1: Query cost (relative to the batch): 100%
SELECT * FROM Sales.SalesOrderDetail ORDER BY CarrierTrackingHumber DESC

4 Il'hn
A |
G ) = 2l =S
- 1 - - 3 Parallelism - . - °  Clustered Index Scan (Clustered)
SELECT Compute Scalaz Compute Scalaz (Gather Stre ) Sezt (SalesOrdsrDezail] . [PK SalesOrdarDe
Cost: O & Cost: 0 % Cost: 0 & ama Cost: €6 & 5
Cost: 15 & Cost: 14 &

Figure 5-5. Actual execution plan without MAXDOP 1 option

As you can see, the query ran using parallelism, just as we expected, since
the estimated cost was higher than the value configured in the Cost Threshold
for Parallelism option. The execution time of the query with parallelism was 1959
milliseconds. If we take a look at the properties of the SELECT operation in the
actual execution plan, we can view some additional information, as shown in
Figure 5-6.

109



CHAPTER 5  CPU-RELATED WAIT TYPES

SELECT
CELR C
g Cached plan size 40 KB
Estimated Operator Cost 0 (0%)
Degree of Parallelism 2
Estimated Subtree Cost 7.08005
Memory Grant 21232

Estimated Number of Rows 121317

Statement

Que SELECT*
. FROM Sales.SalesOrderDetail I

ORDER BY CarrierTrackingNumber DESC

Figure 5-6. SELECT operation properties

The properties of the SELECT operation show us that the query was executed using
two threads. The estimated cost went down to 7.08005.

Even though the estimated cost went down, the improvement in execution time is
pretty small for this query. We could change the Cost Threshold for Parallelism value
to a higher number than the default of 5. This way we are making sure relatively small
queries like the one in this example don’t use parallelism but that heavy reporting
queries do.

Another setting to keep in mind is the Max Degree of Parallelism option. When it is
set at its default of 0 all available schedulers can be used when a query runs in parallel.
Using more schedulers doesn’t necessarily mean the query executes faster though. The
benefits of using more schedulers slowly get smaller after using more than 8. Microsoft
recommends the following configuration in KB2806535:

o For servers with more than eight cores, set the Max Degree of
Parallelism option to 8.

o For servers with less than eight cores, set the Max Degree of
Parallelism option to 0 or to the number of cores in your server.

This is a general recommendation, and your mileage may vary. The setting of
both the Cost Threshold for Parallelism and Max Degree of Parallelism options highly
depends on the workload of your system and requires careful testing to find out what
works for you and what doesn’t. They will impact your CXPACKET wait time though,

110



CHAPTER 5  CPU-RELATED WAIT TYPES

so compare your CXPACKET wait times against a baseline after changing the Cost
Threshold for Parallelism or Max Degree of Parallelism options to measure the impact

of the change.

Lowering CXPACKET Wait Time by Resolving Skewed
Workloads

A skewed workload means that all of the worker threads do not receive the same amount
of work to perform. This is not an optimal situation, because if one worker thread has

to do most of the work while another only a little bit, Thread 0 still has to wait for the
longest-running worker thread to complete, logging CXPACKET waits as the time it is
waiting. Figure 5-7 shows an abstract example of a skewed workload.

threads

Thread 2

|

Y

 J

time

Figure 5-7. Skewed parallel query threading

If we could give some of Thread 2’s work to Thread 3, the query would probably
perform faster, resulting in lower CXPACKET wait times.

We can view the thread distribution in the actual number of rows property of
the parallel operation in the actual execution plan. Figure 5-8 shows the properties
of a clustered index scan that has been performed using parallelism. The operation
occurred in the example query we used in the previous section against the Sales.
SalesOrderDetail table.

111



CHAPTER 5  CPU-RELATED WAIT TYPES

Properties v 31X
Clustered Index Scan (Clustered) -
s 2| F
B Misc -
Actual Execution Mode Row
Actual I/O Statistics
Actual Number of Batches 0
2] Actual Number of Rows 121317
Thread 0 0

Thread 1

Thread 2
Actual Rebinds 0
Actual Rewinds 0
Actual Time Statistics

Figure 5-8. Parallel thread distribution

In this example we see that the clustered index scan returned 121.317 rows that were
distributed among two threads (notice that Thread 0, the coordination thread, doesn’t
process any rows). The distribution of the number of rows is relatively even in this case,
so we probably aren’t running into a skewed workload problem.

Skewed workloads are often caused by outdated statistics. If the Query Optimizer
believes there are fewer (or more rows) in the table than there actually are, it can
distribute the work unevenly across the threads. Make sure to regularly perform
maintenance on your statistics to prevent skewed workloads.

Introduction of the CXCONSUMER Wait Type in SQL Server
2016 SP2 and 2017 CU3

In the release of SQL Server 2017 CU3 (and later SQL Server 2016 SP2), Microsoft pushed
a change in how parallelism waits are recorded. The main goal of the development

team was to make parallelism wait more actionable. Something that, as you read in the
preceding sections, is more than welcome since it is very difficult to determine when
parallelism waits are causing issues in your query’s performance.

As we described earlier, parallelism consists of two parts: producers and
consumers. The easiest way is to think of the 0 thread we introduced earlier to be a
producer. It is the job of the 0 thread to distribute work to the available parallel worker
threads. Those worker threads are named consumers and perform the actual work the
producers send to them.

112



CHAPTER 5  CPU-RELATED WAIT TYPES

Before SQL Server 2017 CU3 and SQL Server 2016 SP2, there is no way to distinguish
if, for instance, consumers are spending time waiting on producers to send work to
them. Everything is recorded as CXPACKET wait time internally. With the changes in
SQL Server 2017 CU3 and SQL Server 2016 SP2, the development team split up the wait
times for parallelism into two different categories: CXPACKET and CXCONSUMER. With
this change the meaning of those two wait types also changed a bit compared to earlier
SQL Server releases.

CXCONSUMER waits can occur whenever a consumer thread is waiting for producer
to send rows. This is more or less normal behavior and can in most cases be safely
ignored when looking at wait statistics information.

CXPACKET waits are now recorded without the CXCONSUMER wait time, meaning
that seeing CXPACKET wait times not only indicate parallelism occurring but also that
high wait times indicate a clearer issue regarding parallelism operations (for instance,
threads are running into issues with required buffer or thread synchronization).
Effectively this means that if you are running SQL Server 2017 CU3 or SQL Server
SP2 or higher, seeing CXPACKET waits more clearly indicate parallelism issues than
in lower SQL Server versions, thus making the wait type more actionable as the
development team intended. The advice in dealing with high parallelism wait times
described earlier in this chapter is still valid, though it now has a more direct impact
on CXPACKET wait times.

CXPACKET Summary

The CXPACKET wait type is directly related to the usage of parallelism during query
execution. If you allow queries to be run using parallelism you will always see
CXPACKET waits. Normally this is nothing to worry about, so avoid the knee-jerk
reaction to turn off parallelism completely. Instead, focus on tuning the Max Degree
of Parallelism and Cost Threshold for Parallelism options so that the thresholds are
high enough that your large queries can benefit from using parallelism but your small
queries do not experience a negative impact. Also, avoid skewed workloads by making
sure your statistics are up-to-date.

If you are running SQL Server 2017 CU3 or SQL Server 2016 SP2 (or higher), the
CXPACKET wait time meaning has changed a bit resulting in that CXPACKET waits are
far more likely to indicate a parallelism issue occurring than in SQL Server versions that

are lower than those mentioned.

113



CHAPTER 5  CPU-RELATED WAIT TYPES

SOS_SCHEDULER_YIELD

Just like CXPACKET, SOS_SCHEDULER_YIELD is a wait type that will frequently show up

in the top 10 of total wait time on your system. And just like the CXPACKET wait types,
SOS_SCHEDULER_YIELD wait times do not necessarily indicate that there is a problem
with your SQL Server instance. SOS_SCHEDULER _YIELD waits occur as soon as you start
running queries on your SQL Server instance, and they are closely related to SQL Server
scheduling.

What Is the SOS_SCHEDULER_YIELD Wait Type?

Before we can answer what the SOS_SCHEDULER_YIELD wait type means, we have to go
back to Chapter 1, “Wait Statistics Internals,” in this book, where we discussed SQL
Server scheduling. Remember that the SQLOS uses its own cooperative non-preemptive
scheduling model to make sure Microsoft Windows processes do not interrupt SQL
Server’s own processes? The SOS_SCHEDULER _YIELD wait type has a direct relation with
the SQLOS’s cooperative, non-preemptive scheduling model. To make it a little bit
easier to understand, I have included Figure 5-9, which should be familiar to you as it

represents a scheduler that we discussed in Chapter 1.

RUNNING

Scheduler

Runnable Queue Waiter List

-4
Signal Wait Time Resource Wait Time

Figure 5-9. Scheduler and its phases and queues

114



CHAPTER 5  CPU-RELATED WAIT TYPES

If you remember from Chapter 1, “Wait Statistics Internals,” worker threads move
through the different phases and queues in a fixed order. Generally, a worker thread
starts on the Waiter List while it waits for resources, it then moves to the Runnable
Queue waiting for its turn to be run on the processor, and finally receives processor
time to execute its request, receiving the “RUNNING” state. If the worker thread needs
additional resources while it is in the “RUNNING” state, the worker thread moves back to
the Waiter List and starts a new trip through the different queues and phases.

There is one exception to this behavior and it occurs when a worker thread is in
the “RUNNING” state and doesn’t need additional resources to complete its work.

If the SQLOS let a worker thread run on the processor for as long as it didn’t need

any additional resources, the processor could be “hijacked” by one single worker
thread for an infinite amount of time. To make sure a situation like this cannot

occur, the scheduler gives every worker thread a specific slice of time in which they
need to perform their work. We call this slice of time a quantum, and it is a fixed,
unchangeable, 4 milliseconds. If a worker thread spends its quantum it has to yield the
processor, and it then moves back to the bottom of the Runnable Queue. It will skip
the Waiter List because the worker thread doesn’t need additional resources. While
the worker thread is waiting to move back to the processor again, the SOS_SCHEDULER _
YIELD wait type is recorded. Figure 5-10 shows this behavior.

RUNNING ""'-...

-~
-

SID 59 SOS_SCHEDULER_YIELD

Scheduler

Runnable Queue Waiter List

’

Signal Wait Time ‘o‘ Resource Wait Time

SID 98 Il SID 83 LCK_M_S
.
L
SID 74 . .’
-

SID 51 T e
SID 59

Figure 5-10. Worker thread voluntarily yielding the processor
115



CHAPTER 5  CPU-RELATED WAIT TYPES

As you can probably figure out, worker threads are voluntarily yielding all the time,
especially on long-running queries where there is no need for additional resources.
But keep in mind that wait times for the SOS_SCHEDULER_YIELD wait type will only
be logged if the worker thread actually had to wait in the Runnable Queue. If there
is no other worker thread in front of the yielding worker thread, it will move directly
back to the processor without waiting (it will still move through the Runnable Queue
though). To show you an example of this, I executed the following queries against
the AdventurelWorks database on my test SQL Server, where there is no concurrency

whatsoever:

-- Clear Wait Stats
DBCC SQLPERF('sys.dm os wait stats', CLEAR);

-- Simple select

SELECT *

FROM Sales.SalesOrderDetail

ORDER BY CarrierTrackingNumber DESC;

-- Check for SOS_SCHEDULER YIELD waits
SELECT *

FROM sys.dm os wait_stats

WHERE wait type = 'SOS_SCHEDULER YIELD';

Figure 5-11 shows the results of this query against the sys.dm os wait stats DMV.

wat_type watting_tasks_count wait_time_ms max_wait_time_ms  signal_wai_time_ms
1 ESOS_SCHEDULER_YIELD 30 0 0 0

Figure 5-11. SOS_SCHEDULER_YIELD waits

As you can see in Figure 5-11, the query against the AdventurelWorks database
encountered the SOS_SCHEDULER _YIELD wait type 30 times during execution. It didn’t
have to spend any time waiting for another worker thread in the Runnable Queue
since this was the only query running at the time. If it had spent any time waiting
for another worker thread, the wait_time_ms column would have returned a value
higher than 0.

116



CHAPTER 5  CPU-RELATED WAIT TYPES

AsIsaid at the start of this section, the SOS_SCHEDULER _YIELD wait type is generally
not a cause for concern. If, however, the wait times are significantly higher than those
in your baseline, it can be a reason to perform some additional research. There are
basically three situations you can encounter when dealing with SOS_SCHEDULER_YIELD
waits, as shown in Figure 5-12.

SOS_SCHEDULER_YIELD

Not many threads waiting,
but those that are have to
wait a long time, check if

Worker Threads take a
long time to get back to
the CPU, can indicate busy

High

processes outside SQL
GE’ Server have high CPU Time system or CPU pressure
=
=
2
Generally speaking, no Generally speaking, no
cause for problems cause for problems

Low

Low High

Figure 5-12. SOS_SCHEDULER_YIELD situations

Let’s take a look at how we can analyze and resolve the SQL Server CPU pressure

problem.

Lowering SOS_SCHEDULER_YIELD Waits

If you are experiencing higher than normal SOS_SCHEDULER _YIELD wait times and a large
number of waits, you could, potentially, have a CPU-related problem on your system. To
lower the SOS_SCHEDULER_YIELD waits, we are going to focus on the top-right section of
Figure 5-12, where there are a large amount of waiting tasks and high wait times.

117



CHAPTER 5  CPU-RELATED WAIT TYPES

If you are experiencing high wait times for the SOS_SCHEDULER_YIELD wait type
together with a large amount of waiting tasks, you can assume you have a very busy
SQL Server instance. Worker threads will yield, but it will take them a long time to
get back on the processor again because there are many other threads waiting in the
Runnable Queue. As we discussed earlier in Chapter 1, “Wait Statistics Internals,”
the Runnable Queue is a first-in first-out list, meaning that the more worker threads
that are waiting inside the Runnable Queue, the longer it takes for worker threads
to move through it. You will usually see a high CPU usage on the system by the SQL
Server process.

To show you an example of this problem, we will use the Ostress utility to execute
a specific query simultaneously from a number of threads. The Ostress utility is part
of the RML utilities for SQL Server, which you can download here: https://support.
microsoft.com/en-us/kb/944837.

The first thing we are going to do is save the following query as C:\sos_scheduler_
yield.sql on the test server:

WHILE (1=1)
BEGIN
SELECT COUNT(*)
FROM Sales.SalesOrderDetail
WHERE SalesOrderID BETWEEN 45125 AND 54185
END;

This query will count the number of rows between two SalesOrderIDs in the
Sales.SalesOrderDetail table of the AdventurelWorks database. It will do this in an
endless loop.

After saving the query we start the Ostress utility using the following command:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E
-dAdventurelWorks -i"C:\sos_scheduler yield.sql" -n20 -r1 -q

This starts the Ostress utility, which connects to the AdventureWorks database and
executes the sos_scheduler yield.sql script using 20 threads.

As soon as we start Ostress, the CPU of the test SQL Server hits 100%, as shown in
Figure 5-13.

118


https://support.microsoft.com/en-us/kb/944837
https://support.microsoft.com/en-us/kb/944837

CHAPTER 5  CPU-RELATED WAIT TYPES

w -

m -

w -

m -

0 / T T T T T
9:13:44PM 9:13:55PM 9:14:05PM 9:14:14PM 9:14:24PM 9:14:34PM 9:
Last | 100.000 Average 83.739

Show Color Scale Counter Instance Parent
v
v 1.0 % Processor Time sqlservr=1 - Process \\EVDI

Figure 5-13. Impact of Ostress on the CPU

As you can see in Figure 5-13, the CPU load is generated from the sqlservi#1 process,
which happens to be the SQL Server instance we are running the Ostress query against.

If we were to query the sys.dm_os _waiting tasks DMV to check if the SOS_
SCHEDULER_YIELD wait type is responsible for the CPU usage, we would be in for a
surprise, as you can see in Figure 5-14.

LSELECT *
FROM sys.dm_os_waiting tasks
WHERE wait_type = 'SOS_SCHEDULER_YIELD';

105% ~

EH Results ||§1‘i Messages | 2" Execution plan |

waiting_task_address  session_id exec_context_id wait_durgtion_ms wait_type resource_address

Figure 5-14. No SOS_SCHEDULER_YIELD waits occurring

119



CHAPTER 5  CPU-RELATED WAIT TYPES

This is the tricky part of the SOS_SCHEDULER YIELD wait type, as it frequently won'’t
getreturned by the sys.dm_os_waiting_tasks DMV—another reason to capture and use
that wait statistics baseline!

To show that the high CPU usage is related to the SOS_SCHEDULER_YIELD wait type,
we have to take a look at the cumulative wait statistics DMV, sys.dm _os wait stats. We
can use the following query to show the top five wait types ordered by wait time while we

run the Ostress utility (we can reset the DMV before starting the Ostress utility to keep
the numbers small):

SELECT TOP 5 *
FROM sys.dm os wait stats
ORDER by wait_time _ms DESC;

The results of this query are shown in Figure 5-15.

wait_type waiting_tasks_count wait_time_ms max_watt_time_ms  signal_wait_time_ms
1 | SOS_SCHEDULERYELD | 6867 105236 3 108219
2 XE_TIMEREVENT 4 15001 5001 15001
3 REQUEST_FOR_DEADLOCK_SEARCH 43 15000 5000 15000
B LAZYWRITER_SLEEP 14 14136 1027 124
5 DIRTY_PAGE_POLL 138 13997 104 2

Figure 5-15. Top five wait types during Ostress execution

As you can see, the number one wait type, by far, is SOS_SCHEDULER_YIELD with a
pretty high amount ofwaiting tasks and totalwait_time.

If you were to experience this problem with a production SQL Server instance, the
first thing you should focus on are those very small, very quick queries like the ones we
executed in this example. Has the volume of those queries increased? Has the number
of user connections to the SQL Server executing those queries increased? Those are
two quick questions you should ask and check. A sudden growth in transactions or user
connections can lead to high SOS_SCHEDULER_YIELD wait times.

Another cause of high SOS_SCHEDULER_YIELD waits, together with very high CPU
usage, can be a phenomenon called spinlock contention. Spinlocks are defined by
Microsoft as “lightweight synchronization primitives which are used to protect access
to data structures” and are a very advanced topic. Appendix I, at the back of this book,

goes into a little bit more detail about spinlocks for those who are interested in learning
more about them.

120



CHAPTER 5  CPU-RELATED WAIT TYPES

Very large, very complex queries can also lead to higher SOS_SCHEDULER_YIELD wait
times. Try looking for active queries that consume a lot of CPU time and have complex
calculations or data-type conversions inside them. One query I use frequently to identify
CPU-heavy queries is the one in Listing 5-1.

Listing 5-1. Detect expensive CPU queries

SELECT TOP 10
QText.TEXT AS 'Query',
QStats.execution count AS 'Nr of Executions',
OStats.total worker time/1000 AS 'Total CPU Time (ms)',
OStats.last worker time/1000 AS 'Last CPU Time (ms)',
QStats.last _execution_time AS 'Last Execution',
QPlan.query plan AS 'Query Plan'
FROM sys.dm exec_query stats QStats
CROSS APPLY sys.dm exec_sql text(QStats.sql handle) QText
CROSS APPLY sys.dm exec_query plan(QStats.plan_handle) QPlan
ORDER BY QStats.total worker time DESC;

The results of the query in Listing 5-1 on my test SQL Server can be seen in Figure 5-16.

Query Nrof Bxecutions  Total CPU Time jms)  Last CPU Time ms)  Last Execution

[WHILE(1-1) BEGIN  SELECTCOUNTO F.. | 355 122 2 20190217 144600840  <Show
"SELECT-  FROM Sales SalesOrderDetal ORDER . 1 a5 a5 20190217 144543250 ¢
SELECTTOP10 QTetTEXTAS Quey, QSta. 5 % § 20190217 14.47.01.740
(@resuks_ow_court it @rterval_sat_bme deetme | 12 2 20190217 144713 820

20150217 1447.13.960
20150217 144707577
20150217 14:47:10613
201902-17 14:47:13.780
201502-17 14:46:58 050
MAMAT 14 AR 41 MT

(@query_id bigrt @plan_id bignt)[SELECT  pis_for 2
IF OBJECT_ID (Nsys] [database_query_store_opticns 1
(Sresukts_row_count int @recent_stat_tme datetimeo
8 SELECT actual_state. readonly_reason FROM sys dat 2
9 SELECTTOP 5 FROM sys.dm_os_wat_stats OR 1
n valact *lorwn eum A re wakt stste WHERE wal hena

NGB R W N -

DO O =nN
DO O =NO =

Figure 5-16. Expensive CPU queries

As you can see, the query we used with the Ostress tool is the query that got executed
the most and took the highest total CPU time. This query could be a good starting
point for an investigation. Maybe the query can be optimized or rewritten so it doesn’t
consume as much CPU time.

Another method you can use to identify queries that are expensive CPU wise is the
Query Store. The Query Store offers a built-in report called “Top Resource Consuming
Queries” that immediately allows you to filter on CPU time, as shown in Figure 5-17.

121



CHAPTER 5  CPU-RELATED WAIT TYPES

Top Resource Cons..s [Adventurewor) = |

Top 25 resource consumers for database AdventureWorks. Time period: Last hour ending at 2/17/2019 2:49 PM | JLEUETAUEE ] Landscape View =2

Metric | CPU Time (ms) || statistic| avg || |§ |6 |d5 |j _ Plan summary for query 185 |'_‘r] ] I';‘,ij ‘25‘ |'=‘ |
[+ ] []
s60] o
£
a5 Plan Id
2 52
H
1 =]
1:30PM 200PM 2:10PM  2:220PM  2:30PM  2:40PM  2:50PM
- L. 1:55PM 205PM  215PM  2:25FM 2:35PM 245PM
[ query id -
Plan 195 [not forced] 3% Force Plan | 37, Unforce Plan
Query 1: Query cost (relative to the batch): 100% |:
SELECT * FROM Sales.SalesOrderDetail ORDER BY CarrierTrackingfumber DESC
'—é ‘Ili-'l
) ) . &L i
1 Parallelism Clustezed Index Scen (Clustered)
I cm:;u“_ soﬂ‘lu cmfu:'_ som‘h: {Gather Streams) o s‘_":g N [SalesCrderDetaill. [P¥_SalesCrderDe.
i o ity Cost: 18 % i Cost: 14 %

Figure 5-17. Visualizing expensive CPU queries through the Query Store

SOS_SCHEDULER_YIELD Summary

The SOS_SCHEDULER_YIELD wait type will always occur on every SQL Server instance
since it is directly related to the scheduling model that SQL Server uses to grant worker
threads access to the processor. It can indicate a problem if the total wait time or total
amount of waiting tasks suddenly increases compared to your baseline measurements.
Most of the time a large increase in SOS_SCHEDULER_YIELD waits also means an
increase in the CPU load. This increase can either be caused by the SQL Server process
itself or by another process outside of SQL Server that requires a large amount of
processor time, limiting the time SQL Server can access the processor. If the SQL
Server process is responsible for the increase in CPU load, you should try to correlate
the increase in SOS_SCHEDULER_YIELD waits with an increase in user activity. Another
option is to query the sys.dm_exec_query stats DMV, as shown in Listing 5-1, or use
the Query Store to find the queries that require the most processor time and focus on
optimizing those queries.

122



CHAPTER 5  CPU-RELATED WAIT TYPES

THREADPOOL

One of the most notorious wait types is the THREADPOOL wait type. Unlike the CXPACKET
and SOS_SCHEDULER_YIELD wait types that occur even if your SQL Server instance

isn’t experiencing any issues, high THREADPOOL wait times do frequently indicate a
performance problem. Just as with the other two CPU-related wait types we discussed
in this book, the THREADPOOL wait type is very closely related to the way SQL Server
scheduling works.

What Is the THREADPOOL Wait Type?

If you ever see THREADPOOL waits occur on your system with far longer wait times than
normal, and your SQL Server is (almost) unresponsive, chances are that you are running
into an issue called thread pool starvation. Thread pool starvation occurs when there are
no more free worker threads available to process requests. When this situation occurs,
tasks that are currently waiting to be assigned to a worker thread will log the THREADPOOL
wait type.

SQL Server provides a number of worker threads to the schedulers with which to
process requests. The number of worker threads that are available for your system
depends on the number of processors and the processor architecture. Table 5-1
shows the maximum number of worker threads available for systems with up to 64
logical CPUs.

Table 5-1. Maximum Number of Worker Threads

CPU Number 32-Bit Architecture 64-Bit Architecture

<4 256 512
8 288 576
16 352 704
32 480 960
64 736 1472

123



CHAPTER 5  CPU-RELATED WAIT TYPES

You can also calculate the maximum number of worker threads available by using
these formulas:

e 32-bit systems with less than, or equal to, 4 logical processors:
e 256 worker threads

e 32-bit system with more than 4 logical processors:

e 256 + ((number of logical processors — 4) x 8)

e 64-bit system with less than, or equal to, 4 logical processors:
e 512 worker threads

e 64-bit system with more than 4 logical processors:

e 512+ ((number of logical processors — 4) x 16)

Even though SQL Server calculates the maximum amount of available worker
threads automatically (only once during startup), you can choose to overwrite the
default by changing the Maximum Worker Threads option inside the Processors
properties of your SQL Server instance, as shown in Figure 5-18. By default, the value
of the Maximum Worker Threads option will be 0, which means SQL Server will
calculate and assign the maximum amount of worker threads available using the
preceding formulas.

124



CHAPTER 5  CPU-RELATED WAIT TYPES

IT Scipt ~ @ Help

Enable processors
[ Automatically set processor affinity mask for all processors
[v] Automatically set 1/0 affinity mask for all processors

| Processor Processor Afinity
=0 n

Connection

Server:
EVDL-SQL2017-01

Connection: Maximum worker threads:
EVDL-SQL2017-01\Administrator =
o Dt U

["] Boost SGL Server priority

[[] Use Windows fibers (ightweight pooling)

I

® Configured values O Running values

Figure 5-18. Processors configuration of a SQL Server instance

You can also query the number of worker threads assigned to your SQL Server
instance by running the following query:

SELECT
max_workers count
FROM sys.dm_os_sys_info;

For my 64-bit test SQL Server that has two logical processors, I have 512 worker
threads available, as you can see in Figure 5-19.

125



CHAPTER 5  CPU-RELATED WAIT TYPES

max_workers_count
1 {512

Figure 5-19. Amount of worker threads on my test machine

One piece of advice I frequently read on the Internet related to THREADPOOL
waits is to change the Maximum Worker Threads option to a value higher than the
one your SQL Server instance has by default. I strongly advise against changing
this option from its default value. Changing the setting to a higher value than the
amount of worker threads you would receive by default can actually degrade the
performance of your SQL Server because context-switching occurs far more often.
Another reason not to change the setting is that every worker thread requires a bit of
memory to operate; for 32-bit systems this is 512 KB per worker thread, and for 64-
bit systems it’s 2048 KB.

THREADPOOL Example

Let’s start with an example of THREADPOOL waits occurring on my test SQL Server
instance. Even though I have warned you multiple times already about making sure
to not run any of the demo scripts in this book on a production environment, this one
deserves a special reminder. Running the demo scripts in this section can cause your
SQL Server to become completely unresponsive, not accepting any new connections,
and can eventually require a restart of the SQL Server service! Do not run this on a SQL
Server that isn’t allowed to become unresponsive!

For this example we are going to use the Ostress utility again to simulate concurrency
and load against the test SQL Server instance. First, we create another .sql file (select
rnd.sql) that holds the following query that we will execute using Ostress:

SELECT TOP 1 *

FROM Sales.SalesOrderDetail
ORDER BY NEWID()

OPTION (MAXDOP 1)

This query will select one random row from the Sales.SalesOrderDetail table in
the AdventureWorks database. There is a reason I included the query option to serially
run this query, and I will explain it later on.

126



CHAPTER 5  CPU-RELATED WAIT TYPES

Now, before we launch Ostress to execute the preceding query, we are purposely
going to lower the maximum amount of worker threads available on the test SQL Server.
To do this we execute this query:

EXEC sp _configure 'show advanced options', 1;
GO

RECONFIGURE

GO

EXEC sp_configure 'max worker threads', 128;
GO

RECONFIGURE

GO

This will set the maximum number of worker threads available to 128, the minimum
value for a 64-bit SQL Server instance.
Let’s fire up Ostress and execute the .sql script we created earlier:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E
-dAdventurelWorks -i"C:\select_rnd.sql" -n150 -r10 -q

In this case we will start 150 different threads that will execute the query in the
select _rnd.sql file 10 times. The reason for spawning 150 threads is that this value is
higher than the maximum amount of worker threads available on the test SQL Server
instance, but not so high that we cannot execute queries anymore.

While the script is running, let’s take a look at the number of worker threads running
and waiting using the sys.dm_os_schedulers DMV:

SELECT
scheduler id,
current_tasks count,
runnable_tasks_count,
current workers count,
active workers count,
work queue_count
FROM sys.dm os_schedulers
WHERE status = 'VISIBLE ONLINE';

The results of this query are shown in Figure 5-20.

127



CHAPTER 5  CPU-RELATED WAIT TYPES

scheduler_id cument_tasks count munnable_lasks_count cument_workers_count aclive_workers_count  work_queue_count

1 [0 e 6 81 80 7
2 1 88 66 80 78 8

Figure 5-20. Tasks and worker threads per scheduler

The most important columns here are the current_workers count, active
workers count, and work_queue_count columns. The current_workers_count column
shows the number of worker threads associated with this scheduler; this number also
includes worker threads that are not yet assigned to a task. The active _workers count
column returns the number of worker threads that are in the “RUNNING,” “RUNNABLE,”
or “SUSPENDED” states. The big difference between the current_workers_count and
the active workers count columns is that the active_workers count is the number
of worker threads that have been assigned to a task, while the current_workers count
returns all the worker threads. The work_queue_count column shows us the number of
tasks that are currently waiting to get a worker thread assigned to them. If you see values
higher than 0 in this column for a longer period of time and for all schedulers, you are
experiencing thread pool starvation.

Let’s check the sys.dm_os waiting tasks DMV for waiting tasks that originate
from a user session. Notice that we filter out all the sessions that have a session ID lower
than 50, even though I told you to not do this in Chapter 2, “Querying SQL Server Wait
Statistics”:

SELECT *
FROM sys.dm os waiting tasks
WHERE session_id > 50;

If we check the results on the test SQL Server instance, we could conclude that
nothing is waiting, as you can see in Figure 5-21. The test SQL Server is responding
incredibly slowly though, and querying anything requires multiple seconds.

watting_task_address session_id exec_contexd id wat_duration_ ms walk _type resource_address blocking_task_address

Figure 5-21. No tasks are waiting

128



CHAPTER 5  CPU-RELATED WAIT TYPES

Let’s check the sys.dm_os_waiting_tasks DMV without filtering out session IDs:

SELECT *
FROM sys.dm_os waiting tasks;

Asyou can see in Figure 5-22, THREADPOOL waits are not logged as user sessions, but
actually have an empty session ID. This is the reason I always recommend to not filter
the sys.dm_os waiting tasks DMV on session ID numbers.

watting_task_address session_jd exec_contexi_id wait_duration_ms  wait_type resource_address
12 (x00000039E120A4E8  NULL NULL 1719 THREADPOOL NULL
13 (x00000039E120ABCE  NULL NULL 158 THREADPOOL NULL
14 (x00000039E120ACAS  NULL NULL 30 THREADPOOL NULL
15  (x00000039E120B088 NULL NULL 30 THREADPOOL NULL
16 (x00000039E120B468 NULL NULL 30 THREADPOOL NULL
17  (x00000039E120B848 NULL NULL 30 THREADPOOL NULL
18 <00000039E120BC28  NULL NULL 30 THREADPOOL NULL
19  (x00000039E124A108  NULL NULL 30 THREADPOOL NULL

Figure 5-22. THREADPOOL waits

There are quite a lot of THREADPOOL waits, with various wait times, some running into
seconds of wait time. Things can get even worse than this though. Figure 5-23 shows an
error I encountered when I tried to connect to my test SQL Server instance while running
the Ostress tool.

Connect to Server

@\ Cannot connect to EVDL-SQL2017-01.
\J Additional information:
L, A connection was successfully established with the server, but then an error occurred during the

pre-login handshake. (provider: SSL Provider, error: 0 - The wait operation timed out.) (Microsoft SQL
Server, Error: 258)

L, The wait operation timed out

o %2 ]

Figure 5-23. Timeouts are occurring and SQL Server is unresponsive

129



CHAPTER 5  CPU-RELATED WAIT TYPES

Now that we have seen the kind of problems thread pool starvation can create, let’s
take a look at how we can lower, or even resolve, THREADPOOL waits.

Gaining Access to Our SQL Server During
THREADPOOL Waits

THREADPOOL waits can be very difficult to troubleshoot, mostly because there are many
possible reasons why your SQL Server doesn’t have any free worker threads available.
Also, THREADPOOL waits can completely lock down your SQL Server instance, making
connections to it (and troubleshooting it) almost impossible, as you have seen in the
earlier example.

The first step you should take to make sure you do not get into a situation where
you cannot connect to your SQL Server instance for troubleshooting is to enable the
Dedicated Administrator Connection (or DAC). If you remember the section about
schedulers in Chapter 1, “Wait Statistics Internals,” you might recall a special type of
scheduler reserved for the DAC. This dedicated scheduler, shown in Figure 5-24, is
strictly reserved for the DAC and has access to its own worker threads.

scheduler_address parent_node_id scheduler_id cpu_id status is_online is_idle
1 (x00000035FA180040 0 0 0 VISIBLE ONLINE 1 1
24 (x0000003SFATAQ040 0O 1 1 VISIBLE ONLINE 1 0
3 (<0000003SFAIC0040 O 1048578 0 HIDDEN ONLINE 1 0
|-4 (<0000003S5FAB00040 64 1048576 0 VISIBLE ONLINE (DAC) 1 1 I
5 (<00000039F5960040 O 1048579 1 HIDDEN ONLINE 1 1
6 (<00000035F5940040 O 1048580 0 HIDDEN ONLINE 1 1
i) (x00000035F2880040 O 1048581 1 HIDDEN ONLINE 1 1
8 (<00000039F28A0D040 O 1048582 0 HIDDEN ONLINE 1 1
9 (<00000039F28E0040 O 1048583 1 HIDDEN ONLINE 1 1

Figure 5-24. Dedicated Administrator Connection scheduler

If you connect through the DAC to your SQL Server instance, your session will be
mapped to the DAC scheduler. This makes it possible to connect and execute queries
even if all the other schedulers have massive task queues.

130



CHAPTER 5  CPU-RELATED WAIT TYPES
You can enable the DAC by executing the following query:

sp_configure 'remote admin connections', 1
Go

RECONFIGURE

Go

If you want to connect to your SQL Server instance using the DAC you need to add
the ADMIN: prefix to the server name you are connecting to, as shown in Figure 5-25. You
can only connect using the DAC when you execute a new query from inside SQL Server
Management Studio without being connected to the server.

SQL Server

Server type: I Database Engine
Server name: | ADMIN:EVDL-SQL2017-01

Authentication: Windows Authentication
User name: \EVDL-SQ L2017-01\Administrator

Password: ‘

[ ] Remember password

| Comnect || Cancel ||

Figure 5-25. Connect using the Dedicated Administrator Connection

Now that you are able to connect to your SQL Server instances using the DAC,
you always have a way in, even when the SQL Server instance won’t accept any new
connections.

With the DAC enabled, let’s discuss some common causes for THREADPOOL waits.

131



CHAPTER 5  CPU-RELATED WAIT TYPES

Lowering THREADPOOL Waits Caused by Parallelism

One of the most common causes for THREADPOOL waits I encounter is related to the
extensive use of parallelism during query execution. During the execution of a parallel
query, multiple worker threads are used to perform the work needed. If you left the
configuration options related to parallelism—Max Degree of Parallelism and Cost
Threshold of Parallelism—at the default values, it might cause more queries to run in
parallel than was intended. Depending on how many processors your SQL Server has
access to, and the number of worker threads used during a parallel query, one single
parallel query can require many worker threads.

If you run into this specific case of high and frequent THREADPOOL waits you will
usually see many CXPACKET waits as well (sometimes with high wait times). To show this
behavior I have modified the query we used to generate THREADPOOL waits so that it will
execute using parallelism. In this case I commented out the MAXDOP query option:

SELECT TOP 1 *

FROM Sales.SalesOrderDetail
ORDER BY NEWID()

- OPTION (MAXDOP 1)

For this example I also configured the Max Degree of Parallelism to its default value
of 0, and set the Cost Threshold for Parallelism option to 1. This way I am 100% sure the
query will be run using parallelism. I left the Max Worker Threads option on a value of
128 as we configured earlier.

If we now repeat the same Ostress test we performed earlier in this chapter by
executing the following command, we should see THREADPOOL waits occur again in the
sys.dm_os waiting tasks DMV, as shown in Figure 5-26.

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E
-dAdventurelWorks -i"C:\select _rnd.sql" -n150 -r10 -q

132



CHAPTER 5  CPU-RELATED WAIT TYPES

waiting'_task_address session_id exec_context_id wait_duration_ms  wait_type
1 (xD00D0D3SDFDF7C28 NULL NULL 323 THREADPOOL
2 (<0000003SE4CES088  NULL NULL 266 THREADPOOL
3 (<00D00003SDFDFE108  NULL NULL 234 THREADPOOL
4 (<0DD0D0D3SEC461848  NULL NULL 83 THREADPOOL
5 (xDDDDDD3SEACES468  NULL NULL 81 THREADPOOL
6 0xDDDDDD3SEBODCCAS  NULL NULL 69 THREADPOOL
7 (0<000D003SE4CES848  NULL NULL 61 THREADPOOL
8 (xD0D0D0D3SEACES108  NULL NULL 36 THREADPOOL
9 (xDDDDDD3SEACESCAS  NULL NULL 12 THREADPOOL
10  (xDDDDDD3SEZF3B8CE  NULL NULL 1483 THREADPOOL

Figure 5-26. THREADPOOL waits

But this time, because our test query is executed in parallel, we will also find many
CXPACKET waits returned by the sys.dm _os_waiting tasks DMV, as shown in Figure 5-27.

13 (x00000039E58A9848 146 0 1554 CXPACKET
14  (x0000003SE2C2E4E8 83 0 1553 CXPACKET
15  (<00000035E2C2E108 136 0 1553 CXPACKET
16 (x0D0D00D039EFE74CA8  NULL NULL 153 THREADPOOL
17 (<0000D03SEFE74108  NULL NULL 128 THREADPOOL
18 (x00000035EC461848  NULL NULL a3 THREADPOOL
19  (x00000039F5B63468 132 0 1564 CXPACKET
20  (00000D0O3SESD3BBCE 133 0 1959 CXPACKET
21 (x0000D0O3SEE1D9463 134 0 1985 CXPACKET
22 (x0000003SDEDOE108 76 0 1585 CXPACKET
23 (x0000D039E76F24E8  NULL NULL 1087 THREADPOOL
24  (x00000D03SES86E108  NULL NULL 1022 THREADPOOL
25  (x00D0DD03SE2F39468  NULL NULL 877 THREADPOOL
26 (x0000003SDFD81088  NULL NULL 860 THREADPOOL

Figure 5-27. CXPACKET and THREADPOOL waits

133



CHAPTER 5  CPU-RELATED WAIT TYPES

If you see this behavior occurring on your SQL Server instance, it might be worth the
effort to check your parallelism configuration. The first section of this chapter discussed
CXPACKET waits and how you can lower them. Another hint that might steer you in this
direction is that the CPU load during this particular case is usually higher than normal.
In the case of my test SQL Server instance, all my CPUs went to 100%.

Lowering THREADPOOL Waits Caused by User
Connections

Another common cause of THREADPOOL waits is a sudden increase in the number of
users connecting and executing queries against your SQL Server instance. This problem
can occur if, for instance, the application that is connecting to your SQL Server instance
uses multiple connections. The main problem here is that those connections stay active
and keep acquiring worker threads.

To give you an example of this problem we will again use Ostress to connect and
execute queries against my test SQL Server instance. In this case we will use a different
.sql file, saved as wait.sql, as input for Ostress, with the following query inside it:

WAITFOR DELAY '00:05:00'

The only thing this query will do is wait for 5 minutes. After those 5 minutes, the
query will end and the connection will disconnect.
Let’s run Ostress using the wait.sql file:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E
-dAdventurelWorks -i"C:\wait.sql" -n120 -r1 -q

We change the number of threads generated by Ostress to 120 and again leave the
Max Worker Threads option set to 128 worker threads.

When we query the sys.dm_exec_sessions DMV using the following query, we see
that many new user sessions, generated by the Ostress utility, are active, as shown in
Figure 5-28.

SELECT *
FROM sys.dm_exec_sessions
WHERE is_user process = 1;

134



CHAPTER 5  CPU-RELATED WAIT TYPES

session_id  login_time host_name program_name
7 57 2015-02-18 11:33:01.527 EVDL-SQL2017-01 OSTRESS
8 58 2015-02-18 11:33:01.527 EVDL-SQL2017-01 OSTRESS
9 59 2015-02-18 11:33:01.527 EVDL-SQL2017-01 OSTRESS
10 60 2015-02-18 11:33:01.530 EVDL-SQL2017-01 OSTRESS
1 61 2019-02-18 11:33:01.537 EVDL-SQL2017-01 OSTRESS
12 62 2019-02-18 11:33:01.537 EVDL-SQL2017-01 OSTRESS
13 63 2015-02-18 11:33:01.533  EVDL-SQL2017-01 OSTRESS
14 64 2015-02-18 11:33:01.537 EVDL-SQL2017-01 OSTRESS
15 65 2019-02-18 11:33:01.537 EVDL-SQL2017-01 OSTRESS

Figure 5-28. Ostress user sessions

If we query the sys.dm_os_waiting_tasks DMV, we see that THREADPOOL waits are
occurring, as shown in Figure 5-29.

waiting_task_address session_id exec_context_id wait_duration_ms  wait_type

82  (x0D00003SF3D71468  NULL NULL 201566 THREADPOOL
83  (x0D000039F3D708CE8  NULL NULL 201566 THREADPOOL
84  (x0DD00003SF3D704ES8  NULL NULL 196910 THREADPOOL
85  (xDDD0DDO3SEOFAC4EE  NULL NULL 177392 THREADPOOL
86  [(x0D00003SEOFACECE  NULL NULL 173108 THREADPOOL
87  (xDDD0ODO3SEOFADOSE  NULL NULL 112424 THREADPOOL
88  (x0DDD0DOO3SEOFACCAZ  NULL NULL 23416 THREADPOOL

Figure 5-29. THREADPOOL waits inside the sys.dm_os_waiting_tasks DMV

The big difference between THREADPOOL waits caused by excessive parallelism and an
increase in user connections is that the CPU of my test SQL Server instance remains low
in the latter case, as shown in Figure 5-30.

135



CHAPTER 5  CPU-RELATED WAIT TYPES

CPU Intel(R) Core(TM) i5-8259U CPU @ 2.30GHz

% Utilization over &0 seconds 1009
|

ll_fn-._ﬁ_f'-_*__ _d___.'h'-"h*k___,__ | l“v_»,_.'rh‘\___._.fl\"'_"-»-_

Figure 5-30. CPU usage

The small spike in the CPU usage history graph is caused by starting up the Ostress
utility. After that, the CPUs remain at a constant low usage percentage.

Resolving THREADPOOL waits caused by an increase in user connections should
start at the source. Where do the user connections come from? What are those
connections performing? I have seen cases where an application suddenly used
hundreds of active user connections after an update, and as the SQL Server instance
was not designed to handle that amount of concurrent, active, connections,
THREADPOOL waits appeared.

Keep in mind that the user connections should only cause THREADPOOL waits when
they are actually running queries. User connections that are connected to the SQL Server
instance but are not executing anything should not be a reason for THREADPOOL waits.

Also, having many different user connections active against a database can create
many locks on rows or tables. If you notice high lock-related wait times together with
THREADPOOL waits, the problem could be the high amount of locking and blocking
occurring. In this case you should try to find the queries that are causing the lock waits
and see if you can optimize them. We will discuss lock-related wait types, and what you
can do about them, in Chapter 7, “Lock-Related Wait Types.”

136



CHAPTER 5  CPU-RELATED WAIT TYPES

THREADPOOL Summary

THREADPOOL waits are one of the most alarming wait types to see on your SQL Server
instance. They occur because there are not enough free worker threads available

to process requests, so tasks that request a worker thread will have to wait until a
new worker thread becomes available. Thankfully, THREADPOOL waits are not
very common, as they have the potential to completely lock you out of your SQL
Server instance. The only way to connect in those cases is by using the Dedicated
Administrator Connection (or DAC), which I urge you to enable on all your SQL
Server instances.

Excessive use of parallelism and a large increase in active user connections are
two of the most common causes for THREADPOOL waits. The former has a direct relation
to the CXPACKET wait type we discussed earlier, so methods to resolve the CXPACKET
wait type can also help to resolve THREADPOOL waits. The latter requires a deeper
investigation into why the number of active user connections suddenly increased.
Maybe they are the result of a bug in the application connection to the SQL Server
instance. We also briefly touched on locking and blocking behavior as a possible cause
for THREADPOOL waits. We will take a deeper look at how we can resolve lock-related
waits in Chapter 7, “Lock-Related Wait Types.”

137



CHAPTER 6

|O-Related Wait Types

In this chapter we will take a look at IO-related wait types in the broadest sense of

the term. I selected wait types that are related to the storage, memory, or network
components of your system. One could argue that the majority of wait types will fit this
category, and that is probably right, but to prevent this chapter from covering 90% of

all the wait types in this book, I had to choose carefully. I consider the wait types in this
chapter to have a direct relation to storage, memory, or network but to not relate directly
to a functionality or concept in SQL Server. For instance, the PAGEIOLATCH_xx wait types
are frequently related to storage, but they are not included in this chapter. The reason
for this is because they are also a latch wait type, and I believe latch wait types deserve a
separate chapter because of their function in SQL Server.

The performance of the I0-related components is incredibly important for SQL
Server. Practically every part of SQL Server interacts with these components in one way
or another, whether it is a data page that needs to be read from disk into memory or the
results from a query that need to be transported across the network to your end users.

If one of these components can’t handle the workload you are generating on your SQL
Server instance, or isn’t configured properly, your performance will decline.

The wait types in this chapter can help you track down which of your I0 components
is slowing you down so you can take appropriate action to prevent or resolve
performance-related incidents.

ASYNC_I0_COMPLETION

The ASYNC_IO_COMPLETION wait type is a pretty common wait type that occurs every time
SQL Server performs a file-related action on the storage subsystem and has to wait for

it to complete. You will frequently see this wait type when you are performing actions
that interact with the storage subsystem, like a backup. Just like with most wait types, if
you are seeing this wait type occur, it doesn’t necessarily mean there is a problem with

139
© Enrico van de Laar 2019

E.van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_6



CHAPTER 6  10-RELATED WAIT TYPES

your storage subsystem. It will only become a problem if the wait time is longer than
you expect it to be compared to your baseline values, which we discussed in Chapter 4,
“Building a Solid Baseline.”

What Is the ASYNC_I0_COMPLETION Wait Type?

If we look up the ASYNC_IO_COMPLETION wait type in Books Online (BOL), we will see the
following definition: “Occurs when a task is waiting for I/Os to finish.” This is a rather
short and vague definition. Let’s add a little more detail. ASYNC_IO COMPLETION waits
occur when a task is waiting for a storage-related action to finish. The task is initiated and
monitored by SQL Server. Figure 6-1 shows this as a visual representation of the wait type.

l

-v:'

ASYNC_IO_COMPLETION

A

Figure 6-1. ASYNC_IO_COMPLETION wait occurring

As long as the storage-related action is running, the ASYNC_IO COMPLETION wait time
is being logged. As you can imagine, the faster your storage subsystem, the lower your
ASYNC_IO COMPLETION wait times will be.

As I said earlier, usually ASYNC IO COMPLETION waits are no cause for concern. They
will happen normally during many SQL Server operations that need to access the storage
subsystem, like backups or the creation of a new database. It can become a cause for
concern if the wait times are higher than you expected when compared to your baseline
measurements.

140



CHAPTER 6  10-RELATED WAIT TYPES

ASYNC_I0_COMPLETION Example

Let’s go through an example that generates ASYNC_I0 COMPLETION waits. We won'’t
need any extra utilities for this; just running a database backup will trigger ASYNC_I0
COMPLETION waits.

In this case I will perform a backup of the AdventurelWorks database on my test
server.

To perform this action I will use the query in Listing 6-1. This query will reset
the sys.dm os wait stats DMV, perform the database backup, and then query the
sys.dm os wait stats DMV for the ASYNC IO COMPLETION waits.

Listing 6-1. Generate ASYN_IO_COMPLETION waits

USE [master]
GO

DBCC SQLPERF('sys.dm os wait stats', CLEAR);

BACKUP DATABASE [AdventureWorks]
TO DISK = N'F:\Backup\aw_backup.bak'

WITH
NAME = N'AdventureWorks-Full Database Backup',
STATS = 2;

GO

SELECT *

FROM sys.dm os wait stats
WHERE wait_type = 'ASYNC_IO COMPLETION';

The backup operation took 1 second on my test SQL Server instance. Figure 6-2
shows the results of the query in Listing 6-1.

wat_type watting_tasks_count walt_time_ms max_wal_time_ms signal_wait_time_ms
1 E‘__ASYNC_IO_COMPLETION .2 1126 1126 0

Figure 6-2. ASYNC_IO_COMPLETION wait time

Asyou can see, for almost the entire duration of the database backup ASYNC IO
COMPLETION waits were logged.

141



CHAPTER 6  10-RELATED WAIT TYPES

Lowering ASYNC_I0_COMPLETION Waits

One common cause of high ASYNC_I0 COMPLETION wait times is a database backup, as
you just saw in the example. If you want to find out if your ASYNC_I0 COMPLETION waits
are occurring because a backup is being performed, try to look for backup-related waits
occurring at the same time.

If we were to slightly modify the last sys.dm_os _waiting tasks queryin Listing 6-1,
we would see backup-related wait types being returned by the DMV:

SELECT *
FROM sys.dm os wait stats
WHERE wait_type IN
(
'ASYNC_IO COMPLETION',
'"BACKUPIO',
"BACKUPBUFFER'

)5

Figure 6-3 shows the result of the query in Listing 6-1, but with this modification.

wait_type waiting_tasks_count wai_time_ms max_wait_time_ms signal_wai_time_ms
“ ASYNC_IO_COMPLETION | 2 1126 1126 0

BACKUPBUFFER 2 167 41 6

BACKUPIO 184 779 42 4

Figure 6-3. ASYNC_IO_COMPLETION waits together with backup-related waits

If you see both occurring at the same time, chances are that a database backup is
causing your ASYNC_IO_COMPLETION waits.

Another possible method of lowering ASYNC_I0 COMPLETION waits is by configuring
instant file initialization. Instant file initialization was introduced in Windows 2003 and
speeds up the process of allocating space on a disk tremendously by removing the need
to zero-out files (writing zeros inside files before they can get used). This does not affect
the speed of your backup, but will give increased performance when creating a database,
adding files to a database, or restoring a database. Instant file initialization is not enabled
by default, unless you are running your SQL Server service under an account that has

142



CHAPTER 6  10-RELATED WAIT TYPES

local administrator privileges. During the setup of SQL Server 2016, Microsoft added
an additional checkbox to enable instant file initialization during SQL Server setup, as
shown in Figure 6-4.

T SQL Server 2016 Setup — (] X
Server Configuration

Specify the service accounts and collation configuration.

Product Key

License Terms

ounts | Collation

Microsoft recommends that you use a separate account for each SQL Server service.

Global Rules

Product Updates Service Account Name Password Startup Type
Install Setup Files SQL Server Agent NT Service\SQLAgentSS... Manual ~
Install Rules | SQL Server Database Engine NT Service\MSSQLSSQL... Automatic v
Feature Selection | SQL Server Browser NT AUTHORITW\LOCAL... Disabled v
Feature Rules

Instance Configuration [] Grant Perform Volume Maintenance Task privilege to SQL Server Database Engine Service

Server Configuration This privilege enables instant file initialization by avoiding zeroing of data pages. This may lead
Database Engine Config to information disclosure by allowing deleted content to be accessed.

Feature Configuration Rules Click here for details

Ready to Install

Installation Progress

Complete

< Back Next > Cancel

Figure 6-4. Grant Perform Volume Maintenance Task privilege to the SQL Server
Database Engine Service checkbox in SQL Server 2016 setup

If you didn’t enable the Grant Perform Volume Maintenance Task privilege to the
SQL Server Database Engine Service checkbox during the installation of SQL Server 2016
or higher, or installed a lower version of SQL Server, you will have to configure instant file
initialization manually after installation. The way to configure instant file initialization is
through a local security policy on the machine SQL Server is running on by adding the
account your SQL Server service is running under.

143



CHAPTER 6  10-RELATED WAIT TYPES

You can find this policy by opening the Local Security Policy MMC under

Administrative Tools in the Configuration Panel. Open up the Local Policies » User

Rights Assignment folder and scroll down to the “Perform volume maintenance tasks”

policy, as shown in Figure 6-5.

File Action View Help

e 2@ XE = B

i Security Settings
b 4 Account Policies
4 4 Local Policies
b A Audit Policy
b _4 User Rights Assignment
4 Security Options
b [ Windows Firewall with Advanced Seci
] Network List Manager Policies
b | Public Key Policies
b || Software Restriction Policies
b [ Application Control Policies

b s IP Security Policies on Local Compute
b [ Advanced Audit Policy Configuration

-

Policy

1z Enable computer and user accounts to be trusted for delega...

l2iz) Force shutdown from a remote system
;| Generate security audits

Lz Impersonate a client after authentication
14| Increase a process working set

L] Increase scheduling priority

1) Load and unload device drivers

1| Lock pages in memory

12z Log on as a batch job

1| Log on as a service

l:z| Manage auditing and security log

1) Modify an object label

L] Modify firmware environment values
Perform volume maintenance tasks

12z Profile single process

l2:2| Profile system performance

li:] Remove computer from docking station
liz) Replace a process level token

1 Restore files and directories

12z Shut down the system

i) Synchronize directory service data

liz) Take ownership of files or other objects

Security Setting

Administrators
LOCAL SERVICE NETWO...
LOCAL SERVICE,NETWO...
Users,Window Manager...
Administrators
Administrators

Administrators,Backup ...
SQLServer20055QLBrow...
Administrators

Administrators
Administrators, NT SERVI...
Administrators
Administrators, NT SERVI...
Administrators

LOCAL SERVICE,NETWO...
Administrators,Backup ...
Administrators,Backup ...

Administrators

Figure 6-5. Perform volume maintenance tasks local policy

Double-click the policy to open it and add the account your SQL Server service is
running under. The last step is restarting your SQL Server service. After the restart, SQL
Server can make use of instant file initialization.

To show you the impact of instant file initialization, I used the query in Listing 6-2.
This query clears the sys.dm_os wait_stats DMV, then creates a new database with a
500 MB data file and a 100 MB log file. It then queries the sys.dm_os_wait_stats DMV
for the ASYNC_IO COMPLETION wait type.

144



CHAPTER 6  10-RELATED WAIT TYPES

Listing 6-2. Measure the impact of instant file initialization on
ASYNC_IO_COMPLETION waits

DBCC SQLPERF('sys.dm os wait stats', CLEAR);

CREATE DATABASE [IO test]

ON PRIMARY
(
NAME = N'IO test', FILENAME = N'E:\Data\IO test.mdf' , SIZE = 512000KB ,
FILEGROWTH = 10%

)
LOG ON

(

NAME

SIZE

);
GO

N'IO test log', FILENAME = N'E:\Log\IO test log.ldf' ,
102400KB , FILEGROWTH = 10%

SELECT *
FROM sys.dm os wait stats
WHERE wait type = 'ASYNC_IO COMPLETION';

Figure 6-6 shows the wait statistics information both before and after configuring
instant file initialization.

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms  signal_wait_time_ms
1 | ASYNC_IO_COMPLETION | 1 10591 10591 0

Before

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms
1 EASYNC_IO_COMPLETION 1 1878 1878 0

After

Figure 6-6. Impact of instant file initialization on ASYNC_10_COMPLETION
waits

145



CHAPTER 6  10-RELATED WAIT TYPES

Even for this relatively small database the gain of using instant file initialization is
pretty big, as you can see in the difference in wait times. Before enabling instant file
initialization, the query in Listing 6-2 took 11 seconds to complete; after the change it
went down to 2 seconds.

If you configured instant file initialization and checked that no backups are being
performed at the same time that you are seeing high ASYNC_I0 COMPLETION waits, the
problem might be your storage subsystem. A good method of analyzing potential storage
problems is by using Perfmon to monitor the Avg. Disk/sec Read and Avg. Disk/sec
Write counters on the disks on which your database resides, as shown in Figure 6-7. These
counters show you the read and write latency to your disks in seconds (this means a value
of 0.005 means 5 milliseconds). SQL Server performs optimally with a maximum latency
of 5 milliseconds. Above 20 milliseconds, latency will cause noticeable performance
degradation. The higher the latency value, the higher the wait time of storage-related wait
types will be.

i

~ Available counters 1 Added ters
Select counters from computer: Counter _Pacent | Inst... | Computer

I <Local computer> 3 Browse... | PhysicalDisk B.

Avg. Disk Bytes/Transfer | Avy. Disk secRead 1E:
Avg. Disk Bytes/\Write Avvg. Disk sec/Wirite 1E:
Avg. Disk Queue Length

Avg. Disk Read Queus Length

Avg. Disk sec/Read =)
Avg. Disk sec/Transfer

Avg. Disk sec/Write

Avg. Disk Write Queue Length

Current Disk Queue Length =

[nstances of selected ohject:
Tota

<Al instances>

0C:

I™ Show description Help ] o I e |
Figure 6-7. Avg. Disk sec/Read and Avg. Disk sec/Write Perfmon counters

Be careful about jumping to conclusions regarding your storage performance.
Always talk to your storage administrator (if you have one) and show him/her your
measurements before you decide the storage subsystem is the bottleneck. Storage is
the domain of the storage administrator, and he/she can help you analyze and resolve

performance problems.

146



CHAPTER 6  10-RELATED WAIT TYPES

ASYNC_I0_COMPLETION Summary

The ASYNC_IO_COMPLETION wait type occurs when you perform actions related to the
storage subsystem from inside your SQL Server instance, most notably database backups
and the creation of new databases. While ASYNC_IO_COMPLETION waits are completely
normal, they can indicate storage-related problems if wait times are higher than normal.
Before you run to your storage administrator, make sure there is actually a performance
problem. One possible way to do this is by checking your storage latency, as high latency
values will impact ASYNC_IO COMPLETION wait times as well. Also check whether the
higher ASYNC_IO_ COMPLETION wait times are directly related to database backups being
performed. One great method to lower ASYNC_IO_COMPLETION wait times is by enabling
instant file initialization by adding your SQL Server service account to the Perfmon
volume maintenance tasks local policy.

ASYNC_NETWORK_IO

Just like the ASYNC_IO COMPLETION wait type, the ASYNC_NETWORK IO wait type is related
to throughput. But instead of storage subsystem throughput, the ASYNC_NETWORK IO wait
type is related to the throughput of your network connection between your SQL Server
instance and your clients. Again, seeing wait times for this specific wait type does not
necessarily mean there is a network-related issue, since ASYNC_NETWORK IO waits always
occur, even if you query your SQL Server instance on the SQL Server itself.

What Is the ASYNC_NETWORK_10 Wait Type?

ASYNC_NETWORK_IO waits usually occur when client applications cannot process the
query results fast enough, or when you have a network-related performance problem.
The former will in most cases be the most likely, since many applications process SQL
Server results on a row-by-row basis, or simply cannot handle the amount of data. This
forces the SQL Server to wait on sending query results across the network. While SQL
Server is waiting to send the requested data, the ASYNC_NETWORK IO wait type is logged.
Another situation in which ASYNC_NETWORK_IO waits can occur is when you are using a
linked server to query remote databases. Figure 6-8 shows a graphical representation of
this.

147



CHAPTER 6  10-RELATED WAIT TYPES

. i .
B —

Figure 6-8. ASYNC_NETWORK_IO

ASYNC_NETWORK_I0 Example

Showing an example of the ASYNC_NETWORK_IO wait type doesn’t require a
complicated test environment. Listing 6-3 shows a query that will generate ASYNC
NETWORK_IO waits when run against my test SQL Server instance from another computer
using SQL Server Management Studio, which should be enough. The query is going

to clear the sys.dm_os wait_stats DMV, then perform the actual query against the
AdventureWorks database. The last statement will show us the wait times of the ASYNC_
NETWORK_IO wait type.

Listing 6-3. Generate ASYNC_NETWORK IO waits
DBCC SQLPERF ('sys.dm os wait stats', CLEAR);

SELECT *
FROM Person.Person;

SELECT *
FROM sys.dm os wait_stats
WHERE wait type = '"ASYNC_NETWORK IO';

Figure 6-9 shows the wait times for the ASYNC_NETWORK IO wait type.

wait_type waiting_tasks_count wait_time_ms  max_wait_time_ms signal_wait_time_ms
1 iASYNC_NETWORK_IO [ 165 516 58 50

Figure 6-9. ASYNC_NETWORK_IO wait times

148



CHAPTER 6  10-RELATED WAIT TYPES

In this example, the results of the query against the AdventureWorks database
couldn’t be processed by the SQL Server Management Studio application as fast as the
SQL Server instance supplied the results, and ASYNC_NETWORK IO waits occurred.

Lowering ASYNC_NETWORK_I0 Waits

One of the “easiest” ways to lower ASYNC_NETWORK IO waits is to identify queries that will
return a large result set back to the application. For instance, if we modify the query to
return only the first 100 rows, the SQL Server Management Studio might be able to keep
up with the information returned to it:

DBCC SQLPERF ('sys.dm os wait stats', CLEAR);

SELECT TOP 100 *
FROM Person.Person;

SELECT *
FROM sys.dm os wait stats
WHERE wait type = 'ASYNC_NETWORK IO';

The resulting wait times after this modification can be seen in Figure 6-10.

vy_gt___rype wating_tasks count wat time ms max_wat_time_ms signal_wait_time_ms
1 @ASYNC_NETWQRK_D 0 0 0 0

Figure 6-10. ASYNC_NETWORK_IO wait times after modifying the query

Asyou can see, we didn’t run into any ASYNC_NETWORK_IO waits this time. The SQL
Server Management Studio was able to keep up with the results returned, so the SQL
Server instance we queried didn’t have to delay sending the results back to the client.

Another way to limit results returned could be by filtering out information using
WHERE clauses that isn’t used by the application in the first place. Smaller results will
resultin lower ASYNC_NETWORK_IO wait times.

If you believe that ASYNC_NETWORK IO waits are not caused by large results being
returned to an application, or by the speed at which an application can process the
results, there is also a possibility that your network configuration is slowing you down.
In this case you should first check your network utilization. Sadly, there isn’t a counter

149



CHAPTER 6  10-RELATED WAIT TYPES

in Perfmon that directly shows the network utilization without having you perform some
math to calculate it. Instead, you can use the Networking tab of the Task Manager to view

your network-card utilization, as shown in Figure 6-11.

File Options View
Processes | Performance | Users [ Details | Services |

CPU
- Y Ethernet Intel(R) PRO/1000 MT Desktop Adapter
Throughput 1 Mbps
O Memory
2.0/4.0 GB (50%)
800 Kbps
O Ethernet | |

S: 0 Kbps R: 0 Kbps

60 seconds 0

E Send Adapter name: Ethernet

‘0 KbpS Connection type: Ethemnet

. IPv4 address: 10.0.2.15
Receive IPv6 address: fe80:187a:32ae:b28f:ddcc %12
0 Kbps

@ Fewer details @ Open Resource Monitor

Figure 6-11. Task Manager network utilization

If you notice that the network utilization is high while you are experiencing higher
than normal ASYNC_NETWORK_IO wait times, it could be possible that the network
is slowing you down. In that case it might be a good idea to talk to your network
administrator. Usually a network configuration consists of many parts, like switches,
routers, firewalls, network cables, drivers, firmware, potential virtualization of the
operating system, and so on. All of these parts can slow down your network throughput
and can be a potential cause of ASYNC_NETWORK IO waits.

150



CHAPTER 6  10-RELATED WAIT TYPES

ASYNC_NETWORK_I0 Summary

The ASYNC_NETWORK IO wait type occurs whenever an application requests query results
from a SQL Server instance over the network and cannot process the returned results fast
enough. Seeing ASYNC_NETWORK IO waits occur is completely normal, but higher than
normal wait times can be caused by changes in the returned query results or network-
related problems. Lowering ASYNC_NETWORK IO wait times that are application related can be
achieved by decreasing the number of rows and/or columns returned to the application.

CMEMTHREAD

Waits of the CMEMTHREAD wait type are memory related and indicate a pressure on certain
SQL Server-related memory objects. These memory objects allocate memory for the
various parts of SQL Server like the buffer cache and the procedure cache. Whenever
CMEMTHREAD waits occur, it means that multiple threads are trying to access the same
memory object at the same time.

What Is the CMEMTHREAD Wait Type?

To explain how CMEMTHREAD wait type generation works, we have to dig a little deeper
inside some programming terminology, specifically the terms mutual exclusions, critical
sections, and thread safety. These three concepts play a direct role in the CMEMTHREAD wait
type generation.

A critical section consists of a piece of code that accesses a shared resource that
can only be accessed by one thread at a time. In our case the shared resource would be
a SQL Server memory object. The SQL Server memory objects can only be accessed
one thread at a time so as to ensure no corruption to the memory object can occur.
Because there are many threads that want access to memory objects, we have to use a
method to ensure only one thread gets access at a time. This method is called mutual
exclusion. SQL Server uses a Mutex object to make sure concurrent threads are not in
their critical sections at the same time when accessing the memory object. A Mutex does
this by serializing the thread access to the memory object. Only a single thread can be
the owner of a Mutex object, and while a thread has ownership, it can access the shared
resource. When the thread is done, the Mutex object will move to the next thread in line.
By using these objects we have created a thread-safe code, where multiple threads do not
have concurrent access to memory objects. Figure 6-12 shows this situation.

151



CHAPTER 6  10-RELATED WAIT TYPES

threads mutex object shared resource

0
‘I' ‘I"I' "’> "‘I! III
@

Figure 6-12. Thread waiting for a Mutex object to access a shared resource

A simplified example of this behavior is when you and a large group of other people
are waiting for a single ticket dispenser to buy a ticket to see your favorite rock band. In
this case the ticket dispenser is the shared resource, and only a single person can access
the ticket dispenser at a time. When we reach the ticket dispenser, we can get a ticket,
and the people behind us have to wait till it’s their time. After we have bought a ticket,
the next person in line gets access to the ticket dispenser.

We can also view this behavior in SQL Server, but to do this we have to make use of a
debugger (like WinDbg). Figure 6-13 shows how a thread in SQL server waits for a Mutex
since access to the memory object was granted to another thread. To capture this image I
used an Extended Event session that created a SQL Server mini-dump when a CMEMTHREAD
wait occurred. I then used WinDbg to open the mini-dump and returned the stack.

0:170> ln Ox000007FEF9F86059:1ln 0x000007FEF9F4219C; Iln 0x000007FEF9F41F03;1ln 0x000007FEF9F437AB;

(000007fe" £9£41400) sqldk!XeSosPkg: ‘vait_info: Publish+0x138 | (000007fe’ faD20930) sqldk
(000007fe " £9£41£70) sqldk!5S05_Scheduler UpdateVaitTimeStats+0x2bc | (000007fe £9£42250)

(000007fe" £9£41290) sqldk!S05_Task: :PostVait+0x9e | (000007fe  £9f4db60) sqldk!S0S_Task

(000007fe " £9£437=0) sqldk!EventInternal (SuspendQueueSLock): -Vait+0x2ca | (0000D7fe’ £9f43a6
(000007fe £9f6elal) sqldk!S0S_UnfairMutexPair: ' LongVWait+0x191 | (000007fe £9f6e400) sqld
(000007fe" £9£455d0) sqldk!1S05_UnfairMutexPair  AcquirePair+0x46 |  (000007fe"£9£45640) sq
(000007fe" £9£45970) sqldk !CMenThread<CHemObj > ' Alloc+0xbé | (000007fe’ f9fdeedl) sqldk !ICM

Figure 6-13. Example of a CMEMTHREAD wait occurring in a mini-dump

The important line here is the SOS_UnfairMutexPair::LongWait, which generates
the CMEMTHREAD wait because the thread we are monitoring here has to wait for
another thread that currently has access to the memory object. The line after that,
SOS_UnfairMutexPair::AcquirePair, means the thread received the Mutex, followed by
access to the memory object represented by CMemThread<CmemObj>: :Alloc.

152



CHAPTER 6  10-RELATED WAIT TYPES

Lowering CMEMTHREAD Waits

Since there are many different memory objects present in SQL Server that could
potentially generate CMEMTHREAD waits, there are many possible solutions to lowering
CMEMTHREAD wait times depending on the memory object that is being accessed.

One of the more common situations where CMEMTHREAD waits can occur is when large
amounts of short, concurrent, ad hoc queries are being executed. Every time an ad hoc
query is executed that could not be parameterized, the Query Optimizer will generate a
new execution plan for the query. All these new execution plans need to be entered into
the procedure cache, and a memory object for allocating cache descriptors is accessed.
Since the memory object is thread-safe, CMEMTHREAD waits can occur if the rate of insertion
is high enough. A good place to start looking if you suspect CMEMTHREAD waits are going to
occur because of ad hoc queries is the procedure cache. The query in Listing 6-4 will give
you information about the number of execution plans in the procedure cache.

Listing 6-4. Query procedure cache

SELECT

objtype,

COUNT BIG (*) AS 'Total Plans’,

SUM(CAST(size_in_bytes AS DECIMAL(12,2)))/1024/1024 AS 'Size (MB)'
FROM sys.dm_exec_cached plans
GROUP BY objtype;

The results of this query should look like Figure 6-14, though the numbers will be
different on your system.

obrt)'pe Total Plans  Size (MB)

1 Prepared | 36 12.585937
2 View | 316 43070312
3 Adhoc 350 45132812
4 Proc 6 0.500000

Figure 6-14. Results of querying procedure cache

153



CHAPTER 6  10-RELATED WAIT TYPES

We should focus on the number of ad hoc execution plans. If you see this number
growing rapidly and experience CMEMTHREAD waits, it might be worth the effort to analyze
some of those ad hoc queries. If possible, try to optimize the queries so they generate
areusable plan. If your application uses many dynamic queries then try to use the sp_
executesql system-stored procedure instead of the EXECUTE (EXEC) command. Using the
EXEC command will most likely result in a plan that will only be used once.

Microsoft has released various fixes (most notably the partitioning of certain
memory objects across CPUs) for this problem in SQL Server 2005 SP2, making it less
common these days. Even if you are using newer SQL Server editions than SQL Server
2005, it might be a good idea to upgrade to the latest available Service Pack since there
have been various memory-related bug fixes in every SQL Server edition.

CMEMTHREAD Summary

The CMEMTHREAD wait type is a memory-related wait type. CMEMTHREAD waits occur when
multiple threads try to access memory objects that can only be accessed by one thread at
atime. The time other threads spend waiting for their turn to access the memory object
is recorded as CMEMTHREAD wait time. One of the more common cases where CMEMTHREAD
waits can occur is when your system uses a high amount of ad hoc queries. Every time

a new execution plan is generated, SQL Server will access a memory object; if many
execution plans are generated this can lead to a queue of threads that want access to the
memory object, resulting in CMEMTHREAD waits.

10_COMPLETION

Just like the ASYNC_IO COMPLETION wait type, I0 COMPLETION waits occur when SQL
Server is waiting for storage-related actions to complete. And just like the ASYNC_I0 _
COMPLETION wait type, seeing high wait times of the I0_COMPLETION wait type doesn'’t
necessarily mean there is something wrong with your storage system. I0_COMPLETION
waits occur normally while your SQL Server instance is running and should only be a
concern if wait times are a lot higher than normal.

154



CHAPTER 6  10-RELATED WAIT TYPES

What Is the 10_COMPLETION Wait Type?

While the ASYNC_IO COMPLETION wait type is recorded when database-related actions are
performed, like a database backup, I0_COMPLETION waits occur when non-data pages are
involved, like the restore of a transaction log backup or when bitmap allocation pages,
like the GAM page, are accessed. IO_COMPLETION waits can also occur when queries
are being executed that perform read or write operations to the storage subsisted, like a
Merge Join operator.

10_COMPLETION Example

Let’s generate some I0_COMPLETION waits by restoring a transaction log backup. For this
example we will make use of the Adventurelorks database again. The query in Listing 6-5
will perform a full backup of the AdventurelWorks database, make some changes, and
perform a transaction log backup. When that is complete we will restore the full backup
again, clear the sys.dm_os wait_stats DMV, restore the transaction log backup, and
check for I0_COMPLETION waits.

Listing 6-5. Generate I0_Completion waits

-- Make sure AdventureWorks is in Full recovery model
ALTER DATABASE AdventureWorks SET RECOVERY FULL
Go

-- Perform full backup first

-- Otherwise FULL recovery model will not be affected
BACKUP DATABASE [AdventureWorks]

TO DISK = N'F:\Backup\AW_Full.bak'

GO

-- Make some changes to AW database
USE AdventureWorks
Go

UPDATE Person.Address
SET City = 'Portland’
WHERE City = 'Bothell’

155



CHAPTER 6  10-RELATED WAIT TYPES

-- Backup Transaction Log

BACKUP LOG [AdventureWorks]

TO DISK = N'F:\Backup\AW_Log.trn'
GO

-- Restore the previous full backup with NORECOVERY
USE [master]
Go

RESTORE DATABASE [AdventureWorks]
FROM DISK = N'F:\Backup\AW_Full.bak'
WITH NORECOVERY, REPLACE

GO

-- Clear sys.dm os wait stats
dbcc sqlperf ('sys.dm os wait stats', CLEAR)

-- Restore last Transaction Log backup
RESTORE LOG [AdventureWorks] FROM DISK = N'F:\Backup\AW_ Log.trn'
GO

-- Check IO COMPLETION waits
SELECT *

FROM sys.dm _os wait_stats

WHERE wait_type = 'IO_COMPLETION'

The results of this query against the sys.dm_os wait stats DMV on my test system
can be seen in Figure 6-15.

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms
1 | JO_COMPLETION | 132 8 1 0

Figure 6-15. I0_COMPLETION waits

We only modified a few records using the query in Listing 6-5, so the total wait time
is pretty low since the restore of the transaction log backup occurred fast.

156



CHAPTER 6  10-RELATED WAIT TYPES

I0 COMPLETION wait times also occur when you are starting up your databases
after, for instance, a restart of the SQL Server service. This means you should expect
I0_COMPLETION waits after a restart or a failover; these are completely normal. Also when
AUTO_CLOSE is enabled on a database (default in Express versions) and a database is
starting, you should experience IO_COMPLETION waits.

Lowering 10_COMPLETION Waits

Most of the time I0_COMPLETION waits shouldn’t be a cause for concern. When they are a
lot higher than the wait times in your baseline, you should analyze the storage subsystem
performance like I described in the “Lowering ASYNC_I0 COMPLETION” section. While
certain query operations can also cause I0_COMPLETION waits, these are frequently not
the cause for higher-than-normal wait times.

10_COMPLETION Summary

Just like the ASYNC_IO COMPLETION wait type, I0_COMPLETION waits occur when accessing
your storage subsystem. I0_COMPLETION waits occur when SQL Server is waiting on non-
data page operations to complete, like a transaction log restore operation or the reading
of bitmap pages, like the GAM page. Seeing waits of the I0_COMPLETION type occur

is completely normal and these frequently do not require deeper analysis unless the
wait times are a lot higher than the values in your baseline. In those cases focus on the
performance (and especially latency) of your storage subsystem first.

LOGBUFFER and WRITELOG

I have combined both LOGBUFFER and WRITELOG in this section. This is because both wait
types have a close relation to each other. Both of them are related to the transaction log
and the storage subsystem.

157



CHAPTER 6  10-RELATED WAIT TYPES

What Are the LOGBUFFER and WRITELOG Wait Types?

To understand what the LOGBUFFER and WRITELOG wait types represent, we need to
have some understanding of how SQL Server writes to the transaction log. In short, the
following events happen whenever we change or add data inside a database:

1. Data page where the data resides is modified in the buffer cache; if
the page wasn’t already in the buffer cache, it will get read into the
buffer cache first.

2. The data page will be marked as “dirty” inside the buffer cache.

3. Thelogrecords that represent the modification get saved in the
log buffer.

4. Alog flush occurs (this can be for multiple reasons, which we will
discuss later), writing the log records from the log buffer to the
transaction log.

5. The dirty data page gets written to the data file.

To show this behavior I have included Figure 6-16.

k D
/ dirty| "™ E..,

Data file

o

gl —
- Transaction

’\ - Log

Buffer Cache

|

|

TRANSACTION

Figure 6-16. How a transaction moves

158



CHAPTER 6  10-RELATED WAIT TYPES

The action representing the movement of a dirty data page and the action of writing
the log records to the transaction log are shown as dashed lines. I did this on purpose to
illustrate that both of these actions do not necessarily happen directly.

As you probably know, dirty data pages are updated inside the buffer cache first, and
are only written to the data file when a checkpoint operation occurs. This means that a
dirty page can stay inside the memory even after your transaction was committed.

This is not true for log records inside the log buffer. As soon as your transaction
commits, and that transaction has an active log record in the log buffer, all the log
records inside that log buffer are written (or flushed) to the transaction log on disk. But
this doesn’t only occur when the transaction is committed. The log buffer has a fixed size
of 60 KB, and as soon as the log buffer is full, it will flush all the records inside it to the
transaction log.

Let’s add both wait types we are discussing in this section to the story. The WNRITELOG
wait type occurs whenever SQL Server is flushing the contents of the log buffer to the
transaction log on disk. The LOGBUFFER wait type occurs when inserting log records in
the log buffer, when at the time of insertion SQL Server has to wait for free space inside
the log buffer. I have added both the wait types at the parts where they can get generated

in Figure 6-17.
) - QD
/ dirty . -

2 Data file
g R Buffer Cache

2 a
3 puiet "
E LOGBUFFER f/ 2 _ﬁ\ el - Tra"f;;t“’“
o N4

Figure 6-17. Transaction movement and the LOGBUFFER and WRITELOG wait
types

159



CHAPTER 6  10-RELATED WAIT TYPES

You can now probably see how both wait types are related. Whenever a long
WRITELOG wait occurs, chances are you will also see LOGBUFFER waits if the process that is
writing the log records to the transaction log on disk cannot process them as fast as the
log records enter the log buffer.

This situation frequently occurs on systems with a lot of concurrent data
modifications. This results in a high volume of transactions that need to be written to
disk. Another common cause is the performance of the storage subsystem where the
transaction log file resides. If the storage subsystem has suboptimal performance, your
WRITELOG wait times will increase, with the possibility existing that LOGBUFFER waits can
occur if the volume of transactions is high enough.

The performance of your transaction log is critical for the performance of your entire
database. Slow transaction log performance will have an impact on every change you
perform inside your database, as every modification has to be written to the transaction
log before it can get committed.

LOGBUFFER and WRITELOG Example

To give you an example of LOGBUFFER and WRITELOG waits occurring, I am creating a
new database using the script in Listing 6-6.

Listing 6-6. Create trans_demo database

USE master
GO

-- Create demo database

CREATE DATABASE [trans_demo]

ON PRIMARY
(
NAME = N'trans_demo', FILENAME = N'D:\Data\trans_demo.mdf' , SIZE =
153600KB , FILEGROWTH = 10%

)
LOG ON

(

NAME = N'trans_demo_log', FILENAME = N'D:\Log\trans_demo.ldf' , SIZE =
51200KB , FILEGROWTH = 10%

)

160



CHAPTER 6  10-RELATED WAIT TYPES
GO

-- Make sure recovery model is set to full
ALTER DATABASE [trans_demo] SET RECOVERY FULL
Go

-- Perform full backup first

-- Otherwise FULL recovery model will not be affected
BACKUP DATABASE [trans demo]

TO DISK = N'F:\Backup\trans_demo_ Full.bak'

GO

-- Create a simple test table
USE trans_demo
GO

CREATE TABLE transactions

(
t_guid VARCHAR(50)

)
GO

Now that we have created a brand new database, I am going to use the Ostress
utility to generate load against the trans_demo database. I am going to execute
the query in Listing 6-7, which I saved to the logbuffer_impl.sql file, with 200
concurrent connections using the following command "C: \Program Files\Microsoft
Corporation\RMLUtils\ostress.exe" -E -dtrans_demo -i"C:\logbuffer impl.sql"
-n200 -11 -q.

Listing 6-7. Insert rows inside the trans_demo database

DECLARE @i INT
SET @1 = 1

WHILE @1 < 10000

BEGIN

161



CHAPTER 6  10-RELATED WAIT TYPES

INSERT INTO transactions
(t_guid)

VALUES
(newid())

SET @1 = @i + 1
END

Before I started the Ostress utility, I cleared the sys.dm_os_wait_stats DMV.

After about 1 minute on my test SQL Server, the Ostress utility finished executing the
workload. If I query the sys.dm _os wait stats DMV and look for the LOGBUFFER and
WRITELOG wait types, I get the results shown in Figure 6-18.

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms
1 WRITELOG 2000883 6196758 127 4322304
2 LOGBUFFER 7 1480 M 213

Figure 6-18. WRITELOG and LOGBUFFER waits

Lowering LOGBUFFER and WRITELOG Waits

There are generally two approaches you can take to lowering LOGBUFFER and WRITELOG
waits, keeping in mind though that WRITELOG waits do also occur normally and its wait
time should only be a cause for concern if it is a lot higher than normal.

The first approach is to take a good look at how your transactions are being executed.
In the preceding example, we implicitly committed every INSERT statement. This means
that as soon as the log record for the INSERT statement entered the log buffer it needed
to be flushed again. If we would explicitly commit the whole WHILE loop we would have
larger writes to flush to the transaction log, resulting in better performance. This is
because writing small blocks frequently is generally slower than writing large blocks at
a larger interval. Cursors can also have the same effect as the example we used, so use
them as little as possible.

The other approach is based on the storage subsystem. If SQL Server cannot write
the log records fast enough, you can encounter LOGBUFFER and WRITELOG waits. As a
best practice, make sure to split your transaction log and database data files on separate
disks, so they do impact each other in times of heavy load. Also monitor the disk the

162



CHAPTER 6  10-RELATED WAIT TYPES

transaction log is located on using the disk-performance counters in Perfmon, like Avg.
Disk sec/write, to show you the write latency, and Disk Writes/sec, to show the write
IOPS and check if the values are inside the acceptable range.

If your SQL Server instance is running SQL Server 2014, you could choose to make
use of the Delayed Durability option, which was introduced in SQL Server 2014. In short,
enabling this option will no longer flush the log buffer content to disk when a transaction
commits, but rather will wait until the log buffer is full (60 KB) before flushing the contents
to the transaction log. By enabling this option, you are running a risk that transactions that
have committed, but have not yet been written to the transaction log, will be lost during a
failure since they will only be written to the transaction log when the log buffer is full.

LOGBUFFER and WRITELOG Summary

Both the LOGBUFFER and WRITELOG wait types are related to the way SQL Server processes
transactions. The WRITELOG wait type occurs every time a log record is written to

the transaction log and generally isn’t a cause for concern. When paired with high
LOGBUFFER wait times, high WRITELOG wait times can indicate transaction log pressure.

To lower those wait times try to avoid cursor and WHILE statements, since the statements
inside the cursor or WHILE clauses will often get implicitly committed, creating a

large amount of small writes. Also check your storage configuration to make sure the
transaction log isn’t on the same drive as the database data file. If high wait times still
occur, analyze the performance of the disk on which your transaction log is located.

RESOURCE_SEMAPHORE

The RESOURCE_ SEMAPHORE wait type is a memory-related wait type that can show itself
when a query-memory request cannot be granted immediately. These waits can
occur on servers that are experiencing memory pressure, or when a great number of

concurrent queries request memory for expensive operations like sorts or joins.

What Is the RESOURCE_SEMAPHORE Wait Type?

When a query is executed in SQL Server, a series of steps occur before the actual
execution. The first step involved is that a compiled plan is generated. This plan contains
the logical instructions, or operations, needed to fulfill the query requests. During the

163



CHAPTER 6  10-RELATED WAIT TYPES

generation of the compiled plan, a calculation is performed to determine the amount of
memory needed to execute the query, which depends on the operations involved in the
compiled plan. Some of the operations that require memory are sorts and joins, which
temporarily store row data in the memory of the SQL Server. The minimum amount

of memory needed to perform these sorts or joins is known as the required memory,
without which the query simply cannot get executed. If more memory is needed to
store row data in memory during a sort, for instance, it will be calculated as additional
memory. Without this additional memory, a query can still get executed, but instead of
writing the temporary row data to memory, it will write it to disk.

When the query gets executed, a memory grant will be determined based on the
required and additional memory values calculated in the compiled plan. This memory
grant is needed in order to perform a memory reservation at an internal object called the
resource semaphore. The resource semaphore is responsible for reserving the memory
a query needs for execution, but it also manages memory throttling when too many
queries concurrently ask for memory reservations or when there is not enough memory
available at that time. It does this by maintaining a queue of queries that are requesting
memory. If there are no queries inside the queue and a new query requests memory,
the resource semaphore will grant it to the query (if enough free memory is available).
However, if there is a queue the new query will be put at the end of the queue, and it has
to wait for its turn to receive a memory grant.

Before the resource semaphore will grant the requested memory to a query, it will
check whether there is enough free memory to execute it. If, for some reason, there is
less memory available than the amount requested by the query, the query will be put in
the queue again until enough memory is available. When a query is inside the resource
semaphore queue waiting for its requested memory, the time it spends inside the queue
will be recorded as the RESOURCE_SEMAPHORE wait type.

There is a maximum amount of memory available for the resource semaphore to use,
and it is allocated from the buffer cache. The resource semaphore can allocate up to 75%
of the memory from the buffer cache for memory grants, but a single query can never get
more than 25% of that amount. For instance, if we have a SQL Server with a buffer cache
that can grow to 500 MB, we would have a maximum of 375 MB for memory grants. A
single query in this example can never receive more than 93 MB. Having that much
memory being possibly granted to queries can be problematic, since that memory is not
being used for the buffer cache, meaning more IOs to the storage subsystem are needed
to retrieve and write data pages.

164



CHAPTER 6  10-RELATED WAIT TYPES

RESOURCE_SEMAPHORE Example

For this example we are going to execute a query against the AdventureWorks database
that involves a sort operation. As I mentioned in the previous section, a query that
involves a sort will request memory from the resource semaphore so as to perform the
sort operation. We will also use the Ostress tool to create a situation where multiple
queries are requesting memory, creating a queue at the resource semaphore.

Let’s take a look at the query and the memory grant information that we will be
executing in Listing 6-8.

Listing 6-8. Sort query against the AdventureWorks database

SELECT
SalesOrderID,
SalesOrderDetaillD,
ProductID,
CarrierTrackingNumber
FROM
Sales.SalesOrderDetail
ORDER BY CarrierTrackingNumber ASC

As you can see, this is a relatively simple query that returns some information from
the Sales.SalesOrderDetail table, ordered by the CarrierTrackingNumber.

If we enable the Include Actual Execution Plan option and execute the query, we can take
alook at the amount of memory that was needed to execute it. The results on my test SQL
Server are shown in Figure 6-19. You can access these properties by showing the Properties
window (View » Properties Window) or by pressing F4 and selecting the SELECT operator.

B MemoryGrantinfo
DesiredMemory

GrantedMemory

GrantWaitTime 0
MaxQueryMemory 416584
MaxUsedMemory 2608
RequestedMemory 13568
RequiredMemory 512
SenalDesiredMemory 13568
SerialRequiredMemory 512

Figure 6-19. MemoryGrantinfo inside the properties of the execution plan

165



CHAPTER 6  10-RELATED WAIT TYPES

Because we requested the actual execution plan, we can also see the amount of
memory that was granted to the query for execution. In this case the query got 13,568 KB
(13.5 MB) granted by the resource semaphore, as shown in the GrantedMemory property.
The minimal amount of memory needed to execute the query, the required memory,
was 512 KB, shown by the RequiredMemory property. The query asked for 13,568 KB, as
shown in the DesiredMemory property, which is the sum of the required and additional
memory. We can see the query received what it asked for, since both the GrantedMemory
and DesiredMemory have the same value.

There are two other properties in Figure 6-19 I would like to point out, the
SerialDesiredMemory and the SerialRequiredMemory properties. In the case of
this query, both these properties have the same values as the DesiredMemory and
RequiredMemory properties. This is because the query was performed without using
parallelism. When you use parallelism in your queries, more memory is needed to
perform the sort operation since work is split up among threads. Figure 6-20 shows the
MemoryGrantInfo properties when I forced the query in Listing 6-8 to use parallelism,
spreading the work among four threads.

=] MemoryGrantInfo _]

un wn
(

Figure 6-20. MemoryGrantInfo properties when executing a parallel query

Asyou can see, the SerialRequiredMemory has the same value as when we executed
the query serially. The RequiredMemory and RequestedMemory have increased in size
so that the sort operation can be completed using parallelism. You should keep this
information in mind when you run into memory-related issues and when many of your
queries involve sort and join operations that are performed using parallelism, since
parallelism simply requires more memory.

166



CHAPTER 6  10-RELATED WAIT TYPES

Now that we know how much memory is needed to execute the query in Listing 6-8,
let’s use Ostress to execute the query using multiple connections. Before I start Ostress, I
must change the maximum server memory value to 250 MB using the following query:

EXEC sys.sp_configure N'max server memory (MB)', N'250'
Go

RECONFIGURE WITH OVERRIDE

Go

I saved the query in Listing 6-8 to a .sql file named resource_semaphore.sql and
executed Ostress using the following command line: "C: \Program Files\Microsoft
Corporation\RMLUtils\ostress.exe" -E -dAdventureWorks -i"C:\resource
semaphore.sql" -n20 -r1 -q

This will execute the resource_semaphore.sql script against the AdventureWorks
database with 20 concurrent connections, with each connection performing the query
one time.

While Ostress is running, I query the sys.dm_os waiting tasks DMV, looking for
RESOURCE_SEMAPHORE waits; some of the results are shown in Figure 6-21.

waiting_task_address session_id exec_context_id wait_duration_ms  wait_type

4 0<000000825B7A8CAE 88 0 4736 RESOURCE_SEMAPHORE
5 (<000000825B7A8CA8 88 0 4736 RESOURCE_SEMAPHORE
6 (<00000082504D2108 S0 0 4736 RESOURCE_SEMAPHORE
7 (<00000082504D2108 S0 0 4736 RESOURCE_SEMAPHORE
8 (x0000008251E83848 91 0 4736 RESOURCE_SEMAPHORE
S (x0000008251E89848 91 0 4736 RESOURCE_SEMAPHORE
10  (x0D0000825B7A9848 93 0 4736 RESOURCE_SEMAPHORE
11 (x00D0000825B7A9848 93 0 4736 RESOURCE_SEMAPHORE

Figure 6-21. RESOURCE_SEMAPHORE waits in the sys.dm_os_waiting tasks DMV

Because we set our maximum server memory to 250 MB, and each query requests
13.25 MB memory, we do not have enough memory free to grant all the memory requested.
This will result in the RESOURCE_SEMAPHORE wait type you can see in Figure 6-21.

167



CHAPTER 6  10-RELATED WAIT TYPES

There are various other resources we can use to analyze RESOURCE_SEMAPHORE
waits. The resource semaphores themselves have their own DMV, sys.dm_exec_query
resource_semaphores, which will return information about their memory consumption
and outstanding and waiting grants. Figure 6-22 shows the results of the query that
follows against the sys.dm exec_query resource semaphores DMV, while running the
Ostress workload:

SELECT

target memory kb,

max_target memory kb,

total memory kb,

available_memory kb,

granted _memory kb,

grantee count,

waiter count
FROM sys.dm_exec_query resource_semaphores
WHERE pool id = 2

I am filtering out pool id 1 because this pool will not handle user queries.

target_memory_kb  max_target_memory_kb total_memory_kb avaiable_memory_kb granted_memory_kb grantee_count waler_count
1 40360 187240 40360 13224 27136 2 18
2 5120 NULL 5120 5120 0 0 0

Figure 6-22. sys.dm_exec_query_resource_semaphores

As you might have noticed, two rows are returned. This is because there are actually
two different resource semaphores. The top row is the “regular” resource semaphore.
This will handle queries that request more than 5 MB memory. The second row
(identified by the NULL value of the max_target _memory kb column) returns information
for the “small” resource semaphore, which handles queries that are smaller than
5 MB. Because our query requested more than 5 MB of memory, we will receive our
memory grants from the regular resource semaphore.

168



CHAPTER 6  10-RELATED WAIT TYPES

Let’s go through the various columns that are returned by the query against the sys.

dm_exec_query resource semaphore DMV:

The target_memory kb column returns the amount of memory in KB
that this resource semaphore plans to use as a maximum amount of
memory it can grant to queries.

The max_target memory kb column returns the maximum amount of
memory this resource semaphore could grant.

The total memory kb column returns the total memory held by the
resource semaphore and is the sum of the available _memory kb and
the granted_memory kb.

The granted_memory_kb returns the amount of memory that is
granted to queries at this time.

The grantee_count and waiter_count columns return the amount of
grants that have currently been satisfied or are waiting in the resource
semaphore queue.

From this information we can see that the information returned by the granted _

memory_ kb column is correct, and that our test queries are requesting the memory grants.

We know from the execution plan that our test query will request 13,568 KB. Since the

grantee_count column shows us that two memory requests are granted, we can multiply

the amount of memory requests with the amount of memory per query (2 x 13,568 KB),

which ends up being 27,136 KB, the amount of granted memory in Figure 6-22.

We can also use Perfmon to monitor the total size of the granted memory by looking

at the SQLServer:Memory Manage\Granted Workspace Memory (KB) counter, as shown

in Figure 6-23.

169



CHAPTER 6  10-RELATED WAIT TYPES

30_

20+

10

0 L 2 T T
10:49:11 AM 10:49:44 AM 10:50:14 AM

Last 0.000 Average 7,141.053 Minimum 0.000 Maximum | 27,136.000

Show Color Scale Counter Instance Parent Object
| 0.0001 Granted Workspace Mem... - SQLServer:Memory Ma

Figure 6-23. Granted Workspace Memory (KB) Perfmon counter

Notice the spike in Figure 6-23, which occurred when I executed the Ostress
workload, and just as in the results in Figure 6-22, the amount of memory granted was
27,136 KB.

Lowering RESOURCE_SEMAPHORE Waits

There are various possible methods you can use to lower, or even resolve, the wait times
of the RESOURCE_SEMAPHORE wait type. The most obvious one would be adding more
memory, but this can end up being an expensive solution while other less expensive
options exist.

The first possible solution would be to look at the queries that are requesting large
amounts of memory for their execution. You should focus on the queries that are
performing large sorts or joins (especially hash joins) and check whether you can lower
the number of rows that need to be sorted or joined, or avoid the sort or join completely.
One way to avoid a sort operation would be to add an index to the table where the sort
is performed. If the order of values inside the index were the same as the sort operation,
a sort operation would no longer be necessary, since the index would already have
ordered the results.

Another solution involves parallelism. If queries use parallelism during sort or
join operations, more memory is requested than when the query is executed serially.
Modifying queries so they don’t use parallelism, by either using query hints or changing
the parallelism configuration for the whole SQL Server instance, will result in lower
amounts of memory being required to execute the queries.

170



CHAPTER 6  10-RELATED WAIT TYPES

Finally, if you are running an Enterprise Edition of SQL Server, you could use
the resource governor feature to configure the memory usage of each resource pool.
By configuring the amount of memory a certain resource pool can use, you can also
set the amount of memory a resource semaphore can grant. We won’t go into detail
about the resource governor feature in this book, but more information can be found
on the MSDN page of the resource governor with the following hyperlink:
https://msdn.microsoft.com/en-us/library/bb933866.aspx.

RESOURCE_SEMAPHORE Summary

The RESOURCE_SEMAPHORE wait type is related to the amount of memory a query needs to
perform certain operations, like sorts and joins. An object, named a resource semaphore,
is responsible for managing and throttling the memory requests of queries. If a query
requests more memory than the resource semaphore can grant, the memory request
will be moved into the resource semaphore queue. While the memory request is inside
the resource semaphore queue, RESOURCE_SEMAPHORE wait times are recorded. There are
various methods to lower or resolve RESOURCE_SEMAPHORE waits. You can choose to add
more memory to the SQL Server instance or optimize the queries so sorts and joins do
not require as much memory. Another option is using the resource governor, where you

can define resource pools so as to minimize the impact of large memory requests.

RESOURCE_SEMAPHORE_QUERY_COMPILE

In the previous section we discussed the RESOURCE SEMAPHORE wait type, which indicates
that there is not enough free memory available for certain query operations like sorts
and joins. Just like the RESOURCE_SEMAPHORE wait type, the RESOURCE_SEMAPHORE_QUERY _
COMPILE wait type is also related to the memory of your SQL Server instance. But instead
of indicating a shortage in query memory, the RESOURCE_SEMAPHORE _QUERY COMPILE wait
type indicates a memory shortage during the compilation process of the query.

171


https://msdn.microsoft.com/en-us/library/bb933866.aspx

CHAPTER 6  10-RELATED WAIT TYPES

What Is the RESOURCE_SEMAPHORE_QUERY_COMPILE
Wait Type?

In the explanation of the RESOURCE SEMAPHORE wait type, we discussed what resource
semaphores are and what they do. For the explanation of the RESOURCE_SEMAPHORE _
QUERY_COMPILE wait type, we are going to dive a little deeper into the inner workings of
the resource semaphore.

You should think of resource semaphores as “gateways” that throttle direct access
to memory resources. There are different tasks a resource semaphore can do. In the
previous section we discussed the resource semaphores that were responsible for granting
memory for certain operations, like sorts and joins. We also noted that there are two
resource semaphores that are responsible for granting this memory—the regular resource
semaphore that handles queries that request 5 MB or more memory and the small resource
semaphore that handles memory grants for queries that request less than 5 MB memory.

The resource semaphores that are related to the RESOURCE_SEMAPHORE _QUERY_
COMPILE wait type are responsible for memory grants that are needed during the
compilation process of a query, excluding the memory needed for query execution. Just
like the resource semaphores in the previous section, the ones responsible for memory
grants during the compilation process also have different gateways. Figure 6-24 shows
the different gateways for the compilation-memory resource semaphore.

number of logical
processors

4x number of logical
processors

o0

Number of concurrent compilations

Figure 6-24. Compilation-memory resource semaphore

172



CHAPTER 6  10-RELATED WAIT TYPES

By default there are three gateways: small, medium, and big. Depending on the
amount of memory the compilation of a query needs, it will get assigned to either of
the three. If the amount of memory needed for compilation is less than the memory
threshold for the small gateway, the query does not have to pass through a gateway.

The amount of concurrent compilations, or queries, that can move through the gateway
simultaneously is calculated by the number of logical processors available for your SQL
Server instance. For example, if your SQL Server instance has four logical processors, the
small gateway will allow 16 concurrent compilations and the medium gateway 4. The big
gateway will always only allow one query at a time to compile.

The memory threshold for the small gateway is static, but for the medium and big
gateways the thresholds are dynamic. This means that the compilation memory needed
to reach the medium or big gateways can change during the runtime of your SQL Server
instance.

The whole purpose of these gateways is to ensure that the need for compilation
memory stays under control. This avoids out-of-memory situations in cases where many
large compilation-memory requests would automatically be granted and would drain
the SQL Server instance of its memory.

Before we continue and take a look how we can access gateway information from
inside SQL Server, let’s go through an example of a query compilation.

Say we have a query that needs 1560 KB of compilation memory. The query will
start by requesting a gateway. Since our small gateway has a threshold of 370 KB and our
medium gateway has a threshold of 5346 KB, the query will end up in the small gateway.
If there are any queries currently in a queue at the small gateway, the query will enter the
queue and wait until its turn, all the time logging RESOURCE_SEMAPHORE_QUERY_COMPILE
wait time. While the query is getting compiled, the amount of memory used during
the compilation is tracked; if the query ends up using more memory and reaches the
threshold of the medium gateway, it will get moved to the medium gateway. When the
query compilation is finished, it will be removed from the gateway.

We can access information about the resource semaphore gateways from inside SQL
Server by executing the DBCC MEMORYSTATUS command. Somewhere in the enormous
amount of results you will find the gateway information as shown in Figure 6-25.

173



CHAPTER 6  10-RELATED WAIT TYPES

Small Gateway (ntemal) Value

1 | Configured Units i 8

2 Available Units 8

3 Acquires 0

4 Waiters 0

5 Threshold Factor 380...
6 Threshold 380...

Medium Gateway (intemal) Value

1 Configured Units i 2
2 Available Units 2
3 Acquires 0
4 Waiters 0
5 Threshold Factor 12
6 Threshold -1

Figure 6-25. Gateway information returned by the DBCC MEMORYSTATUS
command

Let’s go through the results that are returned for the gateways.

The Configured Units row returns the maximum amount of concurrent
compilations allowed for this gateway. This is determined by the number of logical
processors available for your SQL Server instance. Because my test SQL Server has
two logical processors, I have eight slots for the small gateway (4 x logical number of
processors) and two for the medium gateway. The Available Units row shows the
number of currently free slots for this gateway, while the Acquires row shows the slots
currently taken by compilations. The number of queries that have to wait for a free slot
are shown in the Waiters row. The Threshold value is the amount of memory in bytes
that a query compilation would need in order to enter the gateway. For my test SQL
Server system, the small gateway has a threshold of 380,000 bytes, or 371 KB. As you
might notice in Figure 6-25, the medium gateway has a threshold of —1. This is because
of the dynamic nature of the thresholds of the medium and big gateways. Since there is
no activity at the gateway below the medium one, there is no need to set a threshold yet.

RESOURCE_SEMAPHORE_QUERY_COMPILE Example

To show you an example of RESOURCE_SEMAPHORE_QUERY_COMPILE waits in
action, I am going to execute the query in Listing 6-9 multiple times, using many
concurrent connections. The query is a dynamic query that selects a random row from
two joined tables inside the AdventureWorks database. In this case it doesn’t matter if

174



CHAPTER 6  10-RELATED WAIT TYPES

any results are returned or not—the thing we are trying to achieve here is the creation of

compilation-memory contention.

Listing 6-9. RESOURCE_SEMAPHORE_QUERY_COMPILE wait query

DECLARE @ID VARCHAR(250)
DECLARE @SQL VarChar(MAX)
SET @ID = FLOOR(RAND()*(20000-1)+1);

SET @SOL =
SELECT
'+ @ID + ',
SUM(soh.SubTotal),
COUNT(soh.SubTotal)
FROM sales.SalesOrderHeader soh
INNER JOIN person.Person p
ON soh.SalesPersonID = p.BusinessEntityID
WHERE p.BusinessEntityID = ' + @ID + '

EXEC (@SQL)

Before we execute the query with many concurrent connections, let’s check how
much compilation memory would be needed. We can do this by executing the query in
Listing 6-9 in SQL Server Management Studio and enabling the actual execution plan.

After executing the query and opening the actual execution plan, we need to look at
the CompileMemory property. You can access these properties by showing the Properties
window (View » Properties Window) or by pressing F4 and selecting the SELECT
operator. Figure 6-26 shows the actual execution plan properties on my Test SQL Server.

a
CompileMemory 408

Figure 6-26. Miscellaneous execution plan properties

175



CHAPTER 6  10-RELATED WAIT TYPES

The value returned by the CompileMemory property is the amount of compile
memory needed expressed in KB. For this query 408 KB is needed for compilation. The

threshold for the small gateway on my Test SQL Server was 371 KB, so I am pretty sure

the query will access the small gateway.

Again, we are going to use the Ostress utility to generate the needed concurrent

connections to execute the query. I saved the query to the resource_semaphore

compile.sql file and then used that file as input for the following Ostress command.

Because the query is very fast, I let every connection execute it 100 times so that we have

some time to look at the wait statistics.

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E
-dAdventureWorks -i"C:\resource semaphore compile.sql" -n200 -r100 -q

After a few seconds many RESOURCE_SEMAPHORE_QUERY_COMPILE waits can be seen in
the sys.dm_os_waiting tasks DMV, as shown in Figure 6-27.

waiting_task_address

. (x00000082570888CS

<00000082570888C8
(<00000082570888C8
(x000000825A5C48CE
(<000000825A9C48C8
(x000000825A5C48C8
(000000825DD01C28
(<000000825DD01C28
(<000000825DD01C28
(x000000825A9C4CAS
11 (x000000825ASCACAS

W 0 ~ oW oW N =

—_
(=

session_id  exec_context_id
i 288

288
288
167
167
167
92

52

g2

21
21

o0 000000000

wait_duration_ms

215
215
215
212
212
212
169
169
169
204
204

wait_type

RESOURCE_SEMAPHORE_QUERY_COMPILE
RESOURCE_SEMAPHORE_QUERY_COMPILE
RESOURCE_SEMAPHORE_QUERY_COMPILE
RESOURCE_SEMAPHORE_QUERY_COMPILE
RESOURCE_SEMAPHORE_QUERY_COMPILE
RESOURCE_SEMAPHORE_QUERY_COMPILE
RESOURCE_SEMAPHORE_QUERY_COMPILE
RESOURCE_SEMAPHORE_QUERY_COMPILE
RESOURCE_SEMAPHORE_QUERY_COMPILE
RESOURCE_SEMAPHORE_QUERY_COMPILE
RESOURCE_SEMAPHORE_QUERY_COMPILE

Figure 6-27. RESOURCE_SEMAPHORE _QUERY_COMPILE waits

If we now execute the DBCC MEMORYSTATUS command we should be able to find out
at what gateway the compilation contention is occurring. Figure 6-28 shows the gateway
output of the DBCC MEMORYSTATUS command on my test SQL Server.

176



CHAPTER 6  10-RELATED WAIT TYPES

Small Gateway (default) Value

1 Configured Units {8

2 Availsble Units 0

3 Acquires 6

4 Waiters 2

5 Threshold Factor 380000

6 Threshold 320000
Medium Gateway (default) Value

1 | Corfigured Units | 2

2 Available Units 2

3 Acquires 0

4 Waiters 0

5 Thresheld Factor 12

6 Threshold 7041820

Figure 6-28. DBCC MEMORYSTATUS during compilation contention

Asyou can see in Figure 6-28, if we look at the number of Available Units, there
are no available slots left for new compilation-memory requests. As a matter of fact, we
have 22 compilation-memory requests waiting in the resource semaphore queue. Also
note that the threshold of the medium gateway has now changed from -1 to 7,041,820
bytes (6876 KB). Now that contention is occurring on a lower gateway, the threshold for
the medium gateway is dynamically determined, even though there are no compilation-
memory requests being processed by this gateway.

Lowering RESOURCE_SEMAPHORE_QUERY_COMPILE
Waits

The methods you can use to lower the wait times of the RESOURCE_SEMAPHORE_QUERY_
COMPILE wait type are in many cases the same as those that you would use to lower or
resolve RESOURCE_SEMAPHORE waits. Just like the RESOURCE_ SEMAPHORE wait type, the
RESOURCE_SEMAPHORE_QUERY_COMPILE wait type is memory related, so if you can increase
the total amount of memory available for query compilation, chances are you will lower
or resolve RESOURCE_SEMAPHORE_QUERY_COMPILE wait times. Increasing memory is,
however, in many cases the last resort.

Because we can access very specific information about the gateways of the
resource semaphore that is dealing with the compilation memory by using the
DBCC MEMORYSTATUS command, a good first step is to analyze the usage patterns of
the gateways. If you notice that one specific gateway constantly has waiting memory
requests, then the memory threshold of that gateway, or the maximum allowed amount

177



CHAPTER 6  10-RELATED WAIT TYPES

of concurrent compilation-memory requests, should give you some hints about the

root cause. For instance, if you notice many queued compilation-memory requests at
the big gateway (which only allows one query at a time), the source of your RESOURCE
SEMAPHORE_QUERY_COMPILE wait times may be the queries that request a large amount of
compilation memory. Another cause may be a large number of concurrent queries that
all need to access the small gateway, which was the case in our example, causing a queue
at the gateway.

In these cases you should find the specific queries that cause the queues at the
gateways and try to optimize them, either by lowering the amount of compilation
memory or by making sure fewer compilations happen. The latter can be done by
making sure your queries are being parameterized correctly. Queries that generate ad
hoc plans every time they are executed can be a cause of RESOURCE_SEMAPHORE QUERY _
COMPILE waits, especially if they are executed very frequently and concurrently. Jonathan
Kehayias of SQLskills has written an excellent blog post on how you can query the plan
cache to detect heavy compilation queries; it can be found at www.sqlskills.com/
blogs/jonathan/identifying-high-compile-time-statements-from-the-plan-
cache/. Using the script in Jonathan'’s blog post should help you with detecting those
queries that require a large amount of compilation memory.

If your SQL Server is under memory pressure, it is also possible to see RESOURCE _
SEMAPHORE_QUERY_COMPILE waits occur. This happens because of the dynamic
compilation-memory thresholds of the medium and big gateways. If SQL Server is
under memory pressure, the thresholds of both these gateways will lower, giving more
queries the chance to use the medium or big gateways. But because the medium and
big gateways allow fewer concurrent compilations, in the small gateway the available
concurrent slots will be filled faster.

Just as with the RESOURCE_ SEMAPHORE wait type, you can use the resource governor
to split workloads into specific resource pools. Each resource pool will have its own
resource semaphores responsible for granting compilation memory, making it possible
to split heavy compilation-memory usage across multiple resource pools.

RESOURCE_SEMAPHORE_QUERY_COMPILE Summary

Just like the resource semaphores that are needed to grant memory requests for specific
query operations, resource semaphores exist for access to compilation memory. These
resource semaphores throttle access to compilation memory through the usage of
gateways. When a query is compiled, it will approach a gateway based on the amount

178


http://www.sqlskills.com/blogs/jonathan/identifying-high-compile-time-statements-from-the-plan-cache/
http://www.sqlskills.com/blogs/jonathan/identifying-high-compile-time-statements-from-the-plan-cache/
http://www.sqlskills.com/blogs/jonathan/identifying-high-compile-time-statements-from-the-plan-cache/

CHAPTER 6  10-RELATED WAIT TYPES

of compilation memory it needs. The gateway can then grant the compilation memory
requested or put the request in a queue if there are more requests that concurrently want
to access the gateway. When a query is waiting inside one of these queues, the RESOURCE __
SEMAPHORE_QUERY_COMPILE wait type is recorded.

Resolving or lowering RESOURCE_SEMAPHORE_QUERY_COMPILE wait times is commonly
achieved by either freeing up more memory or by lowering the compilation-memory
needs of queries.

SLEEP_BPOOL_FLUSH

The SLEEP_BPOOL_FLUSH wait type is directly related to the checkpoint process inside
SQL Server. The checkpoint process is responsible for writing modified, or “dirty,’

data pages from the buffer pool to the database data file on disk. So next to having a
close relationship with the checkpoint process, SLEEP_BPOOL_FLUSH waits also have
arelationship with the performance of your storage subsystem. If we search for the
definition of the SLEEP_BPOOL_FLUSH wait type on Books Online, Microsoft describes the
wait type as occurring “when a checkpoint is throttling the issuance of new I/Os in order
to avoid flooding the disk subsystem.”

It is pretty common to see SLEEP_BPOOL_FLUSH waits occur, and frequently they will
not indicate a problem. There are, however, cases where SLEEP_BPOOL FLUSH waits can
indicate performance problems that are related to either the checkpoint process or the
storage subsystem.

What Is the SLEEP_BPOOL_FLUSH Wait Type?

To get a better understanding of how the SLEEP_BPOOL_FLUSH wait type gets recorded, we
need an understanding of how the checkpoint process works inside SQL Server.

The checkpoint process is an internal SQL Server process that is responsible for
writing modified (dirty) pages from the buffer cache to the database data file. One of
the main reasons for this is to speed up recovery of your database when an unexpected
failure occurs. When an unexpected failure occurs, SQL Server needs to go back to
the state that existed before the failure. It will do this by using the contents of the
transaction log to redo, or undo, changes that were made to data pages. If the data page
was modified, but the change was no yet written to the database data file, SQL Server
will need to redo the change to the data page. If a checkpoint already wrote the changed

179



CHAPTER 6  10-RELATED WAIT TYPES

data page to the database data file, this step is not needed, which speeds up the recovery
process for the database because SQL Server knows the data was written to the database
data file. Figure 6-29 shows the (simplified) process that happens when a data page gets

modified.
CHECKPOINT ‘
— @ > D

Buffer Cache

U

(

Database data file

v*

Transaction Log

Figure 6-29. Data modification process

The first thing that happens when a data page is modified by a committed
transaction is that the change will be recorded in the transaction log (first in the log
buffer then to disk as described in the WRITELOG and LOGBUFFER wait types section).
The modification of the data page will happen in the buffer cache, and the data page
will be marked as dirty (red page icon). When a checkpoint occurs, which can be for
multiple reasons as we will discuss later, all of the data pages that have been marked
as dirty since the previous checkpoint will be written to the physical database data file
on your storage subsystem, regardless of the state of the transaction that created those
dirty pages (green page icon).

The checkpoint process is executed by SQL Server automatically roughly once
every minute, which is the default recovery time interval if you are a lower version of
SQL Server than SQL Server 2016. This does not mean that a checkpoint will occur
every minute exactly. The values you can specify for the recovery interval are the
upper time limit at which a checkpoint should occur, the checkpoint process analyses
of the outstanding I/O requests, and latency; throttle checkpoint operations to avoid
overloading the storage subsystem.

180



CHAPTER 6  10-RELATED WAIT TYPES

The following list will describe the various checkpoint types available in SQL Server:

e The internal checkpoint type is not configurable and occurs
automatically when certain actions are performed; for instance, a
database backup.

e Automatic: These are the default checkpoints, on SQL Server version
lower than 2016, that occur roughly every minute when left at their
default value of 0. We can change the interval of the checkpoint
process by changing the recovery interval configuration option
under the Server Properties » Database Settings page in SQL Server
Management Studio. We can only change it to a value in minutes, and
it will be used for all databases inside the SQL Server instance.

e Manual: You can manually cause checkpoints to occur by issuing the
CHECKPOINT T-SQL command. Optionally, you can specify the time
in seconds at which the checkpoint must be completed. If you do
issue a manual checkpoint, it will run in the context of the current
database. For example, executing CHECKPOINT 10 in a query window
will perform a checkpoint within 10 seconds of the time you executed
the query.

e Indirect: SQL Server 2012 added an extra option to configure
checkpoint intervals on a per-database level. Configuring this option
to a value greater than the default 0 will overwrite the automatic
checkpoint process for the specific database. You can use indirect
checkpoints for a specific database by using the following command:
ALTER DATABASE [db name] SET TARGET RECOVERY TIME = [time
in seconds or minutes].

o With the release of SQL Server 2016 Indirect Checkpoint became the
new default setting of the Checkpoint process (with the value of 60).

As I mentioned before, SQL Server will attempt to throttle the checkpoint process to
avoid overloading the storage subsystem if it believes this is necessary. It monitors the
number of outstanding requests to the storage subsystem and tries to detect if there is any
latency. Using this information, it will throttle the amount of IOs the checkpoint process
generates so as to avoid a too-heavy load on the storage subsystem. When the checkpoint
process is getting throttled, the SLEEP_BPOOL_FLUSH wait type will be recorded.

181



CHAPTER 6  10-RELATED WAIT TYPES

SLEEP_BPOOL_FLUSH Example

The following example shows the impact of the SLEEP_BPOOL_FLUSH wait type on SQL
Server versions lower than SQL Server 2016. As mentioned earlier, in SQL Server 2016,
the way SQL Server handles the Checkpoint process has changed which means it is far
less likely for the wait type to show up in an example like the following.

Generating SLEEP_BPOOL_FLUSH waits is relatively simple, and the script in Listing 6-10,
which is almost the same one as we used for the LOGBUFFER and WRITELOG wait types, will
put pressure on the checkpoint process such that SLEEP_BPOOL_FLUSH waits will occur.

Listing 6-10. Generate SLEEP_BPOOL_FLUSH waits

USE trans_demo
GO

DECLARE @i INT
SET @1 = 1

WHILE @i < 100
BEGIN

INSERT INTO transactions
(t_guid)

VALUES
(newid())

SET @1 = @1 + 1

-- Force a checkpoint to occur within 1 second
CHECKPOINT 1

END

Since we are also using the same database as in the LOGBUFFER and WRITELOG wait
types example, Listing 6-11 shows the script to create the database if it doesn’t exist
already.

182



CHAPTER 6  10-RELATED WAIT TYPES

Listing 6-11. Create trans_demo database

USE master
GO

-- Create demo database
CREATE DATABASE [trans_demo]

ON PRIMARY
(
NAME = N'trans_demo', FILENAME = N'D:\Data\trans_demo.mdf' ,
SIZE = 153600KB , FILEGROWTH = 10%
)
LOG ON
(
NAME = N'trans_demo_log', FILENAME = N'D:\Log\trans_demo.ldf' ,
SIZE = 51200KB , FILEGROWTH = 10%
)
GO

-- Make sure recovery model is set to full
ALTER DATABASE [trans demo] SET RECOVERY FULL
GO

-- Perform full backup first

-- Otherwise FULL recovery model will not be affected
BACKUP DATABASE [trans demo]

TO DISK = N'F:\Backup\trans_demo_ Full.bak'

GO

-- Create a simple test table
USE trans_demo
GO

CREATE TABLE transactions

(
t_guid VARCHAR(50)

)
GO

183



CHAPTER 6  10-RELATED WAIT TYPES

What the script in Listing 6-10 will do is perform an insert of a random GUID into the
transactions table inside a loop that is executed 100 times. Every time it enters a new
GUID, it will issue a CHECKPOINT command with a time limit of 1 second. This forces the
checkpoint process to perform a checkpoint within the 1-second time limit.

Before running the script in Listing 6-10, I cleared the sys.dm_os wait_stats DMV
using the DBCC SQLPERF('sys.dm os wait stats', CLEAR) command.

After almost 70 seconds the script completed on my test SQL Server. I then executed
the following query to take a look at the SLEEP_BPOOL_FLUSH wait times:

SELECT *
FROM sys.dm os wait stats
WHERE wait_type = 'SLEEP BPOOL FLUSH';

The results of the query can be seen in Figure 6-30.

_wat_type wating tasks count | wat_time_ms | max_wat_time_ms | signal_wat time ms |
1 SLEEP_BPOOL_FLUSH | 31 60415 938 26

Figure 6-30. SLEEP_BPOOL_FLUSH waits

Asyou can see, the SLEEP_BPOOL_FLUSH wait time has a very high amount of wait
time after running the script in Listing 6-10. Normally you would expect those wait times
to be either very low or close to zero. If we were to remove the CHECKPOINT command
from the script completely and let SQL Server decide on when to run the checkpoint
process, we not only get a completely different result, as shown in Figure 6-31, but also
the script’s runtime is decreased to just a few milliseconds.

wat_type | wating tasks count | wat time ms | __.E.LIT wat _T)E.Lﬂ.m.ﬂ-_l

1__|| SLEEP_BPOOL_FLUSH | 0 0

Figure 6-31. SLEEP_BPOOL_FLUSH wait times after removing CHECKPOINT

184



CHAPTER 6  10-RELATED WAIT TYPES

Lowering SLEEP_BPOOL_FLUSH Waits

Even though it is not very common to run into performance problems caused by the
SLEEP_BPOOL_FLUSH wait type, there are various methods to lower the wait times.

The most obvious one would be to check the various configuration options available
to manually configure the recovery interval that we discussed earlier. The lower the value
of the recovery interval, the more often checkpoint processes will take place, and the
bigger the chance of running into SLEEP_BPOOL_FLUSH waits. Also, as you noticed in the
example, performing frequent CHECKPOINT commands inside transactions can lead to
SLEEP_BPOOL_FLUSH waits.

Another possible cause can be the storage subsystem on which your database data
file resides. As explained earlier, the checkpoint process calculates the load of the storage
subsystem and then decides if throttling its throughput is needed. If there is a frequent
need of throttling because your storage subsystem is busy, you are more likely to see
SLEEP_BPOOL_FLUSH waits occur.

If you are running SQL Server 2016, chances are you will never run into very high
SLEEP_BPOOL_FLUSH wait times since the default way SQL Server handles the process
has been changed.

SLEEP_BPOOL_FLUSH Summary

The SLEEP_BPOOL_FLUSH wait type is closely related to the checkpoint process in SQL
Server. The checkpoint process is responsible for writing modified, or dirty, data pages
from the buffer cache to the database data file. The checkpoint process analyzes the
performance of the storage subsystem before it writes the dirty pages to disk, and if the
storage subsystem is busy, the checkpoint process will throttle its throughput, resulting
in SLEEP_BPOOL_FLUSH waits. It is not very common to see very high SLEEP_BPOOL_FLUSH
wait times, but they can impact performance nonetheless. Queries that frequently
execute the CHECKPOINT T-SQL command, or a recovery interval that is configured to a
very low value, can be possible causes for seeing SLEEP_BPOOL_FLUSH waits occur. The
performance of your storage subsystem can also impact the checkpoint process if it is
forced to throttle its throughput.

185



CHAPTER 6  10-RELATED WAIT TYPES

WRITE_COMPLETION

As with the ASYNC_IO COMPLETION and IO COMPLETION wait types, the WRITE_COMPLETION
wait type is related to specific actions SQL Server performs on the storage subsystem.
Again, it is very normal to see WRITE_COMPLETION waits occur on your SQL Server
instance, and they should only be a cause for concern if the wait times are way higher

than normal.

What Is the WRITE_COMPLETION Wait Type?

The WRITE_COMPLETION wait type is a relative of the I0_COMPLETION wait type. But
where the I0_COMPLETION wait type is logged for specific read and write operations, the
WRITE_COMPLETION wait type is only logged for some very specific write operations. Some
of these write operations are growing a data or log file or performing the DBCC CHECKDB
command.

Since the WRITE_COMPLETION wait type is related to writing SQL Server data to the
storage subsystem, the performance of it can have an impact on the wait times.

WRITE_COMPLETION Example

To show you an example of a WRITE_COMPLETION wait occurring, I am going to perform a
CHECKDB against the AdventureWorks database after clearing the sys.dm os wait_stats
DMV using the DBCC SQLPERF('sys.dm os wait stats', CLEAR) command.

Keep in mind that this example is a completely normal situation in which WRITE
COMPLETION waits can occur, and it shouldn’t stop you from performing regular database
consistency checks!

Listing 6-12 shows the query I executed to generate a few WRITE_COMPLETION waits.

Listing 6-12. Generate WRITE_COMPLETION waits
DBCC SQLPERF('sys.dm os wait stats', CLEAR);
DBCC CHECKDB ('AdventureWorks');

SELECT * FROM sys.dm_os wait stats
WHERE wait type = 'WRITE_COMPLETION';

186



CHAPTER 6  10-RELATED WAIT TYPES

The results of the last query in the batch are shown in Figure 6-32.

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms
1 | WRITE_COMPLETION | 2 1 1 1

Figure 6-32. WRITE_COMPLETION waits

As you can see, the amount of wait time is so low that it would not be a cause of any
concern. This is also partly due to the fact that the AdventurelWorks database is very
small and the storage performance of my test machine is very fast. Running CHECKDB
against larger databases can result in higher wait times.

Lowering WRITE_COMPLETION Waits

If you see high WRITE_COMPLETION wait times, try to find out what process is generating
the waits. In many cases it will be caused by a CHECKDB or database data or log file growth.
One thing worth checking is the instant file initialization option discussed in the
ASYNC_IO_COMPLETION section earlier in this chapter. Not using this option can impact

the duration of the WRITE_COMPLETION wait time.

Another, far less common cause for a higher WRITE_COMPLETION wait time is when
you are experiencing page latch contention on your Page Free Space page (or PFS). The
PFS page tracks the amount of free space in data pages. If a process needs to modify
the PFS page very frequently, it is possible to see WRITE_COMPLETION waits occur along
with many PAGELATCH_UP waits, which we will discuss in Chapter 9, “Latch-Related Wait
Types.” To give you an example of such a scenario, consider a high amount of concurrent
queries that all create a temporary table, insert a few rows, and remove the temporary
table again. In this case the PFS page of the tempdb database needs to get updates very
frequently to reflect the creation and removal of the temporary tables.

WRITE_COMPLETION Summary

The WRITE_COMPLETION wait type, just like the ASYNC_IO COMPLETION and IO _COMPLETION
wait types, is related to specific storage-related actions performed by SQL Server.

Seeing WRITE_COMPLETION waits is very normal and won'’t be cause for concern in many
situations. Operations such as CHECKDB and database data or log file growth can cause
WRITE_COMPLETION waits.

187



CHAPTER 7

Backup-Related
Wait Types

Backups are a very important part of database administration, and in many cases they
are essential for the survival of the company you work for. Data has become so important
for businesses that if some disaster causes data to be lost, companies can lose large
amounts of money, or even go out of business.

There are many methods we can implement on all levels of your IT infrastructure to
make sure no data is lost (or as little as possible) during a disaster. We could implement a
SAN to make sure our data is not stored on a local disk drive on your server. Or we could
design SQL Server AlwaysOn Availability Groups to replicate our data across datacenters.
But the first step we should take, and hopefully have already taken, is performing regular
backups of our data inside our SQL Server databases.

Implementing and scheduling SQL Server backups is not a very difficult task,
and there is no excuse not to perform a backup. The type of backup and the interval
of backup operations are dictated by the needs of the organization you work for and
are frequently expressed in “RTO” (Recovery Time Objective) and “RPO” (Recovery
Point Objective) times. These times represent the amount of time it should take
to recover from a disaster and the amount of data loss that is acceptable when a
disaster occurs. These two times should be the primary input for your SQL Server
backup strategy.

Thankfully, SQL Server has different options available to us for meeting RTO and
RPO requirements right out of the box. This means we can use SQL Server’s own
backup mechanism to fulfill our company’s RTO and RPO times; we are not necessarily
dependent on third-party backup software. Since the SQL Server backup operation is
an internal process, there are different wait types associated with it, and in this chapter
we will take a look at three of the most common wait types that are directly related to
performing backups and restores.

189
© Enrico van de Laar 2019

E.van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_7



CHAPTER 7  BACKUP-RELATED WAIT TYPES

Noticing high wait times on these backup/restore-related wait types will not likely
lead to a performance degradation of your SQL Server instance. However, we do have
options to optimize the SQL Server backup process that can result in faster backup and
restore times. And since backups/restores of your database(s) are vital for the survival of
your company, optimizing backup and restore throughput can be well worth the effort.

BACKUPBUFFER

The first backup-related wait types we will discuss is BACKUPBUFFER. If we look up the
definition of this wait type on Books Online we would get the following text: “Occurs
when a backup task is waiting for data, or is waiting for a buffer in which to store data.
This type is not typical, except when a task is waiting for a tape mount.” Apparently, we
would only see this wait type when we are writing our backups to a tape device, and

this is wrong. BACKUPBUFFER waits will practically always be logged during a backup
operation, no matter the destination of the backup file. The reason for this is in the way
the SQL Server backup operation uses buffers to read data from the database and write it
to the backup file.

What Is the BACKUPBUFFER Wait Type?

To understand how BACKUPBUFFER waits are generated we have to take a look at the
internals of the SQL Server backup process. These internals are mostly the same
regardless of the backup method you use (i.e., transaction log, differential or full backup)
and as such they will encounter the same wait types.

SQL Server allocates buffers for the backup process. These buffers will be filled with
data from your database and will be moved through a backup/restore process in order
to get written to the backup file (or vice versa for a restore operation). The buffers are
allocated inside the memory of your system, but outside the memory of your buffer
cache so as to avoid stealing memory from the buffer cache. The size and the amount
of the backup buffers are automatically calculated by SQL Server, but we can configure
these values ourselves as parameters of the backup/restore command. Figure 7-1 shows
how these backup buffers are ordered and moved through a “reader,” which reads the
data from your database or backup file to a buffer, and a “writer,” which writes the data
from the buffer to the backup file or database.

190



CHAPTER 7  BACKUP-RELATED WAIT TYPES

—_ &— Empty buffer
> Empty buffer Filled buffer
|
L) |
- Filled buffer Filled buffer g
Q s
= =
Filled buffer Filled buffer
&
e m e

Figure 7-1. Backup buffers moving through reader and writer

We can view information about the buffer amount and size during a backup or
restore operation by enabling two trace flags, 3213 and 3605, which will output backup/
restore information into the SQL Server error log. The query in Listing 7-1 enables both
trace flags and performs a full database backup of the AdventureWorks database on my
test SQL Server.

Listing 7-1. Full database backup with backup-information trace flags

-- enable trace flags
DBCC TRACEON (3213);
DBCC TRACEON (3605);

-- backup database
BACKUP DATABASE [AdventureWorks ]
TO DISK = N'F:\Backup\aw_21042015.bak"
WITH NAME = N'AdventureWorks-Full Database Backup';
GO

-- disable trace flags
DBCC TRACEOFF (3213);
DBCC TRACEOFF (3605);

Keep in mind that trace flags inside SQL Server should only be used under the
guidance of Microsoft Support. I am enabling them now to show me backup information
on my test SQL Server, but  would advise against using them on a production system.

191



CHAPTER 7  BACKUP-RELATED WAIT TYPES

Inside the SQL Server error log, additional information about the backup we just
performed is logged, as you can see in Figure 7-2.

i 472172015 10:56:557 AM | spidS9 DBCC TRACEOFF 3605, server process ID (SPID) 59. This is an informational message only; no user action is required.
=1_J 42172015 10555?AM spid59  DBCC TRACEOQFF 3213, server process ID (SPID) 59. This is mdumdmnadmessageody mwuacbmnsrequed

_] 4/21/201510:56:47 AM  spid59 Media Buffer size: 1024"(3
i 4/21/201510:56:47 AM  spid59 Media Buffer count: 7

1 4/21/201510:56:47AM  spid59  Filesystem i/o alignment: 512
14 4/21/201510:56:47 AM  spid59 TXF device count: 0

1d 4/21/201510:56:47 AM  spid59 Filestream device count: 0

12 4/21/201510:56:47AM  spid59  Fulltext data device count: 0

E 4/217201510:56:47 AM  spid59 Tabular data device count: 1

14 421/7201510:56:47 AM  spid59 Total buffer space: 7MB
14 4/21/201510:56:47 AM  spid59 Min MaxTransferSize: 64 KB

(d 4/21/201510:56:47 AM  spid59 Max TransferSize: 1024 KB
1d 4/21/201510.56:47 AM  pidS9 Sets Of Buffers: 1
14 4/21/201510:56:47 AM  spid59 BufferCount: 7

4,/21/2015 10:56:47 AM ﬂ 59 Mh‘l‘ﬂi 127MB
1 472172015 10:56:47 AM  spid59  Backup/Restore buffer configuration parameters
1d 4/21/201510:56:47 AM  spid59  DBCC TRACEON 3605, server process |D (SPID) 59. This is an informational message only: no user action is required.
1 4/21/201510:56:47 AM  spid59 DBCC TRACEON 3213, server process |D (SPID) 59. This is an informational message only; no user action is required.

Figure 7-2. Additional backup information

In this case, the backup operation created seven buffers, shown by
the BufferCount parameter, with a size of 1024 KB each, as shown by the
MaxTransferSize parameter. The total memory needed to create the buffers is shown
by the Total buffer space parameter, 7 MB (BufferCount * MaxTransferSize).
Another interesting bit of information that is returned is the memory limit. This will
show the maximum amount of memory outside of the buffer cache that the backup
operation could access.

Now that we have an idea of how the backup process works inside SQL Server, let’s
take a look where the BACKUPBUFFER wait type comes in.

As we described earlier, the SQL Server backup process uses buffers to store data that
needs to be written to the backup file. Whenever a buffer is not directly available, the
BACKUPBUFFER wait will occur, making the process wait until a full buffer is written to the
backup file and it becomes available again.

192



CHAPTER 7  BACKUP-RELATED WAIT TYPES

BACKUPBUFFER Example

Generating BACKUPBUFFER waits is very simple—just perform a backup operation.
For this example I ran the query shown in Listing 7-2. The query will first reset the
sys.dm_os_wait_stats DMV, then will perform a full backup of the Adventurelorks
database, and finally will return the wait statistics information for the BACKUPBUFFER
wait type.

Listing 7-2. Generating BACKUPBUFFER waits

-- clear sys.dm os wait_stats
DBCC SQLPERF('sys.dm os wait stats', CLEAR);

-- backup database
BACKUP DATABASE [AdventureWorks]
TO DISK = N'F:\Backup\aw_21042015.bak"
WITH
NAME = N'AdventureWorks-Full Database Backup';
GO

-- Query BACKUPBUFFER waits
SELECT *

FROM sys.dm os wait stats

WHERE wait_type = 'BACKUPBUFFER';

The results of the query against the sys.dm_os _wait_stats DMV are shown in

Figure 7-3.
wa'rl_tyl'pe waiting_tasks_count wait_time_ms  max_wait_time_ms  signal_wait_time_ms
1 | BACKUPBUFFER i 18 a8 47 2

Figure 7-3. BACKUPBUFFER waits

The total duration of the backup operation was around 1 second on my test SQL
Server. Of that 1 second, only 88 milliseconds were spent waiting on free backup
buffers.

193



CHAPTER 7  BACKUP-RELATED WAIT TYPES

Lowering BACKUPBUFFER Waits

As stated in the introduction of this chapter, backup-related waits aren’t normally any
cause for concern since they normally won’t impact the performance of your SQL Server
instance. However, we can improve backup performance by using the wait statistics
information of the various backup-related wait types.

One of the most common ways to lower BACKUPBUFFER wait times is by adding more
buffers for the backup operation to use, overwriting the automatic allocation of buffers.
We can do this by specifying the BUFFERCOUNT option inside the BACKUP T-SQL command.
There is, however, a catch to altering the number of buffers the backup operation can
use. Every buffer created will allocate the value of the MAXTRANSFERSIZE option; this
value can be automatically calculated by SQL Server itself or by setting the value yourself
inside the BACKUP command (up to a maximum of 4,194,304 bytes). Since the backup
operation allocates memory outside of the buffer cache, there is a chance that using too
many or too large buffers can result in out-of-memory problems. So, be careful when
testing what the optimal value for your SQL Server instance is.

Listing 7-3 shows a modification of the query in Listing 7-2, which we used to
demonstrate BACKUPBUFFER waits occurring. In this case we added the BUFFERCOUNT
option and configured it to a value of 200.

Listing 7-3. Database backup with BUFFERCOUNT configured

-- clear sys.dm os wait_stats
DBCC SQLPERF('sys.dm os wait stats', CLEAR);

-- backup database

BACKUP DATABASE [AdventureWorks]
TO DISK = N'F:\Backup\aw_21042015.bak"

WITH
NAME = N'AdventureWorks-Full Database Backup',
BUFFERCOUNT = 200;

GO

-- Query BACKUPBUFFER waits
SELECT *

FROM sys.dm os wait_stats

WHERE wait type = 'BACKUPBUFFER';

194



CHAPTER 7  BACKUP-RELATED WAIT TYPES

The results of the query against the sys.dm_os_wait_stats DMV are shown in

Figure 7-4.
wait_type watting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms
1| BACKUPBUFFER | 0 0 0 0

Figure 7-4. BACKUPBUFFER waits

Asyou can see, the amount of time spent on the BACKUPBUFFER wait time went down
to 0 milliseconds instead of the 88 milliseconds it spent when we did not supply the
BUFFERCOUNT parameter. This happens because the number of buffers we specified were
enough to process the backup operation without a need to allocate additional buffers. Since
no additional buffers were required, we do not spend time waiting on their allocation.
Another option is to configure the MAXTRANSFERSIZE option inside the BACKUP T-SQL
command. This will allow buffers to be filled with larger units of works, up to a value
of 4,194,304 bytes, or 4 MB. Again, allocating more space for the buffers will result in a
larger reservation of memory.

BACKUPBUFFER Summary

BACKUPBUFFER waits occur normally during backup or restore operations when the
backup/restore operation has to wait for free buffers to become available again. Because
they occur normally they shouldn’t be a cause for concern. We do have some options
for lowering BACKUPBUFFER wait times that will also impact the duration of the backup/
restore operation. They should be configured and tested thoroughly though, because
setting those parameters too high can result in out-of-memory errors.

BACKUPIO

Just like the BACKUPBUFFER wait type, the BACKUPIO wait type occurs when a part of the
backup or restore operation runs into contention problems. Another similarity is the
description of this wait type on Books Online: “Occurs when a backup task is waiting for
data, or is waiting for a buffer in which to store data. This type is not typical, except when a
task is waiting for a tape mount.” Again, this wait type is common when performing a backup
or restore operation, even when the backup target, or restore source, is not a tape device.

195



CHAPTER 7  BACKUP-RELATED WAIT TYPES

What Is the BACKUPIO Wait Type?

To better understand how BACKUPIO waits are generated, we have to take a look at
Figure 7-5, which we showed earlier as Figure 7-1.

— &— Empty buffer

> Empty buffer Filled buffer

Filled buffer Filled buffer

Writer

Filled buffer Filled buffer

10

Source Target

Figure 7-5. Internals of a backup operation

In the previous section where we discussed the BACKUPBUFFER wait type we explained
that the BACKUPBUFFER wait type occurs when we are waiting for a free (empty) buffer
to become available. For the most part, the BACKUPBUFFER wait type is situated on the
left side of Figure 7-5, at the reader. The BACKUPIO wait type occurs for the most part on
the right side of Figure 7-5, at the writer section. When BACKUPIO waits occur, there is a
delay in the time the writer is writing data. This delay can be caused by many different
things; for instance, when writing a backup to a slow disk, writing a backup to a network
location, or when restoring a database.

The BACKUPIO wait type will frequently be accompanied by ASYNC_I0 COMPLETION
waits when a database backup or restore is performed.

BACKUPIO Example

We can make use of the same example as we used to demonstrate the BACKUPBUFFER wait
type. I did modify the query a little to return BACKUPIO waits instead of BACKUPBUFFER
waits, and I also included the ASYNC_I0 COMPLETION in the results of the query against
the sys.dm_os wait_stats DMV. Listing 7-4 shows the modified backup query.

196



CHAPTER 7  BACKUP-RELATED WAIT TYPES

Listing 7-4. Generating BACKUPIO waits

-- clear sys.dm os wait stats
DBCC SQLPERF('sys.dm os wait stats', CLEAR);

BACKUP DATABASE [AdventureWorks ]

TO DISK = N'F:\Backup\aw_21042015.bak"
WITH

NAME = N'AdventureWorks-Full Database Backup';
Go

-- Query BACKUPIO waits

SELECT *

FROM sys.dm os wait_stats

WHERE wait type = 'BACKUPIO'

OR wait type = 'ASYNC IO COMPLETION';

The results of the query against the sys.dm_os wait stats DMV can be seen in

Figure 7-6.
wait_type watting_tasks_count wait_time_ms max_wait_time_ms  signal_wait_time_ms
1 { ASYNC_IO_COMPLETION 2 1017 1017 0
2 BACKUPIO 159 690 21 1

Figure 7-6. ASYNC_IO_COMPLETION and BACKUPIO waits

As you can see in Figure 7-6, the database backup caused both wait types to be
generated, and the most time has been spent on the ASYNC_IO_COMPLETION wait, which is
responsible for reading the data pages that need to be written to the backup file. Since my
backup destination is on an SSD disk, we didn’t encounter very high BACKUPIO wait times.

Lowering BACKUPIO Waits

Tweaking the BUFFERCOUNT and MAXTRANSFERSIZE options do not have as much impact
on the BACKUPIO wait type as they did on the BACKUPBUFFER wait type. When you see
higher than normal wait times on the BACKUPIO wait type, the problem is most likely

197



CHAPTER 7  BACKUP-RELATED WAIT TYPES

related to the throughput of either your storage subsystem or network location you are
writing or reading your backup to/from. Make sure to check both locations for possible
performance problems like high latency or network utilization.

BACKUPIO Summary

Just like the BACKUPBUFFER wait type, the BACKUPIO wait type occurs when a backup

or restore operation is being performed. While the BACKUPBUFFER wait type is mostly
related to the speed at which the backup operation can access the backup buffers, the
BACKUPIO wait type is related to the speed at which those backup buffers can be written
to disk. BACKUPIO waits frequently occur together with ASYNC_I0 COMPLETION waits when
performing full database backups or restores. When seeing higher than normal wait
times for the BACKUPIO wait type, check the performance metric of the location you are
writing or reading the backup file to or from. Lowering BACKUPIO wait times will not have
an impact on the query performance of your system, but will help speed up backup and
restore operations.

BACKUPTHREAD

The BACKUPTHREAD wait type is frequently seen when performing restore operations on a
database, but can also occur during a backup operation. It occurs when another thread
is waiting for the backup/restore operation to finish so it can continue processing.

What Is the BACKUPTHREAD Wait Type?

When you see BACKUPTHREAD waits occurring, it means that another thread wants to
access a resource that is currently being accessed by a backup or restore operation.
During the time the thread has to wait for the backup/restore to complete, BACKUPTHREAD
wait time will be recorded. An example of this type of wait would be a thread that wants
to access the database data file while it is being restored; for instance, the ASYNC_IO_
COMPLETION wait type that is writing the data file to disk.

BACKUPTHREAD waits are not usually a cause for concern. They only indicate that other
threads are waiting for the backup/restore operation to complete, and they frequently
have the same duration as the time it took for your backup or restore to complete. They
do, however, give you a hint that there are other waits occurring that might deserve
investigation if the wait times are higher than expected.

198



CHAPTER 7  BACKUP-RELATED WAIT TYPES

Because a picture says more than a thousand words, Figure 7-7 shows the relation of
the BACKUPTHREAD wait type with a restore operation and other waits occurring.

Restore thread

BACKUPTHREAD

Other thread

i

Figure 7-7. BACKUPTHREAD relation to other threads

In Figure 7-7 you can see that the BACKUPTHREAD wait is occurring because another
thread also wanted to access a resource that was currently owned by the restore
operation.

BACKUPTHREAD Example

An easy way to demonstrate BACKUPTHREAD waits occurring is by performing a restore
operation. When you perform a restore, other processes will need to access the database
data files to write the information from the backup file to the database data files.

Listing 7-5 shows a script to restore a backup file I made earlier of the
Adventurelorks database on my test SQL Server.

Listing 7-5. Restore AdventureWorks database

-- Restore database

USE [master]

RESTORE DATABASE [AdventureWorks ]
FROM DISK = N'F:\Backup\AWBackup.bak'
WITH FILE = 1, REPLACE;

GO

199



CHAPTER 7  BACKUP-RELATED WAIT TYPES

If we were to look at the sys.dm_os_waiting tasks DMV while the backup is
running, we would see the waits occurring as shown in Figure 7-8, which shows a
selection of waits on my test SQL Server.

wait_type waiting_tasks_count watt_time_ms max_wait_time_ms
| BACKUPIO . 186 462 61
BACKUPTHREAD ..................................... 0 == —

3 PREEMPTIVE_OS_WRITEFILEGATHER 2 83 824

Figure 7-8. BACKUPTHREAD and other waits

As you can see in Figure 7-8, the wait time of the BACKUPTHREAD wait type is pretty
close to that of the PREEMPTIVE_0S_WRITEFILEGATHER wait type. This wait type is
responsible for writing data to the file system, but we will dive deeper into this specific
wait type in Chapter 11, “Preemptive Wait Types.”

Lowering BACKUPTHREAD Waits

While the BACKUPTHREAD wait type itself doesn’t indicate any problems, its combination
with other wait types can be a reason for some additional research. Basically, every
method you can use to speed up your backup or recovery process will have an impact on
the BACKUPTHREAD wait time.

Some good pointers to start with are the BufferCount and MaxTransferSize options
that you can specify on the BACKUP and RESTORE T-SQL commands. We touched upon
these settings when we discussed the BACKUPBUFFER and BACKUPIO wait types. Tweaking
these settings can make your backups and restores take less time, resulting in lower
BACKUPTHREAD wait times.

Another setting that can dramatically improve backup and restore times is the
instant file initialization option that we discussed in Chapter 6, “IO-Related Wait Types,’
in the ASYNC_IO_COMPLETION section.

200



CHAPTER 7  BACKUP-RELATED WAIT TYPES

BACKUPTHREAD Summary

The BACKUPTHREAD wait time doesn’t indicate access to a specific resource, but rather
indicates that another process is waiting for a backup or restore operation to complete.
Itis very common to see this wait type, especially during restore operations. Lowering
the duration of backup and restore operations will also be reflected in the wait times of
the BACKUPTHREAD wait type. One of the methods you can use to lower BACKUPTHREAD
wait times is checking whether instant file initialization is enabled. This setting does not
directly impact the BACKUPTHREAD wait type, but it will impact other wait types, which will
in turn impact the BACKUPTHREAD wait time.

201



CHAPTER 8

Lock-Related Wait Types

Locking is a fundamental part of every relational database, or Relational Database
Management System (RDBMS). SQL Server is based on the relational database model,
and as such uses locking when data is accessed. Even though we frequently relate
locking to performance problems, it plays a vital role in making sure your data is reliable
during concurrent workloads. The way SQL Server, or any other RDBMS for that matter,
takes care of this data reliability is by following the “ACID” properties, which were
originally defined by Jim Gray in the 1970s but received their name in 1983 from Andreas
Reuter and Theo Hérder. These ACID properties are enforced upon single operations,
which we know as transactions. The acronym ACID consists of four characteristics that
guarantee data reliability inside transactions. The following list describes each of these
characteristics:

o Atomicity: The atomicity characteristic requires that transactions
are all or nothing. This means that if one part of the transaction
fails, the complete transaction fails, and every change done inside
the transaction needs to be changed back to the state before the
transaction started.

o Consistency: The consistency characteristic requires that data written
to the database by the transaction is legal. This means that the data
must be stripped of illegal or bad input.

o Isolation: The isolation characteristic requires that every transaction
is hidden from other concurrent transactions. From a transaction

point of view, this means every transaction is executed serially.

e Durable: The durable characteristic requires that every committed
transaction remains committed, even in the event of a power failure

or disaster.

203
© Enrico van de Laar 2019

E.van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_8



CHAPTER 8  LOCK-RELATED WAIT TYPES

As you might have guessed from reading the different ACID properties, locking
inside SQL Server is closely related to the Isolation characteristic.

Since this chapter is dedicated to lock-related wait types, we won’t go into detail
about ACID properties besides Isolation. If you are interested in learning more about the
ACID properties and database theory, a good place to start would be the “Principles of
Transaction-Oriented Database Recovery” research paper by Andreas Reuter and Theo
Harder, which describes the ACID properties in detail.

To get a better understanding of how the Isolation characteristic works, we need to
understand transactions. A transaction represents an interaction with the database that
can consist of multiple actions and that is separated from other transactions.

To make sure our transactions do not conflict with other concurrent transactions,
SQL Server uses locks. These locks make sure no other transaction can modify data
that your transaction is processing at the same time. For example, if you make a $100
withdrawal from your bank account, you do not want another concurrent withdrawal
to modify that amount. Other transactions will have to wait with their withdrawals
until your transaction is completed. Inside SQL Server, this process works the same
way. When you request data from your database, you want to get the data returned
you asked for, without running the risk that the data is being modified while you are
requesting it.

When you run your transaction it will be protected by a lock SQL Server places on
the object you are accessing. If another transaction wants to interact with the same
object, a block will occur. When this block occurs, the latter transaction will have to wait
until the lock on the object is removed. The transaction can then place its own lock on
the object and start its interaction.

There are many options available to us within SQL Server to control the behavior of
locking and blocking, and most of them are related to changing the Isolation of certain
or all transactions against a database. There is also a lot of information about locking
and blocking we can access inside SQL Server, and not the least of these are inside wait
statistics. The time a transaction is waiting to access a locked object is recorded as wait
time for specific, lock-related wait types (depending on the type of lock the transaction
intends to place).

In this chapter we will discuss the various wait types that are related to locking and
blocking and how we can lower or even resolve them. This requires some knowledge
of how SQL Server uses locks, and for this reason I included a section to familiarize
ourselves with locking and blocking before we dive into the lock wait types.

204



CHAPTER 8  LOCK-RELATED WAIT TYPES

Introduction to Locking and Blocking

As we just discussed, SQL Server uses locks to isolate different concurrent transactions
from each other so data is only accessed or modified by one transaction at a time. There
are different lock types, or lock modes, SQL Server can use, and there are various object
levels SQL Server can place locks on. To make it even more complex, different lock
modes are not necessarily compatible with each other, and when two incompatible locks
meet, a block occurs.

Lock Modes and Compatibility

To start off, let’s get ourselves familiar with the different types of locks, or lock modes,
inside SQL Server. The list that follows describes the most common lock modes. There
are more lock modes inside SQL Server, but those only occur when you perform very
specific actions. A complete list of the different lock modes can be found on the MSDN
page that discusses lock modes here: https://technet.microsoft.com/en-us/
library/ms175519.aspx. SQL Server uses acronyms to indicate which lock mode is
being used inside SQL Server. These acronyms are shown in parentheses:

o Shared (S): A Shared lock will be placed on a resource when a query
is selecting data from that resource. For instance, a SELECT * FROM
[table].

o Update (U): The Update lock mode is used when a query wants
to modify a resource. It was introduced to prevent “deadlocks,’
a situation where locks are waiting on each other to release in
concurrent transactions that want to modify the same resource.

e Exclusive (X): An Exclusive lock is placed when a transaction wants
to modify the resource. When an Exclusive lock is in place, no other
transactions can modify the resource. For instance, INSERT, UPDATE,
or DELETE T-SQL statements will result in Exclusive locks.

e Schema (Sch): Schema locks are used when a table is being modified.
An example of this would be adding a column to a table.

o Intent (I): Intent locks are used to indicate that locks are placed at a
lower level in the locking hierarchy. We will go into more detail on
the lock hierarchy in a bit.

205


https://technet.microsoft.com/en-us/library/ms175519.aspx
https://technet.microsoft.com/en-us/library/ms175519.aspx

CHAPTER 8  LOCK-RELATED WAIT TYPES

When different locks need to interact with each other, SQL Server performs a lock
compatibility check on the different lock modes involved. Not all of the lock modes
are compatible with each other, which means that when two different transactions
are not able to access the resource at the same time because of incompatible locks, a
block will occur. For instance, when a Shared lock is placed to read from a row, and
another transaction wants to modify the row by placing an Exclusive lock, the Exclusive
lock will have to wait until the Shared lock is removed. Table 8-1 shows the lock mode
compatibility for the Shared, Update, and Exclusive lock modes.

Table 8-1. Lock Compatibility

Lock Mode Shared Update Exclusive
Shared Yes Yes No
Update Yes No No
Exclusive No No No

Let’s go through an example to illustrate lock compatibility. Say you want to read
from a row inside a table by executing a SELECT statement against that table. When you
execute your query, SQL Server will check if there is any existing lock already in place
on the row you want to access, and if it is compatible with the lock you want to place on
the row. Let’s assume there isn’t a lock in place when you run your query. In this case a
Shared lock will be placed on the row, indicating that your query is reading data from
that row. Right after you execute your query another transaction is issued by another
user that wants to modify data inside the row you are accessing. SQL Server will detect
that there already is a Shared lock in place on the row, making the second transaction
wait before placing its Exclusive lock, since Shared and Exclusive locks are incompatible.
The user who ran the second transaction might experience a delay, since the transaction
is waiting for the Shared lock to be removed before its Exclusive lock can be placed. If a
third transaction is started that wants to read the same row as your transaction, no lock
conflict will occur. Shared locks are compatible with other Shared locks, meaning that
the third transaction does not have to wait to place its lock, and it directly receives the
results it asked for.

Figure 8-1 shows the example where the dotted line indicates an incompatible lock
that has to wait.

206



CHAPTER 8  LOCK-RELATED WAIT TYPES

Figure 8-1. Concurrent lock situation

Locking Hierarchy

SQL Server uses multigranular locking to allow different locks for different-level objects.
It does this to minimize the overhead cost of locking. The lowest possible object where
alock can be placed is a row, and the largest is the database. There are many levels
between those two granularity levels, and SQL Server automatically decides on what
level the lock should be placed to minimize locking overhead. The following list shows
the most common lock levels, ordered from the highest granularity to the smallest:

e Database

o Database file

o Table/Object

o Extent

o Page

e RID (row inside a heap)/KEY (row inside a clustered index)

The Intent locks we discussed earlier also play an important part in the placement
of locks upon the different granularity levels. SQL Server will place Intent locks on
objects that are on a higher granularity to indicate a lock has been placed at a lower level.
This protects the lower-level locks from changes on objects at a higher granularity level.
All the Intent locks that are placed, from the highest granularity level to the actual lock
on an object, when looked at together are called the locking hierarchy.

Figure 8-2 shows a graphical representation of a locking hierarchy for the
modification of data inside a row, which will require an Exclusive lock on the row and
Intent Exclusive locks higher in the hierarchy.

207



CHAPTER 8  LOCK-RELATED WAIT TYPES

q Intent Exclusive (1X)

Page Intent Exclusive (IX)

Figure 8-2. Lock hierarchy example

Note the Shared lock on the database level. Every request will always place one to
protect changes to the database while transactions are active. This makes sure that, for
instance, you cannot delete a database while transactions are still active. Also note that
the Intent locks will use the same lock mode on the lowest object, in this case Intent
Exclusive (IX). If a Shared lock was placed, the lock mode of the Intent lock would
change as well, in this case to Intent Shared (IS). We will go a little deeper into Intent
locks a bit further on in this chapter.

Isolation Levels

We can exercise a certain level of control over what locks are being placed by a
transaction by changing the Isolation level. The Isolation level defines the degree to
which transactions are isolated from each other during concurrent operations. We can
change the Isolation level on either a connection or a transaction basis. Changing the
Isolation level will only change the behavior of Shared locks; Exclusive locks that are
needed for data modification are not affected. Changing the Isolation level will also
introduce certain phenomena. These phenomena have an impact on the results of your
read transaction and occur because of the changes to how Shared locks are placed and

208



CHAPTER 8  LOCK-RELATED WAIT TYPES

held during the transaction. The list that follows shows the various Isolation levels, from

the lowest form of Isolation to the highest, available in SQL Server and the phenomena

related to them:

Read Uncommitted: This Isolation level will allow reads to occur
while another transaction is performing modifications on the

same object. It will not wait until the Exclusive lock on the object is
released. This makes it possible to read uncommitted values called
“dirty reads.” Dirty reads can be bad (if you do not expect them)
because they can return a value that is no longer current in the
database. For instance, if someone is updating a value to “B” while it
was “A” at the start of the transaction, other users that query the same
data at the same time can get the old value of “A” back instead of the
updated “B” value.

Read Committed: This is the default Isolation level in SQL Server.
Using this Isolation level will make read transactions wait until
concurrent write transactions are completed. A Shared lock will
be placed on a row and will be released right after the row has
been read. The phenomenon associated with this Isolation level
is called “inconsistent analysis.” This means that it is possible to
receive different results from the same read query if the data were
modified by another transaction in the time between both read
transactions.

Repeatable Read: Setting the Isolation level to Repeatable Read
will lock rows that are being read by a transaction. But instead

of releasing the Shared lock on the row after it has been read,
Repeatable Read will keep the lock in place until the entire
transaction is completed. A Repeatable Read makes it possible for
“phantom reads” to occur. Phantom reads occur whenever data

is added or changed by another transaction that has not yet been
locked by the read transaction.

Serializable: The Serializable Isolation level is the highest possible
Isolation level you can use, and that means it will place the most
locks to ensure the data you are reading is not modified during the
time the transaction is running. It does this by locking the entire

209



CHAPTER 8

LOCK-RELATED WAIT TYPES

range of data (for instance, an entire table) you are selecting, making
it impossible to make changes to that data. Since the entire range

of data you are selecting is being locked right at the start of the
transaction, there are no phenomena possible.

SQL Server 2005 added another method for isolating transactions called Row

Versioning. Row Versioning uses versions of data modification and returns them to read

queries without causing blocking. When a transaction modifies data, that change will

be recorded as a version. When a read transaction accesses the same data, it will receive

the version of the change before the modification transaction is committed. More

information about Row Versioning can be found on Books Online at https://technet.
microsoft.com/en-us/library/ms189050.aspx.

Because Isolation levels, and their locking behavior, can be complex to understand,

I added Figure 8-3, which shows the way the various Isolation levels implement locking

during a read operation. The boxes represent rows inside a table, and a row with a lock

means a Shared lock is active on that row.

Read operation

Y

Read Uncommitted

Read o,c_;eratfon.

Read Committed H

Read operation >

Repeatable Read mn
a [ a (] (]

Read operation -

Serializable mnmn

Figure 8-3. Isolation levels and locking behavior

210


https://technet.microsoft.com/en-us/library/ms189050.aspx
https://technet.microsoft.com/en-us/library/ms189050.aspx

CHAPTER 8  LOCK-RELATED WAIT TYPES

There are various reasons why you would want to use a different Isolation level
than the default of Read Committed. In many cases these reasons are related to the
amount of locking/blocking you expect with your workload, or how “correct” the data
returned by your transaction should be. For instance, with the default Isolation level
of Read Committed it is possible that data is modified by other transactions while your
transaction is running, which means that the results at the end of the transaction are not
the same as they were at the start of your transaction. To make sure no data can change
while your transaction is running, you could use the Serializable Isolation level, but
this means more locks need to be placed and maintained, resulting in more blocking in
concurrent SQL Server environments.

We can only change the default Isolation level of Read Committed by specifically
configuring a different Isolation level for a connection or by supplying a table hint (an
exception is Snapshot Isolation, which is configured at the database level). For instance,
the two queries that follow show two different methods of executing a query using the
Read Uncommitted Isolation level. The first query sets the transaction Isolation level for
the entire session:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
Go

BEGIN TRANSACTION

SELECT *
FROM Person.Person

COMMIT TRANSACTION;
GO

Another method is to use a table hint to set the Isolation level to Read Uncommitted:

SELECT *
FROM Person.Person
WITH (READUNCOMMITTED);

Both of these methods will achieve the same effect, but keep in mind that setting the
Isolation level for the session will result in using the selected Isolation level for all the
queries that are being executed in this specific session after setting it.

211



CHAPTER 8  LOCK-RELATED WAIT TYPES

Querying Lock Information

To take a look at currently placed locks we can use the sys.dm_tran_locks DMV. This
DMV will return a row for every active lock inside the SQL Server instance, along with
information like the type of lock, the resource type, the session ID that placed the lock,
and whether the lock is granted or is waiting to be placed. Figure 8-4 shows a (small)
portion of the output of the DMV on my test SQL Server machine.

resource_fype  resource_subfype  resource_database jd | rescurce_descripion  resource_associated_entfy id  resource_lock_pariion  request_mode request fype  request_status

45  KEY 5 (36154064aff) TA57554050052056 0 X LOCK GRANT
46 PAGE 5 1:20446 72057534045333504 0 X LOCK GRANT
47 PAGE 5 1:20447 T2057554045333504 0 X LOCK GRANT
48  PAGE 5 1:20432 T2057554045333504 0 X LOCK GRANT
43 PAGE 5 1:20432 TH57554045333504 0 5 LOCK WAIT

50 KEY ] {bdeab116bd74) 72057554050052096 0 X LOCK GRANT
51  KEY 5 (16336afdfCae) TA57554050052096 0 X LOCK GRANT
52 KEY 5 (8134443284a0) T2057594045333504 0 X LOCK GRANT
53 KEY 5 (dBbEF ¥ 4ab21) TH057554045333504 0 X LOCK GRANT
54  KEY 5 b5b173bbe8d5) TH57554045333504 0 X LOCK GRANT

Figure 8-4. sys.dm_tran_locks output

If we take a look at Figure 8-4 we can see that a number of Exclusive locks (X) have
been granted and are placed at the Key lock level. This means a transaction is currently
modifying data inside a clustered index. There is also an Intent Exclusive lock on the
Page level, which is above the Key lock level, indicating that there is an Exclusive lock
lower down in the hierarchy. Also note that a Shared lock is currently waiting to get
placed on the same data page (1:20432). The lock cannot be granted just yet, as there is
an incompatible Intent Exclusive lock in place.

Since the Shared lock has to wait before it can be placed on the data page, we can
view the time it has been waiting by looking at the wait statistics. Figure 8-5 shows a part
of the results of a query against the sys.dm_os_waiting tasks DMV.

waiting_task_address session_id  exec_contexd_id  wall_duration_ms  wai_type resource_address blocking_task_address
7 (<0000008261850088 17 0 110116 SP_SERVER_DIAGNOSTICS_SLEEP 0000000000000001  NULL
] (x0000008261850C28 26 0 55911991 HADR_NOTIFICATION_DEQUEUE <000000810155F150  NULL
9 (<000000825DD004EE 23 0 1335703 BROKER_EVENTHANDLER NULL NULL
10 (x0000008250D01468 9 0 55911597 BROKER_TRANSMITTER NULL NULL
1 0 570 SLEEP_TASK NULL NULL
12 0 147659 LCK_M_S 0<0000008252962940  NULL
13 (xD0000082660 0 315 XE_TIMER_EVENT NULL NULL
14 0 55912386 WAIT_XTP_HOST_WAIT NULL NULL
15 (x0000008266027C28 20 0 48706900 ONDEMAND_TASK_QUEUE 0<000000832FCSEBS0  NULL

Figure 8-5. Lock information inside sys.dm_os_waiting_tasks

212



CHAPTER 8  LOCK-RELATED WAIT TYPES

By using the sys.dm_os_waiting tasks DMV, we can see that session ID 55 is
currently waiting on a resource named LCK_M_S. This represents a Shared lock resource
type. Session ID 55 is currently being blocked by session ID 53, which happens to be
the same session that has the Exclusive and Intent Exclusive locks placed on the objects
session ID 55 is trying to query. The sys.dm_os_waiting tasks DMV will also return
information we can use as input for the sys.dm_tran_locks DMV. This information will
be available in the resource_description column of the sys.dm_os_waiting_tasks
DMYV, as shown in Figure 8-6.

blocking_session_id  blocking_exec_contexd_id  resource_description

NULL NULL NULL
NULL NULL NULL
NULL NULL NULL
NULL NULL NULL
NULL NULL NULL
53 NULL pagelock fieid=1 pageid=20432 dbid=5 subresource=FULL id=lock 8258467 00 mode =IX assocatedObyect id=72057594045333504

Figure 8-6. resource_description column of the sys.dm_os_waiting tasks DMV
during a block

If we copy the associatedObjectID and use it as input in the WHERE clause against
the sys.dm_tran_locks DMV, we will receive more information about why, and on what,
this task is waiting. The following query will retrieve all the rows inside the sys.dm_tran_
locks DMV that have a resource_associated entity id of 72057594045333504:

SELECT *
FROM sys.dm_tran_locks
WHERE resource associated entity id = ' 72057594045333504";

On my test SQL Server, the query returned 32 locks, 26 of which are Exclusive locks
on rows inside a clustered index; there are also a number of Intent Exclusive locks on
data pages and one Shared lock that is waiting to be placed on a page. The waiting
Shared lock is the one returned by the sys.dm_os_waiting_tasks DMV. A portion of the
results is displayed in Figure 8-7.

resource_type  resource_subtype resource_database id  resource_description  resource_associated_eriity_jd  resource_jock _pardition request_mode request_hype request_status

1 : 5 (226 X116e) T2057554045333504 0 X LOCK GRANT
2 KEY 5 (09323 1cce) 72057534045333504 0 X LOCK GRANT
3 KEY 5 (BbcD8127%03) T2057554045333504 o X LOCK GRANT
4 KEY 5 (3Becl125a510) T2057534045333504 0 X LOCK GRANT
5 KEY 5 [alc936a3-965) T2057534045333504 0 X LOCK GRANT
6 KEY 5 (e83651387cka) 72057594045333504 0 X LOCK GRANT
7 KEY 5 {08358 1108) T205T554045333504 ] X LOCK GRANT

Figure 8-7. Lock information from sys.dm_tran_locks

213



CHAPTER 8  LOCK-RELATED WAIT TYPES

Finding lock information and figuring out who is blocking whom by querying the
sys.dm_tran_locks DMV can be a challenge on systems where you have many locks and
blocks occurring, since the DMV will return a row for every lock placed. Another, easier,
method to analyze locking and blocking is to use the sp_WhoIsActive stored procedure
created by Adam Machanic. This stored procedure will return information about
everything that is running at that time and is a great tool for analyzing performance
problems. With some extra parameters it will also return a wealth of locking information
without you having to join various DMVs yourself. You can download the sp_WhoIsActive
DMV from its website at http://whoisactive.com/downloads/.

To show you an example of the sp_WhoIsActive stored procedure I ran it on my test
SQL Server while it was experiencing a blocking problem. The most basic way of running

itis by just executing it:
EXEC sp WhoIsActive;

Figure 8-8 shows a small portion of the results. There are many more columns
available that will show you additional information, like the session ID of the blocking

session.
ddhhmmssmss session_id sq_text login_name wat_info CPU
1 ] WDO 12'__52 210 53 Jquery - begn transaction  update person EVDL-SQL2017-01\Administrator  NULL 21127
2 0000:10:28.856 55 query — select *from person Address -7 EVDL-SQL2017-01\Administrator  (628859ms)LCK_M_S 2

Figure 8-8. sp_WholsActive default results

We can directly identify wait statistics information and the queries that are being
executed at this time. Because the blocking session_id column returned a session ID
of 55 for the SELECT query, we should take a look at what the query that is being executed
by session ID 55 is doing. By clicking the query link inside the sql_text column, we can
view the whole query text, as shown in Figure 8-9.

214


http://whoisactive.com/downloads/

CHAPTER 8  LOCK-RELATED WAIT TYPES

<?query --
begin transaction

update person.Address
set PostalCode = '98019° WHERE PostalCode = '98011°

-- rollback transaction
--2>

Figure 8-9. sql_text output from sp_WholsActive

In this specific case we can probably resolve the blocking problem pretty quickly.
The query that is causing the block has left its transaction open without performing a
COMMIT or ROLLBACK. As long as a transaction stays open, locks are being kept in place
and are not released.

The sp_WhoIsActive stored procedure also has a parameter to return additional
locking information, including information about the lock hierarchy. The query that
follows will execute the sp_WhoIsActive stored procedure and retrieve extra lock
information for the queries that are currently executing:

EXEC sp_WhoIsActive @get locks=1;

Figure 8-10 returns the new columns that are added to the output of sp_WhoIsActive.

locks used_memory  status open_tran_count
1 <Database name="AdventureWorks"><l ocks><lock reg... 3 sleeping 1
2 <Database name="AdventureWorks"><l ocks><lock req... 4 suspended 0

Figure 8-10. Lock information returned by sp_WholsActive

By clicking the link below the locks column, we can view which locks are being
used and on what objects they are placed. This will also give us a good look at the
locking hierarchy that is in place for this specific query. Figure 8-11 shows the extra lock
information for the first returned query in Figure 8-10.

215



CHAPTER 8  LOCK-RELATED WAIT TYPES

<Database name="Adventuredorks™>
<Locks>
<Lock request_mode="5" request_status="GRANT" request_count="1" />
<fLocks>
<Dbjects>
<0bject name="Address” schema_name="Person”>
<Locks>
<Lock resource type="KEY™ 1ndex name="IX Address AddressLinel AddressLine2 City StateProvinceID PostalCode™ request mode="X" request_status="GF
<Lock rescurce_types"KEY™ index_names"PK_Address_AddressID™ request_modes"X" request statuse"GRANT™ request_count="26" />
<Lock r type="0BJECT™ request_mode="IX" request_status="GRANT™ request_count="1" />

<Lock r pe="PAGE" page_type="*" index_name="IX_Address_AddressLinel_addressLine2_City StateProvincelID PostalCode” request_mode="UIX" r
<Lock resource_type="PAGE” page_types""" index_namee"PE_Address_AddressID” request_mode="IX" request_statuse"GRANT™ request_counts"S5" />
<fLocks>
</object>

<fObjectss
</Database>

Figure 8-11. Additional lock information returned by sp_WholsActive

Here we can see that an Intent Exclusive lock is placed at the OBJECT level, which
means a lock has been placed on the object that is displayed in the Object name field
of the XML schema—in this case Address, which is a table. A level down, at the page
level, we also see two Intent Exclusive locks in place inside two different indexes on the
Address table. And at the bottom level we see the Exclusive locks, which are placed at the
KEY objects, which indicate rows inside an index.

There are many more parameters available for the sp_WhoIsActive stored
procedure, each one of them returning more information about various parts of SQL
Server. This makes the sp_WhoIsActive Stored Procedure a great tool for finding out
what is going on inside your SQL Server instance, and I encourage you to give it a try.

Now that we have discussed many aspects of locking and blocking, from lock
modes and hierarchies to analyzing locks and blocks, we should be ready to take
alook at the lock-related wait types inside SQL Server. Keep in mind that this
introduction to locking and blocking is far from a complete guide to the topic, as
going into more detail on how locking and concurrency works inside SQL Server
would fill a book by itself.

LCK_M_S

The first lock-related wait type is the LCK_M S wait type. This wait type represents that a
task is waiting to place a Shared lock on a resource.

What Is the LCK_M_S Wait Type?

The LCK_M_S wait type indicates that a task is, or has, been waiting to place a Shared
lock on a resource. It is important to understand that you will only see this wait type
when some form of blocking is occurring, since a task is waiting to place the Shared

216



CHAPTER 8  LOCK-RELATED WAIT TYPES

lock. It doesn’t mean there is a Shared lock active on the resource. This is true for
every lock-related wait type, as they will only get recorded when there is a blocking
situation.

Since the LCK_M_S wait type is related to Shared locks, it will occur when a read
action is being performed but has to wait because an incompatible lock is already in
place on the resource we want to read. The time we are waiting before we are able to
place the Shared lock is recorded as the wait time of the LCK_M_S wait type.

Figure 8-12 shows a common situation that will resultin LCK_M_S waits occurring.
In this case an Exclusive lock has been placed on a page by T1, indicating a data
modification. When T2 wants to read the data from the page, it will need to place a Shared
lock, but since Exclusive and Shared locks are incompatible, a LCK_M_S wait occurs.

T _..r

l s
X KM

Figure 8-12. LCK_M_S wait occurring

LCK_M_S Example

Creating an example of a LCK_M_S wait occurring is not very difficult, as we just need to
create a block situation between a data modification query and a data read query.

For this example we are going to run the query seen in Listing 8-1 against the
Adventurelorks database. This query will begin a transaction and modify a few rows,
but it will not commit or rollback the transaction. Since we explicitly indicated this
transaction by supplying a BEGIN TRAN, SQL Server will keep the locks in place until we
explicitly execute a COMMIT or ROLLBACK command.

Listing 8-1. Start a modification transaction
BEGIN TRAN

UPDATE Sales.SalesOrderDetail
SET CarrierTrackingNumber = '4EOA-4F89-AD'
WHERE SalesOrderID = '43661';

217



CHAPTER 8  LOCK-RELATED WAIT TYPES

When we execute the query, we receive a result very quickly; in my case 15 rows
were updated. But like I said before, the transaction is not yet finished, so it will remain
running, leaving locks on the objects it modified.

So far we aren’t causing any blocking, since this is the test SQL Server and no other
queries are running. Let’s change that and create a blocking situation.

For this we are going to open a second window in SQL Server Management
Studio and execute the query seen in Listing 8-2. This will just perform a SELECT
against the Sales.SalesOrderDetail table, the same table in which we are currently
modifying data.

Listing 8-2. Select data from a table where a modification is being performed

SELECT *
FROM AdventureWorks.Sales.SalesOrderDetail;

As soon as we run this SELECT query, we notice that no results are returned and that
the query will keep running. This is a typical example of a blocking operation where a
transaction is modifying data we want to read inside another transaction.

If we were to query the sys.dm_os_waiting tasks DMV, we would be able to see the
LCK_M_S wait type, as shown in Figure 8-13.

nalnq_lad&_ad&ew session_jd exec_corfexd id wal_duration ms wak _type resource_address blocking_task_address  blocking_session_id
1 0<0000008261863C28 | 54 0 248072 LCK_M_S  O<D00000823BF729C0 NULL 51

Figure 8-13. LCK_M_S wait occurring

The only way the LCK_M_S wait will be resolved is if the incompatible lock is
removed. In this case we performed a rollback of the modification transaction we started
in the first SQL Server Management Studio window. We do this by running the ROLLBACK
command in the same session window. Immediately after performing the transaction
rollback we receive the results the SELECT query asked for. Querying the sys.dm_os_
waiting tasks also showed that the LCK_M S wait was resolved.

Lowering LCK_M_S Waits

Seeing LCK_M S waits occur does not necessarily have to mean something is wrong.
It does, however, indicate that blocking is occurring. If you notice high wait times on
the LCK_M_S wait type, it means that someone’s read transaction is currently taking a

218



CHAPTER 8  LOCK-RELATED WAIT TYPES

long time to complete because it has to wait to place the Shared lock. So the first step
will be to identify the query that is causing the block. We can do this by using the sys.
dm_os waiting tasks DMV and looking at the blocking session_id column. This

is relatively quick to do when there is only a single block active, but can get complex
when many concurrent queries are being blocked by other transactions. In this case
we have to follow the blocking chain until we find the head blocker (which is the first
lock on an object). Another option is to use the sp_WhoIsActive stored procedure we
discussed in the “Locking and Blocking Introduction” at the start of this chapter. This
stored procedure will move through the blocking chain for you, directly displaying the
head blocker.

After we have found the query that is causing the blocking to occur, we need to
analyze it and see if we can optimize that query. Maybe it is requesting more locks
than it actually needs and thus requires a long time to complete. One way to optimize
that query would be to look at whether any indexes should be added so fewer rows
are required to be locked. Or maybe you could cut the single transaction into multiple
transactions that each access fewer objects. Another possible issue that can cause more
locking than necessary is out-of-date statistics. Statistics are used as input for a query
plan, and if they do not accurately reflect the contents of the table or index, they can lead
to a bad query plan, which in turn can lead to more locks than necessary.

Another option would be to change to Isolation level of the read transactions so no
Shared locks are needed in order to read the data. For instance, setting the Isolation level
to Read Uncommitted will not place Shared locks, and the read transaction will not be
blocked. This does introduce another problem related to the Isolation level, dirty reads,
which we discussed in the “Locking and Blocking Introduction” section of this chapter.
Next to using Read Uncommitted, you could also use Snapshot Isolation, which will
result in fewer Shared locks, but will not cause dirty reads. Snapshot Isolation does put
more load on the TempDB database, since it must maintain versions of data if many
concurrent transactions are modifying that data.

LCK_M_S Summary

The LCK_M_S wait type occurs when an incompatible lock is being placed on a resource
and another transaction wants to place a Shared lock on the same resource. Seeing

the LCK_M_S wait type means transactions are being blocked. You should try to identify
which queries are causing the block to occur and see if these can be optimized to result

219



CHAPTER 8  LOCK-RELATED WAIT TYPES

in fewer locks or locks that have a shorter duration. As a final resort you could choose
to change the Isolation level of your read transactions, though this does introduce other
side effects, like dirty reads or increased load inside TempDB.

LCK_M_U

LCK_M U wait types are related to locks that use the Update (U) mode. When a task wants
to place an Update lock on a resource but an incompatible lock is already in place,
LCK_M_ U waits occur.

What Is the LCK_M_U Wait Type?

The Update lock type is a special type of lock mode that indicates that data modification
is about to occur. Even though its name might suggest it is only related to UPDATE queries,
Update locks can also appear when performing INSERT or DELETE statements.

Update locks primarily exist to prevent deadlocks from occurring. Deadlocks
indicate that two transactions that want to modify the same object are waiting
indefinitely on each other to acquire an Exclusive lock on the resource. To understand
how a deadlock situation can occur, and how Update locks can prevent this, take a look
at the following scenario that would occur when no Update locks are used.

When two concurrent transactions want to perform a modification on the same
object, both transactions would first place a Shared lock on the resource while the
data they intended to modify was located. Since Shared locks are compatible with
other Shared locks, both transactions would not block each other. When one of the two
transactions found the data it needed to modity, it would convert its Shared lock to an
Exclusive lock, and then a problem would occur. Since Shared locks are incompatible
with Exclusive locks, and since the other transaction would also have a Shared lock
on the resource, the conversion from Shared lock to Exclusive lock would not occur.
The transaction would need to wait until the Shared lock of the other transaction was
removed before it could convert its own Shared lock to an Exclusive lock, but since
the other transaction also wants to convert its Shared lock to an Exclusive lock, both
transactions would end up waiting on each other, and a deadlock would occur. SQL
Server will automatically detect deadlock situations and choose one of the deadlocked
transactions as a victim and perform a rollback of that transaction, ending the deadlock
situation. Figure 8-14 shows a graphical representation of that situation.

220



CHAPTER 8  LOCK-RELATED WAIT TYPES

!

lock conversion

Resource

Figure 8-14. Deadlock during lock conversion

When Update locks are used inside SQL Server, no deadlock situation could occur.
Update locks are compatible with Shared locks, but not with Exclusive or other Update
locks. In the preceding scenario, the first transaction to find the data it needed to modify
would not directly convert to an Exclusive lock, but rather would convert to an Update
lock first. Since Update and Shared locks are compatible, there would be no problem
converting to an Update lock, even though there was a Shared lock in place from the
other transaction. The Update lock would then get converted to an Exclusive lock so the
data modification could occur. Figure 8-15 shows this lock behavior.

1
T" lock released

Tl—h- S—r-

TZ e

S

time

found modification target

Figure 8-15. Update locks during concurrent data modifications

When a transaction wants to place an Update lock but there is an incompatible lock
already in place on the object, for instance, an Exclusive lock, the LCK_M_U wait type will
be recorded.

221



CHAPTER 8

LCK_M_U Example

To show you an example of LCK_M_U waits occurring, we have to create a situation where

LOCK-RELATED WAIT TYPES

concurrent transactions want to modify the same resource. For this we are going to make
use of the Ostress utility to execute an identical query using multiple connections. The
query I am going to execute can be seen in Listing 8-3. This will perform an UPDATE
against the Person.Address table inside the AdventurelWorks database. I saved the query
inside a .sql file named LCK M U.sql.

Listing 8-3. Modify the Person.Address table

UPDATE Person.Address
SET City = 'Los Angeles'
WHERE StateProvinceID = 9;

After saving the file I run the Ostress utility using the following command:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E
-dAdventurelWorks2012 -i"C:\1lck_m u.sql" -n150 -15 -q

This will create 150 concurrent connections, each one executing the query in
Listing 8-3 five times. This should be enough to create some blocking.

While the Ostress utility is running, I query the sys.dm_os_waiting tasks DMV to
find out what tasks are waiting. A small portion of the results are shown in Figure 8-16.

wating_task_address session_jd  exec_context_id wait_duration_ms wait_type  resource_address blocking_task_address  blocking_session_id
10 ) 0 3491 LCK_M_U  (xDDD0D0S246067940  (x0000008254762108 161
2 0 3486 LCK_M_U  (x000000823BFEES40  (x0000008254762108 161
3 (<000000825BCE7468 182 0 3485 LCK_M_U  (x0000008230D03840 (x0000008254762108 161
4 (x0000008259FB0O4EE 183 0 3485 LCK_M_U  (x000000825830B280  (x0000008254762108 161
5 (0000008259FB0BCE 185 0 3480 LCK_M_U  (x0000008246F73B40  (x0000008254762108 161
6 (x0000008259FBOCAS 187 0 3468 LCK_M_U  (x000000825623BAS0  (x0000008254762108 161
7 (x0000008259FB1088 130 0 3454 LCK_M_U  (x0000008246C55740  (x0000008254762108 161
8 (x0000008259FB1848 191 0 3453 LCK_M_U  (x000000823E281ECO  (x0000008254762108 161
9 (<0000008255FB1C28 194 0 3442 LCK_M_U  (x0000008256267040  (x<0000008254762108 161

Figure 8-16. LCK_M_U waits occurring

As you can see in Figure 8-16, many different sessions are waiting to acquire an

Update lock but are all being blocked by session ID 161. If we query the sys.dm_

tran_locks DMV for lock information about this session, we can see it is granted an

incompatible Exclusive lock, as shown in Figure 8-17.

222



CHAPTER 8  LOCK-RELATED WAIT TYPES

request_mode request_type request_status  reguest_reference_count  request_lifetime  request_session_id

1 ... LocK GRANT 0 3355453 161
2 LOCK GRANT 0 3355453 78
3 S LOCK GRANT 1 0 53

Figure 8-17. Session ID 161 holding an Exclusive lock

All the other sessions will have to wait until the Exclusive lock of session ID 161
is removed. Then one of those sessions will acquire the Update lock it is requesting,
convert it into an Exclusive lock, and perform its modification. That cycle will repeat
until all the sessions are done with their modifications.

Lowering LCK_M_U Waits

Lowering LCK_M U waits uses the same approach as lowering LCK_M_S wait types: try
to identify the transaction that is causing the blocking to occur and try to optimize its
locking behavior.

Changing the Isolation level will have little effect on LCK_M_U wait times since other
Isolation levels have the most impact on transactions that perform reads. This makes
optimizing your queries and/or indexes the way to go if you need to lower higher-than-
normal wait times on the LCK_M_U wait type.

LCK_M_U Summary

The LCK_M_U wait type is related to locks that use the Update lock mode. Update locks are
used to prevent deadlocks from occurring when concurrent transactions try to convert
their Shared locks to Exclusive locks. Lowering LCK M U wait times is primarily achieved
by optimizing potential blocking queries or indexes.

LCK_M_X

Another of the most common lock-related wait types is the LCK_M_X wait type. Just
like both lock-related wait types we have already discussed, the LCK_M X wait type
is related to a specific lock type, in this case the Exclusive lock. And just like the
other two lock-related wait types, seeing this wait type means there is some form of
blocking occurring.

223



CHAPTER 8  LOCK-RELATED WAIT TYPES

What Is the LCK_M_X Wait Type?

The LCK_M X wait type occurs when a task is waiting to place an Exclusive lock on an
object. Since Exclusive locks are not compatible with just about any other lock mode,
including other Exclusive locks, seeing blocking occur when there are many concurrent
modifications is pretty common. This means that seeing LCK_M X waits occur is

pretty common as well, especially in systems that have a high amount of concurrent
transactions.

LCK_M_X Example

To demonstrate LCK_M X waits occurring we are going to execute a SELECT statement
without committing it. Before we run the SELECT, we are going to set the Isolation level
to Repeatable Read. Doing so makes sure the Shared locks are not removed while the
transaction is still running. Since we do not end the transaction, the locks will remain
on the objects until we either kill the transaction or perform a COMMIT or ROLLBACK.
The query that follows shows the SELECT statement we will execute against the
Adventurelorks database:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
BEGIN TRANSACTION

SELECT *
FROM HumanResources.Employee;

-- COMMIT

Notice we commented out the COMMIT section to make sure the locks remain in place.
Executing the query returns results pretty quickly, after just 1 second I got all the rows of
the HumanResources.Employee returned. If we query the sys.dm tran_locks DMV, we
should see that all the Shared locks are still in place, as shown in Figure 8-18.

224



CHAPTER 8  LOCK-RELATED WAIT TYPES

resource_type  resource_subtype  resource_database_jd  resource_description  resource_associated_entty id  resource_lock_parition request_mode  request_type

13 KEY 5 (sb3b33cc1933) T2057594046644224 0 ] LOCK
14 KEY 5 (6835335383db) T2057554046644224 0 s LOCK
15  KEY 5 (31178495a25a) T2057554046644224 0 ] LOCK
16 KEY 5 213840238b2) T2057594045644204 0 s LOCK
17 KEY 5 (9517126d375¢) T2057534046644224 /] 5 LOCK
18 KEY 5 (56191 2ad74) T2057554046644224 0 ] LOCK
19 KEY 5 (0f 3ba5348f5) T205T594045644204 0 s LOCK
20 KEY 5 (c7d268878d3a) T2057534045644224 ] 5 LOCK
21 KEY 5 (cc35a5ab161d) T2057554046644224 0 ] LOCK

Figure 8-18. Shared locks still in place

While the locks are still in place, we will run another query inside a new window
in SQL Server Management Studio. The query that follows will perform an UPDATE on a
single row inside the same HumanResources.Employee table:

UPDATE HumanResources.Employee
SET JobTitle = 'Tester'
WHERE BusinessEntityID = 5;

As soon as we execute the preceding query, we'll notice a block occurring since the
query keeps running without returning any results. This is as expected since there is a Shared
lock in place on the row, or specifically the index key, that prevents us from updating it.

When we look at the sys.dm_os waiting tasks DMV, shown in Figure 8-19, we
will notice that the query in the second window is waiting to place an Exclusive lock,
indicated by the LCK_M X wait type.

waling_task _address session_id emec_conted id wal_duration ms wak_fype resource_address blocking_task_address  blocking_session_id

1 | x0000008252F4CAB | 52 0 21826 LCK_M_X  Ox0000008247418400 NULL 5%
Figure 8-19. LCK_M_X wait occurring
If we end the SELECT query, by either executing the COMMIT statement or by closing

the windows inside SQL Server Management Studio, the Shared locks are removed and
the second query will be able to execute its UPDATE command, ending the LCK_M_X wait.

Lowering LCK_M_X Waits

To lower LCK_M X wait times, you should use the same approach as for lowering other
lock-related wait types. Try and identify what queries are causing the blocking and see if
you can optimize them so they cause less blocking.

225



CHAPTER 8  LOCK-RELATED WAIT TYPES

LCK_M_X Summary

The LCK_M X wait type is related to Exclusive locks being blocked by other locks already
in place on the same resource. Since Exclusive locks are incompatible with just about
every other lock type, seeing LCK_M_X waits occurring is not uncommon for SQL Server
instances that experience concurrent query execution.

LCK_M_I[xx]

Seeing the LCK_M I[xx] wait type means that a task is being blocked when placing an
Intent lock. Since we already discussed the various lock modes on objects, I replaced
the lock mode used for the Intent lock as [ xx] when discussing this wait type. The [ xx]
can be replaced by a variety of different lock modes; for instance, a block on an Intent
Shared lock would be represented by the LCK_M IS wait type, while a block on an Intent
Exclusive lock would be shown as LCK_M_IX.

What Is the LCK_M_I[xx] Wait Type?

LCK_M_I[xx] wait types indicate that a task is waiting to place an Intent lock on an
object. As we learned from the “Introduction to Locking and Blocking” section at the
start of this chapter, Intent locks indicate that a lock of the same type is placed on
an object lower down in the locking hierarchy. This doesn’t mean Intent locks are
only there to warn SQL Server that there is a lock further down the hierarchy. Intent
locks behave just like any other lock, and it is entirely possible that one Intent lock
can block another, incompatible, Intent lock. Intent locks do have a little bit more
flexibility regarding other incompatible Intent locks. For instance, it is possible for
two Intent Exclusive locks to exist on the same page object, indicating that a row

is going to be modified. It is even possible to have an Intent Shared lock on a page
object together with an Intent Exclusive, because both of the locks can read and/or
modify different rows.

226



CHAPTER 8  LOCK-RELATED WAIT TYPES

Next to indicating the type of lock that exists lower down in the locking hierarchy,
Intent locks have a few “special” modes the other lock modes do not have. It is possible
for Intent locks to represent more than one lock mode on lower levels of the locking
hierarchy. The list that follows describes these three Intent lock modes:

e Shared with Intent Exclusive (SIX): This lock mode represents that
there are Shared Locks on all objects at a lower level, and Intent
Exclusive locks on some of these objects. These locks are acquired
by one transaction that wants to read data and plans to modify other
data at the same time. When a task is being blocked while trying to
place the SIXlock, it will be recorded by the LCK_M_SIX wait type.

o Shared Intent Update (SIU): This lock mode is a combination of
Shared and Intent Update locks. Again, it is possible for a single
transaction to acquire, and hold, both these lock modes at the same
time at a lower level. If a block occurs while trying to place this lock,
the LCK_M SIUwait type will be used to record the wait time.

e Update Intent Exclusive (UIX): This lock mode is another
combination of two other lock modes, Update and Intent
Exclusive. Blocks on this lock mode will be represented by the
LCK_M_UIX wait type.

Seeing high wait times on Intent locks is not very common, since Intent locks are
a lot more flexible regarding their incompatibility with each other. This means there
generally is less blocking on the Intent level than there is further down the locking

hierarchy.

LCK_M_I[xx] Example

In this example we will generate a wait of the LCK_M_IX wait type. This means a
transaction is waiting to acquire an Intent Exclusive lock on a higher level in the locking
hierarchy.

We will use more or less the same example as we did for the LCK_M X wait type
by running a SELECT statement using the REPEATABLE READ Isolation level and not
completing the transaction. The query that follows is the query I will be running against
the AdventurelWorks database, Person.Address table:

227



CHAPTER 8  LOCK-RELATED WAIT TYPES

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
BEGIN TRAN

SELECT * FROM Person.Address;

--COMMIT

The COMMIT command has been commented out to leave the transaction open.

If we take a look at the sys.dm_tran locks DMV, shown by Figure 8-20, we see that
while the query is running there is only one lock currently active, a Shared lock on the
OBJECT resource type. This indicates that the entire table is locked. Since this lock exists
on this high level, there is no need for other Shared locks further down the hierarchy.

resource e  resource_mubtype  resource_database id  resource_descrigtion  resource_associated _entty i resource lock patiion  request_mode reQuest hyoe  request sty
1 DATABASE 7 5 0 0 S OCK GRANT
2 DATABASE 5 0 0 S LOCK GRANT
k] OBJECT L 3757669 0 S LOCK GRANT

Figure 8-20. Shared lock on a table

If another transaction wants to update a row inside the same table, it would first try
to acquire an Intent Exclusive lock on the table and page level before it could acquire an
Exclusive lock on the row level. The query that follows is such a transaction, and in this
case we will try to update a single row:

UPDATE Person.Address
SET AddressLinel = '1227 Shoe St.'
WHERE AddressID = 5;

You'll notice that the preceding query “hangs” as long as the SELECT query still has
its Shared lock on the table. Even though Intent locks are in most cases compatible with
other Intent locks on the same object, having, in this case, a Shared lock on the table
level while trying to perform a data modification lower in the hierarchy will cause a block
to occur. Shared locks and Intent Exclusive locks are not compatible.

If we look at the sys.dm_os_waiting tasks DMV, we should be able to see that the
task to place the Intent Exclusive lock is waiting, as shown in Figure 8-21.

waling_task_address session_id exec_contexd id wal_duration ms wal_type resource _address blocking_task_address blocking_session _id
1 | (x0000008252F J4CAS | 54 0 15031 LCK_M_D(  O<DO0000E21CEF9640 NULL 52

Figure 8-21. LCK_M_IX wait occurring

228



CHAPTER 8  LOCK-RELATED WAIT TYPES

Lowering LCK_M_I[xx] Waits

Just like with the other lock-related wait types we discussed earlier, try to focus on the
queries that are causing the blocking when trying to lower LCK_M I[xx] wait times.
Because LCK_M_I[xx] waits only occur when incompatible locks are being held on
objects higher in the locking hierarchy, it can be worth the time to investigate why those
locks are placed so high in the hierarchy. Lock escalation can cause this to happen. Lock
escalation occurs when it is more efficient for SQL Server to place a single lock higher in
the locking hierarchy instead of locking many objects lower down. For instance, instead
of placing thousands of Shared locks on rows, SQL Server can decide to place a single
Shared lock on the table level. This requires far less resources to place and maintain
than thousands of single locks. As a matter of fact, this is exactly what is occurring in the
example I have shown you of the LCK_M_IX wait type. The Person.Address table we are
querying with the SELECT query has more than 19,000 rows inside it. When we ran our
SELECT * query against the table, it would mean that at least 19,000 row locks would
be needed. Because placing and holding that many locks would take a great deal of
resources, SQL Server decided to place a single Shared lock on the table instead of 19,000
locks on the rows.

If we can rewrite the query so it requires fewer locks, for instance, by only selecting
the first x rows instead of everything, SQL Server would probably choose to lock the rows
again, instead of the entire table.

LCK_M_I[xx] Summary

The LCK_M_I[xx] wait type is related to Intent locks, or rather, cases when another
incompatible lock is blocking the placement of an Intent lock. Intent locks are placed

on higher-level objects to indicate that a lock has been placed on a lower level in the
locking hierarchy. Unlike the lock modes we discussed earlier that only represent one
type of lock, Intent locks can represent different lock modes lower down in the locking
hierarchy. One common cause of high wait times on LCK_M_I[xx] wait types is cases
when SQL Server escalates lower-level locks to a higher-level lock. In this situation Intent
locks will be blocked and cannot be acquired.

229



CHAPTER 8  LOCK-RELATED WAIT TYPES

LCK_M_SCH_S and LCK_M_SCH_M

The last two lock-related wait types I want to discuss in this chapter are the LCK_ M_SCH_S
and the LCK_M_SCH_M wait types. Both of these wait types are related to locks that are
being placed on tables, the so-called Schema locks. We didn'’t give a lot of attention to
Schema locks earlier in this chapter, but since they can have a pretty big impact on wait
times when they occur, I wanted to include them.

What Are the LCK_ M_SCH_S and LCK_M_SCH M Wait
Types?

The LCK_M_SCH_S and LCK_M_SCH_M wait types are both related to Schema locks. Schema
locks are placed at the table level to protect the table from modifications while queries
access the table, or to prevent queries from accessing the table while it is being modified.
There are two different types of Schema lock, Schema Stability (Sch-S) and Schema
Modification (Sch-M). Each of them has a different wait type associated with them when
a task is being blocked from placing a Schema Stability or Schema Modification lock. The
LCK_M_SCH_S wait type (to indicate read access to the table) is recorded when a Schema
Stability lock has to wait before it can get placed, and the LCK M _SCH_M wait type (to
indicate the table schema will be changed) is recorded when a Schema Modification lock
is waiting to get placed.

Both Schema locks have pretty extreme compatibility with other lock types. The
Schema Stability lock is compatible with all other types of locks except for the Schema
Modification lock. The Schema Modification lock, on the other hand, is incompatible
with every other lock type, including Intent locks.

When using Schema Stability locks it is impossible to modify or change the table
in any way while queries are currently reading or writing from or to that table. Because
Schema Stability locks are compatible with every lock mode (except for Schema
Modification), it is completely normal to see a Schema Stability lock on the table level
together with, for example, an Intent Exclusive lock to indicate data modification is
occurring on a lower level inside the table.

Schema Modification locks are the opposite from Schema Stability locks, as they
prevent any queries from accessing a table while a modification to the table is being
performed.

230



CHAPTER 8  LOCK-RELATED WAIT TYPES

LCK_M_SCH_S and LCK_M_SCH_M Example

For the first example, I am going to add a new column to an existing table, and just as we
did in the examples earlier in this chapter, I am going to keep the transaction open by not
supplying a COMMIT or ROLLBACK command. The query that follows adds an extra column
to the Person.Address table in the AdventurelWorks database, but I left the ROLLBACK
command commented so the locks stay in place:

BEGIN TRAN

ALTER TABLE Person.Address
ADD
Test VARCHAR(10);

--ROLLBACK

In a new window in SQL Server Management Studio, I am going to execute a simple
SELECT query against the Person.Address table, like the one here:

SELECT *
FROM Person.Address;

If we take a look at the sys.dm_tran_locks DMV while both queries are running, we
should be able to see if there is any blocking going on. Figure 8-22 shows a part of the
output of a SELECT * query against the sys.dm_tran_locks DMV.

resouce_hpe resouce_subtype resouce datsbase id  resource _desciption  resource_sssocisted ety id  resource_lock pation  request_mode reguest hoe request_sta
1 OBJECT 5 ITISNEI69 0 Sch M LOCK GRANT
ORJECT 5 ITIS7EIES 0 Sch-S LOCK WAIT

Figure 8-22. Sch-M and Sch-S locks

As you can see from Figure 8-22, the first query we started, with the goal of adding a
column to the Person.Address table, resulted in a Sch-M lock on the table. The second
SELECT query is waiting to receive a Sch-S lock on the same table.

If we query the sys.dm_os_waiting tasks DMV, we should see a task that is waiting
on the LCK_M_SCH_S wait type. Figure 8-23 shows the output of sys.dm_os_waiting_
tasks while both queries are running.

231



CHAPTER 8  LOCK-RELATED WAIT TYPES

watng_Lask_address session _id  exec_contesd id wal_duration_ms  wal_hpe resCuICe _address blocking_task_address  blociung_session_i¢

1 | xD00000822C672CAS | 54 0 103012 LCK_M_SCH_S (x0000008237BSESS0 NULL 52

Figure 8-23. LCK_M_SCH_S wait occurring

Just as we expected, the SELECT query is waiting to acquire its Schema Stability lock.

If we were to reverse the example by starting a read transaction and leaving it open,
and then try to modify the same table, we should run into a LCK_M_SCH_M wait, since
we can only acquire a Schema Modification lock when there are no active transactions
inside the table we want to modify.

To show this situation I executed the query that follows. This starts a SELECT query
with the Repeatable Read Isolation level, but I am leaving the transaction open so the
locks stay in place:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ
BEGIN TRANSACTION

SELECT * FROM
Person.Address;

-- COMMIT

In a new window inside SQL Server Management Studio, I am going to execute the
table modification query we used earlier to demonstrate the LCK_M_SCH_S wait type, but
without leaving the transaction open:

ALTER TABLE Person.Address
ADD
Test VARCHAR(10);

As you will probably notice when executing the second query, nothing is returned
and the query keeps running, a clear indication of a block occurring.

Let’s take a look at the sys.dm tran_locks DMV again to see what we can find out.
Figure 8-24 shows the output on my test SQL Server.

_resource hype  resource sublype  resource daisbase id  resource descripion  resource_sssocisled eniiy id  resource lock pariion  request mode  request bipe  requedt sta
1 [oBECT | 5 373576369 0 s LOCK GRANT
2 OBJECT 5 373576369 0 Sch-M LOCK WAIT

Figure 8-24. Sch-M lock waiting to be acquired

232



CHAPTER 8  LOCK-RELATED WAIT TYPES

In this case the table has a Shared lock on it from the SELECT query. Because we
are selecting information from a pretty large table, SQL Server decided to place a table
lock instead of placing locks on a lower level. Because a Schema Modification lock is
incompatible with every other lock type, a block occurs, and we will have to wait until
the Shared lock is gone before we can perform our table modification.

Looking at the sys.dm_os_waiting tasks DMV shows us the results we are
expecting, a LCK_M_SCH_M wait, as shown in Figure 8-25.

waling_task _address sesson_id exec_conted id wal_durstion_ms wal_hype resource _address blocking_task_address  blocking_session _d
1 | Oc00D000B2SISEBC28 | 54 0 ran LCK_M_SCH_M  (x0000008237B8F680 NULL 52

Figure 8-25. LCK_M_SCH_M wait occurring

Lowering LCK_M_SCH_S and LCK_M_SCH_M Waits

When you see waits occurring of either the LCK_ M _SCH_S or LCK_M_SCH_M wait type,
there is probably a transaction active that wants to modify the table. In the case of high
wait times on the LCK_M_SCH_S wait type, the table modification transaction is already
running; when seeing LCK_M_SCH_M waits, the modification is waiting for all active
transactions to remove their locks on the table.

Modifying a table is not something that happens every day on production SQL Server
instances (hopefully). Changing large tables can especially be problematic and a cause
for high LCK_M SCH_S wait times, and users that are trying to query the table that is being
modified will notice delays. If, however, you absolutely need to modify a table, but there
are some long-running queries retrieving information from that table, you can expect
LCK M SCH_Mwaits.

Lowering the wait times of both wait types is directly related to performing
modifications to tables. A suggestion could be to perform the table modification after office
hours, or when there are as few as possible concurrent transactions accessing the table,
instead of doing the modification when there are many transactions active against the table.

LCK_ M _SCH_S and LCK_M_SCH_M Summary

The LCK_M_SCH_S and LCK_M_SCH_M wait types are the result of Schema Stability or
Schema Modification locks being blocked by other locks. Seeing high wait times of either
wait type indicates that either a table modification is waiting for all active locks on that
table to be removed, or a table modification is currently running and other transactions
are being blocked by it.

233



CHAPTER 9

Latch-Related Wait Types

In Chapter 8, “Lock-Related Wait Types,” we took a pretty deep look at locking and
blocking inside SQL Server, together with different wait types that indicate blocking

is occurring. Latches look a lot like the locks we discussed earlier; in some cases they
even appear to use the same modes as the locks we discussed in Chapter 8. Make no
mistake though, latches are completely different than locks, even though they seem to
share some features. While locks are used to guarantee transactions are isolated and
consistent, latches are used to guarantee the consistency of in-memory objects.

Latches are, just like locking and blocking, a pretty complex subject inside SQL
Server. Latches even have their own latch-statistics DMV that records how much time
has been spent waiting on specific latch types.

Because of the complexity of latches and their function inside SQL Server, I believe
they require an introduction to better understand how you can troubleshoot latch-
related wait types later in this chapter. For this reason, we will start this chapter with an
introduction to latches, just as we did with the introduction to locking inside Chapter 8,
“Lock-Related Wait Types.”

Introduction to Latches

Microsoft describes latches as “lightweight synchronization objects that are used by
various SQL Server components” on Books Online. This description is pretty vague, and
there is a lot more depth to latches than the description would initially suggest.

The first thing that is important to understand about latches, which we lightly
touched upon in the introduction of this chapter, is that latches are completely different
than locks. I have heard and read various discussions about latches that treat latches as
if they were locks. This confusion is easily explained, as latches, at first glance, do look
similar to locks as regards their behavior and naming conventions within SQL Server.
Just like locks, latches have various “modes,” and some of the acronyms to indicate

235
© Enrico van de Laar 2019

E.van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_9



CHAPTER9  LATCH-RELATED WAIT TYPES

the type of mode used are the same as for some lock modes. Another thing locks and
latches have in common is that both objects play a role in keeping SQL Server objects
consistent, and the way they manage this seems identical. While locks are used to make
sure transactions are consistent, protecting the transaction for the entire duration it is
running, latches are only used for the duration they are necessary and are not bound

to the duration of a transaction. During the duration of one transaction, many different
latches will be acquired and released again. Figure 9-1 visualizes this behavior.

[ = =====>=c==ccccccccccccccccccaccccccsnccccccsacccccccnas Lock released
Transaction
Latch acquired Z&& Latch released Latch acquired E&& Latch released

time

Figure 9-1. Lock and latch behavior during transactions

Placing and especially maintaining locks on SQL Server objects is an expensive
operation, mostly because they need to stay in place during entire transactions. Because
latches are only needed for specific operations, and are then released again, they are far
less costly to use than locks. This explains the “lightweight” part in the latch definition
Microsoft uses.

The second part of the latch definition, “synchronization object,” we discussed
earlier in this book, but not under that exact name. If you have read through
this book so far, you should have noticed, especially in Chapter 6, “IO-Related
Wait Types,” that SQL Server uses various methods to handle concurrent threads
accessing objects. In Chapter 6, “I0-Related Wait Types,” we talked about mutual
exclusion, which makes sure only one thread at a time can access a memory object.
In the same chapter we also discussed semaphores that implement gates to limit
concurrent access to memory. Latches are another method used to make sure
concurrent threads do not threaten the consistency of in-memory objects, and it
does this in a way that looks a lot like locking.

236



CHAPTER9  LATCH-RELATED WAIT TYPES

Latch Modes

Latches have five different modes available to use when accessing objects. The list that

follows describes these five modes, some of which might look familiar:

SH: The SH mode represents a Shared latch. This mode is used when
the latch is reading page data.

UP: The UP latch mode is used by Update latches that are used
whenever a page needs to be modified. By using the Update latch the
page can still be read by other latches.

EX: The EX latch mode, or Exclusive latch, is also used when page
modification occurs. Unlike the Update latch, the Exclusive latch
does not allow read or write access by other latch modes.

KP: The KP latch mode is used by Keep latches. Keep latches are
used to protect the page so it cannot be destroyed by the Destroy
latch. They are compatible with every other latch mode except for the
Destroy mode.

DT: The DT latch mode indicates Destroy latches. Destroy latches are
used when removing contents from memory; for instance, when SQL
Server wants to free up a data page in memory.

Asyou can see in this list, the first three latch modes look a lot like those used by

locks, and function more or less the same way. And just like lock modes, latch modes are

compatible or incompatible with other latch modes. Table 9-1 shows the latch compatibility

matrix and whether the different modes are compatible with each other or not.

Table 9-1. Latch Compatibility Matrix

SH uP EX KP DT
SH Yes Yes No Yes No
upP Yes No No Yes No
EX No No No Yes No
KP Yes Yes Yes Yes No
DT No No No No No

237



CHAPTER9  LATCH-RELATED WAIT TYPES

Unlike locks, which can partly be controlled by Isolation levels and query hints,
latches are completely controlled by the SQL Server engine. This means we cannot
modify latch behavior like we can for locks.

Latch Waits

Whenever a latch has to wait because its request couldn’t be granted immediately,

a latch wait occurs. These waits are tracked and recorded by SQL Server inside the
sys.dm os wait stats DMV, and also inside a dedicated DMV that records specific
latch wait times, sys.dm_os_latch_waits, which we will discuss in more detail a bit
further down in this chapter.

Figure 9-2 shows a situation in which a latch wait occurs. In this example we are
waiting for a data page to be read from the storage subsystem into the buffer cache. In
this case latches are used to make sure the same data page on the storage subsystem is
not being read into the buffer cache by multiple threads. While the latch is waiting for the
page to read into memory, the PAGEIOLATCH_SH wait type will be recorded.

Buffer Cache

PAGEIOLATCH_SH

B

Figure 9-2. PAGEIOLATCH_SH occurring

There are three different latch wait types defined in SQL Server that can be accessed
by querying the sys.dm_os wait stats DMV, and they are described in the following list:

o Buffer latches: Buffer latches are used to protect data pages inside the
buffer cache. They are not only used for user-related data pages but
also for system pages like the Page Free Space (PFS) page that tracks
free space inside data pages. Inside the sys.dm_os wait_stats DMV
they are indicated by the PAGELATCH_[xx] wait type, where the [ xx]
indicates the latch mode used.

238



CHAPTER9  LATCH-RELATED WAIT TYPES

o Non-buffer latches: These latches are used to protect data structures
outside of the buffer cache. They are indicated by the LATCH_[xx]
wait type inside the sys.dm_os wait stats DMV.

e IO latches: IO latches are used when data pages are read from the

storage subsystem into the buffer cache. This type is indicated by the

PAGEIOLATCH_[xx] wait type.

Figure 9-3 shows the number of different latch wait types recorded by the

sys.dm_os wait_stats DMV.

wait_type

{ LATCH_NL

LATCH_KP
LATCH_SH

LATCH_UP

LATCH_EX

LATCH_DT

PAGELATCH_NL
PAGELATCH_KP
PAGELATCH_SH
10 PAGELATCH_UP
11 PAGELATCH_EX
12 PAGELATCH_DT
13 PAGEIOLATCH_NL
14  PAGEIOLATCH_KP
15  PAGEIOLATCH_SH
16 PAGEIOLATCH_UP

W o~ h 0 oW N =

(=T — R — R — T — T — R — = ]

waiting_tasks_count  wait_time_ms

0

[— T — I — I — I — B — I — B — B — R — B — I — B — |

S od
=l

max_wait_time_ms  signal_wait_time_ms

0

(=N — RN —AE— AN —AN—RE—RN—NN— RN —0E—R0— R —

b
=
DBODO@DOOOQODDGO

-

Figure 9-3. Latch wait types inside sys.dm_os_wait_stats

Whenever you are looking at the LATCH_[xx] wait type inside the sys.dm os_wait_

stats DMV, you are actually looking at a summary of the wait times for these non-buffer

latches. There are various non-buffer latch classes inside SQL Server, and to make it

easier to analyze these non-buffer latch classes in more detail, the sys.dm_os_latch_

stats DMV was added.

239



CHAPTER9  LATCH-RELATED WAIT TYPES

Sys.dm_os_latch_stats

The sys.dm_os_latch_stats closely resembles the sys.dm os wait stats DMV.
The sys.dm_os_latch_stats DMV also shows the number of times a wait occurred,
the total wait time, and the maximum wait time. The only column missing compared
tothe sys.dm_os wait stats DMVissignal wait time_ms; this is missing
because latches do not follow the same execution process (RUNNING, SUSPENDED,
RUNNABLE) as requests do.

Figure 9-4 shows a part of the sys.dm_os _latch_stats DMV. There are many more
non-buffer latch classes, totaling 168, in SQL Server 2017.

latch_class waiting_requests_count  wait_time_ms  max_wait_time_ms
1 | ACCESS_METHODS_DATASET PARENT 0 0 0
2 ACCESS_METHODS_HOBT_FACTORY 0 0 0
3 ACCESS_METHODS_HOBT 0 0 0
4 ACCESS_METHODS_HOBT_COUNT 0 0 0
5 ACCESS_METHODS_HOBT_VIRTUAL_ROOT 0 0 0
6 ACCESS_METHODS_CACHE_ONLY_HOBT_ALLOC 0 0 0
7 ACCESS_METHODS_BULK_ALLOC 0 0 0
8 ACCESS_METHODS_SCAN_RANGE_GENERATOR 0 0 0
9 ACCESS_METHODS_KEY_RANGE_GENERATOR 0 0 0
10  ACCESS_METHODS_IOAFF_KEY_RANGE_GENERATOR 0 0 0
11 ACCESS_METHODS_IOAFF_KEY_TARGET_PAGE_CNT 0 0 0
12 ACCESS_METHODS_IOAFF_QUEUE 0 0 0
13 ACCESS_METHODS_IOAFF_READAHEAD_QUEUE 0 0 0
14 ACCESS_METHODS_IOAFF_READAHEAD 0 0 0
15 ACCESS_METHODS_IOAFF_WAITING_WORKER_QUEUE 0 0 0
16 APPEND_OMNLY_STORAGE_INSERT_POINT 0 0 0

Figure 9-4. sys.dm_os_latch_waits

Just like the sys.dm_os_wait_stats DMV, the sys.dm os_latch_stats DMVis
cumulative since the start of the SQL Server service. This means it will get reset to 0 value
again whenever your SQL Server service is restarted. We can also use the DBCC SQLPERF
command against the sys.dm_os_latch_stats DMV to reset the wait times manually by
executing this command:

DBCC SQLPERF('sys.dm os latch stats', CLEAR)

240



CHAPTER9  LATCH-RELATED WAIT TYPES

Page-Latch Contention

One of the most common problems encountered regarding latches is page-latch
contention. Page-latch contention occurs when many concurrent latches try

to acquire a latch, but there already is a latch in place with an incompatible

mode, causing a latch wait. Because this problem can occur on every SQL Server
instance that is subjected to concurrent workloads, I want to provide you with the
knowledge needed to identify page-latch contention before we discuss the various
latch-related wait types.

There are a variety of things that can cause page-latch contention to occur, and
even though we have little influence on the latch placement (remember, latches are
placed and held by an internal process inside the SQL Server engine), the design of our
database can impact latch behavior. One common cause for latch contention is when
concurrent queries access so-called hot-spots inside your database. For instance,

a small table that holds a few rows that need to be accessed by an application for
configuration information can be a potential hot-spot. If many concurrent requests
need data from this table, many latches will probably run into other, incompatible
latches, causing latch waits to occur and slowing down the application’s performance.
I have seen this problem occurring various times for different clients, making this a
real-world scenario, and I will show you an example of page-latch contention that is
based on one of those cases.

In this case the client ran an application that, at specific times, would select large
amounts of data and place the results into temporary tables. The application used a large
amount of concurrent connections to speed up the creation of these temporary tables.
To show the effects of this example, I am going to reproduce the scenario using Ostress to
select rows from a table and then insert them into a temporary table.

As input for the Ostress utility, I save a .sql file named latch_contention.sql with
the query shown in Listing 9-1.

Listing 9-1. Select rows from Sales.SalesOrderDetail into temporary table

SELECT TOP (20000) *
INTO #tmptable
FROM Sales.SalesOrderDetail;

241



CHAPTER9  LATCH-RELATED WAIT TYPES

This query selects the top 20,000 rows from the Sales.SalesOrderDetail
table inside the AdventureWorks database and inserts them into a temporary table
(#tmptable).

The next step is to fire up Ostress and execute the latch_contention.sql script with
300 concurrent connections. The Ostress command line I use is shown here:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E
-dAdventurelWorks -i"C:\latch_contention.sql" -n300 -r1 -q

While the Ostress utility is running, let’s take a look at the sys.dm_os_waiting tasks
DMV to see if anything is running into waits. Figure 9-5 shows a part of the results that
are returned when the query that follows is executed:

SELECT
session_id,
wait_duration ms,
wait_type,
resource description
FROM sys.dm os waiting tasks
WHERE session_id > 50;

session_id  wait_duration_ms  wait_type resource _description
1 i 189 PAGELATCH_UP  2:1:1
2 1m PAGELATCH_UP  2:1:1
3 57 9 PAGELATCH_UP  2:11
4 62 191 PAGELATCH_UP  2:11
5 69 183 PAGELATCH_UP  2:11
6 108 187 PAGELATCH_UP 2111
7 116 14 PAGELATCH_UP  2:11
8 17 198 PAGELATCH_UP 2111
9 18 158 PAGELATCH_UP 2:1:1
M0 19 198 PAGELATCH_UP 2111
1 120 198 PAGELATCH_UP  2:1:1
12 122 186 PAGELATCH_UP 2:1:1
13 123 5 PAGELATCH_UP  2:1:1

Figure 9-5. PAGELATCH_UP waits occurring

242



CHAPTER9  LATCH-RELATED WAIT TYPES

We are running into a lot of PAGELATCH_UP waits here that indicate that a latch is
waiting to update a page in-memory. The resource_description column is very useful
here since it indicates the page ID that the latch wants to access. In this case the page ID
we are trying to access is 2:3:1. The first number, 2, represents the database ID, which is
the TempDB database. The second number, 2, indicates the file ID (the TempDB database
on my test system consists of multiple data files). Finally, the last number indicates the
page ID, 1. Why are all those sessions waiting on the same wait type against the same
data page? This page happens to be a very special page, the Page Free Space (PFS) page.
The PFS page tracks how much free space is left inside every page inside the database.

It is always the first page of every database (page ID of 1) and has an interval of 8088 pages.
So in this example, all the requests are waiting to update the first PFS page inside the
TempDB database.

Because we are running inserts into a temporary table using many concurrent
connections, we need to find, or allocate, data pages with free space to hold our rows
inside the TempDB. All this space usage needs to be updated inside the PFS page, and
latches are used to make sure only one thread gets access to the PFS page at a time.
Figure 9-6 shows a Perfmon graph of two Perfmon counters, Transaction and Latch
Waits/sec. This will show the relationship between to-Ostress workload and the number
of latch waits occurring.

243



CHAPTER9  LATCH-RELATED WAIT TYPES

J0PM  12:58:05PM  12:58:10PM  12:58:15PM  12:58:20PM  12:58:25PM

Figure 9-6. Latch Waits/sec and Transactions Perfmon graph

244



CHAPTER9  LATCH-RELATED WAIT TYPES

This is actually a classic example of the page-latch contention inside the TempDB
database that can occur when many concurrent queries are creating objects inside
TempDB. One way to resolve this specific case of latch contention is by adding more
(equally sized) TempDB data files. Every new data file will maintain its own PFS pages, and
adding more data files helps spread the load of updating the PFS pages. Using the query
that follows, I added three more data files to the TempDB database:

USE [master]
GO

ALTER DATABASE [tempdb] ADD FILE ( NAME = N'tempdev2', FILENAME
N'D:\Data\tempdb2.mdf' , SIZE = 204800KB , FILEGROWTH = 10%)
Go

ALTER DATABASE [tempdb] ADD FILE ( NAME = N'tempdev3', FILENAME
N'D:\Data\tempdb3.mdf' , SIZE = 204800KB , FILEGROWTH = 10%)
GO

ALTER DATABASE [tempdb] ADD FILE ( NAME = N'tempdev4', FILENAME
N'D:\Data\tempdb4.mdf' , SIZE = 204800KB , FILEGROWTH = 10%)
Go

When running the Ostress utility again with the same query to insert data into a
temporary table as we did before, I still notice latch waits occurring on PES pages, but
they are spread better across the TempDB data files. When looking at the Transactions and
Latch Waits/sec Perfmon counters, I also see fewer latch waits occurring, as shown in
Figure 9-7.

245



CHAPTER9  LATCH-RELATED WAIT TYPES

\

1 1:46:35PM 1:46:40 PM 1:46:45PM 1:46:5C

Latch Waits/sec
0.1 Transactions

Figure 9-7. Latch Waits/sec and Transaction Perfmon graph after adding more
TempDB files

By adding more TempDB data files, I would be able to lower the amount of latch
waits even further. Adding too many TempDB data files can be a bad idea though, since
the round-robin algorithm that makes sure the data files receive equal allocations can
generate noticeable overhead when it needs to manage many TempDB data files. Paul
Randal over at his SQLskills blog has a great post discussing TempDB data files and latch
contention, which you can find here: waw.sqlskills.com/blogs/paul/a-sql-server-
dba-myth-a-day-1230-tempdb-should-always-have-one-data-file-per-processor-core/.

Now that we have discussed what latches are and how they work, and looked at an
example of latch contention, let’s move on and look at latch-related wait types.

246


http://www.sqlskills.com/blogs/paul/a-sql-server-dba-myth-a-day-1230-tempdb-should-always-have-one-data-file-per-processor-core/
http://www.sqlskills.com/blogs/paul/a-sql-server-dba-myth-a-day-1230-tempdb-should-always-have-one-data-file-per-processor-core/

CHAPTER9  LATCH-RELATED WAIT TYPES

PAGELATCH_ [xx]

The first latch-related wait type we will discuss in this chapter is the PAGELATCH [ xx]
wait type, where the [ xx] indicates the latch mode used (e.g., SH for Shared). Since we
already discussed the various latch modes in the introduction of this chapter, we won't
describe them again in this chapter.

What Is the PAGELATCH_[xx] Wait Type?

PAGELATCH_[xx] waits occur whenever a latch has to wait before it can access a page
in-memory. The main cause for these waits is other latches that are already in place on
the page and are incompatible with the latch mode our request wants to use. Just like

a lock, the latch we want to place on the page has to wait until the incompatible latch
is removed from the page. As long as the incompatible latch is in place, our request
will record PAGELATCH_[xx] wait time. Figure 9-8 shows a graphical representation of
a PAGELATCH_UP wait occurring. I used a cogwheel icon to indicate a latch is already in
place on the page to avoid confusion with SQL Server locks.

Buffer Cache

Exclusive Latch

Request |

PAGELATCH_UP

Update Latch

Request Il

Figure 9-8. PAGELATCH_UP wait occurring

It's easy to confuse PAGELATCH_[xx] waits with PAGEIOLATCH_[xx] waits. Even
though they look alike in name, both are completely different latch wait types. The
former indicates access to pages already in memory, while the latter indicates pages are
being read from disk into memory. We will go into detail regarding the PAGEIOLATCH_[ xx]
wait type a bit later in this chapter.

247



CHAPTER9  LATCH-RELATED WAIT TYPES

PAGELATCH_[xx] Example

In the introduction to this chapter, we took a look at page-latch contention that can
occur inside the TempDB database when many concurrent queries are loading data in
temporary queries. This isn’t the only form of latch contention that can occur inside SQL
Server. Another form of latch contention is known as “last-page insert contention.” Just
like the page-latch contention scenario we discussed earlier, last-page insert contention
can also be identified by noticing a high number of PAGELATCH waits. Let’s go through an
example of last-page insert contention.

Remember that time in database design class when you learned that every table
should have a clustered index? And that the best candidate for a clustered index key
column is a narrow, unique, ever-increasing value, like an integer? All of that is still
true, and it absolutely helps to optimize the performance of queries against those
tables. There are, however, very specific cases where using this practice can cause a
performance problem known as last-page insert contention.

Last-page insert contention can occur on databases that experience a very heavy
insert workload against a table with relatively small rows; for instance, a table with
an ID column (Integer data type, auto increasing) and a Name column (Varchar data
type). From a best-practice point of view, we would create a clustered index on the ID
column since it fits the description of a good index key perfectly. It is narrow, unique
for every row, and always increasing. But because of the ever-increasing nature of the
auto increment, every newly added row will be added at the end of the clustered index,
creating a hot-spot for the last data page of the clustered index. Figure 9-9 shows the
insert behavior of rows into data pages inside a clustered index, inside the form of a so-
called B-tree structure, which is the data structure SQL Server uses to sort indexes.

Root Node

Intermediate level Intermediate level

~—— PAGELATCH EX

Data Data Data Data Data Data . PAGELATCH EX

Page Page Page Page Page Page | <@ PAGELATCH EX
Leaf Level Leaf Level

Figure 9-9. Last-page insert contention on last page in a clustered index

248



CHAPTER9  LATCH-RELATED WAIT TYPES

Even if the current data page is full, and a new data page is added, the target of the
inserts will change to the new page, switching the hot-spot to the new data page.

One question I often hear about this behavior is: “Why aren’t locks stopping this?”
The answer is actually pretty simple: because by default we will be using Exclusive row-
level locks to insert our new rows instead of locking the page, and you can have multiple
concurrent Exclusive row locks on one page. Access to the page that’s in-memory still
needs to occur serially though, so latches are used to make sure only one thread has
access to the page at any time. Figure 9-10 shows an enlarged view of the data pages at
the leaf level of the clustered index with locks in place.

Intermediate level

| : IX
Eata Eata X Tow || <————— PAGELATCH_EX
age age || row | *—PAGELATCH_EX
Leaf Level

Figure 9-10. Leaf page of clustered index with locks in place

To show you an example of last-page insert contention, I will create a new table
inside the AdventureWorks database of my test SQL Server instance using the query that
follows:

CREATE TABLE Insert Test
(
ID INT IDENTITY (1,1) PRIMARY KEY,
RandomData VARCHAR(50)

);
As you can seeg, this is a pretty small table with an ID column that automatically
increases for every new row inserted, and a RandomData column that will hold some data.

Iindicate that the ID column is the primary key of this table, which will automatically
create a clustered index using the ID column as the index key.

249



CHAPTER9  LATCH-RELATED WAIT TYPES

The next step is running Ostress with a highly concurrent workload that inserts new
rows into the Insert Test table. This time I don’t create a .sql input file for Ostress but
rather enter the following query in the Ostress command line:

INSERT INTO Insert Test
(RandomData)
VALUES

(
CONVERT(varchar(50), NEWID())

)

This will create the following Ostress command line that will connect to the
Adventurelorks database and execute the query we supplied using 500 concurrent
connections, each connection performing the query 100 times. This should create

enough concurrent inserts to demonstrate last—page insert contention:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E
-dAdventurelWorks -Q"INSERT INTO Insert Test (RandomData) VALUES
(CONVERT(varchar(50), NEWID()))" -n500 -1100 -q

While Ostress is running, I query the sys.dm_os waiting tasks DMV:

SELECT
session_id,
wait_duration_ms,
wait type,
resource_description

FROM sys.dm_os waiting tasks;

This query filters out some columns so that a screenshot of the results will fit on the
page. Figure 9-11 shows a portion of the results.

250



CHAPTER9  LATCH-RELATED WAIT TYPES

session_id  wait_duration_ms  wait_type resource_description
19 338 2 PAGELATCH_EX 5:1:29313
20 492 2 PAGELATCH_EX 5:1:29313
21 433 1 PAGELATCH_EX 5:1:29313
22 468 1 PAGELATCH_EX 5:1:29313
23 552 1 PAGELATCH_EX 5:1:29313
24 422 1 PAGELATCH_EX 5:1:29313
25 502 1 PAGELATCH_EX 5:1:29313
26 47N 1 PAGELATCH_EX 5:1:29313
27 470 1 PAGELATCH_EX 5:1:29313
28 389 1 PAGELATCH_EX 5:1:29313
29 414 1 PAGELATCH_EX 5:1:29313
30 33 1 PAGELATCH_EX 5:1:29313
k) 334 1 PAGELATCH_EX 5:1:29313
32 387 1 PAGELATCH_EX 5:1:29313
33 462 1 PAGELATCH_EX 5:1:29313
34 501 1 PAGELATCH_EX 5:1:29313
3B 402 1 PAGELATCH_EX 5:1:29313

Figure 9-11. PAGELATCH_EX waits on the same page

As expected, the insert workload caused a hot-spot to appear on a page inside the
clustered index, in this case the page with a page ID of 29313. All of those tasks shown
in Figure 9-11 (and there were around 300 more not shown) are all waiting to place an
Exclusive page latch, indicated by the PAGELATCH_EX wait type, on that page so they can
perform their insert operation.

To prove that page 29313 is a data page, I am going to use the undocumented DBCC
IND command to show us the pages that are associated with the Insert Test table. DBCC
IND will return a row for every page associated with the table we supply as a parameter to
DBCC IND, and, among other things, will show us the page type of every page returned.

Running the command that follows will execute the DBCC IND command against
the AdventurelWorks database’s Insert_Test table. Before we run the actual DBCC IND
command we have to enable Traceflag 3604 so the results of the DBCC IND command get
returned in the SQL Server Management Studio results tab:

DBCC TRACEON (3604);

GO

DBCC IND (AdventureWorks, Insert Test, 1);
GO

251



CHAPTER9  LATCH-RELATED WAIT TYPES

Figure 9-12 shows the results of the DBCC IND command. Highlighted is page 29313,
the page that was the insert hot-spot during the Ostress workload.

PageFID PagePID IAMFID IAMPID  ObjectlD IndexID  PaditionNumber  ParitionID iam_chain_type PageType
712 1 29302 1 5235 388196433 1 1 72057594062110720  Inow data 1
713 1 29303 1 5235 388196433 1 1 72057534062110720  Inow data 1
714 1 29312 1 5235 388196433 1 1 72057554062110720  Invow data 1
s {1 a3 1 5235 388196433 1 1 72057594062110720 Inrowdata 1
76 1 29314 1 5235 388196433 1 1 72057594062110720  Intow data 1
717 1 29315 1 5235 388196433 1 1 72057594062110720  Inow data 1
718 1 29316 1 5235 388196433 1 1 72057534062110720  Inow data 1

Figure 9-12. DBCC IND results

The information we are interested in resides in the IndexID and PageType columns.
The IndexID column returns the Index ID that this page is associated with. We only have
one index on the Insert Test table, and it has an ID of 1. The PageType column returns
the page type of the specific page. In this case the PageType of page 29313 is 1, which
indicates that the page is a data page.

Remember, DBCC INDis an undocumented SQL Server command, and I included it
here to show you information about the page where the last-page insert contention was
occurring. I strongly advise against using it on production servers.

Lowering PAGELATCH_[xx] Waits

So far I have showed you two examples where PAGELATCH_[xx] waits can occur, page-
latch contention on the PFS page of the TempDB database and last-page insert contention.
There is another latch-contention problem that can occur when inserting rows into

a small table with an index. This case of latch contention can also be identified by
PAGELATCH_[xx] waits occurring, but it also has a connection with the LATCH_[xx] wait
type. For this reason I am saving the explanation and example of this specific case of
latch contention for the next section of this chapter where we will discuss the LATCH_[xx]
wait type.

Lowering PAGELATCH [xx] waits can be challenging. Frequently, they are related to
the design of your database or your workload, and these can prove difficult to change in
production environments. There are, however, a number of factors that can contribute to
latch contention that are worth taking the time to check.

252



CHAPTER9  LATCH-RELATED WAIT TYPES

It is more common to see latch contention occurring on systems that have a large
number of logical processors (16+) and high concurrent OLTP workloads. However,
having fewer logical processors does not mean latch contention cannot occur. The
examples of latch contention I have shown you so far in this chapter have all been
generated on a virtual machine with only two logical processors. I had to create a high
enough concurrent workload to reach latch contention. Having more logical processors
means there are more threads available to perform work, which also results in more
concurrent latches being placed, increasing the chances of latch contention. Adding
logical processors when experiencing latch contention can, in this specific case, cause
even more latch contention to occur instead of resolving it. Lowering the number of
logical processors isn’t an option either, because this will slow down all your other
workloads.

The best way to resolve latch contention is by identifying where the contention is
occurring and what type of contention you are dealing with.

Ifyou are dealing with PFS page contention, a good first step would be to check if you
are using one or multiple database data files. If you are using one database data file, the
first step would be to add additional, equally sized data files and measure if this lowers
the amount of PAGELATCH_[xx] waits occurring. If you already have multiple database
data files you could try adding more, but be careful not to add too many, because having
this can introduce other performance problems. Your goal should be to find a database
data file “sweet spot” where you have enough database data files to minimize the impact
of latch contention, but not so many as to cause the overhead to become too high. This
depends entirely on your workload, so it is impossible for me to give you a generalized
recommendation.

When dealing with last-page insert contention you could consider changing the
index key to something else instead of a sequentially increasing value, like a GUID. Using
a GUID as an index key will result in a larger index because of the byte requirements of
a GUID. Also, because GUIDs are entirely random, keeping the index in order requires
more work than when dealing with an ever-increasing, sequential value. It can also have
consequences for your applications or queries that possibly would need to be rewritten
to accommodate the change in data type.

Other factors to consider that can impact latch contention are indexing strategies,
page fullness, and the number of concurrent connections to the database. Also,
identifying and optimizing the access patterns to the data inside the database can help
immensely. For instance, if you know your workload consists of many very small inserts

253



CHAPTER9  LATCH-RELATED WAIT TYPES

against a single table, it might be worth taking the time to see if you can combine some of
the small inserts into a larger batch, effectively lowering the number of latches needed.

One final option for resolving latch contention is using a method called hash
partitioning. Hash partitioning splits up your table or index into various partitions based
on a value that is generated by using a computed column. Partitioning is only available
in Enterprise Edition (unless you are running SQL Server 2016 SP1 or higher, in that case
table and index partitioning is also available in Standard Edition), but it is a method that
can minimize, or completely prevent, latch contention.

Hash partitioning works by cutting up tables or indexes into partitions, with each
partition holding a set of the data. Partitioning is frequently used for archiving data
from inside a table to another filegroup that resides on other (cheaper) storage, while
the current data resides on fast storage. In the case of hash partitioning, we are going to
calculate a value for every row inside the table using a computed column. Based on that
value, we will move the row to a partition.

The great advantage of using this method of partitioning indexes is that every
partition has its own index tree. So even though the insert statements will still occur on
the last (right-most) page of the index, it will be spread across the partitions. If we look
at Figure 9-13, we see a case of last-page insert contention, where concurrent queries are
trying to insert rows into an index as we discussed in the preceding example.

Root Node

Intermediate level Intermediate level

<@—— PAGELATCH EX
Data Data Data Data Data Data : PAGELATCH EX
Page Page Page Page Page Page | @¢——— PAGELATCH EX

Leaf Level Leaf Level
Figure 9-13. Last-page insert contention on the right-most data page of an index
If we were to use partitioning to cut the index into multiple parts (three in this case),
we would get the situation shown in Figure 9-14, multiple B-trees, each spanning a part

of the data.

254



CHAPTER9  LATCH-RELATED WAIT TYPES

Partitioned Index

Figure 9-14. Last-page inserts spread across partitions

Let’s take a look at the effects of hash partitioning when we run the workload to
generate last-page insert contention, like we did in the example earlier in this chapter.
The first thing we need to do is create a Partition function. This will map rows inside
the table or index to partitions based on the value of a column. The following script
will create a Partition function named LatchPartFunc that will divide rows into nine
partitions based on the value of a column (which we will create a bit later). See the

following:

CREATE PARTITION FUNCTION [LatchPartFunc] (INT)
AS RANGE LEFT FOR VALUES
(0,1,2,3,4,5,6,7,8);

The next step is to create a Partition scheme that will map the partitions to a

filegroup:

CREATE PARTITION SCHEME [LatchPartSchema]
AS PARTITION [LatchPartFunc] ALL TO ([PRIMARY]);

In this case I used the PRIMARY filegroup, but you are free to create an additional
filegroup to hold the partitions.

Next up is creating a new table called Insert_Test3 using the query that follows.
Notice the ID_Hash column. This is a computed column that will calculate a value
between 0 and 8 based on the value of the ID column:

CREATE TABLE Insert Test3

(
ID INT IDENTITY(1,1),

RandomData VARCHAR(50),

255



CHAPTER9  LATCH-RELATED WAIT TYPES

ID Hash AS (CONVERT(INT, abs(binary checksum(ID) % (9)), (0))) PERSISTED
);

The last step is to create a clustered index and map it to the Partition scheme:

CREATE UNIQUE CLUSTERED INDEX idx_ID
ON Insert Test3

(
ID ASC, ID_Hash

)
ON LatchPartSchema(ID Hash);

Now that we have our partitioned table in place, let’s repeat our Ostress workload
that caused last-page insert contention in our previous example. I changed the target
table for the inserts to our new, partitioned Insert Test3 table.

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E
-dAdventurelWorks -Q"INSERT INTO Insert Test3 (RandomData) VALUES
(CONVERT(varchar(50), NEWID()))" -n500 -1100 -q

During both Ostress workloads I used Perfmon to monitor the number of latch
waits occurring every second. Figure 9-15 shows the Perfmon graph for the first Ostress
workload against a non-partitioned index and the second against the partitioned index
we just created.

256



CHAPTER9  LATCH-RELATED WAIT TYPES

»1Non-partitioned index

Partitioned index

o+ '
4:3330PM  4:33:40PM 433:50PM 4:34:13PM 4:34:23

Figure 9-15. Latch Waits/sec against both a non-partitioned and a partitioned index

As you can see, the number of latch waits occurring dropped drastically after
configuring hash partitioning! We can view the distribution of rows across the different
partitions we created by running this query:

SELECT *
FROM sys.partitions
WHERE object id = OBJECT ID('Insert Test3');

Figure 9-16 shows the results of this query on my test SQL Server instance.

257



CHAPTER9  LATCH-RELATED WAIT TYPES

object_id index_id  parition_number  hobt_id rows  filestream_flegroup_id  data_compression  data_compression_desc
1| | 420196547 1 1 T2057534062241792 5555 O 0 NONE
2 72057594062307328 420196547 1 2 72057594062307328 5556 O 0 NONE
3 72057594062372864 420196547 1 3 72057534062372864 5556 O 0 NONE
4 72057594062433400 420196547 1 4 72057534062438400 5556 O 0 NONE
5 72057534062503936 420196547 1 5 72057534062503936 5556 O 0 NONE
6 72057594062569472 420196547 1 6 T25TE4062569472 5556 O 0 NONE
7 72057594062635008 420196547 1 7 72057534062635008 5555 O 0 NONE
8 72057594062700544 420196547 1 8 72057534062700544 5555 0 0 NONE
9 72057594062766080 420196547 1 9 72057534062766080 5555 O 0 NONE
10 72057594062831616 420196547 1 10 72057534062831616 0 0 0 NONE

Figure 9-16. Rows distribution across partitions

In Figure 9-16 we see the nine partitions we created on the Insert Test3 table,
numbered 1 to 9 by the partition_number column. The rows column shows the number
of rows inside each partition, and as you can see, they are distributed very evenly across
the nine partitions! The hobt_id returns the ID of the B-tree where two rows of this
partition are stored; all the partitions have different IDs, meaning they each have their
own B-tree structure.

Even though partitioning is a great way to resolve latch contention issues, it does come
with its own unique challenges and drawbacks. Two of those are that it is an Enterprise-
only feature (unless you are on SQL Server 2016 SP1 or higher), thus costly, and it can
impact the generation of query execution plans, resulting in a suboptimal plan.

PAGELATCH_[xx] Summary

The PAGELATCH_[xx] wait type indicates that buffer latches, which are used to protect
in-memory pages, are running into other, non-compatible, buffer latches. Just like locks,
latches have different modes they use when protecting pages, and not all of these are
compatible with each other. Seeing a large amount of PAGELATCH_[xx ] waits occurring
can indicate a case of latch contention. Resolving latch contention can be challenging
and frequently requires making changes to the database design or queries.

LATCH_[xx]

Another latch-related wait type is the LATCH_[xx] wait type. Just like the PAGELATCH_[xx] wait
type we discussed in the previous section, LATCH_[xx] waits are related to a specific latch
class. While the PAGELATCH_[xx] wait type is related to latches that protect data structures
inside the buffer cache, the LATCH_[xx] wait type is related to latches that are used to protect
data structures outside of the buffer cache (but still inside the SQL Server memory).

258



CHAPTER9  LATCH-RELATED WAIT TYPES

What Is the LATCH_[xx] Wait Type?

When you see the LATCH_[xx] wait type occurring a specific class of non-buffer latches
is running into a wait. The LATCH_[xx] is actually a summary of the wait time of those
different non-bulffer latch classes and not a latch type of its own. All of the different
non-buffer latch classes that add to the wait time shown by the LATCH_[xx] wait type
are recorded inside their own DMV, sys.dm_os_latch_stats. There are many different
latch classes that the LATCH_[xx] wait type represents, totaling 168 in SQL Server 2017.
Figure 9-17 shows the memory area where LATCH_[xx] waits can occur.

SQL Server Memory
//fiuffor Cacl;:ﬁ“\
| B |
\ / Non-Buffer Cache
~_ > Request |
¢ - Exclusive latch
[ LATCH_sH
A
Shared latch | Request Il
I i

Figure 9-17. LATCH_SH wait occurring

Because the LATCH_[xx] wait type is a cumulative view of waits occurring on a
specific latch class, you will need to look inside the sys.dm_os_latch_stats DMV to find
the exact cause of the LATCH_[xx] wait. We described the inner workings and columns of
the sys.dm _os_latch stats DMV in the “Introduction to Latches” section at the start of
this chapter, so I won'’t go into more detail about the DMV here.

LATCH_[xx] Example

There is one case of latch contention that can occur that will result in LATCH_[xx ] waits.
This problem can occur on small tables that have a shallow B-tree structure (we will
explain more about the B-tree structure a bit further down in this section) during a large

259



CHAPTER9  LATCH-RELATED WAIT TYPES

volume of concurrent insert operations. A typical use case of such a table could be a
messaging table that acts as a queue and gets truncated when the messages are sent.
The script in Listing 9-2 will create a test table, named Insert Test2, together with a
non-clustered index on the table.

Listing 9-2. Test contention table with non-clustered index

-- Create the table
CREATE TABLE Insert Test2
(
ID UNIQUEIDENTIFIER,
RandomData VARCHAR(50)

)5

-- Create a non-clustered index on the ID column
CREATE NONCLUSTERED INDEX idx_ID

ON Insert Test2 (ID);

GO

The ID column has a data type of UNIQUEIDENTIFIER to make sure random, non-
sequential values are generated. By creating a non-clustered index on this column,
we are sure inserts will happen randomly across the B-tree associated with the non-
clustered index.

Once the table is created we can start Ostress with a workload consisting of an insert
query that will insert a single row inside the table. We will run the workload with 500
concurrent connections, with each of the connections executing the query 100 times.
The command that follows shows the Ostress command:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E
-dAdventureWorks -Q"INSERT INTO Insert Test2 (ID, RandomData) VALUES
(NEWID(), CONVERT(varchar(50), NEWID()))" -n500 -1100 -q

While the workload is running, I can take a look at the sys.dm_os_waiting tasks
DMV using the following query so the resource_description column could fit on the
screenshot:

SELECT
session_id,
wait_duration_ms,

260



CHAPTER9  LATCH-RELATED WAIT TYPES

wait_type,
resource_description
FROM sys.dm os waiting tasks;

Figure 9-18 shows a part of the results of this query on my test SQL Server instance.

session_id wak_duration_ms  wai_type resource_description
13 224 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0790AF8)
14 214 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0790AF8)
15 343 10 LATCH_SH ACCESS_METHODS_HOBT_WIRTUAL_ROOT (00000020C0790AF8)
16 427 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0790AF8)
17 430 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0730AF8)
18 325 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0790AF8)
19 292 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0790AF8)
20 188 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0790AF8)
21 I 10 LATCH_SH ACCESS_METHODS_HOBT_WIRTUAL_ROOT (00000020C0790AF8)
2 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0790AF8)
23 393 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0730AF8)
24 299 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0790AF8)
25 34 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0790AF8)
26 174 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0790AF8)
27 3% 10 LATCH_SH ACCESS_METHODS_HOBT_WIRTUAL_ROOT (00000020C0790AF8)
28 339 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C0790AF8)
23 38 10 LATCH_SH ACCESS_METHODS_HOBT_VIRTUAL_ROOT (00000020C07S0AF8)

Figure 9-18. LATCH_SH waits occurring

The resource_description column of the sys.dm_os_waiting tasks DMV will
help us identify what latch class is associated with the LATCH_[xx] wait. In this case we
are running into the ACCESS_METHODS_HOBT_VIRTUAL_ROOT latch class.

Now that we know what latch class is running into waits, we can query the
sys.dm_os latch waits DMV to find out the number of waits and the total wait time for
this specific latch class using the following query:

SELECT *
FROM sys.dm_os latch_stats
WHERE latch class = 'ACCESS METHODS HOBT VIRTUAL ROOT';

Figure 9-19 shows the results of this query on my test SQL Server instance.

latch_class waiting_requests_count wait_time_ms max_wait_time_ms
1 !ﬁCCESS_METl-DDS_HOBT_VIRTUAL_ROOT | 44407 636426 297

Figure 9-19. ACCESS_METHOD_HOBT _VIRTUAL_ROOT latch wait

261



CHAPTER9  LATCH-RELATED WAIT TYPES

Now that we have identified the latch class that is causing the LATCH_SH wait
to occur we can start troubleshooting it. According to Books Online, the ACCESS _
METHODS HOBT_VIRTUAL ROOT latch class is used to “synchronize access to the root page
abstraction of an internal B-tree” Even though the description is pretty limited, it should
give us an idea of where to start looking when troubleshooting this specific problem.
Iincluded a list of the different latch classes that are described on Books Online, including
some extra information whenever possible, in Appendix I1I of this book.

Apparently, something happened to the B-tree structures associated with indexes.
Since we only have one non-clustered index on the table we created (idx_ID), we can
assume something happened to the B-tree of that index. Let’s refresh our memory a little
bit about what a B-tree index structure looks like by looking at Figure 9-20.

Root Node

Intermediate level Intermediate level
Data Data Data Data Data Data
Page Page Page Page Page Page

Leaf Level Leaf Level

Figure 9-20. B-tree index structure

The B-tree structure we see in Figure 9-20 is pretty shallow, as it only has three levels.
The first one is the Root Node (level 0), the second is the Intermediate level (level 1), and
finally at the bottom of the B-tree are the data pages that hold the actual index keys
(orin case of a clustered index, the entire row). In Figure 9-20 we only have one level of
intermediate nodes, but depending on the number of data pages inside the index it is
possible to have more Intermediate levels. When the table is very small it is possible to
have the data pages inside the Intermediate level instead of a level further down the B-tree.

Whenever SQL Server needs to navigate through the B-tree it will start at the Root
page inside the Root Node. The Root page will help it navigate down to the index
page that holds the information it needs inside the Intermediate level. In turn, the

262



CHAPTER9  LATCH-RELATED WAIT TYPES

Intermediate page can send the request further down the B-tree if the page is not
inside the Intermediate level, but is rather at the Leaf level. The Leaf level is the last
level in an index; it cannot navigate further down than that. Figure 9-21 shows how
SQL Server navigates through the B-tree. In this case I used numbers as the index key
to make it a bit easier.

| r‘ookqp 71’ |

\
1-120

Root Node

Intermediate level Intermediate level

Data Data Data Data Data Data

Page Page Page A P 71 Page Page
1-20 21-40 41-60 61-80 81-100 101-120

Figure 9-21. B-tree navigation

When data is added to the index, the index will allocate new data pages at the Leaf
level to hold the index keys (remember, clustered indexes hold rows at the Leaf level).
Whenever enough data is inserted that a new index level needs to be created, a Root
page split occurs so the new level inside the index can be accessed. This Root page split
doesn’t cut your Root page into two new ones, there is always one Root page, but it needs
to be updated so we can use it to navigate through the B-tree to the new data.

The ACCESS_METHODS HOBT VIRTUAL ROOT latch class is the latch wait class that is
associated whenever a Root page split occurs in order to create another level inside the
B-tree. Whenever a Root page split occurs, the B-tree will acquire an Exclusive latch. All
threads that want to navigate down the B-tree will have to wait for the Root page split
to finish since they use Shared latches that are incompatible with the Exclusive latch.
But why are we seeing LATCH_SH waits occurring when running our Ostress workload,

263



CHAPTER9  LATCH-RELATED WAIT TYPES

instead of seeing Exclusive latches, since we are performing inserts? The reason for that
is pretty simple: before SQL Server knows where to place the new index key inside the
index, it first has to navigate through the B-tree to locate where the new index key needs
to be placed, and it uses Shared latches during its navigation.

To show you that another level was added to the non-clustered index during our
Ostress workload, I am going to use the INDEXPROPERTY function to retrieve the depth of
the non-clustered index we created.

The first thing I am going to do is empty our Insert_Test2 table using the TRUNCATE
command:

TRUNCATE TABLE Insert Test2;

If we use the INDEXPROPERTY function against the non-clustered index on this table,
we can view the current depth of the B-tree. The query that follows shows how to use the
INDEXPROPERTY function to retrieve this information:

SELECT INDEXPROPERTY(OBJECT ID('Insert Test2'), 'idx ID', "indexDepth")

Since we just truncated the table, the index depth should be 0 as there are no rows
inside the table yet.

I then run the Ostress workload again, and after it has finished I look at the
index information again. Instead of using the INDEXPROPERTY function, I use the
sys.dm_db_index_physical stats DMEF to return some additional information
about the number of index and data pages inside the index. This query returns such

information:

SELECT
index id,
index_type desc,
index_depth,
index_level,
page_count,
record_count
FROM sys.dm_db_index physical stats
(DB_ID(N'AdventureWorks'), OBJECT ID(N'Insert Test2'), NULL, NULL ,
'DETAILED');

Figure 9-22 shows the results of this query on my test SQL Server instance.

264



CHAPTER9  LATCH-RELATED WAIT TYPES

index_id  index_type_desc index_depth index_level page_count record_count
— e 1 ) P o000
2 2 NONCLUSTERED INDEX 3 0 261 50000
3 2 NONCLUSTERED INDEX 3 1 2 261
4 2 NONCLUSTERED INDEX 3 2 1 2

Figure 9-22. sys.dm_db_index_physical_stats results

As you can see in this image, the non-clustered index now has three levels as
indicated by the index_depth column. The index_level and page count columns show
how many pages exist on each level of the B-tree. The highest index_level number is
the Root level, the lowest the Leaflevel.

While the new levels were created inside the B-tree, the concurrent insert queries
had to wait before they could navigate the B-tree, resulting in the LATCH_SH waits.

Lowering LATCH_[xx] Waits

In the previous example I presented a specific case of latch contention that occurs when
index Root page splits occur so as to extend the B-tree structure. As I mentioned before,
there are many, many more latch classes that are reported by the LATCH_[xx] wait type.
This makes describing “one-size-fits-all” suggestions impossible. I can describe a general
approach though, using the list here:

e Querysys.dm os waiting tasksif LATCH [xx] waits are occurring.
The resource_description column can show you additional
information about the specific latch class. If you are in a situation
where the LATCH_[xx] waits do not show in sys.dm_os waiting_
tasks but high wait times are visible in sys.dm_os_wait_stats DMV,
the sys.dm_os_latch waits DMV should be your starting point.

o Another helpful DMV can be the sys.dm_exec_requests
DMV. Joined together with the sys.dm_exec_sql text DME it may
help you to find the query that is causing the LATCH_[xx] wait.

e Querysys.dm os latch waits to see if this correlates with the latch
class shown in the resource_description column of the sys.dm_os_
waiting_tasks DMV.

265



CHAPTER9  LATCH-RELATED WAIT TYPES

e Check Books Online or Appendix III in this book for more
information about the specific latch class.

Another good resource for more information about common latch classes is Paul
Randal’s blog post “Most common latch classes and what they mean” at www.sqlskills.
com/blogs/paul/most-common-latch-classes-and-what-they-mean/. Though Paul
only describes the ten most common latch classes, it can be a good starting point for
your investigation.

Thankfully, it is not very common to see consistent high wait times for the LATCH_[xx]
wait type since the cases that can cause the LATCH_[xx] waits to occur are frequently
related to very specific workloads and database design.

LATCH_[xx] Summary

The LATCH_[xx] wait type represents waits encountered by a large selection of different,
non-buffer-related latch classes inside SQL Server. These non-buffer-related latch
classes have their own latch wait DMV, sys.dm os latch waits, that returns the wait
times of those latch classes. Troubleshooting LATCH [ xx] waits can be difficult since
the latch classes that are associated with the wait type are minimally documented.
Thankfully, it is not very common to see high wait times on the LATCH_[ xx] wait type
since they only occur for very specific situations and workloads.

PAGEIOLATCH_[xx]

The final latch-related wait type we will discuss in this chapter is the PAGEIOLATCH_[xx]
wait type. The PAGEIOLATCH [xx] wait type is by far the most common latch-related wait
type and together with the CXPACKET wait type is the most common wait type to see on
any SQL Server instance.

Just like the two previous latch wait types we discussed, the PAGEIOLATCH [xx]
has different access modes that I replaced with [xx] in this chapter. Since we already
described the different latch modes in the introduction, we won'’t discuss them further in
this chapter.

So far we have discussed two of the three latch-related wait types and the areas they
are related to. The PAGELATCH_[xx] wait type was related to latches being placed on
memory pages inside the buffer cache, and the LATCH_[xx] wait type is related to latches
on non-buffer objects. The PAGEIOLATCH [xx] wait type also indicates the use of latches
on a specific area in SQL Server, in this case the IO latches.

266


http://www.sqlskills.com/blogs/paul/most-common-latch-classes-and-what-they-mean/
http://www.sqlskills.com/blogs/paul/most-common-latch-classes-and-what-they-mean/

CHAPTER9  LATCH-RELATED WAIT TYPES

What Is the PAGEIOLATCH_[xx] Wait Type?

Disk operations inside SQL Server are very expensive. Accessing the disk subsystem of
your system requires extra resources and is always slower than accessing information
that is inside the memory of your system. Because SQL Server is a database, and
accessing and storing data inside the database is its primary function, the way SQL
Server accesses data is extremely important. If data access is slow, SQL Server will
perform slower as well, and this can result in noticeable performance degradation inside
your queries or applications. To make IO interactions as efficient as possible, SQL Server
uses a buffer cache to cache data pages that were previously accessed into the memory
of your system. By caching data pages SQL Server only has to access the disk subsystem
once, when the first query requests those specific data pages. When later queries require
the same data pages as the first query, SQL Server will detect that those pages are already
inside the buffer cache, through the Buffer Manager, and will access the data pages from
inside the buffer cache instead of performing extra interactions with the disk subsystem.
Figure 9-23 shows the buffer cache behavior when a query requires data pages from the
storage subsystem.

SQL Server
Storage Subsystem

& B

Buffer Manager

\J

\
®

[

p—

Figure 9-23. Moving a page from the storage subsystem to the buffer cache

267



CHAPTER9  LATCH-RELATED WAIT TYPES

During the movement of data pages from the storage subsystem to the buffer cache,
latches are used to “reserve” a buffer page for the data page on the storage subsystem.
This makes sure no other concurrent transactions allocate the same buffer page, or
simultaneously attempt to transfer the same data page from the storage subsystem to the
buffer cache.

While SQL Server is transferring the data page from the storage subsystem into the
buffer cache, an Exclusive latch will be placed on the buffer page. Because Exclusive
latches are incompatible with almost every other latch mode (save for the Keep
mode), it is guaranteed that no other latch can access the buffer page while it is being
transferred. From the user perspective, a PAGEIOLATCH_[xx] wait will be recorded
for the duration of the transfer of the data page. The mode of the latch depends on
the action that initiated the movement of the data page from the storage subsystem
to the buffer cache. A PAGEIOLATCH_SH will be recorded if the data is being moved for
read access, and a PAGEIOLATCH_UP or PAGEIOLATCH_EX will be used if the data page is
being moved for a modification. Figure 9-24 shows the data page movement including
latches and latch waits.

| |
| | | |

time

Figure 9-24. Movement of data page

To summarize the preceding section, if you see PAGEIOLATCH_[xx] waits occurring,
it means your SQL Server instance is reading data from your storage subsystem into
your buffer cache. Because this is a very common operation to perform, it is easy to see
why the PAGEIOLATCH [ xx] wait type is one of the most common wait types on any SQL
Server instance.

268



CHAPTER9  LATCH-RELATED WAIT TYPES

PAGEIOLATCH_[xx] Example

Creating an example for PAGEIOLATCH [xx] waits is extremely easy—just run a SELECT
query against a freshly restarted SQL Server instance. A restart of the SQL Server service
will empty the buffer cache of all data pages. This will leave you with a buffer cache
without any user data inside it. There is, however, another way to clear the buffer cache
without needing to restart the SQL Server service. Running the DBCC DROPCLEANBUFFERS
command will remove all the unmodified data pages from the buffer cache. Combining
it with the CHECKPOINT command will ensure the modified pages are also written to disk,
leaving you with an empty, or “cold,” buffer cache.

The query in Listing 9-3 will perform a CHECKPOINT, followed by a DBCC
DROPCLEANBUFFERS. It will then reset the sys.dm_os wait stats DMV and run a query
against the Adventurelorks database. After the query against some of the tables inside
the AdventureWorks database, we will query the sys.dm_os _wait_stats DMV for
PAGEIOLATCH_ [xx] waits

Listing 9-3. Generate PAGEIOLATCH_SH waits

CHECKPOINT 1;
Go

DBCC DROPCLEANBUFFERS;
Go

DBCC SQLPERF('sys.dm os wait stats', CLEAR);
Go

SELECT
SOD.SalesOrderID,
SOD.CarrierTrackingNumber,
SOH.CustomerID,
C.AccountNumber,
SOH.OrderDate,
SOH.DueDate
FROM Sales.SalesOrderDetail SOD
INNER JOIN Sales.SalesOrderHeader SOH
ON SOD.SalesOrderID = SOH.SalesOrderID

269



CHAPTER9  LATCH-RELATED WAIT TYPES

INNER JOIN Sales.Customer C
ON SOH.CustomerID = C.CustomerID;

SELECT *
FROM sys.dm os wait stats
WHERE wait type LIKE 'PAGEIOLATCH %';

Figure 9-25 shows the results of the last query against the sys.dm_os wait stats
DMYV on my test SQL Server instance.

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms  signal_wait_time_ms
1 | PAGEIOLATCH_NL § 0 0 0 0
2 PAGEIOLATCH_KP 0 0 0 0
3 PAGEIOLATCH_SH 33 19 1 0
4 PAGEIOLATCH_UP 0 0 0 0
5 PAGEIOLATCH_EX 0O 0 0 0
6 PAGEIOLATCH_DT 0 0 0 0

Figure 9-25. PAGEIOLATCH_SH wait time information

It makes sense to see only PAGEIOLATCH_SH waits recorded, since we are executing a
SELECT query instead of performing data modification. If we were to perform some form
of data modification against the rows, we would see PAGEIOLATCH_EX waits in the results.

Lowering PAGEIOLATCH_[xx] Waits

If you read the previous section, you would probably understand that seeing
PAGEIOLATCH_[xx] waits occur is completely normal behavior inside SQL Server.

In many cases your databases are larger in size than the available amount of RAM
inside your system, and some interaction with the storage subsystem is to be
expected. Even if your databases are smaller than the amount of RAM in your system,
and they can fit entirely inside the buffer cache, you will still notice PAGEIOLATCH [ xx ]
waits occurring during the startup of SQL Server, since this is the time SQL Server
will start moving data pages from the storage subsystem into the buffer cache (if
there is any query activity, SQL Server won’t move data from the storage subsystem
into the buffer cache by itself).

270



CHAPTER9  LATCH-RELATED WAIT TYPES

Since seeing PAGEIOLATCH_[xx] waits occur is completely normal for every SQL
Server instance, it is very important to maintain a baseline of the wait times (Chapter 4,
“Building a Solid Baseline,” can help you with that). When the wait times stay within the
range of the baseline values for this wait type, there shouldn’t be any cause for concern.
If wait times are much higher than you expect them to be, investigation into the source
of the higher-than-normal wait times might be necessary. There are quite a few possible
causes for seeing higher-than-normal PAGEIOLATCH_[xx] wait times, and I will describe
some of the more common ones.

The first place I look when noticing higher-than-normal PAGEIOLATCH_[xx ] wait
times is the SQL Server log to find out if SQL Server was restarted. SQL Server can
restart due to a crash, but also when a failover occurs. These events will cause high
PAGEIOLATCH_[xx] wait times that might not be reflected in your baseline, especially
when SQL Server restarts do not frequently occur. Since our baseline’s measurements
are frequently calculated using average values, the PAGEIOLATCH [ xx] wait times
during SQL Server startup slowly lower when more measurements are taken inside the
average baseline. If you create your baseline on measurements taken between a specific
time range, and SQL Server hasn’t had a restart during the time range, your baseline
measurements will also be considerably lower. As we read in the example section, a DBCC
DROPCLEANBUFFERS will also remove data pages from the buffer cache, resulting in higher
PAGEIOLATCH_[xx] wait times after the command completes. Sadly, unlike the DBCC
FREEPROCCACHE command, the execution of the DBCC DROPCLEANBUFFERS command is
notrecorded in the SQL Server log.

One of the more common pieces of advice I see about lowering PAGEIOLATCH_[xx]
wait times is to focus your attention on the storage subsystem. Since the PAGEIOLATCH [ xx]
wait type indicates data movement from your storage subsystem to your buffer cache,
it is logical that the storage subsystem plays a vital role in the wait times, but do not
automatically assume this is the root cause! If you do have storage-related problems,
this can show in the PAGEIOLATCH_[xx] wait time, so checking the performance of your
storage subsystem is worth the effort.

271



CHAPTER9  LATCH-RELATED WAIT TYPES

A good place to start for monitoring storage performance is Perfmon. Perfmon
has a variety of counters that will show you the current performance of your storage
subsystem. Those in the following list are the ones I use the most when monitoring

storage performance:

e PhysicalDisk\Avg. Disk sec/Read: This will show you the
average read latency on the disk you are monitoring. Less latency
is better, and as a general guideline latency values should be below
20 milliseconds (0.020 within Perfmon, as it reports the latency in
seconds).

o PhysicalDisk\Avg. Disk sec/Write:This will return the average
write latency on the disk you are monitoring. Just like the read
latency, write latency should, as a general guideline, be below 20
milliseconds.

o PhysicalDisk\Disk Reads/sec: This shows the amount of read
IOPS (Input Output Operations) per second. This information can be
helpful if you are running into capacity issues on the disk.

e PhysicalDisk\Disk Writes/sec:The same asthe PhysicalDisk\
Disk Reads/sec, but this one shows the amount of write IOPS.

o PhysicalDisk\Disk Read Bytes/sec: This counter shows the
amount of bytes read from the disk per second. Again, this
information can be useful for detecting possible capacity problems.

o PhysicalDisk\Disk Write Bytes/sec: Thisisidentical to the
PhysicalDisk\Disk Read Bytes/sec, but this counter shows the
amount of bytes written to disk per second.

Using the information these Perfmon measurements provide, you should be able
to identify possible storage-related bottlenecks. This information can also be helpful to
the storage administrator (if there is one) who can compare these measurements to the
measurements of the storage he/she manages.

As an extra diagnostic tool, or if you cannot use Perfmon, you can also run the 10
performance script Paul Randal created based on the sys.dm_io virtual file stats
DME shown in Listing 9-4. The script, and the blog post describing the script, can
be found on Paul’s blog at www.sqlskills.com/blogs/paul/how-to-examine-io-
subsystem-latencies-from-within-sql-server/.

272


http://www.sqlskills.com/blogs/paul/how-to-examine-io-subsystem-latencies-from-within-sql-server/
http://www.sqlskills.com/blogs/paul/how-to-examine-io-subsystem-latencies-from-within-sql-server/

CHAPTER9  LATCH-RELATED WAIT TYPES

Listing 9-4. 10 performance script

SELECT
[ReadLatency] =
CASE WHEN [num_of reads] = 0
THEN 0 ELSE ([io_stall read ms] / [num of reads]) END,
[Writelatency] =
CASE WHEN [num _of writes] = 0
THEN 0 ELSE ([io _stall write ms] / [num of writes]) END,
[Latency] =
CASE WHEN ([num_of reads] = 0 AND [num of writes] = 0)
THEN 0 ELSE ([io _stall] / ([num of reads] + [num of writes])) END,
[AvgBPerRead] =
CASE WHEN [num of reads] = 0
THEN 0 ELSE ([num_of bytes read] / [num_of reads]) END,
[AvgBPerhrite] =
CASE WHEN [num_of writes] = 0
THEN 0 ELSE ([num_of bytes written] / [num of writes]) END,
[AvgBPerTransfer] =
CASE WHEN ([num _of reads] = 0 AND [num of writes] = 0)
THEN 0 ELSE
(([num_of bytes read] + [num of bytes written]) /
([num_of reads] + [num of writes])) END,
LEFT ([mf].[physical name], 2) AS [Drive],
DB NAME ([vfs].[database id]) AS [DB],
[mf].[physical name]
FROM
sys.dm io virtual file stats (NULL,NULL) AS [vfs]
JOIN sys.master files AS [mf]
ON [vfs].[database id] = [mf].[database id]
AND [vfs].[file id] = [mf].[file id]
-- WHERE [vfs].[file id] = 2 -- log files
ORDER BY [Latency] DESC
-- ORDER BY [ReadLatency] DESC
-- ORDER BY [WriteLatency] DESC;
GO

273



CHAPTER9  LATCH-RELATED WAIT TYPES

Figure 9-26 shows a part of the results of the IO performance script from Listing 9-4
on my test SQL Server instance, ordered by latency.

: Latency MgBPsReBd MgGPeﬂNHe AvgBi’s".ﬁands “Drive DB Dh)’!ﬂ:d;r\ame
1 |8 4 33090 2048 64640 C 10test CASQL\Log\IO_test_log Jdf
2 |4 3 48593 2662 40087 C  trens_demo C:\SQL\Log\trans_dema Jdf
3 3 2 93090 2048 B4640 C: Baseline CASQOL\Log\baseline_log Idf
a1 1 59517 8192 56490 C 10test CASQL\Data\I0_test maf
5 1 1 122138 1542028 144570 C: AdventureWordks  CASQL\Data'\AdventureWorks2014_Data mdf
6 1 1 58982 8192 57878 C trans_demo C:ASQL\Data\trans _demo mdf
7 |0 1 143945 25088 80554 C tempdd CASQL\Log\templog Igf
8 1 1 339983 8192 359640 C model C:\Program Files\Microsoft SQL Server\MSSQL14.MSS...
] 1 1 112867 2673 57770 C model C:\Program Files"Microscft SQL Server\MSSQL14 MSS
0 1 1 £3301 2192 62535 C  msb C:\Program Flles\Microsoft SQL Server\MSSQL14 MSS...
n 0 0 25002 12288 18645 C msb C:\Program Files\Microsoft SQL Server\MSSQL14 MSS...
12 0 0 22528 8192 19660 C: tempdh CASQL\Data'tempdb_mssql_2 nc
13 | 4 0 54515 8271 29044 C master C:\Program Files\Microsoft SQL Server\MSSQL14 MSS
14 0 0 19797 1405 1465 C master C:\Frogram Files\Microscft SQL Server\MSSQL14 MSS
B0 0 59954 8192 54541 C  tempdd CASQL\Data\tempdb mdf
16 |2 0 20211 13178 13191 €. AdvertureWorks  C:\SGL\Log\AdvertureWorks2014_Log I
17 0 0 61755 8192 60943 C:  Baselne C:\SQL\Data\baseine_data mdf

Figure 9-26. 10 performance on my test SQL Server instance

One important thing to keep in mind with the IO performance script is that its
values are cumulative from the start of the SQL Server service. They do not show the
situation at the moment of executing the query. If you are interested in monitoring your
10 performance using this script, you can consider capturing the output to a table at a
specific interval and calculate the deltas (much in the same way as we did in Chapter 4,
“Building a Solid Baseline”).

Next to the performance of your storage subsystem, the behavior of your queries can
impact the wait times of the PAGEIOLATCH_[xx] wait type. The more data your queries
are requesting (that is not already in the buffer cache), the larger the amount of data that
needs to be read from the storage subsystem into the buffer cache. For instance, if we
were to modify the query of Listing 9-3, shown in Listing 9-5, to be more selective so that
less data is returned, the amount of PAGEIOLATCH_[xx] wait time should also be less.

Listing 9-5. Modified Listing 9-3 query

CHECKPOINT 1;
GO

DBCC DROPCLEANBUFFERS;
Go

274



DBCC SQLPERF('sys.dm os wait stats', CLEAR);

Go

SELECT
SOD.SalesOrderID,

SOD.CarrierTrackingNumber,

SOH.CustomerID,
C.AccountNumber,
SOH.OrderDate,
SOH.DueDate

FROM Sales.SalesOrderDetail SOD

INNER JOIN Sales.SalesOrderHeader SOH
ON SOD.SalesOrderID = SOH.SalesOrderID
INNER JOIN Sales.Customer C

ON SOH.CustomerID = C.CustomerID

CHAPTER 9

LATCH-RELATED WAIT TYPES

WHERE SOD.CarrierTrackingNumber BETWEEN 'F467-41BF-8B' AND 'F4E4-4739-B4'

)

SELECT *

FROM sys.dm os wait stats
WHERE wait type LIKE 'PAGEIOLATCH %';

Figure 9-27 shows the results of the last query that was executed against the sys.

dm_os wait stats DMV.

wait_type

PAGEIOLATCH_KP
PAGEIOLATCH_SH
PAGEIOLATCH_UP
PAGEIOLATCH_EX
PAGEIOLATCH_DT

D O oW N =

| PAGEIOLATCH_NL |

waiting_tasks_count  wait_time_ms

(— N — I — I & R — R — ]

0

o O O W o

max_wait_time_ms

0

o O O = O

Figure 9-27. PAGEIOLATCH_SH wait time information

o 0O 0O 0O O o

signal_wait_time_ms

As you can see from Figure 9-27, the wait times of the PAGEIOLATCH_SH wait type went
down drastically, from 19 to 3 milliseconds. Now, this example is rather small, and we
are dealing with very small result sets, but I think it shows the point.

275



CHAPTER9  LATCH-RELATED WAIT TYPES

However, you don’t always have the luxury of being able to modify every query so
that it is more selective. Maybe the queries are generated by an application and you
can’t even modify them, or the queries simply need the large result set. Thankfully, as
a DBA, we can also play a part in minimizing PAGEIOLATCH_[xx] wait times by simply
performing database maintenance. Index fragmentation and out-of-date statistics can
increase the PAGEIOLATCH [xx] wait times drastically. If indexes are fragmented more
disk IOs need to take place to retrieve the data requested, which means IO latches will
need to stay in place longer, which results in higher PAGEIOLATCH_[xx] wait times. Out-
of-date statistics can also result in more disk IOs, because SQL Server expects a different
number of rows to be returned instead of the actual number of rows. So, make sure you
are regularly performing index and statistics maintenance to make sure the amount of
disk interaction is as small as possible.

The final area that can impact PAGEIOLATCH_[xx ] wait time is the memory of your
system. SQL Server will remove data pages from inside the buffer cache if they have
not been accessed within a specific timeframe in order to free up room inside the
buffer cache. The interval at which SQL Server performs this cleanup depends on the
amount of data coming into the buffer cache and the amount of free space inside the
buffer cache. If the request for data pages inside the buffer cache is very high, SQL
Server will be forced to swap data pages that have been accessed the least (or haven't
been accessed for a while) for pages that are required now. This movement of data
pages from and to the buffer cache will result in more PAGEIOLATCH_ [xx] waits. In an
ideal world, your database would fit completely inside the buffer cache of your SQL
Server instance. In this case, SQL Server will only need to move the data pages from
the storage subsystem into the buffer cache once, where they will stay until SQL Server
restarts again. Even though we do have access to very large amounts of RAM these
days, in many cases we cannot simply fit our entire database into the buffer cache
of our SQL Server instance, and some swapping of data pages from the buffer cache
back to the storage subsystem can be expected. Adding more RAM to your system will
increase the number of data pages the buffer cache can store and can help the buffer
cache keep those pages in memory longer.

There are two Perfmon counters that can help you get some insight into the
buffer cache usage: SQLServer :Buffer Manager\Buffer cache hit ratioand
SQLServer:Buffer Manager\Page life expectancy.The SQLServer:Buffer Manager\
Buffer cache hit ratio will show you what percentage of pages could be located in
the buffer cache that do not require a physical read on the storage subsystem.

276



CHAPTER9  LATCH-RELATED WAIT TYPES

The SOLServer :Buffer Manager\Page life expectancy counter will show you the
number of seconds a data page stays inside the buffer cache. If you see continuously low
values on both these counters, compared to your baseline, it could mean SQL Server is
running into memory pressure and needs to move data pages from the buffer cache back
to disk again to free up memory. These two counters are not perfect, though, and much
has been written about their workings (and specifically their ideal values). We won’t go
into details about what good values for these counters should be, as for that you should
refer to your baseline, but I believe they are a good starting point for investigating buffer
cache memory pressure.

PAGEIOLATCH_[xx] Summary

The PAGEIOLATCH_[xx] wait type is, by far, the most common latch-related wait type.
Together with the CXPACKET wait type, the PAGEIOLATCH_[xx] wait type is probably the
most common wait type on any SQL Server instance. The PAGEIOLATCH_[xx] wait type
is directly related to the movement of data pages on the storage subsystem into the
buffer cache memory of your SQL Server instance. SQL Server uses the buffer cache

to minimize the number of interactions to the (much slower) storage subsystem so

as to maximize performance. Whenever a data page is read into the buffer cache, the
PAGEIOLATCH_[xx] wait type will be recorded for the time it took to do so. There are
many methods available to lower the amount of PAGEIOLATCH_[xx] wait time. The
frequently advised “get faster storage” doesn’t always hold true, even though fast storage
will indeed directly influence the PAGEIOLATCH [ xx] wait times. Optimizing queries so
they require fewer data pages to be moved to the buffer cache, performing maintenance
on indexes and statistics, and analyzing memory performance could all lead to lower
PAGEIOLATCH_[xx] wait times.

277



CHAPTER 10

High-Availability
and Disaster-Recovery
Wait Types

There have always been several options available within SQL Server to make sure

your database is always available to your users and/or the data inside your database is
replicated to another server so as to minimize the chances of losing data. Just like with
performing regular database backups to ensure you can revert to a previous state of
your database should a crash or data corruption occur, planning and maintaining highly
available database environments is part of your job as a DBA.

Now that data has become incredibly important for many companies, and the need
for high-availability database servers grows, many DBAs will find themselves managing
SQL Server instances inside a high-availability solution, like mirroring, or a disaster-
recovery configuration, like log shipping. With these types of SQL Server high-availability
and disaster-recovery configurations comes a group of dedicated wait types that are
directly related to the health of your high-availability and disaster-recovery (HA/DR)
configuration. With the release of SQL Server AlwaysOn Availability Groups in SQL
Server 2012, more options became available for configuring HA/DR solutions, together
with new wait types that are directly related to AlwaysOn Availability Groups.

In this chapter we will take a look at some of the most common wait types to see in
HA/DR configurations. The main focus of the wait types inside this chapter is AlwaysOn
Availability Groups, because Microsoft is deprecating many of the previous installments
of features that now fall under the name AlwaysOn Availability Groups, like mirroring.
As an exception to this rule, I selected one mirroring-related wait type that is relatively
common on highly used mirroring configurations. All the other wait types are related to
AlwaysOn Availability Groups.

279
© Enrico van de Laar 2019

E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_10



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

For the examples inside this chapter, I used several virtual machines to create a
mirroring and an AlwaysOn Availability Groups configuration. The configuration of
these VMs can be found in Appendix I Example SQL Server Machine Configurations.

DBMIRROR_SEND

The first wait type I want to discuss in this chapter is the DBMIRROR _SEND wait type. As you
might suspect from the wait type name, DBMIRROR _SEND is related to database mirroring.

Database mirroring is a feature that was introduced in SQL Server 2005 but was
announced deprecated in SQL Server 2012. This doesn’t mean you cannot use database
mirroring in SQL Server 2012 or SQL Server 2014, but it does mean it is scheduled for
removal. The entire feature will be replaced with AlwaysOn Availability Groups, which
offers the same configuration options as database mirroring.

Database mirroring is a solution that increases the availability of SQL Server
databases, and unlike, for instance, failover clustering, it can be configured on a per-
database basis. Database mirroring works by redoing every data modification operation
that occurs on the primary database (called principal in database-mirroring terms) on
the mirror database. The redoing of every database modification operation is achieved
by streaming active transaction log records to the mirror server, which will perform the
operations on the mirror database in the sequence in which they were inserted into the
transaction log on the principal database.

Database mirroring offers two different operating modes that impact the
availability and performance of the mirror configuration: synchronous (or high-safety)
mode and asynchronous (or high-performance) mode. Even though both modes
perform identical actions to ensure data modification operations are also performed
on the mirror database, there can be a large difference in performance, and thus in
waits occurring.

The synchronous mirror mode makes sure that every data modification action
that is performed on the principal is also directly performed on the mirror. It does
this by waiting on sending a transaction confirmation message to the client until
the transaction is successfully written to disk on the mirror. Figure 10-1 depicts
synchronous mirroring.

280



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

il

| =
transaction F

transaction
confirmation

Y

Principal Mirror

®

__® acknowledge

=5

commit mirror

Figure 10-1. Synchronous mirroring

Even though synchronous mirroring makes sure data on the principal and mirror are
100% identical, it comes with a few drawbacks. One of those is that the performance of
your database inside a synchronous mirroring configuration is highly dependent on the
speed the mirror can process data modification operations, since every transaction has
to be committed on the mirror first.

The flow of a data modification transaction is described in the steps that follow:

1. When the transaction is received, the principal will write the
transaction to the transaction log, but the transaction is not yet
committed though.

2. The principal will send the log record to the mirror.

3. The mirror will harden the log record to disk and send an
acknowledgment to the principal.

281



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

4. After the principal receives the acknowledgment, it will send
a confirmation message to the client that the transaction was
completed, and the transaction gets committed to the transaction

log on the principal.

The asynchronous mode works in much the same way; the exception is that it
will not wait on an acknowledgment message from the mirror before sending the
transaction confirmation message to the client. This means that transactions are
committed to disk on the principal before they are written to disk on the mirror. Using
asynchronous mirroring will improve mirror performance, since the latency overhead
of synchronous mirroring is removed. The trade-off for this increase in performance
is that asynchronous replication can lead to data loss in the case of a disaster, since it
is possible that transactions were not yet committed on the mirror. Figure 10-2 shows
the transaction-log flow on an asynchronous mirror; the dotted lines indicate that the

actions are not performed directly.

=

transaction

]
transaction F

confirmation

Y

Principal Mirror

®

@ acknowledge

commit mirror

Figure 10-2. Asynchronous mirroring

282



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

What Is the DBMIRROR_SEND Wait Type?

The DBMIRROR SEND wait type is most frequently related to synchronous mirroring
configurations. The description of the DBMIRROR_SEND wait type on Books Online is
“Occurs when a task is waiting for a communications backlog at the network layer to
clear to be able to send messages. Indicates that the communications layer is starting
to become overloaded and affect the database mirroring data throughput.” In this
case the Books Online description is pretty accurate, but the network is not the

only thing that can impact DBMIRROR SEND wait times. Having a slow disk subsystem
connected to the mirror database can, for instance, also lead to an increase in
DBMIRROR SEND wait times.

Another important point to remember is that high DBMIRROR SEND wait times will
frequently only be recorded on the mirror instance, and not on the principal. It is common
to see waits occur on the DBMIRROR SEND wait type on both the principal and the mirror,
but these will normally be very low on the principal. They can still reach high values on the
mirror since, generally, there is always some latency between both SQL Server instances.
Because of expected latency, I advise you to use baseline measurements to identify higher-
than-normal wait times for the DBMIRROR SEND wait type.

DBMIRROR_SEND Example

For this example I have built a synchronous mirror between two of my test SQL Server
instances, using the Adventurelorks database as the database that will be mirrored
between both instances.

Inside the AdventurelWorks database, I create a simple table using the script in
Listing 10-1.

Listing 10-1. Create Mirror_Test table

USE [AdventureWorks]
GO

CREATE TABLE Mirror Test

(
ID UNIQUEIDENTIFIER PRIMARY KEY,

RandomData VARCHAR(50)
);

283



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

After the table is created, I clear the sys.dm_os_wait_stats DMV and insert 10,000
rows into the Mirror Test table using the query in Listing 10-2. I also make sure to
clear the sys.dm_os wait stats DMV on the mirror as well before running the script in
Listing 10-2.

Listing 10-2. Insert 10,000 rows into Mirror_Test table
DBCC SQLPERF('sys.dm os wait stats, CLEAR')

INSERT INTO Mirror Test

(
1D,
RandomData

)
VALUES

(
NEWID(),

CONVERT(VARCHAR(50), NEWID())
);

GO 10000

While the script is running, I'look at the DBMIRROR SEND wait times on both the
mirror and the principal using the following query:

SELECT *
FROM sys.dm_os wait_stats
WHERE wait type = 'DBMIRROR SEND'

The results of this query can be seen in Figure 10-3, which shows the DBMIRROR _
SEND wait times on the mirror. Figure 10-4 shows the DBMIRROR SEND wait times on the
principal server.

walt__type waitting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms
1 EDBMIRROR_SEND 19146 23030 3452 500

Figure 10-3. DBMIRROR_SEND wait times on the mirror

284



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

wal_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms
1 éDBMIRROR_SEND 0 0 0 0

Figure 10-4. DBMIRROR_SEND wait times on the principal

As you can see, we spend quite some time waiting on the DBMIRROR_SEND wait type
on the mirror vs. no DBMIRROR SEND waits on the principal.

Lowering DBMIRROR_SEND Waits

One of the most common pieces of advice for lowering DBMIRROR_SEND wait time is
changing the mirror mode from synchronous to asynchronous. While this will absolutely
lower the wait time, it also means you can potentially lose data when a disaster occurs on
the principal. Lowering the wait time on the DBMIRROR _SEND wait type will have a positive
effect on the duration of your queries. For instance, in the example in the previous
section, the insert of 10,000 rows took around 30 seconds on my test SQL Server mirror
configuration. When I changed the mirror mode from synchronous to asynchronous,

not only did the wait times on the DBMIRROR SEND wait type go down, the total execution
time of 10,000 inserts went down to 3 seconds. That’s an improvement of almost 30
seconds!

Even though these improvements might sound very attractive, sometimes changing
the mirror mode is not an option. For instance, your company’s disaster-recovery
strategy can require a synchronous mirror configuration. Changing the mirror mode
from synchronous to asynchronous should, in my opinion, be the last option (if it
actually is a viable option). There are other parts that can influence DBMIRROR SEND wait
times, like the storage configuration on the mirror or the network connection between
the principal and mirror SQL Server instances. Both these parts can act like a bottleneck
between both instances, contributing to the DBMIRROR _SEND wait time.

Next to checking out the performance of your storage subsystem and network
connection, SQL Server has a database mirroring monitor that will give you status
information about the mirroring configuration. You can find the database mirroring
monitor by right-clicking the database that is part of a mirror, selecting Tasks » Database
Mirroring Monitor. Figure 10-5 shows the monitor against my test mirror configuration.

285



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

=lolx
Fie Acton Go Help

=iy ,?i#*m Mimoring M;ﬁ Last refresh: 6/1/2015 8:17:51 PM
b Wera212 Sk

4 |[ i3 ] Wamings |
Status:

Server Instance | Cumrent Role [ Mioring State | Witness Connacti | History
EVDL-SQL-AGD1  Principal & Synchronized

EVDL-SQL-AG02  Mror & Sychronized

Principal log (6/1/2015 8:17:48 PM) Mirror log (6/1/72015 8:17:43 PM)
Unsent log: [oke Unestoredlog:  [0KB
Qldest unsent transaction: 000000 | Time Torestorelog |
Time to send log |

(estimated) : Current restore rate: ﬁl KE/sec
Current send rate: 177 KB/sec

Current rate of pew 177 KB/sec

transachbons:

Mirror commit overhead: |U'mlowmda
Time to send and restore all current |

log (estimated) :
\titness address: |
Operating mode: High safety without ic failover (;

K I— ]

Figure 10-5. Database mirroring monitor

As you can see, the database mirroring monitor can provide you with some very
interesting additional information like the number of log records that still need to
be sent or restored, how far behind the mirror currently is, and the send and restore
rates. In many of my dealings with database mirroring, the database mirroring
monitor is the first place I'll check when there are performance issues involving the
mirror configuration.

DBMIRROR_SEND Summary

The DBMIRROR_SEND wait type is directly related to database mirroring. Seeing DBMIRROR _
SEND waits occur is pretty normal on most mirror configurations. This makes using a
baseline to identify wait time spikes a necessity. The mirroring mode plays a huge part
in the DBMIRROR SEND wait times. When using synchronous mirroring, DBMIRROR _SEND
wait times will frequently be higher than when using asynchronous mirroring. Not only

286



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

the mirroring mode influences DBMIRROR SEND wait times, though. Having a storage
subsystem on the mirror SQL Server instance that cannot keep up with the load will
have an effect on DBMIRROR SEND waits, just like the network connection between the
principal and the mirror.

HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE

The HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE wait types are both related to
AlwaysOn Availability Groups. All wait types that are related to AlwaysOn can easily be
identified by the HADR _ prefix in the wait type’s name. AlwaysOn Availability Groups was
introduced in SQL Server 2012 as a replacement for various SQL Server high-availability
and disaster-recovery features such as database mirroring. There are quite a few different
wait types associated with AlwaysOn, totaling 65 in SQL Server 2017. Not all of these
wait types necessarily indicate performance problems somewhere in your AlwaysOn
configuration. The HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE are both perfect
examples of benign wait types that occur naturally over time and do not directly indicate
a performance problem. Since both these wait types have high wait times associated
with them on every AlwaysOn configuration, and are thus very common, I wanted to
include them in this chapter to help you better understand what function they have.

What Are the HADR_LOGCAPTURE_WAIT and HADR_
WORK_QUEUE Wait Types?

As I mentioned in the preceding section, both the HADR_LOGCAPTURE_WAIT and HADR _
WORK_QUEUE wait types occur in AlwaysOn configurations. They both occur in different
places inside your AlwaysOn configuration and have slightly different functions.
According to Books Online, the HADR_LOGCAPTURE_WAIT wait type indicates that SQL
Server is “waiting for log records to become available. Can occur either when waiting
for new log records to be generated by connections or for I/O completion when reading
log not in the cache. This is an expected wait if the log scan is caught up to the end of
log or is reading from disk.” The HADR_LOGCAPTURE_WAIT wait type occurs on the SQL
Server that hosts the primary database inside an AlwaysOn Availability Group. Think
of the primary database as being just like the principal inside a database mirroring

configuration.

287



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

AlwaysOn works much the same way as database mirroring and also provides two
different modes (called Availability modes inside AlwaysOn): Synchronous-commit
and Asynchronous-commit. Both these Availability modes work in the same way as
their database mirroring counterparts we were discussing earlier in this chapter do.
This means that in Synchronous-commit mode the primary replica waits to commit
transactions to the transaction log until the secondary replica has completed its own
log hardening, while in Asynchronous-commit mode the primary replica will directly
commit the transaction to the transaction log without waiting for a confirmation from
the secondary replica.

While the primary replica is waiting for work, SQL Server will record the time it has
spent on waiting for new transactions to become available as the HADR_LOGCAPTURE _
WAIT wait type. This means that seeing high wait times on the HADR_LOGCAPTURE_WAIT
wait type actually means that SQL Server is waiting on new transactions to become
available so they can be transferred to the secondary replica. This is not dependent on
the Availability mode you configured for your AlwaysOn Availability Group. The HADR _
LOGCAPTURE_WAIT wait type will always occur, no matter your AlwaysOn configuration.
Figure 10-6 shows an AlwaysOn Availability Group configuration together with the HADR _
LOGCAPTURE_WAIT wait type on the primary replica, which occurs while waiting for new
transactions to be sent to the secondary replica.

AlwaysOn Availability Group

Primary Secondary

en— 5 =&

[ HADR_LOGCAPTURE_WAIT |

Figure 10-6. AlwaysOn Availability Group and the HADR_LOGCAPTURE_WAIT
wait type

288



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

Even though I placed the HADR_LOGCAPTURE_WAIT wait type on the primary replica in
Figure 10-6, it will also log the HADR_LOGCAPTURE_WAIT wait type on the secondary
replica, although those values will normally be much lower than on the primary replica.

The HADR_WORK_QUEUE wait type is almost identical in function to the HADR _
LOGCAPTURE_WAIT wait type. Books Online gives an excellent description of this wait
type: “AlwaysOn Availability Groups’ background worker thread waiting for new work
to be assigned. This is an expected wait when there are ready workers waiting for new
work, which is the normal state” The main difference between both wait types, is that
the HADR _LOGCAPTURE_WAIT wait type is dedicated to waiting until new transactions
become available, while the HADR_WORK_QUEUE indicates that are free threads waiting for
work. Just like the HADR_LOGCAPTURE_WAIT wait type, the HADR_WORK_QUEUE occurs on
both the primary and the secondary replicas, but the HADR_WORK_QUEUE wait type is much
more prevalent on both replicas. As a matter of fact, the HADR_WORK QUEUE wait type will
frequently be the top AlwaysOn related wait type on every SQL Server that is part of an
AlwaysOn Availability Group, especially if the work load is low.

Figure 10-7 shows an AlwaysOn Availability Group like the one in Figure 10-6, but
this time I added the HADR_WORK_QUEUE wait type to the image as well.

AlwaysOn Availability Group
Primary Secondary

ep—5 B ¥

| HADR_LOGCAPTURE_WAIT |

|  HADR_WORK_QUEUE | [ HADR_WORK_QUEUE |

Figure 10-7. HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE wait types

Since both the HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE wait types occur
naturally over time, I did not include an example of both the wait types. Also, because
both these wait types are not directly related to performance problems, there is no use
including a section on lowering the wait times of both these wait types.

289



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE
Summary

Both the HADR_LOGCAPTURE_WAIT and HADR_WORK QUEUE wait types are benign wait types
that occur on every SQL Server that is part of an AlwaysOn Availability Group. Because
the HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE wait types are not directly related to
performance problems, there is no direct need to focus attention on lowering them, and
they can, in most cases, be safely ignored.

HADR_SYNC_COMMIT

The HADR_SYNC_COMMIT wait type is another AlwaysOn-related wait type that was
introduced in SQL Server 2012. In many ways the HADR_SYNC_COMMIT wait type closely
resembles the DBMIRROR _SEND wait type we discussed earlier in this chapter. There

are some differences, however, between both wait types, which we will discuss in the

following section.

What Is the HADR_SYNC_COMMIT Wait Type?

The HADR_SYNC_COMMIT wait type indicates the time the primary replica spends waiting
for the secondary replica to harden the log records. HADR_SYNC_COMMIT waits will only
occur on the primary replica and only inside a synchronous-replication AlwaysOn
Availability Group. As soon as a transaction is received by the primary replica and is

sent to the secondary replica for hardening, the HADR_SYNC_COMMIT wait time will start
recording. The HADR_SYNC_COMMIT wait time will only stop recording when the secondary
replica has sent its confirmation that the write to the secondary’s transaction log was
completed. Figure 10-8 shows the HADR_SYNC_COMMIT wait time generation inside a

timeline.

290



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

Primary Trans. Start I-D-| Commit l—b-| Send Trans.

Trans. Completed

Secondary Commit }—bl Send Confirmation

time ——p

Figure 10-8. HADR_SYNC_COMMIT and synchronous replication

Since the HADR_SYNC_COMMIT wait type will always occur in every synchronous
replicated AlwaysOn Availability Group, it is normal to expect a certain amount of wait
time. But just like the DBMIRROR _SEND wait type, the wait time of the HADR_SYNC_COMMIT
wait type is highly dependent on the speed at which the secondary replica can process
the log records. This means that a slow network connection between both replicas or the
performance of the storage subsystem on the secondary replica can impact HADR_SYNC
COMMIT wait times. For this reason, it is important to understand what the normal wait
times for the HADR_SYNC_COMMIT wait type are for your AlwaysOn configuration so you
can identify higher-than-normal wait times easily.

HADR_SYNC_COMMIT Example

For this example, I have built an AlwaysOn Availability Group configured to use
synchronous replication. The configuration of the test machines I will use for this can
be found in Appendix I Example SQL Server Machine Configuration. I won’t go into
detail on how you can configure an AlwaysOn Availability Group, as there is plenty of
information available on the Internet to help you configure AlwaysOn. A good starting
point is the “Getting Started with AlwaysOn Availability Groups” article on Books Online,
which you can find here: https://msdn.microsoft.com/en-us/gg509118. I used the
AdventureWorks database as the database that needed to be replicated inside my
AlwaysOn Availability Group.

After my AlwaysOn Availability Group was configured I added an extra table named
AO_Test to the AdventureWorks database using the script in Listing 10-3.

291


https://msdn.microsoft.com/en-us/gg509118

CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

Listing 10-3. Create AO_Test table

USE [AdventureWorks]
Go

CREATE TABLE AO Test
(
ID UNIQUEIDENTIFIER PRIMARY KEY,
RandomData VARCHAR(50)

)5

After the table is created, I first clear and then query the sys.dm os wait_stats
DMV to check the current wait times on the HADR_SYNC_COMMIT wait time on both the
primary and secondary replicas using the following query:

SELECT *
FROM sys.dm os wait stats
WHERE wait_type = 'HADR_SYNC_COMMIT';

Even after waiting for a couple of minutes, the wait time of the HADR_SYNC_COMMIT
wait type stays 0, as you can see in Figure 10-9. This is what I expected since we have not
performed any data modifications on the primary replica so far.

wait_type watting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms
1 | HADR_SYNC_COMMIT ' 0 0 0 0

Figure 10-9. HADR_SYNC_COMMIT wait information during no activity on both
the primary and the secondary mode

This is different compared to HADR_LOGCAPTURE_WAIT and HADR_WORK QUEUE, which
will accumulate wait times even though (or because) there is no user activity inside the
AlwaysOn Availability Group.

Now that the table is in place, let’s generate some transactions by performing a
number of inserts. The script in Listing 10-4 will insert 10,000 rows into the AO_Test table

we created earlier.

292



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

Listing 10-4. Insert 10,000 rows into the AO_Test table

INSERT INTO AO_Test
(
1D,
RandomData

)
VALUES

(

NEWID(),

CONVERT (VARCHAR(50), NEWID())
)5

GO 10000

When the script in Listing 10-4 has completed, I check the wait statistics information
inside the sys.dm_os wait_stats DMV again on both the primary and secondary
replicas. Figure 10-10 shows the results of this query on the primary, and Figure 10-11 on
the secondary.

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms

1 HADR_SYNC_COMMIT 10000 15342 41 21

Figure 10-10. HADR_SYNC_COMMIT waits on the primary replica

wait_type watting_tasks_count wait_time_ms max_wat_time_ms signal_wait_time_ms
1 | HADR_SYNC_COMMIT | 0 0 0 0

Figure 10-11. HADR_SYNC_COMMIT waits on the secondary replica

The first thing you will notice when looking at both figures is that the HADR_SYNC _
COMMIT waits only occur on the primary replica and not on the secondary, which is
expected behavior. The second interesting thing is the number of waits that occurred.
This is the exact same amount as the number of rows we inserted. Again, this is expected
behavior. Since we performed a single insert and just repeated it 10,000 times, every
insert generated a single transaction-log record that needed to be replicated. Using the
number of waits that occurred and the wait time, it is possible to calculate the average
time it took for one insert operation to be committed on the replica. In this case itis 1.53
milliseconds (15342/10000) which is a pretty decent value.

293



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

Lowering HADR_SYNC_COMMIT Waits

Seeing HADR_SYNC_COMMIT waits occur does not necessarily mean there is a problem.
HADR_SYNC_COMMIT waits will always occur whenever there are data modifications
performed on your primary replica. They can indicate a problem if the wait times are
much higher than you expect them to be when you compare them to your baseline
measurements.

Changing the AlwaysOn operation mode to asynchronous replication will
completely remove HADR_SYNC_COMMIT waits, but at the risk of losing data when a
disaster occurs. Also, to reach your company’s disaster-recovery or high-availability
needs, you frequently do not have the luxury of just changing the AlwaysOn operating
mode, and I advise you not to change it just to lower HADR_SYNC_COMMIT wait times.

Thankfully, there are many different methods you can use to monitor the
performance of your AlwaysOn Availability Group, including the AlwaysOn Dashboard,
DMVs, and Perfmon counters.

You can open the AlwaysOn Dashboard by right-clicking your AlwaysOn Availability
Group and selecting the “Show Dashboard” option. The AlwaysOn Dashboard, by default,
gives you some general information, like the servers inside the Availability Group and the
synchronization state, about your AlwaysOn Availability Group, as shown in Figure 10-12.

':o:' EVDL-AGO1: hosted by EVDL-SQL-AGO1 (Replica role: Primary)

Availability group state: () Healthy

Primary instance: EVDL-SQL-AGO1
Failover mode: Manual
Cluster state: EVDL-SQL-AG (Normal Quorum)
Availability replica:
| Name |Role | FaloverMode | SynchronizationState | Issues
@ evoL-soL-A601 Primary  Manual Synchronized
@ evpLs0L-AG02 Second... Manual Synchronized
Group by ~
Name | Replica | Synchronization State | Failover Readin... | Issues
EVDL-SQL-AGO1
@ AdventureWorks2012  EVDL-SQL-AGO1 Synchronized No Data Loss
EVDL-SQL-AGD2
@ AdventureWorks2012 EVDL-SQL-AG02 Synchronized No Data Loss

Figure 10-12. AlwaysOn Dashboard

294



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

The default view of the AlwaysOn Dashboard doesn’t provide much information
you can use for troubleshooting. Thankfully, you can configure the view to suit your own
needs by right-clicking the column bar and selecting the information you are interested
in, as shown in Figure 10-13.

{0} EVDL-AGO1: hosted by EVDL-SQL-AGO1 (Replica role: Primary)

Availability group state: @) Healthy

Primary instance: EVDL-SQL-AGO1
Failover mode: Manual
Cluster state: EVDL-SQL-AG (Normal Quorum)
Availability replica:
Name
| | Name | Role I Failover Mode
Replica
@ evoL-soL-AG01 Primary  Manual
Synchronization State
© ewL-s0L-AG02 Second... Manual
Failover Readiness
Group by ~ Issues
_Name | Replica Suspended teadin... | Issues
EVDL-SQL-AGO1 Suspend Reason
@' AdventureWorks2012 EVDL-SQL-AGO1 Estimated Recovery Time (seconds) Loss
-5QL-AGO2 Estimated Data Loss (time)
o Synchronization Performance (seconds)
AdventureWorks2012 EVDL-SQL-AG02 Loss
| LogSend Queue Size (KE) |
Log Send Rate (KB/sec)
Redo Queue Size (KB)
Redo Rate (KB/sec)

Figure 10-13. AlwaysOn add columns

There are many columns that are interesting for troubleshooting synchronization
issues, and I recommend taking the time to understand them so you can determine
which columns are most applicable to your situation.

The information shown by the AlwaysOn Dashboard is originally recorded inside
various AlwaysOn-related DMVs. This makes it possible for you to query this information
yourself. All of the AlwaysOn-related DMVs can easily be identified by the dm_hadr prefix
in the DMV name, like the sys.dm_hadr_database replica states DMV that contains
a large part of the information you can access inside the AlwaysOn Dashboard.

295



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

Next to the AlwaysOn and DMVs that are related to AlwaysOn, there are a
large amount of Perfmon counters that specifically show AlwaysOn performance.
These counters are grouped in the Perfmon SQLServer:Availability Replica and
SQLServer:Database Replica groups. Figure 10-14 shows a part of the counters available
in the SQLServer:Database Replica group.

|

Available counters 1 [ Added counters -

Select counters from computer: Counter [Parent ] Inst... | Computer |

[<Cocal computer> = I _Counter

[ FJLCIETVET TTIToTyg ==

-

SQLServer:Database Replica =

File Bytes Received/sec
Log Bytes Received/sec
Log remaining for undo

Log Send Queue

Mirrored Write Transactions/sec

Recovery Queue

Dadn hlad-adlcar ﬂ
Instances of selected object:

_Total
<All instances>

AdventureWorks2012

I ﬂ Search |

Add >> I Remove <<

™ Show desaription hp [ ok ] cance

Figure 10-14. Perfmon counters related to AlwaysOn

As you have read so far, there are plenty of options available to you for analyzing the
AlwaysOn performance between replicas.

Using the information from the various sources I have shown you so far, you should
be able to check the general health of your AlwaysOn Availability Group. You can then
combine this information with other metrics for things that impact the performance
of your secondary replica, like the performance of your storage subsystem and your
network connection. Since the HADR_SYNC_COMMIT wait type is strictly related to the
secondary replica, you should focus your analysis on the SQL Server that hosts the

296



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

secondary replica. For instance, if your storage subsystem cannot keep up with the
number of transactions that need to be committed on the secondary replica, you will
notice this in higher HADR_SYNC_COMMIT wait times, and also in the various counters
inside the AlwaysOn Dashboard, DMVs, or Perfmon.

It is difficult to give a general recommendation on how to lower HADR_SYNC_COMMIT
wait times since they are highly dependent on myriad variables and also depend on your
workload. When you have a workload that consists of a large number of read queries, you
will notice lower HADR_SYNC_COMMIT wait times than workloads that perform many data
modification operations. This means analyzing and optimizing your query workload can
also contribute to the lowering of HADR_SYNC COMMIT wait times.

HADR_SYNG_COMMIT Summary

The HADR_SYNC_COMMIT wait type will only occur on AlwaysOn Availability Groups that
consist of replicas that are configured to use the synchronous replication mode. The
HADR_SYNC_COMMIT wait type will give you insight into how long it took for the secondary
replica to commit the transaction to disk. Since the HADR_SYNC_COMMIT will always record
wait times inside synchronous replication, you should only worry about the wait times
when they are far higher than expected. Thankfully, there are various methods available
to you to analyze the performance of your AlwaysOn Availability Group, including an
AlwaysOn Dashboard, DMVs, and Perfmon counters.

Since the performance of the secondary replica has the largest impact on the
HADR_SYNC_COMMIT wait times, your attention should focus on the secondary replica
when troubleshooting this wait type. The storage subsystem and network connection
both play a large role in the speed at which the secondary replica can write log records
to its transaction log. Your workload also impacts HADR_SYNC_COMMIT wait times, and
optimizing it so data modifications are better spread out will result in lower HADR_SYNC _
COMMIT wait times.

REDO_THREAD_PENDING_WORK

The last wait type in this chapter is the REDO_THREAD_PENDING_WORK wait type. And even
though it misses the characteristic HADR _ prefix that identifies AlwaysOn-related wait
types, it is related to AlwaysOn. The REDO_THREAD PENDING WORK wait type is, just like the
HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE wait types, a wait type that accumulates

297



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

over time when there is no work to be done. And just like the HADR_LOGCAPTURE_WAIT and
HADR_WORK QUEUE wait types, it can in most cases be ignored since it does not indicate a
performance problem.

Even though this is a wait type that can safely be ignored in 99% of the cases, I wanted
to include it in this chapter for two reasons. It is usually one of the top wait types on an
AlwaysOn Availability Group secondary replica, and understanding its related process
inside SQL Server will give you a better understanding of the inner workings of AlwaysOn.

What Is the REDO_THREAD_PENDING_WORK Wait Type?

The REDO_THREAD PENDING WORK wait type is related to a process that only occurs on the
secondary replica inside an AlwaysOn Availability Group, the Redo Thread.

Up to this point in the chapter, we have talked about how the secondary replica
inside an AlwaysOn Availability Group processes log records, hardens them to its
own transaction log, and sends a confirmation to the primary replica. When using
synchronous replication, the primary replica will wait before sending a transaction
complete message to the client that started the transaction, and when using
asynchronous replication the message is sent without waiting for the hardening on
the secondary. But until now we haven’t discussed the process that will perform the
modifications inside the secondary database described in the log records. This is
where the Redo Thread on the secondary comes in. This thread is responsible for
performing the data modifications that were recorded in the log records the primary
replica sent it. There is one very important concept associated with the Redo Thread:
it does not impact the commit confirmation from the secondary replica. This means
that the Redo Thread might be performing work long after the transaction has
been communicated as committed to the client (both the primary and secondary
replica have hardened the log record and the AlwaysOn Availability Group has the
synchronized status).

This means that even though your AlwaysOn Availability Group is synchronized,
the data inside the secondary database does not necessarily have to be identical to
the primary database. This actually matters less than you might think on first thought.
Because the secondary hardened the log records to its own transaction log on disk, it has
all the information it needs to perform the redo operation. Transactions will not be lost
if a failure occurs on the primary since the secondary has all the transactions that were
performed in its own transaction log and can redo all the transactions. This works much

298



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

the same as a standalone SQL Server instance where transactions are also hardened to
disk first before data is actually changed. If SQL Server were to crash in this situation,
SQL Server would use the transaction log to redo or undo the data modifications.
Figure 10-15 shows an example of synchronous replication together with the Redo
Thread. Note that the Redo Thread is a separate operation that does not impact the
duration of the transaction complete message.

=1

==
g -
2 c 5
g £3
2 S £
"S m_:
S RS
= 0
o

®

Primary Secondary

@ acknowledge
-

I X
1 = — )Redo Thread

harden log

Figure 10-15. Synchronous AlwaysOn Availability Group and the Redo Thread

So, where does the REDO_THREAD_PENDING_WORK wait type come in? Well, if the Redo
Thread is waiting for work to arrive, it will record the time it is inactive as wait time on
the REDO_THREAD_PENDING WORK wait type. This will occur on both synchronous and
asynchronous replication modes, but only on the secondary replica.

299



CHAPTER 10  HIGH-AVAILABILITY AND DISASTER-RECOVERY WAIT TYPES

Because the wait type only indicates that the Redo Thread is not performing any
work, it can, save for extremely rare cases, be safely ignored. And because the wait time
for the REDO_THREAD PENDING WORK wait type will accumulate naturally when there
is no work to be done, there is no need to write an example demonstrating the wait
type. A simple query to retrieve REDO_THREAD PENDING WORK wait type information
against the sys.dm_os wait stats DMV on a secondary replica will show you that
the wait time increases, especially when there is no user activity against the AlwaysOn
Availability Group, as shown in Figure 10-16.

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms  signal_wait_time_ms

1 i REDO_THREAD_PENDING_WORK { 143546 14675243 54 11004

Figure 10-16. REDO_THREAD_PENDING_WORK wait information

REDO_THREAD_PENDING_WORK Summary

The REDO_THREAD_PENDING_WORK wait type is an AlwaysOn-related wait type that
accumulates wait time naturally over time when there is no data modification activity
against an AlwaysOn Availability Group. The REDO_THREAD PENDING WORK wait type is
related to the Redo Thread on the secondary replica inside an AlwaysOn Availability
Group, and it indicates that the Redo Thread is currently waiting for work. Since this wait
type will occur on every secondary replica, especially when there is minimal to no user
data modification occurring, it can safely be ignored.

300



CHAPTER 11

Preemptive Wait Types

In Chapter 1, “Wait Statistics Internals,” we briefly touched upon SQL Server’s
non-preemptive scheduling model that is used to perform thread scheduling and
management. Unlike SQL Server, the Windows operating system uses preemptive
scheduling to schedule and manage threads. Sometimes SQL Server has to use Windows
functions to perform specific actions through the operating system, for instance, when
checking Active Directory permissions. When this occurs, SQL Server will have to ask

a thread from the Windows operating system, outside of SQL Server, thus making it
impossible for SQL Server to manage that thread. While SQL Server is waiting for the
preemptive thread inside the Windows operating system to complete, SQL Server will
record a wait on a preemptive wait type. Figure 11-1 shows a graphical representation of
this behavior.

0S Scheduler

Scheduler

=
PREEMPTIVE_[wait]

.f‘

Runnable Queue | Waiter List

Figure 11-1. Preemptive wait occurring

There are many different preemptive wait types inside SQL Server; at the time
of writing this book SQL Server 2017 has 203 different preemptive wait types. Which
preemptive wait type is recorded when a thread is requested outside SQL Server
depends on the Windows function the thread is accessing. Each of the preemptive

301

© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_11



CHAPTER 11 PREEMPTIVE WAIT TYPES

wait types inside SQL Server represents a different Windows function (save for some
exceptions that act as a catch-all wait type for different functions), and in many cases
the name of the wait type is identical to the name of the Windows function. This is

very helpful because you can search for the specific Windows function on MSDN and
learn what the function does. If you know what the function does, you also know why,
or on what, SQL Server is waiting. For example, if you notice high wait times on the
PREEMPTIVE_OS WRITEFILEGATHER wait type, you can remove the PREEMPTIVE_0S_part
and search MSDN for the WRITEFILEGATHER function. Figure 11-2 shows the results I got
on my search for the WRITEFILEGATHER function.

WriteFileGather function

Retrieves data from an array of buffers and writes the data to a file.

The function starts writing data to the file at a position that is specified by an OVERLAPPED structure. The
WriteFileGather function operates asynchronously.

Figure 11-2. WriteFileGather Windows function

By reading the article we can learn a lot about this function; apparently this
function is used when writing data to a file and has to occur outside SQL Server. I won’t
spoil anything else here, since we will go into more detail about the PREEMPTIVE_0S
WRITEFILEGATHER wait type a bit further down in this chapter.

I'won't describe every possible preemptive wait type in this chapter, since there are simply
too many of them. Instead I have focused on the most common preemptive wait types.
If you run into a preemptive wait type that is not discussed in detail in this chapter, I suggest
you use the preceding method to find more information about the Windows function on
MSDN. Hopefully, that information can help you figure out why the wait is occurring.

SQL Server on Linux

In the introduction of this chapter, I wrote about how SQL Server can access Windows
operating system functionality from inside SQL Server. However, starting from SQL
Server 2017, SQL Server is no longer limited to being available on the Microsoft Windows

302



CHAPTER 11 PREEMPTIVE WAIT TYPES

operating system. In a revolutionary announcement in March of 2016, Microsoft
announced the next release of SQL Server (2017) will no longer be a Windows-only
product, but will also be available on Linux. Needless to say, the announcement stirred
up quite a bit of dust as it was something nobody would ever expect to happen.

The reason why I bring up the support of SQL Server on Linux operating systems
now is that preemptive waits that occur inside SQL Server are platform independent.
Meaning calls to functions that are only available in the Windows operating system are
also recorded when looking at the wait statistics of a SQL-on-Linux instance. The reason
why this is possible has everything to do with the underlying technology Microsoft used
to bring SQL Server to Linux.

To make SQL Server run on Linux Microsoft adopted a concept called a Platform
Abstraction Layer (or PAL for short). The idea of a PAL is to separate the code needed to
run, in this case, SQL Server with the code needed to interact with the operating system.
Because SQL Server has never run on anything other than Windows, it is full of operating
system references inside its code. This would mean that getting SQL Server to run on
Linux would end up taking enormous amounts of time because of all the operating
system dependencies. So the SQL Server team looked for different approaches to resolve
this issue and found its answer in a Microsoft research project called Drawbridge. The
definition of Drawbridge can be found on its project page at www.microsoft.com/en-us/
research/project/drawbridge/ and reads:

Drawbridge is a research prototype of a new form of virtualization for
application sandboxing. Drawbridge combines two core technologies:
First, a picoprocess, which is a process-based isolation container with a
minimal kernel API surface. Second, a library OS, which is a version of
Windows enlightened to run efficiently within a picoprocess

The main part that attracted the SQL Server team to the Drawbridge project was
the Library OS technology. This new technology could handle a very wide variety
of Windows operating system calls and translate them to the operating system of
the host, which in this case is Linux. Now, the SQL Server team did not adapt the
Drawbridge technology one-on-one as there were some challenges involved with the
research project. One of them was that the research project was officially completed
which means there was no support on the project. Another one was a large overlap
of technologies inside the SQL Server OS (SOS) and Drawbridge. Both solutions have
their own functionalities to handle memory management and threading/scheduling.
What eventually was decided was to merge the SQL Server OS and Drawbridge into

303


http://www.microsoft.com/en-us/research/project/drawbridge/
http://www.microsoft.com/en-us/research/project/drawbridge/

CHAPTER 11 PREEMPTIVE WAIT TYPES

a new platform layer called the SQLPAL (SQL Platform Abstraction Layer). Using the
SQLPAL the SQL Server team can develop code as they have always done and leave the
translation of operating system calls to the SQLPAL. Figure 11-3 shows the interaction
between the various layers while running SQL Server on Linux.

Linux Process

SQLPAL managed

Software Isolated Process

SQL Server

Windows Calls
(1200+)

SQLPAL

ABI Calls (50)

Linux
Host Extension

Linux OS Calls

Linux OS

Figure 11-3. PAL layer interaction on SQL-on-Linux

There is a lot more information available on various Microsoft blogs that covers more
of the functionality and the design choices of the SQLPAL. If you want to know more
about the SQLPAL, or how it came to life, a good recommendation is to read the “SQL
Server on Linux: How? Introduction” article over at https://cloudblogs.microsoft.
com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction/.

304


https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction/
https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction/

CHAPTER 11 PREEMPTIVE WAIT TYPES

For the remainder of this chapter, I will frequently refer to functions used by the
Windows operating system. If you are running SQL Server on Linux, remember that the
functionality described in this chapter is handled by SQLPAL on Linux but still has the

same functionality as on Windows.

PREEMPTIVE_OS_ENCRYPTMESSAGE
and PREEMPTIVE_OS_DECRYPTMESSAGE

The first preemptive wait types we are going to discuss in this chapter are the
PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE wait types.

As you can probably guess from the wait type names, the functions are related to either
encrypting or decrypting messages through the Windows operating system.

What Are the PREEMPTIVE_0S_ENCRYPTMESSAGE
and PREEMPTIVE_OS_DECRYPTMESSAGE Wait Types?

As I noted in the previous section, the PREEMPTIVE_0S ENCRYPTMESSAGE and

PREEMPTIVE _OS_DECRYPTMESSAGE wait types are related to the encryption and decryption
of messages. More specifically, they are related to encrypting and decrypting network
traffic to and from the SQL Server instance. One case where this is used is when
connecting to your SQL Server instance using certificates to encrypt the data that is sent
between the client and the SQL Server instance. In that case, SQL Server will need to
access the Windows operating system to perform the encryption of the messages that
itis sending to the client or to decrypt the messages that are received. The encryption
and decryption do not happen inside SQL Server, unlike, for instance, Transparent Data
Encryption (TDE), where the encryption/decryption process happens entirely inside
SQL Server.

Both the PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE _OS DECRYPTMESSAGE
wait types do not necessarily indicate any performance problems. They just show you
encryption is being used, so there is no real need to troubleshoot these wait types. The
overhead of encrypting and decrypting messages is so small that it rarely causes any
serious issues (I have yet to come across a case where using certificates to connect to
SQL Server caused performance problems).

305



CHAPTER 11 PREEMPTIVE WAIT TYPES

PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_
0S_DECRYPTMESSAGE Example

To show you an example of both the PREEMPTIVE_0S ENCRYPTMESSAGE and PREEMPTIVE
0S_DECRYPTMESSAGE wait types, I am going to configure a certificate that will be used to
encrypt the connection to the SQL Server instance. To make this example reproducible,
I'have included the steps for creating a self-signed certificate. Normally, in production
environments you will use a certificate issued by a certificate authority, but for testing
purposes a self-signed certificate is fine.

The first thing I did to be able to generate a self-signed certificate is install Internet
Information Services (IIS) on my test virtual machine. IIS makes generating a self-signed
certificate very simple.

After the installation of IIS is completed, I open the IIS Manager from Administrative
Tools. Then I click the name of my machine and select the Server Certificates option in
the Features View, as shown in Figure 11-4.

Filter v fGo ~ Gyshow Al |Groupby: Area vl
s
?,E) ) |48 &
Authentication Compression Default Directory Error Pages Handler
Document Browsing Mappings
:_-;:-. = — N - H T = -
" gl x & o2 ==
HTTP Logging MIME Types Modules Output Request
Respo... Caching Filtering
£
Y Xy
Server Worker

Certificates Processes

Figure 11-4. Features View inside the IIS Manager

306



CHAPTER 11 PREEMPTIVE WAIT TYPES

This will open a new Server Certificates view inside the IIS Manager. Inside the
Action Pane, I click the Create Self-Signed Certificate option. I am then asked to supply a
name for my certificate, so I filled in the name of my test virtual machine as you can see
in Figure 11-5.

- “ Specify Friendly Name

Specify a file name for the certificate request. This information can be sent to a certificate authority for
signing:

Specify a friendly name for the certificate:
|EVDL-5QL-2017

Select a certificate store for the new certificate:

| Personal

Figure 11-5. Create self-signed certificate

I click OK, and the self-signed certificate will be created and automatically placed
inside the correct certificate store on my machine (Local Machine » Personal Certificates).
Now that my self-signed certificate is created and stored inside the certificate store,
I need to make sure the account my SQL Server service is running under has permissions
to access the certificates. I open MMC by clicking Start » Run, entering MMC, and
pressing OK. Now that the MMC console is open, I need to add the Certificates snap-in.
I do this by clicking File » Add/Remove Snap-in, selecting the Certificates snap-in, and
clicking Add. When prompted for which account I want to manage certificates, I select
Computer account, as shown in Figure 11-6, and click Next and Finish.

307



CHAPTER 11 PREEMPTIVE WAIT TYPES

This snap-in will always manage cerificates for:
O My user account

O Service account

(®) Computer account

Figure 11-6. Certificate account selection

Inside the Certificates console, I open the folder Certificates (Local Computer) »
Personal » Certificates. If the generation of the self-signed certificate inside IIS was
correct, I should see the certificate here. Figure 11-7 shows the certificate on my test

virtual machine.
Issued To - Issued By Expuation Date  Intended Purp Friendly Name Status  Certificate Te...

¥ EVDL-5Q1.2017-01 EVDL-SQL2017-01 10/14/2020 Server Authenti Data Management ...
§ EVDL-SCUL2017-0 EVD M2017-01 15,2020 Serv 17
¥ localhost localhost 1/25/2024 Server Authenticati... IS Express Develop...

er Authenticati EVDL-SQL

Figure 11-7. Self-signed certificate

I right-click the self-signed certificate and select All Tasks » Manage Private Keys. A
permissions dialog opens. Here I need to add the account under which the SQL Server
service is running. In my case that is the local administrator user which is added by
default. If you run your SQL Server service under a different account, the account only
needs read permission on the certificate, as shown in Figure 11-8.

308



CHAPTER 11 PREEMPTIVE WAIT TYPES

Secu |

Group or user names:

H2, SYSTEM

82, Administrators (EVDL-SQL2017-01\Administrators)
2o Account Unknown(S-1-5-5-0-103293)

Pemissions for Administrators
Full control

Read

Special permissions

For special pemmissions or advanced settings,
click Advanced.

Figure 11-8. Self-signed certificate permissions

After adding the account and selecting the right permission, I click OK to close
the dialog. Now that the permissions are correct and the SQL Server Service account
can access the certificate, I need to add the self-signed certificate to the network
configuration of the SQL Server instance that I want to enable for encryption.

I open the SQL Server Configuration Manager and click the SQL Server Network
Configuration option. I right-click the SQL Server instance that should use the self-
signed certificate and select Properties. Next, I open the Certificates tab and select
the self-signed certificate we created earlier. Figure 11-9 shows the dialog on my test
virtual machine.

309



CHAPTER 11 PREEMPTIVE WAIT TYPES

Protocols for MSSQLSERVER Properties 2 |

Flags J Certificate .Ad\{mmd
Certificate: View. | Cles |
[EvoL-sqQL-2017 |

Expiration Date
Friendly Name
Issued By
Issued To

.Elr.pira.tion Date

(o J[ concel |[ apty |[ reb

Figure 11-9. Certificate selection

After selecting the self-signed certificate, I click OK to close the dialog. I am notified
that the certificate will become active after a restart of the SQL Server service, so I
perform a restart of the SQL Server Service.

Right now SQL Server can use the self-signed certificate, but to make sure my
network messages are encrypted I have to connect to the SQL Server instance and tell
it that I want to use encryption. For this example I will use the SQL Server Management
Studio, on the same virtual machine as my SQL Server instance, to connect to the SQL
Server instance. If you connect to your SQL Server instance from another machine you
need to make sure the self-signed certificate is available on that machine. When the
Connect to Server dialog appears inside SQL Server Management Studio, I click the
Options button at the bottom right of the dialog. This opens up additional properties for
the connection to my SQL Server instance. I select the Encrypt connection checkbox as
shown in Figure 11-10, and connect to my SQL Server instance.

310



CHAPTER 11 PREEMPTIVE WAIT TYPES

SQL Server

Login | Connection Properties | Additional Connection Parameters |
Type or select the name of the database for the connection.

Connect to database: | at |
Networlc
Network protoco [ <defaut> v]
Network packet size: [4096 i 'EC bytes
Connection
Connection time-out: 30 to| seconds
Execution time-out: o {2| seconds

[¥] Encrypt connection

Figure 11-10. Connection Properties in SQL Server Management Studio

Right now I have configured everything I need to make sure SQL Server will use
the self-signed certificate to encrypt messages between the SQL Server instance and
SQL Server Management Studio, so I can finally take a look at the PREEMPTIVE_0S
ENCRYPTMESSAGE and PREEMPTIVE OS DECRYPTMESSAGE wait types!

Generating the PREEMPTIVE_0S_ENCRYPTMESSAGE and PREEMPTIVE 0S
DECRYPTMESSAGE waits is very simple now. Basically, every query I execute from the
SQL Server Management Studio right now will be encrypted, even if I run SQL Server
Management Studio on the same machine as the SQL Server instance. I use the query
in Listing 11-1 to reset the sys.dm_os_wait_stats DMV, connect to the Adventurehorks
database, perform a simple query, and then look at the waits occurring on the
PREEMPTIVE OS ENCRYPTMESSAGE and PREEMPTIVE_0S DECRYPTMESSAGE wait types.

311



CHAPTER 11 PREEMPTIVE WAIT TYPES

Listing 11-1. Select query using encrypted connection
DBCC SQLPERF('sys.dm os wait stats', CLEAR)

USE AdventureWorks
GO

SELECT *
FROM Sales.SalesOrderDetail;

SELECT *

FROM sys.dm os wait stats

WHERE wait type = 'PREEMPTIVE_OS ENCRYPTMESSAGE'
OR wait type = 'PREEMPTIVE 0S DECRYPTMESSAGE';

The results of these queries on my test SQL Server instance are shown in Figure 11-11.

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms  signal_wait_time_ms
1 | PREEMPTIVE_OS_DECRYPTMESSAGE | 1 0 0 0
2 PREEMPTIVE OS_ENCRYPTMESSAGE 2356 328 2 0

Figure 11-11. PREEMPTIVE_OS_DECRYPTMESSAGE and PREEMPTIVE_OS_
ENCRYPTMESSAGE waits

Asyou can see, the PREEMPTIVE_0S ENCRYPTMESSAGE wait time has more waits and
wait time associated with it. This is logical since I performed a select query and it only
had to decrypt the acknowledgment network messages from the client. The results
of the query had to be encrypted by SQL Server, which leads to higher waits on the
PREEMPTIVE_OS_ ENCRYPTMESSAGE wait type.

Lowering PREEMPTIVE_OS_ENCRYPTMESSAGE
and PREEMPTIVE_OS_DECRYPTMESSAGE Waits

Under normal circumstances there should be no need to focus attention on lowering
the PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE wait types.
They mostly just indicate that message encryption is occurring, which is probably a
choice that was made when configuring the SQL Server instance. Disabling encryption
will dramatically lower the PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS
DECRYPTMESSAGE wait times, but at the cost of security.

312



CHAPTER 11 PREEMPTIVE WAIT TYPES

PREEMPTIVE_0S_ENCRYPTMESSAGE and PREEMPTIVE_
0S_DECRYPTMESSAGE Summary

The PREEMPTIVE_0S ENCRYPTMESSAGE and PREEMPTIVE 0S DECRYPTMESSAGE wait
types indicate that encryption is occurring between the SQL Server instance and a
client. These wait types can generally be ignored since they do not directly indicate
a performance problem. Lowering them can be achieved by disabling the use of
encryption, but this comes at the cost of security.

PREEMPTIVE_OS_WRITEFILEGATHER

The PREEMPTIVE_OS_WRITEFILEGATHER wait type is related to storage interactions, more
specifically the writing to files through the Windows operating system.

What Is the PREEMPTIVE_0S WRITEFILEGATHER Wait
Type?

The PREEMPTIVE_OS_WRITEFILEGATHER wait type is related to the WriteFileGather
function inside the Windows operating system. If we look up the definition of this
function on Books Online, we get the following description: “Retrieves data from an
array of buffers and writes the data to a file.” From this description we can assume

the function will be called when there is a need to write data to a file. This does

not count for every storage subsystem write operation inside SQL Server, however.
Generally there is no need for SQL Server to move outside of its own engine to wait
for a preemptive operation. There are some exceptions, however, which can result in
PREEMPTIVE_OS WRITEFILEGATHER waits (depending on the Windows function used to
perform the storage subsystem interaction). One specific operation inside SQL Server
that will always result in PREEMPTIVE_OS_WRITEFILEGATHER waits is the growing of
data files. Whenever SQL Server wants to grow a data file, it will need to allocate extra
space on the storage subsystem and “zero out” the new space so SQL Server can use it.
The allocation of the extra space does not happen inside the SQL Server engine, thus
a preemptive operation has to take place, which can lead to preemptive waits on the
WriteFileGather function.

313



CHAPTER 11 PREEMPTIVE WAIT TYPES

PREEMPTIVE_OS_WRITEFILEGATHER Example

To show you an example of PREEMPTIVE_OS WRITEFILEGATHER waits occurring, I am
going to replicate the situation I described in the previous section, growing a database
data file. For this example I will restore a backup of the AdventurelWorks database; in the
SQL Server 2016 version of the database, there exists only a single database data file with
a size of 208 MB, as shown in Figure 11-12.

Database files:

Logical Name  File Type  Filegroup Inttial Size (MB)  Autogrowth / Maxsize
AdvertureW ... ROWS.. PRIMARY 208 By 16 MB, Unlimited
AdventureW... LOG Mot Applicable 2 By 16 MB, Limited to 209715...

Figure 11-12. Default database file configuration of AdventureWorks
(2016 edition)

I am going to grow the single database data file to a size of 10 GB. Because the
allocation of the extra space needed for the data file is performed outside SQL Server,
this should result in PREEMPTIVE_0S WRITEFILEGATHER waits.

To perform the action of enlarging the database data file I used the script shown
in Listing 11-2. This script will clear the sys.dm_os _wait_stats DMV, enlarge the
AdventureWorks data file to 800 MB, and then query the sys.dm_os_wait_stats DMV
for PREEMPTIVE_OS WRITEFILEGATHER.

Listing 11-2. Enlarge AdventureWorks database data file
DBCC SQLPERF('sys.dm os wait stats', CLEAR)

USE [master]
Go

ALTER DATABASE [AdventureWorks]
MODIFY FILE

(

NAME = N'AdventureWorks2016 Data',
SIZE = 819200KB

);

314



CHAPTER 11 PREEMPTIVE WAIT TYPES

GO

SELECT *
FROM sys.dm os wait stats
WHERE wait_type = 'PREEMPTIVE_OS WRITEFILEGATHER';

The query in Listing 11-2 is almost instantly completed on my test SQL Server instance,
it has very fast storage, and results in the wait information shown in Figure 11-13 for the
PREEMPTIVE 0S_WRITEFILEGATHER wait type.

wait_type waiting_tasks_count  wait_time_ms max_wait_time_ms  signal_wait_time_ms
1 | PREEMPTIVE_OS_WRITEFILEGATHER ; 1 447 447 0

Figure 11-13. PREEMPTIVE_OS_WRITEFILEGATHER waits

Notice that there was only one single wait on the PREEMPTIVE_0S WRITEFILEGATHER
wait type, and the duration was practically as long as it took to perform the enlargement
of the data file.

Lowering PREEMPTIVE_OS_WRITEFILEGATHER Waits

When you notice higher-than-normal wait times on the PREEMPTIVE _0S_
WRITEFILEGATHER wait type, it means that a process from inside SQL Server is
performing actions on the storage subsystem through the Windows operating
system. The first matter of action should be to investigate what process initiated
the action that resulted in PREEMPTIVE_OS WRITEFILEGATHER waits. Very frequently
this will be the (automatic) growth of a database data or log file. If you allow the
data or log files to grow automatically when they are full, you can expect to see
PREEMPTIVE_OS WRITEFILEGATHER waits occur whenever an auto-growth event
occurs. This does not necessarily mean there is a problem, but if auto-growth
events take a long time to complete because, for instance, the storage subsystem is
experiencing performance problems, your queries might experience performance
degradation as well.

There is one Windows setting available that I frequently see not configured, instant
file initialization. We discussed this setting, and how you can enable it, already in
Chapter 6, “IO-Related Wait Types,” under the ASYNC_I0 COMPLETION wait type so I
won't go into detail on how to enable the setting again. Figure 11-14 shows the results

315



CHAPTER 11 PREEMPTIVE WAIT TYPES

of the query in Listing 11-2 with instant file initialization enabled, and as you can see,
the amount of wait time spent on the PREEMPTIVE_OS_WRITEFILEGATHER wait time
disappeared completely.

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms

1 | PREEMPTIVE_OS_WRITEFILEGATHER | 0 0 0 0

Figure 11-14. PREEMPTIVE_OS_WRITEFILEGATHER waits with instant file
initialization turned on

Next to using instant file initialization, the performance of the storage subsystem
plays a large partin the PREEMPTIVE _OS_WRITEFILEGATHER wait times. The better
your storage subsystem performs, the lower the wait times on the PREEMPTIVE_0S
WRITEFILEGATHER wait type.

Another SQL Server action that can cause higher-than-normal PREEMPTIVE_0S_
WRITEFILEGATHER wait times is performing database restores. Much like expending a
data file, before SQL Server can restore a database, it needs to allocate free storage for it.
This is also related to instant file initialization, which will also speed up database restores
just like file enlargements.

PREEMPTIVE_OS_WRITEFILEGATHER Summary

The PREEMPTIVE_OS_WRITEFILEGATHER wait type indicates that SQL Server is asking the
Windows operating system to perform an operation on the storage subsystem. Not all
operations can be handled from inside the SQL Server engine and actions; for example,
the growing of a data file requires the execution of a Windows function to allocate the
desired space on the storage subsystem. Instant file initialization is a setting in Windows
that can lower the amount of PREEMPTIVE_OS WRITEFILEGATHER wait time drastically, but
the performance of the storage subsystem itself also plays a large role in PREEMPTIVE_0S
WRITEFILEGATHER wait times.

PREEMPTIVE_OS_AUTHENTICATIONOPS

The PREEMPTIVE_OS AUTHENTICATIONOPS wait type is another preemptive wait type that
is related to various Windows authentication functions.

316



CHAPTER 11 PREEMPTIVE WAIT TYPES

What Is the PREEMPTIVE_O0S_AUTHENTICATIONOPS
Wait Type?

The PREEMPTIVE_OS_AUTHENTICATIONOPS wait type is recorded whenever SQL Server
needs to perform an account authentication, for instance, to authenticate the SQL
Server Windows login when it connects to SQL Server. Seeing PREEMPTIVE_0S
AUTHENTICATIONOPS waits occur is to be expected, especially when using mixed-mode
authentication and Windows logins inside your SQL Server instance.

One common misconception about the PREEMPTIVE_OS_AUTHENTICATIONOPS wait
type is that it is only related to SQL Server logins that use Windows authentication
inside a domain. This is not entirely correct. While it is true that PREEMPTIVE_0S
AUTHENTICATIONOPS wait times will frequently be higher when using Active Directory
accounts to connect to SQL Server, PREEMPTIVE_0S_AUTHENTICATIONOPS waits will also
occur if the SQL Server instance is installed on a machine outside of a domain; the wait
times will generally be lower though.

Figure 11-15 shows a simplified image of how SQL Server connects to an Active
Directory domain controller to validate the SQL Server Windows login. Keep in mind
that the Windows operating system takes care of the communication between the
domain controller and the SQL Server, hence the preemptive wait type.

Figure 11-15. SQL Server Windows login authentication inside domain

On a machine that has a SQL Server instance installed but is not part of a domain,
the authentication of the Windows login will occur on the machine itself (local
accounts).

317



CHAPTER 11 PREEMPTIVE WAIT TYPES

Because it will generally take a longer time to authenticate a Windows login through
a domain controller (the request has to travel across the network and authenticate on
another machine), the wait times for the PREEMPTIVE_0S AUTHENTICATIONOPS wait type
will generally be higher for a SQL Server instance inside a domain.

PREEMPTIVE_OS_AUTHENTICATIONOPS Example

To generate an example of PREEMPTIVE_0S_AUTHENTICATIONOPS waits occurring, I do
not need to perform any complex actions. Opening a new connection to the SQL Server
instance using Windows authentication should be enough. One way to make this easy
to measure is by connecting to the SQL Server instance with SQL Server Management
Studio, using Windows authentication. Figure 11-16 shows the SQL Server Management
Studio connect dialog to my test SQL Server instance. Note that my test SQL Server
instance is not inside a domain, and that I use the local administrator account on my
machine to connect.

SQL Server
Server type: | Databaze Engine v |
Server name: EVDL-5QL2017-01 v |
HAuthentication: Ithows Authentication v]
EVDL-5QL2017-01\Administrator
| comnect || Canced || Hep || oOptions» |

Figure 11-16. Connect SQL Server Management Studio using local Windows
authentication

The next step I perform is opening a new Query Window inside SQL Server
Management Studio and performing the steps inside the query shown in Listing 11-3.

318



CHAPTER 11 PREEMPTIVE WAIT TYPES

Listing 11-3. Generate PREEMPTIVE_OS_AUTHENTICATIONOPS waits

-- Step 1 Clear sys.dm os wait stats
DBCC SQLPERF('sys.dm os wait stats', CLEAR);

-- Step 2 Open a new Query Window inside
-- SOL Server Management Studio

-- Step 3 go back to this Query Window

-- and run the query below

SELECT *

FROM sys.dm os wait stats

WHERE wait type = 'PREEMPTIVE_0S AUTHENTICATIONOPS';

If you follow the steps commented inside the script in Listing 11-3, you should see
PREEMPTIVE_OS_AUTHENTICATIONOPS waits occurring after running the query in step 3.
Figure 11-17 shows the results of the query in step 3 on my test machine.

watt_type waiting_tasks_count wait_tme_ms max_wait_time_ms signal_wait_time_ms
1 éPREEMPTIVE_OS_AUTHENTICATIONOPS P12 1 0 0

Figure 11-17. PREEMPTIVE_OS_AUTHENTICATIONOPS waits

As you can see, the number of waits occurring and their wait times are very low.
The point of this example is not to show you an example of very high PREEMPTIVE_0S
AUTHENTICATIONOPS wait times, but rather how they occur naturally when connecting
to a SQL Server instance. Because I opened a new Query Window inside SQL Server
Management Studio, a new connection to the SQL Server instance will be made
using the Windows login I used to connect to my SQL Server instance. Because itis a
new connection, the account I used to connect had to be authenticated, resulting in
PREEMPTIVE_OS_AUTHENTICATIONOPS waits.

Lowering PREEMPTIVE_OS_AUTHENTICATIONOPS Waits

In the example, I have shown you how PREEMPTIVE_OS_AUTHENTICATIONOPS waits occur
naturally whenever you connect to a SQL Server instance. Now imagine a situation
where your SQL Server instance is part of a domain environment and it uses Windows
authentication to authenticate domain users (or groups) against an Active Directory. In
that case your authentication request has to travel across the network in order to perform

319



CHAPTER 11 PREEMPTIVE WAIT TYPES

the authentication of the account. There are many factors involved that can impact

the speed of the authentication request; for instance, if your Domain Controller is
under a lot of stress, it can take longer to perform the authentication, or if your network
experiences performance degradation, it will also impact the authentication request.
These factors also contribute to the PREEMPTIVE_0S_AUTHENTICATIONOPS wait type and
can result in higher wait times.

I'would like to describe to you a case I encountered at a client that involved the
PREEMPTIVE_OS_AUTHENTICATIONOPS wait type to give you an idea of how you can lower
PREEMPTIVE_OS AUTHENTICATIONOPS wait times.

At this client they used an application that connected to SQL Server using the
Windows account that was logged in on the computer that ran the application. The
computers and the SQL Server were all part of a domain. From a security perspective,
the application was well designed, as it did not require separate SQL Server users who
needed permission on the database and also didn’t use a generic account to connect to
the SQL Server instance and execute queries. Inside, the database-specific objects (like
tables) were also secured based on domain users and groups.

The client started to experience server performance problems inside the
application after deploying it to every (3000+) computer inside the company. The
DBA at the client couldn’t find any problems, there were no infrastructure-related
performance problems on the SQL Server instance, and executing the queries on the
SQL Server instance itself revealed no issues. When we looked at the wait statistics, we
noticed that the most prevalent wait type was the PREEMPTIVE_0S_AUTHENTICATIONOPS
wait type. We also noticed that the application would connect to the SQL Server
instance, run a query, then disconnect again. Because so many concurrent users
were using the application, it resulted in a high amount of Windows authentication
requests, so many that the Domain Controller couldn’t handle them, resulting in the
slower processing of authentication requests.

In this case the Domain Controller was a virtual machine, and after adding more
processor and memory resources, it was able to keep up with the high amount of
authentication requests.

As you can see from this case, seeing high PREEMPTIVE_0S_AUTHENTICATIONOPS wait
times does not necessarily mean your SQL Server instance is running into problems,
especially in a domain environment, as the performance of your Domain Controller also
plays a large role in PREEMPTIVE_OS_AUTHENTICATIONOPS wait times.

320



CHAPTER 11 PREEMPTIVE WAIT TYPES

The moral of the story is, if you notice higher-than-normal PREEMPTIVE_0S
AUTHENTICATIONOPS wait times, you will need to investigate much more than the SQL
Server instance. Make sure to check the performance of your Domain Controllers if you
are using Windows authentication inside a domain. Check every infrastructure part
between your SQL Server instance and the Domain Controller, like network switches,
firewalls, and so on. All of these infrastructure parts will add additional latency for each
authentication request, which will result in higher PREEMPTIVE_0S_AUTHENTICATIONOPS
wait times, making it a difficult wait type to troubleshoot.

PREEMPTIVE_OS_AUTHENTICATIONOPS Summary

The PREEMPTIVE_0S_AUTHENTICATIONOPS wait type is related to performing authentication
requests by the Windows operating system. It is normal to see PREEMPTIVE 0S
AUTHENTICATIONOPS waits occur, especially when your SQL Server instance is part of a
domain and uses Windows authentication to authenticate users. Higher-than-normal
wait times can indicate that authentication requests are taking longer than normal to
complete. This does not necessarily mean that your SQL Server instance is running into

a performance problem. If the Domain Controller cannot process the authentication
requests fast enough, it will result in higher PREEMPTIVE_0S_ AUTHENTICATIONOPS

wait times. A slow network connection to the Domain Controller, firewall, or switch
configurations can also impact PREEMPTIVE_0S_AUTHENTICATIONOPS wait times.

PREEMPTIVE_OS_GETPROCADDRESS

The final wait type I would like to discuss in this chapter is the PREEMPTIVE_0S _
GETPROCADDRESS wait type. The PREEMPTIVE_OS_GETPROCADDRESS wait type is related to
the execution of extended stored procedures inside SQL Server.

Extended stored procedures allow you to create external routines in a language other
than T-SQL; for instance, using the C# programming language. These extended stored
procedures are loaded into SQL Server using .dll files and can expand the capabilities of
SQL Server programming by allowing you to perform actions that would be impossible
in T-SQL, like reading/writing Windows Registry entries.

Extended stored procedures are marked as deprecated since SQL Server 2008 and
Common Language Runtime (CLR) should be used instead of them. However, there are
still cases inside SQL Server that require extended stored procedures, and some third-
party software vendors still rely on them.

321



CHAPTER 11 PREEMPTIVE WAIT TYPES

What Is the PREEMPTIVE_OS_GETPROCADDRESS
Wait Type?

The PREEMPTIVE_OS_GETPROCADDRESS wait type is recorded whenever the entrypoint
inside an extended stored procedure is loaded. The entrypoint is called upon whenever
SQL Server loads or unloads the extended stored procedure .dll file. Under normal
conditions the loading of the entrypoint should complete quickly, resulting in very low
PREEMPTIVE_OS_GETPROCADDRESS wait times, if any, but depending on the extended
stored procedure, or problems related to loading the extended stored procedure .dll
file, it is possible to notice higher wait times. Important to keep in mind is that the
PREEMPTIVE_OS_GETPROCADDRESS wait type only records the time it took to load the
entrypoint of the .dll file, not the execution time of the extended stored procedure.
Figure 11-18 shows a (simplified) overview of how extended stored procedures are

JTDS

DLL

= [2 - =
Server

2

executed by SQL Server.

A

Engine | o

Figure 11-18. Executing an extended stored procedure

Not only can you write your own extended stored procedures to perform actions not
possible using T-SQL, SQL Server itself comes shipped with many different extended
stored procedures. Most of these can be recognized by the xp_ prefix in the extended
stored procedure name, though not all of them have this prefix. Figure 11-19 shows
a selection of extended stored procedures inside the master database of my test SQL

Server instance.

322



CHAPTER 11

System Extended Stored Procedures

& sys.sp_add_trusted_assembly

& sys.sp_AddFunctionalUnitToComponent
& sys.sp_alter_nt_job_mem_configs

5 sys.sp_audit_write

& sys.sp_availability_group_command_internal
= sys.sp_begin_parallel_nested_tran

5 sys.sp_bindsession

& sys.sp_change_tracking_waitforchanges
5 sys.sp_commit_parallel_nested_tran

&4 sys.sp_control_dbmasterkey_password
= sys.sp_createcrphan

5 sys.sp_cursor

& sys.sp_cursorclose

5 sys.sp_cursorexecute

& sys.sp_cursorfetch

& sys.sp_cursoropen

% sys.sp_cursoroption

& sys.sp_cursorprepare

5 sys.sp_cursorprepexec

& sys.sp_cursorunprepare

& sys.sp_delete_backup_file_snapshot

5 sys.sp_delete_http_namespace_reservation
@ sys.sp_describe_first_result_set

52 sys.sp_describe_parameter_encryption
& sys.sp_describe_undeclared_parameters
5 sys.sp_drop_trusted_assembly

& sys.sp_droporphans

PREEMPTIVE WAIT TYPES

Figure 11-19. Selection of extended stored procedures inside the master database

Probably the most notorious extended stored procedure is the xp_cmdshell

extended stored procedure. The xp_cmdshell extended stored procedures makes it

possible to execute a command inside a Windows command shell from within SQL

Server. This is a huge security risk if your SQL Server instance is compromised, since

it gives access to commands that can affect the entire Windows operating system.

Thankfully, it is impossible to run the xp_cmdshell extended stored procedure

by default; you have to specifically allow its use by configuring an advanced

configuration setting.

323



CHAPTER 11 PREEMPTIVE WAIT TYPES

PREEMPTIVE_OS_GETPROCADDRESS Example

For this example I will execute an extended stored procedure already present inside SQL
Server, xp_getnetname, instead of writing a custom extended stored procedure, which

is far beyond the scope of this book. The xp_getnetname is an undocumented extended
stored procedure that returns the NETBIOS name of the machine that hosts your SQL
Server instance. Before executing the xp_getnetname extended stored procedure, I clear
the sys.dm_os _wait_stats DMV, and after the execution of xp_getnetname, I query

the DMV for PREEMPTIVE_OS_GETPROCADDRESS wait information. Listing 11-4 shows the
entire query I executed on my test SQL Server instance.

Listing 11-4. Execute xp_getnetname and query wait statistics

USE [master]
GO

DBCC SQLPERF('sys.dm os wait stats', CLEAR);
exec xp_getnetname;

SELECT *
FROM sys.dm os wait_stats
WHERE wait_type = 'PREEMPTIVE_OS_GETPROCADDRESS';

The results of the query in Listing 11-4 can be seen in Figure 11-20.

Server Net Name

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms
1 EPHEEMFTIVE_OS_GETPROCADDRESS 1 0 0 0

Figure 11-20. PREEMPTIVE_OS_GETPROCADDRESS wait

The results aren’t spectacular. Apparently, the xp_getnetname extended stored
procedure doesn’t cause any problems when loading the .dll entrypoint, since there is no
wait time recorded. A wait still did occur though, as you can see in the waiting_tasks_
count column, it just took SQL Server less than a millisecond to load the entrypoint.

324



CHAPTER 11 PREEMPTIVE WAIT TYPES

Lowering PREEMPTIVE_OS_GETPROCADDRESS Waits

Since the PREEMPTIVE_OS GETPROCADDRESS wait type is directly related to executing
extended stored procedures, the first step in your investigation should be to detect what
extended stored procedure is being executed and what its function is.

I have seen PREEMPTIVE_OS GETPROCADDRESS waits occur at a number of clients
because they were using a third-party backup application that used extended stored
procedures to perform a database backup, but there are many more possible causes
for high PREEMPTIVE_OS GETPROCADDRESS wait times. Knowing which extended stored
procedure is being executed can help you trace what process is executing the extended
stored procedure.

There have also been some known bugs inside SQL Server 2008 and 2008R2 that
reported higher-than-normal PREEMPTIVE_0S GETPROCADDRESS wait times because the
execution time of the extended stored procedure was also recorded in the wait times,
instead of only the entrypoint loading. If you are still using SQL Server 2008 or 2008R2
and experience very high PREEMPTIVE_0S_GETPROCADDRESS wait times, it might be
worth your while to upgrade to the latest Service Pack and check if the PREEMPTIVE_0S
GETPROCADDRESS wait times go down. Or even better, upgrade to a higher version of SQL
Server since SQL Server 2008R2 is marked end-of-life as of July 9, 2019.

PREEMPTIVE_OS_GETPROCADDRESS Summary

The PREEMPTIVE_OS_GETPROCADDRESS wait type is directly related to the execution of
extended stored procedures. Extended stored procedures can be written in a variety of
programming languages like C# and allow you to perform actions that would otherwise
be impossible in T-SQL. Wait time for the PREEMPTIVE_OS_GETPROCADDRESS wait type is
recorded whenever the entrypoint inside an extended stored procedure .dll is loaded.

In normal situations wait times for the PREEMPTIVE_OS_GETPROCADDRESS wait type are
very low. Seeing high PREEMPTIVE_OS_GETPROCADDRESS wait times can indicate that the
entrypoint loading is running into problems. There have also been bugs related to the
calculation of the PREEMPTIVE_0S_GETPROCADDRESS wait type inside SQL Server 2008 and
2008R2. If you are running SQL Server 2008 or 2008R2 and experience high PREEMPTIVE _
0S_GETPROCADDRESS wait times, it might be worth your time to upgrade to the latest
Service Pack or move to a higher version of SQL Server since SQL Server 2008R2 is
marked end-of-life as of July 9, 2019.

325



CHAPTER 12

Background and
Miscellaneous Wait Types

SQL Server has many different internal processes that can run into a wait of a specific
wait type, and so far we have discussed quite a few of them. Some of these internal
processes are constantly running inside SQL Server, waiting until there is work for them
to do. While these processes, frequently called background processes, are waiting for
work to arrive, SQL Server will record the time they are waiting for work as wait time on
specific wait types related to these background processes. While these background wait
types are not directly related to performance problems, they frequently have the highest
wait time and will show up at the top of the wait time list when you query the top wait
types ordered by wait time.

Frequently these background wait types are called benign, and can safely be ignored
because they simply indicate that an internal process is waiting for work to arrive.

This logic is also true for the wait types we will discuss in this chapter, but instead of
just telling you to ignore them when analyzing wait statistics, I want to give you some
background information about them so you know what they measure and why it is safe
to ignore them. Keep in mind that we are still talking about SQL Server here, which
means that “it depends” on many factors as to whether you can completely ignore these
background wait types. You wouldn'’t be the first person to run into a performance
problem and only to find out that an ignored background process was actually the cause
of the issue. So my advice is to ignore but to not forget about them!

Next to the background wait types I also added a number of miscellaneous wait types
that were difficult to place in an earlier chapter because they didn’t quite fit in with the
chapter’s wait type category.

Since the background wait types inside this chapter record wait time constantly
when their associated processes are waiting for work to do, I did not include an example
section or a lowering wait time section for these wait types.

327
© Enrico van de Laar 2019

E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_12



CHAPTER 12  BACKGROUND AND MISCELLANEQOUS WAIT TYPES

CHECKPOINT_QUEUE

The first wait type in this chapter is one of those background wait types that accumulates
large amounts of wait time over time CHECKPOINT_QUEUE. The CHECKPOINT QUEUE wait
type can in many cases be safely ignored, but understanding what the wait type stands
for and why it has such high wait times can’t hurt.

What Is the CHECKPOINT_QUEUE Wait Type?

The CHECKPOINT QUEUE wait type is related to the checkpoint process in SQL Server that
is responsible for writing “dirty” (modified) data pages from the buffer cache to the data
file on disk. In Chapter 6, “IO-Related Wait Types,” we took a good look at the checkpoint
process when we discussed the SLEEP_BPOOL_FLUSH wait type, so I won’t repeat all the
information again here. What is important to know, and the reason why this wait type can
normally be ignored, is that the CHECKPOINT QUEUE wait type indicates that the checkpoint
process is waiting for work. This means that wait times on the CHECKPOINT QUEUE wait
type don’t indicate any performance issues; they just indicate the time the checkpoint
processes spent waiting on work. On SQL Server instances that aren’t very busy, or don’t
see many data modification operations, the wait time can reach very high values.

The recording of CHECKPOINT QUEUE wait times inside the sys.dm_os_wait_stats
and sys.dm_os waiting tasks DMVs goes through a specific internal routine
that might return unexpected wait times (like sudden spikes inside your baseline).
Figure 12-1 shows the results of queries against the sys.dm_os_wait_stats and sys.
dm_os_waiting tasks DMVs for wait information of the CHECKPOINT_QUEUE wait type
on my test SQL Server instance.

watt_type watting_tasks_count wall_time_ms max_wall_time_ms signal_wait_time_ms
1| CHECKPOINT_QUEUE | 0 0 0 0

Waﬂmg_tad(_addrea session_id exec_context_id wat_duration_ms wait_type resource_address
11 (kO?ODDOSSFCDIE_)CZB 14 0 2110373 CHECKPOINT_QUEUE  (x00000093C611EBOO

Figure 12-1. CHECKPOINT_QUEUE waits

What is interesting to notice here is that the cumulative wait times inside the sys.dm
os_wait_stats DMV stay at 0, while the wait times inside the sys.dm_os_waiting tasks
DMV have a very high value. My test SQL Server instance doesn’t perform much work in

328



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

the background, so it is logical that the checkpoint process spends most of its time waiting
for work. The reason for the difference in wait times between both DMVs is related to the
way SQL Server executes checkpoint operations. The wait times shown in both the DMVs
are only recorded by the automatic checkpoint process. A manual checkpoint execution
does not impact the wait times. As part of the automatic checkpoint process, the wait
times of the sys.dm_os_waiting tasks DMV are moved to the sys.dm_os _wait_stats
DMV and reset to 0. So, if you notice very high CHECKPOINT QUEUE wait times inside the
sys.dm_os _waiting tasks, it means it was some time ago that the automatic checkpoint
process ran.

To show you a simple demonstration of this behavior, I created a table, reset the
sys.dm_os wait_stats DMV, inserted a few rows inside the table, performed a manual
checkpoint, and queried the sys.dm_os wait_stats and sys.dm_os waiting_ tasks
DMYV, as shown in Listing 12-1.

Listing 12-1. CHECKPOINT_QUEUE example

-- Create a table in the AdventureWorks database
USE [AdventureWorks]
GO

CREATE TABLE check test
(

ID UNIQUEIDENTIFIER,
RandomData VARCHAR(50)
);

GO

-- Clear sys.dm os wait stats
DBCC SQLPERF('sys.dm os wait stats', CLEAR);

-- Insert a few rows into our table
INSERT INTO check test

(
1D,
RandomData

)
VALUES

329



CHAPTER 12  BACKGROUND AND MISCELLANEQOUS WAIT TYPES

(
NEWID(),

CONVERT(varchar(50), NEWID())
)5

GO 100
CHECKPOINT 1;

-- Query Wait Statistics

SELECT *

FROM sys.dm os wait_stats

WHERE wait type = 'CHECKPOINT QUEUE';

SELECT *
FROM sys.dm os waiting tasks
WHERE wait type = 'CHECKPOINT QUEUE';

Figure 12-2 shows the results of the queries made against the sys.dm_os wait_stats
and sys.dm_os waiting tasks DMVs.

wait_type waiting_tasks_count  wait_time_ms  max_wait_time_ms  signal_watt_time_ms
1 éCHECKPOlNT_QUEUE 0 0 0 0
waiting_task_address session_id exec_context_id wait_duration_ms wai_type resource_address
1 EDKDDDDDOQBFCD1DC2B 14 0 2206318 CHECKPOINT_QUEUE  (x00000095C611EB00

Figure 12-2. CHECKPOINT_QUEUE waits

Asyou can see, the manual checkpoint didn’t generate any waits inside the sys.
dm_os wait stats DMV. Also, an automatic checkpoint didn’t occur, because inserting
100 rows generated too few log records to trigger an automatic checkpoint.

If we were to insert more rows, we should be able to trigger an automatic checkpoint.
In this case I ran the following query to insert 100,000 rows into the table we created
in Listing 12-1. While the insert was running, I queried the sys.dm os wait_stats
and sys.dm_os_waiting tasks DMVs repeatedly to see if anything changed. See the
following:

330



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

INSERT INTO check test
(
1D,
RandomData

)
VALUES

(

NEWID(),

CONVERT (varchar(50), NEWID())
)s

GO 100000

After a few seconds I noticed that the wait time for the CHECKPOINT QUEUE wait type
was moved to the sys.dm_os wait_stats DMV, as shown in Figure 12-3.

wag_type R waling_tasks_count wal_time_ms max_wat_time_ms signal_wat_time_ms
1 ‘(;HECPSPQINT__QU_EK__JE“-I 2267469 2267469 0

wum_tad(_adckass session_jd exec_contexd_id wal_duration_ms wat_type resource_address
1 &:00000098FC01[X228 4 0 931 CHECKPOINT_QUEUE  (x00000095C611EBOO

Figure 12-3. CHECKPOINT _QUEUE waits

Apparently, we inserted enough log records to cause an automatic checkpoint to
occur, and as you can see from this example, only an automatic checkpoint will write the
wait times of the CHECKPOINT QUEUE to the sys.dm_os wait_stats DMV.

You should keep this behavior in mind when you notice sudden, very high wait time
values inside the sys.dm _os wait stats DMV. This will normally only occur in SQL
Server instances that either have a very small workload or that have a workload mainly
consisting of read operations instead of data modification operations.

CHECKPOINT_QUEUE Summary

The CHECKPOINT QUEUE wait type is related to checkpoint operations inside SQL Server.
Wait time on the CHECKPOINT QUEUE wait type is recorded while SQL Server is waiting for
an automatic checkpoint operation to take place. This is one of the wait types you can
normally safely ignore because it doesn’t indicate there are any performance issues.

The wait times on the CHECKPOINT_QUEUE wait type are recorded differently between the

331



CHAPTER 12  BACKGROUND AND MISCELLANEQOUS WAIT TYPES

sys.dm_os wait statsandsys.dm os waiting tasks DMV, and this can cause sudden
high wait times when querying the sys.dm os wait stats DMV. Keep this behavior

in mind when noticing high CHECKPOINT QUEUE wait times inside the sys.dm_os wait
stats DMV.

DIRTY_PAGE_POLL

The DIRTY_PAGE_POLL wait type was introduced in SQL Server 2012 with the indirect
checkpoint feature and behaves a lot like the previous wait type we discussed,
CHECKPOINT QUEUE. While the automatic checkpoint process runs at a set interval of 1
minute, the indirect checkpoint feature allows you to configure a specific checkpoint
interval on a per-database basis. Even if you are not using indirect checkpoint, the
DIRTY_PAGE_POLL wait type will still accumulate wait time.

What Is the DIRTY_PAGE_POLL Wait Type?

The DIRTY_PAGE_POLL wait type is another background wait that can normally be

safely ignored. The wait type is related to the recovery writer process that is used by the
indirect checkpoint feature that runs continuously in the background of your SQL Server
instance. Because of this connection, let’s take a quick look what indirect checkpoints
are and how they work.

As we know, the checkpoint process inside SQL Server is responsible for writing
modified data pages from the buffer cache to the database data file on disk. By default,
the checkpoint process runs automatically every minute, or when enough log records
have been generated. The checkpoint process plays a vital part in the recovery duration
of your SQL Server databases when a crash occurs. Take, for instance, the following
scenario: while you are performing many modifications to a database in your SQL
Server instance, a crash occurs. Luckily, you were able to simply restart the SQL Server
service to get everything up and running again. The first thing SQL Server will do is
start a recovery process. The recovery process will check the transaction log for any
transactions that were not committed when the crash occurred and perform a rollback
of the transaction. The recovery process will also check whether any data pages that were
modified by a committed transaction received their modification inside the database
data file because they were only modified in the buffer cache.

332



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

If any of those pages are found, SQL Server will use the transaction log to redo these
transactions. Now imagine you have a busy SQL Server instance where many thousands
of modifications are performed every minute. This means that the chance that there is a
high number of dirty pages not written to disk yet is pretty high. If your SQL Server then
crashes (or, for instance, a failover occurs), the recovery process will take more time
to complete. Indirect checkpoints can help us keep this recovery process as short as
possible. By configuring this feature we can tell SQL Server to write modified data pages
to disk faster; for instance, every 10 seconds. Figure 12-4 shows the location and name of
the indirect checkpoint feature inside the properties of a database.

=
il Selectapage . & Script ~
]
= H"F Colation: [SQL_Latin1_General_CP1_CI_AS =
_:: Options Recovery model: |Ful =l
= GP e Trockng Compatibilty level: |saL Server 2012(110) =
A Bxended Propetties Containment type |None =
]
3; T Log S Other options:
e 4l |5
ANSI Padding Enabled True -
ANSI| Wamings Enabled True
Adthmetic Abort Enabled True
Concatenate Null Yields Nul True
Cross-database Ownership Chaining Enabled False
Date Comelation Optimization Enabled False
Is Read Committed Snapshot On False
Numeric Round-Abort False
Parameterization Simple
Server:
EVDL-5QL2012-01
Connection: 7-3380-505/0 7386
EVDL-SQL2012-01"\Administrator
47 View connection properties
X
Ready
[ ok | camce |

Figure 12-4. Indirect checkpoint feature location and value

333



CHAPTER 12  BACKGROUND AND MISCELLANEQOUS WAIT TYPES

By default, the value of the Target Recovery Time (Seconds) configuration option
is 0. This means that indirect checkpoints are not being used. If you modify the value to
anything other than 0, an indirect checkpoint will occur at the interval in seconds you
specified.

Starting from SQL Server 2016, indirect checkpoints are automatically configured
whenever you create a new database inside the SQL Server instance. In those cases
the Target Recovery Time (Seconds) will be set to a value of 60 instead of 0.

The time you configure in the Target Recovery Time (Seconds) option does not
mean that every x seconds the checkpoint process will be executed, however. By setting
this value SQL Server will calculate how many dirty pages can exist before they need
to be written to the database data file so that the recovery process never takes longer
than the time specified. So, for instance, if you configure the Target Recovery Time
(Seconds) option to 15 seconds, SQL Server will write dirty pages to the database data
file at such an interval that when the SQL Server instance fails it can be recovered within
15 seconds.

To monitor how many dirty pages are inside the buffer cache so SQL Server knows
when the dirty-page threshold has been reached, the recovery writer was introduced.
Even if you do not configure the Target Recovery Time (Seconds) option, DIRTY_PAGE _
POLL waits will still occur because the recovery writer process will still poll the number
of dirty pages inside the buffer cache, even though no action is taken upon that number.
As you can see in Figure 12-5, the wait times can reach high values easily even when not
using indirect checkpoints.

-- Query Wait Statistics

SELECT *

FROM sys.dm os wait_stats

WHERE wait_type = 'DIRTY_PAGE_POLL';

wait_type watting_tasks_count wait_time_ms max_watt_time_ms  signal_wait_time_ms
1 éDIRTY_PAGE_POLL 5458 596818 120 35

Figure 12-5. DIRTY PAGE_POLL waits

334



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

Indirect checkpoints also have a risk associated with them. Configuring the
Target Recovery Time (Seconds) option to a very low value can lead to extra load
on the storage subsystem because dirty pages are continuously written to disk. Be
sure to test the setting extensively before configuring it on your production SQL
Server instances.

DIRTY_PAGE_POLL Summary

The DIRTY_PAGE_POLL wait type was introduced in SQL Server 2012 with the introduction
of the indirect checkpoints feature (which ended up being the default setting for

new databases created in SQL Server 2016 or higher). Even if you do not use indirect
checkpoints, the DIRTY_PAGE_POLL wait type will still accumulate wait time because

of the new recovery writer process. Normally the DIRTY_PAGE_POLL wait type does not
indicate a performance problem, and as such it can safely be ignored when analyzing
wait statistics on your SQL Server instance.

LAZYWRITER_SLEEP

The LAZYWRITER_SLEEP wait type is, surprise, related to the SQL Server internal
lazywriter process. The lazywriter process shares some similarities with the checkpoint
process we discussed earlier in this chapter, in that it also writes dirty pages from

the buffer cache to the database data file. The similarities end here, though, because
the reason why the lazywriter process writes these pages to the database data file is
completely different than the checkpoint process.

What Is the LAZYWRITER_SLEEP Wait Type?

Just like with other wait types we have discussed so far in this chapter, the LAZYWRITER
SLEEP wait type occurs when an internal SQL Server process, in this case the lazywriter
process, is waiting for work. The lazywriter process is a background process that will
become active at a certain time interval. When it becomes active it will scan the size of
the buffer cache and determine if there are enough free pages inside the buffer cache.
Itis important that there are always a certain number of free pages inside the buffer cache
so that new page requests can fit directly without first having to swap out other pages.

If the lazywriter process determines there are enough free pages in the buffer cache,

335



CHAPTER 12  BACKGROUND AND MISCELLANEQOUS WAIT TYPES

it will go back to sleep again and record the LAZYWRITER _SLEEP wait type while it is
sleeping. However, if there are not enough free pages inside the buffer cache, the
lazywriter process will detect, between checkpoints, which dirty pages in the buffer
cache haven’t been accessed for a while, write them to the database data file, and
remove them from the buffer cache. So, if there are more than enough free pages inside
the buffer cache, the lazywriter process doesn’t have much work to do. If your SQL
Server instance is under memory pressure, the lazywriter process will be far busier while
swapping out dirty pages and freeing up room inside the buffer cache. Figure 12-6 shows
the relationship of the checkpoint and lazywriter processes with a flowchart.

CHECKPOINT

Lazywriter start

Free page . .
Threshold Write d|r|‘:y
pages to disk

reached?

Lazywriter sleep

Figure 12-6. Checkpoint and lazywriter processes

Because the LAZYWRITER SLEEP wait type indicates the time the lazywriter process
spends sleeping, or waiting for work;, it is another one of those wait types you can safely
ignore. There is a catch however—if the lazywriter process is constantly working to
move dirty pages from the buffer cache to the database data file, it can indicate your SQL

336



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

Server instance is experiencing memory pressure. This is bad for performance because
every page has to be moved to the buffer cache before it can get read or modified. This
behavior can potentially result in lower-than-normal wait times on the LAZYWRITER
SLEEP wait type.

LAZYWRITER_SLEEP Summary

The LAZYWRITER_SLEEP wait type is related to the lazywriter internal SQL Server process.
The lazywriter process starts at a fixed time interval and is responsible for writing dirty
data pages to the database data file if there are not enough free pages available inside
the buffer cache. The LAZYWRITER_SLEEP wait type indicates that the lazywriter process is
currently not running, or is sleeping, until it is signaled to wake up and check the buffer
cache. Because the LAZYWRITER SLEEP wait type only shows us how much time the
lazywriter process spends being inactive, it can in most cases be ignored.

MSQL_XP

In the last section of Chapter 11, “Preemptive Wait Types,” we discussed the PREEMPTIVE _
GETPROCADDRESS wait type. We learned that the PREEMPTIVE _GETPROCADDRESS wait type
records wait time when the entrypoint of an extended stored procedure is loaded. One
important thing I noted was that the PREEMPTIVE GETPROCADDRESS wait type does not
record the execution time of the extended stored procedure, only the entrypoint loading.
The execution time of an extended stored procedure is actually tracked by another wait
type, MSQL_XP.

What Is the MSQL_XP Wait Type?

The MSQL_XP wait type records the execution time of extended stored procedures on your
SQL Server instance. The MSQL_XP wait type is also used to detect deadlock situations
when using Multiple Active Result Sets (MARS). MARS is a feature that allows the
execution of multiple (concurrent) batches through a single SQL Server connection. We
won’t go further into detail about MARS, but you can find some more information about
ithere: https://msdn.microsoft.com/en-us/library/ms131686.aspx.

337


https://msdn.microsoft.com/en-us/library/ms131686.aspx

CHAPTER 12  BACKGROUND AND MISCELLANEQOUS WAIT TYPES

The most common reason for seeing higher-than-normal wait times on the MSOL_XP
wait type is the execution of extended stored procedures. This does not necessarily mean
there is a problem as long as the execution time of the extended stored procedures stays
the same. However, if an extended stored procedure takes more time than expected, you
are sure to notice it in the increase of the MSQL _XP wait time when comparing the wait
time against a baseline.

MSQL_XP Example

To demonstrate that MSQL_XP waits occur when extended stored procedures are being
executed, I created a simple example using the script in Listing 12-2. The script will reset
the sys.dm os wait stats DMV, execute an extended stored procedure (in this case the
xp_dirtree extended stored procedure inside the master database), and query the sys.
dm_os _wait_stats for MSQL_XP wait information.

Listing 12-2. MSQL_XP example
DBCC SQLPERF('sys.dm os wait stats', CLEAR);
EXEC master..xp _dirtree 'c:\windows';

SELECT *
FROM sys.dm os wait stats
WHERE wait_type = 'MSQL_XP';

The results of the query in Listing 12-2 on my test SQL Server instance can be seen
in Figure 12-7. The top window shows the xp_dirtree results, the bottom window the
results of the query against the sys.dm_os waits stats DMV.

338



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

subdirectory  depth
S —
bag
cs
da
de
el

0O~ O WD W N =
NN N NN NN

en

wart_type waiting_tasks_count wait_time_ms max_wait_time_ms  signal_wait_time_ms
1 [ MSQLXP ;1 224 212 0
Figure 12-7. MSQL_XP wait

The information in the sys.dm_os wait stats DMV shows us that one wait
occurred on the MSQL_XP wait type with a wait time of 21,224 milliseconds. This is almost
identical to the time it took to execute the query in Listing 12-2, which was 21 seconds on
my test SQL Server instance.

Lowering MSQL_XP Waits

When noticing higher-than-normal wait times for the MSQL_XP wait type, chances are
that extended stored procedures are being used and are taking longer than normal
to complete. Your first point of action should be to identify which extended stored
procedures are being used and what they are being used for. Because extended
stored procedures can also perform tasks outside SQL Server, they can run into other
Windows processes that can slow them down. Knowing what the extended stored
procedure function is, and what it does, can help you quickly identify where it is
running into issues.

If you are using MARS, you are probably running into MARS-connection deadlocks.
There have been various SQL Server updates that reduce the chances of MARS deadlocks
occurring, so make sure your SQL Server instance is patched. Also make sure to check
the application code that executes queries using MARS for potential issues.

339



CHAPTER 12  BACKGROUND AND MISCELLANEQOUS WAIT TYPES

MSQL_XP Summary

The MSQL_XP wait type does two different things: it detects the time it takes to execute
extended stored procedures and serves as deadlock detection for MARS connections.
Seeing higher-than-normal wait times on the MSOL_XP wait type frequently indicates an
extended stored procedure is taking longer than normal to complete. Try to detect which
extended stored procedure is being executed and what its function is, as this will make
troubleshooting the extended stored procedure easier.

OLEDB

The OLEDB wait type occurs whenever SQL Server has to access the Object Linking and
Embedding Database (OLEDB) Client Provider. There are various reasons why SQL
Server will use the OLEDB Client Provider, and whenever it does SQL Server will record
wait time on the OLEDB wait type.

What Is the OLEDB Wait Type?

SQL Server uses the OLEDB Client Provider for many different actions inside SQL Server.
For instance, linked server traffic will move through the OLEDB Client Provider and will
result in OLEDB waits. Other actions, especially when SQL Server has to retrieve data
from an outside source, can also result in OLEDB Client Provider usage.

Some actions inside SQL Server will also use the OLEDB Client Provider, even
though they occur internally. One good example of this is the DBCC command, which I
will demonstrate in the following example section.

OLEDB Example

One interesting process that uses the OLEDB Client Provider is the DBCC command
inside SQL Server. Whenever you execute a DBCC command, you are bound to see
OLEDB waits occur. Listing 12-3 shows an example of OLEDB waits occurring after a DBCC
CHECKDB. The example script will clear the sys.dm_os wait_stats DMV, perform a
CHECKDB against the Adventurelorks database, and then query the sys.dm_os_wait_
stats DMV for OLEDB waits.

340



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

Listing 12-3. Generate OLEDB waits
DBCC SQLPERF('sys.dm os wait stats', CLEAR);
DBCC CHECKDB('AdventureWorks"');

SELECT *
FROM sys.dm_os wait_stats
WHERE wait type = 'OLEDB';

The results of the query in Listing 12-3 as performed against my test SQL Server
instance can be seen in Figure 12-8.

wart_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms
1 OLEDB 89954 3292 42 0
Figure 12-8. OLEDB waits

As you can see from Figure 12-8, performing a DBCC CHECKDB will lead to OLEDB waits.

Lowering OLEDB Waits

As you could see in the previous example, performing a DBCC CHECKDB against a database
will result in OLEDB waits. This doesn’t mean there is a problem related to the OLEDB
Client Provider, however; rather, it just indicates that the DBCC CHECKDB command makes
use of the OLEDB Client Provider. Running DBCC CHECKDB is a vital part of making sure
your databases are healthy. Avoiding consistency checks just to lower OLEDB wait times is
bad practice, and I strongly advise against it. Seeing high OLEDB wait times occur outside
DBCC commands can indicate there is a performance issue somewhere in your SQL
Server environment. If you are dealing with remote sources, such as linked servers or
Excel files, you are also affected by the performance of the remote source. For instance, if
you are querying information from a linked server and the linked server is experiencing
performance problems, it will probably also be reflected in the OLEDB wait time. Also,
certain operations, like sorts, can also impact the query duration on the linked server.
Network connections to the remote source can also play a role in higher-than-normal
OLEDB wait times. If the network connection through which you are accessing your
remote source experiences performance degradation, you will again notice this in the
OLEDB wait times.

341



CHAPTER 12  BACKGROUND AND MISCELLANEQOUS WAIT TYPES

Because the OLEDB wait can occur for various reasons, some of which are benign like
DBCC commands, and some that can be related to performance issues, I advise you not
to ignore the OLEDB wait type, but rather to monitor it like other performance-indicating
wait types.

OLEDB Summary

The OLEDB wait type can occur due to various sources that use the Object Linking and
Embedding Database (OLEDB) Client Provider. Most of the sources are related to remote
data sources, like linked servers. Some internal processes also use the OLEDB Client
Provider, most notably the DBCC command. Seeing higher-than-normal wait times on

the OLEDB wait type doesn’t have to mean there is a performance problem, especially
when they can be correlated to a planned DBCC command execution. Seeing higher-
than-normal wait times outside DBCC command when you are using remote data sources
like linked servers can mean that the remote data source is experiencing performance
problems. In this case, focus on the data source; if the source has problems it is bound to
affect the OLEDB wait times as well.

TRACEWRITE

The TRACEWRITE wait type is a special wait type that only collects wait time when a
trace is running, and most commonly a SQL Profiler trace. A trace is a background
process in SQL Server that collects various, often user-specified, information about the
performance of a SQL Server instance. For example, it is possible to use SQL Server
Profiler to capture currently executing queries, filtered against a single database, with
runtime information. There are various trace methods available in SQL Server, but the
most common one that affects the TRACEWRITE wait type is the SQL Server Profiler trace.
SQL Server Profiler is an application that is part of the SQL Server, and starting from
SQL Server 2016 the separate SQL Server Management Studio product, and allows users
to create and monitor traces against SQL Server instances. The SQL Server Profiler
was announced as deprecated by Microsoft with the introduction of SQL Server 2012,
and Microsoft recommends using Extended Events to capture traces. Even though the
SQL Server Profiler is deprecated, it is still available in SQL Server 2014 and is installed
whenever you deploy the separate SQL Server Management Studio product from SQL

342



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

Server 2016 onward. Many people still rely on SQL Server Profiler traces instead of
Extended Events to troubleshoot and monitor query performance.

The bad news about using SQL Server Profiler is that it can cause some performance
overhead while a trace is being performed. Microsoft released an article that concluded
that running SQL Server Profiler traces on busy systems can have an impact of 10% on
the amount of transactions per seconds; you can find the article here: https://msdn.
microsoft.com/en-us/library/cc293614.aspx. Because SQL Server Profiler traces can
have such a big impact on the performance of your system, I believe it is important to
monitor the TRACEWRITE wait time.

What Is the TRACEWRITE Wait Type?

As we just noted, the TRACEWRITE wait type will show up on your system when traces
are being performed against your SQL Server instance using the SQL Server Profiler.
Because SQL Server Profiler traces can have such an impact on the performance of your
SQL Server instance, it is advisable that you monitor the wait type to detect if any SQL
Server Profiler traces are being performed.

There are a variety of reasons why you would want to run a SQL Server Profiler
trace; for instance, if you want to troubleshoot a very specific query problem or when
monitoring how many times a specific query gets executed. Even though there are
alternatives to the SQL Server Profiler, like server-side traces and Extended Events, the
SQL Server Profiler tool is very easy to use compared to the often complex Extended
Events.

TRACEWRITE Example

To show you an example of TRACEWRITE waits occurring, we are going to have to start a
SQL Server Profiler trace. The SQL Server Profiler program is part of the Management
Tools - Complete feature, which you can select when installing SQL Server versions
lower than SQL Server 2016, or when adding features to an existing installation. If

you install the separate SQL Server Management Studio product, the Profiler feature
is automatically installed as well. Figure 12-9 shows the feature inside the SQL Server
2012 Setup.

343


https://msdn.microsoft.com/en-us/library/cc293614.aspx
https://msdn.microsoft.com/en-us/library/cc293614.aspx

CHAPTER 12

BACKGROUND AND MISCELLANEOUS WAIT TYPES

ol
Feature Selection
Select the Enterprise features to install,

Setup Support Rules Features: Feature dascription:

Installation Type (] Analysis Services | [Adds the following components to the  ~ |

Feature Selection [] Reporting Services - Native basic gement tools installati

Installation Rules Shared Features mmt Mmgﬂm

ok s Rtk et [l Reporting Services - SharePont and Integration Services technologies,
[] Reporting Services Add-in for SharePoint Products SQL Server Profiler, Database Tuning

Error Reporting [ Data Quaiity Client Advisor, and SQL Server Utiity

Installation Configuration Rules []5Qu Server Data Tools management.

Ready to Install [[] Client Tools Connectivity

bt [ Integration Services =
(0] Client Tools Backwards Compatibiity Pr isites for selected features:

Complete [[] Client Tools SOK o

Management Tools -
[[] Distributed Replay Chent

["] Master Data Services
Redistributable Features

Select All I Unselect All I

Shared feature directory:

[[] Documentation Components
Management Tools - Basic

[[] Distributed Replay Controller

SQL Client Connectivity SDK

Complete

-

|C:‘F‘mgram Files\Microsoft SQL Server),

Shared feature directory (x86): IC:'@rog.ram Files (x86)\Microsoft SQL Server,

Ll

<Back |

Next > I Cancel I Help

Figure 12-9. Management Tools - Complete feature in SQL Server 2012 Setup

When you have installed the Management Tools - Complete feature, you can find the

SQL Server Profiler in the SQL Server » Performance Tools folder underneath the Start
menu, or in the C:\Program Files (x86)\Microsoft SQL Server\[edition number]\Tools\

Binn folder.

If you installed the separate SQL Server Management Studio product the Profiler can
be found in the C:\Program Files (x86)\Microsoft SQL Server\140\Tools\Binn folder.

After starting up the SQL Server Profiler, you can start a new trace by clicking the
New Trace button, shown in Figure 12-10, or selecting File » New Trace.

344



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

File| Edit View Replay Tools Window Help

g | P

| New Trace... Ctrl+N

Open »
Close Ctrl+F4
Save Ctrl+S
Save As »
Properties...

Templates »
Run Trace

Pause Trace

Stop Trace

Export »
Import Performance Data...

Exit

Figure 12-10. New SQL Server Profiler trace

When you start a new trace, you will need to connect to the SQL Server instance you
want to trace. In this case I connected to my test SQL Server instance. After logging on to
the SQL Server instance, the Trace Properties window will open. This window will give
you a variety of options with which to configure your trace and how you want to store
your trace. In this example we are not going to change anything in the General tab, but
instead will go directly to the Events Selection tab. There we can select what events we
want to capture, and optionally supply filters for those events. By default a selection is
preloaded when starting a new trace, as you can see in Figure 12-11.

345



CHAPTER 12  BACKGROUND AND MISCELLANEQOUS WAIT TYPES

o] E\rernSelecﬁnnl
Review selected events and event columns to trace. To see a complete list, select the "Show all events” and “Show all columns™ options.
Everts | TexData [ ApplicationName | NTUserName | LognName | CPU [ Reads | Wikes [ Duration | ClentProcess|
— | Security Audit
7 Audt Login = I I v Vv
W Audit Logout v 2 v v 2 3 v 3
- Sessions
[Z BistingConnection Vv v I 2 r v
- Stored Procedures
¥ RPCCompleted I v 2 v v 172 v v v
= TsaL
W SQL:BatchCompleted v I ~ ¥ ~ 4 ~ 4
W SQL:BatchStaring i~ 2 ™2 v i~
<] " | [>]
Includes evert classes that are used to audit sarver activity. [~ Show all everts
[~ Show all columns
No data column selected.
Column Fiters |
et |
Run | Cancel |  Hebp

Figure 12-11. SQL Server Profiler default event selection

For this example we do not need all the extra events that are selected by
default. In this case we check the Show all columns checkbox, and only select the
SQL:BatchCompleted event, as you can see in Figure 12-12. This will record all the T-SQL
statements that are executed against the test SQL Server instance and capture all the
information available for the event.

346



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

Generl EvuuSelecn‘un]
Review selected events and event columns to trace. To see a complete list, select the "Show all events” and "Show all columns” options.
Everts | TextData | ApplicationName | NTUserName | LoginName | CPU | Reads | Wies | Duration | ChientProcess|
- Securty Audit
I~ Audt Login C r r = ]
" Audt Logout r r O O r r O O
= Sessions
[~ ExstingConnection r r - i | I
= Stored Procedures
[T RPC:Completed I r I || (I r [ r o
= TSQL
1 SQL:BatchCompleted ~ ~ ~ ~ [ A 7 v 07
[T SQL:BatchStaring - r O |} r
<] [ | L]
1 SGL:BatchCompleted
Decurs when the T SaL has ™ Show all events
¥ Show all columns
i~ No data column selected. |
Column Fikers... |
Organize Columns. |
Rn | Cancel | Hep |

Figure 12-12. SQL:BatchCompleted event selected

We won't configure any filters on the event, so we will capture every T-SQL statement
we execute against the SQL Server instance. We press Run to start the trace, which will
open the trace window that will show us the events when they take place on our SQL
Server instance along with additional information about, in this case, the query.

Now that our SQL Server Profiler trace is running, we should be able to notice
TRACEWRITE waits occurring. We execute the query that follows in SQL Server
Management Studio against the sys.dm_os_waiting tasks DMV:

SELECT *
FROM sys.dm_os waiting tasks
WHERE wait_type = 'TRACEWRITE';

The results of this query are shown in Figure 12-13.

waiting_task_address  session_id exec_context_id watt_duration_ms wait_type resource_address
1 | xDD000DIBFSF5A108 | 61 0 7 TRACEWRITE  (x0000000000000001

Figure 12-13. TRACEWRITE waits

347



CHAPTER 12  BACKGROUND AND MISCELLANEQOUS WAIT TYPES

Even though we are not running any workload on the test SQL Server instance, the
TRACEWRITE wait type will still be logged. This is normal since the TRACEWRITE wait type
will always be recorded as long as a SQL Server Profiler trace is active.

Lowering TRACEWRITE Waits

As I mentioned before, if you notice TRACEWRITE waits occurring it means someone is
running a SQL Server Profiler trace against your SQL Server instance. Because a SQL
Server Profiler trace can have such a big impact on the performance of your SQL Server
instance, it is important to know who is running the SQL Server Profiler trace and why.

Thankfully, there is a catalog view we can query to view trace activity—the sys.
traces view. The sys.traces catalog view will give you an overview of traces that are
either active or paused against the SQL Server instance. The query that follows will
retrieve all the information inside the sys.traces catalog view:

SELECT *
FROM sys.traces;

Running this query against the test SQL Server instance returns the information
shown in Figure 12-14. (some columns did not fit inside the image).

nd  status path max_size stop_time max_files is_rowset is_rollover
1 111 C:\Program Files\Microsoft SQL Server\MSSQL14 MSS... 20 NULL 5 0 1
2 2|1 NULL NULL NULL NULL 1 0

Figure 12-14. sys.traces

Some important columns I want to highlight from the sys.traces catalog view are
the status and reader_spid columns. The status column returns eitheraOoral,
where a 0 indicates the trace is stopped or paused and a 1 indicates the trace is currently
running. The reader_spid column returns the session ID of the session that started the
trace. We can use this information to detect who is running the trace.

In our case, the trace we started in the example has an ID of 2, while the ID of 1 is
reserved for the background SQL Server trace that is, by default, always active. This
default trace collects specific information about the health of the SQL Server instance
and can be used when troubleshooting. Because it is a so-called server-side trace, it does
not record TRACEWRITE wait time while it is running.

348



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

Now that you can identify the user that is running the trace you can take action if you
believe the trace has a negative effect on the performance of your SQL Server instance.

After stopping SQL Server Profiler traces in order to lower the TRACEWRITE wait time,
there are other methods available if you really need to capture traces against your SQL
Server instance. The most logical one is recreating your SQL Server Profiler trace within
an Extended Event session. Extended Events have a much smaller overhead than SQL
Server Profiler traces and allow even more events and options while capturing traces.

If you still want to use SQL Server Profiler to analyze traces, it can be a good idea
to convert the trace you would normally run in the SQL Server Profiler application to
a server-side trace. Just like with Extended Events, server-side traces have minimal
overhead compared to traces that are performed through the SQL Server Profiler
application. Let’s convert the SQL Server Profiler trace we created in the example section
to a server-side trace and monitor the effects on the TRACEWRITE wait type.

The easiest way to convert a SQL Server Profiler trace is by defining the trace in the SQL
Server Profiler application without starting it. Instead, select the File » Export » Script
Trace Definition » For SQL Server 2005 - SQL2017 option, as shown in Figure 12-15.

=¥

" SQL Server Profiler
E Edit View Replay Tools Window Help
New Trace... Ctrl+N @ mG e P
Open 3
Close Ctrl+F4
o e Untitled - 2 (EVDL-SQL2017-01)
ooy , [letData | ApplicationName | NTUserName | LoginName | CF
Properties...
Templates |
Run Trace
Pause Trace
Stop Trace
Export 4 I Script Trace Definition v For SQL Server 2005 - 2017...
Import Performance Data... __“;,dd SQL Server Events .,“ For SQL Trace Collection Set...
Exit . Extract SOL Server Analysis Services Events 3 For Analysis Services 2005 - 2017.

—

Figure 12-15. Export SQL Server Profiler trace to trace definition

After clicking the File » Export » Script Trace Definition » For SQL Server 2005 -
SQL2017 option, we will be asked to save a .sql file. The entire trace definition will be
scripted inside this .sql file. We can open this file in SQL Server Management Studio,
modify the file location and some other options inside the script, and execute it.

349



CHAPTER 12  BACKGROUND AND MISCELLANEQOUS WAIT TYPES

This will return the ID of the trace we just created and save the trace information to a
file we specified at the top of the script. Figure 12-16 shows a part of the exported trace
definition on our test SQL Server instance.

/*#*!***#*K***#******i*******x******i**i***r*#***i*#ﬂf
/* Created by: SQL Server 2017 Profiler */
/* Date: ©3/086/2019 ©3:20:39 PM */

/*KKK*x#X*K*HR***KK*X**KK*K*XK*K*X*K*H*ﬂt#ﬂx*ﬂt#**x!#/

-- Create a Queue

declare @rc int

declare @TraceID int
declare @maxfilesize bigint
set @maxfilesize = 5

-- Please replace the text InsertFileNameHere, with an appropriate

-- filename prefixed by a path, e.g., c:\MyFolder\MyTrace. The .trc extension
-- will be appended to the filename automatically. If you are writing from

-- remote server to local drive, please use UNC path and make sure server has
-- write access to your network share

exec @rc = sp_trace_create @TraceID output, @, N'InsertFileNameHere', @maxfilesize, NULL
if (@rc != @) goto error

-- Client side File and Table cannot be scripted

-- Set the events
declare (@on bit
set @on = 1

Figure 12-16. Trace definition

After executing the script to create a server-side trace, we received a trace ID of 2.
The trace ID is very important because it is the only way to either start or stop the server-
side trace. After creation, the server-side trace is automatically started. If we query the
sys.traces catalog view, we can see the server-side trace that was just created, as shown
in Figure 12-17.

id _ status path max_size stop_time max_files is_rowset is_rollover
1 : C:\Program Files\Microsoft SQL Server\MSSQL14.MSS... 20 NULL 5 0 1
2 C:Mrace trc trc 5 NULL 1 0 0

Figure 12-17. sys.traces

350



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

The only way to interact with the server-side trace we created is to execute the
sp_trace setstatus stored procedure and supply the trace ID and a status ID. For instance,
executing the query that follows will stop the server-side trace with a trace ID of 2:

EXEC sp_trace setstatus 2, 0

To start it again we can execute this command:
EXEC sp_trace setstatus 2, 1

And finally, to close the trace entirely we can execute the following command:
EXEC sp_trace setstatus 2, 3

This does not delete the server-side trace though. As a matter of fact, server-side
traces are only removed by a restart of the SQL Server service.

Because a server-side trace can only capture to a trace file, you can navigate to the
file you supplied in the server-side trace definition and open the file in SQL Server
Profiler. Thus, you can capture the same information as by using the SQL Server Profiler
application but at a much lower performance price.

TRACEWRITE Summary

The TRACEWRITE wait type indicates a SQL Server Profiler trace is currently being
performed against the SQL Server instance. SQL Server Profiler traces can have a pretty
big impact on the performance of your SQL Server instance, and for this reason it is
important to monitor the number of traces running against your SQL Server instance.
Thankfully, there are some alternatives to SQL Server Profiler traces. You can either
choose to convert your SQL Server Profiler trace to an Extended Events session or
execute the SQL Server Profiler trace using server-side tracing.

WAITFOR

The final wait type in this chapter is one of the few wait types that are directly related
to a T-SQL command. The WAITFOR wait type doesn’t indicate performance problems,
though it definitely has an impact on the duration of the query that is executing the
related WAITFOR T-SQL command.

351



CHAPTER 12  BACKGROUND AND MISCELLANEQOUS WAIT TYPES

What Is the WAITFOR Wait Type?

The WAITFOR wait type will get recorded whenever a query is being executed that uses
the WAITFOR command. The WAITFOR T-SQL command will stop the execution of the
query until a specific amount of time has passed or a specific point in time has been
reached. When that happens, the query execution will continue. The WAITFOR command
is frequently used inside queries or scripts to force a pause inside the query execution.
For instance, in Chapter 4, “Building a Solid Baseline,” we used the WAITFOR command
to wait a specific amount of time so we could compare two measurements taken 15
minutes apart.

While pausing the query execution using the WAITFOR command, the transaction
holding the WAITFOR command will remain open until the entire transaction has
completed. This means that threads are being held by the transaction that cannot
be used for other processes. SQL Server also reserves a dedicated thread just for the
WAITFOR command; if too many threads are associated with WAITFOR commands and
thread starvation occurs, SQL Server will select random WAITFOR threads and terminate
them to free up more threads.

In many cases the WAITFOR command is explicitly used by the person who wrote the
query or script, and in that sense only impacts that specific query or script; thus, there is
no reason to be alarmed when seeing high WAITFOR wait times occur. It just indicates that
queries are using the WAITFOR command.

WAITFOR Example

To show you a quick example of the WAITFOR wait type, you can execute the query in
Listing 12-4. The query will reset the sys.dm os wait stats DMV, execute a WAITFOR
DELAY statement that causes the script execution to wait for 30 seconds, and then query
the sys.dm_os_wait_stats DMV for WAITFOR waits.

Listing 12-4. WAITFOR waits
DBCC SQLPERF('sys.dm os wait stats', CLEAR);

WAITFOR DELAY '00:00:30';

352



CHAPTER 12  BACKGROUND AND MISCELLANEOUS WAIT TYPES

SELECT *
FROM sys.dm os wait stats
WHERE wait_type = 'WAITFOR';

When the query in Listing 12-4 finishes, you should see that one WAITFOR wait
occurred, having a total wait time of roughly 30 seconds, as you can see in Figure 12-18.

wait_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms

1 %WAITFOR 1 30002 30002 0

Figure 12-18. WAITFOR wait

WAITFOR Summary

The WAITFOR wait type is one of the few wait types that are directly related to the
execution of a T-SQL command, in this case WAITFOR. The WAITFOR wait type doesn’t
indicate any performance problems with your SQL Server instance, it just indicates the
WAITFOR command is being used by a query or script. The WAITFOR T-SQL command will
only impact the execution time of the query or script that uses it; therefore, the only way
to lower WAITFOR wait times is by removing the WAITFOR command inside queries.

353



CHAPTER 13

In-Memory OLTP-Related
Wait Types

With the release of SQL Server 2014, Microsoft introduced a brand new SQL Server
feature called In-Memory OLTP (or codename Hekaton). In-Memory OLTP is a memory-
optimized database engine that is directly integrated into the SQL Server 2014 SQL
Server engine. In-Memory OLTP is an enterprise-only feature designed to improve
performance—up to 20 times, according to Microsoft—by placing tables entirely into the
memory of your SQL Server instance. These memory-optimized tables are fully durable
and use lock-and-latch free structures to optimize concurrency control.

With the introduction of In-Memory OLTP, various new wait types have been added
to SQL Server 2014. Most of these are recognizable by the XTP_ (or eXtreme Transaction
Processing) section in the wait type name. In this chapter we will take a look at some of
these new, In-Memory OLTP-related wait types available in SQL Server 2014 or higher.

Before we dive into the wait types though, let’s first take a (simplified and short) look
at what In-Memory OLTP is and how it works. I will focus on memory-optimized tables
in this chapter. In-Memory OLTP also introduced other features, like natively compiled
stored procedures and hash indexes, but these are beyond the scope of this chapter.

Introduction to In-Memory OLTP

The main difference between traditional, disk-based tables and memory-optimized
tables is that memory-optimized tables reside completely in the memory of your SQL
Server instance. Unlike traditional tables, where data pages from that table are moved
from disk into memory and back out again, memory-optimized tables are moved to
your system’s memory at SQL Server startup and never leave the memory (unless the
memory-optimized table is removed, of course). While this might sound a bit scary at

355
© Enrico van de Laar 2019

E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_13



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

first, memory-optimized tables are, by default, fully durable. This means that if your SQL
Server instance crashes, memory-optimized table data is not lost. Of course, having an
entire table reside in the memory of your SQL Server instance also has its disadvantages.
You need to make sure you have enough free memory to accommodate the entire
memory-optimized table (and some extra memory to accommodate row versions used
when accessing such tables). Calculating the memory requirements can be difficult, but
the following article can help you out https://msdn.microsoft.com/en-us/library/
dn282389.aspx.

The memory you reserve for memory-optimized tables is claimed by SQL
Server and will not be wiped out; if your memory-optimized tables use too much
memory, your SQL Server instance will run into memory starvation issues that cause
performance degradation or, worst-case, cause SQL Server to crash. This is a major
difference compared to, for instance, the buffer cache, where pages are wiped out of
memory when memory pressure occurs. Another disadvantage is that many data types
or SQL Server features are not supported for memory-optimized tables. The complete
list of what can and cannot be used can be found at https://msdn.microsoft.com/
en-us/library/dn246937(v=sql.120).aspx and at https://msdn.microsoft.com/
en-us/library/dn133181(v=sql.120).aspx. With the release of SQL Server 2016,
some of the major limitations were resolved, making the feature more attractive and
less restrictive.

So, how do memory-optimized tables work, and why do they perform that much
faster than traditional disk-based tables? Let’s take a look at some of the internals of
In-Memory OLTP.

CFPs

Like I mentioned earlier, by default memory-optimized tables are durable (you can
choose to create a non-durable table that has its contents cleared on a SQL Server
Service restart, but you have to explicitly specify this). The way this durability is achieved
is through so-called checkpoint file pairs (CFPs). CFPs consist of two files, a data and a
delta file, that exist inside a special memory-optimized filegroup that you have to create
for the database where you want to use memory-optimized tables.

Unlike traditional tables that store row data inside data pages, data files store the
rows of all your memory-optimized tables. I emphasize the word all because a single
data file can hold the rows of many memory-optimized tables, unlike data pages that

356


https://msdn.microsoft.com/en-us/library/dn282389.aspx
https://msdn.microsoft.com/en-us/library/dn282389.aspx
https://msdn.microsoft.com/en-us/library/dn246937(v=sql.120).aspx
https://msdn.microsoft.com/en-us/library/dn246937(v=sql.120).aspx
https://msdn.microsoft.com/en-us/library/dn133181(v=sql.120).aspx
https://msdn.microsoft.com/en-us/library/dn133181(v=sql.120).aspx

CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

store row data for a single table. The rows inside a data file are stored sequentially
based on the time they were inserted into a memory-optimized table. This is different
than with data pages, which hold row information inside extents for traditional tables.
Because rows are stored sequentially inside the data files, there is a performance
increase when reading rows since it eliminates the random reads that occur when
reading rows from traditional tables. Figure 13-1 shows an abstract view of a data file
and the row data it holds.

Data file
.
W
‘g 1023 row data —— table |
T
§ 1024 row data —— table |l
1025 row data —— tablell
1026 row data —— tablel
Y

Figure 13-1. Memory-optimized table’s data file

There are always multiple data files inside a memory-optimized filegroup. When you
first create the memory-optimized filegroup, SQL Server will automatically pre-allocate
a number of data files in the file location of the memory-optimized filegroup. The data
files will always have a fixed file size, either 128 MB on systems with more than 16 GB
memory or 16 MB when there is less than or equal to 16 GB memory. When a data file
is full, a new data file will automatically be created and new rows will be inserted into
the new data file. It is important to know that the data file keeps track of rows based on
the transaction-commit timestamp that inserted the row into the data file (shown by the
number inside Figure 13-1). Even if new data files are added and rows are spread across
multiple data files, the data files will always have a contiguous range of transactions.
Figure 13-2 shows multiple data files and the transaction-commit timestamps associated
with those data files.

357



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

Data file Data file Data file

1023 1200 1201 1400 1401 (o =]
| 1023 | row data | ‘ 1201 | row data | ‘ 1023 | row data |
| | | | | |
| || | | |
| | | | |
| || | | |
| ‘. |
| 1200 | row data | ‘ 1400 I row data |

Figure 13-2. Data files and transaction timestamps

Notice in Figure 13-2 that the last data file still has room for new rows—it doesn’t
have a transaction timestamp to indicate the file is full, so new rows will be added to
that file.

Another important characteristic of the data file is that rows that are deleted are not
directly removed from the file. Instead they are tracked by the delta file that is associated
with the data file. The delta file logs any deletes made in the data file and is connected
to the data file by the transaction timestamp range. Row updates for memory-optimized
tables are tracked as a delete and insert operation.

The population of the data and delta files is performed by a background thread—
called the offline checkpoint thread—that runs constantly in the background of SQL
Server. This is different than the checkpoint process used for traditional tables where
pages are written to the database data files at intervals. The offline checkpoint thread
monitors the transaction log for operations performed on memory-optimized tables and
directly writes to the data and delta files.

Over time, when data files accumulate more deleted rows, a merge operation will
take place that will merge multiple data files together into one data file. The merge
operation will create new data and delta files and move the contents of one or more
data and delta files into the new files, but it will not move the rows that were marked as
deleted. The transaction-commit timestamps will be adjusted in the new data and delta
files so they match the timestamps of the files that were merged. Figure 13-3 shows a
simplified view of a merge operation on a data-file level. Keep in mind that a merge will
also impact the delta file.

358



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

Data file Data file
1023 1200 1201 1400
1023 row data 1201 row data
1200 row data 1400 row data

_ MERGE _

Data file

1023 1400
1023 row data
1400 row data

Figure 13-3. Merge operation

359



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

Isolation

Concurrent access to memory-optimized tables is handled through snapshot-based
transaction isolation. This isolation level shares many characteristics with the snapshot
isolation we can use on disk-based tables, but there are some differences so as to
optimize throughput. First of all, the snapshot-based transaction isolation uses row
versions when concurrent transactions want to access the same row. Instead of storing
the row versions in the TempDB database like regular snapshot isolation, the row
versions for memory-optimized tables are stored in-line in the data files itself.

Another difference is that snapshot-based transaction isolation uses an
optimistic concurrency control. This means that SQL Server assumes no transaction
conflict will occur when concurrent transactions access the same data. Because
of this assumption there is no need for locks or latches to protect the memory-
optimized table data. There is a form of conflict detection active, however, and when
it detects that a conflict has occurred, it will end one of the transactions, and that
transaction will need to be retried.

Not having to place and maintain locks and latches is another major contribution to
the performance of In-Memory OLTP.

Transaction Log Changes

The final differences I want to discuss in this section are the modifications to the
behavior of the transaction log regarding memory-optimized tables. For traditional
tables, a log record will be generated when a transaction starts whether it gets committed
or not. For memory-optimized tables, the log record will only be generated when the
transaction begins the commit processing. This means no information for transactions
that are rolled back is recorded. This minimizes interaction with the transaction log on
disk, thus improving performance.

Another modification is that changes to indexes on memory-optimized tables
are not logged in the transaction log. Since indexes that are created on memory-
optimized tables are also maintained entirely in-memory, there is no need to record
changes. Indexes on memory-optimized tables are regenerated on the start of the
SQL Server Service.

360



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

The final difference I want to mention is the grouping of multiple transactions into
one log record. For traditional tables every transaction will result in at least one log
record. Transactions against memory-optimized tables are grouped together and then
written as one log record (with a current maximum size of 24 KB). For instance, if you
have 200 inserts against a traditional table, at least 200 log records would be generated.
If we could fit 100 inserts into one log record for the memory-optimized table, we would
only have two log records instead of at least 200. Again, this improves throughput for
memory-optimized tables.

Now that we have taken a (simplified and short) look at some of the inner workings
of memory-optimized tables, let’s move on to some of the wait types that are related to
In-Memory OLTP. Most of the three wait types that we will discuss in this chapter are
related, one way or another, to the new offline checkpoint process introduced with In-
Memory OLTP.

WAIT_XTP_HOST_WAIT

The first wait type we will discuss in this chapter is WAIT_XTP_HOST WAIT. This wait

type shares some characteristics with the CHECKPOINT QUEUE wait type we discussed in
Chapter 12, “Background and Miscellaneous Wait Types,” in that it seems to be running
continuously but only writes its wait information to sys.dm _os wait_stats at specific
conditions.

What Is the WAIT_XTP_HOST_WAIT Wait Type?

If we look up some information about the WAIT XTP_HOST WAIT wait type on Books
Online, we get a not-so-helpful definition: “Occurs when waits are triggered by the
database engine and implemented by the host.” This doesn’t give us a lot of clues about
the processes that might be related to the WAIT _XTP_HOST_WAIT wait type, which means
we have to do a little bit of digging ourselves.

Before we can start investigating the WAIT_XTP_HOST_WAIT wait type, we need to
create a memory-optimized table. I used the script shown in Listing 13-1 to create a
new database with a single memory-optimized table. There are some path references in
this script that you will need to change to make sure the database data and log files are
created in the right location.

361



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

Listing 13-1. Create test database and memory-optimized table

-- Create database

-- Make sure to change the file locations if needed
USE [master]

Go

CREATE DATABASE [OLTP_Test] CONTAINMENT
ON PRIMARY
(
NAME = N'OLTP_Test', FILENAME = N'E:\Data\OLTP_Test Data.mdf' ,
SIZE = 51200KB , FILEGROWTH = 10%

)
LOG ON

(

NAME = N'OLTP_Test log', FILENAME
SIZE = 10240KB , FILEGROWTH = 10%

)5

NONE

N'E:\Log\OLTP_Test_Log.ldf" ,

GO

-- Add the Memory-Optimized Filegroup

ALTER DATABASE OLTP_Test ADD FILEGROUP OLTP_MO CONTAINS MEMORY_OPTIMIZED _
DATA;

GO

-- Add a file to the newly created Filegroup.

-- Change drive/folder location if needed.

ALTER DATABASE OLTP Test ADD FILE (name='OLTP mo 01', filename='E:\data\
OLTP Test mo 01.ndf') TO FILEGROUP OLTP_MO;

GO

-- Create our test table
USE [OLTP Test]
GO

362



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

CREATE TABLE OLTP
(
ID INT IDENTITY (1,1) PRIMARY KEY NONCLUSTERED,
RandomDatal VARCHAR(50),
RandomData2 VARCHAR(50),
ID2 UNIQUEIDENTIFIER
)
WITH (MEMORY OPTIMIZED=ON);
Go

Now that we have a memory-optimized table we can use for testing, let’s take a look
atthe WAIT_XTP_HOST_WAIT wait type in the sys.dm os wait statsand sys.dm os_
waiting_tasks DMV using the following query:

SELECT *
FROM sys.dm os waiting tasks
WHERE wait_type = 'WAIT_XTP_HOST WAIT';

SELECT *
FROM sys.dm os wait_stats
WHERE wait_type = 'WAIT XTP_HOST WAIT';

The results of this query on my test SQL Server instance can be seen in Figure 13-4.

waiting_task_address session_id exec_context_id wait_duration_ms wat_type resource_address
1 | (x000000FD22027848 | 1 0 18700 WAIT_XTP_HOST_WAIT  NULL
4

wai_type watting_tasks_count wait_time_ms max_wal_time_ms signal_wat_time_ms
1 EWAIT_XT P_HOST _WAIT | 7 19300626 19300256 0

Figure 13-4. WAIT XTP_HOST _WAIT waits

The first thing you'll notice is that the WAIT _XTP_HOST WAIT wait type is constantly
showing up in the sys.dm_os_waiting_tasks DMV, and over time the wait time
increases. Also, the session_id thatis related to the WAIT _XTP_HOST WAIT wait type
indicates it is an internal SQL Server thread that is recording the wait. From this
information we can already formulate some conclusions about the WAIT _XTP_HOST WAIT
wait type: it is related to an internal background process that continuously runs. What'’s

363



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

also interesting is that if you were to run the query a second time, the wait time in the
sys.dm_os_waiting tasks DMV increases but the wait time in the sys.dm_os_wait_
stats remains the same. So far we have run into one other wait type that shared this
characteristic, the CHECKPOINT QUEUE wait time, which we discussed in Chapter 12,
“Background and Miscellaneous Wait Types.”

Since the CHECKPOINT _QUEUE wait type has interesting behavior in that it only
writes the accumulated wait time of the sys.dm_os waiting tasks DMV to the sys.
dm_os wait_stats DMV when an automatic checkpoint occurs, I decide to simply run a
checkpoint command against the OLTP_Test database I created using Listing 13-1, and
then query both the DMVs again. The impact on the wait times of the WAIT XTP_HOST _
WAIT wait type can be seen in Figure 13-5.

walng_task_address | session_id exec_context id wait_duration_ms wat_type resource_address
1 0:000000FD22027348 1 0 2611 WAIT_XTP_HOST_WAIT NULL
4

watt_type waiting_tasks_count wait_time_ms max_wai_time_ms  signal_wai_time_ms
1 | WAIT_XTP_HOST_WAIT | 8 19437391 19300256 1

Figure 13-5. WAIT XTP_HOST_WAIT wait information after checkpoint

As you can see in Figure 13-5, the wait time in the sys.dm_os waiting tasks
DMV is very small again, but the wait time in the sys.dm_os_wait_stats DMV has
increased a lot. Because of this behavior, I believe the WAIT_XTP_HOST WAIT wait type
has something to do with the offline checkpoint process that is related to memory-
optimized tables.

To verify my guess I need to dig a little bit deeper to find out what goes on
underneath the hood of SQL Server when a checkpoint is performed against a memory-
optimized table. To get this information I create an Extended Events session that
captures the call stack whenever SQL Server runs into a WAIT_XTP_HOST_WAIT wait. I
won't bore you with the methods I use for creating this Extended Events session here,
but Paul Randal wrote an amazing blog post about capturing call stacks whenever a
specific wait occurs that you can use to collect some call stacks yourself. You can find
Paul’s blog post here: www.sqlskills.com/blogs/paul/determine-causes-particular-
wait-type/.

364


http://www.sqlskills.com/blogs/paul/determine-causes-particular-wait-type/
http://www.sqlskills.com/blogs/paul/determine-causes-particular-wait-type/

CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

The results of my Extended Events session for capturing the call stack when a WAIT _
XTP_HOST_WAIT wait occurs is shown here:

sqldk.dl1!XeSosPkg::wait_info::Publish+0x138
sqldk.d11!S0OS Scheduler::UpdateWaitTimeStats+0x2bc
sqldk.d11!S0OS Task::PostWait+0x9e
sqlmin.dl1l!EventInternal<SuspendQueueSLock>: :Wait+0x1fb
sqlmin.dl1l!HkHostWait: :Wait+oxce
hkengine.dl1l!CkptFilePair::CreateInstance+0x61b
sqlmin.dl1!HkHostReportFailure: :KillProcess+0x372
sqldk.d11!SOS Task::Param::Execute+0Ox21e
sqldk.d11!S0S_Scheduler::RunTask+0xa8

sqldk.d11!S0OS Scheduler::ProcessTasks+0x279
sqldk.dll!SchedulerManager: :WorkerEntryPoint+0x24c
sqldk.dll!SystemThread: :RunWorker+0x8f
sqldk.dll!SystemThreadDispatcher: :ProcessWorker+0x3ab
sqldk.dll!SchedulerManager: :ThreadEntryPoint+0x226
kernel32.dll!BaseThreadInitThunk+0xd
ntdll.dll!RtlUserThreadStart+0x21

The first part I found really interesting is the inclusion of a new .dll file, hkengine.
d11. Since In-Memory OLTP’s codename was Hekaton, I am guessing that this .dll holds
the new In-Memory OLTP functions, so let’s zoom in on that particular call:

hkengine.dl1l!CkptFilePair::CreateInstance+0x61b

Seeing the function name, I am guessing it is related to checkpoint file pairs, and the
CreatelInstance bit suggests a new CFP was created when I executed the CHECKPOINT
command. We can verify this by going to the location of the In-Memory file that we
created in Listing 13-1. The interesting thing about adding a file to an In-Memory
filegroup is that it will actually create a directory, and inside this directory there is a
folder with a unique ID string. If you go further down the directory tree, you will end up
in a folder with numbered files. Figure 13-6 shows a part of the contents of this folder on

my test machine.

365



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

Name ~ Date modified Type Size
., 00000020-000000b0-0002 6/26/2015 8:50 AM File 1,024KB
__] 00000020-000000b5-0003 6/26/20158:50 AM  File 16,384 KB
__] 00000020-000000c0-0002 6/26/20158:50 AM  File 1,024KB
__| 00000020-000000c5-0003 6/26/20158:50 AM  File 16,384 KB
__] 00000020-000000cc-0002 6/26/20158:50 AM  File 1,024KB
__| 00000020-000000d1-0003 6/26/20158:50 AM  File 16,384 KB
__| 00000020-000000d8-0002 6/26/20158:50 AM  File 1,024KB
__| 00000020-000000dd-0003 6/26/20158:50 AM  File 16,384 KB
__| 00000020-000000e4-0002 6/26/20158:50 AM  File 1,024K8B
__] 00000020-000000e9-0003 6/26/20158:50 AM  File 16,384 KB
__] 00000020-000000f0-0002 6/26/20158:50 AM  File 1,024K8B
__| 00000020-000000f5-0003 6/26/20158:50 AM  File 16,3834 KB
__| 00000020-000000fc-0002 6/26/20158:50 AM  File 1,024KB
__| 00000020-000001b0-0002 6/26/20159:05AM  File 16,384KB
.| 00000020-000001ba-0002 6/26/20159:05 AM File 1,024KB
___| 00000020-00000 1bf-0003 6/26/2015 9:06 AM File 16,339KB
.| 00000020-000001c6-0002 6/26/20159:05 AM File 1,024KB

Figure 13-6. In-Memory filegroup files

As a matter of fact, the files you are seeing here are the data and delta files that are
associated with the memory-optimized table we created earlier. The 1 MB files are the
delta files and the 16 MB ones are the data files.

Since I am guessing a checkpoint would create another CFP, I checked the number
of files in the folder before executing a CHECKPOINT, which was 28 files. I then executed
a CHECKPOINT command and looked at the number of files again, and it turned out there
were now 30 files after the checkpoint.

WAIT_XTP_HOST_WAIT Summary

I believe the WAIT _XTP_HOST_WAIT wait type has a clear relation to the creation of
new checkpoint file pairs. Apparently, running a manual CHECKPOINT statement will
generate a new CFP for the memory-optimized tables. Because the WAIT_XTP_HOST _
WAIT wait type generates wait time constantly in the background, and writes it to the
sys.dm os wait stats DMV a new CFP was created (either by manual checkpoint,
when an existing CFP was full, or when a Merge operation occurred), I believe the

366



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

WAIT_XTP_HOST_WAIT wait type does not directly indicate performance problems.

It mostly indicates that a new CFP has been added to the In-Memory filegroup.

This does not mean this is the only process that generates WAIT_XTP_HOST_WAIT waits,
though. There can be other processes that can also cause the waits, but so far they
only occurred whenever a new CFP needed to be added.

WAIT_XTP_CKPT_CLOSE

The WAIT XTP_CKPT_CLOSE wait type is another new wait type introduced in SQL Server
2014. As the name suggests, it seems to be related to the new offline checkpoint process
introduced with the In-Memory OLTP feature.

What Is the WAIT_XTP_CKPT_CLOSE Wait Type?

The WAIT XTP_CKPT_CLOSE wait type seems to be related to the new offline checkpoint
process that was introduced in SQL Server 2014 with the release of In-Memory OLTP. As
far as I can tell by analyzing the behavior of this wait type, it only records wait time when
a checkpoint occurs, no matter if it is an automatic or manual checkpoint. The wait
time the WAIT _XTP_CKPT_CLOSE wait type represents seems to be the time it takes for the
checkpoint operation to complete. We can verify this easily by executing a CHECKPOINT
command against the database and table we created earlier when we discussed the
WAIT XTP_HOST WAIT wait type. I used the script in Listing 13-2 to clear the sys.dm_
os_wait_stats DMV, insert a few rows inside the memory-optimized table, perform a
CHECKPOINT operation, and then query the sys.dm _os_wait_stats DMV for WAIT XTP_
CKPT_CLOSE wait type information.

Listing 13-2. Generate WAIT_XTP_CKPT_CLOSE waits

USE [OLTP Test];
GO

-- Clear sys.dm os wait stats
DBCC SQLPERF('sys.dm os wait stats', CLEAR);

-- Insert some rows
INSERT INTO OLTP

367



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

(

RandomData1,
RandomData2,
ID2

)
VALUES

(

CONVERT(VARCHAR(50), NEWID()),
CONVERT (VARCHAR(50), NEWID()),
NEWID()

)5

GO 1000

-- Perform a CHECKPOINT
CHECKPOINT

-- Query sys.dm os wait stats for WAIT XTP_CKPT_CLOSE waits
SELECT *

FROM sys.dm os wait stats

WHERE wait type = 'WAIT XTP_CKPT CLOSE';

The results can be seen in Figure 13-7.

wait_type wating_tasks_count wait_time_ms max_watt_time_ms signal_wai_time_ms
1 E_WA.IT_XT P_CKPT_CLOSE 2 896 896 0

Figure 13-7. WAIT XTP_CKPT_CLOSE waits

Just as I did for the WAIT XTP_HOST WAIT wait type, I also captured the call stack
when a WAIT _XTP_CKPT_CLOSE wait occurred:

sqldk.dl1!XeSosPkg: :wait info::Publish+0x138
sqldk.d11!S0OS Scheduler::UpdateWaitTimeStats+0x2bc
sqldk.d11!S0S Task::PostWait+0x9e
sqlmin.dl1l!EventInternal<SuspendQueueSLock>: :Wait+0x1fb
sqlmin.dl1!HkCheckpointCtxtImpl::WaitForCkptComplete+0xdo
sqlmin.dl1l!HkHostWaitForCkptComplete+0x13a

368



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

sqlmin.dll!CheckpointWithOptionalTruncate+0xe6
sqllang.d11!CStmtCheckpoint: :XretExecute+Oxe7
sqllang.dl1!CMsqlExecContext: :ExecuteStmts<1,1>+0x427
sqllang.dl1!CMsqlExecContext: : FExecute+0xa33
sqllang.d11!CSQLSource: :Execute+0x86¢
sqllang.dll!process request+0xa57
sqllang.dll!process_commands+0x4a3

sqldk.d11!S0S Task::Param::Execute+0Ox21e
sqldk.d11!S0OS Scheduler::RunTask+0xa8

sqldk.d11!S0OS Scheduler::ProcessTasks+0x279
sqldk.dll!SchedulerManager: :WorkerEntryPoint+0x24c
sqldk.d1ll!SystemThread: : RunWorker+0x8+f
sqldk.dll!SystemThreadDispatcher: :ProcessWorker+0x3ab
sqldk.d11!SchedulerManager: :ThreadEntryPoint+0x226
kernel32.dll!BaseThreadInitThunk+0xd
ntdll.dl1!RtlUserThreadStart+0x21

I believe the most interesting line is sqlmin.d11!CheckpointWithOptionalTruncat
e+0xe6, which seems to be the function that performs the truncate. It is followed by the
sqlmin.dl1!HkCheckpointCtxtImpl: :WaitForCkptComplete+0xdo line thatI believe
records the time the previous checkpoint function took place, which gets posted later on
to the wait statistics DMVs.

I don’t believe seeing WAIT XTP_CKPT_CLOSE waits occur is a direct cause for concern.
They indicate that checkpoints are being performed. I can imagine that sudden high
wait times for the WAIT_XTP_CKPT_CLOSE wait type can indicate a performance issue.

As we saw in the previous section, performing a checkpoint against a memory-optimized
table will result in extra CFPs being created. I am guessing that if the allocation of CFPs
takes a long time, the checkpoint operation will take longer to complete as well, resulting
in higher WAIT_XTP_CKPT_CLOSE wait times. The amount of data a checkpoint has to
process will probably also mean higher WAIT XTP_CKPT_CLOSE wait times. Since the
checkpoint writes data to the storage subsystem, the performance of your storage will
probably also impact WAIT_XTP_CKPT_CLOSE wait times.

369



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

WAIT_XTP_CKPT_CLOSE Summary

The WAIT XTP_CKPT_CLOSE wait type seems closely related to performing checkpoint
operations. It indicates the time a checkpoint performed against a memory-optimized
table took to complete. I don’t believe this directly indicates performance issues, since
it just records the time it took for the checkpoint to complete. The amount of work a
checkpoint has to process will probably result in higher WAIT_XTP_CKPT_CLOSE wait
times. Storage subsystem performance will probably also impact WAIT_XTP_CKPT_CLOSE
wait times.

WAIT_XTP_OFFLINE_CKPT_NEW_LOG

The final In-Memory OLTP related wait type that I want to discuss in this chapter is the
WAIT XTP_OFFLINE CKPT_NEW_LOG wait type. This is another wait type related to the
offline checkpoint process that was introduced in SQL Server 2014.

What Is the WAIT_XTP_OFFLINE_CKPT NEW_LOG Wait
Type?

The WAIT XTP_OFFLINE_CKPT NEW_LOG wait type appears to be a benign wait type that
records the length of time the offline checkpoint process is waiting for work. This is
confirmed by Books Online, which has the following definition: “occurs when offline
checkpoint is waiting for new log records to scan.”

As we discussed earlier in this chapter, the offline checkpoint process monitors
the transaction log for transactions that impact memory-optimized tables so those
transactions can be recorded in the data and delta files. This is a constantly running
process in the background of SQL Server, which means you will see an internal process
with the WAIT_XTP_OFFLINE_CKPT_NEW_LOG wait type when you query the sys.dm_os_
waiting_tasks DMV, asyou can see in Figure 13-8.

waiting_task_address session_id exec_contert_id wait_duration_ms  wait_type resource_address
24  <00DDDDOFD1SCCTR4E 27 0 19918605 BROKER_TRANSMITTER NULL
25  [<000000FD19CC7C28 28 0 905 SLEEP_TASK NULL
26 <00DD00OFD16500108 29 0 343 HADR_FILESTREAM_IOMGR_IOCOMPLETION NULL
27 | D 0 3783 WAIT_XTP_OFFLINE_CKPT_NEW_LOG NULL
28 0 98 LOGMGR_QUEUE (<000000FDEBGIDES0

Figure 13-8. WAIT XTP_OFFLINE_CKPT_NEW_LOG waits inside sys.dm_os_
waiting_tasks

370



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

Unlike the WAIT _XTP_HOST WAIT wait type that only writes its wait time information
to the sys.dm_os wait stats DMV when specific conditions occur, the WAIT _XTP_
OFFLINE_CKPT_NEW_LOG wait type appears to wait for around 5 seconds, adds the wait
time to the sys.dm_os_wait_stats DMV, and then resets the wait time in the sys.dm_
os_waiting_tasks DMV again. This might suggest that the offline checkpoint process
checks for new work at an interval of around 5 seconds.

To understand a little bit more about the offline checkpoint process, I captured a
stack dump whenever a WAIT _XTP_OFFLINE CKPT NEW_LOG wait occurred. The stack
dump gives us some interesting insight into the process itself, as you can see here:

sqldk.dll!XeSosPkg: :wait info::Publish+0x138
sqldk.d11!SOS_Scheduler::UpdateWaitTimeStats+0x2bc
sqldk.d11!S0S Task::PostWait+0x9e
sqlmin.dl1l!EventInternal<SuspendQueueSLock>: :Wait+0x1fb
sqlmin.dll!SequencedObject<LogBlockId, SequencedWaitInfo<LogBlockId>,0>::
WaitUntilSequenceAdvances+0x160
sqlmin.dl1l!0fflineCheckpointWorker: : GetNextLogBlock+0x10d
sqlmin.dl1!0fflineCheckpointWorker: :DoWorkInternal+0xf7
sqlmin.d11!0fflineCheckpointWorker: :DoWork+0x3aa
sqlmin.dl1!0fflineCheckpointWorker: :WorkLoop+0x3fc
sqldk.d11!SOS Task::Param::Execute+Ox21e
sqldk.d11!S0S_Scheduler::RunTask+0xa8

sqldk.d11!S0S Scheduler::ProcessTasks+0x279
sqldk.dll!SchedulerManager: :WorkerEntryPoint+0x24c
sqldk.d11!SystemThread: :RunWorker+ox8f
sqldk.dll!SystemThreadDispatcher: :ProcessWorker+0x3ab
sqldk.dll!SchedulerManager: :ThreadEntryPoint+0x226
kernel32.dll!BaseThreadInitThunk+0xd
ntdll.dl1!RtlUserThreadStart+0x21

The most interesting parts are when the OfflineCheckpointWorker function is being
called. For readability, here is the section that involves the OfflineCheckpointWorker
function:

sqlmin.dll!SequencedObject<LogBlockId,SequencedWaitInfo<LogBlockId>,0>: :Wai
tUntilSequenceAdvances+0x160
sqlmin.dl1!0fflineCheckpointWorker: :GetNextLogBlock+0x10d

371



CHAPTER 13 IN-MEMORY OLTP-RELATED WAIT TYPES

sqlmin.d1l1!0fflineCheckpointWorker: :DoWorkInternal+0xf7
sqlmin.dl1!0fflineCheckpointWorker: :DoWork+0x3aa
sqlmin.dl1!0fflineCheckpointWorker: :WorkLoop+0x3fc

Seeing this stack dump makes me believe the offline checkpoint process is started,
starts looking for work by reading log records from the transaction log (LogBlock), grabs
the first LogBlock it needs to process, and loops until all LogBlocks are processed. When
that is done, I suspect the offline checkpoint goes to sleep again, waits for around 5
seconds, then wakes up and checks for new log records.

Seeing this behavior makes me believe the WAIT_XTP_OFFLINE_CKPT_NEW_LOG wait
type is harmless. It just indicates that the offline checkpoint process is waiting for work to

arrive.

WAIT_XTP_OFFLINE_CKPT_NEW_LOG Summary

The WAIT XTP_OFFLINE_CKPT NEW_LOG wait type is related to the offline checkpoint
process and indicates that process is waiting for work to arrive. Because the WAIT XTP_
OFFLINE_CKPT_NEW_LOG wait type only indicates that the offline checkpoint process is
waiting for work, I believe the wait type doesn’t indicate any performance issues and can
probably be safely ignored.

372



APPENDIX |

Example SQL Server
Machine Configurations

During the writing of this book, I used a few different test systems to generate the
examples that are used. This appendix will describe the configuration of the systems
I used during the examples and wait type demonstrations. If I needed to modify the
system to demonstrate a specific wait type or situation occurring, this will be included in
the text inside the chapter that holds the demonstration.
All my test systems are virtual machines I created inside Oracle VirtualBox, a free-to-
use virtualization software product that you can download from www.virtualbox.org/.
Another tool I frequently used during examples is Ostress. Ostress is part of the RML
utilities provided to manage your SQL Server’s performance. You can download the RML
utilities using this link: www.microsoft.com/en-us/download/details.aspx?id=4511.

Default Test Machine

The table that follows shows the virtual machine configuration I used for the majority of
the book, except for Chapter 10, “High-Availability and Disaster-Recovery Wait Types,’
which discusses high-availability and disaster-recovery wait types.

373
© Enrico van de Laar 2019

E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_14


http://www.virtualbox.org/
http://www.microsoft.com/en-us/download/details.aspx?id=4511

APPENDIX |

HA/DR Test Machines

EXAMPLE SQL SERVER MACHINE CONFIGURATIONS

Configuration Value

Computer name EVDL-SQL2017-01
vCPUs 2-4

Architecture 64-bit

Memory 4GB

Storage 50 GB System Drive C:\

Data drive layout

Operating system
SQL Server edition
SQL Server features

SQL Server instance
name

(SSD)25 GB Data Drive D:\ (SSD)

D:\Data, MDF FilesD:\Log, LDF
FilesD:\Backup, Backup files

Windows Server 2012R2

SQL Server 2017 Enterprise
Database Engine Services
MSSQLSERVER (Default instance)

The tables that follow show the configurations of the virtual machines I used for

demonstrating high-availability and disaster-recovery wait types as described in

Chapter 10, “High-Availability and Disaster-Recovery Wait Types.’

Configuration

Value

Computer name
Role

vCPUs
Architecture
Memory
Storage

Operating system

EVDL-DC-01
Domain Controller (PROWAITS)

1

64-bit
512 MB

20 GB System Drive C:\ (SSD)
Windows Server 2012R2

374

(continued)



APPENDIX1  EXAMPLE SQL SERVER MACHINE CONFIGURATIONS

Configuration

Value

Computer name
Role

vCPUs

Architecture
Memory

Storage

Data drive layout
Operating system
SQL Server edition
SQL Server features
SQL Server instance name
Computer name
Role

vCPUs

Architecture
Memory

Storage

Data drive layout
Operating system
SQL Server edition
SQL Server features

SQL Server instance name

EVDL-SQL-AGO1

Principal (mirroring)Primary (AlwaysOn)Failover Cluster node
2

64-bit

2 GB

25 GB System Drive C:\ (SSD)20 GB Data Drive D:\ (SSD)
D:\Data, MDF FilesD:\Log, LDF FilesD:\Backup, Backup files
Windows Server 2012R2

SQL Server 2017 Enterprise

Database Engine Services

MSSQLSERVER (Default instance)

EVDL-SQL-AG02

Mirror (mirroring)Secondary (AlwaysOn)Failover Cluster node
2

64-bit

2 GB

25 GB System Drive C:\ (SSD)20 GB Data Drive D:\ (SSD)
D:\Data, MDF FilesD:\Log, LDF FilesD:\Backup, Backup files
Windows Server 2012R2

SQL Server 2017 Enterprise

Database Engine Services

MSSQLSERVER (Default instance)

375



APPENDIX I

Spinlocks

Spinlocks are described by Microsoft as “lightweight synchronization primitives.” The
description looks a lot like the one used for latches, which are described as “lightweight
synchronization objects.” This is no coincidence, as spinlocks and latches have a lot in
common and both are used to serialize access to internal data structures. Both latches
and spinlocks are used when access to objects needs to be held for a very short amount
of time.

While spinlocks and latches have an identical purpose, there is one large difference
between them. Whenever you cannot acquire a latch because there is another
incompatible latch already in place, for example, your request is forced to wait, and it
will leave the processor and get returned to the Waiter List (the request receives the
“SUSPENDED” state). It is then forced to wait inside the Waiter List until the latch can
get acquired, and then it moves through the Runnable queue until it can finally get back
on the processor. Because latches are treated like a resource for query execution, they
are closely related to wait statistics. SQL Server even records the time it has been waiting
on acquiring different latch types and classes, which we discussed in Chapter 9, “Latch-
Related Wait Types.” There is a relatively large overhead associated with latches, because
if alatch cannot be obtained immediately, it has to move through the different phases
of the scheduler again before the request can acquire its latch and get executed on the
processor.

Spinlocks work very differently than latches, because whenever a spinlock has to
wait out another spinlock already in place before it can get placed itself, the thread does
not have to leave the processor. Instead, a spinlock will “spin” until it can be acquired.
Figure AII-01 shows the difference between latches and spinlocks whenever one has to
wait before it can get acquired.

377
© Enrico van de Laar 2019

E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_15



APPENDIX 1 SPINLOCKS

RUNNING

Runnable Queue Waiter List

Figure AII-01. Spinlocks and latches and wait phases

The main advantage of using spinlocks instead of latches to synchronize thread
access is that spinlocks are even “lighter” synchronization objects than latches. Latches
cause extra context switching to occur whenever a latch has to wait before it can get
acquired. Spinlocks do not cause context switching because they will never move away
from the processor. Because spinlocks do not cause context switching, they are used
to protect those areas of SQL Server that are used most intensely. Spinlocks are not the
Holy Grail in protecting access to data structures, however. Because they never move
away from the processer, they consume processor time, even when they are waiting. To
avoid spinlocks consuming too much processor time, every x time around the spinlock
will stop spinning and sleep. The interval of the spinlock sleep is calculated by an
internal algorithm.

On very busy systems, where many spinlocks are used, it is possible to encounter a
phenomenon called spinlock contention. If the spinlock contention gets bad enough,
you can notice an increase in processor time that can be difficult to troubleshoot, since
this will not always show by analyzing wait statistics.

378



APPENDIX I SPINLOCKS

name collisions  spins spins_per_collision sleep_time backoffs
1 SOS5_SCHEDULER 64 532294 8317.094 1 8
2 LOCK_HASH 1060 274500 258.9622 0 15
3 RESQUEUE 238 61500 2584034 0 3
4 BLOCKER_ENUM 112 29500 263.3929 0 2
5 SOS_SUSPEND_QUEUE 25 24621 984 .84 0 8
6 BACKUP_CTX 18 6500 3611111 0 3
7 DBTABLE 2 4000 2000 0 3
8 SESSION_MANAGER 7 1750 250 0 0
9 SOS_TLIST - 1500 375 0 1
10 LOCK_RW_SECURITY_CACHE 3 750 250 0 0

Figure AII-02. sys.dm_os_spinlock_stats

Thankfully, just like latches, there is a spinlock DMV inside SQL Server that tracks
the specific spinlock classes (325 in SQL Server 2017), the amount of time a spinlock had
to wait before it could get acquired, and the total number of spins that occurred for that
spinlock class. We can access this information by querying the sys.dm_os_spinlock_
stats DMV like the query here:

SELECT =
FROM sys.dm os_spinlock stats
ORDER BY spins DESC;

This returns results like those shown in Figure AII-02.
The columns returned by the sys.dm_os_spinlock stats are described in the
following list:

e name: Shows the name of the spinlock class.

e collisions: Returns the amount of time this spinlock class
encountered a wait event because another spinlock was already in
place.

e spins: When a spinlock has to wait, it performs a spin. The spins
column shows the amount of times spins occurred for this specific
spinlock class. You can think of a spin as the amount of time the
spinlock had to wait before it could get acquired.

e spins_per collision: The average number of spins per collision.

379



APPENDIX 1 SPINLOCKS

o sleep_time: Time that was spent sleeping for this spinlock class.

e backoffs: The number of times a spinlock went to sleep to allow
other threads to use the processor.

While all the columns returned by the sys.dm_os_spinlock_stats DMV provide
valuable information, the backoffs column can be the most interesting when you are
suspecting a case of spinlock contention. If you notice very high CPU usage and cannot
directly correlate the high CPU usage with queries or specific wait types, but the amount
of backof+s for a specific spinlock class is very high and increasing quickly, you might
have a case of spinlock contention occurring.

Spinlock contention is difficult to troubleshoot since it can have a very large number
of causes. Also, information about specific spinlock classes is often lacking, increasing
the difficulty of troubleshooting spinlock contention. One method that you can use
during the analysis of spinlock contention is building a baseline of the sys.dm_os_
spinlock_stats DMV by capturing the contents of the DMV at a specific interval, like I
described in Chapter 4, “Building a Solid Baseline.” This baseline can give you valuable
insight into the usage of spinlocks inside your SQL Server instance. Another great tool
to diagnose spinlock contention is Extended Events. By using Extended Events you can
trace various spinlock-related events, like spinlock backoffs.

To truly analyze why spinlock-class contention is occurring, you will have to dive
even deeper by debugging SQL Server memory dumps and looking through the call
stack to find what spinlock class is being accessed. Debugging SQL Server memory
dumps to identify spinlock contention is beyond the scope of this book and requires a
deep knowledge of the inner workings of SQL Server. Thankfully, there is a free Microsoft
whitepaper available on spinlock contention that can give you a few pointers for what
to do when dealing with spinlock contention. You can get the whitepaper at www.
microsoft.com/en-us/download/details.aspx?id=26666.

380


http://www.microsoft.com/en-us/download/details.aspx?id=26666
http://www.microsoft.com/en-us/download/details.aspx?id=26666

APPENDIX Il

Latch Classes

Latch Class

Books Online Description

Additional Information

ALLOC_CREATE
RINGBUF

ALLOC_CREATE_
FREESPACE_CACHE

ALLOC_CACHE _
MANAGER

ALLOC_FREESPACE
CACHE

Used internally by SQL Server to initialize
the synchronization of the creation of an
allocation ring buffer.

Used to initialize the synchronization of
internal free space caches for heaps.

Used to synchronize internal coherency
tests.

Used to synchronize access to a cache of
pages with available space for heaps and

binary large objects (BLOBs). Contention on
latches of this class can occur when multiple
connections try to insert rows into a heap or
BLOB at the same time. You can reduce this
contention by partitioning the object. Each
partition has its own latch. Partitioning will
distribute the inserts across multiple latches.

Used when creating a
ring buffer. A ring buffer
briefly holds internal
event information in
memory and is used for
diagnostics.

Allocates free space for
heaps (tables without a
clustered index).

© Enrico van de Laar 2019

(continued)

E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_16

381



APPENDIX Il LATCH CLASSES

Latch Class Books Online Description Additional Information

ALLOC_EXTENT_CACHE Used to synchronize the access to a cache
of extents that contains pages that are not
allocated. Contention on latches of this class
can occur when multiple connections try to
allocate data pages in the same allocation
unit at the same time. This contention can be
reduced by partitioning the object of which
this allocation unit is a part.

ACCESS_METHODS Used to synchronize child dataset access to  Used together with the
DATASET _PARENT the parent dataset during parallel operations. ACCESS_METHODS _
SCAN_RANGE _

GENERATOR latch class
during parallel operations
to distribute the work
among multiple threads.

ACCESS_METHODS _ Used to synchronize access to an internal

HOBT_FACTORY hash table.

ACCESS_METHODS _ Used to synchronize access to the in-

HOBT memory representation of a HoBt.

ACCESS_METHODS _ Used to synchronize access to a HoBt page  Used for page and row

HOBT COUNT and row counters. count deltas for heaps and
B-trees.

ACCESS_METHODS _ Used to synchronize access to the root page Used when accessing

HOBT VIRTUAL ROOT  abstraction of an internal B-tree. metadata regarding the

index’s root page. See
Chapter 8, “Latch-Related
Wait Types,” for an
example.

(continued)

382



APPENDIX Il LATCH CLASSES

Latch Class

Books Online Description

Additional Information

ACCESS_METHODS _
CACHE_ONLY_HOBT _
ALLOC

ACCESS_METHODS
BULK_ALLOC

ACCESS_METHODS
SCAN_RANGE_
GENERATOR

ACCESS_METHODS_KEY_

RANGE_GENERATOR

APPEND_ONLY _
STORAGE_INSERT
POINT

APPEND_ONLY_
STORAGE_FIRST
ALLOC

APPEND ONLY
STORAGE_UNIT
MANAGER

APPEND ONLY _
STORAGE_MANAGER

BACKUP_RESULT SET

BACKUP_TAPE_POOL
BACKUP_LOG_REDO

Used to synchronize worktable access.

Used to synchronize access within bulk
allocators.

Used to synchronize access to a range
generator during parallel scans.

Used to synchronize access to read-ahead
operations during key-range parallel scans.

Used to synchronize inserts in fast append-
only storage units.

Used to synchronize the first allocation for
an append-only storage unit.

Used for internal data structure access
synchronization within the fast append-only
storage unit manager.

Used to synchronize shrink operations in the

fast append-only storage unit manager.

Used to synchronize parallel backup result
sets.

Used to synchronize backup tape pools.

Used to synchronize backup log redo
operations.

Used for synchronizing
access to transparent,
temporary tables that
are created during query
execution.

(continued)

383



APPENDIX Il LATCH CLASSES

Latch Class Books Online Description Additional Information

BACKUP_INSTANCE ID Used to synchronize the generation of
instance 1Ds for backup performance
monitor counters.

BACKUP_MANAGER Used to synchronize the internal backup
manager.

BACKUP_MANAGER _ Used to synchronize differential backup

DIFFERENTIAL operations with DBCC.

BACKUP_OPERATION Used for internal data structure
synchronization within a backup operation,
such as database, log, or file backup.

BACKUP_FILE HANDLE Used to synchronize file open operations
during a restore operation.

BUFFER Used to synchronize short-term access to Directly related to buffer
database pages. A buffer latch is required latches. When seeing
before reading or modifying any database higher-than-expected wait
page. Buffer latch contention can indicate times, check if you are
several issues, including hot pages and running into buffer latch—
slow 1/0s. related contention.

This latch class covers all possible uses of
page latches. sys.dm_os_wait_stats makes
a difference between page latch waits that
are caused by I/0 operations and read and
write operations on the page.

BUFFER_POOL_GROW Used for internal buffer manager
synchronization during buffer pool grow

operations.
DATABASE_CHECKPOINT Used to serialize checkpoints within a database.
CLR_PROCEDURE _ Internal use only.
HASHTABLE
CLR_UDX_STORE Internal use only.

(continued)

384



APPENDIX Il LATCH CLASSES

Latch Class

Books Online Description Additional Information

CLR_DATAT ACCESS

CLR_XVAR_PROXY
LIST

DBCC_CHECK_
AGGREGATE

DBCC_CHECK_
RESULTSET

DBCC_CHECK TABLE

DBCC_CHECK_TABLE_
INIT

DBCC_CHECK_TRACE_
LIST

DBCC_FILE_CHECK
OBJECT

DBCC_PERF

DBCC_PFS_STATUS

DBCC_OBJECT
METADATA

DBCC_HASH_DLL
EVENTING CACHE
FCB

FCB_REPLICA
FGCB_ALLOC

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Used to synchronize internal performance
monitor counters.

Internal use only.

Internal use only.

Internal use only.
Internal use only.

Used to synchronize access to the file
control block.

Internal use only.

Use to synchronize access to round-robin
allocation information within a filegroup.

(continued)

385



APPENDIX Il LATCH CLASSES

Latch Class

Books Online Description

Additional Information

FGCB_ADD_REMOVE

FILEGROUP_MANAGER
FILE_MANAGER
FILESTREAM FCB

FILESTREAM FILE
MANAGER

FILESTREAM GHOST _
FILES

FILESTREAM DFS_
ROOT

LOG_MANAGER

FULLTEXT_DOCUMENT _ID

FULLTEXT_DOCUMENT _
ID TRANSACTION

FULLTEXT _DOCUMENT _
ID NOTIFY

FULLTEXT_LOGS
FULLTEXT_CRAWL_LOG
FULLTEXT_ADMIN

FULLTEXT_AMDIN
COMMAND_CACHE

Use to synchronize access to filegroups for
ADD and DROP file operations.

Internal use only.
Internal use only.
Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.
Internal use only.
Internal use only.

Internal use only.

Latch is used when adding
or removing files inside a
filegroup, or when a file
grows. Check auto-growth
configuration if you are
running into contention.

Indicates transaction-log
growth because the log
could not be cleared or
truncated.

386

(continued)



APPENDIX Il LATCH CLASSES

Latch Class

Books Online Description

Additional Information

FULLTEXT_LANGUAGE_
TABLE

FULLTEXT _CRAWL DM _
LIST

FULLTEXT CRAWL_
CATALOG

FULLTEXT FILE_
MANAGER

DATABASE_MIRRORING
REDO

DATABASE_MIRRORING
SERVER

DATABASE_MIRRORING
CONNECTION

DATABASE_MIRRORING
STREAM

QUERY_OPTIMIZER
VD_MANAGER

QUERY_OPTIMIZER
ID MANAGER

QUERY_OPTIMIZER
VIEW REP

RECOVERY_BAD_PAGE _
TABLE

RECOVERY_MANAGER

SECURITY_OPERATION
RULE_TABLE

SECURITY_OBIPERM_
CACHE

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Responsible for controlling
the message flow
between database mirrors.

(continued)
387



APPENDIX Il

LATCH CLASSES

Latch Class

Books Online Description

Additional Information

SECURITY_CRYPTO
SECURITY_KEY RING
SECURITY KEY LIST
SERVICE_BROKER _

CONNECTION_ RECEIVE

SERVICE_BROKER _

Internal use only.
Internal use only.
Internal use only.

Internal use only.

Internal use only.

TRANSMISSION

SERVICE_BROKER _

TRANSMISSION
UPDATE

SERVICE_BROKER _
TRANSMISSION STATE

SERVICE_BROKER _
TRANSMISSION ERRORS

SSBXmitWork

SERVICE_BROKER _

MESSAGE_
TRANSMISSION

SERVICE_BROKER _

MAP_MANAGER

SERVICE_BROKER _

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

HOST NAME

SERVICE_BROKER _

READ CACHE

SERVICE_BROKER _

WAITFOR_MANAGER

SERVICE_BROKER

WAITFOR

TRANSACTION DATA

Internal use only.

Internal use only.

Internal use only.

388

(continued)



APPENDIX Il LATCH CLASSES

Latch Class

Books Online Description Additional Information

SERVICE_BROKER _

TRANSMISSION

TRANSACTION_DATA
SERVICE_BROKER

TRANSPORT

SERVICE_BROKER _

MIRROR ROUTE
TRACE_ID

TRACE_AUDIT ID

TRACE

TRACE_CONTROLLER

TRACE_EVENT_QUEUE

TRANSACTION

DISTRIBUTED_MARK

TRANSACTION
OUTCOME

NESTING_TRANSACTION

READONLY
NESTING

TRANSACTION FULL

Internal use only.

Internal use only.

Internal use only.

Internal use only.
Internal use only.
Internal use only.

Internal use only. Related to SQL Trace.
More information about
SQL Trace can be found
at https://msdn.
microsoft.com/en-
us/hh245121.aspx.
Seeing contention on this
latch class can mean too
many traces are running
at the time.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

(continued)

389


https://msdn.microsoft.com/en-us/hh245121.aspx
https://msdn.microsoft.com/en-us/hh245121.aspx
https://msdn.microsoft.com/en-us/hh245121.aspx

APPENDIX Il

LATCH CLASSES

Latch Class

Books Online Description

MSQL_TRANSACTION
MANAGER

DATABASE_AUTONAME
MANAGER

UTILITY_DYNAMIC_
VECTOR

UTILITY_SPARSE
BITMAP

UTILITY_DATABASE
DROP

UTILITY_DYNAMIC_
MANAGER_VIEW

UTILITY_DEBUG_
FILESTREAM

UTILITY_LOCK
INFORMATION

VERSIONING
TRANSACTION

VERSIONING
TRANSACTION_LIST

VERSIONING
TRANSACTION_CHAIN

VERSIONING STATE

VERSIONING STATE
CHANGE

KTM_VIRTUAL CLOCK

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

Internal use only.

390

Additional Information



Index

A

ASYNC_IO_COMPLETION

AdventureWorks database, 141

backup operation, 141-142

disk sec/write perfmon counters, 146
instant file initialization, 145
modification, 142

perform volume maintenance tasks, 144
SQL Server setup, 143

storage subsystem, 139
sys.dm_os_waiting tasks query, 142
visual representation, 140

ASYNC_NETWORK_IO

B

AdventureWorks database, 148
graphical representation of, 147
meaning, 147

modification, 149

queries, 149

task manager network utilization, 150

Background processes, 327
BACKUPBUFFER

additional backup information, 192
backup/restore operation, 189, 195
database backup, 191, 194
definition of, 190

generating process, 193

lowering waits, 194

© Enrico van de Laar 2019
E.van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1

MAXTRANSFERSIZE option, 195
process, 190

reader and writer, 191

results of, 193, 195

BACKUPIO

ASYNC_IO_COMPLETION, 197
definition, 195-196

internals of, 196

lowering waits, 197

modified backup query, 196
sys.dm_os_wait_stats DMV, 196

BACKUPTHREAD

AdventureWorks database, 199
lowering waits, 200

restore operations, 198
sys.dm_os_waiting tasks DMV, 200
threads, 199

Baseline operations

adjust and measurement of, 77

CXPACKET, 75

database, 77

definition, 76

pitfalls, 81-82

process of, 77

real-time methods, 75

types and statistics, 79-81

visualization, 78-79

wait statistics analysis
analysis flowchart, 97
comparison graph, 96

391


https://doi.org/10.1007/978-1-4842-4916-1

INDEX

Baseline operations (cont.)

database, 83
delta capture method, 86-89
disk-read latency, 97
measurements, 82, 99
PAGEIOLATCH_SH, 94-95
performance-analysis flowchart, 92
reset capture method, 85-87
SQL server agent/schedule
measurements, 89-91
sys.dm_os_waiting_tasks, 93
sys.dm_os_wait_stats, 84
table creation, 84
WaitStats, 91

Buffer latches, 238

C

Checkpoint file pairs (CFPs)
data and delta file, 358
memory-optimized table’s

data file, 357

merge operation, 359

traditional tables, 356-357

transaction timestamps, 358
CHECKPOINT_QUEUE

automatic checkpoint operation, 331

checkpoint process, 329

query results, 330

sys.dm_os_waiting_tasks, 328

sys.dm_os_wait_stats, 331
CMEMTHREAD

EXECUTE (EXEC) command, 154

memory objects, 151

mini-dump, 152

mutex object, 151

procedure cache, 153

query procedure cache, 153

392

results of, 153
shared resource, 152

Common language runtime (CLR), 321
Cooperative scheduling, 16
CXCONSUMER wait type, 112
CXPACKET, 103

parallelism configuration, 107-111
SQL Server 2016 SP2 and 2017
CU3,112-113
wait type
database configuration, 106
differences, 107
parallelism configuration, 105
parallel queries, 104
parallel thread distribution, 112
SELECT operation properties, 110
skewed workloads, 111-112
threading, 104

D,E,F,G

DBMIRROR_SEND

AdventureWorks database, 283
asynchronous mode, 282
database mirroring monitor, 280, 286
data modification
operation, 280-281

description of, 283
lowering waits, 285
Mirror_Test table

creation, 283

insert, 284
principal server, 284
synchronous mirroring, 280-281
sys.dm_os_wait_stats, 284
transaction-log flow, 282

Delta capture method, 87-89
DIRTY_PAGE_POLL, 332-334



INDEX

Dynamic management views (DMVs), 25 isolation, 360

vs. detect waits right now, 38 memory-optimized tables, 355
blocking information transaction log changes, 360-361
queries, 38, 40 I0_COMPLETION, 154
results of, 40 AdventureWorks database, 155
scenarios, 38 backup transaction log, 156
sys.dm_exec_sessions, 40 database-related actions, 155
sys.dm_os_waiting_tasks, 39 lowering waits, 157
wait statistics flowchart, 42 NORECOVERY, 156

perfmon (wait statistics), 43, 44 sys.dm_os_wait_stats DMV, 155-156

query store, 70-73 transaction log backup, 156

sys.dm_exec_requests, 33-36 10 latches, 239

sys.dm_exec_session_wait_stats, 36-38
sys.dm_os_waiting_tasks, 29-33 L
sys.dm_os_wait_stats, 26-29

Latches, 235
compatibility matrix, 237

H LATCH_ [xx], 258-266
HADR_LOGCAPTURE_WAIT and HADR_ modes, 237
WORK_QUEUE, 287-289 PAGEIOLATCH_SH, 238
HADR_SYNC_COMMIT PAGEIOLATCH_[xx], 266-277
add columns, 295 page-latch contention, 241-247
AdventureWorks database, 291 PAGELATCH_[xx] (see
AlwaysOn Availability Group, 291, 294 PAGELATCH_[xx])
AQ_Test table creation, 292-293 SQL server, 235
dashboard, 294 synchronization object, 236
lowering waits, 294 sys.dm_os_wait_stats DMV, 238-239
perfmon counters, 296 transactions, 236
primary and secondary mode, 292-293 waits, 238
synchronous replication LATCH_[xx]
mode, 290-291, 297 ACCESS_METHODS_HOBT_
HA/DR test machines, 374 VIRTUAL_ROOT, 262
approach, 265
B-tree
I’ J’ K index structure, 262
In-memory OLTP navigation, 263
CFPs, 356-359 cumulative view, 259
differences, 355 data structures, 258

393



INDEX

LATCH_[xx] (cont.)

INDEXPROPERTY function, 264
lowering waits, 265
memory area, 259
non-buffer-related latch classes, 266
non-clustered index, 260
Ostress command, 260
resource_description

column, 260-261
root page splits, 265
SQL Server instance, 261
sys.dm_db_index_physical_stats, 265
test contention table, 260
TRUNCATE command, 264

LAZYWRITER_SLEEP, 335-337
LCK_M._I[xx]

COMMIT command, 228

intent locks, 226, 229

lowering waits, 229

SELECT statement, 227
sys.dm_os_waiting_tasks DMV, 228

LCK_M_SCH_S and LCK_M_SCH_M

lowering waits, 233

ROLLBACK command, 231
schema locks, 230-233

Sch-M and Sch-S locks, 231
SELECT query, 232
sys.dm_os_waiting_tasks, 231-233
sys.dm_tran_locks DMV, 231-232
transaction, 232

LCK_M_S wait type

COMMIT/ROLLBACK command, 217
lowering waits, 218

modification transaction, 216-218
resource, 219

SELECT query, 218

shared locks, 217
sys.dm_os_waiting_tasks DMV, 218

394

LCK_M_U

AdventureWorks database, 222
concurrent data modifications, 221
exclusive lock, 223

lock conversion, 221

lowering waits, 223

Ostress utility, 222

transactions, 220

update lock mode, 223

Update (U) mode, 220

LCK_M_X, 223

COMMIT command, 224
exclusive lock, 224
HumanResources.Employee

table, 225
lowering waits, 225
SELECT statement, 224
sys.dm_os_waiting_tasks DMV, 225
sys.dm_tran_locks DMV, 224

Locking and blocking mode

characteristics, 203

LCK_M_I[xx], 226-229

LCK_M_S (see LCK_M_S wait type)

LCK_M_SCH_S and LCK_M_

SCH_M, 230-233

LCK_M_U, 223-226

LCK_M_X, 226-229

modes and compatibility
concurrent lock situation, 207
hierarchy, 207, 208
isolation levels, 208-211
levels and locking behavior, 210
lock compatibility, 206
parentheses, 205
querying information, 212-217
read committed, 211
resource_description column, 213
sp_WholsActive, 214-215



sql_text output, 215

sys.dm_os_waiting_tasks DMV, 212

sys.dm_tran_locks, 212
transaction, 203-204
LOGBUFFER and WRITELOG
lowering wait, 162
sys.dm_os_wait_stats, 162
transaction, 157-159
trans_demo database, 160-161

MSQL_XP
deadlock detection, 340
execute extended stored

procedures, 337
lowering waits, 339
results of, 338
sys.dm_os_wait_stats, 338

N

Non-buffer latches, 239
Non-preemptive scheduling, 9

O

Object Linking and Embedding Database

(OLEDB)
DBCC command, 340-342
Ostress command, 373

P

PAGEIOLATCH_[xx]
AdventureWorks database, 269
buffer cache, 267, 276
disk operations, 267

INDEX

data page movement, 268, 277
diagnostic tool, 272

IO performance script, 273
lowering waits, 270
modification, 274
memory pages, 266
monitoring storage, 272
SELECT query, 269

SQL Server instance, 274
storage subsystem, 267
sys.dm_os_wait_stats, 275
wait time information, 270

Page-latch contention, 241-247
PAGELATCH._[xx]

advantage of, 254
AdventureWorks database, 249
B-trees, 254, 255
clustered index and

map, 248, 249, 256
contention, 253
database design class, 248
DBCC IND results, 252
graphical representation, 247
hash partitioning, 254
impact latch contention, 253
in-memory pages, 258
Insert_Test3 table, 256
last-page insert contention, 254
lowering waits, 252
last-page insert contention, 253
non-partitioned and partitioned

index, 257
Ostress command, 250
partition function, 255
page in-memory, 247
query filters, 250
rows distribution, 258
TempDB database, 248, 252

395



INDEX

PREEMPTIVE_OS_
AUTHENTICATIONOPS, 316
authentication requests, 321
lowering waits, 319
mixed-mode authentication, 317
query Window, 318
output results of, 319
SQL Server management, 318
Windows login authentication, 317
PREEMPTIVE_OS_ENCRYPTMESSAGE
and PREEMPTIVE_
OS_DECRYPTMESSAGE
certificate account selection, 308-309
connection properties, 311
encrypted connection, 305, 312-313
decryption, 305
features view, 306
lowering waits, 312
output results of, 312
self-signed certificate, 307-309
SQL Server instance, 306
PREEMPTIVE_OS_GETPROCADDRESS
entry-point, 321-322
stored procedures, 325
lowering waits, 325
master database selection, 323
output results of, 333-324
Xp_getnetname, 324
PREEMPTIVE_OS_WRITEFILEGATHER
database file configuration, 314
file initialization, 316
storage subsystem, 315-316
WriteFileGather function, 313
Preemptive scheduling model, 8, 301
graphical representation, 301
PAL layer interaction, 304
SQL Server/Linux, 302-305

396

types (see PREEMPTIVE_OS_
ENCRYPTMESSAGE and
PREEMPTIVE_OS _
DECRYPTMESSAGE)

WriteFileGather Windows
function, 302

Q

Query store

architecture, 64-65

vs. DMVs, 64
categories, 70
modification, 72
output, 71-72
queries, 71
runtime_stats_interval_id, 72
statistics collection interval, 73
sys.query_store_wait_stats, 70

feature, 63

flight-recorder, 63

wait statistics
built-in-reports, 68
categories, 69
metric-wait time, 68-69
processes, 65-67
types and categories, 66

R

REDO_THREAD_PENDING_
WORK, 297-300
Reset capture method, 86-87
RESOURCE_SEMAPHORE
additional memory, 163-164
AdventureWorks database, 165
lowering wait, 170



MemoryGrantInfo, 165, 166
RequiredMemory property, 166
required memory, 164
resource semaphore queue, 171
resource_semaphore.sql, 167
SELECT operator, 165
SerialRequiredMemory, 166
sys.dm_exec_query_resource_
semaphore, 169
sys.dm_os_waiting tasks DMV, 167
workspace memory (KB)
counter, 170
RESOURCE_SEMAPHORE_QUERY _
COMPILE
compilation-memory
resource, 171-172
CompileMemory property, 176
contention, 175
DBCC MEMORYSTATUS
command, 174-176
execution plan properties, 175
lowering wait, 177
resource semaphores, 178
sys.dm_os_waiting tasks DMV, 176

S

Shared Intent Update (SIU), 227
SLEEP_BPOOL_FLUSH
CHECKPOINT command, 184
checkpoint process, 179, 185
data modification process, 180
DBCC SQLPERF command, 184
generating waits, 182
lowering waits, 185
trans_demo database, 183
types, 181

INDEX

SOS_SCHEDULER_YIELD
AdventureWorks database, 116
CPU queries, 121
lowering wait times, 117-122
meaning, 114
Ostress execution, 120
phases and queues, 114
processor, 115
RUNNING state, 115
situations, 117
sys.dm_os_wait_stats, 116

Spinlocks
advantage of, 378
backoffs, 380
latches, 377-378
lightweight synchronization objects, 377
sys.dm_os_spinlock_stats, 379-380

SQL server 2005 architecture, 8

SQL server agent/Schedule

measurements, 89-91
SQL Server architecture, 7
Sys.dm_exec_requests, 11, 33
queries, 35
execution plan, 36
statement and plan, 35
test system, 36

results of, 33

wait statistics analysis, 34

Sys.dm_exec_sessions, 10

Sys.dm_exec_session_wait_stats, 36-38

Sys.dm_os_tasks, 12

Sys.dm_os_waiting_tasks, 29, 93
column returns, 30
queries, 31-33
results of, 30

Sys.dm_os_wait_stats, 26-29, 240

Sys.query_store_wait_stats, 70

397



INDEX

T

Test machine, 373

THREADPOOL wait type, 123
administrator connection, 130-131
AdventureWorks database, 126
CPU usage history graph, 136
CXPACKET, 133
formulas, 124
gaining access, 130, 131
Ostress tool, 126, 129, 135
parallelism, 132-135
processors configuration, 125
SQL Server instance, 127
sys.dm_os_schedulers, 127
sys.dm_os_waiting_tasks, 128-129
tasks and worker threads, 128
test machine, 126
unresponsive, 129
user connections, 134-136
worker threads, 123

TRACEWRITE
event selection, 346
lowering waits, 348
management tools, 344
output results of, 347
Sp_trace_setstatus, 351
SQL-BatchCompleted selection, 347
SQL Server Profiler traces, 342-351
sys.traces, 348, 350
trace definition, 343, 350

uv
Update Intent Exclusive (UIX), 227
User Mode Scheduling (UMS), 9

398

W XY,Z
WAITFOR, 351-353
Wait statistics, 3
baselines, 82-99
DMVs together, 18
extended events, 45
ALTER EVENT SESSION
command, 54
configuration, 48
event filter, 45, 49, 51, 54
file as rows, 55, 56
live data tab, 52
management folder, 47
results of, 45, 56
sessions folder, 47, 52
SQL Server Profiler, 45
sql_text global field, 50
sys.dm_xe_map_values, 46
history of, 4-6
perfmon, 43-44
per-query (execution plans), 57-61
query store, 65-67
results of, 18
scheduler view
few milliseconds, 22
phases and queues, 19
request execution time
calculation, 21
runnable queue, 19
RUNNING phase, 20
running requests, 21
wait times and worker
thread flow, 20
SQLOS, 6-9
sys.dm_exec_sql_text, 18



INDEX

tasks, schedulers and worker threads,9 ~ WAIT_XTP _HOST WAIT

cooperative scheduling, 16-17 .dll file, 365

requests, 11 extended events session, 365

sessions, 10-11 memory-optimized

SQL server, 9 tables, 366

tasks, 12, 13 results of, 363

worker threads, 13-17 shares, 361
thread scheduling, 3 sys.dm_os_waiting_tasks, 363

WAIT_XTP_CKPT_CLOSE test database and memory-optimized

call stack, 368 table, 362
checkpoint operations, 370 WAIT _XTP_OFFLINE_CKPT NEW_
offline checkpoint process, 367 LOG, 370-372
results, 368 Worker threads, 13-15
sys.dm_os_wait_stats, 367 WRITE_COMPLETION, 186-187

399



	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Part I: Foundations of Wait Statistics Analysis
	Chapter 1: Wait Statistics Internals
	A Brief History of Wait Statistics
	The SQLOS
	Schedulers, Tasks, and Worker Threads
	Sessions
	Requests
	Tasks
	Worker Threads
	Schedulers
	Putting It All Together

	Wait Statistics
	Summary

	Chapter 2: Querying SQL Server Wait Statistics
	Sys.dm_os_wait_stats
	Sys.dm_os_waiting_tasks
	Understanding sys.dm_os_waiting_tasks
	Querying sys.dm_os_waiting_tasks

	Sys.dm_exec_requests
	Understanding sys.dm_exec_requests
	Querying sys.dm_exec_requests

	Sys.dm_exec_session_wait_stats
	Combining DMVs to Detect Waits Right Now
	Viewing Wait Statistics Using Perfmon
	Capturing Wait Statistics Using Extended Events
	Capture Wait Statistics Information for a Specific Query

	Analyzing Wait Statistics on a Per-Query Basis Using Execution Plans
	Summary

	Chapter 3: The Query Store
	What Is the Query Store?
	Query Store Architecture
	How Wait Statistics Are Processed in the Query Store
	Accessing Wait Statistics Through the Query Store Reports
	Accessing Wait Statistics Through the Query Store DMVs
	Summary

	Chapter 4: Building a Solid Baseline
	What Are Baselines?
	Visualizing Your Baselines
	Baseline Types and Statistics

	Baseline Pitfalls
	Too Much Information
	Know Your Metrics
	Focus on the Big Measurement Changes
	Use Fixed Intervals

	Building a Baseline for Wait Statistics Analysis
	Reset Capture Method
	Delta Capture Method
	Using SQL Server Agent to Schedule Measurements

	Wait Statistics Baseline Analysis
	Summary


	Part II: Wait Types
	Chapter 5: CPU-Related Wait Types
	CXPACKET
	What Is the CXPACKET Wait Type?
	Lowering CXPACKET Wait Time by Tuning the Parallelism Configuration
	Lowering CXPACKET Wait Time by Resolving Skewed Workloads
	Introduction of the CXCONSUMER Wait Type in SQL Server 2016 SP2 and 2017 CU3
	CXPACKET Summary

	SOS_SCHEDULER_YIELD
	What Is the SOS_SCHEDULER_YIELD Wait Type?
	Lowering SOS_SCHEDULER_YIELD Waits
	SOS_SCHEDULER_YIELD Summary

	THREADPOOL
	What Is the THREADPOOL Wait Type?
	THREADPOOL Example
	Gaining Access to Our SQL Server During THREADPOOL Waits
	Lowering THREADPOOL Waits Caused by Parallelism
	Lowering THREADPOOL Waits Caused by User Connections
	THREADPOOL Summary


	Chapter 6: IO-Related Wait Types
	ASYNC_IO_COMPLETION
	What Is the ASYNC_IO_COMPLETION Wait Type?
	ASYNC_IO_COMPLETION Example
	Lowering ASYNC_IO_COMPLETION Waits
	ASYNC_IO_COMPLETION Summary

	ASYNC_NETWORK_IO
	What Is the ASYNC_NETWORK_IO Wait Type?
	ASYNC_NETWORK_IO Example
	Lowering ASYNC_NETWORK_IO Waits
	ASYNC_NETWORK_IO Summary

	CMEMTHREAD
	What Is the CMEMTHREAD Wait Type?
	Lowering CMEMTHREAD Waits
	CMEMTHREAD Summary

	IO_COMPLETION
	What Is the IO_COMPLETION Wait Type?
	IO_COMPLETION Example
	Lowering IO_COMPLETION Waits
	IO_COMPLETION Summary

	LOGBUFFER and WRITELOG
	What Are the LOGBUFFER and WRITELOG Wait Types?
	LOGBUFFER and WRITELOG Example
	Lowering LOGBUFFER and WRITELOG Waits
	LOGBUFFER and WRITELOG Summary

	RESOURCE_SEMAPHORE
	What Is the RESOURCE_SEMAPHORE Wait Type?
	RESOURCE_SEMAPHORE Example
	Lowering RESOURCE_SEMAPHORE Waits
	RESOURCE_SEMAPHORE Summary

	RESOURCE_SEMAPHORE_QUERY_COMPILE
	What Is the RESOURCE_SEMAPHORE_QUERY_COMPILE Wait Type?
	RESOURCE_SEMAPHORE_QUERY_COMPILE Example
	Lowering RESOURCE_SEMAPHORE_QUERY_COMPILE Waits
	RESOURCE_SEMAPHORE_QUERY_COMPILE Summary

	SLEEP_BPOOL_FLUSH
	What Is the SLEEP_BPOOL_FLUSH Wait Type?
	SLEEP_BPOOL_FLUSH Example
	Lowering SLEEP_BPOOL_FLUSH Waits
	SLEEP_BPOOL_FLUSH Summary

	WRITE_COMPLETION
	What Is the WRITE_COMPLETION Wait Type?
	WRITE_COMPLETION Example
	Lowering WRITE_COMPLETION Waits
	WRITE_COMPLETION Summary


	Chapter 7: Backup-Related Wait Types
	BACKUPBUFFER
	What Is the BACKUPBUFFER Wait Type?
	BACKUPBUFFER Example
	Lowering BACKUPBUFFER Waits
	BACKUPBUFFER Summary

	BACKUPIO
	What Is the BACKUPIO Wait Type?
	BACKUPIO Example
	Lowering BACKUPIO Waits
	BACKUPIO Summary

	BACKUPTHREAD
	What Is the BACKUPTHREAD Wait Type?
	BACKUPTHREAD Example
	Lowering BACKUPTHREAD Waits
	BACKUPTHREAD Summary


	Chapter 8: Lock-Related Wait Types
	Introduction to Locking and Blocking
	Lock Modes and Compatibility
	Locking Hierarchy
	Isolation Levels
	Querying Lock Information

	LCK_M_S
	What Is the LCK_M_S Wait Type?
	LCK_M_S Example
	Lowering LCK_M_S Waits
	LCK_M_S Summary

	LCK_M_U
	What Is the LCK_M_U Wait Type?
	LCK_M_U Example
	Lowering LCK_M_U Waits
	LCK_M_U Summary

	LCK_M_X
	What Is the LCK_M_X Wait Type?
	LCK_M_X Example
	Lowering LCK_M_X Waits
	LCK_M_X Summary

	LCK_M_I[xx]
	What Is the LCK_M_I[xx] Wait Type?
	LCK_M_I[xx] Example
	Lowering LCK_M_I[xx] Waits
	LCK_M_I[xx] Summary

	LCK_M_SCH_S and LCK_M_SCH_M
	What Are the LCK_M_SCH_S and LCK_M_SCH_M Wait Types?
	LCK_M_SCH_S and LCK_M_SCH_M Example
	Lowering LCK_M_SCH_S and LCK_M_SCH_M Waits
	LCK_M_SCH_S and LCK_M_SCH_M Summary


	Chapter 9: Latch-Related Wait Types
	Introduction to Latches
	Latch Modes
	Latch Waits
	Sys.dm_os_latch_stats
	Page-Latch Contention

	PAGELATCH_[xx]
	What Is the PAGELATCH_[xx] Wait Type?
	PAGELATCH_[xx] Example
	Lowering PAGELATCH_[xx] Waits
	PAGELATCH_[xx] Summary

	LATCH_[xx]
	What Is the LATCH_[xx] Wait Type?
	LATCH_[xx] Example
	Lowering LATCH_[xx] Waits
	LATCH_[xx] Summary

	PAGEIOLATCH_[xx]
	What Is the PAGEIOLATCH_[xx] Wait Type?
	PAGEIOLATCH_[xx] Example
	Lowering PAGEIOLATCH_[xx] Waits
	PAGEIOLATCH_[xx] Summary


	Chapter 10: High-Availability and Disaster-Recovery Wait Types
	DBMIRROR_SEND
	What Is the DBMIRROR_SEND Wait Type?
	DBMIRROR_SEND Example
	Lowering DBMIRROR_SEND Waits
	DBMIRROR_SEND Summary

	HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE
	What Are the HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE Wait Types?
	HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE Summary

	HADR_SYNC_COMMIT
	What Is the HADR_SYNC_COMMIT Wait Type?
	HADR_SYNC_COMMIT Example
	Lowering HADR_SYNC_COMMIT Waits
	HADR_SYNC_COMMIT Summary

	REDO_THREAD_PENDING_WORK
	What Is the REDO_THREAD_PENDING_WORK Wait Type?
	REDO_THREAD_PENDING_WORK Summary


	Chapter 11: Preemptive Wait Types
	SQL Server on Linux
	PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE
	What Are the PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE Wait Types?
	PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE Example
	Lowering PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE Waits
	PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE Summary

	PREEMPTIVE_OS_WRITEFILEGATHER
	What Is the PREEMPTIVE_OS_WRITEFILEGATHER Wait Type?
	PREEMPTIVE_OS_WRITEFILEGATHER Example
	Lowering PREEMPTIVE_OS_WRITEFILEGATHER Waits
	PREEMPTIVE_OS_WRITEFILEGATHER Summary

	PREEMPTIVE_OS_AUTHENTICATIONOPS
	What Is the PREEMPTIVE_OS_AUTHENTICATIONOPS Wait Type?
	PREEMPTIVE_OS_AUTHENTICATIONOPS Example
	Lowering PREEMPTIVE_OS_AUTHENTICATIONOPS Waits
	PREEMPTIVE_OS_AUTHENTICATIONOPS Summary

	PREEMPTIVE_OS_GETPROCADDRESS
	What Is the PREEMPTIVE_OS_GETPROCADDRESS Wait Type?
	PREEMPTIVE_OS_GETPROCADDRESS Example
	Lowering PREEMPTIVE_OS_GETPROCADDRESS Waits
	PREEMPTIVE_OS_GETPROCADDRESS Summary


	Chapter 12: Background and Miscellaneous Wait Types
	CHECKPOINT_QUEUE
	What Is the CHECKPOINT_QUEUE Wait Type?
	CHECKPOINT_QUEUE Summary

	DIRTY_PAGE_POLL
	What Is the DIRTY_PAGE_POLL Wait Type?
	DIRTY_PAGE_POLL Summary

	LAZYWRITER_SLEEP
	What Is the LAZYWRITER_SLEEP Wait Type?
	LAZYWRITER_SLEEP Summary

	MSQL_XP
	What Is the MSQL_XP Wait Type?
	MSQL_XP Example
	Lowering MSQL_XP Waits
	MSQL_XP Summary

	OLEDB
	What Is the OLEDB Wait Type?
	OLEDB Example
	Lowering OLEDB Waits
	OLEDB Summary

	TRACEWRITE
	What Is the TRACEWRITE Wait Type?
	TRACEWRITE Example
	Lowering TRACEWRITE Waits
	TRACEWRITE Summary

	WAITFOR
	What Is the WAITFOR Wait Type?
	WAITFOR Example
	WAITFOR Summary


	Chapter 13: In-Memory OLTP–Related Wait Types
	Introduction to In-Memory OLTP
	CFPs
	Isolation
	Transaction Log Changes

	WAIT_XTP_HOST_WAIT
	What Is the WAIT_XTP_HOST_WAIT Wait Type?
	WAIT_XTP_HOST_WAIT Summary

	WAIT_XTP_CKPT_CLOSE
	What Is the WAIT_XTP_CKPT_CLOSE Wait Type?
	WAIT_XTP_CKPT_CLOSE Summary

	WAIT_XTP_OFFLINE_CKPT_NEW_LOG
	What Is the WAIT_XTP_OFFLINE_CKPT_NEW_LOG Wait Type?
	WAIT_XTP_OFFLINE_CKPT_NEW_LOG Summary


	Appendix I: Example SQL Server Machine Configurations
	Default Test Machine
	HA/DR Test Machines

	Appendix II: Spinlocks
	Appendix III: Latch Classes

	Index



