
Pro
SQL Server 2019
Wait Statistics

A Practical Guide to Analyzing
Performance in SQL Server
—
Second Edition
—
Enrico van de Laar

www.allitebooks.com

http://www.allitebooks.org

Pro SQL Server
2019 Wait Statistics

A Practical Guide to Analyzing
Performance in SQL Server

Second Edition

Enrico van de Laar

www.allitebooks.com

http://www.allitebooks.org

Enrico van de Laar
Drachten, The Netherlands

Pro SQL Server 2019 Wait Statistics: A Practical Guide to Analyzing
Performance in SQL Server

ISBN-13 (pbk): 978-1-4842-4915-4 ISBN-13 (electronic): 978-1-4842-4916-1
https://doi.org/10.1007/978-1-4842-4916-1

Copyright © 2019 by Enrico van de Laar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484249154. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4916-1
http://www.allitebooks.org

This book is dedicated to cats and pizza.
I had to leave both for a little while to write this book,

else it would probably still be a work in progress.

www.allitebooks.com

http://www.allitebooks.org

v

Part I: Foundations of Wait Statistics Analysis ��� 1

Chapter 1: Wait Statistics Internals �� 3

A Brief History of Wait Statistics ��� 4

The SQLOS �� 6

Schedulers, Tasks, and Worker Threads �� 9

Sessions �� 10

Requests �� 11

Tasks ��� 12

Worker Threads ��� 13

Schedulers ��� 16

Putting It All Together �� 17

Wait Statistics ��� 19

Summary��� 23

Chapter 2: Querying SQL Server Wait Statistics ��� 25

Sys�dm_os_wait_stats �� 26

Sys�dm_os_waiting_tasks �� 29

Understanding sys�dm_os_waiting_tasks �� 29

Querying sys�dm_os_waiting_tasks ��� 31

Table of Contents

About the Author ���xv

About the Technical Reviewers ���xvii

Acknowledgments ��xix

Introduction ��xxi

www.allitebooks.com

http://www.allitebooks.org

vi

Sys�dm_exec_requests ��� 33

Understanding sys�dm_exec_requests ��� 33

Querying sys�dm_exec_requests �� 35

Sys�dm_exec_session_wait_stats �� 36

Combining DMVs to Detect Waits Right Now �� 38

Viewing Wait Statistics Using Perfmon ��� 43

Capturing Wait Statistics Using Extended Events ��� 45

Capture Wait Statistics Information for a Specific Query �� 46

Analyzing Wait Statistics on a Per-Query Basis Using Execution Plans �������������������������������������� 57

Summary��� 61

Chapter 3: The Query Store ��� 63

What Is the Query Store? �� 63

Query Store Architecture ��� 64

How Wait Statistics Are Processed in the Query Store ��� 65

Accessing Wait Statistics Through the Query Store Reports ��� 68

Accessing Wait Statistics Through the Query Store DMVs �� 70

Summary��� 73

Chapter 4: Building a Solid Baseline �� 75

What Are Baselines? ��� 76

Visualizing Your Baselines ��� 78

Baseline Types and Statistics �� 79

Baseline Pitfalls �� 81

Too Much Information �� 81

Know Your Metrics ��� 81

Focus on the Big Measurement Changes �� 81

Use Fixed Intervals �� 82

Building a Baseline for Wait Statistics Analysis �� 82

Reset Capture Method ��� 86

Delta Capture Method �� 87

Table of ConTenTs

vii

Using SQL Server Agent to Schedule Measurements �� 89

Wait Statistics Baseline Analysis �� 91

Summary��� 99

Part II: Wait Types ��� 101

Chapter 5: CPU-Related Wait Types �� 103

CXPACKET ��� 103

What Is the CXPACKET Wait Type? ��� 104

Lowering CXPACKET Wait Time by Tuning the Parallelism Configuration ���������������������������� 107

Lowering CXPACKET Wait Time by Resolving Skewed Workloads ��������������������������������������� 111

Introduction of the CXCONSUMER Wait Type in SQL Server 2016 SP2 and 2017 CU3 ��������� 112

CXPACKET Summary ��� 113

SOS_SCHEDULER_YIELD ��� 114

What Is the SOS_SCHEDULER_YIELD Wait Type? �� 114

Lowering SOS_SCHEDULER_YIELD Waits �� 117

SOS_SCHEDULER_YIELD Summary ��� 122

THREADPOOL �� 123

What Is the THREADPOOL Wait Type? �� 123

THREADPOOL Example �� 126

Gaining Access to Our SQL Server During THREADPOOL Waits ��� 130

Lowering THREADPOOL Waits Caused by Parallelism ��� 132

Lowering THREADPOOL Waits Caused by User Connections ��� 134

THREADPOOL Summary �� 137

Chapter 6: IO-Related Wait Types ��� 139

ASYNC_IO_COMPLETION ��� 139

What Is the ASYNC_IO_COMPLETION Wait Type? �� 140

ASYNC_IO_COMPLETION Example��� 141

Lowering ASYNC_IO_COMPLETION Waits �� 142

ASYNC_IO_COMPLETION Summary ��� 147

Table of ConTenTs

viii

ASYNC_NETWORK_IO�� 147

What Is the ASYNC_NETWORK_IO Wait Type? ��� 147

ASYNC_NETWORK_IO Example ��� 148

Lowering ASYNC_NETWORK_IO Waits ��� 149

ASYNC_NETWORK_IO Summary �� 151

CMEMTHREAD ��� 151

What Is the CMEMTHREAD Wait Type? �� 151

Lowering CMEMTHREAD Waits �� 153

CMEMTHREAD Summary ��� 154

IO_COMPLETION �� 154

What Is the IO_COMPLETION Wait Type? ��� 155

IO_COMPLETION Example ��� 155

Lowering IO_COMPLETION Waits ��� 157

IO_COMPLETION Summary �� 157

LOGBUFFER and WRITELOG ��� 157

What Are the LOGBUFFER and WRITELOG Wait Types? �� 158

LOGBUFFER and WRITELOG Example �� 160

Lowering LOGBUFFER and WRITELOG Waits �� 162

LOGBUFFER and WRITELOG Summary ��� 163

RESOURCE_SEMAPHORE �� 163

What Is the RESOURCE_SEMAPHORE Wait Type? �� 163

RESOURCE_SEMAPHORE Example �� 165

Lowering RESOURCE_SEMAPHORE Waits ��� 170

RESOURCE_SEMAPHORE Summary �� 171

RESOURCE_SEMAPHORE_QUERY_COMPILE ��� 171

What Is the RESOURCE_SEMAPHORE_QUERY_COMPILE Wait Type?����������������������������������� 172

RESOURCE_SEMAPHORE_QUERY_COMPILE Example ��� 174

Lowering RESOURCE_SEMAPHORE_QUERY_COMPILE Waits �� 177

RESOURCE_SEMAPHORE_QUERY_COMPILE Summary ��� 178

Table of ConTenTs

ix

SLEEP_BPOOL_FLUSH �� 179

What Is the SLEEP_BPOOL_FLUSH Wait Type? �� 179

SLEEP_BPOOL_FLUSH Example �� 182

Lowering SLEEP_BPOOL_FLUSH Waits ��� 185

SLEEP_BPOOL_FLUSH Summary �� 185

WRITE_COMPLETION ��� 186

What Is the WRITE_COMPLETION Wait Type? �� 186

WRITE_COMPLETION Example ��� 186

Lowering WRITE_COMPLETION Waits �� 187

WRITE_COMPLETION Summary ��� 187

Chapter 7: Backup-Related Wait Types ��� 189

BACKUPBUFFER �� 190

What Is the BACKUPBUFFER Wait Type? �� 190

BACKUPBUFFER Example �� 193

Lowering BACKUPBUFFER Waits ��� 194

BACKUPBUFFER Summary �� 195

BACKUPIO �� 195

What Is the BACKUPIO Wait Type? ��� 196

BACKUPIO Example�� 196

Lowering BACKUPIO Waits ��� 197

BACKUPIO Summary �� 198

BACKUPTHREAD �� 198

What Is the BACKUPTHREAD Wait Type? ��� 198

BACKUPTHREAD Example �� 199

Lowering BACKUPTHREAD Waits ��� 200

BACKUPTHREAD Summary �� 201

Chapter 8: Lock-Related Wait Types ��� 203

Introduction to Locking and Blocking ��� 205

Lock Modes and Compatibility �� 205

Locking Hierarchy �� 207

Isolation Levels �� 208

Table of ConTenTs

x

Querying Lock Information �� 212

LCK_M_S �� 216

What Is the LCK_M_S Wait Type? �� 216

LCK_M_S Example �� 217

Lowering LCK_M_S Waits�� 218

LCK_M_S Summary��� 219

LCK_M_U �� 220

What Is the LCK_M_U Wait Type? �� 220

LCK_M_U Example �� 222

Lowering LCK_M_U Waits ��� 223

LCK_M_U Summary �� 223

LCK_M_X��� 223

What Is the LCK_M_X Wait Type? �� 224

LCK_M_X Example �� 224

Lowering LCK_M_X Waits �� 225

LCK_M_X Summary ��� 226

LCK_M_I[xx] �� 226

What Is the LCK_M_I[xx] Wait Type? ��� 226

LCK_M_I[xx] Example �� 227

Lowering LCK_M_I[xx] Waits ��� 229

LCK_M_I[xx] Summary �� 229

LCK_M_SCH_S and LCK_M_SCH_M ��� 230

What Are the LCK_M_SCH_S and LCK_M_SCH_M Wait Types? �� 230

LCK_M_SCH_S and LCK_M_SCH_M Example��� 231

Lowering LCK_M_SCH_S and LCK_M_SCH_M Waits �� 233

LCK_M_SCH_S and LCK_M_SCH_M Summary ��� 233

Chapter 9: Latch-Related Wait Types �� 235

Introduction to Latches ��� 235

Latch Modes �� 237

Latch Waits �� 238

Table of ConTenTs

xi

Sys�dm_os_latch_stats ��� 240

Page-Latch Contention �� 241

PAGELATCH_[xx] ��� 247

What Is the PAGELATCH_[xx] Wait Type? ��� 247

PAGELATCH_[xx] Example ��� 248

Lowering PAGELATCH_[xx] Waits ��� 252

PAGELATCH_[xx] Summary �� 258

LATCH_[xx] �� 258

What Is the LATCH_[xx] Wait Type? ��� 259

LATCH_[xx] Example �� 259

Lowering LATCH_[xx] Waits ��� 265

LATCH_[xx] Summary �� 266

PAGEIOLATCH_[xx] �� 266

What Is the PAGEIOLATCH_[xx] Wait Type? �� 267

PAGEIOLATCH_[xx] Example �� 269

Lowering PAGEIOLATCH_[xx] Waits ��� 270

PAGEIOLATCH_[xx] Summary �� 277

Chapter 10: High-Availability and Disaster-Recovery Wait Types ������������������������ 279

DBMIRROR_SEND ��� 280

What Is the DBMIRROR_SEND Wait Type? ��� 283

DBMIRROR_SEND Example ��� 283

Lowering DBMIRROR_SEND Waits ��� 285

DBMIRROR_SEND Summary �� 286

HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE �� 287

What Are the HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE Wait Types? ��������������� 287

HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE Summary �� 290

HADR_SYNC_COMMIT ��� 290

What Is the HADR_SYNC_COMMIT Wait Type? �� 290

HADR_SYNC_COMMIT Example��� 291

Lowering HADR_SYNC_COMMIT Waits �� 294

HADR_SYNC_COMMIT Summary ��� 297

Table of ConTenTs

xii

REDO_THREAD_PENDING_WORK �� 297

What Is the REDO_THREAD_PENDING_WORK Wait Type? ��� 298

REDO_THREAD_PENDING_WORK Summary �� 300

Chapter 11: Preemptive Wait Types �� 301

SQL Server on Linux �� 302

PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE ������������������� 305

What Are the PREEMPTIVE_OS_ENCRYPTMESSAGE
and PREEMPTIVE_OS_DECRYPTMESSAGE Wait Types? �� 305

PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE
Example ��� 306

Lowering PREEMPTIVE_OS_ENCRYPTMESSAGE and
PREEMPTIVE_OS_DECRYPTMESSAGE Waits ��� 312

PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE
Summary ��� 313

PREEMPTIVE_OS_WRITEFILEGATHER ��� 313

What Is the PREEMPTIVE_OS_WRITEFILEGATHER Wait Type? ��� 313

PREEMPTIVE_OS_WRITEFILEGATHER Example ��� 314

Lowering PREEMPTIVE_OS_WRITEFILEGATHER Waits��� 315

PREEMPTIVE_OS_WRITEFILEGATHER Summary �� 316

PREEMPTIVE_OS_AUTHENTICATIONOPS ��� 316

What Is the PREEMPTIVE_OS_AUTHENTICATIONOPS Wait Type? �� 317

PREEMPTIVE_OS_AUTHENTICATIONOPS Example ��� 318

Lowering PREEMPTIVE_OS_AUTHENTICATIONOPS Waits �� 319

PREEMPTIVE_OS_AUTHENTICATIONOPS Summary ��� 321

PREEMPTIVE_OS_GETPROCADDRESS ��� 321

What Is the PREEMPTIVE_OS_GETPROCADDRESS Wait Type? �� 322

PREEMPTIVE_OS_GETPROCADDRESS Example��� 324

Lowering PREEMPTIVE_OS_GETPROCADDRESS Waits �� 325

PREEMPTIVE_OS_GETPROCADDRESS Summary ��� 325

Table of ConTenTs

xiii

Chapter 12: Background and Miscellaneous Wait Types �������������������������������������� 327

CHECKPOINT_QUEUE ��� 328

What Is the CHECKPOINT_QUEUE Wait Type? �� 328

CHECKPOINT_QUEUE Summary ��� 331

DIRTY_PAGE_POLL �� 332

What Is the DIRTY_PAGE_POLL Wait Type? �� 332

DIRTY_PAGE_POLL Summary �� 335

LAZYWRITER_SLEEP ��� 335

What Is the LAZYWRITER_SLEEP Wait Type? ��� 335

LAZYWRITER_SLEEP Summary ��� 337

MSQL_XP �� 337

What Is the MSQL_XP Wait Type? �� 337

MSQL_XP Example �� 338

Lowering MSQL_XP Waits ��� 339

MSQL_XP Summary �� 340

OLEDB ��� 340

What Is the OLEDB Wait Type? ��� 340

OLEDB Example ��� 340

Lowering OLEDB Waits �� 341

OLEDB Summary ��� 342

TRACEWRITE ��� 342

What Is the TRACEWRITE Wait Type? ��� 343

TRACEWRITE Example ��� 343

Lowering TRACEWRITE Waits �� 348

TRACEWRITE Summary ��� 351

WAITFOR ��� 351

What Is the WAITFOR Wait Type? ��� 352

WAITFOR Example ��� 352

WAITFOR Summary �� 353

Table of ConTenTs

xiv

Chapter 13: In-Memory OLTP–Related Wait Types �� 355

Introduction to In-Memory OLTP ��� 355

CFPs �� 356

Isolation ��� 360

Transaction Log Changes �� 360

WAIT_XTP_HOST_WAIT ��� 361

What Is the WAIT_XTP_HOST_WAIT Wait Type? ��� 361

WAIT_XTP_HOST_WAIT Summary ��� 366

WAIT_XTP_CKPT_CLOSE ��� 367

What Is the WAIT_XTP_CKPT_CLOSE Wait Type? �� 367

WAIT_XTP_CKPT_CLOSE Summary ��� 370

WAIT_XTP_OFFLINE_CKPT_NEW_LOG �� 370

What Is the WAIT_XTP_OFFLINE_CKPT_NEW_LOG Wait Type? �� 370

WAIT_XTP_OFFLINE_CKPT_NEW_LOG Summary �� 372

Appendix I: Example SQL Server Machine Configurations ������������������������������������ 373

Default Test Machine ��� 373

HA/DR Test Machines �� 374

Appendix II: Spinlocks �� 377

Appendix III: Latch Classes �� 381

Index ��� 391

Table of ConTenTs

xv

About the Author

Enrico van de Laar has been working with data in all

kinds of formats and sizes for over 15 years. He is a Data

& Advanced Analytics Consultant for Dataheroes where

he helps organizations optimize their data platform

environment and helps them with their first steps in the

world of Advanced Analytics.

Enrico is a Data Platform MVP since 2014 and a frequent

speaker on various data-related events all over the world.

He frequently writes about technologies, like Microsoft SQL

Server and Azure Machine Learning, on his blog at www.enricovandelaar.com. You

can contact Enrico through his Twitter handle @evdlaar or by sending him an e-mail at

enrico@dataheroes.nl.

http://www.enricovandelaar.com/

xvii

About the Technical Reviewers

Eelco Drost is a Data Platform Architect at Data

Masterminds, a company that he co-formed in 2017.

He has over two decades of experience with SQL Server

as a consultant DBA, programmer, and architect.

His areas of expertise are architecture, disaster

recovery, database administration, database programming,

performance tuning, and SQL Server Internals.

He speaks at user groups and other industry

international events. You can follow him on Twitter at

@eelcodrost, find him on LinkedIn at www.linkedin.com/in/eelcodrost, and drop him

an e-mail at eelcodrost@datamasterminds.io.

Borbala Toth-Apathy is a database developer and architect with over 15 years of

experience in the IT field. She got interested in performance tuning when starting to

work with SQL Server back in the day, and it’s still one of her favorite topics. Recently

she is most fascinated by the power of data analysis—how raw data can transform into

complete decision support systems and how this process can change the way people

think about data.

http://www.linkedin.com/in/eelcodrost
http://www.eelcodrost@datamasterminds.io/

xix

Acknowledgments

First and foremost, I want to thank my family for supporting me while writing this book.

They had some experience in that area from when I worked on the first edition of this

book, but writing the second edition of this book still proved to be a big undertaking.

I want to thank Apress, especially Jonathan and Jill, for helping me write this book.

When Jonathan asked me whether I was interested in updating the first edition, I could

only answer with a “yes!”. So many things in SQL Server changed in the 4 years between

the first edition and this book, and being able to update the book to reflect those changes

means a lot to me.

A big thanks goes out to the technical editors, Eelco Drost and Borbala Toth-Apathy.

The comments they provided helped clarify a lot of areas inside this book and resulted in

a far higher quality.

Finally, a massive shout-out to the SQL Server community. You are a technical

community that has no equal, and I am honored to be a part of it.

xxi

Introduction

Performance is a hot issue on a lot of database implementations. Many businesses

run into performance-related issues when their databases experience more load or

grow larger in size. There are many methods available for increasing the performance

of your SQL Server(s) on all types of levels. Many of these performance-optimization

methods we consider best practice, like running index maintenance to make sure

fragmented indexes don’t slow down your queries, or updating statistics so the SQL

Server Database Engine has the correct information to generate a good execution plan.

Besides these database maintenance methods, you can also choose to dive a little bit

deeper into specific query performance troubleshooting, optimizing queries by making

sure expensive operators are replaced by less expensive ones, for instance. And of course

there is always the “sledgehammer” approach, replacing your current hardware for

newer, better performing hardware, hoping that will solve the performance issues you

are experiencing.

No matter what approach you choose to optimize or troubleshoot SQL Server

performance, there are always two common resources involved: time and money.

Ideally we want to spend as little time and money as possible while we are working

on increasing performance. Knowing where to focus your time and money is very

important. If you can find the source of the performance problem and resolve it at that

level, you can save a lot of time and money that you would have spent on analyzing

symptoms.

In a way, we can compare our search for the heart of our performance issues with a

medical examination. Instead of giving out different types of medication until something

actually works, a physician is always trying to find the source of the problem so he or she

can prescribe the right medication that works best for that specific condition without

causing side effects. The same approach works for SQL Server. Implementing all types

of possible solutions without looking at the real source of the problem will probably

not solve the real underlying issue (unless you’re really lucky) and can possibly make

matters worse.

xxii

This is where wait statistics can help. Wait statistics are generated and maintained

at the heart of the SQL Server Database Engine where queries are being executed,

giving valuable insight into what is slowing down your queries. There are 921 different

types of wait statistics in the latest edition of SQL Server (SQL Server 2017), and with

every edition that number grows as new features are introduced or existing features are

modified or expanded. That is a lot of information that is freely available to help you

troubleshoot!

This book is my attempt to help you understand SQL Server wait statistics. It will go

into detail how wait statistics are being generated and how you can use that information

to optimize, or troubleshoot, the performance of your SQL Server installation. I will also

describe specific wait statistics and give you pointers on how you can resolve problems

yourself. In the case of this book, I personally believe the journey is more important than

reaching the destination. For that reason, I spend more time describing and explaining

what is causing the specific wait types to occur than I do writing down every possible

way you can lower their wait times. If you understand why a wait type is generated, and

to what part of SQL Server it is related, you will quickly discover methods of your own to

lower their wait times.

Because of the sheer number of different wait statistics, it is sadly impossible to

describe and discuss all of them. For this reason, I had to make a selection of wait

statistics to include in this book. The way I did this was by gathering wait statistics

information from many different SQL Server installations and selecting the most

common or most performance-degrading ones, resulting in a selection of 45 different (or

grouped) wait types.

 Book Layout
As I wrote in the introduction, the goal of this book is to give you a deeper understanding

of SQL Server wait statistics and also to describe various wait statistics in detail. For this

reason this book has been split up into two parts, Part I describing the foundation of wait

statistics analysis and Part II describing various specific wait statistics in detail. I tried

to categorize the wait statistics in Part II by the part of the system they affect (i.e., CPU,

Memory, etc.). Some wait statistics aren’t that easily categorized, since they can affect

multiple system parts. In those cases, I tried to categorize them with the part they have

the most effect on.

InTroduCTIon

xxiii

Part I: Foundations of Wait Statistics Analysis

• Chapter 1: “Wait Statistics Internals” starts off with a brief history

of SQL Server wait statistics and a look at the SQLOS architecture.

Because wait statistics have a close relationship with the processor(s)

of your system, we will discuss schedulers, tasks, and worker threads

in detail.

• Chapter 2: “Querying SQL Server Wait Statistics” introduces the

various ways you can access the wait statistics information inside the

SQL Server Database Engine by using DMVs, Extended Events, and

Perfmon.

• Chapter 3: “The Query Store” explores a new SQL Server feature

that became available in SQL Server 2016, the Query Store. Since

the Query Store can have a massive impact on how you perform

performance analysis, I dedicated a chapter on how you can use this

amazing new feature.

• Chapter 4: “Building a Solid Baseline” covers the importance of

building and using a baseline for performance troubleshooting.

Baselines are especially important when analyzing wait statistics, and

I will show you examples of how you can create one for wait statistics

analysis.

Part II: Wait Types

• Chapter 5: “CPU-Related Wait Types” introduces wait types that are

CPU related.

• Chapter 6: “IO-Related Wait Types” describes wait types that are IO

related.

• Chapter 7: “Backup-Related Wait Types” presents the wait types that

are related to backup events.

• Chapter 8: “Lock-Related Wait Types” starts off with a short

introduction to locking and blocking in SQL Server before diving into

the lock-related wait types.

InTroduCTIon

xxiv

• Chapter 9: “Latch-Related Wait Types” starts off with a close look

at latches, describing what they are and how they work inside SQL

Server. After this introduction we are ready to take a look at different

latch-related wait types.

• Chapter 10: “High-Availability and Disaster-Recovery Wait Types”

describes wait types that are related to the various HA and DR

configurations available in SQL Server.

• Chapter 11: “Preemptive Wait Types” presents different wait types

that have a direct relationship with the operating system of your SQL

Server.

• Chapter 12: “Background and Miscellaneous Wait Types” includes

various wait types that are being generated by the SQLOS as a

background process. This is also the chapter where we will describe

wait types that couldn’t be categorized in one of the preceding

categories.

• Chapter 13: “In-Memory OLTP–Related Wait Types” describes some

of the wait types that are related to the In-Memory OLTP feature

which was released in SQL Server 2014.

• Appendix I: “Example SQL Server Machine Configurations” describes

the configuration of the virtual machines I used in the book.

• Appendix II: “Spinlocks” explains the working of so-called lightweight

synchronization primitives called spinlocks and the impact they can

have on your SQL Server configuration.

• Appendix III: “Latch Classes” contains a list of a large portion of

different latch classes inside SQL Server. The list is a combination of

information from Books Online and additional information about the

specific latch class.

InTroduCTIon

xxv

 Word of Warning
The way we access wait statistics information in this book is mostly by SQL queries. For

this reason this book has quite a lot of lines of SQL code. Most of the queries in Part I of

this book deal with gathering or capturing wait statistics using Dynamic Management

Views (or DMVs) and as such are, unless stated otherwise, harmless. Some of the queries

in Part II, however, are written to actually harm performance so specific wait types can

be demonstrated. Please keep this in mind when you plan to use some of the scripts and

test them thoroughly on a test system.

InTroduCTIon

PART I

Foundations of Wait
Statistics Analysis

3
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_1

CHAPTER 1

Wait Statistics Internals
SQL Server wait statistics are an important tool you can use to analyze performance-

related problems or to optimize your SQL Server’s performance. They are, however, not

that well known to many database administrators or developers. I believe this has to

do with their relatively complex nature, the sheer volume of the different types of wait

statistics, and the lack of documentation for many types of wait statistics. Wait statistics

are also directly related to the SQL Server you are analyzing them on, which means that

it is impossible to compare the wait statistics of Server A to the wait statistics of Server B,

even if they had an identical hardware and database configuration. Every configuration

option, from the hardware firmware level to the configuration of the SQL Server Native

Client on the client computers, will have an impact on the wait statistics!

For the reasons just mentioned, I firmly believe we should start with the foundation

and internals of SQL Server wait statistics so you can get familiar with how they are

generated, how you can access them, and how you can use them for performance

troubleshooting. This approach will get you ready for Part II of this book, where we will

examine specific wait statistics.

In this chapter we will take a brief look at the history of wait statistics through the

various versions of SQL Server. Following that, we will take a close look at the SQL

Operating System, or SQLOS. The architecture of the SQLOS is closely tied to wait

statistics and to performance troubleshooting in general. The rest of the chapter is

dedicated to one of the most important aspects of wait statistics: thread scheduling.

Before we begin with the foundation and internals of SQL Server wait statistics, I

would like to mention a few things related to the terminology used when discussing

wait statistics. In the introduction of this book and the preceding paragraphs, I only

mentioned the term wait statistics. The sentence “compare the wait statistics of Server A

to the wait statistics of Server B” is actually wrong, since we can only compare the wait

time (the total time we have been waiting on a resource) of a specific wait type

4

(the specific wait type related to the resource we are waiting on). From this point on,

when I use the term wait statistics I mean the concept of wait statistics, and I will use the

correct terms wait time and wait type where appropriate.

 A Brief History of Wait Statistics
SQL Server has been around for quite some time now; the first release of SQL Server

dates back to 1989 and was released for the OS/2 platform. Until SQL Server 6.0,

released in 1995, Microsoft worked together with Sybase to develop SQL Server.

In 1995, however, Microsoft and Sybase went their own ways. Microsoft and Sybase

stayed active in the database world (SAP actually acquired Sybase in 2010), and in

2019 Microsoft will release SQL Server 2019 while SAP released SAP Sybase ASE

16 in 2014 (but is still maintained today), both relational enterprise-level database

systems.

Between SQL Server 6.0 and SQL Server 2019, so many things have changed that

you simply cannot compare the two versions. One thing that hasn’t changed in all

these years is wait statistics. In one way or another, SQL Server stores information

about its internal processes, and even though the way we access that information

has changed over the years, wait statistics remain an important part of the internal

logging process.

In early versions of SQL Server we needed to access the wait statistics using

undocumented commands. Figure 1-1 shows how you would query wait statistics

information in SQL Server 6.5 using the DBCC command.

Chapter 1 Wait StatiStiCS internalS

5

One of the big changes that were introduced in SQL Server 2005 was the conversion

of many internal functions and commands into Dynamic Management Views (DMVs),

including wait statistics information. This made it far easier to query and analyze the

information returned by functions or commands. A new way of performance analysis

was born with the release of the SQL Server 2005 Microsoft whitepaper “SQL Server 2005

Waits and Queues” by Tom Davidson.

In the various releases of SQL Server the amount of different wait types grew

exponentially whenever new features or configuration options were introduced. If you

take a good look at Figure 1-1 you will notice that 21 different wait types were returned.

Figure 1-2 shows the amount of wait types, as the number of rows returned, available in

SQL Server 2017.

Figure 1-1. SQL Server wait statistics in SQL Server 6.5

Chapter 1 Wait StatiStiCS internalS

6

Those 921 rows are all different wait types and hold wait information for different

parts of the SQL Server engine. With the release of SQL Server 2019 Community

Technology Preview (CTP) 2.4, the number of wait types increased even further and

cross the line of more than 1.000 different wait types. The number of wait types will

continue to grow in future SQL Server releases, as new features are introduced or existing

features are changed. Thankfully there is a lot more information available about wait

statistics now than there was in SQL Server 6.5!

 The SQLOS
The world of computer hardware changes constantly. Every year, or in some cases every

month, we manage to put more cores inside a processor, increase the memory capacity

of mainboards, or introduce entirely new hardware concepts like PCI-based persistent

flash storage. Database Management Systems (or DBMSs) are always one of the first

types of applications that want to take advantage of new hardware trends. Because of

the fast-changing nature of hardware and the need to utilize new hardware options as

soon as they become available, the SQL Server team decided to change the SQL Server

platform layer in SQL Server 2005.

Figure 1-2. SQL Server wait statistics in SQL Server 2017

Chapter 1 Wait StatiStiCS internalS

7

Before SQL Server 2005, the platform layer of SQL Server was pretty restricted,

and many operations were performed by the operating system. This meant that it was

difficult for SQL Server to keep up with the fast-changing world of server hardware,

as changing a complete operating system in order to utilize faster hardware or new

hardware features is a time-consuming and complex operation.

Figure 1-3 shows the (simplified) architecture of SQL Server before the introduction

of the SQLOS in SQL Server 2005.

SQL Server 2005 introduced one of the biggest changes to the SQL Server engine

seen to this day, the SQLOS. This is a completely new platform layer that functions as

a user-level operating system. This new operating system has made it possible to fully

utilize current and future hardware and has enabled features like advanced parallelism.

The SQLOS is highly configurable and adjusts itself to the hardware it is running on, thus

making it perfectly scalable for high-end or low-end systems alike.

Figure 1-4 shows the (simplified) architecture of SQL Server 2005, including the

SQLOS layer.

Figure 1-3. SQL Server architecture before the introduction of the SQLOS

Chapter 1 Wait StatiStiCS internalS

8

The SQLOS changed the way SQL Server accesses processor resources by

introducing schedulers, tasks, and worker threads. This gives the SQLOS greater

control of how work should be completed by the processors. The Windows operating

system uses a preemptive scheduling approach. This means that Windows will

give every process that needs processor time a priority and fixed slice of time, or

a quantum. This process priority is calculated from a number of variables like

resource usage, expected runtime, current activity, and so forth. By using preemptive

scheduling, the Windows operating system can choose to interrupt a process when a

process with a higher priority needs processor time. This way of scheduling can have

a negative impact on processes generated by SQL Server, since those processes could

easily be interrupted by higher priority ones, including those of other applications.

For this reason, the SQLOS uses its own (cooperative) non-preemptive scheduling

mechanism, making sure that Windows processes cannot interrupt SQLOS

processes.

Figure 1-4. SQL Server 2005 architecture

Chapter 1 Wait StatiStiCS internalS

9

SQl Server 7 and SQl Server 2000 also used non-preemptive scheduling using
User Mode Scheduling (UMS). SQlOS brought many more system components
closer together, thus enabling better performance and scalability.

There are some exceptions when the SQLOS cannot use non-preemptive scheduling,

for instance, when the SQLOS needs to access a resource through the Windows

operating system. We will discuss these exceptions later in this book in Chapter 11,

“Preemptive Wait Types.”

 Schedulers, Tasks, and Worker Threads
Because the SQLOS uses a different method to execute requests than the Windows

operating system uses, SQL Server introduced a different way to schedule processor time

using schedulers, tasks, and worker threads. Figure 1-5 shows the different parts of SQL

Server scheduling and how they relate to each other.

Figure 1-5. SQL Server scheduling

Chapter 1 Wait StatiStiCS internalS

10

 Sessions
A session is the connection a client has to the SQL Server it is connected to (after it has

been successfully authenticated). We can easily access session information by querying

the sys.dm_exec_sessions DMV using the following query:

SELECT * FROM sys.dm_exec_sessions;

Generally speaking, user sessions will have a session_id greater than 50; everything

lower is reserved for internal SQL Server processes. However, on very busy servers there

is a possibility that SQL Server needs to use a session_id greater than 50. If you are only

interested in information about user-initiated sessions, it is better to filter the results of

the sys.dm_exec_sessions DMV using the is_user_process column instead of filtering

on a session_id greater than 50. The following query will only return user sessions and

will filter out the internal system sessions:

SELECT * FROM sys.dm_exec_sessions

WHERE is_user_process = 1;

Figure 1-6 shows a small part of the results of this query.

There are many more columns returned by the sys.dm_exec_sessions DMV that will

give us information about the specific session. Some of the more interesting columns

that deserve some extra explanation are the host_process_id, which is the Process ID

(or PID) of the client program connected to the SQL Server. The cpu_time column will

give you information about the processor time (in milliseconds) the session has used

since it was first established. The memory_usage column displays the amount of memory

used by the session. This is not the amount in MB or KB, but the number of 8 KB pages

used. Another column I would like to highlight is the status column. This will show you

if the session has any active requests. The most common values of the status column

Figure 1-6. sys.dm_exec_sessions results

Chapter 1 Wait StatiStiCS internalS

11

are “Running,” which indicates that one or more requests are currently being processed

from this session, and “Sleeping,” which means no requests are currently being

processed from this session.

 Requests
A request is the SQL Server execution engine’s representation of a query submitted by a

session. Again, we can use a DMV to query information about a request; in this case, we

can run a query against the sys.dm_exec_requests DMV like the following query:

SELECT * FROM sys.dm_exec_requests;

Figure 1-7 shows a portion of the results of this query.

The sys.dm_exec_requests DMV is an incredibly powerful tool to use when you

are troubleshooting any performance-related issues. The reason for this is that it has

a lot of information about the actual queries being executed and can help you detect

performance bottlenecks relatively quickly. Because the sys.dm_exec_requests DMV

also displays wait statistics–related information, we will take a thorough look at it in

Chapter 2, “Querying SQL Server Wait Statistics.”

Figure 1-7. sys.dm_exec_requests results

Chapter 1 Wait StatiStiCS internalS

12

 Tasks
Tasks represent the actual work that needs to be performed by the SQLOS, but they do

not perform any work themselves. When a request is received by SQL Server, one or

more tasks will be created to fulfill the request. The number of tasks that get generated

for a request depends on if the query request is being performed using parallelism or if

it’s being run serially.

We can use the sys.dm_os_tasks DMV to query the task information, like I did in the

following example query:

SELECT * sys.dm_os_tasks;

Figure 1-8 shows a part of the results of the query.

When you query the sys.dm_os_tasks DMV you will discover it will return many

results, even on servers that have no user activity. This is because SQL Server uses

tasks for its own processes as well; you can identify those by looking at the session_id

column.

There are some interesting columns in this DMV that are worth exploring to see

the relations between the different DMVs. The task_address column will show you the

memory address of the task. The session_id will return the ID of the session that has

requested the task, and the worker_address will hold the memory address of the worker

thread associated with the task.

Figure 1-8. sys.dm_os_tasks results

Chapter 1 Wait StatiStiCS internalS

13

 Worker Threads
Worker threads are where the actual work for the request is being performed. Every task

that gets created will get a worker thread assigned to it, and the worker thread will then

perform the actions requested by the task.

a worker thread will actually not perform the work itself; it will request a thread
from the Windows operating system to perform the work for it. For the sake of
simplicity, and the fact the actual Windows thread runs outside the SQlOS, i have
left this step out of Figure 1-5. You can access information about the Windows
operating system threads by querying sys.dm_os_threads if you are interested.

When a task requests a worker thread SQL Server will look for an idle worker thread

and assign it to the task. In the case when no idle worker thread can be located and the

maximum number of worker threads has been reached, the request will be queued until

a worker thread finishes its current work and becomes available.

There is a limit to the number of worker threads SQL Server has available for

processing requests. This number will be automatically calculated and configured

by SQL Server during startup. We can also calculate the maximum number of worker

threads ourselves using these formulas:

• 32-bit system with less than, or equal to, 4 logical processors:

• 256 worker threads

• 32-bit system with more than 4 logical processors:

• 256 + ((number of logical processors – 4) * 8)

• 64-bit system with less then, or equal to, 4 logical processors:

• 512 worker threads

• 64-bit system with more than 4 logical processors:

• 512 + ((number of logical processors – 4) * 16)

Example: If we have a 64-bit system with 16 processors (or cores) we can calculate

the maximum number of worker threads using the formula, 512 + ((16 – 4) * 16), which

would give us a maximum of 704 worker threads.

Chapter 1 Wait StatiStiCS internalS

14

The number of worker threads can be changed from the default of 0 (which means

SQL Server sets the number of max worker threads using the preceding formulas when it

starts) by changing the max worker threads options in your SQL Server’s properties, as

illustrated by Figure 1-9.

Figure 1-9. Processors page in the Server Properties

Generally speaking, there should be no need to change the max worker threads

option, and my advice is to leave the setting alone, as it should only be changed in very

specific cases (I will discuss one of those potential cases in Chapter 5, “CPU-Related Wait

Types,” when we talk about THREADPOOL waits).

Chapter 1 Wait StatiStiCS internalS

15

One thing to keep in mind is that worker threads require memory to work. For

32-bit systems this is 512 KB for every worker thread; 64-bit systems will need 2048 KB

for every worker thread. Thus, changing the number of worker threads can potentially

impact the memory requirements of SQL Server. This does not mean you need a massive

amount of memory just for your worker threads—SQL Server will automatically destroy

worker threads if they have been idle for 15 minutes or if your SQL Server is under heavy

memory pressure.

SQL Server supplies us with a DMV to query information about the worker threads:

sys.dm_os_workers. Figure 1-10 shows some of the results of this query:

SELECT * FROM sys.dm_os_workers;

The sys.dm_os_workers DMV is a very large and complex DMV where many

columns are marked as “Internal use only” by Microsoft. In this DMV the columns

task_address and scheduler_address are available to link together the different DMVs

we have discussed.

Worker threads go through different phases while they are being exposed to the

processor, which we can view when we look at the state column in the sys.dm_os_
workers DMV:

• INIT: The worker thread is being initialized by the SQLOS.

• RUNNING: The worker thread is currently performing work on a

processor.

Figure 1-10. Results of querying sys.dm_os_workers

Chapter 1 Wait StatiStiCS internalS

16

• RUNNABLE: The worker thread is ready to run on a processor.

• SUSPENDED: The worker thread is waiting for a resource.

The states the worker threads go through while performing their work are one of the

main topics of this book. Every time a worker thread is not in the “RUNNING” state, it has

to wait, and the SQLOS records this information into wait statistics, giving us valuable

insight into what the worker thread has been waiting on and how long it has been waiting.

 Schedulers
The scheduler component’s main task is to—surprise—schedule work, in the form

of tasks, on the physical processor(s). When a task requests processor time it is the

scheduler that assigns worker threads to that task so the request can get processed. It

is also responsible for making sure worker threads cooperate with each other and yield

the processor when their slice of time, or quantum, has expired. We call this cooperative

scheduling. The need for worker threads to yield when their processor time has expired

comes from the fact that a scheduler will only let one worker thread run on a processor

at a time. If the worker threads didn’t need to yield, a worker thread could stay on the

processor for an infinite amount of time, blocking all usage of that processor.

There is a one-on-one relation between processors and schedulers. If your system

has two processors, each with four cores, there will be eight schedulers that the SQLOS

can use to process user requests, each of them mapped to one of the logical processors.

We can access information about the schedulers by running a query against the sys.
dm_os_schedulers DMV:

SELECT * FROM sys.dm_os_schedulers;

The results of the query are shown in Figure 1-11.

Figure 1-11. sys.dm_os_schedulers query results

Chapter 1 Wait StatiStiCS internalS

17

The SQL Server on which I ran this query has one processor with two cores, which

means there should be two schedulers that can process my user requests. If we look

at Figure 1-11, however, we notice there are more than two schedulers returned by

the query. SQL Server uses its own schedulers to perform internal tasks, and those

schedulers are also returned by the DMV and are marked “HIDDEN ONLINE” in the

status column of the DMV. The schedulers that are available for user requests are

marked as “VISIBLE ONLINE” in the DMV. There is also a special type of scheduler

with the status “VISIBLE ONLINE (DAC).” This is a scheduler dedicated for use with

the Dedicated Administrator Connection (DAC). This scheduler makes it possible to

connect to SQL Server in situations where it is unresponsive; for instance, when there are

no free worker threads available on the schedulers that process user requests.

We can view the number of worker threads a scheduler has associated with it by

looking at the current_workers_count column. This number also includes worker

threads that aren’t performing any work. The active_workers_count shows us the

worker threads that are active on the specific scheduler. This doesn’t mean they

are actually running on the processor, as worker threads with states of “RUNNING,”

“RUNNABLE,” and “SUSPENDED” also count toward this number. The work_queue_

count is also an interesting column since it will give you insight into how many tasks are

waiting for a free worker thread. If you see high numbers in this column, it might mean

that you are experiencing CPU pressure.

 Putting It All Together
All the parts of the SQL Server scheduling we have discussed so far are connected to

each other, and every request passes through these same components. The following text

is an example of how a query request would get processed.

A user connects to the SQL Server through an application. The SQL Server will create

a session for that user after the login process is completed successfully. When the user

sends a query to the SQL Server, a task and a request will be created to represent the unit

of work that needs to be done. The scheduler will assign worker threads to the task so it

can be completed.

To see all this information in SQL Server, we can join some of the DMVs we used.

The query in Listing 1-1 will show you an example of how we can combine the different

DMVs to get scheduling information about a specific session (in this case a session with

an ID of 55).

Chapter 1 Wait StatiStiCS internalS

18

Listing 1-1. Join the different DMVs together to query scheduling information

SELECT

 r.session_id AS 'Session ID',

 r.command AS 'Type of Request',

 qt.[text] AS 'Query Text',

 t.task_address AS 'Task Address',

 t.task_state AS 'Task State',

 w.worker_address AS 'Worker Address',

 w.[state] AS 'Worker State',

 s.scheduler_address AS 'Scheduler Address',

 s.[status] AS 'Scheduler State'

FROM sys.dm_exec_requests r

CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) qt

INNER JOIN sys.dm_os_tasks t

ON r.task_address = t.task_address

INNER JOIN sys.dm_os_workers w

ON t.worker_address = w.worker_address

INNER JOIN sys.dm_os_schedulers s

ON w.scheduler_address = s.scheduler_address

WHERE r.session_id = 55

Figure 1-12 shows the information that the query returned on my test SQL Server.

To keep the results readable, I only selected columns from the DMVs to show the relation

between them.

In the results we can see that Session ID 53 made a SELECT query request. I did a

cross apply with the sys.dm_exec_sql_text Dynamic Management Object to show the

query text of the request. The request was mapped to a task, and the task began running.

The task was then mapped to a worker thread that was then also in a running state. This

meant that this query began being processed on a processor. The Scheduler Address

column shows on which specific scheduler our worker thread was being run.

Figure 1-12. Results of the query from Listing 1-1

Chapter 1 Wait StatiStiCS internalS

19

 Wait Statistics
So far, we have gone pretty deep into the different components that perform scheduling

for SQL Server and how they are interconnected, but we haven’t given a lot of attention

to the topic of this book: wait statistics.

In the section about worker threads earlier in this chapter, I described the states

a worker thread can be in while it is performing work on a scheduler. When a worker

thread is performing its work, it goes through three different phases (or queues) in the

scheduler process. Depending on the phase (or queue) a worker thread is in, it will get

either the “RUNNING,” “RUNNABLE,” or “SUSPENDED” state. Figure 1-13 shows an

abstract view of a scheduler with the three different phases.

When a worker thread gets access to a scheduler it will generally start in the Waiter

List and get the “SUSPENDED” state. The Waiter List is an unordered list of worker

threads that have the “SUSPENDED” state and are waiting for resources to become

available. Those resources can be just about anything on the system, from data pages

to a lock request. While a worker thread is in the Waiter List the SQLOS records the type

of resource it needs to continue its work (the wait type) and the time it spends waiting

before that specific resource becomes available, known as the resource wait time.

Whenever a worker thread receives access to the resources it needs, it will move to

the Runnable Queue, a first-in-first-out list of all the worker threads that have access

to their resources and are ready to be run on the processor. The time a worker thread

spends in the Runnable Queue is recorded as the signal wait time.

Figure 1-13. Scheduler and its phases and queues

Chapter 1 Wait StatiStiCS internalS

20

The first worker thread in the Runnable Queue will move to the “RUNNING”

phase, where it will receive processor time to perform its work. The time it spends on

the processor is recorded as CPU time. In the meantime, the other worker threads in

the Runnable Queue will move a spot higher in the list, and worker threads that have

received their requested resources will move from the Waiter List into the Runnable

Queue.

While a worker thread is in the “RUNNING” phase there are three scenarios that can

happen:

• The worker thread needs additional resources; in this case it will

move from the “RUNNING” phase to the Waiter List.

• The worker thread spends its quantum (fixed value of 4 milliseconds)

and has to yield; the worker thread is moved to the bottom of the

Runnable Queue.

• The worker thread is done with its work and will leave the scheduler.

Worker threads move through the three different phases all the time, and it is very

common that one worker thread moves through them multiple times until its work

is done.

Figure 1-14 will show you the scheduler view from Figure 1-13 combined with the

different types of wait time and the flow of worker threads.

Figure 1-14. Scheduler view complete with wait times and worker thread flow

Chapter 1 Wait StatiStiCS internalS

21

Knowing all the different lengths of time a request spends in one of the three

different phases makes it possible to calculate the total request execution time, and

also the total time a request had to wait for either processor time or resource time.

Figure 1- 15 shows the calculation of the total execution time and its different parts.

Since there is a lot of terminology involved into the scheduling of worker threads in

SQL Server, I would like to give you an example on how worker threads move through a

scheduler.

Figure 1-16 will show you an abstract image of a scheduler like those we have already

looked at, but this time I added requests that are being handled by that scheduler.

Figure 1-15. Request execution time calculation

Figure 1-16. Scheduler with running requests

Chapter 1 Wait StatiStiCS internalS

22

In this example we see that the request from SID (Session ID) 76 is currently being

executed on the processor; this request will have the state “RUNNING.” There are

two other requests, SID 83 and SID 51, in the Waiter List waiting for their requested

resources. The wait types they are waiting for are LCK_M_S and CXPACKET. I won’t

go into detail here about these wait types since we will be covering both of them in

Part II of this book. While these two sessions are in the Waiter List, SQL Server will be

recording the time they spend there as wait time, and the wait type will be noted as

the representation of the resource they are waiting on. If we were to query information

about these two threads, they would both have the “SUSPENDED” state. SID 59, SID 98,

and SID 74 have their resources ready and are waiting in the Runnable Queue for

SID 76 to complete its work on the processor. While they are waiting in the Runnable

Queue, SQL Server records the time they spend there as the signal wait time and adds

that time to the total wait time. These three worker threads will have the status of

“RUNNABLE.”

In Figure 1-17 we have moved a few milliseconds forward in time; notice how the

scheduler and worker threads have moved through the different phases and queues.

Figure 1-17. Scheduler a few milliseconds later

Chapter 1 Wait StatiStiCS internalS

23

SID 76 completed its time on the processor; it didn’t need any additional resources

to complete its request and thus left the scheduler. SID 59 was the first worker

thread in the Runnable Queue, and now that the processor is free it will move from

the Runnable Queue to the processor, and its state will change from “RUNNABLE”

to “RUNNING.” SID 51 is done waiting on the CXPACKET wait type and moved

from the Waiter List to the bottom of the Runnable Queue, changing its state from

“SUSPENDED” to “RUNNABLE.”

 Summary
In this chapter we took a look at the history of wait statistics throughout various versions

of SQL Server. Even though the method of analyzing SQL Server performance using wait

statistics is relatively new, wait statistics have been a part of the SQL Server engine for a

very long time.

With the introduction of the SQLOS in SQL Server 2005 a lot changed in how SQL

Server processed requests, introducing schedulers, worker threads, and tasks. All the

information for the various parts are stored in Dynamic Management Views (DMVs) or

Dynamic Management Functions (DMFs), which are easily queried and return a lot of

information about the internals of SQL Server.

Using these DMVs, we can view the progress of requests while they are being

handled by a SQL Server scheduler and learn if they are waiting for any specific

resources. The resources the requests are waiting for and the time they spend waiting for

those resources are recorded as wait statistics, which is the main topic of this book.

Chapter 1 Wait StatiStiCS internalS

25
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_2

CHAPTER 2

Querying SQL Server
Wait Statistics
With the introduction of Dynamic Management Views (DMVs) in SQL Server 2005,

viewing and analyzing wait statistics has become a lot easier and less tedious.

In SQL Server versions prior to SQL Server 2005, we were limited to the DBCC

SQLPERF('WAITSSTATS') command to view wait statistics. Presently there are a

variety of DMVs that return wait statistics–related information, and in this chapter,

we will take a detailed look at four of the most useful DMVs: sys.dm_os_wait_stats,

sys.dm_os_waiting_tasks, sys.dm_exec_requests, and sys.dm_exec_session_

wait_stats.

Viewing wait statistics information is not only limited to DMVs though. We can also

use the Windows Performance Monitor, or Perfmon, to view wait statistics information.

SQL Server 2008 introduced yet another option to view wait statistics, Extended Events.

While Extended Events were pretty complicated to work with in SQL Server 2008,

meaning you would have to write an entire Extended Event session in T-SQL, Microsoft

has drastically improved Extended Events in SQL Server 2012, making them a lot more

user-friendly and easier to use.

SQL Server 2016 SP1 introduced two new methods to access wait statistics: through

a new DMV called sys.dm_exec_session_wait_stats and by adding wait statistics

information on a per-query basis inside execution plans.

In SQL Server 2017 Microsoft took recording wait statistics another step forward by

including them inside the Query Store. The Query Store is a feature that was introduced

in SQL Server 2016 and acts like a flightrecorder for your query workload, logging query

statement, performance, and resource utilization.

26

We will take a look at all of the sources that capture wait statistics that are mentioned

in the previous paragraphs inside this chapter, starting with the various DMVs. Because

the Query Store feature has such a big impact on how you can troubleshoot and analyze

query performance, including wait statistics in SQL Server 2017 and higher, we are going

to take a thorough look at it in Chapter 3, “The Query Store.”

 Sys.dm_os_wait_stats
The sys.dm_os_wait_stats DMV is probably one of the most important DMVs regarding

wait statistics. This DMV is the replacement for the DBCC SQLPERF('WAITSTATS')

command you would have had to use before SQL Server 2005. All of the information the

DBCC SQLPERF('WAITSTATS') command returned is included in the sys.dm_os_wait_

stats DMV, plus a little bit more.

The sys.dm_os_wait_stats DMV shows the total amount of wait time for every

wait type since the start (or restart) of your SQL Server. It is also cumulative, adding

wait time to the different wait types, resulting in an ever-increasing total. Querying the

sys.dm_os_wait_stats DMV will give you insight into what your SQL Server has been

waiting on the most since the time it started or was restarted. This can be helpful if you

are looking for that grand total of wait time for every wait type, but many times you are

interested in the wait time for a specific time segment. In this case it is possible to reset

the sys.dm_os_wait_stats DMV without having to restart your SQL Server by using the

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR) SQL command. This will reset all

wait statistics information back to 0 again, meaning you will lose all information before

the reset. In Chapter 4, “Building a Solid Baseline,” we will take a look at a method that

does not completely reset the sys.dm_os_wait_stats DMV.

As with every DMV in SQL Server, we can run a query against the sys.dm_os_wait_

stats DMV just like we would against a table, in this case SELECT * FROM sys.dm_os_

wait_stats. The results of this query are shown in Figure 2-1.

Chapter 2 Querying SQL Server Wait StatiStiCS

27

Following are the available columns in the sys.dm_os_wait_stats DMV, along with

a description of what each column can tell you:

• wait_type returns the wait type. The sys.dm_os_wait_stats will

always return one row for every wait type possible in that specific

SQL Server version.

• waiting_tasks_count shows a total of how many times a worker

thread had to wait for that specific wait type.

• wait_time_ms returns the total wait time in milliseconds (1/1000 of

a second) for that specific wait type since the start of the SQL Server

instance or a manual reset of the DMV. This is the time a worker

thread has spent in the Waiter List in the “SUSPENDED” state. It also

includes the time the worker thread spent in the Runnable Queue

in the “RUNNABLE” state while waiting for the scheduler to grant it

processor time.

• max_wait_time_ms shows the maximum wait time in milliseconds a

worker thread waited on that specific wait type.

• signal_wait_time_ms tells us the amount of time in milliseconds the

worker thread spent in Runnable Queue waiting for processor time.

Figure 2-1. Sys.dm_os_wait_stats

Chapter 2 Querying SQL Server Wait StatiStiCS

28

Signal wait times are unavoidable and normal in Online Transaction

Processing (OLTP) systems where a large number of queries are being

processed, all of them requesting time on the processor. The signal

wait time is also an important metric for detecting CPU pressure.

Generally speaking, as it depends on the hardware of your system,

seeing signal wait time metrics higher than 25% of the total wait time

can indicate CPU pressure, because the worker threads are waiting for

the processor to become available instead of using resources.

You may have noticed that the sys.dm_os_wait_stats DMV does not return a

column for the resource wait time. If we want to display the resource wait time as an

additional column, we will need to calculate the value ourselves.

Listing 2-1 shows a query you could use to analyze the sys.dm_os_wait_stats

DMV. Besides the regular columns, it will add two more columns for every wait type

returned, the resource wait time and the average wait time.

Listing 2-1. sys.dm_os_wait_stats with additional information

SELECT

 wait_type AS 'Wait Type',

 waiting_tasks_count AS 'Waiting Tasks Count',

 (wait_time_ms - signal_wait_time_ms) AS 'Resource Wait Time',

 signal_wait_time_ms AS 'Signal Wait Time',

 wait_time_ms AS 'Total Wait Time',

 COALESCE(wait_time_ms / NULLIF(waiting_tasks_count,0), 0) AS 'Average

Wait Time'

FROM sys.dm_os_wait_stats;

This query will return results as shown in Figure 2-2.

Chapter 2 Querying SQL Server Wait StatiStiCS

29

Having both the number of occurrences of a specific wait type and the total wait time

makes it possible to calculate an average wait time (represented by the Average Wait

Time column in Figure 2-2) for that specific wait type by dividing the wait_time_ms value

by the waiting_tasks_count value.

The sys.dm_os_wait_stats is a powerful DMV with which you can retrieve a lot

of information about the different wait types. It is also the basis of the wait statistics

baseline methodology outlined in Chapter 4, “Building a Solid Baseline.”

 Sys.dm_os_waiting_tasks
While the sys.dm_os_wait_stats DMV gives you the cumulative wait statistics

information since server restart, the sys.dm_os_waiting_tasks DMV can give you

information about what your SQL Server is currently waiting on. Querying this DMV will

give you an overview of all the tasks that currently have worker threads waiting in the

Waiter List or Runnable Queue for either resource or processor time.

 Understanding sys.dm_os_waiting_tasks
Because the sys.dm_os_waiting_tasks DMV gives insight into what’s waiting currently,

it is usually the first DMV you query when using wait statistics to review the performance

of your SQL Server instance. It also supplies some additional information for certain wait

types that can be useful while troubleshooting.

Figure 2-2. sys.dm_os_wait_stats expended with more wait information

Chapter 2 Querying SQL Server Wait StatiStiCS

30

Figure 2-3 shows the results of a SELECT * FROM sys.dm_os_waiting_tasks; query.

Following is a list of columns returned by the sys.dm_os_waiting_tasks DMV and a

description of the information they return:

• waiting_task_address shows the address of the task that is currently

waiting.

• session_id gives us the ID of the session that is associated with the

specific task.

• exec_context_id will return the ID of the execution context.

This value will only change from the default of 0 if the task is

being performed using parallelism. This means that the task is

being executed using multiple threads instead of a single

(serial) thread.

• wait_duration_ms shows us the time in milliseconds that the task

has been waiting. Just like in the sys.dm_os_wait_stats DMV,

this time includes both the resource wait time and the signal wait

time.

• wait_type returns the wait type the task is currently waiting on.

• resource_address returns memory address information about the

resource we are currently waiting for. Not all wait types will log this

memory address, so it will frequently be returned as NULL.

• blocking_task_address will return the address of the task that

is currently blocking the waiting task. When the task is not being

blocked by another task, this column will return NULL.

Figure 2-3. sys.dm_os_waiting_tasks

Chapter 2 Querying SQL Server Wait StatiStiCS

31

• blocking_session_id returns the session ID of the session that is

currently blocking the task. Just like the blocking_task_address,

this information is only included when this task is being currently

blocked by another task. It will return NULL when there is no blocking

or when the session information about the blocking task cannot

be retrieved or identified. We will explain blocking and locking in

Chapter 8, “Lock-Related Wait Types,” when we discuss lock wait

types.

• blocking_exec_context_id is another column dedicated to

information regarding blocking. In this case it will return the ID of

the execution context. This will only return a result other than NULL

when a task gets executed using parallelism and one of the threads is

responsible for the block. The blocking_exec_context_id can then

be used to identify which one of the threads is responsible for the

block.

• The last column of the DMV, resource_description, will give

additional information about the resource the task is waiting for.

There aren’t many wait types that will fill this column—most often

parallelism, lock-, or latch-related wait types. It can be a very useful

column, especially when analyzing lock- or latch-related wait types;

in those cases we can pinpoint the database object (data page,

row, table, etc.) whose availability we are waiting for. Some of the

examples later in this book (most notably Chapter 8, “Lock-Related

Wait Types,” and Chapter 9, “Latch-Related Wait Types”) will make

use of this column to gather extra information about the resource we

are waiting for.

 Querying sys.dm_os_waiting_tasks
Because the sys.dm_os_waiting_tasks DMV returns a wealth of information, there are

various ways to query it depending on what you want to analyze or troubleshoot.

One query that I see a lot on various forums on the Internet is the following:

SELECT * FROM sys.dm_os_waiting_tasks

WHERE session_id > 50;

Chapter 2 Querying SQL Server Wait StatiStiCS

32

This query will filter out all of the SQL Server internal session IDs and only returns

waiting tasks that originate from user sessions. The results of the query on my test SQL

Server are shown in Figure 2-4.

While the method of filtering out internal SQL Server processes will work fine for

many wait types and improves readability, there are specific wait types that will not be

returned when running this query.

One good example of this is the THREADPOOL wait type, which we will discuss in

Chapter 5, “CPU-Related Wait Types.” This wait type can have a large negative impact

on the performance of your SQL Server but will not be returned if you only query

the user sessions. This can impact your analysis because you are missing important

facts.

Another reason to query the DMV without filtering on session IDs is that there is a

big misconception about the relation of the session ID and whether or not the session ID

is a user or internal session. While session IDs larger than 50 are generally considered to

be user sessions, there is no guarantee that a session ID larger than 50 actually is a user

session. It is possible that there is a need for SQL Server to have more than 50 internal

sessions, in which case there is a chance you will see internal sessions with a session ID

higher than 50 that you can mistake for a user session.

I believe the best way to query the sys.dm_os_waiting_tasks DMV is by selecting

everything and only applying a filter if you are looking for a specific wait type or session.

This will return many more rows than filtering on session IDs larger than 50, as you

can see in Figure 2-5, but it will show you the complete picture and minimizes the

chance that you might miss important wait types. A good idea might be to sort on the

session_id column to make the results a little bit more readable without losing sight of

the internal sessions.

Figure 2-4. sys.dm_os_waiting_tasks where session_id is greater than 50

Chapter 2 Querying SQL Server Wait StatiStiCS

33

 Sys.dm_exec_requests
The sys.dm_exec_requests DMV returns information about all the requests that are

currently getting processed by SQL Server.

 Understanding sys.dm_exec_requests
Like the previous DMVs, we can query the sys.dm_exec_requests DMV with a simple

SELECT * FROM sys.dm_exec_requests; to return everything that is currently executing.

Figure 2-6 returns a small portion of the results on my test SQL Server.

Figure 2-5. sys.dm_os_waiting_tasks

Figure 2-6. sys.dm_exec_requests

Chapter 2 Querying SQL Server Wait StatiStiCS

34

The sys.dm_exec_requests DMV returns a lot more columns than the sys.

dm_os_wait_stats or sys.dm_os_waiting_tasks DMVs we discussed earlier. To keep

things readable I will only describe the columns we will frequently use for wait statistics

analysis. Here is the list:

• session_id returns the ID of the session this request is associated

with.

• start_time shows the date and time when the request got created.

This can be a different time and even date than the time and date

on which you are querying the DMV, especially when long-running

queries are being executed.

• command returns information about what kind of action the request

is performing. The most common commands are query related,

like SELECT, INSERT, UPDATE, and DELETE, but there are many more

commands depending on what is being executed by the request.

• sql_handle gives us a hash value of the SQL text that is being

executed in the request. Not all requests have an SQL handle, and

generally you should only see a SQL handle if the request was

initiated by a user session and an SQL query is involved. The SQL

handle hash can be used as input for the Dynamic Management

Function (DMF) sys.dm_exec_sql_text to retrieve the query that is

being executed by the request.

• plan_handle returns the hash value of the execution plan. An

execution plan will show you the operations that were performed by

SQL Server when executing the query and is a great source of query-

execution information. We can use plan_handle the same way as

the sql_handle, but instead of returning the query it will return the

execution plan of the query. We can use the hash value as input for

the DMF sys.dm_exec_query_plan in order to return the execution

plan of the query that is being executed by the request.

• wait_type returns the current wait type if the request is either

“SUSPENDED” or “RUNNABLE.” The value will be NULL if the request

is currently being processed.

Chapter 2 Querying SQL Server Wait StatiStiCS

35

• The last_wait_type column returns the last wait type the request

encountered if it had to wait during its execution.

• total_elapsed_time column returns the total time, in milliseconds,

it took to process the request from the moment it got created.

There are many more columns available in this DMV that all have their different

uses. A complete description is available on the Microsoft MSDN page at https://msdn.

microsoft.com/en-us/library/ms177648.aspx, and I encourage you to go through the

article. The sys.dm_exec_requests DMV is a great tool in your DBA toolkit and is one

of those DMVs you will use frequently for all kinds of purposes besides analyzing wait

statistics.

 Querying sys.dm_exec_requests
The sys.dm_exec_requests DMV is one of the DMVs that can give us access to query

statements and corresponding execution plans by returning the query and plan handles.

If you are interested in this information, and most of the time you probably will be, you

need to pass the sql_handle and plan_handle to their DMFs so the hashes turn into

something we humans can read and understand.

Listing 2-2 shows a query against the sys.dm_exec_requests DMV and also

retrieves the query statements and execution plans. I am excluding the session ID I

am executing the query on and ignoring session IDs lower than 50 so as to keep the

results small, and because I know for a fact that I am interested only in user queries

for this example.

Listing 2-2. Query sys.dm_exec_request and include query statement and plan

SELECT

 r.session_id AS 'Session ID',

 r.start_time AS 'Request Start',

 r.[status] AS 'Current State',

 r.[command] AS 'Request Command',

 t.[text] AS 'Query',

 p.query_plan AS 'Execution Plan'

FROM sys.dm_exec_requests r

OUTER APPLY sys.dm_exec_sql_text(r.sql_handle) AS t

Chapter 2 Querying SQL Server Wait StatiStiCS

https://msdn.microsoft.com/en-us/library/ms177648.aspx
https://msdn.microsoft.com/en-us/library/ms177648.aspx

36

OUTER APPLY sys.dm_exec_query_plan(r.plan_handle) p

WHERE r.session_id > 50 AND r.session_id <> @@SPID;

On my test system I got the results as shown in Figure 2-7.

Figure 2-8. Execution plan

Figure 2-7. Results of Listing 2-2

Using the query in Listing 2-2, we can immediately see that session ID 55 is

performing a SELECT query, as the query column shows the complete statement that

is being executed. The Execution Plan column returns the execution plan in an XML

format. The great part of the SQL Server Management Studio is that we can click the XML

link that is returned to view the graphical execution plan, as shown in Figure 2-8.

Using the execution plan we can get some insight into how the query is getting

executed by the SQL Server engine. We won’t get into the details about execution plans

in this book, but you will be using them frequently when you are optimizing query

performance, so it is good to know how you can access them from the sys.dm_exec_

requests DMV. A good place to start if you want to learn more about execution plans

is Grant Fritchey’s Execution Plan Basics at www.simple-talk.com/sql/performance/

execution-plan-basics/.

 Sys.dm_exec_session_wait_stats
One of the latest additions to the wait statistic–related DMVs is the sys.dm_exec_
session_wait_stats DMV. It was introduced in SQL Server 2016 SP1 and returns wait

statistics information on a per session level. If you remembered reading Chapter 1,

Chapter 2 Querying SQL Server Wait StatiStiCS

http://www.simple-talk.com/sql/performance/execution-plan-basics/
http://www.simple-talk.com/sql/performance/execution-plan-basics/

37

“Wait Statistics Internals,” of this book, a session is an active connection a user or process

has with SQL Server. A session can have multiple requests, which in turn can have

multiple tasks performing the actions required to execute a query.

Figure 2-9 shows the columns of the DMV as well as some wait statistics information

from my test system.

Does the preceding figure look familiar? It probably does since it is practically

identical to the sys.dm_os_wait_stats DMV but with an additional column for the

session_id.

What is important to point out is that wait statistics information that is recorded

through this DMV is cumulative for all the actions that a specific session performed

while it was active. For instance, if you execute ten different queries inside a single

session, all the wait times that are returned by the DMV are the total wait time for those

ten queries. This means it is very important to understand what happened during

the lifetime of a session. Has the session already been busy executing large batches

of queries? Or has it only executed a single query statement? Knowing the answers to

these questions is very important before resorting to this DMV to analyze session wait

statistics.

Also, session IDs are reused after a session has been closed, meaning that if you are

not careful you can see the wait statistics for a new session that is reusing the session

ID. When a session ID gets reused (or reset when using connection pooling), all the wait

statistics information inside this DMV for that specific session is reset as well.

With the preceding information in mind, we can conclude this DMV is not directly

useful as a “first-place-to-look” when performance is reported to be slow. The DMV still

has its place though, especially if you can reproduce a specific performance issue with a

Figure 2-9. sys.dm_exec_session_wait_stats

Chapter 2 Querying SQL Server Wait StatiStiCS

38

specific action where multiple queries are involved. In that situation you can zoom in on

a specific session ID and reproduce the issue, capturing wait statistics for everything that

happens during the execution of the queries.

 Combining DMVs to Detect Waits Right Now
Now that we have taken a look at some of the most important DMVs for wait statistics

analysis, let’s go into an example of how you could use these DMVs to find out what is

slowing down your SQL Server. Gathering this information will not solve your problems

immediately, but it will give you a clue as to where to start looking for a solution.

Consider the following scenario: You are the database administrator (DBA) for a

large company that uses a single database to store all its sales information. The database

is running on a SQL Server 2014 instance, and every day a few hundred users query the

database.

Normally everything is running fine—users can access the information they want

quickly, and everyone who needs to work with the database is happy. Today, however,

is not a good day for you as the DBA. The phone hasn’t stopped ringing since 10 am and

some users are gathering at the door of your office with an angry look in their eyes—

querying and inserting sales information is incredibly slow.

Since this book is about wait statistics, let’s take a look at how we could analyze wait

statistics information about the performance problem in the scenario.

We know the sys.dm_os_wait_stats DMV shows cumulative wait statistics

information, so for this scenario it wouldn’t be much help. A much better starting place

would be the sys.dm_os_waiting_tasks DMV, since it will show us all the tasks that are

waiting right now.

We run the following query against the sys.dm_os_waiting_tasks DMV:

SELECT * FROM sys.dm_os_waiting_tasks

ORDER BY session_id ASC;

While scrolling down to the bottom of the results, we see a number of user sessions

with waiting tasks, as shown in Figure 2-10.

Chapter 2 Querying SQL Server Wait StatiStiCS

39

We notice that the wait times for sessions 52, 56, 57 are pretty high, and we also

notice that they are all waiting with a wait type LCK_M_S. Without going into too many

details about this particular wait type, it will be discussed in detail in Chapter 8,

“Lock-Related Wait Types,” it is enough to know that this wait type is related to locking.

Apparently, those sessions are waiting to place a lock, which means they are probably

being blocked by another process that has a lock on the same object. We can extract

locking and blocking information from the sys.dm_os_waiting_tasks DMF by looking

at the blocking_ columns. For readability reasons I modified the preceding query to

return only blocking information from the sys.dm_os_waiting_tasks DMV. Figure 2-11

shows those columns.

Figure 2-10. Results of a query against the sys.dm_os_waiting_tasks DMV

Figure 2-11. Blocking information from the sys.dm_os_waiting_tasks DMV

From what we can see here, sessions 56 and 57 are being blocked by session 52.

Session 52, however, is being blocked by session ID 54. We don’t see this session ID

returned in the sys.dm_os_waiting_tasks DMV, which means the session is currently

executing and isn’t waiting on any resources.

Chapter 2 Querying SQL Server Wait StatiStiCS

40

Let’s check another DMV, sys.dm_exec_requests, to get some information about

session 54:

SELECT * FROM sys.dm_exec_requests

WHERE session_id = 54;

Figure 2-12 shows the results of this query.

Remember when I wrote the sys.dm_exec_requests DMV return information

about requests currently being processed? Apparently, session ID 54 doesn’t have an

outstanding request since no information is being returned.

If we want to find out more information about this session, we can use the sys.dm_

exec_sessions DMV we discussed in Chapter 1, “Wait Statistics Internals,” by executing

the following query:

SELECT

 session_id,

 [status],

 [host_name],

 [program_name],

 login_name,

 is_user_process,

 open_transaction_count

FROM sys.dm_exec_sessions

WHERE session_id = 54;

This query returns the results shown in Figure 2-13.

Figure 2-12. Results of a query against sys.dm_exec_requests

Figure 2-13. Results from sys.dm_exec_sessions

Chapter 2 Querying SQL Server Wait StatiStiCS

41

We can assume that session ID doesn’t currently have any running requests since

its status is “sleeping,” which is why the query against the sys.dm_exec_requests didn’t

return any information. If we look at the program_name column, we can see that this

session was initiated from the Microsoft SQL Server Management Studio program by the

EVDL-SQL2017-01\Administrator user.

I included the is_user_process column to make sure it is a user session, and

the open_transaction_count column shows us that this user session has an open

transaction.

We now know enough information to take corrective actions. We know who the user

is who is blocking our other tasks, and we can decide to give him a call about what he

is currently performing, or we can choose to end his session. Ending a user session by

using the KILL [session_id] command should always be your last resort because we

could be interrupting something important. Ending a session with the KILL command

will result in a rollback of the running transaction, undoing all the changes it performed,

which can take a long time to complete. In this case, I accept the risk of a rollback and

will end the session myself:

KILL 54;

Immediately after we kill session ID 54 users report that their queries are running

again. If we query the sys.dm_os_waiting_tasks DMV to give us information about

those session IDs nothing gets returned, meaning they are no longer being blocked.

Hopefully this example has given you insight into how you can use the various DMVs

available in SQL Server to gather information about tasks that are currently waiting. In

this case the example consisted of a transaction that was blocking other queries, and

we decided to kill the user session that was responsible for the blocking lock. In many

situations the solution isn’t this relatively simple, but the method of gathering wait

statistics information to drill down to the bottom of the problem can be used in almost

every performance-related incident.

As I noted in the beginning of this section, just looking at the wait statistics alone will

not, in most cases, solve a performance problem, but it is a good starting point to begin

your investigation. To get a complete picture about the performance of your system, we

will often combine the wait statistics information with other metrics, like those from

the Windows Performance Monitor, other DMVs, or vendor-specific information (like

storage metrics).

Chapter 2 Querying SQL Server Wait StatiStiCS

42

Figure 2-14 shows a flowchart of how you could use wait statistics information to

analyze a performance problem.

We will expand upon this flowchart in Chapter 4, “Building a Solid Baseline,” where

we will introduce baselines to the wait statistics analysis method.

Figure 2-14. Wait statistics flowchart

Chapter 2 Querying SQL Server Wait StatiStiCS

43

 Viewing Wait Statistics Using Perfmon
One of the most important tools for accessing the extra metrics we need when

analyzing wait statistics is the Windows Performance Monitor, or Perfmon. Perfmon

is available on every Windows Operating System and contains counters for just about

every part of the system, including SQL Server–related performance counters. You can

start Perfmon by executing the perfmon command from either a Windows Run dialog

or the command line.

In addition to giving us information about the performance of our system,

Perfmon can also be used to view wait statistics. You can view these counters under

the SQLServer:Wait Statistics category when adding counters inside the Perfmon

application, as shown in Figure 2-15.

Figure 2-15. Wait statistics counters inside Perfmon

Chapter 2 Querying SQL Server Wait StatiStiCS

44

One thing you’ll notice in Figure 2-15 is that the wait statistics inside Perfmon are

grouped inside categories. We won’t find information about specific wait types here,

so if we want to use Perfmon to analyze wait statistics we should have a general idea of

what category a specific wait type belongs to in Perfmon. It is able to display an average

wait time, cumulative wait time, the current total number of waits, and the amount of

new waits started for every wait statistics category. If we are interested in a higher-level

view—for instance, we want to know how many tasks are waiting for lock-related wait

types—we can use Perfmon to give us that information. If we want to have more detail

about specific wait type information, we should use the sys.dm_os_wait_stats or sys.

dm_os_waiting_tasks DMVs we discussed earlier.

One nice feature of Perfmon is that it can convert the measurements directly into

graphs, giving us a more visual way to look at the information without having to create

the graphs ourselves. Figure 2-16 is an example of a graph where we are showing the

“Average wait time” and “Waits started per second” for the Lock waits category.

During this book we will use Perfmon a lot for analyzing metrics related to specific

wait types, like CPU time, disk latency, and memory usage. We will not make much use

of the wait statistics counters inside Perfmon, because I believe the SQL Server DMVs are

better suited for this since they supply the level of detail needed for a complete analysis.

Figure 2-16. Perfmon graph showing wait statistics information

Chapter 2 Querying SQL Server Wait StatiStiCS

45

 Capturing Wait Statistics Using Extended Events
Most of the wait statistics information in SQL Server is recorded cumulatively, and

because so many internal processes also generate wait statistics it can be difficult to

detect what impact a single query has on them. This is where Extended Events come in;

with Extended Events it is possible to capture the exact wait times a query encountered

and on what wait types it had to wait. This information can help us analyze those queries

that have a large impact on our system and possibly optimize them so their impact

becomes smaller. Or we could capture queries that encounter a specific wait type while

executing.

Extended Events were introduced in SQL Server 2008 and are, more or less, a

replacement for the SQL Server Profiler. Microsoft has announced the deprecation of

the SQL Server Profiler and advises us to move to Extended Events. Extended Events

are much more powerful than the SQL Server Profiler, and the number of events we can

capture with Extended Events keeps growing with every release of SQL Server, while

the number of events in the SQL Server Profiler remains the same. Also performance is

a good reason to use Extended Events. Capturing Extended Events is more lightweight

than using the SQL Server Profiler.

Extended Events have a reputation of being difficult to work with, and, while this

was especially true in SQL Server 2008 when they were first introduced, working with

Extended Events became a lot easier in SQL Server 2012 when it became possible to

create Extended Event sessions using the GUI.

There are many different wait-related events available when working with Extended

Events. We can view these events by running a query against the sys.dm_xe_map_values

DMV, which holds all the different Extended Events event types:

SELECT *

FROM sys.dm_xe_map_values

WHERE name = 'wait_types';

Figure 2-17 shows a small part of the results of this query.

Chapter 2 Querying SQL Server Wait StatiStiCS

46

In total there are about 1260 different wait statistics–related events available in SQL

Server 2019 CTP2.4. These events do not map one-on-one against the different wait

types, and, as a matter of fact, in some cases the names of the wait types do not match

those of the events, even though they have the same meaning. An example of this is

the ASYNC_NETWORK_IO wait type, which is named NETWORK_IO by Extended Events.

Jonathan Kehayias wrote a blog post at SQLskills.com mapping some of the wait types

to Extended Events; you can take a look at it here: www.sqlskills.com/blogs/jonathan/

mapping-wait-types-in-dm_os_wait_stats-to-extended-events/.

While we won’t go into details about Extended Events in this book, I would like to

show you how you can use them to capture wait statistics–related information using the

Extended Events GUI and T-SQL.

 Capture Wait Statistics Information for a Specific Query
Let’s take a look at how we can configure an Extended Event session to capture wait

statistics information for a specific query. We will set a filter on a session ID that will

execute the query, then execute the query we want to analyze.

The first thing we are going to do is open up the SQL Server Management Studio

and connect to a SQL Server instance. Keep in mind that a GUI for Extended Events was

added in SQL Server 2012, so if you plan on following the steps here you will need a SQL

Server 2012 or higher SQL Server instance.

Figure 2-17. Results of sys.dm_xe_map_values

Chapter 2 Querying SQL Server Wait StatiStiCS

http://sqlskills.com
http://www.sqlskills.com/blogs/jonathan/mapping-wait-types-in-dm_os_wait_stats-to-extended-events/
http://www.sqlskills.com/blogs/jonathan/mapping-wait-types-in-dm_os_wait_stats-to-extended-events/

47

Once we are connected, we open the Management folder and then choose the

Extended Events option. We right-click the Sessions folder and select the option New

Session, as shown in Figure 2-18.

Figure 2-18. Adding new Extended Event session

The New Session dialog will appear where we can enter a name for this Extended

Event session and set some additional options. We will ignore those options for now, and

just fill in the name of the Extended Event session, as shown in Figure 2-19.

Chapter 2 Querying SQL Server Wait StatiStiCS

48

The next step is configuring which events this Extended Event session needs to

monitor, which we can do by selecting the Events page in the New Session dialog.

Since we are interested in wait statistics information, I searched for the wait_info

event in the Events Library and added it to the Selected Events box, as shown in

Figure 2- 20.

Figure 2-19. Configuring wait statistics Extended Event session

Chapter 2 Querying SQL Server Wait StatiStiCS

49

If we were to save this Extended Event session now, we would capture information

for every task that has to wait for a resource. Since we are interested in the wait statistics

associated with a specific query, we will configure a filter to only return wait statistics

information for a specific session. To do this we can click the Configure button in the

New Session dialog, which will open a new section where we can select Global Fields,

which will record extra information when a wait_info event is triggered. In this case,

I checked the sql_text global field, as shown in Figure 2-21, so we can view the actual

query when an event is captured.

Figure 2-20. Selecting an event to monitor

Chapter 2 Querying SQL Server Wait StatiStiCS

50

Next up is the Filter (Predicate) tab. Here we will set a filter that will only capture

events from a specific session ID. We can do this by clicking inside the Field box and

selecting the sqlserver.session_id field, then setting the Value to the session ID we want

to monitor. In this case I configured the filter to only capture events for session ID 52,

as shown in Figure 2-22.

Figure 2-21. Setting the sql_text global field

Chapter 2 Querying SQL Server Wait StatiStiCS

51

That’s all we need to configure for now, so we can click OK to close this dialog and

save the Extended Event session.

By default the Extended Event session will not be automatically started after it is

created. To do this we have to open up the Sessions folder again by navigating to the

Management ➤ Extended Events folder in SQL Server Management Studio. We right-click

the Extended Event session we just created and select the Start Session option, as shown

in Figure 2-23.

Figure 2-22. Setting an event filter

Chapter 2 Querying SQL Server Wait StatiStiCS

52

After we have started the Extended Events session it will begin collecting

information. We can view this information as it gets gathered by selecting the Watch Live

Data option. This will open up a new tab in SQL Server Management Studio where we

can watch the Extended Event session. Viewing live Extended Event data takes a little

overhead, but this is far lower than the overhead of using SQL Profiler. If you are worried

about the overhead of viewing live data, you could choose to write the Extended Event

session to an event file by adding a file location inside the Data Storage page of your

Extended Event session.

For this example I executed a simple query against the AdventureWorks database to

return everything in the Person.Person table, as follows:

SELECT *

FROM Person.Person;

I pay close attention when setting the filter in the Extended Event session to

match the session ID of the tab in SQL Server Management Studio where I am

executing the query. The session ID can be found when looking at the number

between parentheses on the tab. The Extended Events Live Data tab returned the

information shown in Figure 2-24.

Figure 2-23. Start Extended Event session

Chapter 2 Querying SQL Server Wait StatiStiCS

53

As you can see in Figure 2-24, our request encountered a NETWORK_IO wait type.

This is one of those examples where the wait name in Extended Events doesn’t match

the one in the wait statistics DMVs. The NETWORK_IO wait name is the same wait as the

ASYNC_NETWORK_IO wait type the SQLOS uses. We can view the query we executed in the

sql_text field.

There are many more global fields you can include in the Extended Events session

that might be interesting to capture, like the Execution Plan handle or the Task Execution

Time. All of these global fields will give you additional information that is shown when

Extended Event session information is returned, giving you an impressive amount of

detail.

If, for some reason, you do not want to use the GUI to create and run an Extended

Event session or you are running SQL Server 2008, you can use T-SQL to create and

configure one. To create the same Extended Event session as we did using the GUI, you

can execute the query seen in Listing 2-3.

Figure 2-24. Live wait statistics information from an Extended Event session

Chapter 2 Querying SQL Server Wait StatiStiCS

54

Listing 2-3. Create wait statistics Extended Event session

CREATE EVENT SESSION [WaitStats Query] ON SERVER

ADD EVENT sqlos.wait_info

 (

 ACTION(sqlserver.sql_text)

 WHERE ([sqlserver].[session_id]=(52))

)

ADD TARGET package0.event_file

 (

 SET filename = N'E:\Data\WaitStats_XE.xel', metadatafile = N'E:\Data\

WaitStats_XE.xem'

);

We included the metadata file in the preceding script by setting the
metadatafile parameter. if you are running SQL Server 2012 or higher, this is no
longer required.

The easiest way to log the Extended Event session is by saving it to a file; in this

case my filename is E:\Data\WaitStats_XE.xel (SQL Server will add a unique

numeric identifier to the filename, in this case the actual filename is WaitStats_

XE_0_130702270937280000.xel). I also included the filter on session ID 52 to capture

wait statistics generated by that session.

The next thing we want to do is start the Extended Event session, which we can do by

executing the ALTER EVENT SESSION command:

ALTER EVENT SESSION "WaitStats Query" ON SERVER STATE = start;

We then execute the same query as we did in the Extended Events GUI example

under the session ID we are filtering on. After letting the Extended Event session run for

a little while, we can stop it using the ALTER EVENT SESSION command:

ALTER EVENT SESSION "WaitStats Query" ON SERVER STATE = stop;

Chapter 2 Querying SQL Server Wait StatiStiCS

55

Now that we have stopped the Extended Event session, we need to import the

information in the file (as XML) into a table so we can actually see what the session

captured; we do this using the sys.fn_xe_file_target_read_file function. We

can then parse the XML information to return the results in a more readable format.

The query in Listing 2-4 can be used to read an Extended Events file, import it into a

temporary table, and return the results as rows.

Listing 2-4. Return Extend Event file as rows

-- Check if temp table is present

-- Drop if exist

IF OBJECT_ID('tempdb..#XE_Data') IS NOT NULL

DROP TABLE #XE_Data

-- Create temp table to hold raw XE data

CREATE TABLE #XE_Data

 (

 XE_Data XML

);

GO

-- Write contents of the XE file

-- into our table

INSERT INTO #XE_Data

 (

 XE_Data

)

SELECT

 CAST (event_data AS XML)

FROM sys.fn_xe_file_target_read_file

 (

 'E:\Data\WaitStats_XE_0_130702270937280000.xel',

 'E:\Data\WaitStats_XE_0_130702270940210000.xem',

 null,

 null

);

GO

Chapter 2 Querying SQL Server Wait StatiStiCS

56

-- Query information from our temp table

SELECT

 XE_Data.value ('(/event/@timestamp)[1]', 'DATETIME') AS 'Date/Time',

 XE_Data.value ('(/event/data[@name=“opcode”]/text)[1]', 'VARCHAR(100)')

AS 'Operation',

 XE_Data.value ('(/event/data[@name=“wait_type”]/text)[1]',

'VARCHAR(100)') AS 'Wait Type',

 XE_Data.value ('(/event/data[@name=“duration”]/value)[1]', 'BIGINT') AS

'Wait Time',

 XE_Data.value ('(/event/data[@name=“signal_duration”]/value)[1]',

'BIGINT') AS 'Signal Wait Time',

 XE_Data.value ('(/event/action[@name=“sql_text”]/value)[1]',

'VARCHAR(100)') AS 'Query'

FROM #XE_Data

ORDER BY 'Date/Time' ASC

;

The result of the query in Listing 2-4 can be seen in Figure 2-25.

Figure 2-25. Results of the query in Listing 2-4

Most of the columns speak for themselves in terms of the row data they return.

Two columns that deserve some extra explanation are the Operation and Wait Time

columns. The Operation column will show you the beginning or the end of the wait

event. The Wait Time column will return the wait time in milliseconds, but it will only be

recorded at the end of an operation.

Chapter 2 Querying SQL Server Wait StatiStiCS

57

 Analyzing Wait Statistics on a Per-Query Basis
Using Execution Plans
So far we have mostly looked at aggregated wait times that were generated by either

various background processes or by the queries we executed. Since I was the only one

that was executing queries against my test machine, it is very easy to correlate wait

times to my specific queries. Unfortunately, on busy systems where many queries are

constantly being executed by a large number of sessions, the various wait statistics DMVs

are almost useless to analyze wait types and wait times for specific queries.

Thankfully, the release of SQL Server 2016 SP1 changed that scenario and introduced

wait statistics capture inside query execution plans! This means you can easily see what

wait types and wait times your query encountered while running. Even though it might

seem obvious, this means that per-query wait statistics are only available when looking

at the actual execution plan, not the estimated execution plan.

the actual execution plan is the execution plan that was used during the execution
of the query. there is an option in SQL Server Management Studio to look at
the estimated execution plan. When used, the SQL Server engine compiles the
execution plan which is most likely to be used during the query’s execution;
however, it does not actually execute the query itself. Since there is no query
execution, there are also no wait statistics to record while compiling the estimated
execution plan.

The easiest way to expose per-query wait statistics is by enabling the Include
Actual Execution Plan option, shown in Figure 2-26, by clicking the “Query – Include

Actual Execution Plan” menu item or by using the key combination CTRL_M, and then

executing your query.

Figure 2-26. Include Actual Execution Plan option

Chapter 2 Querying SQL Server Wait StatiStiCS

58

When you execute your query with the Include Actual Execution Plan option

enabled, your query results will return with an additional tab called Execution plan.

Clicking the tab will return the visual representation of the execution plan that was used

while executing your query. Figure 2-27 shows an example of an actual execution plan.

With the actual execution plan opened, we can access the per-query wait statistics by

right-clicking the first operator, which in the case of Figure 2-28 is the SELECT operator,

and selecting Properties. This will open up the execution plan properties window inside

SQL Server Management Studio and reveals a wealth of information, like the degree of

parallelism used or the number of rows processed, about the query execution and the

various properties of the operator we selected.

Figure 2-27. Execution plan

Chapter 2 Querying SQL Server Wait StatiStiCS

59

Since we are interested in wait statistics, the most interesting part of the execution

plan properties is recorded all the way at the bottom of the properties window. When

expanding the WaitStats properties you are able to see all of the wait types, and wait

times, this specific query ran into while executing. Figure 2-29 shows the per-query wait

statistics for this specific example query.

Figure 2-28. Execution plan properties

Chapter 2 Querying SQL Server Wait StatiStiCS

60

In this case our query encountered three different wait types while executing:

PAGEIOLATCH_SH, MEMORY_ALLOCATION_EXT and ASYNC_NETWORK_IO. For

each of these wait types you can see how much time was spend waiting, and how many

times we waited on the wait type. This information can be very useful when looking at

what an individual query encounters in terms of wait statistics during its execution, and

perhaps, can give you some insights in how you can tune the performance of the query.

For instance, if you see that a query frequently runs into storage-related wait statistics,

it might be worth it to investigate how you can minimize storage access for that specific

query so it can execute faster.

One thing that I like to point out again, the per-query wait statistics are only recorded

in the actual execution plan! The reason why I mention this again is that the actual

execution plan is only available by enabling it before execution of a query. There is no

other way to access an actual execution plan, not even through the Query Store as we

will see in the next chapter. As a matter of fact, the execution plans that are stored in the

plan cache of SQL Server are the estimated execution plans and not the actual plans.

This means that if you are expecting to retrieve per-query wait statistics through the plan

cache you are going to be disappointed.

Figure 2-29. Per-query wait statistics in the execution plan properties

Chapter 2 Querying SQL Server Wait StatiStiCS

61

Thankfully, even though the Query Store feature does not record the actual

execution plan, it does (with the release of SQL Server 2017) record wait statistics, and

other query runtime information, together with the estimated execution plan. Mixing

that information together means that through the Query Store we can look back in time

and see what queries encountered in terms of wait statistics!

 Summary
In this chapter we reviewed the various ways we can access information about wait

statistics. We took an in-depth look at some of the most important DMVs regarding wait

statistics: sys.dm_os_wait_stats, sys.dm_os_waiting_tasks, sys.dm_exec_requests,

and sys.dm_exec_session_wait_stats. I described their functions and the data they

returned, and gave you some example queries you can use against those DMVs. We

also went through an example scenario where we combined some of the DMVs to

analyze what was slowing down the SQL Server in the example. The steps shown in the

example are a good way to analyze performance problems on your system when they

are occurring. Briefly, we looked at the Windows Performance Monitor, or Perfmon, and

how you can access wait statistics information from inside it. After that we took a good

look at Extended Events and how you can use them to capture wait-related information

for specific queries or sessions using the Extended Events GUI or T-SQL. We ended the

chapter by looking at execution plan recorded wait statistics.

Chapter 2 Querying SQL Server Wait StatiStiCS

63
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_3

CHAPTER 3

The Query Store
With the release of SQL Server 2016, Microsoft introduced an entirely new method to

analyze and troubleshoot query performance: the Query Store. The Query Store is often

marketed as the “flightrecorder” of SQL Server in that it gives insights into when queries

are being executed, how well they performed, and what execution plan was used during

execution of the query. While the Query Store did not initially expose wait statistics that

were encountered during query execution, the release of SQL Server 2017 included that

much awaited addition.

Since the Query Store is such a gamechanger in terms of query performance analysis

and tuning, I believe it deserves some additional attention so you can get the most from

this feature.

 What Is the Query Store?
The Query Store feature was first released in SQL Server 2016 and had a goal of exposing

query performance in an easier and more accessible way. Before the Query Store, query

performance analysis was a challenging and time-consuming process that requires

very thorough knowledge of how SQL Server processes queries and how you can

analyze information through the various DMVs. While experience and knowledge of

query execution is still very helpful, the Query Store helps you access the performance

information you need in a more accessible and visual manner.

The Query Store is integrated directly inside the SQL Server engine. This means

that it can capture and analyze query executing where it is occurring. This is a major

difference compared to query analysis through other methods, like the execution plan

cache, where query runtime information is only available at a later stage. Another

advantage of the Query Store is that it persists query runtime information to disk. This

means you can build up a history of runtime metrics for your queries and allows easier

comparison between historic runtime statistics and current ones. This is a difference

64

compared to the DMVs, which only records information for the time SQL Server is

running and flushes all recorded information at a restart of SQL Server, meaning you

start back with all the counters at 0 again. To continue the comparison of the Query

Store vs. DMVs, while all the DMVs record information on the entire SQL Server Instance

level, the Query Store allows you to capture query runtime metrics on a per-databases

basis. This makes analyzing performance for a specific database inside an Instance with

multiple databases considerably easier and quicker.

There are more advantages of using the Query Store, for instance, the easy forcing of

execution plans, but since this is a book about wait statistics, I will not cover everything

that the Query Store has to offer. If you are interested in more in-depth look of the Query

Store, I wrote a series of articles that describes just about everything the Query Store

is capable of and it’s available here: www.red-gate.com/simple-talk/sql/database-

administration/the-sql-server-2016-query-store-overview-and-architecture/.

 Query Store Architecture
To give you a good idea on how the Query Store works, I created the image in Figure 3- 1

that shows how query runtime information is recorded and stored inside the Query Store.

This knowledge is important if you want to add the Query Store as a tool to analyze query

performance and wait statistics.

Figure 3-1. Query Store architecture

Chapter 3 the Query Store

http://www.red-gate.com/simple-talk/sql/database-administration/the-sql-server-2016-query-store-overview-and-architecture/
http://www.red-gate.com/simple-talk/sql/database-administration/the-sql-server-2016-query-store-overview-and-architecture/

65

As soon as a query is starting its execution, and you have the Query Store enabled

on the database the query is being executed against, the Query Store splits the query

runtime information into three parts: the query execution plan, the query text, and the

runtime statistics of the query execution. Both the execution plan and the query text

are immediately recorded in the Query Store during the compilation of the execution

plan. The runtime statistics (including wait statistics information) are only available

after execution of the query, meaning they will be added to the Query Store after query

execution.

All of the Query Store metrics are first stored inside a reserved memory area of

SQL Server. This means they are directly available through queries or the built-in

reports, but are not hardened to disk yet (exception is new execution plans, these are

hardened directly). Based on a configurable setting inside the Query Store called the

“Data flush interval” you can configure how fast the Query Store should harden the

information to disk.

We can access all the information the Query Store records through two methods:

Query Store DMVs and the built-in reports. To expose the wait statistics inside the Query

Store, we will be using both options, though I believe the DMV approach is more useful

when looking at the wait statistics data.

 How Wait Statistics Are Processed in the Query
Store
Before we can get started looking at how we can access the wait statistics information

recorded in the Query Store, we need to look at how the Query Store processes wait

statistics, since it is different compared to the process I described in Chapter 1, “Wait

Statistics Internals,” of this book. In that chapter I described that the SQL Server engine

keeps track of how long a query spends waiting on a specific resource, or wait type. This

information is recorded at a very granular level; for instance, the PAGEIOLATCH_SH

wait type indicates that the query is waiting for data pages to be read from disk to the

buffer cache and a PAGEIOLATCH_EX that the query is waiting for a data page to be

moved to the buffer cache for modification. Instead of recording wait times on such

a detailed level, the team behind the development of the Query Store decided that a

more high-level wait type overview was required to avoid performance and resource

utilization overhead. Ultimately, they chose to group various wait types together into

categories and record wait times on a category level instead of individual wait types.

Chapter 3 the Query Store

66

This means that searching for specific wait types inside the Query Store recorded

wait statistics is not possible and wait types that share the same category cannot be

distinguished from each other. To give you an example, both the CMEMTHREAD and

the RESOURCE_SEMAPHORE wait types (of which you will learn more in Chapter 6,

“IO-Related Wait Types”) are recorded inside the Memory category inside the Query

Store, even though both wait types indicate different things.

Table 3-1 shows the mapping between wait types and wait categories that are used

in the Query Store. The table is by no means a complete overview of the mappings but

should give you a good idea where to expect a certain wait type.

Table 3-1. Mapping Between wait types and Categories

Wait Category Associated Wait Types

Unknown unknown

CPU SoS_SCheDuLer_yIeLD

Worker thread threaDpooL

Lock LCK_M_%

Latch LatCh_%

Buffer latch paGeLatCh_%

Buffer IO paGeIoLatCh_%

Compilation* reSourCe_SeMaphore_Query_CoMpILe

SQL CLR CLr%, SQLCLr%

Mirroring DBMIrror%

Transaction XaCt%, DtC%, traN_MarKLatCh_%, MSQL_XaCt_%, traNSaCtIoN_

MuteX

Idle SLeep_%, LaZyWrIter_SLeep, SQLtraCe_BuFFer_FLuSh,

SQLtraCe_INCreMeNtaL_FLuSh_SLeep, SQLtraCe_WaIt_eNtrIeS,

Ft_IFtS_SCheDuLer_IDLe_WaIt, Xe_DISpatCher_WaIt,

reQueSt_For_DeaDLoCK_SearCh, LoGMGr_Queue,

oNDeMaND_taSK_Queue, CheCKpoINt_Queue, Xe_tIMer_eVeNt

Preemptive preeMptIVe_%

(continued)

Chapter 3 the Query Store

67

Table 3-1. (continued)

Wait Category Associated Wait Types

Service broker BroKer_% (but not BroKer_reCeIVe_WaItFor)

Tran Log IO LoGMGr, LoGBuFFer, LoGMGr_reSerVe_appeND, LoGMGr_FLuSh,

LoGMGr_pMM_LoG, ChKpt, WrIteLoGF

Network IO aSyNC_NetWorK_Io, Net_WaItFor_paCKet, proXy_NetWorK_Io,

eXterNaL_SCrIpt_NetWorK_IoF

Parallelism CXpaCKet, eXChaNGe

Memory reSourCe_SeMaphore, CMeMthreaD, CMeMpartItIoNeD,

ee_pMoLoCK, MeMory_aLLoCatIoN_eXt, reSerVeD_MeMory_

aLLoCatIoN_eXt, MeMory_GraNt_upDate

User wait WaItFor, WaIt_For_reSuLtS, BroKer_reCeIVe_WaItFor

Tracing traCeWrIte, SQLtraCe_LoCK, SQLtraCe_FILe_BuFFer, SQLtraCe_

FILe_WrIte_Io_CoMpLetIoN, SQLtraCe_FILe_reaD_Io_CoMpLetIoN,

SQLtraCe_peNDING_BuFFer_WrIterS, SQLtraCe_ShutDoWN, Query_

traCeout, traCe_eVtNotIFF

Full text search Ft_reStart_CraWL, FuLLteXt Gatherer, MSSearCh, Ft_MetaData_

MuteX, Ft_IFtShC_MuteX, Ft_IFtSISM_MuteX, Ft_IFtS_rWLoCK,

Ft_CoMproWSet_rWLoCK, Ft_MaSter_MerGe, Ft_propertyLISt_

CaChe, Ft_MaSter_MerGe_CoorDINator, pWaIt_reSourCe_

SeMaphore_Ft_paraLLeL_Query_SyNC

Other disk IO aSyNC_Io_CoMpLetIoN, Io_CoMpLetIoN, BaCKupIo, WrIte_

CoMpLetIoN, Io_Queue_LIMIt, Io_retry

Replication Se_repL_%, repL_%, haDr_% (but not haDr_throttLe_LoG_rate_

GoVerNor), pWaIt_haDr_%, repLICa_WrIteS, FCB_repLICa_WrIte,

FCB_repLICa_reaD, pWaIt_haDrSIM

Log rate governor LoG_rate_GoVerNor, pooL_LoG_rate_GoVerNor, haDr_throttLe_

LoG_rate_GoVerNor, INStaNCe_LoG_rate_GoVerNor

Chapter 3 the Query Store

68

 Accessing Wait Statistics Through the Query Store
Reports
The most user-friendly way to view the wait statistics that are available inside the Query

Store is through the built-in reports that are available inside SQL Server Management

Studio after you enabled the Query Store feature on a database. Figure 3-2 shows the

default, built-in, Query Store reports that are available at the time of writing this book.

As you can see in Figure 3-2, there are no dedicated wait statistics reports (yet).

Instead of a dedicated report, we can view the wait categories as a query encountered by

specifically selecting the Wait Time (ms) metric inside the following three reports:

• Regressed Queries

• Top Resource Consuming Queries

• Queries with High Variation

To view the wait categories in any of the preceding reports, you first need to

configure the metric to Wait Time (ms), as shown in Figure 3-3.

Figure 3-2. Query Store reports

Chapter 3 the Query Store

69

This changes the graph to return (by default) the top 25 queries order by the total

wait time.

After changing the metric, you can mouseover on any of the queries that are shown

in the graph to retrieve the wait category information, as shown in Figure 3-4.

Figure 3-3. Configuring the metric to Wait Time (ms)

Figure 3-4. Wait categories exposed in the Query Store

Chapter 3 the Query Store

70

As you can see from Figure 3-4, this specific query ran into various wait categories:

Network IO, Memory, and Buffer IO. We can see the wait time per category and the total

wait time across all of the categories, but as mentioned earlier, we have no idea about

which exact wait types were encountered by the query.

 Accessing Wait Statistics Through the Query Store
DMVs
While the built-in Query Store reports are definitely helpful in visibly identifying queries

with high wait times, we can easily generate far more information by using a new

Query Store DMV that is available in SQL Server 2017: sys.query_store_wait_stats. The

columns that are returned by querying the DMV mainly show various statistics related to

the wait types of the various wait categories for a specific execution plan ID.

the Query Store uses its own unique identifiers for queries, execution plans, and
runtime intervals. With that in mind, you can identify queries by looking up the
Query ID inside the Query Store, or execution plans by searching on the plan ID.

Figure 3-5 shows the different statistics that are recorded for each execution plan ID,

split up into different wait categories.

While we can just query the sys.query_store_wait_stats DMV and look at the various

statistics for each, or a specific, execution plan ID, we can get far more information by

joining the various Query Store DMVs together.

Figure 3-5. Wait categories statistics inside sys.query_store_wait_stats

Chapter 3 the Query Store

71

As an example, the following query joins various Query Store DMVs to return an

overview of queries that encounter high total wait times.

SELECT

 qsws.plan_id,

 qsq.query_id,

 qsws.runtime_stats_interval_id,

 qsqt.query_sql_text,

 qsws.wait_category_desc,

 qsws.total_query_wait_time_ms

FROM sys.query_store_wait_stats qsws

INNER JOIN sys.query_store_plan qsp

ON qsws.plan_id = qsp.plan_id

INNER JOIN sys.query_store_query qsq

ON qsp.query_id = qsq.query_id

INNER JOIN sys.query_store_query_text qsqt

ON qsq.query_text_id = qsqt.query_text_id

ORDER BY qsws.total_query_wait_time_ms DESC

The results of this query can be seen in Figure 3-6.

Using the preceding query, we can immediately see that the SELECT query against

the Sales.SalesOrderDetail table spends most of its waiting time on parallelism-related

wait types.

Figure 3-6. Wait statistics information from the Query Store

Chapter 3 the Query Store

72

Modifying the query a little bit by filtering on the queries Query ID allows us to

zoom in on a specific query and analyze its wait behavior. Following is the modified

query, and you’ll see that I also added some additional columns that return various

useful statistics.

SELECT

 qsws.plan_id,

 qsq.query_id,

 qsws.runtime_stats_interval_id,

 qsqt.query_sql_text,

 qsws.wait_category_desc,

 qsws.total_query_wait_time_ms,

 qsws.avg_query_wait_time_ms,

 qsws.last_query_wait_time_ms

FROM sys.query_store_wait_stats qsws

INNER JOIN sys.query_store_plan qsp

ON qsws.plan_id = qsp.plan_id

INNER JOIN sys.query_store_query qsq

ON qsp.query_id = qsq.query_id

INNER JOIN sys.query_store_query_text qsqt

ON qsq.query_text_id = qsqt.query_text_id

WHERE qsq.query_id = 8

ORDER BY runtime_stats_interval_id ASC

Figure 3-7 shows the output from running this version of the query.

Figure 3-7. Wait statistics information for a specific query

In the query and the query results shown in Figure 3-7, you can see I added an

additional column called runtime_stats_interval_id. The wait the Query Store groups

runtime, and also wait time, metrics is by aggregating them based on intervals. By default,

Chapter 3 the Query Store

73

these intervals are one-hour blocks, meaning that the wait statistics that are returned

for our specific query in the preceding example are the aggregated results of one, or

multiple, query executions inside the interval. While you can lower the intervals to

smaller time segments by setting the Statistics Collection Interval setting inside the

Query Store properties, this can have a negative impact on the performance of your SQL

Server Instance, so be careful when changing this setting.

I have only shown you a few examples of how you can retrieve wait statistics–

related metrics from inside the Query Store. With all the information that the Query

Store collects there is a whole ocean full of other information to combine with the wait

statistics metrics. For instance, you can filter on specific wait categories, or detect if

queries generate different execution plans and what their impact is on the waits for that

specific query. I definitely recommend everyone that is using SQL Server 2016 or higher

to enable the Query Store and explore all the amazing metrics it collects.

While the Query Store is only available from SQL Server 2016 and higher, William Durkin
(@sql_williamd on twitter) and myself released a project called open Query Store
which emulates Query Store data collection for SQL Server versions lower than 2016.
the project is completely open source and free and available through the project’s
Github page at https://github.com/OpenQueryStore/OpenQueryStore.

 Summary
In this chapter we looked at a new query performance and analysis feature that was

introduced in SQL Server 2016: the Query Store. We looked at how the Query Store works

underneath the covers and how we can access query wait statistics information in the

built-in reports of the SQL Server 2017 version of the Query Store.

Finally, we looked at accessing Query Store wait statistics using the new Query Store

DMVs and showed some example queries that can help you get started on querying the

Query Store.

Chapter 3 the Query Store

https://github.com/OpenQueryStore/OpenQueryStore

75
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_4

CHAPTER 4

Building a Solid Baseline
In Chapter 2, “Querying SQL Server Wait Statistics,” we spent a great deal of time

describing and using the various methods of accessing wait statistics information.

Most of those methods focused on using that information for detecting performance

problems that are presently occurring. While it is possible to find the exact cause of the

performance problem using these real-time methods, it requires a deep knowledge of

the various wait types and—most important—experience in the performance of your

SQL Server. If you are managing only one SQL Server instance, you can get yourself

familiar with the way it reacts under different circumstances relatively quickly. If you

are managing hundreds of SQL Server instances, getting yourself familiar with the

way they perform is impossible. Because SQL Server wait statistics are largely based

on the workload of your SQL Server instance, no two SQL Server instances will have

the same wait times for the same wait types. This makes detecting possible problems

difficult because we can’t just say “because the CXPACKET wait type has a wait time of

20,000 milliseconds we are having a problem.” It all depends on the configuration and

workload of your system. One SQL Server instance can have 20,000 milliseconds (20

seconds) of wait time every minute spent on the CXPACKET wait type and experience no

performance problems, while another instance has 1,000 milliseconds of wait time and

users are constantly complaining about performance.

If we want to perform an in-depth analysis of wait statistics, or any performance-

related data, we need a method of collecting performance-related metrics and giving

them meaning. Just detecting that you spend 10,000 milliseconds waiting for resources

doesn’t mean anything, since we do not know if it caused performance problems or

not. Yes, maybe your users are complaining that performance is horrible while you

notice that 10,000 milliseconds wait, but there is no way to be sure if that wait is actually

causing the performance problems your users are experiencing. In those cases we

frequently take a guess and just assume that the specific resource wait is the source of

the performance problem. I learned, after talking to many DBAs across the world, that

76

DBAs do not like to take guesses at what’s slowing down our SQL Server instances. We

want to be certain that the source of the performance problem actually is that resource

wait. This is where baselines can help.

Baselines will help you give meaning to performance metrics by providing you

with a definition of what the normal situation is on your system. Without a baseline

of our system, we have no idea if it is running optimally or terribly slow. Baselines are

incredibly important; in fact, they are so important that I decided to write a complete

chapter about them in this book. Without a solid baseline, your measurements mean

nothing! Even though this book focuses on wait statistics, baselines can be used for

every performance-related metric you can capture on your system, giving you a valuable

method of performance analysis.

If you read through the previous chapter concerning the Query Store, you might

be tempted to think that the Query Store can handle all your baseline needs (if you

are running SQL Server 2016 or higher). While the Query Store absolutely provides a

very useful tool in capturing and monitoring the performance of your query, it doesn’t

necessarily provide a performance overview of your entire SQL Server Instance. I

personally consider the Query Store an addition to the regular process of capturing and

monitoring baselines, not a replacement.

 What Are Baselines?
If we look up the word “baseline” in the Oxford dictionary, we would get the following

definition: “A minimum or starting point used for comparisons.” This sentence captures

the essence of a baseline perfectly by using the important words “starting point”

and “comparisons.” A baseline will generally be the starting point, or in our case,

measurement, that we will compare later measurements against. Ideally, we will capture

our baseline measurement in a normal or standard situation. If we perform the same

measurement again at a later point in time, we can compare that measurement against

the baseline. If our measurements are not the same during the comparison, something

might have changed.

Even if you do not yet use baseline comparisons when analyzing performance, you

are still working with baselines constantly whether you realize it or not. For instance, if

you receive a salary every first day of the month, that would be your normal situation

or, in the context of this chapter, your baseline. If for some reason you didn’t receive

your salary on the first day of the month, you would notice a deviation compared to the

Chapter 4 Building a Solid BaSeline

77

baseline. This might be a reason to investigate why you didn’t receive your salary on

time. Maybe the day changed from the first to the fifth of the month or, in the worst case,

the company you work for can’t pay your salary anymore. In any of these cases, there are

actions we can take: either accept the change, and by doing so create a new baseline, or

revert the situation back to the baseline state again. Figure 4-1 shows this process.

Defining and maintaining baselines is an iterative process. Every change occurring

on your system can impact your baseline. A new release of the application you are using

might change a number of queries, or your company might grant a new department

access to the database, increasing the number of connections. In both these examples

we would need to make adjustments to the baseline, since the normal situation would

have changed.

All of this adjusting and measuring baselines with every change to the system sounds

like a lot of work, and sometimes it is. But believe me—the benefits of having a baseline

far outweigh the costs. Baselines will help you detect problems far faster than just

looking at a single measurement, and in the case of wait statistics, it is the only way to

find a reliable, definitive answer to your problem. Let’s use a more technical example to

illustrate this using DBA Jim.

Jim maintains a SQL Server instance that hosts a single-user database. This

database is used by every sales person in the company and records every financial

transaction between the company and its customers. Users can access the database

through Application X. Application X is currently running version 2.4 and is very stable.

Performance is good, users are happy, and the money keeps rolling in. Sounds great,

Figure 4-1. Changes impact baseline

Chapter 4 Building a Solid BaSeline

78

right? One day a consultant walks in and wants to upgrade Application X to the brand

new 3.0 version. The update to version 3.0 was a breeze and completed without any

problems, and all the users love the new features.

Two days later the phone is ringing, Chris’s manager just received word from the

sales team that the performance in version 3.0 is horrible and he demands it get resolved

right away.

Thankfully, Jim knew the importance of a baseline, and he created one before the

upgrade to version 3.0. Using the version 2.4 baseline, Jim compares the measurements

in the baseline to the measurements done in version 3.0 and immediately spots a large

difference in the lock wait time measurements. Since other measurements remain

more or less the same compared to the 2.4 baseline, Jim focuses on long-running locks

and identifies an update query that is locking a table. He rolls back the query, and the

situation returns to normal. He then contacts the application’s vendor and learns this

behavior was a result of a bug in the software.

Now this example might sound a little far-fetched, but it is actually a simplified

version of the method I use almost every day when measuring the impact of changes or

analyzing performance problems. If Jim didn’t have a baseline of the lock wait time and

just queried the lock wait time after the change to version 3.0, he wouldn’t know that

the wait time had increased, since he had nothing to compare against. He might have

chosen to look at other metrics instead of the lock wait time and would have wasted

valuable time and money.

The message here is simple: baselines will help you detect abnormal situations and

resolve performance problems faster!

 Visualizing Your Baselines
Baselines are frequently visualized through graphs. The big advantage of turning your

baseline measurements into graphs is that a graph can make it easier for you to detect

those measurements that have the highest increase or decrease compared to your

baseline. Also, visualizing your data might help you get your point across easier if you

have to prove that a specific configuration is impacting performance. For example, you

need to convince your storage administrator that the change in the storage configuration

has impacted your performance. If you can hand him a graph that shows the normal

behavior compared to the behavior after the change, he might be more inclined to

help. The graph in Figure 4-2 shows the baseline measurements compared to the

measurements done at a later time.

Chapter 4 Building a Solid BaSeline

79

As you can see in Figure 4-2, you would be able to identify the potential problem very

quickly. Apparently, between 08:00 and 12:00 the number of transactions per second is

higher than the normal situation, and it might be worth taking the time to investigate.

 Baseline Types and Statistics
We will frequently use different types of baselines depending on the information we are

interested in. There usually isn’t one single baseline to fit all our needs, especially not

when you are using baselines for performance-troubleshooting purposes. For instance,

we can create a baseline for every single wait type, or we can choose to create only

baselines for wait types that impact our system the most. We can also choose to create a

baseline for specific days or time segments, like business hours, and create another for

after business hours.

Next to selecting or limiting the measurements we want to have baselines for, we also

have to make choices on how we calculate our baselines. These choices involve some

math and usually require calculating averages. In many cases our baseline consists of an

average of many data points, depending on how many measurements you performed. If

you collect measurements for a long period of time and calculate an average value from

Figure 4-2. Example of a baseline graph

Chapter 4 Building a Solid BaSeline

80

those measurements, you can create a more reliable baseline than you can when you

only have one day’s worth of measurements. Creating a baseline based on averages also

has its disadvantages. The most important one is that averages are heavily influenced

by skewed data. Without going too deep into statistical details, skewed data means that

there are very high or very low values that impact your average. Say, for instance, that

a group of students took an exam and we wanted to see how the group performed by

calculating the average result of the exam (the students are rated between 1 and 10, 1

being very poor and 10 being excellent; a 6 or higher is required to pass the exam).

Figure 4-3 shows the exam results in a graph.

As you can see in Figure 4-3, only four students scored higher than the required 6

to pass the exam. The rest of the group scored way below the requirement. However,

if we look at the average performance of the group, they actually didn’t do too badly

by scoring a 6. We could conclude the group is performing well enough by getting an

average score of 6, but then we would miss that the majority performed badly and only

four students actually passed the exam. This information is important to keep in mind

when you are dealing with average baselines. If you see a spike in your average baseline,

it is always something you should investigate, because it impacts your baseline.

Figure 4-3. Exam results

Chapter 4 Building a Solid BaSeline

81

There are statistical methods available to deal with skewed data and averages, one

being the trimmed (or truncated) mean. This method removes x percent of the highest

and lowest measurements in your series, creating a more stable average. We won’t

go any deeper into the trimmed mean for baseline use, but if you want to learn more

about it, I suggest you read Bob Newstadt’s blog post at www.sqlteam.com/article/

computing-the-trimmed-mean-in-sql. Even though the article is pretty dated, it shows

a method of calculating the trimmed mean using T-SQL.

 Baseline Pitfalls
Hopefully the previous section convinced you that baselines are important, but

before you go and capture every performance metric and convert it into a baseline

measurement, there are some pitfalls you will want to avoid.

 Too Much Information
Even though you are free to baseline everything in your system, this is generally

considered a bad idea. Gathering too much information can blind you in your search

for answers. If you have to compare 100,000 different metrics against your baseline

every time a performance problem occurs, you are wasting time. The advice here is to

keep your baselines small, including only performance metrics that matter the most for

your system. For instance, you can include performance metrics related to Availability

Groups, but if your system doesn’t use this feature, then there is no use including them.

 Know Your Metrics
Another important aspect in the selection of performance metrics is understanding.

If you do not understand what a performance metric represents, it can be very difficult

to formulate a correct conclusion, or it can even lead you in the wrong direction.

 Focus on the Big Measurement Changes
When comparing measurements against a baseline, always focus on the big increases or

decreases. Especially for wait statistics, very small increases in wait time (1–2%) aren’t a

cause for concern. If one of your wait time measurements goes up 20%, that would be a

good signal to start investigating.

Chapter 4 Building a Solid BaSeline

http://www.sqlteam.com/article/computing-the-trimmed-mean-in-sql
http://www.sqlteam.com/article/computing-the-trimmed-mean-in-sql

82

 Use Fixed Intervals
When capturing wait statistics information you should always use a fixed interval. If we

were to capture wait times at random, it would be almost impossible to build a reliable

baseline. It would be like comparing apples against oranges. The best way to automate

the capture of wait statistics information is by using the SQL Server Agent and setting it

to a fixed interval, like every 15 minutes.

 Building a Baseline for Wait Statistics Analysis
Now that we have familiarized ourselves with baselines, let’s get to work and create a

baseline we can use in our wait statistics analysis. As I mentioned at the beginning of this

chapter, baselines are incredibly important if you want to analyze performance problems

using wait statistics. Nobody has the same wait types and wait times compared to your

system, so it’s up to you to create a baseline you can compare against.

In this section I will show you a method I use to create, maintain, and compare

baselines and measurements. This does not necessarily mean this is the right way to do

it, and you might find other methods better suited to your needs.

Since we are going to capture SQL Server wait statistics measurements, I prefer to

store my measurements inside a separate database named “Baseline.” This way my

measurement information doesn’t get stored somewhere between user tables. Since wait

statistics are logged at the SQL Server instance level, it makes sense to create a separate

measurement database inside every SQL Server instance. Figure 4-4 shows you my

baseline database inside the SQL Server Management Studio.

Chapter 4 Building a Solid BaSeline

83

You can create the database yourself using the script in Listing 4-1, making sure

to change the file locations. The database data file will be 1.5 GB when it gets created,

which gives enough free space to capture weeks of wait statistics information.

Listing 4-1. Creating the Baseline database

-- Create Baseline database

CREATE DATABASE [Baseline]

 ON PRIMARY

 (

 NAME = N'Baseline', FILENAME = N'E:\Data\baseline_data.mdf' ,

SIZE = 1536000KB , FILEGROWTH = 10%

)

 LOG ON

 (

 NAME = N'Baseline_log', FILENAME = N'E:\Log\baseline_log.ldf' ,

SIZE = 102400KB , FILEGROWTH = 10%

)

GO

ALTER DATABASE [Baseline] SET RECOVERY SIMPLE

GO

Figure 4-4. Baseline database

Chapter 4 Building a Solid BaSeline

84

We will be using the sys.dm_os_wait_stats DMV as the source of our

measurements, which means that the table that will hold our measurements must be

able to handle the information returned from the DMV. We will not only store the wait

types and wait times but will also add additional information to enrich the data so that

we can easily create multiple baselines.

Listing 4-2 shows the query you can use to create a table, named WaitStats, to hold

the wait statistics information we will use for creating our baselines.

Listing 4-2. Create a wait statistics table

USE [BaseLine]

GO

CREATE TABLE WaitStats

 (

 ws_ID INT IDENTITY(1,1) PRIMARY KEY,

 ws_DateTime DATETIME,

 ws_Day INT,

 ws_Month INT,

 ws_Year INT,

 ws_Hour INT,

 ws_Minute INT,

 ws_DayOfWeek VARCHAR(15),

 ws_WaitType VARCHAR(50),

 ws_WaitTime INT,

 ws_WaitingTasks INT,

 ws_SignalWaitTime INT

)

As you can read in the listing, we capture the wait type, wait time, signal wait time,

and the number of waiting tasks. We also capture the date and time when we log the

wait statistics information. We also split the date and time into additional columns to

segment the data, making it easier to build specific baselines based on a specific day,

hour, month, and so forth, without having to convert the datetime data type every time.

Now that we have our table ready, it is time to capture some wait statistics and

insert them into our WaitStats table. Because the sys.dm_os_wait_stats DMV returns

cumulative wait times, we have to use a method to only capture the difference in wait

Chapter 4 Building a Solid BaSeline

85

time between two capture moments. If we were to only capture the information directly

from the sys.dm_os_wait_stats DMV, we would always receive ever-increasing wait

times, and that would make comparisons useless. There are two paths we can take

to capture the change in wait time between two measurements, and both have their

advantages and disadvantages.

The first method, which I call the reset method, will capture the wait statistics

information from the sys.dm_os_wait_stats DMV and then reset the DMV using the

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR) command. The main advantage of

this method is that it is very simple to use, as we only need to capture the information,

reset it again, and start the same procedure at the next measurement. There is no need

to calculate deltas, because after our first measurement the counters are reset to 0. The

disadvantage is that the DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR) command

resets the information inside the sys.dm_os_wait_stats DMV. This means that you will

lose the cumulative information inside the DMV, information you might not want to lose.

Figure 4-5 illustrates this method of wait statistics capturing.

The second option, which I named the delta method, involves not using the DBCC

SQLPERF('sys.dm_os_wait_stats', CLEAR) command, but rather calculating the

difference, or delta, in wait time between two measurements. The advantage of not using

the DBCC command is that you will not lose the cumulative wait times inside the sys.dm_

os_wait_stats DMV. Its main disadvantage is that it is a lot more complex to calculate

the deltas compared to the first method. It usually also involves a WAITFOR DELAY

command inside the T-SQL script to set the interval. This might mean that if you plan to

capture wait statistics information using the SQL Server Agent, you could end up with a

SQL Server Agent job that is running almost continuously. Figure 4-6 illustrates the delta

option of capture wait statistics.

Figure 4-5. Capturing wait statistics using the reset method

Chapter 4 Building a Solid BaSeline

86

There are more methods available with which to capture wait statistics information,

but I most frequently see these two, or variations of them. What method you want to use

is up to you, as in the end both will return the same results.

 Reset Capture Method
The reset wait statistics capture method consists of a single T-SQL script that will

capture the information from the sys.dm_os_wait_stats DMV followed by a reset of

the counters inside the DMV. Listing 4-3 shows the T-SQL script you can use to fill the

WaitStats table we created earlier.

Listing 4-3. Reset capture method

USE [Baseline]

GO

-- Insert Wait Stats into Baseline table

INSERT INTO WaitStats

SELECT

 GETDATE() AS 'DateTime',

 DATEPART(DAY,GETDATE()) AS 'Day',

 DATEPART(MONTH,GETDATE()) AS 'Month',

Figure 4-6. Capturing wait statistics using the delta method

Chapter 4 Building a Solid BaSeline

87

 DATEPART(YEAR,GETDATE()) AS 'Year',

 DATEPART(HOUR, GETDATE()) AS 'Hour',

 DATEPART(MINUTE, GETDATE()) AS 'Minute',

 DATENAME(DW, GETDATE()) AS 'DayOfWeek',

 wait_type AS 'WaitType',

 wait_time_ms AS 'WaitTime',

 waiting_tasks_count AS 'WaitingTasks',

 signal_wait_time_ms AS 'SignalWaitTime'

FROM sys.dm_os_wait_stats;

-- Clear sys.dm_os_wait_stats

DBCC SQLPERF ('sys.dm_os_wait_stats',CLEAR)

GO

 Delta Capture Method
The delta capture method also consists of a single T-SQL script, but it is a little more

complex than the reset capture method. It uses a temporary table to store the first

measurement, then waits for 15 minutes, performs a second measurement, and calculates

the deltas. The result is inserted into the WaitStats table. Listing 4-4 shows the T-SQL

script you can use if you plan to use this method of collecting wait statistics metrics.

Listing 4-4. Delta capture method

USE [Baseline]

GO

-- Check if the temp table already exists

-- if it does drop it.

IF EXISTS

 (

 SELECT *

 FROM tempdb.dbo.sysobjects

 WHERE ID = OBJECT_ID(N'tempdb..#ws_Capture')

)

DROP TABLE #ws_Capture;

Chapter 4 Building a Solid BaSeline

88

-- Create temp table to hold our first measurement

CREATE TABLE #ws_Capture

 (

 wst_WaitType VARCHAR(50),

 wst_WaitTime INT,

 wst_WaitingTasks INT,

 wst_SignalWaitTime INT

);

-- Insert our first measurement into the temp table

INSERT INTO #ws_Capture

 SELECT

 wait_type,

 wait_time_ms,

 waiting_tasks_count,

 signal_wait_time_ms

 FROM sys.dm_os_wait_stats;

-- Wait for the next measurement

-- In this case we will wait 15 minutes

WAITFOR DELAY '00:15:00'

-- Combine the first measurement with a new

-- measurement and calculate the deltas

-- Write the results into the WaitStats table

INSERT INTO WaitStats

SELECT

 GETDATE() AS 'DateTime',

 DATEPART(DAY,GETDATE()) AS 'Day',

 DATEPART(MONTH,GETDATE()) AS 'Month',

 DATEPART(YEAR,GETDATE()) AS 'Year',

 DATEPART(HOUR, GETDATE()) AS 'Hour',

 DATEPART(MINUTE, GETDATE()) AS 'Minute',

 DATENAME(DW, GETDATE()) AS 'DayOfWeek',

 dm.wait_type AS 'WaitType',

 dm.wait_time_ms - ws.wst_WaitTime AS 'WaitTime',

Chapter 4 Building a Solid BaSeline

89

 dm.waiting_tasks_count - ws.wst_WaitingTasks AS 'WaitingTasks',

 dm.signal_wait_time_ms - ws.wst_SignalWaitTime AS 'SignalWaitTime'

FROM sys.dm_os_wait_stats dm

INNER JOIN #ws_Capture ws

ON dm.wait_type = ws.wst_WaitType;

-- Clean up the temp table

DROP TABLE #ws_Capture;

 Using SQL Server Agent to Schedule Measurements
After selecting a capture method, we need to run the capture T-SQL script to fill our

WaitStats table with wait statistics information. As described in the baseline pitfalls

section earlier, it is very important to always perform your measurements at a fixed

interval. This makes comparing measurements a lot easier, since you are always

comparing the same time segments. The best way to do this is by using a SQL Server

Agent job set to a fixed interval. The interval can be set to your choosing—the larger

you set the interval, the smaller the number of time segments you can compare against.

Setting the interval to be shorter will give you more time segments, but will also mean

an increase in data that you need to store. I personally prefer to set my interval to 15

minutes. This gives me enough time segments to compare in most cases.

I won’t go into details here about how you can create a SQL Server Agent job to

capture wait statistics information, but I do want to point out how my job looks as an

example you can use. I usually end up with a SQL Server Agent job with just one T-SQL

script step. In this step I copy the capture script, depending on which method I want to

use. Figure 4-7 shows a screenshot of my SQL Server Agent job.

Chapter 4 Building a Solid BaSeline

90

In this case I used the reset capture method to capture the wait statistics in my

WaitStats table.

Figure 4-8 shows the schedule I use to capture the wait statistics on a fixed interval.

As you can see, I have set it to every 15 minutes, every day.

Figure 4-7. Capturing WaitStats SQL Server Agent job step

Chapter 4 Building a Solid BaSeline

91

Again, you are free to choose your own capture interval, but make sure to always

capture at the same interval length.

After we have created a SQL Server Agent job to gather wait statistics information, we

need to let it run for a while. The longer the job runs, the more information we gather,

improving the quality of our baselines.

 Wait Statistics Baseline Analysis
After letting the SQL Server Agent job collect wait statistics metrics for a while, we are

ready to actually create some baselines. The way we do this is by querying the WaitStats

table we created earlier. I will give you some examples of queries that will create a

Figure 4-8. SQL Server Agent job schedule

Chapter 4 Building a Solid BaSeline

92

baseline you can compare against; these are not the only queries you can run, however,

and I encourage you to experiment with different queries to return the information you

are most interested in.

Before we get started with building the baseline, I want to return to Figure 2-14 in

Chapter 2, “Querying SQL Server Wait Statistics.” In this flowchart I showed you steps

you can take to analyze resource waits that occur right now. Since we now have access to

a baseline, we can add an extra step to the flowchart. Figure 4-9 shows how to complete

the flowchart, including the baseline comparison step.

Figure 4-9. Complete wait statistics performance-analysis flowchart

Chapter 4 Building a Solid BaSeline

93

The baselines you create are an extra input to the metrics you gather when looking

at a performance problem. They are a very valuable input because they will show you

information about the time the problem didn’t exist.

Let’s go through an example, using DBA Jim again, where we review all the steps

of the flowchart shown in Figure 4-9. In this example I will show you queries that

you can use against the WaitStats table so as to build a baseline that is useful for the

performance-analysis process.

Tuesday, around 9 am, DBA Jim receives a phone call that the daily reporting against

the sales database is a lot slower than normal. The problem started around 8 am, and

users are still experiencing performance problems. The reports are part of a scheduled

job that runs every workday, starting at 8 am.

The first thing Jim does is query the sys.dm_os_waiting_tasks DMV using the

following query:

SELECT * FROM sys.dm_os_waiting_tasks

ORDER BY session_id ASC;

Jim focuses on user sessions (normally higher than ID 50) but doesn’t see any long

wait times on any of the user sessions, as shown in Figure 4-10.

After executing the query against the sys.dm_os_waiting_tasks DMV multiple

times, Jim notices that the wait type PAGEIOLATCH_SH is returned every time he queries

the DMV. Each time, the wait type is returned with a different session ID but with

relatively low wait times.

Jim uses the same T-SQL script to capture wait statistics metrics into the WaitStats

table, as we discussed earlier in this chapter. Because Jim has access to historic wait

statistics information, he decides to create a baseline of the PAGEIOLATCH_SH wait times.

Figure 4-10. sys.dm_os_waiting_tasks

Chapter 4 Building a Solid BaSeline

94

The first thing he does is view the PAGEIOLATCH_SH wait times of today, filtered to show

measurements captured between 8 and 9 in the morning, using the query shown in

Listing 4-5.

Listing 4-5. Show wait times for PAGEIOLATCH_SH between 8 and 9 am today

-- PAGEIOLATCH_SH waits, today between 8 and 9 AM

SELECT

 CONVERT(VARCHAR(5), ws_DateTime, 108) AS 'Time',

 ws_WaitTime AS 'Wait Time'

FROM WaitStats

WHERE ws_WaitType = 'PAGEIOLATCH_SH'

AND (ws_Hour >= 8 AND ws_Hour < 9)

AND CONVERT(VARCHAR(5), ws_DateTime, 105) = CONVERT(VARCHAR(5), GETDATE(), 105)

The query returned the results shown in Figure 4-11.

Now that Jim has the wait times for today of the PAGEIOLATCH_SH wait type, the next

step is to create a baseline from the historic measurements of the PAGEIOLATCH_SH wait

type so he can compare today’s measurements against the baseline. Jim uses the query

shown in Listing 4-6 to build his baseline.

Listing 4-6. PAGEIOLATCH_SH baseline

-- Baseline between 8 and 9 on workdays

-- Not including measurements done today

SELECT

 CONVERT(VARCHAR(5), ws_DateTime, 108) AS 'Time',

 AVG(ws_WaitTime) AS 'Baseline'

Figure 4-11. PAGEIOLATCH_SH wait times of today

Chapter 4 Building a Solid BaSeline

95

FROM WaitStats

WHERE ws_WaitType = 'PAGEIOLATCH_SH'

AND ws_DayOfWeek IN ('Monday', 'Tuesday', 'Wednesday', 'Thursday','Friday')

AND (ws_Hour >= 8 AND ws_Hour < 9)

AND CONVERT(VARCHAR(5), ws_DateTime, 105) < CONVERT(VARCHAR(5), GETDATE(), 105)

GROUP BY CONVERT(VARCHAR(5), ws_DateTime, 108);

This query builds a baseline with the following characteristics: return the average

wait time of PAGEIOLATCH_SH wait type captured on a workday between 8 am and 9

am, excluding today. The reason to exclude today is that the measurements that were

performed today, during the performance problem, might impact the average. Another

suggestion could be to filter only data captured in the last x weeks so as to limit the

amount of data that needs to be calculated in the average.

The results of the query shown in Listing 4-6 can be seen in Figure 4-12.

As you can immediately see when you compare the wait times in Figures 4-11 and 4-12,

the measurements done today are a lot higher than those in the historic baseline. To

make it a little easier to see the difference, I created a graph of both measurements, as

shown in Figure 4-13.

Figure 4-12. PAGEIOLATCH_SH baseline

Chapter 4 Building a Solid BaSeline

96

Because there is such a difference in wait times for the PAGEIOLATCH_SH wait type

between the baseline and today, Jim believes the PAGEIOLATCH_SH wait type needs

further investigation.

We will take a detailed look at the PAGEIOLATCH_SH wait type in Chapter 9,
“latch-related Wait types,” but to give you a (very) short explanation, long
PAGEIOLATCH_SH waits can indicate storage problems.

To investigate further, Jim starts the Windows Performance Monitor to look at

metrics related to the storage subsystem, and in particular the disk latency counters.

As you can see in Figure 4-14, the latency on the disk where the database data file

resides peaks to very high values, more than 4,000 milliseconds! For SQL Server to

perform optimally, the disk latency should be as low as possible, and at least below 20

milliseconds.

W
ai

t T
im

e
(m

s)
PAGEIOLATCH_SH Baseline

Baseline

Today

Figure 4-13. Baseline comparison graph for the PAGEIOLATCH_SH wait type

Chapter 4 Building a Solid BaSeline

97

With both the wait statistics baseline information and the Perfmon metrics, Jim

believes the problem is storage related and contacts the storage administrator. The

metrics Jim collected also help the storage administrator, since he can compare his

storage-related measurements against those Jim supplied. The storage administrator

confirms there is a problem related to the disk that contains the sales database, and

solves the problem by replacing a faulty disk in the disk array. After the disk gets

replaced, the disk latency returns to a 6 milliseconds average, and the high latency peaks

disappear. Jim queries the wait times again from the WaitStats table after the disk is

replaced and notices the wait times for the PAGEIOLATCH_SH wait type are close to the

baseline values again. Users also inform Jim that the reports are running normally again.

During this example Jim went through all the steps of the wait statistics

performance-analysis flowchart shown in Figure 4-9:

 1. Users experience performance degradation while running reports.

 2. Jim queries the sys.dm_os_waiting_tasks DMV to find out if

there are high wait times or frequently recurring wait types. The

PAGEIOLATCH_SH wait type seems to be recurring frequently.

 3. Jim gathers metrics by capturing the PAGEIOLATCH_SH wait times

of today and comparing them to the baseline. He also gathers

additional metrics from Perfmon.

Figure 4-14. Disk-read latency

Chapter 4 Building a Solid BaSeline

98

 4. All the metrics show Jim that the problem is most likely storage

related, and Jim contacts the storage administrator.

 5. The storage administrator replaces a broken disk in the array.

Storage latency values drop to 6 milliseconds.

 6. Jim checks the wait times of the PAGEIOLATCH_SH wait type again

and confirms that they are close to the baseline values.

Even though this example might seem very simple, it is actually based on a

performance problem I encountered in the real world. Using the steps from the wait

statistics performance-analysis flowchart combined with the baseline metrics, I was able

to identify and solve the problem very quickly.

In the example I showed you the query in Listing 4-6 that creates a baseline for the

PAGEIOLATCH_SH wait type. This query is just an example of what you can use against the

WaitStats table. You can modify it to suit your own needs; for instance, you can choose

to not limit the results for weekdays, and only show average wait times captured on a

specific day. Or you could request the actual wait times on a specific date.

If you are capturing wait statistics measurements for a long period of time, it might

be a good idea to split the results into multiple tables for easier and faster querying. For

instance, you could use the following query to insert all the wait statistics measurements

done in March into their own table:

SELECT *

INTO WaitStats_March

FROM WaitStats

WHERE ws_Month = 3;

This also gives us options to compare specific wait times during different periods of

time by joining the different tables together. Figure 4-15 shows the tables of my baseline

database that I usually end up with, sorting the data per month.

Chapter 4 Building a Solid BaSeline

99

You can decide how you want to split the measurements yourself; maybe you want

to store the wait statistics measurements in a separate table for every application version

you use, or store all the measurements of a specific wait type in a separate table. The

choice is yours.

This chapter hopefully gave you some ideas on how to store wait statistics

measurements and create baselines from those measurements. I tried to avoid telling

you exactly what to do and how to do it, because I believe one single approach doesn’t

work for everybody. You will need to write and adjust your own queries to create the

baselines you are interested in, but I hope this chapter showed you the foundations to

further build upon.

 Summary
In this chapter we took a close look at baselines from both a theoretical and

a practical point of view. Baselines are incredibly important for any type of

performance analysis you perform. In the case of wait statistics, baselines are

frequently required if you want to troubleshoot SQL Server–related performance

problems. Since wait statistics are unique for your system, there is only one method

by which to compare wait times—baselines.

I gave you some examples and T-SQL scripts to create your own wait statistics

baseline table so you can start capturing wait statistics information right now. We also

went through an example of how you can query that baseline information and compare

it to actual measurements to troubleshoot a performance-related incident.

Figure 4-15. Wait statistics measurement split per month

Chapter 4 Building a Solid BaSeline

PART II

Wait Types

103
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_5

CHAPTER 5

CPU-Related Wait Types
Processors have evolved enormously in the last few decades, and processor

manufacturers, like Intel or AMD, manage to build faster processors on a yearly basis.

And while the speed of processors is hitting a ceiling, the number of cores manufacturers

manage to build inside their processors has only grown. At the time of writing this book,

you can buy a single processor with 24 cores inside to power your system. Processors

are also one of the more difficult parts of your system to replace. While you can expand

your system’s memory relatively simply, replacing a processor for one that is faster or has

more cores frequently requires you to change your system’s motherboard as well due to

CPU socket incompatibility. This means we are usually stuck with our processors until

we replace the system altogether.

Processors are also very important for SQL Server. Higher processor speeds will

accelerate processor-related instructions, and more cores means more schedulers that

SQL Server can use to execute requests. But even all these upgrades in speed and cores

cannot prevent the fact that we sometimes have to wait on processor resources. In this

chapter we will take a look at some of those wait types that have a relation with your

system’s processor.

 CXPACKET
The first CPU-related wait type is also the most common wait type in SQL Server

instances that run with the default, out-of-the-box, SQL Server configuration. It is also

one of the most misunderstood wait types and sometimes doesn’t even need lowering

in order to make your queries perform faster; as a matter of fact, lowering CXPACKET

wait times can sometimes degrade the performance of your queries! If you are running

SQL Server 2016 SP2 or SQL Server 2017, there have been some changes in how to

handle CXPACKET waits. We will discuss the impact of the changes, including the new

parallelism-related wait type CXCONSUMER, at the end of this section.

104

 What Is the CXPACKET Wait Type?
The CXPACKET wait type occurs whenever a query is being executed in parallel instead of

serial. Parallel queries can have a performance advantage compared to serial queries,

if the work can be divided among multiple worker threads. The advantage is bigger for

queries that are returning large result sets; queries that return only a few rows benefit far

less from parallelism, and in many cases parallelism can slow down those queries. This

doesn’t mean we should turn off parallelism immediately as I have yet to see a true OLTP

database where every query only returns a handful of rows. Many systems have to deal

with a mixed workload, usually dealing with many short queries but also large, longer-

running, reporting queries.

Parallel queries will use multiple worker threads to execute a request. Along with the

worker threads that are created to perform the work requested, a parallel query will also

use a 0 thread, called the control thread. This 0 thread’s task is to coordinate the work of

the other worker threads. While the 0 thread is waiting for the other worker threads to

finish the work they were assigned to perform, it will record wait times of the CXPACKET

wait type. To understand this relation a little bit better, take a look at Figure 5-1.

As soon as the SQL Server Query Optimizer decides on an execution plan that uses

parallelism, you will see CXPACKET waits occur. This can be completely normal and is

nothing to worry about if you are expecting your queries to run in parallel and they are

performing as expected. In those cases you can ignore long wait times on the CXPACKET

Figure 5-1. Parallel query threading

Chapter 5 CpU-related Wait types

105

wait type. There are, however, cases where you don’t want to use parallelism, or when

parallelism is negatively impacting the performance of your queries because of skewed

workloads.

Because the CXPACKET wait type is directly related to the parallelism settings of your

SQL Server instance, we can influence it relatively easily by adjusting these settings. We

can find the parallelism settings in the Server Properties ➤ Advanced ➤ Parallelism

section of your SQL Server instance, as shown in Figure 5-2.

Of these settings, the Cost Threshold for Parallelism and Max Degree of
Parallelism settings impact parallel queries the most.

Figure 5-2. Parallelism configuration

Chapter 5 CpU-related Wait types

106

The Cost Threshold for Parallelism setting configures the cost threshold of when a

query will be considered to be run in parallel by the Query Optimizer. If a serial query has

a cost higher than the value configured in the Cost Threshold of Parallelism, the Query

Optimizer might decide to generate a parallel plan instead of a serial one. By default, the

setting has a value of 5 and can be configured to have a value between 0 and 32,767.

The Max Degree of Parallelism setting configures the number of schedulers used

when executing a parallel plan. By default, this setting is configured to be 0, which means

all available schedulers can be used when a parallel plan is executed.

If you are running SQL Server 2016 or higher, you are also able to configure the

parallelism settings on a database level through database scoped configuration items, as

shown in Figure 5-3.

Figure 5-3. Database scoped parallelism configuration

Chapter 5 CpU-related Wait types

107

The introduction of the ability to configure setting like parallelism on a per-database

level instead of the entire SQL Server instance is a very welcome change. Consider,

for instance, that you have multiple databases inside the same SQL Server instance.

Ideally each of those databases will use configuration settings that are perfected for their

query workload. Before SQL Server 2016, we weren’t able to configure that on a per-

database level, so generally you would stick with a form of a best-practice or generalized

configuration values. Now that database scoped configuration is possible, it is very

possible to configure the optimal setting for each individual database.

With the ability to add database scoped configuration values for parallelism settings,

there is a difference in how the SQL Server engine processes these configurations:

• The database scoped configuration setting will overwrite the current

instance setting only if the database scoped setting is set to a non-

default value;

• If the database scoped configuration setting is set to its default value,

the instance-wide configuration setting will be used.

As an example, if the Max Degree of Parallelism setting is configured to be 4 on

the instance level and 0 (default) on the database level, queries that can be executed

in parallel can use four schedulers. If the database scoped setting is changed to be a

value of 2, queries executed against the database can use a maximum of two schedulers

overwriting the instance setting of 4.

 Lowering CXPACKET Wait Time by Tuning the Parallelism
Configuration
There are various methods you can use to lower CXPACKET wait times, but before you go

and use them you have to be sure that CXPACKET waits are actually causing you problems.

Like I said earlier, CXPACKET waits are completely normal whenever you have parallelism

enabled for your SQL Server instance. One solution I read frequently on Internet forums

is to disable parallelism by setting the Max Degree of Parallelism option to a value of 1.

In most cases this is not a good idea. Disabling parallelism will make the CXPACKET waits

go away completely, but some of your queries might be performing a lot worse since they

cannot be run in parallel anymore.

Chapter 5 CpU-related Wait types

108

A better approach to lowering CXPACKET waits is to tune the Cost Threshold for
Parallelism and Max Degree of Parallelism options so they match with your workload.

This way you can make sure only the queries that benefit the most from parallelism will

be run in parallel. A way to find this parallelism sweet spot is by comparing the runtime

of a query when it ran serially vs. in parallel. You should generally focus on queries that

access a lot of information and have a longer runtime in general, as those will be the

queries that benefit the most from parallelism.

Consider this example where we have a query against the AdventureWorks database

that requests information from the Sales.SalesOrderDetail table:

SELECT *

FROM Sales.SalesOrderDetail

ORDER BY CarrierTrackingNumber DESC;

We can check if this query would be a candidate to be run in parallel by checking

the estimated cost of the query. To view this information we need to take a look

at the estimated execution plan for if the query were to be run serially. To make

sure the query runs serially we must add the query option MAXDOP 1. We are also

interested in the runtime of the query, so we add the SET STATISTICS TIME ON

option to the query:

SET STATISTICS TIME ON

SELECT *

FROM Sales.SalesOrderDetail

ORDER BY CarrierTrackingNumber DESC

OPTION (MAXDOP 1);

SET STATISTICS TIME OFF

Figure 5-4 shows the estimated cost of the query when run serially.

Chapter 5 CpU-related Wait types

109

In this case the estimated cost is 10.4907 on my test SQL Server. When I executed the

query, the execution time was 2256 milliseconds on my system.

Because the Cost Threshold for Parallelism is still configured on the default value of

5 on my test server, I am pretty sure the query would be run in parallel if I were to remove

the MAXDOP query hint.

Figure 5-5 shows the actual execution plan after running the query without the

MAXDOP 1 option.

Figure 5-4. Estimated cost of the query with MAXDOP 1

Figure 5-5. Actual execution plan without MAXDOP 1 option

As you can see, the query ran using parallelism, just as we expected, since

the estimated cost was higher than the value configured in the Cost Threshold

for Parallelism option. The execution time of the query with parallelism was 1959

milliseconds. If we take a look at the properties of the SELECT operation in the

actual execution plan, we can view some additional information, as shown in

Figure 5-6.

Chapter 5 CpU-related Wait types

110

The properties of the SELECT operation show us that the query was executed using

two threads. The estimated cost went down to 7.08005.

Even though the estimated cost went down, the improvement in execution time is

pretty small for this query. We could change the Cost Threshold for Parallelism value

to a higher number than the default of 5. This way we are making sure relatively small

queries like the one in this example don’t use parallelism but that heavy reporting

queries do.

Another setting to keep in mind is the Max Degree of Parallelism option. When it is

set at its default of 0 all available schedulers can be used when a query runs in parallel.

Using more schedulers doesn’t necessarily mean the query executes faster though. The

benefits of using more schedulers slowly get smaller after using more than 8. Microsoft

recommends the following configuration in KB2806535:

• For servers with more than eight cores, set the Max Degree of

Parallelism option to 8.

• For servers with less than eight cores, set the Max Degree of

Parallelism option to 0 or to the number of cores in your server.

This is a general recommendation, and your mileage may vary. The setting of

both the Cost Threshold for Parallelism and Max Degree of Parallelism options highly

depends on the workload of your system and requires careful testing to find out what

works for you and what doesn’t. They will impact your CXPACKET wait time though,

Figure 5-6. SELECT operation properties

Chapter 5 CpU-related Wait types

111

so compare your CXPACKET wait times against a baseline after changing the Cost

Threshold for Parallelism or Max Degree of Parallelism options to measure the impact

of the change.

 Lowering CXPACKET Wait Time by Resolving Skewed
Workloads
A skewed workload means that all of the worker threads do not receive the same amount

of work to perform. This is not an optimal situation, because if one worker thread has

to do most of the work while another only a little bit, Thread 0 still has to wait for the

longest-running worker thread to complete, logging CXPACKET waits as the time it is

waiting. Figure 5-7 shows an abstract example of a skewed workload.

Figure 5-7. Skewed parallel query threading

If we could give some of Thread 2’s work to Thread 3, the query would probably

perform faster, resulting in lower CXPACKET wait times.

We can view the thread distribution in the actual number of rows property of

the parallel operation in the actual execution plan. Figure 5-8 shows the properties

of a clustered index scan that has been performed using parallelism. The operation

occurred in the example query we used in the previous section against the Sales.

SalesOrderDetail table.

Chapter 5 CpU-related Wait types

112

In this example we see that the clustered index scan returned 121.317 rows that were

distributed among two threads (notice that Thread 0, the coordination thread, doesn’t

process any rows). The distribution of the number of rows is relatively even in this case,

so we probably aren’t running into a skewed workload problem.

Skewed workloads are often caused by outdated statistics. If the Query Optimizer

believes there are fewer (or more rows) in the table than there actually are, it can

distribute the work unevenly across the threads. Make sure to regularly perform

maintenance on your statistics to prevent skewed workloads.

 Introduction of the CXCONSUMER Wait Type in SQL Server
2016 SP2 and 2017 CU3
In the release of SQL Server 2017 CU3 (and later SQL Server 2016 SP2), Microsoft pushed

a change in how parallelism waits are recorded. The main goal of the development

team was to make parallelism wait more actionable. Something that, as you read in the

preceding sections, is more than welcome since it is very difficult to determine when

parallelism waits are causing issues in your query’s performance.

As we described earlier, parallelism consists of two parts: producers and

consumers. The easiest way is to think of the 0 thread we introduced earlier to be a

producer. It is the job of the 0 thread to distribute work to the available parallel worker

threads. Those worker threads are named consumers and perform the actual work the

producers send to them.

Figure 5-8. Parallel thread distribution

Chapter 5 CpU-related Wait types

113

Before SQL Server 2017 CU3 and SQL Server 2016 SP2, there is no way to distinguish

if, for instance, consumers are spending time waiting on producers to send work to

them. Everything is recorded as CXPACKET wait time internally. With the changes in

SQL Server 2017 CU3 and SQL Server 2016 SP2, the development team split up the wait

times for parallelism into two different categories: CXPACKET and CXCONSUMER. With

this change the meaning of those two wait types also changed a bit compared to earlier

SQL Server releases.

CXCONSUMER waits can occur whenever a consumer thread is waiting for producer

to send rows. This is more or less normal behavior and can in most cases be safely

ignored when looking at wait statistics information.

CXPACKET waits are now recorded without the CXCONSUMER wait time, meaning

that seeing CXPACKET wait times not only indicate parallelism occurring but also that

high wait times indicate a clearer issue regarding parallelism operations (for instance,

threads are running into issues with required buffer or thread synchronization).

Effectively this means that if you are running SQL Server 2017 CU3 or SQL Server

SP2 or higher, seeing CXPACKET waits more clearly indicate parallelism issues than

in lower SQL Server versions, thus making the wait type more actionable as the

development team intended. The advice in dealing with high parallelism wait times

described earlier in this chapter is still valid, though it now has a more direct impact

on CXPACKET wait times.

 CXPACKET Summary
The CXPACKET wait type is directly related to the usage of parallelism during query

execution. If you allow queries to be run using parallelism you will always see

CXPACKET waits. Normally this is nothing to worry about, so avoid the knee-jerk

reaction to turn off parallelism completely. Instead, focus on tuning the Max Degree

of Parallelism and Cost Threshold for Parallelism options so that the thresholds are

high enough that your large queries can benefit from using parallelism but your small

queries do not experience a negative impact. Also, avoid skewed workloads by making

sure your statistics are up-to- date.

If you are running SQL Server 2017 CU3 or SQL Server 2016 SP2 (or higher), the

CXPACKET wait time meaning has changed a bit resulting in that CXPACKET waits are

far more likely to indicate a parallelism issue occurring than in SQL Server versions that

are lower than those mentioned.

Chapter 5 CpU-related Wait types

114

 SOS_SCHEDULER_YIELD
Just like CXPACKET, SOS_SCHEDULER_YIELD is a wait type that will frequently show up

in the top 10 of total wait time on your system. And just like the CXPACKET wait types,

SOS_SCHEDULER_YIELD wait times do not necessarily indicate that there is a problem

with your SQL Server instance. SOS_SCHEDULER_YIELD waits occur as soon as you start

running queries on your SQL Server instance, and they are closely related to SQL Server

scheduling.

 What Is the SOS_SCHEDULER_YIELD Wait Type?
Before we can answer what the SOS_SCHEDULER_YIELD wait type means, we have to go

back to Chapter 1, “Wait Statistics Internals,” in this book, where we discussed SQL

Server scheduling. Remember that the SQLOS uses its own cooperative non-preemptive

scheduling model to make sure Microsoft Windows processes do not interrupt SQL

Server’s own processes? The SOS_SCHEDULER_YIELD wait type has a direct relation with

the SQLOS’s cooperative, non-preemptive scheduling model. To make it a little bit

easier to understand, I have included Figure 5-9, which should be familiar to you as it

represents a scheduler that we discussed in Chapter 1.

Figure 5-9. Scheduler and its phases and queues

Chapter 5 CpU-related Wait types

115

If you remember from Chapter 1, “Wait Statistics Internals,” worker threads move

through the different phases and queues in a fixed order. Generally, a worker thread

starts on the Waiter List while it waits for resources, it then moves to the Runnable

Queue waiting for its turn to be run on the processor, and finally receives processor

time to execute its request, receiving the “RUNNING” state. If the worker thread needs

additional resources while it is in the “RUNNING” state, the worker thread moves back to

the Waiter List and starts a new trip through the different queues and phases.

There is one exception to this behavior and it occurs when a worker thread is in

the “RUNNING” state and doesn’t need additional resources to complete its work.

If the SQLOS let a worker thread run on the processor for as long as it didn’t need

any additional resources, the processor could be “hijacked” by one single worker

thread for an infinite amount of time. To make sure a situation like this cannot

occur, the scheduler gives every worker thread a specific slice of time in which they

need to perform their work. We call this slice of time a quantum, and it is a fixed,

unchangeable, 4 milliseconds. If a worker thread spends its quantum it has to yield the

processor, and it then moves back to the bottom of the Runnable Queue. It will skip

the Waiter List because the worker thread doesn’t need additional resources. While

the worker thread is waiting to move back to the processor again, the SOS_SCHEDULER_

YIELD wait type is recorded. Figure 5- 10 shows this behavior.

Figure 5-10. Worker thread voluntarily yielding the processor

Chapter 5 CpU-related Wait types

116

As you can probably figure out, worker threads are voluntarily yielding all the time,

especially on long-running queries where there is no need for additional resources.

But keep in mind that wait times for the SOS_SCHEDULER_YIELD wait type will only

be logged if the worker thread actually had to wait in the Runnable Queue. If there

is no other worker thread in front of the yielding worker thread, it will move directly

back to the processor without waiting (it will still move through the Runnable Queue

though). To show you an example of this, I executed the following queries against

the AdventureWorks database on my test SQL Server, where there is no concurrency

whatsoever:

-- Clear Wait Stats

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

-- Simple select

SELECT *

FROM Sales.SalesOrderDetail

ORDER BY CarrierTrackingNumber DESC;

-- Check for SOS_SCHEDULER_YIELD waits

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'SOS_SCHEDULER_YIELD';

Figure 5-11 shows the results of this query against the sys.dm_os_wait_stats DMV.

As you can see in Figure 5-11, the query against the AdventureWorks database

encountered the SOS_SCHEDULER_YIELD wait type 30 times during execution. It didn’t

have to spend any time waiting for another worker thread in the Runnable Queue

since this was the only query running at the time. If it had spent any time waiting

for another worker thread, the wait_time_ms column would have returned a value

higher than 0.

Figure 5-11. SOS_SCHEDULER_YIELD waits

Chapter 5 CpU-related Wait types

117

As I said at the start of this section, the SOS_SCHEDULER_YIELD wait type is generally

not a cause for concern. If, however, the wait times are significantly higher than those

in your baseline, it can be a reason to perform some additional research. There are

basically three situations you can encounter when dealing with SOS_SCHEDULER_YIELD

waits, as shown in Figure 5-12.

Let’s take a look at how we can analyze and resolve the SQL Server CPU pressure

problem.

 Lowering SOS_SCHEDULER_YIELD Waits
If you are experiencing higher than normal SOS_SCHEDULER_YIELD wait times and a large

number of waits, you could, potentially, have a CPU-related problem on your system. To

lower the SOS_SCHEDULER_YIELD waits, we are going to focus on the top-right section of

Figure 5-12, where there are a large amount of waiting tasks and high wait times.

Figure 5-12. SOS_SCHEDULER_YIELD situations

Chapter 5 CpU-related Wait types

118

If you are experiencing high wait times for the SOS_SCHEDULER_YIELD wait type

together with a large amount of waiting tasks, you can assume you have a very busy

SQL Server instance. Worker threads will yield, but it will take them a long time to

get back on the processor again because there are many other threads waiting in the

Runnable Queue. As we discussed earlier in Chapter 1, “Wait Statistics Internals,”

the Runnable Queue is a first-in first-out list, meaning that the more worker threads

that are waiting inside the Runnable Queue, the longer it takes for worker threads

to move through it. You will usually see a high CPU usage on the system by the SQL

Server process.

To show you an example of this problem, we will use the Ostress utility to execute

a specific query simultaneously from a number of threads. The Ostress utility is part

of the RML utilities for SQL Server, which you can download here: https://support.

microsoft.com/en-us/kb/944837.

The first thing we are going to do is save the following query as C:\sos_scheduler_

yield.sql on the test server:

WHILE (1=1)

 BEGIN

 SELECT COUNT(*)

 FROM Sales.SalesOrderDetail

 WHERE SalesOrderID BETWEEN 45125 AND 54185

 END;

This query will count the number of rows between two SalesOrderIDs in the

Sales.SalesOrderDetail table of the AdventureWorks database. It will do this in an

endless loop.

After saving the query we start the Ostress utility using the following command:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E

-dAdventureWorks -i"C:\sos_scheduler_yield.sql" -n20 -r1 -q

This starts the Ostress utility, which connects to the AdventureWorks database and

executes the sos_scheduler_yield.sql script using 20 threads.

As soon as we start Ostress, the CPU of the test SQL Server hits 100%, as shown in

Figure 5-13.

Chapter 5 CpU-related Wait types

https://support.microsoft.com/en-us/kb/944837
https://support.microsoft.com/en-us/kb/944837

119

As you can see in Figure 5-13, the CPU load is generated from the sqlserv#1 process,

which happens to be the SQL Server instance we are running the Ostress query against.

If we were to query the sys.dm_os_waiting_tasks DMV to check if the SOS_

SCHEDULER_YIELD wait type is responsible for the CPU usage, we would be in for a

surprise, as you can see in Figure 5-14.

Figure 5-13. Impact of Ostress on the CPU

Figure 5-14. No SOS_SCHEDULER_YIELD waits occurring

Chapter 5 CpU-related Wait types

120

This is the tricky part of the SOS_SCHEDULER_YIELD wait type, as it frequently won’t

get returned by the sys.dm_os_waiting_tasks DMV—another reason to capture and use

that wait statistics baseline!

To show that the high CPU usage is related to the SOS_SCHEDULER_YIELD wait type,

we have to take a look at the cumulative wait statistics DMV, sys.dm_os_wait_stats. We

can use the following query to show the top five wait types ordered by wait time while we

run the Ostress utility (we can reset the DMV before starting the Ostress utility to keep

the numbers small):

SELECT TOP 5 *

FROM sys.dm_os_wait_stats

ORDER by wait_time_ms DESC;

The results of this query are shown in Figure 5-15.

As you can see, the number one wait type, by far, is SOS_SCHEDULER_YIELD with a

pretty high amount of waiting_tasks and total wait_time.

If you were to experience this problem with a production SQL Server instance, the

first thing you should focus on are those very small, very quick queries like the ones we

executed in this example. Has the volume of those queries increased? Has the number

of user connections to the SQL Server executing those queries increased? Those are

two quick questions you should ask and check. A sudden growth in transactions or user

connections can lead to high SOS_SCHEDULER_YIELD wait times.

Another cause of high SOS_SCHEDULER_YIELD waits, together with very high CPU

usage, can be a phenomenon called spinlock contention. Spinlocks are defined by

Microsoft as “lightweight synchronization primitives which are used to protect access

to data structures” and are a very advanced topic. Appendix II, at the back of this book,

goes into a little bit more detail about spinlocks for those who are interested in learning

more about them.

Figure 5-15. Top five wait types during Ostress execution

Chapter 5 CpU-related Wait types

121

Very large, very complex queries can also lead to higher SOS_SCHEDULER_YIELD wait

times. Try looking for active queries that consume a lot of CPU time and have complex

calculations or data-type conversions inside them. One query I use frequently to identify

CPU-heavy queries is the one in Listing 5-1.

Listing 5-1. Detect expensive CPU queries

SELECT TOP 10

 QText.TEXT AS 'Query',

 QStats.execution_count AS 'Nr of Executions',

 QStats.total_worker_time/1000 AS 'Total CPU Time (ms)',

 QStats.last_worker_time/1000 AS 'Last CPU Time (ms)',

 QStats.last_execution_time AS 'Last Execution',

 QPlan.query_plan AS 'Query Plan'

FROM sys.dm_exec_query_stats QStats

CROSS APPLY sys.dm_exec_sql_text(QStats.sql_handle) QText

CROSS APPLY sys.dm_exec_query_plan(QStats.plan_handle) QPlan

ORDER BY QStats.total_worker_time DESC;

The results of the query in Listing 5-1 on my test SQL Server can be seen in Figure 5- 16.

As you can see, the query we used with the Ostress tool is the query that got executed

the most and took the highest total CPU time. This query could be a good starting

point for an investigation. Maybe the query can be optimized or rewritten so it doesn’t

consume as much CPU time.

Another method you can use to identify queries that are expensive CPU wise is the

Query Store. The Query Store offers a built-in report called “Top Resource Consuming

Queries” that immediately allows you to filter on CPU time, as shown in Figure 5-17.

Figure 5-16. Expensive CPU queries

Chapter 5 CpU-related Wait types

122

 SOS_SCHEDULER_YIELD Summary
The SOS_SCHEDULER_YIELD wait type will always occur on every SQL Server instance

since it is directly related to the scheduling model that SQL Server uses to grant worker

threads access to the processor. It can indicate a problem if the total wait time or total

amount of waiting tasks suddenly increases compared to your baseline measurements.

Most of the time a large increase in SOS_SCHEDULER_YIELD waits also means an

increase in the CPU load. This increase can either be caused by the SQL Server process

itself or by another process outside of SQL Server that requires a large amount of

processor time, limiting the time SQL Server can access the processor. If the SQL

Server process is responsible for the increase in CPU load, you should try to correlate

the increase in SOS_SCHEDULER_YIELD waits with an increase in user activity. Another

option is to query the sys.dm_exec_query_stats DMV, as shown in Listing 5-1, or use

the Query Store to find the queries that require the most processor time and focus on

optimizing those queries.

Figure 5-17. Visualizing expensive CPU queries through the Query Store

Chapter 5 CpU-related Wait types

123

 THREADPOOL
One of the most notorious wait types is the THREADPOOL wait type. Unlike the CXPACKET

and SOS_SCHEDULER_YIELD wait types that occur even if your SQL Server instance

isn’t experiencing any issues, high THREADPOOL wait times do frequently indicate a

performance problem. Just as with the other two CPU-related wait types we discussed

in this book, the THREADPOOL wait type is very closely related to the way SQL Server

scheduling works.

 What Is the THREADPOOL Wait Type?
If you ever see THREADPOOL waits occur on your system with far longer wait times than

normal, and your SQL Server is (almost) unresponsive, chances are that you are running

into an issue called thread pool starvation. Thread pool starvation occurs when there are

no more free worker threads available to process requests. When this situation occurs,

tasks that are currently waiting to be assigned to a worker thread will log the THREADPOOL

wait type.

SQL Server provides a number of worker threads to the schedulers with which to

process requests. The number of worker threads that are available for your system

depends on the number of processors and the processor architecture. Table 5-1

shows the maximum number of worker threads available for systems with up to 64

logical CPUs.

Table 5-1. Maximum Number of Worker Threads

CPU Number 32-Bit Architecture 64-Bit Architecture

≤4 256 512

8 288 576

16 352 704

32 480 960

64 736 1472

Chapter 5 CpU-related Wait types

124

You can also calculate the maximum number of worker threads available by using

these formulas:

• 32-bit systems with less than, or equal to, 4 logical processors:

• 256 worker threads

• 32-bit system with more than 4 logical processors:

• 256 + ((number of logical processors − 4) × 8)

• 64-bit system with less than, or equal to, 4 logical processors:

• 512 worker threads

• 64-bit system with more than 4 logical processors:

• 512 + ((number of logical processors − 4) × 16)

Even though SQL Server calculates the maximum amount of available worker

threads automatically (only once during startup), you can choose to overwrite the

default by changing the Maximum Worker Threads option inside the Processors

properties of your SQL Server instance, as shown in Figure 5-18. By default, the value

of the Maximum Worker Threads option will be 0, which means SQL Server will

calculate and assign the maximum amount of worker threads available using the

preceding formulas.

Chapter 5 CpU-related Wait types

125

You can also query the number of worker threads assigned to your SQL Server

instance by running the following query:

SELECT

 max_workers_count

FROM sys.dm_os_sys_info;

For my 64-bit test SQL Server that has two logical processors, I have 512 worker

threads available, as you can see in Figure 5-19.

Figure 5-18. Processors configuration of a SQL Server instance

Chapter 5 CpU-related Wait types

126

One piece of advice I frequently read on the Internet related to THREADPOOL

waits is to change the Maximum Worker Threads option to a value higher than the

one your SQL Server instance has by default. I strongly advise against changing

this option from its default value. Changing the setting to a higher value than the

amount of worker threads you would receive by default can actually degrade the

performance of your SQL Server because context-switching occurs far more often.

Another reason not to change the setting is that every worker thread requires a bit of

memory to operate; for 32-bit systems this is 512 KB per worker thread, and for 64-

bit systems it’s 2048 KB.

 THREADPOOL Example
Let’s start with an example of THREADPOOL waits occurring on my test SQL Server

instance. Even though I have warned you multiple times already about making sure

to not run any of the demo scripts in this book on a production environment, this one

deserves a special reminder. Running the demo scripts in this section can cause your

SQL Server to become completely unresponsive, not accepting any new connections,

and can eventually require a restart of the SQL Server service! Do not run this on a SQL

Server that isn’t allowed to become unresponsive!

For this example we are going to use the Ostress utility again to simulate concurrency

and load against the test SQL Server instance. First, we create another .sql file (select_

rnd.sql) that holds the following query that we will execute using Ostress:

SELECT TOP 1 *

FROM Sales.SalesOrderDetail

ORDER BY NEWID()

OPTION (MAXDOP 1)

This query will select one random row from the Sales.SalesOrderDetail table in

the AdventureWorks database. There is a reason I included the query option to serially

run this query, and I will explain it later on.

Figure 5-19. Amount of worker threads on my test machine

Chapter 5 CpU-related Wait types

127

Now, before we launch Ostress to execute the preceding query, we are purposely

going to lower the maximum amount of worker threads available on the test SQL Server.

To do this we execute this query:

EXEC sp_configure 'show advanced options', 1;

GO

RECONFIGURE

GO

EXEC sp_configure 'max worker threads', 128;

GO

RECONFIGURE

GO

This will set the maximum number of worker threads available to 128, the minimum

value for a 64-bit SQL Server instance.

Let’s fire up Ostress and execute the .sql script we created earlier:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E

-dAdventureWorks -i"C:\select_rnd.sql" -n150 -r10 -q

In this case we will start 150 different threads that will execute the query in the

select_rnd.sql file 10 times. The reason for spawning 150 threads is that this value is

higher than the maximum amount of worker threads available on the test SQL Server

instance, but not so high that we cannot execute queries anymore.

While the script is running, let’s take a look at the number of worker threads running

and waiting using the sys.dm_os_schedulers DMV:

SELECT

 scheduler_id,

 current_tasks_count,

 runnable_tasks_count,

 current_workers_count,

 active_workers_count,

 work_queue_count

FROM sys.dm_os_schedulers

WHERE status = 'VISIBLE ONLINE';

The results of this query are shown in Figure 5-20.

Chapter 5 CpU-related Wait types

128

The most important columns here are the current_workers_count, active_

workers_count, and work_queue_count columns. The current_workers_count column

shows the number of worker threads associated with this scheduler; this number also

includes worker threads that are not yet assigned to a task. The active_workers_count

column returns the number of worker threads that are in the “RUNNING,” “RUNNABLE,”

or “SUSPENDED” states. The big difference between the current_workers_count and

the active_workers_count columns is that the active_workers_count is the number

of worker threads that have been assigned to a task, while the current_workers_count

returns all the worker threads. The work_queue_count column shows us the number of

tasks that are currently waiting to get a worker thread assigned to them. If you see values

higher than 0 in this column for a longer period of time and for all schedulers, you are

experiencing thread pool starvation.

Let’s check the sys.dm_os_waiting_tasks DMV for waiting tasks that originate

from a user session. Notice that we filter out all the sessions that have a session ID lower

than 50, even though I told you to not do this in Chapter 2, “Querying SQL Server Wait

Statistics”:

SELECT *

FROM sys.dm_os_waiting_tasks

WHERE session_id > 50;

If we check the results on the test SQL Server instance, we could conclude that

nothing is waiting, as you can see in Figure 5-21. The test SQL Server is responding

incredibly slowly though, and querying anything requires multiple seconds.

Figure 5-21. No tasks are waiting

Figure 5-20. Tasks and worker threads per scheduler

Chapter 5 CpU-related Wait types

129

Let’s check the sys.dm_os_waiting_tasks DMV without filtering out session IDs:

SELECT *

FROM sys.dm_os_waiting_tasks;

As you can see in Figure 5-22, THREADPOOL waits are not logged as user sessions, but

actually have an empty session ID. This is the reason I always recommend to not filter

the sys.dm_os_waiting_tasks DMV on session ID numbers.

There are quite a lot of THREADPOOL waits, with various wait times, some running into

seconds of wait time. Things can get even worse than this though. Figure 5-23 shows an

error I encountered when I tried to connect to my test SQL Server instance while running

the Ostress tool.

Figure 5-22. THREADPOOL waits

Figure 5-23. Timeouts are occurring and SQL Server is unresponsive

Chapter 5 CpU-related Wait types

130

Now that we have seen the kind of problems thread pool starvation can create, let’s

take a look at how we can lower, or even resolve, THREADPOOL waits.

 Gaining Access to Our SQL Server During
THREADPOOL Waits
THREADPOOL waits can be very difficult to troubleshoot, mostly because there are many

possible reasons why your SQL Server doesn’t have any free worker threads available.

Also, THREADPOOL waits can completely lock down your SQL Server instance, making

connections to it (and troubleshooting it) almost impossible, as you have seen in the

earlier example.

The first step you should take to make sure you do not get into a situation where

you cannot connect to your SQL Server instance for troubleshooting is to enable the

Dedicated Administrator Connection (or DAC). If you remember the section about

schedulers in Chapter 1, “Wait Statistics Internals,” you might recall a special type of

scheduler reserved for the DAC. This dedicated scheduler, shown in Figure 5-24, is

strictly reserved for the DAC and has access to its own worker threads.

If you connect through the DAC to your SQL Server instance, your session will be

mapped to the DAC scheduler. This makes it possible to connect and execute queries

even if all the other schedulers have massive task queues.

Figure 5-24. Dedicated Administrator Connection scheduler

Chapter 5 CpU-related Wait types

131

You can enable the DAC by executing the following query:

sp_configure 'remote admin connections', 1

GO

RECONFIGURE

GO

If you want to connect to your SQL Server instance using the DAC you need to add

the ADMIN: prefix to the server name you are connecting to, as shown in Figure 5-25. You

can only connect using the DAC when you execute a new query from inside SQL Server

Management Studio without being connected to the server.

Now that you are able to connect to your SQL Server instances using the DAC,

you always have a way in, even when the SQL Server instance won’t accept any new

connections.

With the DAC enabled, let’s discuss some common causes for THREADPOOL waits.

Figure 5-25. Connect using the Dedicated Administrator Connection

Chapter 5 CpU-related Wait types

132

 Lowering THREADPOOL Waits Caused by Parallelism
One of the most common causes for THREADPOOL waits I encounter is related to the

extensive use of parallelism during query execution. During the execution of a parallel

query, multiple worker threads are used to perform the work needed. If you left the

configuration options related to parallelism—Max Degree of Parallelism and Cost

Threshold of Parallelism—at the default values, it might cause more queries to run in

parallel than was intended. Depending on how many processors your SQL Server has

access to, and the number of worker threads used during a parallel query, one single

parallel query can require many worker threads.

If you run into this specific case of high and frequent THREADPOOL waits you will

usually see many CXPACKET waits as well (sometimes with high wait times). To show this

behavior I have modified the query we used to generate THREADPOOL waits so that it will

execute using parallelism. In this case I commented out the MAXDOP query option:

SELECT TOP 1 *

FROM Sales.SalesOrderDetail

ORDER BY NEWID()

-- OPTION (MAXDOP 1)

For this example I also configured the Max Degree of Parallelism to its default value

of 0, and set the Cost Threshold for Parallelism option to 1. This way I am 100% sure the

query will be run using parallelism. I left the Max Worker Threads option on a value of

128 as we configured earlier.

If we now repeat the same Ostress test we performed earlier in this chapter by

executing the following command, we should see THREADPOOL waits occur again in the

sys.dm_os_waiting_tasks DMV, as shown in Figure 5-26.

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E

-dAdventureWorks -i"C:\select_rnd.sql" -n150 -r10 -q

Chapter 5 CpU-related Wait types

133

But this time, because our test query is executed in parallel, we will also find many

CXPACKET waits returned by the sys.dm_os_waiting_tasks DMV, as shown in Figure 5- 27.

Figure 5-26. THREADPOOL waits

Figure 5-27. CXPACKET and THREADPOOL waits

Chapter 5 CpU-related Wait types

134

If you see this behavior occurring on your SQL Server instance, it might be worth the

effort to check your parallelism configuration. The first section of this chapter discussed

CXPACKET waits and how you can lower them. Another hint that might steer you in this

direction is that the CPU load during this particular case is usually higher than normal.

In the case of my test SQL Server instance, all my CPUs went to 100%.

 Lowering THREADPOOL Waits Caused by User
Connections
Another common cause of THREADPOOL waits is a sudden increase in the number of

users connecting and executing queries against your SQL Server instance. This problem

can occur if, for instance, the application that is connecting to your SQL Server instance

uses multiple connections. The main problem here is that those connections stay active

and keep acquiring worker threads.

To give you an example of this problem we will again use Ostress to connect and

execute queries against my test SQL Server instance. In this case we will use a different

.sql file, saved as wait.sql, as input for Ostress, with the following query inside it:

WAITFOR DELAY '00:05:00'

The only thing this query will do is wait for 5 minutes. After those 5 minutes, the

query will end and the connection will disconnect.

Let’s run Ostress using the wait.sql file:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E

-dAdventureWorks -i"C:\wait.sql" -n120 -r1 -q

We change the number of threads generated by Ostress to 120 and again leave the

Max Worker Threads option set to 128 worker threads.

When we query the sys.dm_exec_sessions DMV using the following query, we see

that many new user sessions, generated by the Ostress utility, are active, as shown in

Figure 5-28.

SELECT *

FROM sys.dm_exec_sessions

WHERE is_user_process = 1;

Chapter 5 CpU-related Wait types

135

If we query the sys.dm_os_waiting_tasks DMV, we see that THREADPOOL waits are

occurring, as shown in Figure 5-29.

The big difference between THREADPOOL waits caused by excessive parallelism and an

increase in user connections is that the CPU of my test SQL Server instance remains low

in the latter case, as shown in Figure 5-30.

Figure 5-28. Ostress user sessions

Figure 5-29. THREADPOOL waits inside the sys.dm_os_waiting_tasks DMV

Chapter 5 CpU-related Wait types

136

The small spike in the CPU usage history graph is caused by starting up the Ostress

utility. After that, the CPUs remain at a constant low usage percentage.

Resolving THREADPOOL waits caused by an increase in user connections should

start at the source. Where do the user connections come from? What are those

connections performing? I have seen cases where an application suddenly used

hundreds of active user connections after an update, and as the SQL Server instance

was not designed to handle that amount of concurrent, active, connections,

THREADPOOL waits appeared.

Keep in mind that the user connections should only cause THREADPOOL waits when

they are actually running queries. User connections that are connected to the SQL Server

instance but are not executing anything should not be a reason for THREADPOOL waits.

Also, having many different user connections active against a database can create

many locks on rows or tables. If you notice high lock-related wait times together with

THREADPOOL waits, the problem could be the high amount of locking and blocking

occurring. In this case you should try to find the queries that are causing the lock waits

and see if you can optimize them. We will discuss lock-related wait types, and what you

can do about them, in Chapter 7, “Lock-Related Wait Types.”

Figure 5-30. CPU usage

Chapter 5 CpU-related Wait types

137

 THREADPOOL Summary
THREADPOOL waits are one of the most alarming wait types to see on your SQL Server

instance. They occur because there are not enough free worker threads available

to process requests, so tasks that request a worker thread will have to wait until a

new worker thread becomes available. Thankfully, THREADPOOL waits are not

very common, as they have the potential to completely lock you out of your SQL

Server instance. The only way to connect in those cases is by using the Dedicated

Administrator Connection (or DAC), which I urge you to enable on all your SQL

Server instances.

Excessive use of parallelism and a large increase in active user connections are

two of the most common causes for THREADPOOL waits. The former has a direct relation

to the CXPACKET wait type we discussed earlier, so methods to resolve the CXPACKET

wait type can also help to resolve THREADPOOL waits. The latter requires a deeper

investigation into why the number of active user connections suddenly increased.

Maybe they are the result of a bug in the application connection to the SQL Server

instance. We also briefly touched on locking and blocking behavior as a possible cause

for THREADPOOL waits. We will take a deeper look at how we can resolve lock-related

waits in Chapter 7, “Lock- Related Wait Types.”

Chapter 5 CpU-related Wait types

139
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_6

CHAPTER 6

IO-Related Wait Types
In this chapter we will take a look at IO-related wait types in the broadest sense of

the term. I selected wait types that are related to the storage, memory, or network

components of your system. One could argue that the majority of wait types will fit this

category, and that is probably right, but to prevent this chapter from covering 90% of

all the wait types in this book, I had to choose carefully. I consider the wait types in this

chapter to have a direct relation to storage, memory, or network but to not relate directly

to a functionality or concept in SQL Server. For instance, the PAGEIOLATCH_xx wait types

are frequently related to storage, but they are not included in this chapter. The reason

for this is because they are also a latch wait type, and I believe latch wait types deserve a

separate chapter because of their function in SQL Server.

The performance of the IO-related components is incredibly important for SQL

Server. Practically every part of SQL Server interacts with these components in one way

or another, whether it is a data page that needs to be read from disk into memory or the

results from a query that need to be transported across the network to your end users.

If one of these components can’t handle the workload you are generating on your SQL

Server instance, or isn’t configured properly, your performance will decline.

The wait types in this chapter can help you track down which of your IO components

is slowing you down so you can take appropriate action to prevent or resolve

performance-related incidents.

 ASYNC_IO_COMPLETION
The ASYNC_IO_COMPLETION wait type is a pretty common wait type that occurs every time

SQL Server performs a file-related action on the storage subsystem and has to wait for

it to complete. You will frequently see this wait type when you are performing actions

that interact with the storage subsystem, like a backup. Just like with most wait types, if

you are seeing this wait type occur, it doesn’t necessarily mean there is a problem with

140

your storage subsystem. It will only become a problem if the wait time is longer than

you expect it to be compared to your baseline values, which we discussed in Chapter 4,

“Building a Solid Baseline.”

 What Is the ASYNC_IO_COMPLETION Wait Type?
If we look up the ASYNC_IO_COMPLETION wait type in Books Online (BOL), we will see the

following definition: “Occurs when a task is waiting for I/Os to finish.” This is a rather

short and vague definition. Let’s add a little more detail. ASYNC_IO_COMPLETION waits

occur when a task is waiting for a storage-related action to finish. The task is initiated and

monitored by SQL Server. Figure 6-1 shows this as a visual representation of the wait type.

Figure 6-1. ASYNC_IO_COMPLETION wait occurring

As long as the storage-related action is running, the ASYNC_IO_COMPLETION wait time

is being logged. As you can imagine, the faster your storage subsystem, the lower your

ASYNC_IO_COMPLETION wait times will be.

As I said earlier, usually ASYNC_IO_COMPLETION waits are no cause for concern. They

will happen normally during many SQL Server operations that need to access the storage

subsystem, like backups or the creation of a new database. It can become a cause for

concern if the wait times are higher than you expected when compared to your baseline

measurements.

Chapter 6 IO-related WaIt types

141

 ASYNC_IO_COMPLETION Example
Let’s go through an example that generates ASYNC_IO_COMPLETION waits. We won’t

need any extra utilities for this; just running a database backup will trigger ASYNC_IO_

COMPLETION waits.

In this case I will perform a backup of the AdventureWorks database on my test

server.

To perform this action I will use the query in Listing 6-1. This query will reset

the sys.dm_os_wait_stats DMV, perform the database backup, and then query the

sys.dm_os_wait_stats DMV for the ASYNC_IO_COMPLETION waits.

Listing 6-1. Generate ASYN_IO_COMPLETION waits

USE [master]

GO

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

BACKUP DATABASE [AdventureWorks]

 TO DISK = N'F:\Backup\aw_backup.bak'

WITH

 NAME = N'AdventureWorks-Full Database Backup',

 STATS = 2;

GO

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'ASYNC_IO_COMPLETION';

The backup operation took 1 second on my test SQL Server instance. Figure 6-2

shows the results of the query in Listing 6-1.

Figure 6-2. ASYNC_IO_COMPLETION wait time

As you can see, for almost the entire duration of the database backup ASYNC_IO_

COMPLETION waits were logged.

Chapter 6 IO-related WaIt types

142

 Lowering ASYNC_IO_COMPLETION Waits
One common cause of high ASYNC_IO_COMPLETION wait times is a database backup, as

you just saw in the example. If you want to find out if your ASYNC_IO_COMPLETION waits

are occurring because a backup is being performed, try to look for backup-related waits

occurring at the same time.

If we were to slightly modify the last sys.dm_os_waiting_tasks query in Listing 6-1,

we would see backup-related wait types being returned by the DMV:

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type IN

 (

 'ASYNC_IO_COMPLETION',

 'BACKUPIO',

 'BACKUPBUFFER'

);

Figure 6-3 shows the result of the query in Listing 6-1, but with this modification.

Figure 6-3. ASYNC_IO_COMPLETION waits together with backup-related waits

If you see both occurring at the same time, chances are that a database backup is

causing your ASYNC_IO_COMPLETION waits.

Another possible method of lowering ASYNC_IO_COMPLETION waits is by configuring

instant file initialization. Instant file initialization was introduced in Windows 2003 and

speeds up the process of allocating space on a disk tremendously by removing the need

to zero-out files (writing zeros inside files before they can get used). This does not affect

the speed of your backup, but will give increased performance when creating a database,

adding files to a database, or restoring a database. Instant file initialization is not enabled

by default, unless you are running your SQL Server service under an account that has

Chapter 6 IO-related WaIt types

143

local administrator privileges. During the setup of SQL Server 2016, Microsoft added

an additional checkbox to enable instant file initialization during SQL Server setup, as

shown in Figure 6-4.

Figure 6-4. Grant Perform Volume Maintenance Task privilege to the SQL Server
Database Engine Service checkbox in SQL Server 2016 setup

If you didn’t enable the Grant Perform Volume Maintenance Task privilege to the

SQL Server Database Engine Service checkbox during the installation of SQL Server 2016

or higher, or installed a lower version of SQL Server, you will have to configure instant file

initialization manually after installation. The way to configure instant file initialization is

through a local security policy on the machine SQL Server is running on by adding the

account your SQL Server service is running under.

Chapter 6 IO-related WaIt types

144

You can find this policy by opening the Local Security Policy MMC under

Administrative Tools in the Configuration Panel. Open up the Local Policies ➤ User

Rights Assignment folder and scroll down to the “Perform volume maintenance tasks”

policy, as shown in Figure 6-5.

Figure 6-5. Perform volume maintenance tasks local policy

Double-click the policy to open it and add the account your SQL Server service is

running under. The last step is restarting your SQL Server service. After the restart, SQL

Server can make use of instant file initialization.

To show you the impact of instant file initialization, I used the query in Listing 6-2.

This query clears the sys.dm_os_wait_stats DMV, then creates a new database with a

500 MB data file and a 100 MB log file. It then queries the sys.dm_os_wait_stats DMV

for the ASYNC_IO_COMPLETION wait type.

Chapter 6 IO-related WaIt types

145

Listing 6-2. Measure the impact of instant file initialization on

ASYNC_IO_COMPLETION waits

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

CREATE DATABASE [IO_test]

ON PRIMARY

 (

 NAME = N'IO_test', FILENAME = N'E:\Data\IO_test.mdf' , SIZE = 512000KB ,

FILEGROWTH = 10%

)

LOG ON

 (

 NAME = N'IO_test_log', FILENAME = N'E:\Log\IO_test_log.ldf' ,

SIZE = 102400KB , FILEGROWTH = 10%

);

GO

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'ASYNC_IO_COMPLETION';

Figure 6-6 shows the wait statistics information both before and after configuring

instant file initialization.

Figure 6-6. Impact of instant file initialization on ASYNC_IO_COMPLETION
waits

Chapter 6 IO-related WaIt types

146

Even for this relatively small database the gain of using instant file initialization is

pretty big, as you can see in the difference in wait times. Before enabling instant file

initialization, the query in Listing 6-2 took 11 seconds to complete; after the change it

went down to 2 seconds.

If you configured instant file initialization and checked that no backups are being

performed at the same time that you are seeing high ASYNC_IO_COMPLETION waits, the

problem might be your storage subsystem. A good method of analyzing potential storage

problems is by using Perfmon to monitor the Avg. Disk/sec Read and Avg. Disk/sec

Write counters on the disks on which your database resides, as shown in Figure 6- 7. These

counters show you the read and write latency to your disks in seconds (this means a value

of 0.005 means 5 milliseconds). SQL Server performs optimally with a maximum latency

of 5 milliseconds. Above 20 milliseconds, latency will cause noticeable performance

degradation. The higher the latency value, the higher the wait time of storage-related wait

types will be.

Figure 6-7. Avg. Disk sec/Read and Avg. Disk sec/Write Perfmon counters

Be careful about jumping to conclusions regarding your storage performance.

Always talk to your storage administrator (if you have one) and show him/her your

measurements before you decide the storage subsystem is the bottleneck. Storage is

the domain of the storage administrator, and he/she can help you analyze and resolve

performance problems.

Chapter 6 IO-related WaIt types

147

 ASYNC_IO_COMPLETION Summary
The ASYNC_IO_COMPLETION wait type occurs when you perform actions related to the

storage subsystem from inside your SQL Server instance, most notably database backups

and the creation of new databases. While ASYNC_IO_COMPLETION waits are completely

normal, they can indicate storage-related problems if wait times are higher than normal.

Before you run to your storage administrator, make sure there is actually a performance

problem. One possible way to do this is by checking your storage latency, as high latency

values will impact ASYNC_IO_COMPLETION wait times as well. Also check whether the

higher ASYNC_IO_COMPLETION wait times are directly related to database backups being

performed. One great method to lower ASYNC_IO_COMPLETION wait times is by enabling

instant file initialization by adding your SQL Server service account to the Perfmon

volume maintenance tasks local policy.

 ASYNC_NETWORK_IO
Just like the ASYNC_IO_COMPLETION wait type, the ASYNC_NETWORK_IO wait type is related

to throughput. But instead of storage subsystem throughput, the ASYNC_NETWORK_IO wait

type is related to the throughput of your network connection between your SQL Server

instance and your clients. Again, seeing wait times for this specific wait type does not

necessarily mean there is a network-related issue, since ASYNC_NETWORK_IO waits always

occur, even if you query your SQL Server instance on the SQL Server itself.

 What Is the ASYNC_NETWORK_IO Wait Type?
ASYNC_NETWORK_IO waits usually occur when client applications cannot process the

query results fast enough, or when you have a network-related performance problem.

The former will in most cases be the most likely, since many applications process SQL

Server results on a row-by-row basis, or simply cannot handle the amount of data. This

forces the SQL Server to wait on sending query results across the network. While SQL

Server is waiting to send the requested data, the ASYNC_NETWORK_IO wait type is logged.

Another situation in which ASYNC_NETWORK_IO waits can occur is when you are using a

linked server to query remote databases. Figure 6-8 shows a graphical representation of

this.

Chapter 6 IO-related WaIt types

148

 ASYNC_NETWORK_IO Example
Showing an example of the ASYNC_NETWORK_IO wait type doesn’t require a

complicated test environment. Listing 6-3 shows a query that will generate ASYNC_

NETWORK_IO waits when run against my test SQL Server instance from another computer

using SQL Server Management Studio, which should be enough. The query is going

to clear the sys.dm_os_wait_stats DMV, then perform the actual query against the

AdventureWorks database. The last statement will show us the wait times of the ASYNC_

NETWORK_IO wait type.

Listing 6-3. Generate ASYNC_NETWORK_IO waits

DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR);

SELECT *

FROM Person.Person;

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'ASYNC_NETWORK_IO';

Figure 6-9 shows the wait times for the ASYNC_NETWORK_IO wait type.

Figure 6-8. ASYNC_NETWORK_IO

Figure 6-9. ASYNC_NETWORK_IO wait times

Chapter 6 IO-related WaIt types

149

In this example, the results of the query against the AdventureWorks database

couldn’t be processed by the SQL Server Management Studio application as fast as the

SQL Server instance supplied the results, and ASYNC_NETWORK_IO waits occurred.

 Lowering ASYNC_NETWORK_IO Waits
One of the “easiest” ways to lower ASYNC_NETWORK_IO waits is to identify queries that will

return a large result set back to the application. For instance, if we modify the query to

return only the first 100 rows, the SQL Server Management Studio might be able to keep

up with the information returned to it:

DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR);

SELECT TOP 100 *

FROM Person.Person;

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'ASYNC_NETWORK_IO';

The resulting wait times after this modification can be seen in Figure 6-10.

Figure 6-10. ASYNC_NETWORK_IO wait times after modifying the query

As you can see, we didn’t run into any ASYNC_NETWORK_IO waits this time. The SQL

Server Management Studio was able to keep up with the results returned, so the SQL

Server instance we queried didn’t have to delay sending the results back to the client.

Another way to limit results returned could be by filtering out information using

WHERE clauses that isn’t used by the application in the first place. Smaller results will

result in lower ASYNC_NETWORK_IO wait times.

If you believe that ASYNC_NETWORK_IO waits are not caused by large results being

returned to an application, or by the speed at which an application can process the

results, there is also a possibility that your network configuration is slowing you down.

In this case you should first check your network utilization. Sadly, there isn’t a counter

Chapter 6 IO-related WaIt types

150

in Perfmon that directly shows the network utilization without having you perform some

math to calculate it. Instead, you can use the Networking tab of the Task Manager to view

your network-card utilization, as shown in Figure 6-11.

Figure 6-11. Task Manager network utilization

If you notice that the network utilization is high while you are experiencing higher

than normal ASYNC_NETWORK_IO wait times, it could be possible that the network

is slowing you down. In that case it might be a good idea to talk to your network

administrator. Usually a network configuration consists of many parts, like switches,

routers, firewalls, network cables, drivers, firmware, potential virtualization of the

operating system, and so on. All of these parts can slow down your network throughput

and can be a potential cause of ASYNC_NETWORK_IO waits.

Chapter 6 IO-related WaIt types

151

 ASYNC_NETWORK_IO Summary
The ASYNC_NETWORK_IO wait type occurs whenever an application requests query results

from a SQL Server instance over the network and cannot process the returned results fast

enough. Seeing ASYNC_NETWORK_IO waits occur is completely normal, but higher than

normal wait times can be caused by changes in the returned query results or network-

related problems. Lowering ASYNC_NETWORK_IO wait times that are application related can be

achieved by decreasing the number of rows and/or columns returned to the application.

 CMEMTHREAD
Waits of the CMEMTHREAD wait type are memory related and indicate a pressure on certain

SQL Server–related memory objects. These memory objects allocate memory for the

various parts of SQL Server like the buffer cache and the procedure cache. Whenever

CMEMTHREAD waits occur, it means that multiple threads are trying to access the same

memory object at the same time.

 What Is the CMEMTHREAD Wait Type?
To explain how CMEMTHREAD wait type generation works, we have to dig a little deeper

inside some programming terminology, specifically the terms mutual exclusions, critical

sections, and thread safety. These three concepts play a direct role in the CMEMTHREAD wait

type generation.

A critical section consists of a piece of code that accesses a shared resource that

can only be accessed by one thread at a time. In our case the shared resource would be

a SQL Server memory object. The SQL Server memory objects can only be accessed

one thread at a time so as to ensure no corruption to the memory object can occur.

Because there are many threads that want access to memory objects, we have to use a

method to ensure only one thread gets access at a time. This method is called mutual

exclusion. SQL Server uses a Mutex object to make sure concurrent threads are not in

their critical sections at the same time when accessing the memory object. A Mutex does

this by serializing the thread access to the memory object. Only a single thread can be

the owner of a Mutex object, and while a thread has ownership, it can access the shared

resource. When the thread is done, the Mutex object will move to the next thread in line.

By using these objects we have created a thread-safe code, where multiple threads do not

have concurrent access to memory objects. Figure 6-12 shows this situation.

Chapter 6 IO-related WaIt types

152

A simplified example of this behavior is when you and a large group of other people

are waiting for a single ticket dispenser to buy a ticket to see your favorite rock band. In

this case the ticket dispenser is the shared resource, and only a single person can access

the ticket dispenser at a time. When we reach the ticket dispenser, we can get a ticket,

and the people behind us have to wait till it’s their time. After we have bought a ticket,

the next person in line gets access to the ticket dispenser.

We can also view this behavior in SQL Server, but to do this we have to make use of a

debugger (like WinDbg). Figure 6-13 shows how a thread in SQL server waits for a Mutex

since access to the memory object was granted to another thread. To capture this image I

used an Extended Event session that created a SQL Server mini-dump when a CMEMTHREAD

wait occurred. I then used WinDbg to open the mini-dump and returned the stack.

Figure 6-12. Thread waiting for a Mutex object to access a shared resource

Figure 6-13. Example of a CMEMTHREAD wait occurring in a mini-dump

The important line here is the SOS_UnfairMutexPair::LongWait, which generates

the CMEMTHREAD wait because the thread we are monitoring here has to wait for

another thread that currently has access to the memory object. The line after that,

SOS_UnfairMutexPair::AcquirePair, means the thread received the Mutex, followed by

access to the memory object represented by CMemThread<CmemObj>::Alloc.

Chapter 6 IO-related WaIt types

153

 Lowering CMEMTHREAD Waits
Since there are many different memory objects present in SQL Server that could

potentially generate CMEMTHREAD waits, there are many possible solutions to lowering

CMEMTHREAD wait times depending on the memory object that is being accessed.

One of the more common situations where CMEMTHREAD waits can occur is when large

amounts of short, concurrent, ad hoc queries are being executed. Every time an ad hoc

query is executed that could not be parameterized, the Query Optimizer will generate a

new execution plan for the query. All these new execution plans need to be entered into

the procedure cache, and a memory object for allocating cache descriptors is accessed.

Since the memory object is thread-safe, CMEMTHREAD waits can occur if the rate of insertion

is high enough. A good place to start looking if you suspect CMEMTHREAD waits are going to

occur because of ad hoc queries is the procedure cache. The query in Listing 6-4 will give

you information about the number of execution plans in the procedure cache.

Listing 6-4. Query procedure cache

SELECT

 objtype,

 COUNT_BIG (*) AS 'Total Plans',

 SUM(CAST(size_in_bytes AS DECIMAL(12,2)))/1024/1024 AS 'Size (MB)'

FROM sys.dm_exec_cached_plans

GROUP BY objtype;

The results of this query should look like Figure 6-14, though the numbers will be

different on your system.

Figure 6-14. Results of querying procedure cache

Chapter 6 IO-related WaIt types

154

We should focus on the number of ad hoc execution plans. If you see this number

growing rapidly and experience CMEMTHREAD waits, it might be worth the effort to analyze

some of those ad hoc queries. If possible, try to optimize the queries so they generate

a reusable plan. If your application uses many dynamic queries then try to use the sp_

executesql system-stored procedure instead of the EXECUTE (EXEC) command. Using the

EXEC command will most likely result in a plan that will only be used once.

Microsoft has released various fixes (most notably the partitioning of certain

memory objects across CPUs) for this problem in SQL Server 2005 SP2, making it less

common these days. Even if you are using newer SQL Server editions than SQL Server

2005, it might be a good idea to upgrade to the latest available Service Pack since there

have been various memory-related bug fixes in every SQL Server edition.

 CMEMTHREAD Summary
The CMEMTHREAD wait type is a memory-related wait type. CMEMTHREAD waits occur when

multiple threads try to access memory objects that can only be accessed by one thread at

a time. The time other threads spend waiting for their turn to access the memory object

is recorded as CMEMTHREAD wait time. One of the more common cases where CMEMTHREAD

waits can occur is when your system uses a high amount of ad hoc queries. Every time

a new execution plan is generated, SQL Server will access a memory object; if many

execution plans are generated this can lead to a queue of threads that want access to the

memory object, resulting in CMEMTHREAD waits.

 IO_COMPLETION
Just like the ASYNC_IO_COMPLETION wait type, IO_COMPLETION waits occur when SQL

Server is waiting for storage-related actions to complete. And just like the ASYNC_IO_

COMPLETION wait type, seeing high wait times of the IO_COMPLETION wait type doesn’t

necessarily mean there is something wrong with your storage system. IO_COMPLETION

waits occur normally while your SQL Server instance is running and should only be a

concern if wait times are a lot higher than normal.

Chapter 6 IO-related WaIt types

155

 What Is the IO_COMPLETION Wait Type?
While the ASYNC_IO_COMPLETION wait type is recorded when database-related actions are

performed, like a database backup, IO_COMPLETION waits occur when non-data pages are

involved, like the restore of a transaction log backup or when bitmap allocation pages,

like the GAM page, are accessed. IO_COMPLETION waits can also occur when queries

are being executed that perform read or write operations to the storage subsisted, like a

Merge Join operator.

 IO_COMPLETION Example
Let’s generate some IO_COMPLETION waits by restoring a transaction log backup. For this

example we will make use of the AdventureWorks database again. The query in Listing 6-5

will perform a full backup of the AdventureWorks database, make some changes, and

perform a transaction log backup. When that is complete we will restore the full backup

again, clear the sys.dm_os_wait_stats DMV, restore the transaction log backup, and

check for IO_COMPLETION waits.

Listing 6-5. Generate IO_Completion waits

-- Make sure AdventureWorks is in Full recovery model

ALTER DATABASE AdventureWorks SET RECOVERY FULL

GO

-- Perform full backup first

-- Otherwise FULL recovery model will not be affected

BACKUP DATABASE [AdventureWorks]

TO DISK = N'F:\Backup\AW_Full.bak'

GO

-- Make some changes to AW database

USE AdventureWorks

GO

UPDATE Person.Address

SET City = 'Portland'

WHERE City = 'Bothell'

Chapter 6 IO-related WaIt types

156

-- Backup Transaction Log

BACKUP LOG [AdventureWorks]

TO DISK = N'F:\Backup\AW_Log.trn'

GO

-- Restore the previous full backup with NORECOVERY

USE [master]

GO

RESTORE DATABASE [AdventureWorks]

FROM DISK = N'F:\Backup\AW_Full.bak'

WITH NORECOVERY, REPLACE

GO

-- Clear sys.dm_os_wait_stats

dbcc sqlperf ('sys.dm_os_wait_stats', CLEAR)

-- Restore last Transaction Log backup

RESTORE LOG [AdventureWorks] FROM DISK = N'F:\Backup\AW_Log.trn'

GO

-- Check IO_COMPLETION waits

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'IO_COMPLETION'

The results of this query against the sys.dm_os_wait_stats DMV on my test system

can be seen in Figure 6-15.

Figure 6-15. IO_COMPLETION waits

We only modified a few records using the query in Listing 6-5, so the total wait time

is pretty low since the restore of the transaction log backup occurred fast.

Chapter 6 IO-related WaIt types

157

IO_COMPLETION wait times also occur when you are starting up your databases

after, for instance, a restart of the SQL Server service. This means you should expect

IO_COMPLETION waits after a restart or a failover; these are completely normal. Also when

AUTO_CLOSE is enabled on a database (default in Express versions) and a database is

starting, you should experience IO_COMPLETION waits.

 Lowering IO_COMPLETION Waits
Most of the time IO_COMPLETION waits shouldn’t be a cause for concern. When they are a

lot higher than the wait times in your baseline, you should analyze the storage subsystem

performance like I described in the “Lowering ASYNC_IO_COMPLETION” section. While

certain query operations can also cause IO_COMPLETION waits, these are frequently not

the cause for higher-than-normal wait times.

 IO_COMPLETION Summary
Just like the ASYNC_IO_COMPLETION wait type, IO_COMPLETION waits occur when accessing

your storage subsystem. IO_COMPLETION waits occur when SQL Server is waiting on non-

data page operations to complete, like a transaction log restore operation or the reading

of bitmap pages, like the GAM page. Seeing waits of the IO_COMPLETION type occur

is completely normal and these frequently do not require deeper analysis unless the

wait times are a lot higher than the values in your baseline. In those cases focus on the

performance (and especially latency) of your storage subsystem first.

 LOGBUFFER and WRITELOG
I have combined both LOGBUFFER and WRITELOG in this section. This is because both wait

types have a close relation to each other. Both of them are related to the transaction log

and the storage subsystem.

Chapter 6 IO-related WaIt types

158

 What Are the LOGBUFFER and WRITELOG Wait Types?
To understand what the LOGBUFFER and WRITELOG wait types represent, we need to

have some understanding of how SQL Server writes to the transaction log. In short, the

following events happen whenever we change or add data inside a database:

 1. Data page where the data resides is modified in the buffer cache; if

the page wasn’t already in the buffer cache, it will get read into the

buffer cache first.

 2. The data page will be marked as “dirty” inside the buffer cache.

 3. The log records that represent the modification get saved in the

log buffer.

 4. A log flush occurs (this can be for multiple reasons, which we will

discuss later), writing the log records from the log buffer to the

transaction log.

 5. The dirty data page gets written to the data file.

To show this behavior I have included Figure 6-16.

Figure 6-16. How a transaction moves

Chapter 6 IO-related WaIt types

159

The action representing the movement of a dirty data page and the action of writing

the log records to the transaction log are shown as dashed lines. I did this on purpose to

illustrate that both of these actions do not necessarily happen directly.

As you probably know, dirty data pages are updated inside the buffer cache first, and

are only written to the data file when a checkpoint operation occurs. This means that a

dirty page can stay inside the memory even after your transaction was committed.

This is not true for log records inside the log buffer. As soon as your transaction

commits, and that transaction has an active log record in the log buffer, all the log

records inside that log buffer are written (or flushed) to the transaction log on disk. But

this doesn’t only occur when the transaction is committed. The log buffer has a fixed size

of 60 KB, and as soon as the log buffer is full, it will flush all the records inside it to the

transaction log.

Let’s add both wait types we are discussing in this section to the story. The WRITELOG

wait type occurs whenever SQL Server is flushing the contents of the log buffer to the

transaction log on disk. The LOGBUFFER wait type occurs when inserting log records in

the log buffer, when at the time of insertion SQL Server has to wait for free space inside

the log buffer. I have added both the wait types at the parts where they can get generated

in Figure 6-17.

Figure 6-17. Transaction movement and the LOGBUFFER and WRITELOG wait
types

Chapter 6 IO-related WaIt types

160

You can now probably see how both wait types are related. Whenever a long

WRITELOG wait occurs, chances are you will also see LOGBUFFER waits if the process that is

writing the log records to the transaction log on disk cannot process them as fast as the

log records enter the log buffer.

This situation frequently occurs on systems with a lot of concurrent data

modifications. This results in a high volume of transactions that need to be written to

disk. Another common cause is the performance of the storage subsystem where the

transaction log file resides. If the storage subsystem has suboptimal performance, your

WRITELOG wait times will increase, with the possibility existing that LOGBUFFER waits can

occur if the volume of transactions is high enough.

The performance of your transaction log is critical for the performance of your entire

database. Slow transaction log performance will have an impact on every change you

perform inside your database, as every modification has to be written to the transaction

log before it can get committed.

 LOGBUFFER and WRITELOG Example
To give you an example of LOGBUFFER and WRITELOG waits occurring, I am creating a

new database using the script in Listing 6-6.

Listing 6-6. Create trans_demo database

USE master

GO

-- Create demo database

CREATE DATABASE [trans_demo]

ON PRIMARY

 (

 NAME = N'trans_demo', FILENAME = N'D:\Data\trans_demo.mdf' , SIZE =

153600KB , FILEGROWTH = 10%

)

LOG ON

 (

 NAME = N'trans_demo_log', FILENAME = N'D:\Log\trans_demo.ldf' , SIZE =

51200KB , FILEGROWTH = 10%

)

Chapter 6 IO-related WaIt types

161

GO

-- Make sure recovery model is set to full

ALTER DATABASE [trans_demo] SET RECOVERY FULL

GO

-- Perform full backup first

-- Otherwise FULL recovery model will not be affected

BACKUP DATABASE [trans_demo]

TO DISK = N'F:\Backup\trans_demo_Full.bak'

GO

-- Create a simple test table

USE trans_demo

GO

CREATE TABLE transactions

 (

 t_guid VARCHAR(50)

)

GO

Now that we have created a brand new database, I am going to use the Ostress

utility to generate load against the trans_demo database. I am going to execute

the query in Listing 6-7, which I saved to the logbuffer_impl.sql file, with 200

concurrent connections using the following command "C:\Program Files\Microsoft

Corporation\RMLUtils\ostress.exe" -E -dtrans_demo -i"C:\logbuffer_impl.sql"

-n200 -r1 -q.

Listing 6-7. Insert rows inside the trans_demo database

DECLARE @i INT

SET @i = 1

WHILE @i < 10000

 BEGIN

Chapter 6 IO-related WaIt types

162

 INSERT INTO transactions

 (t_guid)

 VALUES

 (newid())

 SET @i = @i + 1

END

Before I started the Ostress utility, I cleared the sys.dm_os_wait_stats DMV.

After about 1 minute on my test SQL Server, the Ostress utility finished executing the

workload. If I query the sys.dm_os_wait_stats DMV and look for the LOGBUFFER and

WRITELOG wait types, I get the results shown in Figure 6-18.

Figure 6-18. WRITELOG and LOGBUFFER waits

 Lowering LOGBUFFER and WRITELOG Waits
There are generally two approaches you can take to lowering LOGBUFFER and WRITELOG

waits, keeping in mind though that WRITELOG waits do also occur normally and its wait

time should only be a cause for concern if it is a lot higher than normal.

The first approach is to take a good look at how your transactions are being executed.

In the preceding example, we implicitly committed every INSERT statement. This means

that as soon as the log record for the INSERT statement entered the log buffer it needed

to be flushed again. If we would explicitly commit the whole WHILE loop we would have

larger writes to flush to the transaction log, resulting in better performance. This is

because writing small blocks frequently is generally slower than writing large blocks at

a larger interval. Cursors can also have the same effect as the example we used, so use

them as little as possible.

The other approach is based on the storage subsystem. If SQL Server cannot write

the log records fast enough, you can encounter LOGBUFFER and WRITELOG waits. As a

best practice, make sure to split your transaction log and database data files on separate

disks, so they do impact each other in times of heavy load. Also monitor the disk the

Chapter 6 IO-related WaIt types

163

transaction log is located on using the disk-performance counters in Perfmon, like Avg.

Disk sec/write, to show you the write latency, and Disk Writes/sec, to show the write

IOPS and check if the values are inside the acceptable range.

If your SQL Server instance is running SQL Server 2014, you could choose to make

use of the Delayed Durability option, which was introduced in SQL Server 2014. In short,

enabling this option will no longer flush the log buffer content to disk when a transaction

commits, but rather will wait until the log buffer is full (60 KB) before flushing the contents

to the transaction log. By enabling this option, you are running a risk that transactions that

have committed, but have not yet been written to the transaction log, will be lost during a

failure since they will only be written to the transaction log when the log buffer is full.

 LOGBUFFER and WRITELOG Summary
Both the LOGBUFFER and WRITELOG wait types are related to the way SQL Server processes

transactions. The WRITELOG wait type occurs every time a log record is written to

the transaction log and generally isn’t a cause for concern. When paired with high

LOGBUFFER wait times, high WRITELOG wait times can indicate transaction log pressure.

To lower those wait times try to avoid cursor and WHILE statements, since the statements

inside the cursor or WHILE clauses will often get implicitly committed, creating a

large amount of small writes. Also check your storage configuration to make sure the

transaction log isn’t on the same drive as the database data file. If high wait times still

occur, analyze the performance of the disk on which your transaction log is located.

 RESOURCE_SEMAPHORE
The RESOURCE_SEMAPHORE wait type is a memory-related wait type that can show itself

when a query-memory request cannot be granted immediately. These waits can

occur on servers that are experiencing memory pressure, or when a great number of

concurrent queries request memory for expensive operations like sorts or joins.

 What Is the RESOURCE_SEMAPHORE Wait Type?
When a query is executed in SQL Server, a series of steps occur before the actual

execution. The first step involved is that a compiled plan is generated. This plan contains

the logical instructions, or operations, needed to fulfill the query requests. During the

Chapter 6 IO-related WaIt types

164

generation of the compiled plan, a calculation is performed to determine the amount of

memory needed to execute the query, which depends on the operations involved in the

compiled plan. Some of the operations that require memory are sorts and joins, which

temporarily store row data in the memory of the SQL Server. The minimum amount

of memory needed to perform these sorts or joins is known as the required memory,

without which the query simply cannot get executed. If more memory is needed to

store row data in memory during a sort, for instance, it will be calculated as additional

memory. Without this additional memory, a query can still get executed, but instead of

writing the temporary row data to memory, it will write it to disk.

When the query gets executed, a memory grant will be determined based on the

required and additional memory values calculated in the compiled plan. This memory

grant is needed in order to perform a memory reservation at an internal object called the

resource semaphore. The resource semaphore is responsible for reserving the memory

a query needs for execution, but it also manages memory throttling when too many

queries concurrently ask for memory reservations or when there is not enough memory

available at that time. It does this by maintaining a queue of queries that are requesting

memory. If there are no queries inside the queue and a new query requests memory,

the resource semaphore will grant it to the query (if enough free memory is available).

However, if there is a queue the new query will be put at the end of the queue, and it has

to wait for its turn to receive a memory grant.

Before the resource semaphore will grant the requested memory to a query, it will

check whether there is enough free memory to execute it. If, for some reason, there is

less memory available than the amount requested by the query, the query will be put in

the queue again until enough memory is available. When a query is inside the resource

semaphore queue waiting for its requested memory, the time it spends inside the queue

will be recorded as the RESOURCE_SEMAPHORE wait type.

There is a maximum amount of memory available for the resource semaphore to use,

and it is allocated from the buffer cache. The resource semaphore can allocate up to 75%

of the memory from the buffer cache for memory grants, but a single query can never get

more than 25% of that amount. For instance, if we have a SQL Server with a buffer cache

that can grow to 500 MB, we would have a maximum of 375 MB for memory grants. A

single query in this example can never receive more than 93 MB. Having that much

memory being possibly granted to queries can be problematic, since that memory is not

being used for the buffer cache, meaning more IOs to the storage subsystem are needed

to retrieve and write data pages.

Chapter 6 IO-related WaIt types

165

 RESOURCE_SEMAPHORE Example
For this example we are going to execute a query against the AdventureWorks database

that involves a sort operation. As I mentioned in the previous section, a query that

involves a sort will request memory from the resource semaphore so as to perform the

sort operation. We will also use the Ostress tool to create a situation where multiple

queries are requesting memory, creating a queue at the resource semaphore.

Let’s take a look at the query and the memory grant information that we will be

executing in Listing 6-8.

Listing 6-8. Sort query against the AdventureWorks database

SELECT

 SalesOrderID,

 SalesOrderDetailID,

 ProductID,

 CarrierTrackingNumber

FROM

Sales.SalesOrderDetail

ORDER BY CarrierTrackingNumber ASC

As you can see, this is a relatively simple query that returns some information from

the Sales.SalesOrderDetail table, ordered by the CarrierTrackingNumber.

If we enable the Include Actual Execution Plan option and execute the query, we can take

a look at the amount of memory that was needed to execute it. The results on my test SQL

Server are shown in Figure 6-19. You can access these properties by showing the Properties

window (View ➤ Properties Window) or by pressing F4 and selecting the SELECT operator.

Figure 6-19. MemoryGrantInfo inside the properties of the execution plan

Chapter 6 IO-related WaIt types

166

Because we requested the actual execution plan, we can also see the amount of

memory that was granted to the query for execution. In this case the query got 13,568 KB

(13.5 MB) granted by the resource semaphore, as shown in the GrantedMemory property.

The minimal amount of memory needed to execute the query, the required memory,

was 512 KB, shown by the RequiredMemory property. The query asked for 13,568 KB, as

shown in the DesiredMemory property, which is the sum of the required and additional

memory. We can see the query received what it asked for, since both the GrantedMemory

and DesiredMemory have the same value.

There are two other properties in Figure 6-19 I would like to point out, the

SerialDesiredMemory and the SerialRequiredMemory properties. In the case of

this query, both these properties have the same values as the DesiredMemory and

RequiredMemory properties. This is because the query was performed without using

parallelism. When you use parallelism in your queries, more memory is needed to

perform the sort operation since work is split up among threads. Figure 6-20 shows the

MemoryGrantInfo properties when I forced the query in Listing 6-8 to use parallelism,

spreading the work among four threads.

Figure 6-20. MemoryGrantInfo properties when executing a parallel query

As you can see, the SerialRequiredMemory has the same value as when we executed

the query serially. The RequiredMemory and RequestedMemory have increased in size

so that the sort operation can be completed using parallelism. You should keep this

information in mind when you run into memory-related issues and when many of your

queries involve sort and join operations that are performed using parallelism, since

parallelism simply requires more memory.

Chapter 6 IO-related WaIt types

167

Now that we know how much memory is needed to execute the query in Listing 6-8,

let’s use Ostress to execute the query using multiple connections. Before I start Ostress, I

must change the maximum server memory value to 250 MB using the following query:

EXEC sys.sp_configure N'max server memory (MB)', N'250'

GO

RECONFIGURE WITH OVERRIDE

GO

I saved the query in Listing 6-8 to a .sql file named resource_semaphore.sql and

executed Ostress using the following command line: "C:\Program Files\Microsoft

Corporation\RMLUtils\ostress.exe" -E -dAdventureWorks -i"C:\resource_

semaphore.sql" -n20 -r1 -q

This will execute the resource_semaphore.sql script against the AdventureWorks

database with 20 concurrent connections, with each connection performing the query

one time.

While Ostress is running, I query the sys.dm_os_waiting_tasks DMV, looking for

RESOURCE_SEMAPHORE waits; some of the results are shown in Figure 6-21.

Figure 6-21. RESOURCE_SEMAPHORE waits in the sys.dm_os_waiting_tasks DMV

Because we set our maximum server memory to 250 MB, and each query requests

13.25 MB memory, we do not have enough memory free to grant all the memory requested.

This will result in the RESOURCE_SEMAPHORE wait type you can see in Figure 6- 21.

Chapter 6 IO-related WaIt types

168

There are various other resources we can use to analyze RESOURCE_SEMAPHORE

waits. The resource semaphores themselves have their own DMV, sys.dm_exec_query_

resource_semaphores, which will return information about their memory consumption

and outstanding and waiting grants. Figure 6-22 shows the results of the query that

follows against the sys.dm_exec_query_resource_semaphores DMV, while running the

Ostress workload:

SELECT

 target_memory_kb,

 max_target_memory_kb,

 total_memory_kb,

 available_memory_kb,

 granted_memory_kb,

 grantee_count,

 waiter_count

FROM sys.dm_exec_query_resource_semaphores

WHERE pool_id = 2

I am filtering out pool_id 1 because this pool will not handle user queries.

Figure 6-22. sys.dm_exec_query_resource_semaphores

As you might have noticed, two rows are returned. This is because there are actually

two different resource semaphores. The top row is the “regular” resource semaphore.

This will handle queries that request more than 5 MB memory. The second row

(identified by the NULL value of the max_target_memory_kb column) returns information

for the “small” resource semaphore, which handles queries that are smaller than

5 MB. Because our query requested more than 5 MB of memory, we will receive our

memory grants from the regular resource semaphore.

Chapter 6 IO-related WaIt types

169

Let’s go through the various columns that are returned by the query against the sys.

dm_exec_query_resource_semaphore DMV:

• The target_memory_kb column returns the amount of memory in KB

that this resource semaphore plans to use as a maximum amount of

memory it can grant to queries.

• The max_target_memory_kb column returns the maximum amount of

memory this resource semaphore could grant.

• The total_memory_kb column returns the total memory held by the

resource semaphore and is the sum of the available_memory_kb and

the granted_memory_kb.

• The granted_memory_kb returns the amount of memory that is

granted to queries at this time.

• The grantee_count and waiter_count columns return the amount of

grants that have currently been satisfied or are waiting in the resource

semaphore queue.

From this information we can see that the information returned by the granted_

memory_kb column is correct, and that our test queries are requesting the memory grants.

We know from the execution plan that our test query will request 13,568 KB. Since the

grantee_count column shows us that two memory requests are granted, we can multiply

the amount of memory requests with the amount of memory per query (2 × 13,568 KB),

which ends up being 27,136 KB, the amount of granted memory in Figure 6-22.

We can also use Perfmon to monitor the total size of the granted memory by looking

at the SQLServer:Memory Manage\Granted Workspace Memory (KB) counter, as shown

in Figure 6-23.

Chapter 6 IO-related WaIt types

170

Notice the spike in Figure 6-23, which occurred when I executed the Ostress

workload, and just as in the results in Figure 6-22, the amount of memory granted was

27,136 KB.

 Lowering RESOURCE_SEMAPHORE Waits
There are various possible methods you can use to lower, or even resolve, the wait times

of the RESOURCE_SEMAPHORE wait type. The most obvious one would be adding more

memory, but this can end up being an expensive solution while other less expensive

options exist.

The first possible solution would be to look at the queries that are requesting large

amounts of memory for their execution. You should focus on the queries that are

performing large sorts or joins (especially hash joins) and check whether you can lower

the number of rows that need to be sorted or joined, or avoid the sort or join completely.

One way to avoid a sort operation would be to add an index to the table where the sort

is performed. If the order of values inside the index were the same as the sort operation,

a sort operation would no longer be necessary, since the index would already have

ordered the results.

Another solution involves parallelism. If queries use parallelism during sort or

join operations, more memory is requested than when the query is executed serially.

Modifying queries so they don’t use parallelism, by either using query hints or changing

the parallelism configuration for the whole SQL Server instance, will result in lower

amounts of memory being required to execute the queries.

Figure 6-23. Granted Workspace Memory (KB) Perfmon counter

Chapter 6 IO-related WaIt types

171

Finally, if you are running an Enterprise Edition of SQL Server, you could use

the resource governor feature to configure the memory usage of each resource pool.

By configuring the amount of memory a certain resource pool can use, you can also

set the amount of memory a resource semaphore can grant. We won’t go into detail

about the resource governor feature in this book, but more information can be found

on the MSDN page of the resource governor with the following hyperlink:

https://msdn.microsoft.com/en-us/library/bb933866.aspx.

 RESOURCE_SEMAPHORE Summary
The RESOURCE_SEMAPHORE wait type is related to the amount of memory a query needs to

perform certain operations, like sorts and joins. An object, named a resource semaphore,

is responsible for managing and throttling the memory requests of queries. If a query

requests more memory than the resource semaphore can grant, the memory request

will be moved into the resource semaphore queue. While the memory request is inside

the resource semaphore queue, RESOURCE_SEMAPHORE wait times are recorded. There are

various methods to lower or resolve RESOURCE_SEMAPHORE waits. You can choose to add

more memory to the SQL Server instance or optimize the queries so sorts and joins do

not require as much memory. Another option is using the resource governor, where you

can define resource pools so as to minimize the impact of large memory requests.

 RESOURCE_SEMAPHORE_QUERY_COMPILE
In the previous section we discussed the RESOURCE_SEMAPHORE wait type, which indicates

that there is not enough free memory available for certain query operations like sorts

and joins. Just like the RESOURCE_SEMAPHORE wait type, the RESOURCE_SEMAPHORE_QUERY_

COMPILE wait type is also related to the memory of your SQL Server instance. But instead

of indicating a shortage in query memory, the RESOURCE_SEMAPHORE_QUERY_COMPILE wait

type indicates a memory shortage during the compilation process of the query.

Chapter 6 IO-related WaIt types

https://msdn.microsoft.com/en-us/library/bb933866.aspx

172

 What Is the RESOURCE_SEMAPHORE_QUERY_COMPILE
Wait Type?
In the explanation of the RESOURCE_SEMAPHORE wait type, we discussed what resource

semaphores are and what they do. For the explanation of the RESOURCE_SEMAPHORE_

QUERY_COMPILE wait type, we are going to dive a little deeper into the inner workings of

the resource semaphore.

You should think of resource semaphores as “gateways” that throttle direct access

to memory resources. There are different tasks a resource semaphore can do. In the

previous section we discussed the resource semaphores that were responsible for granting

memory for certain operations, like sorts and joins. We also noted that there are two

resource semaphores that are responsible for granting this memory—the regular resource

semaphore that handles queries that request 5 MB or more memory and the small resource

semaphore that handles memory grants for queries that request less than 5 MB memory.

The resource semaphores that are related to the RESOURCE_SEMAPHORE_QUERY_

COMPILE wait type are responsible for memory grants that are needed during the

compilation process of a query, excluding the memory needed for query execution. Just

like the resource semaphores in the previous section, the ones responsible for memory

grants during the compilation process also have different gateways. Figure 6-24 shows

the different gateways for the compilation-memory resource semaphore.

Figure 6-24. Compilation-memory resource semaphore

Chapter 6 IO-related WaIt types

173

By default there are three gateways: small, medium, and big. Depending on the

amount of memory the compilation of a query needs, it will get assigned to either of

the three. If the amount of memory needed for compilation is less than the memory

threshold for the small gateway, the query does not have to pass through a gateway.

The amount of concurrent compilations, or queries, that can move through the gateway

simultaneously is calculated by the number of logical processors available for your SQL

Server instance. For example, if your SQL Server instance has four logical processors, the

small gateway will allow 16 concurrent compilations and the medium gateway 4. The big

gateway will always only allow one query at a time to compile.

The memory threshold for the small gateway is static, but for the medium and big

gateways the thresholds are dynamic. This means that the compilation memory needed

to reach the medium or big gateways can change during the runtime of your SQL Server

instance.

The whole purpose of these gateways is to ensure that the need for compilation

memory stays under control. This avoids out-of-memory situations in cases where many

large compilation-memory requests would automatically be granted and would drain

the SQL Server instance of its memory.

Before we continue and take a look how we can access gateway information from

inside SQL Server, let’s go through an example of a query compilation.

Say we have a query that needs 1560 KB of compilation memory. The query will

start by requesting a gateway. Since our small gateway has a threshold of 370 KB and our

medium gateway has a threshold of 5346 KB, the query will end up in the small gateway.

If there are any queries currently in a queue at the small gateway, the query will enter the

queue and wait until its turn, all the time logging RESOURCE_SEMAPHORE_QUERY_COMPILE

wait time. While the query is getting compiled, the amount of memory used during

the compilation is tracked; if the query ends up using more memory and reaches the

threshold of the medium gateway, it will get moved to the medium gateway. When the

query compilation is finished, it will be removed from the gateway.

We can access information about the resource semaphore gateways from inside SQL

Server by executing the DBCC MEMORYSTATUS command. Somewhere in the enormous

amount of results you will find the gateway information as shown in Figure 6-25.

Chapter 6 IO-related WaIt types

174

Let’s go through the results that are returned for the gateways.

The Configured Units row returns the maximum amount of concurrent

compilations allowed for this gateway. This is determined by the number of logical

processors available for your SQL Server instance. Because my test SQL Server has

two logical processors, I have eight slots for the small gateway (4 × logical number of

processors) and two for the medium gateway. The Available Units row shows the

number of currently free slots for this gateway, while the Acquires row shows the slots

currently taken by compilations. The number of queries that have to wait for a free slot

are shown in the Waiters row. The Threshold value is the amount of memory in bytes

that a query compilation would need in order to enter the gateway. For my test SQL

Server system, the small gateway has a threshold of 380,000 bytes, or 371 KB. As you

might notice in Figure 6-25, the medium gateway has a threshold of −1. This is because

of the dynamic nature of the thresholds of the medium and big gateways. Since there is

no activity at the gateway below the medium one, there is no need to set a threshold yet.

 RESOURCE_SEMAPHORE_QUERY_COMPILE Example
To show you an example of RESOURCE_SEMAPHORE_QUERY_COMPILE waits in

action, I am going to execute the query in Listing 6-9 multiple times, using many

concurrent connections. The query is a dynamic query that selects a random row from

two joined tables inside the AdventureWorks database. In this case it doesn’t matter if

Figure 6-25. Gateway information returned by the DBCC MEMORYSTATUS
command

Chapter 6 IO-related WaIt types

175

any results are returned or not—the thing we are trying to achieve here is the creation of

compilation-memory contention.

Listing 6-9. RESOURCE_SEMAPHORE_QUERY_COMPILE wait query

DECLARE @ID VARCHAR(250)

DECLARE @SQL VarChar(MAX)

SET @ID = FLOOR(RAND()*(20000-1)+1);

SET @SQL =

 '

 SELECT

 ' + @ID + ',

 SUM(soh.SubTotal),

 COUNT(soh.SubTotal)

 FROM sales.SalesOrderHeader soh

 INNER JOIN person.Person p

 ON soh.SalesPersonID = p.BusinessEntityID

 WHERE p.BusinessEntityID = ' + @ID + '

 '

EXEC (@SQL)

Before we execute the query with many concurrent connections, let’s check how

much compilation memory would be needed. We can do this by executing the query in

Listing 6-9 in SQL Server Management Studio and enabling the actual execution plan.

After executing the query and opening the actual execution plan, we need to look at

the CompileMemory property. You can access these properties by showing the Properties

window (View ➤ Properties Window) or by pressing F4 and selecting the SELECT

operator. Figure 6-26 shows the actual execution plan properties on my Test SQL Server.

Figure 6-26. Miscellaneous execution plan properties

Chapter 6 IO-related WaIt types

176

The value returned by the CompileMemory property is the amount of compile

memory needed expressed in KB. For this query 408 KB is needed for compilation. The

threshold for the small gateway on my Test SQL Server was 371 KB, so I am pretty sure

the query will access the small gateway.

Again, we are going to use the Ostress utility to generate the needed concurrent

connections to execute the query. I saved the query to the resource_semaphore_

compile.sql file and then used that file as input for the following Ostress command.

Because the query is very fast, I let every connection execute it 100 times so that we have

some time to look at the wait statistics.

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E

-dAdventureWorks -i"C:\resource_semaphore_compile.sql" -n200 -r100 -q

After a few seconds many RESOURCE_SEMAPHORE_QUERY_COMPILE waits can be seen in

the sys.dm_os_waiting_tasks DMV, as shown in Figure 6-27.

Figure 6-27. RESOURCE_SEMAPHORE_QUERY_COMPILE waits

If we now execute the DBCC MEMORYSTATUS command we should be able to find out

at what gateway the compilation contention is occurring. Figure 6-28 shows the gateway

output of the DBCC MEMORYSTATUS command on my test SQL Server.

Chapter 6 IO-related WaIt types

177

As you can see in Figure 6-28, if we look at the number of Available Units, there

are no available slots left for new compilation-memory requests. As a matter of fact, we

have 22 compilation-memory requests waiting in the resource semaphore queue. Also

note that the threshold of the medium gateway has now changed from −1 to 7,041,820

bytes (6876 KB). Now that contention is occurring on a lower gateway, the threshold for

the medium gateway is dynamically determined, even though there are no compilation-

memory requests being processed by this gateway.

 Lowering RESOURCE_SEMAPHORE_QUERY_COMPILE
Waits
The methods you can use to lower the wait times of the RESOURCE_SEMAPHORE_QUERY_

COMPILE wait type are in many cases the same as those that you would use to lower or

resolve RESOURCE_SEMAPHORE waits. Just like the RESOURCE_SEMAPHORE wait type, the

RESOURCE_SEMAPHORE_QUERY_COMPILE wait type is memory related, so if you can increase

the total amount of memory available for query compilation, chances are you will lower

or resolve RESOURCE_SEMAPHORE_QUERY_COMPILE wait times. Increasing memory is,

however, in many cases the last resort.

Because we can access very specific information about the gateways of the

resource semaphore that is dealing with the compilation memory by using the

DBCC MEMORYSTATUS command, a good first step is to analyze the usage patterns of

the gateways. If you notice that one specific gateway constantly has waiting memory

requests, then the memory threshold of that gateway, or the maximum allowed amount

Figure 6-28. DBCC MEMORYSTATUS during compilation contention

Chapter 6 IO-related WaIt types

178

of concurrent compilation-memory requests, should give you some hints about the

root cause. For instance, if you notice many queued compilation-memory requests at

the big gateway (which only allows one query at a time), the source of your RESOURCE_

SEMAPHORE_QUERY_COMPILE wait times may be the queries that request a large amount of

compilation memory. Another cause may be a large number of concurrent queries that

all need to access the small gateway, which was the case in our example, causing a queue

at the gateway.

In these cases you should find the specific queries that cause the queues at the

gateways and try to optimize them, either by lowering the amount of compilation

memory or by making sure fewer compilations happen. The latter can be done by

making sure your queries are being parameterized correctly. Queries that generate ad

hoc plans every time they are executed can be a cause of RESOURCE_SEMAPHORE_QUERY_

COMPILE waits, especially if they are executed very frequently and concurrently. Jonathan

Kehayias of SQLskills has written an excellent blog post on how you can query the plan

cache to detect heavy compilation queries; it can be found at www.sqlskills.com/

blogs/jonathan/identifying-high-compile-time-statements-from-the-plan-

cache/. Using the script in Jonathan’s blog post should help you with detecting those

queries that require a large amount of compilation memory.

If your SQL Server is under memory pressure, it is also possible to see RESOURCE_

SEMAPHORE_QUERY_COMPILE waits occur. This happens because of the dynamic

compilation-memory thresholds of the medium and big gateways. If SQL Server is

under memory pressure, the thresholds of both these gateways will lower, giving more

queries the chance to use the medium or big gateways. But because the medium and

big gateways allow fewer concurrent compilations, in the small gateway the available

concurrent slots will be filled faster.

Just as with the RESOURCE_SEMAPHORE wait type, you can use the resource governor

to split workloads into specific resource pools. Each resource pool will have its own

resource semaphores responsible for granting compilation memory, making it possible

to split heavy compilation-memory usage across multiple resource pools.

 RESOURCE_SEMAPHORE_QUERY_COMPILE Summary
Just like the resource semaphores that are needed to grant memory requests for specific

query operations, resource semaphores exist for access to compilation memory. These

resource semaphores throttle access to compilation memory through the usage of

gateways. When a query is compiled, it will approach a gateway based on the amount

Chapter 6 IO-related WaIt types

http://www.sqlskills.com/blogs/jonathan/identifying-high-compile-time-statements-from-the-plan-cache/
http://www.sqlskills.com/blogs/jonathan/identifying-high-compile-time-statements-from-the-plan-cache/
http://www.sqlskills.com/blogs/jonathan/identifying-high-compile-time-statements-from-the-plan-cache/

179

of compilation memory it needs. The gateway can then grant the compilation memory

requested or put the request in a queue if there are more requests that concurrently want

to access the gateway. When a query is waiting inside one of these queues, the RESOURCE_

SEMAPHORE_QUERY_COMPILE wait type is recorded.

Resolving or lowering RESOURCE_SEMAPHORE_QUERY_COMPILE wait times is commonly

achieved by either freeing up more memory or by lowering the compilation-memory

needs of queries.

 SLEEP_BPOOL_FLUSH
The SLEEP_BPOOL_FLUSH wait type is directly related to the checkpoint process inside

SQL Server. The checkpoint process is responsible for writing modified, or “dirty,”

data pages from the buffer pool to the database data file on disk. So next to having a

close relationship with the checkpoint process, SLEEP_BPOOL_FLUSH waits also have

a relationship with the performance of your storage subsystem. If we search for the

definition of the SLEEP_BPOOL_FLUSH wait type on Books Online, Microsoft describes the

wait type as occurring “when a checkpoint is throttling the issuance of new I/Os in order

to avoid flooding the disk subsystem.”

It is pretty common to see SLEEP_BPOOL_FLUSH waits occur, and frequently they will

not indicate a problem. There are, however, cases where SLEEP_BPOOL_FLUSH waits can

indicate performance problems that are related to either the checkpoint process or the

storage subsystem.

 What Is the SLEEP_BPOOL_FLUSH Wait Type?
To get a better understanding of how the SLEEP_BPOOL_FLUSH wait type gets recorded, we

need an understanding of how the checkpoint process works inside SQL Server.

The checkpoint process is an internal SQL Server process that is responsible for

writing modified (dirty) pages from the buffer cache to the database data file. One of

the main reasons for this is to speed up recovery of your database when an unexpected

failure occurs. When an unexpected failure occurs, SQL Server needs to go back to

the state that existed before the failure. It will do this by using the contents of the

transaction log to redo, or undo, changes that were made to data pages. If the data page

was modified, but the change was no yet written to the database data file, SQL Server

will need to redo the change to the data page. If a checkpoint already wrote the changed

Chapter 6 IO-related WaIt types

180

data page to the database data file, this step is not needed, which speeds up the recovery

process for the database because SQL Server knows the data was written to the database

data file. Figure 6-29 shows the (simplified) process that happens when a data page gets

modified.

Figure 6-29. Data modification process

The first thing that happens when a data page is modified by a committed

transaction is that the change will be recorded in the transaction log (first in the log

buffer then to disk as described in the WRITELOG and LOGBUFFER wait types section).

The modification of the data page will happen in the buffer cache, and the data page

will be marked as dirty (red page icon). When a checkpoint occurs, which can be for

multiple reasons as we will discuss later, all of the data pages that have been marked

as dirty since the previous checkpoint will be written to the physical database data file

on your storage subsystem, regardless of the state of the transaction that created those

dirty pages (green page icon).

The checkpoint process is executed by SQL Server automatically roughly once

every minute, which is the default recovery time interval if you are a lower version of

SQL Server than SQL Server 2016. This does not mean that a checkpoint will occur

every minute exactly. The values you can specify for the recovery interval are the

upper time limit at which a checkpoint should occur, the checkpoint process analyses

of the outstanding I/O requests, and latency; throttle checkpoint operations to avoid

overloading the storage subsystem.

Chapter 6 IO-related WaIt types

181

The following list will describe the various checkpoint types available in SQL Server:

• The internal checkpoint type is not configurable and occurs

automatically when certain actions are performed; for instance, a

database backup.

• Automatic: These are the default checkpoints, on SQL Server version

lower than 2016, that occur roughly every minute when left at their

default value of 0. We can change the interval of the checkpoint

process by changing the recovery interval configuration option

under the Server Properties ➤ Database Settings page in SQL Server

Management Studio. We can only change it to a value in minutes, and

it will be used for all databases inside the SQL Server instance.

• Manual: You can manually cause checkpoints to occur by issuing the

CHECKPOINT T-SQL command. Optionally, you can specify the time

in seconds at which the checkpoint must be completed. If you do

issue a manual checkpoint, it will run in the context of the current

database. For example, executing CHECKPOINT 10 in a query window

will perform a checkpoint within 10 seconds of the time you executed

the query.

• Indirect: SQL Server 2012 added an extra option to configure

checkpoint intervals on a per-database level. Configuring this option

to a value greater than the default 0 will overwrite the automatic

checkpoint process for the specific database. You can use indirect

checkpoints for a specific database by using the following command:

ALTER DATABASE [db name] SET TARGET_RECOVERY_TIME = [time

in seconds or minutes].

• With the release of SQL Server 2016 Indirect Checkpoint became the

new default setting of the Checkpoint process (with the value of 60).

As I mentioned before, SQL Server will attempt to throttle the checkpoint process to

avoid overloading the storage subsystem if it believes this is necessary. It monitors the

number of outstanding requests to the storage subsystem and tries to detect if there is any

latency. Using this information, it will throttle the amount of IOs the checkpoint process

generates so as to avoid a too-heavy load on the storage subsystem. When the checkpoint

process is getting throttled, the SLEEP_BPOOL_FLUSH wait type will be recorded.

Chapter 6 IO-related WaIt types

182

 SLEEP_BPOOL_FLUSH Example
The following example shows the impact of the SLEEP_BPOOL_FLUSH wait type on SQL

Server versions lower than SQL Server 2016. As mentioned earlier, in SQL Server 2016,

the way SQL Server handles the Checkpoint process has changed which means it is far

less likely for the wait type to show up in an example like the following.

Generating SLEEP_BPOOL_FLUSH waits is relatively simple, and the script in Listing 6-10,

which is almost the same one as we used for the LOGBUFFER and WRITELOG wait types, will

put pressure on the checkpoint process such that SLEEP_BPOOL_FLUSH waits will occur.

Listing 6-10. Generate SLEEP_BPOOL_FLUSH waits

USE trans_demo

GO

DECLARE @i INT

SET @i = 1

WHILE @i < 100

 BEGIN

 INSERT INTO transactions

 (t_guid)

 VALUES

 (newid())

 SET @i = @i + 1

 -- Force a checkpoint to occur within 1 second

 CHECKPOINT 1

END

Since we are also using the same database as in the LOGBUFFER and WRITELOG wait

types example, Listing 6-11 shows the script to create the database if it doesn’t exist

already.

Chapter 6 IO-related WaIt types

183

Listing 6-11. Create trans_demo database

USE master

GO

-- Create demo database

CREATE DATABASE [trans_demo]

ON PRIMARY

 (

 NAME = N'trans_demo', FILENAME = N'D:\Data\trans_demo.mdf' ,

SIZE = 153600KB , FILEGROWTH = 10%

)

LOG ON

 (

 NAME = N'trans_demo_log', FILENAME = N'D:\Log\trans_demo.ldf' ,

SIZE = 51200KB , FILEGROWTH = 10%

)

GO

-- Make sure recovery model is set to full

ALTER DATABASE [trans_demo] SET RECOVERY FULL

GO

-- Perform full backup first

-- Otherwise FULL recovery model will not be affected

BACKUP DATABASE [trans_demo]

TO DISK = N'F:\Backup\trans_demo_Full.bak'

GO

-- Create a simple test table

USE trans_demo

GO

CREATE TABLE transactions

 (

 t_guid VARCHAR(50)

)

GO

Chapter 6 IO-related WaIt types

184

What the script in Listing 6-10 will do is perform an insert of a random GUID into the

transactions table inside a loop that is executed 100 times. Every time it enters a new

GUID, it will issue a CHECKPOINT command with a time limit of 1 second. This forces the

checkpoint process to perform a checkpoint within the 1-second time limit.

Before running the script in Listing 6-10, I cleared the sys.dm_os_wait_stats DMV

using the DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR) command.

After almost 70 seconds the script completed on my test SQL Server. I then executed

the following query to take a look at the SLEEP_BPOOL_FLUSH wait times:

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'SLEEP_BPOOL_FLUSH';

The results of the query can be seen in Figure 6-30.

Figure 6-30. SLEEP_BPOOL_FLUSH waits

As you can see, the SLEEP_BPOOL_FLUSH wait time has a very high amount of wait

time after running the script in Listing 6-10. Normally you would expect those wait times

to be either very low or close to zero. If we were to remove the CHECKPOINT command

from the script completely and let SQL Server decide on when to run the checkpoint

process, we not only get a completely different result, as shown in Figure 6-31, but also

the script’s runtime is decreased to just a few milliseconds.

Figure 6-31. SLEEP_BPOOL_FLUSH wait times after removing CHECKPOINT

Chapter 6 IO-related WaIt types

185

 Lowering SLEEP_BPOOL_FLUSH Waits
Even though it is not very common to run into performance problems caused by the

SLEEP_BPOOL_FLUSH wait type, there are various methods to lower the wait times.

The most obvious one would be to check the various configuration options available

to manually configure the recovery interval that we discussed earlier. The lower the value

of the recovery interval, the more often checkpoint processes will take place, and the

bigger the chance of running into SLEEP_BPOOL_FLUSH waits. Also, as you noticed in the

example, performing frequent CHECKPOINT commands inside transactions can lead to

SLEEP_BPOOL_FLUSH waits.

Another possible cause can be the storage subsystem on which your database data

file resides. As explained earlier, the checkpoint process calculates the load of the storage

subsystem and then decides if throttling its throughput is needed. If there is a frequent

need of throttling because your storage subsystem is busy, you are more likely to see

SLEEP_BPOOL_FLUSH waits occur.

If you are running SQL Server 2016, chances are you will never run into very high

SLEEP_BPOOL_FLUSH wait times since the default way SQL Server handles the process

has been changed.

 SLEEP_BPOOL_FLUSH Summary
The SLEEP_BPOOL_FLUSH wait type is closely related to the checkpoint process in SQL

Server. The checkpoint process is responsible for writing modified, or dirty, data pages

from the buffer cache to the database data file. The checkpoint process analyzes the

performance of the storage subsystem before it writes the dirty pages to disk, and if the

storage subsystem is busy, the checkpoint process will throttle its throughput, resulting

in SLEEP_BPOOL_FLUSH waits. It is not very common to see very high SLEEP_BPOOL_FLUSH

wait times, but they can impact performance nonetheless. Queries that frequently

execute the CHECKPOINT T-SQL command, or a recovery interval that is configured to a

very low value, can be possible causes for seeing SLEEP_BPOOL_FLUSH waits occur. The

performance of your storage subsystem can also impact the checkpoint process if it is

forced to throttle its throughput.

Chapter 6 IO-related WaIt types

186

 WRITE_COMPLETION
As with the ASYNC_IO_COMPLETION and IO_COMPLETION wait types, the WRITE_COMPLETION

wait type is related to specific actions SQL Server performs on the storage subsystem.

Again, it is very normal to see WRITE_COMPLETION waits occur on your SQL Server

instance, and they should only be a cause for concern if the wait times are way higher

than normal.

 What Is the WRITE_COMPLETION Wait Type?
The WRITE_COMPLETION wait type is a relative of the IO_COMPLETION wait type. But

where the IO_COMPLETION wait type is logged for specific read and write operations, the

WRITE_COMPLETION wait type is only logged for some very specific write operations. Some

of these write operations are growing a data or log file or performing the DBCC CHECKDB

command.

Since the WRITE_COMPLETION wait type is related to writing SQL Server data to the

storage subsystem, the performance of it can have an impact on the wait times.

 WRITE_COMPLETION Example
To show you an example of a WRITE_COMPLETION wait occurring, I am going to perform a

CHECKDB against the AdventureWorks database after clearing the sys.dm_os_wait_stats

DMV using the DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR) command.

Keep in mind that this example is a completely normal situation in which WRITE_

COMPLETION waits can occur, and it shouldn’t stop you from performing regular database

consistency checks!

Listing 6-12 shows the query I executed to generate a few WRITE_COMPLETION waits.

Listing 6-12. Generate WRITE_COMPLETION waits

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

DBCC CHECKDB ('AdventureWorks');

SELECT * FROM sys.dm_os_wait_stats

WHERE wait_type = 'WRITE_COMPLETION';

Chapter 6 IO-related WaIt types

187

The results of the last query in the batch are shown in Figure 6-32.

Figure 6-32. WRITE_COMPLETION waits

As you can see, the amount of wait time is so low that it would not be a cause of any

concern. This is also partly due to the fact that the AdventureWorks database is very

small and the storage performance of my test machine is very fast. Running CHECKDB

against larger databases can result in higher wait times.

 Lowering WRITE_COMPLETION Waits
If you see high WRITE_COMPLETION wait times, try to find out what process is generating

the waits. In many cases it will be caused by a CHECKDB or database data or log file growth.

One thing worth checking is the instant file initialization option discussed in the

ASYNC_IO_COMPLETION section earlier in this chapter. Not using this option can impact

the duration of the WRITE_COMPLETION wait time.

Another, far less common cause for a higher WRITE_COMPLETION wait time is when

you are experiencing page latch contention on your Page Free Space page (or PFS). The

PFS page tracks the amount of free space in data pages. If a process needs to modify

the PFS page very frequently, it is possible to see WRITE_COMPLETION waits occur along

with many PAGELATCH_UP waits, which we will discuss in Chapter 9, “Latch-Related Wait

Types.” To give you an example of such a scenario, consider a high amount of concurrent

queries that all create a temporary table, insert a few rows, and remove the temporary

table again. In this case the PFS page of the tempdb database needs to get updates very

frequently to reflect the creation and removal of the temporary tables.

 WRITE_COMPLETION Summary
The WRITE_COMPLETION wait type, just like the ASYNC_IO_COMPLETION and IO_COMPLETION

wait types, is related to specific storage-related actions performed by SQL Server.

Seeing WRITE_COMPLETION waits is very normal and won’t be cause for concern in many

situations. Operations such as CHECKDB and database data or log file growth can cause

WRITE_COMPLETION waits.

Chapter 6 IO-related WaIt types

189
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_7

CHAPTER 7

Backup-Related
Wait Types
Backups are a very important part of database administration, and in many cases they

are essential for the survival of the company you work for. Data has become so important

for businesses that if some disaster causes data to be lost, companies can lose large

amounts of money, or even go out of business.

There are many methods we can implement on all levels of your IT infrastructure to

make sure no data is lost (or as little as possible) during a disaster. We could implement a

SAN to make sure our data is not stored on a local disk drive on your server. Or we could

design SQL Server AlwaysOn Availability Groups to replicate our data across datacenters.

But the first step we should take, and hopefully have already taken, is performing regular

backups of our data inside our SQL Server databases.

Implementing and scheduling SQL Server backups is not a very difficult task,

and there is no excuse not to perform a backup. The type of backup and the interval

of backup operations are dictated by the needs of the organization you work for and

are frequently expressed in “RTO” (Recovery Time Objective) and “RPO” (Recovery

Point Objective) times. These times represent the amount of time it should take

to recover from a disaster and the amount of data loss that is acceptable when a

disaster occurs. These two times should be the primary input for your SQL Server

backup strategy.

Thankfully, SQL Server has different options available to us for meeting RTO and

RPO requirements right out of the box. This means we can use SQL Server’s own

backup mechanism to fulfill our company’s RTO and RPO times; we are not necessarily

dependent on third-party backup software. Since the SQL Server backup operation is

an internal process, there are different wait types associated with it, and in this chapter

we will take a look at three of the most common wait types that are directly related to

performing backups and restores.

190

Noticing high wait times on these backup/restore-related wait types will not likely

lead to a performance degradation of your SQL Server instance. However, we do have

options to optimize the SQL Server backup process that can result in faster backup and

restore times. And since backups/restores of your database(s) are vital for the survival of

your company, optimizing backup and restore throughput can be well worth the effort.

 BACKUPBUFFER
The first backup-related wait types we will discuss is BACKUPBUFFER. If we look up the

definition of this wait type on Books Online we would get the following text: “Occurs

when a backup task is waiting for data, or is waiting for a buffer in which to store data.

This type is not typical, except when a task is waiting for a tape mount.” Apparently, we

would only see this wait type when we are writing our backups to a tape device, and

this is wrong. BACKUPBUFFER waits will practically always be logged during a backup

operation, no matter the destination of the backup file. The reason for this is in the way

the SQL Server backup operation uses buffers to read data from the database and write it

to the backup file.

 What Is the BACKUPBUFFER Wait Type?
To understand how BACKUPBUFFER waits are generated we have to take a look at the

internals of the SQL Server backup process. These internals are mostly the same

regardless of the backup method you use (i.e., transaction log, differential or full backup)

and as such they will encounter the same wait types.

SQL Server allocates buffers for the backup process. These buffers will be filled with

data from your database and will be moved through a backup/restore process in order

to get written to the backup file (or vice versa for a restore operation). The buffers are

allocated inside the memory of your system, but outside the memory of your buffer

cache so as to avoid stealing memory from the buffer cache. The size and the amount

of the backup buffers are automatically calculated by SQL Server, but we can configure

these values ourselves as parameters of the backup/restore command. Figure 7-1 shows

how these backup buffers are ordered and moved through a “reader,” which reads the

data from your database or backup file to a buffer, and a “writer,” which writes the data

from the buffer to the backup file or database.

Chapter 7 BaCkup-related Wait types

191

We can view information about the buffer amount and size during a backup or

restore operation by enabling two trace flags, 3213 and 3605, which will output backup/

restore information into the SQL Server error log. The query in Listing 7-1 enables both

trace flags and performs a full database backup of the AdventureWorks database on my

test SQL Server.

Listing 7-1. Full database backup with backup-information trace flags

-- enable trace flags

DBCC TRACEON (3213);

DBCC TRACEON (3605);

-- backup database

BACKUP DATABASE [AdventureWorks]

 TO DISK = N'F:\Backup\aw_21042015.bak'

WITH NAME = N'AdventureWorks-Full Database Backup';

GO

-- disable trace flags

DBCC TRACEOFF (3213);

DBCC TRACEOFF (3605);

Keep in mind that trace flags inside SQL Server should only be used under the

guidance of Microsoft Support. I am enabling them now to show me backup information

on my test SQL Server, but I would advise against using them on a production system.

Figure 7-1. Backup buffers moving through reader and writer

Chapter 7 BaCkup-related Wait types

192

Inside the SQL Server error log, additional information about the backup we just

performed is logged, as you can see in Figure 7-2.

In this case, the backup operation created seven buffers, shown by

the BufferCount parameter, with a size of 1024 KB each, as shown by the

MaxTransferSize parameter. The total memory needed to create the buffers is shown

by the Total buffer space parameter, 7 MB (BufferCount * MaxTransferSize).

Another interesting bit of information that is returned is the memory limit. This will

show the maximum amount of memory outside of the buffer cache that the backup

operation could access.

Now that we have an idea of how the backup process works inside SQL Server, let’s

take a look where the BACKUPBUFFER wait type comes in.

As we described earlier, the SQL Server backup process uses buffers to store data that

needs to be written to the backup file. Whenever a buffer is not directly available, the

BACKUPBUFFER wait will occur, making the process wait until a full buffer is written to the

backup file and it becomes available again.

Figure 7-2. Additional backup information

Chapter 7 BaCkup-related Wait types

193

 BACKUPBUFFER Example
Generating BACKUPBUFFER waits is very simple—just perform a backup operation.

For this example I ran the query shown in Listing 7-2. The query will first reset the

sys.dm_os_wait_stats DMV, then will perform a full backup of the AdventureWorks

database, and finally will return the wait statistics information for the BACKUPBUFFER

wait type.

Listing 7-2. Generating BACKUPBUFFER waits

-- clear sys.dm_os_wait_stats

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

-- backup database

BACKUP DATABASE [AdventureWorks]

 TO DISK = N'F:\Backup\aw_21042015.bak'

WITH

 NAME = N'AdventureWorks-Full Database Backup';

GO

-- Query BACKUPBUFFER waits

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'BACKUPBUFFER';

The results of the query against the sys.dm_os_wait_stats DMV are shown in

Figure 7-3.

The total duration of the backup operation was around 1 second on my test SQL

Server. Of that 1 second, only 88 milliseconds were spent waiting on free backup

buffers.

Figure 7-3. BACKUPBUFFER waits

Chapter 7 BaCkup-related Wait types

194

 Lowering BACKUPBUFFER Waits
As stated in the introduction of this chapter, backup-related waits aren’t normally any

cause for concern since they normally won’t impact the performance of your SQL Server

instance. However, we can improve backup performance by using the wait statistics

information of the various backup-related wait types.

One of the most common ways to lower BACKUPBUFFER wait times is by adding more

buffers for the backup operation to use, overwriting the automatic allocation of buffers.

We can do this by specifying the BUFFERCOUNT option inside the BACKUP T-SQL command.

There is, however, a catch to altering the number of buffers the backup operation can

use. Every buffer created will allocate the value of the MAXTRANSFERSIZE option; this

value can be automatically calculated by SQL Server itself or by setting the value yourself

inside the BACKUP command (up to a maximum of 4,194,304 bytes). Since the backup

operation allocates memory outside of the buffer cache, there is a chance that using too

many or too large buffers can result in out-of-memory problems. So, be careful when

testing what the optimal value for your SQL Server instance is.

Listing 7-3 shows a modification of the query in Listing 7-2, which we used to

demonstrate BACKUPBUFFER waits occurring. In this case we added the BUFFERCOUNT

option and configured it to a value of 200.

Listing 7-3. Database backup with BUFFERCOUNT configured

-- clear sys.dm_os_wait_stats

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

-- backup database

BACKUP DATABASE [AdventureWorks]

 TO DISK = N'F:\Backup\aw_21042015.bak'

WITH

 NAME = N'AdventureWorks-Full Database Backup',

 BUFFERCOUNT = 200;

GO

-- Query BACKUPBUFFER waits

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'BACKUPBUFFER';

Chapter 7 BaCkup-related Wait types

195

The results of the query against the sys.dm_os_wait_stats DMV are shown in

Figure 7-4.

As you can see, the amount of time spent on the BACKUPBUFFER wait time went down

to 0 milliseconds instead of the 88 milliseconds it spent when we did not supply the

BUFFERCOUNT parameter. This happens because the number of buffers we specified were

enough to process the backup operation without a need to allocate additional buffers. Since

no additional buffers were required, we do not spend time waiting on their allocation.

Another option is to configure the MAXTRANSFERSIZE option inside the BACKUP T-SQL

command. This will allow buffers to be filled with larger units of works, up to a value

of 4,194,304 bytes, or 4 MB. Again, allocating more space for the buffers will result in a

larger reservation of memory.

 BACKUPBUFFER Summary
BACKUPBUFFER waits occur normally during backup or restore operations when the

backup/restore operation has to wait for free buffers to become available again. Because

they occur normally they shouldn’t be a cause for concern. We do have some options

for lowering BACKUPBUFFER wait times that will also impact the duration of the backup/

restore operation. They should be configured and tested thoroughly though, because

setting those parameters too high can result in out-of-memory errors.

 BACKUPIO
Just like the BACKUPBUFFER wait type, the BACKUPIO wait type occurs when a part of the

backup or restore operation runs into contention problems. Another similarity is the

description of this wait type on Books Online: “Occurs when a backup task is waiting for

data, or is waiting for a buffer in which to store data. This type is not typical, except when a

task is waiting for a tape mount.” Again, this wait type is common when performing a backup

or restore operation, even when the backup target, or restore source, is not a tape device.

Figure 7-4. BACKUPBUFFER waits

Chapter 7 BaCkup-related Wait types

196

 What Is the BACKUPIO Wait Type?
To better understand how BACKUPIO waits are generated, we have to take a look at

Figure 7-5, which we showed earlier as Figure 7-1.

In the previous section where we discussed the BACKUPBUFFER wait type we explained

that the BACKUPBUFFER wait type occurs when we are waiting for a free (empty) buffer

to become available. For the most part, the BACKUPBUFFER wait type is situated on the

left side of Figure 7-5, at the reader. The BACKUPIO wait type occurs for the most part on

the right side of Figure 7-5, at the writer section. When BACKUPIO waits occur, there is a

delay in the time the writer is writing data. This delay can be caused by many different

things; for instance, when writing a backup to a slow disk, writing a backup to a network

location, or when restoring a database.

The BACKUPIO wait type will frequently be accompanied by ASYNC_IO_COMPLETION

waits when a database backup or restore is performed.

 BACKUPIO Example
We can make use of the same example as we used to demonstrate the BACKUPBUFFER wait

type. I did modify the query a little to return BACKUPIO waits instead of BACKUPBUFFER

waits, and I also included the ASYNC_IO_COMPLETION in the results of the query against

the sys.dm_os_wait_stats DMV. Listing 7-4 shows the modified backup query.

Figure 7-5. Internals of a backup operation

Chapter 7 BaCkup-related Wait types

197

Listing 7-4. Generating BACKUPIO waits

-- clear sys.dm_os_wait_stats

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

BACKUP DATABASE [AdventureWorks]

 TO DISK = N'F:\Backup\aw_21042015.bak'

WITH

 NAME = N'AdventureWorks-Full Database Backup';

GO

-- Query BACKUPIO waits

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'BACKUPIO'

OR wait_type = 'ASYNC_IO_COMPLETION';

The results of the query against the sys.dm_os_wait_stats DMV can be seen in

Figure 7-6.

As you can see in Figure 7-6, the database backup caused both wait types to be

generated, and the most time has been spent on the ASYNC_IO_COMPLETION wait, which is

responsible for reading the data pages that need to be written to the backup file. Since my

backup destination is on an SSD disk, we didn’t encounter very high BACKUPIO wait times.

 Lowering BACKUPIO Waits
Tweaking the BUFFERCOUNT and MAXTRANSFERSIZE options do not have as much impact

on the BACKUPIO wait type as they did on the BACKUPBUFFER wait type. When you see

higher than normal wait times on the BACKUPIO wait type, the problem is most likely

Figure 7-6. ASYNC_IO_COMPLETION and BACKUPIO waits

Chapter 7 BaCkup-related Wait types

198

related to the throughput of either your storage subsystem or network location you are

writing or reading your backup to/from. Make sure to check both locations for possible

performance problems like high latency or network utilization.

 BACKUPIO Summary
Just like the BACKUPBUFFER wait type, the BACKUPIO wait type occurs when a backup

or restore operation is being performed. While the BACKUPBUFFER wait type is mostly

related to the speed at which the backup operation can access the backup buffers, the

BACKUPIO wait type is related to the speed at which those backup buffers can be written

to disk. BACKUPIO waits frequently occur together with ASYNC_IO_COMPLETION waits when

performing full database backups or restores. When seeing higher than normal wait

times for the BACKUPIO wait type, check the performance metric of the location you are

writing or reading the backup file to or from. Lowering BACKUPIO wait times will not have

an impact on the query performance of your system, but will help speed up backup and

restore operations.

 BACKUPTHREAD
The BACKUPTHREAD wait type is frequently seen when performing restore operations on a

database, but can also occur during a backup operation. It occurs when another thread

is waiting for the backup/restore operation to finish so it can continue processing.

 What Is the BACKUPTHREAD Wait Type?
When you see BACKUPTHREAD waits occurring, it means that another thread wants to

access a resource that is currently being accessed by a backup or restore operation.

During the time the thread has to wait for the backup/restore to complete, BACKUPTHREAD

wait time will be recorded. An example of this type of wait would be a thread that wants

to access the database data file while it is being restored; for instance, the ASYNC_IO_

COMPLETION wait type that is writing the data file to disk.

BACKUPTHREAD waits are not usually a cause for concern. They only indicate that other

threads are waiting for the backup/restore operation to complete, and they frequently

have the same duration as the time it took for your backup or restore to complete. They

do, however, give you a hint that there are other waits occurring that might deserve

investigation if the wait times are higher than expected.

Chapter 7 BaCkup-related Wait types

199

Because a picture says more than a thousand words, Figure 7-7 shows the relation of

the BACKUPTHREAD wait type with a restore operation and other waits occurring.

In Figure 7-7 you can see that the BACKUPTHREAD wait is occurring because another

thread also wanted to access a resource that was currently owned by the restore

operation.

 BACKUPTHREAD Example
An easy way to demonstrate BACKUPTHREAD waits occurring is by performing a restore

operation. When you perform a restore, other processes will need to access the database

data files to write the information from the backup file to the database data files.

Listing 7-5 shows a script to restore a backup file I made earlier of the

AdventureWorks database on my test SQL Server.

Listing 7-5. Restore AdventureWorks database

-- Restore database

USE [master]

RESTORE DATABASE [AdventureWorks]

FROM DISK = N'F:\Backup\AWBackup.bak'

WITH FILE = 1, REPLACE;

GO

Figure 7-7. BACKUPTHREAD relation to other threads

Chapter 7 BaCkup-related Wait types

200

If we were to look at the sys.dm_os_waiting_tasks DMV while the backup is

running, we would see the waits occurring as shown in Figure 7-8, which shows a

selection of waits on my test SQL Server.

As you can see in Figure 7-8, the wait time of the BACKUPTHREAD wait type is pretty

close to that of the PREEMPTIVE_OS_WRITEFILEGATHER wait type. This wait type is

responsible for writing data to the file system, but we will dive deeper into this specific

wait type in Chapter 11, “Preemptive Wait Types.”

 Lowering BACKUPTHREAD Waits
While the BACKUPTHREAD wait type itself doesn’t indicate any problems, its combination

with other wait types can be a reason for some additional research. Basically, every

method you can use to speed up your backup or recovery process will have an impact on

the BACKUPTHREAD wait time.

Some good pointers to start with are the BufferCount and MaxTransferSize options

that you can specify on the BACKUP and RESTORE T-SQL commands. We touched upon

these settings when we discussed the BACKUPBUFFER and BACKUPIO wait types. Tweaking

these settings can make your backups and restores take less time, resulting in lower

BACKUPTHREAD wait times.

Another setting that can dramatically improve backup and restore times is the

instant file initialization option that we discussed in Chapter 6, “IO-Related Wait Types,”

in the ASYNC_IO_COMPLETION section.

Figure 7-8. BACKUPTHREAD and other waits

Chapter 7 BaCkup-related Wait types

201

 BACKUPTHREAD Summary
The BACKUPTHREAD wait time doesn’t indicate access to a specific resource, but rather

indicates that another process is waiting for a backup or restore operation to complete.

It is very common to see this wait type, especially during restore operations. Lowering

the duration of backup and restore operations will also be reflected in the wait times of

the BACKUPTHREAD wait type. One of the methods you can use to lower BACKUPTHREAD

wait times is checking whether instant file initialization is enabled. This setting does not

directly impact the BACKUPTHREAD wait type, but it will impact other wait types, which will

in turn impact the BACKUPTHREAD wait time.

Chapter 7 BaCkup-related Wait types

203
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_8

CHAPTER 8

Lock-Related Wait Types
Locking is a fundamental part of every relational database, or Relational Database

Management System (RDBMS). SQL Server is based on the relational database model,

and as such uses locking when data is accessed. Even though we frequently relate

locking to performance problems, it plays a vital role in making sure your data is reliable

during concurrent workloads. The way SQL Server, or any other RDBMS for that matter,

takes care of this data reliability is by following the “ACID” properties, which were

originally defined by Jim Gray in the 1970s but received their name in 1983 from Andreas

Reuter and Theo Härder. These ACID properties are enforced upon single operations,

which we know as transactions. The acronym ACID consists of four characteristics that

guarantee data reliability inside transactions. The following list describes each of these

characteristics:

• Atomicity: The atomicity characteristic requires that transactions

are all or nothing. This means that if one part of the transaction

fails, the complete transaction fails, and every change done inside

the transaction needs to be changed back to the state before the

transaction started.

• Consistency: The consistency characteristic requires that data written

to the database by the transaction is legal. This means that the data

must be stripped of illegal or bad input.

• Isolation: The isolation characteristic requires that every transaction

is hidden from other concurrent transactions. From a transaction

point of view, this means every transaction is executed serially.

• Durable: The durable characteristic requires that every committed

transaction remains committed, even in the event of a power failure

or disaster.

204

As you might have guessed from reading the different ACID properties, locking

inside SQL Server is closely related to the Isolation characteristic.

Since this chapter is dedicated to lock-related wait types, we won’t go into detail

about ACID properties besides Isolation. If you are interested in learning more about the

ACID properties and database theory, a good place to start would be the “Principles of

Transaction-Oriented Database Recovery” research paper by Andreas Reuter and Theo

Harder, which describes the ACID properties in detail.

To get a better understanding of how the Isolation characteristic works, we need to

understand transactions. A transaction represents an interaction with the database that

can consist of multiple actions and that is separated from other transactions.

To make sure our transactions do not conflict with other concurrent transactions,

SQL Server uses locks. These locks make sure no other transaction can modify data

that your transaction is processing at the same time. For example, if you make a $100

withdrawal from your bank account, you do not want another concurrent withdrawal

to modify that amount. Other transactions will have to wait with their withdrawals

until your transaction is completed. Inside SQL Server, this process works the same

way. When you request data from your database, you want to get the data returned

you asked for, without running the risk that the data is being modified while you are

requesting it.

When you run your transaction it will be protected by a lock SQL Server places on

the object you are accessing. If another transaction wants to interact with the same

object, a block will occur. When this block occurs, the latter transaction will have to wait

until the lock on the object is removed. The transaction can then place its own lock on

the object and start its interaction.

There are many options available to us within SQL Server to control the behavior of

locking and blocking, and most of them are related to changing the Isolation of certain

or all transactions against a database. There is also a lot of information about locking

and blocking we can access inside SQL Server, and not the least of these are inside wait

statistics. The time a transaction is waiting to access a locked object is recorded as wait

time for specific, lock-related wait types (depending on the type of lock the transaction

intends to place).

In this chapter we will discuss the various wait types that are related to locking and

blocking and how we can lower or even resolve them. This requires some knowledge

of how SQL Server uses locks, and for this reason I included a section to familiarize

ourselves with locking and blocking before we dive into the lock wait types.

Chapter 8 LoCk-reLated Wait types

205

 Introduction to Locking and Blocking
As we just discussed, SQL Server uses locks to isolate different concurrent transactions

from each other so data is only accessed or modified by one transaction at a time. There

are different lock types, or lock modes, SQL Server can use, and there are various object

levels SQL Server can place locks on. To make it even more complex, different lock

modes are not necessarily compatible with each other, and when two incompatible locks

meet, a block occurs.

 Lock Modes and Compatibility
To start off, let’s get ourselves familiar with the different types of locks, or lock modes,

inside SQL Server. The list that follows describes the most common lock modes. There

are more lock modes inside SQL Server, but those only occur when you perform very

specific actions. A complete list of the different lock modes can be found on the MSDN

page that discusses lock modes here: https://technet.microsoft.com/en-us/

library/ms175519.aspx. SQL Server uses acronyms to indicate which lock mode is

being used inside SQL Server. These acronyms are shown in parentheses:

• Shared (S): A Shared lock will be placed on a resource when a query

is selecting data from that resource. For instance, a SELECT * FROM

[table].

• Update (U): The Update lock mode is used when a query wants

to modify a resource. It was introduced to prevent “deadlocks,”

a situation where locks are waiting on each other to release in

concurrent transactions that want to modify the same resource.

• Exclusive (X): An Exclusive lock is placed when a transaction wants

to modify the resource. When an Exclusive lock is in place, no other

transactions can modify the resource. For instance, INSERT, UPDATE,

or DELETE T-SQL statements will result in Exclusive locks.

• Schema (Sch): Schema locks are used when a table is being modified.

An example of this would be adding a column to a table.

• Intent (I): Intent locks are used to indicate that locks are placed at a

lower level in the locking hierarchy. We will go into more detail on

the lock hierarchy in a bit.

Chapter 8 LoCk-reLated Wait types

https://technet.microsoft.com/en-us/library/ms175519.aspx
https://technet.microsoft.com/en-us/library/ms175519.aspx

206

When different locks need to interact with each other, SQL Server performs a lock

compatibility check on the different lock modes involved. Not all of the lock modes

are compatible with each other, which means that when two different transactions

are not able to access the resource at the same time because of incompatible locks, a

block will occur. For instance, when a Shared lock is placed to read from a row, and

another transaction wants to modify the row by placing an Exclusive lock, the Exclusive

lock will have to wait until the Shared lock is removed. Table 8-1 shows the lock mode

compatibility for the Shared, Update, and Exclusive lock modes.

Let’s go through an example to illustrate lock compatibility. Say you want to read

from a row inside a table by executing a SELECT statement against that table. When you

execute your query, SQL Server will check if there is any existing lock already in place

on the row you want to access, and if it is compatible with the lock you want to place on

the row. Let’s assume there isn’t a lock in place when you run your query. In this case a

Shared lock will be placed on the row, indicating that your query is reading data from

that row. Right after you execute your query another transaction is issued by another

user that wants to modify data inside the row you are accessing. SQL Server will detect

that there already is a Shared lock in place on the row, making the second transaction

wait before placing its Exclusive lock, since Shared and Exclusive locks are incompatible.

The user who ran the second transaction might experience a delay, since the transaction

is waiting for the Shared lock to be removed before its Exclusive lock can be placed. If a

third transaction is started that wants to read the same row as your transaction, no lock

conflict will occur. Shared locks are compatible with other Shared locks, meaning that

the third transaction does not have to wait to place its lock, and it directly receives the

results it asked for.

Figure 8-1 shows the example where the dotted line indicates an incompatible lock

that has to wait.

Table 8-1. Lock Compatibility

Lock Mode Shared Update Exclusive

Shared yes yes No

Update yes No No

Exclusive No No No

Chapter 8 LoCk-reLated Wait types

207

 Locking Hierarchy
SQL Server uses multigranular locking to allow different locks for different-level objects.

It does this to minimize the overhead cost of locking. The lowest possible object where

a lock can be placed is a row, and the largest is the database. There are many levels

between those two granularity levels, and SQL Server automatically decides on what

level the lock should be placed to minimize locking overhead. The following list shows

the most common lock levels, ordered from the highest granularity to the smallest:

• Database

• Database file

• Table/Object

• Extent

• Page

• RID (row inside a heap)/KEY (row inside a clustered index)

The Intent locks we discussed earlier also play an important part in the placement

of locks upon the different granularity levels. SQL Server will place Intent locks on

objects that are on a higher granularity to indicate a lock has been placed at a lower level.

This protects the lower-level locks from changes on objects at a higher granularity level.

All the Intent locks that are placed, from the highest granularity level to the actual lock

on an object, when looked at together are called the locking hierarchy.

Figure 8-2 shows a graphical representation of a locking hierarchy for the

modification of data inside a row, which will require an Exclusive lock on the row and

Intent Exclusive locks higher in the hierarchy.

Figure 8-1. Concurrent lock situation

Chapter 8 LoCk-reLated Wait types

208

Note the Shared lock on the database level. Every request will always place one to

protect changes to the database while transactions are active. This makes sure that, for

instance, you cannot delete a database while transactions are still active. Also note that

the Intent locks will use the same lock mode on the lowest object, in this case Intent

Exclusive (IX). If a Shared lock was placed, the lock mode of the Intent lock would

change as well, in this case to Intent Shared (IS). We will go a little deeper into Intent

locks a bit further on in this chapter.

 Isolation Levels
We can exercise a certain level of control over what locks are being placed by a

transaction by changing the Isolation level. The Isolation level defines the degree to

which transactions are isolated from each other during concurrent operations. We can

change the Isolation level on either a connection or a transaction basis. Changing the

Isolation level will only change the behavior of Shared locks; Exclusive locks that are

needed for data modification are not affected. Changing the Isolation level will also

introduce certain phenomena. These phenomena have an impact on the results of your

read transaction and occur because of the changes to how Shared locks are placed and

Figure 8-2. Lock hierarchy example

Chapter 8 LoCk-reLated Wait types

209

held during the transaction. The list that follows shows the various Isolation levels, from

the lowest form of Isolation to the highest, available in SQL Server and the phenomena

related to them:

• Read Uncommitted: This Isolation level will allow reads to occur

while another transaction is performing modifications on the

same object. It will not wait until the Exclusive lock on the object is

released. This makes it possible to read uncommitted values called

“dirty reads.” Dirty reads can be bad (if you do not expect them)

because they can return a value that is no longer current in the

database. For instance, if someone is updating a value to “B” while it

was “A” at the start of the transaction, other users that query the same

data at the same time can get the old value of “A” back instead of the

updated “B” value.

• Read Committed: This is the default Isolation level in SQL Server.

Using this Isolation level will make read transactions wait until

concurrent write transactions are completed. A Shared lock will

be placed on a row and will be released right after the row has

been read. The phenomenon associated with this Isolation level

is called “inconsistent analysis.” This means that it is possible to

receive different results from the same read query if the data were

modified by another transaction in the time between both read

transactions.

• Repeatable Read: Setting the Isolation level to Repeatable Read

will lock rows that are being read by a transaction. But instead

of releasing the Shared lock on the row after it has been read,

Repeatable Read will keep the lock in place until the entire

transaction is completed. A Repeatable Read makes it possible for

“phantom reads” to occur. Phantom reads occur whenever data

is added or changed by another transaction that has not yet been

locked by the read transaction.

• Serializable: The Serializable Isolation level is the highest possible

Isolation level you can use, and that means it will place the most

locks to ensure the data you are reading is not modified during the

time the transaction is running. It does this by locking the entire

Chapter 8 LoCk-reLated Wait types

210

range of data (for instance, an entire table) you are selecting, making

it impossible to make changes to that data. Since the entire range

of data you are selecting is being locked right at the start of the

transaction, there are no phenomena possible.

SQL Server 2005 added another method for isolating transactions called Row

Versioning. Row Versioning uses versions of data modification and returns them to read

queries without causing blocking. When a transaction modifies data, that change will

be recorded as a version. When a read transaction accesses the same data, it will receive

the version of the change before the modification transaction is committed. More

information about Row Versioning can be found on Books Online at https://technet.

microsoft.com/en-us/library/ms189050.aspx.

Because Isolation levels, and their locking behavior, can be complex to understand,

I added Figure 8-3, which shows the way the various Isolation levels implement locking

during a read operation. The boxes represent rows inside a table, and a row with a lock

means a Shared lock is active on that row.

Figure 8-3. Isolation levels and locking behavior

Chapter 8 LoCk-reLated Wait types

https://technet.microsoft.com/en-us/library/ms189050.aspx
https://technet.microsoft.com/en-us/library/ms189050.aspx

211

There are various reasons why you would want to use a different Isolation level

than the default of Read Committed. In many cases these reasons are related to the

amount of locking/blocking you expect with your workload, or how “correct” the data

returned by your transaction should be. For instance, with the default Isolation level

of Read Committed it is possible that data is modified by other transactions while your

transaction is running, which means that the results at the end of the transaction are not

the same as they were at the start of your transaction. To make sure no data can change

while your transaction is running, you could use the Serializable Isolation level, but

this means more locks need to be placed and maintained, resulting in more blocking in

concurrent SQL Server environments.

We can only change the default Isolation level of Read Committed by specifically

configuring a different Isolation level for a connection or by supplying a table hint (an

exception is Snapshot Isolation, which is configured at the database level). For instance,

the two queries that follow show two different methods of executing a query using the

Read Uncommitted Isolation level. The first query sets the transaction Isolation level for

the entire session:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

GO

BEGIN TRANSACTION

SELECT *

FROM Person.Person

COMMIT TRANSACTION;

GO

Another method is to use a table hint to set the Isolation level to Read Uncommitted:

SELECT *

FROM Person.Person

WITH (READUNCOMMITTED);

Both of these methods will achieve the same effect, but keep in mind that setting the

Isolation level for the session will result in using the selected Isolation level for all the

queries that are being executed in this specific session after setting it.

Chapter 8 LoCk-reLated Wait types

212

 Querying Lock Information
To take a look at currently placed locks we can use the sys.dm_tran_locks DMV. This

DMV will return a row for every active lock inside the SQL Server instance, along with

information like the type of lock, the resource type, the session ID that placed the lock,

and whether the lock is granted or is waiting to be placed. Figure 8-4 shows a (small)

portion of the output of the DMV on my test SQL Server machine.

If we take a look at Figure 8-4 we can see that a number of Exclusive locks (X) have

been granted and are placed at the Key lock level. This means a transaction is currently

modifying data inside a clustered index. There is also an Intent Exclusive lock on the

Page level, which is above the Key lock level, indicating that there is an Exclusive lock

lower down in the hierarchy. Also note that a Shared lock is currently waiting to get

placed on the same data page (1:20432). The lock cannot be granted just yet, as there is

an incompatible Intent Exclusive lock in place.

Since the Shared lock has to wait before it can be placed on the data page, we can

view the time it has been waiting by looking at the wait statistics. Figure 8-5 shows a part

of the results of a query against the sys.dm_os_waiting_tasks DMV.

Figure 8-4. sys.dm_tran_locks output

Figure 8-5. Lock information inside sys.dm_os_waiting_tasks

Chapter 8 LoCk-reLated Wait types

213

By using the sys.dm_os_waiting_tasks DMV, we can see that session ID 55 is

currently waiting on a resource named LCK_M_S. This represents a Shared lock resource

type. Session ID 55 is currently being blocked by session ID 53, which happens to be

the same session that has the Exclusive and Intent Exclusive locks placed on the objects

session ID 55 is trying to query. The sys.dm_os_waiting_tasks DMV will also return

information we can use as input for the sys.dm_tran_locks DMV. This information will

be available in the resource_description column of the sys.dm_os_waiting_tasks

DMV, as shown in Figure 8-6.

If we copy the associatedObjectID and use it as input in the WHERE clause against

the sys.dm_tran_locks DMV, we will receive more information about why, and on what,

this task is waiting. The following query will retrieve all the rows inside the sys.dm_tran_

locks DMV that have a resource_associated_entity_id of 72057594045333504:

SELECT *

FROM sys.dm_tran_locks

WHERE resource_associated_entity_id = ' 72057594045333504';

On my test SQL Server, the query returned 32 locks, 26 of which are Exclusive locks

on rows inside a clustered index; there are also a number of Intent Exclusive locks on

data pages and one Shared lock that is waiting to be placed on a page. The waiting

Shared lock is the one returned by the sys.dm_os_waiting_tasks DMV. A portion of the

results is displayed in Figure 8-7.

Figure 8-6. resource_description column of the sys.dm_os_waiting_tasks DMV
during a block

Figure 8-7. Lock information from sys.dm_tran_locks

Chapter 8 LoCk-reLated Wait types

214

Finding lock information and figuring out who is blocking whom by querying the

sys.dm_tran_locks DMV can be a challenge on systems where you have many locks and

blocks occurring, since the DMV will return a row for every lock placed. Another, easier,

method to analyze locking and blocking is to use the sp_WhoIsActive stored procedure

created by Adam Machanic. This stored procedure will return information about

everything that is running at that time and is a great tool for analyzing performance

problems. With some extra parameters it will also return a wealth of locking information

without you having to join various DMVs yourself. You can download the sp_WhoIsActive

DMV from its website at http://whoisactive.com/downloads/.

To show you an example of the sp_WhoIsActive stored procedure I ran it on my test

SQL Server while it was experiencing a blocking problem. The most basic way of running

it is by just executing it:

EXEC sp_WhoIsActive;

Figure 8-8 shows a small portion of the results. There are many more columns

available that will show you additional information, like the session ID of the blocking

session.

We can directly identify wait statistics information and the queries that are being

executed at this time. Because the blocking_session_id column returned a session ID

of 55 for the SELECT query, we should take a look at what the query that is being executed

by session ID 55 is doing. By clicking the query link inside the sql_text column, we can

view the whole query text, as shown in Figure 8-9.

Figure 8-8. sp_WhoIsActive default results

Chapter 8 LoCk-reLated Wait types

http://whoisactive.com/downloads/

215

In this specific case we can probably resolve the blocking problem pretty quickly.

The query that is causing the block has left its transaction open without performing a

COMMIT or ROLLBACK. As long as a transaction stays open, locks are being kept in place

and are not released.

The sp_WhoIsActive stored procedure also has a parameter to return additional

locking information, including information about the lock hierarchy. The query that

follows will execute the sp_WhoIsActive stored procedure and retrieve extra lock

information for the queries that are currently executing:

EXEC sp_WhoIsActive @get_locks=1;

Figure 8-10 returns the new columns that are added to the output of sp_WhoIsActive.

Figure 8-9. sql_text output from sp_WhoIsActive

Figure 8-10. Lock information returned by sp_WhoIsActive

By clicking the link below the locks column, we can view which locks are being

used and on what objects they are placed. This will also give us a good look at the

locking hierarchy that is in place for this specific query. Figure 8-11 shows the extra lock

information for the first returned query in Figure 8-10.

Chapter 8 LoCk-reLated Wait types

216

Here we can see that an Intent Exclusive lock is placed at the OBJECT level, which

means a lock has been placed on the object that is displayed in the Object name field

of the XML schema—in this case Address, which is a table. A level down, at the page

level, we also see two Intent Exclusive locks in place inside two different indexes on the

Address table. And at the bottom level we see the Exclusive locks, which are placed at the

KEY objects, which indicate rows inside an index.

There are many more parameters available for the sp_WhoIsActive stored

procedure, each one of them returning more information about various parts of SQL

Server. This makes the sp_WhoIsActive Stored Procedure a great tool for finding out

what is going on inside your SQL Server instance, and I encourage you to give it a try.

Now that we have discussed many aspects of locking and blocking, from lock

modes and hierarchies to analyzing locks and blocks, we should be ready to take

a look at the lock-related wait types inside SQL Server. Keep in mind that this

introduction to locking and blocking is far from a complete guide to the topic, as

going into more detail on how locking and concurrency works inside SQL Server

would fill a book by itself.

 LCK_M_S
The first lock-related wait type is the LCK_M_S wait type. This wait type represents that a

task is waiting to place a Shared lock on a resource.

 What Is the LCK_M_S Wait Type?
The LCK_M_S wait type indicates that a task is, or has, been waiting to place a Shared

lock on a resource. It is important to understand that you will only see this wait type

when some form of blocking is occurring, since a task is waiting to place the Shared

Figure 8-11. Additional lock information returned by sp_WhoIsActive

Chapter 8 LoCk-reLated Wait types

217

lock. It doesn’t mean there is a Shared lock active on the resource. This is true for

every lock-related wait type, as they will only get recorded when there is a blocking

situation.

Since the LCK_M_S wait type is related to Shared locks, it will occur when a read

action is being performed but has to wait because an incompatible lock is already in

place on the resource we want to read. The time we are waiting before we are able to

place the Shared lock is recorded as the wait time of the LCK_M_S wait type.

Figure 8-12 shows a common situation that will result in LCK_M_S waits occurring.

In this case an Exclusive lock has been placed on a page by T1, indicating a data

modification. When T2 wants to read the data from the page, it will need to place a Shared

lock, but since Exclusive and Shared locks are incompatible, a LCK_M_S wait occurs.

 LCK_M_S Example
Creating an example of a LCK_M_S wait occurring is not very difficult, as we just need to

create a block situation between a data modification query and a data read query.

For this example we are going to run the query seen in Listing 8-1 against the

AdventureWorks database. This query will begin a transaction and modify a few rows,

but it will not commit or rollback the transaction. Since we explicitly indicated this

transaction by supplying a BEGIN TRAN, SQL Server will keep the locks in place until we

explicitly execute a COMMIT or ROLLBACK command.

Listing 8-1. Start a modification transaction

BEGIN TRAN

UPDATE Sales.SalesOrderDetail

SET CarrierTrackingNumber = '4E0A-4F89-AD'

WHERE SalesOrderID = '43661';

Figure 8-12. LCK_M_S wait occurring

Chapter 8 LoCk-reLated Wait types

218

When we execute the query, we receive a result very quickly; in my case 15 rows

were updated. But like I said before, the transaction is not yet finished, so it will remain

running, leaving locks on the objects it modified.

So far we aren’t causing any blocking, since this is the test SQL Server and no other

queries are running. Let’s change that and create a blocking situation.

For this we are going to open a second window in SQL Server Management

Studio and execute the query seen in Listing 8-2. This will just perform a SELECT

against the Sales.SalesOrderDetail table, the same table in which we are currently

modifying data.

Listing 8-2. Select data from a table where a modification is being performed

SELECT *

FROM AdventureWorks.Sales.SalesOrderDetail;

As soon as we run this SELECT query, we notice that no results are returned and that

the query will keep running. This is a typical example of a blocking operation where a

transaction is modifying data we want to read inside another transaction.

If we were to query the sys.dm_os_waiting_tasks DMV, we would be able to see the

LCK_M_S wait type, as shown in Figure 8-13.

The only way the LCK_M_S wait will be resolved is if the incompatible lock is

removed. In this case we performed a rollback of the modification transaction we started

in the first SQL Server Management Studio window. We do this by running the ROLLBACK

command in the same session window. Immediately after performing the transaction

rollback we receive the results the SELECT query asked for. Querying the sys.dm_os_

waiting_tasks also showed that the LCK_M_S wait was resolved.

 Lowering LCK_M_S Waits
Seeing LCK_M_S waits occur does not necessarily have to mean something is wrong.

It does, however, indicate that blocking is occurring. If you notice high wait times on

the LCK_M_S wait type, it means that someone’s read transaction is currently taking a

Figure 8-13. LCK_M_S wait occurring

Chapter 8 LoCk-reLated Wait types

219

long time to complete because it has to wait to place the Shared lock. So the first step

will be to identify the query that is causing the block. We can do this by using the sys.

dm_os_waiting_tasks DMV and looking at the blocking_session_id column. This

is relatively quick to do when there is only a single block active, but can get complex

when many concurrent queries are being blocked by other transactions. In this case

we have to follow the blocking chain until we find the head blocker (which is the first

lock on an object). Another option is to use the sp_WhoIsActive stored procedure we

discussed in the “Locking and Blocking Introduction” at the start of this chapter. This

stored procedure will move through the blocking chain for you, directly displaying the

head blocker.

After we have found the query that is causing the blocking to occur, we need to

analyze it and see if we can optimize that query. Maybe it is requesting more locks

than it actually needs and thus requires a long time to complete. One way to optimize

that query would be to look at whether any indexes should be added so fewer rows

are required to be locked. Or maybe you could cut the single transaction into multiple

transactions that each access fewer objects. Another possible issue that can cause more

locking than necessary is out-of-date statistics. Statistics are used as input for a query

plan, and if they do not accurately reflect the contents of the table or index, they can lead

to a bad query plan, which in turn can lead to more locks than necessary.

Another option would be to change to Isolation level of the read transactions so no

Shared locks are needed in order to read the data. For instance, setting the Isolation level

to Read Uncommitted will not place Shared locks, and the read transaction will not be

blocked. This does introduce another problem related to the Isolation level, dirty reads,

which we discussed in the “Locking and Blocking Introduction” section of this chapter.

Next to using Read Uncommitted, you could also use Snapshot Isolation, which will

result in fewer Shared locks, but will not cause dirty reads. Snapshot Isolation does put

more load on the TempDB database, since it must maintain versions of data if many

concurrent transactions are modifying that data.

 LCK_M_S Summary
The LCK_M_S wait type occurs when an incompatible lock is being placed on a resource

and another transaction wants to place a Shared lock on the same resource. Seeing

the LCK_M_S wait type means transactions are being blocked. You should try to identify

which queries are causing the block to occur and see if these can be optimized to result

Chapter 8 LoCk-reLated Wait types

220

in fewer locks or locks that have a shorter duration. As a final resort you could choose

to change the Isolation level of your read transactions, though this does introduce other

side effects, like dirty reads or increased load inside TempDB.

 LCK_M_U
LCK_M_U wait types are related to locks that use the Update (U) mode. When a task wants

to place an Update lock on a resource but an incompatible lock is already in place,

LCK_M_U waits occur.

 What Is the LCK_M_U Wait Type?
The Update lock type is a special type of lock mode that indicates that data modification

is about to occur. Even though its name might suggest it is only related to UPDATE queries,

Update locks can also appear when performing INSERT or DELETE statements.

Update locks primarily exist to prevent deadlocks from occurring. Deadlocks

indicate that two transactions that want to modify the same object are waiting

indefinitely on each other to acquire an Exclusive lock on the resource. To understand

how a deadlock situation can occur, and how Update locks can prevent this, take a look

at the following scenario that would occur when no Update locks are used.

When two concurrent transactions want to perform a modification on the same

object, both transactions would first place a Shared lock on the resource while the

data they intended to modify was located. Since Shared locks are compatible with

other Shared locks, both transactions would not block each other. When one of the two

transactions found the data it needed to modify, it would convert its Shared lock to an

Exclusive lock, and then a problem would occur. Since Shared locks are incompatible

with Exclusive locks, and since the other transaction would also have a Shared lock

on the resource, the conversion from Shared lock to Exclusive lock would not occur.

The transaction would need to wait until the Shared lock of the other transaction was

removed before it could convert its own Shared lock to an Exclusive lock, but since

the other transaction also wants to convert its Shared lock to an Exclusive lock, both

transactions would end up waiting on each other, and a deadlock would occur. SQL

Server will automatically detect deadlock situations and choose one of the deadlocked

transactions as a victim and perform a rollback of that transaction, ending the deadlock

situation. Figure 8-14 shows a graphical representation of that situation.

Chapter 8 LoCk-reLated Wait types

221

When Update locks are used inside SQL Server, no deadlock situation could occur.

Update locks are compatible with Shared locks, but not with Exclusive or other Update

locks. In the preceding scenario, the first transaction to find the data it needed to modify

would not directly convert to an Exclusive lock, but rather would convert to an Update

lock first. Since Update and Shared locks are compatible, there would be no problem

converting to an Update lock, even though there was a Shared lock in place from the

other transaction. The Update lock would then get converted to an Exclusive lock so the

data modification could occur. Figure 8-15 shows this lock behavior.

When a transaction wants to place an Update lock but there is an incompatible lock

already in place on the object, for instance, an Exclusive lock, the LCK_M_U wait type will

be recorded.

Figure 8-14. Deadlock during lock conversion

Figure 8-15. Update locks during concurrent data modifications

Chapter 8 LoCk-reLated Wait types

222

 LCK_M_U Example
To show you an example of LCK_M_U waits occurring, we have to create a situation where

concurrent transactions want to modify the same resource. For this we are going to make

use of the Ostress utility to execute an identical query using multiple connections. The

query I am going to execute can be seen in Listing 8-3. This will perform an UPDATE

against the Person.Address table inside the AdventureWorks database. I saved the query

inside a .sql file named LCK_M_U.sql.

Listing 8-3. Modify the Person.Address table

UPDATE Person.Address

SET City = 'Los Angeles'

WHERE StateProvinceID = 9;

After saving the file I run the Ostress utility using the following command:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E

-dAdventureWorks2012 -i"C:\lck_m_u.sql" -n150 -r5 -q

This will create 150 concurrent connections, each one executing the query in

Listing 8-3 five times. This should be enough to create some blocking.

While the Ostress utility is running, I query the sys.dm_os_waiting_tasks DMV to

find out what tasks are waiting. A small portion of the results are shown in Figure 8-16.

As you can see in Figure 8-16, many different sessions are waiting to acquire an

Update lock but are all being blocked by session ID 161. If we query the sys.dm_

tran_locks DMV for lock information about this session, we can see it is granted an

incompatible Exclusive lock, as shown in Figure 8-17.

Figure 8-16. LCK_M_U waits occurring

Chapter 8 LoCk-reLated Wait types

223

All the other sessions will have to wait until the Exclusive lock of session ID 161

is removed. Then one of those sessions will acquire the Update lock it is requesting,

convert it into an Exclusive lock, and perform its modification. That cycle will repeat

until all the sessions are done with their modifications.

 Lowering LCK_M_U Waits
Lowering LCK_M_U waits uses the same approach as lowering LCK_M_S wait types: try

to identify the transaction that is causing the blocking to occur and try to optimize its

locking behavior.

Changing the Isolation level will have little effect on LCK_M_U wait times since other

Isolation levels have the most impact on transactions that perform reads. This makes

optimizing your queries and/or indexes the way to go if you need to lower higher-than-

normal wait times on the LCK_M_U wait type.

 LCK_M_U Summary
The LCK_M_U wait type is related to locks that use the Update lock mode. Update locks are

used to prevent deadlocks from occurring when concurrent transactions try to convert

their Shared locks to Exclusive locks. Lowering LCK_M_U wait times is primarily achieved

by optimizing potential blocking queries or indexes.

 LCK_M_X
Another of the most common lock-related wait types is the LCK_M_X wait type. Just

like both lock-related wait types we have already discussed, the LCK_M_X wait type

is related to a specific lock type, in this case the Exclusive lock. And just like the

other two lock-related wait types, seeing this wait type means there is some form of

blocking occurring.

Figure 8-17. Session ID 161 holding an Exclusive lock

Chapter 8 LoCk-reLated Wait types

224

 What Is the LCK_M_X Wait Type?
The LCK_M_X wait type occurs when a task is waiting to place an Exclusive lock on an

object. Since Exclusive locks are not compatible with just about any other lock mode,

including other Exclusive locks, seeing blocking occur when there are many concurrent

modifications is pretty common. This means that seeing LCK_M_X waits occur is

pretty common as well, especially in systems that have a high amount of concurrent

transactions.

 LCK_M_X Example
To demonstrate LCK_M_X waits occurring we are going to execute a SELECT statement

without committing it. Before we run the SELECT, we are going to set the Isolation level

to Repeatable Read. Doing so makes sure the Shared locks are not removed while the

transaction is still running. Since we do not end the transaction, the locks will remain

on the objects until we either kill the transaction or perform a COMMIT or ROLLBACK.

The query that follows shows the SELECT statement we will execute against the

AdventureWorks database:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

BEGIN TRANSACTION

SELECT *

FROM HumanResources.Employee;

-- COMMIT

Notice we commented out the COMMIT section to make sure the locks remain in place.

Executing the query returns results pretty quickly, after just 1 second I got all the rows of

the HumanResources.Employee returned. If we query the sys.dm_tran_locks DMV, we

should see that all the Shared locks are still in place, as shown in Figure 8-18.

Chapter 8 LoCk-reLated Wait types

225

While the locks are still in place, we will run another query inside a new window

in SQL Server Management Studio. The query that follows will perform an UPDATE on a

single row inside the same HumanResources.Employee table:

UPDATE HumanResources.Employee

SET JobTitle = 'Tester'

WHERE BusinessEntityID = 5;

As soon as we execute the preceding query, we’ll notice a block occurring since the

query keeps running without returning any results. This is as expected since there is a Shared

lock in place on the row, or specifically the index key, that prevents us from updating it.

When we look at the sys.dm_os_waiting_tasks DMV, shown in Figure 8-19, we

will notice that the query in the second window is waiting to place an Exclusive lock,

indicated by the LCK_M_X wait type.

If we end the SELECT query, by either executing the COMMIT statement or by closing

the windows inside SQL Server Management Studio, the Shared locks are removed and

the second query will be able to execute its UPDATE command, ending the LCK_M_X wait.

 Lowering LCK_M_X Waits
To lower LCK_M_X wait times, you should use the same approach as for lowering other

lock-related wait types. Try and identify what queries are causing the blocking and see if

you can optimize them so they cause less blocking.

Figure 8-18. Shared locks still in place

Figure 8-19. LCK_M_X wait occurring

Chapter 8 LoCk-reLated Wait types

226

 LCK_M_X Summary
The LCK_M_X wait type is related to Exclusive locks being blocked by other locks already

in place on the same resource. Since Exclusive locks are incompatible with just about

every other lock type, seeing LCK_M_X waits occurring is not uncommon for SQL Server

instances that experience concurrent query execution.

 LCK_M_I[xx]
Seeing the LCK_M_I[xx] wait type means that a task is being blocked when placing an

Intent lock. Since we already discussed the various lock modes on objects, I replaced

the lock mode used for the Intent lock as [xx] when discussing this wait type. The [xx]

can be replaced by a variety of different lock modes; for instance, a block on an Intent

Shared lock would be represented by the LCK_M_IS wait type, while a block on an Intent

Exclusive lock would be shown as LCK_M_IX.

 What Is the LCK_M_I[xx] Wait Type?
LCK_M_I[xx] wait types indicate that a task is waiting to place an Intent lock on an

object. As we learned from the “Introduction to Locking and Blocking” section at the

start of this chapter, Intent locks indicate that a lock of the same type is placed on

an object lower down in the locking hierarchy. This doesn’t mean Intent locks are

only there to warn SQL Server that there is a lock further down the hierarchy. Intent

locks behave just like any other lock, and it is entirely possible that one Intent lock

can block another, incompatible, Intent lock. Intent locks do have a little bit more

flexibility regarding other incompatible Intent locks. For instance, it is possible for

two Intent Exclusive locks to exist on the same page object, indicating that a row

is going to be modified. It is even possible to have an Intent Shared lock on a page

object together with an Intent Exclusive, because both of the locks can read and/or

modify different rows.

Chapter 8 LoCk-reLated Wait types

227

Next to indicating the type of lock that exists lower down in the locking hierarchy,

Intent locks have a few “special” modes the other lock modes do not have. It is possible

for Intent locks to represent more than one lock mode on lower levels of the locking

hierarchy. The list that follows describes these three Intent lock modes:

• Shared with Intent Exclusive (SIX): This lock mode represents that

there are Shared Locks on all objects at a lower level, and Intent

Exclusive locks on some of these objects. These locks are acquired

by one transaction that wants to read data and plans to modify other

data at the same time. When a task is being blocked while trying to

place the SIX lock, it will be recorded by the LCK_M_SIX wait type.

• Shared Intent Update (SIU): This lock mode is a combination of

Shared and Intent Update locks. Again, it is possible for a single

transaction to acquire, and hold, both these lock modes at the same

time at a lower level. If a block occurs while trying to place this lock,

the LCK_M_SIU wait type will be used to record the wait time.

• Update Intent Exclusive (UIX): This lock mode is another

combination of two other lock modes, Update and Intent

Exclusive. Blocks on this lock mode will be represented by the

LCK_M_UIX wait type.

Seeing high wait times on Intent locks is not very common, since Intent locks are

a lot more flexible regarding their incompatibility with each other. This means there

generally is less blocking on the Intent level than there is further down the locking

hierarchy.

 LCK_M_I[xx] Example
In this example we will generate a wait of the LCK_M_IX wait type. This means a

transaction is waiting to acquire an Intent Exclusive lock on a higher level in the locking

hierarchy.

We will use more or less the same example as we did for the LCK_M_X wait type

by running a SELECT statement using the REPEATABLE READ Isolation level and not

completing the transaction. The query that follows is the query I will be running against

the AdventureWorks database, Person.Address table:

Chapter 8 LoCk-reLated Wait types

228

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

BEGIN TRAN

SELECT * FROM Person.Address;

--COMMIT

The COMMIT command has been commented out to leave the transaction open.

If we take a look at the sys.dm_tran_locks DMV, shown by Figure 8-20, we see that

while the query is running there is only one lock currently active, a Shared lock on the

OBJECT resource type. This indicates that the entire table is locked. Since this lock exists

on this high level, there is no need for other Shared locks further down the hierarchy.

If another transaction wants to update a row inside the same table, it would first try

to acquire an Intent Exclusive lock on the table and page level before it could acquire an

Exclusive lock on the row level. The query that follows is such a transaction, and in this

case we will try to update a single row:

UPDATE Person.Address

SET AddressLine1 = '1227 Shoe St.'

WHERE AddressID = 5;

You’ll notice that the preceding query “hangs” as long as the SELECT query still has

its Shared lock on the table. Even though Intent locks are in most cases compatible with

other Intent locks on the same object, having, in this case, a Shared lock on the table

level while trying to perform a data modification lower in the hierarchy will cause a block

to occur. Shared locks and Intent Exclusive locks are not compatible.

If we look at the sys.dm_os_waiting_tasks DMV, we should be able to see that the

task to place the Intent Exclusive lock is waiting, as shown in Figure 8-21.

Figure 8-20. Shared lock on a table

Figure 8-21. LCK_M_IX wait occurring

Chapter 8 LoCk-reLated Wait types

229

 Lowering LCK_M_I[xx] Waits
Just like with the other lock-related wait types we discussed earlier, try to focus on the

queries that are causing the blocking when trying to lower LCK_M_I[xx] wait times.

Because LCK_M_I[xx] waits only occur when incompatible locks are being held on

objects higher in the locking hierarchy, it can be worth the time to investigate why those

locks are placed so high in the hierarchy. Lock escalation can cause this to happen. Lock

escalation occurs when it is more efficient for SQL Server to place a single lock higher in

the locking hierarchy instead of locking many objects lower down. For instance, instead

of placing thousands of Shared locks on rows, SQL Server can decide to place a single

Shared lock on the table level. This requires far less resources to place and maintain

than thousands of single locks. As a matter of fact, this is exactly what is occurring in the

example I have shown you of the LCK_M_IX wait type. The Person.Address table we are

querying with the SELECT query has more than 19,000 rows inside it. When we ran our

SELECT * query against the table, it would mean that at least 19,000 row locks would

be needed. Because placing and holding that many locks would take a great deal of

resources, SQL Server decided to place a single Shared lock on the table instead of 19,000

locks on the rows.

If we can rewrite the query so it requires fewer locks, for instance, by only selecting

the first x rows instead of everything, SQL Server would probably choose to lock the rows

again, instead of the entire table.

 LCK_M_I[xx] Summary
The LCK_M_I[xx] wait type is related to Intent locks, or rather, cases when another

incompatible lock is blocking the placement of an Intent lock. Intent locks are placed

on higher-level objects to indicate that a lock has been placed on a lower level in the

locking hierarchy. Unlike the lock modes we discussed earlier that only represent one

type of lock, Intent locks can represent different lock modes lower down in the locking

hierarchy. One common cause of high wait times on LCK_M_I[xx] wait types is cases

when SQL Server escalates lower-level locks to a higher-level lock. In this situation Intent

locks will be blocked and cannot be acquired.

Chapter 8 LoCk-reLated Wait types

230

 LCK_M_SCH_S and LCK_M_SCH_M
The last two lock-related wait types I want to discuss in this chapter are the LCK_M_SCH_S

and the LCK_M_SCH_M wait types. Both of these wait types are related to locks that are

being placed on tables, the so-called Schema locks. We didn’t give a lot of attention to

Schema locks earlier in this chapter, but since they can have a pretty big impact on wait

times when they occur, I wanted to include them.

 What Are the LCK_M_SCH_S and LCK_M_SCH_M Wait
Types?
The LCK_M_SCH_S and LCK_M_SCH_M wait types are both related to Schema locks. Schema

locks are placed at the table level to protect the table from modifications while queries

access the table, or to prevent queries from accessing the table while it is being modified.

There are two different types of Schema lock, Schema Stability (Sch-S) and Schema

Modification (Sch-M). Each of them has a different wait type associated with them when

a task is being blocked from placing a Schema Stability or Schema Modification lock. The

LCK_M_SCH_S wait type (to indicate read access to the table) is recorded when a Schema

Stability lock has to wait before it can get placed, and the LCK_M_SCH_M wait type (to

indicate the table schema will be changed) is recorded when a Schema Modification lock

is waiting to get placed.

Both Schema locks have pretty extreme compatibility with other lock types. The

Schema Stability lock is compatible with all other types of locks except for the Schema

Modification lock. The Schema Modification lock, on the other hand, is incompatible

with every other lock type, including Intent locks.

When using Schema Stability locks it is impossible to modify or change the table

in any way while queries are currently reading or writing from or to that table. Because

Schema Stability locks are compatible with every lock mode (except for Schema

Modification), it is completely normal to see a Schema Stability lock on the table level

together with, for example, an Intent Exclusive lock to indicate data modification is

occurring on a lower level inside the table.

Schema Modification locks are the opposite from Schema Stability locks, as they

prevent any queries from accessing a table while a modification to the table is being

performed.

Chapter 8 LoCk-reLated Wait types

231

 LCK_M_SCH_S and LCK_M_SCH_M Example
For the first example, I am going to add a new column to an existing table, and just as we

did in the examples earlier in this chapter, I am going to keep the transaction open by not

supplying a COMMIT or ROLLBACK command. The query that follows adds an extra column

to the Person.Address table in the AdventureWorks database, but I left the ROLLBACK

command commented so the locks stay in place:

BEGIN TRAN

ALTER TABLE Person.Address

 ADD

 Test VARCHAR(10);

--ROLLBACK

In a new window in SQL Server Management Studio, I am going to execute a simple

SELECT query against the Person.Address table, like the one here:

SELECT *

FROM Person.Address;

If we take a look at the sys.dm_tran_locks DMV while both queries are running, we

should be able to see if there is any blocking going on. Figure 8-22 shows a part of the

output of a SELECT * query against the sys.dm_tran_locks DMV.

Figure 8-22. Sch-M and Sch-S locks

As you can see from Figure 8-22, the first query we started, with the goal of adding a

column to the Person.Address table, resulted in a Sch-M lock on the table. The second

SELECT query is waiting to receive a Sch-S lock on the same table.

If we query the sys.dm_os_waiting_tasks DMV, we should see a task that is waiting

on the LCK_M_SCH_S wait type. Figure 8-23 shows the output of sys.dm_os_waiting_

tasks while both queries are running.

Chapter 8 LoCk-reLated Wait types

232

Just as we expected, the SELECT query is waiting to acquire its Schema Stability lock.

If we were to reverse the example by starting a read transaction and leaving it open,

and then try to modify the same table, we should run into a LCK_M_SCH_M wait, since

we can only acquire a Schema Modification lock when there are no active transactions

inside the table we want to modify.

To show this situation I executed the query that follows. This starts a SELECT query

with the Repeatable Read Isolation level, but I am leaving the transaction open so the

locks stay in place:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

BEGIN TRANSACTION

SELECT * FROM

Person.Address;

-- COMMIT

In a new window inside SQL Server Management Studio, I am going to execute the

table modification query we used earlier to demonstrate the LCK_M_SCH_S wait type, but

without leaving the transaction open:

ALTER TABLE Person.Address

 ADD

 Test VARCHAR(10);

As you will probably notice when executing the second query, nothing is returned

and the query keeps running, a clear indication of a block occurring.

Let’s take a look at the sys.dm_tran_locks DMV again to see what we can find out.

Figure 8-24 shows the output on my test SQL Server.

Figure 8-23. LCK_M_SCH_S wait occurring

Figure 8-24. Sch-M lock waiting to be acquired

Chapter 8 LoCk-reLated Wait types

233

In this case the table has a Shared lock on it from the SELECT query. Because we

are selecting information from a pretty large table, SQL Server decided to place a table

lock instead of placing locks on a lower level. Because a Schema Modification lock is

incompatible with every other lock type, a block occurs, and we will have to wait until

the Shared lock is gone before we can perform our table modification.

Looking at the sys.dm_os_waiting_tasks DMV shows us the results we are

expecting, a LCK_M_SCH_M wait, as shown in Figure 8-25.

 Lowering LCK_M_SCH_S and LCK_M_SCH_M Waits
When you see waits occurring of either the LCK_M_SCH_S or LCK_M_SCH_M wait type,

there is probably a transaction active that wants to modify the table. In the case of high

wait times on the LCK_M_SCH_S wait type, the table modification transaction is already

running; when seeing LCK_M_SCH_M waits, the modification is waiting for all active

transactions to remove their locks on the table.

Modifying a table is not something that happens every day on production SQL Server

instances (hopefully). Changing large tables can especially be problematic and a cause

for high LCK_M_SCH_S wait times, and users that are trying to query the table that is being

modified will notice delays. If, however, you absolutely need to modify a table, but there

are some long-running queries retrieving information from that table, you can expect

LCK_M_SCH_M waits.

Lowering the wait times of both wait types is directly related to performing

modifications to tables. A suggestion could be to perform the table modification after office

hours, or when there are as few as possible concurrent transactions accessing the table,

instead of doing the modification when there are many transactions active against the table.

 LCK_M_SCH_S and LCK_M_SCH_M Summary
The LCK_M_SCH_S and LCK_M_SCH_M wait types are the result of Schema Stability or

Schema Modification locks being blocked by other locks. Seeing high wait times of either

wait type indicates that either a table modification is waiting for all active locks on that

table to be removed, or a table modification is currently running and other transactions

are being blocked by it.

Figure 8-25. LCK_M_SCH_M wait occurring

Chapter 8 LoCk-reLated Wait types

235
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_9

CHAPTER 9

Latch-Related Wait Types
In Chapter 8, “Lock-Related Wait Types,” we took a pretty deep look at locking and

blocking inside SQL Server, together with different wait types that indicate blocking

is occurring. Latches look a lot like the locks we discussed earlier; in some cases they

even appear to use the same modes as the locks we discussed in Chapter 8. Make no

mistake though, latches are completely different than locks, even though they seem to

share some features. While locks are used to guarantee transactions are isolated and

consistent, latches are used to guarantee the consistency of in-memory objects.

Latches are, just like locking and blocking, a pretty complex subject inside SQL

Server. Latches even have their own latch-statistics DMV that records how much time

has been spent waiting on specific latch types.

Because of the complexity of latches and their function inside SQL Server, I believe

they require an introduction to better understand how you can troubleshoot latch-

related wait types later in this chapter. For this reason, we will start this chapter with an

introduction to latches, just as we did with the introduction to locking inside Chapter 8,

“Lock-Related Wait Types.”

 Introduction to Latches
Microsoft describes latches as “lightweight synchronization objects that are used by

various SQL Server components” on Books Online. This description is pretty vague, and

there is a lot more depth to latches than the description would initially suggest.

The first thing that is important to understand about latches, which we lightly

touched upon in the introduction of this chapter, is that latches are completely different

than locks. I have heard and read various discussions about latches that treat latches as

if they were locks. This confusion is easily explained, as latches, at first glance, do look

similar to locks as regards their behavior and naming conventions within SQL Server.

Just like locks, latches have various “modes,” and some of the acronyms to indicate

236

the type of mode used are the same as for some lock modes. Another thing locks and

latches have in common is that both objects play a role in keeping SQL Server objects

consistent, and the way they manage this seems identical. While locks are used to make

sure transactions are consistent, protecting the transaction for the entire duration it is

running, latches are only used for the duration they are necessary and are not bound

to the duration of a transaction. During the duration of one transaction, many different

latches will be acquired and released again. Figure 9-1 visualizes this behavior.

Placing and especially maintaining locks on SQL Server objects is an expensive

operation, mostly because they need to stay in place during entire transactions. Because

latches are only needed for specific operations, and are then released again, they are far

less costly to use than locks. This explains the “lightweight” part in the latch definition

Microsoft uses.

The second part of the latch definition, “synchronization object,” we discussed

earlier in this book, but not under that exact name. If you have read through

this book so far, you should have noticed, especially in Chapter 6, “IO-Related

Wait Types,” that SQL Server uses various methods to handle concurrent threads

accessing objects. In Chapter 6, “IO-Related Wait Types,” we talked about mutual

exclusion, which makes sure only one thread at a time can access a memory object.

In the same chapter we also discussed semaphores that implement gates to limit

concurrent access to memory. Latches are another method used to make sure

concurrent threads do not threaten the consistency of in-memory objects, and it

does this in a way that looks a lot like locking.

Figure 9-1. Lock and latch behavior during transactions

Chapter 9 LatCh-reLated Wait types

237

 Latch Modes
Latches have five different modes available to use when accessing objects. The list that

follows describes these five modes, some of which might look familiar:

• SH: The SH mode represents a Shared latch. This mode is used when

the latch is reading page data.

• UP: The UP latch mode is used by Update latches that are used

whenever a page needs to be modified. By using the Update latch the

page can still be read by other latches.

• EX: The EX latch mode, or Exclusive latch, is also used when page

modification occurs. Unlike the Update latch, the Exclusive latch

does not allow read or write access by other latch modes.

• KP: The KP latch mode is used by Keep latches. Keep latches are

used to protect the page so it cannot be destroyed by the Destroy

latch. They are compatible with every other latch mode except for the

Destroy mode.

• DT: The DT latch mode indicates Destroy latches. Destroy latches are

used when removing contents from memory; for instance, when SQL

Server wants to free up a data page in memory.

As you can see in this list, the first three latch modes look a lot like those used by

locks, and function more or less the same way. And just like lock modes, latch modes are

compatible or incompatible with other latch modes. Table 9-1 shows the latch compatibility

matrix and whether the different modes are compatible with each other or not.

Table 9-1. Latch Compatibility Matrix

SH UP EX KP DT

SH yes yes No yes No

UP yes No No yes No

EX No No No yes No

KP yes yes yes yes No

DT No No No No No

Chapter 9 LatCh-reLated Wait types

238

Unlike locks, which can partly be controlled by Isolation levels and query hints,

latches are completely controlled by the SQL Server engine. This means we cannot

modify latch behavior like we can for locks.

 Latch Waits
Whenever a latch has to wait because its request couldn’t be granted immediately,

a latch wait occurs. These waits are tracked and recorded by SQL Server inside the

sys.dm_os_wait_stats DMV, and also inside a dedicated DMV that records specific

latch wait times, sys.dm_os_latch_waits, which we will discuss in more detail a bit

further down in this chapter.

Figure 9-2 shows a situation in which a latch wait occurs. In this example we are

waiting for a data page to be read from the storage subsystem into the buffer cache. In

this case latches are used to make sure the same data page on the storage subsystem is

not being read into the buffer cache by multiple threads. While the latch is waiting for the

page to read into memory, the PAGEIOLATCH_SH wait type will be recorded.

There are three different latch wait types defined in SQL Server that can be accessed

by querying the sys.dm_os_wait_stats DMV, and they are described in the following list:

• Buffer latches: Buffer latches are used to protect data pages inside the

buffer cache. They are not only used for user-related data pages but

also for system pages like the Page Free Space (PFS) page that tracks

free space inside data pages. Inside the sys.dm_os_wait_stats DMV

they are indicated by the PAGELATCH_[xx] wait type, where the [xx]

indicates the latch mode used.

Figure 9-2. PAGEIOLATCH_SH occurring

Chapter 9 LatCh-reLated Wait types

239

• Non-buffer latches: These latches are used to protect data structures

outside of the buffer cache. They are indicated by the LATCH_[xx]

wait type inside the sys.dm_os_wait_stats DMV.

• IO latches: IO latches are used when data pages are read from the

storage subsystem into the buffer cache. This type is indicated by the

PAGEIOLATCH_[xx] wait type.

Figure 9-3 shows the number of different latch wait types recorded by the

sys.dm_os_wait_stats DMV.

Whenever you are looking at the LATCH_[xx] wait type inside the sys.dm_os_wait_

stats DMV, you are actually looking at a summary of the wait times for these non-buffer

latches. There are various non-buffer latch classes inside SQL Server, and to make it

easier to analyze these non-buffer latch classes in more detail, the sys.dm_os_latch_

stats DMV was added.

Figure 9-3. Latch wait types inside sys.dm_os_wait_stats

Chapter 9 LatCh-reLated Wait types

240

 Sys.dm_os_latch_stats
The sys.dm_os_latch_stats closely resembles the sys.dm_os_wait_stats DMV.

The sys.dm_os_latch_stats DMV also shows the number of times a wait occurred,

the total wait time, and the maximum wait time. The only column missing compared

to the sys.dm_os_wait_stats DMV is signal_wait_time_ms; this is missing

because latches do not follow the same execution process (RUNNING, SUSPENDED,

RUNNABLE) as requests do.

Figure 9-4 shows a part of the sys.dm_os_latch_stats DMV. There are many more

non-buffer latch classes, totaling 168, in SQL Server 2017.

Just like the sys.dm_os_wait_stats DMV, the sys.dm_os_latch_stats DMV is

cumulative since the start of the SQL Server service. This means it will get reset to 0 value

again whenever your SQL Server service is restarted. We can also use the DBCC SQLPERF

command against the sys.dm_os_latch_stats DMV to reset the wait times manually by

executing this command:

DBCC SQLPERF('sys.dm_os_latch_stats', CLEAR)

Figure 9-4. sys.dm_os_latch_waits

Chapter 9 LatCh-reLated Wait types

241

 Page-Latch Contention
One of the most common problems encountered regarding latches is page-latch

contention. Page-latch contention occurs when many concurrent latches try

to acquire a latch, but there already is a latch in place with an incompatible

mode, causing a latch wait. Because this problem can occur on every SQL Server

instance that is subjected to concurrent workloads, I want to provide you with the

knowledge needed to identify page-latch contention before we discuss the various

latch-related wait types.

There are a variety of things that can cause page-latch contention to occur, and

even though we have little influence on the latch placement (remember, latches are

placed and held by an internal process inside the SQL Server engine), the design of our

database can impact latch behavior. One common cause for latch contention is when

concurrent queries access so-called hot-spots inside your database. For instance,

a small table that holds a few rows that need to be accessed by an application for

configuration information can be a potential hot-spot. If many concurrent requests

need data from this table, many latches will probably run into other, incompatible

latches, causing latch waits to occur and slowing down the application’s performance.

I have seen this problem occurring various times for different clients, making this a

real-world scenario, and I will show you an example of page-latch contention that is

based on one of those cases.

In this case the client ran an application that, at specific times, would select large

amounts of data and place the results into temporary tables. The application used a large

amount of concurrent connections to speed up the creation of these temporary tables.

To show the effects of this example, I am going to reproduce the scenario using Ostress to

select rows from a table and then insert them into a temporary table.

As input for the Ostress utility, I save a .sql file named latch_contention.sql with

the query shown in Listing 9-1.

Listing 9-1. Select rows from Sales.SalesOrderDetail into temporary table

SELECT TOP (20000) *

INTO #tmptable

FROM Sales.SalesOrderDetail;

Chapter 9 LatCh-reLated Wait types

242

This query selects the top 20,000 rows from the Sales.SalesOrderDetail

table inside the AdventureWorks database and inserts them into a temporary table

(#tmptable).

The next step is to fire up Ostress and execute the latch_contention.sql script with

300 concurrent connections. The Ostress command line I use is shown here:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E

-dAdventureWorks -i"C:\latch_contention.sql" -n300 -r1 -q

While the Ostress utility is running, let’s take a look at the sys.dm_os_waiting_tasks

DMV to see if anything is running into waits. Figure 9-5 shows a part of the results that

are returned when the query that follows is executed:

SELECT

 session_id,

 wait_duration_ms,

 wait_type,

 resource_description

FROM sys.dm_os_waiting_tasks

WHERE session_id > 50;

Figure 9-5. PAGELATCH_UP waits occurring

Chapter 9 LatCh-reLated Wait types

243

We are running into a lot of PAGELATCH_UP waits here that indicate that a latch is

waiting to update a page in-memory. The resource_description column is very useful

here since it indicates the page ID that the latch wants to access. In this case the page ID

we are trying to access is 2:3:1. The first number, 2, represents the database ID, which is

the TempDB database. The second number, 2, indicates the file ID (the TempDB database

on my test system consists of multiple data files). Finally, the last number indicates the

page ID, 1. Why are all those sessions waiting on the same wait type against the same

data page? This page happens to be a very special page, the Page Free Space (PFS) page.

The PFS page tracks how much free space is left inside every page inside the database.

It is always the first page of every database (page ID of 1) and has an interval of 8088 pages.

So in this example, all the requests are waiting to update the first PFS page inside the

TempDB database.

Because we are running inserts into a temporary table using many concurrent

connections, we need to find, or allocate, data pages with free space to hold our rows

inside the TempDB. All this space usage needs to be updated inside the PFS page, and

latches are used to make sure only one thread gets access to the PFS page at a time.

Figure 9-6 shows a Perfmon graph of two Perfmon counters, Transaction and Latch

Waits/sec. This will show the relationship between to-Ostress workload and the number

of latch waits occurring.

Chapter 9 LatCh-reLated Wait types

244

Figure 9-6. Latch Waits/sec and Transactions Perfmon graph

Chapter 9 LatCh-reLated Wait types

245

This is actually a classic example of the page-latch contention inside the TempDB

database that can occur when many concurrent queries are creating objects inside

TempDB. One way to resolve this specific case of latch contention is by adding more

(equally sized) TempDB data files. Every new data file will maintain its own PFS pages, and

adding more data files helps spread the load of updating the PFS pages. Using the query

that follows, I added three more data files to the TempDB database:

USE [master]

GO

ALTER DATABASE [tempdb] ADD FILE (NAME = N'tempdev2', FILENAME =

N'D:\Data\tempdb2.mdf' , SIZE = 204800KB , FILEGROWTH = 10%)

GO

ALTER DATABASE [tempdb] ADD FILE (NAME = N'tempdev3', FILENAME =

N'D:\Data\tempdb3.mdf' , SIZE = 204800KB , FILEGROWTH = 10%)

GO

ALTER DATABASE [tempdb] ADD FILE (NAME = N'tempdev4', FILENAME =

N'D:\Data\tempdb4.mdf' , SIZE = 204800KB , FILEGROWTH = 10%)

GO

When running the Ostress utility again with the same query to insert data into a

temporary table as we did before, I still notice latch waits occurring on PFS pages, but

they are spread better across the TempDB data files. When looking at the Transactions and

Latch Waits/sec Perfmon counters, I also see fewer latch waits occurring, as shown in

Figure 9-7.

Chapter 9 LatCh-reLated Wait types

246

By adding more TempDB data files, I would be able to lower the amount of latch

waits even further. Adding too many TempDB data files can be a bad idea though, since

the round-robin algorithm that makes sure the data files receive equal allocations can

generate noticeable overhead when it needs to manage many TempDB data files. Paul

Randal over at his SQLskills blog has a great post discussing TempDB data files and latch

contention, which you can find here: www.sqlskills.com/blogs/paul/a-sql-server-

dba-myth-a-day-1230-tempdb-should-always-have-one-data-file-per-processor-core/.

Now that we have discussed what latches are and how they work, and looked at an

example of latch contention, let’s move on and look at latch-related wait types.

Figure 9-7. Latch Waits/sec and Transaction Perfmon graph after adding more
TempDB files

Chapter 9 LatCh-reLated Wait types

http://www.sqlskills.com/blogs/paul/a-sql-server-dba-myth-a-day-1230-tempdb-should-always-have-one-data-file-per-processor-core/
http://www.sqlskills.com/blogs/paul/a-sql-server-dba-myth-a-day-1230-tempdb-should-always-have-one-data-file-per-processor-core/

247

 PAGELATCH_[xx]
The first latch-related wait type we will discuss in this chapter is the PAGELATCH_[xx]

wait type, where the [xx] indicates the latch mode used (e.g., SH for Shared). Since we

already discussed the various latch modes in the introduction of this chapter, we won’t

describe them again in this chapter.

 What Is the PAGELATCH_[xx] Wait Type?
PAGELATCH_[xx] waits occur whenever a latch has to wait before it can access a page

in-memory. The main cause for these waits is other latches that are already in place on

the page and are incompatible with the latch mode our request wants to use. Just like

a lock, the latch we want to place on the page has to wait until the incompatible latch

is removed from the page. As long as the incompatible latch is in place, our request

will record PAGELATCH_[xx] wait time. Figure 9-8 shows a graphical representation of

a PAGELATCH_UP wait occurring. I used a cogwheel icon to indicate a latch is already in

place on the page to avoid confusion with SQL Server locks.

Figure 9-8. PAGELATCH_UP wait occurring

It’s easy to confuse PAGELATCH_[xx] waits with PAGEIOLATCH_[xx] waits. Even

though they look alike in name, both are completely different latch wait types. The

former indicates access to pages already in memory, while the latter indicates pages are

being read from disk into memory. We will go into detail regarding the PAGEIOLATCH_[xx]

wait type a bit later in this chapter.

Chapter 9 LatCh-reLated Wait types

248

 PAGELATCH_[xx] Example
In the introduction to this chapter, we took a look at page-latch contention that can

occur inside the TempDB database when many concurrent queries are loading data in

temporary queries. This isn’t the only form of latch contention that can occur inside SQL

Server. Another form of latch contention is known as “last-page insert contention.” Just

like the page-latch contention scenario we discussed earlier, last-page insert contention

can also be identified by noticing a high number of PAGELATCH waits. Let’s go through an

example of last-page insert contention.

Remember that time in database design class when you learned that every table

should have a clustered index? And that the best candidate for a clustered index key

column is a narrow, unique, ever-increasing value, like an integer? All of that is still

true, and it absolutely helps to optimize the performance of queries against those

tables. There are, however, very specific cases where using this practice can cause a

performance problem known as last-page insert contention.

Last-page insert contention can occur on databases that experience a very heavy

insert workload against a table with relatively small rows; for instance, a table with

an ID column (Integer data type, auto increasing) and a Name column (Varchar data

type). From a best-practice point of view, we would create a clustered index on the ID

column since it fits the description of a good index key perfectly. It is narrow, unique

for every row, and always increasing. But because of the ever-increasing nature of the

auto increment, every newly added row will be added at the end of the clustered index,

creating a hot-spot for the last data page of the clustered index. Figure 9-9 shows the

insert behavior of rows into data pages inside a clustered index, inside the form of a so-

called B-tree structure, which is the data structure SQL Server uses to sort indexes.

Figure 9-9. Last-page insert contention on last page in a clustered index

Chapter 9 LatCh-reLated Wait types

249

Even if the current data page is full, and a new data page is added, the target of the

inserts will change to the new page, switching the hot-spot to the new data page.

One question I often hear about this behavior is: “Why aren’t locks stopping this?”

The answer is actually pretty simple: because by default we will be using Exclusive row-

level locks to insert our new rows instead of locking the page, and you can have multiple

concurrent Exclusive row locks on one page. Access to the page that’s in-memory still

needs to occur serially though, so latches are used to make sure only one thread has

access to the page at any time. Figure 9-10 shows an enlarged view of the data pages at

the leaf level of the clustered index with locks in place.

To show you an example of last-page insert contention, I will create a new table

inside the AdventureWorks database of my test SQL Server instance using the query that

follows:

CREATE TABLE Insert_Test

 (

 ID INT IDENTITY (1,1) PRIMARY KEY,

 RandomData VARCHAR(50)

);

As you can see, this is a pretty small table with an ID column that automatically

increases for every new row inserted, and a RandomData column that will hold some data.

I indicate that the ID column is the primary key of this table, which will automatically

create a clustered index using the ID column as the index key.

Figure 9-10. Leaf page of clustered index with locks in place

Chapter 9 LatCh-reLated Wait types

250

The next step is running Ostress with a highly concurrent workload that inserts new

rows into the Insert_Test table. This time I don’t create a .sql input file for Ostress but

rather enter the following query in the Ostress command line:

INSERT INTO Insert_Test

 (RandomData)

VALUES

 (

 CONVERT(varchar(50), NEWID())

)

This will create the following Ostress command line that will connect to the

AdventureWorks database and execute the query we supplied using 500 concurrent

connections, each connection performing the query 100 times. This should create

enough concurrent inserts to demonstrate last-page insert contention:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E

-dAdventureWorks -Q"INSERT INTO Insert_Test (RandomData) VALUES

(CONVERT(varchar(50), NEWID()))" -n500 -r100 -q

While Ostress is running, I query the sys.dm_os_waiting_tasks DMV:

SELECT

 session_id,

 wait_duration_ms,

 wait_type,

 resource_description

FROM sys.dm_os_waiting_tasks;

This query filters out some columns so that a screenshot of the results will fit on the

page. Figure 9-11 shows a portion of the results.

Chapter 9 LatCh-reLated Wait types

251

As expected, the insert workload caused a hot-spot to appear on a page inside the

clustered index, in this case the page with a page ID of 29313. All of those tasks shown

in Figure 9-11 (and there were around 300 more not shown) are all waiting to place an

Exclusive page latch, indicated by the PAGELATCH_EX wait type, on that page so they can

perform their insert operation.

To prove that page 29313 is a data page, I am going to use the undocumented DBCC

IND command to show us the pages that are associated with the Insert_Test table. DBCC

IND will return a row for every page associated with the table we supply as a parameter to

DBCC IND, and, among other things, will show us the page type of every page returned.

Running the command that follows will execute the DBCC IND command against

the AdventureWorks database’s Insert_Test table. Before we run the actual DBCC IND

command we have to enable Traceflag 3604 so the results of the DBCC IND command get

returned in the SQL Server Management Studio results tab:

DBCC TRACEON (3604);

GO

DBCC IND (AdventureWorks, Insert_Test, 1);

GO

Figure 9-11. PAGELATCH_EX waits on the same page

Chapter 9 LatCh-reLated Wait types

252

Figure 9-12 shows the results of the DBCC IND command. Highlighted is page 29313,

the page that was the insert hot-spot during the Ostress workload.

The information we are interested in resides in the IndexID and PageType columns.

The IndexID column returns the Index ID that this page is associated with. We only have

one index on the Insert_Test table, and it has an ID of 1. The PageType column returns

the page type of the specific page. In this case the PageType of page 29313 is 1, which

indicates that the page is a data page.

Remember, DBCC IND is an undocumented SQL Server command, and I included it

here to show you information about the page where the last-page insert contention was

occurring. I strongly advise against using it on production servers.

 Lowering PAGELATCH_[xx] Waits
So far I have showed you two examples where PAGELATCH_[xx] waits can occur, page-

latch contention on the PFS page of the TempDB database and last-page insert contention.

There is another latch-contention problem that can occur when inserting rows into

a small table with an index. This case of latch contention can also be identified by

PAGELATCH_[xx] waits occurring, but it also has a connection with the LATCH_[xx] wait

type. For this reason I am saving the explanation and example of this specific case of

latch contention for the next section of this chapter where we will discuss the LATCH_[xx]

wait type.

Lowering PAGELATCH_[xx] waits can be challenging. Frequently, they are related to

the design of your database or your workload, and these can prove difficult to change in

production environments. There are, however, a number of factors that can contribute to

latch contention that are worth taking the time to check.

Figure 9-12. DBCC IND results

Chapter 9 LatCh-reLated Wait types

253

It is more common to see latch contention occurring on systems that have a large

number of logical processors (16+) and high concurrent OLTP workloads. However,

having fewer logical processors does not mean latch contention cannot occur. The

examples of latch contention I have shown you so far in this chapter have all been

generated on a virtual machine with only two logical processors. I had to create a high

enough concurrent workload to reach latch contention. Having more logical processors

means there are more threads available to perform work, which also results in more

concurrent latches being placed, increasing the chances of latch contention. Adding

logical processors when experiencing latch contention can, in this specific case, cause

even more latch contention to occur instead of resolving it. Lowering the number of

logical processors isn’t an option either, because this will slow down all your other

workloads.

The best way to resolve latch contention is by identifying where the contention is

occurring and what type of contention you are dealing with.

If you are dealing with PFS page contention, a good first step would be to check if you

are using one or multiple database data files. If you are using one database data file, the

first step would be to add additional, equally sized data files and measure if this lowers

the amount of PAGELATCH_[xx] waits occurring. If you already have multiple database

data files you could try adding more, but be careful not to add too many, because having

this can introduce other performance problems. Your goal should be to find a database

data file “sweet spot” where you have enough database data files to minimize the impact

of latch contention, but not so many as to cause the overhead to become too high. This

depends entirely on your workload, so it is impossible for me to give you a generalized

recommendation.

When dealing with last-page insert contention you could consider changing the

index key to something else instead of a sequentially increasing value, like a GUID. Using

a GUID as an index key will result in a larger index because of the byte requirements of

a GUID. Also, because GUIDs are entirely random, keeping the index in order requires

more work than when dealing with an ever-increasing, sequential value. It can also have

consequences for your applications or queries that possibly would need to be rewritten

to accommodate the change in data type.

Other factors to consider that can impact latch contention are indexing strategies,

page fullness, and the number of concurrent connections to the database. Also,

identifying and optimizing the access patterns to the data inside the database can help

immensely. For instance, if you know your workload consists of many very small inserts

Chapter 9 LatCh-reLated Wait types

254

against a single table, it might be worth taking the time to see if you can combine some of

the small inserts into a larger batch, effectively lowering the number of latches needed.

One final option for resolving latch contention is using a method called hash

partitioning. Hash partitioning splits up your table or index into various partitions based

on a value that is generated by using a computed column. Partitioning is only available

in Enterprise Edition (unless you are running SQL Server 2016 SP1 or higher, in that case

table and index partitioning is also available in Standard Edition), but it is a method that

can minimize, or completely prevent, latch contention.

Hash partitioning works by cutting up tables or indexes into partitions, with each

partition holding a set of the data. Partitioning is frequently used for archiving data

from inside a table to another filegroup that resides on other (cheaper) storage, while

the current data resides on fast storage. In the case of hash partitioning, we are going to

calculate a value for every row inside the table using a computed column. Based on that

value, we will move the row to a partition.

The great advantage of using this method of partitioning indexes is that every

partition has its own index tree. So even though the insert statements will still occur on

the last (right-most) page of the index, it will be spread across the partitions. If we look

at Figure 9-13, we see a case of last-page insert contention, where concurrent queries are

trying to insert rows into an index as we discussed in the preceding example.

If we were to use partitioning to cut the index into multiple parts (three in this case),

we would get the situation shown in Figure 9-14, multiple B-trees, each spanning a part

of the data.

Figure 9-13. Last-page insert contention on the right-most data page of an index

Chapter 9 LatCh-reLated Wait types

255

Let’s take a look at the effects of hash partitioning when we run the workload to

generate last-page insert contention, like we did in the example earlier in this chapter.

The first thing we need to do is create a Partition function. This will map rows inside

the table or index to partitions based on the value of a column. The following script

will create a Partition function named LatchPartFunc that will divide rows into nine

partitions based on the value of a column (which we will create a bit later). See the

following:

CREATE PARTITION FUNCTION [LatchPartFunc] (INT)

AS RANGE LEFT FOR VALUES

 (0,1,2,3,4,5,6,7,8);

The next step is to create a Partition scheme that will map the partitions to a

filegroup:

CREATE PARTITION SCHEME [LatchPartSchema]

AS PARTITION [LatchPartFunc] ALL TO ([PRIMARY]);

In this case I used the PRIMARY filegroup, but you are free to create an additional

filegroup to hold the partitions.

Next up is creating a new table called Insert_Test3 using the query that follows.

Notice the ID_Hash column. This is a computed column that will calculate a value

between 0 and 8 based on the value of the ID column:

CREATE TABLE Insert_Test3

 (

 ID INT IDENTITY(1,1),

 RandomData VARCHAR(50),

Figure 9-14. Last-page inserts spread across partitions

Chapter 9 LatCh-reLated Wait types

256

 ID_Hash AS (CONVERT(INT, abs(binary_checksum(ID) % (9)), (0))) PERSISTED

);

The last step is to create a clustered index and map it to the Partition scheme:

CREATE UNIQUE CLUSTERED INDEX idx_ID

ON Insert_Test3

 (

 ID ASC, ID_Hash

)

ON LatchPartSchema(ID_Hash);

Now that we have our partitioned table in place, let’s repeat our Ostress workload

that caused last-page insert contention in our previous example. I changed the target

table for the inserts to our new, partitioned Insert_Test3 table.

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E

-dAdventureWorks -Q"INSERT INTO Insert_Test3 (RandomData) VALUES

(CONVERT(varchar(50), NEWID()))" -n500 -r100 -q

During both Ostress workloads I used Perfmon to monitor the number of latch

waits occurring every second. Figure 9-15 shows the Perfmon graph for the first Ostress

workload against a non-partitioned index and the second against the partitioned index

we just created.

Chapter 9 LatCh-reLated Wait types

257

As you can see, the number of latch waits occurring dropped drastically after

configuring hash partitioning! We can view the distribution of rows across the different

partitions we created by running this query:

SELECT *

FROM sys.partitions

WHERE object_id = OBJECT_ID('Insert_Test3');

Figure 9-16 shows the results of this query on my test SQL Server instance.

Figure 9-15. Latch Waits/sec against both a non-partitioned and a partitioned index

Chapter 9 LatCh-reLated Wait types

258

In Figure 9-16 we see the nine partitions we created on the Insert_Test3 table,

numbered 1 to 9 by the partition_number column. The rows column shows the number

of rows inside each partition, and as you can see, they are distributed very evenly across

the nine partitions! The hobt_id returns the ID of the B-tree where two rows of this

partition are stored; all the partitions have different IDs, meaning they each have their

own B-tree structure.

Even though partitioning is a great way to resolve latch contention issues, it does come

with its own unique challenges and drawbacks. Two of those are that it is an Enterprise-

only feature (unless you are on SQL Server 2016 SP1 or higher), thus costly, and it can

impact the generation of query execution plans, resulting in a suboptimal plan.

 PAGELATCH_[xx] Summary
The PAGELATCH_[xx] wait type indicates that buffer latches, which are used to protect

in-memory pages, are running into other, non-compatible, buffer latches. Just like locks,

latches have different modes they use when protecting pages, and not all of these are

compatible with each other. Seeing a large amount of PAGELATCH_[xx] waits occurring

can indicate a case of latch contention. Resolving latch contention can be challenging

and frequently requires making changes to the database design or queries.

 LATCH_[xx]
Another latch-related wait type is the LATCH_[xx] wait type. Just like the PAGELATCH_[xx] wait

type we discussed in the previous section, LATCH_[xx] waits are related to a specific latch

class. While the PAGELATCH_[xx] wait type is related to latches that protect data structures

inside the buffer cache, the LATCH_[xx] wait type is related to latches that are used to protect

data structures outside of the buffer cache (but still inside the SQL Server memory).

Figure 9-16. Rows distribution across partitions

Chapter 9 LatCh-reLated Wait types

259

 What Is the LATCH_[xx] Wait Type?
When you see the LATCH_[xx] wait type occurring a specific class of non-buffer latches

is running into a wait. The LATCH_[xx] is actually a summary of the wait time of those

different non-buffer latch classes and not a latch type of its own. All of the different

non-buffer latch classes that add to the wait time shown by the LATCH_[xx] wait type

are recorded inside their own DMV, sys.dm_os_latch_stats. There are many different

latch classes that the LATCH_[xx] wait type represents, totaling 168 in SQL Server 2017.

Figure 9-17 shows the memory area where LATCH_[xx] waits can occur.

Because the LATCH_[xx] wait type is a cumulative view of waits occurring on a

specific latch class, you will need to look inside the sys.dm_os_latch_stats DMV to find

the exact cause of the LATCH_[xx] wait. We described the inner workings and columns of

the sys.dm_os_latch_stats DMV in the “Introduction to Latches” section at the start of

this chapter, so I won’t go into more detail about the DMV here.

 LATCH_[xx] Example
There is one case of latch contention that can occur that will result in LATCH_[xx] waits.

This problem can occur on small tables that have a shallow B-tree structure (we will

explain more about the B-tree structure a bit further down in this section) during a large

Figure 9-17. LATCH_SH wait occurring

Chapter 9 LatCh-reLated Wait types

260

volume of concurrent insert operations. A typical use case of such a table could be a

messaging table that acts as a queue and gets truncated when the messages are sent.

The script in Listing 9-2 will create a test table, named Insert_Test2, together with a

non-clustered index on the table.

Listing 9-2. Test contention table with non-clustered index

-- Create the table

CREATE TABLE Insert_Test2

 (

 ID UNIQUEIDENTIFIER,

 RandomData VARCHAR(50)

);

-- Create a non-clustered index on the ID column

CREATE NONCLUSTERED INDEX idx_ID

ON Insert_Test2 (ID);

GO

The ID column has a data type of UNIQUEIDENTIFIER to make sure random, non-

sequential values are generated. By creating a non-clustered index on this column,

we are sure inserts will happen randomly across the B-tree associated with the non-

clustered index.

Once the table is created we can start Ostress with a workload consisting of an insert

query that will insert a single row inside the table. We will run the workload with 500

concurrent connections, with each of the connections executing the query 100 times.

The command that follows shows the Ostress command:

"C:\Program Files\Microsoft Corporation\RMLUtils\ostress.exe" -E

-dAdventureWorks -Q"INSERT INTO Insert_Test2 (ID, RandomData) VALUES

(NEWID(), CONVERT(varchar(50), NEWID()))" -n500 -r100 -q

While the workload is running, I can take a look at the sys.dm_os_waiting_tasks

DMV using the following query so the resource_description column could fit on the

screenshot:

SELECT

 session_id,

 wait_duration_ms,

Chapter 9 LatCh-reLated Wait types

261

 wait_type,

 resource_description

FROM sys.dm_os_waiting_tasks;

Figure 9-18 shows a part of the results of this query on my test SQL Server instance.

The resource_description column of the sys.dm_os_waiting_tasks DMV will

help us identify what latch class is associated with the LATCH_[xx] wait. In this case we

are running into the ACCESS_METHODS_HOBT_VIRTUAL_ROOT latch class.

Now that we know what latch class is running into waits, we can query the

sys.dm_os_latch_waits DMV to find out the number of waits and the total wait time for

this specific latch class using the following query:

SELECT *

FROM sys.dm_os_latch_stats

WHERE latch_class = 'ACCESS_METHODS_HOBT_VIRTUAL_ROOT';

Figure 9-19 shows the results of this query on my test SQL Server instance.

Figure 9-18. LATCH_SH waits occurring

Figure 9-19. ACCESS_METHOD_HOBT_VIRTUAL_ROOT latch wait

Chapter 9 LatCh-reLated Wait types

262

Now that we have identified the latch class that is causing the LATCH_SH wait

to occur we can start troubleshooting it. According to Books Online, the ACCESS_

METHODS_HOBT_VIRTUAL_ROOT latch class is used to “synchronize access to the root page

abstraction of an internal B-tree.” Even though the description is pretty limited, it should

give us an idea of where to start looking when troubleshooting this specific problem.

I included a list of the different latch classes that are described on Books Online, including

some extra information whenever possible, in Appendix III of this book.

Apparently, something happened to the B-tree structures associated with indexes.

Since we only have one non-clustered index on the table we created (idx_ID), we can

assume something happened to the B-tree of that index. Let’s refresh our memory a little

bit about what a B-tree index structure looks like by looking at Figure 9-20.

The B-tree structure we see in Figure 9-20 is pretty shallow, as it only has three levels.

The first one is the Root Node (level 0), the second is the Intermediate level (level 1), and

finally at the bottom of the B-tree are the data pages that hold the actual index keys

(or in case of a clustered index, the entire row). In Figure 9-20 we only have one level of

intermediate nodes, but depending on the number of data pages inside the index it is

possible to have more Intermediate levels. When the table is very small it is possible to

have the data pages inside the Intermediate level instead of a level further down the B-tree.

Whenever SQL Server needs to navigate through the B-tree it will start at the Root

page inside the Root Node. The Root page will help it navigate down to the index

page that holds the information it needs inside the Intermediate level. In turn, the

Figure 9-20. B-tree index structure

Chapter 9 LatCh-reLated Wait types

263

Intermediate page can send the request further down the B-tree if the page is not

inside the Intermediate level, but is rather at the Leaf level. The Leaf level is the last

level in an index; it cannot navigate further down than that. Figure 9-21 shows how

SQL Server navigates through the B-tree. In this case I used numbers as the index key

to make it a bit easier.

When data is added to the index, the index will allocate new data pages at the Leaf

level to hold the index keys (remember, clustered indexes hold rows at the Leaf level).

Whenever enough data is inserted that a new index level needs to be created, a Root

page split occurs so the new level inside the index can be accessed. This Root page split

doesn’t cut your Root page into two new ones, there is always one Root page, but it needs

to be updated so we can use it to navigate through the B-tree to the new data.

The ACCESS_METHODS_HOBT_VIRTUAL_ROOT latch class is the latch wait class that is

associated whenever a Root page split occurs in order to create another level inside the

B-tree. Whenever a Root page split occurs, the B-tree will acquire an Exclusive latch. All

threads that want to navigate down the B-tree will have to wait for the Root page split

to finish since they use Shared latches that are incompatible with the Exclusive latch.

But why are we seeing LATCH_SH waits occurring when running our Ostress workload,

Figure 9-21. B-tree navigation

Chapter 9 LatCh-reLated Wait types

264

instead of seeing Exclusive latches, since we are performing inserts? The reason for that

is pretty simple: before SQL Server knows where to place the new index key inside the

index, it first has to navigate through the B-tree to locate where the new index key needs

to be placed, and it uses Shared latches during its navigation.

To show you that another level was added to the non-clustered index during our

Ostress workload, I am going to use the INDEXPROPERTY function to retrieve the depth of

the non-clustered index we created.

The first thing I am going to do is empty our Insert_Test2 table using the TRUNCATE

command:

TRUNCATE TABLE Insert_Test2;

If we use the INDEXPROPERTY function against the non-clustered index on this table,

we can view the current depth of the B-tree. The query that follows shows how to use the

INDEXPROPERTY function to retrieve this information:

SELECT INDEXPROPERTY(OBJECT_ID('Insert_Test2'), 'idx_ID', 'indexDepth')

Since we just truncated the table, the index depth should be 0 as there are no rows

inside the table yet.

I then run the Ostress workload again, and after it has finished I look at the

index information again. Instead of using the INDEXPROPERTY function, I use the

sys.dm_db_index_physical_stats DMF to return some additional information

about the number of index and data pages inside the index. This query returns such

information:

SELECT

 index_id,

 index_type_desc,

 index_depth,

 index_level,

 page_count,

 record_count

FROM sys.dm_db_index_physical_stats

 (DB_ID(N'AdventureWorks'), OBJECT_ID(N'Insert_Test2'), NULL, NULL ,

'DETAILED');

Figure 9-22 shows the results of this query on my test SQL Server instance.

Chapter 9 LatCh-reLated Wait types

265

As you can see in this image, the non-clustered index now has three levels as

indicated by the index_depth column. The index_level and page_count columns show

how many pages exist on each level of the B-tree. The highest index_level number is

the Root level, the lowest the Leaf level.

While the new levels were created inside the B-tree, the concurrent insert queries

had to wait before they could navigate the B-tree, resulting in the LATCH_SH waits.

 Lowering LATCH_[xx] Waits
In the previous example I presented a specific case of latch contention that occurs when

index Root page splits occur so as to extend the B-tree structure. As I mentioned before,

there are many, many more latch classes that are reported by the LATCH_[xx] wait type.

This makes describing “one-size-fits-all” suggestions impossible. I can describe a general

approach though, using the list here:

• Query sys.dm_os_waiting_tasks if LATCH_[xx] waits are occurring.

The resource_description column can show you additional

information about the specific latch class. If you are in a situation

where the LATCH_[xx] waits do not show in sys.dm_os_waiting_

tasks but high wait times are visible in sys.dm_os_wait_stats DMV,

the sys.dm_os_latch_waits DMV should be your starting point.

• Another helpful DMV can be the sys.dm_exec_requests

DMV. Joined together with the sys.dm_exec_sql_text DMF, it may

help you to find the query that is causing the LATCH_[xx] wait.

• Query sys.dm_os_latch_waits to see if this correlates with the latch

class shown in the resource_description column of the sys.dm_os_

waiting_tasks DMV.

Figure 9-22. sys.dm_db_index_physical_stats results

Chapter 9 LatCh-reLated Wait types

266

• Check Books Online or Appendix III in this book for more

information about the specific latch class.

Another good resource for more information about common latch classes is Paul

Randal’s blog post “Most common latch classes and what they mean” at www.sqlskills.

com/blogs/paul/most-common-latch-classes-and-what-they-mean/. Though Paul

only describes the ten most common latch classes, it can be a good starting point for

your investigation.

Thankfully, it is not very common to see consistent high wait times for the LATCH_[xx]

wait type since the cases that can cause the LATCH_[xx] waits to occur are frequently

related to very specific workloads and database design.

 LATCH_[xx] Summary
The LATCH_[xx] wait type represents waits encountered by a large selection of different,

non-buffer-related latch classes inside SQL Server. These non-buffer-related latch

classes have their own latch wait DMV, sys.dm_os_latch_waits, that returns the wait

times of those latch classes. Troubleshooting LATCH_[xx] waits can be difficult since

the latch classes that are associated with the wait type are minimally documented.

Thankfully, it is not very common to see high wait times on the LATCH_[xx] wait type

since they only occur for very specific situations and workloads.

 PAGEIOLATCH_[xx]
The final latch-related wait type we will discuss in this chapter is the PAGEIOLATCH_[xx]

wait type. The PAGEIOLATCH_[xx] wait type is by far the most common latch-related wait

type and together with the CXPACKET wait type is the most common wait type to see on

any SQL Server instance.

Just like the two previous latch wait types we discussed, the PAGEIOLATCH_[xx]

has different access modes that I replaced with [xx] in this chapter. Since we already

described the different latch modes in the introduction, we won’t discuss them further in

this chapter.

So far we have discussed two of the three latch-related wait types and the areas they

are related to. The PAGELATCH_[xx] wait type was related to latches being placed on

memory pages inside the buffer cache, and the LATCH_[xx] wait type is related to latches

on non-buffer objects. The PAGEIOLATCH_[xx] wait type also indicates the use of latches

on a specific area in SQL Server, in this case the IO latches.

Chapter 9 LatCh-reLated Wait types

http://www.sqlskills.com/blogs/paul/most-common-latch-classes-and-what-they-mean/
http://www.sqlskills.com/blogs/paul/most-common-latch-classes-and-what-they-mean/

267

 What Is the PAGEIOLATCH_[xx] Wait Type?
Disk operations inside SQL Server are very expensive. Accessing the disk subsystem of

your system requires extra resources and is always slower than accessing information

that is inside the memory of your system. Because SQL Server is a database, and

accessing and storing data inside the database is its primary function, the way SQL

Server accesses data is extremely important. If data access is slow, SQL Server will

perform slower as well, and this can result in noticeable performance degradation inside

your queries or applications. To make IO interactions as efficient as possible, SQL Server

uses a buffer cache to cache data pages that were previously accessed into the memory

of your system. By caching data pages SQL Server only has to access the disk subsystem

once, when the first query requests those specific data pages. When later queries require

the same data pages as the first query, SQL Server will detect that those pages are already

inside the buffer cache, through the Buffer Manager, and will access the data pages from

inside the buffer cache instead of performing extra interactions with the disk subsystem.

Figure 9-23 shows the buffer cache behavior when a query requires data pages from the

storage subsystem.

Figure 9-23. Moving a page from the storage subsystem to the buffer cache

Chapter 9 LatCh-reLated Wait types

268

During the movement of data pages from the storage subsystem to the buffer cache,

latches are used to “reserve” a buffer page for the data page on the storage subsystem.

This makes sure no other concurrent transactions allocate the same buffer page, or

simultaneously attempt to transfer the same data page from the storage subsystem to the

buffer cache.

While SQL Server is transferring the data page from the storage subsystem into the

buffer cache, an Exclusive latch will be placed on the buffer page. Because Exclusive

latches are incompatible with almost every other latch mode (save for the Keep

mode), it is guaranteed that no other latch can access the buffer page while it is being

transferred. From the user perspective, a PAGEIOLATCH_[xx] wait will be recorded

for the duration of the transfer of the data page. The mode of the latch depends on

the action that initiated the movement of the data page from the storage subsystem

to the buffer cache. A PAGEIOLATCH_SH will be recorded if the data is being moved for

read access, and a PAGEIOLATCH_UP or PAGEIOLATCH_EX will be used if the data page is

being moved for a modification. Figure 9-24 shows the data page movement including

latches and latch waits.

To summarize the preceding section, if you see PAGEIOLATCH_[xx] waits occurring,

it means your SQL Server instance is reading data from your storage subsystem into

your buffer cache. Because this is a very common operation to perform, it is easy to see

why the PAGEIOLATCH_[xx] wait type is one of the most common wait types on any SQL

Server instance.

Figure 9-24. Movement of data page

Chapter 9 LatCh-reLated Wait types

269

 PAGEIOLATCH_[xx] Example
Creating an example for PAGEIOLATCH_[xx] waits is extremely easy—just run a SELECT

query against a freshly restarted SQL Server instance. A restart of the SQL Server service

will empty the buffer cache of all data pages. This will leave you with a buffer cache

without any user data inside it. There is, however, another way to clear the buffer cache

without needing to restart the SQL Server service. Running the DBCC DROPCLEANBUFFERS

command will remove all the unmodified data pages from the buffer cache. Combining

it with the CHECKPOINT command will ensure the modified pages are also written to disk,

leaving you with an empty, or “cold,” buffer cache.

The query in Listing 9-3 will perform a CHECKPOINT, followed by a DBCC

DROPCLEANBUFFERS. It will then reset the sys.dm_os_wait_stats DMV and run a query

against the AdventureWorks database. After the query against some of the tables inside

the AdventureWorks database, we will query the sys.dm_os_wait_stats DMV for

PAGEIOLATCH_[xx] waits.

Listing 9-3. Generate PAGEIOLATCH_SH waits

CHECKPOINT 1;

GO

DBCC DROPCLEANBUFFERS;

GO

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

GO

SELECT

 SOD.SalesOrderID,

 SOD.CarrierTrackingNumber,

 SOH.CustomerID,

 C.AccountNumber,

 SOH.OrderDate,

 SOH.DueDate

FROM Sales.SalesOrderDetail SOD

INNER JOIN Sales.SalesOrderHeader SOH

ON SOD.SalesOrderID = SOH.SalesOrderID

Chapter 9 LatCh-reLated Wait types

270

INNER JOIN Sales.Customer C

ON SOH.CustomerID = C.CustomerID;

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type LIKE 'PAGEIOLATCH_%';

Figure 9-25 shows the results of the last query against the sys.dm_os_wait_stats

DMV on my test SQL Server instance.

It makes sense to see only PAGEIOLATCH_SH waits recorded, since we are executing a

SELECT query instead of performing data modification. If we were to perform some form

of data modification against the rows, we would see PAGEIOLATCH_EX waits in the results.

 Lowering PAGEIOLATCH_[xx] Waits
If you read the previous section, you would probably understand that seeing

PAGEIOLATCH_[xx] waits occur is completely normal behavior inside SQL Server.

In many cases your databases are larger in size than the available amount of RAM

inside your system, and some interaction with the storage subsystem is to be

expected. Even if your databases are smaller than the amount of RAM in your system,

and they can fit entirely inside the buffer cache, you will still notice PAGEIOLATCH_[xx]

waits occurring during the startup of SQL Server, since this is the time SQL Server

will start moving data pages from the storage subsystem into the buffer cache (if

there is any query activity, SQL Server won’t move data from the storage subsystem

into the buffer cache by itself).

Figure 9-25. PAGEIOLATCH_SH wait time information

Chapter 9 LatCh-reLated Wait types

271

Since seeing PAGEIOLATCH_[xx] waits occur is completely normal for every SQL

Server instance, it is very important to maintain a baseline of the wait times (Chapter 4,

“Building a Solid Baseline,” can help you with that). When the wait times stay within the

range of the baseline values for this wait type, there shouldn’t be any cause for concern.

If wait times are much higher than you expect them to be, investigation into the source

of the higher-than-normal wait times might be necessary. There are quite a few possible

causes for seeing higher-than-normal PAGEIOLATCH_[xx] wait times, and I will describe

some of the more common ones.

The first place I look when noticing higher-than-normal PAGEIOLATCH_[xx] wait

times is the SQL Server log to find out if SQL Server was restarted. SQL Server can

restart due to a crash, but also when a failover occurs. These events will cause high

PAGEIOLATCH_[xx] wait times that might not be reflected in your baseline, especially

when SQL Server restarts do not frequently occur. Since our baseline’s measurements

are frequently calculated using average values, the PAGEIOLATCH_[xx] wait times

during SQL Server startup slowly lower when more measurements are taken inside the

average baseline. If you create your baseline on measurements taken between a specific

time range, and SQL Server hasn’t had a restart during the time range, your baseline

measurements will also be considerably lower. As we read in the example section, a DBCC

DROPCLEANBUFFERS will also remove data pages from the buffer cache, resulting in higher

PAGEIOLATCH_[xx] wait times after the command completes. Sadly, unlike the DBCC

FREEPROCCACHE command, the execution of the DBCC DROPCLEANBUFFERS command is

not recorded in the SQL Server log.

One of the more common pieces of advice I see about lowering PAGEIOLATCH_[xx]

wait times is to focus your attention on the storage subsystem. Since the PAGEIOLATCH_[xx]

wait type indicates data movement from your storage subsystem to your buffer cache,

it is logical that the storage subsystem plays a vital role in the wait times, but do not

automatically assume this is the root cause! If you do have storage-related problems,

this can show in the PAGEIOLATCH_[xx] wait time, so checking the performance of your

storage subsystem is worth the effort.

Chapter 9 LatCh-reLated Wait types

272

A good place to start for monitoring storage performance is Perfmon. Perfmon

has a variety of counters that will show you the current performance of your storage

subsystem. Those in the following list are the ones I use the most when monitoring

storage performance:

• PhysicalDisk\Avg. Disk sec/Read: This will show you the

average read latency on the disk you are monitoring. Less latency

is better, and as a general guideline latency values should be below

20 milliseconds (0.020 within Perfmon, as it reports the latency in

seconds).

• PhysicalDisk\Avg. Disk sec/Write: This will return the average

write latency on the disk you are monitoring. Just like the read

latency, write latency should, as a general guideline, be below 20

milliseconds.

• PhysicalDisk\Disk Reads/sec: This shows the amount of read

IOPS (Input Output Operations) per second. This information can be

helpful if you are running into capacity issues on the disk.

• PhysicalDisk\Disk Writes/sec: The same as the PhysicalDisk\

Disk Reads/sec, but this one shows the amount of write IOPS.

• PhysicalDisk\Disk Read Bytes/sec: This counter shows the

amount of bytes read from the disk per second. Again, this

information can be useful for detecting possible capacity problems.

• PhysicalDisk\Disk Write Bytes/sec: This is identical to the

PhysicalDisk\Disk Read Bytes/sec, but this counter shows the

amount of bytes written to disk per second.

Using the information these Perfmon measurements provide, you should be able

to identify possible storage-related bottlenecks. This information can also be helpful to

the storage administrator (if there is one) who can compare these measurements to the

measurements of the storage he/she manages.

As an extra diagnostic tool, or if you cannot use Perfmon, you can also run the IO

performance script Paul Randal created based on the sys.dm_io_virtual_file_stats

DMF, shown in Listing 9-4. The script, and the blog post describing the script, can

be found on Paul’s blog at www.sqlskills.com/blogs/paul/how-to-examine-io-

subsystem- latencies-from-within-sql-server/.

Chapter 9 LatCh-reLated Wait types

http://www.sqlskills.com/blogs/paul/how-to-examine-io-subsystem-latencies-from-within-sql-server/
http://www.sqlskills.com/blogs/paul/how-to-examine-io-subsystem-latencies-from-within-sql-server/

273

Listing 9-4. IO performance script

SELECT

 [ReadLatency] =

 CASE WHEN [num_of_reads] = 0

 THEN 0 ELSE ([io_stall_read_ms] / [num_of_reads]) END,

 [WriteLatency] =

 CASE WHEN [num_of_writes] = 0

 THEN 0 ELSE ([io_stall_write_ms] / [num_of_writes]) END,

 [Latency] =

 CASE WHEN ([num_of_reads] = 0 AND [num_of_writes] = 0)

 THEN 0 ELSE ([io_stall] / ([num_of_reads] + [num_of_writes])) END,

 [AvgBPerRead] =

 CASE WHEN [num_of_reads] = 0

 THEN 0 ELSE ([num_of_bytes_read] / [num_of_reads]) END,

 [AvgBPerWrite] =

 CASE WHEN [num_of_writes] = 0

 THEN 0 ELSE ([num_of_bytes_written] / [num_of_writes]) END,

 [AvgBPerTransfer] =

 CASE WHEN ([num_of_reads] = 0 AND [num_of_writes] = 0)

 THEN 0 ELSE

 (([num_of_bytes_read] + [num_of_bytes_written]) /

 ([num_of_reads] + [num_of_writes])) END,

 LEFT ([mf].[physical_name], 2) AS [Drive],

 DB_NAME ([vfs].[database_id]) AS [DB],

 [mf].[physical_name]

FROM

 sys.dm_io_virtual_file_stats (NULL,NULL) AS [vfs]

JOIN sys.master_files AS [mf]

 ON [vfs].[database_id] = [mf].[database_id]

 AND [vfs].[file_id] = [mf].[file_id]

-- WHERE [vfs].[file_id] = 2 -- log files

ORDER BY [Latency] DESC

-- ORDER BY [ReadLatency] DESC

-- ORDER BY [WriteLatency] DESC;

GO

Chapter 9 LatCh-reLated Wait types

274

Figure 9-26 shows a part of the results of the IO performance script from Listing 9-4

on my test SQL Server instance, ordered by latency.

One important thing to keep in mind with the IO performance script is that its

values are cumulative from the start of the SQL Server service. They do not show the

situation at the moment of executing the query. If you are interested in monitoring your

IO performance using this script, you can consider capturing the output to a table at a

specific interval and calculate the deltas (much in the same way as we did in Chapter 4,

“Building a Solid Baseline”).

Next to the performance of your storage subsystem, the behavior of your queries can

impact the wait times of the PAGEIOLATCH_[xx] wait type. The more data your queries

are requesting (that is not already in the buffer cache), the larger the amount of data that

needs to be read from the storage subsystem into the buffer cache. For instance, if we

were to modify the query of Listing 9-3, shown in Listing 9-5, to be more selective so that

less data is returned, the amount of PAGEIOLATCH_[xx] wait time should also be less.

Listing 9-5. Modified Listing 9-3 query

CHECKPOINT 1;

GO

DBCC DROPCLEANBUFFERS;

GO

Figure 9-26. IO performance on my test SQL Server instance

Chapter 9 LatCh-reLated Wait types

275

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

GO

SELECT

 SOD.SalesOrderID,

 SOD.CarrierTrackingNumber,

 SOH.CustomerID,

 C.AccountNumber,

 SOH.OrderDate,

 SOH.DueDate

FROM Sales.SalesOrderDetail SOD

INNER JOIN Sales.SalesOrderHeader SOH

ON SOD.SalesOrderID = SOH.SalesOrderID

INNER JOIN Sales.Customer C

ON SOH.CustomerID = C.CustomerID

WHERE SOD.CarrierTrackingNumber BETWEEN 'F467-41BF-8B' AND 'F4E4-4739-B4'

;

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type LIKE 'PAGEIOLATCH_%';

Figure 9-27 shows the results of the last query that was executed against the sys.

dm_os_wait_stats DMV.

As you can see from Figure 9-27, the wait times of the PAGEIOLATCH_SH wait type went

down drastically, from 19 to 3 milliseconds. Now, this example is rather small, and we

are dealing with very small result sets, but I think it shows the point.

Figure 9-27. PAGEIOLATCH_SH wait time information

Chapter 9 LatCh-reLated Wait types

276

However, you don’t always have the luxury of being able to modify every query so

that it is more selective. Maybe the queries are generated by an application and you

can’t even modify them, or the queries simply need the large result set. Thankfully, as

a DBA, we can also play a part in minimizing PAGEIOLATCH_[xx] wait times by simply

performing database maintenance. Index fragmentation and out-of-date statistics can

increase the PAGEIOLATCH_[xx] wait times drastically. If indexes are fragmented more

disk IOs need to take place to retrieve the data requested, which means IO latches will

need to stay in place longer, which results in higher PAGEIOLATCH_[xx] wait times. Out-

of- date statistics can also result in more disk IOs, because SQL Server expects a different

number of rows to be returned instead of the actual number of rows. So, make sure you

are regularly performing index and statistics maintenance to make sure the amount of

disk interaction is as small as possible.

The final area that can impact PAGEIOLATCH_[xx] wait time is the memory of your

system. SQL Server will remove data pages from inside the buffer cache if they have

not been accessed within a specific timeframe in order to free up room inside the

buffer cache. The interval at which SQL Server performs this cleanup depends on the

amount of data coming into the buffer cache and the amount of free space inside the

buffer cache. If the request for data pages inside the buffer cache is very high, SQL

Server will be forced to swap data pages that have been accessed the least (or haven’t

been accessed for a while) for pages that are required now. This movement of data

pages from and to the buffer cache will result in more PAGEIOLATCH_[xx] waits. In an

ideal world, your database would fit completely inside the buffer cache of your SQL

Server instance. In this case, SQL Server will only need to move the data pages from

the storage subsystem into the buffer cache once, where they will stay until SQL Server

restarts again. Even though we do have access to very large amounts of RAM these

days, in many cases we cannot simply fit our entire database into the buffer cache

of our SQL Server instance, and some swapping of data pages from the buffer cache

back to the storage subsystem can be expected. Adding more RAM to your system will

increase the number of data pages the buffer cache can store and can help the buffer

cache keep those pages in memory longer.

There are two Perfmon counters that can help you get some insight into the

buffer cache usage: SQLServer:Buffer Manager\Buffer cache hit ratio and

SQLServer:Buffer Manager\Page life expectancy. The SQLServer:Buffer Manager\

Buffer cache hit ratio will show you what percentage of pages could be located in

the buffer cache that do not require a physical read on the storage subsystem.

Chapter 9 LatCh-reLated Wait types

277

The SQLServer:Buffer Manager\Page life expectancy counter will show you the

number of seconds a data page stays inside the buffer cache. If you see continuously low

values on both these counters, compared to your baseline, it could mean SQL Server is

running into memory pressure and needs to move data pages from the buffer cache back

to disk again to free up memory. These two counters are not perfect, though, and much

has been written about their workings (and specifically their ideal values). We won’t go

into details about what good values for these counters should be, as for that you should

refer to your baseline, but I believe they are a good starting point for investigating buffer

cache memory pressure.

 PAGEIOLATCH_[xx] Summary
The PAGEIOLATCH_[xx] wait type is, by far, the most common latch-related wait type.

Together with the CXPACKET wait type, the PAGEIOLATCH_[xx] wait type is probably the

most common wait type on any SQL Server instance. The PAGEIOLATCH_[xx] wait type

is directly related to the movement of data pages on the storage subsystem into the

buffer cache memory of your SQL Server instance. SQL Server uses the buffer cache

to minimize the number of interactions to the (much slower) storage subsystem so

as to maximize performance. Whenever a data page is read into the buffer cache, the

PAGEIOLATCH_[xx] wait type will be recorded for the time it took to do so. There are

many methods available to lower the amount of PAGEIOLATCH_[xx] wait time. The

frequently advised “get faster storage” doesn’t always hold true, even though fast storage

will indeed directly influence the PAGEIOLATCH_[xx] wait times. Optimizing queries so

they require fewer data pages to be moved to the buffer cache, performing maintenance

on indexes and statistics, and analyzing memory performance could all lead to lower

PAGEIOLATCH_[xx] wait times.

Chapter 9 LatCh-reLated Wait types

279
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_10

CHAPTER 10

High-Availability
and Disaster-Recovery
Wait Types
There have always been several options available within SQL Server to make sure

your database is always available to your users and/or the data inside your database is

replicated to another server so as to minimize the chances of losing data. Just like with

performing regular database backups to ensure you can revert to a previous state of

your database should a crash or data corruption occur, planning and maintaining highly

available database environments is part of your job as a DBA.

Now that data has become incredibly important for many companies, and the need

for high-availability database servers grows, many DBAs will find themselves managing

SQL Server instances inside a high-availability solution, like mirroring, or a disaster-

recovery configuration, like log shipping. With these types of SQL Server high-availability

and disaster-recovery configurations comes a group of dedicated wait types that are

directly related to the health of your high-availability and disaster-recovery (HA/DR)

configuration. With the release of SQL Server AlwaysOn Availability Groups in SQL

Server 2012, more options became available for configuring HA/DR solutions, together

with new wait types that are directly related to AlwaysOn Availability Groups.

In this chapter we will take a look at some of the most common wait types to see in

HA/DR configurations. The main focus of the wait types inside this chapter is AlwaysOn

Availability Groups, because Microsoft is deprecating many of the previous installments

of features that now fall under the name AlwaysOn Availability Groups, like mirroring.

As an exception to this rule, I selected one mirroring-related wait type that is relatively

common on highly used mirroring configurations. All the other wait types are related to

AlwaysOn Availability Groups.

280

For the examples inside this chapter, I used several virtual machines to create a

mirroring and an AlwaysOn Availability Groups configuration. The configuration of

these VMs can be found in Appendix I Example SQL Server Machine Configurations.

 DBMIRROR_SEND
The first wait type I want to discuss in this chapter is the DBMIRROR_SEND wait type. As you

might suspect from the wait type name, DBMIRROR_SEND is related to database mirroring.

Database mirroring is a feature that was introduced in SQL Server 2005 but was

announced deprecated in SQL Server 2012. This doesn’t mean you cannot use database

mirroring in SQL Server 2012 or SQL Server 2014, but it does mean it is scheduled for

removal. The entire feature will be replaced with AlwaysOn Availability Groups, which

offers the same configuration options as database mirroring.

Database mirroring is a solution that increases the availability of SQL Server

databases, and unlike, for instance, failover clustering, it can be configured on a per-

database basis. Database mirroring works by redoing every data modification operation

that occurs on the primary database (called principal in database-mirroring terms) on

the mirror database. The redoing of every database modification operation is achieved

by streaming active transaction log records to the mirror server, which will perform the

operations on the mirror database in the sequence in which they were inserted into the

transaction log on the principal database.

Database mirroring offers two different operating modes that impact the

availability and performance of the mirror configuration: synchronous (or high-safety)

mode and asynchronous (or high-performance) mode. Even though both modes

perform identical actions to ensure data modification operations are also performed

on the mirror database, there can be a large difference in performance, and thus in

waits occurring.

The synchronous mirror mode makes sure that every data modification action

that is performed on the principal is also directly performed on the mirror. It does

this by waiting on sending a transaction confirmation message to the client until

the transaction is successfully written to disk on the mirror. Figure 10-1 depicts

synchronous mirroring.

Chapter 10 high-availability and disaster-reCovery Wait types

281

Even though synchronous mirroring makes sure data on the principal and mirror are

100% identical, it comes with a few drawbacks. One of those is that the performance of

your database inside a synchronous mirroring configuration is highly dependent on the

speed the mirror can process data modification operations, since every transaction has

to be committed on the mirror first.

The flow of a data modification transaction is described in the steps that follow:

 1. When the transaction is received, the principal will write the

transaction to the transaction log, but the transaction is not yet

committed though.

 2. The principal will send the log record to the mirror.

 3. The mirror will harden the log record to disk and send an

acknowledgment to the principal.

Figure 10-1. Synchronous mirroring

Chapter 10 high-availability and disaster-reCovery Wait types

282

 4. After the principal receives the acknowledgment, it will send

a confirmation message to the client that the transaction was

completed, and the transaction gets committed to the transaction

log on the principal.

The asynchronous mode works in much the same way; the exception is that it

will not wait on an acknowledgment message from the mirror before sending the

transaction confirmation message to the client. This means that transactions are

committed to disk on the principal before they are written to disk on the mirror. Using

asynchronous mirroring will improve mirror performance, since the latency overhead

of synchronous mirroring is removed. The trade-off for this increase in performance

is that asynchronous replication can lead to data loss in the case of a disaster, since it

is possible that transactions were not yet committed on the mirror. Figure 10-2 shows

the transaction-log flow on an asynchronous mirror; the dotted lines indicate that the

actions are not performed directly.

Figure 10-2. Asynchronous mirroring

Chapter 10 high-availability and disaster-reCovery Wait types

283

 What Is the DBMIRROR_SEND Wait Type?
The DBMIRROR_SEND wait type is most frequently related to synchronous mirroring

configurations. The description of the DBMIRROR_SEND wait type on Books Online is

“Occurs when a task is waiting for a communications backlog at the network layer to

clear to be able to send messages. Indicates that the communications layer is starting

to become overloaded and affect the database mirroring data throughput.” In this

case the Books Online description is pretty accurate, but the network is not the

only thing that can impact DBMIRROR_SEND wait times. Having a slow disk subsystem

connected to the mirror database can, for instance, also lead to an increase in

DBMIRROR_SEND wait times.

Another important point to remember is that high DBMIRROR_SEND wait times will

frequently only be recorded on the mirror instance, and not on the principal. It is common

to see waits occur on the DBMIRROR_SEND wait type on both the principal and the mirror,

but these will normally be very low on the principal. They can still reach high values on the

mirror since, generally, there is always some latency between both SQL Server instances.

Because of expected latency, I advise you to use baseline measurements to identify higher-

than-normal wait times for the DBMIRROR_SEND wait type.

 DBMIRROR_SEND Example
For this example I have built a synchronous mirror between two of my test SQL Server

instances, using the AdventureWorks database as the database that will be mirrored

between both instances.

Inside the AdventureWorks database, I create a simple table using the script in

Listing 10-1.

Listing 10-1. Create Mirror_Test table

USE [AdventureWorks]

GO

CREATE TABLE Mirror_Test

 (

 ID UNIQUEIDENTIFIER PRIMARY KEY,

 RandomData VARCHAR(50)

);

Chapter 10 high-availability and disaster-reCovery Wait types

284

After the table is created, I clear the sys.dm_os_wait_stats DMV and insert 10,000

rows into the Mirror_Test table using the query in Listing 10-2. I also make sure to

clear the sys.dm_os_wait_stats DMV on the mirror as well before running the script in

Listing 10-2.

Listing 10-2. Insert 10,000 rows into Mirror_Test table

DBCC SQLPERF('sys.dm_os_wait_stats, CLEAR')

INSERT INTO Mirror_Test

 (

 ID,

 RandomData

)

VALUES

 (

 NEWID(),

 CONVERT(VARCHAR(50), NEWID())

);

GO 10000

While the script is running, I look at the DBMIRROR_SEND wait times on both the

mirror and the principal using the following query:

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'DBMIRROR_SEND'

The results of this query can be seen in Figure 10-3, which shows the DBMIRROR_

SEND wait times on the mirror. Figure 10-4 shows the DBMIRROR_SEND wait times on the

principal server.

Figure 10-3. DBMIRROR_SEND wait times on the mirror

Chapter 10 high-availability and disaster-reCovery Wait types

285

As you can see, we spend quite some time waiting on the DBMIRROR_SEND wait type

on the mirror vs. no DBMIRROR_SEND waits on the principal.

 Lowering DBMIRROR_SEND Waits
One of the most common pieces of advice for lowering DBMIRROR_SEND wait time is

changing the mirror mode from synchronous to asynchronous. While this will absolutely

lower the wait time, it also means you can potentially lose data when a disaster occurs on

the principal. Lowering the wait time on the DBMIRROR_SEND wait type will have a positive

effect on the duration of your queries. For instance, in the example in the previous

section, the insert of 10,000 rows took around 30 seconds on my test SQL Server mirror

configuration. When I changed the mirror mode from synchronous to asynchronous,

not only did the wait times on the DBMIRROR_SEND wait type go down, the total execution

time of 10,000 inserts went down to 3 seconds. That’s an improvement of almost 30

seconds!

Even though these improvements might sound very attractive, sometimes changing

the mirror mode is not an option. For instance, your company’s disaster-recovery

strategy can require a synchronous mirror configuration. Changing the mirror mode

from synchronous to asynchronous should, in my opinion, be the last option (if it

actually is a viable option). There are other parts that can influence DBMIRROR_SEND wait

times, like the storage configuration on the mirror or the network connection between

the principal and mirror SQL Server instances. Both these parts can act like a bottleneck

between both instances, contributing to the DBMIRROR_SEND wait time.

Next to checking out the performance of your storage subsystem and network

connection, SQL Server has a database mirroring monitor that will give you status

information about the mirroring configuration. You can find the database mirroring

monitor by right-clicking the database that is part of a mirror, selecting Tasks ➤ Database

Mirroring Monitor. Figure 10-5 shows the monitor against my test mirror configuration.

Figure 10-4. DBMIRROR_SEND wait times on the principal

Chapter 10 high-availability and disaster-reCovery Wait types

286

As you can see, the database mirroring monitor can provide you with some very

interesting additional information like the number of log records that still need to

be sent or restored, how far behind the mirror currently is, and the send and restore

rates. In many of my dealings with database mirroring, the database mirroring

monitor is the first place I’ll check when there are performance issues involving the

mirror configuration.

 DBMIRROR_SEND Summary
The DBMIRROR_SEND wait type is directly related to database mirroring. Seeing DBMIRROR_

SEND waits occur is pretty normal on most mirror configurations. This makes using a

baseline to identify wait time spikes a necessity. The mirroring mode plays a huge part

in the DBMIRROR_SEND wait times. When using synchronous mirroring, DBMIRROR_SEND

wait times will frequently be higher than when using asynchronous mirroring. Not only

Figure 10-5. Database mirroring monitor

Chapter 10 high-availability and disaster-reCovery Wait types

287

the mirroring mode influences DBMIRROR_SEND wait times, though. Having a storage

subsystem on the mirror SQL Server instance that cannot keep up with the load will

have an effect on DBMIRROR_SEND waits, just like the network connection between the

principal and the mirror.

 HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE
The HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE wait types are both related to

AlwaysOn Availability Groups. All wait types that are related to AlwaysOn can easily be

identified by the HADR_ prefix in the wait type’s name. AlwaysOn Availability Groups was

introduced in SQL Server 2012 as a replacement for various SQL Server high-availability

and disaster-recovery features such as database mirroring. There are quite a few different

wait types associated with AlwaysOn, totaling 65 in SQL Server 2017. Not all of these

wait types necessarily indicate performance problems somewhere in your AlwaysOn

configuration. The HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE are both perfect

examples of benign wait types that occur naturally over time and do not directly indicate

a performance problem. Since both these wait types have high wait times associated

with them on every AlwaysOn configuration, and are thus very common, I wanted to

include them in this chapter to help you better understand what function they have.

 What Are the HADR_LOGCAPTURE_WAIT and HADR_
WORK_QUEUE Wait Types?
As I mentioned in the preceding section, both the HADR_LOGCAPTURE_WAIT and HADR_

WORK_QUEUE wait types occur in AlwaysOn configurations. They both occur in different

places inside your AlwaysOn configuration and have slightly different functions.

According to Books Online, the HADR_LOGCAPTURE_WAIT wait type indicates that SQL

Server is “waiting for log records to become available. Can occur either when waiting

for new log records to be generated by connections or for I/O completion when reading

log not in the cache. This is an expected wait if the log scan is caught up to the end of

log or is reading from disk.” The HADR_LOGCAPTURE_WAIT wait type occurs on the SQL

Server that hosts the primary database inside an AlwaysOn Availability Group. Think

of the primary database as being just like the principal inside a database mirroring

configuration.

Chapter 10 high-availability and disaster-reCovery Wait types

288

AlwaysOn works much the same way as database mirroring and also provides two

different modes (called Availability modes inside AlwaysOn): Synchronous-commit

and Asynchronous-commit. Both these Availability modes work in the same way as

their database mirroring counterparts we were discussing earlier in this chapter do.

This means that in Synchronous-commit mode the primary replica waits to commit

transactions to the transaction log until the secondary replica has completed its own

log hardening, while in Asynchronous-commit mode the primary replica will directly

commit the transaction to the transaction log without waiting for a confirmation from

the secondary replica.

While the primary replica is waiting for work, SQL Server will record the time it has

spent on waiting for new transactions to become available as the HADR_LOGCAPTURE_

WAIT wait type. This means that seeing high wait times on the HADR_LOGCAPTURE_WAIT

wait type actually means that SQL Server is waiting on new transactions to become

available so they can be transferred to the secondary replica. This is not dependent on

the Availability mode you configured for your AlwaysOn Availability Group. The HADR_

LOGCAPTURE_WAIT wait type will always occur, no matter your AlwaysOn configuration.

Figure 10-6 shows an AlwaysOn Availability Group configuration together with the HADR_

LOGCAPTURE_WAIT wait type on the primary replica, which occurs while waiting for new

transactions to be sent to the secondary replica.

Figure 10-6. AlwaysOn Availability Group and the HADR_LOGCAPTURE_WAIT
wait type

Chapter 10 high-availability and disaster-reCovery Wait types

289

Even though I placed the HADR_LOGCAPTURE_WAIT wait type on the primary replica in

Figure 10-6, it will also log the HADR_LOGCAPTURE_WAIT wait type on the secondary

replica, although those values will normally be much lower than on the primary replica.

The HADR_WORK_QUEUE wait type is almost identical in function to the HADR_

LOGCAPTURE_WAIT wait type. Books Online gives an excellent description of this wait

type: “AlwaysOn Availability Groups’ background worker thread waiting for new work

to be assigned. This is an expected wait when there are ready workers waiting for new

work, which is the normal state.” The main difference between both wait types, is that

the HADR_LOGCAPTURE_WAIT wait type is dedicated to waiting until new transactions

become available, while the HADR_WORK_QUEUE indicates that are free threads waiting for

work. Just like the HADR_LOGCAPTURE_WAIT wait type, the HADR_WORK_QUEUE occurs on

both the primary and the secondary replicas, but the HADR_WORK_QUEUE wait type is much

more prevalent on both replicas. As a matter of fact, the HADR_WORK_QUEUE wait type will

frequently be the top AlwaysOn related wait type on every SQL Server that is part of an

AlwaysOn Availability Group, especially if the work load is low.

Figure 10-7 shows an AlwaysOn Availability Group like the one in Figure 10-6, but

this time I added the HADR_WORK_QUEUE wait type to the image as well.

Since both the HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE wait types occur

naturally over time, I did not include an example of both the wait types. Also, because

both these wait types are not directly related to performance problems, there is no use

including a section on lowering the wait times of both these wait types.

Figure 10-7. HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE wait types

Chapter 10 high-availability and disaster-reCovery Wait types

290

 HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE
Summary
Both the HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE wait types are benign wait types

that occur on every SQL Server that is part of an AlwaysOn Availability Group. Because

the HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE wait types are not directly related to

performance problems, there is no direct need to focus attention on lowering them, and

they can, in most cases, be safely ignored.

 HADR_SYNC_COMMIT
The HADR_SYNC_COMMIT wait type is another AlwaysOn-related wait type that was

introduced in SQL Server 2012. In many ways the HADR_SYNC_COMMIT wait type closely

resembles the DBMIRROR_SEND wait type we discussed earlier in this chapter. There

are some differences, however, between both wait types, which we will discuss in the

following section.

 What Is the HADR_SYNC_COMMIT Wait Type?
The HADR_SYNC_COMMIT wait type indicates the time the primary replica spends waiting

for the secondary replica to harden the log records. HADR_SYNC_COMMIT waits will only

occur on the primary replica and only inside a synchronous-replication AlwaysOn

Availability Group. As soon as a transaction is received by the primary replica and is

sent to the secondary replica for hardening, the HADR_SYNC_COMMIT wait time will start

recording. The HADR_SYNC_COMMIT wait time will only stop recording when the secondary

replica has sent its confirmation that the write to the secondary’s transaction log was

completed. Figure 10-8 shows the HADR_SYNC_COMMIT wait time generation inside a

timeline.

Chapter 10 high-availability and disaster-reCovery Wait types

291

Since the HADR_SYNC_COMMIT wait type will always occur in every synchronous

replicated AlwaysOn Availability Group, it is normal to expect a certain amount of wait

time. But just like the DBMIRROR_SEND wait type, the wait time of the HADR_SYNC_COMMIT

wait type is highly dependent on the speed at which the secondary replica can process

the log records. This means that a slow network connection between both replicas or the

performance of the storage subsystem on the secondary replica can impact HADR_SYNC_

COMMIT wait times. For this reason, it is important to understand what the normal wait

times for the HADR_SYNC_COMMIT wait type are for your AlwaysOn configuration so you

can identify higher-than-normal wait times easily.

 HADR_SYNC_COMMIT Example
For this example, I have built an AlwaysOn Availability Group configured to use

synchronous replication. The configuration of the test machines I will use for this can

be found in Appendix I Example SQL Server Machine Configuration. I won’t go into

detail on how you can configure an AlwaysOn Availability Group, as there is plenty of

information available on the Internet to help you configure AlwaysOn. A good starting

point is the “Getting Started with AlwaysOn Availability Groups” article on Books Online,

which you can find here: https://msdn.microsoft.com/en-us/gg509118. I used the

AdventureWorks database as the database that needed to be replicated inside my

AlwaysOn Availability Group.

After my AlwaysOn Availability Group was configured I added an extra table named

AO_Test to the AdventureWorks database using the script in Listing 10-3.

Figure 10-8. HADR_SYNC_COMMIT and synchronous replication

Chapter 10 high-availability and disaster-reCovery Wait types

https://msdn.microsoft.com/en-us/gg509118

292

Listing 10-3. Create AO_Test table

USE [AdventureWorks]

GO

CREATE TABLE AO_Test

 (

 ID UNIQUEIDENTIFIER PRIMARY KEY,

 RandomData VARCHAR(50)

);

After the table is created, I first clear and then query the sys.dm_os_wait_stats

DMV to check the current wait times on the HADR_SYNC_COMMIT wait time on both the

primary and secondary replicas using the following query:

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'HADR_SYNC_COMMIT';

Even after waiting for a couple of minutes, the wait time of the HADR_SYNC_COMMIT

wait type stays 0, as you can see in Figure 10-9. This is what I expected since we have not

performed any data modifications on the primary replica so far.

This is different compared to HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE, which

will accumulate wait times even though (or because) there is no user activity inside the

AlwaysOn Availability Group.

Now that the table is in place, let’s generate some transactions by performing a

number of inserts. The script in Listing 10-4 will insert 10,000 rows into the AO_Test table

we created earlier.

Figure 10-9. HADR_SYNC_COMMIT wait information during no activity on both
the primary and the secondary mode

Chapter 10 high-availability and disaster-reCovery Wait types

293

Listing 10-4. Insert 10,000 rows into the AO_Test table

INSERT INTO AO_Test

 (

 ID,

 RandomData

)

VALUES

 (

 NEWID(),

 CONVERT(VARCHAR(50), NEWID())

);

GO 10000

When the script in Listing 10-4 has completed, I check the wait statistics information

inside the sys.dm_os_wait_stats DMV again on both the primary and secondary

replicas. Figure 10-10 shows the results of this query on the primary, and Figure 10-11 on

the secondary.

The first thing you will notice when looking at both figures is that the HADR_SYNC_

COMMIT waits only occur on the primary replica and not on the secondary, which is

expected behavior. The second interesting thing is the number of waits that occurred.

This is the exact same amount as the number of rows we inserted. Again, this is expected

behavior. Since we performed a single insert and just repeated it 10,000 times, every

insert generated a single transaction-log record that needed to be replicated. Using the

number of waits that occurred and the wait time, it is possible to calculate the average

time it took for one insert operation to be committed on the replica. In this case it is 1.53

milliseconds (15342/10000) which is a pretty decent value.

Figure 10-10. HADR_SYNC_COMMIT waits on the primary replica

Figure 10-11. HADR_SYNC_COMMIT waits on the secondary replica

Chapter 10 high-availability and disaster-reCovery Wait types

294

 Lowering HADR_SYNC_COMMIT Waits
Seeing HADR_SYNC_COMMIT waits occur does not necessarily mean there is a problem.

HADR_SYNC_COMMIT waits will always occur whenever there are data modifications

performed on your primary replica. They can indicate a problem if the wait times are

much higher than you expect them to be when you compare them to your baseline

measurements.

Changing the AlwaysOn operation mode to asynchronous replication will

completely remove HADR_SYNC_COMMIT waits, but at the risk of losing data when a

disaster occurs. Also, to reach your company’s disaster-recovery or high-availability

needs, you frequently do not have the luxury of just changing the AlwaysOn operating

mode, and I advise you not to change it just to lower HADR_SYNC_COMMIT wait times.

Thankfully, there are many different methods you can use to monitor the

performance of your AlwaysOn Availability Group, including the AlwaysOn Dashboard,

DMVs, and Perfmon counters.

You can open the AlwaysOn Dashboard by right-clicking your AlwaysOn Availability

Group and selecting the “Show Dashboard” option. The AlwaysOn Dashboard, by default,

gives you some general information, like the servers inside the Availability Group and the

synchronization state, about your AlwaysOn Availability Group, as shown in Figure 10-12.

Figure 10-12. AlwaysOn Dashboard

Chapter 10 high-availability and disaster-reCovery Wait types

295

There are many columns that are interesting for troubleshooting synchronization

issues, and I recommend taking the time to understand them so you can determine

which columns are most applicable to your situation.

The information shown by the AlwaysOn Dashboard is originally recorded inside

various AlwaysOn-related DMVs. This makes it possible for you to query this information

yourself. All of the AlwaysOn-related DMVs can easily be identified by the dm_hadr prefix

in the DMV name, like the sys.dm_hadr_database_replica_states DMV that contains

a large part of the information you can access inside the AlwaysOn Dashboard.

Figure 10-13. AlwaysOn add columns

The default view of the AlwaysOn Dashboard doesn’t provide much information

you can use for troubleshooting. Thankfully, you can configure the view to suit your own

needs by right-clicking the column bar and selecting the information you are interested

in, as shown in Figure 10-13.

Chapter 10 high-availability and disaster-reCovery Wait types

296

Next to the AlwaysOn and DMVs that are related to AlwaysOn, there are a

large amount of Perfmon counters that specifically show AlwaysOn performance.

These counters are grouped in the Perfmon SQLServer:Availability Replica and

SQLServer:Database Replica groups. Figure 10-14 shows a part of the counters available

in the SQLServer:Database Replica group.

Figure 10-14. Perfmon counters related to AlwaysOn

As you have read so far, there are plenty of options available to you for analyzing the

AlwaysOn performance between replicas.

Using the information from the various sources I have shown you so far, you should

be able to check the general health of your AlwaysOn Availability Group. You can then

combine this information with other metrics for things that impact the performance

of your secondary replica, like the performance of your storage subsystem and your

network connection. Since the HADR_SYNC_COMMIT wait type is strictly related to the

secondary replica, you should focus your analysis on the SQL Server that hosts the

Chapter 10 high-availability and disaster-reCovery Wait types

297

secondary replica. For instance, if your storage subsystem cannot keep up with the

number of transactions that need to be committed on the secondary replica, you will

notice this in higher HADR_SYNC_COMMIT wait times, and also in the various counters

inside the AlwaysOn Dashboard, DMVs, or Perfmon.

It is difficult to give a general recommendation on how to lower HADR_SYNC_COMMIT

wait times since they are highly dependent on myriad variables and also depend on your

workload. When you have a workload that consists of a large number of read queries, you

will notice lower HADR_SYNC_COMMIT wait times than workloads that perform many data

modification operations. This means analyzing and optimizing your query workload can

also contribute to the lowering of HADR_SYNC_COMMIT wait times.

 HADR_SYNC_COMMIT Summary
The HADR_SYNC_COMMIT wait type will only occur on AlwaysOn Availability Groups that

consist of replicas that are configured to use the synchronous replication mode. The

HADR_SYNC_COMMIT wait type will give you insight into how long it took for the secondary

replica to commit the transaction to disk. Since the HADR_SYNC_COMMIT will always record

wait times inside synchronous replication, you should only worry about the wait times

when they are far higher than expected. Thankfully, there are various methods available

to you to analyze the performance of your AlwaysOn Availability Group, including an

AlwaysOn Dashboard, DMVs, and Perfmon counters.

Since the performance of the secondary replica has the largest impact on the

HADR_SYNC_COMMIT wait times, your attention should focus on the secondary replica

when troubleshooting this wait type. The storage subsystem and network connection

both play a large role in the speed at which the secondary replica can write log records

to its transaction log. Your workload also impacts HADR_SYNC_COMMIT wait times, and

optimizing it so data modifications are better spread out will result in lower HADR_SYNC_

COMMIT wait times.

 REDO_THREAD_PENDING_WORK
The last wait type in this chapter is the REDO_THREAD_PENDING_WORK wait type. And even

though it misses the characteristic HADR_ prefix that identifies AlwaysOn-related wait

types, it is related to AlwaysOn. The REDO_THREAD_PENDING_WORK wait type is, just like the

HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE wait types, a wait type that accumulates

Chapter 10 high-availability and disaster-reCovery Wait types

298

over time when there is no work to be done. And just like the HADR_LOGCAPTURE_WAIT and

HADR_WORK_QUEUE wait types, it can in most cases be ignored since it does not indicate a

performance problem.

Even though this is a wait type that can safely be ignored in 99% of the cases, I wanted

to include it in this chapter for two reasons. It is usually one of the top wait types on an

AlwaysOn Availability Group secondary replica, and understanding its related process

inside SQL Server will give you a better understanding of the inner workings of AlwaysOn.

 What Is the REDO_THREAD_PENDING_WORK Wait Type?
The REDO_THREAD_PENDING_WORK wait type is related to a process that only occurs on the

secondary replica inside an AlwaysOn Availability Group, the Redo Thread.

Up to this point in the chapter, we have talked about how the secondary replica

inside an AlwaysOn Availability Group processes log records, hardens them to its

own transaction log, and sends a confirmation to the primary replica. When using

synchronous replication, the primary replica will wait before sending a transaction

complete message to the client that started the transaction, and when using

asynchronous replication the message is sent without waiting for the hardening on

the secondary. But until now we haven’t discussed the process that will perform the

modifications inside the secondary database described in the log records. This is

where the Redo Thread on the secondary comes in. This thread is responsible for

performing the data modifications that were recorded in the log records the primary

replica sent it. There is one very important concept associated with the Redo Thread:

it does not impact the commit confirmation from the secondary replica. This means

that the Redo Thread might be performing work long after the transaction has

been communicated as committed to the client (both the primary and secondary

replica have hardened the log record and the AlwaysOn Availability Group has the

synchronized status).

This means that even though your AlwaysOn Availability Group is synchronized,

the data inside the secondary database does not necessarily have to be identical to

the primary database. This actually matters less than you might think on first thought.

Because the secondary hardened the log records to its own transaction log on disk, it has

all the information it needs to perform the redo operation. Transactions will not be lost

if a failure occurs on the primary since the secondary has all the transactions that were

performed in its own transaction log and can redo all the transactions. This works much

Chapter 10 high-availability and disaster-reCovery Wait types

299

the same as a standalone SQL Server instance where transactions are also hardened to

disk first before data is actually changed. If SQL Server were to crash in this situation,

SQL Server would use the transaction log to redo or undo the data modifications.

Figure 10-15 shows an example of synchronous replication together with the Redo

Thread. Note that the Redo Thread is a separate operation that does not impact the

duration of the transaction complete message.

So, where does the REDO_THREAD_PENDING_WORK wait type come in? Well, if the Redo

Thread is waiting for work to arrive, it will record the time it is inactive as wait time on

the REDO_THREAD_PENDING_WORK wait type. This will occur on both synchronous and

asynchronous replication modes, but only on the secondary replica.

Figure 10-15. Synchronous AlwaysOn Availability Group and the Redo Thread

Chapter 10 high-availability and disaster-reCovery Wait types

300

Because the wait type only indicates that the Redo Thread is not performing any

work, it can, save for extremely rare cases, be safely ignored. And because the wait time

for the REDO_THREAD_PENDING_WORK wait type will accumulate naturally when there

is no work to be done, there is no need to write an example demonstrating the wait

type. A simple query to retrieve REDO_THREAD_PENDING_WORK wait type information

against the sys.dm_os_wait_stats DMV on a secondary replica will show you that

the wait time increases, especially when there is no user activity against the AlwaysOn

Availability Group, as shown in Figure 10-16.

 REDO_THREAD_PENDING_WORK Summary
The REDO_THREAD_PENDING_WORK wait type is an AlwaysOn-related wait type that

accumulates wait time naturally over time when there is no data modification activity

against an AlwaysOn Availability Group. The REDO_THREAD_PENDING_WORK wait type is

related to the Redo Thread on the secondary replica inside an AlwaysOn Availability

Group, and it indicates that the Redo Thread is currently waiting for work. Since this wait

type will occur on every secondary replica, especially when there is minimal to no user

data modification occurring, it can safely be ignored.

Figure 10-16. REDO_THREAD_PENDING_WORK wait information

Chapter 10 high-availability and disaster-reCovery Wait types

301
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_11

CHAPTER 11

Preemptive Wait Types
In Chapter 1, “Wait Statistics Internals,” we briefly touched upon SQL Server’s

non-preemptive scheduling model that is used to perform thread scheduling and

management. Unlike SQL Server, the Windows operating system uses preemptive

scheduling to schedule and manage threads. Sometimes SQL Server has to use Windows

functions to perform specific actions through the operating system, for instance, when

checking Active Directory permissions. When this occurs, SQL Server will have to ask

a thread from the Windows operating system, outside of SQL Server, thus making it

impossible for SQL Server to manage that thread. While SQL Server is waiting for the

preemptive thread inside the Windows operating system to complete, SQL Server will

record a wait on a preemptive wait type. Figure 11-1 shows a graphical representation of

this behavior.

Figure 11-1. Preemptive wait occurring

There are many different preemptive wait types inside SQL Server; at the time

of writing this book SQL Server 2017 has 203 different preemptive wait types. Which

preemptive wait type is recorded when a thread is requested outside SQL Server

depends on the Windows function the thread is accessing. Each of the preemptive

302

wait types inside SQL Server represents a different Windows function (save for some

exceptions that act as a catch-all wait type for different functions), and in many cases

the name of the wait type is identical to the name of the Windows function. This is

very helpful because you can search for the specific Windows function on MSDN and

learn what the function does. If you know what the function does, you also know why,

or on what, SQL Server is waiting. For example, if you notice high wait times on the

PREEMPTIVE_OS_WRITEFILEGATHER wait type, you can remove the PREEMPTIVE_OS_ part

and search MSDN for the WRITEFILEGATHER function. Figure 11-2 shows the results I got

on my search for the WRITEFILEGATHER function.

By reading the article we can learn a lot about this function; apparently this

function is used when writing data to a file and has to occur outside SQL Server. I won’t

spoil anything else here, since we will go into more detail about the PREEMPTIVE_OS_

WRITEFILEGATHER wait type a bit further down in this chapter.

I won’t describe every possible preemptive wait type in this chapter, since there are simply

too many of them. Instead I have focused on the most common preemptive wait types.

If you run into a preemptive wait type that is not discussed in detail in this chapter, I suggest

you use the preceding method to find more information about the Windows function on

MSDN. Hopefully, that information can help you figure out why the wait is occurring.

 SQL Server on Linux
In the introduction of this chapter, I wrote about how SQL Server can access Windows

operating system functionality from inside SQL Server. However, starting from SQL

Server 2017, SQL Server is no longer limited to being available on the Microsoft Windows

Figure 11-2. WriteFileGather Windows function

Chapter 11 preemptive Wait types

303

operating system. In a revolutionary announcement in March of 2016, Microsoft

announced the next release of SQL Server (2017) will no longer be a Windows-only

product, but will also be available on Linux. Needless to say, the announcement stirred

up quite a bit of dust as it was something nobody would ever expect to happen.

The reason why I bring up the support of SQL Server on Linux operating systems

now is that preemptive waits that occur inside SQL Server are platform independent.

Meaning calls to functions that are only available in the Windows operating system are

also recorded when looking at the wait statistics of a SQL-on-Linux instance. The reason

why this is possible has everything to do with the underlying technology Microsoft used

to bring SQL Server to Linux.

To make SQL Server run on Linux Microsoft adopted a concept called a Platform

Abstraction Layer (or PAL for short). The idea of a PAL is to separate the code needed to

run, in this case, SQL Server with the code needed to interact with the operating system.

Because SQL Server has never run on anything other than Windows, it is full of operating

system references inside its code. This would mean that getting SQL Server to run on

Linux would end up taking enormous amounts of time because of all the operating

system dependencies. So the SQL Server team looked for different approaches to resolve

this issue and found its answer in a Microsoft research project called Drawbridge. The

definition of Drawbridge can be found on its project page at www.microsoft.com/en-us/

research/project/drawbridge/ and reads:

Drawbridge is a research prototype of a new form of virtualization for
application sandboxing. Drawbridge combines two core technologies:
First, a picoprocess, which is a process-based isolation container with a
minimal kernel API surface. Second, a library OS, which is a version of
Windows enlightened to run efficiently within a picoprocess

The main part that attracted the SQL Server team to the Drawbridge project was

the Library OS technology. This new technology could handle a very wide variety

of Windows operating system calls and translate them to the operating system of

the host, which in this case is Linux. Now, the SQL Server team did not adapt the

Drawbridge technology one-on-one as there were some challenges involved with the

research project. One of them was that the research project was officially completed

which means there was no support on the project. Another one was a large overlap

of technologies inside the SQL Server OS (SOS) and Drawbridge. Both solutions have

their own functionalities to handle memory management and threading/scheduling.

What eventually was decided was to merge the SQL Server OS and Drawbridge into

Chapter 11 preemptive Wait types

http://www.microsoft.com/en-us/research/project/drawbridge/
http://www.microsoft.com/en-us/research/project/drawbridge/

304

a new platform layer called the SQLPAL (SQL Platform Abstraction Layer). Using the

SQLPAL the SQL Server team can develop code as they have always done and leave the

translation of operating system calls to the SQLPAL. Figure 11-3 shows the interaction

between the various layers while running SQL Server on Linux.

There is a lot more information available on various Microsoft blogs that covers more

of the functionality and the design choices of the SQLPAL. If you want to know more

about the SQLPAL, or how it came to life, a good recommendation is to read the “SQL

Server on Linux: How? Introduction” article over at https://cloudblogs.microsoft.

com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction/.

Figure 11-3. PAL layer interaction on SQL-on-Linux

Chapter 11 preemptive Wait types

https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction/
https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction/

305

For the remainder of this chapter, I will frequently refer to functions used by the

Windows operating system. If you are running SQL Server on Linux, remember that the

functionality described in this chapter is handled by SQLPAL on Linux but still has the

same functionality as on Windows.

 PREEMPTIVE_OS_ENCRYPTMESSAGE
and PREEMPTIVE_OS_DECRYPTMESSAGE
The first preemptive wait types we are going to discuss in this chapter are the

PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE wait types.

As you can probably guess from the wait type names, the functions are related to either

encrypting or decrypting messages through the Windows operating system.

 What Are the PREEMPTIVE_OS_ENCRYPTMESSAGE
and PREEMPTIVE_OS_DECRYPTMESSAGE Wait Types?
As I noted in the previous section, the PREEMPTIVE_OS_ENCRYPTMESSAGE and

PREEMPTIVE_OS_DECRYPTMESSAGE wait types are related to the encryption and decryption

of messages. More specifically, they are related to encrypting and decrypting network

traffic to and from the SQL Server instance. One case where this is used is when

connecting to your SQL Server instance using certificates to encrypt the data that is sent

between the client and the SQL Server instance. In that case, SQL Server will need to

access the Windows operating system to perform the encryption of the messages that

it is sending to the client or to decrypt the messages that are received. The encryption

and decryption do not happen inside SQL Server, unlike, for instance, Transparent Data

Encryption (TDE), where the encryption/decryption process happens entirely inside

SQL Server.

Both the PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE

wait types do not necessarily indicate any performance problems. They just show you

encryption is being used, so there is no real need to troubleshoot these wait types. The

overhead of encrypting and decrypting messages is so small that it rarely causes any

serious issues (I have yet to come across a case where using certificates to connect to

SQL Server caused performance problems).

Chapter 11 preemptive Wait types

306

 PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_
OS_DECRYPTMESSAGE Example
To show you an example of both the PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_

OS_DECRYPTMESSAGE wait types, I am going to configure a certificate that will be used to

encrypt the connection to the SQL Server instance. To make this example reproducible,

I have included the steps for creating a self-signed certificate. Normally, in production

environments you will use a certificate issued by a certificate authority, but for testing

purposes a self-signed certificate is fine.

The first thing I did to be able to generate a self-signed certificate is install Internet

Information Services (IIS) on my test virtual machine. IIS makes generating a self-signed

certificate very simple.

After the installation of IIS is completed, I open the IIS Manager from Administrative

Tools. Then I click the name of my machine and select the Server Certificates option in

the Features View, as shown in Figure 11-4.

Figure 11-4. Features View inside the IIS Manager

Chapter 11 preemptive Wait types

307

This will open a new Server Certificates view inside the IIS Manager. Inside the

Action Pane, I click the Create Self-Signed Certificate option. I am then asked to supply a

name for my certificate, so I filled in the name of my test virtual machine as you can see

in Figure 11-5.

I click OK, and the self-signed certificate will be created and automatically placed

inside the correct certificate store on my machine (Local Machine ➤ Personal Certificates).

Now that my self-signed certificate is created and stored inside the certificate store,

I need to make sure the account my SQL Server service is running under has permissions

to access the certificates. I open MMC by clicking Start ➤ Run, entering MMC, and

pressing OK. Now that the MMC console is open, I need to add the Certificates snap-in.

I do this by clicking File ➤ Add/Remove Snap-in, selecting the Certificates snap-in, and

clicking Add. When prompted for which account I want to manage certificates, I select

Computer account, as shown in Figure 11-6, and click Next and Finish.

Figure 11-5. Create self-signed certificate

Chapter 11 preemptive Wait types

308

Inside the Certificates console, I open the folder Certificates (Local Computer) ➤

Personal ➤ Certificates. If the generation of the self-signed certificate inside IIS was

correct, I should see the certificate here. Figure 11-7 shows the certificate on my test

virtual machine.

Figure 11-6. Certificate account selection

Figure 11-7. Self-signed certificate

I right-click the self-signed certificate and select All Tasks ➤ Manage Private Keys. A

permissions dialog opens. Here I need to add the account under which the SQL Server

service is running. In my case that is the local administrator user which is added by

default. If you run your SQL Server service under a different account, the account only

needs read permission on the certificate, as shown in Figure 11-8.

Chapter 11 preemptive Wait types

309

After adding the account and selecting the right permission, I click OK to close

the dialog. Now that the permissions are correct and the SQL Server Service account

can access the certificate, I need to add the self-signed certificate to the network

configuration of the SQL Server instance that I want to enable for encryption.

I open the SQL Server Configuration Manager and click the SQL Server Network

Configuration option. I right-click the SQL Server instance that should use the self-

signed certificate and select Properties. Next, I open the Certificates tab and select

the self-signed certificate we created earlier. Figure 11-9 shows the dialog on my test

virtual machine.

Figure 11-8. Self-signed certificate permissions

Chapter 11 preemptive Wait types

310

After selecting the self-signed certificate, I click OK to close the dialog. I am notified

that the certificate will become active after a restart of the SQL Server service, so I

perform a restart of the SQL Server Service.

Right now SQL Server can use the self-signed certificate, but to make sure my

network messages are encrypted I have to connect to the SQL Server instance and tell

it that I want to use encryption. For this example I will use the SQL Server Management

Studio, on the same virtual machine as my SQL Server instance, to connect to the SQL

Server instance. If you connect to your SQL Server instance from another machine you

need to make sure the self-signed certificate is available on that machine. When the

Connect to Server dialog appears inside SQL Server Management Studio, I click the

Options button at the bottom right of the dialog. This opens up additional properties for

the connection to my SQL Server instance. I select the Encrypt connection checkbox as

shown in Figure 11-10, and connect to my SQL Server instance.

Figure 11-9. Certificate selection

Chapter 11 preemptive Wait types

311

Right now I have configured everything I need to make sure SQL Server will use

the self-signed certificate to encrypt messages between the SQL Server instance and

SQL Server Management Studio, so I can finally take a look at the PREEMPTIVE_OS_

ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE wait types!

Generating the PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_

DECRYPTMESSAGE waits is very simple now. Basically, every query I execute from the

SQL Server Management Studio right now will be encrypted, even if I run SQL Server

Management Studio on the same machine as the SQL Server instance. I use the query

in Listing 11-1 to reset the sys.dm_os_wait_stats DMV, connect to the AdventureWorks

database, perform a simple query, and then look at the waits occurring on the

PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE wait types.

Figure 11-10. Connection Properties in SQL Server Management Studio

Chapter 11 preemptive Wait types

312

Listing 11-1. Select query using encrypted connection

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR)

USE AdventureWorks

GO

SELECT *

FROM Sales.SalesOrderDetail;

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'PREEMPTIVE_OS_ENCRYPTMESSAGE'

OR wait_type = 'PREEMPTIVE_OS_DECRYPTMESSAGE';

The results of these queries on my test SQL Server instance are shown in Figure 11- 11.

Figure 11-11. PREEMPTIVE_OS_DECRYPTMESSAGE and PREEMPTIVE_OS_
ENCRYPTMESSAGE waits

As you can see, the PREEMPTIVE_OS_ENCRYPTMESSAGE wait time has more waits and

wait time associated with it. This is logical since I performed a select query and it only

had to decrypt the acknowledgment network messages from the client. The results

of the query had to be encrypted by SQL Server, which leads to higher waits on the

PREEMPTIVE_OS_ENCRYPTMESSAGE wait type.

 Lowering PREEMPTIVE_OS_ENCRYPTMESSAGE
and PREEMPTIVE_OS_DECRYPTMESSAGE Waits
Under normal circumstances there should be no need to focus attention on lowering

the PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE wait types.

They mostly just indicate that message encryption is occurring, which is probably a

choice that was made when configuring the SQL Server instance. Disabling encryption

will dramatically lower the PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_

DECRYPTMESSAGE wait times, but at the cost of security.

Chapter 11 preemptive Wait types

313

 PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_
OS_DECRYPTMESSAGE Summary
The PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE wait

types indicate that encryption is occurring between the SQL Server instance and a

client. These wait types can generally be ignored since they do not directly indicate

a performance problem. Lowering them can be achieved by disabling the use of

encryption, but this comes at the cost of security.

 PREEMPTIVE_OS_WRITEFILEGATHER
The PREEMPTIVE_OS_WRITEFILEGATHER wait type is related to storage interactions, more

specifically the writing to files through the Windows operating system.

 What Is the PREEMPTIVE_OS_WRITEFILEGATHER Wait
Type?
The PREEMPTIVE_OS_WRITEFILEGATHER wait type is related to the WriteFileGather

function inside the Windows operating system. If we look up the definition of this

function on Books Online, we get the following description: “Retrieves data from an

array of buffers and writes the data to a file.” From this description we can assume

the function will be called when there is a need to write data to a file. This does

not count for every storage subsystem write operation inside SQL Server, however.

Generally there is no need for SQL Server to move outside of its own engine to wait

for a preemptive operation. There are some exceptions, however, which can result in

PREEMPTIVE_OS_WRITEFILEGATHER waits (depending on the Windows function used to

perform the storage subsystem interaction). One specific operation inside SQL Server

that will always result in PREEMPTIVE_OS_WRITEFILEGATHER waits is the growing of

data files. Whenever SQL Server wants to grow a data file, it will need to allocate extra

space on the storage subsystem and “zero out” the new space so SQL Server can use it.

The allocation of the extra space does not happen inside the SQL Server engine, thus

a preemptive operation has to take place, which can lead to preemptive waits on the

WriteFileGather function.

Chapter 11 preemptive Wait types

314

 PREEMPTIVE_OS_WRITEFILEGATHER Example
To show you an example of PREEMPTIVE_OS_WRITEFILEGATHER waits occurring, I am

going to replicate the situation I described in the previous section, growing a database

data file. For this example I will restore a backup of the AdventureWorks database; in the

SQL Server 2016 version of the database, there exists only a single database data file with

a size of 208 MB, as shown in Figure 11-12.

I am going to grow the single database data file to a size of 10 GB. Because the

allocation of the extra space needed for the data file is performed outside SQL Server,

this should result in PREEMPTIVE_OS_WRITEFILEGATHER waits.

To perform the action of enlarging the database data file I used the script shown

in Listing 11-2. This script will clear the sys.dm_os_wait_stats DMV, enlarge the

AdventureWorks data file to 800 MB, and then query the sys.dm_os_wait_stats DMV

for PREEMPTIVE_OS_WRITEFILEGATHER.

Listing 11-2. Enlarge AdventureWorks database data file

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR)

USE [master]

GO

ALTER DATABASE [AdventureWorks]

 MODIFY FILE

 (

 NAME = N'AdventureWorks2016_Data',

 SIZE = 819200KB

);

Figure 11-12. Default database file configuration of AdventureWorks
(2016 edition)

Chapter 11 preemptive Wait types

315

GO

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'PREEMPTIVE_OS_WRITEFILEGATHER';

The query in Listing 11-2 is almost instantly completed on my test SQL Server instance,

it has very fast storage, and results in the wait information shown in Figure 11- 13 for the

PREEMPTIVE_OS_WRITEFILEGATHER wait type.

Notice that there was only one single wait on the PREEMPTIVE_OS_WRITEFILEGATHER

wait type, and the duration was practically as long as it took to perform the enlargement

of the data file.

 Lowering PREEMPTIVE_OS_WRITEFILEGATHER Waits
When you notice higher-than-normal wait times on the PREEMPTIVE_OS_

WRITEFILEGATHER wait type, it means that a process from inside SQL Server is

performing actions on the storage subsystem through the Windows operating

system. The first matter of action should be to investigate what process initiated

the action that resulted in PREEMPTIVE_OS_WRITEFILEGATHER waits. Very frequently

this will be the (automatic) growth of a database data or log file. If you allow the

data or log files to grow automatically when they are full, you can expect to see

PREEMPTIVE_OS_WRITEFILEGATHER waits occur whenever an auto-growth event

occurs. This does not necessarily mean there is a problem, but if auto-growth

events take a long time to complete because, for instance, the storage subsystem is

experiencing performance problems, your queries might experience performance

degradation as well.

There is one Windows setting available that I frequently see not configured, instant

file initialization. We discussed this setting, and how you can enable it, already in

Chapter 6, “IO-Related Wait Types,” under the ASYNC_IO_COMPLETION wait type so I

won’t go into detail on how to enable the setting again. Figure 11-14 shows the results

Figure 11-13. PREEMPTIVE_OS_WRITEFILEGATHER waits

Chapter 11 preemptive Wait types

316

of the query in Listing 11-2 with instant file initialization enabled, and as you can see,

the amount of wait time spent on the PREEMPTIVE_OS_WRITEFILEGATHER wait time

disappeared completely.

Next to using instant file initialization, the performance of the storage subsystem

plays a large part in the PREEMPTIVE_OS_WRITEFILEGATHER wait times. The better

your storage subsystem performs, the lower the wait times on the PREEMPTIVE_OS_

WRITEFILEGATHER wait type.

Another SQL Server action that can cause higher-than-normal PREEMPTIVE_OS_

WRITEFILEGATHER wait times is performing database restores. Much like expending a

data file, before SQL Server can restore a database, it needs to allocate free storage for it.

This is also related to instant file initialization, which will also speed up database restores

just like file enlargements.

 PREEMPTIVE_OS_WRITEFILEGATHER Summary
The PREEMPTIVE_OS_WRITEFILEGATHER wait type indicates that SQL Server is asking the

Windows operating system to perform an operation on the storage subsystem. Not all

operations can be handled from inside the SQL Server engine and actions; for example,

the growing of a data file requires the execution of a Windows function to allocate the

desired space on the storage subsystem. Instant file initialization is a setting in Windows

that can lower the amount of PREEMPTIVE_OS_WRITEFILEGATHER wait time drastically, but

the performance of the storage subsystem itself also plays a large role in PREEMPTIVE_OS_

WRITEFILEGATHER wait times.

 PREEMPTIVE_OS_AUTHENTICATIONOPS
The PREEMPTIVE_OS_AUTHENTICATIONOPS wait type is another preemptive wait type that

is related to various Windows authentication functions.

Figure 11-14. PREEMPTIVE_OS_WRITEFILEGATHER waits with instant file
initialization turned on

Chapter 11 preemptive Wait types

317

 What Is the PREEMPTIVE_OS_AUTHENTICATIONOPS
Wait Type?
The PREEMPTIVE_OS_AUTHENTICATIONOPS wait type is recorded whenever SQL Server

needs to perform an account authentication, for instance, to authenticate the SQL

Server Windows login when it connects to SQL Server. Seeing PREEMPTIVE_OS_

AUTHENTICATIONOPS waits occur is to be expected, especially when using mixed-mode

authentication and Windows logins inside your SQL Server instance.

One common misconception about the PREEMPTIVE_OS_AUTHENTICATIONOPS wait

type is that it is only related to SQL Server logins that use Windows authentication

inside a domain. This is not entirely correct. While it is true that PREEMPTIVE_OS_

AUTHENTICATIONOPS wait times will frequently be higher when using Active Directory

accounts to connect to SQL Server, PREEMPTIVE_OS_AUTHENTICATIONOPS waits will also

occur if the SQL Server instance is installed on a machine outside of a domain; the wait

times will generally be lower though.

Figure 11-15 shows a simplified image of how SQL Server connects to an Active

Directory domain controller to validate the SQL Server Windows login. Keep in mind

that the Windows operating system takes care of the communication between the

domain controller and the SQL Server, hence the preemptive wait type.

Figure 11-15. SQL Server Windows login authentication inside domain

On a machine that has a SQL Server instance installed but is not part of a domain,

the authentication of the Windows login will occur on the machine itself (local

accounts).

Chapter 11 preemptive Wait types

318

Because it will generally take a longer time to authenticate a Windows login through

a domain controller (the request has to travel across the network and authenticate on

another machine), the wait times for the PREEMPTIVE_OS_AUTHENTICATIONOPS wait type

will generally be higher for a SQL Server instance inside a domain.

 PREEMPTIVE_OS_AUTHENTICATIONOPS Example
To generate an example of PREEMPTIVE_OS_AUTHENTICATIONOPS waits occurring, I do

not need to perform any complex actions. Opening a new connection to the SQL Server

instance using Windows authentication should be enough. One way to make this easy

to measure is by connecting to the SQL Server instance with SQL Server Management

Studio, using Windows authentication. Figure 11-16 shows the SQL Server Management

Studio connect dialog to my test SQL Server instance. Note that my test SQL Server

instance is not inside a domain, and that I use the local administrator account on my

machine to connect.

The next step I perform is opening a new Query Window inside SQL Server

Management Studio and performing the steps inside the query shown in Listing 11-3.

Figure 11-16. Connect SQL Server Management Studio using local Windows
authentication

Chapter 11 preemptive Wait types

319

Listing 11-3. Generate PREEMPTIVE_OS_AUTHENTICATIONOPS waits

-- Step 1 Clear sys.dm_os_wait_stats

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

-- Step 2 Open a new Query Window inside

-- SQL Server Management Studio

-- Step 3 go back to this Query Window

-- and run the query below

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'PREEMPTIVE_OS_AUTHENTICATIONOPS';

If you follow the steps commented inside the script in Listing 11-3, you should see

PREEMPTIVE_OS_AUTHENTICATIONOPS waits occurring after running the query in step 3.

Figure 11-17 shows the results of the query in step 3 on my test machine.

As you can see, the number of waits occurring and their wait times are very low.

The point of this example is not to show you an example of very high PREEMPTIVE_OS_

AUTHENTICATIONOPS wait times, but rather how they occur naturally when connecting

to a SQL Server instance. Because I opened a new Query Window inside SQL Server

Management Studio, a new connection to the SQL Server instance will be made

using the Windows login I used to connect to my SQL Server instance. Because it is a

new connection, the account I used to connect had to be authenticated, resulting in

PREEMPTIVE_OS_AUTHENTICATIONOPS waits.

 Lowering PREEMPTIVE_OS_AUTHENTICATIONOPS Waits
In the example, I have shown you how PREEMPTIVE_OS_AUTHENTICATIONOPS waits occur

naturally whenever you connect to a SQL Server instance. Now imagine a situation

where your SQL Server instance is part of a domain environment and it uses Windows

authentication to authenticate domain users (or groups) against an Active Directory. In

that case your authentication request has to travel across the network in order to perform

Figure 11-17. PREEMPTIVE_OS_AUTHENTICATIONOPS waits

Chapter 11 preemptive Wait types

320

the authentication of the account. There are many factors involved that can impact

the speed of the authentication request; for instance, if your Domain Controller is

under a lot of stress, it can take longer to perform the authentication, or if your network

experiences performance degradation, it will also impact the authentication request.

These factors also contribute to the PREEMPTIVE_OS_AUTHENTICATIONOPS wait type and

can result in higher wait times.

I would like to describe to you a case I encountered at a client that involved the

PREEMPTIVE_OS_AUTHENTICATIONOPS wait type to give you an idea of how you can lower

PREEMPTIVE_OS_AUTHENTICATIONOPS wait times.

At this client they used an application that connected to SQL Server using the

Windows account that was logged in on the computer that ran the application. The

computers and the SQL Server were all part of a domain. From a security perspective,

the application was well designed, as it did not require separate SQL Server users who

needed permission on the database and also didn’t use a generic account to connect to

the SQL Server instance and execute queries. Inside, the database-specific objects (like

tables) were also secured based on domain users and groups.

The client started to experience server performance problems inside the

application after deploying it to every (3000+) computer inside the company. The

DBA at the client couldn’t find any problems, there were no infrastructure-related

performance problems on the SQL Server instance, and executing the queries on the

SQL Server instance itself revealed no issues. When we looked at the wait statistics, we

noticed that the most prevalent wait type was the PREEMPTIVE_OS_AUTHENTICATIONOPS

wait type. We also noticed that the application would connect to the SQL Server

instance, run a query, then disconnect again. Because so many concurrent users

were using the application, it resulted in a high amount of Windows authentication

requests, so many that the Domain Controller couldn’t handle them, resulting in the

slower processing of authentication requests.

In this case the Domain Controller was a virtual machine, and after adding more

processor and memory resources, it was able to keep up with the high amount of

authentication requests.

As you can see from this case, seeing high PREEMPTIVE_OS_AUTHENTICATIONOPS wait

times does not necessarily mean your SQL Server instance is running into problems,

especially in a domain environment, as the performance of your Domain Controller also

plays a large role in PREEMPTIVE_OS_AUTHENTICATIONOPS wait times.

Chapter 11 preemptive Wait types

321

The moral of the story is, if you notice higher-than-normal PREEMPTIVE_OS_

AUTHENTICATIONOPS wait times, you will need to investigate much more than the SQL

Server instance. Make sure to check the performance of your Domain Controllers if you

are using Windows authentication inside a domain. Check every infrastructure part

between your SQL Server instance and the Domain Controller, like network switches,

firewalls, and so on. All of these infrastructure parts will add additional latency for each

authentication request, which will result in higher PREEMPTIVE_OS_AUTHENTICATIONOPS

wait times, making it a difficult wait type to troubleshoot.

 PREEMPTIVE_OS_AUTHENTICATIONOPS Summary
The PREEMPTIVE_OS_AUTHENTICATIONOPS wait type is related to performing authentication

requests by the Windows operating system. It is normal to see PREEMPTIVE_OS_

AUTHENTICATIONOPS waits occur, especially when your SQL Server instance is part of a

domain and uses Windows authentication to authenticate users. Higher-than-normal

wait times can indicate that authentication requests are taking longer than normal to

complete. This does not necessarily mean that your SQL Server instance is running into

a performance problem. If the Domain Controller cannot process the authentication

requests fast enough, it will result in higher PREEMPTIVE_OS_AUTHENTICATIONOPS

wait times. A slow network connection to the Domain Controller, firewall, or switch

configurations can also impact PREEMPTIVE_OS_AUTHENTICATIONOPS wait times.

 PREEMPTIVE_OS_GETPROCADDRESS
The final wait type I would like to discuss in this chapter is the PREEMPTIVE_OS_

GETPROCADDRESS wait type. The PREEMPTIVE_OS_GETPROCADDRESS wait type is related to

the execution of extended stored procedures inside SQL Server.

Extended stored procedures allow you to create external routines in a language other

than T-SQL; for instance, using the C# programming language. These extended stored

procedures are loaded into SQL Server using .dll files and can expand the capabilities of

SQL Server programming by allowing you to perform actions that would be impossible

in T-SQL, like reading/writing Windows Registry entries.

Extended stored procedures are marked as deprecated since SQL Server 2008 and

Common Language Runtime (CLR) should be used instead of them. However, there are

still cases inside SQL Server that require extended stored procedures, and some third-

party software vendors still rely on them.

Chapter 11 preemptive Wait types

322

 What Is the PREEMPTIVE_OS_GETPROCADDRESS
Wait Type?
The PREEMPTIVE_OS_GETPROCADDRESS wait type is recorded whenever the entrypoint

inside an extended stored procedure is loaded. The entrypoint is called upon whenever

SQL Server loads or unloads the extended stored procedure .dll file. Under normal

conditions the loading of the entrypoint should complete quickly, resulting in very low

PREEMPTIVE_OS_GETPROCADDRESS wait times, if any, but depending on the extended

stored procedure, or problems related to loading the extended stored procedure .dll

file, it is possible to notice higher wait times. Important to keep in mind is that the

PREEMPTIVE_OS_GETPROCADDRESS wait type only records the time it took to load the

entrypoint of the .dll file, not the execution time of the extended stored procedure.

Figure 11-18 shows a (simplified) overview of how extended stored procedures are

executed by SQL Server.

Not only can you write your own extended stored procedures to perform actions not

possible using T-SQL, SQL Server itself comes shipped with many different extended

stored procedures. Most of these can be recognized by the xp_ prefix in the extended

stored procedure name, though not all of them have this prefix. Figure 11-19 shows

a selection of extended stored procedures inside the master database of my test SQL

Server instance.

Figure 11-18. Executing an extended stored procedure

Chapter 11 preemptive Wait types

323

Probably the most notorious extended stored procedure is the xp_cmdshell

extended stored procedure. The xp_cmdshell extended stored procedures makes it

possible to execute a command inside a Windows command shell from within SQL

Server. This is a huge security risk if your SQL Server instance is compromised, since

it gives access to commands that can affect the entire Windows operating system.

Thankfully, it is impossible to run the xp_cmdshell extended stored procedure

by default; you have to specifically allow its use by configuring an advanced

configuration setting.

Figure 11-19. Selection of extended stored procedures inside the master database

Chapter 11 preemptive Wait types

324

 PREEMPTIVE_OS_GETPROCADDRESS Example
For this example I will execute an extended stored procedure already present inside SQL

Server, xp_getnetname, instead of writing a custom extended stored procedure, which

is far beyond the scope of this book. The xp_getnetname is an undocumented extended

stored procedure that returns the NETBIOS name of the machine that hosts your SQL

Server instance. Before executing the xp_getnetname extended stored procedure, I clear

the sys.dm_os_wait_stats DMV, and after the execution of xp_getnetname, I query

the DMV for PREEMPTIVE_OS_GETPROCADDRESS wait information. Listing 11-4 shows the

entire query I executed on my test SQL Server instance.

Listing 11-4. Execute xp_getnetname and query wait statistics

USE [master]

GO

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

exec xp_getnetname;

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'PREEMPTIVE_OS_GETPROCADDRESS';

The results of the query in Listing 11-4 can be seen in Figure 11-20.

The results aren’t spectacular. Apparently, the xp_getnetname extended stored

procedure doesn’t cause any problems when loading the .dll entrypoint, since there is no

wait time recorded. A wait still did occur though, as you can see in the waiting_tasks_

count column, it just took SQL Server less than a millisecond to load the entrypoint.

Figure 11-20. PREEMPTIVE_OS_GETPROCADDRESS wait

Chapter 11 preemptive Wait types

325

 Lowering PREEMPTIVE_OS_GETPROCADDRESS Waits
Since the PREEMPTIVE_OS_GETPROCADDRESS wait type is directly related to executing

extended stored procedures, the first step in your investigation should be to detect what

extended stored procedure is being executed and what its function is.

I have seen PREEMPTIVE_OS_GETPROCADDRESS waits occur at a number of clients

because they were using a third-party backup application that used extended stored

procedures to perform a database backup, but there are many more possible causes

for high PREEMPTIVE_OS_GETPROCADDRESS wait times. Knowing which extended stored

procedure is being executed can help you trace what process is executing the extended

stored procedure.

There have also been some known bugs inside SQL Server 2008 and 2008R2 that

reported higher-than-normal PREEMPTIVE_OS_GETPROCADDRESS wait times because the

execution time of the extended stored procedure was also recorded in the wait times,

instead of only the entrypoint loading. If you are still using SQL Server 2008 or 2008R2

and experience very high PREEMPTIVE_OS_GETPROCADDRESS wait times, it might be

worth your while to upgrade to the latest Service Pack and check if the PREEMPTIVE_OS_

GETPROCADDRESS wait times go down. Or even better, upgrade to a higher version of SQL

Server since SQL Server 2008R2 is marked end-of-life as of July 9, 2019.

 PREEMPTIVE_OS_GETPROCADDRESS Summary
The PREEMPTIVE_OS_GETPROCADDRESS wait type is directly related to the execution of

extended stored procedures. Extended stored procedures can be written in a variety of

programming languages like C# and allow you to perform actions that would otherwise

be impossible in T-SQL. Wait time for the PREEMPTIVE_OS_GETPROCADDRESS wait type is

recorded whenever the entrypoint inside an extended stored procedure .dll is loaded.

In normal situations wait times for the PREEMPTIVE_OS_GETPROCADDRESS wait type are

very low. Seeing high PREEMPTIVE_OS_GETPROCADDRESS wait times can indicate that the

entrypoint loading is running into problems. There have also been bugs related to the

calculation of the PREEMPTIVE_OS_GETPROCADDRESS wait type inside SQL Server 2008 and

2008R2. If you are running SQL Server 2008 or 2008R2 and experience high PREEMPTIVE_

OS_GETPROCADDRESS wait times, it might be worth your time to upgrade to the latest

Service Pack or move to a higher version of SQL Server since SQL Server 2008R2 is

marked end-of-life as of July 9, 2019.

Chapter 11 preemptive Wait types

327
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_12

CHAPTER 12

Background and
Miscellaneous Wait Types
SQL Server has many different internal processes that can run into a wait of a specific

wait type, and so far we have discussed quite a few of them. Some of these internal

processes are constantly running inside SQL Server, waiting until there is work for them

to do. While these processes, frequently called background processes, are waiting for

work to arrive, SQL Server will record the time they are waiting for work as wait time on

specific wait types related to these background processes. While these background wait

types are not directly related to performance problems, they frequently have the highest

wait time and will show up at the top of the wait time list when you query the top wait

types ordered by wait time.

Frequently these background wait types are called benign, and can safely be ignored

because they simply indicate that an internal process is waiting for work to arrive.

This logic is also true for the wait types we will discuss in this chapter, but instead of

just telling you to ignore them when analyzing wait statistics, I want to give you some

background information about them so you know what they measure and why it is safe

to ignore them. Keep in mind that we are still talking about SQL Server here, which

means that “it depends” on many factors as to whether you can completely ignore these

background wait types. You wouldn’t be the first person to run into a performance

problem and only to find out that an ignored background process was actually the cause

of the issue. So my advice is to ignore but to not forget about them!

Next to the background wait types I also added a number of miscellaneous wait types

that were difficult to place in an earlier chapter because they didn’t quite fit in with the

chapter’s wait type category.

Since the background wait types inside this chapter record wait time constantly

when their associated processes are waiting for work to do, I did not include an example

section or a lowering wait time section for these wait types.

328

 CHECKPOINT_QUEUE
The first wait type in this chapter is one of those background wait types that accumulates

large amounts of wait time over time CHECKPOINT_QUEUE. The CHECKPOINT_QUEUE wait

type can in many cases be safely ignored, but understanding what the wait type stands

for and why it has such high wait times can’t hurt.

 What Is the CHECKPOINT_QUEUE Wait Type?
The CHECKPOINT_QUEUE wait type is related to the checkpoint process in SQL Server that

is responsible for writing “dirty” (modified) data pages from the buffer cache to the data

file on disk. In Chapter 6, “IO-Related Wait Types,” we took a good look at the checkpoint

process when we discussed the SLEEP_BPOOL_FLUSH wait type, so I won’t repeat all the

information again here. What is important to know, and the reason why this wait type can

normally be ignored, is that the CHECKPOINT_QUEUE wait type indicates that the checkpoint

process is waiting for work. This means that wait times on the CHECKPOINT_QUEUE wait

type don’t indicate any performance issues; they just indicate the time the checkpoint

processes spent waiting on work. On SQL Server instances that aren’t very busy, or don’t

see many data modification operations, the wait time can reach very high values.

The recording of CHECKPOINT_QUEUE wait times inside the sys.dm_os_wait_stats

and sys.dm_os_waiting_tasks DMVs goes through a specific internal routine

that might return unexpected wait times (like sudden spikes inside your baseline).

Figure 12- 1 shows the results of queries against the sys.dm_os_wait_stats and sys.

dm_os_waiting_tasks DMVs for wait information of the CHECKPOINT_QUEUE wait type

on my test SQL Server instance.

What is interesting to notice here is that the cumulative wait times inside the sys.dm_

os_wait_stats DMV stay at 0, while the wait times inside the sys.dm_os_waiting_tasks

DMV have a very high value. My test SQL Server instance doesn’t perform much work in

Figure 12-1. CHECKPOINT_QUEUE waits

Chapter 12 BaCkground and MisCellaneous Wait types

329

the background, so it is logical that the checkpoint process spends most of its time waiting

for work. The reason for the difference in wait times between both DMVs is related to the

way SQL Server executes checkpoint operations. The wait times shown in both the DMVs

are only recorded by the automatic checkpoint process. A manual checkpoint execution

does not impact the wait times. As part of the automatic checkpoint process, the wait

times of the sys.dm_os_waiting_tasks DMV are moved to the sys.dm_os_wait_stats

DMV and reset to 0. So, if you notice very high CHECKPOINT_QUEUE wait times inside the

sys.dm_os_waiting_tasks, it means it was some time ago that the automatic checkpoint

process ran.

To show you a simple demonstration of this behavior, I created a table, reset the

sys.dm_os_wait_stats DMV, inserted a few rows inside the table, performed a manual

checkpoint, and queried the sys.dm_os_wait_stats and sys.dm_os_waiting_tasks

DMV, as shown in Listing 12-1.

Listing 12-1. CHECKPOINT_QUEUE example

-- Create a table in the AdventureWorks database

USE [AdventureWorks]

GO

CREATE TABLE check_test

 (

 ID UNIQUEIDENTIFIER,

 RandomData VARCHAR(50)

);

GO

-- Clear sys.dm_os_wait_stats

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

-- Insert a few rows into our table

INSERT INTO check_test

 (

 ID,

 RandomData

)

VALUES

Chapter 12 BaCkground and MisCellaneous Wait types

330

 (

 NEWID(),

 CONVERT(varchar(50), NEWID())

);

GO 100

CHECKPOINT 1;

-- Query Wait Statistics

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'CHECKPOINT_QUEUE';

SELECT *

FROM sys.dm_os_waiting_tasks

WHERE wait_type = 'CHECKPOINT_QUEUE';

Figure 12-2 shows the results of the queries made against the sys.dm_os_wait_stats

and sys.dm_os_waiting_tasks DMVs.

As you can see, the manual checkpoint didn’t generate any waits inside the sys.

dm_os_wait_stats DMV. Also, an automatic checkpoint didn’t occur, because inserting

100 rows generated too few log records to trigger an automatic checkpoint.

If we were to insert more rows, we should be able to trigger an automatic checkpoint.

In this case I ran the following query to insert 100,000 rows into the table we created

in Listing 12-1. While the insert was running, I queried the sys.dm_os_wait_stats

and sys.dm_os_waiting_tasks DMVs repeatedly to see if anything changed. See the

following:

Figure 12-2. CHECKPOINT_QUEUE waits

Chapter 12 BaCkground and MisCellaneous Wait types

331

INSERT INTO check_test

 (

 ID,

 RandomData

)

VALUES

 (

 NEWID(),

 CONVERT(varchar(50), NEWID())

);

GO 100000

After a few seconds I noticed that the wait time for the CHECKPOINT_QUEUE wait type

was moved to the sys.dm_os_wait_stats DMV, as shown in Figure 12-3.

Apparently, we inserted enough log records to cause an automatic checkpoint to

occur, and as you can see from this example, only an automatic checkpoint will write the

wait times of the CHECKPOINT_QUEUE to the sys.dm_os_wait_stats DMV.

You should keep this behavior in mind when you notice sudden, very high wait time

values inside the sys.dm_os_wait_stats DMV. This will normally only occur in SQL

Server instances that either have a very small workload or that have a workload mainly

consisting of read operations instead of data modification operations.

 CHECKPOINT_QUEUE Summary
The CHECKPOINT_QUEUE wait type is related to checkpoint operations inside SQL Server.

Wait time on the CHECKPOINT_QUEUE wait type is recorded while SQL Server is waiting for

an automatic checkpoint operation to take place. This is one of the wait types you can

normally safely ignore because it doesn’t indicate there are any performance issues.

The wait times on the CHECKPOINT_QUEUE wait type are recorded differently between the

Figure 12-3. CHECKPOINT_QUEUE waits

Chapter 12 BaCkground and MisCellaneous Wait types

332

sys.dm_os_wait_stats and sys.dm_os_waiting_tasks DMV, and this can cause sudden

high wait times when querying the sys.dm_os_wait_stats DMV. Keep this behavior

in mind when noticing high CHECKPOINT_QUEUE wait times inside the sys.dm_os_wait_

stats DMV.

 DIRTY_PAGE_POLL
The DIRTY_PAGE_POLL wait type was introduced in SQL Server 2012 with the indirect

checkpoint feature and behaves a lot like the previous wait type we discussed,

CHECKPOINT_QUEUE. While the automatic checkpoint process runs at a set interval of 1

minute, the indirect checkpoint feature allows you to configure a specific checkpoint

interval on a per-database basis. Even if you are not using indirect checkpoint, the

DIRTY_PAGE_POLL wait type will still accumulate wait time.

 What Is the DIRTY_PAGE_POLL Wait Type?
The DIRTY_PAGE_POLL wait type is another background wait that can normally be

safely ignored. The wait type is related to the recovery writer process that is used by the

indirect checkpoint feature that runs continuously in the background of your SQL Server

instance. Because of this connection, let’s take a quick look what indirect checkpoints

are and how they work.

As we know, the checkpoint process inside SQL Server is responsible for writing

modified data pages from the buffer cache to the database data file on disk. By default,

the checkpoint process runs automatically every minute, or when enough log records

have been generated. The checkpoint process plays a vital part in the recovery duration

of your SQL Server databases when a crash occurs. Take, for instance, the following

scenario: while you are performing many modifications to a database in your SQL

Server instance, a crash occurs. Luckily, you were able to simply restart the SQL Server

service to get everything up and running again. The first thing SQL Server will do is

start a recovery process. The recovery process will check the transaction log for any

transactions that were not committed when the crash occurred and perform a rollback

of the transaction. The recovery process will also check whether any data pages that were

modified by a committed transaction received their modification inside the database

data file because they were only modified in the buffer cache.

Chapter 12 BaCkground and MisCellaneous Wait types

333

If any of those pages are found, SQL Server will use the transaction log to redo these

transactions. Now imagine you have a busy SQL Server instance where many thousands

of modifications are performed every minute. This means that the chance that there is a

high number of dirty pages not written to disk yet is pretty high. If your SQL Server then

crashes (or, for instance, a failover occurs), the recovery process will take more time

to complete. Indirect checkpoints can help us keep this recovery process as short as

possible. By configuring this feature we can tell SQL Server to write modified data pages

to disk faster; for instance, every 10 seconds. Figure 12-4 shows the location and name of

the indirect checkpoint feature inside the properties of a database.

Figure 12-4. Indirect checkpoint feature location and value

Chapter 12 BaCkground and MisCellaneous Wait types

334

By default, the value of the Target Recovery Time (Seconds) configuration option

is 0. This means that indirect checkpoints are not being used. If you modify the value to

anything other than 0, an indirect checkpoint will occur at the interval in seconds you

specified.

starting from sQl server 2016, indirect checkpoints are automatically configured
whenever you create a new database inside the sQl server instance. in those cases
the Target Recovery Time (Seconds) will be set to a value of 60 instead of 0.

The time you configure in the Target Recovery Time (Seconds) option does not

mean that every x seconds the checkpoint process will be executed, however. By setting

this value SQL Server will calculate how many dirty pages can exist before they need

to be written to the database data file so that the recovery process never takes longer

than the time specified. So, for instance, if you configure the Target Recovery Time
(Seconds) option to 15 seconds, SQL Server will write dirty pages to the database data

file at such an interval that when the SQL Server instance fails it can be recovered within

15 seconds.

To monitor how many dirty pages are inside the buffer cache so SQL Server knows

when the dirty-page threshold has been reached, the recovery writer was introduced.

Even if you do not configure the Target Recovery Time (Seconds) option, DIRTY_PAGE_

POLL waits will still occur because the recovery writer process will still poll the number

of dirty pages inside the buffer cache, even though no action is taken upon that number.

As you can see in Figure 12-5, the wait times can reach high values easily even when not

using indirect checkpoints.

-- Query Wait Statistics

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'DIRTY_PAGE_POLL';

Figure 12-5. DIRTY_PAGE_POLL waits

Chapter 12 BaCkground and MisCellaneous Wait types

335

Indirect checkpoints also have a risk associated with them. Configuring the

Target Recovery Time (Seconds) option to a very low value can lead to extra load

on the storage subsystem because dirty pages are continuously written to disk. Be

sure to test the setting extensively before configuring it on your production SQL

Server instances.

 DIRTY_PAGE_POLL Summary
The DIRTY_PAGE_POLL wait type was introduced in SQL Server 2012 with the introduction

of the indirect checkpoints feature (which ended up being the default setting for

new databases created in SQL Server 2016 or higher). Even if you do not use indirect

checkpoints, the DIRTY_PAGE_POLL wait type will still accumulate wait time because

of the new recovery writer process. Normally the DIRTY_PAGE_POLL wait type does not

indicate a performance problem, and as such it can safely be ignored when analyzing

wait statistics on your SQL Server instance.

 LAZYWRITER_SLEEP
The LAZYWRITER_SLEEP wait type is, surprise, related to the SQL Server internal

lazywriter process. The lazywriter process shares some similarities with the checkpoint

process we discussed earlier in this chapter, in that it also writes dirty pages from

the buffer cache to the database data file. The similarities end here, though, because

the reason why the lazywriter process writes these pages to the database data file is

completely different than the checkpoint process.

 What Is the LAZYWRITER_SLEEP Wait Type?
Just like with other wait types we have discussed so far in this chapter, the LAZYWRITER_

SLEEP wait type occurs when an internal SQL Server process, in this case the lazywriter

process, is waiting for work. The lazywriter process is a background process that will

become active at a certain time interval. When it becomes active it will scan the size of

the buffer cache and determine if there are enough free pages inside the buffer cache.

It is important that there are always a certain number of free pages inside the buffer cache

so that new page requests can fit directly without first having to swap out other pages.

If the lazywriter process determines there are enough free pages in the buffer cache,

Chapter 12 BaCkground and MisCellaneous Wait types

336

it will go back to sleep again and record the LAZYWRITER_SLEEP wait type while it is

sleeping. However, if there are not enough free pages inside the buffer cache, the

lazywriter process will detect, between checkpoints, which dirty pages in the buffer

cache haven’t been accessed for a while, write them to the database data file, and

remove them from the buffer cache. So, if there are more than enough free pages inside

the buffer cache, the lazywriter process doesn’t have much work to do. If your SQL

Server instance is under memory pressure, the lazywriter process will be far busier while

swapping out dirty pages and freeing up room inside the buffer cache. Figure 12-6 shows

the relationship of the checkpoint and lazywriter processes with a flowchart.

Because the LAZYWRITER_SLEEP wait type indicates the time the lazywriter process

spends sleeping, or waiting for work, it is another one of those wait types you can safely

ignore. There is a catch however—if the lazywriter process is constantly working to

move dirty pages from the buffer cache to the database data file, it can indicate your SQL

Figure 12-6. Checkpoint and lazywriter processes

Chapter 12 BaCkground and MisCellaneous Wait types

337

Server instance is experiencing memory pressure. This is bad for performance because

every page has to be moved to the buffer cache before it can get read or modified. This

behavior can potentially result in lower-than-normal wait times on the LAZYWRITER_

SLEEP wait type.

 LAZYWRITER_SLEEP Summary
The LAZYWRITER_SLEEP wait type is related to the lazywriter internal SQL Server process.

The lazywriter process starts at a fixed time interval and is responsible for writing dirty

data pages to the database data file if there are not enough free pages available inside

the buffer cache. The LAZYWRITER_SLEEP wait type indicates that the lazywriter process is

currently not running, or is sleeping, until it is signaled to wake up and check the buffer

cache. Because the LAZYWRITER_SLEEP wait type only shows us how much time the

lazywriter process spends being inactive, it can in most cases be ignored.

 MSQL_XP
In the last section of Chapter 11, “Preemptive Wait Types,” we discussed the PREEMPTIVE_

GETPROCADDRESS wait type. We learned that the PREEMPTIVE_GETPROCADDRESS wait type

records wait time when the entrypoint of an extended stored procedure is loaded. One

important thing I noted was that the PREEMPTIVE_GETPROCADDRESS wait type does not

record the execution time of the extended stored procedure, only the entrypoint loading.

The execution time of an extended stored procedure is actually tracked by another wait

type, MSQL_XP.

 What Is the MSQL_XP Wait Type?
The MSQL_XP wait type records the execution time of extended stored procedures on your

SQL Server instance. The MSQL_XP wait type is also used to detect deadlock situations

when using Multiple Active Result Sets (MARS). MARS is a feature that allows the

execution of multiple (concurrent) batches through a single SQL Server connection. We

won’t go further into detail about MARS, but you can find some more information about

it here: https://msdn.microsoft.com/en-us/library/ms131686.aspx.

Chapter 12 BaCkground and MisCellaneous Wait types

https://msdn.microsoft.com/en-us/library/ms131686.aspx

338

The most common reason for seeing higher-than-normal wait times on the MSQL_XP

wait type is the execution of extended stored procedures. This does not necessarily mean

there is a problem as long as the execution time of the extended stored procedures stays

the same. However, if an extended stored procedure takes more time than expected, you

are sure to notice it in the increase of the MSQL_XP wait time when comparing the wait

time against a baseline.

 MSQL_XP Example
To demonstrate that MSQL_XP waits occur when extended stored procedures are being

executed, I created a simple example using the script in Listing 12-2. The script will reset

the sys.dm_os_wait_stats DMV, execute an extended stored procedure (in this case the

xp_dirtree extended stored procedure inside the master database), and query the sys.

dm_os_wait_stats for MSQL_XP wait information.

Listing 12-2. MSQL_XP example

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

EXEC master..xp_dirtree 'c:\windows';

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'MSQL_XP';

The results of the query in Listing 12-2 on my test SQL Server instance can be seen

in Figure 12-7. The top window shows the xp_dirtree results, the bottom window the

results of the query against the sys.dm_os_waits_stats DMV.

Chapter 12 BaCkground and MisCellaneous Wait types

339

The information in the sys.dm_os_wait_stats DMV shows us that one wait

occurred on the MSQL_XP wait type with a wait time of 21,224 milliseconds. This is almost

identical to the time it took to execute the query in Listing 12-2, which was 21 seconds on

my test SQL Server instance.

 Lowering MSQL_XP Waits
When noticing higher-than-normal wait times for the MSQL_XP wait type, chances are

that extended stored procedures are being used and are taking longer than normal

to complete. Your first point of action should be to identify which extended stored

procedures are being used and what they are being used for. Because extended

stored procedures can also perform tasks outside SQL Server, they can run into other

Windows processes that can slow them down. Knowing what the extended stored

procedure function is, and what it does, can help you quickly identify where it is

running into issues.

If you are using MARS, you are probably running into MARS-connection deadlocks.

There have been various SQL Server updates that reduce the chances of MARS deadlocks

occurring, so make sure your SQL Server instance is patched. Also make sure to check

the application code that executes queries using MARS for potential issues.

Figure 12-7. MSQL_XP wait

Chapter 12 BaCkground and MisCellaneous Wait types

340

 MSQL_XP Summary
The MSQL_XP wait type does two different things: it detects the time it takes to execute

extended stored procedures and serves as deadlock detection for MARS connections.

Seeing higher-than-normal wait times on the MSQL_XP wait type frequently indicates an

extended stored procedure is taking longer than normal to complete. Try to detect which

extended stored procedure is being executed and what its function is, as this will make

troubleshooting the extended stored procedure easier.

 OLEDB
The OLEDB wait type occurs whenever SQL Server has to access the Object Linking and

Embedding Database (OLEDB) Client Provider. There are various reasons why SQL

Server will use the OLEDB Client Provider, and whenever it does SQL Server will record

wait time on the OLEDB wait type.

 What Is the OLEDB Wait Type?
SQL Server uses the OLEDB Client Provider for many different actions inside SQL Server.

For instance, linked server traffic will move through the OLEDB Client Provider and will

result in OLEDB waits. Other actions, especially when SQL Server has to retrieve data

from an outside source, can also result in OLEDB Client Provider usage.

Some actions inside SQL Server will also use the OLEDB Client Provider, even

though they occur internally. One good example of this is the DBCC command, which I

will demonstrate in the following example section.

 OLEDB Example
One interesting process that uses the OLEDB Client Provider is the DBCC command

inside SQL Server. Whenever you execute a DBCC command, you are bound to see

OLEDB waits occur. Listing 12-3 shows an example of OLEDB waits occurring after a DBCC

CHECKDB. The example script will clear the sys.dm_os_wait_stats DMV, perform a

CHECKDB against the AdventureWorks database, and then query the sys.dm_os_wait_

stats DMV for OLEDB waits.

Chapter 12 BaCkground and MisCellaneous Wait types

341

Listing 12-3. Generate OLEDB waits

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

DBCC CHECKDB('AdventureWorks');

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'OLEDB';

The results of the query in Listing 12-3 as performed against my test SQL Server

instance can be seen in Figure 12-8.

As you can see from Figure 12-8, performing a DBCC CHECKDB will lead to OLEDB waits.

 Lowering OLEDB Waits
As you could see in the previous example, performing a DBCC CHECKDB against a database

will result in OLEDB waits. This doesn’t mean there is a problem related to the OLEDB

Client Provider, however; rather, it just indicates that the DBCC CHECKDB command makes

use of the OLEDB Client Provider. Running DBCC CHECKDB is a vital part of making sure

your databases are healthy. Avoiding consistency checks just to lower OLEDB wait times is

bad practice, and I strongly advise against it. Seeing high OLEDB wait times occur outside

DBCC commands can indicate there is a performance issue somewhere in your SQL

Server environment. If you are dealing with remote sources, such as linked servers or

Excel files, you are also affected by the performance of the remote source. For instance, if

you are querying information from a linked server and the linked server is experiencing

performance problems, it will probably also be reflected in the OLEDB wait time. Also,

certain operations, like sorts, can also impact the query duration on the linked server.

Network connections to the remote source can also play a role in higher-than-normal

OLEDB wait times. If the network connection through which you are accessing your

remote source experiences performance degradation, you will again notice this in the

OLEDB wait times.

Figure 12-8. OLEDB waits

Chapter 12 BaCkground and MisCellaneous Wait types

342

Because the OLEDB wait can occur for various reasons, some of which are benign like

DBCC commands, and some that can be related to performance issues, I advise you not

to ignore the OLEDB wait type, but rather to monitor it like other performance-indicating

wait types.

 OLEDB Summary
The OLEDB wait type can occur due to various sources that use the Object Linking and

Embedding Database (OLEDB) Client Provider. Most of the sources are related to remote

data sources, like linked servers. Some internal processes also use the OLEDB Client

Provider, most notably the DBCC command. Seeing higher-than-normal wait times on

the OLEDB wait type doesn’t have to mean there is a performance problem, especially

when they can be correlated to a planned DBCC command execution. Seeing higher-

than- normal wait times outside DBCC command when you are using remote data sources

like linked servers can mean that the remote data source is experiencing performance

problems. In this case, focus on the data source; if the source has problems it is bound to

affect the OLEDB wait times as well.

 TRACEWRITE
The TRACEWRITE wait type is a special wait type that only collects wait time when a

trace is running, and most commonly a SQL Profiler trace. A trace is a background

process in SQL Server that collects various, often user-specified, information about the

performance of a SQL Server instance. For example, it is possible to use SQL Server

Profiler to capture currently executing queries, filtered against a single database, with

runtime information. There are various trace methods available in SQL Server, but the

most common one that affects the TRACEWRITE wait type is the SQL Server Profiler trace.

SQL Server Profiler is an application that is part of the SQL Server, and starting from

SQL Server 2016 the separate SQL Server Management Studio product, and allows users

to create and monitor traces against SQL Server instances. The SQL Server Profiler

was announced as deprecated by Microsoft with the introduction of SQL Server 2012,

and Microsoft recommends using Extended Events to capture traces. Even though the

SQL Server Profiler is deprecated, it is still available in SQL Server 2014 and is installed

whenever you deploy the separate SQL Server Management Studio product from SQL

Chapter 12 BaCkground and MisCellaneous Wait types

343

Server 2016 onward. Many people still rely on SQL Server Profiler traces instead of

Extended Events to troubleshoot and monitor query performance.

The bad news about using SQL Server Profiler is that it can cause some performance

overhead while a trace is being performed. Microsoft released an article that concluded

that running SQL Server Profiler traces on busy systems can have an impact of 10% on

the amount of transactions per seconds; you can find the article here: https://msdn.

microsoft.com/en-us/library/cc293614.aspx. Because SQL Server Profiler traces can

have such a big impact on the performance of your system, I believe it is important to

monitor the TRACEWRITE wait time.

 What Is the TRACEWRITE Wait Type?
As we just noted, the TRACEWRITE wait type will show up on your system when traces

are being performed against your SQL Server instance using the SQL Server Profiler.

Because SQL Server Profiler traces can have such an impact on the performance of your

SQL Server instance, it is advisable that you monitor the wait type to detect if any SQL

Server Profiler traces are being performed.

There are a variety of reasons why you would want to run a SQL Server Profiler

trace; for instance, if you want to troubleshoot a very specific query problem or when

monitoring how many times a specific query gets executed. Even though there are

alternatives to the SQL Server Profiler, like server-side traces and Extended Events, the

SQL Server Profiler tool is very easy to use compared to the often complex Extended

Events.

 TRACEWRITE Example
To show you an example of TRACEWRITE waits occurring, we are going to have to start a

SQL Server Profiler trace. The SQL Server Profiler program is part of the Management

Tools - Complete feature, which you can select when installing SQL Server versions

lower than SQL Server 2016, or when adding features to an existing installation. If

you install the separate SQL Server Management Studio product, the Profiler feature

is automatically installed as well. Figure 12-9 shows the feature inside the SQL Server

2012 Setup.

Chapter 12 BaCkground and MisCellaneous Wait types

https://msdn.microsoft.com/en-us/library/cc293614.aspx
https://msdn.microsoft.com/en-us/library/cc293614.aspx

344

When you have installed the Management Tools - Complete feature, you can find the

SQL Server Profiler in the SQL Server ➤ Performance Tools folder underneath the Start

menu, or in the C:\Program Files (x86)\Microsoft SQL Server\[edition number]\Tools\

Binn folder.

If you installed the separate SQL Server Management Studio product the Profiler can

be found in the C:\Program Files (x86)\Microsoft SQL Server\140\Tools\Binn folder.

After starting up the SQL Server Profiler, you can start a new trace by clicking the

New Trace button, shown in Figure 12-10, or selecting File ➤ New Trace.

Figure 12-9. Management Tools - Complete feature in SQL Server 2012 Setup

Chapter 12 BaCkground and MisCellaneous Wait types

345

When you start a new trace, you will need to connect to the SQL Server instance you

want to trace. In this case I connected to my test SQL Server instance. After logging on to

the SQL Server instance, the Trace Properties window will open. This window will give

you a variety of options with which to configure your trace and how you want to store

your trace. In this example we are not going to change anything in the General tab, but

instead will go directly to the Events Selection tab. There we can select what events we

want to capture, and optionally supply filters for those events. By default a selection is

preloaded when starting a new trace, as you can see in Figure 12-11.

Figure 12-10. New SQL Server Profiler trace

Chapter 12 BaCkground and MisCellaneous Wait types

346

For this example we do not need all the extra events that are selected by

default. In this case we check the Show all columns checkbox, and only select the

SQL:BatchCompleted event, as you can see in Figure 12-12. This will record all the T-SQL

statements that are executed against the test SQL Server instance and capture all the

information available for the event.

Figure 12-11. SQL Server Profiler default event selection

Chapter 12 BaCkground and MisCellaneous Wait types

347

We won’t configure any filters on the event, so we will capture every T-SQL statement

we execute against the SQL Server instance. We press Run to start the trace, which will

open the trace window that will show us the events when they take place on our SQL

Server instance along with additional information about, in this case, the query.

Now that our SQL Server Profiler trace is running, we should be able to notice

TRACEWRITE waits occurring. We execute the query that follows in SQL Server

Management Studio against the sys.dm_os_waiting_tasks DMV:

SELECT *

FROM sys.dm_os_waiting_tasks

WHERE wait_type = 'TRACEWRITE';

The results of this query are shown in Figure 12-13.

Figure 12-12. SQL:BatchCompleted event selected

Figure 12-13. TRACEWRITE waits

Chapter 12 BaCkground and MisCellaneous Wait types

348

Even though we are not running any workload on the test SQL Server instance, the

TRACEWRITE wait type will still be logged. This is normal since the TRACEWRITE wait type

will always be recorded as long as a SQL Server Profiler trace is active.

 Lowering TRACEWRITE Waits
As I mentioned before, if you notice TRACEWRITE waits occurring it means someone is

running a SQL Server Profiler trace against your SQL Server instance. Because a SQL

Server Profiler trace can have such a big impact on the performance of your SQL Server

instance, it is important to know who is running the SQL Server Profiler trace and why.

Thankfully, there is a catalog view we can query to view trace activity—the sys.

traces view. The sys.traces catalog view will give you an overview of traces that are

either active or paused against the SQL Server instance. The query that follows will

retrieve all the information inside the sys.traces catalog view:

SELECT *

FROM sys.traces;

Running this query against the test SQL Server instance returns the information

shown in Figure 12-14. (some columns did not fit inside the image).

Some important columns I want to highlight from the sys.traces catalog view are

the status and reader_spid columns. The status column returns either a 0 or a 1,

where a 0 indicates the trace is stopped or paused and a 1 indicates the trace is currently

running. The reader_spid column returns the session ID of the session that started the

trace. We can use this information to detect who is running the trace.

In our case, the trace we started in the example has an ID of 2, while the ID of 1 is

reserved for the background SQL Server trace that is, by default, always active. This

default trace collects specific information about the health of the SQL Server instance

and can be used when troubleshooting. Because it is a so-called server-side trace, it does

not record TRACEWRITE wait time while it is running.

Figure 12-14. sys.traces

Chapter 12 BaCkground and MisCellaneous Wait types

349

Now that you can identify the user that is running the trace you can take action if you

believe the trace has a negative effect on the performance of your SQL Server instance.

After stopping SQL Server Profiler traces in order to lower the TRACEWRITE wait time,

there are other methods available if you really need to capture traces against your SQL

Server instance. The most logical one is recreating your SQL Server Profiler trace within

an Extended Event session. Extended Events have a much smaller overhead than SQL

Server Profiler traces and allow even more events and options while capturing traces.

If you still want to use SQL Server Profiler to analyze traces, it can be a good idea

to convert the trace you would normally run in the SQL Server Profiler application to

a server-side trace. Just like with Extended Events, server-side traces have minimal

overhead compared to traces that are performed through the SQL Server Profiler

application. Let’s convert the SQL Server Profiler trace we created in the example section

to a server-side trace and monitor the effects on the TRACEWRITE wait type.

The easiest way to convert a SQL Server Profiler trace is by defining the trace in the SQL

Server Profiler application without starting it. Instead, select the File ➤ Export ➤ Script

Trace Definition ➤ For SQL Server 2005 – SQL2017 option, as shown in Figure 12- 15.

After clicking the File ➤ Export ➤ Script Trace Definition ➤ For SQL Server 2005 –

SQL2017 option, we will be asked to save a .sql file. The entire trace definition will be

scripted inside this .sql file. We can open this file in SQL Server Management Studio,

modify the file location and some other options inside the script, and execute it.

Figure 12-15. Export SQL Server Profiler trace to trace definition

Chapter 12 BaCkground and MisCellaneous Wait types

350

This will return the ID of the trace we just created and save the trace information to a

file we specified at the top of the script. Figure 12-16 shows a part of the exported trace

definition on our test SQL Server instance.

After executing the script to create a server-side trace, we received a trace ID of 2.

The trace ID is very important because it is the only way to either start or stop the server-

side trace. After creation, the server-side trace is automatically started. If we query the

sys.traces catalog view, we can see the server-side trace that was just created, as shown

in Figure 12- 17.

Figure 12-16. Trace definition

Figure 12-17. sys.traces

Chapter 12 BaCkground and MisCellaneous Wait types

351

The only way to interact with the server-side trace we created is to execute the

sp_trace_setstatus stored procedure and supply the trace ID and a status ID. For instance,

executing the query that follows will stop the server-side trace with a trace ID of 2:

EXEC sp_trace_setstatus 2, 0

To start it again we can execute this command:

EXEC sp_trace_setstatus 2, 1

And finally, to close the trace entirely we can execute the following command:

EXEC sp_trace_setstatus 2, 3

This does not delete the server-side trace though. As a matter of fact, server-side

traces are only removed by a restart of the SQL Server service.

Because a server-side trace can only capture to a trace file, you can navigate to the

file you supplied in the server-side trace definition and open the file in SQL Server

Profiler. Thus, you can capture the same information as by using the SQL Server Profiler

application but at a much lower performance price.

 TRACEWRITE Summary
The TRACEWRITE wait type indicates a SQL Server Profiler trace is currently being

performed against the SQL Server instance. SQL Server Profiler traces can have a pretty

big impact on the performance of your SQL Server instance, and for this reason it is

important to monitor the number of traces running against your SQL Server instance.

Thankfully, there are some alternatives to SQL Server Profiler traces. You can either

choose to convert your SQL Server Profiler trace to an Extended Events session or

execute the SQL Server Profiler trace using server-side tracing.

 WAITFOR
The final wait type in this chapter is one of the few wait types that are directly related

to a T-SQL command. The WAITFOR wait type doesn’t indicate performance problems,

though it definitely has an impact on the duration of the query that is executing the

related WAITFOR T-SQL command.

Chapter 12 BaCkground and MisCellaneous Wait types

352

 What Is the WAITFOR Wait Type?
The WAITFOR wait type will get recorded whenever a query is being executed that uses

the WAITFOR command. The WAITFOR T-SQL command will stop the execution of the

query until a specific amount of time has passed or a specific point in time has been

reached. When that happens, the query execution will continue. The WAITFOR command

is frequently used inside queries or scripts to force a pause inside the query execution.

For instance, in Chapter 4, “Building a Solid Baseline,” we used the WAITFOR command

to wait a specific amount of time so we could compare two measurements taken 15

minutes apart.

While pausing the query execution using the WAITFOR command, the transaction

holding the WAITFOR command will remain open until the entire transaction has

completed. This means that threads are being held by the transaction that cannot

be used for other processes. SQL Server also reserves a dedicated thread just for the

WAITFOR command; if too many threads are associated with WAITFOR commands and

thread starvation occurs, SQL Server will select random WAITFOR threads and terminate

them to free up more threads.

In many cases the WAITFOR command is explicitly used by the person who wrote the

query or script, and in that sense only impacts that specific query or script; thus, there is

no reason to be alarmed when seeing high WAITFOR wait times occur. It just indicates that

queries are using the WAITFOR command.

 WAITFOR Example
To show you a quick example of the WAITFOR wait type, you can execute the query in

Listing 12-4. The query will reset the sys.dm_os_wait_stats DMV, execute a WAITFOR

DELAY statement that causes the script execution to wait for 30 seconds, and then query

the sys.dm_os_wait_stats DMV for WAITFOR waits.

Listing 12-4. WAITFOR waits

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

WAITFOR DELAY '00:00:30';

Chapter 12 BaCkground and MisCellaneous Wait types

353

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'WAITFOR';

When the query in Listing 12-4 finishes, you should see that one WAITFOR wait

occurred, having a total wait time of roughly 30 seconds, as you can see in Figure 12-18.

 WAITFOR Summary
The WAITFOR wait type is one of the few wait types that are directly related to the

execution of a T-SQL command, in this case WAITFOR. The WAITFOR wait type doesn’t

indicate any performance problems with your SQL Server instance, it just indicates the

WAITFOR command is being used by a query or script. The WAITFOR T-SQL command will

only impact the execution time of the query or script that uses it; therefore, the only way

to lower WAITFOR wait times is by removing the WAITFOR command inside queries.

Figure 12-18. WAITFOR wait

Chapter 12 BaCkground and MisCellaneous Wait types

355
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_13

CHAPTER 13

In-Memory OLTP–Related
Wait Types
With the release of SQL Server 2014, Microsoft introduced a brand new SQL Server

feature called In-Memory OLTP (or codename Hekaton). In-Memory OLTP is a memory-

optimized database engine that is directly integrated into the SQL Server 2014 SQL

Server engine. In-Memory OLTP is an enterprise-only feature designed to improve

performance—up to 20 times, according to Microsoft—by placing tables entirely into the

memory of your SQL Server instance. These memory-optimized tables are fully durable

and use lock-and-latch free structures to optimize concurrency control.

With the introduction of In-Memory OLTP, various new wait types have been added

to SQL Server 2014. Most of these are recognizable by the _XTP_ (or eXtreme Transaction

Processing) section in the wait type name. In this chapter we will take a look at some of

these new, In-Memory OLTP–related wait types available in SQL Server 2014 or higher.

Before we dive into the wait types though, let’s first take a (simplified and short) look

at what In-Memory OLTP is and how it works. I will focus on memory-optimized tables

in this chapter. In-Memory OLTP also introduced other features, like natively compiled

stored procedures and hash indexes, but these are beyond the scope of this chapter.

 Introduction to In-Memory OLTP
The main difference between traditional, disk-based tables and memory-optimized

tables is that memory-optimized tables reside completely in the memory of your SQL

Server instance. Unlike traditional tables, where data pages from that table are moved

from disk into memory and back out again, memory-optimized tables are moved to

your system’s memory at SQL Server startup and never leave the memory (unless the

memory-optimized table is removed, of course). While this might sound a bit scary at

356

first, memory-optimized tables are, by default, fully durable. This means that if your SQL

Server instance crashes, memory-optimized table data is not lost. Of course, having an

entire table reside in the memory of your SQL Server instance also has its disadvantages.

You need to make sure you have enough free memory to accommodate the entire

memory-optimized table (and some extra memory to accommodate row versions used

when accessing such tables). Calculating the memory requirements can be difficult, but

the following article can help you out https://msdn.microsoft.com/en-us/library/

dn282389.aspx.

The memory you reserve for memory-optimized tables is claimed by SQL

Server and will not be wiped out; if your memory-optimized tables use too much

memory, your SQL Server instance will run into memory starvation issues that cause

performance degradation or, worst-case, cause SQL Server to crash. This is a major

difference compared to, for instance, the buffer cache, where pages are wiped out of

memory when memory pressure occurs. Another disadvantage is that many data types

or SQL Server features are not supported for memory-optimized tables. The complete

list of what can and cannot be used can be found at https://msdn.microsoft.com/

en-us/library/dn246937(v=sql.120).aspx and at https://msdn.microsoft.com/

en-us/library/dn133181(v=sql.120).aspx. With the release of SQL Server 2016,

some of the major limitations were resolved, making the feature more attractive and

less restrictive.

So, how do memory-optimized tables work, and why do they perform that much

faster than traditional disk-based tables? Let’s take a look at some of the internals of

In- Memory OLTP.

 CFPs
Like I mentioned earlier, by default memory-optimized tables are durable (you can

choose to create a non-durable table that has its contents cleared on a SQL Server

Service restart, but you have to explicitly specify this). The way this durability is achieved

is through so-called checkpoint file pairs (CFPs). CFPs consist of two files, a data and a

delta file, that exist inside a special memory-optimized filegroup that you have to create

for the database where you want to use memory-optimized tables.

Unlike traditional tables that store row data inside data pages, data files store the

rows of all your memory-optimized tables. I emphasize the word all because a single

data file can hold the rows of many memory-optimized tables, unlike data pages that

Chapter 13 In-MeMory oLtp–reLated WaIt types

https://msdn.microsoft.com/en-us/library/dn282389.aspx
https://msdn.microsoft.com/en-us/library/dn282389.aspx
https://msdn.microsoft.com/en-us/library/dn246937(v=sql.120).aspx
https://msdn.microsoft.com/en-us/library/dn246937(v=sql.120).aspx
https://msdn.microsoft.com/en-us/library/dn133181(v=sql.120).aspx
https://msdn.microsoft.com/en-us/library/dn133181(v=sql.120).aspx

357

store row data for a single table. The rows inside a data file are stored sequentially

based on the time they were inserted into a memory-optimized table. This is different

than with data pages, which hold row information inside extents for traditional tables.

Because rows are stored sequentially inside the data files, there is a performance

increase when reading rows since it eliminates the random reads that occur when

reading rows from traditional tables. Figure 13-1 shows an abstract view of a data file

and the row data it holds.

There are always multiple data files inside a memory-optimized filegroup. When you

first create the memory-optimized filegroup, SQL Server will automatically pre-allocate

a number of data files in the file location of the memory-optimized filegroup. The data

files will always have a fixed file size, either 128 MB on systems with more than 16 GB

memory or 16 MB when there is less than or equal to 16 GB memory. When a data file

is full, a new data file will automatically be created and new rows will be inserted into

the new data file. It is important to know that the data file keeps track of rows based on

the transaction-commit timestamp that inserted the row into the data file (shown by the

number inside Figure 13-1). Even if new data files are added and rows are spread across

multiple data files, the data files will always have a contiguous range of transactions.

Figure 13-2 shows multiple data files and the transaction-commit timestamps associated

with those data files.

Figure 13-1. Memory-optimized table’s data file

Chapter 13 In-MeMory oLtp–reLated WaIt types

358

Notice in Figure 13-2 that the last data file still has room for new rows—it doesn’t

have a transaction timestamp to indicate the file is full, so new rows will be added to

that file.

Another important characteristic of the data file is that rows that are deleted are not

directly removed from the file. Instead they are tracked by the delta file that is associated

with the data file. The delta file logs any deletes made in the data file and is connected

to the data file by the transaction timestamp range. Row updates for memory-optimized

tables are tracked as a delete and insert operation.

The population of the data and delta files is performed by a background thread—

called the offline checkpoint thread—that runs constantly in the background of SQL

Server. This is different than the checkpoint process used for traditional tables where

pages are written to the database data files at intervals. The offline checkpoint thread

monitors the transaction log for operations performed on memory-optimized tables and

directly writes to the data and delta files.

Over time, when data files accumulate more deleted rows, a merge operation will

take place that will merge multiple data files together into one data file. The merge

operation will create new data and delta files and move the contents of one or more

data and delta files into the new files, but it will not move the rows that were marked as

deleted. The transaction-commit timestamps will be adjusted in the new data and delta

files so they match the timestamps of the files that were merged. Figure 13-3 shows a

simplified view of a merge operation on a data-file level. Keep in mind that a merge will

also impact the delta file.

Figure 13-2. Data files and transaction timestamps

Chapter 13 In-MeMory oLtp–reLated WaIt types

359

Figure 13-3. Merge operation

Chapter 13 In-MeMory oLtp–reLated WaIt types

360

 Isolation
Concurrent access to memory-optimized tables is handled through snapshot-based

transaction isolation. This isolation level shares many characteristics with the snapshot

isolation we can use on disk-based tables, but there are some differences so as to

optimize throughput. First of all, the snapshot-based transaction isolation uses row

versions when concurrent transactions want to access the same row. Instead of storing

the row versions in the TempDB database like regular snapshot isolation, the row

versions for memory-optimized tables are stored in-line in the data files itself.

Another difference is that snapshot-based transaction isolation uses an

optimistic concurrency control. This means that SQL Server assumes no transaction

conflict will occur when concurrent transactions access the same data. Because

of this assumption there is no need for locks or latches to protect the memory-

optimized table data. There is a form of conflict detection active, however, and when

it detects that a conflict has occurred, it will end one of the transactions, and that

transaction will need to be retried.

Not having to place and maintain locks and latches is another major contribution to

the performance of In-Memory OLTP.

 Transaction Log Changes
The final differences I want to discuss in this section are the modifications to the

behavior of the transaction log regarding memory-optimized tables. For traditional

tables, a log record will be generated when a transaction starts whether it gets committed

or not. For memory-optimized tables, the log record will only be generated when the

transaction begins the commit processing. This means no information for transactions

that are rolled back is recorded. This minimizes interaction with the transaction log on

disk, thus improving performance.

Another modification is that changes to indexes on memory-optimized tables

are not logged in the transaction log. Since indexes that are created on memory-

optimized tables are also maintained entirely in-memory, there is no need to record

changes. Indexes on memory-optimized tables are regenerated on the start of the

SQL Server Service.

Chapter 13 In-MeMory oLtp–reLated WaIt types

361

The final difference I want to mention is the grouping of multiple transactions into

one log record. For traditional tables every transaction will result in at least one log

record. Transactions against memory-optimized tables are grouped together and then

written as one log record (with a current maximum size of 24 KB). For instance, if you

have 200 inserts against a traditional table, at least 200 log records would be generated.

If we could fit 100 inserts into one log record for the memory-optimized table, we would

only have two log records instead of at least 200. Again, this improves throughput for

memory-optimized tables.

Now that we have taken a (simplified and short) look at some of the inner workings

of memory-optimized tables, let’s move on to some of the wait types that are related to

In-Memory OLTP. Most of the three wait types that we will discuss in this chapter are

related, one way or another, to the new offline checkpoint process introduced with In-

Memory OLTP.

 WAIT_XTP_HOST_WAIT
The first wait type we will discuss in this chapter is WAIT_XTP_HOST_WAIT. This wait

type shares some characteristics with the CHECKPOINT_QUEUE wait type we discussed in

Chapter 12, “Background and Miscellaneous Wait Types,” in that it seems to be running

continuously but only writes its wait information to sys.dm_os_wait_stats at specific

conditions.

 What Is the WAIT_XTP_HOST_WAIT Wait Type?
If we look up some information about the WAIT_XTP_HOST_WAIT wait type on Books

Online, we get a not-so-helpful definition: “Occurs when waits are triggered by the

database engine and implemented by the host.” This doesn’t give us a lot of clues about

the processes that might be related to the WAIT_XTP_HOST_WAIT wait type, which means

we have to do a little bit of digging ourselves.

Before we can start investigating the WAIT_XTP_HOST_WAIT wait type, we need to

create a memory-optimized table. I used the script shown in Listing 13-1 to create a

new database with a single memory-optimized table. There are some path references in

this script that you will need to change to make sure the database data and log files are

created in the right location.

Chapter 13 In-MeMory oLtp–reLated WaIt types

362

Listing 13-1. Create test database and memory-optimized table

-- Create database

-- Make sure to change the file locations if needed

USE [master]

GO

CREATE DATABASE [OLTP_Test] CONTAINMENT = NONE

ON PRIMARY

 (

 NAME = N'OLTP_Test', FILENAME = N'E:\Data\OLTP_Test_Data.mdf' ,

SIZE = 51200KB , FILEGROWTH = 10%

)

LOG ON

 (

 NAME = N'OLTP_Test_log', FILENAME = N'E:\Log\OLTP_Test_Log.ldf' ,

SIZE = 10240KB , FILEGROWTH = 10%

);

GO

-- Add the Memory-Optimized Filegroup

ALTER DATABASE OLTP_Test ADD FILEGROUP OLTP_MO CONTAINS MEMORY_OPTIMIZED_

DATA;

GO

-- Add a file to the newly created Filegroup.

-- Change drive/folder location if needed.

ALTER DATABASE OLTP_Test ADD FILE (name='OLTP_mo_01', filename='E:\data\

OLTP_Test_mo_01.ndf') TO FILEGROUP OLTP_MO;

GO

-- Create our test table

USE [OLTP_Test]

GO

Chapter 13 In-MeMory oLtp–reLated WaIt types

363

CREATE TABLE OLTP

 (

 ID INT IDENTITY (1,1) PRIMARY KEY NONCLUSTERED,

 RandomData1 VARCHAR(50),

 RandomData2 VARCHAR(50),

 ID2 UNIQUEIDENTIFIER

)

WITH (MEMORY_OPTIMIZED=ON);

GO

Now that we have a memory-optimized table we can use for testing, let’s take a look

at the WAIT_XTP_HOST_WAIT wait type in the sys.dm_os_wait_stats and sys.dm_os_

waiting_tasks DMV using the following query:

SELECT *

FROM sys.dm_os_waiting_tasks

WHERE wait_type = 'WAIT_XTP_HOST_WAIT';

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'WAIT_XTP_HOST_WAIT';

The results of this query on my test SQL Server instance can be seen in Figure 13-4.

Figure 13-4. WAIT_XTP_HOST_WAIT waits

The first thing you’ll notice is that the WAIT_XTP_HOST_WAIT wait type is constantly

showing up in the sys.dm_os_waiting_tasks DMV, and over time the wait time

increases. Also, the session_id that is related to the WAIT_XTP_HOST_WAIT wait type

indicates it is an internal SQL Server thread that is recording the wait. From this

information we can already formulate some conclusions about the WAIT_XTP_HOST_WAIT

wait type: it is related to an internal background process that continuously runs. What’s

Chapter 13 In-MeMory oLtp–reLated WaIt types

364

also interesting is that if you were to run the query a second time, the wait time in the

sys.dm_os_waiting_tasks DMV increases but the wait time in the sys.dm_os_wait_

stats remains the same. So far we have run into one other wait type that shared this

characteristic, the CHECKPOINT_QUEUE wait time, which we discussed in Chapter 12,

“Background and Miscellaneous Wait Types.”

Since the CHECKPOINT_QUEUE wait type has interesting behavior in that it only

writes the accumulated wait time of the sys.dm_os_waiting_tasks DMV to the sys.

dm_os_wait_stats DMV when an automatic checkpoint occurs, I decide to simply run a

checkpoint command against the OLTP_Test database I created using Listing 13-1, and

then query both the DMVs again. The impact on the wait times of the WAIT_XTP_HOST_

WAIT wait type can be seen in Figure 13-5.

As you can see in Figure 13-5, the wait time in the sys.dm_os_waiting_tasks

DMV is very small again, but the wait time in the sys.dm_os_wait_stats DMV has

increased a lot. Because of this behavior, I believe the WAIT_XTP_HOST_WAIT wait type

has something to do with the offline checkpoint process that is related to memory-

optimized tables.

To verify my guess I need to dig a little bit deeper to find out what goes on

underneath the hood of SQL Server when a checkpoint is performed against a memory-

optimized table. To get this information I create an Extended Events session that

captures the call stack whenever SQL Server runs into a WAIT_XTP_HOST_WAIT wait. I

won’t bore you with the methods I use for creating this Extended Events session here,

but Paul Randal wrote an amazing blog post about capturing call stacks whenever a

specific wait occurs that you can use to collect some call stacks yourself. You can find

Paul’s blog post here: www.sqlskills.com/blogs/paul/determine-causes-particular-

wait-type/.

Figure 13-5. WAIT_XTP_HOST_WAIT wait information after checkpoint

Chapter 13 In-MeMory oLtp–reLated WaIt types

http://www.sqlskills.com/blogs/paul/determine-causes-particular-wait-type/
http://www.sqlskills.com/blogs/paul/determine-causes-particular-wait-type/

365

The results of my Extended Events session for capturing the call stack when a WAIT_

XTP_HOST_WAIT wait occurs is shown here:

sqldk.dll!XeSosPkg::wait_info::Publish+0x138

sqldk.dll!SOS_Scheduler::UpdateWaitTimeStats+0x2bc

sqldk.dll!SOS_Task::PostWait+0x9e

sqlmin.dll!EventInternal<SuspendQueueSLock>::Wait+0x1fb

sqlmin.dll!HkHostWait::Wait+0xce

hkengine.dll!CkptFilePair::CreateInstance+0x61b

sqlmin.dll!HkHostReportFailure::KillProcess+0x372

sqldk.dll!SOS_Task::Param::Execute+0x21e

sqldk.dll!SOS_Scheduler::RunTask+0xa8

sqldk.dll!SOS_Scheduler::ProcessTasks+0x279

sqldk.dll!SchedulerManager::WorkerEntryPoint+0x24c

sqldk.dll!SystemThread::RunWorker+0x8f

sqldk.dll!SystemThreadDispatcher::ProcessWorker+0x3ab

sqldk.dll!SchedulerManager::ThreadEntryPoint+0x226

kernel32.dll!BaseThreadInitThunk+0xd

ntdll.dll!RtlUserThreadStart+0x21

The first part I found really interesting is the inclusion of a new .dll file, hkengine.

dll. Since In-Memory OLTP’s codename was Hekaton, I am guessing that this .dll holds

the new In-Memory OLTP functions, so let’s zoom in on that particular call:

hkengine.dll!CkptFilePair::CreateInstance+0x61b

Seeing the function name, I am guessing it is related to checkpoint file pairs, and the

CreateInstance bit suggests a new CFP was created when I executed the CHECKPOINT

command. We can verify this by going to the location of the In-Memory file that we

created in Listing 13-1. The interesting thing about adding a file to an In-Memory

filegroup is that it will actually create a directory, and inside this directory there is a

folder with a unique ID string. If you go further down the directory tree, you will end up

in a folder with numbered files. Figure 13-6 shows a part of the contents of this folder on

my test machine.

Chapter 13 In-MeMory oLtp–reLated WaIt types

366

As a matter of fact, the files you are seeing here are the data and delta files that are

associated with the memory-optimized table we created earlier. The 1 MB files are the

delta files and the 16 MB ones are the data files.

Since I am guessing a checkpoint would create another CFP, I checked the number

of files in the folder before executing a CHECKPOINT, which was 28 files. I then executed

a CHECKPOINT command and looked at the number of files again, and it turned out there

were now 30 files after the checkpoint.

 WAIT_XTP_HOST_WAIT Summary
I believe the WAIT_XTP_HOST_WAIT wait type has a clear relation to the creation of

new checkpoint file pairs. Apparently, running a manual CHECKPOINT statement will

generate a new CFP for the memory-optimized tables. Because the WAIT_XTP_HOST_

WAIT wait type generates wait time constantly in the background, and writes it to the

sys.dm_os_wait_stats DMV a new CFP was created (either by manual checkpoint,

when an existing CFP was full, or when a Merge operation occurred), I believe the

Figure 13-6. In-Memory filegroup files

Chapter 13 In-MeMory oLtp–reLated WaIt types

367

WAIT_XTP_HOST_WAIT wait type does not directly indicate performance problems.

It mostly indicates that a new CFP has been added to the In-Memory filegroup.

This does not mean this is the only process that generates WAIT_XTP_HOST_WAIT waits,

though. There can be other processes that can also cause the waits, but so far they

only occurred whenever a new CFP needed to be added.

 WAIT_XTP_CKPT_CLOSE
The WAIT_XTP_CKPT_CLOSE wait type is another new wait type introduced in SQL Server

2014. As the name suggests, it seems to be related to the new offline checkpoint process

introduced with the In-Memory OLTP feature.

 What Is the WAIT_XTP_CKPT_CLOSE Wait Type?
The WAIT_XTP_CKPT_CLOSE wait type seems to be related to the new offline checkpoint

process that was introduced in SQL Server 2014 with the release of In-Memory OLTP. As

far as I can tell by analyzing the behavior of this wait type, it only records wait time when

a checkpoint occurs, no matter if it is an automatic or manual checkpoint. The wait

time the WAIT_XTP_CKPT_CLOSE wait type represents seems to be the time it takes for the

checkpoint operation to complete. We can verify this easily by executing a CHECKPOINT

command against the database and table we created earlier when we discussed the

WAIT_XTP_HOST_WAIT wait type. I used the script in Listing 13-2 to clear the sys.dm_

os_wait_stats DMV, insert a few rows inside the memory-optimized table, perform a

CHECKPOINT operation, and then query the sys.dm_os_wait_stats DMV for WAIT_XTP_

CKPT_CLOSE wait type information.

Listing 13-2. Generate WAIT_XTP_CKPT_CLOSE waits

USE [OLTP_Test];

GO

-- Clear sys.dm_os_wait_stats

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

-- Insert some rows

INSERT INTO OLTP

Chapter 13 In-MeMory oLtp–reLated WaIt types

368

 (

 RandomData1,

 RandomData2,

 ID2

)

VALUES

 (

 CONVERT(VARCHAR(50), NEWID()),

 CONVERT(VARCHAR(50), NEWID()),

 NEWID()

);

GO 1000

-- Perform a CHECKPOINT

CHECKPOINT

-- Query sys.dm_os_wait_stats for WAIT_XTP_CKPT_CLOSE waits

SELECT *

FROM sys.dm_os_wait_stats

WHERE wait_type = 'WAIT_XTP_CKPT_CLOSE';

The results can be seen in Figure 13-7.

Just as I did for the WAIT_XTP_HOST_WAIT wait type, I also captured the call stack

when a WAIT_XTP_CKPT_CLOSE wait occurred:

sqldk.dll!XeSosPkg::wait_info::Publish+0x138

sqldk.dll!SOS_Scheduler::UpdateWaitTimeStats+0x2bc

sqldk.dll!SOS_Task::PostWait+0x9e

sqlmin.dll!EventInternal<SuspendQueueSLock>::Wait+0x1fb

sqlmin.dll!HkCheckpointCtxtImpl::WaitForCkptComplete+0xd0

sqlmin.dll!HkHostWaitForCkptComplete+0x13a

Figure 13-7. WAIT_XTP_CKPT_CLOSE waits

Chapter 13 In-MeMory oLtp–reLated WaIt types

369

sqlmin.dll!CheckpointWithOptionalTruncate+0xe6

sqllang.dll!CStmtCheckpoint::XretExecute+0xe7

sqllang.dll!CMsqlExecContext::ExecuteStmts<1,1>+0x427

sqllang.dll!CMsqlExecContext::FExecute+0xa33

sqllang.dll!CSQLSource::Execute+0x86c

sqllang.dll!process_request+0xa57

sqllang.dll!process_commands+0x4a3

sqldk.dll!SOS_Task::Param::Execute+0x21e

sqldk.dll!SOS_Scheduler::RunTask+0xa8

sqldk.dll!SOS_Scheduler::ProcessTasks+0x279

sqldk.dll!SchedulerManager::WorkerEntryPoint+0x24c

sqldk.dll!SystemThread::RunWorker+0x8f

sqldk.dll!SystemThreadDispatcher::ProcessWorker+0x3ab

sqldk.dll!SchedulerManager::ThreadEntryPoint+0x226

kernel32.dll!BaseThreadInitThunk+0xd

ntdll.dll!RtlUserThreadStart+0x21

I believe the most interesting line is sqlmin.dll!CheckpointWithOptionalTruncat

e+0xe6, which seems to be the function that performs the truncate. It is followed by the

sqlmin.dll!HkCheckpointCtxtImpl::WaitForCkptComplete+0xd0 line that I believe

records the time the previous checkpoint function took place, which gets posted later on

to the wait statistics DMVs.

I don’t believe seeing WAIT_XTP_CKPT_CLOSE waits occur is a direct cause for concern.

They indicate that checkpoints are being performed. I can imagine that sudden high

wait times for the WAIT_XTP_CKPT_CLOSE wait type can indicate a performance issue.

As we saw in the previous section, performing a checkpoint against a memory-optimized

table will result in extra CFPs being created. I am guessing that if the allocation of CFPs

takes a long time, the checkpoint operation will take longer to complete as well, resulting

in higher WAIT_XTP_CKPT_CLOSE wait times. The amount of data a checkpoint has to

process will probably also mean higher WAIT_XTP_CKPT_CLOSE wait times. Since the

checkpoint writes data to the storage subsystem, the performance of your storage will

probably also impact WAIT_XTP_CKPT_CLOSE wait times.

Chapter 13 In-MeMory oLtp–reLated WaIt types

370

 WAIT_XTP_CKPT_CLOSE Summary
The WAIT_XTP_CKPT_CLOSE wait type seems closely related to performing checkpoint

operations. It indicates the time a checkpoint performed against a memory-optimized

table took to complete. I don’t believe this directly indicates performance issues, since

it just records the time it took for the checkpoint to complete. The amount of work a

checkpoint has to process will probably result in higher WAIT_XTP_CKPT_CLOSE wait

times. Storage subsystem performance will probably also impact WAIT_XTP_CKPT_CLOSE

wait times.

 WAIT_XTP_OFFLINE_CKPT_NEW_LOG
The final In-Memory OLTP related wait type that I want to discuss in this chapter is the

WAIT_XTP_OFFLINE_CKPT_NEW_LOG wait type. This is another wait type related to the

offline checkpoint process that was introduced in SQL Server 2014.

 What Is the WAIT_XTP_OFFLINE_CKPT_NEW_LOG Wait
Type?
The WAIT_XTP_OFFLINE_CKPT_NEW_LOG wait type appears to be a benign wait type that

records the length of time the offline checkpoint process is waiting for work. This is

confirmed by Books Online, which has the following definition: “occurs when offline

checkpoint is waiting for new log records to scan.”

As we discussed earlier in this chapter, the offline checkpoint process monitors

the transaction log for transactions that impact memory-optimized tables so those

transactions can be recorded in the data and delta files. This is a constantly running

process in the background of SQL Server, which means you will see an internal process

with the WAIT_XTP_OFFLINE_CKPT_NEW_LOG wait type when you query the sys.dm_os_

waiting_tasks DMV, as you can see in Figure 13-8.

Figure 13-8. WAIT_XTP_OFFLINE_CKPT_NEW_LOG waits inside sys.dm_os_
waiting_tasks

Chapter 13 In-MeMory oLtp–reLated WaIt types

371

Unlike the WAIT_XTP_HOST_WAIT wait type that only writes its wait time information

to the sys.dm_os_wait_stats DMV when specific conditions occur, the WAIT_XTP_

OFFLINE_CKPT_NEW_LOG wait type appears to wait for around 5 seconds, adds the wait

time to the sys.dm_os_wait_stats DMV, and then resets the wait time in the sys.dm_

os_waiting_tasks DMV again. This might suggest that the offline checkpoint process

checks for new work at an interval of around 5 seconds.

To understand a little bit more about the offline checkpoint process, I captured a

stack dump whenever a WAIT_XTP_OFFLINE_CKPT_NEW_LOG wait occurred. The stack

dump gives us some interesting insight into the process itself, as you can see here:

sqldk.dll!XeSosPkg::wait_info::Publish+0x138

sqldk.dll!SOS_Scheduler::UpdateWaitTimeStats+0x2bc

sqldk.dll!SOS_Task::PostWait+0x9e

sqlmin.dll!EventInternal<SuspendQueueSLock>::Wait+0x1fb

sqlmin.dll!SequencedObject<LogBlockId,SequencedWaitInfo<LogBlockId>,0>::

WaitUntilSequenceAdvances+0x160

sqlmin.dll!OfflineCheckpointWorker::GetNextLogBlock+0x10d

sqlmin.dll!OfflineCheckpointWorker::DoWorkInternal+0xf7

sqlmin.dll!OfflineCheckpointWorker::DoWork+0x3aa

sqlmin.dll!OfflineCheckpointWorker::WorkLoop+0x3fc

sqldk.dll!SOS_Task::Param::Execute+0x21e

sqldk.dll!SOS_Scheduler::RunTask+0xa8

sqldk.dll!SOS_Scheduler::ProcessTasks+0x279

sqldk.dll!SchedulerManager::WorkerEntryPoint+0x24c

sqldk.dll!SystemThread::RunWorker+0x8f

sqldk.dll!SystemThreadDispatcher::ProcessWorker+0x3ab

sqldk.dll!SchedulerManager::ThreadEntryPoint+0x226

kernel32.dll!BaseThreadInitThunk+0xd

ntdll.dll!RtlUserThreadStart+0x21

The most interesting parts are when the OfflineCheckpointWorker function is being

called. For readability, here is the section that involves the OfflineCheckpointWorker

function:

sqlmin.dll!SequencedObject<LogBlockId,SequencedWaitInfo<LogBlockId>,0>::Wai

tUntilSequenceAdvances+0x160

sqlmin.dll!OfflineCheckpointWorker::GetNextLogBlock+0x10d

Chapter 13 In-MeMory oLtp–reLated WaIt types

372

sqlmin.dll!OfflineCheckpointWorker::DoWorkInternal+0xf7

sqlmin.dll!OfflineCheckpointWorker::DoWork+0x3aa

sqlmin.dll!OfflineCheckpointWorker::WorkLoop+0x3fc

Seeing this stack dump makes me believe the offline checkpoint process is started,

starts looking for work by reading log records from the transaction log (LogBlock), grabs

the first LogBlock it needs to process, and loops until all LogBlocks are processed. When

that is done, I suspect the offline checkpoint goes to sleep again, waits for around 5

seconds, then wakes up and checks for new log records.

Seeing this behavior makes me believe the WAIT_XTP_OFFLINE_CKPT_NEW_LOG wait

type is harmless. It just indicates that the offline checkpoint process is waiting for work to

arrive.

 WAIT_XTP_OFFLINE_CKPT_NEW_LOG Summary
The WAIT_XTP_OFFLINE_CKPT_NEW_LOG wait type is related to the offline checkpoint

process and indicates that process is waiting for work to arrive. Because the WAIT_XTP_

OFFLINE_CKPT_NEW_LOG wait type only indicates that the offline checkpoint process is

waiting for work, I believe the wait type doesn’t indicate any performance issues and can

probably be safely ignored.

Chapter 13 In-MeMory oLtp–reLated WaIt types

373
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_14

APPENDIX I

Example SQL Server
Machine Configurations
During the writing of this book, I used a few different test systems to generate the

examples that are used. This appendix will describe the configuration of the systems

I used during the examples and wait type demonstrations. If I needed to modify the

system to demonstrate a specific wait type or situation occurring, this will be included in

the text inside the chapter that holds the demonstration.

All my test systems are virtual machines I created inside Oracle VirtualBox, a free-to-

use virtualization software product that you can download from www.virtualbox.org/.

Another tool I frequently used during examples is Ostress. Ostress is part of the RML

utilities provided to manage your SQL Server’s performance. You can download the RML

utilities using this link: www.microsoft.com/en-us/download/details.aspx?id=4511.

 Default Test Machine
The table that follows shows the virtual machine configuration I used for the majority of

the book, except for Chapter 10, “High-Availability and Disaster-Recovery Wait Types,”

which discusses high-availability and disaster-recovery wait types.

http://www.virtualbox.org/
http://www.microsoft.com/en-us/download/details.aspx?id=4511

374

Configuration Value

Computer name EVDL-SQL2017-01

vCPUs 2–4

Architecture 64-bit

Memory 4 GB

Storage 50 GB System Drive C:\

(SSD)25 GB Data Drive D:\ (SSD)

Data drive layout D:\Data, MDF FilesD:\Log, LDF

FilesD:\Backup, Backup files

Operating system Windows Server 2012R2

SQL Server edition SQL Server 2017 Enterprise

SQL Server features Database Engine Services

SQL Server instance

name

MSSQLSERVER (Default instance)

 HA/DR Test Machines
The tables that follow show the configurations of the virtual machines I used for

demonstrating high-availability and disaster-recovery wait types as described in

Chapter 10, “High-Availability and Disaster-Recovery Wait Types.”

Configuration Value

Computer name EVDL-DC-01

Role Domain Controller (PROWAITS)

vCPUs 1

Architecture 64-bit

Memory 512 MB

Storage 20 GB System Drive C:\ (SSD)

Operating system Windows Server 2012R2

(continued)

APPEnDIx I ExAMPLE SQL SERVER MAChInE COnFIGURATIOnS

375

Configuration Value

Computer name EVDL-SQL-AG01

Role Principal (mirroring)Primary (AlwaysOn)Failover Cluster node

vCPUs 2

Architecture 64-bit

Memory 2 GB

Storage 25 GB System Drive C:\ (SSD)20 GB Data Drive D:\ (SSD)

Data drive layout D:\Data, MDF FilesD:\Log, LDF FilesD:\Backup, Backup files

Operating system Windows Server 2012R2

SQL Server edition SQL Server 2017 Enterprise

SQL Server features Database Engine Services

SQL Server instance name MSSQLSERVER (Default instance)

Computer name EVDL-SQL-AG02

Role Mirror (mirroring)Secondary (AlwaysOn)Failover Cluster node

vCPUs 2

Architecture 64-bit

Memory 2 GB

Storage 25 GB System Drive C:\ (SSD)20 GB Data Drive D:\ (SSD)

Data drive layout D:\Data, MDF FilesD:\Log, LDF FilesD:\Backup, Backup files

Operating system Windows Server 2012R2

SQL Server edition SQL Server 2017 Enterprise

SQL Server features Database Engine Services

SQL Server instance name MSSQLSERVER (Default instance)

APPEnDIx I ExAMPLE SQL SERVER MAChInE COnFIGURATIOnS

377
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_15

APPENDIX II

Spinlocks
Spinlocks are described by Microsoft as “lightweight synchronization primitives.” The

description looks a lot like the one used for latches, which are described as “lightweight

synchronization objects.” This is no coincidence, as spinlocks and latches have a lot in

common and both are used to serialize access to internal data structures. Both latches

and spinlocks are used when access to objects needs to be held for a very short amount

of time.

While spinlocks and latches have an identical purpose, there is one large difference

between them. Whenever you cannot acquire a latch because there is another

incompatible latch already in place, for example, your request is forced to wait, and it

will leave the processor and get returned to the Waiter List (the request receives the

“SUSPENDED” state). It is then forced to wait inside the Waiter List until the latch can

get acquired, and then it moves through the Runnable queue until it can finally get back

on the processor. Because latches are treated like a resource for query execution, they

are closely related to wait statistics. SQL Server even records the time it has been waiting

on acquiring different latch types and classes, which we discussed in Chapter 9, “Latch-

Related Wait Types.” There is a relatively large overhead associated with latches, because

if a latch cannot be obtained immediately, it has to move through the different phases

of the scheduler again before the request can acquire its latch and get executed on the

processor.

Spinlocks work very differently than latches, because whenever a spinlock has to

wait out another spinlock already in place before it can get placed itself, the thread does

not have to leave the processor. Instead, a spinlock will “spin” until it can be acquired.

Figure AII-01 shows the difference between latches and spinlocks whenever one has to

wait before it can get acquired.

378

The main advantage of using spinlocks instead of latches to synchronize thread

access is that spinlocks are even “lighter” synchronization objects than latches. Latches

cause extra context switching to occur whenever a latch has to wait before it can get

acquired. Spinlocks do not cause context switching because they will never move away

from the processor. Because spinlocks do not cause context switching, they are used

to protect those areas of SQL Server that are used most intensely. Spinlocks are not the

Holy Grail in protecting access to data structures, however. Because they never move

away from the processer, they consume processor time, even when they are waiting. To

avoid spinlocks consuming too much processor time, every x time around the spinlock

will stop spinning and sleep. The interval of the spinlock sleep is calculated by an

internal algorithm.

On very busy systems, where many spinlocks are used, it is possible to encounter a

phenomenon called spinlock contention. If the spinlock contention gets bad enough,

you can notice an increase in processor time that can be difficult to troubleshoot, since

this will not always show by analyzing wait statistics.

Figure AII-01. Spinlocks and latches and wait phases

Appendix ii SpinlockS

379

Thankfully, just like latches, there is a spinlock DMV inside SQL Server that tracks

the specific spinlock classes (325 in SQL Server 2017), the amount of time a spinlock had

to wait before it could get acquired, and the total number of spins that occurred for that

spinlock class. We can access this information by querying the sys.dm_os_spinlock_

stats DMV like the query here:

SELECT ∗
FROM sys.dm_os_spinlock_stats

ORDER BY spins DESC;

This returns results like those shown in Figure AII-02.

The columns returned by the sys.dm_os_spinlock_stats are described in the

following list:

• name: Shows the name of the spinlock class.

• collisions: Returns the amount of time this spinlock class

encountered a wait event because another spinlock was already in

place.

• spins: When a spinlock has to wait, it performs a spin. The spins

column shows the amount of times spins occurred for this specific

spinlock class. You can think of a spin as the amount of time the

spinlock had to wait before it could get acquired.

• spins_per_collision: The average number of spins per collision.

Figure AII-02. sys.dm_os_spinlock_stats

Appendix ii SpinlockS

380

• sleep_time: Time that was spent sleeping for this spinlock class.

• backoffs: The number of times a spinlock went to sleep to allow

other threads to use the processor.

While all the columns returned by the sys.dm_os_spinlock_stats DMV provide

valuable information, the backoffs column can be the most interesting when you are

suspecting a case of spinlock contention. If you notice very high CPU usage and cannot

directly correlate the high CPU usage with queries or specific wait types, but the amount

of backoffs for a specific spinlock class is very high and increasing quickly, you might

have a case of spinlock contention occurring.

Spinlock contention is difficult to troubleshoot since it can have a very large number

of causes. Also, information about specific spinlock classes is often lacking, increasing

the difficulty of troubleshooting spinlock contention. One method that you can use

during the analysis of spinlock contention is building a baseline of the sys.dm_os_

spinlock_stats DMV by capturing the contents of the DMV at a specific interval, like I

described in Chapter 4, “Building a Solid Baseline.” This baseline can give you valuable

insight into the usage of spinlocks inside your SQL Server instance. Another great tool

to diagnose spinlock contention is Extended Events. By using Extended Events you can

trace various spinlock-related events, like spinlock backoffs.

To truly analyze why spinlock-class contention is occurring, you will have to dive

even deeper by debugging SQL Server memory dumps and looking through the call

stack to find what spinlock class is being accessed. Debugging SQL Server memory

dumps to identify spinlock contention is beyond the scope of this book and requires a

deep knowledge of the inner workings of SQL Server. Thankfully, there is a free Microsoft

whitepaper available on spinlock contention that can give you a few pointers for what

to do when dealing with spinlock contention. You can get the whitepaper at www.

microsoft.com/en-us/download/details.aspx?id=26666.

Appendix ii SpinlockS

http://www.microsoft.com/en-us/download/details.aspx?id=26666
http://www.microsoft.com/en-us/download/details.aspx?id=26666

381
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1_16

APPENDIX III

Latch Classes
Latch Class Books Online Description Additional Information

ALLOC_CREATE_

RINGBUF

Used internally by SQL Server to initialize

the synchronization of the creation of an

allocation ring buffer.

Used when creating a

ring buffer. A ring buffer

briefly holds internal

event information in

memory and is used for

diagnostics.

ALLOC_CREATE_

FREESPACE_CACHE

Used to initialize the synchronization of

internal free space caches for heaps.

Allocates free space for

heaps (tables without a

clustered index).

ALLOC_CACHE_

MANAGER

Used to synchronize internal coherency

tests.

ALLOC_FREESPACE_

CACHE

Used to synchronize access to a cache of

pages with available space for heaps and

binary large objects (BLOBs). Contention on

latches of this class can occur when multiple

connections try to insert rows into a heap or

BLOB at the same time. You can reduce this

contention by partitioning the object. Each

partition has its own latch. Partitioning will

distribute the inserts across multiple latches.

(continued)

382

Latch Class Books Online Description Additional Information

ALLOC_EXTENT_CACHE Used to synchronize the access to a cache

of extents that contains pages that are not

allocated. Contention on latches of this class

can occur when multiple connections try to

allocate data pages in the same allocation

unit at the same time. This contention can be

reduced by partitioning the object of which

this allocation unit is a part.

ACCESS_METHODS_

DATASET_PARENT

Used to synchronize child dataset access to

the parent dataset during parallel operations.

Used together with the

ACCESS_METHODS_

SCAN_RANGE_

GENERATOR latch class

during parallel operations

to distribute the work

among multiple threads.

ACCESS_METHODS_

HOBT_FACTORY

Used to synchronize access to an internal

hash table.

ACCESS_METHODS_

HOBT

Used to synchronize access to the in-

memory representation of a HoBt.

ACCESS_METHODS_

HOBT_COUNT

Used to synchronize access to a HoBt page

and row counters.

Used for page and row

count deltas for heaps and

B-trees.

ACCESS_METHODS_

HOBT_VIRTUAL_ROOT

Used to synchronize access to the root page

abstraction of an internal B-tree.

Used when accessing

metadata regarding the

index’s root page. See

Chapter 8, “Latch-Related

Wait Types,” for an

example.

(continued)

APPEndix iii LATCH CLASSES

383

Latch Class Books Online Description Additional Information

ACCESS_METHODS_

CACHE_ONLY_HOBT_

ALLOC

Used to synchronize worktable access. Used for synchronizing

access to transparent,

temporary tables that

are created during query

execution.

ACCESS_METHODS_

BULK_ALLOC

Used to synchronize access within bulk

allocators.

ACCESS_METHODS_

SCAN_RANGE_

GENERATOR

Used to synchronize access to a range

generator during parallel scans.

ACCESS_METHODS_KEY_

RANGE_GENERATOR

Used to synchronize access to read-ahead

operations during key-range parallel scans.

APPEND_ONLY_

STORAGE_INSERT_

POINT

Used to synchronize inserts in fast append-

only storage units.

APPEND_ONLY_

STORAGE_FIRST_

ALLOC

Used to synchronize the first allocation for

an append-only storage unit.

APPEND_ONLY_

STORAGE_UNIT_

MANAGER

Used for internal data structure access

synchronization within the fast append- only

storage unit manager.

APPEND_ONLY_

STORAGE_MANAGER

Used to synchronize shrink operations in the

fast append-only storage unit manager.

BACKUP_RESULT_SET Used to synchronize parallel backup result

sets.

BACKUP_TAPE_POOL Used to synchronize backup tape pools.

BACKUP_LOG_REDO Used to synchronize backup log redo

operations.

(continued)

APPEndix iii LATCH CLASSES

384

Latch Class Books Online Description Additional Information

BACKUP_INSTANCE_ID Used to synchronize the generation of

instance ids for backup performance

monitor counters.

BACKUP_MANAGER Used to synchronize the internal backup

manager.

BACKUP_MANAGER_

DIFFERENTIAL

Used to synchronize differential backup

operations with dBCC.

BACKUP_OPERATION Used for internal data structure

synchronization within a backup operation,

such as database, log, or file backup.

BACKUP_FILE_HANDLE Used to synchronize file open operations

during a restore operation.

BUFFER Used to synchronize short-term access to

database pages. A buffer latch is required

before reading or modifying any database

page. Buffer latch contention can indicate

several issues, including hot pages and

slow i/Os.

directly related to buffer

latches. When seeing

higher-than- expected wait

times, check if you are

running into buffer latch–

related contention.

This latch class covers all possible uses of

page latches. sys.dm_os_wait_stats makes

a difference between page latch waits that

are caused by i/O operations and read and

write operations on the page.

BUFFER_POOL_GROW Used for internal buffer manager

synchronization during buffer pool grow

operations.

DATABASE_CHECKPOINT Used to serialize checkpoints within a database.

CLR_PROCEDURE_

HASHTABLE

internal use only.

CLR_UDX_STORE internal use only.

(continued)

APPEndix iii LATCH CLASSES

385

Latch Class Books Online Description Additional Information

CLR_DATAT_ACCESS internal use only.

CLR_XVAR_PROXY_

LIST

internal use only.

DBCC_CHECK_

AGGREGATE

internal use only.

DBCC_CHECK_

RESULTSET

internal use only.

DBCC_CHECK_TABLE internal use only.

DBCC_CHECK_TABLE_

INIT

internal use only.

DBCC_CHECK_TRACE_

LIST

internal use only.

DBCC_FILE_CHECK_

OBJECT

internal use only.

DBCC_PERF Used to synchronize internal performance

monitor counters.

DBCC_PFS_STATUS internal use only.

DBCC_OBJECT_

METADATA

internal use only.

DBCC_HASH_DLL internal use only.

EVENTING_CACHE internal use only.

FCB Used to synchronize access to the file

control block.

FCB_REPLICA internal use only.

FGCB_ALLOC Use to synchronize access to round-robin

allocation information within a filegroup.

(continued)

APPEndix iii LATCH CLASSES

386

Latch Class Books Online Description Additional Information

FGCB_ADD_REMOVE Use to synchronize access to filegroups for

ADD and DROP file operations.

Latch is used when adding

or removing files inside a

filegroup, or when a file

grows. Check auto- growth

configuration if you are

running into contention.

FILEGROUP_MANAGER internal use only.

FILE_MANAGER internal use only.

FILESTREAM_FCB internal use only.

FILESTREAM_FILE_

MANAGER

internal use only.

FILESTREAM_GHOST_

FILES

internal use only.

FILESTREAM_DFS_

ROOT

internal use only.

LOG_MANAGER internal use only. indicates transaction-log

growth because the log

could not be cleared or

truncated.

FULLTEXT_DOCUMENT_ID internal use only.

FULLTEXT_DOCUMENT_

ID_TRANSACTION

internal use only.

FULLTEXT_DOCUMENT_

ID_NOTIFY

internal use only.

FULLTEXT_LOGS internal use only.

FULLTEXT_CRAWL_LOG internal use only.

FULLTEXT_ADMIN internal use only.

FULLTEXT_AMDIN_

COMMAND_CACHE

internal use only.

(continued)

APPEndix iii LATCH CLASSES

387

Latch Class Books Online Description Additional Information

FULLTEXT_LANGUAGE_

TABLE

internal use only.

FULLTEXT_CRAWL_DM_

LIST

internal use only.

FULLTEXT_CRAWL_

CATALOG

internal use only.

FULLTEXT_FILE_

MANAGER

internal use only.

DATABASE_MIRRORING_

REDO

internal use only.

DATABASE_MIRRORING_

SERVER

internal use only.

DATABASE_MIRRORING_

CONNECTION

internal use only. Responsible for controlling

the message flow

between database mirrors.

DATABASE_MIRRORING_

STREAM

internal use only.

QUERY_OPTIMIZER_

VD_MANAGER

internal use only.

QUERY_OPTIMIZER_

ID_MANAGER

internal use only.

QUERY_OPTIMIZER_

VIEW_REP

internal use only.

RECOVERY_BAD_PAGE_

TABLE

internal use only.

RECOVERY_MANAGER internal use only.

SECURITY_OPERATION_

RULE_TABLE

internal use only.

SECURITY_OBJPERM_

CACHE

internal use only.

(continued)

APPEndix iii LATCH CLASSES

388

Latch Class Books Online Description Additional Information

SECURITY_CRYPTO internal use only.

SECURITY_KEY_RING internal use only.

SECURITY_KEY_LIST internal use only.

SERVICE_BROKER_

CONNECTION_RECEIVE

internal use only.

SERVICE_BROKER_

TRANSMISSION

internal use only.

SERVICE_BROKER_

TRANSMISSION_

UPDATE

internal use only.

SERVICE_BROKER_

TRANSMISSION_STATE

internal use only.

SERVICE_BROKER_

TRANSMISSION_ERRORS

internal use only.

SSBXmitWork internal use only.

SERVICE_BROKER_

MESSAGE_

TRANSMISSION

internal use only.

SERVICE_BROKER_

MAP_MANAGER

internal use only.

SERVICE_BROKER_

HOST_NAME

internal use only.

SERVICE_BROKER_

READ_CACHE

internal use only.

SERVICE_BROKER_

WAITFOR_MANAGER

internal use only.

SERVICE_BROKER_

WAITFOR_

TRANSACTION_DATA

internal use only.

(continued)

APPEndix iii LATCH CLASSES

389

Latch Class Books Online Description Additional Information

SERVICE_BROKER_

TRANSMISSION_

TRANSACTION_DATA

internal use only.

SERVICE_BROKER_

TRANSPORT

internal use only.

SERVICE_BROKER_

MIRROR_ROUTE

internal use only.

TRACE_ID internal use only.

TRACE_AUDIT_ID internal use only.

TRACE internal use only.

TRACE_CONTROLLER internal use only. Related to SQL Trace.

More information about

SQL Trace can be found

at https://msdn.

microsoft.com/en-

us/hh245121.aspx.

Seeing contention on this

latch class can mean too

many traces are running

at the time.

TRACE_EVENT_QUEUE internal use only.

TRANSACTION_

DISTRIBUTED_MARK

internal use only.

TRANSACTION_

OUTCOME

internal use only.

NESTING_TRANSACTION_

READONLY

internal use only.

NESTING_

TRANSACTION_FULL

internal use only.

(continued)

APPEndix iii LATCH CLASSES

https://msdn.microsoft.com/en-us/hh245121.aspx
https://msdn.microsoft.com/en-us/hh245121.aspx
https://msdn.microsoft.com/en-us/hh245121.aspx

390

Latch Class Books Online Description Additional Information

MSQL_TRANSACTION_

MANAGER

internal use only.

DATABASE_AUTONAME_

MANAGER

internal use only.

UTILITY_DYNAMIC_

VECTOR

internal use only.

UTILITY_SPARSE_

BITMAP

internal use only.

UTILITY_DATABASE_

DROP

internal use only.

UTILITY_DYNAMIC_

MANAGER_VIEW

internal use only.

UTILITY_DEBUG_

FILESTREAM

internal use only.

UTILITY_LOCK_

INFORMATION

internal use only.

VERSIONING_

TRANSACTION

internal use only.

VERSIONING_

TRANSACTION_LIST

internal use only.

VERSIONING_

TRANSACTION_CHAIN

internal use only.

VERSIONING_STATE internal use only.

VERSIONING_STATE_

CHANGE

internal use only.

KTM_VIRTUAL_CLOCK internal use only.

APPEndix iii LATCH CLASSES

391
© Enrico van de Laar 2019
E. van de Laar, Pro SQL Server 2019 Wait Statistics, https://doi.org/10.1007/978-1-4842-4916-1

Index

A
ASYNC_IO_COMPLETION

AdventureWorks database, 141
backup operation, 141–142
disk sec/write perfmon counters, 146
instant file initialization, 145
modification, 142
perform volume maintenance tasks, 144
SQL Server setup, 143
storage subsystem, 139
sys.dm_os_waiting_tasks query, 142
visual representation, 140

ASYNC_NETWORK_IO
AdventureWorks database, 148
graphical representation of, 147
meaning, 147
modification, 149
queries, 149
task manager network utilization, 150

B
Background processes, 327
BACKUPBUFFER

additional backup information, 192
backup/restore operation, 189, 195
database backup, 191, 194
definition of, 190
generating process, 193
lowering waits, 194

MAXTRANSFERSIZE option, 195
process, 190
reader and writer, 191
results of, 193, 195

BACKUPIO
ASYNC_IO_COMPLETION, 197
definition, 195–196
internals of, 196
lowering waits, 197
modified backup query, 196
sys.dm_os_wait_stats DMV, 196

BACKUPTHREAD
AdventureWorks database, 199
lowering waits, 200
restore operations, 198
sys.dm_os_waiting_tasks DMV, 200
threads, 199

Baseline operations
adjust and measurement of, 77
CXPACKET, 75
database, 77
definition, 76
pitfalls, 81–82
process of, 77
real-time methods, 75
types and statistics, 79–81
visualization, 78–79
wait statistics analysis

analysis flowchart, 97
comparison graph, 96

https://doi.org/10.1007/978-1-4842-4916-1

392

database, 83
delta capture method, 86–89
disk-read latency, 97
measurements, 82, 99
PAGEIOLATCH_SH, 94–95
performance-analysis flowchart, 92
reset capture method, 85–87
SQL server agent/schedule

measurements, 89–91
sys.dm_os_waiting_tasks, 93
sys.dm_os_wait_stats, 84
table creation, 84
WaitStats, 91

Buffer latches, 238

C
Checkpoint file pairs (CFPs)

data and delta file, 358
memory-optimized table’s

data file, 357
merge operation, 359
traditional tables, 356–357
transaction timestamps, 358

CHECKPOINT_QUEUE
automatic checkpoint operation, 331
checkpoint process, 329
query results, 330
sys.dm_os_waiting_tasks, 328
sys.dm_os_wait_stats, 331

CMEMTHREAD
EXECUTE (EXEC) command, 154
memory objects, 151
mini-dump, 152
mutex object, 151
procedure cache, 153
query procedure cache, 153

results of, 153
shared resource, 152

Common language runtime (CLR), 321
Cooperative scheduling, 16
CXCONSUMER wait type, 112
CXPACKET, 103

parallelism configuration, 107–111
SQL Server 2016 SP2 and 2017

CU3, 112–113
wait type

database configuration, 106
differences, 107
parallelism configuration, 105
parallel queries, 104
parallel thread distribution, 112
SELECT operation properties, 110
skewed workloads, 111–112
threading, 104

D, E, F, G
DBMIRROR_SEND

AdventureWorks database, 283
asynchronous mode, 282
database mirroring monitor, 280, 286
data modification

operation, 280–281
description of, 283
lowering waits, 285
Mirror_Test table

creation, 283
insert, 284

principal server, 284
synchronous mirroring, 280–281
sys.dm_os_wait_stats, 284
transaction-log flow, 282

Delta capture method, 87–89
DIRTY_PAGE_POLL, 332–334

Baseline operations (cont.)

INDEX

393

Dynamic management views (DMVs), 25
vs. detect waits right now, 38

blocking information
queries, 38, 40
results of, 40
scenarios, 38
sys.dm_exec_sessions, 40
sys.dm_os_waiting_tasks, 39
wait statistics flowchart, 42

perfmon (wait statistics), 43, 44
query store, 70–73
sys.dm_exec_requests, 33–36
sys.dm_exec_session_wait_stats, 36–38
sys.dm_os_waiting_tasks, 29–33
sys.dm_os_wait_stats, 26–29

H
HADR_LOGCAPTURE_WAIT and HADR_

WORK_QUEUE, 287–289
HADR_SYNC_COMMIT

add columns, 295
AdventureWorks database, 291
AlwaysOn Availability Group, 291, 294
AO_Test table creation, 292–293
dashboard, 294
lowering waits, 294
perfmon counters, 296
primary and secondary mode, 292–293
synchronous replication

mode, 290–291, 297
HA/DR test machines, 374

I, J, K
In-memory OLTP

CFPs, 356–359
differences, 355

isolation, 360
memory-optimized tables, 355
transaction log changes, 360–361

IO_COMPLETION, 154
AdventureWorks database, 155
backup transaction log, 156
database-related actions, 155
lowering waits, 157
NORECOVERY, 156
sys.dm_os_wait_stats DMV, 155–156
transaction log backup, 156

IO latches, 239

L
Latches, 235

compatibility matrix, 237
LATCH_[xx], 258–266
modes, 237
PAGEIOLATCH_SH, 238
PAGEIOLATCH_[xx], 266–277
page-latch contention, 241–247
PAGELATCH_[xx] (see

PAGELATCH_[xx])
SQL server, 235
synchronization object, 236
sys.dm_os_wait_stats DMV, 238–239
transactions, 236
waits, 238

LATCH_[xx]
ACCESS_METHODS_HOBT_

VIRTUAL_ROOT, 262
approach, 265
B-tree

index structure, 262
navigation, 263

cumulative view, 259
data structures, 258

Index

394

INDEXPROPERTY function, 264
lowering waits, 265
memory area, 259
non-buffer-related latch classes, 266
non-clustered index, 260
Ostress command, 260
resource_description

column, 260–261
root page splits, 265
SQL Server instance, 261
sys.dm_db_index_physical_stats, 265
test contention table, 260
TRUNCATE command, 264

LAZYWRITER_SLEEP, 335–337
LCK_M_I[xx]

COMMIT command, 228
intent locks, 226, 229
lowering waits, 229
SELECT statement, 227
sys.dm_os_waiting_tasks DMV, 228

LCK_M_SCH_S and LCK_M_SCH_M
lowering waits, 233
ROLLBACK command, 231
schema locks, 230–233
Sch-M and Sch-S locks, 231
SELECT query, 232
sys.dm_os_waiting_tasks, 231–233
sys.dm_tran_locks DMV, 231–232
transaction, 232

LCK_M_S wait type
COMMIT/ROLLBACK command, 217
lowering waits, 218
modification transaction, 216–218
resource, 219
SELECT query, 218
shared locks, 217
sys.dm_os_waiting_tasks DMV, 218

LCK_M_U
AdventureWorks database, 222
concurrent data modifications, 221
exclusive lock, 223
lock conversion, 221
lowering waits, 223
Ostress utility, 222
transactions, 220
update lock mode, 223
Update (U) mode, 220

LCK_M_X, 223
COMMIT command, 224
exclusive lock, 224
HumanResources.Employee

table, 225
lowering waits, 225
SELECT statement, 224
sys.dm_os_waiting_tasks DMV, 225
sys.dm_tran_locks DMV, 224

Locking and blocking mode
characteristics, 203
LCK_M_I[xx], 226–229
LCK_M_S (see LCK_M_S wait type)
LCK_M_SCH_S and LCK_M_

SCH_M, 230–233
LCK_M_U, 223–226
LCK_M_X, 226–229
modes and compatibility

concurrent lock situation, 207
hierarchy, 207, 208
isolation levels, 208–211
levels and locking behavior, 210
lock compatibility, 206
parentheses, 205
querying information, 212–217
read committed, 211
resource_description column, 213
sp_WhoIsActive, 214–215

LATCH_[xx] (cont.)

INDEX

395

sql_text output, 215
sys.dm_os_waiting_tasks DMV, 212
sys.dm_tran_locks, 212

transaction, 203–204
LOGBUFFER and WRITELOG

lowering wait, 162
sys.dm_os_wait_stats, 162
transaction, 157–159
trans_demo database, 160–161

M
MSQL_XP

deadlock detection, 340
execute extended stored

procedures, 337
lowering waits, 339
results of, 338
sys.dm_os_wait_stats, 338

N
Non-buffer latches, 239
Non-preemptive scheduling, 9

O
Object Linking and Embedding Database

(OLEDB)
DBCC command, 340–342

Ostress command, 373

P
PAGEIOLATCH_[xx]

AdventureWorks database, 269
buffer cache, 267, 276
disk operations, 267

data page movement, 268, 277
diagnostic tool, 272
IO performance script, 273
lowering waits, 270
modification, 274
memory pages, 266
monitoring storage, 272
SELECT query, 269
SQL Server instance, 274
storage subsystem, 267
sys.dm_os_wait_stats, 275
wait time information, 270

Page-latch contention, 241–247
PAGELATCH_[xx]

advantage of, 254
AdventureWorks database, 249
B-trees, 254, 255
clustered index and

map, 248, 249, 256
contention, 253
database design class, 248
DBCC IND results, 252
graphical representation, 247
hash partitioning, 254
impact latch contention, 253
in-memory pages, 258
Insert_Test3 table, 256
last-page insert contention, 254
lowering waits, 252
last-page insert contention, 253
non-partitioned and partitioned

index, 257
Ostress command, 250
partition function, 255
page in-memory, 247
query filters, 250
rows distribution, 258
TempDB database, 248, 252

Index

396

PREEMPTIVE_OS_
AUTHENTICATIONOPS, 316

authentication requests, 321
lowering waits, 319
mixed-mode authentication, 317
query Window, 318
output results of, 319
SQL Server management, 318
Windows login authentication, 317

PREEMPTIVE_OS_ENCRYPTMESSAGE
and PREEMPTIVE_
OS_DECRYPTMESSAGE

certificate account selection, 308–309
connection properties, 311
encrypted connection, 305, 312–313
decryption, 305
features view, 306
lowering waits, 312
output results of, 312
self-signed certificate, 307–309
SQL Server instance, 306

PREEMPTIVE_OS_GETPROCADDRESS
entry-point, 321–322
stored procedures, 325
lowering waits, 325
master database selection, 323
output results of, 333–324
xp_getnetname, 324

PREEMPTIVE_OS_WRITEFILEGATHER
database file configuration, 314
file initialization, 316
storage subsystem, 315–316
WriteFileGather function, 313

Preemptive scheduling model, 8, 301
graphical representation, 301
PAL layer interaction, 304
SQL Server/Linux, 302–305

types (see PREEMPTIVE_OS_
ENCRYPTMESSAGE and
PREEMPTIVE_OS_
DECRYPTMESSAGE)

WriteFileGather Windows
function, 302

Q
Query store

architecture, 64–65
vs. DMVs, 64

categories, 70
modification, 72
output, 71–72
queries, 71
runtime_stats_interval_id, 72
statistics collection interval, 73
sys.query_store_wait_stats, 70

feature, 63
flight-recorder, 63
wait statistics

built-in-reports, 68
categories, 69
metric-wait time, 68–69
processes, 65–67
types and categories, 66

R
REDO_THREAD_PENDING_

WORK, 297–300
Reset capture method, 86–87
RESOURCE_SEMAPHORE

additional memory, 163–164
AdventureWorks database, 165
lowering wait, 170

INDEX

397

MemoryGrantInfo, 165, 166
RequiredMemory property, 166
required memory, 164
resource semaphore queue, 171
resource_semaphore.sql, 167
SELECT operator, 165
SerialRequiredMemory, 166
sys.dm_exec_query_resource_

semaphore, 169
sys.dm_os_waiting_tasks DMV, 167
workspace memory (KB)

counter, 170
RESOURCE_SEMAPHORE_QUERY_

COMPILE
compilation-memory

resource, 171–172
CompileMemory property, 176
contention, 175
DBCC MEMORYSTATUS

command, 174–176
execution plan properties, 175
lowering wait, 177
resource semaphores, 178
sys.dm_os_waiting_tasks DMV, 176

S
Shared Intent Update (SIU), 227
SLEEP_BPOOL_FLUSH

CHECKPOINT command, 184
checkpoint process, 179, 185
data modification process, 180
DBCC SQLPERF command, 184
generating waits, 182
lowering waits, 185
trans_demo database, 183
types, 181

SOS_SCHEDULER_YIELD
AdventureWorks database, 116
CPU queries, 121
lowering wait times, 117–122
meaning, 114
Ostress execution, 120
phases and queues, 114
processor, 115
RUNNING state, 115
situations, 117
sys.dm_os_wait_stats, 116

Spinlocks
advantage of, 378
backoffs, 380
latches, 377–378
lightweight synchronization objects, 377
sys.dm_os_spinlock_stats, 379–380

SQL server 2005 architecture, 8
SQL server agent/Schedule

measurements, 89–91
SQL Server architecture, 7
Sys.dm_exec_requests, 11, 33

queries, 35
execution plan, 36
statement and plan, 35
test system, 36

results of, 33
wait statistics analysis, 34

Sys.dm_exec_sessions, 10
Sys.dm_exec_session_wait_stats, 36–38
Sys.dm_os_tasks, 12
Sys.dm_os_waiting_tasks, 29, 93

column returns, 30
queries, 31–33
results of, 30

Sys.dm_os_wait_stats, 26–29, 240
Sys.query_store_wait_stats, 70

Index

398

T
Test machine, 373
THREADPOOL wait type, 123

administrator connection, 130–131
AdventureWorks database, 126
CPU usage history graph, 136
CXPACKET, 133
formulas, 124
gaining access, 130, 131
Ostress tool, 126, 129, 135
parallelism, 132–135
processors configuration, 125
SQL Server instance, 127
sys.dm_os_schedulers, 127
sys.dm_os_waiting_tasks, 128–129
tasks and worker threads, 128
test machine, 126
unresponsive, 129
user connections, 134–136
worker threads, 123

TRACEWRITE
event selection, 346
lowering waits, 348
management tools, 344
output results of, 347
sp_trace_setstatus, 351
SQL-BatchCompleted selection, 347
SQL Server Profiler traces, 342–351
sys.traces, 348, 350
trace definition, 343, 350

U, V
Update Intent Exclusive (UIX), 227
User Mode Scheduling (UMS), 9

W, X, Y, Z
WAITFOR, 351–353
Wait statistics, 3

baselines, 82–99
DMVs together, 18
extended events, 45

ALTER EVENT SESSION
command, 54

configuration, 48
event filter, 45, 49, 51, 54
file as rows, 55, 56
live data tab, 52
management folder, 47
results of, 45, 56
sessions folder, 47, 52
SQL Server Profiler, 45
sql_text global field, 50
sys.dm_xe_map_values, 46

history of, 4–6
perfmon, 43–44
per-query (execution plans), 57–61
query store, 65–67
results of, 18
scheduler view

few milliseconds, 22
phases and queues, 19
request execution time

calculation, 21
runnable queue, 19
RUNNING phase, 20
running requests, 21
wait times and worker

thread flow, 20
SQLOS, 6–9
sys.dm_exec_sql_text, 18

INDEX

399

tasks, schedulers and worker threads, 9
cooperative scheduling, 16–17
requests, 11
sessions, 10–11
SQL server, 9
tasks, 12, 13
worker threads, 13–17

thread scheduling, 3
WAIT_XTP_CKPT_CLOSE

call stack, 368
checkpoint operations, 370
offline checkpoint process, 367
results, 368
sys.dm_os_wait_stats, 367

WAIT_XTP_HOST_WAIT
.dll file, 365
extended events session, 365
memory-optimized

tables, 366
results of, 363
shares, 361
sys.dm_os_waiting_tasks, 363
test database and memory-optimized

table, 362
WAIT_XTP_OFFLINE_CKPT_NEW_

LOG, 370–372
Worker threads, 13–15
WRITE_COMPLETION, 186–187

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Part I: Foundations of Wait Statistics Analysis
	Chapter 1: Wait Statistics Internals
	A Brief History of Wait Statistics
	The SQLOS
	Schedulers, Tasks, and Worker Threads
	Sessions
	Requests
	Tasks
	Worker Threads
	Schedulers
	Putting It All Together

	Wait Statistics
	Summary

	Chapter 2: Querying SQL Server Wait Statistics
	Sys.dm_os_wait_stats
	Sys.dm_os_waiting_tasks
	Understanding sys.dm_os_waiting_tasks
	Querying sys.dm_os_waiting_tasks

	Sys.dm_exec_requests
	Understanding sys.dm_exec_requests
	Querying sys.dm_exec_requests

	Sys.dm_exec_session_wait_stats
	Combining DMVs to Detect Waits Right Now
	Viewing Wait Statistics Using Perfmon
	Capturing Wait Statistics Using Extended Events
	Capture Wait Statistics Information for a Specific Query

	Analyzing Wait Statistics on a Per-Query Basis Using Execution Plans
	Summary

	Chapter 3: The Query Store
	What Is the Query Store?
	Query Store Architecture
	How Wait Statistics Are Processed in the Query Store
	Accessing Wait Statistics Through the Query Store Reports
	Accessing Wait Statistics Through the Query Store DMVs
	Summary

	Chapter 4: Building a Solid Baseline
	What Are Baselines?
	Visualizing Your Baselines
	Baseline Types and Statistics

	Baseline Pitfalls
	Too Much Information
	Know Your Metrics
	Focus on the Big Measurement Changes
	Use Fixed Intervals

	Building a Baseline for Wait Statistics Analysis
	Reset Capture Method
	Delta Capture Method
	Using SQL Server Agent to Schedule Measurements

	Wait Statistics Baseline Analysis
	Summary

	Part II: Wait Types
	Chapter 5: CPU-Related Wait Types
	CXPACKET
	What Is the CXPACKET Wait Type?
	Lowering CXPACKET Wait Time by Tuning the Parallelism Configuration
	Lowering CXPACKET Wait Time by Resolving Skewed Workloads
	Introduction of the CXCONSUMER Wait Type in SQL Server 2016 SP2 and 2017 CU3
	CXPACKET Summary

	SOS_SCHEDULER_YIELD
	What Is the SOS_SCHEDULER_YIELD Wait Type?
	Lowering SOS_SCHEDULER_YIELD Waits
	SOS_SCHEDULER_YIELD Summary

	THREADPOOL
	What Is the THREADPOOL Wait Type?
	THREADPOOL Example
	Gaining Access to Our SQL Server During THREADPOOL Waits
	Lowering THREADPOOL Waits Caused by Parallelism
	Lowering THREADPOOL Waits Caused by User Connections
	THREADPOOL Summary

	Chapter 6: IO-Related Wait Types
	ASYNC_IO_COMPLETION
	What Is the ASYNC_IO_COMPLETION Wait Type?
	ASYNC_IO_COMPLETION Example
	Lowering ASYNC_IO_COMPLETION Waits
	ASYNC_IO_COMPLETION Summary

	ASYNC_NETWORK_IO
	What Is the ASYNC_NETWORK_IO Wait Type?
	ASYNC_NETWORK_IO Example
	Lowering ASYNC_NETWORK_IO Waits
	ASYNC_NETWORK_IO Summary

	CMEMTHREAD
	What Is the CMEMTHREAD Wait Type?
	Lowering CMEMTHREAD Waits
	CMEMTHREAD Summary

	IO_COMPLETION
	What Is the IO_COMPLETION Wait Type?
	IO_COMPLETION Example
	Lowering IO_COMPLETION Waits
	IO_COMPLETION Summary

	LOGBUFFER and WRITELOG
	What Are the LOGBUFFER and WRITELOG Wait Types?
	LOGBUFFER and WRITELOG Example
	Lowering LOGBUFFER and WRITELOG Waits
	LOGBUFFER and WRITELOG Summary

	RESOURCE_SEMAPHORE
	What Is the RESOURCE_SEMAPHORE Wait Type?
	RESOURCE_SEMAPHORE Example
	Lowering RESOURCE_SEMAPHORE Waits
	RESOURCE_SEMAPHORE Summary

	RESOURCE_SEMAPHORE_QUERY_COMPILE
	What Is the RESOURCE_SEMAPHORE_QUERY_COMPILE Wait Type?
	RESOURCE_SEMAPHORE_QUERY_COMPILE Example
	Lowering RESOURCE_SEMAPHORE_QUERY_COMPILE Waits
	RESOURCE_SEMAPHORE_QUERY_COMPILE Summary

	SLEEP_BPOOL_FLUSH
	What Is the SLEEP_BPOOL_FLUSH Wait Type?
	SLEEP_BPOOL_FLUSH Example
	Lowering SLEEP_BPOOL_FLUSH Waits
	SLEEP_BPOOL_FLUSH Summary

	WRITE_COMPLETION
	What Is the WRITE_COMPLETION Wait Type?
	WRITE_COMPLETION Example
	Lowering WRITE_COMPLETION Waits
	WRITE_COMPLETION Summary

	Chapter 7: Backup-Related Wait Types
	BACKUPBUFFER
	What Is the BACKUPBUFFER Wait Type?
	BACKUPBUFFER Example
	Lowering BACKUPBUFFER Waits
	BACKUPBUFFER Summary

	BACKUPIO
	What Is the BACKUPIO Wait Type?
	BACKUPIO Example
	Lowering BACKUPIO Waits
	BACKUPIO Summary

	BACKUPTHREAD
	What Is the BACKUPTHREAD Wait Type?
	BACKUPTHREAD Example
	Lowering BACKUPTHREAD Waits
	BACKUPTHREAD Summary

	Chapter 8: Lock-Related Wait Types
	Introduction to Locking and Blocking
	Lock Modes and Compatibility
	Locking Hierarchy
	Isolation Levels
	Querying Lock Information

	LCK_M_S
	What Is the LCK_M_S Wait Type?
	LCK_M_S Example
	Lowering LCK_M_S Waits
	LCK_M_S Summary

	LCK_M_U
	What Is the LCK_M_U Wait Type?
	LCK_M_U Example
	Lowering LCK_M_U Waits
	LCK_M_U Summary

	LCK_M_X
	What Is the LCK_M_X Wait Type?
	LCK_M_X Example
	Lowering LCK_M_X Waits
	LCK_M_X Summary

	LCK_M_I[xx]
	What Is the LCK_M_I[xx] Wait Type?
	LCK_M_I[xx] Example
	Lowering LCK_M_I[xx] Waits
	LCK_M_I[xx] Summary

	LCK_M_SCH_S and LCK_M_SCH_M
	What Are the LCK_M_SCH_S and LCK_M_SCH_M Wait Types?
	LCK_M_SCH_S and LCK_M_SCH_M Example
	Lowering LCK_M_SCH_S and LCK_M_SCH_M Waits
	LCK_M_SCH_S and LCK_M_SCH_M Summary

	Chapter 9: Latch-Related Wait Types
	Introduction to Latches
	Latch Modes
	Latch Waits
	Sys.dm_os_latch_stats
	Page-Latch Contention

	PAGELATCH_[xx]
	What Is the PAGELATCH_[xx] Wait Type?
	PAGELATCH_[xx] Example
	Lowering PAGELATCH_[xx] Waits
	PAGELATCH_[xx] Summary

	LATCH_[xx]
	What Is the LATCH_[xx] Wait Type?
	LATCH_[xx] Example
	Lowering LATCH_[xx] Waits
	LATCH_[xx] Summary

	PAGEIOLATCH_[xx]
	What Is the PAGEIOLATCH_[xx] Wait Type?
	PAGEIOLATCH_[xx] Example
	Lowering PAGEIOLATCH_[xx] Waits
	PAGEIOLATCH_[xx] Summary

	Chapter 10: High-Availability and Disaster-Recovery Wait Types
	DBMIRROR_SEND
	What Is the DBMIRROR_SEND Wait Type?
	DBMIRROR_SEND Example
	Lowering DBMIRROR_SEND Waits
	DBMIRROR_SEND Summary

	HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE
	What Are the HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE Wait Types?
	HADR_LOGCAPTURE_WAIT and HADR_WORK_QUEUE Summary

	HADR_SYNC_COMMIT
	What Is the HADR_SYNC_COMMIT Wait Type?
	HADR_SYNC_COMMIT Example
	Lowering HADR_SYNC_COMMIT Waits
	HADR_SYNC_COMMIT Summary

	REDO_THREAD_PENDING_WORK
	What Is the REDO_THREAD_PENDING_WORK Wait Type?
	REDO_THREAD_PENDING_WORK Summary

	Chapter 11: Preemptive Wait Types
	SQL Server on Linux
	PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE
	What Are the PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE Wait Types?
	PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE Example
	Lowering PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE Waits
	PREEMPTIVE_OS_ENCRYPTMESSAGE and PREEMPTIVE_OS_DECRYPTMESSAGE Summary

	PREEMPTIVE_OS_WRITEFILEGATHER
	What Is the PREEMPTIVE_OS_WRITEFILEGATHER Wait Type?
	PREEMPTIVE_OS_WRITEFILEGATHER Example
	Lowering PREEMPTIVE_OS_WRITEFILEGATHER Waits
	PREEMPTIVE_OS_WRITEFILEGATHER Summary

	PREEMPTIVE_OS_AUTHENTICATIONOPS
	What Is the PREEMPTIVE_OS_AUTHENTICATIONOPS Wait Type?
	PREEMPTIVE_OS_AUTHENTICATIONOPS Example
	Lowering PREEMPTIVE_OS_AUTHENTICATIONOPS Waits
	PREEMPTIVE_OS_AUTHENTICATIONOPS Summary

	PREEMPTIVE_OS_GETPROCADDRESS
	What Is the PREEMPTIVE_OS_GETPROCADDRESS Wait Type?
	PREEMPTIVE_OS_GETPROCADDRESS Example
	Lowering PREEMPTIVE_OS_GETPROCADDRESS Waits
	PREEMPTIVE_OS_GETPROCADDRESS Summary

	Chapter 12: Background and Miscellaneous Wait Types
	CHECKPOINT_QUEUE
	What Is the CHECKPOINT_QUEUE Wait Type?
	CHECKPOINT_QUEUE Summary

	DIRTY_PAGE_POLL
	What Is the DIRTY_PAGE_POLL Wait Type?
	DIRTY_PAGE_POLL Summary

	LAZYWRITER_SLEEP
	What Is the LAZYWRITER_SLEEP Wait Type?
	LAZYWRITER_SLEEP Summary

	MSQL_XP
	What Is the MSQL_XP Wait Type?
	MSQL_XP Example
	Lowering MSQL_XP Waits
	MSQL_XP Summary

	OLEDB
	What Is the OLEDB Wait Type?
	OLEDB Example
	Lowering OLEDB Waits
	OLEDB Summary

	TRACEWRITE
	What Is the TRACEWRITE Wait Type?
	TRACEWRITE Example
	Lowering TRACEWRITE Waits
	TRACEWRITE Summary

	WAITFOR
	What Is the WAITFOR Wait Type?
	WAITFOR Example
	WAITFOR Summary

	Chapter 13: In-Memory OLTP–Related Wait Types
	Introduction to In-Memory OLTP
	CFPs
	Isolation
	Transaction Log Changes

	WAIT_XTP_HOST_WAIT
	What Is the WAIT_XTP_HOST_WAIT Wait Type?
	WAIT_XTP_HOST_WAIT Summary

	WAIT_XTP_CKPT_CLOSE
	What Is the WAIT_XTP_CKPT_CLOSE Wait Type?
	WAIT_XTP_CKPT_CLOSE Summary

	WAIT_XTP_OFFLINE_CKPT_NEW_LOG
	What Is the WAIT_XTP_OFFLINE_CKPT_NEW_LOG Wait Type?
	WAIT_XTP_OFFLINE_CKPT_NEW_LOG Summary

	Appendix I: Example SQL Server Machine Configurations
	Default Test Machine
	HA/DR Test Machines

	Appendix II: Spinlocks
	Appendix III: Latch Classes

	Index

