
www.allitebooks.com

http://www.allitebooks.org

 i

Pro Smartphone Cross-
Platform Development

iPhone, BlackBerry, Windows Mobile, and
Android Development and Distribution

■ ■ ■

Sarah Allen,
Vidal Graupera,
Lee Lundrigan

www.allitebooks.com

http://www.allitebooks.org

ii

Pro Smartphone Cross-Platform Development: iPhone, Blackberry, Windows Mobile and
Android Development and Distribution

Copyright © 2010 by Sarah Allen, Vidal Graupera, Lee Lundrigan

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2868-4

ISBN-13 (electronic): 978-1-4302-2869-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Mark Beckner, Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Jim Markham
Copy Editor: Ralph Moore
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

www.allitebooks.com

http://www.allitebooks.org

 iii

To Bruce and Jack Allen for their love and support.

—Sarah Allen

To my loving wife, Tara, and my children Maggie, Grace, James, and Kathleen.

—Vidal Graupera

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

■Contents .. v
■Foreword ... x
■About the Authors ... xii
■About the Technical Reviewer.. xiii
■Acknowledgments...xiv
■Introduction..xv�

■Chapter 1: The Smartphone is the New PC... 1�

Part 1: Platform Development and Distribution.. 15�

■Chapter 2: iPhone .. 17�

■Chapter 3: Android .. 35�

■Chapter 4: BlackBerry ... 51�

■Chapter 5: Windows Mobile... 65�

Part 2: Cross-Platform Native Frameworks.. 81�

■Chapter 6: Rhodes ... 83�

■Chapter 7: RhoSync ... 113�

■Chapter 8: PhoneGap ... 131�

■Chapter 9: Titanium Mobile ... 153�

Part 3: HTML Interfaces .. 161�

■Chapter 10: Mobile HTML and CSS .. 163�

■Chapter 11: iWebKit... 183�

■Chapter 12: Animated UI with jQTouch.. 207�

■Chapter 13: Sencha Touch... 225�

■Chapter 14: BlackBerry HTML UI ... 235�

■Appendix: Cascading Style Sheets .. 247
■Index.. 255

www.allitebooks.com

http://www.allitebooks.org

 v

Contents

■Contents at a Glance... iv�

■Foreword ... x
■About the Authors ... xii
■About the Technical Reviewer.. xiii
■Acknowledgments...xiv
■Introduction..xv�

■Chapter 1: The Smartphone is the New PC... 1�

Application Marketplace ...2�

Increase in Mobile Usage and Trend Toward Smartphones ..2�

What is a Smartphone?...4�

Smartphone Landscape ...4�

Cross-Platform Frameworks..5�

The Branded Experience of Mobile Applications ...6�

Web Techniques ...10�

Cross-Platform Frameworks...10�

About this Book...13�

Part 1: Platform Development and Distribution.. 15�

■Chapter 2: iPhone .. 17�

Introducing Xcode...17�

iPhone Development Standard Practices..18�

Building a Simple iPhone app ...18�

Create the Xcode Project ...19�

Create the Interface ...20�

Installing the App on the Device ...29�

Finding Your Device ID...31�

Create the Provisioning Profile ..32�

Install the Provisioning Profile ...32�

Install and Run on the Device ..32�

■ CONTENTS

vi

■Chapter 3: Android .. 35�

Android Development..36�

Setting Up The Development Environment With Eclipse..36�

Building a Simple Android Application...39�

Simple Application Using Android WebView..46�

Building for an Android Device ...48�

Distribution on the Web ..50�

Android Market ...50�

■Chapter 4: BlackBerry ... 51�

BlackBerry Platform..51�

Set Up for Classic Java Development ...52�

Building a Simple BlackBerry Application...53�

Create the Eclipse Project..53�

Create the Interface ...55�

Code Explained ..57�

Build and Test the Application ...58�

Simple User Interface Application Using a Label, Text Field, and Button ..58�

Code Explained ..60�

Simple Application Using BlackBerry Browser Field..61�

■Chapter 5: Windows Mobile... 65�

Setting Up for Windows Mobile 6.5 Development...66�

Building a Simple Windows Mobile App ...67�

Creating a Smart Device Project ..67�

Setting Up Base Functionality..68�

Deploying and Test your Application ...72�

Fleshing Out the Application ..73�

Packaging and Distributing Your App ...76�

Adding a CAB Project to the Solution...77�

Customizing Your Product Name ...77�

Adding the Application to the CAB Project ...78�

Creating an Application Shortcut ...78�

Adding a Registry Entry ...78�

Building and Deploying the CAB File..78�

Installing the CAB File ..79�

Distributing Your Application ..80�

Part 2: Cross-Platform Native Frameworks.. 81�

■Chapter 6: Rhodes ... 83�

Development Architecture ..84�

Runtime Architecture..85�

Device Capabilities and Native UI Elements ..86�

Database (Rhom) ..86�

Threading..87�

Differences Between Rhodes and Rails ..88�

Creating a Rhodes App ...88�

Installation and Setup ..88�

Building a Rhodes Application ..89�

■ CONTENTS

 vii

Running the Application..91�

Running on the iPhone...93�

Running on Android ...94�

Running on BlackBerry ..94�

Running on Windows Mobile 6 ..95�

Generating a Model...95�

Debugging Tips ...100�

iPhone ..100�

BlackBerry ...101�

Android ..101�

Rhodes Device Capabilities...101�

Contacts Example ...103�

Camera Example...106�

Geolocation and Mapping Example...108�

Creating the application...109�

■Chapter 7: RhoSync ... 113�

How the Sync Server Works ...114�

Data Storage: Why Triples? ...114�

RhoSync Source Adapters ..115�

Initialize ..116�

Authenticating with Web Services: Login and Logoff ...116�

Retrieving Data: Query and Sync ..117�

Query ...117�

Sync ...119�

Submitting Data: Create, Update, and Delete ...119�

Create ..119�

Update..120�

Delete...120�

User Authentication ..121�

Product Inventory Example ...122�

Creating Your Application on RhoHub..122�

Creating Your Application on a Local RhoSync Server...127�

Debugging RhoSync Source Adapters ...130�

Testing Your Application ..130�

■Chapter 8: PhoneGap ... 131�

Getting Started with PhoneGap...133�

Sample Application ..134�

Android ..136�

BlackBerry ...137�

PhoneGap Simulator ..138�

Writing Hello World in PhoneGap ..139�

Writing a PhoneGap Application..141�

Contacts Example ...146�

Contact Example Code Explained ..149�

Camera Example...150�

Camera Example Code Explained ..152�

■ CONTENTS

viii

■Chapter 9: Titanium Mobile ... 153�

Getting Started..153�

Writing Hello World ..155�

Building for Device...157�

Titanium Mobile Device Capabilities..157�

Camera Example..158�

Part 3: HTML Interfaces .. 161�

■Chapter 10: Mobile HTML and CSS .. 163�

Platform Overview ..163�

iOS for iPhone, iPad, iPod Touch..164�

Android ..164�

BlackBerry ...165�

Windows Mobile...165�

Common Patterns ...165�

Screen-Based Approach ..165�

Navigation..166�

UI Widgets..169�

Check Boxes ..169�

Selection Boxes ...171�

Text Boxes ...173�

Text Areas ..174�

Radio Buttons...175�

Additional Components..177�

WebKit Web Views ...178�

■Chapter 11: iWebKit... 183�

Working With the iWebKit Framework ..184�

A Few Words of Caution...185�

Required Header ..186�

Body...186�

Organizing Data with Lists ...187�

Navigation...194�

Forms..196�

Landscape Mode...200�

Phone Integration..200�

Integrating iWebKit in Mobile Applications ...201�

Creating a Native iPhone Application with iWebKit in Objective C...201�

Create an Application...203�

Add iWebKit Framework to Application Layout Template..204�

Setting up PhoneGap for iWebKit...205�

■Chapter 12: Animated UI with jQTouch.. 207�

Getting Started with jQTouch..208�

Running Example Code ..208�

Creating a Simple jQTouch Application..209�

Adding Screens...211�

Loading Additional Screens with Ajax..212�

Cancel, Back, and Browser History..214�

■ CONTENTS

 ix

Other Buttons...215�

jQTouch Initialization Options ...215�

Basic Views..217�

Customizing Your jQTouch Applications ..218�

Animations ...218�

Navigation Bar (aka the Toolbar) ...218�

Customizing Your Views with Themes...221�

Integration with Rhodes...222�

Integration with PhoneGap ..222�

■Chapter 13: Sencha Touch... 225�

Getting Started..225�

Adding HTML Text with a Panel ..228�

Adding Components..231�

Creating Interactivity...232�

■Chapter 14: BlackBerry HTML UI ... 235�

BlackBerry Browser UI Controls..236�

BlackBerry 4.2 Browser Control..237�

Fonts ..239�

Frames...241�

JavaScript ..241�

Rhodes Tip for Dynamic Layout ...242�

BlackBerry 4.6 Browser Control..244�

Display and User Interaction...244�

Development Environment..245�

■Appendix: Cascading Style Sheets .. 247�

The Cascading in Style Sheets..247�

CSS Syntax..248�

Comments...249�

Identifying Elements with ID and Class...249�

Common Patterns ...250�

Common CSS Attributes (Display: block verses inline) ...251�

■Index.. 255

x

Foreword

The year 2010 is an exciting time for those of us who have worked in and around the mobile
industry since before the, now, decade-old 21st century. Some have referred to this year as “The
Year of the Mobile Developer.” It’s true that, following the creation of frictionless paths to market
through Apple’s App Store, Google’s Android Market, and the other handset or OS app stores,
developers and brands alike are pursuing a market previously limited in reach. The options of
distribution of applications until recently included carrier decks, handset portals, third-party
channels such as Motricity, or even one’s own web site.

Carriers once dominated and controlled which applications were allowed to reach eager end
users via their portals—picking winners and losers by the weight of their business development
and testing processes. Distribution via carriers has been difficult and costly, requiring direct
relationships with carriers. Each carrier required a new business development effort and a
different set of requirements for OSes and handsets supported, along with a unique testing
process. Handset portals also required major effort from business development and also required
joining expensive developer programs. The third-party and web-site options for distribution were
easier but required individual marketing effort by developers, and the process for users to install
downloaded apps on their own was a barrier for widespread adoption. Until recently, these
challenges in the business of mobile development limited experimentation and innovation by all
but a few hardy souls or the largest brands with the budgets to support it. Enter Apple’s App
Store.

The Apple App Store not only provided a path to market, but also, a dramatic change in
marketing position for developers. Apple established the new industry standard with the “There’s
an App for That” campaign. Suddenly, instead of choosing a device for its hardware specs, end
users considered what they could do with a phone beyond make calls and send text messages.
The value of a device, now, has become its ability to run lots of applications. The iPhone didn’t
initially include an App Store. End users drove this innovation, as is often the case. Early adopters
of the iPhone broke open the OS and began to extend it’s capabilities with apps, but Apple was
quick enough to leverage the iTunes connection for delivering $.99 songs to delivering $.99
applications.

The app store trend didn’t and couldn’t have happened without the availability of more
capable devices. Nokia punctuated the importance of a new class of handset commonly referred
to as smartphones in 2007 by calling their advanced handsets “Multimedia Computers.”
Smartphone as computers has become a more common analogy as smartphones grew in
processing and storage capability. The steady increase of smartphone marketshare hit an
inflection point in 2008 by crossing the magical 20% penetration rate in both the UK and the US.
Historically, any technology mainstreams at the 20% penetration level, which has clearly been
demonstrated by experience since 2008. According to Morgan Stanley analyst Mary Meeker, the
rest of the world (ROW) will reach 20% smartphone penetration in 2012.

It is in this context of explosive growth in smartphone marketshare, a frictionless path to
market through device and OS app stores, and a viable business model that the authors take us to
the next step—cross-platform development. Cross-platform frameworks are still in the early

■ FOREWORD

xi

stages of technology evolution, but the timing is perfect for developers to add cross-platform
frameworks to their tool box.
This is especially true for web developers and those serving brands that benefit most from the
tradeoffs between wide distribution and deep integration.

In Part 1, the authors provide a survey of the top development and distribution options
consisting of mainly handset and OS vendors including the iPhone, Android, BlackBerry, and
Windows Mobile. Part 2 follows by introducing emerging cross-platform solutions covering both
proprietary and open source frameworks with an emphasis on building native applications. And
finally in Part 3, the authors address techniques for using HTML to create a native look-and-feel
for web applications and services.

A key thread throughout the book is recognition that mobile development is a business
endeavor and opportunity. There is a presentation of how-to instructions and code samples that
will be useful to those just getting started with mobile development, but the audience that will
benefit most from the pragmatic vision of the authors are professional developers and agencies.
Certainly, many web developers are pursuing mobile development because it’s a good decision to
grow their business and if their clients aren’t already requesting mobile applications, they will
soon.

The book isn’t targeted at developers of gaming apps. While gaming is a leading category for
all app stores, it’s one of those categories that benefits most from deep integration into the OS or
device. Cross-platform frameworks aren’t likely to be the best solution for games. Productivity
apps, branded apps, and some communications services such as social networking apps will
benefit from using the tools and techniques covered in the book.

Several of the tools presented in the book are currently leading this emerging category. We
are in the early days of cross-platform use on mobile devices. Of the estimated 17 million
software developers worldwide, according to Motorola as quoted in Forbes, around 4 million of
them are developing for mobile. While Rhodes, Appcelerator, and PhoneGap have been used to
deliver applications via the Apple App Store, the total number of developers using these
frameworks is in the low six figures. Like the early days of the web, and to some extent, still,
experimentation is vital to moving the ecosystem forward. This book is an important
contribution to that effort.

Debi Jones
Editor In Chief

Telefonica Developer Programs

xii

About the Authors

Sarah Allen leads Blazing Cloud, a San Francisco consulting firm that
specializes in developing leading-edge mobile and web applications. She
is also co-founder and CTO of Mightyverse, a mobile startup focused on
helping people communicate across languages and cultures. In both
technical and leadership roles, Sarah has been developing commercial
software since 1990 when she co-founded CoSA (the Company of Science
& Art), which originated After Effects. She began focusing on Internet
software as an engineer on Macromedia's Shockwave team in 1995. She
led the development of the Shockwave Multiuser Server, and later the
Flash Media Server and Flash video. An industry veteran who has also
worked at Adobe, Aldus, Apple, and Laszlo Systems, Sarah was named one

 of the top 25 women of the Web by SF WoW (San Francisco Women of the
 Web) in 1998.

Website: blazingcloud.net
Personal Blog: www.ultrasaurus.com
Twitter: @ultrasaurus

Vidal Graupera has been developing award-winning mobile applications
starting as far back as the Apple Newton in 1993. He founded and ran a
successful software company that developed more than a dozen
consumer applications on a variety of mobile platforms over a period of
ten years. Vidal holds engineering degrees from Carnegie Melon
University and the University of Southern CA, and an MBA from Santa
Clara University. Vidal currently consults with clients on developing web
and mobile applications.

Website: vdggroup.com
Personal Website: www.vidalgraupera.com
Twitter: @vgraupera

Lee Lundrigan, a founding engineer at Blazing Cloud, develops mobile
applications using cross-platfrom frameworks on four platforms and
Objective-C on the iPhone and iPad. He is an expert in CSS and HTML
and also has experience creating dynamic UI in JavaScript. He has
developed cross-browser CSS and HTML to run on iPhone, Android,
BlackBerry, and Windows Mobile.

Website: blazingcloud.net
Personal Blog: www.macboypro.com

xiii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a prolific writer on cutting-edge technologies. Fabio has contributed to
more than a dozen books on .NET, C#, Visual Basic, and ASP.NET. He is a .NET Microsoft Certified
Solution Developer (MCSD) and lives in Rome, Italy.

xiv

xv

Introduction

Developing mobile applications can be tricky business. Mobile developers need to use platform-
specific tools and APIs and write code in different languages on different platforms. It is often
hard to understand what it takes to develop and distribute an application for a specific device
without actually building one. Each platform has different processes and requirements for
membership in developer programs and documentation for different parts of the development
process are often scattered and hard to piece together. Therefore, we have divided the book into
three main topics: Platform Development and Distribution, Cross-Platform Native Frameworks,
and HTML Interfaces.

Part 1: Platform Development and Distribution
In Chapters 1–5, we provide an overview of four platforms: iOS, for building iPhone, iPad, and
iPod Touch applications; the Android open source platform, created by Google; Research in
Motion's BlackBerry platform; and Windows Mobile from Microsoft. Each chapter follows the
same outline:

• Building a Simple Hello World

• Running in the Simulator

• Adding a Browser Control

• Building for the Device

• Distribution Options and Requirements

This common outline allows for comparison across the operating systems and provides a feel
for the patterns of the development process. If you decide to pursue native application
development using only the vendor SDK, you will need a lot more details than any single chapter
can provide, but this should provide the right amount of information to kick-off some
experimentation or help make a decision about which platforms to pursue.

It is inevitable that developers create ways to share code across plaforms when CPU power is
fast enough and there is sufficient memory to support some kind of abstraction and demand
fuels faster time to market. We saw this with cross-platform desktop frameworks that emerged in
the 1990s, and now with cross-platform mobile frameworks.

■ INTRODUCTION

xvi

Part 2: Cross-Platform Native Frameworks
Chapters 6–9 provide an overview and examples of applications written in three popular native
frameworks. In categorizing as a “native framework,” we selected software that allows a common
development approach across platforms but that build to an application that is indistinguishable
by a user from one built with native code (as described in Part 1). Note that to build using these
frameworks, you will still need the vendor SDK described in Part 1 and use vendor-specific
techniques for code signing and distributions.

There are two chapters on the Rhomobile platform, one for the client-side Rhodes and one
for the RhoSync server framwork. Rhodes is covered in more depth than the other two platforms:
Titanium Mobile and PhoneGap. Rhodes is at version 2 at this writing, Titanium v1.2 and
PhoneGap 0.9. As with the rest of the book, these chapters are designed to provide a feel for what
it is like to develop for each platform, to kick-start some experimentation, and aid in deciding
what platform to spend more time with.

Part 3: HTML Interfaces
You can use the technique of adding a browser control in combination with the HTML and CSS
patterns and frameworks presented in Chapters 10–14.

To develop a mobile application user interface, a mobile developer must typically learn a
platform-specific language and SDK. This can become quite cumbersome if you need your
application to run on more than one platform. Fortunately, there is an alternative; all smartphone
platforms today include a browser control component (also known as a web view) that a
developer can embed in their application that will allow them to write some or all of their app in
HTML, CSS, and JavaScript.

Leveraging HTML and CSS for mobile application UI gets even better with the introduction
of the mobile WebKit browser. WebKit is an open source browser engine originally created by
Apple. WebKit introduces a partial implemention of HTML5 and CSS3 with full support for
HTML4 and partial implementation CSS2. Note that as of this writing, HTML5 and CSS3 are still
in “working draft;” however, these emerging standards have been aggressively adopted by
multiple web browsers and the latest versions of WebKit-based browsers include most HTML5
and CSS3 features. The WebKit mobile browser is currently the native browser for iPhone/iPod
Touch/iPad, Android, Palm, and many Symbian phones. BlackBerry plans to catch up with its
own WebKit-based browser, recently demonstrated at Mobile World Congress in February 2010.
Windows Mobile ships with an IE-based browser, which includes a better implemention of CSS1
and 2 compared with BlackBerry, but still has limitations. It is possible, though sometimes
challenging, to build cross-platform UI in HTML and CSS that works across WebKit, mobile IE,
and BlackBerry broswers. The most challenging part is differing levels of support for current
HTML and CSS standards.

1

1

 Chapter

The Smartphone
is the New PC
The mobile phone is the new personal computer. The desktop computer is not going

away, but the smartphone market is growing fast. Phones are being used as computers

by more people and for more purposes. Smartphones are generally cheaper than

computers, more convenient because of their portability, and often more useful with the

context provided by geolocation.

Already there are more mobile phones than computers connected to the Internet. While

a minority of those phones would be considered smartphones, we’re seeing a fast-

moving landscape where today’s high-end phones become next year’s mid-range or

even low-end phones. With profits from applications growing, we’ll see continued

subsidies of the hardware and operating systems by manufacturers and carriers,

keeping new phones cheap or free.

We’re seeing a change in how people use computers. Desktop applications that we use

most frequently are centered around communications, rather than the more traditional

personal computer task of document creation. In the business world, we file expense

reports, approve decisions, or comment on proposals. As consumers, we read reviews,

send short notes to friends, and share photos. E-mail is the killer app of the late 20th

century, not the word processor or spreadsheet. Both in the business world and in our

personal lives, these communication-centered tasks translate effectively into mobile

applications.

As smartphones gain widespread adoption, the desktop computer will be relegated to

the specialist and elite professional, much as the mini-computer and supercomputer are

today. Many of the routine tasks we currently perform on a desktop or laptop, we will be

able to accomplish on a smartphone. More importantly, new applications will meet the

needs of people who don’t use a computer today. Software development will shift

toward mobile development as the majority of people who use computers will use them

indirectly through a mobile phone. The center of gravity of the software industry will be

mobilized.

1

CHAPTER 1: The Smartphone is the New PC 2

Application Marketplace
In September 2009, Apple announced that more than two billion applications had been

downloaded from its App Store. With more than 100,000 applications available, Apple

has transformed the mobile phone market by dramatically increasing consumer

spending on applications and successfully shifting independent developer mindshare

toward mobile application development. By the end of 2009, Google Android’s open

platform was reported to have over 20,000 apps in the Android Market online store.1

Mobile applications are not new. Even in the late 90s, mobile development was

considered to be a hot market. While there were independent application developers and

most of the high-end phones supported the installation of applications, the process of

application install was awkward and most end users did not add applications to their

phone. Examples of early smartphone and PDA devices from this era included the Apple

Newton Message Pad, Palm Pilot, Handspring (and later Palm) Treo, Windows Pocket PC,

and others. Almost all mobile developers worked directly or indirectly for the carriers.

The iPhone revitalized the landscape for mobile application development. Apple created

an easy-to-use interface for purchasing and installing third-party applications, and more

importantly, promoted that capability to their users and prospective customers.

Smartphone operating systems actively innovate to keep up with advances in hardware

and ease development with improved tools and APIs. As we’ve seen with the iPhone

App Store, often the most significant innovations are not purely technical. The App Store

reduced barriers to application development by providing easy access to distribution.

Unsurprisingly, people develop more apps when there is an accessible market and

distribution channel. Google’s App Market, Blackberry App World, and Windows

Marketplace for Mobile are likely to drive the success of existing applications for those

operating systems and draw new developers as well.

Increase in Mobile Usage and Trend Toward Smartphones
Six in 10 people around the world now have cell-phone subscriptions, according to a

2009 UN Report,2 which surpasses the quarter of the world’s population with a

computer at home. Smartphones are still a small minority of mobile phones, but growth

is strong and the numbers are particularly interesting when compared to computer

sales. Mobile Handset DesignLine reports that smartphones represent 14% of global

device sales, but Gartner projections note that smartphone shipments will overtake unit

1 http://www.techworld.com.au/article/330111/android_market_hits_20_000_apps_milestone

2 International Telecommunications Union (a UN agency), “The World in 2009: ICT facts and

figures,” http://www.itu.int/newsroom/press_releases/2009/39.html, 2009.

CHAPTER 1: The Smartphone is the New PC 3

sales of notebook computers in 2009 and that by 2012, smartphones will grow to 37%

of mobile device sales.3

Looking at how people use their mobile phones today suggests patterns of behavior that

will drive smartphone sales in the future. Increasingly, people are using their phones for

more than phone calls: web browsing and the use of other mobile applications are

growing. Market researcher comScore reports that global mobile Internet usage more

than doubled between January 2008 and January 2009.4 In Africa, a recent sharp

increase in mobile phone adoption is attributed to the use of phones for banking and

sending money to relatives via text messaging.

Even lower-end mobile phones typically bundle web browser, e-mail, and text

messaging, but the power of the smartphones enables a wider array of applications.

Smartphones are not just little computers that fit in your pocket. For many applications,

they are actually more powerful devices than a laptop due to their built-in capabilities of

camera, connectedness, and geolocation. Business people who can afford a laptop

often prefer the longer-lasting battery power and portability of the smaller device. In an

Information Week article, Alexander Wolfe collected real-world use cases of businesses

adopting smartphones for applications that used to be only accessible with a desktop or

laptop computer:

At Dreyer’s Grand Ice Cream, the Palm Treo 750 is being used by some

50 field sales representatives to access the company’s back-end CRM

database.

The company’s field-sales reps tried laptops and tablet PCs, but their

battery life was too short and rebooting took too much time on sales

calls, which number 20 to 25 a day, says Mike Corby, director of direct

store delivery. Dreyer’s reps also found the laptops to be too bulky to

tote around, “not to mention the theft worries with notebooks visible on

their car seats.”

At Astra Tech, a medical device maker, some 50 sales reps access

Salesforce CRM apps on their smartphones. “Salespeople say they now

check yesterday’s sold or returned products plus the overall revenue

trends, five minutes before meeting with a customer,” says Fredrik

Widarsson, Astra Tech’s sales technology manager, who led the

deployment on Windows Mobile smartphones (and is testing the app on

iPhones). “Another interesting effect is that once a salesperson is back

home for the day, the reporting part of their job is done. During waiting

3 Christoph Hammerschmidt, “Smartphone market boom risky for PC vendors, market

researchers warn,” http://www.mobilehandsetdesignline.com/news/221300005;
jsessionid=1JYPKFPGNOGE1QE1GHPCKH4ATMY32JVN, October 28, 2009.

4 Dawn Kawamoto, “Mobile Internet usage more than doubles in January,”
http://news.cnet.com/8301–1035_3-10197136-94.html

CHAPTER 1: The Smartphone is the New PC 4

periods throughout the day, they put notes into the CRM system, using

their smartphone.”5

In a recent article by Gary Kim, Forrester analyst Julie Ask identifies three things as the

killer advantages of mobile devices: “immediacy, simplicity, and context.”6 When those

are combined with usefulness, we’re going to start to see a different flavor of software

application emerge that will transform the way we use mobile phones. The use of

software applications as “computing” will become archaic. The age of software as

communications medium will have arrived.

What is a Smartphone?
Cell phones today are generally divided between the low-end “feature phones” and

higher-end “smartphones.” A smartphone has a QWERTY keyboard (either a physical

keyboard or soft keyboard like the iPhone or BlackBerry Storm) and is more powerful

than the feature phone with larger, high-resolution screens and more device capabilities.

Smartphone Landscape
Relative to desktop computers, smartphones have a diverse set of operating systems

(see Table 1–1). Moreover, unlike desktop operating systems, the OS in mobile

computing typically determines the programming language that developers must use.

When developing an application for the desktop, such as Microsoft Word or Adobe

PhotoShop, application developers create their core application in a language such as

C++ and share that core code across platforms, but then use platform-specific APIs to

access the filesystem and develop the user interface. In the 1990s, a number of cross-

platform desktop frameworks emerged, making it easier for companies to develop a

single codebase that they could compile for each target platform (typically, just Mac and

Windows). For mobile development, this is a bigger challenge.

5 Wolfe, Alexander. “Is The Smartphone Your Next Computer?” October 4, 2008.
http://www.informationweek.com/news/personal_tech/smartphones/showArticle.jhtml?art
icleID=210605369, March 16, 2009.

6 Gary Kim, “Can Mobile Devices Replace PCs?” http://fixed-mobile-
convergence.tmcnet.com/
topics/mobile-communications/articles/66939-mobile-devices-replace-pcs.htm, October

19, 2009.

CHAPTER 1: The Smartphone is the New PC 5

Table 1–1. Smartphone Operating Systems and Languages

OS Symbian
RIM

BlackBerry

Apple

iPhone

Windows

Mobile

Google

Android

Palm

webOS

Language C++ Java Objective-C C# Java Javascript

Even focusing only on smartphones, there are four major operating systems that make

up over 90% of the market: Symbian, RIM BlackBerry, Apple iPhone, and Windows

Mobile, with the rest of the market shared by Linux and emerging mobile operating

systems, Google Android and Palm’s webOS. For most of these operating systems,

there is a native development language, which is required to develop optimally for that

platform, as illustrated in Table 1–1. While it is possible to develop using other

languages, typically there are drawbacks or limitations in doing so. For example, you

can develop a Java application for Symbian; however, several native APIs are

unavailable for accessing device capabilities. Besides the differences in languages, the

software development kits (SDKs) and paradigms for developing applications are

different across each platform. While the device capabilities are almost identical, such

as geolocation, camera, access to contacts, and offline storage, the specific APIs to

access these capabilities are different on each platform.

Cross-Platform Frameworks
The fast-growing market for applications drives the need for faster time to market. Just

as market opportunities led vendors to release cross-platform applications on desktop

computers in the 1990s, mobile applications are more frequently available across

devices. Operating systems vendors vie for the attention of developers and application

vendors, but improve their tools incrementally. Where such dramatic challenges exist in

developing across multiple platforms, it is natural for third party cross-platform

frameworks to emerge.

The innovation in cross-platform frameworks for smartphone applications surpasses the

patterns of abstraction seen in the cross-platform desktop frameworks of the 1990s.

These new smartphone frameworks are influenced by the rapid application development

techniques we are seeing in web development today. There are three specific techniques

in web application development that are borrowed for these non-web frameworks: 1)

layout with mark-up (HTML/CSS); 2) using URLs to identify screen layouts and visual

state; and 3) incorporating dynamic languages, such as Javscript and Ruby.

A generation of designers and user interface developers are fluent in HTML and CSS for

layout and construction of visual elements. Additionally, addressing each screen by a

unique name in a sensible hierarchy (URL) with a systemized way of defining

connections between them (links and form posts) has created a lingua franca

understood by visual and interactions designers, information architects, and

programmers alike. This common language and its standard implementation patterns

led to the development of frameworks and libraries that significantly speed application

development on the Web. These patterns are now being applied to the development of

CHAPTER 1: The Smartphone is the New PC 6

mobile applications as common techniques by individual developers as well as in cross-

platform frameworks.

The new cross-platform frameworks (and the native Palm webOS) leverage these skills

using an embedded web browser as the mechanism for displaying application UI. This is

combined with a native application that transforms URL requests into the rendering of

application screens simulating the web environment in the context of a disconnected

mobile application.

The Branded Experience of Mobile Applications
New cross-platform smartphone frameworks support a trend where mobile applications,

such as web applications, are a branded experience. The Web is a varied, diverse place,

where the lines between application functionality, content, and branding blur. Web

applications do not express the native operating systems of Mac, Windows, or whatever

desktop happens to host the browser. Web applications are liberal with color and

graphics, defying the UI conventions of the desktop as well as avoiding the blue

underlined links of the early Web that Jacob Nielson erroneously identified as the key to

the Web’s usability.

As an example, the NBA released its NBA League Pass Mobile app for both iPhone and

Android. “Multiplatform is a key tenet of our philosophy,” said Bryan Perez, GM of NBA

Digital. “We want our content available to as many fans as possible, and with more and

more carriers adopting Android around the world, it’s important to be there now.”7 Most

businesses simply can’t afford to focus on the niche of a single operating system or

device. To reach customers, more companies are developing mobile applications, and

the customers they want to reach are divided across the wide array of mobile platforms.

Despite the challenges, businesses are driven to communicate with their customers

through their mobile phones because of the enormous opportunity presented by such

connectedness.

It may be effective shorthand to say that smartphones are the new personal computer;

however, in reality they represent a new communications medium. This book covers

frameworks and toolkits that make it easier than ever before to develop applications for

multiple mobile platforms simultaneously. Leveraging these tools, you can take

advantage of the widespread adoption of smartphone devices to broaden the reach of

your business.

To provide some perspective on how application interfaces vary across platform,

Figures 1–1 to 1–5 illustrate how two applications, WorldMate and Facebook, are

realized across various platforms. These specific applications are not implemented using

cross-platform frameworks, but are included to provide context on design decisions

made in cross-platform implementation. As you will see, the two applications look quite

7 Todd Wasserman, “So, Do You Need to Develop an Android App Too Now?,”
http://www.brandweek.com/bw/content_display/news-and-features/
direct/e3iebae8a5c132016bcab88e37bc3948a44, October 31, 2009.

CHAPTER 1: The Smartphone is the New PC 7

different from each other, even on the same platform. As is typical, these mobile

applications choose a color scheme that is consistent with their brand, rather than

adhering to defaults provided by the smartphone operating system.

Figure 1–1. WorldMate iPhone

Figure 1–2. WorldMate 2009 Symbian

CHAPTER 1: The Smartphone is the New PC 8

Figure 1–3. WorldMate BlackBerry

Figure 1–4. Facebook BlackBerry

CHAPTER 1: The Smartphone is the New PC 9

Figure 1–5. Facebook iPhone

Cross-Platform Development

Frequently, the industry produces multiple platforms that essentially provide the same

solutions for different market segments. In the 1990s, Microsoft Windows and the Apple

Macintosh provided GUI platforms with windows, mouse input, menus, and so forth.

Software vendors needed to create applications for the both platforms and, inevitably

software developers created libraries and frameworks that abstracted the differences,

making it easier to develop one application that ran across platforms. In the 2000s, as

more applications moved to the Web and browser syntax diverged, software developers

created cross-platform libraries and frameworks, such as jQuery, Dojo, and OpenLaszlo.

When there exists both a market for applications and enough processor speed and

CHAPTER 1: The Smartphone is the New PC 10

memory to support a layer of abstraction, developers naturally create cross-platform

tools to speed time to market and reduce maintenance costs.

With the phenomenal growth of mobile, which has seen broad adoption across a diverse

array of platforms, it is inevitable that software developers would create cross-platform

mobile solutions. However, the challenge with mobile operating systems today is the

diverse set of languages, in addition to platform-specific API syntax. Mobile cross-

platform frameworks are addressing that challenge by leveraging the ubiquitous browser

Javascript or scripting languages such as Lua or Ruby.

Web Techniques
We are seeing the influence of web development on emergent cross-platform

techniques for mobile. Before any cross-platform frameworks existed, many developers

found that embedding Web UI in a native application was a practical way to develop

mobile applications quickly and make cross-platform applications easier to maintain.

The user interface for mobile applications tends to be presented as a series of screens.

From a high level, the mobile UI can be thought of as having the same flow-of-control as

a traditional web site or web application.

It is common in a mobile application for every click to display a new screen, just as a

click in a traditional web application displays a new page. By structuring the UI of the

mobile application such as a web application, the coding can be simplified. By actually

using Web UI controls, the implementation of the user interface can be created with a

single source that renders and behaves appropriately across platforms. Also, it is much

easier to hire designers and UI developers who are familiar with HTML and CSS than for

any specific mobile platform, let alone finding developers who can develop a UI across

multiple platforms using native toolkits.

What does it mean to have a web application architecture for an app that may not even

access the network? Every smartphone platform has a web browser UI control that can

be embedded into an application just like a button or a check box. By placing a web

browser control in the application that is the full size of the screen, the entire UI of the

application may be implemented in HTML. In reality, this has nothing to do with the

Web, and everything to do with the sophisticated layout and visual design flexibility that

even a bare-bones web browser is capable of rendering.

Cross-Platform Frameworks
In the past few years, many cross-platform frameworks have emerged. There has been

an explosion of activity in this area as mobile devices become faster and more widely

adopted, and particularly with a fast-growing market for applications. This book covers

many of the popular frameworks that are focused on application development. The

frameworks fall into two categories: those that let you create a native mobile application

using cross-platform APIs, and HTML/CSS/Javascript frameworks that let you build

cross-platform interfaces that run in a web browser. It is common practice to combine

CHAPTER 1: The Smartphone is the New PC 11

these to create cross-platform native applications. This book covers the native cross-

platform frameworks of Rhodes, PhoneGap, and Titanium. These are listed below along

with a number of frameworks that are not covered in this book.

� Rhodes and RhoSync from Rhomobile. Use Ruby for cross-platform

business logic in this MVC framework and leverage HTML, CSS, and

JavaScript for the UI. The optional RhoSync server supports

synchronization of client-server data. With Rhodes, you can build

applications for iPhone/iPad, Android, BlackBerry, and Windows

Mobile. The client framework is MIT License; their RhoSync server

framework is GPL with a commercial option. http://rhomobile.com/

� PhoneGap from Nitobi. Use HTML, CSS, and Javascript along with

projects and libraries that support native application development to

create applications that run on iPhone/iPad, Android, BlackBerry,

Palm, and Symbian. Open-source MIT License.
http://www.phonegap.com/

� Titanium Mobile from Appcelerator. Use JavaScript with custom APIs

to build native applications for iPhone and Android. Titanium is an

open-source framework, released under the Apache 2 license.
http://www.appcelerator.com

� QuickConnectFamily. Use HTML, CSS, and JavaScript to build an

application that runs on iPhone/iPad, Android, BlackBerry, and

WebOS. The QuickConnectFamily templates give you access to

behavior normally restricted to “native” apps. You can have full

database access across all the supported platforms.
http://www.quickconnectfamily.org/

� Bedrock from Metismo. A cross compiler converts your J2ME source

code to native C++, simultaneously deploying your product to Android,

iPhone, BREW, Windows Mobile, and more. Bedrock is a set of

proprietary libraries and tools. http://www.metismo.com

� Corona. Develop using the Lua scripting language for native iPhone,

iPad, and Android apps. Corona is a proprietary framework.
http://anscamobile.com/corona/

� MoSync SDK. Use C or C++ to develop using MoSync libraries to

build for Symbian, Windows Mobile, j2me, Moblin, and Android.

MoSync is a proprietary framework. http://www.mosync.com/

� Qt Mobility. Use C++ and Qt APIs to target S60, Windows CE, and

Maemo. Qt (pronounced “cute”) is a cross-platform application

development framework widely used for the development of GUI

programs. The Qt mobility project moves it to mobile platforms. It is

distributed as open source under the LGPL.
http://labs.trolltech.com/page/Projects/QtMobility

CHAPTER 1: The Smartphone is the New PC 12

� Adobe Flash Lite. Use ActionScript, a JavaScript-like proprietary

scripting language, to build cross-platform application files (SWF) that

will run as applications on a variety of devices that support Flash Lite.

Adobe Flash Lite is a proprietary platform.
http://www.adobe.com/products/flashlite/

� Adobe AIR. Adobe is working toward having the full features of Flash

Player 10 work across a wide array of mobile devices; however, those

efforts seem to be focused on web-based applications rather than

native applications. Adobe AIR (as of this writing, in beta for Android)

allows developers to run Flash applications outside of the mobile

browser as stand-alone applications.
http://www.adobe.com/products/air/

� Unity. A popular game development platform which allows you to

deploy to Mac, Windows, or iPhone. Unity supports three scripting

languages: JavaScript, C#, and a dialect of Python called Boo. They

have announced support of Android, iPad, and PS3 to be released in

Summer 2010. http://unity3d.com/

In addition to these frameworks for developing native applications, there are also many

frameworks to create HTML, CSS, and JavaScript for mobile web applications. Many of

these frameworks are little more than a collection of commonly used styles and

graphical elements; however, when developing cross-platform applications using the

techniques discussed in this book, these cross-platform HTML frameworks are essential

time-savers. The last section of the book introduces Sencha, jqTouch, and iWebKit.

These and others not covered in this book are listed as follows:

� Sencha Touch. A JavaScript framework that allows you to build

native-looking mobile web applications in HTML5 and CSS3 for iOS

and Android. Sencha Touch is an open-source framework available

under the GNU GPL license v3, with a commercial license option

available. http://sencha.com

� JQTouch. A JQuery plug-in for making iPhone-like applications that

are optimized for Safari desktop and mobile browsers. Released under

the MIT License. http://jQTouch.com

� iWebKit. An HTML5 and CSS3 framework targeting iOS native and

web applications. iWebkit has been released under the GNU Lesser

General Public License. http://iWebkit.net

� iUI. A JavaScript and CSS framework to build mobile web applications

that run on iOS. iUI has been released under the New BSD License.
http://code.google.com/p/iui/

� xUI. A lightweight JavaScript framework currently being used by

PhoneGap. Currently targeting iOS applications with tentative future

support for IE mobile and BlackBerry. Currently released under a GNU

GPL license. http://xuijs.com

CHAPTER 1: The Smartphone is the New PC 13

� Magic Framework. An HTML, CSS, and JavaScript framework. Used

to make fast and smooth iPhone-feeling apps with native-feeling

widgets, lists, and so forth. Also provides an easy HTML5 db storage

interface. Currently released under the Creative Commons Attribution

3.0 United States License.
http://www.jeffmcfadden.com/projects/Magic%20Framework

� Dashcode. A Framework developed by Apple to make simple,

lightweight, dashboard widgets for OSX and mobile safari applications

for iOS that utilize HTML, CSS, and JavaScript. Currently available

under the Creative Commons Attribution-ShareAlike License.
http://developer.apple.com/leopard/overview/dashcode.html

� CiUI. Developed by tech news site CNET.com to make an iPhone-

friendly version of their web site. Released under the MIT License.
http://code.google.com/p/ciui-dev/

� Safire. An open-source web application framework written in HTML,

JavaScript- and CSS-targeting iOS. Released under the MIT License.
http://code.google.com/p/safire/

� iphone-universal (UiUIKit). An HTML and CSS framework for iPhone

web development. Contains the iPhone-like Chat Balloons just like

SMS on the iPhone. Released under GNU General Public License v3.
http://code.google.com/p/iphone-universal/

� WebApp.Net. A lightweight, JavaScript framework to build

applications that can take advantage of a WebKit browser control;

namely, iOS, Android, and WebOS. Released under the Creative

Commons Attribution-ShareAlike License. http://WebApp.net

� The Dojo Toolkit. A flexible and extensible JavaScript framework,

primarily used to build web applications. http://www.dojotoolkit.org

� Jo. A lightweight JavaScript framework for HTML5 apps, built with

PhoneGap in mind. Copyright 2010 Dave Balmer, Jr. this framework

has a custom license (“as is” with attribution) http://grrok.com/jo/

There are more cross-platform mobile frameworks, libraries, and tools than are listed

here. This list is provided to give you a sampling of what is out there.

About this Book
Part 1 of this book, the next four chapters (2-5), guide you through building native

mobile applications. You will learn how to write code for simple applications and how to

embed a browser control into a native application. These chapters are designed to give

you a feel for what it is like to develop using native methodologies.

If you decide to develop using platform-specific techniques, then you will need to learn a

lot that is outside the scope of this book; however, to save work in developing and

CHAPTER 1: The Smartphone is the New PC 14

maintaining your application across various mobile platforms, you can consider

including some cross-platform UI by including a browser control and displaying part of

your application UI using HTML. Each chapter in Part 1 reviews how to build for the

device, both developer builds and distributable applications. This information is

important even if you end up using one of the cross-platform frameworks, since at the

end you are building a native application, which will be a native executable built with

vendor tools. Lastly, each chapter reviews distribution options for applications on that

platform.

In Part 2, chapters 6-9, you will learn about three popular cross-platform frameworks:

Rhodes and RhoSync from Rhomobile, PhoneGap from Nitobi, and Titanium Mobile

from Appcelerator. Finally, Part 3 will dive into techniques for creating a native look-and-

feel using HTML techniques, as well as detail some of the limitations and capabilities of

various platforms.

15

 Part

Platform Development
and Distribution
Chapters 2–5 include tutorials of how to add a browser component to a native

application for each of four platforms. This approach helps the developer by allowing

them to write the structure of their application in HTML and have platform-specific CSS

support for the visual layout and features of each platform.

I

17

17

 Chapter

iPhone
To develop for the iPhone or iPod touch, you will need an Intel-based Macintosh

computer running OS X v10.5.7 or later. You will also need to install the latest version of

the iPhone SDK and verify that your device operating systems are up-to-date. Download

the iPhone SDK from the Apple Developers site (http://developer.apple.com/iphone),

which includes the Xcode IDE, iPhone simulator, and a suite of additional tools for

developing applications for iPhone and iPod touch. These tools will help you develop

your application and allow you to run it in the simulator. From this point on in the text,

whenever we refer to building or creating applications for the iPhone, we also mean for

the iPod Touch of iPad, interchangeably. The iPod Touch and iPad are compatible with

the iPhone except that those devices lack a phone and camera.

This chapter includes a simple “Hello World” example, as well as an example of

embedding a Web UI View, which you can use in conjunction with the techniques and

toolkits in Part 3 to include cross-platform UI in a native application. However, the goal

of these examples is to provide a taste of native iPhone development, so as to be able

to contrast it with developing other native applications. The last part of the chapter,

“Installing the App for the Device,” details code signing and building for the device,

which will be needed whether you are writing native code from scratch or using one of

the cross-platform toolkits in Part 2.

Introducing Xcode
Xcode is Apple’s integrated development environment for developing applications for

Mac OS X and the iPhone. The preferred language in Xcode is Objective-C, which is

required for iPhone applications, but Xcode also supports a myriad of other languages

(C, C++, Fortran, Java, Objective-C++, AppleScript, Python, and Ruby). The Xcode IDE

has a modified GNU compiler and debugger for its backend.

The Xcode suite includes Interface Builder and Instruments. Interface Builder helps you

create user interfaces for your Mac and iPhone applications. Using the typical

development process, Interface Builder is essential. Instruments provides a thorough

analysis of your application’s runtime performance and memory usage, allowing you to

efficiently find memory leaks and bottlenecks to help improve the user experience.

2

CHAPTER 2: iPhone 18

iPhone Development Standard Practices
When building iPhone applications, you will need to be mindful of a few standard design

patterns. First, the Model-View-Controller (MVC) pattern is a way to separate your code

into three functionally independent areas. The model is usually defined by an Objective-

C class that subclasses NSObject. The controller is referred to as a view controller and

can either subclass UIViewController or UITableViewController. The view portion of your

application is usually defined by an Interface Builder file called a nib. This is the

preferred method of creating your views since Interface Builder handles the memory

management of those views for you. The alternative is to define your view

programmatically, which is considered a non-standard practice.

Figure 2–1. MVC Design Pattern

The delegation design patter is another important design pattern to be aware of. The

delegation pattern allows a complex object to hand off some of its functionality to a

helper object. On the outside, it would appear that you are calling the complex object to

handle the task, but in reality it would use a helper object to outsource some of the

complexity. We see this pattern a lot throughout iPhone development. Every time you

find yourself declaring the delegate of an object (which happens a lot in an

asynchronous environment), this pattern is being implemented.

Building a Simple iPhone app
As an introduction to building iPhone applications, you will build a simple “HelloiPhone”

application, designed to introduce you to writing Objective-C code in Xcode and using

Interface Builder to create the user interface of your application.

The goal of this application is to have the user enter his or her name into a text box,

press a button, and have the iPhone greet them by name.

CHAPTER 2: iPhone 19

Create the Xcode Project
Start by opening Xcode and creating a new project (select New Project under the File

menu or [Command+Shift+N] on the keyboard). Then select iPhone OS Application in

the left-hand panel and View-based Application from the templates in the panel on the

right side. Select Choose then name your new project “HelloiPhone” and save.

At this point, Xcode should present you with a project window (Figure 2–2), showing a

list of files that were generated for you.

Figure 2–2. XCode Project Window

Table 2–1. File types

File Extension Description

.m Objective-C implementation files.

.h Objective-C header files.

.plist Property lists file that can contain configuration options or user settings for your

application.

.app The distributable application that you will be building.

.xib Views from Interface Builder are saved as .nib files. A .xib file is the xml version

of a .nib file. These files are still called “nibs” even though they have a different

file extension.

CHAPTER 2: iPhone 20

Create the Interface
In this example, you will start with the interface of the application to set up the overall

layout. The next step will be to create the corresponding code to interact with the views,

and finally hook the code up to the views with Interface Builder.

Double-click on HelloiPhoneViewController.xib to open the view of your application in

Interface Builder. Interface Builder will launch with four open windows (see Figure 2–3).

One of the windows presented will be the view for the application. Initially this is just a

gray box, which represents the application screen to which you can add UI components.

Figure 2–3. Interface Builder showing four main windows

If the Library window is not visible (on the right side of Figure 2–3), then choose Library

from the Tools menu (or press Command-Shift-L) to bring up the Library window. In the

bottom left corner of the window, there is a Settings drop-down menu that lets you decide

how you would like to view the library. It is helpful at first to select the View Icons and
Descriptions setting so that you can see what all the possible view objects do.

CHAPTER 2: iPhone 21

Figure 2–4. Interface Builder Library Window

Add UI Elements
Select Round Rect Button and drag and drop into our view window. (You can scroll to

find it in the Library or type into the Search box at the bottom of the window to filter the

list.) You also are going to need a Label, which will be used to display the text greeting,

and a Text Field in which the user will enter his or her name. Search for those and also

drag them to the view.

With all the UI components for the application placed in the view, you may align them

properly on the screen.

CHAPTER 2: iPhone 22

Figure 2–5. Interface Builder View with UI Elements

Align the Text Greeting
The Label element will display the greeting. In this example, it will display centered at the

top of the screen. Start by taking the label and dragging it up to the top left corner of the

view until it aligns with the blue guidelines provided by Interface Builder. Size the label

horizontally, aligning once again with the provided guidelines.

To center the text, select the label and open the Attributes Inspector (under the Tools

menu or Command+1 on the keyboard), then find the layout section. This section will

look like a text-alignment section in a word processor, with a left-align, center-align, and

right-align images. You will be selecting the center text alignment layout option or as an

alternative you can go to the Layout menu, select “alignment, then choose Center Alignment
from the drop-down.

Because you will be generating this text dynamically, the initial text should be the empty

string. Double-click on the label, delete the text, and hit Enter to save.

Button and Text Field Layout
You will do something very similar with the button and text field layout. Select the text

field and position it under the label on the left side, aligning with the blue guidelines.

Then, drag the right edge horizontally until it lines up with the guidelines on the right

side. Align the round rectangle button in a similar manner.

CHAPTER 2: iPhone 23

Next, add text to the button by double-clicking on it, then change the title to be “Hello

iPhone!”. You should also add text to the text field to give the user an idea of the kind of

information you want them to insert. This user interface convention is supported directly

in Interface Builder, which is referred to as a Placeholder attribute. This will display gray

text in the field to provide in-context help text. Select the textbox and open the Attribute

Inspector (Command-1), if not already open. Find the placeholder attribute and type

“Name”. This will give the text field gray initial text that will indicate to the user that a

name should be placed there. When the user selects the text field, focusing it, the

placeholder text will be cleared.

Now you should have something very similar to Figure 2–6.

Figure 2–6. Interface Builder View with UI Layout and Text

Make sure to save your file in Interface Builder and quit the program for now.

Writing the Controller Code
Now that you have created the application views, you will write the code to interact with

it. Return to Xcode and open HelloiPhoneViewController.h. This file contains the outline

for the view controller.

You will create code actions that correspond to the view. You do this with special

keywords called IBAction and IBOutlet. These keywords establish a relationship

between objects in the view and the code. You need to declare an IBOutlet for each UI

component in your view that you will interact with programmatically. As you can see in

Listing 2–1, you need to declare a UILabel and UITextField IBOutlets when you define

their corresponding variables. IBActions are callback methods defined in your view

CHAPTER 2: iPhone 24

controller; these are called by actions that happen in your view. You can assign these

actions in Interface Builder or programmatically in your view controller.

The @property keyword will auto-generate accessors (that is, getters and setters). These

correspond with an @synthesize statement that you will add in the implementation file.

Declaring the UI components as properties allows you to easily modify and access them

without writing additional code.

Lastly, the header file declares one IBAction sayHelloToUser, which performs the

primary functionality of this simple application and later you will set to trigger when the

user clicks the button.

Edit HelloiPhoneViewController.h to match Listing 2–1.

Listing 2–1. HelloiPhoneViewController.h

#import <UIKit/UIKit.h>
@interface HelloiPhoneViewController : UIViewController {
 IBOutlet UILabel *greetingLabel;
 IBOutlet UITextField *userNameField;
}

@property (nonatomic, retain) UILabel *greetingLabel;
@property (nonatomic, retain) UITextField *userNameField;

 -(IBAction) sayHelloToUser: (id) sender;

@end

Next, you will edit HelloiPhoneViewController.m to implement the functionality.

First, add an @synthesize statement directly underneath the HelloiPhoneViewController

implementation declaration. This will auto-generate accessors for the greetingLabel and

userNameField properties.

Listing 2–2. HelloiPhoneViewController.m property accessors

@implementation HelloiPhoneViewController
@synthesize greetingLabel, userNameField;

Next, you will add the implementation of the method sayHelloToUser. This method will

create a formatted string concatenating “Hello” with the name that the user entered in

the textbox and then displaying that string in the greetingLabel.

Below the @implementation declaration, you need to add the method in Listing 2–3.

Listing 2–3. sayHelloToUser implmentation

- (void) sayHelloToUser:(id)sender {
 greetingLabel.text = [NSString stringWithFormat:@"Hello %@", userNameField.text];;
 [userNameField resignFirstResponder];
}

The sayHelloToUser method gets the user’s name from the text field and creates a

helloMessage string. Because the greetingLabel is an IBOutlet, you can simply assign

the string to the label to display it on the screen. Note that setting the userNameField

CHAPTER 2: iPhone 25

text to null will clear it. Finally, calling resignFirstResponder will release the keyboard

from the text field and hide the soft keyboard.

Lastly, you need to implement a dealloc method to release the memory for the label and

text field elements. Changing the dealloc method of the implementation file to match

listing 2–4.

Listing 2–4. sayHelloToUser implementation

- (void)dealloc {
 [greetingLabel release];
 [userNameField release];
 [super dealloc];
}

Connect the Code to the Views
In the final step of development for this application, you will connect the controller code

to the views. Double-click HelloiPhoneViewController.xib to open in Interface Builder.

Interface Builder will display the IBOutlets and IBActions that you declared in the

controller code, allowing you to connect them to the user interface elements with direct

manipulation.

In the HelloiPhoneViewController.xib window, select the File’s Owner cube and open

the Connections Inspector under the Tools menu (Command-2). Under Outlets, you should

see greetingLabel and userNameField. You need to drag their adjacent dots to the

corresponding view objects to connect the UI elements to the code.

Figure 2–7. Interface Builder Connections Inspector

You should also see Received Actions, which lists the method sayHelloToUser. By

dragging its dot to the Hello iPhone! button, you will set the user action to trigger the

method. When you complete the drag action, a menu will appear over the button. Select

Touch Up Inside. This will send an event when the button is released triggering the

sayHelloToUser method.

CHAPTER 2: iPhone 26

Finally, drag the dot next to New Referencing Outlet and connect it to the text field. A

menu option will appear; select delegate (which is the only option). This will allow the

code to read from the text field.

That’s it. All of your code is connected to your views. Now, you should click Build and
Go (or press Command-R) in XCode to run your application in the simulator.

Skinning an iPhone Web View
This example will show you how to use a Web View to load a standard web page into a

view inside a native iPhone application.

Start by opening Xcode and create a new project (select New Project from the File menu

or [Command+Shift+N] on the keyboard). Then select iPhone OS Application in the left

panel and View-based Application from the templates in the panel on the right side.

Select Choose then name your new project “iWebDemo”, and save. This will present

you with the basic scaffold of an Xcode iPhone Project.

Your next step will be to add the UIWebView to your application through Interface

Builder. Double-click on the file called iWebDemoViewController.xib in Xcode to launch

Interface Builder. Verify the Library window is open (if not, select Library under the Tools

menu [or Command+Shift+L] on the keyboard) and search for “Web View” either by

scrolling the menu or by entering it as a search query in the Library filter text field.

When you find it, drag and drop the Web View onto your View window, allowing

Interface Builder to help you guide it to the center. Currently, Interface Builder should

resemble Figure 2–8.

Save Interface Builder and exit. You will come back later to activate the outlet to this view.

Back in Xcode, it’s time to add the code side implementation that will allow us to

manipulate the Web View. Open iWebkitDemoViewController.h to start adding in the

declarations for your view object; this file will be very basic.

Start by adding IBOutlet UIWebView *webView; between the @interface braces; an

IBOutlet will allow the code to interact with the view. The view will also need accessors

to allow you to manipulate its web address. To auto-generate accessors for the view,

declare @property(nonatomic, retain) UIWebView *webView; anywhere below the

@interface declaration but before the @end declaration. There is another piece to this;

the @synthesize keyword will complete the circuit for auto-generation in the

implementation file. At this point, your code should like Listing 2–5.

CHAPTER 2: iPhone 27

Figure 2–8. Interface Builder UIWebView

Listing 2–5. iWebkitDemoViewController.h

#import <UIKit/UIKit.h>
@interface iWebkitDemoViewController : UIViewController {
 IBOutlet UIWebView *webView;
}
@property (nonatomic, retain) UIWebView *webView;
@end

You just created the code representation of the Web View. This allows you to interact

with the Web View and use getters and setters on it to manipulate it.

Save this file and turn to iWebkitDemoViewController.m. It’s time to add the

implementation that will turn your view into a semi-functional web browser.

The first thing you need to do in this file is finish the circuit that will auto-generate the

accessors for your view. Directly under the @implementation iWebkitViewController add

@synthesize webView; to finalize the auto-generation process, as in Listing 2–6. Now

that we can alter the view, it’s time to write the code to enable the view for web

browsing.

Listing 2–6. iWebkitDemoViewController.m

@implementation iWebkitDemoViewController
@synthesize webView;

Toward the middle of the implementation file, uncomment the function -
(void)viewDidLoad. This function gets called after the view loads successfully, so that

makes it a perfect place to put the code to load a web page.

CHAPTER 2: iPhone 28

First, create a string containing the URL (such as http://www.google.com). Next, you will

take that string and create an NSURL object, and embed that into an NSURLRequest.
Finally, you will call the Web View to load the request object. This is shown in the code

Listing 2–7.

Listing 2–7. iWebkitDemoViewController.m

// Implement viewDidLoad to do additional setup after loading the view, typically�
 from a nib.
- (void)viewDidLoad {
 [super viewDidLoad];
 // Create the URL string of the address
 NSString *urlAddress = @"http://www.google.com";
 // Bind that address to an NSURL object
 NSURL *url = [NSURL URLWithString:urlAddress];

 // Embed the NSURL into the request object
 NSURLRequest *requestObj = [NSURLRequest requestWithURL:url];

 // Tell the Web View to load the request
 [webView loadRequest:requestObj];
}

Next, finish hooking up the view in Interface Builder. (Double-click on

iWebkitDemoViewController.xib in Xcode to launch it in Interface Builder.) You should,

once again, have four windows in front of you. Start by looking for the window that

represents your nib file, entitled iWebkitDemoViewController.xib. In the window, you

should see three objects: File’s Owner, First Responder, and View. Click on the File’s
Owner object and bring up the connection inspector by typing Command+1 on your

keyboard. It should look like Figure 2–9.

Figure 2–9. Interface Builder Connection Inspector

You should see your webView object listed under Outlets. You need to click and drag

the objects circle to your view window. The Web View will illuminate when you hover

over it, and that’s when you will release your mouse button. The Attributes Inspector

should now show your webView object connected to your Web View. That’s it for your

view in Interface Builder; you can save and exit.

It’s time to run the iPhone simulator to check the status of your application. Verify you

can load Google.com into the view; it should look like Figure 2–10.

CHAPTER 2: iPhone 29

Figure 2–10. iPhone Web View Browser – Google.com

Installing the App on the Device
Unlike running the application in the simulator, installing it on the phone requires signing

credentials as is typical for mobile development. Before you can even think about

building your application for the device, you need to go to developer.apple.com/ and

enroll in the iPhone developer program. This will cost you $99 for the Standard program

or $299 for Enterprise. The largest benefit to joining the program is the ability to

distribute applications. With the Standard or Enterprise programs, you may provision an

application for ad-hoc distribution, which is the way you will typically distribute your

application for testing or early demonstration. In the Standard program, you are eligible

to submit your app to the App Store. In the Enterprise program, you may provision your

application for in-house distribution.

Once you have enrolled in the program, you will need to create a development

provisioning profile and create a certificate. This can be as easy as using the

Development Provisioning Assistant on the home page of the portal, or you can create

the certificates and profiles manually.

Using the Development Provisioning Assistant
Use “development provisiong” in order to install an application on your device directly

from Xcode. This will be useful for your own testing, but when you are ready to distribute

to more devices for other people to test, you will need to use “ad-hoc provisioning,”

described shortly. The Apple iPhone Dev Center has an easy-to-use wizard that takes

CHAPTER 2: iPhone 30

you through the many steps required to set up and install the provisiong profile. Choose

Launch Assistant on the home screen of the iPhone Developer Program Portal. The

assitant will ask you a few questions and guide you through the installation process. Its

docuemntation is quite good, so we won’t elaborate here.

Manually Setting Up iPhone Provisioning
There are many steps when creating your provisioning profile manually. The first thing to

understand is the difference on the site between development and distribution. You will

need a development provisioning profile to build applications directly to your device

instead of the simulator. This does not give you the abilty to share that application with

anyone else, for a Distribution provisioning profile is required. You will need certificates

and profiles for each type of provisioning. You will also need to assosiate your profiles

with device Unique Device Identifiers (UDIDs). Because the process is identical for

development and distribution provisioning creation, we will walk you through

development and assume you can explore distribution on your own.

The first step in creating your Provisioning profile is creating your certificates. In the

iPhone Developers program portal, click on Certificates in the left-hand side bar. You

should see an information bubble telling you that you currently do not have any valid

certificates like in figure 2–12. Click on the Request Certificate button to get started.

You will have to create the certificate using Keychain Access on the Mac; the

instructions should be listed on the page.

After you upload the Signing Request, a certificate will be generated. Once it has been

“approved,” you need to download it to your computer. This To do this, click the

Download button next to the certificate. When its finished downloading, click on the file

to launch Keychain Access. This will launch the certificate and install it to the keychain.

The last step on the Certificates page is to get the Apple WWDR certificate. There is a

link to download it directly under the certificate you just created. This is the Apple

Worldwide Developers Relation (WWDR) certificate, you need to download it and add it

to your keychain. All you need to do is click on the WWDR certificate after it has

downloaded, to launch Keychain Access and install it to your keychain.

After you have succefully installed your certificates, you are ready to register devices to

your provisioning profile. Select Devices on the left side of the program portal. Under

the Manage tab, there will be an Add Devices button. Click this to add a new device to

your profile.

CHAPTER 2: iPhone 31

Finding Your Device ID
Your device is identified by a Unique Device IdentifierUDID. To add a device to a profile,

you will need the device id, which can be found in two places: iTunes and Xcode. Verify

that the device is connected to the computer and go to iTunes. Select the device from

the Devices section on the left. This should reveal the summary page with some device

specific information at the top (name, capacity, and so forth). If you click on the serial

number, the device identifier will be revealed (see Figure 2–11). The other way to find

your device identifier is to open Xcode and go to the Organizer window. You can get

there through the top menu bar [Window ➤ Organizer] or by using the keyboard

(Shift+Command+O). Click on your device in the left-hand panel and it should reveal the

summary page with the device ID. There is also a handy free application, AdHoc, that

you can download from the App store that will automatically compose an e-mail with the

UDID of the device.

Figure 2–11. iTunes Device UDID

Regardless of the way you choose to retrieve your device UDID, copy and paste it into

the Device ID text field on the Developer Portals Device registration page, and give your

device a name. This can be a common name, such as “Joe,” or a device description,

such as “Joe’s work phone”.

In the Program Portal, click on App IDs on the left side. App IDs are a unique

combination of charactures used to differentiate applications. Click on the New App ID

button to begin. It will then ask you for a general description or name for your App ID;

this can be as simple as “MyiPhoneID” or “ProjectID.” Try to keep the name specific to

your application because this ID will be used throughout the portal to identify it. Next,

you can choose to generate a new bundle seed ID or use an exisiting one if this

application is part of a suite. Finally, you need to pick a Bundle Identifier for this

application. To have this App ID cover any application that you are currently developing,

simply put an astrisk (*) in this text field. This will allow any application to build,

regardless of its name. To create a more specific App ID, the convention used is

reversed domain-style strings, such as the example given in the portal

“com.domainname.appname.”

CHAPTER 2: iPhone 32

Create the Provisioning Profile
It’s time to create your first provisioning profile. In the Program Portal, click on

Provisioning. This area is where you will manage all of your development and

distribution profiles. To start, click New Profile. Give your profile a name, such as

“iPhoneAppDevPP” or “iPhoneAppDistPP.” Check the certificate you created earlier,

select the App ID you want to register with this profile, and finally select the devices you

want to asociate with it. This will create your provisioning profile; all that’s left is to

download it and install it in Xcode.

Install the Provisioning Profile
Launch Xcode and go to the Organizer window located in the top menu bar at Window ➤

Organizer or launch with the keyboard (Shift+Command+O). Make sure the device is

connected and select it in the devices drop-down, located on the left side. Find the

provisioning profile you downloaded and drag and drop the file into the Provisioning

section of the window. Your organizer window should look like Figure 2–12. It should

also have a green-colored dot (apposed to an amber-colored dot) next to your device

name on the left. The green dot signifies your device is set up correctly.

Figure 2–12. Xcode Organizer Window

Install and Run on the Device
Now that you have provisioning profiles set up on the device, you need to configure

Xcode to use the proper profiles when you build your application. To do this, you need

to modify the Project and Target Information windows.

Start by double-clicking the project file located under Groups & Files in Xcode. This file

will be called HelloiPhone. This will launch the Project “HelloiPhone” Info window. Click

on the Build tab and locate the section called Code Signing. Under Code Signing

Identity, there should be an Any iPhone OS Device option. Clicking on the box to the

CHAPTER 2: iPhone 33

right of this should provide you with a drop-down menu. Select the iPhone Developer

that you created earlier in the iPhone Developers Portal. You need to do the exact same

thing for the Target Info page now. Close the window and this time find the Targets

drop-down under Groups & Files in Xcode. Double-clicking on the application

“HelloiPhone” should reveal the Target “HelloiPhone” Info window. Once again, go to

the Build tab and locate Code Signing. Drop-down Code Signing Identity and select

the correct iPhone developer for the Any iPhone OS Device option. Close the window.

There is one final option you may have configured and that is the name of the

application. If you decided to not use the asterisk (*) in the App ID section and gave your

app a formal name, then you will need to edit the info.plist file. You can locate this file

under resources in the HelloiPhone application drop-down in Groups & Files. Look for

the Bundle identifier and name it exactly as you did in the portal. Save the info.plist file

and you should be good to go.

In the top left-hand corner of Xcode, there is a drop-down that lets you decide whether

you are building for the simulator or device. You want to have the active SDK set to the

latest version of the device and the active configuration set to debug (unless you are

building for distribution). Select Build and Go and the application will be compiled and

installed to the device.

One last note: you can manage the applications that you are building from the Organizer

window in Xcode. You may want to delete the application currently on the device before

rebuilding it.

35

35

 Chapter

Android
The Android operating system is released under the open source Apache License and is

built on Linux kernel version 2.6. Android is a project of the Open Handset Alliance (OHA).

Founded by Google, OHA is an association that includes 65 hardware/software

companies and operators, such as KDDI, NTT DoCoMo, Sprint Nextel, Telefónica, Dell,

HTC, Intel, Motorola, Qualcomm, Texas Instruments, Samsung, LG, T-Mobile, and Nvidia.

The first Android phone, T-Mobile G1 (also marketed as HTC Dream), was released in

October 2008, followed by the release of 12 additional android phones in 2009. There

are now dozens of Android mobile devices, including both phones and tablets. In

addition to the natural fragmentation of screen size, capabilities, and OS version,

developers saw incompatibilities between devices that require specific workarounds for

both native applications and browser-based applications.

The Android mobile operating system has a rich set of features. 2D and 3D graphics are

supported, based on OpenGL ES 2.0 specifications, and there is good media support

for common audio, video, and image formats. Animated transitions and high-resolution,

colorful graphics are integrated in the operating system and commonly seen in

applications. The Android operating system supports multi-touch input (although it is not

supported in every Android device). The web browser is based on the powerful WebKit

engine and includes Chrome’s V8 JavaScript runtime.

Multitasking of applications is supported. In Android, multitasking is managed by

structuring applications as “activities.” Activities have a distinct visual presentation and

should be single-purpose, such as taking a photo, searching and presenting results, or

editing a contact. Activities may be accessed by other applications as well. A simple

application may implement a single activity, but more complex applications may be

implemented as a number of activities cohesively presented as a single application.

Android lacks authoritative human interface guidelines, except for fairly narrow icon,

widget, and menu design guidelines and broad advice about structuring activities.1 This

lack of standards can make it more challenging to design and develop for Android;

1 http://developer.android.com/guide/practices/ui_guidelines/index.html

3

CHAPTER 3: Android 36

however, Android does include a set of common user interface components that are

comparable to those available on the iPhone.

Android Development
To develop for the Android, you can use Windows, Linux, or Mac. Android applications

are typically written in Java, but there is no Java Virtual Machine on the platform;

instead, Java classes are recompiled in to Dalvik bytecode and run on a Dalvik virtual

machine. Dalvik was specially designed for Android to reduce battery consumption and

work well with the limited memory and CPU-power of a mobile phone. (Note that

Android does not support J2ME.) Since the release of the Android NDK (Native

Development Kit) in June 2009, developers may also create native libraries in C and C++

to reuse existing code or gain performance.

The most commonly used and recommended editor is Eclipse with the Android

Development Tools plug-in. The plug-in provides a full-featured development

environment that is integrated with the emulator. It provides debugging capabilities and

lets you easily install multiple versions of the Android platform. As you will see in this

chapter, the plug-in makes it easy to get a simple app up and running. If you don’t want

to use Eclipse, there are command-line tools to create a skeleton app, emulator,

debugger, and bridge to an actual device.

In this chapter, you will learn how to set up your Eclipse development environment,

create a simple “Hello World” application, launch the application in the emulator, and

then build and install the application on an Android device. We also review Android

distribution options are also reviewed at the end of this chapter.

Setting Up The Development Environment With Eclipse
You will need to install/set up the following components for your development

environment to follow the tutorials in this chapter. Note that Android does not require

that you use Eclipse, but it is an easy way to get started with native Android

development.

� The Eclipse IDE. Any of the package downloads for the IDE should

work fine. http://www.eclipse.org/downloads/

� Android Development Tools (ADT) Eclipse plug-in.
http://developer.android.com/sdk/eclipse-
adt.html#installing

� The Android SDK.

Install the Android SDK by following the instructions in the Android

developer site:

http://developer.android.com/sdk/installing.html.

The tutorial in this chapter assumes the tools are available on your

system PATH:

CHAPTER 3: Android 37

� On Mac or Linux (in ~/.profile or ~/.bashrc): export

PATH=${PATH}:<your_sdk_dir ➤ /tools

� On Windows, add the tools path to your environment variables.

� One or more versions of the Android platform (to simulate different

devices). Unless you know that you’ll be using new APIs introduced in

the latest SDK, you should select a target with the lowest platform

version possible. For compatibility with all devices, we recommend

SDK 1.5, API 3.

1. On Mac and Linux, if you have set up your $PATH as described

previously, you can just type on the command line: android (note: if you

use the command-line tool, you will need to restart Eclipse to see the

installed targets).

On Windows, double-click SDK Setup.exe at the root of the SDK directory.

Or in Eclipse, select Window ➤ Android SDK and AVD Manager.

2. Under Settings, select “Force https://…” (Figure 3–1).

Figure 3–1. Force https

3. Then, under Available packages, select the SDK 1.5, API 3 and Google

APIs for Android API 3 (Figure 3–2).

Figure 3–2. Android SDK and AVD Manager: selecting packages to install

4. Create an Android Virtual Device (AVD), as shown in Figure 3–3.

CHAPTER 3: Android 38

Figure 3–3. Android SDK and AVD Manager: creating a virtual device

5. Click New and fill in your desired values for virtual device properties

(Figure 3–4).

Figure 3–4. Virtual device details

CHAPTER 3: Android 39

Building a Simple Android Application
We will build a simple Hello World application and test it in the Android emulator. While

there is a native development kit (NDK) that allows you to build code in C or C++, it is

only for creating high-performance libraries. Android applications are always written in

Java. This short tutorial will introduce you to building an Android application in Java

using the Eclipse IDE.

The goal of this application is to have the user enter his or her name into a text box,

press a button, and have the application greet them by name.

1. Select File ➤ New ➤ Project.

2. Select Android ➤ Android Project, and click Next (Figure 3–5).

Figure 3–5. New Android project

You will need to provide a package name for your app. This can be something like

hello.world or whatever you want it to be.

Make sure the box labeled Create Activity is checked and give your activity a

name such as Hello. An activity is a UI class that allows you to display things on

the screen and get user input. We will modify this class to create a simple UI.

CHAPTER 3: Android 40

If the box labeled Min SDK Version is empty, just click on the lowest SDK version

you want to support in the list labeled Build Target. This will automatically fill in

the correct number for you. This number will be important when you publish your

app because it will enable devices to determine if they are able to run your

application.

3. Click Finish.

Once you have completed the steps to create your application, take a look at the

resulting structure in the Eclipse Package Explorer. It should look like Figure 3–6.

Navigate into the src directory and find your activity class Hello.java. Double-click

on it to open the file in the editor.

Figure 3–6. Eclipse Package Explorer

4. This class contains a method called “onCreate,” which calls the method

“setContentView” passing in “R.layout.main.” This loads the layout that

is defined in res/layout/main.xml (Figure 3–7).

CHAPTER 3: Android 41

Figure 3–7. Hello.java generated source code

5. Double-click on main.xml to open it up in the Layout Editor. (You may

need to click on the Layout tab in the lower left corner of the main.xml
panel to see the Layout Editor, as illustrated in Figure 3–8.) The Layout

Editor is a tool provided by the ADT plug-in for laying out UI widgets in

your application. Notice that the main layout contains only a text widget

that displays the text “Hello World, Hello!”.

Figure 3–8. ADT Layout Editor

6. At this point, you can run your application. Go to the Run menu and

click Run. Select Android Application from the list and click OK. This

will launch the emulator and install your application.

CHAPTER 3: Android 42

NOTE: If your project contains errors such as: “The project cannot be built until build path errors
are resolved.”

Clean the project by choosing: Project ➤ Clean

Then click Run.

7. The emulator takes a while to start up, and it may start up in a locked

state and say “Screen locked, Press Menu to unlock.” Just click the

Menu button and your application will be launched. Your running

application should look like the emulator shown in Figure 3–9.

Figure 3–9. Application running in Emulator

8. Now that we have a simple application up and running, let’s make it do

something a little more interesting. We will add a text box in which the

user enters his or her name, and a button that will prompt the Android

device to say hello to the user. In the Eclipse editor, open up

res/layout/main.xml in the Layout Editor. Remove the “Hello World” text

from the screen by right-clicking on it and selecting Remove from the

menu (and confirm when prompted by a pop-up message box).

9. Then add an input text field. Scroll through the Views menu (shown in

Figure 3–10) to get to the EditText item. Click and drag EditText into

the black layout window. You will now see an editable text item.

CHAPTER 3: Android 43

Figure 3–10. Edit Text added in the Layout Editor

10. The text that appears in the box is the default text. You can use this to

provide guidance to the user about what they should enter in the box. In

this application, we will ask the user to input his or her name into the

box so we will make the default text say “Name.” To do this, click on the

Properties tab (shown in Figure 3–11). To make it appear, you may

need to double-click on the EditText item on the Outline tab.

Figure 3–11. Properties panel

CHAPTER 3: Android 44

Scroll down until you see the Text property. Click on its value to edit it and

change the value to “Name.” We will also change the size of the text box to be

more appropriate for a name. Scroll until you see the width property. Click on the

row to set its value. Give it a value of “300px.”

11. Next, find the Button control and add one to the layout. Edit the

button’s Text property to say “Hello Android!”. When this button is

clicked, we want to grab the contents of the name input box and display

text that says hello to the user. We will need to add an empty text

control to the layout to hold this text. Find the TextView control in the

list and drag it under the button. Then delete the default text in the

TextView.

12. Launch your app and see how the UI Widgets look in the layout. Your

emulator should look like Figure 3–12. You should be able to type in the

text field, but if you click the button at this point nothing will happen.

Figure 3–12. Application running in emulator with UI Widgets.

13. To make the button perform an action, you need to attach an event

listener. Open up your activity class file Hello.java in the src directory.

You can attach an event listener in the onCreate method. First, get a

reference to the button using its ID, as shown in Listing 3–1.

Listing 3–1. Button reference

Button myButton = (Button) findViewById(R.id.Button01);

You can find the ID of your button by looking at its ID property in the properties

list. When you first add this code, Eclipse will complain that it doesn’t recognize

the type Button. Eclipse will automatically add an import statement for you to

import the Button class. Just click on the red x that appears to the left of that line

of code and select Import 'Button' (android.widget) (Figure 3–13).

CHAPTER 3: Android 45

Figure 3–13. Find button reference

Now that you have a reference to the button, you can add an event listener for the

onclick event (see Listing 3–2).

Listing 3–2. onClickListener

 myButton.setOnClickListener(new OnClickListener() {
 @Override
 public void onClick(View v) {
 }
 });

Listing 3–2 shows the code to create an empty event listener. Any code you add inside

the onClick method will be executed when the button is clicked. Get references to the

EditText and TextView controls using the same method used to get the button object

(shown in Listing 3–3).

Listing 3–3. References to EditText and TextView from the Layout

EditText et = (EditText) findViewById(R.id.EditText01); TextView tv = (TextView)
findViewById(R.id.TextView01);

Then set the text in the TextView using the name that was entered into the EditText (with

code shown in Listing 3–4).

Listing 3–4. References to EditText and TextView from the Layout

 tv.setText("Hello " + et.getText());

The onCreate method should now look like Figure 3–14.

CHAPTER 3: Android 46

Figure 3–14. Hello.java

Now run your application and type your name into the box and click “Hello Android!”.

The device will display a customized hello message, including the name you typed.

Simple Application Using Android WebView
This section shows how to embed a WebView, which could allow you to add HTML UI to

your native Android application. Create a project, as you did in the previous tutorial

(Figure 3–15).

CHAPTER 3: Android 47

Figure 3–15. Create Project.

In this example, we don’t use a layout (although you could). Instead, we simply create a

new WebView and then set the ContentView to that instance of the WebView. Then we

dynamically create some html and load it into the WebView (Figure 3–16). This is a very

simply example of a powerful concept (Figure 3–17).

CHAPTER 3: Android 48

Figure 3–16. Code for adding a WebView to SampleWebView.java

Figure 3–17. Application with WebView running in the Android simulator

For more details on different ways to use WebView in Android, see

http://developer.android.com/reference/android/webkit/WebView.html.

Building for an Android Device
It is important to test your application on a range of target devices to understand its

usability and responsiveness. For example, a G1 is significantly slower than a Nexus

One. For some applications, that may make no difference, but for most it will be

noticeable. Also, some device features (such as the accelerometer) cannot be tested in

CHAPTER 3: Android 49

the emulator. Building for an Android Device is easier than other mobile platforms. You

do not need to sign up for a developer program or sign your executable just to run it on

a device. This section walks you through installing your application on an Android device

with USB.

1. Set your application as “debuggable.” In the manifest.xml, under the

Application tab, set Debuggable to “true,” as shown in Figure 3–18.

Figure 3–18. Set application to debuggable in manifest.

2. Set your device so it allows USB Debugging. In settings, select

Application ➤ Development, and make sure USB Debugging is checked.

3. Set your system to detect your device. On Mac, this just works. On

Windows, you need to install a driver.2 On Linux, you need to set up USB

rules.3 You can verify that your device is connected by executing adb
devices from your SDK tools/ directory. If connected, you’ll see the

device name listed as a “device.”

4. Then using Eclipse, run or debug as usual. You will be presented with a

Device Chooser dialog that lists the available emulator(s) and

connected device(s). Select the device upon which you want to install

and run the application.

2 Download driver: http://developer.android.com/sdk/win-usb.html.�

3 See detailed Linux instructions: http://developer.android.com/guide/developing/device.html.�

CHAPTER 3: Android 50

Distribution on the Web
In order to publish your application, you will need to digitally sign it with a private key.

This is a key that you can generate using standard tools, and that you, the developer,

hold on to. Self-signed certificates are valid. You can easily generate your private key

using Keytool and Jarsigner, both of which are standard Java tools. You can also use an

existing key if you already have one.

The Eclipse ADT plug-in makes signing your application very easy, as it provides a

wizard that will walk you through creating a private key if you don’t already have one,

and using it to sign your application. There is a wizard to sign and compile your

application for release. For more information on signing your application, see the

documentation in the Android developer site.4

Once you have a signed .apk file, you can place it on a web site and if you browse to it from

the web browser on an Android device, you will be prompted to install the application.

Android Market
The Android Market is the official Google directory for applications (Figure 3–19). With

web distribution described previously, this marketplace is just one option for distributing

your application. Some Android devices come preinstalled with an application called

“Market,” which allows people to access the Android Market. You may also access

applications from the Android Market web site.

For developers who would like to submit their applications to the Market, there is a

simple sign-up process with a $25 fee that must be paid with Google checkout.

Figure 3–19. The Android Market

4 Signing your app: http://developer.android.com/guide/publishing/app-signing.html.�

51

51

 Chapter

BlackBerry
This chapter will discuss how to build native applications for BlackBerry smartphones.

The BlackBerry is a product of Research in Motion (RIM), a public company based in

Waterloo, Ontario. Founded in 1984, RIM released its first BlackBerry smartphone in

2002. Optimized for push email and with an easy-to-use QWERTY keyboard, the

BlackBerry became the “gold standard” in smartphones for business professionals and

executives in the US and Europe. The BlackBerry has the second largest market share

of smartphones in the US. The platform has recently lost some buzz over the success of

the iPhone and Android offerings. RIM has been criticized recently for being slow to

introduce color screens and touch interfaces to its devices although this has been

addressed with the release of its most current devices. The BlackBerry has a very large

relative market share in the enterprise, particularly in the US, and must be taken into

account when developing any enterprise application.

The web browser on the BlackBerry is proprietary and quite limited. RIM is expected to

address this in the next OS release when it includes a WebKit-based browser.

BlackBerry Platform
The BlackBerry platform supports different ways of developing applications:

� BlackBerry Web Development: This is the newest offering from RIM

using the Widget SDK. BlackBerry Widgets are small, discrete,

standalone web applications that use HTML, CSS, and JavaScript.

� Java Application Development: This is the classic way in which

BlackBerry apps are developed in Java using MIDP 2.0, CLDC 1.1 and

RIM’s proprietary APIs. We will cover this method shortly and it is

assumed you have some experience programming in Java. Extensive

documentation, training videos, and downloads are available at the

BlackBerry Developers Web Site: http://na.blackberry.com

/eng/developers/. The tools to develop for BlackBerry are free.

Although the BlackBerry tools are based on Java, only the Windows

32-bit operating system is really supported for development. The

4

CHAPTER 4: BlackBerry 52

learning curve to develop native BlackBerry applications in Java is

relatively steep compared to other mobile platforms.

This chapter focuses on Java Application Development. See Chapter 14 for more detail

on developing BlackBerry UI in HTML for use inside native applications with a Browser

control or as web applications or Widgets.

The BlackBerry runs a proprietary multitasking operating system. 5.0 is the most current

version, although you should be prepared to encounter much older versions since

BlackBerry owners sometimes do not upgrade for a while, especially if the devices are

being provided from their enterprise.

Central to understanding the BlackBerry platform is the BlackBerry Enterprise Server

(BES). BES provides advanced functionality for IT administrators. A BES allows

administrators to deploy and update applications, set policies for devices, and most

importantly, synchronize email, calendar entries, contacts, and tasks wirelessly using

push technology. BES is one of the reasons the BlackBerry is so dominant in the

enterprise market.

Set Up for Classic Java Development
The system requirements are:

� Computer monitor with resolution 1024×768 or higher

� Intel Pentium 4 Processor (minimum 3 GHz)

� 1.5GB Hard drive

� 1GB RAM

� Microsoft Windows Vista, or Windows XP

In our experience, a fast Windows machine is recommended. It is possible to develop on

a Mac by running these tools inside a Windows virtual machine, but for best

performance you should run Windows natively.

You need to download and install the following tools if you do not have them already:

� Sun JDK (Java Development Kit) from http://java.sun.com/javase/
downloads/index.jsp. The current version is JDK 6 Update 20, which

includes the JRE (Java Runtime Environment).

� Eclipse IDE for Java Developers from www.eclipse.org/downloads/.

Eclipse is a very popular, open source, multilanguage software

development environment comprising an integrated development

environment (IDE) and an extensible plug-in system. It is assumed that

you are familiar with how to use Eclipse. If not, you can find

documentation on the eclipse.org website. In this chapter, we will use

Eclipse 3.4.1.

CHAPTER 4: BlackBerry 53

� BlackBerry Plug-in for Eclipse and BlackBerry JDEs from

http://na.blackberry.com/eng/developers/resources/devtools.jsp.

You will need the plug-in and at least one JDE. You should download

the JDE for whichever version of the BlackBerry operating system you

are targeting. Download all the available JDEs for the versions of

BlackBerry operating systems that you need to support from 4.2 to

5.0. In this chapter, we will use BlackBerry JDE Component Package

4.70.

After you have downloaded and installed these tools, proceed to the next section.

Building a Simple BlackBerry Application
We will build a simple “Hello World” application and test it in the BlackBerry simulator.

Create the Eclipse Project
To create a new BlackBerry project from within Eclipse, choose New and then Project
from the File menu. A dialog box will appear (as seen in Figure 4–1) that prompts you to

pick what type of project you want to create. The BlackBerry project types are provided

by the BlackBerry plug-in referenced in the previous section.

Figure 4–1. “New Project” dialog in Eclipse

CHAPTER 4: BlackBerry 54

Select BlackBerry Project and click the Next button. You will be prompted to enter the

name of your project (as seen in Figure 4–2). Enter a name, such as “Hello World,” and

click Finish. “Hello World” will then be listed in the Projects pane, as shown in Figure 4–3.

Figure 4–2. BlackBerry Project creation dialog in Eclipse

Figure 4–3. BlackBerry Project in Eclipse

CHAPTER 4: BlackBerry 55

From the BlackBerry menu, choose Configure BlackBerry Workspace. As seen in Figure 4–4,

enter 1.0 for the Project Version and XPlatform for the Project Vendor.

Figure 4–4. Configuring the BlackBerry Workspace for Eclipse

Next, click on Installed Components in the left panel. Choose the BlackBerry JDE that

you want to build for. In this example, we choose 4.7.0. Click OK to close the

BlackBerry Workspace Preferences

Create the Interface
When developing for BlackBerry, you will create the user interface programmatically by

creating containers and UI elements as objects and then arranging and connecting them

in a hierarchy. First, you need to create a Java class for your simple application.

1. From the File menu, click New and then Package.

2. Enter the name of the package as “com.xplatform.helloworld”.

3. Click Finish.

4. From the File menu, click New and then Class.

5. Enter “HelloWorld” as the name of the new class. Leave all other fields

with their default values (as shown in Figure 4–5) and click the Finish

button.

CHAPTER 4: BlackBerry 56

Figure 4–5. Creating a Java class in Eclipse

Replace the contents of the generated HelloWorld.java with the source code of the

completed Hello World application that follows.

package com.xplatform.helloworld;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;

public class HelloWorld extends UiApplication {

 public static void main(String []args)
 {
 HelloWorld theApp = new HelloWorld();
 theApp.enterEventDispatcher();
 }

 public HelloWorld ()
 {
 pushScreen (new HelloWorldScreen());
 }
}

class HelloWorldScreen extends MainScreen
{

CHAPTER 4: BlackBerry 57

 public HelloWorldScreen()
 {
 super();
 LabelField title = new LabelField("XPlatform Dev");
 setTitle(title);
 add(new RichTextField("Hello World!"));
 }

 public boolean onClose()
 {
 System.exit(0);
 return true;
 }
}

Code Explained
The following is a breakdown of the code sample just provided.

� Name the package. We do this on line number one with the package

statement. This has to be the first line in the file.

� Import the packages we will be using from the BlackBerry SDK

using import statements. Note, we can use the asterisk (*) at the end to

import all the packages below a certain level in the hierarchy.

� Define our application class, called HelloWorld, by extending the

UIApplication base class. UIApplication is the base class for all device

applications that provide a user interface. Class HelloWorld must have

one method main, which is the entry point into our application.

� Within main, create an instance of HelloWorld. Inside the constructor

for HelloWorld, we instantiate a HelloWorldScreen custom screen

object and call pushScreen() to display our custom screen for the

application. We will define HelloWorldScreen below.

� Call enterEventDispatcher(). Our thread now becomes the event-

dispatching thread that will execute all drawing and event-handling code.

Note that under normal circumstances this method does not return.

� Define a custom screen for the application called HelloWorldScreen by

extending MainScreen. MainScreen provides a full screen with

features common to standard RIM device applications. Main screen

objects contain a title section, a separator element, and a main

scrollable section.

� In the HelloWorldScreen constructor, call super() to invoke our

superclass constructor the MainScreen constructor. Then we create a

LabelField and set it as the title of the MainScreen. And finally, we

create a RichTextField and add it to main scrollable section of the

screen. LabelField and RichTextField are UI elements provided by the

BlackBerry SDK.

CHAPTER 4: BlackBerry 58

Build and Test the Application
Build and Run As then BlackBerry Simulator. This will compile your application, load it

into the simulator, and launch the simulator. Once the simulator finishes starting,

navigate it to its Downloads folder. Figure 4–6 shows the icon you will see for the

HelloWorld application. Click it to launch.

Figure 4–6. Finished Application Running in Simulator

Simple User Interface Application Using a Label, Text Field,
and Button
The goal of this application is to have the user enter his or her name into a text box,

press a button, and have the BlackBerry greet them by name (Figure 4–7). You can

compare this application and the process to the iPhone version from Chapter 2.

CHAPTER 4: BlackBerry 59

Figure 4–7. Hello BlackBerry Application Running in the Simulator

First, set up a new BlackBerry Project. We explained how to setup and configure a new

BlackBerry project in the previous example. Next, we will create a new project called

User Interface and a new class that extends UiApplication called UserInterface.

Replace the contents of the generated UserInterface with the source code of the

completed User Interface application that follows.

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;

public class UserInterface extends UiApplication {

 public static void main(String []args)
 {
 UserInterface theApp = new UserInterface();
 theApp.enterEventDispatcher();
 }

 public UserInterface ()
 {
 pushScreen (new UserInterfaceScreen());
 }
}

class UserInterfaceScreen extends MainScreen implements FieldChangeListener
{
 LabelField greetingLabel;
 BasicEditField userNameField;
 ButtonField helloBtn;

CHAPTER 4: BlackBerry 60

 public UserInterfaceScreen()
 {
 super();
 LabelField title = new LabelField("XPlatform Dev");
 setTitle(title);

 greetingLabel = new LabelField("");
 add(greetingLabel);

 userNameField = new BasicEditField("Name: ", "");
 add(userNameField);

 helloBtn = new ButtonField("Hello BlackBerry!",�
 ButtonField.CONSUME_CLICK);
 helloBtn.setChangeListener(this);

 add(helloBtn);
 }

 public void fieldChanged(Field field, int context) {
 greetingLabel.setText("Hello " + userNameField.getText());
 }

 public boolean onClose()
 {
 System.exit(0);
 return true;
 }
}

Code Explained
This code is similar to our previous example with the following differences:

� In our UserInterfaceScreen class, we declare that we implement

FieldChangeListener interface. The method from this interface that we

will define is “public void fieldChanged(Field field, int context)”,

described in the following section.

� We declare instance variables for our greetingLabel and our

userNameField as LabelField and BasicEditField, respectively.

BasicEditField allows us to set a label and initial value for the text field.

� We add these elements to the screen in our constructor.

� We also create a ButtonField with the label “Hello BlackBerry!”. We

call setChangeListener(this) on this button to tell it to refer to the

UserInterfaceScreen object (this) when the button is clicked. The

fieldChanged method will be called. This is why we implemented

FieldChangeListener.

� In fieldChanged, we set the value of the greetingLabel to “Hello” plus

the current value of the userNameField.

CHAPTER 4: BlackBerry 61

Simple Application Using BlackBerry Browser Field
You can also display HTML content in your application using the BlackBerry Browser

Field. In this example we use BlackBerry OS 5.0 JDE, which supports the later Browser

Field version 2. Read about the differences between Browser Field version 1 and version

2 in chapter 14. The code is very similar to the previous example. Instead of creating an

instance of RichTextField, we create an instance of the BrowserField class.

import net.rim.device.api.browser.field2.*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.container.*;

public class HelloBrowser extends UiApplication {
 public static void main(String[] args)
 {
 HelloBrowser app = new HelloBrowser();
 app.enterEventDispatcher();
 }

 public HelloBrowser()
 {
 pushScreen(new HelloBrowserScreen());
 }
}
class HelloBrowserScreen extends MainScreen
{
 public HelloBrowserScreen()
 {
 BrowserField myBrowserField = new BrowserField();
 add(myBrowserField);
 myBrowserField.displayContent("<html><body><h1>Hello�
 World!</h1></body></html>", "http://localhost");
 }
}

Figure 4–8 shows the Hello Browser App Running in the Simulator.

You change this application to display HTML content from a web page by switching:

myBrowserField.displayContent("<html><body><h1>Hello�
 World!</h1></body></html>", "http://localhost");

to

myBrowserField.requestContent("http://www.blackberry.com");

CHAPTER 4: BlackBerry 62

Figure 4–8. Hello Browser App Running in the Simulator

Building for a BlackBerry Device

The BlackBerry simulator is quite good. There are versions for every BlackBerry model

and it is effective for viewing your application with different screen dimensions and

resolutions. However, there are always differences when you test on an actual device.

For example, a UI element may seem usable when you are controlling it with mouse and

key board shortcuts in the simulator, but on the physical device, you may find that a

button is really too small to hit when you are using the Storm’s touch screen. You should

have a range of devices for testing and try it as early in the development process as

possible.

Signing of applications is not required to run applications using the BlackBerry

Smartphone simulator, but you must sign an application before you can install it on a

BlackBerry smartphone device. Cryptographic keys can only be acquired from RIM.

You will need to fill out a web form [www.blackberry.com/SignedKeys/] to register for

access to the BlackBerry runtime, application and cryptography APIs. Once registered,

you will be sent a set of keys and installation instructions via e-mail that can be used to

allow you to sign your applications using the BlackBerry Signature Tool. An

administration fee of $20.00 will be charged to a valid credit card to complete the

registration process. Allow a few days for RIM to process your application and send you

your keys.

CHAPTER 4: BlackBerry 63

Code signing registration is solely for the purpose of monitoring usage of these

particular APIs in third party application development and does not, in any way, indicate

RIM’s approval or endorsement of your application or your use of the APIs.

Over the Air (OTA) Distribution

You can distribute applications “over the air” by posting the files on the Web. BlackBerry

Java OTA files consist of one .jad file and one or more .cod files.

Provide a link to the “.jad” file and when someone clicks that link in the Web browser on

a BlackBerry device, the application will automatically download. If an application is too

large to fit within the 128KB limit (64KB of application data and 64KB of resource data),

it cannot be delivered as one large file, but must instead be broken up into a set of

smaller files (as illustrated in Figure 4–9). This can be done automatically using the

BlackBerry Java development tools.

Figure 4–9. BlackBerry cod and jad files that compose the application for OTA distribution

BlackBerry App World

Research in Motion offers a marketplace for applications called “BlackBerry App World.”

To make your application available in BlackBerry App World, you must apply for a

“Vendor Portal” (Figure 4–10) − this is in addition to, and separate from, registration for

signing certificates.

CHAPTER 4: BlackBerry 64

Figure 4–10. Vendor portal

Research in Motion offers a marketplace for applications called “BlackBerry App World.”

After you create a vendor account, you will be contacted via email to provide official

documentation verifying your identity (Figure 4–11). As a company, you must provide

articles of incorporation or a business license. As an individual, you must fill out a form

and have it notarized.

Figure 4–11. BlackBerry App World request for documentation

65

65

 Chapter

Windows Mobile
The Windows Mobile operating system provides a more desktop-like user experience

than other smartphones, adhering to the concepts of hierarchical organization with

nested folders and menus. Approximately 15% of smartphones currently subscribe to a

mobile plan run on the Windows Mobile platform, and Windows Mobile remains the third

most popular platform for business users, commanding approximately 1/4 of the

enterprise market. However, Windows Mobile market share has experienced a sharp

decline over the past few years (30% between 2008 and 2009, 4% in the third quarter of

2009 alone) and it continues to drop. 1

Additionally, usage patterns for devices on the Windows Mobile platform are vastly

different from those found on more consumer-driven devices. A recent dataset released

by AdMob, a mobile-centric advertising network, indicates that relative to market share,

Windows Mobile users make approximately 1 request to every 15 requests made from

the iPhone. Android users have usage patterns similar to BlackBerry devices. The

diminished prevalence of web-based browsing on Windows Mobile devices undoubtedly

has roots in user requirements and preferences, but is most likely impacted by ease-of-

use and other usability issues.2

Although the Windows Marketplace for Mobile has only around 1000 applications, there

are 18,000 applications available for the Windows Mobile platform distributed

elsewhere, according to Microsoft.3 In addition to distribution via an official channel,

applications can also be distributed through several ad-hoc channels, including SMS, e-

mail and physical media, as well as via direct web download.

1 http://www.zdnet.co.uk/news/networking/2009/11/13/windows-mobile-loses-nearly-a-
third-of-market-share-39877964/

2 http://metrics.admob.com/wp-content/uploads/2010/03/AdMob-Mobile-Metrics-Feb-
10.pdf

3 http://www.informationweek.com/blog/main/archives/2008/07/windows_mobile_7.html;
jsessionid=W2KHQFB3KLA2TQE1GHPSKH4ATMY32JVN

5

CHAPTER 5: Windows Mobile 66

The forthcoming Windows Mobile platform has a new name: Windows Phone 7 and aims

to provide a user experience better suited to mobile use patterns. Note that Windows

Phone 7 will not be available as an upgrade for devices currently running Windows Mobile

6.5 and earlier operating systems. While the release of Windows Phone 7 may provide a

boost to sales of Windows Mobile devices, the lack of continued support and

development for legacy devices may provide the impetus for existing enterprise users to

migrate to a different platform. Additionally, with the release of Windows Phone 7, ad-hoc

distribution channels will no longer be available: devices running the Windows Phone 7

operating system will only run applications that have first been approved by Microsoft, and

these applications will only be available via the Windows Phone Marketplace.

In addition to developing C++ and C#-based applications with the .NET Compact

Framework, Windows Phone 7 will provide support for application development and

game development using Silverlight and XNA, respectively. Microsoft Visual Studio 2010

and Expression Blend 4 for Windows Phone will be the primary tools used for Windows

Phone 7 development. Unfortunately, Visual Studio 2010 does not support mobile

application development for versions of Windows Phone prior to Windows Phone OS

7.0, so in order to develop for both devices, you will need to purchase licenses for both

Visual Studio 2008 and 2010.

The focus of this chapter is Windows Mobile 6.5 Development, since that is the

operating system prevalent on devices today.

Setting Up for Windows Mobile 6.5 Development
You should expect to spend a few hours downloading and installing what you need to

build applications for Windows Mobile devices. The following tools are required to build

the native application in this chapter, as well as to use the cross-platform frameworks

covered later in this book.

� Microsoft Visual Studio 2008 Professional4

� Windows Mobile SDK.

� Windows Mobile 6 Professional and Standard Software Development

Kits Refresh

� Windows Mobile 6.5 Developer Tool Kit

� ActiveSync

4 Visual Studio Express editions are not supported for mobile development, but you can

download a free trial of Microsoft Visual Studio 2008 Professional from the MSDN web site.�

CHAPTER 5: Windows Mobile 67

Building a Simple Windows Mobile App
This section demonstrates how to build a simple Windows Mobile 6.5 application using

MS Visual Studio 2008’s drag-and-drop interface for assembling the UI and

implementing functionality in C#, as well as building and deploying your application in

the emulator and on a Windows Mobile device.

Creating a Smart Device Project
From the Visual Studio 2008 File menu, select New ➤ Project.

In the New Project window, find the Project Types pane on the left, expand Visual C#

and select Smart Device (Figure 5–1). Select the Smart Device Project template from

the Templates pane on the right, and click OK.

Figure 5–1. Selecting the Smart Device Project template

To create your application, in the Add New Smart Device Project wizard, select

Windows Mobile Professional 6 SDK as the target platform (Figure 5–2). Select the

Device Application template, and click OK to create the project.

CHAPTER 5: Windows Mobile 68

Figure 5–2. The Add New Smart Device Project wizard

Setting Up Base Functionality
Visual Studio allows you to build your application forms by selecting UI components in

the Toolbox pane on the left and dragging them onto the form in the Design view. To

make your application easier to work with, you should change the names of your UI

components from the standard label1, label2...label37 to something more recognizable.

CHAPTER 5: Windows Mobile 69

Add a Button to the View
From the Toolbox pane on the left, select a button and drag it onto the form (Figure 5–3).

Figure 5–3. Selecting a button from the toolbox pane

CHAPTER 5: Windows Mobile 70

Customize the Button
Click the button on your form once, and in the Properties pane under Appearance,

change the label in the text field to “Submit,” as shown in Figure 5–4. Then, under

Design, set the name of the button to “submitButton,” as shown in Figure 5–5.

Figure 5–4. Changing the label in the text field to “Submit”

CHAPTER 5: Windows Mobile 71

Figure 5–5. Setting the name of the button to “submitButton”

Create a Click Event Handler
Back in the design view, double-click the button you just created. This opens Form1.cs

and generates an empty handler in the Form1.cs file (Figure 5–6).

Figure 5–6. The Form1.cs file

CHAPTER 5: Windows Mobile 72

In the handler, type the following line of code:

submitButton.Text = "Clicked";

Deploying and Test your Application
In order to start debugging your application in the emulator, press the F5 key. Select the

Windows Mobile 6.5 Professional Emulator from the list of available emulators and

devices, and click Deploy (Figure 5–7).

Figure 5–7. Deploying SmartDeviceProject1

It might take a few minutes for your application to load after the emulator launches−be

patient.

When you click the button in your application, the button text should change from

“Submit” to “Clicked” See Figure 5–8.

CHAPTER 5: Windows Mobile 73

Figure 5–8. The button text has changed to “Clicked”

Fleshing Out the Application
Return to Visual Studio and select the Form1.cs Design view, where you will flesh out

the rest of your application.

From the Toolbox pane on the left, select a label and drag it to the top of the form. Click

the label a single time and in the Properties pane under Appearance, change the Text to

“Name”, and under Design, change the Name to “fieldLabel”. Double-click the button to

generate the handler.

Drag a TextBox from the toolbox and place it underneath the fieldLabel on the form.

Click the label once and in the Properties pane under Appearance, leave the Text field

empty. Under Design, change the Name to “textField” and double-click the button to

generate the handler.

Position the submitButton below the textField.

Drag a Label from the toolbox to the bottom of the form. Click the label once and in the

Properties pane under Appearance, remove all text from the Text field. Under Design,

change the Name to “message” and double-click the button to generate the handler.

Your form should resemble Figure 5–9. Keep in mind that you will not be able to see the

label field that will contain the result unless it is selected−simply press Ctrl+A to select

all UI components in the design view if you wish to locate the hidden label field.

CHAPTER 5: Windows Mobile 74

Figure 5–9. The new form

Update the submitButton handler to display a custom message when the button is

clicked. Add:

message.Text = "Hi there, "+textField.Text+"!";

to the submitButton_Click handler. Your handler should look like the following:

 private void submitButton1_Click(object sender, EventArgs e)
 {
 button1.Text = "Click!";
 message.Text = "Hi there, "+textField.Text+"!";
 }

Press the F5 key to deploy the application. Select Windows Mobile 6.5 Professional
Emulator and click OK.

To test the application, enter your name into the text field then click the Submit button.

“Hi there, [[your name]]!” will be displayed in the message box, as seen in Figure 5–10.

CHAPTER 5: Windows Mobile 75

Figure 5–10. The message box now contains the typed in name

Embed a Web View in your Application
To embed a web view in your application, you can use the WebBrowser control.

Create an HTML page
First, you need to create a static HTML page that can be loaded from the browser. In the

solution browser, right-click on your project’s name, then click Add ➤ New Item. Select

HTML Page, and name your file test.htm If you’re not feeling creative, a simple text file

containing the text “Hello World” will suffice.

To ensure that your HTML file is copied to the device, select the file name in the solution

browser. In the Properties section, ensure that the Copy to Output Directory field is set

to Copy Always.

Add a WebBrowser Control
Return to the Design view and from the toolbox drag a WebBrowser control onto your

layout. Double-click the control to create the handler then return to the design view.

CHAPTER 5: Windows Mobile 76

Load HTML in WebBrowser control
With the WebBrowser element selected, open the properties tab. Under Behavior, set

the value of the absolute path to the HTML file using the format below:

file:///Program Files/MyProjectName/test.htm

Note that you can also set this value to access sites hosted on external web servers by

entering the full URL with the http:// prefix. However, before you can access external

sites from the emulator, you must ensure that you have cradled the emulated device. To

connect to an emulator, select Device Emulator Manager from the Tools menu, select the

emulator name from the list, and click Actions ➤ Connect. A green arrow will be displayed

beside the emulator when it is running. To cradle the emulator, select its name once

again, select Actions ➤ Cradle, and go through the motions with the ActionSync dialogues

that are displayed.

You can redirect to a new page after your initial page loads by updating the webBrowser

handler as follows:

 private void webBrowser1_DocumentCompleted(object sender,�
 WebBrowserDocumentCompletedEventArgs e)
 {
 //string myUrl = "http://www.yahoo.com";
 //Uri myUri = new Uri(myUrl);
 //webBrowser1.Navigate(myUri);
 string myUrl = "file:///Program Files/SmartDeviceProject1/test.htm";
 Uri myUri = new Uri(myUrl);
 webBrowser1.Navigate(myUri);

 }

You can find code samples for building a full-featured browser at
http://msdn.microsoft.com/en-us/library/3s8ys666.aspx

Packaging and Distributing Your App
Windows Mobile applications can be distributed on the Web or through the Windows

Marketplace for Mobile. To compress and package application files for distribution,

Windows Mobile uses Cabinet files, designated with the .cab extension. To distribute

your application, you need to build your application as a signed CAB file. The following

section provides an overview of the process required to release the ”hello world”

application built in the previous section. Additional advanced configuration options may

be necessary for more complex applications outside the scope of this chapter.5

5 Refer to http://msdn.microsoft.com/en-us/library/zcebx8f8.aspx for additional
information on advanced cabfile properties.�

CHAPTER 5: Windows Mobile 77

Adding a CAB Project to the Solution
To create a CAB file, you first need to include a new CAB project to your application

solution. From the File menu, point to Add, and then click New Project. The Add New

Project dialog box will be displayed, as shown in Figure 5–11.

In the Project Types pane, expand Other Project Types, and select Setup and

Deployment. From the Templates pane on the right, select the Smart Device CAB
Project template.

Figure 5–11. The Add New Project dialog box

In the Name field, type “CABProject”. Click OK to add the CAB project to the solution.

The CAB project will be displayed in the Solution Explorer.

Customizing Your Product Name
Open the Properties window by selecting select View ➤ Properties Window.

The value in the ProductName field defines the display name for the application in the

application’s folder names and the Add or Remove Programs screen. In the property

grid, change the value of the ProductName field to “Hello World”.

Customizing the CAB File name

In the Solution Explorer, right-click CABProject and select Properties.

In the CABProject Property Pages dialog, change the file name and path in the Output

file name field to Debug\HelloWorld.cab. Click OK to update the file name.

CHAPTER 5: Windows Mobile 78

Adding the Application to the CAB Project
In the File System Editor, you will find the File System on the Target Machine pane on

the left. Note: if you cannot see the File System Editor, right-click the CAB project name

in Solution Explorer, click View, and then click File System.

Your application should be installed into the Application Folder. Select Application
Folder to specify that the files you select in the following steps will be installed in the

appropriate location on the target device.

From the Action menu, select Add ➤ Project Output. In the Add Project Output Group

dialog box, select Hello World from the Project drop-down list. From the list of outputs,

select Primary output, ensure the Configuration is set to Active, and click OK.

Creating an Application Shortcut
To create a shortcut to allow users to easily access the application, from the right pane

of the File System Editor, select Primary output from Hello World(active). Select Action ➤

Create Shortcut to Primary output from Hello World. Rename the shortcut to ”Hello World” or

another name of your choosing by right-clicking the Shortcut item ➤ Rename to.

Next, define where the shortcut should be accessed from on the target device. In the

File System Editor’s left pane, right-click File System on Target Machine then select

either Add Special Folder ➤ Start Menu Folder or Add Special Folder ➤ Programs Folder.

Finally, drag the shortcut from the Application Folder into the Start Menu or Programs

Folder in the left pane of the File System Editor.

Adding a Registry Entry
In the Solution Explorer, select the CAB project and open the Registry Editor by

selecting View ➤ Editor ➤ Registry.

In the left pane of the Registry Editor, right-click HKEY_CURRENT_USER. Click New
Key, and rename the New Key entry from “New Key #1” to “SOFTWARE”.

Right-click SOFTWARE, and select New ➤ Key. Rename the New Key entry from “New

Key #1” to “MyCompany”.

Right-click MyCompany, and select Properties Window to verify the Name value has

been changed to MyCompany.

Building and Deploying the CAB File
On the File menu, click Save All.

In Solution Explorer, right-click the Smart Device Cab project, and then click

Properties on the shortcut menu.

CHAPTER 5: Windows Mobile 79

On the Build page, select Authenticode Signature, and the Click Select from Store

button.

In the Select Certificate dialog box, select the certificate you want to use and click OK.

If you don’t have any visible certificates, click Manage Certificates to open the Manage

Certificates dialog box. If you have a certificate on your system you wish to use, you can

import it using the Import wizard. However, if you haven’t created a certificate on this

system before, you can do so from the command line. From the C:\Program Files\

Microsoft Visual Studio 9.0\SDK\v3.5\bin directory (or your local equivalent) issue the

following command:

makecert -r -pe -n "CN=Your Name" -b 01/01/2000 -e 01/01/2099 -eku 1.3.6.1.5.5.7.3.3�
 -ss My

Exit the Manage Certificates window and select the new certificate when it appears in

the Select Certificate window, then click OK. The certificate will be displayed in the

Certificate box of the Build page.

On the Build page, click OK.

On the Build menu, click Build CABProject.

-or-

Right-click CABProject in Solution Explorer, and click Build.

Installing the CAB File
In Windows Explorer, navigate to the folder where you stored this solution. You will find

the CAB file in the CABProject\Debug folder of your solution.

To deploy your CAB file on a device, cradle your device normally using ActiveSync.

To connect to an emulator using ActiveSync, from Visual Studio menu bar, select Tools ➤

Device Emulator Manager. Expand Datastore ➤ Windows Mobile 6 Professional SDK and in the list

of devices, double-click USA Windows Mobile 6.5 Professional VGA Emulator. When

you see a green arrow, select Actions ➤ Cradle to launch ActiveSync, and complete the

setup wizard.

In the ActiveSync window, click Explore, then copy the CAB file to a suitable location in

the filesystem.

On the device, navigate to the CAB file in File Explorer and tap the CAB file name to

automatically install the application and shortcuts into the appropriate locations on the

device.

CHAPTER 5: Windows Mobile 80

Distributing Your Application
There are several options for distributing your Windows Mobile 6 application:

� Include a link to download the .cab file in an e-mail message or SMS

message. When the user clicks the link, the application will be

downloaded and installed using Internet Explorer Mobile.

� E-mail the file as an attachment. When the user opens the attachment,

the application will be installed automatically.

� Physically distribute the .cab file on removable media cards that can

be inserted directly into the phone. You can include an autorun file to

automatically start the installation script upon insertion.6

Distribute the application through the Windows Marketplace for Mobile.7

6 You can find more information at http://msdn.microsoft.com/en-
us/library/bb159776.aspx�

7 http://marketplace.windowsphone.com/

81

 Part

Cross-Platform Native
Frameworks
In your hands is one of the most exciting devices to hit the market in quite some time:

the iPhone 4. This Quick Start Guide will help get you and your new iPhone 4 up and

running in a hurry. You’ll learn all about the buttons, switches, and ports, and how to use

the innovative and responsive touch screen and multitask with the new App Switcher

bar. Our App Reference Tables introduce you to the apps on your iPhone 4—and serves

as a quick way to find out how to accomplish a task.

2

83

83

 Chapter

Rhodes
Rhodes is a cross-platform smartphone application framework developed by Rhomobile

(www.rhomobile.com) a venture backed startup in Cupertino, CA. It was released in

December of 2008. Rhodes is available for most major smartphones including the

iPhone, Research in Motion (BlackBerry), Android, Windows Mobile, and Symbian. As of

this writing, Symbian is not actively maintained and therefore not addressed in this

chapter. A key value proposition for Rhodes is the ability for a company to build and

maintain a single code-base across this wide variety of device operating systems.

Rhodes allows developers to create cross-platform smartphone applications using

HTML, CSS, JavaScript and Ruby programming languages. It leverages developer

experience in web development to make native mobile applications, and is aimed at

developers who already have a background in web development and want to create

mobile applications without having to learn platform SDKs and the native languages on

each mobile device platform. The Rhomobile tools and framework can be used across

Mac, Windows and Linux; however, to build for specific devices, the device SDK must

be installed. BlackBerry and Windows Mobile devices require Windows; iPhone devices

requires Mac; Android and Symbian devices run on Java and are cross-platform.

Rhodes is targeted primarily at enterprise applications. The framework makes it easy to

create applications that present a series of screens that include standard UI widgets,

including common phone UIs such as mapping. It is not suitable for fast-action games

and other such consumer applications with demands for rich interactive graphic

interfaces or platform-specific native UI controls. A strength of Rhodes is that it makes

the traditional user interface patterns commonly found in most informational applications

easy and portable.

Rhodes is a commercially-supported open source product licensed under the MIT

License. Those companies requiring commercial grade support can purchase an

Enterprise License from Rhomobile. Because Rhodes is open source, you can examine

the code and see exactly what it is doing under the covers. You can extend it, contribute

improvements and fixes, or customize your own version of Rhodes if you need to.

Rhodes takes much of its inspiration from web-oriented Model-View-Controller (MVC)

style frameworks such as Ruby on Rails. However, it has several sfimplifications,

6

CHAPTER 6: Rhodes 84

extensions, and optimizations for the mobile scenario (see Differences Between Rhodes

and Ruby on Rails later in the chapter). If you are a Ruby on Rails developer, you should

find Rhodes familiar. Note that although certain patterns are borrowed from Rails,

Rhodes is its own unique framework and not a port of Ruby on Rails. Even developers

unfamiliar with Ruby on Rails can start developing quickly with Rhodes simply because

there is much less code to write than for a native application.

Rhodes includes a local Object Relational Manager (ORM), called Rhom, and includes

code to persist local data and sync remote data using RhoSync. Rhodes developers do

not have to worry about writing data storage and sync logic into their applications and

can focus instead on presentation and business logic.

The next sections provide details on creating device-only applications in Rhodes and

you will see how to persist local data and use geolocation and other device features.

However, the full power of the framework is seen when local data is synched to remote

data sources, which can be easily achieved with Rhomobile’s middleware server

RhoSync (see chapter 7).

Complete details on Rhodes are available in the Rhomobile wiki

(www.rhomobile.com/wiki) and the source to Rhodes is available at github

(http://github.com/rhomobile). There are also open source example applications

available. Finally, there is an active community of developers at

http://groups.google.com/group/rhomobile.

Development Architecture
Rhodes applications are installed and run as native applications. However, you develop

using the web development paradigm. You define the user interface of your application

in HTML and CSS. Then, at runtime, the HTML and CSS is rendered in a native browser

UI control that is embedded in your application by the Rhodes framework. JavaScript

may be used for some interaction control the same way that you would use JavaScript

in a web application.

You can also add application logic to your views using embedded Ruby (ERB), as you

would in a Ruby on Rails application. ERB files are similar to PHP or JSP, where code

can be mixed with markup to create dynamic HTML. Rhodes will generate the complete

HTML, evaluating the Ruby code before the HTML is rendered by the browser UI

Control, which will then dynamically execute any JavaScript that is on the page.

You also write Ruby code for the application logic that implements the flow of control for

your application. Rhodes follows the Model-View-Controller (MVC) pattern that is similar

to Ruby on Rails and other web frameworks. You implement methods in your controller

to define actions that map to HTTP requests. Your controller action will typically fetch

data from your model (implemented in the Rhodes ORM layer, Rhom) and render a view

(implemented as HTML ERB).

In Figure 6–1 you can see the MVC pattern illustrated with the Rhodes object model and

an example use case. In the example, there is a “New Product” page where the user can

fill in the form field to provide values for the new product attributes. When the user clicks

CHAPTER 6: Rhodes 85

the Create button, a request is made to a lightweight embedded web server in Rhodes

that only exists to respond to these UI request and RhoController actions. When a user

clicks on a URL in the HTML view, a controller action is called. In this example, the

ProductController create method is called. The controller action then calls the Product

model, implemented with Rhom to save a new product in the local database. Then a

view is rendered to display the result to the user. The entire web response cycle

happens locally on the device.

Figure 6–1. The MVC Model

Runtime Architecture
Rhodes development files are compiled into a native executable that is installed on the

device or run in a desktop simulator using command line tools or the web interface on

rhohub.com.

Since Rhodes apps are native binary applications, they can be submitted and

distributed through the Apple iTunes App Store, BlackBerry World, Android

Marketplace, and other distribution channels. To build for a device, you typically need to

sign up for those developer programs and acquire cryptographic keys required to sign

applications, even though you will not be writing in the platforms native SDKs. You also

need to observe each platform’s user interface guidelines so that your applications can

be approved. (See Part 1 of the book on submitting apps for your target platform(s).)

On platforms where the primary development language is Java, such as BlackBerry,

Rhodes applications are cross-compiled into Java bytecode that are then executed

natively. On iPhone, Android, Windows Mobile and Symbian platforms, Rhodes

applications are compiled into Ruby 1.9 bytecode. On these platforms, Rhodes includes

a Ruby executor that runs the bytecode on the device. The Rhodes Ruby

implementation is a subset of Ruby 1.9. It does not include all of the libraries that you

would find on a desktop implementation of Ruby, although it is possible to extend it and

add additional libraries into your application. (See http://wiki.rhomobile.com/
index.php/Rhodes#Adding_Libraries_to_Your_Rhodes_Application.)

To connect your Rhodes application with web services, you can use RhoSync or

connect directly. You can connect directly via JavaScript, use the Ruby net/http library,

or the optimized Rho:AsyncHttp. However, with remote data, you almost always want to

CHAPTER 6: Rhodes 86

cache it locally for offline use and using a RhoSync server is ideal for that use case. As

detailed in chapter 7, you would write a source adapter that runs in the server

environment where you have access to the full Ruby language and complete libraries.

Although Ruby is an interpreted language, using Rhodes, you cannot run arbitrary Ruby

code at runtime by using, for example, string eval. That capability was intentionally

removed in Rhodes Ruby interpreter to comply with iPhone App Store’s Rule 3.3.2 that

states:

An Application may not itself install or launch other executable code by any
means, including without limitation through the use of a plug-in architecture,
calling other frameworks, other APIs or otherwise. No interpreted code may be
downloaded and used in an Application except for code that is interpreted and
run by Apple’s Published APIs and built-in interpreter(s).

(www.rhomobile.com/blog/2009/05/29/iphone-app-
store-rules-and-guidelines-on-use-of-frameworks/)

Rhodes is a fully native application and embeds the device’s built-in browser. This has

implications for the markup, CSS, and JavaScript that can be supported on each

platform. Some devices, such as the iPhone and Android, have full-featured browsers

while others like the BlackBerry do not. This means that you cannot write HTML and

CSS that take advantage of advanced or platform-specific browser features on one

device and expect it to work on another device with a less capable web browser. While

Rhodes apps are developed much like web apps, they run locally as native apps and not

remotely like web apps. All processing and database access is local.

Device Capabilities and Native UI Elements
Rhodes provides access to device-specific capabilities such as GPS, PIM, camera,

SMS, video player, accelerometer, proximity detector, and native UI controls. In some

cases, the native controls are specific to the device, for example, every BlackBerry

application has a menu that is invoked when you click the Berries button on the device;

however, iPhone applications do not uniformly have a menu. So when you define a

menu it appears on the BlackBerry, but is ignored if you were to build the same code for

the iPhone. See the Rhodes Device Capabilities section for more details and examples.

Database (Rhom)
Rhom is a mini object-mapper implemented in Ruby. It provides database-abstraction

functionality to the Rhodes micro-framework. It allows simple models to be used with a

“property bag” database. Rhom is backed by a local device-side database such as

SQLite or HSQLDB. The Rhodes framework abstracts the implementation details of the

local database.

CHAPTER 6: Rhodes 87

The main goal of Rhom is to provide a simple, intuitive model interface for a Rhodes

application. Under the hood, Rhom operates on the RhoSync object values

(http://wiki.rhomobile.com/index.php/Server_to_Backend_Sync_Process) table by

collecting “property bags” or attributes for a given source into a model definition. This is

the same table used by the Rhodes sync engine.

The methods on a Rhom object are inspired by but not exactly the same as those in the

ActiveRecord ORM used by Ruby on Rails. Listing 6–1 shows sample client code to

illustrate the Rhom syntax with an Account object. In this example, Account is the model

object. Account.find in its simplest form takes the object’s id as a parameter and returns

the object (after fetching it from the local device storage). The second Account.find is

shown with :all as the first parameter, which indicates that all records will be returned,

the :select argument indicates the fields to lookup, optionally you could also pass

:conditions if you wanted to retrieve a subset of the records.

Listing 6–1. Rhom example code

acct = Account.find "3560c0a0-ef58-2f40-68a5-48f39f63741b"
acct.name #=> "A.G. Parr PLC 37862"

 accts = Account.find(:all, :select => ['name','address'])
accts[0].name #=> "A.G. Parr PLC 37862"
accts[0].telephone #=> nil

Threading
Rhodes applications are multithreaded, however, applications cannot spawn their own

threads; your code will run in a single thread. The three principal threads in a Rhodes

application are:

� Main thread (controls the user interface)

� Ruby thread

� Sync thread (when RhoSync is used)

There are also auxiliary threads that come and go on demand. Examples include

notifications, geolocation, client registration, and push.

One of the added benefits of Rhodes being multithreaded is that you can sync your data

to RhoSync in the background while your user interface is not blocked. The impact is

that many of the Rhodes API calls are non-blocking, asynchronous calls that you

register callbacks to use, such as sync notification and login.

CHAPTER 6: Rhodes 88

Differences Between Rhodes and Rails
� Rhodes is inspired by Ruby on Rails but is not a port of Ruby on

Rails. It is significantly smaller and simpler.

� There are no separate directories for models, controllers and views.

Each model is in its own directory. The controller file, model file, and

view files for the model exist in the directory. Business logic is

coded in the controller making Rhodes controllers somewhat fatter

than Rails controllers.

� Many other directories available are not present in the Rhomobile

app directory structure such as vendor, lib, log, and db. Their

equivalents are generally in the root directory of the application.

� There are no validations on models. There is no schema.rb and no migrations.

� You cannot run Rhodes applications interactively using

script/console. You need to compile your code and install it in the

simulator to execute it.

� Many of the differences from Rails are to make it easier to run on

mobile devices with limited memory. Rhodes is lighter weight

because it is only providing the core necessary functions. Examples

of features that either aren't necessary in Rhodes or not provided for

space reasons are: web services, XML, pluralization, and YAML.

Creating a Rhodes App
This section details how you install and set up Rhodes and build a simple application

that stores data locally on the device.

Installation and Setup
Before you install Rhodes, you will need to install Ruby and Ruby’s library packaging

system, RubyGems, as well as GNU make. Rhodes is distributed as a Ruby gem, which

includes the Rhodes framework and all of the tools needed to work with each target

smartphone platform.

� Ruby 1.8.6 or 1.8.7.

� RubyGems 1.3.5 or higher.

� GNU make 3.80 or higher (required by gem). You might already have it

installed if you are running Mac OS X or Linux. On Windows, download

it from http://gnuwin32.sourceforge.net/packages/make.htm and

install somewhere. Ensure you have the location where it installed in

your PATH environment variable.

CHAPTER 6: Rhodes 89

To install the gem (sudo is recommended on Mac and Linux):

gem install rhodes

You will also need the device SDKs for your target platform. For details on installing the

device SDKs, see chapters 2-5 or Rhomobile platform docs.1

Once you have the device SDK installed, run the Rhodes setup script (by typing

“rhodes-setup” on the command line). Listing 6–2 shows sample output from this

command run on a Mac with Android SDK installed. (Note: the iPhone SDK does not

require configuration.)

Listing 6–2. Rhodes setup commands

$ rhodes-setup
We will ask you a few questions below about your dev environment.

JDK path (required) (/System/Library/Frameworks/JavaVM.framework�
/Versions/CurrentJDK/Home/):
 Android 1.5 SDK path (blank to skip) (): ~/android/android-sdk-mac_x86–1.5_r2
Windows Mobile 6 SDK CabWiz (blank to skip) ():
 BlackBerry JDE 4.6 (blank to skip) ():
 BlackBerry JDE 4.6 MDS (blank to skip) ():
 BlackBerry JDE 4.2 (blank to skip) ():
 BlackBerry JDE 4.2 MDS (blank to skip) ():

 If you want to build with other BlackBerry SDK versions edit:
 <Home Directory>/src/rhomobile/rhodes/rhobuild.yml

Building a Rhodes Application
For your first application you are going to create an application that will let you enter

product inventory on your phone. This is a basic application with one model that will

allow you to create, edit, and delete inventory records on the device.

To create the initial skeleton of the application, you issue the “rhogen app” command.

This will generate a starting directory with support files; Rhodes applications are

organized in a fixed directory structure. The rhogen command is not required. You could

create the files you need manually or simply copy and modify a previous application.

On the command line, type “rhogen app inventory” to generate the initial skeleton for the

application (Listing 6–3).

Listing 6–3. Rhodes app generation

$ rhogen app inventory
Generating with app generator:
 [ADDED] inventory/rhoconfig.txt
 [ADDED] inventory/build.yml
 [ADDED] inventory/app/application.rb
 [ADDED] inventory/app/index.erb

1 http://wiki.rhomobile.com//index.php?title=Building_Rhodes_on_Supported_Platforms

CHAPTER 6: Rhodes 90

 [ADDED] inventory/app/index.bb.erb
 [ADDED] inventory/app/layout.erb
 [ADDED] inventory/app/loading.html
 [ADDED] inventory/Rakefile
 [ADDED] inventory/app/helpers
 [ADDED] inventory/icon
 [ADDED] inventory/app/Settings
 [ADDED] inventory/public

This creates the boilerplate files for the application including a “Settings” screen that is

very useful in development, but will usually be replaced with one or more custom

screens before the application is complete. Table 6–1 lists all of the top-level files and

folders that are generated. Most of the development that you do will be to modify and

create new files in the /app directory. These files and subdirectories are listed in Table

6–2.

Table 6–1. Top-level files and folders generated by the “rhogen app” command

File/Folder Description

Rakefile Used for building Rhodes applications from the command line.

rhoconfig.txt Contains application specific options and configurations such as the start path

definition, logging options, and the optional URL for your sync server. To change

the default-landing page of your application, simply change start_path to point to

a different page within the directory structure.

build.yml Contains application-specific build information such as the name of the

application, and the version of the SDK to use when building for specific

platforms.

app/ This directory contains the models, device settings, default-landing page, and

application layout page.

public/ This directory contains static files that are accessible by your application, such as

CSS, images, and JavaScript libraries.

icon/ This directory contains the icons for your application.

CHAPTER 6: Rhodes 91

Table 6–2. Files and folders in the /app directory generated by the “rhogen app” command

Application File/Folders Description

/Settings Responsible for login and device specific settings.

/helpers Contains functions designed to help in the development process.

application.rb Application specific setup and configuration.

index.erb The default-landing page for the application. This page will typically have

links to the controllers for at least some of the data models.

layout.erb Contains the header file for the entire application.

loading.html The initial loading page on startup

The file types that have been generated for you in the application include Ruby files (*.rb)

that contain application business logic and configuration, and HTML with embedded

Ruby files (*.erb) (www.ruby-doc.org/stdlib/libdoc/erb/rdoc/) for your user interface.

These are the two main file types that you will be working with when writing Rhodes

applications.

HTML, CSS, and Ruby are what Rhodes developers use to create the layout of the user

interface; rather than writing code to build native UI controls with libraries such as UIKit

on the iPhone.

Running the Application
To run the application in a simulator or on the device, you may simply run a rake task

from your application directory. Rake is a simple Ruby build program with capabilities

similar to make. See Table 6–3 for a list of commands. Note that running the application

is not any harder on the device (and on some platforms it is faster than in the simulator),

but you do need to set up cryptographic digital signatures (see platform chapters 2-5 for

details).

Rhomobile also provides a desktop simulator for Rhodes that can be used on Windows

platforms, which has a much faster startup time than the simulators and can be effective

for quickly testing your application logic. To test your UI code, you need to run it on the

simulator or device for the platforms you are targeting. The Windows simulator does not

attempt to simulate the browser differences between the different smartphone

platforms.

CHAPTER 6: Rhodes 92

Table 6–3. Rake commands for building and running Rhodes applications

Command Purpose

rake clean:android Clean Android

rake clean:bb Clean BlackBerry

rake clean:iphone Clean iPhone

rake clean:win32 Clean Rhomobile Win32 Desktop Simulator

rake clean:wm Clean Windows Mobile

rake device:android:debug Build debug self-signed for Android device

rake device:android:production Build production signed for Android device

rake device:bb:debug Build debug for BlackBerry device

rake device:bb:production Build production for BlackBerry device

rake device:iphone:production Build production for iPhone device

rake device:wm:production Build production for Windows Mobile device or emulator

rake run:android Build and launch Android emulator

rake run:android:device Build and install on Android device

rake uninstall:android Uninstall application from Android emulator

rake uninstall:android:device Uninstall application from Android device

rake run:bb Builds app, loads, and starts BlackBerry Simulator and MDS

rake run:iphone Builds app, launches iPhone simulator

rake run wm:emu Build and run application on Windows Mobile 6 emulator

rake run wm:emucab Build and install .cab on Windows Mobile 6 emulator

rake run wm:dev Build and run application on Windows Mobile 6 device

rake run wm:devcab Build and install .cab on Windows Mobile 6 device

CHAPTER 6: Rhodes 93

Running on the iPhone
You will need the iPhone SDK that is only available for Macintosh computers installed

for this section. For details on setting up the iPhone development environment, including

building for a device, see Chapter 2. This section will walk you through how to build

using the Rhodes platform, which depends on the Apple SDK and tools to build for the

iPhone or iPad. In your application directory, on the command line, enter: “rake

run:iphone”. You will see a lot of text output and it may take a minute or so before the

iPhone simulator launches. When the simulator appears, you won’t see your application.

You need to click on one of the dots on the bottom or drag the screen to show the

screen to the right where your application is. (Note: the simulator may appear as an iPad

or an iPhone Rhodes applications work on both. If you would like to see your application

on a different device, select Hardware ➤ Device from the simulator menu and choose an

alternate device.) See Figure 6–2 for an illustration of how the simulator looks after

navigating to the screen with the application and then after the application is opened.

$ cd inventory/
$ rake run:iphone

If you get an error about it not finding the iphone sdk, please check your build.yml file and if
necessary, edit it to match the iPhone SDK version that you have installed.

Figure 6–2. Running on iPhone

CHAPTER 6: Rhodes 94

Running on Android
You can build for the Android on Mac, Windows or Linux. For details on setting up the

Android development environment, including building for a device, see chapter 3. Note

that you will need the Android Native development environment (NDK), as well as the

SDK and related components, but you will not need Eclipse. After the initial setup,

building for the Android and testing in the simulator is the same as building for the

iPhone, except that the rake tasks have “android” instead of “iphone” in the name and

the log files are found in different places.

In your application directory, on the command line, enter: “rake run:android”. You will

see a lot of text output and it will take several minutes before the Android emulator

launches. When the emulator appears, you won’t see your application. You need to

select the menu tab on the bottom of the screen to reveal all applications and you will

likely need to scroll to the bottom of that screen (Figure 6–3).

$ cd inventory/
$ rake run:android

Figure 6–3. Running on Android

Running on BlackBerry
BlackBerry requires Windows to run its tools and simulator. It also requires Java, but

you won’t typically use Eclipse. For details on setting up the BlackBerry development

environment, including building for a device, see chapter 4. The business logic for a

BlackBerry application can be identical to every other platform; however, the view

implementation is often quite different due to limitations in the browser capabilities on

CHAPTER 6: Rhodes 95

the device. For more details on BlackBerry HTML UI, see chapter 14, but the basics will

be covered in the rest of this section.

In your application directory, on the command line, enter: “rake run:bb”. You will see a

lot of text output and it will take several minutes before the BlackBerry simulator

launches.

$ cd inventory/
$ rake run:bb

Running on Windows Mobile 6
Windows Mobile 6 requires Windows to run its tools and simulator. It also requires MS

Visual Studio, even though you don’t typically use it for development with Rhodes. For

details on setting up the Windows Mobile development environment, including building

for a device, see chapter 5. (As of this writing, Rhodes does not support Windows

Mobile 7.) After the initial setup, building for Windows Mobile and running the application

in the simulator will be very similar to the Android and iPhone – there are some browser

differences, but the IE Browser is not as limited as the BlackBerry browser.

In your application directory, on the command line, enter: “rake run:wm:emu”. You will

see a lot of text output and it will take several minutes before the Windows Mobile

simulator launches.

$ cd inventory/
$ rake run:wm:emu

Generating a Model
Rhodes also includes a script to generate code that implements the Model-View-

Controller (MVC) pattern, similar to the Rails scaffold command. This will implement

common actions to display a list of items, show an individual item’s details, create,

update, and delete. To create a model and the corresponding views and controller

actions, use the “rhogen model” command. Note: more information about rhogen is

available at http://wiki.rhomobile.com/index.php/Rhogen. Just as with the “rhogen

app” command, you can also create the files by hand. Typically, your app will have one

or more models.

The model for the application that is detailed in this tutorial will be called “Product” (see

Listing 6–4). A product has attributes: brand, name, price, quantity, and sku. Issue

“rhogen model Product name,description,done” to generate the Product model for your

application.

Listing 6–4. Generating a model with views and a controller

$ rhogen model product brand,name,price,quantity,sku
Generating with model generator:
[ADDED] app/Product/index.erb
 [ADDED] app/Product/edit.erb
 [ADDED] app/Product/new.erb
 [ADDED] app/Product/show.erb

CHAPTER 6: Rhodes 96

 [ADDED] app/Product/index.bb.erb
 [ADDED] app/Product/edit.bb.erb
 [ADDED] app/Product/new.bb.erb
 [ADDED] app/Product/show.bb.erb
 [ADDED] app/Product/product_controller.rb
 [ADDED] app/Product/product.rb
 [ADDED] app/test/product_spec.rb

As you can see, more files have been added to the file system. Each model is defined in

its own subdirectory of the /app folder. The new files include the views for the default

controller actions, the configuration file for the model, and the controller.

In the model’s directory you will find product_controller.rb, which implements the

controller for the model. You will also see .erb files for all of the views associated with

the model. Finally, there is a product.rb file that sets properties on the model. Each

Rhodes controller implements actions to perform basic CRUD (create, read, update, and

delete) on the object generated by default by the scaffold. The template views generated

are shown in Table 6–4.

Table 6–4. Default views for Rhodes Model

View Purpose

index lists all of the objects

new displays the form to enter attributes for creating a new object

edit displays a form for editing object attributes

show displays the object attributes

The controller for the model (/app/Product/product_controller.rb) is very similar to a

Ruby on Rails controller in the sense that it contains all the basic CRUD actions with

consistent naming conventions. Most actions defined in the controller correspond to

view files in the same directory that have the action name with an .erb file type.

Now that you have the scaffold of the application and a basic understanding of the

structure, it’s time to finish our application by connecting the model’s view to our start

screen.

To do this you need to edit your application index by opening app/index.erb. If you were

to compile the application in its current state, you would still see the same start screen

that you saw when you first ran the application that displays “Add links here…”, with no

way to view the UI for the model you just created. The code for the page should

currently look like Listing 6–5. The Sync and Login buttons in the toolbar are connected

to RhoSync by default (covered in the next chapter). You can delete them or modify the

Settings controller to use a web service rather than RhoSync.

CHAPTER 6: Rhodes 97

Listing 6–5. Default start screen (app/index.erb)

<div id="pageTitle">
 <h1>Inventory</h1>
</div>

<div id="toolbar">
 <div id="leftItem" class="blueButton">
 <%= link_to "Sync", :controller => :Settings, :action => :do_sync %>
 </div>
 <% if SyncEngine::logged_in > 0 %>
 <div id="rightItem" class="regularButton">
 <%= link_to "Logout", :controller => :Settings, :action => :logout %>
 </div>
 <% else %>
 <div id="rightItem" class="regularButton">
 <%= link_to "Login", :controller => :Settings, :action => :login %></div>
 <% end %>
</div>

<div id="content">

 Add Links Here...

</div>

To add a connection to your Product model, change the title “Add links here…” to

“Products” and href to “Product” as shown in Listing 6–6. This will create a link to the

Product model’s index page: app/Product/index.erb–just with most web servers, the

default page for a URL is index and the relative URL will look for a sibling page to

index.erb that is also in the app folder. Note that most of the page is pure HTML and you

could put other links here or add graphics with an tag or add text. The part of the

page that is embedded Ruby code is inside <% … %>.

Listing 6–6. Modified start screen (app/index.erb)

<div class="toolbar">
 <h1 id="pageTitle">
 Products
 </h1>
</div>

<ul id="home" selected="true" title="Products">
 Product

Rhodes links work by assuming the /app directory is the root directory of your

application. In the example you just wrote “Product” as the reference for the link. This is

because “Product” is a subdirectory of /app and since you didn’t specify a file in that

directory, it uses the default: the index page. This linking convention can be used

throughout your application.

CHAPTER 6: Rhodes 98

Now that you have your model index page hooked up to your application index you are

ready to build the application for one of the Rhodes supported platforms. Simply use the

appropriate “rake:run” command for your platform of choice. See Figures 6–4 to 6–8 to

see how all of the screens appear on the iPhone. The functionality is identical across

platforms; however, the visual details conform to the target platform.

Figure 6–4. Modified start screen (app/index.erb) as seen on iPhone

Figure 6–5. Tasks list page (app/Product/index.erb), empty and with items in the list

CHAPTER 6: Rhodes 99

Figure 6–6. Tasks new page (app/Product/new.erb)

Figure 6–7. Task details page (app/Product/show.erb)

CHAPTER 6: Rhodes 100

Figure 6–8. Product edit page (app/Product/edit.erb)

Debugging Tips
Finding the Rhodes log file and tips for effective debugging differs depending on the

environment you are running for the application. Details are given below for some of the

platforms that Rhodes supports. The latest version of Rhodes offers an interactive

debugger, but you can also insert print statements (puts in Ruby) in your code and see

the output the log file that Rhodes generates called RhoLog.txt. RhoLog includes the

generated HTML that is being rendered, information about requests being sent to your

controller, and even some logging about the sync process.

To enable debugging with the log file, you need to edit the rhoconfig.txt and make sure

that “LogToOutput=1”. Rhodes may run slower when debugging is on, so you should

reset this to “0” when you build for production.

iPhone
You can find RhoLog.txt (and the sqlite DB) that rhodes uses in “~/Library/Application

Support/iPhone Simulator/User/Applications”. In this directory you may see several

directories that are long hexadecimal strings. These correspond to the different

applications you have installed in your simulator. Most likely you will just have one.

Change into that directory (cd) and then cd to the Documents subdirectory. In there, you

should file RhoLog.txt. You can watch this file with

CHAPTER 6: Rhodes 101

tail -f RhoLog.txt

while the application is running.

You can also reset the simulator to a clean state using Reset Content and Settings... from

the iPhone Simulator menu if things go wrong and you want to start over again.

The log provides a lot of useful information by default. You can also put statements,

such as “p @product”, in your controller to diagnose issues you may run into.

BlackBerry
Configure your BlackBerry simulator to use a directory as an SD card.

When running in the BlackBerry simulator, you can find the log here:

<your JDE directory>\simulator\sdcard\Rho\<your app name>\RhoLog.txt

Assuming you set <your JDE directory>\simulator\sdcard as the directory for the SD

card. You can watch this file while the simulator is running using tail -f.

To manually remote everything from your simulator:

1. open this directory: <your JDE directory>\simulator

2. delete sdcard folder

3. run clean.bat

You should install the complete BlackBerry JDE, not the standalone simulator

downloads. The standalone downloads do not contain clean.bat.

Android
Run the command:

adb logcat

Rhodes Device Capabilities
To create a compelling mobile application, you will want to take advantage of

capabilities that are available on a phone, differentiating the experience from a web or

desktop application. Most applications want to interface with native phone functionality

such as the GPS, the camera, and the contacts. Access to these features is

implemented quite differently on different smartphone platforms, but Rhodes lets you

write simple, clean code that will work on all the supported platforms.

By writing your application in Rhodes your application gains access to the same native

APIs that applications written directly in the native toolkits have access to. Moreover, by

coding to the Rhodes API, you do not have to worry about rewriting your application on

each platform where these APIs are implemented in completely different ways. Rhodes

CHAPTER 6: Rhodes 102

abstracts away and often simplifies accessing these capabilities so you can focus on

your application and business logic instead. See Table 6–5 for the level of support for

specific device capabilities across the platforms that are supportd by Rhodes.

Table 6–5. Rhodes device capabilities matrix 2

Capability iPhone Windows Mobile BlackBerry Symbian Android

GeoLocation Yes Yes Yes Yes Yes

PIM Contacts Yes Yes Yes Yes Yes

Camera Yes Yes Yes Yes Yes

Date/Time Picker Yes 2.0 Yes 2.1 Yes

Native Menu/Tab Bar Yes 2.0 Yes 2.1 1.5

Audio / Video Capture 2.0 2.0 2.0 2.1 2.0

Bluetooth 2.0 2.0 2.0 2.1 2.0

Push / SMS Yes 2.0 Yes 2.1 2.0

Landscape Orientation 2.0 2.0 2.0 2.1 2.0

Native Maps Yes 2.0 Yes 2.1 1.5

In Rhodes, device capabilities are invoked from within the Ruby environment. Some

device capabilities, such as geolocation, can also be invoked directly from JavaScript if

the browser on the platform supports it. This is independent of Rhodes implementation

of the same capability but gives you another option. Note, for example, if you code to

the browsers JavaScript API for geolocation, that code may not be portable to other

devices where the browser does not include this capability.

In this section we will explore three different device capabilities: contacts, camera, and

geolocation. For the rest, the Rhodes system API samples project3 has small examples

that show how each API is used.

2 http://wiki.rhomobile.com/index.php/Rhodes#Device_Capabilities_.2F_Native_UI_Elements

3 http://github.com/rhomobile/rhodes-system-api-samples . API documentation is available

on the Rhodes wiki: http://wiki.rhomobile.com/index.php/Rhodes

CHAPTER 6: Rhodes 103

Contacts Example
Smartphones all have a built-in PIM (Personal Information Management) Contacts

application that allows end users to store phone numbers and addresses. Smartphone

platforms allow applications to access those contacts through APIs that differ per

platform, but generally offer the same capabilities. In this section, we will step through

writing a Rhodes application that will allow you to show and edit native PIM contacts using

Rhodes APIs on both the iPhone and Android. This example is written using Rhodes 2.0.2.

The complete source code to the completed application is available online at:

http://github.com/VGraupera/Rho-Contacts-Sample.

Generate a skeleton application using the rhogen command as shown in Listing 6–7.

Listing 6–7. Creating the Contacts application using the rhogen command

> rhogen app Contacts

Generating with app generator:

[ADDED] Contacts/rhoconfig.txt
 [ADDED] Contacts/build.yml
 [ADDED] Contacts/app/application.rb
 [ADDED] Contacts/app/index.erb
 [ADDED] Contacts/app/index.bb.erb
 [ADDED] Contacts/app/layout.erb
 [ADDED] Contacts/app/loading.html
 [ADDED] Contacts/Rakefile
 [ADDED] Contacts/app/helpers
 [ADDED] Contacts/icon
 [ADDED] Contacts/app/Settings
 [ADDED] Contacts/public

 > cd Contacts/

> rhogen model Contact first_name,last_name,email_address,business_number

Generating with model generator:

[ADDED] app/Contact/index.erb
 [ADDED] app/Contact/edit.erb
 [ADDED] app/Contact/new.erb
 [ADDED] app/Contact/show.erb
 [ADDED] app/Contact/index.bb.erb
 [ADDED] app/Contact/edit.bb.erb
 [ADDED] app/Contact/new.bb.erb
 [ADDED] app/Contact/show.bb.erb
 [ADDED] app/Contact/contact_controller.rb
 [ADDED] app/Contact/contact.rb
 [ADDED] app/test/contact_spec.rb

Edit your rhoconfig.txt file and change

start_path = '/app'

to

start_path = '/app/Contact'

Edit your contact_controller.rb file to look like Listing 6–8.

You require ‘rho/rhocontact’ to load the Rhodes PIM contact API.

In the index action, you create an array of all the contacts on the device using

Rho::RhoContact.find(:all) and assign to an instance variable

CHAPTER 6: Rhodes 105

Rho::RhoContact.find(:all) will return all the contacts on the device. Unfortunately, there

is no way to limit it to a certain number of contacts or to specify a sort order, so in the

next line you sort the contacts array manually in Ruby by first_name provided, of course,

there are any contacts at all.

Next, edit the Contact/index.erb to look like Listing 6–9.

Listing 6–9. Contacts/app/Contact/index.erb

<div id="pageTitle">
 <h1>Contacts</h1>
</div>

<div id="toolbar">
 <div id="leftItem" class="regularButton"><%= link_to "Home",
Rho::RhoConfig.start_path %></div>
 <div id="rightItem" class="regularButton"><%= link_to "New", :controller =>
:Contact, :action => :new %></div>
</div>

<div id="content">

 <% @contacts.each do |obj| %>

 <a href="<%= url_for :action => :show, :id => obj[1]['id'] %>">
 <%= "#{obj[1]['first_name']}
#{obj[1]['last_name']}" %>

 <% end %>

</div>

 In this ERB template, you iterate through the array of contacts and output each one in a

list. Because of the special HTML CSS classes you use, the list will look like a native

iPhone table.

Now, build and run the application for the iPhone simulator:

> rake run:iphone

Before launching our Rhodes Contacts application in the simulator, open the native

Contacts application in the simulator and add some contacts. By default the iPhone

simulator address book is empty. I added two contacts: John Doe and Abraham Lincoln.

Now launch our Rhodes Contacts application, and you will see the same contacts

(Figure 6–9).

CHAPTER 6: Rhodes 106

Figure 6–9. Rhodes Contacts application

Similarly, rebuild the application for the Android using

> rake run:android

Again, add some contacts to the native Contacts application in the Android emulator

and then launch our Rhodes Contacts application.

The Rhodes Contacts API also allows you to create, update and delete native contacts.

The controller methods for these actions can be seen back in Table 6–4. These will work

with the standard views that were generated using the rhogen model command.

Camera Example
In this section, we will step through writing an application that will allow you to take

pictures using the camera and also pick images that are already on the smartphone

using Rhodes APIs on both the iPhone and Android. This example requires Rhodes 1.5.

The full source code to the completed application is available online at:
http://github.com/VGraupera/Rho-Photos-Sample

Generate a skeleton application using rhogen by typing the following into the command

line:

> rhogen app Photos

Then create a model for the Photos using

CHAPTER 6: Rhodes 107

> cd Photos
> rhogen model Photo image_uri

In rhoconfig.txt at the root of your application directory, change the start_path to change

the startup page for your application:

start_path = '/app/Photo'

In your Photo directory, you can delete all the ERB files except for index.erb. Edit your

index.erb to look like the Listing 6–10.

Listing 6–10. Contacts/app/Photo/index.erb

<div class="toolbar">
 <h1 id="pageTitle">Photos</h1>
</div>

<div id="photos" title="Photos" selected="true">
 <%= link_to '[Choose Picture]', { :action => :choose }%>
 <%= link_to '[Take Picture]', { :action => :new }%>

 <% @images.reverse_each do |x|%>
 <img src="<%=x.image_uri%>" width='300px'><a
href="<%=url_for(:action => :delete, :id =>x.object)%>">Delete

 <% end %>
</div>

Edit the photo_controller.rb file to look like the Listing 6–11.

Listing 6–11. Contacts/app/Photo/photo_controller.rb

require 'rho/rhocontroller'

class PhotoController < Rho::RhoController

 def index
 puts "Camera index controller"
 @images = Photo.find(:all)
 end

 def new
 Camera::take_picture(url_for :action => :camera_callback)
 redirect :action => :index
 end

 def choose
 Camera::choose_picture(url_for :action => :camera_callback)
 redirect :action => :index
 end

 def delete
 @image = Photo.find(@params['id'])
 @image.destroy
 redirect :action => :index
 end

 def camera_callback
 if @params['status'] == 'ok'
 #create image record in the DB

CHAPTER 6: Rhodes 108

 image = Photo.new({'image_uri'=>@params['image_uri']})
 image.save
 puts "new Image object: " + image.inspect
 WebView.navigate "/app/Photo"
 end
 end
end

You will save your photos using the Photo model. You can create new photos either by

using the camera with

 Camera::choose_picture(url_for :action => :camera_callback)

or selecting a pre-existing image on the phone using

 Camera::choose_picture(url_for :action => :camera_callback)

Both of these APIs are asynchronous and require you to provide a callback method (see

the camera_callback method in Listing 6–11 that is called after the picture is taken or

chosen by the user. In your callback, you navigate back to the home page that will load

all the photos including any new ones. You have to call WebView.navigate rather than

redirect because this callback is called in a different thread than the main Rhodes UI

thread.

Geolocation and Mapping Example
Geolocation is supported on all of the devices that are compatible with Rhodes. Native

mapping is only supported on the iPhone, BlackBerry, and Android. You can still do

mapping on any platform using the web browser and you can use geolocation features

without mapping, although they are often used together. The example in this section

follows such a typical use case that integrates the results of geolocation into a map.

The example application illustrated in this section allows the user to fill in a web form

and check a box to use the current location or optionally fill in a zip code, and then

displays all of the locations on a map. The complete application was built to show where

conference attendees originated from and can be found at

http://github.com/blazingcloud/rhodes_rubyconf—it is a connected application that

saves data to a server via RhoSync, but that isn’t required for using geolocation. The

example code in this section could be used offline or with other means of connecting to

a server.

When testing on the device simulators, you need to be aware of how to simulate your

location. On the iPhone simulator, your current location is always 1 Infinite Loop,

Cupertino, CA (Apple’s headquarters). On the BlackBerry, you can set the location

through the menu on the simulator. On the Android, you connect to the emulator using

netcat (see Listing 6–12) and send a “geo fix” command. Note that the two numbers

following geo fix are longitude then latitude.

CHAPTER 6: Rhodes 109

Listing 6–12. Using netcat to set the current location in the Android emulator.

nc localhost 5554
Android Console: type 'help' for a list of commands
OK
geo fix -122.1 37.2
OK

For the native mapping to work on the Android, you need to install the “Google APIs by

Google Inc., Android API 3”package and then you can use the Google Map capabilities.

To do that, run android/android-sdk-r04-mac_86/tools/android (you’ll see a window

appear), click Settings, check Force https://... sources to be fetched using http://...
and press Save&Apply. Then select the Available item in left list, expand https://dl-
ssl.google.com/...., check package Google APIs by Google Inc., Android API 3,
revision x and press Install selected.

Then you’ll need to obtain your own Google API key for Android as described here:

http://code.google.com/intl/en/android/add-ons/google-apis/mapkey.html and add

it to application’s build.yml (see Listing 6–13).

Listing 6–13. Section of build.yml file with Android configuration

android:
 mapping: yes
 # http://code.google.com/intl/en/android/add-ons/google-apis/mapkey.html
 apikey: "XXXYYYcZzZzvAaBbCcdddDDDXXX999"

Creating the application
Generate the application and a “person” model to which you will add geolocation and

mapping, using commands illustrated in Listing 6–14.

Listing 6–14. Generating the application and model using rhogen commands

rhogen app map_example
cd map_example
rhogen model person name,latitude,longitude,zip,twitter

Then modify the “new person” form, adding a checkbox for “Use Current Location.” This

will not be saved in the model, but is a flag that will be sent to the controller (see create

action in Listing 6–15).

Listing 6–15. In map_example/app/Person/new.erb

<form title="New Person"
 class="panel"
 id="person_new_form"
 method="POST"
 action="<%=url_for(:action => :create)%>" selected="true">
 <fieldset>
 <input type="hidden" name="id" value="<%=@person.object%>"/>

 <div class="row">
 <label>Name: </label>
 <input type="text" name="person[name]"/>
 </div>

CHAPTER 6: Rhodes 110

 <div class="row">
 <label>Use Current Location: </label>
 <input type="checkbox"
name="person[use_current_location]" />
 </div>

 <div class="row">
 <label>City, State or Zip: </label>
 <input type="text" name="person[zip]"/>
 </div>

 <div class="row">
 <label>Twitter: </label>
 <input type="text" name="person[twitter]"/>
 </div>

 </fieldset>
 <input type="submit" value="Create"/>
</form>

When the user submits the “new person” form (defined in new.erb), the create action will

be called (defined in the create action of the PersonController class). Modify this code to

detect the current location if the user has checked the use current location checkbox.

In Listing 6–16, you see how to access GPS data programmatically: using the

GeoLocation class built into Rhodes. These are synchronous calls that return

immediately, and return floating-point numbers.

If either latitude or longitude are 0, it means the GPS is not ready to use. Note that

calling GeoLocation.latitude or GeoLocation.longitude for the first time will trigger a call

to the underlying geolocation capability; however, the devices will typically take several

calls to return a result since the user must allow the app to access their location and the

hardware can take several seconds to become responsive. Also note that Rhodes

requires that data be saved in String format, so the Ruby to_s (to string) method must be

called on each value after retrieving the location.

Listing 6–16. In map_example/app/Person/person_controller.rb, create action

def create
 person_attrs = @params['person']
 if person_attrs['use_current_location'] == "on"
 person_attrs.delete('use_current_location')
 sleep(5) until GeoLocation.latitude != 0
 person_attrs['latitude'] = GeoLocation.latitude.to_s
 person_attrs['longitude'] = GeoLocation.longitude.to_s
 end
 @person = Person.new(person_attrs)
 @person.save
 redirect :action => :index
 end

This application also includes an example of mapping, showing the location of each

person on a map. Listing 6–17 shows the code; the MapView class in Rhodes produces

a map overlay. There are small differences in the map user interface that are appropriate

CHAPTER 6: Rhodes 111

to each platform: on the iPhone it has close button, on the BlackBerry a close menu

item, and on Android the user can simply use the back button. When the close/back

action is triggered, the previously displayed view is revealed.

Native map UI is available on the iPhone, BlackBerry, and Android.

Listing 6–17. Controller method to instantiate a map overlay of a view

def map
 @people = Person.find(:all)

 platform = System::get_property('platform')
 if platform == 'APPLE' or platform == 'Blackberry' or platform == 'ANDROID'
 annotations = @people.map do |person|
 result = {}
 unless person.latitude.nil? or person.latitude.empty?
 result[:latitude] = person.latitude
 result[:longitude] = person.longitude
 end
 result[:title] = person.name
 result[:subtitle] = person.twitter
 result[:street_address] = person.zip
 result[:url] = "/app/Person/#{person.object}/show"
 result
 end
 p "annotations=#{annotations}"
 MapView.create(
 :settings => {:map_type => "hybrid", :region => [33.4,-150,60,60],
 :zoom_enabled => true, :scroll_enabled => true,�
 :shows_user_location => false},
 :annotations => annotations
)
 redirect :action => :index
 end
end

113

113

 Chapter

RhoSync
Synchronization servers provide the ability for mobile users to access information even

when the device is offline or disconnected. They can also dramatically simplify the

programming model. Developers can assume the data that they need is available locally

in a database instead of writing code to access the network and take apart the data

from some wire format.

In the past, synchronization servers assumed access to an underlying database for the

application they wanted to mobilize. This was true of sync servers such as IntelliSync

(now discontinued by Nokia) and Motorola Starfish. With the advent of Software As A

Service (SaaS), such as SalesForce, Siebel On Demand, SugarCRM On Demand, and

others, direct access to a database can no longer be assumed. This invalidated the

approaches of the whole first generation of mobile sync servers. And it’s now known to

be a worst practice to integrate via databases.

The good news is that all SaaS vendors now expose some form of web services

interface, typically a SOAP or REST web service. This creates an opportunity for a new

kind of sync server for mobile devices targeted to enterprise apps exposing web

services. A new sync server can also focus on today’s much more powerful

smartphones.

RhoSync is a new sync server framework concentrating on mobilizing applications

exposing web services to smartphones. Like Rhodes, the RhoSync server is open

source (but distributed under GPL), providing freedom and flexibility if needed. RhoSync

is written in Ruby, but more importantly, connections to back-end services (which are

pluggable extensions to RhoSync) are written in Ruby. RhoSync facilitates mobile

development by providing a simple way to integrate data from external web services into

Rhodes-based smartphone applications. The complexity and lines of code required to

connect users to your back-end services are orders of magnitude smaller than the size

and effort that has typically been associated with sync projects: for example, a basic

RhoSync source adapter requires only 20 lines of easily understandable code.

In this chapter, you’ll get the background you need to develop an understanding of the

RhoSync server, then it will guide you in using RhoHub, a hosted RhoSync server, or

setting up your own RhoSync server with a very simple application. The chapter

7

CHAPTER 7: RhoSync 114

concludes with a complete sample application to demonstrate end-to-end integration

and to introduce a real-world use case for using RhoSync with Rhodes.

How the Sync Server Works
The RhoSync server acts as a middle tier between a mobile application and the web

service that it accesses for remote data. The RhoSync server stores information from

back-end systems in its data store as object-attribute-value (OAV) “triples” capable of

representing any type of arbitrary data. OAV triples allow small changes between the

device and the back end to be communicated back and forth very efficiently. Because

RhoSync operates on individual attribute values rather than entire objects, RhoSync

handles conflicts elegantly.

Using the RhoSync server framework, you will create an application. An application

consists of one or more sources, subclasses of the SourceAdapter class, each of which

contains instructions for how the RhoSync server should perform sync operations. The

source adapter contains the instructions used to populate the data store on the

RhoSync server with information from a web service. When a client device syncs, the

source adapter manages the process used to take data from the device’s data store,

update its own data store, then populate your back-end system.

The RhoSync server framework also manages user authentication for your application.

All client applications connecting to a RhoSync server require authentication. However,

if your application does not require users to authenticate individually, you can simply

accept all client connections, and automatically authenticate anyone using the

application.

Data Storage: Why Triples?
RhoSync stores copies of data asOAV triples (see Table 7–1). This common data

representation technique is often referred to as either an Entity-Attribute-Value (EAV)

schema or a “property bag.” Wire formats for synchronization almost always use such a

format, as it allows more efficient handling of incremental changes, particularly in

conflicts where two users have changed the same record. The OAV triple format is also

good for handling arbitrary data types from the back end, in the event the data may not

be a simple relational database record. Additionally, the triple format handles changes to

database structure in a flexible way, without the need to migrate your database in yet

another environment.

Table 7–1. Object-attribute-value triples

Column Purpose

object ID of the object instance on the back-end system

attrib Attribute name

value Attribute value for the specified object

CHAPTER 7: RhoSync 115

RhoSync Source Adapters
A RhoSync source adapter is a Ruby class that contains a set of methods that are called

as needed by the RhoSync server. Source adapters are subclasses of the

SourceAdapter class. If you are running your own RhoSync server, you can run a

command-line script to generate your source adapter (see Listing 7–1). If you are using

RhoHub, a source adapter will automatically be generated for each object in your

application. The following two sections provide a detailed walkthrough of setting up an

application using RhoHub or a locally installed RhoSync server.

Listing 7–1. Commands for generating server app and source adapter

rhosync app storemanager-server
cd storemanager-server/
rhosync source product

The default source adapter class will resemble Listing 7–2.

Listing 7–2. Source Adapter Class Skeleton

class Products < SourceAdapter
 def initialize(source, credential)
 super(source, credential)
 end

 def login
 end

 def query(params=nil)
 end

 def sync
 super
 end

 def create(create_hash, blob=nil)
 end

 def update(update_hash)
 end

 def delete(object_id)
 end

 def logoff
 end
 end

Source adapters most commonly include seven core methods: login, query, sync,

create, update, delete, and logoff. To implement the functionality desired for your app,

simply implement the methods included in the source adapter. The following sections

provide an overview of these methods.

CHAPTER 7: RhoSync 116

Initialize
The initialize method is the ideal location for any setup you may need to include in your

source adapter. In the Ruby language, the initialize method is the class constructor.

The arguments passed to initialize are source and credential. Source is a reference to

the source settings in app/Settings/setting.yml. Credential is provided for backwards

compatibility, and is always nil in RhoSync 2.0.

Authenticating with Web Services: Login and Logoff
If your back-end application requires authentication in order to perform web service

queries, you will need to add a login method to your source adapter.

The login method shown in Listing 7–3 is taken from the source adapter for the

SugarCRM source adapter—you can find the full implementation in

RhoSync/vendor/sync/SugarCRM.

Listing 7–3. Login method with back-end authentication

def login
 u=@source.login
 pwd=Digest::MD5.hexdigest(@source.password)
 ua={'user_name' => u,'password' => pwd}
 ss=client.login(ua,nil) # this is a WSDL
 if ss.error.number.to_i != 0
 puts 'failed to login - #{ss.error.description}'
 else
 @session_id = ss['id']
 uid = client.get_user_id(session_id)
 end
end

This login method accesses parameters that have been set for the source as attributes

of the @source variable. The @source variable has several attributes that are stored on

the RhoSync server for each user for each app.

When accessing the session, it is recommended that you use the same instance variable

across all source adapters. In this example, you should use the @session_id variable to

access the state of the current session in subsequent source adapter methods.

Note that writing such a login method in your source adapter class does not manage

authentication of the user with the RhoSync server. The source adapter login method

merely performs the oft-required first step when interacting with a web service. RhoSync

requires that every client authenticate to allow them to use the RhoSync server.

There is also a current_user method you can use: current_user.login returns the current

username that was passed to authenticate.

Should you need to terminate the session with the back end, create a custom logoff

method. Often this is not required, since many web services simply timeout. This

CHAPTER 7: RhoSync 117

method would most typically be used in the event that the application allowed an end

user to log out for security reasons or to manage multiple identities.

Retrieving Data: Query and Sync
To populate data to your device, you’ll need to implement a query method in your

source adapter. The sync code then dissects the query results.

Query
Whether your web service uses SOAP, JSON, XML, or any other protocol or data format

(including direct access to a database), Ruby offers a wide assortment of standard and

third-party libraries that you can use to easily integrate with any kind of web service or

data source.

Imagine a simple back-end application where the web services are published as REST

interfaces and return JSON. A sample query method to interact with this simple product

catalog web service will retrieve all products in a JSON request. A sample result is given

in Listing 7–4.

Listing 7–4. JSON response returned from back end

[
 {
 "product":
 {
 "name": "inner tube", "brand": "Michelin", "price": "535",
 "quantity": "142", "id": 27, "sku": "it-931",
 "updated_at": "2010-03-25T08:41:03Z"
 }
 },
 {
 "product":
 {
 "name": "tire", "brand": "Michelin", "price": "4525",
 "quantity": "14", "id": 29, "sku": "t-014",
 "updated_at": "2010-03-25T08:41:03Z"
 }
 },
 {
 "product":
 {
 "name": "wheel", "brand": "Campagnolo", "price": "4525",
 "quantity": "8", "id": 31, "sku": "w-422",
 "updated_at": "2010-03-25T08:41:03Z"
 }
 }
]

In the Ruby language, a simple way to make web requests using the REST pattern is to

use the “rest-client” standard library and, likewise, JSON can be parsed with the ‘json’

CHAPTER 7: RhoSync 118

library (see Listing 7–5). These dependencies must be explicitly specified with the Ruby

“require” command at the top of the file. (This would be true of any Ruby application.)

Listing 7–5. Source adapter class with query implementation
require 'json'
require 'rest-client'

class Product < SourceAdapter
 def initialize(source,credential)
 @base = 'http://rhostore.heroku.com/products'
 super(source,credential)
 end

 def login
 end

 def query
 parsed=JSON.parse(RestClient.get("#{@base}.json").body)

 @result={}
 if parsed
 parsed.each do |item|
 key = item["product"]["id"].to_s
 @result[key]=item["product"]
 end
 end
 end

 def sync
 super
 # this creates object value triples from an @result variable
 # containing a hash of hashes
 end
end

The first part of the query method fetches the data from the web service and parses the

result into an interim format (stored in the variable “parsed”). The code then loops

through the items returned from the query, and creates name-value pair objects in the

format expected by the RhoSync server.

The RhoSync server expects the query method to return data by populating the @result

instance variable. In this example, as is typical, @result is returned as a hash of hashes,

indexed using each product’s id obtained from the JSON returned from the web service.

Each hash key in the inner hash represents an attribute of an individual object. All data

types must be strings; therefore, the hash values, including the product id numbers in

this example, need to be strings rather than integers. (This is accomplished by calling

to_s, which converts any Ruby object to a string.) The response to the client is formatted

as shown in Listing 7–6.

Listing 7–6. Result format returned to client device
 {
 "27"=> {"name"=>"inner tube","brand"=>"Michelin"} ,
 "29"=> {"name"=>"tire","brand"=>"Michelin"},
 "31"=> {"name"=>"wheel","brand"=>"Campagnolo"}
 }

CHAPTER 7: RhoSync 119

Sync
The sync code dissects the query results and puts them into the RhoSync data store. If

you populate @result with a multidimensional hash as was illustrated in the previous

example, you can avoid this task and use the default sync method (see Listing 7–7).

Listing 7–7. Default sync method

def sync
 super
 end

However, if you have a very large volume of data (hundreds of thousands of records),

populating @result as a hash of hashes would add too much time and memory

consumption. In those cases, using the “stash_result” function in your query method will

take the current @result and incrementally stash it in RhoSync’s data store. Then when

sync is called, all of the stashed data will be stored in RhoSync’s data store master

document.

Submitting Data: Create, Update, and Delete
To send information from your device to the back-end system, you’ll need to write code

for create, update, and delete methods in your source adapter (though you don’t have to

implement all of them if your app doesn’t require it).

Create
In the create method, you can assume that you will receive an object in the form of a

hash of name-value pairs. The default name assigned to this argument is “create_hash,”

although since this is just the name of the argument to the method, you can feel free to

assign any name to the argument in your implementation.

In an inventory-tracking application, the hash returned from the client for a new record

might resemble Listing 7–8.

Listing 7–8. Create parameter format

{"sku"=>"999","name"=>"tire", "brand"=>"Michelin", "price"=>"$49"}

The create method needs to make use of the data in this parameter to do its work.

Listing 7–9 shows an example of a create method that posts to

http://rhostore.heroku.com/rhostore/products (defined as the instance variable

@base in the beginning of the previous example). The rhostore web service is a Rails

application, where the create takes parameters like: product[brand] = Michelin. Note

that this example continues to use the RestClient Ruby library, assuming that the

dependency was declared with a “require” statement with the previous example. You

need to return the ID of the newly created object from your create call.

CHAPTER 7: RhoSync 120

Listing 7–9. Source adapter create method

def create(create_hash, blob=nil)
 result = RestClient.post(@base,:product => create_hash)

 # after create we are redirected to the new record.
 # The URL of the new record is given in the location header
 location = "#{result.headers[:location]}.json"

 # We need to get the id of that record and return it as part of create
 # so rhosync can establish a link from its temporary object on the
 # client to this newly created object on the server

 new_record = RestClient.get(location).body
 JSON.parse(new_record)["product"]["id"].to_s
end

Update
To allow editing an object from the client, include an update method in your source

adapter (Listing 7–10). This method will receive a similar hash of attribute values

discussed previously in the Create section. For updated records, the “update_hash”

parameter contains the updated values for the specified object, which can be identified

by retrieving the value of the attribute named “id.” Use this method to invoke the

backend system to perform the update. The rhostore web service expects an http put

action with a hash passed that has a single item with the name “product” and the value

of a hash containing attribute values to modify.

Listing 7–10. Update method

def update(update_hash)
 obj_id = update_hash ['id']
 update_hash.delete('id')
 RestClient.put("#{@base}/#{obj_id}",:product => update_hash)
end

Delete
To allow users to delete objects from the back end, include a delete method in your

source adapter. This method receives the id of the object to delete. The delete method

can then instruct the back-end system to delete the object. In this example, the rhostore

API deletes the object when an http delete action is sent to a specific URL that includes

the object id.

Listing 7–11. Update and Delete Method

def delete(object_id)
 RestClient.delete("#{@base}/#{object_id}")
end

CHAPTER 7: RhoSync 121

User Authentication
The RhoSync server requires every device to authenticate with the server, but that

doesn’t require authentication with your back end. If your back-end services require

authentication, you write your authentication code in a file called application.rb, which is

at the root of your server app directory.

The authenticate method receives the login and password strings from the device, and a

reference to the client server session object. Note that the session isn’t encrypted, and

is sent between the client/server, so it shouldn’t include sensitive information. Instead,

the Store interface can store sensitive info server-side.

Listing 7–12. Authentication example

class Application < Rhosync::Base
 class << self
 def authenticate(username,password,session)
 true # do some interesting authentication here...
 end

 # Add hooks for application startup here
 # Don't forget to call super at the end!
 def initializer(path)
 super
 end

 # Calling super here returns rack tempfile path:
 # i.e. /var/folders/J4/J4wGJ-r6H7S313GEZ-Xx5E+++TI
 # Note: This tempfile is removed when server stops or crashes...
 # See http://rack.rubyforge.org/doc/Multipart.html for more info
 #
 # Override this by creating a copy of the file somewhere
 # and returning the path to that file (then don't call super!):
 # i.e. /mnt/myimages/soccer.png
 def store_blob(blob)
 super #=> returns blob[:tempfile]
 end
 end
end

Application.initializer(ROOT_PATH)

When the authenticate method is called, it should return true or false (nil evaluates to

false in Ruby, so that is also acceptable) to indicate if this user should be allowed to log

in to RhoSync. If a user does not exist on the RhoSync server, but authenticate returns

true, a new RhoSync user with that login is created. However, although user

authentication is delegated to the back end, authorization to access restricted data will

require some user data to be stored on the RhoSync server. In order to associate data

with an account, the username (but not the password) will be saved in the RhoSync data

store.

If you want to store additional data about the user, you can put and get data in the

RhoSync data store using the user’s login as a key. See Listing 7–13 for an example.

CHAPTER 7: RhoSync 122

Listing 7–13. Storing and retrieving user data

Store.put_value("#{current_user.login}:preferences","something")

my_pref = Store.get_value("#{current_user.login}:preferences")

Product Inventory Example
In this chapter, you will create an application that connects to a remote web service for

tracking inventory. People using the app will be able to view product inventory from the

device, as well as create and edit records.

You can build the example in this chapter for either RhoHub or a local RhoSync server.

First, we will guide you through building on RhoHub, then the identical application will

be illustrated using local installations of RhoSync and Rhodes.

Creating Your Application on RhoHub
RhoHub is a service hosted by Rhomobile at http://rhohub.com. It is free for open

source applications and has tiered pricing for private applications. It is great for getting

started quickly. RhoHub significantly simplifies the development and deployment

experience by providing hosting for your source adapter, which is automatically

conveniently re-deployed when you edit and save the source in the web-based IDE. It

also has a GUI wizard to generate an application and allows you to build the platforms

that Rhodes supports (Figure 7–1).

As of this writing, RhoHub is not yet running Rhodes and RhoSync 2, so the code

examples in this section do not match those detailed previously. However, it is likely that

the workflow will be similar and version 2 code changes are minor.

Figure 7–1. Rhomobile GUI wizard

CHAPTER 7: RhoSync 123

To set up an application with RhoHub, simply log in and click Create Application. For

this example, we’ll use the name “Inventory,” as shown in Figure 7–2.

Figure 7–2. Naming the application

It is important to note that your application source code will be public by default, so if

you want to keep it private, you will need to sign up for a premium account.

Fill in the fields on the Create New Object page as shown in Figure 7–3, then click

Create Object.

CHAPTER 7: RhoSync 124

Figure 7–3. Filling in the fields of the Inventory application

This generates both the code for your client application as well as the skeleton for your

source adapter (Figure 7–4).

Figure 7–4. The generated client and server code for your application

CHAPTER 7: RhoSync 125

At least one user must be subscribed to the application. This example will connect with

a user called “tester” (Figure 7–5, top screen). To create the ”tester” user, from your

account Dashboard, select the Users tab (Figure 7–5, bottom screen), and add a user

with the login and password both set to “tester.”

Figure 7–5 Connecting a user

After the user is created, you need to subscribe the user to your application. From the

Dashboard tab, select your application. Select the Settings and scroll to the bottom

where you can subscribe users. Select the check box next to the user you just created,

and click Save. Figure 7–6 shows that the user “tester” is subscribed. The fields under

CHAPTER 7: RhoSync 126

Associated Attributes for Backend Credentials only need to be filled in if they will be

used by the source adapter’s login method (as detailed in the previous Login section).

They do not need to be filled in for this application.

Figure 7–6. Subscribe user with RhoHub

Implementing Your Source Adapter
Next, you would complete the implementation of the source adapter using the online

editor, which you can see by clicking on the Editor tab and then selecting the Server
tab. The source adapter will be named the same name as the object you just created. In

the preceding example, it would be named product.rb and by selecting the file name on

the left, the code will be displayed on the right.

To follow this example, simply comment out the raise in login and add the query method

detailed earlier in the chapter.

Testing Your Source Adapter
When using RhoHub, the source adapter is automatically loaded when it is generated,

and reloaded whenever you save a change to your code.

The generated source adapter class is already easily testable. In your Editor screen,

select the Server tab, select your product.rb source adapter in the left panel, then click

Show Records (highlighted in Figure 7–7).

Figure 7–7. RhoHub Editor with Source Adapter product.rb selected.

CHAPTER 7: RhoSync 127

This will display a list of records retrieved from the web service, as illustrated in Figure 7–8.

Figure 7–8. RhoHub Show Records (with first record opened)

Creating Your Application on a Local RhoSync Server
An alternate approach to using the hosted sync on RhoHub is to deploy your own

RhoSync server application. During development, you will typically run RhoSync on your

development machine, which is effective for connecting via a simulator. However, in

production and for testing on devices, you will typically need to deploy on a server with

a host name or fixed IP that is generally available on the network.

RhoSync is typically installed as a Ruby gem. If you want to use the very latest RhoSync,

it is straightforward to run from source.1 To prepare your environment, install the

following dependencies:

� Ruby 1.8.7

� RubyGems 1.3.7 or higher

� Redis 1.2.6

� Ruby Web Server

1
 You can find additional instructions at: http://wiki.rhomobile.com/index.php/RhoSync_2.0
#Installing_RhoSync.

CHAPTER 7: RhoSync 128

� RhoSync is tested with mongrel. WEBrick, the default web server

that ships with Ruby, is known to cause problems with HTTP

headers/cookies and is not recommended.

� The Mongrel web server is installed as a Ruby gem: sudo gem
install mongrel

Download the RhoSync server from GitHub:

git clone git://github.com/rhomobile/rhosync.git

or download the tarball from www.github.com/rhomobile/rhosync

OR install the gem.2

gem install rhosync

You will also need the rRby gem “rake.”

gem install rake
rake db:create
rake db:bootstrap

Generate the RhoSync Application
To use the RhoSync server, we need to generate an application. To generate the

skeleton of a source adapter on your local RhoSync server, type the command “rhogen

source product,” which will create a file called product.rb in the RhoSync application’s

sources subdirectory along with a spec file product_spec.rb in the spec/sources/
subdirectory. Source adapters are loaded from the rhosync/lib directory or

rhosync/vendor/sync (or a first-level subdirectory). Listing 7–14 shows the creation of the

source adapter from the command line.

Listing 7–14. Generating a RhoSync application

$ rhosync app storemanager-server
Generating with app generator:
 [ADDED] storemanager-server/config.ru
 [ADDED] storemanager-server/settings/settings.yml
 [ADDED] storemanager-server/settings/license.key
 [ADDED] storemanager-server/application.rb
 [ADDED] storemanager-server/Rakefile
 [ADDED] storemanager-server/spec/spec_helper.rb
$ cd storemanager-server/
$rhosync source product
Generating with source generator:
 [ADDED] sources/product.rb
 [ADDED] spec/sources/product_spec.rb

2 As of this writing, Rhodes 2.0 is in beta. To install the beta version: [sudo] gem install rhosync --pre

CHAPTER 7: RhoSync 129

Setting up RhoSync Server
The first time you run the server, you will need to run the following steps (within the

application directory that you generated previously).

On Mac and Linux:

[sudo] rake dtach:install

On all platforms:

[sudo] rake redis:install

Start Redis:

rake redis:start

Start your RhoSync server:

rake rhosync:start

If everything went well, you should see something like the following output on your

console:

[07:01:15 PM 2010-05-04] Rhosync Server v2.0.0.beta7 started... [07:01:15 PM 2010-05-04]
** [07:01:15 PM 2010-05-04]
WARNING: Change the session secret in config.ru from <changeme> to something secure.
[07:01:15 PM 2010-05-04] i.e. running `rake secret` in a rails app will generate a
secret you could use. [07:01:15 PM 2010-05-04]
**

The RhoSync server has a web console that you can access at http://localhost:9292, or

use the command-line shortcut:

rake rhosync:web

Testing Your Source Adapter
If you are running your own RhoSync server, then you will need to restart the server

when you update a source adapter or authentication code in application.rb. Once you

have done this, you can generate the application shown in Listing 7–15.

First, create an application that has a product model with the following attributes:

brand,name,price,quantity,sku

Listing 7–15. Client application code

$ rhogen app inventory_app
Generating with app generator:
 [ADDED] inventory_app/rhoconfig.txt
 [ADDED] inventory_app/build.yml
 [ADDED] inventory_app/app/application.rb
 [ADDED] inventory_app/app/index.erb
 [ADDED] inventory_app/app/layout.erb
 [ADDED] inventory_app/app/loading.html
 [ADDED] inventory_app/Rakefile
 [ADDED] inventory_app/app/helpers
 [ADDED] inventory_app/icon

CHAPTER 7: RhoSync 130

 [ADDED] inventory_app/app/Settings
 [ADDED] inventory_app/public

$ cd inventory_app/

$ rhogen model product brand,name,price,quantity,sku
Generating with model generator:
 [ADDED] app/Product/config.rb
 [ADDED] app/Product/index.erb
 [ADDED] app/Product/edit.erb
 [ADDED] app/Product/new.erb
 [ADDED] app/Product/show.erb
 [ADDED] app/Product/controller.rb

Debugging RhoSync Source Adapters
The statement “puts @result.inspect” is an example of a debugging technique

commonly used when building Rhodes applications. Here, puts is used to inspect the

structure of the hash before returning from the method. If you are running your application

using your own RhoSync server, the output goes to regular standard output. There is no

built-in support for file logging, but you can create any logging you like in Ruby.

If you are new to Ruby, there is one catch with the use of puts as a debugging

technique: never use puts on the last line of your method. The puts method outputs your

data to the screen, but will return nil from the method, so when debugging your

application, always make sure to have the value you wish to return as the last line

executed within your method.

In RhoHub, you can view this output in the console.

Testing Your Application
Once your source adapter has been set up on the RhoSync server, you can try out the

application in the device simulator of your choice.

In the default scaffold-generated app, the user login is performed from the Options menu,

Login screen. Sync will be triggered automatically after login.

131

131

 Chapter

PhoneGap
PhoneGap (http://phonegap.com/) is an open source framework for building native

mobile applications using HTML, CSS, and Javascript for iPhone, Android, BlackBerry,

Palm webOS, and Symbian WRT (Nokia). PhoneGap is a perfect for transforming a

mobile web application to a native application. It is easy to use for web developers. In

order to use PhoneGap, a web developer will need to learn how to build using one or

more device SDKs and tools, but all the application code can be HTML, CSS, and

JavaScript. In fact, a developer must be fairly expert in JavaScript to take advantage of

this platform. Depending on the perspective of the developer, it is a benefit or a

drawback that it provides little in the way of design patterns for mobile applications. It

will not help you with an application that works off-line, which means it is possible on

Android and iPhone with Webkit’s Web Storage support,1 but not on BlackBerry (as of

this writing).

PhoneGap provides a rich collection of client-side JavaScript APIs with a method for

hosting your web application within a native mobile application. PhoneGap is a

sponsored project of Nitobi (http://nitobi.com), a software consultancy headquartered

in Vancouver BC. The framework started in 2008, and is free to use under an MIT

license.

The key advantage of creating a native mobile application with PhoneGap is that you

can drop in a mobile web application and build it into a native application that an end

user may install (or purchase). As a native application, it can access certain capabilities

not available from a web application, such as access to contacts data, geolocation,

camera, and accelerometer using PhoneGap’s JavaScript APIs.

To create a native application with PhoneGap, you start by writing a mobile web

application using HTML, CSS, and Javascript using whatever tools you are most

comfortable with. PhoneGap does not require your application to conform to any

1 The Web Storage spec is still in working draft (and now considered separate from HTML 5

by the World Wide Web Consortium (W3C). It has been implemented already by many

browsers including Android and iPhone mobile WebKit browsers. For more information, see:
http://dev.w3.org/html5/webstorage/.

8

CHAPTER 8: PhoneGap 132

particular structure, nor does it provide any specific guidance about how to create your

app. If you already have an existing mobile web application, you may be able to easily

convert it to use in PhoneGap. PhoneGap works particularly well on such platforms as

iPhone and Android that include the WebKit browser with the advanced JavaScript and

CSS of HTML 5.

In fact, PhoneGap tracks advanced features of HTML 5 and the work of standards

bodies such as the W3C Device API Group (http://www.w3.org/2009/dap/) that defines

standards for Javascript APIs for mobile phone features. PhoneGap attempts to

implement emerging APIs to interact with device services such as contacts, camera, and

so forth today and make them available as part of its framework ahead of these APIs

being available in mobile browsers. The goal of PhoneGap is to cease to exist once

mobile browsers expose these APIs. A selling point of PhoneGap is that you are not

coding to a proprietary API but instead to what may in the future turn out to be W3C

standards.

An express goal of the PhoneGap project is for the project to not exist. We
believe in the web and devices should too. The web is moving off the desktop
and into the pockets of people all over the world. Phones are the new window
to the internet and, currently, they are second class. PhoneGap aims to move
your device to a nice first class window. With a foot rest. Maybe a pillow.

—phonegap.com

Note that while PhoneGap attempts to be a non-proprietary API and tracks standards

from W3C, those standards are not fully developed. PhoneGap exists to bridge the gap

between the standard and what is required to build a real application, so it contains APIs

that diverge from the standard. This is also perhaps a reason why the PhoneGap APIs

change frequently.

PhoneGap is well-suited for anything you could do with a mobile web application. Like

all of the cross-platform frameworks that leverage the browser for UI, it is not well-suited

for applications that require intense math calculations or 3-D animations. Neither is it

well-suited for developers needing to write data-driven applications, like most enterprise

applications, that must work offline using sync’d local data. PhoneGap does not provide

specific database support and relies on HTML5 database APIs for persistence, which

are not widely available.

The key benefit of being able to package and distribute your mobile web application is

that you have a marketplace for your application, such as the Apple App Store, Nokia’s

OV Store, or Blackberry App World. Your application will then have screen real-estate

wherever the phone installs applications and users can typically configure their phone to

display the application for quick access.

When running inside PhoneGap, your application can access certain devices capabilities

from JavaScript that are not otherwise available to web apps. The PhoneGap API

provides access to the following device capabilities:

CHAPTER 8: PhoneGap 133

� Geolocation

� Contacts

� Vibration

� Accelerometer

� Camera

� Sound playback

� Device information

� Click to call

For a complete list of device capabilities (which differ across platform), see

http://wiki.phonegap.com/Roadmap. Some capabilities, such as orientation, recording

audio, and maps are available on only one or two platforms.

Nitobi also provides a JavaScript library optimized for mobilize devices similar to jQuery

called XUI (http://xuijs.com). XUI is much faster and lighter-weight than jQuery but has

only a subset of the functionality.

There are a large number of PhoneGap applications at the Apple App Store:
http://phonegap.com/projects.

Getting Started with PhoneGap
In this chapter, we will build a sample application for iPhone, Android, and BlackBerry.

PhoneGap also supports Symbian and Palm webOS, but we will not cover those in this

chapter. You need to download and install the SDKs for whichever platforms you want

to develop for. If you are going to follow along for iPhone, you need to download and

install the iPhone SDK and sign up for the Apple iPhone developer program. The free

version will allow you to test your application in the simulator. (For details on how to

build for the iPhone device, see Chapter 2.) If you are developing for BlackBerry, you

need to install BlackBerry SDK, as well as Eclipse and several plug-ins—Phonegap

documents these in detail at http://phonegap.pbworks.com/Getting-Started-with-
PhoneGap-%28BlackBerry%29, or see Chapter 4. As with iPhone, BlackBerry development

is free with preview in the simulator, but you need to sign up and purchase keys to build

on the device. If you want to develop for Android, you will need to download the latest

Android SDK at http://www.android.com/ (see Chapter 3).

The PhoneGap project is separated into native projects for each device that you will

compile using the native toolkits for each device. Download the PhoneGap source from

http://phonegap.com/download or http://github.com/phonegap. If you want to easily

stay up-to-date with the latest releases, you can download the source using git. The

PhoneGap source code is not large and fairly transparent to read over. PhoneGap

maintains a wiki at http://phonegap.pbworks.com/.

Because PhoneGap is still in pre-release (at version 0.9.1 as of this writing), the authors

have found it most effective to keep the code up-to-date using git. Note that the git

CHAPTER 8: PhoneGap 134

repository uses submodules, so there are extra steps to get all of the source. As noted

in the readme, use the commands from Listing 8–1 in your terminal or at a command line

(with git installed) to access the PhoneGap source.

Listing 8–1. Downloading PhoneGap Source Using git

git clone git://github.com/phonegap/phonegap.git
 cd phonegap/
 git submodule init
 git submodule update

Sample Application
PhoneGap includes a system sample application that shows some of the basic device

capabilities of the framework. We will use this to also verify that we have everything

installed to build correctly.

PhoneGap iPhone
To develop for iPhone, you will need a Mac OS X computer. PhoneGapLib is a static

library that enables users to include PhoneGap in their iPhone application projects, and

also create new PhoneGap-based iPhone application projects through an Xcode project

template. Xcode is Apple’s development environment for Mac OS X and iPhone that

comes included with the iPhone SDK.

First you need to build and install the Installer Package:

1. Download phonegap-iphone source.

2. Launch Terminal.app.

3. Navigate to the folder where the Makefile is (in git repository, this is

phonegap/iphone).

4. Type “make”, then press Enter. If you see: “Warning: “Require Admin

Authorization” is recommended but not enabled. Installation may fail.”,

you can safely ignore this warning.

5. The make command should build PhoneGapLibInstaller.pkg into this

folder. Make sure XCode is not running. Launch

PhoneGapLibInstaller.pkg to run the PhoneGap installer, which installs

PhoneGapLib and the PhoneGap Xcode Template.

Then create a PhoneGap project:

1. Launch Xcode, then under the File menu, select New Project.

2. Navigate to the User Templates section, select PhoneGap, then in the

right pane, select PhoneGap-based Application.

CHAPTER 8: PhoneGap 135

3. Select the Choose button, name your project, and choose the location

where you want the new project to be.

4. To build your own application instead of the system sample, simply

replace the contents of the www folder with your web application HTML

and assets. We will cover this in the next section.

5. Select Simulator as the target, and then Build and Run. See Figures 8–1 and 8–2.

Figure 8–1. PhoneGap project loaded in XCode

Figure 8–2. PhoneGap system sample application running in iPhone Simulator

CHAPTER 8: PhoneGap 136

Android
For Android, you need to install the Android SDK and Eclipse plus the Android

Development Tools (ADT) development plug-in for the Eclipse. ADT extends the

capabilities of Eclipse to let you build Android projects and export signed (or unsigned)

APKs in order to distribute your application.

PhoneGap includes an Eclipse project in the Android directory. From your Eclipse

workspace choose File ➤ Import.... Select General, Existing Project into Workspace and select

your phonegap/android directory.

Next, right-click over the project and select Android Tools ➤ Fix Project Properties.

Next, select Build and Run as Android Application. You will need to create an android

virtual machine, aka AVD, the first time you run. See Figures 8–3 and 8–4.

Figure 8–3. PhoneGap Project loaded into Eclipse

CHAPTER 8: PhoneGap 137

Figure 8–4. PhoneGap running in Android 1.6 Simulator

BlackBerry
To develop for BlackBerry, you will need a Windows PC. Refer to the PhoneGap wiki for

detailed installation and setup instructions: http://phonegap.pbworks.com/
Getting+Started+with+PhoneGap+(BlackBerry).

Download and install Eclipse 3.4 or 3.4.1. You will need to install the BlackBerry JDE

Plug-in for Eclipse, and the Eclipse Software Update for the BlackBerry JDE v4.6.1

Component Pack to allow you to develop BlackBerry apps in Eclipse. You can

download these from the BlackBerry Developers site.

Create a PhoneGap project with Eclipse as follows:

1. Launch Eclipse, go to File ➤ Import ➤ Existing BlackBerry project.

2. Navigate over to where you downloaded the phonegap-blackberry

source code, and point it to the phonegap.jdp file located in

blackberry/framework/.

3. Before running, right-click on project root and make sure Activate for
BlackBerry is checked.

4. Run or debug from Eclipse as desired.

CHAPTER 8: PhoneGap 138

PhoneGap Simulator
You can also test your application in a cross-platform (Windows, Mac, and so forth)

PhoneGap simulator written in Adobe Air. You can find the simulator at

http://phonegap.com/download.The simulator uses the WebKit browser that is built into

Adobe Air to run your application. Start the simulator and choose your starting

index.html file or equivalent. This is very helpful since the build and test process can be

very time-consuming using the native device SDKs.

You must always test using the device simulator and the real device for full compatibility

verification; however, using the PhoneGap simulator for parts of your development cycle

will speed up the process. See Figures 8–5 and 8–6.

Figure 8–5. PhoneGap Simulator Control Panel

CHAPTER 8: PhoneGap 139

Figure 8–6. PhoneGap running in PhoneGap Simulator with BlackBerry Skin

Writing Hello World in PhoneGap
Now that you have built the sample application to verify that you have installed

PhoneGap correctly, you can build your own application. You start by deleting (or

setting aside) the default index.html in the /www folder, as we will be replacing it in this

example. The index.html file is the entry point for your application. Any code, HTML

layout, or images used by your application must be loaded or linked to by this file.

As of this writing (PhoneGap 0.9), the www folder is in a different location for each

platform supported by PhoneGap. See Table 8–1 for platform-specific locations (or, on

the command line, type: “find . | grep www”).

CHAPTER 8: PhoneGap 140

Table 8–1. Where to Put Your Application Files by Platform

Platform Where to Put Your Application Files

iPhone /iphone/PhoneGap-based Application/www

Android /android/framework/assets/www

BlackBerry /blackberry/framework/src/www

Windows Mobile /winmo/www

Symbian /symbian.wrt/framework/www

Palm /palm/framework/www

Edit the www/index.html so that it contains only the lines in Listing 8–2, then build and

run it in the simulator. See Figure 8–7 to see how it looks in the iPhone simulator. You

can see that it is a simple rendering of the index.html web page.

Listing 8–2. Hello World code

<html>
 <h1>Hello World</h1>
</html>

Figure 8–7. Hello World running in an iPhone Simulator

CHAPTER 8: PhoneGap 141

Writing a PhoneGap Application
PhoneGap is completely unstructured. It does not require you to organize your

application in any particular way. To start writing your mobile app, it is easiest to begin

by writing a web application using whatever tools you are familiar with. In this example,

we will write a simple tip calculator and restaurant bill-splitting application. This is a

single-page application that uses JavaScript to change the contents of the page based

on user interaction.

The code for our sample application is shown in Listing 8–3. This was first written and

tested on the desktop using Firefox and Safari. Another advantage of writing this first for

a desktop browser is that you can use JavaScript debugging tools such as Firebug or

the Safari developer tools to get your programming logic correct. The Safari desktop

browser is very close in functionality to the WebKit mobile browsers on iPhone and

Android. This version of the application uses jQuery, which is compatible with iOS and

Android, but does not work on BlackBerry (more detail on BlackBerry to come). The key

take-away here is that this could be any mobile web application. The example in this

chapter is provided to help illustrate that fact, and to demonstrate how to build a custom

application across platforms–the actual code is not particularly important.

Listing 8–3. Code for the Simple Tip Calculator Application for WebKit

<html>
<head>
 <script src="jquery-1.3.2.min.js" type="text/javascript" charset=�
"utf-8"></script>
 <script>

 $(document).ready(function() {
 $("#amount").focus();
 $("#click").click(function(){$('form')[0].reset();});
 $("#split_form").submit(function(){
 console.log($("#amount").val(), $("#gratuity").val(),�
 $("#num_diners").val());
 var result = $("#amount").val() * $("#gratuity").val()�
 / $("#num_diners").val();
 $("#result").text("$"+result.toFixed(2));
 return false;
 });
 });
 </script>

</head>
<body>
 <div id="index">
 <h1>Tip Calculator and Bill Splitter</h1>
 <form action="#" id="split_form">
 <p><label>Amount</label><input type="text" name="amount"�
 id="amount"></p>
 <p><label># Diners</label><input type="text" name="num_diners"�
 id="num_diners" value="1"></p>
 <p>
 <label>Gratuity</label>
 <select id="gratuity" name="gratuity">

CHAPTER 8: PhoneGap 142

 <option value="1.0">None</option>
 <option value="1.10">10%</option>
 <option value="1.15" selected="1.15">15%</option>
 <option value="1.18">18%</option>
 <option value="1.20">20%</option>
 </select>
 </p>
 <p></p>
 <p><input type="submit" value="Calc"></p>
 <p>Clear</p>
 </form>
 </div>
</body>
</html>

To mobilize this application, simply delete the existing contents of the PhoneGap

iphone/www directory and copy the index.html and jquery.js files to that directory.

Choose Build and Run. Note: we chose to use jQuery here only because it made the

JavaScript simpler. It is absolutely not required, and in fact, does not work on some

mobile browsers (like BlackBerry). See Figures 8–8 and 8–9.

Figure 8–8. Tip calculator code in PhoneGap XCode project

CHAPTER 8: PhoneGap 143

Figure 8–9. Tip calculator running inside iPhone Simulator

To build this application for Android, copy the same index.html and jquery.js into the

PhoneGap android/assets/www directory. Then run as Android Application. See Figure 8–10.

Figure 8–10. Tip calculator code in PhoneGap Eclipse project for Android

CHAPTER 8: PhoneGap 144

You can see that the application looks and functions identically off a single code base

on both platforms.

For BlackBerry, the application needs to be modified not to use jQTouch. As detailed in

Chapter 14, the BlackBerry browser supports limited JavaScript capabilities. Listing 8–4

shows a modified application that runs on BlackBerry (as shown in Figures 8–11 and 8–

12). To create this application, copy the code into

phonegap/blackberry/framework/src/www/ and then build the project in Eclipse as

detailed previously.

Listing 8–4. Code for the Simple Tip Calculator Application for BlackBerry

<html>
<head>
 <script>

 window.onload = function() {
 document.getElementById("amount").focus();
 document.getElementById("clear").addEventListener('click',�
 function(event){document.forms[0].reset();}, false);

 document.getElementById("split_form").addEventListener�
('submit', function(event){

 try {
 var result = document.getElementById("amount").value *
 document.getElementById("gratuity").value /�
 document.getElementById("num_diners").value;
 document.getElementById('result').value=�
"$"+result.toFixed(2);
 } catch(err)
 {
 txt="There was an error on this page.\n\n";
 txt+="Error description:\n\n" + err.message + "\n\n";
 txt+="Click OK to continue.\n\n";
 alert(txt);
 }

 return false;
 }, false);
 };
 </script>

</head>
<body>
 <div id="index">
 <h1>Tip Calculator and Bill Splitter</h1>
 <form action="#" id="split_form">
 <p><label>Amount</label><input type="text" name="amount"�
 id="amount"></p>
 <p><label># Diners</label><input type="text" name="num_diners"�
 id="num_diners" value="1"></p>
 <p>
 <label>Gratuity</label>
 <select id="gratuity" name="gratuity">
 <option value="1.0">None</option>

CHAPTER 8: PhoneGap 145

 <option value="1.10">10%</option>
 <option value="1.15" selected="1.15">15%</option>
 <option value="1.18">18%</option>
 <option value="1.20">20%</option>
 </select>
 </p>
 <p><input type="text" name="result" id="result"></p>
 <p><input type="submit" value="Calc"></p>
 <p>Clear</p>
 </form>
 </div>
</body>
</html>

Figure 8–11. Tip calculator in PhoneGap BlackBerry

CHAPTER 8: PhoneGap 146

Figure 8–12. Tip calculator in PhoneGap Simulator

Contacts Example
For the next example, we will demonstrate using native device APIs that are made

available by PhoneGap. Smartphones all have a built-in Personal Information

Management (PIM) contacts applications that allows users to store phone numbers and

addresses. Smartphone platforms allow applications to access those contacts through

APIs that differ per platform, but generally offer the same capabilities.

In this section, we will step through writing a PhoneGap application that will allow you to

show and edit native PIM contacts using PhoneGap’s APIs on iPhone. This example

also uses jQTouch for styling and, because of that, will only work on the iPhone. Please

refer to Chapter 12 for more information about jQTouch. Note that the PIM contacts

APIs will work on any platform, but it is typical to style applications differently per

platform. PhoneGap does not provide any infrastructure to facilitate sharing code across

platforms; however, you can use standard mobile web techniques to support the range

of platforms you are targeting.

Create a new PhoneGap iPhone project using the steps from the previous examples.

Name the project pg_contacts. The complete source code to the completed application

is available online at: http://github.com/VGraupera/PhoneGap-Contacts-Sample.

Replace the generated index.html file in the www directory with the following:

<!doctype html>
<html>
 <head>
 <script src="jqtouch/jquery.1.3.2.min.js" type="text/javascript" charset=�

CHAPTER 8: PhoneGap 147

"utf-8"></script>
 <script src="jqtouch/jqtouch.js" type="text/javascript" charset="utf-8"></script>
 <link rel="stylesheet" href="jqtouch/jqtouch.css" type="text/css" media=�
"screen" title="no title" charset="utf-8">
 <link rel="stylesheet" href="themes/apple/theme.css" type="text/css" media=�
"screen" title="no title" charset="utf-8">

 <script type="text/javascript" charset="utf-8" src="phonegap.js"></script>

 <script type="text/javascript">
// initialize jQTouch with defaults
 var jQT = $.jQTouch();

 function getContacts(){
 var fail = function(){};
 var options = {pageSize:10};
 var nameFilter = $("#some_name").val();
 if (nameFilter) {
 options.nameFilter = nameFilter;
 }
 navigator.contacts.getAllContacts(getContacts_callback, fail, options);
 };

 function getContacts_callback(contactsArray)
 {
 var ul = $('#contacts');
 // remove any existing data as we resuse this function to update contact list
 ul.find("li").remove();

 for (var i = 0; i < contactsArray.length; i++) {
 var contact = contactsArray[i];
 var li = $(""+contact.name+'');
 li.find('a').bind('click', function(e) {showContact(contact.recordID);});
 ul.append(li);
 }
 };

 function showContact(contactId)
 {
 var options = { allowsEditing: true };
 navigator.contacts.displayContact(contactId, null, options);
 $('a').removeClass('loading active');
 return false;
 }

 function submitForm() {
 var contact = {};

 contact.firstName = $('#first_name').val();
 contact.lastName = $('#last_name').val();

 navigator.contacts.newContact(contact, getContacts, {
 'gui': false
 });

 jQT.goBack();
 $('#add form').reset();

CHAPTER 8: PhoneGap 148

 return false;
 };

 function preventBehavior(e) {
 e.preventDefault();
 };

 PhoneGap.addConstructor(function(){
 // show initial data
 getContacts();

 // hook the add form
 $('#add form').submit(submitForm);
 $('#add .whiteButton').click(submitForm);

 $("#some_name").keyup(getContacts);

 document.addEventListener("touchmove", preventBehavior, false);
 });

 </script>
 </head>
 <body>
 <div id="home">
 <div class="toolbar">
 <h1>Contacts</h1>
 +
 </div>
 <ul class="edit rounded">
 <input type="search" name="search" placeholder="Search" id="some_name"�
 style="border:none; margin:0; padding:0;font-size:16px;"/>

 <ul id="contacts" class="edgetoedge">

 </div>
 <div id="add">
 <form>
 <div class="toolbar">
 <h1>New Contact</h1>
 Cancel
 </div>
 <ul class="edit rounded">
 <input type="text" name="first_name" placeholder="First Name"�
 id="first_name" />
 <input type="text" name="last_name" placeholder="Last Name"�
 id="last_name" />
 <input type="text" name="email_address" placeholder="Email Address"�
 id="email_address" type="email" />
 <input type="text" name="business_number" placeholder="Business�
 Number" id="business_number" type="tel" />

 Add
 </form>
 </div>
 </body>
</html>

CHAPTER 8: PhoneGap 149

Contact Example Code Explained
We began the example by including jQuery and jQTouch JavaScript libraries and CSS.

We used these for convenience and style, but they are not absolutely required. However,

the phonegap.js we included is required. The following recaps what was done in the

remainder of the example:

1. We initialize the jQTouch library. Please refer to the Chapter 12 on

jQTouch for complete details.

2. We define a function called getContacts”. getContacts uses the

navigator.contacts.getAllContacts function provided by the PhoneGap

API. getAllContacts takes three arguments the last two of which are

optional. We pass in on success and on failure callback functions as the

first two arguments. Our on failure callback is a trivial function we define

inline called “fail”. Our on success callback “getContacts_callback” is

described next. Because the total number of contacts on the

smartphone can be very large, we limit the results to just ten contacts

using the pageSize option. In order to see more than just the first ten

contacts on the phone, we pass in a filter parameter in nameFilter if we

have one. The value of nameFilter comes from the some_name text

input field defined later.

3. Our getContacts_callback clears the list of contacts we have on the

screen and recreates it from the array of contacts that are passed in

from a successful return of the getAllContacts API. Using JavaScript, we

add new rows to our list of contacts and register onClick callbacks

for each so that when the user clicks any one of them, showContact will

be called for that record ID.

4. showContact uses the navigator.contacts.displayContact API provided

by PhoneGap to natively show a contact record. We do not need to

create any HTML forms for this. Nice!

5. We define submitForm. This function will be called when we create a

new contact and uses the navigator.contacts.newContact API provided

by PhoneGap. This function reads the values from our new contact form

defined later and also resets the form when we are done.

6. Finally, we call PhoneGap.addConstructor, which adds our initialization

function to a queue that ensures it will run and initialize only once

PhoneGap has been initialized. Within our initialization function, we get

the list of contacts (by default, the first 10) and register handlers for our

new contact form search box (see Figure 8–13) described later.

7. Our HTML markup consists of two major parts. The first DIV with

id="home" shows the list of contacts. There is a button to add a new

CHAPTER 8: PhoneGap 150

contact, and a search box to trigger refreshing the list of contacts based

on what is entered in the box. We bind to the onKeyUp event in the

search box so that our search is run live as the user types. The second

DIV is a form that is used to enter new contacts. We only include some

basic fields here in the example.

Figure 8–13. The Contacts example code in action

Camera Example
In this section, we will step through writing an application that will allow you to take

pictures using the smartphone camera using PhoneGap APIs on iPhone.

Create a new PhoneGap iPhone project, using the steps from the previous examples.

Name the project pg_camera. The complete source code to the completed application is

available online at: http://github.com/VGraupera/PhoneGap-Photos-Sample.

Replace the generated index.html file in the www directory with the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <meta name="viewport" content="width=default-width; user-scalable=no" />
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">

 <script src="jqtouch/jquery.1.3.2.min.js" type="text/javascript" charset=�

CHAPTER 8: PhoneGap 151

"utf-8"></script>
 <script src="jqtouch/jqtouch.js" type="text/javascript" charset="utf-8"></script>
 <link rel="stylesheet" href="jqtouch/jqtouch.css" type="text/css" media="screen"�
 title="no title" charset="utf-8">
 <link rel="stylesheet" href="themes/apple/theme.css" type="text/css" media="screen"�
 title="no title" charset="utf-8">

 <script type="text/javascript" charset="utf-8" src="phonegap.js"></script>
 <script type="text/javascript" charset="utf-8">
 // initialize jQTouch with defaults
 var jQT = $.jQTouch();

function onBodyLoad()
 {
 document.addEventListener("deviceready",onDeviceReady,false);
 }

function dump_pic(data)
 {
 document.getElementById("test_img").src = "data:image/jpeg;base64," + data;
 }

 function fail() {
 alert('problem');
 };

 function takePicture() {
 navigator.camera.getPicture(dump_pic, fail, { quality: 50 });
 };

 </script>
 </head>
 <body onload="onBodyLoad()">
 <div id="home">
 <div class="toolbar">
 <h1>Pictures</h1>
 +
 </div>

 </div>
 </body>
</html>

CHAPTER 8: PhoneGap 152

Camera Example Code Explained
The code is similar but simpler than the pg_contacts example. We started by setting up

and loading the jQTouch and PhoneGap libraries. Then we define “takePicture,” which

uses the navigator.camera.getPicture API provided by PhoneGap. This will bring up the

native camera interface. You need to run this application on an actual iPhone as you

cannot test the camera in this way in the iPhone simulator. Finally, in our success

callback dump_pic, we set the src of our img tag to the inline data from the camera.

Figure 8–14 shows the end result.

Figure 8–14. The Camera example code in action

153

153

 Chapter

Titanium Mobile
This chapter will discuss how to build native applications for the iPhone and Android

using Appcelerator’s Titanium Mobile platform. Titanium is a commercially supported,

open source platform for developing native cross-platform applications using web

technologies. Source code is released under the Apache 2 license. Appcelerator, Inc.

(www.appcelerator.com/), a startup in Mountain View, CA., introduced the platform in

December 2008. Appcelerator has announced and will soon be releasing a version of

Titanium Mobile that also works for the BlackBerry.

Titanium consists of an SDK that provides the necessary tools, compilers, and APIs for

building for the target platform, and a visual environment for managing your Titanium-

based projects called Titanium Developer. Titanium Developer provides a nice visual

way to build your projects, but to edit them you will need to use your favorite source

code editor. Titanium is available for Mac, Linux and Windows. To develop for the

iPhone (or iPad), you will need to run it on Mac using the iPhone SDK. Developing for the

Android requires the Android SDK and can be done using Mac, Windows, or Linux.

The Titanium API provides a platform-independent API to access native UI components

including navigation bars, menus, dialog boxes, and alerts, and native device

functionality including the file system, sound, network, and local database. You code in

JavaScript that is compiled into native counterparts as part of the build process.

Titanium offers a free community edition that can be used to build and distribute your

applications. Developers can upgrade to the Titanium Professional Edition or the

Titanium Enterprise Edition that offers additional support and services. The Titanium

web site includes basic documentation and training videos. Developers can pay for

advanced videos and sign up for training classes on the Appcelerator web site.

Getting Started
You should start by downloading the iPhone SDK and Android SDK if you do not already

have them installed. These are not included with Titanium and you will need them to

build your application. (See Chapters 3 and 4, respectively, for details on setting up the

9

CHAPTER 9: Titanium Mobile 154

iPhone and Android. You will not need Eclipse for the Android, but the other

dependencies are the same.)

Download and install Titantium from the Appcelerator web site at

www.appcelerator.com/. Launch Titanium Developer. Titanium Developer will download

the latest Titanium SDK. You will need to sign up for a free account on the Appcelerator

Developer Center (see Figure 9–1).

Figure 9–1. Titanium Developer sign-up process

Once you have signed in, click the New Project icon at the top of the screen. Click

Project Type and select Mobile. Titanium Developer should automatically detect the

iPhone and Android SDKs that you have installed. If it doesn’t, you can point it to where

you have them installed. It will also automatically download the Titanium Mobile SDK if

you do not already have it installed.

On the following screen (Figure 9–2), fill in the Name, Application ID, Directory, and

Publisher URL fields. Titanium Developer will create your project in a subdirectory of

the directory you choose with the name of the application.

Click the Test and Package tab and then the Launch button at the base of the screen.

If everything is configured correctly, this will build your application and launch it. By

default, Titanium will generate an application with two windows that you can tab

between.

CHAPTER 9: Titanium Mobile 155

Figure 9–2. Creating a new project

Writing Hello World
To change the behavior of the sample application, open and edit the app.js file that is

found in the Resources directory of your project. Here you will replace the default

contents with something simpler shown in Listing 9–1.

Listing 9–1. Creating a new project

// this sets the background color of the master UIView (when there are no windows/tab�
 groups on it)
Titanium.UI.setBackgroundColor('#000');

var win = Titanium.UI.createWindow({backgroundColor:'#fff'});

var myLabel = Titanium.UI.createLabel({
 color:'#999',
 text:'Hello World',
 font:{fontSize:20,fontFamily:'Helvetica Neue'},
 textAlign:'center',
 width:'auto'
});

win.add(myLabel);

win.open({animated:true});

Go back to Test and Package and click Launch again. Figures 9–3 and 9–4 illustrate

how Hello World looks on iPhone and Android simulators.

CHAPTER 9: Titanium Mobile 156

Figure 9–3. iPhone Hello World

Figure 9–4. Android Hello World

CHAPTER 9: Titanium Mobile 157

Using JavaScript, you create your interface programmatically by creating containers and

UI elements as objects and then arranging and connecting them in a hierarchy.

The Titanium API is organized into modules. For example, Titanium.UI is the main

UI module responsible for native user-interface components and interaction inside

Titanium. Within Titanium.UI you will find classes for Titanium.UI.AlertDialog,

Titanium.UI.Button, etc. The iPhone/iPad specific UI capabilities are found within

the Titanium.UI.iPhone module and the Android specific UI capabilities are found

within the Titanium.UI.Android module.

A complete listing of the modules and classes in the Titanium API are available at the

Appcelerator web site. The API is quite extensive. As of version 1.3, it comprises 24

modules with 67 different objects.

Building for Device
The process for building Titanium Mobile applications for iPhone devices is very

straightforward. Download your Development Certificate and Provisioning Profile from

the Apple iPhone Provisioning Portal. You will need to enter them in the screen titled

“Run on Device.” Titanium will then build and sign your application, put it into iTunes,

and trigger a sync to install it on your device. The only caveat is that you need to do this

on a Mac that is configured to sync applications with your iPhone.

Alternately, navigate to the build/iphone subdirectory of your project and open the

.xcodeproj file. This will launch XCode and you can do Build and Run.

Titanium Mobile Device Capabilities
The Titanium platform offers access to a rich collection of native device capabilities

including:

� Vibration

� Geolocation & Mapping

� Accelerometer

� Sound

� Photo Gallery (View and Save To)

� Orientation

� Camera. This includes overlays on top of the camera view surface, and

Augmented Reality (combines Camera, forward and reverse

Geolocation)

� Screenshot

� Shake

� Record Video

CHAPTER 9: Titanium Mobile 158

� Proximity Events

� Push Notifications

These are all accessed in a platform-independent way using the Titanium SDK from

JavaScript. Moreover, the platform also includes wrappers that make it easy to integrate

Twitter, Facebook, RSS, and SOAP APIs directly into your application, plus access to

sockets, http connections, the native file system, and local database storage.

For complete examples of these device capabilities, please refer to the Titanium Mobile

Kitchen Sink Demo (http://github.com/appcelerator/KitchenSink). The Kitchen Sink

project (see Figure 9–5) includes a wide variety of the APIs available in Titanium Mobile.

Figure 9–5. The Kitchen Sink example application

Camera Example
In this example, you will build a simple full-screen application that will take a picture

using the camera. For the iPhone, you will need to test this on a real device as you

cannot test taking photos using the simulator.

Create a new Titanium Mobile project and replace the contents of app.js with the code

shown in Listing 9–2.

CHAPTER 9: Titanium Mobile 159

Listing 9–2. Camera example

var tabGroup = Titanium.UI.createTabGroup();
var winMain = Titanium.UI.createWindow({title:'Camera Example', tabBarHidden:true});
var tabMain = Titanium.UI.createTab({title:'', window:winMain});
tabGroup.addTab(tabMain);

var buttonSnap = Titanium.UI.createButton({
title:'Snap',
height:40,
width:145,
top:160,
right:10
});

winMain.rightNavButton=buttonSnap;

buttonSnap.addEventListener('click', function() {
 Titanium.Media.showCamera({

 success:function(event)
 {
 var cropRect = event.cropRect;
 var image = event.media;

 // set image view
 var imageView = Ti.UI.createImageView({top:0,�
image:event.media});
 winMain.add(imageView);
 },
 cancel:function()
 {
 },
 error:function(error)
 {
 // create alert
 var a = Titanium.UI.createAlertDialog({title:'Camera'});

 // set message
 if (error.code == Titanium.Media.NO_CAMERA)
 {
 a.setMessage('Please run this test on device');
 }
 else
 {
 a.setMessage('Unexpected error: ' + error.code);
 }

 // show alert
 a.show();
 },
 allowImageEditing:true
 });

});

tabGroup.open();

CHAPTER 9: Titanium Mobile 160

In order to get a full-screen window with a Navigation controller at the top, you need to

create a tab group and set tabBarHidden to true. Next, you add a button to the right-

hand side of navBar and an event handler for the onClick event. This handler brings up

the camera, allows you to take a picture, and then creates an image view to see it on the

screen (see Figure 9–6). The code for taking the picture is taken from the Kitchen Sink

example.

Figure 9–6. Camera example running on iPhone

1

 Part

HTML Interfaces
Chapters 10–14 provide examples of how to work with mobile HTML and CSS both with

low-level code examples (in Chapters 10 and 14) and diving into three frameworks for

creating a native look and feel for iPhone and Android.

3

163

163

 Chapter

Mobile HTML and CSS
In order to understand how to approach creating HTML and CSS to look and feel like a

native mobile interface, we first present common patterns in mobile visual and

interaction design as well as highlight specific widgets that are available on different

platforms. This chapter also presents specific HTML and CSS code for achieving

common effects on WebKit-based browsers. Because, as of this writing, BlackBerry has

such severe limitations in browser capabilities, Chapter 14 is dedicated to detailing how

to create HTML for the currently available devices. When RIM introduces its new

operating systems with a WebKit-based browser, the techniques presented in this

chapter may be helpful there as well.

Developers who are new to this approach might wonder why it is relevant to learn about

the details of building UI components in HTML and CSS when UI frameworks exist, such

as iWebKit, jQTouch, and Sencha Touch, which are presented in the following chapters.

There are three key reasons: understanding the fundamentals, size/performance, and

branding. First, it is valuable for developers to understand how these frameworks are

built in order to use them effectively. All of the frameworks and libraries discussed in this

book are open source and in active development. Sometimes the documentation lacks

detail and to understand how to achieve desired effects, you need to dive into the

source code. Secondly, when you are developing a very simple application, you may not

want to absorb the size and performance impact of a full library, in which case the

techniques presented in this chapter will help you craft a specific look and feel. Lastly,

and most importantly, the trend in visual design for mobile applications is to match the

company brand rather than the default look of the operating system. You will likely want

to modify the look of any CSS that you work with and before doing so, it is wise to

understand the fundamentals.

Platform Overview
This section details what browser is available on each platform and includes a high-level

overview of the capabilities and limitations of the platforms.

10

CHAPTER 10: Mobile HTML and CSS 164

iOS for iPhone, iPad, iPod Touch
The iOS operating system (for iPhone, iPad, and iPod Touch devices) includes a mobile

WebKit-based native browser, which is also available as a UIWebView component that

may be embedded in applications. The embedded browser component is as fully

featured as the stand-alone browser application. As far as mobile browsers, iOS has one

of the most robust browsers with a well-developed CSS3 implementation that allows

you to create visual elements that appear like native UI, often without needing to embed

graphic images.

The iOS WebKit mobile browser displays web pages in a “view port” of fixed

dimensions. You can imagine a view port to be like a window that lets you see into the

application. You can touch the window and move what’s underneath in and out of view.

The browser does this by first rendering the complete web page, then allowing you to

move the page up and down under the view port. This is similar to a desktop browser (if

you were to ignore the resize control), but the rendering of zooming and panning is

much smoother because they are such common operations on the touch devices.

The browser component also offers sophisticated text detection algorithms allowing it to

recognize phone numbers, addresses, events, tracking numbers, and e-mail addresses.

Other ways to achieve similar functionality would be to add special attributes to the

beginning of the href attribute of your link tags (such as mailto: and sms:). The browser

will also redirect links to Google Maps and YouTube to their corresponding native

applications on the device.

All iPhone devices include a high-resolution touch screen and accelerometer. The new

iPhone 4 also adds a gyroscope and retina display, not seen in previous generations.

The uniformity of the devices makes it easy to create and test application UI.

Android
The Android operating system also includes a WebKit-based browser and a WebView

component, which may be embedded in applications as a fully featured browser

component. Android’s WebKit-based mobile browser has many of the same features as

the iOS mobile browser. It isn’t as robust as the Apple implementation and has even less

of a CSS2 implementation, but is still a far superior browser when compared to

BlackBerry and Windows Mobile.

Such companies as HTC, Motorola, and Google each have devices in the market, most

with varying hardware capabilities. This makes it difficult to develop applications that

work on Android-based phones. These compatibility issues don’t just affect the phone

from a hardware perspective; they affect the OS as well. Android is an open source

platform that makes it possible for vendors to make changes to the OS. Typically, device

vendors create custom branding and a unique design for the main screen of the device,

including hardware and software buttons; however, there may be functional changes as

well. Common hardware found on most devices include a touch screen, accelerometer,

GPS, camera, and wifi.

CHAPTER 10: Mobile HTML and CSS 165

BlackBerry
Research in Motion (RIM), maker of BlackBerry devices, has announced support for

Webkit; however, all currently shipping BlackBerry devices have a proprietary browser

with severe limitations (see Chapter 14 for details). There are two browser components

found in the OS. The first component has extremely limited HTML and CSS support, and

the second has better support for HTML and CSS standards but requires you to use a

mouse-like cursor to navigate around the screen even when you are on a non-touch

device. Most notably, the browser control that you can embed in your applications does

not have an identical feature set to the stand-alone web browser on the device.

BlackBerry has a range of devices with different screen resolutions. The most significant

difference between devices is between the track ball and the touch screen. With the

BlackBerry Storm, RIM introduced a touch-screen device with soft keyboard.

Unfortunately, the low performance of the device and awkward haptics, where the whole

screen depresses for click or tap actions, leads to different constraints on different

devices when creating applications.

Windows Mobile
Writing applications in HTML and CSS for Windows Mobile is a challenge because it has

a browser and browser control that is similar to Internet Explorer 5.5. It can render most

basic pages correctly, but has an incomplete implementation of CSS2. Windows Mobile

also has a wide variety of devices sold by various hardware vendors, resulting in high

device incompatibility. On top of that, some hardware vendors such as HTC have their

own proprietary UI for the devices they sell. You can also install third-party UI kit

software that will completely change the look on your device, making for an inconsistent

user interface.

The Windows Mobile user interface hasn’t changed much over the years. There is a

button bar on the bottom, which by default has a start menu and a quick launch button.

Windows Phone 7 is expected to have a significantly better user experience but,

because it is unreleased as of this writing, it is not covered in this book.

Common Patterns
There are common user experience patterns across mobile operating systems, which

make a cross-platform approach to implementing the user interface of your application

possible.

Screen-Based Approach
The screen-based approach is based on the small form factor of most mobile devices.

These small devices have tiny screens, which in turn makes it difficult to display much

content at any given time. In the screen-based approach, the application interface is

segmented into many views that each have very limited scope. There are several

CHAPTER 10: Mobile HTML and CSS 166

interaction design patterns commonly seen when designing a series of screens to

accommodate an interface that doesn’t fit in the available screen size:

� Scroll view: The simplest approach to accommodating more

information than can fit into a single screen is to allow the user to

scroll the view, showing only the top portion by default.

� Scalable view: Devices with large touch-sensitive screens often use

pan and zoom controls to see a large document or view. The

pan/zoom approach is most typically seen when displaying a map or a

web page.

� Wizard: Borrowing a desktop user interface pattern, some mobile

applications apply a wizard pattern where the user steps through a

series of screens to accomplish a task.

� Progressive Disclosure: Often when displaying a large amount of

information, it is helpful to divide it by category and sub-categories or

even to simply show a list of titles, which lead to the display of an

individual item. This generally involves some kind of navigation-based

hierarchy system. You will find lists of categories and as you delve into

each category you reach a subcategory. As you go into the

subcategory, you finally reach your desired content.

Navigation
Because a mobile application typically has many screens, navigational controls are often

helpful. Several different approaches to navigation are commonly implemented to help

users find different areas of the application. In addition to the navigational paradigms

implied by the design pattern details in the Screen-Based previoussection, many

devices implement toolbars, tabs, or menus.

Menus
Windows Mobile, BlackBerry, and Android have a standard menu to help their users

navigate the application. A menu is a consistent element of every application. These

menus usually provide general navigation like “Home” or “Settings” pages, but also might

have actions such as “Create” or “Save.” Menus are typically used like tab bars, in that

they include a small number of options for navigation. In many cross-platform iOS-

BlackBerry applications, you will see the BlackBerry menu include the same items as the

iOS tab bar. Android offers both menu and tab bar, providing flexibility for the

application designer.

CHAPTER 10: Mobile HTML and CSS 167

Tab Bars
Tab bars are found on iOS and Android (see Figures 10–1 and 10–2). These can sit on

the top or bottom of the screen. Most platforms also have a maximum number of these

that you can show at once. Each tab will hold a fully loaded view for fast context

switching. These are generally used to highlight key areas or create segmentation in the

application’s information architecture.

Figure 10–1. iOS tab bar

Figure 10–2. Android tab bar

Toolbars
iOS, Android, Blackberry, and Windows Mobile have toolbars (see Figures 10–3 and 10–

4). Toolbars sit on the bottom of the screen on iOS and Android, and in custom

locations on BlackBerry and Windows Mobile.

Figure 10–3. iOS toolbar

Figure 10–4. Android toolbar

CHAPTER 10: Mobile HTML and CSS 168

Navigation Bars
These are similar to toolbars, and usually have navigation-specific items; this can

include a title, or left and right navigation buttons (see Figures 10–5 and 10–6).

Navigation bars usually sit at the top of the screen.

Figure 10–5. iOS navigation bar

Figure 10–6. Windows Mobile navigation bar

Button Bars and Context Menus
Like popup menus, in the sense that they can include general navigation, button bars

(see Figure 10–7) also can contain screen-specific functions such as “new” or “edit.”

These bars usually sit on the bottom of the screen like a toolbar.

Figure 10–7. Android button bar

Blackberry uses context menus (see Figure 10–8)instead of navigation bars to control

the flow of the application.

Figure 10–8. Blackberry context menu

CHAPTER 10: Mobile HTML and CSS 169

UI Widgets
UI widgets are native UI controls representing information that is user changeable. They

come in many different shapes and colors across each mobile platform. For example, a

checkbox and radio button can each be considered a UI widget (See Figure 10–9). They

are both standard UI controls that can represent a state that the user selects. The iOS

and Android operating systems by far have the most extensive collection of UI widgets

compared to the other various platforms.

Figure 10–9. Check boxes and radio buttons on iOS

This section of the text will primarily introduce you to the native UIWidgets that can be

found in the browser and how to override their functionality to give your application a

more consistent native feeling.

Check Boxes
All smartphone mobile platforms provide UI widgets for check boxes to represent

boolean or on/off values. All of them have some concept of a check and most have the

box that surrounds them. This is the way traditional browsers have implemented

checkboxes. Keep in mind here we are talking about native components. To override

this functionality in the iOS mobile WebKit browser using CSS, refer to Listing 10–1. This

code example assumes you are using a check box image that looks like Figure 10–10.

You will need to have an application that implements a UIWebView (refer to Chapter 3).

Listing 10–1. Checkboxes in CSS3 with WebKit for iOS Look and Feel

HTML
<form action="#">
 <input type="checkbox" name="checkboxiPhone" value="checkboxiPhone" />
</form>

CSS

CHAPTER 10: Mobile HTML and CSS 170

form input[type="checkbox"] {
 -WebKit-appearance: none;
 background: url('switch.png') no-repeat center;
 background-position-y: -27px;
 height: 27px;
 width: 94px;
}

form input[type="checkbox"]:checked {
 background-position-y: 0;
}

Figure 10–10. Checkbox image for Listing 10–1

Listing 10–1 illustrates how to construct an HTML form element that contains a check

box. To override the default appearance of the widget you make use of the WebKit

CSS3 appearence property. This property can offer default appearences for HTML

elements. Setting this property to “none” allows you to remove all default styling of the

element. Also, in adding the background image, change its appearence to have a

negative offset. This shows the off (or unchecked) version of the element by default. You

will also need to set the width to be the width of the image and the height to be only half

(on or off). When the check box is checked, now you move the image’s y axis to 0

showing the on state of the check box.

Android’s implementation of check boxes differs from iOS in that they have offered a

more traditional approach (see Figure 10–11). To override this for Android, refer to

Listing 10–2 in an Android WebKit browser control.

Figure 10–11. Check boxes and radio buttons on Android

CHAPTER 10: Mobile HTML and CSS 171

Listing 10–2. Android Check Box Implementation

HTML
<form action="#">
 <input type="checkbox" name="checkboxDroid" value="checkboxDroid" />
</form>
CSS
form input[type="checkbox"] {
 -webkit-appearance: none;
 background: url(btn_check_off.png) no-repeat;
 height: 31px;
 width: 31px;
}
input[type="checkbox"]:checked {
 background: url(btn_check_on.png) no-repeat;
}

In this example, you once again have a form that contains an input-type checkbox

element. You will need to set -webkit-appearance to “none” and give the element a

width and height. In this example, you will simply be switching out the background

image to display a checked and unchecked state.

Neither Windows Mobile or BlackBerry devices currently support a CSS3-capable

browser. This means there is no way to truly override the default implementation of a

check box.

Selection Boxes
iOS and Android platforms both implement a native control for the browser’s selection

box. Clicking on a select box on either platform will result in a native picker control on

iOS (Figure 10–12) and a radio button select modal view on Android (Figure 10–13).

Figure 10–12. Select box on iOS

CHAPTER 10: Mobile HTML and CSS 172

Figure 10–13. After tapping the select box on Android, will open a list of options for you to select one.

As previously stated, this functionality is provided for you in the iOS browser control.

Any select box the user interacts with will display the selection picker, however, you will

still need to style the select box to look more like a native component. By default, this

component looks like a standard browser select box (see Listing 10–3).

Listing 10–3. iOS Select Box Example

HTML
<form action="#">
 <select name="select_box">
 <option selected>Please select</option>
 <option value="apple">iPhone</option>
 <option value="android">Android</option>
 <option value="blackberry">BlackBerry</option>
 <option value="winmo">Windows Mobile</option>
 </select>
</form>

CSS
form select {
 -webkit-appearance: none;
 background: url('select.png') no-repeat right;
 border: 0px;
 width:100%;
 height:40px;
 font-size: medium;
 font-weight: bold;
}

CHAPTER 10: Mobile HTML and CSS 173

In Listing 10–3, you create an HTML form and select box in an iOS mobile WebKit

browser. Once again, you will need to override the default appearance using the -

webkit-appearance property. Finally, you will add the downward-facing disclosure

indicator to the right of the box. This will indicate to the user that this is a select box and

something will be happening beneath it. Find an example of the disclosure indicator in

Figure 10–14. Android follows a similar pattern, except here we will substitute the

background image property for another resource (Refer to Figure 10–15).

Figure 10–14. iOS downward-facing disclosure indicator

Figure 10–15. Android downward-facing disclosure indicator

Once again, BlackBerry and Windows Mobile do not have this capability and will only

show a standard browser select box.

Text Boxes
All smartphone platforms covered in this book have a fairly standard implementation of

text boxes. Android, Windows Mobile, and BlackBerry have a label followed by a text

box to its right. iOS doesn’t use a standard label, but instead employs the HTML5

placeholder attribute of the input type text element. Refer to Figure 10–16 for an

example of what this might look like on iOS and Listing 10–4 for an example of using the

placeholder attribute in an iOS browser control.

Figure 10–16. Edit text box on iOS

CHAPTER 10: Mobile HTML and CSS 174

Listing 10–4. HTML Source Code for iOS Placeholder Text Example

<form action=”#”>
 <input type="text" name=" title" placeholder=”Title” />
</form>

As shown in Figure 10–17, Android makes use of left-justified labels and right-justified

text boxes.

Figure 10–17. Text Boxes on Android

Text Areas
Text areas are a standard component between the platforms discussed in this chapter.

The biggest difference between them is their background shading and rounded corners

on iOS and Android, verses their plan background and square corners on Windows

Mobile and Blackberry. iOS has no background shading by default, while Android has a

gray gradient; both have rounded corners. You can see an example of an iOS text area

in Listing 10–5 and Figure 10–18.

Listing 10–5. iOS Implementation of a Text Area

HTML
<form action="#">
 <textarea name="thing[text_area]" rows="5" cols="30" >Some great text</textarea>
</form>
CSS
form textarea {
 -webkit-appearance: none;
 border: 1px solid #878787;
 -webkit-border-radius: 8px;
 font-size: medium;
 width:280px;
 line-height:20px;
 background-color:white;
}

Figure 10–18. iOS text area

CHAPTER 10: Mobile HTML and CSS 175

In Figure 10–18, you will first remove the default webkit styling applied to the text area.

You will then add a one pixel gray border around the outside and make the border

radius eight pixels. Set the font size, width, and line-height to the values shown in the

example.

Android’s implementation is very similar to iOS except that it will have background color.

Refer to Listing 10–6 for the implementation and Figure 10–19 for the resulting image.

Listing 10–6. Android Text Area Implementation

HTML
<form action="#">
 <textarea name="thing[text_area]" rows="5" cols="30" >Some Great�
 Text</textarea>
</form>
CSS
form textarea {
 -webkit-appearance: none;
 background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0125,�
 #d6d7d6),color-stop(0.25, #efefef),color-stop(0.95, #f7f7f7),color-stop(1.0, #f7f3f7));
 border: 1px solid #d6d7d6;
 -webkit-border-radius: 4px;
 margin: 10px 0 2px 10px;
 font-size: 0.9em;
 padding: 5px 0 2px 2px;
 box-shadow:0 -1px 3px #000000;
}

Figure 10–19. Android text area

In Listing 10–6, you will first need to remove the default webkit styling from the text area.

Then you will need to add a webkit background gradient and light gray border; the

borders are not as round as iOS at four pixels. Apply the default text styling, external

margin, and padding, then finish with a slight shadow to give the text area depth.

Radio Buttons
Radio buttons allow you to choose one item in a list of options. BlackBerry and

Windows Mobile use a standard radio-button implementation that shows an empty

circle when not selected and a filled circle when it has been selected. Android uses the

same implementation as BlackBerry and Windows Mobile, but instead of the entire circle

being filled, only the center of the circle is filled. iOS has the concept of radio buttons,

but Apple suggests using pickers (such as date pickers) instead in their Human Interface

Guidelines. If you truly want to use a radio button on iOS, they have a slightly different

concept from the other platforms. They choose to use left-bound labels and right-bound

check marks to indicate which option has been selected in the list. Refer to Figure 10–20

for an example of an iOS radio button.

CHAPTER 10: Mobile HTML and CSS 176

Figure 10–20. iOS radio buttons

To create this button, you will have to do a couple CSS tricks. Your end goal will be to

have the label inside the radio button and the check mark to appear on the right, as

shown in Figure 10–20. First, you will need to restyle the radio button by removing its

default appearance. By default, you will want the radio button to be unselected. When

the radio button has been selected, you will then use the background position attributes

to place your background image all the way to the right and 50 percent down the cell.

To get the check mark slightly located to the right, you will need to add some

transparent right margin to the image. By making the position relative of the radio

button, you are able to give it a higher z-index then the label and have it shown above it.

You will want the radio button to take up 100 percent of the width and height of the cell

so that it is clickable. See Listing 10–7.

Listing 10–7. iOS Radio Button Implementation

HTML
<form action="#">
 <label for="thing[radio_button]">Radio Button1</label>
 <input type="radio" name="thing[radio_button]" value="radio1"/>
</form>
CSS
form input[type="radio"] {
 -webkit-appearance: none;
 position: relative;
 display:block;
 width:100%;
 height: 40px;
 line-height:40px;
 margin:0;
 -webkit-border-radius: 8px;
}

form input[type="radio"]:checked {
 background: url('radiobutton.png') no-repeat;
 background-position-x: 100%;
 background-position-y: 50%;
}

form label {
 float: left;
 display:block;
 color: black;
 line-height: 40px;
 padding: 0;

CHAPTER 10: Mobile HTML and CSS 177

 margin: 0 20px 0 10px;
 width: 40%;
 overflow: hidden;
 text-overflow: ellipsis;
 white-space: nowrap;
 font-weight:bold;
}

Creating radio buttons on Android (Figure 10–21 and Listing 10–8)is not that different

from Windows Mobile and Blackberry and will use the same HTML as on iOS. The

biggest difference is on iOS you can select the entire cell to activate it. On Android,

Windows Mobile, and BlackBerry you will only be able to select the radio button itself

and not the entire cell. This approach doesn’t work very well for touch screen devices.

Figure 10–21. Android radio button implementation

Listing 10–8. iOS Radio Button Implementation

HTML
<form action="#">
 <label for="thing[radio_button]">Radio Button1</label>
 <input type="radio" name="thing[radio_button]" value="radio1"/>
</form>
CSS
form input[type="radio"] {
 background: url(btn_radio_off.png) no-repeat right;
 -webkit-appearance: none;
 -webkit-box-sizing: border-box;
 height: 64px;
 width: 32px;
 float:right;
 margin: 0 5px 0 0;
}

form input[type="radio"]:checked {
 background: url(btn_radio_on.png) no-repeat right;
}

Additional Components
In addition to the standard HTML form controls, most smartphone platforms have

higher-level widgets for date picker and maps; however, you can’t add these using pure

HTML. They are available in some cross-platform frameworks, which have native code

extensions that you would need to hook into.

CHAPTER 10: Mobile HTML and CSS 178

WebKit Web Views
Web views on iOS and Android OS work very similarly; this is because they both use a

WebKit implementation. Try to think of the web view as more of a window on the page.

It lets you see any given portion of the page at any moment, while blocking your view of

the rest of the page. The WebKit browser engine renders the entire HTML page and

places it behind this window. The window stays static while moving the page beneath it.

You slide the page up and down beneath this window like a film reel. Understanding

how the web view works is important because it makes some CSS implementations a

little more difficult. For instance, both Android and iOS browsers do not handle the

‘Display: Fixed;’ CSS property correctly. This CSS property normally is used to position

something statically on the page and allow other content to move behind it, such as a

bottom toolbar on a web page. Both browsers will treat this property correctly at first,

but then when you move the page beneath the window, the object will move with the

page becoming unfixed to its original location. In the case of the bottom toolbar, the

toolbar will end up moving up with the page and if your page is long enough, out of the

window entirely.

Creating Lists
Lists are an integral part of mobile operating systems. Lists are the primary conduits

through which information is segmented. They also allow for hierarchal-based

navigation.

When displaying list elements, mobile web UI will typically use an unordered list ()

and list items (), then use CSS to add styling. Listing 10–9 shows how to create a list

with disclosure indicators. See Figure 10–22 for how it looks when the HTML is

rendered. Note that this approach will work on iOS, Android, and Windows Mobile

(although this specific code has not been compatibility-tested across all of the mobile

web browsers). With BlackBerry, it is often easiest to implement table-based layout.

Listing 10–9. Implementation of List with Disclosure Indicators

<!DOCTYPE html SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>HTML LIST</title>
 <style type="text/css">

 body {
 margin: 0;
 }

 .list {
 border-top: 1px solid #ccc;
 }

 .list ul {
 padding: 0;
 margin: 0;
 }

CHAPTER 10: Mobile HTML and CSS 179

 .list li {
 width: 100%;
 height: 75px;
 list-style-type: none;
 }

 .list a {
 display: block;
 text-decoration: none;
 color: #000;
 font-size: 20px;
 height: 100%;
 width: 100%;
 background-color: #eef;
 }

 .list a:active {
 background-color: #cce;
 border-bottom: 1px solid #fff;
 border-top: 1px solid #ccc;
 }

 ul.simple_disclosure_list li {
 border-bottom: 1px solid #ccc;
 border-top: 1px solid #fff;
 }

 ul.simple_disclosure_list li a {
 background-image: url(arrow.png);
 background-repeat: no-repeat;
 background-position: center right;
 }

 ul.simple_disclosure_list li a span.title {
 margin-left: 30px;
 font-weight: bold;
 float: left;
 position: relative;
 top: 40%;
 }
 </style>
 </head>
 <body>
 <div class="list">
 <ul class="simple_disclosure_list">

 Title 1

 Title 2

CHAPTER 10: Mobile HTML and CSS 180

 Title 3

 </div>

 </body>
</html>

Figure 10–22. Implementation of progressive disclosure

Building a Navigation Bar
Navigation bars can be found on iOS, Android, and Windows Mobile devices. On iOS

and Windows Mobile, a bar is represented by a bar that sits on the top of the page. On

Android, a navigation bar is more like a button bar that sits on the bottom of the page.

Android’s version of a navigation bar is a little more difficult to construct. Earlier, we

explained how a web view works on Android and iOS. This is especially important in this

case because it will make it a lot more difficult to construct a proper navigation bar on

Android. As we explained earlier, the display fixed property doesn’t work for attaching

the bottom bar to the page. How do you get around this? There are a couple of options

and none of them are preferable. Firstly, you could wait for the Android development

team to release an update to address this issue. Secondly, you could create a floating

toolbar that works similarly to Android’s but moves with the page. Neither of these

options are ideal. Some developers have created their own scrolling implementation to

work around this issue. In particular, the iScroll library from Cubiq

(http://cubiq.org/iscroll) provides the capability to allow scrolling and position a

toolbar or other widgets at the bottom of the screen.

Listing 10–10 and Figure 10–23 has an implementation of a very basic navigation bar;

however, this can be modeled into a replica of the iOS implementation of its navigation

bar, if given the proper resources and CSS3 attributes.

CHAPTER 10: Mobile HTML and CSS 181

Listing 10–10. Simple Implementation of the iOS Navigation Bar

<!DOCTYPE html SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Navigation Bar</title>
 <style type="text/css">
 body {
 margin: 0;
 }

 div#navbar {
 height: 40px;
 line-height:40px;
 background-color:gray;
 }

 div#navbar div {
 margin: 0 10px 0 10px;
 }

 div#navbar div a {
 text-decoration:none;
 color:black;
 }

 div#navbar div#navLeft {
 float: left;
 }

 div#navbar div#navRight {
 float:right;
 }

 div#navbar div#navTitle {
 width: 100%;
 height: inherit;
 position: absolute;
 text-align:center;
 margin: 0;
 }

 </style>
 </head>
 <body>
 <div id="navbar">
 <div id="navLeft">Back</div>
 <div id="navTitle">Nav Bar</div>
 <div id="navRight">Home</div>
 </div>
 </body>
</html>

Figure 10–23. Simple implementation of the iOS navigation bar

CHAPTER 10: Mobile HTML and CSS 182

Listing 10–11 is a simple replica of an Android-like button bar. In this case, we use a

table so that when buttons are added or removed, the table takes care of the sizing of

its elements. The result is shown in Figure 10–24.

Listing 10–11. Simple Implementation of the Android Button Bar.

<!DOCTYPE html SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Navigation Bar</title>
 <style type="text/css">
 body {
 margin: 0;
 }

 div#navbar {
 height: 40px;
 width: 100%;
 line-height:40px;
 background-color:gray;

 display: table;

 }

 div#navbar div {
 display: table-cell;
 text-align:center;
 border: 1px solid blue;
 }

 div#navbar div.row {
 display: table-row;
 margin:0;
 padding: 0;
 }

 div#navbar div a {
 text-decoration:none;
 color:black;
 }

 </style>
 </head>
 <body>
 <div id="navbar">
 <div class="row">
 <div id="navLeft">Back</div>
 <div id="navTitle">Nav Bar</div>
 <div id="navRight">Home</div>
 </div>
 </div>
 </body>
</html>

Figure 10–24. Simple Android button bar

183

183

 Chapter

iWebKit
The iWebKit framework allows you to create HTML that matches the look and feel of

native iPhone applications. As the name implies, iWebKit is customized for browsers

based on the open source WebKit engine, specifically iPhone’s mobile Safari browser.

The iWebKit framework was developed in accordance with the Apple Human Interface

Guidelines, outlining application look and feel on the popular iPhone OS.

iWebKit was originally developed to optimize web sites for viewing on a mobile device.1

However, in mobile applications that use HTML in a web browser control (WebUI view)

for some or all of its application interface, it is practical to utilize toolkits originally

developed for web UI, including iWebKit. iWebKit can be easily integrated into iPhone

applications developed in Objective-C, as well as the iPhone versions of applications

developed using the Rhodes and PhoneGap frameworks.

As discussed previously, all of these platforms allow you to produce native iPhone

applications that can be distributed through the iTunes App Store. However,

WebUIView-based applications do not match the look and feel of native iPhone

interfaces. iWebKit provides a quick and easy way to apply styles designed to match

native interface design to your user interface.

iWebKit is easy to use: anyone familiar with HTML and CSS can use the framework to

quickly create forms, hierarchical lists, and more, all integrated into a light and fast

application. iWebKit takes advantage of properties new in CSS3 supported in the mobile

Safari browser, such as background gradients, forms, and border properties−including

rounded corners that don’t require the clunky use of image files.

This chapter provides an overview of the features available in iWebKit and concludes

with several examples that illustrate how to integrate iWebKit in each of the cross-

platform development environments discussed in this book.

1 Complete documentation for using iWebKit in mobile web sites is available at
http://iwebkit.net.

11

CHAPTER 11: iWebKit 184

Working With the iWebKit Framework
The iWebKit framework includes a comprehensive set of stylesheets, icons, javascript,

and a test index page that serves as a basic template for any views you may need to

add to your application.

You can download iWebKit from the project web site at

http://iwebkit.net/downloads.2 In addition to the framework itself, the download

includes a demo directory containing samples for all of the features described in this

chapter. You can view the demo by opening index.html in a WebKit browser (such as

Safari or Chrome), then resizing the window so it fits the content. An example later in

this chapter shows you how to create a native application from the demo, but if you just

can’t wait to see what the demo looks like on your iPhone, visit

http://demo.iwebkit.net from your mobile browser.

Pages that integrate the iWebKit framework are standard HTML pages that include CSS

and JavaScript. However, some elements of the page structure will vary depending on

which iWebKit elements you opt to use. The sample code in Listing 11–1 illustrates the

type of document structure you may expect to see in an application that has integrated

iWebKit.

Listing 11–1. iWebKit Document Structure

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"�
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta content="minimum-scale=1.0, width=device-width, maximum-scale=0.6667,�
 user-scalable=no" name="viewport" />
<link href="css/style.css" rel="stylesheet" media="screen" type="text/css" />
<script src="javascript/functions.js" type="text/javascript"></script>
<title>Demo App</title>
</head>
<body class="list">
<div id="topbar">
 <div id="title">Demo App</div>
 <div id="bluerightbutton">
 New
 </div>
 </div>
<div class="searchbox">
 <form action="" method="get">
 <fieldset>
 <input id="search" placeholder="search" type="text" />
 <input id="submit" type="hidden" />
 </fieldset>
 </form>
</div>
<div id="content">

2 The current version at the time of this writing is iWebKit 5.04.

CHAPTER 11: iWebKit 185

 <li class="title">Task Categories
 Work<span�
 class="arrow">
 School<span�
 class="arrow">
 Home<span�
 class="arrow">

</div>
</body>
</html>

Figure 11–1. iWebKit application

A Few Words of Caution
When using iWebKit, in most cases, your HTML must match the structure found in the

following examples in order to achieve the desired appearance in your application. This

means that you will typically need to edit existing HTML to create the look that you want.

This is in stark contrast with the approach you would likely take if you were creating your

own CSS for your HTML application. Unless the discussion surrounding one of the

following code examples refers to a tag or applied style as optional, the following code

samples reflect the structure that is required.

Also, note that iWebKit uses compressed style sheets and JavaScript files to increase

the load speed of the application, which means that the files included in your application

CHAPTER 11: iWebKit 186

will be hard to read and understand. However, the iWebKit download also contains

human-readable stylesheets and JavaScript files for debugging and understanding how

it works under the covers.

Required Header
Assuming the iWebKit framework has been included in your project’s resources

directory, you need to include links to the files inside your HTML <head> section of your

default HTML document (Listing 11–2).

Listing 11–2. Required iWebKit Header Links

<head>
<link href="css/style.css" rel="stylesheet" type="text/css" />
<script src="javascript/functions.js" type="text/javascript"></script>
</head>

Body
The <body> of an iWebKit document includes a <div> tag styled with the topbar class,

followed by a <div> tag styled with the content class. The topbar contains title and

navigation information at the top of the screen, while the content section contains your

application’s lists, forms, and custom screens. Several other styles are available for

<div> tags that are children of the <body> tag: searchbox, duobutton, tributton, and
footer.

To include a searchbox on your page like the one that follows, add an iWebKit form

containing a div styled with the searchbox class as a child of the <body> tag. As an

example, you can see a text field formatted to resemble the native iPhone search box in

the example form code in Listing 11–1.

Figure 11–2. SearchBox

If you are retrofitting an existing application with iWebKit, or if you are using a cross-

platform framework to generate your application HTML, you will need to manually

modify your HTML to include the appropriate classes on container tags. In the Rhodes

framework, which stores repeated code in a layout, you will need to move the <body>

tag into the page since iWebKit typically requires different classes for different <body>

tags. Alternately, you could include a JavaScript function that will place the class on the

<body> when the page is rendered.

CHAPTER 11: iWebKit 187

Organizing Data with Lists
Lists are one of the most frequently used components in iPhone applications, as they

provide a simple way to layout various types of information, and can optionally provide

hierarchical organization to allow for sub-lists and navigation. iWebKit provides several

different formatting options for lists in your application. You can choose to style your list

using the classic style, with support for images and comments; a list in the classic

iTunes style, containing album covers, artist, title, and rating information; an App Store

list with ratings and prices; an iTunes style list with ratings and album covers; an

iPod/music list that shows a numbered list of songs with times.

In iWebKit forms, as with a lot of mobile web UI, and tags are used quite

differently than you would typically see on the Web. When considering the small amount

of screen real estate available on a mobile device, it makes sense that a single column

would take up the entire width of the screen. For this reason, it makes sense to use

unordered lists to vertically organize your content instead of divs and other containers.

Additionally, in order to utilize the custom iWebKit list styles, you need to ensure that

you have properly declared the list type in the required location. Most list classes require

you to apply a class to the <body> tag or the tag, and some list items require styles

as well. You can see an overview of available list types and corresponding body classes

in Table 11–1.

Use the following code samples as your guide to make sure you’ve got all the right

classes in all the right locations.

Table 11–1. iWebKit List Types and <body> Tag Class

List Type Body Class Example

Classic list

App Store applist

iTunes Music musiclist

CHAPTER 11: iWebKit 188

List Type Body Class Example

iTunes Classic n/a

iPod ipodlist

Classic Lists
There are two main ways to format content in a Classic list:

� Simple format: list items without a class display text (Figure 11–3 and

Listing 11–3)

� Pretty format: list items with the withimage class include an image,

main text and comment text (Figure 11–4 and Listing 11–4)

In addition to the simple and pretty formatting available for content cells, you can

include one or more Title cells in a list to logically group the items in your list. For

example, in a corporate directory application, you may wish to display employees

grouped by their department. Each department would then have a Title cell at the top of

the group and employees in that department would be listed alphabetically below. All of

these options require you to use unordered lists and list item tags inside your

document’s content <div> tag.

Technically, it is possible to mix-and-match all three types of list items within a list;

however, mixing different types of list items would create a non-standard UI and could

negatively affect usability, as it will impede the user’s ability to visually parse the data

contained in the list. However, if your use case requires items to be displayed with

multiple formatting types on the same page, you should consider using a Title cell to

separate your list into groups.

Figure 11–3. Classic list—simple Format

CHAPTER 11: iWebKit 189

Listing 11–3. Classic List—Simple Format

<body class="list">
<div id="content">

 <li class="title">Title Bar

 List Item

 List Item

 List Item

</div>
</body>

Figure 11–4. Classic list—pretty format

Listing 11–4. Classic Lists with Images in iWebkit

<body class="list">
<div id="content">

 <li class="title">Title Bar
 <li class="withimage">

 List Item with Image
 Comment

 <li class="withimage">

 List Item with Image
 Comment

CHAPTER 11: iWebKit 190

 <li class="withimage">

 List Item with Image
 Comment

</div>
</body>

iTunes Classic Style Lists
iTunes Classic-style lists are like classic lists, except in a iTunes Classic-style list, the list

item doesn’t expand to the full width of the screen. Additionally, the top and bottom

cells in each iTunes Classic-style list will have rounded corners.

Figure 11–5. iTunes classic-style list with title and sample list item

To include any of the options available to the cells in an App-store style list, simply add

a tag styled with the appropriate class inside the list item’s <a> tag (Listing 11–5).

Listing 11–5. Store List Item

 <span class="image" style="background-image:�
 url(/public/img.jpg)">
 This is a Comment
 Cell Title

 100 Ratings

 $1.99

You can also display a title above your store list by including a tag styled with

the graytitle class immediately above the <ul class=”pageitem”> tag.

Although the iTunes Classic-style list type does not require a class to be added to the

<body> tag, you must include a pageitem class on the tag, as shown in Listing 11–6.

CHAPTER 11: iWebKit 191

Listing 11–6. Store List Example

<body>
<div id="content">
Store lists
<ul class="pageitem">
 <li class="store">

 <span class="image" style="background-image:�
 url('images/sample.png')">
 Comment
 Sample Title

 151 Ratings

</div>
</body>

App Store-style Lists
App Store-style lists support background images, star rating comments, the number of

ratings, and price of the product.

Figure 11–6. App store list items

App Store-style lists also optionally include inline ads at the top of the lists. To include

ads at the top of the list, create a list item styled with the doublead class. Each doublead

list item has space for two ad links. Note that the ads are fixed in width and height, will

not resize if only a single ad is included, and the topmost list item may make the page

feel unbalanced.

To include background images for your links, simply apply an inline style to the <a> tag.

Listing 11–7 illustrates how to create the top ad element for an App Store-style list.

CHAPTER 11: iWebKit 192

Listing 11–7. Double Ad Link

 <li id="doublead">
 <a href="http://iwebkit.mobi" style="background-image:�
 url('pics/ad1.png')">
 <a href="http://iwebkit.mobi" style="background-image:�
 url('pics/ad2.png')">

App Store-style list items are structured in the same way as regular Store-list style

items. See Listing 11–8 for a stand-alone example.

Listing 11–8. App Store Style List Example

<body class="applist">
<div id="content">

 <li id="doublead">

 <a class="noeffect" href="http://itunes.apple.com/us/app/�
bejeweled-2/id284832142?mt=8">
 <span class="image" style="background-image:�
 url('/images/bejeweled.jpg')">
 Games
 Bejeweled 2

 16924 Ratings
 $2.99

 <span class="image" style="background-image:�
 url('images/sample.png')">
 Comment
 Sample Title

 151 Ratings

</div>
</body>

CHAPTER 11: iWebKit 193

iTunes style-lists
iTunes-style lists are simple lists that can display a number, title, and time comment. The

background of the cells in this class alternate between light and dark gray (see Figure

11–7 and Listing 11–9).

Figure 11–7. iTunes-style list with alternating table cells

Listing 11–9. iTunes List Item Example

<body class="musiclist">
<div id="content">

 1
 Sample Title
 (1:33:03)

 1
 Second Sample
 (33:03)

</div>
</body>

iPod-style lists
iPod-style lists use the same basic structure as the other lists, but are designed with

play icons to visually indicate when music is playing (Figure 11–8).

Figure 11–8. iPod list selected and non-selected cell

CHAPTER 11: iWebKit 194

To play music using an iPod list, each list item should contain a link to a JavaScript call

that plays the music and toggles the pause/play icon.3

To include an iPod-style list, the <body> tag must be styled with the ipodlist class.

As with the iTunes-style lists, you are responsible for defining the track numbers for the

items in your list within the tag. Track numbers can be

generated dynamically with JavaScript, or you can hard-code the desired value inside

the .

Additionally, each list item must have a child that includes a tag styled with the

auto class (see Listing 11–10). This container serves as a placeholder for the location

where the play button will be displayed when the user selects the cell.

Listing 11–10. iWebKit iPod List Example

<body class="ipodlist">
<div id="content">

 1

 Sample Song
 4:11

</div>
</body>

Navigation
Since most applications include more than just a single view, you’ll most likely want to

include a navigation bar in your iWebKit application (Figure 11–9). To add the navigation

bar, include a div tag with the topbar class as a child of the <body> tag.

Figure 11–9. Sample Navigation Bar

You can embed up to three <div> tags in the topbar that allow users to navigate through

your application. Most applications include the page title and an element that allows the

user to move left/backward. It is less common to see elements that allow the user to

move forward, as forward navigation is typically accomplished by interacting with a list

item or other page content.

3 iWebKit’s default JavaScript does not include functions to play streaming music. You need

to include your own custom JavaScript. However, the demo does include a sample

JavaScript that implements some of this functionality for you to use as a guide.

CHAPTER 11: iWebKit 195

Standard UI conventions dictate the home button should be located on the left side of

the top bar.

Table 11–2. iWebKit Top Bar Navigation Elements

Element Sample Code

Title <div id="title">This is a Title</div>

Home Button

<div id="leftnav">

 <img alt="home" src="images/home.png"
/>

</div>

Left Navigation

<div id="leftnav">Left Nav Button</div>

Right Navigation

<div id="rightnav">Right Nav Button</div>

Left Button

<div id="leftbutton">Left Button</div>

Right Button

<div id="rightbutton">Right Button</div>

Blue Button –

Right

<div id="bluerightbutton">Blue
Right Button </div>

Blue Button –

Left

<div id="blueleftbutton">Blue
Left Button </div>

CHAPTER 11: iWebKit 196

Forms
Forms can be styled using page items that group your form elements together. Use a

standard <form> and <fieldset> tags to create the form, as shown in Figure 11–10 and

Listing 11–11.

Figure 11–10. The iWebKit 5 Demo Application

 Listing 11–11. Example iWebKit Form

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"�
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta content="minimum-scale=1.0, width=device-width, maximum-scale=0.6667,�
 user-scalable=no" name="viewport" />
<link href="css/style.css" rel="stylesheet" media="screen" type="text/css" />
<script src="javascript/functions.js" type="text/javascript"></script>
<title>iWebKit Demo - Easy form elements!</title>
</head>
<body>
<div id="topbar">
 <div id="title">iWebKit 5 Demo</div>
</div>
<div class="searchbox">
 <form action="" method="get">
 <fieldset>
 <input id="search" placeholder="search"�
 type="text" />
 <input id="submit" type="hidden" />

CHAPTER 11: iWebKit 197

 </fieldset>
 </form>
</div>
<div id="content">
 <form method="post">

 <fieldset>
 <ul class="pageitem">
 <li class="bigfield"><input placeholder="Username" type="text"�
 />
 <li class="bigfield"><input placeholder="Password"�
 type="password" />

 <ul class="pageitem">
 <li class="textbox">
 Insert text
 <textarea name="TextArea" rows="4"></textarea>

 </fieldset>
 </form>
</div>
</body>
</html>

iWebKit provides pre-styled login fields, input fields for names and telephone numbers,

radio buttons, selection boxes, text area, and input buttons. A list of the interface

components and code required to include those items in your view can be found in

Table 11–3.

Table 11–3. List Item Classes4

List Item Class Description

Bigfield <input type="text">

Creates a text field spanning the entire available

horizontal width, often used for Username and

Password fields.

smallfield <input type="text">

<input type="tel">

Small fields or narrow fields display labels inside the

field. The input field takes up half the width of the

cell and is right justified.

4 Note: <input type="tel"> is a custom field on the iPhone that displays a popup dial pad

when selected.

CHAPTER 11: iWebKit 198

List Item Class Description

checkbox <input type="checkbox"> On the iPhone, check Boxes look like On/Off

switches.

The labels are left-justified and the “On/Off switch” is

right-justified.

radiobutton <input type="radio">

Radio Buttons fields have a label. When clicked, they

create a custom checkmark that is right-justified.

Select <select>

Selection Boxes have a left-justified label with a

right-justified down arrow. When clicked, they reveal

an iPhone UIselection box.

CHAPTER 11: iWebKit 199

List Item Class Description

Textbox <input>

Creates a textbox that takes up the majority of the

vertical and horizontal space on the screen.

Apply to HTML form input element.

In forms, as with a lot of mobile web UIs, you use and tags quite differently

than you would typically see on the Web. To create a group, create an unordered list

styled with the pageitem class. To embed form elements in the group, wrap each item in

a list item tag styled with the appropriate class as shown in Listing 11–12.

Listing 11–12. iWebKit Example Form

<form method="post">
 <fieldset>
 <ul class="pageitem">
 <li class="bigfield"><input placeholder="Big Field" type=�
"text" />
<li class="smallfield"><input placeholder="enter text" type="text" />
 <li class="checkbox">
 Title
 <input name="Checkbox Name" type="checkbox" />

 </fieldset>
</form>

Labeling Field Sets

Add labels to your field sets by adding a tag as the first child

of the <fieldset> tag (Listing 11–13).

Listing 11–13. Fieldset Title Example

<form method="post">
 <fieldset>
 Fieldset Title
 </fieldset>
</form>

Figure 11–11. iWebKit fieldset title example

CHAPTER 11: iWebKit 200

Landscape Mode
iWebKit also offers landscape and portrait modes for all screens. As the orientation of

the device changes, the onscreen layout of the elements adapts to the new orientation.

Note that while the layout modification is handled by iWebKit’s CSS, the UIWebView is

responsible for managing the rotation of content contained within. In order to prevent

rotation from occurring, you will need to modify your view programatically in Xcode.

Phone Integration
iWebKit offers several simple ways to trigger device functionality and launch other

applications. Table 11–4 shows how to format links so the associated application

launches on the device when a user follows the link.

Table 11–4. Integrating with iPhone Functionality

Application Link to... Url Format

New email mailto:[emailaddress] <a class="noeffect"
href="mailto:example@example.com">

iTunes Store URL for item in the iTunes

store

<a class="noeffect"
href="http://itunes.apple.com/us/album/the-
e-n-d-the-energy-never-dies/id318390146"/>

Appstore URL for item in the

Appstore

<a class="noeffect"
href="http://www.itunes.com/app/CameraBag"/>

SMS sms:[phonenumber]

Phone

Launches a dialogue

that asks if you

would like to call the

number provided

tel:[phonenumber] <a class="noeffect" href="tel:408-555-
5555"/>

Youtube URL for a

YouTube video

<a class="noeffect"
href="http://www.youtube.com/watch?v=DWmQEv0
oF08"/>

Google Maps GoogleMaps query url, e.g.
http://maps.google.
com?q=New+York,+NY

<a class="noeffect"
href="http://maps.google.com?q=New+York,+NY"
/>

If you’re familiar with the GoogleMaps API, you may wish to note that there is no need to

include an API key in your request.

CHAPTER 11: iWebKit 201

Integrating iWebKit in Mobile Applications
In this section, you’ll see how to integrate iWebKit into your UIWebView-based mobile

applications to match what users expect to see in an iPhone application. The following

sections walk you through integrating iWebKit in applications built in Xcode using

Objective-C, as well as applications built using the Rhodes and PhoneGap frameworks.

These examples build on the foundation provided in earlier chapters, so if it’s been

awhile, take a minute to refresh your memory before continuing on.

Creating a Native iPhone Application with iWebKit in
Objective C
Use the instructions in Chapter 2 to create a new native UIWebView-based application.

To include iWebKit in an application, you need to place a copy of the iWebKit framework

in your iPhone project directory. In this example, you will build an app using the iWebKit

feature demo.

In the root directory of the iWebKit Framework you downloaded earlier, find the folder

entitled Demo. Drag the contents of the Demo folder into the Resource folder in Xcode.

A dialogue box should prompt you for import handling of these files into your project:

check the Copy items into destination group’s folder (if needed) check box, and

select Create Folder References for any added folders. The Create Folder
References option will preserve your directory structure in Xcode and on the device, as

opposed to the soft folders Xcode normally uses that do not preserve your directory

structure.

The Xcode groups option creates groups to help you organize your files during

development. Note, though, that groups do not translate to directories when building: in

your compiled application, all files will be found at the root level.

Verify your prompt looks like Figure 11–12 and click the Add button to continue.

CHAPTER 11: iWebKit 202

Figure 11–12. Xcode file copy prompt

Then, to test-drive all the functionality available in iWebKit, implement the code from

Listing 11–14 in your viewDidLoad method.

Listing 11–14. viewDidLoad Method

- (void)viewDidLoad {

 // String representation of the URL
 NSString *urlAddress = [[NSBundle mainBundle] pathForResource:@"index"�
 ofType:@"html"];

 //Create an URL object.
 NSURL *url = [NSURL fileURLWithPath:urlAddress];

 //URL Request Object
 NSURLRequest *requestObj = [NSURLRequest requestWithURL:url];

 //Load the request in the UIWebView.
 [webView loadRequest:requestObj];
}

Follow the instructions in Chapter 2 to build and test your application shown in Figure

11–13.

CHAPTER 11: iWebKit 203

Figure 11–13. iWebkit demo in UIWebViewSetting up Rhodes for iWebKit

Create an Application
Setting up Rhodes to use iWebKit is a simple process. The first thing you will need to do

is generate an application (Listing 11–15).

Listing 11–15. viewDidLoad Method

> rhogen app iWebKit

Generating with app generator:
 [ADDED] iWebKit/rhoconfig.txt
 [ADDED] iWebKit/build.yml
 [ADDED] iWebKit/app/application.rb
 [ADDED] iWebKit/app/index.erb
 [ADDED] iWebKit/app/layout.erb
 [ADDED] iWebKit/app/loading.html
 [ADDED] iWebKit/Rakefile
 [ADDED] iWebKit/app/helpers
 [ADDED] iWebKit/icon
 [ADDED] iWebKit/app/Settings
 [ADDED] iWebKit/public

Rhodes generates default CSS, JavaScript and HTML. Although you can delete the

default Rhodes CSS, make sure to leave the JavaScript intact. Some features depend

on the included JavaScript to function.

CHAPTER 11: iWebKit 204

Copy the Framework folder from the iWebKit root directory to the public directory of

your Rhodes application. If you wish, you can rename the Framework folder to “iWebKit”

or something that compliments your workflow. The Framework folder will contain

everything you need to build an application.

Add iWebKit Framework to Application Layout Template
iWebKit/app/layout.erb contains the basic header and layout for your application. This

file will contain references to all the CSS files for each target device. To guarantee the

Framework works as intended, you will need to remove all global references to the

autogenerated stylesheets from the header of your application.

Additionally, in the header, you will see a series of conditional statements. These

statements define which HTML, CSS and JavaScript files are loaded at runtime. In this

case, you should modify the “APPLE” stanza to match Listing 11–16.

Listing 11–16. iWebKit Layout.erb

<% if System::get_property('platform') == 'APPLE' %>
 <meta name="viewport" content="width=device-width; initial-scale=1.0;�
 maximum-scale=1.0; user-scalable=0;"/>

 <!-- iWebkit CSS and JavaScript -->
 <link href="/public/Framework/css/style.css" rel="stylesheet" media="screen"�
 type="text/css" />
 <script src="/public/Framework/javascript/functions.js"�
 type="text/javascript"></script>

 <!-- Rhodes JavaScript -->
 <script src="/public/js/jquery-1.2.6.min.js"></script>
 <script src="/public/js/rho.js"></script>
 <script src="/public/js/application.js"></script>
<% end %>

iWebkit expects its resources to be in the /images folder. However, in this scenario

iWebkit will be unable to find them in their default locations. To resolve this issue, you

should update the path to any resources referenced in the iWebKit CSS.

Build an application as you normally would, using the Rhodes generators. Refer to the

previous code examples to drop iWebKit components into your application.

The autogenerated HTML included in your Rhodes application is not compatible with the

iWebKit framework. To utilize the iWebKit components in a view, you will need to

replace the autogenerated HTML with its iWebKit equivalent. If you are using one of the

iWebKit list styles anywhere in your application, make sure to remove the <body> tag

from your iWebKit/app/layout.erb and place it as the outermost parent tag in every view

of your application.

For inspiration, refer to the code examples earlier in this chapter.

To test your application, build it as described in Chapter 6, Your First Rhodes App.

CHAPTER 11: iWebKit 205

Setting up PhoneGap for iWebKit
Using iWebKit with PhoneGap is very simple.

To create a new PhoneGap for iPhone project, see Chapter 8 for complete details. You

will need to be using XCode. Copy the contents of the iWebKit demo directory into the

www folder in your PhoneGap project, replacing the existing index.html. Target the

iPhone simulator and then choose Build and Run.

Figure 11–14. iWebKit example in PhoneGap project

CHAPTER 11: iWebKit 206

Figure 11–15. iWebKit demo app running in PhoneGap

207

207

 Chapter

Animated UI with jQTouch
jQTouch is a jQuery plug-in for mobile web development originally developed for the

iPhone and iPod Touch.1 jQTouch enables animated transitions, swipe detection, and

themes for HTML-based web applications based on features in WebKit. The most

exciting and interesting feature of jQTouch is that it allows you to quickly make HTML

pages look like a native iPhone application.

jQTouch enables you to quickly develop applications that take advantage of common UI

patterns, leveraging the JavaScript skills many developers already have. jQTouch is

actively under development. With its simple and clean API, jQTouch is gaining in

popularity.

While you can use jQTouch in hosted mobile applications and access it on a device with

a web browser, you can also use it in native applications produced by several cross-

platform frameworks. To use jQTouch in a native application, you would include it in a

browser control, as discussed in Part 1, or leverage a cross-platform framework, such

as Rhodes or PhoneGap (Chapters 6 and 8), that enable the use of HTML UI in a native

application. The visual themes and styling of jQTouch are suitable for any WebKit-based

mobile browser; however, its animated transitions only work on iOS, as of this writing.

In this chapter, we will cover how to use jQTouch in your device’s web browser, as well

as with the frameworks Rhodes and PhoneGap. The information presented is based on

jQTouch 1.0 beta ,2 which is the current version at the time of this writing.

In order to work effectively with jQTouch, you will need to be proficient in JavaScript,

CSS, and HTML. In particular, you should be comfortable with how AJAX applications

work, in making asynchronous requests, and modifying the Document Object Model

(DOM) of the HTML page based on the response.

1
 jQTouch is an open source project initially developed for mobile web applications by David

Kaneda, and is free to use under an MIT license. You can find more information about

jQTouch at http://www.jqtouch.com �

12

CHAPTER 12: Animated UI with jQTouch 208

Getting Started with jQTouch
jQTouch is a source code library that includes Javascript and CSS. It requires (and

includes) the popular JavaScript library, jQuery. In order to use jQTouch to control the

look and feel of your application, it requires that you structure your HTML in a specific

way and that you follow some specific patterns that are not clearly documented. This

section explains those patterns and the assumptions that jQuery makes about how your

code will work. In this chapter, we will use the terms “Application” and “Screen” as

follows:

� Screen: what the user sees from page to page. Each screen is

assumed to be a DIV element that is a child of the HTML body.

� Application: the HTML page that includes the jQTouch JavaScript and

CSS, as well as all of the screens (some of which may be dynamically

loaded).

Starting a new application that uses jQTouch is straightforward; however, modifying an

existing application is tricky because your application needs to work within the

constraints of jQTouch. These constraints will be made clear through the examples in

this chapter.

� You never leave the single page of the application.

� URLs must have full paths (or be relative to the root of your web app).

� Each screen isn’t a full web page; instead, it is a DIV that is an

immediate child of the application body.

� Make sure you don’t use IDs, except to identify screens.

Running Example Code
When you download the jQTouch source code,2 you will find several sample applications

that you can examine for an overview of all the features in jQTouch. While you can view

the examples in any browser, to view the animations, you should run the jQTouch

examples using the iPhone simulator or in the WebKit-based desktop browser of your

choice to see the animations.

To load these examples in your iPhone simulator, right click on any of the index.html
files in the demo folders using the Finder and select Open With ➤ iPhone Simulator.app. This

will load the HTML, CSS, and JavaScript into the browser on your iPhone simulator so

you can explore the examples and see what they would look like on an iPhone. To view

the same page on an iOS device, you must host the web page on a web server that can

be accessed via HTTP.

2
 Source code and additional documentation is available at
http://code.google.com/p/jqtouch�

CHAPTER 12: Animated UI with jQTouch 209

Creating a Simple jQTouch Application
The user will go to a page that is the jQTouch application. This page includes jQuery,

jQTouch JavaScript, jQtouch CSS, and a theme to skin the application with. While you

don’t need to (and shouldn’t) modify the jQTouch CSS file, it is helpful to understand

that the jQTouch CSS file contains the transition classes (such as slide, pop, and so

forth) and defines the WebKit animations for each transition. Typically, you will use the

jQTouch styles by annotating your HTML with the jQTouch classes. You can, of course,

create your own styles that extend or modify jQTouch styles and you would typically

place those in your own CSS file loaded after the jQTouch CSS file.

The application begins with one or more screens already preloaded. In other words, the

source code to your application (your main HTML page) may declare one or more DIVs

as children of the body, which will each act as a screen. If a screen isn’t already marked

as current (by declaring the HTML attribute class=”current”), jQTouch will interpret the

first DIV in the BODY tag as the first screen. Only the current screen is visible. Each

screen is assumed to be a single DIV element. Preloaded screens should have IDs

already assigned to them so they can be transitioned to via links in the document that

contain internal anchors that represent the screen IDs.

Listing 12–1 shows a starter application for jQTouch. The jQTouch libraries must be

included and you must also initialize the jQTouch library. If you are already using

jQTouch in your project, be sure to include the jQuery file included in your downloaded

jQTouch source to avoid a version mismatch. To get started, copy the jQTouch and

themes directories to the root of your web application (or simply experiment at the root

of the folder created when you unzip the jQTouch download).

As is common practice, this example initializes jQTouch in a script tag in the HTML

header. (Optional initialization parameters are discussed later in this chapter.) This

example uses a toolbar, which is an optional component, but commonly used in most

mobile applications. To get started, copy the jQTouch and themes directories to the root

of your web application with apple theme.

Listing 12–1. Starter

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <script src="jqtouch/jquery.1.3.2.min.js" type="text/javascript"></script>
 <script src="jqtouch/jqtouch.js" type="text/javascript"></script>
 <link rel="stylesheet" href="jqtouch/jqtouch.css" type="text/css"/>
 <link rel="stylesheet" href="themes/apple/theme.css" type="text/css"/>
 <script>
 var jqt = $.jQTouch();
 </script>
 </head>
 <body>
 <div id="page-home">
 <div class="toolbar">
 <h1>Home</h1>
 </div>

CHAPTER 12: Animated UI with jQTouch 210

Figure 12–1 shows what this example looks like running in the Safari desktop browser,

which is recommended for quick iterative development.

Figure 12–1. Starter application with apple theme

jQTouch ships with an alternate “jqt” theme. You can change the full look of your

application simply by specifying an alternate theme, as shown in Listing 12–2. Figure

12–2 shows what this example looks like running in the Safari desktop browser with the

jqt theme.

Listing 12–2. Including the jqt Theme

 <link rel="stylesheet" href="themes/jqt/theme.css" type="text/css"/>

Figure 12–2. Starter application with the jqt theme

CHAPTER 12: Animated UI with jQTouch 211

A theme is a directory made up of a CSS file and images. The jqt theme3 will give your

application a jQTouch skin and is used by most of the jQTouch demos. The apple

theme4 simulates a native iPhone UIKit interface. The behavior of the application remains

the same across themes, only the look is changed.

Adding Screens
Next we’ll add a few screens to the same example to illustrate how jQTouch modifies

the DOM to achieve its transition effects (see Listing 12–3).

Listing 12–3. Example Application with Three Screens and Links Between Them

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <script src="jqtouch/jquery.1.3.2.min.js" type="text/javascript"></script>
 <script src="jqtouch/jqtouch.js" type="text/javascript"></script>
 <link rel="stylesheet" href="jqtouch/jqtouch.css" type="text/css"/>
 <link rel="stylesheet" href="themes/apple/theme.css" type="text/css"/>
 <script>
 var jqt = $.jQTouch();
 </script>
 </head>
 <body>
 <div id="page-home">
 <div class="toolbar">
 <h1>Home</h1>
 </div>

 <li class="arrow">Go to page 1
 <li class="arrow">Go to page 2

 </div>
 <div id="page-1">
 <div class="toolbar">
 <h1>Page 1</h1>
 Back
 </div>

 <li class="arrow">Go home
 <li class="arrow">Go to page 2

 </div>
 <div id="page-2">
 <div class="toolbar">
 <h1>Page 2</h1>
 Cancel
 </div>

 <li class="arrow">Go home

3 Found in themes/jqt/theme.min.css.

4 Found in themes/apple/theme.min.css.

CHAPTER 12: Animated UI with jQTouch 212

 <li class="arrow">Go to page 1

 </div>
 </body>
</html>

To understand what is happening with your application, you will want to open the Safari

Inspector, as shown in Figure 12–3. To do so, select Show Web Inspector under the Develop

menu. (If you don’t see a Develop menu, open Safari Preferences and on the Advanced

tab, select Show Develop menu in menu bar.)

Note how the code is different once it is loaded. In particular, look closely at how the

screens page-home, page-1, and page-2 are modified at runtime. On initial load of the

application, jQTouch modified the DOM and now the page-home div has

class="current". When you click a link, you will see an animated transition to the next

screen, then you will see that a different DIV will have class = "current" and the page-
home DIV will not.

Figure 12–3. Safari Web Inspector showing the first page as current

Loading Additional Screens with Ajax
For jQTouch transitions to work, screens must already be in the DOM. jQTouch handles

this for you with Ajax requests as long as your application conforms to its

(undocumented) expectations.

In order to achieve the visual effects of animated page transitions, screens that are not

present in the initial application HTML page must be fetched with Ajax requests.

jQTouch detects which links are internal by inspecting the HREF of the link. The screen

is assumed to have been loaded if the HREF is an internal anchor, such as #screen-1. If

CHAPTER 12: Animated UI with jQTouch 213

the HREF is a path, it will make an Ajax request to the URL the link is pointing to and

optimistically include whatever HTML snippet it receives. The returned content must be

one or more DIV elements, where each DIV element represents a screen.

NOTE: It is an HTML error to include a full document inside of another document. If a full HTML
page is returned by your web service, then your application will not work. Specifically, the screen
will appear blank. Also, if your web service returns an HTML element other than a DIV, jQTouch
styles may not apply correctly.

The content of the Ajax request is appended to the document and each of the links is

assigned an id (such as page-1, page-2, and so forth). If one of the screens has a

“current” class, jQTouch will transition to that screen after the external content has been

inserted. If you only have one DIV in the response or structure the response so that the

first DIV is the desired target page, then specifying a “current” class is not required–

jQTouch will make that assumption and annotate the DOM accordingly when the

response is received. The other change that jQTouch makes to the DOM is that the

HREF of the link that initiated the Ajax request is modified to include an anchor

reference to the ID of the new “current” screen. Listing 12–4 show a sample snippet

from a jQTouch application where the initial load is a single screen. Listing 12–5 shows

the AJAX response, which simply includes a snippet of HTML with a single DIV, not a

whole HTML page. Listing 12–6 shows the modified application page.

Listing 12–4. Application Body Before /beatles Link is Clicked

<body>
<div id="page-1" class="current">
 Get Beatles
</div>
</body>

Listing 12–5. AJAX Response

<div>

 John
 Paul
 George
 Ringo

</div>

Listing 12–6. Application Body After the Link Was Clicked

<body>
<div id="page-1">

 Get Beatles

</div>

<div id="page-2" class="current">

 John

CHAPTER 12: Animated UI with jQTouch 214

 Paul
 George
 Ringo

</div>
</body>

The new screen has been inserted into the DOM with an ID and class. The HREF that

was originally “/beatles” is now “#page-2” and therefore, if the user were to click that

link again, no server request would be made.

WARNING: All paths must be full URLs or relative to the root of your application.

Your entire application will end up being a single page. Relative paths in this context

don’t make sense. Because of this architecture, all links must be full URLs or relative to

the root of your application.

To navigate away from the application, include a target="_webapp" to your link, as

shown in Listing 12–7.

Listing 12–7. Linking Away from Your Application.

The Who

Cancel, Back, and Browser History
You can reverse a link animation by including a back or cancel class to your links. Those

links are then styled as buttons and will appear as top-left buttons in the application.

See Listing 12–8 for an example of how a Back button is placed within a page. Figure

12–4 shows the page with the apple theme.

Listing 12–8. Back Button Inside a Toolbar on a Page

 <div id="page-1">
 <div class="toolbar">
 <h1>Page 1</h1>
 Back
 </div>

 <li class="arrow">Go home
 <li class="arrow">Go to page 2

 </div>

Figure 12–4. Page with Back button, rendered with apple theme

CHAPTER 12: Animated UI with jQTouch 215

jQTouch doesn’t interact well with the browser history. Back simply pops the previous

page off an internal stack–there is no implementation of Forward. Consider hiding the

browser Back and Forward buttons and instead embed back and cancel in your

application. Forward will then be just a function of clicking buttons and links within the

application.

Other Buttons
Buttons normally appear on the top-right. To define a button, just add the button class:

Home

If you want to force a button left, add both the button and leftButton class:

Home on the left

jQTouch Initialization Options
jQTouch must be initialized by calling $.jQTouch(), as shown in Listing 12–9.

jQTouch returns an object with public that enables you to interact with it via JavaScript:

� getOrientation

� goBack

� goTo

If you want to invoke any of these public methods programmatically, you can save the

jQTouch instance in a variable, otherwise ignore it.

You can also pass options to the initialize function.5

Listing 12–9. Initializing jQTouch with Options

 $.jQTouch({
 icon: 'jqtouch.png',
 statusBar: 'black-translucent',
 preloadImages: [
 'themes/jqt/img/chevron_white.png',
 'themes/jqt/img/bg_row_select.gif',
 'themes/jqt/img/back_button_clicked.png',
 'themes/jqt/img/button_clicked.png'
]
 });

The jQTouch initialization options are listed in Table12–1.

5
 You can find a full listing of options in Appendix A, jQTouch Options.

CHAPTER 12: Animated UI with jQTouch 216

Table 12–1. jQTouch Initialization Options

Value Default Meaning

addGlossToIcon TRUE Set to false to prevent automatic glossy button effect

on icon.

backSelector .back, .cancel,

.goback'

A CSS selector for Back links/buttons. When clicked,

the page history goes back one, automatically

reversing whichever entrance animation was used.

cacheGetRequests TRUE Automatically caches GET requests, so subsequent

clicks reference the already loaded data.

cubeSelector .cube' Link selector for a cube animation.

dissolveSelector .dissolve' Link selector for a dissolve animation.

fadeSelector .fade' Link selector for a fade animation.

fixedViewport TRUE Removes the user's ability to scale the page. Ensures

the site behaves more like an application.

flipSelector .flip' Link selector for a 3-D flip animation.

formSelector form' Sets which forms are automatically submitted via Ajax.

fullScreen TRUE The web site will become a full-screen application

when saved to a user's home screen. Set to false to

disable.

fullScreenClass fullscreen' Adds a class to the <body> when running in full-

screen mode, to allow for easy detection and styling.

Set to false to disable.

icon FALSE Sets the home screen icon for the application. To use,

pass a string path for a 57x57px PNG. Example: icon:

'images/appicon.png'

initializeTouch a, .touch' Selector for items that are automatically given

expanded touch events. This makes ordinary links

more responsive and provides trigger events such as

swipe.

popSelector '.pop' Link selector for a pop animation.

preloadImages FALSE Pass an array of image paths to load them before

page loads. Example: ['images/link_over.png',

'images/link_select.png']

CHAPTER 12: Animated UI with jQTouch 217

Value Default Meaning

slideSelector 'body > * > ul li a' Link selector for the default slide-left transition. By

default, applies to all links within an unordered list.

Accepts any jQuery-capable selector 'li > a,

a:not(.dontslide)', and so forth.

slideupSelector .slideup' Link selector for a slide up animation.

startupScreen null Pass a string path to a 320px × 460px startup screen

for full-screen apps. Use a 320px × 480px image if you

set 'statusBar' to black-translucent.

statusBar ‘default' Styles the status bar when running as a full-screen

app. Other options are black and black-translucent.

submitSelector '.submit' Selector that, when clicked, will submit its parent form

(and close keyboard if open).

swapSelector '.swap’ Link selector for 3-D swap animation.

useAnimations true Set to false to disable all animations.

[source: http://code.google.com/p/jqtouch/wiki/InitOptions]

Basic Views
As seen in the examples so far, jQTouch applications consist of a single HTML file, used

to create the individual views in your the application. You can create additional views by

creating new DIVs as children of the body. .

The following is an example excerpt from an application with two views:

 <body>
 <div id="jqt">
 <div id="index">
 <div class="toolbar">
 <h1>My Application</h1>
 About
 </div>
 <p>Hello I am the index page</p>
 </div>

 <div id="about">
 <div class="toolbar">
 <h1>About</h1>
 Back
 </div>
 <p>Hello I am the about page</p>
 </div>
 </div>
 </body>

CHAPTER 12: Animated UI with jQTouch 218

jQTouch also supports organizing your application into separate HTML files. You can

use the _webapp target to break up sections of your application and then refer to them

as you would an external link. In that case, your link should reference the new file’s

name and anchor tag, if appropriate (for example, <a class="button flip"
target="_webapp" href="/about_us.html#about">About).

Customizing Your jQTouch Applications
Animations
Specify the transition you wish to apply to a link by adding a CSS class to the link.

jQTouch includes eight default page animations: slide, slideup, dissolve, fade, flip, pop,

swap, and cube.6 When the user presses the Back button, jQTouch automatically

handles reversing the animation for a natural transition.

Navigation Bar (aka the Toolbar)
jQTouch includes a special CSS class called toolbar that will turn a DIV into an element

resembling an iPhone Navigation Bar at the top of the screen (see Figure 12–5). The

jQTouch toolbar is simply a style generated from the jQTouch CSS, and shouldn’t be

confused with the toolbar element available in native Objective-C-based applications.

 <div class="toolbar">
 <h1>My Application</h1>
 About
 </div>

Figure 12–5. Navigation bar

Tables or Lists

In jQTouch, you can create lists that appear almost identical to those found in native

iPhone applications (see Figure 12–6). Create an unordered list and apply one of

the following classes to the ul element: edgetoedge, plastic, or metal to style your list.

Then you can add items to your list as you normally would, using the tag.

 <div id="jqt">
 <div id="index">
 <div class="toolbar">

 <h1>Tables</h1>

 </div>
 <ul class="edgetoedge">

6
 In the event those eight animations just aren’t enough, the jQTouch documentation includes

details on how to add your own custom animations.

CHAPTER 12: Animated UI with jQTouch 219

 Hydrogen
 Helium
 Lithium

 </div>
 </div>

Figure 12–6. List

To round the corners of your lists, apply the “rounded” class to the unordered list (Figure

12–7).

 <div id="jqt">
 <div id="index">
 <div class="toolbar">

 <h1>Tables</h1>

 </div>
 <ul class="rounded">
 Hydrogen
 Helium
 Lithium

 </div>
 </div>

CHAPTER 12: Animated UI with jQTouch 220

Figure 12–7. List with rounded corners

To add a standard disclosure indicator to an item in your list, add the class “arrow” to

the list item element.

 <div id="jqt">
 <div id="index">
 <div class="toolbar">
 <h1>Email</h1>
 </div>
 <ul class="edgetoedge">
 <li class="arrow">dev@example.com<small�
 class="counter">3</small>
 <li class="arrow">marketing@example.com<small�
 class="counter">221</small>
 <li class="arrow">webmaster@example.com<small�
 class="counter">37</small>

 </div>
 </div>

Finally, you can add numbers to the right-hand sides of your elements (see Figure 12–8)

by including a SMALL element with class="counter". Note: the body of the li has to be

an anchor tag for this to display correctly. This style is used in the Apple Mail

application, for example.

CHAPTER 12: Animated UI with jQTouch 221

Figure 12–8. List with disclosure indicator and numbers added

Customizing Your Views with Themes
jQTouch comes with two default themes. The first theme we’ve already seen matches

native iPhone UI controls. The second is similar to the first, but the color scheme is

dominated by black (see Figure 12–9). You can change between them by including a

different theme.css file. You can create your own themes as well. To modify or add to

the existing styles, you can add your own CSS by including additional files or defining

additional styles in the HTML head after including the theme.

using <link rel="stylesheet" href="themes/jqt/theme.css" type="text/css"�
 media="screen" title="no title" charset="utf-8">

CHAPTER 12: Animated UI with jQTouch 222

Figure 12–9. Changing themes

There are additional features you might use to customize a stand-alone jQTouch mobile

web app, but we recommend using Rhodes or PhoneGap’s methods to customize such

features as application icons, caching, and geolocation.

Integration with Rhodes
In Rhodes 2.1,7 jQTouch integration is built-in. By default, the iOS- and Android-

generated code includes animated transitions. The jQTouch library that ships with

Rhodes has been modified to be compatible with Android.8

Integration with PhoneGap
To use jQTouch features in a PhoneGap application, copy the jQTouch/ and themes/
directories into the www directory of your PhoneGap app.

7 Rhodes 2.1 is in beta, as of this writing

8 Since both Rhodes and jQTouch are MIT Licensed. These can be expected to roll back into

the jQTouch project.

CHAPTER 12: Animated UI with jQTouch 223

In your application’s index.html file, replace any the default CSS and JavaScript in the

HEAD section with the following:

 <link rel="stylesheet" href="jqtouch/jqtouch.min.css" type="text/css" media="screen"�
 title="no title" charset="utf-8">
 <link rel="stylesheet" href="themes/apple/theme.min.css" type="text/css"�
 media="screen" title="no title" charset="utf-8">

 <script src="jqtouch/jquery.1.3.2.min.js" type="text/javascript" charset=�
"utf-8"></script>
 <script src="jqtouch/jqtouch.min.js" type="text/javascript" charset="utf-8"></script>

 <script>
 var jQT = $.jQTouch();
 </script>

225

225

 Chapter

Sencha Touch
Sencha Touch (www.sencha.com/products/touch) is a JavaScript framework for creating

web applications targeted to touch-based devices. Sencha Touch is the flagship

product of Sencha (formerly Ext JS), a Palo Alto, Calif. company launched in 2007 that

makes application frameworks. Sencha Touch combines ExtJS, jQTouch and Raphaël.

Unlike jQTouch, Sencha Touch is not dependent on jQuery and is compatible with both

the iPhone and Android. Sencha Touch is distributed under the GPL v3 open source

license. As of this writing, it is in beta and not available for commercial distribution;

however, it is expected to have a commercial license upon final release.

Sencha Touch allows your web applications to have a consistent look and feel across

both the iPhone and Android. It does not strive for a native look in most cases, but

rather has created a blend of widgets that don’t look like any specific operating system

(with the exception of some iPhone-looking toolbars.)

Sencha Touch is powered by HTML5 and CSS3. Unlike the iWebKit and jQTouch, the

Sencha Touch API is pure JavaScript. Developers need to be fairly experienced at

JavaScript to take advantage of the Sencha Touch framework. Due to Sencha’s recent

release, still in beta at the time of this writing, this chapter focuses on providing a

foundation in the Sencha style of UI layout and programming and does not provide full

recipes for how to develop applications.

Getting Started
In Sencha Touch, you write all of your application code in JavaScript. Focused on the

WebKit-based mobile browsers of iOS and Android, you will get the best results when

developing if you do your testing on the Safari desktop browser before testing it in the

simulator. As with all mobile development, be sure to test on target devices, not just the

simulator, before releasing your mobile application.

When implementing the visual design and client-side interaction and testing on your

desktop, you can simply open an HTML file in Safari. However, when integrating the

interface into your web application, you will make AJAX requests that require your HTML

file be hosted in a web server (for example, accessed via “http://…” rather than

13

CHAPTER 13: Sencha Touch 226

“file:///…”). Also, to run in a simulator, you will need to access your application via

your web server (which can run on your local machine, but you will need to access it as

a web server over the network).

There is no requirement for how you organize your files; however, to follow the code in

this chapter, your starter application directory should look like Figure 13–1 (the complete

list of files is provided in Table 13–1). In all of Sencha’s own demos, the application

JavaScript file is called index.js and they keep it at the root of the application directory

as a sibling of index.html; however, this chapter follows the convention of having

subfolders for JavaScript and CSS, which is a common convention in web application

development.

For development, we include ext-touch-debug.js but you will switch to ext-touch.js for

deployment. The debug version helps you detect and troubleshoot errors, as well as

isolate issues in your application code by seeing exactly where in the library errors

occur. We include the debug-with-comments.js for convenient reference.

Figure 13–1. A typical directory structure for a Sencha application

There are a number of standard files that are included in a Sencha application tree.

These are listed in Table 13–1 along with an explanation of their purpose.

Table 13–1. Standard Files in a Sencha Touch Application

File Purpose

index.html the entry-point of your application. You may have multiple HTML files; however,

a single HTML file will typically represent many “pages” in your application (or

multiple screens on a mobile device).

index.js for your application code

application.css for your application CSS

ext-touch.js Sencha JavaScript library. During development you will want to use ext-touch-
debug.js instead.

ext-touch.css Sencha CSS library that is required to go with the JavaScript library.

CHAPTER 13: Sencha Touch 227

To get started with your application, you need to create an index.html file with the

content shown in Listing 13–1.

Listing 13–1. A Typical index.html File for a Sencha Application

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
 <title>My Application</title>
 <link rel="stylesheet" href="css/ext-touch.css" type="text/css"/>
 <link rel="stylesheet" href="css/application.css" type="text/css"/>
 <script type="text/javascript" src="javascript/ext-touch-debug.js"></script>
 <script type="text/javascript" src="javascript/index.js"></script>
</head>
<body/>
</html>

Create subfolders “javascript” and “css.” Place the Sencha Touch library files in

appropriate folders and create blank files for index.js and application.js.

Next, you need to fill in the boilerplate JavaScript in index.js as shown in Listing 13–2.

The Ext.setup method sets up a page for use on a touch-enabled device. It allows you

to set various startup properties and behaviors for your application. All of your

application code needs to be wrapped in a function called by the Sencha framework.

Your application code is declared as an anonymous function and assigned to the

“onReady” property.

Listing 13–2. The Minimum JavaScript You Need to Start Coding in index.js

Ext.setup({
 onReady: function()
 // your code goes here
 }
});

The setup method optionally allows for properties that control how the application starts

up and appears on the device. A more typical boilerplate wrapper for a Sencha

application is shown in Listing 13–3.

Listing 13–3. The Typical Sencha Setup Properties Used in index.js

Ext.setup({

 tabletStartupScreen: 'tablet_startup.png',

 phoneStartupScreen: 'phone_startup.png',
 icon: 'icon.png',
 glossOnIcon: true,
 onReady: function() {
 // your code goes here
});

The key properties of the setup method are listed and described in Table 13–2.

CHAPTER 13: Sencha Touch 228

Table 13–2. The Properties of the Setup Method

File Purpose

Icon (String) specifies the name of the application's default icon file, such as

“icon.png.” This will apply to both tablet and phones (or you can specify

tabletIcon or phoneIcon if you want different icons for different types of

devices). The image should be 72�72 and will be used as the application

icon when saving the app to the device’s home screen.

GlossOnIcon (Boolean) specifies whether you want the gloss effect to be applied to the default

icon (for iOS only)

fullscreen (Boolean) sets an appropriate meta tag for iOS devices to run in full-screen mode.

tabletStartupScreen
(String)

specifies the name of an image to be used as a splash screen for iPad.

The image must be 768�1004 and in portrait orientation.

phoneStartupScreen

(String)

specifies the name of an image to be used on an iPhone or iPod touch.

The image must be 320�460 and in portrait orientation.

statusBarStyle (String) sets the status bar style for fullscreen iPhone OS web apps. Valid options

are

 � default

 � black

 � black-translucent

preloadImages (Array) specifies a list of urls of images to be loaded. This is useful for

applications with several screens where preloading the images gives a

smoother user experience than having them load on demand over a

potentially slow network.

onReady (Function) runs the specified function when the page is loaded and it is safe to

interact with the HTML DOM (Document Object Model).

scope (Object) A frequently used property in Sencha Touch that allows you to set the

execution context (the value of ”this”) of a particular function. In this case

you can set the execution context of the onReady function. If not set, the

function will execute in the context of the ”window” object.

Adding HTML Text with a Panel
Sencha applications are created dynamically using procedural code to create UI objects,

in contrast to declarative UI frameworks that use markup in XML or HTML to create

interface elements. Coding in Sencha Touch feels similar to traditional UI frameworks

such as the Microsoft Foundation Classes (MFC) or Java Swing. You will add UI

components to a “panel” and specify a layout to visually organize an application screen.

CHAPTER 13: Sencha Touch 229

You will start with a panel, which is a fairly generic container for application layout. In

this example, you’ll use the fullscreen config option to make the panel fill the screen.

Add a panel with some text in it by modifying index.js to include the code in Listing 13–

4. When you open the index.html file in Safari, you should see the text shown in Figure

13–2. Note that the panel has no visual appearance.

Listing 13–4. Adding a Panel With Text in it

Ext.setup({
 onReady: function() {
 new Ext.Panel({
 id: 'mainscreen',
 html: 'This is some text in a panel.
<small>This is�
 smaller text.</small>',
 fullscreen: true
 });
 }
});

NOTE: When testing in Safari, you will want to display the error console. Often when there are
JavaScript errors all you will see is a blank page. To display the error console, you will need to
enable the Developer menu and select Show Error Console. (To enable the Developer menu,
open Preferences, select the Advanced panel and check Show Develop menu in menu bar.)

Figure 13–2. Text in a panel

If you View Source in Safari, you will still see the HTML as shown back in Listing 13–1.

However, if you Show Web Inspector under the Develop menu and open all of the DOM

elements, you will see that Sencha Touch has dynamically added elements to the DOM

to display the text (see Figure 13–3).

Figure 13–3. Sencha modifies the HTML DOM at runtime to display text in a panel.

CHAPTER 13: Sencha Touch 230

While everything in Sencha Touch is implemented with procedural JavaScript, the

components are typically created using configuration. The panel is a “container” and any

container may be configured with a list of “items” that may be a single component, or an

array of child components. The components are then spatially arranged according to a

specified layout. Listings 13–5 and 13–6 show two variants of container configuration

values.

Listing 13–5. A Container May Be Configured With a Single Item and a Layout

// specifying a single item
items: {...},
layout: 'fit',
…

Listing 13–6. A Container May Be Configured With an Array of Items and a Layout

// specifying multiple items
items: [{...}, {...}],
layout: 'hbox',
…

Each item may be an instance of a component or a component configuration with

specified “xtype.” Table 13–3 provides a list of visual and non-visual component xtypes.

Table 13–3. xtypes

Visual Component xtypes Non-visual component xtypes

button component: super class of all components

slider container: a non-visual component that has a list of items and a layout

that specifies how to arrange its items

toolbar dataview, datapanel: can be bound to a data store for rendering

dynamic data

tabpanel panel: typically used for layout, a panel can have its own CSS style

(“baseCls”) and can detect orientation when in fullscreen mode

checkbox spacer: used for layout

select form: allows for layout in a typical manner for a form

field component: super class of all components

fieldset container: a non-visual component that has a list of items and a layout

that specifies how to arrange its items

numberfield dataview, datapanel: can be bound to a data store for rendering

dynamic data

CHAPTER 13: Sencha Touch 231

Visual Component xtypes Non-visual component xtypes

textarea panel: typically used for layout, a panel can have its own CSS style

(“baseCls”) and can detect orientation when in fullscreen mode

Radio spacer: used for layout

Textfield form: allows for layout in a typical manner for a form

Adding Components
Next you’ll add some user interface components to the application. In this case, you

want a toolbar across the top with three buttons that will navigate between screens. It is

easiest to understand (and debug) if you add one component at a time and test the

application. You’ll start by adding a “splitbutton,” which is a component that has a list of

buttons as child items. Modify your code as shown in Listing 13–7 and the application

should appear as shown in Figure 13–4.

Listing 13–7. A Container May Be Configured With an Array of Items and a Layout

Ext.setup({
 onReady: function() {
 var buttonsGroup = {
 xtype: 'splitbutton',
 items: [{
 text: 'One',
 active: true
 },
 {
 text: 'Two'
 },
 {
 text: 'Three'
 }]
 };

 new Ext.Panel({
 id: 'mainscreen',
 html: 'This is some text in a panel.
<small>This is�
 smaller text.</small>',
 fullscreen: true,
 items: buttonsGroup
 });

 }
});

CHAPTER 13: Sencha Touch 232

Figure 13–4. A simple button bar added to the panel.

Creating Interactivity
To illustrate how to make the application interactive and respond when someone clicks

a button, the examples in this section show how to simply change text and then how to

swap which panel is shown. These examples provide a guide to fundamental concepts

in Sencha Touch that should provide insight on implementing any interactivity. Note that

this specific example of panel hiding/showing is more easily achieved with an

Ext.TabPanel, but the general coding techniques will give you a feel for what it is like to

develop web UI with Sencha Touch.

As shown in Listing 13–8, you can define a handler for any button. The handler is just a

JavaScript function that is passed a reference to the button and the event that triggered

the call. Ext.getCmp('mainscreen') will get a reference to the component with the id

‘mainscreen’ (the panel component with text in it). Then “update(txt)” will set the HTML

of the component to the text in the local variable “txt.”

Listing 13–8. A Handler May Be Associated With a Button

Ext.setup({
 onReady: function() {
 var tapHandler = function(button, event) {
 var txt = "User tapped the '" + button.text + "' button.";
 Ext.getCmp('mainscreen').update(txt);
 };
 var buttonsGroup = {
 xtype: 'splitbutton',
 items: [{
 text: 'One',
 active: true,
 handler: tapHandler
 },
 { text: 'Two',
 handler: tapHandler
 },
 { text: 'Three',
 handler: tapHandler
 }]
 };

 new Ext.Panel({
 id: 'mainscreen',
 html: 'This is some text in a panel.
<small>This is�
 smaller text.</small>',
 fullscreen: true,

CHAPTER 13: Sencha Touch 233

 items: buttonsGroup
 });

 }
});

A more meaningful action would be to create multiple panels where selecting one of the

buttons displays a corresponding panel. It is also typical to arrange the buttons in a

toolbar, which can be done by nesting the splitButton component in a toolbar

component. The code that combines these features can be seen in Listing 13–9. Portrait

and Landscape views are shown in Figures 13–5 and 13–6, respectively.

Listing 13–9. Interface Elements to Display Multiple Screens Selected by a “splitButton”

Ext.setup({
 onReady: function() {
 var tapHandler = function(button, event) {
 var txt = "User tapped the '" + button.id + "' button.";
 panel_id = 'panel' + button.id
 Ext.getCmp('panelone').hide();
 Ext.getCmp('paneltwo').hide();
 Ext.getCmp('panelthree').hide();

 Ext.getCmp(panel_id).show();
 };

 var buttonsGroup = {
 xtype: 'splitbutton',
 items: [{
 id: 'one',
 text: 'One',
 handler: tapHandler,
 active: true
 },
 {
 id: 'two',
 handler: tapHandler,
 text: 'Two'
 },
 {
 id: 'three',
 handler: tapHandler,
 text: 'Three'
 }]
 };

 var panelOne = {
 id: 'panelone',
 xtype: 'panel',
 html: 'This is some text in a panel.
<small>This is�
 smaller text.</small>',

 };
 var panelTwo = {
 id: 'paneltwo',
 xtype: 'panel',

CHAPTER 13: Sencha Touch 234

 html: 'Here is the second panel',
 hidden: true
 };
 var panelThree = {
 id: 'panelthree',
 xtype: 'panel',
 html: 'This is number 3',
 hidden: true
 };

 var mytoolbar = {
 xtype: 'toolbar',
 ui: 'dark',
 items: buttonsGroup,
 dock: 'top',
 layout: { pack: 'center' }
 }

 new Ext.Panel({
 id: 'mainscreen',
 items: [mytoolbar, panelOne, panelTwo, panelThree],
 fullscreen: true
 });

 }
});

Figure 13–5. SplitButton in a toolbar Figure 13–6. SplitButton in a toolbar (landscape)
(portrait)

235

235

 Chapter

BlackBerry HTML UI
The BlackBerry platform was one of the earliest smartphone platforms to gain

widespread adoption in the business- and gadget-loving communities. Developed by

Research in Motion (RIM), it remains one of the leaders in market share for devices in the

United States; however, the BlackBerry is outpaced by iPhone and Android sales in

terms of market growth.

Support for the BlackBerry is included in both the Rhomobile and PhoneGap platforms.

However, the limited capabilities of the embedded web UI control limit the degree of

creativity and flexibility you can include in designing the layout and visual design of your

application. Quite possibly the greatest limitation for developing native applications for

the BlackBerry using HTML for UI lies not within these development environments, but

within the BlackBerry platform itself.

Note that for mobile web applications, the BlackBerry has an added limitation: all

network traffic for BlackBerry devices is routed through a central gateway. In the case of

enterprise data transfer, it’s routed through the BlackBerry MDS Connection Service; for

web traffic, it’s routed through the BlackBerry Internet service. Both services aim to

minimize bandwidth usage by optimizing content for the requesting device’s rendering

capabilities, transcoding incompatible content, and only transferring data not currently in

the device’s local cache. Instead of allowing the developer to optimize content as

desired, RIM applies a transformation to the HTML, adding to the challenges presented

by the rendering limitations of the browser. However, when building a native application

with a cross-platform framework, the HTML UI is delivered as part of the app and

therefore bypasses the gateway transformation.

RIM recommends that your content be designed to meet the needs of users with the

first-generation browser (4.2). Whether you are developing web applications or native

applications with web UI controls for the BlackBerry, the number of users who will be

using a first-generation BlackBerry browser to access content is currently much larger

than the number of users with second-generation browsers.

RIM recently demoed a new WebKit-based browser with full support for HTML5,

modern JavaScript, and improved CSS support. While at the time of this writing there is

no stated timeline for release and no word on which devices will support the WebKit-

14

CHAPTER 14: BlackBerry HTML UI 236

based browser, this yields hope for improved support for future generations of

BlackBerry devices.

The remainder of the sections in this chapter detail the features and limitations often

encountered when building applications that make use of web UI controls for BlackBerry

devices.

BlackBerry Browser UI Controls
Developing for the BlackBerry web UI requires a disciplined approach to work within the

limitations of the target browser.

There are two separate browser-rendering engines included on the BlackBerry platform

� browser.field (available since ~v3.8 with most recent changes made

in v4.5); The level of content support provided by this browser is

limited to:

� Document Object Model (DOM) L1 (read only access to the

DOM).

� Partial support for HTML, JavaScript and CSS. Content rendered

using this browser field will look similar to content rendered by

the BlackBerry browser on a 4.5 device.

� Interaction model supports quick traversal of form fields with

trackpad, trackwheel or trackball.

� browser.field2.BrowserField RIM’s second rendering engine for the

BlackBerry was introduced with the BlackBerry Bold (version 4.6

handheld software). This browser field greatly improved the

capabilities of the BlackBerry browser; however, the interaction model

was changed significantly by adding:

� Support for industry standards such as HTML 4.01, JavaScript

1.5, CSS 2.1.

� Support for DOM L2 (read/write) and XmlHttpRequest (AJAX).

However, modern Javascript frameworks, such as JQuery and

XUI, are not supported.

� Interaction model for control of the pointer require spatial motion

that is similar to a mouse on a computer screen or touch

interface. This negatively affects usability when using the

trackpad, trackwheel or trackball.

The differences between browser.field (4.2) and browser.field2 (4.6) are reviewed in

detail. Note that PhoneGap automatically includes the 4.6 control and only supports 4.6

or later devices. By default, Rhodes applications use the 4.2 browser control, but a

configuration option allows you to use the 4.6 control. Rhodes supports BlackBerry OS

versions 4.2 and above.

CHAPTER 14: BlackBerry HTML UI 237

BlackBerry 4.2 Browser Control
Targeting the 4.2 browser control allows your application to reach a wider audience and

allows your user interface to conform to the conventions users have come to expect

from other BlackBerry applications.

CSS
Although the BlackBerry documentation leads you to believe you can use CSS, it buries

the fact that it lacks the ability to position divs and style lists in fact, there isn’t support

for float, left, right, or any other modern positioning tag available in the 4.2 browser. For

this reason, if you plan on building a single cross-platform application that also targets

BlackBerry 4.2, table-based layouts are your best option.

The following tables were adapted from the BlackBerry Browser Version 4.2 Content

Developer Guide.1

background styles
Background
background-color
background-image
background-repeat

font styles
Color
Font
font-family
font-size
font-style
font-weight

border styles
border border-color Border-style border-width
border-bottom border-bottom-

color
Border-bottom-style border-bottom-width

border-left border-left-color Border-left-style border-left-width
border-right border-right-color Border-right-style border-right-width
border-top border-top-color Border-top-style border-top-width

1 http://docs.blackberry.com/en/developers/deliverables/1143/browser_devguide.pdf

CHAPTER 14: BlackBerry HTML UI 238

font
styles

Text-
align

text-
decor
ation

background-
color

back
groun

d
styles

a X x x x
body X x x x x

div X x x x
head X x x x
img X x x x
p X x x x
span X x x x
title X x x x
frame X x x x
frameset X x x x
legend X x x x
blink X x x x
marquee X x x x

 Font
styles

background-
color

blockquot
e

X x

h1 - h6 X x

pre X x

sub X x

sup X x

b X x

big X x

center X x

cite X x

code X x

dfn X x

i X x

em X x

font X x

kbd X x

s X x

samp X x

small X x

strike X x

strong X x

tt X x

u X x

var X X

CHAPTER 14: BlackBerry HTML UI 239

 Font
styles

border
styles

text-
align

text-
decoratio

n

background
-color

heig
ht

width

form X X x x
fieldset X X x x
textarea X X x x
input X X x x
select X X x x
optgroup X X x x
option X X x x
button X X x x x x

input
type=”button”

X X x x x x

input
type=”submit”

X X x x x x

input
type=”reset”

X X x x x x

input type=”text” X X x x
img X x x

 background-
color

Font styles text-
align

text-
decoration

ol X x x x

ul X x x x

li X x x x

dd X x x x

dt X x x x

dir* X x x x

menu* X x x x

A complete guide to supported tags can be found in the BlackBerry Browser Version 4.2

Content Developer Guide.

Fonts
There are three font families supported in the BlackBerry browser: Arial, Courier, and an

oddly pixelated version of Helvetica (see Figure 14–1). The code for these fonts is

provided in Listing 14–1. You can use custom font sizes in the stylesheet, but any font

styles not included in the previous list of supported CSS must be applied through inline

tags such as , , and so forth.

CHAPTER 14: BlackBerry HTML UI 240

Figure 14–1. The three fonts are shown in their default and 12px sizes.

Listing 14–1. The Code For the Font Text in Figure 14–1

.arial {
 font-family: "Arial";
}
.arial12 {
 font-family: "Arial"; font-size: 12px;
}
.c {
 font-family: "Courier";
}
.c12 {
 font-family: "Courier"; font-size: 12px;
}
.helv {
 font-family: "Helvetica";
}
.helv12 {
 font-family: "Helvetica"; font-size: 12px;
}

<p>no font</o>
<div class="arial">
 <p>Arial bold</p>
</div>
<div class="arial12">
 <p>Arial 12pt bold</p>
</div>
<div class="c">
 <p>Courier bold</p>
</div>

CHAPTER 14: BlackBerry HTML UI 241

<div class="c12">
 <p>Courier 12pt bold</p>
</div>
<div class="helv">
 <p>Helvetica bold</p>
</div>
<div class="helv12">
 <p>Helvetica 12pt bold</p>
</div>

Frames
The browser supports the <frameset> and <frame> elements, but does it not support

inline frames (the <iframe> element). Instead, frames will be rendered vertically in a

single column. See page 42 of the BlackBerry Browser Version 4.2 Content Developer

Guide for more information if you wish to use frames in your application.

JavaScript
Regardless of the specific JavaScript capabilities, the most notable limitation is that the

BlackBerry 4.2 browser will not allow you to modify the DOM. The browser supports

JavaScript 1.0, 1.1, 1.2, 1.3, and small subsets of JavaScript 1.4 and 1.5. Additionally, a

custom location function is supported on devices running BlackBerry Device Software

Version 4.1 or later, but will likely be integrated into the cross-platform solution you have

selected. However, when working directly with JavaScript on the BlackBerry, there are a

few issues you may wish to note.

� In BlackBerry Device Software version 4.5 or earlier, if the BlackBerry

Browser encounters any script that produces common dynamic HTML

effects, the browser executes without error but produces no visual

effect. JavaScript that is not supported simply produces an error, and

unless the error is handled to satisfaction within the script, the script

will be prevented from executing any further.

� On the BlackBerry Browser, users can turn JavaScript support on or

off. Perhaps more importantly, JavaScript support can also be turned

off through a centralized IT policy, leading to confusion in user

expectations about what they should see on the screen.

In translation: Make sure your JavaScript degrades gracefully. Again, refer to your copy

of the BlackBerry Browser Version 4.2 Content Developer Guide to determine if a

particular feature you are interested in is available in the embedded browser.

CHAPTER 14: BlackBerry HTML UI 242

Rhodes Tip for Dynamic Layout
If you need to layout a screen dynamically and you can divide the screen into table cells

that are a percentage of the width or height, then you can use simple width and height

attributes that specify a percentage. If you need to calculate width and height based on

specific values, then it normally would not be possible to create a dynamic layout for the

BlackBerry 4.2 browser. In Rhodes, however, you can do a calculation in the ERb

(Embedded Ruby) HTML file.

This technique is demonstrated in Listings 14–2 and 14–3. The sample application

(illustrated in Figure 14–2) has a layout for two images that can’t be calculated based on

a percentage of the screen width. To work around the browser limitation, this example

includes a layout (in Listing 14–2) that dynamically determines the size of the outer and

inner margin by calculating the size based on screen width and the width of the two

images. This can be accomplished using Rhodes because the HTML page is processed,

evaluating the Ruby code inside <%= %> before it is rendered in the browser control.

Figure 14–2. In this layout, note that to create even spaces around the images, the screen cannot use
percentages for table widths.

Listing 14–2. This Code in layout.erb Dynamically Generates the Width of the Table Cells When the Page is
Rendered, So That it Will Be Laid Out Proportionally On Different Screen Sizes

<% if System::get_property('platform') == 'Blackberry' %>
 <link href="/public/css/blackberry.css" type="text/css" rel="stylesheet"/>

 <style type="text/css">
 #start td.space {
 width: <%= (System.get_screen_width - 333)/3 %>px;

CHAPTER 14: BlackBerry HTML UI 243

 }

 #start td.blurb {
 width: <%= (System.get_screen_width - 333)/3 +333 %>px;
 }

 #start td.sf1 {
 text-align: center;
 width: 133px;
 }
 #start td.sf2 {
 text-align: center;
 width: 200px;
 }

 </style>

<% else %>
 <link href="/public/css/xhtml.css" type="text/css" rel="stylesheet"/>
<% end %>

Listing 14–3. The Elements Can Be Laid Out in a Table in the Page With the Table Sizes Controlled By the CSS
Specified in layout.erb Shown in Listing 14–2

<table id="start">
 <tr height="40"/>
 <tr>
 <td class="space"/>
 <td class="sf1"></td>
 <td class="space"/>
 <td class="sf2"></td>
 <td class="space"/>

 </tr>
 <tr>
 <td class="space"/>
 <td class="sf1">Day Trips</td>
 <td class="space"/>
 <td class="sf2">Night Life</td>
 <td class="space"/>

 </tr>

 <tr>
 <td class="space"/>
 <td class="blurb">Explore San Francisco. Choose "day trips" or "night life" to find
fun things to do in and around San Francisco.</td>
 <td class="space"/>
 </tr>
</table>

CHAPTER 14: BlackBerry HTML UI 244

BlackBerry 4.6 Browser Control
The BlackBerry 4.6 browser control is significantly easier for development than the 4.2

browser, since you can modify the DOM and you do have access to more CSS. While

the 4.6 browser technically supports the latest standards (HTML 4.01, CSS 2.1, and

DOM Level 2), in reality, modern desktop and other mobile browsers have moved

forward. As of this writing, most popular JavaScript frameworks (jQuery, XUI, etc.) do

not work on any BlackBerry web browser. The 4.6 browser also brings with it an

awkward usability issue: in the 4.2 browser, the user can easily navigate form fields and

links by a brief gesture with the trackball which jumps from field to field; however, the

new browser requires that you navigate just as you would with a mouse or a touch

screen by rolling the pointer around the screen which ends up being a slow and

awkward experience with the trackball or trackpad.

Display and User Interaction
BlackBerry produces a wide variety of devices but along with choice and variety

inevitably comes complexity. Blackberry devices are known to have at least 11 different

listed screen resolutions, with variation ranging from 132×65 up to 360×480 (see

Table 14–1).

Additionally, the range of pointer accuracy on BlackBerry devices is vast—from the

precision of the Bold or Curve where the trackball lets you roll from element to element,

to the tactile frustrations of the Storm where you need to leave wide spaces around your

UI elements in order to give people any hope of hitting them. The usability of your

application will not be apparent in the simulator, even if you try it on simulators that

target different devices. It is easy to create a layout which looks and feels like an

effective design in the simulator and then completely fails to allow someone to enter text

or click a button on a specific device. For these reasons, it is critical that you test on the

device early (and often) on actual devices for all of your target platforms.

Table 14–1. BlackBerry Screen Resolutions

Listed resolution Model numbers Brands

132 × 65 950

160 × 160 857, 957

240 × 160 7520

240 × 240 7730, 7750, 7780

240 × 260 7100, 7130, 8100, 8120, 8130 Pearl

240 × 320 8130, 8220 Pearl Flip

CHAPTER 14: BlackBerry HTML UI 245

Listed resolution Model numbers Brands

320 × 240 8830, 8300, 8310, 8320, 8330, 8700, 8703e, 8707, 8800,8820 Curve

324 × 352 Charm

480 × 320 9000 Bold

480 × 360 8900 Curve

360 × 480 9500, 9530 Storm

Development Environment
One final complication: The native BlackBerry development environment is currently only

fully accessible in Windows development environments. If you’re developing your

applications on a map and want to test your BlackBerry builds (which you should do

early and often), you’ll need to track down a development system running Windows XP

or Vista. Windows 7 is not supported at the time of this writing. However, it is possible to

develop on Macintosh hardware using a virtual machine, such as VMWare or Parallels.

247

247

 Appendix

Cascading Style Sheets
Cascading Style Sheets (CSS) define how HTML elements are displayed. Styling can

happen in a few different places. The most common place for CSS is an external style

sheet (which is a file with a .css extension). You place a <link> between your HTML

<head> tags like Listing A–1.

Listing A–1. HTML header - External Stylesheet

<head>
 <link href="stylesheet.css" rel="stylesheet" type="text/css">
</head>

NOTE: You can use relative or absolute paths to your style sheets for the href attribute of <link>.

You can also place a <style> tag in the <head> portion of your HTML document and

define your CSS there (Listing A–2); this is called an internal style sheet.

Listing A–2. HTML Header - Internal Stylesheet

<head>
 <style type="text/css">
 …
 </style>
</head>

Finally you can add a style attribute to any HTML element and define your styles there;

this is called an inline style (Listing A–3).

Listing A–3. Inline Style

<div style="width:50px;height:50px;">…</div>

The Cascading in Style Sheets
When an HTML element has multiple styles defined on it, the one with the highest

priority will be chosen and override the rest. An inline style (a style defined on the HTML

element) has the highest priority and will override any other CSS defined. Next is an

internal style sheet (one defined in the header of your HTML document), then external

APPENDIX: Cascading Style Sheets 248

style sheets (you reference these with a link tag in the header of your HTML document,

which are typically declared before the internal style sheets). Finally, browser default

options are at the bottom of the list, and will have the lowest priority.

� Inline styles

� Internal/external style sheets (last one defined determines style)

� Browser defaults

Note that overwriting happens only if the specificity of the selectors is the same. So, for

example, let's say you have a style that applies to p elements in a div, and then later on

you have a style that applies to all p elements.

p elements inside a div will get the first style, because the most specific style wins, even

if there's a more general one later.

Style declarations aren't monolithic. When something gets "overridden," what's really

happening is that any declarations that are the same level of specificity and the same

property are overridden, but all the other properties remain.

So, for example, let's say you have something similar to Listing A–4.

Listing A–4. Paragraph tag with color

div p { /* applies to p elements inside a div */
 color: blue;
}

And then later on, you have Listing A–5.

Listing A–5. Paragraph Tag with color and text decoration

p { /* applies to all p elements */
 color: black;
 text-decoration: underline;
}

<p> elements in a div will be blue and underlined and all other <p> elements will be

black. The more-specific declaration has a color so that overrides the general color,

even though it is defined first. Because it doesn't say anything about text-decoration,

that style is determined from the more-general set.

CSS Syntax
A typical CSS statement looks like this:

SELECTOR {DECLARATION[PROPERTY: VALUE];DECLARATION[PROPERTY:VALUE]; }

For example, consider Listing A–6.

APPENDIX: Cascading Style Sheets 249

Listing A–6. Header 1 tag with color

h1 { color: #FFFFFF; }

Selector-> h1
Declaration-> color: #FFFFFF;
Property-> color
Value-> #FFFFFF

CSS declarations always end with a semicolon, and curly brackets surround declaration

groups.

NOTE: Do not leave spaces between property values and units.

Incorrect top: 20 px;

Correct top: 20px;

Comments
A CSS comment begins with "/*", and ends with "*/", like Listing A–7.

Listing A–7. Comments

/* This is a comment */

/*
This is a
multiline
comment
*/

Identifying Elements with ID and Class
ID defines a special and unique case for an element (this means that it can only be used

once per document). These should be treated like global variables and used sparingly.

In CSS, an ID is declared with a pound sign (#) followed by a unique name, such as

#unique_box in Listing A–8.

Listing A–8. CSS ID Example

<html>
 <head>
 <style type="text/css">
 #unique_box {
 width: 50px;
 height: 50px;
 background-color: blue;
 }
 </style>
 </head>
 <body>
 <div id="unique_box"></div>

APPENDIX: Cascading Style Sheets 250

 </body>
</html>

In CSS, if you follow a class declaration with a selector, you can define specific

declarations for that element.

CSS classes define a special non-unique case for elements. Classes should be used

when multiple elements require the same styling. CSS classes are declared with a period

(.) followed by a unique name, such as .box in Listing A–9.

Listing A–9. CSS Class Example

<html>
 <head>
 <style type="text/css">
 .box {
 width: 50px;
 height: 50px;
 }
 </style>
 </head>
 <body>
 <div class="box"></div>
 <div class="box"></div>
 <div class="box"></div>
 </body>
</html>

In CSS, if you follow a class declaration with a selector, you can define specific

declarations for that element. Where ".box" is the class, "p" is the selector, and "color:

green;" is the declaration (Listing A–10).

Listing A–10. Apply a class to a <p> tag

.box p {
 color: green;
}

Common Patterns
Generally, you won't be writing CSS that applies to all <p> elements, or all <a>

elements. You will write CSS that applies only to certain elements based on how they

are placed relative to other elements. For example, you might have a specific style for all

<p> elements inside any <div> with class 'bounding-box.'

Examples of nesting selectors include Listing A–11 and examples of grouping selectors

include listing A–12.

Listing A–11. Examples of nesting selectors

div p { /* all p elements that are inside a div */
 color: green;
}

div p.box { /* all p elements with class box that are inside a div */
 color: black;

APPENDIX: Cascading Style Sheets 251

}

div.main-text p.box { /* all p elements with class box that are inside
a div with class main-text */
 color: blue;
}

Listing A–12. Examples of grouping selectors

/* all p and h1 elements inside the div with class main-text */
div.main-text p, div.main-text h1 {
 color: black;
}

Common CSS Attributes (Display: block verses
inline)
The display property controls how an element is displayed. It does this with two

properties called block and inline. The block property tells the element to take up the full

width available and forces line breaks in text. The inline property tells the element to take

up just as much width as necessary and doesn’t force line breaks.

NOTE: "display: none;" will hide an element, making it invisible. ■

These HTML elements have a display: block; by default:

<p>, <h1>…<h4>, <div>

These HTML elements have a display: inline; by default:

<a>,

Visibility has two values, visible or hidden, to control whether an element is visible or not.

[visibility: hidden;]

Margin clears the area outside of the container. Margin takes four values in a clockwise

rotation: MARGIN TOP RIGHT BOTTOM LEFT. Each value must be defined in pixels, pt,

em, or % (Listing A–13).

NOTE: Negatives values are allowed, so that you may overlap content.

Listing A–13. Margin Example

margin-left: VALUE;
margin-right: VALUE;
margin-top: VALUE;
margin-bottom: VALUE;

Padding clears the area inside the container (Listing A–14). Padding takes four values in

a clockwise rotation: PADDING TOP RIGHT BOTTOM LEFT. Each value must be defined

in pixels, pt, em, or %. [p { padding: 0px 10px 0px 10px;}]

APPENDIX: Cascading Style Sheets 252

NOTE: Negative values are not allowed.

Listing A–14. Padding Example

padding-left: VALUE;
padding-right: VALUE;
padding-top: VALUE;
padding-bottom: VALUE;

Background controls the background color or image of an HTML element (Listing A–15).

It has options BACKGROUND: COLOR IMAGE REPEAT ATTACHMENT POSITION.

[body { background: #00ff00 url(‘image.png’) no-repeat fixed top; }]

Listing A–15. Background Example

background-color: VALUE;
background-image: VALUE;
background-repeat: VALUE;
background-attachment: VALUE;
background-position: VALUE;

Color controls text color. Colors can be defined by name [color: red;], RGB [color:

rgb(255,0,0);], or hex representation. [color: #ff0000;].

Text-align is used to set the horizontal alignment of text. [p {text-align: center;}]

Text-decoration allows you to over-line, under-line, line-through, or blink text. The blink

option will flash the text and hide it at a fixed rate. It is not supported in IE, Safari, or

Chrome. It is most commonly used to remove the decoration for link elements. [a { text-

decoration: none; }]

Text-transform is used to turn everything into uppercase or lowercase letters, or

capitalize the first letter of each word (Listing A–16). [h1 { text-transform: uppercase; }]

Float specifies how elements lay out relative to each other. Elements can be told to

move as far left or right as they can, allowing other elements to wrap around them.

Floating <div>(s) or (s) is common.

Listing A–16. Float Example<html>

 <head>
 <style type="text/css">
 img {
 float: right;
 }
 </style>
 </head>
 <body>

<p> This text is only here to show wrapping around the image. You will see that the text

will continue to flow on the left around the image on the right. You will also see that the

image has floated as far right as possible (Listing A–17).

APPENDIX: Cascading Style Sheets 253

Listing A–17. Text wrapping and images

</p>
 </body>
</html>

TIP: Elements after the floated element(s) will continue to wrap. To avoid this, use the clear
property on the elements you do not want floated (Listing A–18). Values of clear are: left, right,
both, none, inherit.

Listing A–18. Clear Example

.foo {
 clear: both;
}

255

255

Index

■A
<a> tag, 190–191

Action menu, File System Editor, 78

Activate for BlackBerry option, 137

ActiveSync window, Visual Studio 2008, 79

adb devices utility, 49

Add a New Item context menu item, Visual

Studio 2008, 75

Add Devices button, iPhone Developer

Program Portal, 30

Add New Project dialog box, Visual Studio

2008, 77

Add New Smart Device Project wizard,

Visual Studio 2008, 67–68

Add or Remove Programs screen, Visual

Studio 2008, 77

Add Project Output Group dialog box, File

System Editor, 78

addGlossToIcon option, 216

AdHoc application, 31

ADT (Android Development Tools), 36, 136

ADT Layout Editor, 41

ADT plug-in, 41

Advanced panel, 229

Advanced tab, 212

Ajax, adding screens with jQTouch, 212–214

anchor tag, 218

Android

building for Android device, 48–49

development for

building application, 39–46

with Eclipse, 36–38

embedding WebView in application,

46–48

digitally signing application, 50

HTML and CSS support on, 164

overview, 35

PhoneGap, open source framework for,

136

and Rhodes

debugging on, 101

running application on, 94

Android Development Tools (ADT), 36, 136

Android Market, 50

Android SDK and AVD Manager, 37

Android Virtual Device (AVD), 37

Android WebKit browser control, 170

/android/framework/assets/www directory,

140

Any iPhone OS Device option, Xcode, 32–33

.apk file, 50

app folder, 90, 96–97

App IDs, iPhone Developer Program Portal,

31

App Store style, list styles with iWebKit,

191–192

App World, BlackBerry, 63–64

Appearance section, Visual Studio 2008, 70,

73

app.js file, 155, 158

Apple Mail application, 220

Application Folder, 78

Application ID field, Titanium, 154

Application tab, 49

application.css file, 226

application.js file, 227

application.rb file, 91, 121, 129

applications

adding to CAB Projects, 78

building and testing, 58

creating shortcuts, 78

distributing, 80

embedding Web View in, 75

layout template, adding iWebKit

framework to, 204

marketplace, 2–4

applist class, 187

app/Product/index.erb page, 97

apps

building. See also base functionality;

interfaces, creating

Index 256

adding WebBrowser controls, 75

create Xcode project, 19

creating HTML pages, 75

creating Smart Device Projects, 67

deploying and testing, 72

embedding Web View in

applications, 75

loading HTML in WebBrowser

controls, 76

overview, 18

installing on devices

creating provisioning profiles, 32

finding device IDs, 31

install provisioning profiles, 32

installing and running on devices,

32–33

manually setting up iPhone

provisioning, 30

using development provisioning

assistant, 29–30

packaging and distributing

adding applications to CAB Projects,

78

adding CAB Projects to solutions, 77

adding Registry entries, 78

building and deploying CAB files, 78–

79

creating application shortcuts, 78

customizing product names, 77

installing CAB files, 79

overview, 76

app/Settings/setting.yml file, 116

Appstore application, 200

arrow class, 220

Ask, Julie, 4

Associated Attributes for Backend

Credentials section, RhoHub, 126

Attribute Inspector, Interface Builder, 23

attributes, for CSS, 251–253

Attributes Inspector, Interface Builder, 28

authenticate method, in RhoSync, 121

authentication, in RhoSync, 116–117

Authenticode Signature option, Solution

Explorer, 79

auto class, 194

AVD (Android Virtual Device), 37

■B
Back button, 214–215, 218

back class, 214

background

attribute, 252

image property, 173

position attributes, 176

backSelector option, 216

base functionality

adding buttons to views, 69

creating click event handlers, 71–72

customizing buttons, 70

overview, 68

basic views, in jQTouch, 217–218

BasicEditField class, 60

/beatles HREF, 214

/beatles link, 213

Behavior section, Visual Studio 2008, 76

Berries button, 86

BES (BlackBerry Enterprise Server), 52

Bigfield class, 197

BlackBerry

applications, building and testing, 58

BlackBerry Browser Field

BlackBerry App World, 63–64

building for BlackBerry devices, 62–

63

over the air (OTA) distribution, 63

overview, 61

browser-rendering engine 4.2

CSS in, 237–239

dynamic layout in with Rhodes, 242–

243

fonts for, 239–241

frames in, 241

JavaScript support in, 241

browser-rendering engine 4.6, 244

code, 57–60

creating Eclipse project, 53–55

creating interfaces, 55–57

development environment for, 245

HTML and CSS support on, 165

Java Development, 52–53

labels, text fields, and buttons, 58–60

and limitations of target browser, 236

overview, 235

PhoneGap, open source framework for,

137

platform of, 51–52

and Rhodes

debugging on, 101

running application on, 94–95

screen resolutions for, 244–245

user interaction on, 244–245

Index 257

BlackBerry Enterprise Server (BES), 52

BlackBerry JDE Plug-in, 137

BlackBerry menu, Eclipse, 55

BlackBerry Project option, Eclipse, 54

BlackBerry Signature Tool, 62

BlackBerry Workspace, Eclipse, 55

blackberry/framework/ directory, 137, 140

Blue Button - Left element, 195

Blue Button - Right element, 195

body, with iWebKit, 186

<body> tag, 186–187, 190, 194, 204, 216

browser.field (4.2) engine, 236

BrowserField class, 61

browser-rendering engine 4.2, for

BlackBerry

CSS in, 237–239

dynamic layout in with Rhodes, 242–243

fonts for, 239–241

frames in, 241

JavaScript support in, 241

browser-rendering engine 4.6, for

BlackBerry, 244

Build and Go option, Xcode, 26, 33

Build and Run as Android Application menu

option, 136

Build and Run command, Xcode, 157

Build and Run option, 135, 142, 205

Build page, Solution Explorer, 79

Build tab, Xcode, 33

Build Target list, 40

build.yml file, 90, 93

Button Bar, Android, 182

button bars, HTML and CSS support for,

168

Button class, 44, 215

Button control, 44

button xtype, 230

buttons

adding to views, 69

customizing, 70

layout of, 22–23

overview, 58–60

on screens with jQTouch, 215

■C
CAB files, 78–79

CAB Projects

adding applications to, 78

adding to solutions, 77

CABProject Property Pages dialog box,

Solution Explorer, 77

CABProject\Debug folder, 79

cacheGetRequests option, 216

Camera example

in PhoneGap, 150–152

Rhodes application framework, 106–108

Titanium Mobile, 158–160

cancel and back, adding screens with

jQTouch, 214–215

cancel class, 214

Cascading Style Sheets. See CSS

Certificate box, Solution Explorer, 79

Certificates option, iPhone Developer

Program Portal, 30

check boxes, HTML and CSS support for,

169–171

checkbox class, 198, 230

Choose button, 135

class, identifying elements in CSS with, 250

class attribute, 209, 220

Class menu item, Eclipse, 55

classic style, list styles with iWebKit, 188–

190

Classic type, 187

clean.bat file, 101

click event handlers, creating, 71–72

Click Select from Store button, Solution

Explorer, 79

close/back action, 111

code, 25, 57–60

Code Signing Identity, Xcode, 33

color attribute, 252

comments, in CSS, 249

components

adding in Sencha Touch, 231

xtype, 230

com.xplatform.helloworld package, 55

Configure BlackBerry Workspace, Eclipse,

55

connecting code to views, 26

Connection Inspector, Interface Builder, 28

contact_controller.rb file, 104

Contact/index.erb page, 105

Contacts example

in PhoneGap, 146–150

Rhodes application framework, 103–106

Contacts/app/Contact/index.erb page, 105

Contacts/app/Photo/index.erb page, 107

Contacts/app/Photo/photo_controller.rb file,

107

Index 258

container xtype, 230

content <div> tag, 188

content class, 186

ContentView control, 47

context menus, HTML and CSS support for,

168

controller code, writing, 23–25

controls, WebBrowser, 75–76

Copy items into destination group's folder (if

needed) check box, 201

Copy to Output Directory field, solution

browser, 75

create, read, update, and delete (CRUD), 96

Create Application button, RhoHub, 123

Create Folder References for any added

folders check box, 201

Create Folder References option, 201

create method, in RhoSync, 119

Create New Object page, RhoHub, 123

Create Object button, RhoHub, 123

create_hash argument, 119

cross-platform development, 9–10

cross-platform frameworks, 5–6, 10–13

CRUD (create, read, update, and delete), 96

CSS (Cascading Style Sheets)

applying to elements, based on

placement, 250

attributes for, 251–253

on BlackBerry, browser-rendering engine

4.2, 237–239

comments in, 249

identifying elements, 249–250

priority of styles in, 247–248

syntax for, 248–249

css folder, 227

cubeSelector option, 216

current_user method, 116

current_user.login method, 116

■D
Dashboard, RhoHub, 125

data storage format, in RhoSync, 114

database (Rhom), for Rhodes, 86–87

datapanel xtype, 230

dataview xtype, 230

dealloc method, 25

Debug\HelloWorld.cab, 77

debug-with-comments.js file, 226

delete method, in RhoSync, 120

Demo folder, 201

Design section, Visual Studio 2008, 70

Design view, Visual Studio 2008, 68

Developer menu, 229

Developer Portals Device registration page,

31

development

architecture, for Rhodes, 84–85

environment, for BlackBerry, 245

provisioning assistant, 29–30

Device Application template, Visual Studio

2008, 67

device capabilities, in Titanium Mobile, 157–

158

Device Chooser dialog box, 49

Device Emulator Manager menu item, Visual

Studio 2008, 76, 79

devices

capabilities with Rhodes, 101–102

IDs, finding, 31

iPhone Developer Program Portal, 30

digitally signing application for Android, 50

Directory field, Titanium, 154

display: none attribute, 251

dissolveSelector option, 216

<div> tag, 186, 194, 250

DOM (Document Object Model), 207, 236

doublead class, 191

Downloads folder, 58

downward-facing disclosure indicator, 173

dump_pic callback, 152

■E
Eclipse

creating Eclipse project, 53–55

development for Android with, 36–38

edgetoedge class, 218

Edit Text item, 43

Editor screen, RhoHub, 126

Editor tab, RhoHub, 126

EditText control, 45

EditText item, 42–43

elements, in CSS, 249–250

Embedded Ruby (ERB), 84, 242

enterEventDispatcher() method, 57

Entity-Attribute-Value (EVA), 114

ERB (Embedded Ruby), 84, 242

EVA (Entity-Attribute-Value), 114

event handlers

click, 71

creating, 72

Index 259

example applications

Rhodes application framework

Camera, 106–108

Contacts, 103–106

Geolocation, 108–111

RhoSync, product inventory, 122–130

Titanium Mobile, Camera, 158–160

Ext.getCmp('mainscreen') call, 232

Ext.setup method, 227

Ext.TabPanel class, 232

ext-touch.css file, 226

ext-touch-debug.js file, 226

ext-touch.js file, 226

■F
fadeSelector option, 216

fail callback, 149

field xtype, 230

fieldChanged method, 60

FieldChangeListener method, 60

fieldset xtype, 230

<fieldset> tag, 196, 199

File menu

Registry Editor, 78

Visual Studio 2008, 67, 77

File System context menu item, Solution

Explorer, 78

File System Editor, 78

File System on Target Machine, File System

Editor, 78

files, CAB, 78–79

fixedViewport option, 216

flipSelector option, 216

float attribute, 252

fonts, on BlackBerry, 239–241

Force https://... option, Android SDK and

AVD Manager, 37

Force https://... sources to be fetched using

http://... check box, 109

form xtype, 230–231

<form> tag, 196

Form1.cs Design view, Visual Studio 2008,

73

Form1.cs file, 71

forms, with iWebKit, 196–199

formSelector option, 216

Forward button, 215

<frame> element, 241

frames, on BlackBerry, 241

<frameset> element, 241

Framework folder, 204

frameworks, cross-platform, 5–6, 10–13

fullscreen (Boolean) property, 228

fullscreen config option, 229

fullScreen option, 216

fullScreenClass option, 216

■G
geo fix command, 108

GeoLocation class, 110

Geolocation example, Rhodes application

framework, 108–111

GET requests, 216

getContacts function, 149

getContacts_callback, 149

glossOnIcon (Boolean) property, 228

Google Maps application, 200

graytitle class, 190

greetingLabel, Interface Builder, 25, 60

greetingLabel IBOutlet, 24

greetingLabel property, 24

greetings text, aligning, 22

Groups & Files section, Xcode, 32–33

■H
Hammerschmidt, Christoph, 3

HEAD section, 223

<head> tag, 186, 247

headers, required for iWebKit, 186

Hello BlackBerry Application, 59

Hello iPhone! button, Interface Builder, 25

Hello World application

in PhoneGap, 139–140

Titanium Mobile, 155–157

Hello World project, 54

HelloiPhone file, 32

HelloiPhone project, 19

HelloiPhoneViewController implementation

declaration, 24

HelloiPhoneViewController.h file, 23

HelloiPhoneViewController.m file, 24

HelloiPhoneViewController.xib file, 20, 25

Hello.java class, 40–41, 44, 46

helloMessage string, 24

HelloWorld application, 58

HelloWorld class, 55, 57

HelloWorld.java file, 56

HelloWorldScreen class, 57

Index 260

HelloWorldScreen constructor, 57

/helpers folder, 91

HKEY_CURRENT_USER, Registry Editor, 78

Home Button element, 195

home screen, iPhone Developer Program

Portal, 30

href attribute, 247

HTML

on Android, 164

on BlackBerry, 165

button bars, 168

check boxes, 169–171

context menus, 168

on iOS, 164

lists, 178–180

loading in WebBrowser controls, 76

menus, 166

navigation bars, 168–180

overview, 163

pages, creating, 75

radio buttons, 175–177

screen-based considerations, 165–166

selection boxes, 171–173

tab bars, 167

text areas, 174–175

text boxes, 173–174

toolbars, 167

UI widgets, 169

and WebKit web views, 178–182

on Windows Mobile, 165

■I
IBAction keyword, 23–24

IBOutlet keyword, 23

Icon (String) property, 228

icon/ folder, 90

icon option, 216

ID

finding, 31

identifying elements in CSS with, 249–

250

IDE (integrated development environment),

52

<iframe> element, 241

/images folder, 204

 tag, 97, 152

Import 'Button' (android.widget) option, 44

Import wizard, Solution Explorer, 79

index.erb file, 91

index.erb page, 97, 107

index.html file, 138–139, 142–143, 146, 150,

184, 205, 223, 226

index.html web page, 140

index.js file, 226–227, 229

initialization options, for jQTouch, 215–223

initialize method, in RhoSync, 116

initializeTouch option, 216

inline style, 247

inline tags, 239

<input type="checkbox">, 198

<input type="radio"> tag, 198

<input type="tel"> tag, 197

<input type="text"> tag, 197

<input> tag, 199

Install selected button, 109

Installed Components, Eclipse, 55

Installer Package, 134

interactivity, in Sencha Touch, 232

interfaces, creating

add UI elements, 21

adding UI elements, 21

aligning text greetings, 22

buttons and text field layouts, 22–23

connecting code to views, 25–26

overview, 20

simple user application, 55–57

Web View, 26–28

writing controller code, 23–25

internal style sheet, 247

Inventory application, 123

iOS, HTML and CSS support on, 164

iPhone Developer Program Portal, 30

iPhone OS Application option, Xcode, 19, 26

iPhone Simulator menu, 101

iPhone Simulator.app, 208

/iphone/PhoneGap-based Application/www

directory, 140

iPhones

building apps, 18–28. See also

interfaces, creating

development of, 18

installing apps on devices

creating provisioning profiles, 32

finding device IDs, 31

install provisioning profiles, 32

installing and running on devices,

32–33

manually setting up provisioning, 30

using development provisioning

assistant, 29–30

Index 261

PhoneGap, open source framework for,

134–135

and Rhodes

debugging on, 100–101

running application on, 93

Xcode, 17

iphone/www directory, 142

iPod style, list styles with iWebKit, 193–194

ipodlist class, 188, 194

iScroll library, Cubiq, 180

iTunes, 190–191, 193

iWebDemo project, 26

iWebDemoViewController.xib file, 26

iWebKit

body, 186

forms with, 196–199

headers required, 186

and HTML structure, 185–186

integrating in mobile applications

adding framework to application

layout template, 204

native iPhone application, 201–202

with Rhodes, 203–204

setting up PhoneGap for, 205

and landscape mode, 200

lists with

App Store style, 191–192

classic, 188–190

iPod style, 193–194

iTunes classic style, 190–191

iTunes style, 193

overview, 187

navigation with, 194–195

overview, 183–184

phone integration in, 200

iWebKit/app/layout.erb file, 204

iWebkitDemoViewController.h file, 26

iWebkitDemoViewController.m file, 27–28

iWebkitDemoViewController.xib file, 28

■J
Jarsigner tool, 50

Java Development, 52–53

Java Development Kit (JDK), 52

Java Runtime Environment (JRE), 52

JavaScript, support for on BlackBerry, 241

javascript folder, 227

JDK (Java Development Kit), 52

jqt theme, 210–211

jQTouch

adding screens

with Ajax, 212–214

buttons on, 215

cancel and back, 214–215

overview, 211

basic views, 217–218

creating simple application, 209–211

customizing application animations, 218

initialization options for, 215–223

integration

with PhoneGap, 222–223

with Rhodes, 222

lists, 218–220

overview, 207

running example code, 208

themes in, 221–222

toolbars, 218

jquery.js file, 142–143

JRE (Java Runtime Environment), 52

■K
Kaneda, David, 207

Kawamoto, Dawn, 3

Keychain Access, 30

Keytool tool, 50

Kim, Gary, 4

Kitchen Sink application, Titanium, 158

■L
Label element, Interface Builder, 22

LabelField class, 57, 60

labels, text fields, and buttons, 58–60

landscape mode, and iWebKit, 200

Landscape view, 233

Launch Assistant, iPhone Developer

Program Portal, 30

Launch button, Titanium, 154–155

Layout Editor, 41, 43

Layout menu, Interface Builder, 22

Layout tab, 41

layout.erb file, 91, 204, 242–243

Left Button element, 195

Left Navigation element, 195

leftButton class, 215

 tag, 149, 178, 187–188, 199, 218, 220

Library menu item, Interface Builder, 20

Library window, Interface Builder, 20–21, 26

<link> tag, 247

Index 262

list class, 187

lists

HTML and CSS support for, 178–180

with iWebKit

App Store style, 191–192

classic, 188–190

iPod style, 193–194

iTunes classic style, 190–191

iTunes style, 193

overview, 187

in jQTouch, 218–220

loading.html file, 91

Login screen, 130

■M
main method, 57

MainScreen class, 57

main.xml panel, 41

make command, 134

Manage Certificates option, Solution

Explorer, 79

Manage tab, iPhone Developer Program

Portal, 30

manifest.xml file, 49

map_example/app/Person/person_controller

.rb file, 110

MapView class, 110

margin attribute, 251

Market application, 50

Menu button, 42

menus, HTML and CSS support for, 166

metal class, 218

MFC (Microsoft Foundation Classes), 228

Min SDK Version box, 40

mobile applications, 6–10

models, generating in Rhodes, 95–98

Model-View-Controller (MVC), 18, 83–84, 95

musiclist class, 187

MVC (Model-View-Controller), 18, 83–84, 95

MyCompany, Registry Editor, 78

■N
Name field, Titanium, 154

Name value, Registry Editor, 78

nameFilter parameter, 149

Native Development Kit (NDK), 36, 39

native picker control, iOS, 171

native UI elements, and runtime

architecture, 86

navigation

bars, HTML and CSS support for, 168–

180

with iWebKit, 194–195

navigator.camera.getPicture function, 152

navigator.contacts.displayContact function,

149

navigator.contacts.getAllContacts function,

149

navigator.contacts.newContact function,

149

NDK (Native Development Kit), 36, 39

New App ID button, iPhone Developer

Program Portal, 31

New email application, 200

New Key option, Registry Editor, 78

new person form, 109

New Project dialog box, Eclipse, 53

New Project icon, Titanium, 154

New Project menu item, Visual Studio 2008,

77

New Project window, Visual Studio 2008, 67

New Referencing Outlet, Interface Builder,

26

new.erb page, 110

Nielson, Jacob, 6

NSURLRequest, Xcode, 28

numberfield xtype, 230

■O
OAV (object-attribute-value), 114

Object Relational Manager (ORM), 84

object-attribute-value (OAV), 114

OHA (Open Handset Alliance), 35

onClick callbacks, 149

onClick event, 45, 160

onClick method, 45

onCreate method, 40, 44–45

onKeyUp event, 150

onReady (Function) property, 228

onReady property, 227

Open Handset Alliance (OHA), 35

Options menu, 130

Organizer window, Xcode, 31, 33

ORM (Object Relational Manager), 84

OTA (over the air) distribution, 63

Other Project Types, Visual Studio 2008, 77

Outline tab, 43

Index 263

Output file name field, Solution Explorer, 77

over the air (OTA) distribution, 63

■P
p elements, 248

<p> tag, 248, 252

Package menu item, Eclipse, 55

padding attribute, 251

page-home div, 212

pageitem class, 190, 199

pages, HTML, 75

pageSize option, 149

/palm/framework/www directory, 140

panel xtype, 230–231

pause/play icon, 194

Perez, Bryan, 6

Personal Information Management (PIM),

103, 146

PersonController class, 110

pg_camera project, 150

pg_contacts project, 146, 152

Phone application, 200

PhoneGap

camera example, 150–152

contacts example, 146–150

Hello World application in, 139–140

overview, 131–133

PhoneGap simulator for, 138

setting up for

Android, 136

BlackBerry, 137

iPhone, 134–135

iWebKit, 205

tip calculator example, 141–145

PhoneGap Simulator, 138, 146

PhoneGap.addConstructor function, 149

phonegap/android directory, 136

PhoneGap-based Application option,

Xcode, 134

phonegap/blackberry/framework/src/www/

directory, 144

phonegap/iphone folder, 134

phonegap.jdp file, 137

phonegap.js file, 149

PhoneGapLib library, 134

PhoneGapLibInstaller.pkg file, 134

phoneStartupScreen (String) property, 228

photo_controller.rb file, 107

PIM (Personal Information Management),

103, 146

Placeholder attribute

HTML5, 173

Interface Builder, 23

plastic class, 218

platform, 51–52

popSelector option, 216

Portrait view, 233

preloadImages (Array) property, 228

preloadImages option, 216

Pretty format, 188

Product edit page, 100

product inventory example, in RhoSync

debugging source adapters, 130

generating RhoSync application, 128

implementing source adapter, 126

overview, 122–125

setting up RhoSync server, 129

testing application, 130

testing source adapter, 126–130

product names, customizing, 77

product_controller.rb file, 96

product_spec.rb file, 128

ProductName field, Visual Studio 2008, 77

product.rb file, 96, 126, 128

product.rb source adapter, 126

Products link, 97

Program Portal, 31

Programs Folder, File System Editor, 78

Progressive Disclosure, 166

Project creation dialog box, Eclipse, 54

Project drop-down list, File System Editor,

78

Project Type field, Titanium, 154

Project Types pane, Visual Studio 2008, 67,

77

projects, Eclipse, 53–55

Properties context menu item, Solution

Explorer, 77–78

Properties pane, Visual Studio 2008, 70, 73

Properties panel, 43

Properties section, solution browser, 75

Properties tab, 43, 76

Properties Window

Registry Editor, 78

Visual Studio 2008, 77

property grid, Visual Studio 2008, 77

provisioning

manually setting up, 30

profiles, creating, 32

public/ folder, 90

Index 264

public void fieldChanged(Field field, int

context) method, 60

Publisher URL field, Titanium, 154

pushScreen() method, 57

puts @result.inspect statement, 130

■Q
query method, in RhoSync, 117–118

■R
radio buttons

HTML and CSS support for, 175–177

select modal view, Android, 171

Radio xtype, 231

radiobutton class, 198

Rails. See Ruby on Rails, and Rhodes

rake clean:android command, 92

rake clean:bb command, 92

rake clean:iphone command, 92

rake clean:win32 command, 92

rake clean:wm command, 92

rake commands, 92

rake device:android:debug command, 92

rake device:android:production command,

92

rake device:bb:debug command, 92

rake device:bb:production command, 92

rake device:iphone:production command,

92

rake device:wm:production command, 92

rake program, 91

rake run wm:dev command, 92

rake run wm:devcab command, 92

rake run wm:emu command, 92

rake run wm:emucab command, 92

rake run:android command, 92

rake run:android:device command, 92

rake run:bb command, 92, 95

rake run:iphone command, 92–93

rake run:wm:emu command, 95

rake task, 91

rake uninstall:android command, 92

rake uninstall:android:device command, 92

Rakefile file, 90

rake:run command, 98

Received Actions, Interface Builder, 25

Registry entries, adding, 78

Remove context menu item, 42

Request Certificate button, iPhone

Developer Program Portal, 30

Research in Motion (RIM), 51, 165, 235

Reset Content and Settings... menu item,

iPhone Simulator menu, 101

resignFirstResponder method, 25

res/layout/main.xml file, 40, 42

resources directory, 186

rhoconfig.txt file, 90, 100, 103, 107

Rhodes application framework

building application, 89–91

Camera example, 106–108

Contacts example, 103–106

database for (Rhom), 86–87

debugging in

on Android, 101

on BlackBerry, 101

on iPhone, 100–101

development architecture for, 84–85

device capabilities with, 101–102

dynamic layout with, for BlackBerry

browser-rendering engine 4.2, 242–

243

example applications

Camera, 106–108

Contacts, 103–106

Geolocation, 108–111

generating model in, 95–98

Geolocation example, 108–111

installing, 88–89

integrating iWebKit in mobile

applications with, 203–204

overview, 83–84

and Ruby on Rails, 88

running application

on Android, 94

on BlackBerry, 94–95

on iPhone, 93

overview, 91–92

on Windows Mobile 6, 95

runtime architecture for, 85–86

threading in, 87

rhogen app command, 89

rhogen model command, 95, 106

RhoLog.txt file, 100

Rhom, database for Rhodes, 86–87

Rhomobile app directory structure, 88

Rho::RhoContact.find(:all) function, 104–105

RhoSync

authenticate method, 121

authentication in, 116–117

Index 265

create method, 119

data storage format in, 114

delete method, 120

initialize method, 116

methods in

authenticate, 121

create, 119

delete, 120

initialize, 116

query, 117–118

sync, 119

update, 120

overview, 113

product inventory example

debugging source adapters, 130

generating RhoSync application, 128

implementing source adapter, 126

overview, 122–125

setting up RhoSync server, 129

testing application, 130

testing source adapter, 126–130

query method, 117–118

source adapters in, 115

sync method, 119

update method, 120

rhosync/lib directory, 128

rhosync/vendor/sync directory, 128

RichTextField class, 57, 61

Right Button element, 195

Right Navigation element, 195

RIM (Research in Motion), 51, 165, 235

R.layout.main parameter, 40

rounded class, 219

Ruby on Rails, and Rhodes, 88

Run menu, 41

Run on Device screen, Titanium, 157

runtime architecture, for Rhodes, 85–86

■S
SaaS (Software As A Service), 113

SampleWebView.java class, 48

sayHelloToUser method, 24–25

scaffold-generated app, 130

Scalable view, 166

schema.rb file, 88

scope (Object) property, 228

screens

adding with jQTouch

with Ajax, 212–214

buttons on, 215

cancel and back, 214–215

overview, 211

resolutions, for BlackBerry, 244–245

Scroll view, 166

SDK directory, 37

SDK Setup.exe file, 37

SDK tools/ directory, 49

Search box, Interface Builder, 21

searchbox class, 186

Select Certificate window, Solution Explorer,

79

Select class, 198

select xtype, 230

<select> tag, 198

selection boxes, HTML and CSS support

for, 171–173

Sencha Touch

adding components in, 231

interactivity in, 232

overview of framework, 227–231

setting up, 225–227

Sencha Touch library files, 227

Server tab, RhoHub, 126

servers, RhoSync, 129

setChangeListener(this) method, 60

setContentView method, 40

Settings, RhoHub, 125

Settings drop-down menu, Interface Builder,

20

/Settings folder, 91

Settings screen, 90

Setup and Deployment, Visual Studio 2008,

77

shortcuts, applications, 78

Show Develop menu in menu bar option,

212, 229

Show Error Console menu option, 229

Show Records option, RhoHub, 126

Show Web Inspector option, 229

showContact function, 149

Simple format, 188

Simple Tip Calculator Application for

BlackBerry, 144

Simulator option, 135

slider xtype, 230

slideSelector option, 217

slideupSelector option, 217

SMALL element, 220

smallfield class, 197

Smart Device Cab project, Solution

Explorer, 78

Index 266

Smart Device CAB Project template, Visual

Studio 2008, 77

Smart Device option, Visual Studio 2008, 67

Smart Device Projects, creating, 67

SmartDeviceProject1 project, 72

smartphones

application marketplace, 2–4

cross-platform frameworks, 5–6, 10–13

mobile applications, 6–10

overview, 1

web techniques, 10

SMS application, 200

SOFTWARE, Registry Editor, 78

Software As A Service (SaaS), 113

Solution Explorer, 78

source adapters, in RhoSync

debugging, 130

implementing, 126

overview, 115

testing, 126–130

source class, 114

SourceAdapter class, 114

sources subdirectory, 128

spacer xtype, 230–231

 tag, 199

 tag, 194

 tag, 190, 194

spec/sources/ subdirectory, 128

splitbutton component, 231, 233–234

src directory, 40, 44

Start Menu Folder, File System Editor, 78

startupScreen option, 217

stash_result function, 119

statusBar option, 217

statusBarStyle (String) property, 228

<style> tag, 247

Submit button, Visual Studio 2008, 74

submitButton handler, Visual Studio 2008,

74

submitForm function, 149

submitSelector option, 217

super() method, 57

swapSelector option, 217

/symbian.wrt/framework/www directory, 140

sync method, in RhoSync, 119

syntax, for CSS, 248–249

■T
tab bars, HTML and CSS support for, 167

tab group, Titanium, 160

tabBarHidden property, Titanium, 160

tabletStartupScreen (String) property, 228

tabpanel xtype, 230

tail -f command, 101

takePicture function, 152

target attribute, 214

Target Machine pane, File System Editor, 78

Targets drop-down, Xcode, 33

Task details page, 99

Tasks list page, 98

Tasks new page, 99

Templates pane, Visual Studio 2008, 67, 77

Terminal.app application, 134

Test & Package tab, Titanium, 154–155

text areas, HTML and CSS support for, 174–

175

text boxes, HTML and CSS support for,

173–174

text fields, 22–23, 58–60

text greetings, aligning, 22

Text property, 44

text-align attribute, 252

textarea xtype, 231

Textbox class, 199

text-decoration attribute, 252

Textfield xtype, 231

text-transform attribute, 252

TextView control, 44–45

theme.css file, 221

themes, in jQTouch, 221–222

themes/ directory, 222

themes/apple/theme.min.css file, 211

themes/jqt/theme.min.css file, 211

threading in Rhodes, 87

tip calculator example, in PhoneGap, 141–

145

Titanium Mobile

building applications in, 157

Camera example, 158–160

device capabilities in, 157–158

Hello World application, 155–157

overview, 153–154

Titanium.UI module, 157

Titanium.UI.AlertDialog class, 157

Titanium.UI.Android module, 157

Titanium.UI.Button class, 157

Titanium.UI.iPhone module, 157

Title element, 195

to_s method, 110, 118

toolbar component, 234

toolbar xtype, 230

Index 267

toolbars

HTML and CSS support for, 167

in jQTouch, 218

toolbox, Visual Studio 2008, 73

Toolbox pane, Visual Studio 2008, 69, 73

Tools menu

Interface Builder, 20, 22, 25–26

Visual Studio 2008, 76

topbar class, 186, 194

Touch Up Inside option, Interface Builder,

25

■U
UDIDs (Unique Device Identifiers), 30

UI elements

adding, 21

native, and runtime architecture, 86

UI widgets, HTML and CSS support for, 169

UiApplication class, 57, 59

UIWebView, Interface Builder, 27

<ul class="pageitem"> tag, 190

 tag, 178, 187–188, 190, 199, 218

Unique Device Identifiers (UDIDs), 30

update method, in RhoSync, 120

update_hash parameter, 120

update(txt) function, 232

USB Debugging check box, 49

Use Current Location check box, 109–110

useAnimations option, 217

user interaction, for BlackBerry, 244–245

User Templates section, 134

UserInterface class, 59

UserInterfaceScreen class, 60

userNameField class, 24–25, 60

Users tab, RhoHub, 125

■V
View context menu item, Solution Explorer,

78

View Icons and Descriptions setting,

Interface Builder, 20

View Source option, 229

View window, Interface Builder, 26

View-based Application template, Xcode,

19, 26

viewDidLoad method, 202–203

views

adding buttons to, 69

connecting code to, 25–26

Views menu, 42

virtual device properties, Android SDK and

AVD Manager, 38

visibility attribute, 251

■W
W3C (World Wide Web Consortium), 131

Wasserman, Todd, 6

web techniques, 10

Web View

HTML and CSS support for, 178–182

Xcode, 26–28, 75

_webapp target, 218

WebBrowser controls

adding, 75

loading HTML in, 76

WebBrowser element, Visual Studio 2008,

76

WebKit web views, HTML and CSS support

for, 178–182

-webkit-appearance property, 173

WebView, embedding in application, 46–48

WebView.navigate method, 108

Widarsson, Fredrik, 3

width property, 44

Windows Marketplace for Mobile, 76, 80

Windows Mobile

building apps. See also base

functionality

adding WebBrowser controls, 75

creating HTML pages, 75

creating Smart Device Projects, 67

deploying and testing, 72

embedding Web View in

applications, 75

loading HTML in WebBrowser

controls, 76

distributing applications, 80

HTML and CSS support on, 165

overview, 65

packaging and distributing apps

adding applications to CAB Projects,

78

adding CAB Projects to solutions, 77

adding Registry entries, 78

building and deploying CAB files, 78–

79

creating application shortcuts, 78

customizing product names, 77

Index 268

installing CAB files, 79

overview, 76

version 6, 95

version 6.5 development, 66

Windows Phone Marketplace, 66

/winmo/www directory, 140

withimage class, 188

Wolfe, Alexander, 4

World Wide Web Consortium (W3C), 131

WWDR (Worldwide Developers Relation), 30

www directory, 139, 146, 150, 205, 222

www/index.html file, 140

■X
Xcode, 17–19

Xcode file copy prompt, 202

Xcode groups option, 200–201

.xcodeproj file, 157

	Title Page
	Copyright Page

	Contents at a Glance
	Table of Contents

	Foreword
	About the Authors
	About the Technical Reviewer
	Acknowledgments

	Introduction
	Part 1: Platform Development and Distribution
	Part 2: Cross-Platform Native Frameworks
	Part 3: HTML Interfaces

	Chapter 1 The Smartphone is the New PC

	Application Marketplace
	Increase in Mobile Usage and Trend Toward Smartphones

	What is a Smartphone?
	Smartphone Landscape
	Cross-Platform Frameworks
	The Branded Experience of Mobile Applications
	Cross-Platform Development

	Web Techniques
	Cross-Platform Frameworks
	About this Book

	Part I Platform Development and Distribution

	Chapter 2 iPhone

	Introducing Xcode
	iPhone Development Standard Practices
	Building a Simple iPhone app
	Create the Xcode Project
	Create the Interface
	Add UI Elements
	Align the Text Greeting
	Button and Text Field Layout
	Writing the Controller Code
	Connect the Code to the Views
	Skinning an iPhone Web View

	Installing the App on the Device
	Using the Development Provisioning Assistant
	Manually Setting Up iPhone Provisioning
	Finding Your Device ID
	Create the Provisioning Profile
	Install the Provisioning Profile
	Install and Run on the Device

	Chapter 3 Android

	Android Development
	Setting Up The Development Environment With Eclipse
	Building a Simple Android Application
	Simple Application Using Android WebView

	Building for an Android Device
	Distribution on the Web
	Android Market

	Chapter 4 BlackBerry

	BlackBerry Platform
	Set Up for Classic Java Development
	Building a Simple BlackBerry Application
	Create the Eclipse Project
	Create the Interface
	Code Explained
	Build and Test the Application
	Simple User Interface Application Using a Label, Text Field, and Button

	Code Explained
	Simple Application Using BlackBerry Browser Field
	Building for a BlackBerry Device
	Over the Air (OTA) Distribution
	BlackBerry App World

	Chapter 5 Windows Mobile

	Setting Up for Windows Mobile 6.5 Development
	Building a Simple Windows Mobile App
	Creating a Smart Device Project
	Setting Up Base Functionality
	Add a Button to the View
	Customize the Button
	Create a Click Event Handler

	Deploying and Test your Application
	Fleshing Out the Application
	Embed a Web View in your Application
	Create an HTML page
	Add a WebBrowser Control
	Load HTML in WebBrowser control

	Packaging and Distributing Your App
	Adding a CAB Project to the Solution
	Customizing Your Product Name
	Adding the Application to the CAB Project
	Creating an Application Shortcut
	Adding a Registry Entry
	Building and Deploying the CAB File
	Installing the CAB File

	Distributing Your Application

	Part 2 Cross-Platform Native
Frameworks
	Chapter 6 Rhodes

	Development Architecture
	Runtime Architecture
	Device Capabilities and Native UI Elements

	Database (Rhom)
	Threading
	Differences Between Rhodes and Rails
	Creating a Rhodes App
	Installation and Setup

	Building a Rhodes Application
	Running the Application
	Running on the iPhone
	Running on Android
	Running on BlackBerry
	Running on Windows Mobile 6

	Generating a Model
	Debugging Tips
	iPhone
	BlackBerry
	Android

	Rhodes Device Capabilities
	Contacts Example
	Camera Example
	Geolocation and Mapping Example
	Creating the application

	Chapter 7 RhoSync

	How the Sync Server Works
	Data Storage: Why Triples?

	RhoSync Source Adapters
	Initialize
	Authenticating with Web Services: Login and Logoff
	Retrieving Data: Query and Sync
	Query
	Sync

	Submitting Data: Create, Update, and Delete
	Create
	Update
	Delete

	User Authentication
	Product Inventory Example
	Creating Your Application on RhoHub
	Implementing Your Source Adapter
	Testing Your Source Adapter

	Creating Your Application on a Local RhoSync Server
	Generate the RhoSync Application
	Setting up RhoSync Server
	Testing Your Source Adapter

	Debugging RhoSync Source Adapters
	Testing Your Application

	Chapter 8 PhoneGap

	Getting Started with PhoneGap
	Sample Application
	PhoneGap iPhone

	Android
	BlackBerry
	PhoneGap Simulator

	Writing Hello World in PhoneGap
	Writing a PhoneGap Application
	Contacts Example
	Contact Example Code Explained

	Camera Example
	Camera Example Code Explained

	Chapter 9 Titanium Mobile

	Getting Started
	Writing Hello World
	Building for Device
	Titanium Mobile Device Capabilities
	Camera Example

	Part 3 HTML Interfaces

	Chapter 10 Mobile HTML and CSS

	Platform Overview
	iOS for iPhone, iPad, iPod Touch
	Android
	BlackBerry
	Windows Mobile

	Common Patterns
	Screen-Based Approach
	Navigation
	Menus
	Tab Bars
	Toolbars
	Navigation Bars
	Button Bars and Context Menus

	UI Widgets
	Check Boxes
	Selection Boxes
	Text Boxes
	Text Areas
	Radio Buttons
	Additional Components
	WebKit Web Views
	Creating Lists
	Building a Navigation Bar

	Chapter 11 iWebKit

	Working With the iWebKit Framework
	A Few Words of Caution
	Required Header
	Body
	Organizing Data with Lists
	Classic Lists
	iTunes Classic Style Lists
	App Store-style Lists
	iTunes style-lists
	iPod-style lists

	Navigation
	Forms
	Labeling Field Sets

	Landscape Mode
	Phone Integration
	Integrating iWebKit in Mobile Applications
	Creating a Native iPhone Application with iWebKit in Objective C

	Create an Application
	Add iWebKit Framework to Application Layout Template
	Setting up PhoneGap for iWebKit

	Chapter 12 Animated UI with jQTouch

	Getting Started with jQTouch
	Running Example Code
	Creating a Simple jQTouch Application

	Adding Screens
	Loading Additional Screens with Ajax
	Cancel, Back, and Browser History
	Other Buttons

	jQTouch Initialization Options
	Basic Views
	Customizing Your jQTouch Applications Animations

	Navigation Bar (aka the Toolbar)
	Customizing Your Views with Themes
	Integration with Rhodes
	Integration with PhoneGap

	Chapter 13 Sencha Touch

	Getting Started
	Adding HTML Text with a Panel
	Adding Components
	Creating Interactivity

	Chapter 14 BlackBerry HTML UI

	BlackBerry Browser UI Controls
	BlackBerry 4.2 Browser Control
	CSS
	Fonts
	Frames
	JavaScript
	Rhodes Tip for Dynamic Layout

	BlackBerry 4.6 Browser Control
	Display and User Interaction
	Development Environment

	Appendix Cascading Style Sheets

	The Cascading in Style Sheets
	CSS Syntax
	Comments
	Identifying Elements with ID and Class
	Common Patterns
	Common CSS Attributes (Display: block verses inline)

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

