Developing and distributing applications for iPhone, BlackBerry
and other smartphone devices

Pro
Smartphone Cross-Platform

Development

iPhone, BlackBerry, Windows Mobile and
Android Development and Distribution

Sarah Allen | Vidal Graupera | Lee Lundrigan

ApPress’

ww.allitebooks.co

http://www.allitebooks.org

Pro Smartphone Cross-
Platform Development

iIPhone, BlackBerry, Windows Mobile, and
Android Development and Distribution

J—I |

Sarah Allen,
Vidal Graupera,
Lee Lundrigan

Apress*

vww .allitebooks.cond

http://www.allitebooks.org

Pro Smartphone Cross-Platform Development: iPhone, Blackberry, Windows Mobile and
Android Development and Distribution

Copyright © 2010 by Sarah Allen, Vidal Graupera, Lee Lundrigan

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2868-4
ISBN-13 (electronic): 978-1-4302-2869-1
Printed and bound in the United States of America987654321

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning

Lead Editor: Mark Beckner, Ewan Buckingham

Technical Reviewer: Fabio Claudio Ferracchiati

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Jim Markham

Copy Editor: Ralph Moore

Compositor: MacPS, LLC

Indexer: BIM Indexing & Proofreading Services

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales—eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at waw.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

vww allitebooks.conl

http://www.allitebooks.org

To Bruce and Jack Allen for their love and support.
—Sarah Allen

To my loving wife, Tara, and my children Maggie, Grace, James, and Kathleen.
—Vidal Graupera

vww allitebooks.conl

http://www.allitebooks.org

iv

Contents at a Glance

(1] 1] (-] 1] v
FOreWOrdcceeeeeeeemeeeeeeeeneeeeeennnnnnnnnnnnnnnsnnnnnnnsnsssssssssssnssnssnnssnssnnssnnnnnnsnnnnnnnnnns X
About the AUthOrSccocccmmmiisemmmmmssssmmmssss s ————— Xii
About the Technical ReVIEWErcccummmssssnsnmsssssnssssssssssssssssssssssssssnssssssssnnnnss xiii
Acknowledgments.......ccuuumssnmmsmnmmmmmmssssssssssnsnnessssssssssssssssssssssssssssnnnnssssssssssnns Xiv
INtroduction......cccuiisnmmnmnssssnnnmmssssnnnmsssssnsnssssssnnnnessssnnnnesssnnnnnesssnnnnnessssnnnnnsssnnns XV
Chapter 1: The Smartphone is the New PC..........ccccvinnnsnsssssnnmmmnmmssssssssssnns 1
Part 1: Platform Development and Distribution........ccccccivininnsssnmsnnnnnnnnnnssssnnn 15
Chapter 2: IPRONEccceeeemmnririnsssssssssssnsnsnssssssssssssssssssssssssssssnnnssenssssssnnnnnnnnnness 17
Chapter 3: ANAroidcccceusseemnmmssssnnnmmssssssnmessssssnnessssssssessssssnsessssnnnsessssnnnsessss 35
Chapter 4: BIaCKBErTYccuummmnssmmsmmmmmmmmssssssssssssssssssssssssssssnsssssssssssssnsssnsnnnss 51
Chapter 5: Windows Mobile.......c..cccmmmmsssnmnmmssssssnmsssssssnssssssssssssssssssssssssnnnnsssss 65
Part 2: Cross-Platform Native Frameworks.......cusssssesssnmssssssssssssssssssssssssssnnnnns 81
Chapter 6: RN0AEScccrrrissnmmnmmssssnnnmmssssssnssssssssnsssssssnnssssssssnsssssssnnssssssnnnnsssns 83
Chapter 7: RNOSYNCcceeeiiiiiiisssnnnnnnssnnnns 113
Chapter 8: PRONEGAPcurerssumersrssssnnnmsssssnssssssssnnnssssssnsnssssssnnnssssssnnssssssnnnnssss 131
Chapter 9: Titanium Mobileccccccmrrrinnnsnssssmnnmnmmmmss e ——————— 153
Part 3: HTML INterfacesc..cccuussmmmmssnnssssnsssssnnsssssnsssssnsssssnsssssnsssssnsssssnnssssnnnsss 161
Chapter 10: Mobile HTML and CSScccccunsmmmmmnssnsnmmssssssssssssssssssssssssssnss 163
Chapter 11: iWebKit..........ccccrninnmmmmmmmmnnnnnssssssssns s sssssssssens 183
Chapter 12: Animated Ul with jQTOUCKh.......ccccmmmmmimmmmmmssssmsssnnmss s 207
Chapter 13: Sencha TOUCK........cccccemiiisnmnnnmssssnnnnnsssssnsnsssssssssssssnsessssnnsnsnass 225
Chapter 14: BlackBerry HTML Ulccccconnmemmmmmmnmnmnssssssssssnssssssssssssssnssnnnns 235
Appendix: Cascading Style Sheetsccucccimrmmnmmmmmnsssnnmmmsssnmmssssnmssnnm 247
1 255

[vww allitebooks.cond

http://www.allitebooks.org

Contents

Contents at @ GIANCE....cuurreeemmmsssssssmmmsssssmssssssssnsssssnnnssssssssnsssnnnnnsnsssssnsnsnnnnnnnnnns

FOP@WOKNM .. .oveeeeensnssmnsssssssnsssssnsnnssssnsnnsssssssnnsssnssnnssssnsnnsssssssnnsssssnnnnnssnnnnnnnnsnnnnnnns

iv
X

About the AUtNOIS .uuueeeeeeeesssssrsrrrsssssssssssssesssssssssssssssssssssssnnnnsnsssssnnsssnnnnnnnssnnsns X
About the Technical ReVIEWET ...uueeerrssresmssssssnssssssssnsssssssnnssssssnnssssnssnnssssnsnnnnss Xiil

Acknowledgments.......uceeeemmmmmmsssssssssnsnnnnnnssssssssssssnnnsssssssssssssnnnnnnnssssssnnnnnnnnns X

iv

INtrOdUCHION . ..cee e cirreeeissrennesssnnmmn s s s nnnasssnnnnsssnnnnnnssnnnnnnsssnnnnnnssnnnnnnnsnnnnnnnssnnnnnnss XV

Chapter 1: The Smartphone is the New PC.........ccccccimmnismmmnmnssssnsnmssssssnnssssnnns

Application Marketplace
Increase in Mobile Usage and Trend Toward Smartphones

What is a Smartphone?
Smartphone Landscape

Cross-Platform Frameworks

S T N N OO

The Branded Experience of Mobile Applications

6

Web Techniques
Cross-Platform Frameworks
About this Book

10
10
13

Part 1: Platform Development and Distribution.........cccccevvnnnsssssnnsnnnnnnsssssssssnnns 19
Chapter 2: IPRONEcccrrnsssnmnnmmssssnnnssssssssnssssssssssesssssssssssssnsnssssssnnnssssssannnsssss 17

Introducing Xcode
iPhone Development Standard Practices
Building a Simple iPhone app
Create the Xcode Project
Create the Interface

17
18
18
19
20

29

Installing the App on the Device
Finding Your Device ID

3

Create the Provisioning Profile

32

Install the Provisioning Profile

32

Install and Run on the Device

32

vi

CONTENTS

Chapter 3: ANAroidccccerrrrimmmmssssssssssnmmsmmmsssssssssssessssssssssss s sssssssssnees 39

Android Development 36
Setting Up The Development Environment With Eclipse 36
Building a Simple Android Application 39
Simple Application Using Android WebView 46

Building for an Android Device 48

Distribution on the Web 50

Android Market 50

Chapter 4: BIaCKBEerryccccvummmsmssssssmnmmsssnes 91

BlackBerry Platform 51

Set Up for Classic Java Development 52

Building a Simple BlackBerry Application 53
Create the Eclipse Project 53
Create the Interface 55
Code Explained 57
Build and Test the Application 58
Simple User Interface Application Using a Label, Text Field, and Button 58
Code Explained 60
Simple Application Using BlackBerry Browser Field 61

Chapter 5: Windows Mobile.......cucemmmmnmmmmmmmmssssssssssmssssssssssssssssssssssssssssssssssees 69

Setting Up for Windows Mobile 6.5 Development 66

Building a Simple Windows Mobile App 67
Creating a Smart Device Project 67
Setting Up Base Functionality 68
Deploying and Test your Application 72
Fleshing Out the Application 73

Packaging and Distributing Your App 76
Adding a CAB Project to the Solution 77
Customizing Your Product Name 77
Adding the Application to the CAB Project 78
Creating an Application Shortcut 78
Adding a Registry Entry 78
Building and Deploying the CAB File 78
Installing the CAB File 79

Distributing Your Application 80

Part 2: Cross-Platform Native Frameworks........ccccusmssssssssssssssssssssssssssssssssssssnes 81
Chapter 6: RNOUEScccerrrissnmnnnmssssnnnsmssssssnssssssssssssssssssssssssssnsessssssnsssssssnnssssss O3

Development Architecture 84
Runtime Architecture 85

Device Capabilities and Native Ul Elements 86
Database (Rhom) 86
Threading 87
Differences Between Rhodes and Rails 88
Creating a Rhodes App 88

Installation and Setup 88
Building a Rhodes Application 89

Running the Application 91
Running on the iPhone 93
Running on Android 94
Running on BlackBerry 94
Running on Windows Mobile 6 95

Generating a Model 95

Debugging Tips 100
iPhone 100
BlackBerry 101
Android 101

Rhodes Device Capabilities 101

Contacts Example 103

Camera Example 106

Geolocation and Mapping Example 108
Creating the application 109

Chapter 7: RNOSYNCcccusmmmsssmmmsssnsmssssssssssssssssnsssssnsssssnsssssnsssssnsessansessannenss 113

How the Sync Server Works 114
Data Storage: Why Triples? 114

RhoSync Source Adapters 115

Initialize 116

Authenticating with Web Services: Login and Logoff 116

Retrieving Data: Query and Sync 117
Query 117
Sync 119

Submitting Data: Create, Update, and Delete 119
Create 119
Update 120
Delete 120

User Authentication 121

Product Inventory Example 122
Creating Your Application on RhoHub 122
Creating Your Application on a Local RhoSync Server 127
Debugging RhoSync Source Adapters 130
Testing Your Application 130

Chapter 8: PhONEGAPccussummmmissssnnnssssssnsnssssssnsnsssssssnnsssssssnnsssssssnnsssssssnnnsss 13 1

Getting Started with PhoneGap 133
Sample Application 134
Android 136
BlackBerry 137
PhoneGap Simulator 138

Writing Hello World in PhoneGap 139

Writing a PhoneGap Application 141

Contacts Example 146
Contact Example Code Explained 149

Camera Example 150
Camera Example Code Explained 152

CONTENTS

vii

CONTENTS

Chapter 9: Titanium Mobileccccmmrrnnnmmmmmsssssnnnmmmsssssssssses 193
Getting Started 153
Writing Hello World 155
Building for Device 157
Titanium Mobile Device Capabilities 157
Camera Example 158
Part 3: HTML Interfacesccuseemrmmssssnnsssssssnnsssssssnsssssssssssssssssnnssssssssnnsssssannness 161
Chapter 10: Mobile HTML and CSSccccnnsmmmmmmssssssmmmsssssssmsssssssssssssassnnss 163
Platform Overview 163
i0S for iPhone, iPad, iPod Touch 164
Android 164
BlackBerry 165
Windows Mobile 165
Common Patterns 165
Screen-Based Approach 165
Navigation 166

Ul Widgets 169
Check Boxes 169
Selection Boxes 171
Text Boxes 173
Text Areas 174
Radio Buttons 175
Additional Components 177
WebKit Web Views 178
Chapter 11: iWebKit........c.cccrmsmmmmsmmmmssssmssnsesssnsesss 183
Working With the iWebKit Framework 184
A Few Words of Caution 185
Required Header 186
Body 186
Organizing Data with Lists 187
Navigation 194
Forms 196
Landscape Mode 200
Phone Integration 200
Integrating iWebKit in Mobile Applications 201
Creating a Native iPhone Application with iWebKit in Objective C 201
Create an Application 203
Add iWebkKit Framework to Application Layout Template 204
Setting up PhoneGap for iWebKit 205

Chapter 12: Animated Ul with jQTOUCK.........ccccrrnssmrnssnsnsssnsssssnsesssnsessansenss 207

208

Getting Started with jQTouch
Running Example Code

208

Creating a Simple jQTouch Application

209

Adding Screens

211

Loading Additional SCreens With AJAX.........oeerererurereruceeeeeenesesesesesesesesesessssssssssssssssesess e e sesesesesesesesesesssnas
Cancel, Back, and Browser History

212
214

viii

Other Buttons 215
jQTouch Initialization Options 215
Basic Views 217
Customizing Your jQTouch Applications 218
Animations 218
Navigation Bar (aka the Toolbar) 218
Customizing Your Views with Themes 221
Integration with Rhodes 222
Integration with PhoneGap 222
Chapter 13: Sencha TOUCK.........cuccmmmmmssmmmmmmssssnmmnssssmssssssss s 229
Getting Started 225
Adding HTML Text with a Panel 228
Adding Components 231
Creating Interactivity 232
Chapter 14: BlackBerry HTML Ulccccccnmmnnsmmmmmmsssssnmmsssssssssssssssssssssssssnnss 239
BlackBerry Browser Ul Controls 236
BlackBerry 4.2 Browser Control 237
Fonts 239
Frames 241
JavaScript 241
Rhodes Tip for Dynamic Layout 242
BlackBerry 4.6 Browser Control 244
Display and User Interaction 244
Development Environment 245
Appendix: Cascading Style Sheetsccummmmnnnmmmmmssmnmmssssnmnssssssssssases 247
The Cascading in Style Sheets 247
CSS Syntax 248
Comments 249
Identifying Elements With ID and ClaSS.........ccuuiuimrnisieesenesesesese e sesesesesssesesesssssssasasssssasaens 249
Common Patterns 250
Common CSS Attributes (Display: block verses inline) 251

T "L 1.

CONTENTS

ix

Foreword

The year 2010 is an exciting time for those of us who have worked in and around the mobile
industry since before the, now, decade-old 21st century. Some have referred to this year as “The
Year of the Mobile Developer.” It’s true that, following the creation of frictionless paths to market
through Apple’s App Store, Google’s Android Market, and the other handset or OS app stores,
developers and brands alike are pursuing a market previously limited in reach. The options of
distribution of applications until recently included carrier decks, handset portals, third-party
channels such as Motricity, or even one’s own web site.

Carriers once dominated and controlled which applications were allowed to reach eager end
users via their portals—picking winners and losers by the weight of their business development
and testing processes. Distribution via carriers has been difficult and costly, requiring direct
relationships with carriers. Each carrier required a new business development effort and a
different set of requirements for OSes and handsets supported, along with a unique testing
process. Handset portals also required major effort from business development and also required
joining expensive developer programs. The third-party and web-site options for distribution were
easier but required individual marketing effort by developers, and the process for users to install
downloaded apps on their own was a barrier for widespread adoption. Until recently, these
challenges in the business of mobile development limited experimentation and innovation by all
but a few hardy souls or the largest brands with the budgets to support it. Enter Apple’s App
Store.

The Apple App Store not only provided a path to market, but also, a dramatic change in
marketing position for developers. Apple established the new industry standard with the “There’s
an App for That” campaign. Suddenly, instead of choosing a device for its hardware specs, end
users considered what they could do with a phone beyond make calls and send text messages.
The value of a device, now, has become its ability to run lots of applications. The iPhone didn’t
initially include an App Store. End users drove this innovation, as is often the case. Early adopters
of the iPhone broke open the OS and began to extend it’s capabilities with apps, but Apple was
quick enough to leverage the iTunes connection for delivering $.99 songs to delivering $.99
applications.

The app store trend didn’t and couldn’t have happened without the availability of more
capable devices. Nokia punctuated the importance of a new class of handset commonly referred
to as smartphones in 2007 by calling their advanced handsets “Multimedia Computers.”
Smartphone as computers has become a more common analogy as smartphones grew in
processing and storage capability. The steady increase of smartphone marketshare hit an
inflection point in 2008 by crossing the magical 20% penetration rate in both the UK and the US.
Historically, any technology mainstreams at the 20% penetration level, which has clearly been
demonstrated by experience since 2008. According to Morgan Stanley analyst Mary Meeker, the
rest of the world (ROW) will reach 20% smartphone penetration in 2012.

It is in this context of explosive growth in smartphone marketshare, a frictionless path to
market through device and OS app stores, and a viable business model that the authors take us to
the next step—cross-platform development. Cross-platform frameworks are still in the early

FOREWORD

stages of technology evolution, but the timing is perfect for developers to add cross-platform
frameworks to their tool box.

This is especially true for web developers and those serving brands that benefit most from the
tradeoffs between wide distribution and deep integration.

In Part 1, the authors provide a survey of the top development and distribution options
consisting of mainly handset and OS vendors including the iPhone, Android, BlackBerry, and
Windows Mobile. Part 2 follows by introducing emerging cross-platform solutions covering both
proprietary and open source frameworks with an emphasis on building native applications. And
finally in Part 3, the authors address techniques for using HTML to create a native look-and-feel
for web applications and services.

A key thread throughout the book is recognition that mobile development is a business
endeavor and opportunity. There is a presentation of how-to instructions and code samples that
will be useful to those just getting started with mobile development, but the audience that will
benefit most from the pragmatic vision of the authors are professional developers and agencies.
Certainly, many web developers are pursuing mobile development because it’s a good decision to
grow their business and if their clients aren’t already requesting mobile applications, they will
soon.

The book isn’t targeted at developers of gaming apps. While gaming is a leading category for
all app stores, it’s one of those categories that benefits most from deep integration into the OS or
device. Cross-platform frameworks aren’t likely to be the best solution for games. Productivity
apps, branded apps, and some communications services such as social networking apps will
benefit from using the tools and techniques covered in the book.

Several of the tools presented in the book are currently leading this emerging category. We
are in the early days of cross-platform use on mobile devices. Of the estimated 17 million
software developers worldwide, according to Motorola as quoted in Forbes, around 4 million of
them are developing for mobile. While Rhodes, Appcelerator, and PhoneGap have been used to
deliver applications via the Apple App Store, the total number of developers using these
frameworks is in the low six figures. Like the early days of the web, and to some extent, still,
experimentation is vital to moving the ecosystem forward. This book is an important
contribution to that effort.

Debi Jones
Editor In Chief
Telefonica Developer Programs

About the Authors

Sarah Allen leads Blazing Cloud, a San Francisco consulting firm that
specializes in developing leading-edge mobile and web applications. She
is also co-founder and CTO of Mightyverse, a mobile startup focused on
helping people communicate across languages and cultures. In both
technical and leadership roles, Sarah has been developing commercial
software since 1990 when she co-founded CoSA (the Company of Science
& Art), which originated After Effects. She began focusing on Internet
software as an engineer on Macromedia's Shockwave team in 1995. She
led the development of the Shockwave Multiuser Server, and later the
Flash Media Server and Flash video. An industry veteran who has also
worked at Adobe, Aldus, Apple, and Laszlo Systems, Sarah was named one
of the top 25 women of the Web by SF WoW (San Francisco Women of the
Web) in 1998.

Website: blazingcloud.net
Personal Blog: www.ultrasaurus.com
Twitter: @ultrasaurus

Vidal Graupera has been developing award-winning mobile applications
starting as far back as the Apple Newton in 1993. He founded and ran a
successful software company that developed more than a dozen
consumer applications on a variety of mobile platforms over a period of
ten years. Vidal holds engineering degrees from Carnegie Melon
University and the University of Southern CA, and an MBA from Santa
Clara University. Vidal currently consults with clients on developing web
and mobile applications.

Website: vdggroup.com
Personal Website: www.vidalgraupera.com
Twitter: @vgraupera

Lee Lundrigan, a founding engineer at Blazing Cloud, develops mobile
applications using cross-platfrom frameworks on four platforms and
Objective-C on the iPhone and iPad. He is an expert in CSS and HTML
and also has experience creating dynamic Ul in JavaScript. He has
developed cross-browser CSS and HTML to run on iPhone, Android,
BlackBerry, and Windows Mobile.

Website: blazingcloud.net
Personal Blog: www.macboypro. com

About the Technical Reviewer

Fabio Claudio Ferracchiati is a prolific writer on cutting-edge technologies. Fabio has contributed to
more than a dozen books on .NET, C#, Visual Basic, and ASP.NET. He is a .NET Microsoft Certified
Solution Developer (MCSD) and lives in Rome, Italy.

Xiii

xiv

Acknowledgments

The authors received enthusiastic support from many of the creators of the software discussed
herein. We would like to extend our thanks for technical review and enthusiastic support from
the Rhomobile team: Adam Blum, Lars Burgess, Brian Moore, Evgeny Vovchenko, and Vladimir
Tarasov; Brian LeRoux from Nitobi, David Richey and Jeff Haynie from Appcellerator; and Ed
Spencer from Sencha. We also want to acknowledge Rupa Eichenberger’s significant contribution
to early technical reviews; Nola Stowe for initial work on the Android chapter; and Sarah Mei for
her work on Rhodes geolocation. Jirn Oser, Bruce Allen, and David Temkin each had a
aithetantive imnact in reviewine enceifir chantarsg

Introduction

Developing mobile applications can be tricky business. Mobile developers need to use platform-
specific tools and APIs and write code in different languages on different platforms. It is often
hard to understand what it takes to develop and distribute an application for a specific device
without actually building one. Each platform has different processes and requirements for
membership in developer programs and documentation for different parts of the development
process are often scattered and hard to piece together. Therefore, we have divided the book into
three main topics: Platform Development and Distribution, Cross-Platform Native Frameworks,
and HTML Interfaces.

Part 1: Platform Development and Distribution

In Chapters 1-5, we provide an overview of four platforms: iOS, for building iPhone, iPad, and
iPod Touch applications; the Android open source platform, created by Google; Research in
Motion's BlackBerry platform; and Windows Mobile from Microsoft. Each chapter follows the
same outline:

e Building a Simple Hello World

¢ Running in the Simulator

e Adding a Browser Control

¢ Building for the Device

e Distribution Options and Requirements

This common outline allows for comparison across the operating systems and provides a feel
for the patterns of the development process. If you decide to pursue native application
development using only the vendor SDK, you will need a lot more details than any single chapter
can provide, but this should provide the right amount of information to kick-off some
experimentation or help make a decision about which platforms to pursue.

It is inevitable that developers create ways to share code across plaforms when CPU power is
fast enough and there is sufficient memory to support some kind of abstraction and demand
fuels faster time to market. We saw this with cross-platform desktop frameworks that emerged in
the 1990s, and now with cross-platform mobile frameworks.

Xv

INTRODUCTION

Part 2: Cross-Platform Native Frameworks

Chapters 6-9 provide an overview and examples of applications written in three popular native
frameworks. In categorizing as a “native framework,” we selected software that allows a common
development approach across platforms but that build to an application that is indistinguishable
by a user from one built with native code (as described in Part 1). Note that to build using these
frameworks, you will still need the vendor SDK described in Part 1 and use vendor-specific
techniques for code signing and distributions.

There are two chapters on the Rhomobile platform, one for the client-side Rhodes and one
for the RhoSync server framwork. Rhodes is covered in more depth than the other two platforms:
Titanium Mobile and PhoneGap. Rhodes is at version 2 at this writing, Titanium v1.2 and
PhoneGap 0.9. As with the rest of the book, these chapters are designed to provide a feel for what
it is like to develop for each platform, to kick-start some experimentation, and aid in deciding
what platform to spend more time with.

Part 3: HTML Interfaces

You can use the technique of adding a browser control in combination with the HTML and CSS
patterns and frameworks presented in Chapters 10-14.

To develop a mobile application user interface, a mobile developer must typically learn a
platform-specific language and SDK. This can become quite cumbersome if you need your
application to run on more than one platform. Fortunately, there is an alternative; all smartphone
platforms today include a browser control component (also known as a web view) that a
developer can embed in their application that will allow them to write some or all of their app in
HTML, CSS, and JavaScript.

Leveraging HTML and CSS for mobile application Ul gets even better with the introduction
of the mobile WebKit browser. WebKit is an open source browser engine originally created by
Apple. WebKit introduces a partial implemention of HTML5 and CSS3 with full support for
HTMLA4 and partial implementation CSS2. Note that as of this writing, HTML5 and CSS3 are still
in “working draft;” however, these emerging standards have been aggressively adopted by
multiple web browsers and the latest versions of WebKit-based browsers include most HTML5
and CSS3 features. The WebKit mobile browser is currently the native browser for iPhone/iPod
Touch/iPad, Android, Palm, and many Symbian phones. BlackBerry plans to catch up with its
own WebKit-based browser, recently demonstrated at Mobile World Congress in February 2010.
Windows Mobile ships with an IE-based browser, which includes a better implemention of CSS1
and 2 compared with BlackBerry, but still has limitations. It is possible, though sometimes
challenging, to build cross-platform UI in HTML and CSS that works across WebKit, mobile IE,
and BlackBerry broswers. The most challenging part is differing levels of support for current
HTML and CSS standards.

Chapter

The Smartphone
IS the New PG

The mobile phone is the new personal computer. The desktop computer is not going
away, but the smartphone market is growing fast. Phones are being used as computers
by more people and for more purposes. Smartphones are generally cheaper than
computers, more convenient because of their portability, and often more useful with the
context provided by geolocation.

Already there are more mobile phones than computers connected to the Internet. While
a minority of those phones would be considered smartphones, we’re seeing a fast-
moving landscape where today’s high-end phones become next year’s mid-range or
even low-end phones. With profits from applications growing, we’ll see continued
subsidies of the hardware and operating systems by manufacturers and carriers,
keeping new phones cheap or free.

We’re seeing a change in how people use computers. Desktop applications that we use
most frequently are centered around communications, rather than the more traditional
personal computer task of document creation. In the business world, we file expense
reports, approve decisions, or comment on proposals. As consumers, we read reviews,
send short notes to friends, and share photos. E-mail is the killer app of the late 20th
century, not the word processor or spreadsheet. Both in the business world and in our
personal lives, these communication-centered tasks translate effectively into mobile
applications.

As smartphones gain widespread adoption, the desktop computer will be relegated to
the specialist and elite professional, much as the mini-computer and supercomputer are
today. Many of the routine tasks we currently perform on a desktop or laptop, we will be
able to accomplish on a smartphone. More importantly, new applications will meet the
needs of people who don’t use a computer today. Software development will shift
toward mobile development as the majority of people who use computers will use them
indirectly through a mobile phone. The center of gravity of the software industry will be
mobilized.

CHAPTER 1: The Smartphone is the New PC

Application Marketplace

In September 2009, Apple announced that more than two billion applications had been
downloaded from its App Store. With more than 100,000 applications available, Apple
has transformed the mobile phone market by dramatically increasing consumer
spending on applications and successfully shifting independent developer mindshare
toward mobile application development. By the end of 2009, Google Android’s open
platform was reported to have over 20,000 apps in the Android Market online store.’

Mobile applications are not new. Even in the late 90s, mobile development was
considered to be a hot market. While there were independent application developers and
most of the high-end phones supported the installation of applications, the process of
application install was awkward and most end users did not add applications to their
phone. Examples of early smartphone and PDA devices from this era included the Apple
Newton Message Pad, Palm Pilot, Handspring (and later Palm) Treo, Windows Pocket PC,
and others. Aimost all mobile developers worked directly or indirectly for the carriers.

The iPhone revitalized the landscape for mobile application development. Apple created
an easy-to-use interface for purchasing and installing third-party applications, and more
importantly, promoted that capability to their users and prospective customers.

Smartphone operating systems actively innovate to keep up with advances in hardware
and ease development with improved tools and APIs. As we’ve seen with the iPhone
App Store, often the most significant innovations are not purely technical. The App Store
reduced barriers to application development by providing easy access to distribution.
Unsurprisingly, people develop more apps when there is an accessible market and
distribution channel. Google’s App Market, Blackberry App World, and Windows
Marketplace for Mobile are likely to drive the success of existing applications for those
operating systems and draw new developers as well.

Increase in Mobile Usage and Trend Toward Smartphones

Six in 10 people around the world now have cell-phone subscriptions, according to a
2009 UN Report,? which surpasses the quarter of the world’s population with a
computer at home. Smartphones are still a small minority of mobile phones, but growth
is strong and the numbers are particularly interesting when compared to computer
sales. Mobile Handset DesignLine reports that smartphones represent 14% of global
device sales, but Gartner projections note that smartphone shipments will overtake unit

" http://www.techworld.com.au/article/330111/android_market hits 20 000 apps milestone

2 International Telecommunications Union (a UN agency), “The World in 2009: ICT facts and
figures,” http://www.itu.int/newsroom/press releases/2009/39.html, 2009.

CHAPTER 1: The Smartphone is the New PC

sales of notebook computers in 2009 and that by 2012, smartphones will grow to 37%
of mobile device sales.®

Looking at how people use their mobile phones today suggests patterns of behavior that
will drive smartphone sales in the future. Increasingly, people are using their phones for
more than phone calls: web browsing and the use of other mobile applications are
growing. Market researcher comScore reports that global mobile Internet usage more
than doubled between January 2008 and January 2009.* In Africa, a recent sharp
increase in mobile phone adoption is attributed to the use of phones for banking and
sending money to relatives via text messaging.

Even lower-end mobile phones typically bundle web browser, e-mail, and text
messaging, but the power of the smartphones enables a wider array of applications.
Smartphones are not just little computers that fit in your pocket. For many applications,
they are actually more powerful devices than a laptop due to their built-in capabilities of
camera, connectedness, and geolocation. Business people who can afford a laptop
often prefer the longer-lasting battery power and portability of the smaller device. In an
Information Week article, Alexander Wolfe collected real-world use cases of businesses
adopting smartphones for applications that used to be only accessible with a desktop or
laptop computer:

At Dreyer’s Grand Ice Cream, the Palm Treo 750 is being used by some
50 field sales representatives to access the company’s back-end CRM
database.

The company'’s field-sales reps tried laptops and tablet PCs, but their
battery life was too short and rebooting took too much time on sales
calls, which number 20 to 25 a day, says Mike Corby, director of direct
store delivery. Dreyer’s reps also found the laptops to be too bulky to
tote around, “not to mention the theft worries with notebooks visible on
their car seats.”

At Astra Tech, a medical device maker, some 50 sales reps access
Salesforce CRM apps on their smartphones. “Salespeople say they now
check yesterday’s sold or returned products plus the overall revenue
trends, five minutes before meeting with a customer,” says Fredrik
Widarsson, Astra Tech’s sales technology manager, who led the
deployment on Windows Mobile smartphones (and is testing the app on
iPhones). “Another interesting effect is that once a salesperson is back
home for the day, the reporting part of their job is done. During waiting

3 Christoph Hammerschmidt, “Smartphone market boom risky for PC vendors, market
researchers warn,” http://www.mobilehandsetdesignline.com/news/221300005;
jsessionid=1JYPKFPGNOGE1QE1GHPCKH4ATMY323VN, October 28, 2009.

4 Dawn Kawamoto, “Mobile Internet usage more than doubles in January,”
http://news.cnet.com/8301-1035_3-10197136-94.html

CHAPTER 1: The Smartphone is the New PC

periods throughout the day, they put notes into the CRM system, using
their smartphone.”

In a recent article by Gary Kim, Forrester analyst Julie Ask identifies three things as the
killer advantages of mobile devices: “immediacy, simplicity, and context.”® When those
are combined with usefulness, we’re going to start to see a different flavor of software
application emerge that will transform the way we use mobile phones. The use of
software applications as “computing” will become archaic. The age of software as
communications medium will have arrived.

What is a Smartphone?

Cell phones today are generally divided between the low-end “feature phones” and
higher-end “smartphones.” A smartphone has a QWERTY keyboard (either a physical
keyboard or soft keyboard like the iPhone or BlackBerry Storm) and is more powerful
than the feature phone with larger, high-resolution screens and more device capabilities.

Smartphone Landscape

Relative to desktop computers, smartphones have a diverse set of operating systems
(see Table 1-1). Moreover, unlike desktop operating systems, the OS in mobile
computing typically determines the programming language that developers must use.

When developing an application for the desktop, such as Microsoft Word or Adobe
PhotoShop, application developers create their core application in a language such as
C++ and share that core code across platforms, but then use platform-specific APIs to
access the filesystem and develop the user interface. In the 1990s, a number of cross-
platform desktop frameworks emerged, making it easier for companies to develop a
single codebase that they could compile for each target platform (typically, just Mac and
Windows). For mobile development, this is a bigger challenge.

5 Wolfe, Alexander. “Is The Smartphone Your Next Computer?” October 4, 2008.
http://www.informationweek.com/news/personal tech/smartphones/showArticle.jhtml?art
icleID=210605369, March 16, 2009.

® Gary Kim, “Can Mobile Devices Replace PCs?” http://fixed-mobile-
convergence.tmcnet.com/
topics/mobile-communications/articles/66939-mobile-devices-replace-pcs.htm, October
19, 2009.

CHAPTER 1: The Smartphone is the New PC

Table 1-1. Smartphone Operating Systems and Languages

. RIM Apple Windows Google Palm
0s Symbian g kBerry iPhone Mobile Android webOS
Language C++ Java Objective-C C# Java Javascript

Even focusing only on smartphones, there are four major operating systems that make
up over 90% of the market: Symbian, RIM BlackBerry, Apple iPhone, and Windows
Mobile, with the rest of the market shared by Linux and emerging mobile operating
systems, Google Android and Palm’s webOS. For most of these operating systems,
there is a native development language, which is required to develop optimally for that
platform, as illustrated in Table 1-1. While it is possible to develop using other
languages, typically there are drawbacks or limitations in doing so. For example, you
can develop a Java application for Symbian; however, several native APIs are
unavailable for accessing device capabilities. Besides the differences in languages, the
software development kits (SDKs) and paradigms for developing applications are
different across each platform. While the device capabilities are almost identical, such
as geolocation, camera, access to contacts, and offline storage, the specific APIs to
access these capabilities are different on each platform.

Cross-Platform Frameworks

The fast-growing market for applications drives the need for faster time to market. Just
as market opportunities led vendors to release cross-platform applications on desktop
computers in the 1990s, mobile applications are more frequently available across
devices. Operating systems vendors vie for the attention of developers and application
vendors, but improve their tools incrementally. Where such dramatic challenges exist in
developing across multiple platforms, it is natural for third party cross-platform
frameworks to emerge.

The innovation in cross-platform frameworks for smartphone applications surpasses the
patterns of abstraction seen in the cross-platform desktop frameworks of the 1990s.
These new smartphone frameworks are influenced by the rapid application development
techniques we are seeing in web development today. There are three specific techniques
in web application development that are borrowed for these non-web frameworks: 1)
layout with mark-up (HTML/CSS); 2) using URLSs to identify screen layouts and visual
state; and 3) incorporating dynamic languages, such as Javscript and Ruby.

A generation of designers and user interface developers are fluent in HTML and CSS for
layout and construction of visual elements. Additionally, addressing each screen by a
unique name in a sensible hierarchy (URL) with a systemized way of defining
connections between them (links and form posts) has created a lingua franca
understood by visual and interactions designers, information architects, and
programmers alike. This common language and its standard implementation patterns
led to the development of frameworks and libraries that significantly speed application
development on the Web. These patterns are now being applied to the development of

CHAPTER 1: The Smartphone is the New PC

mobile applications as common techniques by individual developers as well as in cross-
platform frameworks.

The new cross-platform frameworks (and the native Palm webOS) leverage these skills
using an embedded web browser as the mechanism for displaying application Ul. This is
combined with a native application that transforms URL requests into the rendering of
application screens simulating the web environment in the context of a disconnected
mobile application.

The Branded Experience of Mobile Applications

New cross-platform smartphone frameworks support a trend where mobile applications,
such as web applications, are a branded experience. The Web is a varied, diverse place,
where the lines between application functionality, content, and branding blur. Web
applications do not express the native operating systems of Mac, Windows, or whatever
desktop happens to host the browser. Web applications are liberal with color and
graphics, defying the Ul conventions of the desktop as well as avoiding the blue
underlined links of the early Web that Jacob Nielson erroneously identified as the key to
the Web’s usability.

As an example, the NBA released its NBA League Pass Mobile app for both iPhone and
Android. “Multiplatform is a key tenet of our philosophy,” said Bryan Perez, GM of NBA
Digital. “We want our content available to as many fans as possible, and with more and
more carriers adopting Android around the world, it’s important to be there now.”” Most
businesses simply can’t afford to focus on the niche of a single operating system or
device. To reach customers, more companies are developing mobile applications, and
the customers they want to reach are divided across the wide array of mobile platforms.
Despite the challenges, businesses are driven to communicate with their customers
through their mobile phones because of the enormous opportunity presented by such
connectedness.

It may be effective shorthand to say that smartphones are the new personal computer;
however, in reality they represent a new communications medium. This book covers
frameworks and toolkits that make it easier than ever before to develop applications for
multiple mobile platforms simultaneously. Leveraging these tools, you can take
advantage of the widespread adoption of smartphone devices to broaden the reach of
your business.

To provide some perspective on how application interfaces vary across platform,
Figures 1-1 to 1-5 illustrate how two applications, WorldMate and Facebook, are
realized across various platforms. These specific applications are not implemented using
cross-platform frameworks, but are included to provide context on design decisions
made in cross-platform implementation. As you will see, the two applications look quite

" Todd Wasserman, “So, Do You Need to Develop an Android App Too Now?,”
http://www.brandweek.com/bw/content_display/news-and-features/
direct/e3iebae8a5c132016bcab88e37bc3948a44, October 31, 2009.

CHAPTER 1: The Smartphone is the New PC

different from each other, even on the same platform. As is typical, these mobile
applications choose a color scheme that is consistent with their brand, rather than
adhering to defaults provided by the smartphone operating system.

¢ WorldMate
San Franc
7:59 AM

Home 5:56 AM

Upcoming events: Updated 7:58 AN

7 800 Flight UA 57 SFO-LAX
AM

9 0 3:00

Board Meeting
PM

WorldMate L It

Figure 1-1. WorldMate iPhone

H ,rld Weather

My Location: London

< 14°:3°
3 Cloudy

gf AR 1281, LHR-CDG

@ > -
o s

cOEOIl D

’Bty Converter

EUR = 130

1.00

()
EUR

Updated: 17/02/09
Options

Figure 1-2. WorldMate 2009 Symbian

Services
Book Hotel

Book a hotel near your trip locations

Flight Search

1 flights betwe

Limo Reservations

Gre.

Local Search
Finc s

Currency Converter

Convert sums & get ex

Tip Calculator

(&)

Services

.
10:55 =
0
Drizzie
Light Rain
Drizzle

Drizzle

+

i ,fld (locks

21:54:16

Paris

17:54
22/03

New York, NY

22:54
22/03

Berlin

Options

,a ercaster =
i ____London

$

Play Now

CHAPTER 1: The Smartphone is the New PC

Los Angeles CA

My Location: Los Angeles CA Thursday 39°16°

39°:16° , Sunny
Sur Ll Meeting: Board Conference

? AAIZ], COG - JFK
Thu, Sep 24, 17:58 - Terminal Aeroga

Saturday 35°

r’/l) Partly Cloudy Search for:

Sunday "
Partly Cloudy

Monday 31°17°

&% Partly Cloudy

Trip to New York NY 1525 Fight AR1ZA to Paris

Fight Delayed

Sort by Top Picks

[————
a9/24/2889 Book Hotel 'Add Item

Thu, Sep 24, 2889 From: JFK, Terminal 8 American s “ |‘“h‘>"—L”'"‘ ast =actaiada
1758 American Airlines 121 Arine Gate 2 116 Mies from Meeting 8 us$219
ze8 COG, TAerogare Z Term A - JFK, T Board Conference
To: COG, Terminal Aerogare 2 Term
The Plaza 2
¢ t Arine [ate 8 The iroquois prewn
. Sen 2 P 113 Mies fi Meet rom

Fri, Sep 25, 2889 Details Alternate Flights Status Boad Coferance . US$349

Corp Meeting .

Financial District]

Board Conference Dismiss l Menu Wede, Radisson Martinique SR8 4

Figure 1-3. WorldMate BlackBerry

O o0m& & B = O2Eea & 8=

Share u Share

-~ News Feed >

L Status Updates v
H Aarti Patel is stuck in traffic
" 22 hours ago Comment|Like
Sarah Symonds is almost
done school! :)

L Status Updates
+ Photos nt| Like
 Links officially done

L all Af har Avamel

© Albums Jfcbodc & News Feed
OR2®mR AR O0LOMMRAES
(o Photos_— &

ﬂ Lisa Perry
-y ‘ “\l = ;il y

!'..«a”E! .

etting married

Mobile Uploads

Figure 1-4. Facebook BlackBerry

CHAPTER 1: The Smartphone is the New PC

_all ATST = 10:39 PM il ATET = 10:37 PM

facebook Photos facebook Done

@f i @f)

can't love it here any more than i do. p

=" =]

California State Parks

Foundation This coastal gem is now
open for camping and short hikes
almost two years after a terrible fire.
Check it out!

every person is incredible, i'm getting
to know everyone individually.

the house was built in the 1600s,

: ;
with 4 stories and at least 20 rooms. - Limekin State Pack Reopenal a

1 swim and play soccer and get
bruised and sweaty and bug bitten

and tanner every day. E
it's like 23580436 degrees outside. &4 San Francisco, CA
the church bells never stop. " m’m‘
: ‘ > ‘
‘—II-!‘ ‘ ‘_ A Status Updates
Italia? Htalial i Pt
_all ATET = 10:38 PM =" il ATET = 10:41 PM =3

facebook Photos Logout facebook
@ (")

John Olmstead Sprint
PictureMail

ﬁ News Feed Profile Friends
& 2 hours ago Inbox Chat Requests
l. John Olmstead Sprint
PictureMail
@ ||
[+ Events Photos Notes
L]

Figure 1-5. Facebook iPhone
Cross-Platform Development

Frequently, the industry produces multiple platforms that essentially provide the same
solutions for different market segments. In the 1990s, Microsoft Windows and the Apple
Macintosh provided GUI platforms with windows, mouse input, menus, and so forth.
Software vendors needed to create applications for the both platforms and, inevitably
software developers created libraries and frameworks that abstracted the differences,
making it easier to develop one application that ran across platforms. In the 2000s, as
more applications moved to the Web and browser syntax diverged, software developers
created cross-platform libraries and frameworks, such as jQuery, Dojo, and OpenLaszlo.
When there exists both a market for applications and enough processor speed and

CHAPTER 1: The Smartphone is the New PC

memory to support a layer of abstraction, developers naturally create cross-platform
tools to speed time to market and reduce maintenance costs.

With the phenomenal growth of mobile, which has seen broad adoption across a diverse
array of platforms, it is inevitable that software developers would create cross-platform
mobile solutions. However, the challenge with mobile operating systems today is the
diverse set of languages, in addition to platform-specific API syntax. Mobile cross-
platform frameworks are addressing that challenge by leveraging the ubiquitous browser
Javascript or scripting languages such as Lua or Ruby.

Web Techniques

We are seeing the influence of web development on emergent cross-platform
techniques for mobile. Before any cross-platform frameworks existed, many developers
found that embedding Web Ul in a native application was a practical way to develop
mobile applications quickly and make cross-platform applications easier to maintain.
The user interface for mobile applications tends to be presented as a series of screens.
From a high level, the mobile Ul can be thought of as having the same flow-of-control as
a traditional web site or web application.

It is common in a mobile application for every click to display a new screen, just as a
click in a traditional web application displays a new page. By structuring the Ul of the
mobile application such as a web application, the coding can be simplified. By actually
using Web Ul controls, the implementation of the user interface can be created with a
single source that renders and behaves appropriately across platforms. Also, it is much
easier to hire designers and Ul developers who are familiar with HTML and CSS than for
any specific mobile platform, let alone finding developers who can develop a Ul across
multiple platforms using native toolkits.

What does it mean to have a web application architecture for an app that may not even
access the network? Every smartphone platform has a web browser Ul control that can
be embedded into an application just like a button or a check box. By placing a web
browser control in the application that is the full size of the screen, the entire Ul of the
application may be implemented in HTML. In reality, this has nothing to do with the
Web, and everything to do with the sophisticated layout and visual design flexibility that
even a bare-bones web browser is capable of rendering.

Cross-Platform Frameworks

In the past few years, many cross-platform frameworks have emerged. There has been
an explosion of activity in this area as mobile devices become faster and more widely
adopted, and particularly with a fast-growing market for applications. This book covers
many of the popular frameworks that are focused on application development. The
frameworks fall into two categories: those that let you create a native mobile application
using cross-platform APIs, and HTML/CSS/Javascript frameworks that let you build
cross-platform interfaces that run in a web browser. It is common practice to combine

CHAPTER 1: The Smartphone is the New PC

these to create cross-platform native applications. This book covers the native cross-
platform frameworks of Rhodes, PhoneGap, and Titanium. These are listed below along
with a number of frameworks that are not covered in this book.

Rhodes and RhoSync from Rhomobile. Use Ruby for cross-platform
business logic in this MVC framework and leverage HTML, CSS, and
JavaScript for the Ul. The optional RhoSync server supports
synchronization of client-server data. With Rhodes, you can build
applications for iPhone/iPad, Android, BlackBerry, and Windows
Mobile. The client framework is MIT License; their RhoSync server
framework is GPL with a commercial option. http://rhomobile.com/

PhoneGap from Nitobi. Use HTML, CSS, and Javascript along with
projects and libraries that support native application development to
create applications that run on iPhone/iPad, Android, BlackBerry,

Palm, and Symbian. Open-source MIT License.
http://www.phonegap.com/

Titanium Mobile from Appcelerator. Use JavaScript with custom APIs
to build native applications for iPhone and Android. Titanium is an
open-source framework, released under the Apache 2 license.
http://www.appcelerator.com

QuickConnectFamily. Use HTML, CSS, and JavaScript to build an
application that runs on iPhone/iPad, Android, BlackBerry, and
WebOS. The QuickConnectFamily templates give you access to
behavior normally restricted to “native” apps. You can have full

database access across all the supported platforms.
http://www.quickconnectfamily.org/

Bedrock from Metismo. A cross compiler converts your J2ME source
code to native C++, simultaneously deploying your product to Android,
iPhone, BREW, Windows Mobile, and more. Bedrock is a set of
proprietary libraries and tools. http://www.metismo.com

Corona. Develop using the Lua scripting language for native iPhone,
iPad, and Android apps. Corona is a proprietary framework.
http://anscamobile.com/corona/

MoSync SDK. Use C or C++ to develop using MoSync libraries to
build for Symbian, Windows Mobile, j2me, Moblin, and Android.
MoSync is a proprietary framework. http://www.mosync.com/

Qt Mobility. Use C++ and Qt APIs to target S60, Windows CE, and
Maemo. Qt (pronounced “cute”) is a cross-platform application
development framework widely used for the development of GUI
programs. The Qt mobility project moves it to mobile platforms. It is

distributed as open source under the LGPL.
http://labs.trolltech.com/page/Projects/QtMobility

CHAPTER 1: The Smartphone is the New PC

B Adobe Flash Lite. Use ActionScript, a JavaScript-like proprietary
scripting language, to build cross-platform application files (SWF) that
will run as applications on a variety of devices that support Flash Lite.
Adobe Flash Lite is a proprietary platform.
http://www.adobe.com/products/flashlite/

B Adobe AIR. Adobe is working toward having the full features of Flash
Player 10 work across a wide array of mobile devices; however, those
efforts seem to be focused on web-based applications rather than
native applications. Adobe AIR (as of this writing, in beta for Android)
allows developers to run Flash applications outside of the mobile
browser as stand-alone applications.
http://www.adobe.com/products/air/

B Unity. A popular game development platform which allows you to
deploy to Mac, Windows, or iPhone. Unity supports three scripting
languages: JavaScript, C#, and a dialect of Python called Boo. They
have announced support of Android, iPad, and PS3 to be released in
Summer 2010. http://unity3d.com/

In addition to these frameworks for developing native applications, there are also many
frameworks to create HTML, CSS, and JavaScript for mobile web applications. Many of
these frameworks are little more than a collection of commonly used styles and
graphical elements; however, when developing cross-platform applications using the
techniques discussed in this book, these cross-platform HTML frameworks are essential
time-savers. The last section of the book introduces Sencha, jqTouch, and iWebKit.
These and others not covered in this book are listed as follows:

B Sencha Touch. A JavaScript framework that allows you to build
native-looking mobile web applications in HTML5 and CSS3 for iOS
and Android. Sencha Touch is an open-source framework available
under the GNU GPL license v3, with a commercial license option
available. http://sencha.com

B JQTouch. A JQuery plug-in for making iPhone-like applications that
are optimized for Safari desktop and mobile browsers. Released under
the MIT License. http://jQTouch.com

B iWebKit. An HTML5 and CSS3 framework targeting iOS native and
web applications. iWebkit has been released under the GNU Lesser
General Public License. http://ilebkit.net

m iUl A JavaScript and CSS framework to build mobile web applications

that run on iOS. iUl has been released under the New BSD License.
http://code.google.com/p/iui/

B xUL A lightweight JavaScript framework currently being used by
PhoneGap. Currently targeting iOS applications with tentative future
support for IE mobile and BlackBerry. Currently released under a GNU
GPL license. http://xuijs.com

CHAPTER 1: The Smartphone is the New PC

B Magic Framework. An HTML, CSS, and JavaScript framework. Used
to make fast and smooth iPhone-feeling apps with native-feeling
widgets, lists, and so forth. Also provides an easy HTML5 db storage
interface. Currently released under the Creative Commons Attribution

3.0 United States License.
http://www.jeffmcfadden.com/projects/Magic%20Framework

B Dashcode. A Framework developed by Apple to make simple,
lightweight, dashboard widgets for OSX and mobile safari applications
for iOS that utilize HTML, CSS, and JavaScript. Currently available
under the Creative Commons Attribution-ShareAlike License.
http://developer.apple.com/leopard/overview/dashcode.html

B CiUl Developed by tech news site CNET.com to make an iPhone-
friendly version of their web site. Released under the MIT License.
http://code.google.com/p/ciui-dev/

B Safire. An open-source web application framework written in HTML,
JavaScript- and CSS-targeting iOS. Released under the MIT License.
http://code.google.com/p/safire/

B iphone-universal (UiUIKit). An HTML and CSS framework for iPhone
web development. Contains the iPhone-like Chat Balloons just like
SMS on the iPhone. Released under GNU General Public License v3.
http://code.google.com/p/iphone-universal/

B WebApp.Net. A lightweight, JavaScript framework to build
applications that can take advantage of a WebKit browser control;
namely, iOS, Android, and WebOS. Released under the Creative
Commons Attribution-ShareAlike License. http://WebApp.net

B The Dojo Toolkit. A flexible and extensible JavaScript framework,
primarily used to build web applications. http://www.dojotoolkit.org

B Jo. Alightweight JavaScript framework for HTML5 apps, built with
PhoneGap in mind. Copyright 2010 Dave Balmer, Jr. this framework
has a custom license (“as is” with attribution) http://grrok.com/jo/

There are more cross-platform mobile frameworks, libraries, and tools than are listed
here. This list is provided to give you a sampling of what is out there.

About this Book

Part 1 of this book, the next four chapters (2-5), guide you through building native
mobile applications. You will learn how to write code for simple applications and how to
embed a browser control into a native application. These chapters are designed to give
you a feel for what it is like to develop using native methodologies.

If you decide to develop using platform-specific techniques, then you will need to learn a
lot that is outside the scope of this book; however, to save work in developing and

CHAPTER 1: The Smartphone is the New PC

maintaining your application across various mobile platforms, you can consider
including some cross-platform Ul by including a browser control and displaying part of
your application Ul using HTML. Each chapter in Part 1 reviews how to build for the
device, both developer builds and distributable applications. This information is
important even if you end up using one of the cross-platform frameworks, since at the
end you are building a native application, which will be a native executable built with
vendor tools. Lastly, each chapter reviews distribution options for applications on that
platform.

In Part 2, chapters 6-9, you will learn about three popular cross-platform frameworks:
Rhodes and RhoSync from Rhomobile, PhoneGap from Nitobi, and Titanium Mobile
from Appcelerator. Finally, Part 3 will dive into techniques for creating a native look-and-
feel using HTML techniques, as well as detail some of the limitations and capabilities of
various platforms.

Part

Platform Development
and Distribution

Chapters 2-5 include tutorials of how to add a browser component to a native
application for each of four platforms. This approach helps the developer by allowing
them to write the structure of their application in HTML and have platform-specific CSS
support for the visual layout and features of each platform.

Chapter

iPhone

To develop for the iPhone or iPod touch, you will need an Intel-based Macintosh
computer running OS X v10.5.7 or later. You will also need to install the latest version of
the iPhone SDK and verify that your device operating systems are up-to-date. Download
the iPhone SDK from the Apple Developers site (http://developer.apple.com/iphone),
which includes the Xcode IDE, iPhone simulator, and a suite of additional tools for
developing applications for iPhone and iPod touch. These tools will help you develop
your application and allow you to run it in the simulator. From this point on in the text,
whenever we refer to building or creating applications for the iPhone, we also mean for
the iPod Touch of iPad, interchangeably. The iPod Touch and iPad are compatible with
the iPhone except that those devices lack a phone and camera.

This chapter includes a simple “Hello World” example, as well as an example of
embedding a Web Ul View, which you can use in conjunction with the techniques and
toolkits in Part 3 to include cross-platform Ul in a native application. However, the goal
of these examples is to provide a taste of native iPhone development, so as to be able
to contrast it with developing other native applications. The last part of the chapter,
“Installing the App for the Device,” details code signing and building for the device,
which will be needed whether you are writing native code from scratch or using one of
the cross-platform toolkits in Part 2.

Introducing Xcode

Xcode is Apple’s integrated development environment for developing applications for
Mac OS X and the iPhone. The preferred language in Xcode is Objective-C, which is
required for iPhone applications, but Xcode also supports a myriad of other languages
(C, C++, Fortran, Java, Objective-C++, AppleScript, Python, and Ruby). The Xcode IDE
has a modified GNU compiler and debugger for its backend.

The Xcode suite includes Interface Builder and Instruments. Interface Builder helps you
create user interfaces for your Mac and iPhone applications. Using the typical
development process, Interface Builder is essential. Instruments provides a thorough
analysis of your application’s runtime performance and memory usage, allowing you to
efficiently find memory leaks and bottlenecks to help improve the user experience.

17

CHAPTER 2: iPhone

iPhone Development Standard Practices

When building iPhone applications, you will need to be mindful of a few standard design
patterns. First, the Model-View-Controller (MVC) pattern is a way to separate your code
into three functionally independent areas. The model is usually defined by an Objective-
C class that subclasses NSObject. The controller is referred to as a view controller and
can either subclass UlViewController or UlTableViewController. The view portion of your
application is usually defined by an Interface Builder file called a nib. This is the
preferred method of creating your views since Interface Builder handles the memory
management of those views for you. The alternative is to define your view
programmatically, which is considered a non-standard practice.

Model View

Sends user FAY
AN
Sends updates actions

Sends updates

Sends updates

Controller

Figure 2-1. MVC Design Pattern

The delegation design patter is another important design pattern to be aware of. The
delegation pattern allows a complex object to hand off some of its functionality to a
helper object. On the outside, it would appear that you are calling the complex object to
handle the task, but in reality it would use a helper object to outsource some of the
complexity. We see this pattern a lot throughout iPhone development. Every time you
find yourself declaring the delegate of an object (which happens a lot in an
asynchronous environment), this pattern is being implemented.

Building a Simple iPhone app

As an introduction to building iPhone applications, you will build a simple “HelloiPhone”
application, designed to introduce you to writing Objective-C code in Xcode and using
Interface Builder to create the user interface of your application.

The goal of this application is to have the user enter his or her name into a text box,
press a button, and have the iPhone greet them by name.

CHAPTER 2: iPhone

Create the Xcode Project

Start by opening Xcode and creating a new project (select New Project under the File
menu or [Command+Shift+N] on the keyboard). Then select iPhone OS Application in
the left-hand panel and View-based Application from the templates in the panel on the
right side. Select Choose then name your new project “HelloiPhone” and save.

At this point, Xcode should present you with a project window (Figure 2-2), showing a
list of files that were generated for you.

000 [HelloiPhone o &=
| Simulator - 3.1 | Debug >l | %> & e o (Q.~ string Matching)
Overview Action Build and Go Tasxs Info Search
Groups & Files {1 | [|File Name A | < |Code | & | A |
v [HelloiPhone B = CoreGraphics.framework
»| | Classes | A% Foundation.framework
»| | Other Sources E| HelloiPhone-Info.plist
»| | Resources | ;g HelloiPhone.app
» | | Frameworks ‘ Eﬂ HelloiPhone_Prefix.pch
»| | Products |l| HelloiPhoneAppDelegate.h
bTarge!s [J HelloiPhoneAppDelegate.m v | |
» </ Executables ‘ |:_| HelloiPhoneViewController.h rql
» /B Errors and Warnings | D HelloiPhoneViewController.m v ¥ |y |
v (4 Find Results ‘ : . - MLIAEEELTE
» [%) Bookmarks — : e
s No Editor
W Project Symbols W
» [Implementation Files
» [NIB Files
“Z
Figure 2-2. XCode Project Window
Table 2-1. File types
File Extension Description
.m Objective-C implementation files.
.h Objective-C header files.
.plist Property lists file that can contain configuration options or user settings for your
application.
.app The distributable application that you will be building.
xib Views from Interface Builder are saved as .nib files. A .xib file is the xml version

of a.nib file. These files are still called “nibs” even though they have a different
file extension.

CHAPTER 2: iPhone

Create the Interface

In this example, you will start with the interface of the application to set up the overall
layout. The next step will be to create the corresponding code to interact with the views,
and finally hook the code up to the views with Interface Builder.

Double-click on HelloiPhoneViewController.xib to open the view of your application in
Interface Builder. Interface Builder will launch with four open windows (see Figure 2-3).
One of the windows presented will be the view for the application. Initially this is just a
gray box, which represents the application screen to which you can add Ul components.

IMerrace BUIMEr N LU FOMC LAYOUL 100IS WINGOW Aeip

— ES —— —_— — —_—
GO ewiteniy . —
I] e

- ‘ o ‘ f ‘ 0 faad | Objects | Media '
T Class identity [
] ——
¥ Class Actions
[Action ongermm— |

Wiew Contraller - A centroller that supparts the fundamental view-management model in
1Phone 05,

[+]=

Tab Bar Controfler - 4 cantroller that nanages a set of view cantrollers that represert
tnb bar iems.

T Class Gullats
e 6 Navigatien Cantroller - A contralier that manages navidation through a hierarchy of
vidws.
Q_/

ki ‘ :l Tabic View Contralier - A controller that manages a table view.
¥ Acmssibility =
Accessiblity 1 Enabled mage Picker Contratier - A contrall4r that manages views for choosirg and taking
I mietures.
Label Default
Hint Default { ﬁ Object - Provides a temptatc for abjects and controllers net directly available in interface |
Builder. 1
Tras [plavs sound [} unk | (o " e - -
| = A . (] . i — = i
Qimage O save Tt lI | vewdds Search Fizld =
] gutton) searcnFielo || | F— - View Controller
| i uNewCantraller
¥ User Interaction Enabled
[updares Frequenty Provides view-management fanctionality for toolbars, navigation bars, and apglication views. The
3 summary Bemen | UnvigwControllzr class al50 SUPPOMs Modal views 2nd rotating views when device oricatation
L] File's Owner First Responder Vigw changes.
[eyboard Key
[selected
F Inkaaca Buildar lersicy
T e —=
e < — =
= | o
Qe in 6 | = @rtaiomsi et p—— =

Figure 2-3. Interface Builder showing four main windows

If the Library window is not visible (on the right side of Figure 2-3), then choose Library
from the Tools menu (or press Command-Shift-L) to bring up the Library window. In the
bottom left corner of the window, there is a Settings drop-down menu that lets you decide
how you would like to view the library. It is helpful at first to select the View Icons and
Descriptions setting so that you can see what all the possible view objects do.

CHAPTER 2: iPhone

8.0.0 Library
E Classes Media
» | il Library

rotating wheels to allow users to select
dates and times.
Segmented Control - Displays

|1 2 multiple segments, each of which
= functions as a discrete button.

Label - A variably sized amount of
Label static text.

~—_ Round Rect Button - Intercepts touch m
| events and sends an action message to
a target object when it's tapped.

Text Field - Displays editable text and
Text sends an action message to a target
object when Return is tapped.

Switch - Displays an element showing
! the boolean state of a value. Allows

tapping the control to toggle the value.

.

Slider - Displays a continuous range of v

Round Rect Button
UlButton

Implements a button that intercepts touch events
and sends an action message to a target object
when it's tapped. You can set the title, image,
and other appearance properties of a button. In
addition, you can specify a different appearance
for each button state.

¥-) (QFilter

,
VA

Figure 2-4. Interface Builder Library Window

Add Ul Elements

Select Round Rect Button and drag and drop into our view window. (You can scroll to
find it in the Library or type into the Search box at the bottom of the window to filter the
list.) You also are going to need a Label, which will be used to display the text greeting,
and a Text Field in which the user will enter his or her name. Search for those and also
drag them to the view.

With all the Ul components for the application placed in the view, you may align them
properly on the screen.

CHAPTER 2: iPhone

pApiew,

Bl

Label

Z.

Figure 2-5. Interface Builder View with Ul Elements

Align the Text Greeting

The Label element will display the greeting. In this example, it will display centered at the
top of the screen. Start by taking the label and dragging it up to the top left corner of the
view until it aligns with the blue guidelines provided by Interface Builder. Size the label
horizontally, aligning once again with the provided guidelines.

To center the text, select the label and open the Attributes Inspector (under the Tools
menu or Command+1 on the keyboard), then find the layout section. This section will
look like a text-alignment section in a word processor, with a left-align, center-align, and
right-align images. You will be selecting the center text alignment layout option or as an
alternative you can go to the Layout menu, select “alignment, then choose Center Alignment
from the drop-down.

Because you will be generating this text dynamically, the initial text should be the empty
string. Double-click on the label, delete the text, and hit Enter to save.

Button and Text Field Layout

You will do something very similar with the button and text field layout. Select the text
field and position it under the label on the left side, aligning with the blue guidelines.
Then, drag the right edge horizontally until it lines up with the guidelines on the right
side. Align the round rectangle button in a similar manner.

CHAPTER 2: iPhone

Next, add text to the button by double-clicking on it, then change the title to be “Hello
iPhone!”. You should also add text to the text field to give the user an idea of the kind of
information you want them to insert. This user interface convention is supported directly
in Interface Builder, which is referred to as a Placeholder attribute. This will display gray
text in the field to provide in-context help text. Select the textbox and open the Attribute
Inspector (Command-1), if not already open. Find the placeholder attribute and type
“Name”. This will give the text field gray initial text that will indicate to the user that a
name should be placed there. When the user selects the text field, focusing it, the
placeholder text will be cleared.

Now you should have something very similar to Figure 2-6.

00 - Vew

Hello iPhone!

Y
Figure 2-6. Interface Builder View with Ul Layout and Text

Make sure to save your file in Interface Builder and quit the program for now.

Writing the Controller Code

Now that you have created the application views, you will write the code to interact with
it. Return to Xcode and open HelloiPhoneViewController.h. This file contains the outline
for the view controller.

You will create code actions that correspond to the view. You do this with special
keywords called IBAction and IBOutlet. These keywords establish a relationship
between objects in the view and the code. You need to declare an IBOutlet for each Ul
component in your view that you will interact with programmatically. As you can see in
Listing 2-1, you need to declare a UlLabel and UlTextField IBOutlets when you define
their corresponding variables. IBActions are callback methods defined in your view

CHAPTER 2: iPhone

controller; these are called by actions that happen in your view. You can assign these
actions in Interface Builder or programmatically in your view controller.

The @property keyword will auto-generate accessors (that is, getters and setters). These
correspond with an @synthesize statement that you will add in the implementation file.
Declaring the Ul components as properties allows you to easily modify and access them
without writing additional code.

Lastly, the header file declares one IBAction sayHelloToUser, which performs the
primary functionality of this simple application and later you will set to trigger when the
user clicks the button.

Edit HelloiPhoneViewController.h to match Listing 2-1.
Listing 2-1. HelloiPhoneViewController.h

#import <UIKit/UIKit.h>

@interface HelloiPhoneViewController : UIViewController {
IBOutlet UILabel *greetinglabel;
IBOutlet UITextField *userNameField;

@property (nonatomic, retain) UILabel *greetinglabel;
@property (nonatomic, retain) UITextField *userNameField;

-(IBAction) sayHelloToUser: (id) sender;
@end
Next, you will edit HelloiPhoneViewController.m to implement the functionality.

First, add an @synthesize statement directly underneath the HelloiPhoneViewController
implementation declaration. This will auto-generate accessors for the greetinglLabel and
userNameField properties.

Listing 2-2. HelloiPhoneViewController.m property accessors

@implementation HelloiPhoneViewController
@synthesize greetinglabel, userNameField;

Next, you will add the implementation of the method sayHelloToUser. This method will
create a formatted string concatenating “Hello” with the name that the user entered in
the textbox and then displaying that string in the greetingLabel.

Below the @implementation declaration, you need to add the method in Listing 2-3.
Listing 2-3. sayHelloToUser implmentation

- (void) sayHelloToUser:(id)sender {
greetinglabel.text = [NSString stringWithFormat:@"Hello %@", userNameField.text];;
[userNameField resignFirstResponder];

}

The sayHelloToUser method gets the user’s name from the text field and creates a
helloMessage string. Because the greetingLabel is an IBOutlet, you can simply assign
the string to the label to display it on the screen. Note that setting the userNameField

CHAPTER 2: iPhone

text to null will clear it. Finally, calling resignFirstResponder will release the keyboard
from the text field and hide the soft keyboard.

Lastly, you need to implement a dealloc method to release the memory for the label and
text field elements. Changing the dealloc method of the implementation file to match
listing 2—-4.

Listing 2-4. sayHelloToUser implementation

- (void)dealloc {
[greetinglabel release];
[userNameField release];

[super dealloc];

Connect the Code to the Views

In the final step of development for this application, you will connect the controller code
to the views. Double-click HelloiPhoneViewController.xib to open in Interface Builder.

Interface Builder will display the IBOutlets and IBActions that you declared in the
controller code, allowing you to connect them to the user interface elements with direct
manipulation.

In the HelloiPhoneViewController.xib window, select the File’s Owner cube and open
the Connections Inspector under the Tools menu (Command-2). Under Outlets, you should
see greetinglLabel and userNameField. You need to drag their adjacent dots to the
corresponding view objects to connect the Ul elements to the code.

¥ Outlets

greetinglabel
searchDisplayController
userNameField

O
O
O
(view (% View [C}
O
O

¥V Received Actions
sayHelloToUser:

¥ Referencing Outlets
New Referencing Outlet

Figure 2-7. Interface Builder Connections Inspector

You should also see Received Actions, which lists the method sayHelloToUser. By
dragging its dot to the Hello iPhone! button, you will set the user action to trigger the
method. When you complete the drag action, a menu will appear over the button. Select
Touch Up Inside. This will send an event when the button is released triggering the
sayHelloToUser method.

CHAPTER 2: iPhone

Finally, drag the dot next to New Referencing Outlet and connect it to the text field. A
menu option will appear; select delegate (which is the only option). This will allow the
code to read from the text field.

That’s it. All of your code is connected to your views. Now, you should click Build and
Go (or press Command-R) in XCode to run your application in the simulator.

Skinning an iPhone Web View

This example will show you how to use a Web View to load a standard web page into a
view inside a native iPhone application.

Start by opening Xcode and create a new project (select New Project from the File menu
or [Command+Shift+N] on the keyboard). Then select iPhone OS Application in the left
panel and View-based Application from the templates in the panel on the right side.
Select Choose then name your new project “iWebDemo”, and save. This will present
you with the basic scaffold of an Xcode iPhone Project.

Your next step will be to add the UIWebView to your application through Interface
Builder. Double-click on the file called iWebDemoViewController.xib in Xcode to launch
Interface Builder. Verify the Library window is open (if not, select Library under the Tools
menu [or Command+Shift+L] on the keyboard) and search for “Web View” either by
scrolling the menu or by entering it as a search query in the Library filter text field.

When you find it, drag and drop the Web View onto your View window, allowing
Interface Builder to help you guide it to the center. Currently, Interface Builder should
resemble Figure 2-8.

Save Interface Builder and exit. You will come back later to activate the outlet to this view.

Back in Xcode, it’s time to add the code side implementation that will allow us to
manipulate the Web View. Open iWebkitDemoViewController.h to start adding in the
declarations for your view object; this file will be very basic.

Start by adding /BOutlet UIWebView *webView; between the @interface braces; an
IBOutlet will allow the code to interact with the view. The view will also need accessors
to allow you to manipulate its web address. To auto-generate accessors for the view,
declare @property(nonatomic, retain) UlWebView *webView; anywhere below the
@interface declaration but before the @end declaration. There is another piece to this;
the @synthesize keyword will complete the circuit for auto-generation in the
implementation file. At this point, your code should like Listing 2-5.

CHAPTER 2: iPhone

1000 « View -

UlWebView

Figure 2-8. Interface Builder UlWebView

Listing 2-5. iWebkitDemoViewController.h

#import <UIKit/UIKit.h>
@interface iWebkitDemoViewController : UIViewController {
IBOutlet UIWebView *webView;

@property (nonatomic, retain) UIWebView *webView;
@end

You just created the code representation of the Web View. This allows you to interact
with the Web View and use getters and setters on it to manipulate it.

Save this file and turn to iWebkitDemoViewController.m. It’s time to add the
implementation that will turn your view into a semi-functional web browser.

The first thing you need to do in this file is finish the circuit that will auto-generate the
accessors for your view. Directly under the @implementation iWebkitViewController add
@synthesize webView; to finalize the auto-generation process, as in Listing 2-6. Now
that we can alter the view, it’s time to write the code to enable the view for web
browsing.

Listing 2-6. iWebkitDemoViewController.m

@implementation iWebkitDemoViewController
@synthesize webView;

Toward the middle of the implementation file, uncomment the function -
(void)viewDidLoad. This function gets called after the view loads successfully, so that
makes it a perfect place to put the code to load a web page.

CHAPTER 2: iPhone

First, create a string containing the URL (such as http://www.google.com). Next, you will
take that string and create an NSURL object, and embed that into an NSURLRequest.
Finally, you will call the Web View to load the request object. This is shown in the code
Listing 2-7.

Listing 2-7. iWebkitDemoViewController.m

// Implement viewDidlLoad to do additional setup after loading the view, typically«
from a nib.
- (void)viewDidlLoad {

[super viewDidlLoad];

// Create the URL string of the address

NSString *urlAddress = @"http://www.google.com";

// Bind that address to an NSURL object

NSURL *url = [NSURL URLWithString:urlAddress];

// Embed the NSURL into the request object
NSURLRequest *requestObj = [NSURLRequest requestWithURL:url];

// Tell the Web View to load the request
[webView loadRequest:requestObj];

}

Next, finish hooking up the view in Interface Builder. (Double-click on
iWebkitDemoViewController.xib in Xcode to launch it in Interface Builder.) You should,
once again, have four windows in front of you. Start by looking for the window that
represents your nib file, entitled iWebkitDemoViewController.xib. In the window, you
should see three objects: File’s Owner, First Responder, and View. Click on the File’s
Owner object and bring up the connection inspector by typing Command+1 on your
keyboard. It should look like Figure 2-9.

™ O | Web Demo View Controller Connections

© O & o
¥ Outlets
searchDisplayController
(view (% View
webView

¥ Referencing Outlets
New Referencing Outlet

O 10O@O

Figure 2-9. Interface Builder Connection Inspector

You should see your webView object listed under Outlets. You need to click and drag
the objects circle to your view window. The Web View will illuminate when you hover
over it, and that’s when you will release your mouse button. The Attributes Inspector
should now show your webView object connected to your Web View. That’s it for your
view in Interface Builder; you can save and exit.

It’s time to run the iPhone simulator to check the status of your application. Verify you
can load Google.com into the view; it should look like Figure 2—-10.

CHAPTER 2: iPhone

-ail Carrier = 4:10 PM I

Web Images Local News more v @

Google

My Location: Off - Tum On

» Get Google on your iPhone.

Sign in
iGoogle Settings Help

View Google in: Mobile | Classic

©2010 - Privacy

Figure 2-10. iPhone Web View Browser — Google.com

Installing the App on the Device

Unlike running the application in the simulator, installing it on the phone requires signing
credentials as is typical for mobile development. Before you can even think about
building your application for the device, you need to go to developer.apple.com/ and
enroll in the iPhone developer program. This will cost you $99 for the Standard program
or $299 for Enterprise. The largest benefit to joining the program is the ability to
distribute applications. With the Standard or Enterprise programs, you may provision an
application for ad-hoc distribution, which is the way you will typically distribute your
application for testing or early demonstration. In the Standard program, you are eligible
to submit your app to the App Store. In the Enterprise program, you may provision your
application for in-house distribution.

Once you have enrolled in the program, you will need to create a development
provisioning profile and create a certificate. This can be as easy as using the
Development Provisioning Assistant on the home page of the portal, or you can create
the certificates and profiles manually.

Using the Development Provisioning Assistant

Use “development provisiong” in order to install an application on your device directly
from Xcode. This will be useful for your own testing, but when you are ready to distribute
to more devices for other people to test, you will need to use “ad-hoc provisioning,”
described shortly. The Apple iPhone Dev Center has an easy-to-use wizard that takes

CHAPTER 2: iPhone

you through the many steps required to set up and install the provisiong profile. Choose
Launch Assistant on the home screen of the iPhone Developer Program Portal. The
assitant will ask you a few questions and guide you through the installation process. Its
docuemntation is quite good, so we won’t elaborate here.

Manually Setting Up iPhone Provisioning

There are many steps when creating your provisioning profile manually. The first thing to
understand is the difference on the site between development and distribution. You will
need a development provisioning profile to build applications directly to your device
instead of the simulator. This does not give you the abilty to share that application with
anyone else, for a Distribution provisioning profile is required. You will need certificates
and profiles for each type of provisioning. You will also need to assosiate your profiles
with device Unique Device Identifiers (UDIDs). Because the process is identical for
development and distribution provisioning creation, we will walk you through
development and assume you can explore distribution on your own.

The first step in creating your Provisioning profile is creating your certificates. In the
iPhone Developers program portal, click on Certificates in the left-hand side bar. You
should see an information bubble telling you that you currently do not have any valid
certificates like in figure 2-12. Click on the Request Certificate button to get started.
You will have to create the certificate using Keychain Access on the Mac; the
instructions should be listed on the page.

After you upload the Signing Request, a certificate will be generated. Once it has been
“approved,” you need to download it to your computer. This To do this, click the
Download button next to the certificate. When its finished downloading, click on the file
to launch Keychain Access. This will launch the certificate and install it to the keychain.

The last step on the Certificates page is to get the Apple WWDR certificate. There is a
link to download it directly under the certificate you just created. This is the Apple
Worldwide Developers Relation (WWDR) certificate, you need to download it and add it
to your keychain. All you need to do is click on the WWDR certificate after it has
downloaded, to launch Keychain Access and install it to your keychain.

After you have succefully installed your certificates, you are ready to register devices to
your provisioning profile. Select Devices on the left side of the program portal. Under
the Manage tab, there will be an Add Devices button. Click this to add a new device to
your profile.

CHAPTER 2: iPhone

Finding Your Device ID

Your device is identified by a Unique Device IdentifierUDID. To add a device to a profile,
you will need the device id, which can be found in two places: iTunes and Xcode. Verify
that the device is connected to the computer and go to iTunes. Select the device from
the Devices section on the left. This should reveal the summary page with some device
specific information at the top (name, capacity, and so forth). If you click on the serial
number, the device identifier will be revealed (see Figure 2-11). The other way to find
your device identifier is to open Xcode and go to the Organizer window. You can get
there through the top menu bar [Window » Organizer] or by using the keyboard
(Shift+Command+0). Click on your device in the left-hand panel and it should reveal the
summary page with the device ID. There is also a handy free application, AdHoc, that
you can download from the App store that will automatically compose an e-mail with the
UDID of the device.

iPhone

Name: 2p0EDD
Capacity: 14.28 GB
Software Version: 3.1.2
Identifier (UDID):
Phone Number:

Figure 2-11. iTunes Device UDID

Regardless of the way you choose to retrieve your device UDID, copy and paste it into
the Device ID text field on the Developer Portals Device registration page, and give your
device a name. This can be a common name, such as “Joe,” or a device description,
such as “Joe’s work phone”.

In the Program Portal, click on App IDs on the left side. App IDs are a unique
combination of charactures used to differentiate applications. Click on the New App ID
button to begin. It will then ask you for a general description or name for your App ID;
this can be as simple as “MyiPhonelD” or “ProjectID.” Try to keep the name specific to
your application because this ID will be used throughout the portal to identify it. Next,
you can choose to generate a new bundle seed ID or use an exisiting one if this
application is part of a suite. Finally, you need to pick a Bundle Identifier for this
application. To have this App ID cover any application that you are currently developing,
simply put an astrisk (*) in this text field. This will allow any application to build,
regardless of its name. To create a more specific App ID, the convention used is
reversed domain-style strings, such as the example given in the portal
“com.domainname.appname.”

CHAPTER 2: iPhone

Create the Provisioning Profile

It’s time to create your first provisioning profile. In the Program Portal, click on
Provisioning. This area is where you will manage all of your development and
distribution profiles. To start, click New Profile. Give your profile a name, such as
“iPhoneAppDevPP” or “iPhoneAppDistPP.” Check the certificate you created earlier,
select the App ID you want to register with this profile, and finally select the devices you
want to asociate with it. This will create your provisioning profile; all that’s left is to
download it and install it in Xcode.

Install the Provisioning Profile

Launch Xcode and go to the Organizer window located in the top menu bar at Window »
Organizer or launch with the keyboard (Shift+Command+0). Make sure the device is
connected and select it in the devices drop-down, located on the left side. Find the
provisioning profile you downloaded and drag and drop the file into the Provisioning
section of the window. Your organizer window should look like Figure 2-12. It should
also have a green-colored dot (apposed to an amber-colored dot) next to your device
name on the left. The green dot signifies your device is set up correctly.

N B e G

Burd Clean Run Actlon

PROJECTS & SOURCES
' b summary [S e

¥ DEVICES
[TEOwce hara) @ iPhone
» IPHONE DEVELOPMENT

urganizer

Name: E=Rirmn
Capacity: 15.33GB
Serial Number:
Identifier:
Software Version: | =02 (7nin Hagtors i9hone

Provisioning

| HelloiPhoueBevPl

Figure 2-12. Xcode Organizer Window

Install and Run on the Device

Now that you have provisioning profiles set up on the device, you need to configure
Xcode to use the proper profiles when you build your application. To do this, you need
to modify the Project and Target Information windows.

Start by double-clicking the project file located under Groups & Files in Xcode. This file
will be called HelloiPhone. This will launch the Project “HelloiPhone” Info window. Click
on the Build tab and locate the section called Code Signing. Under Code Signing
Identity, there should be an Any iPhone OS Device option. Clicking on the box to the

CHAPTER 2: iPhone

right of this should provide you with a drop-down menu. Select the iPhone Developer
that you created earlier in the iPhone Developers Portal. You need to do the exact same
thing for the Target Info page now. Close the window and this time find the Targets
drop-down under Groups & Files in Xcode. Double-clicking on the application
“HelloiPhone” should reveal the Target “HelloiPhone” Info window. Once again, go to
the Build tab and locate Code Signing. Drop-down Code Signing Identity and select
the correct iPhone developer for the Any iPhone OS Device option. Close the window.

There is one final option you may have configured and that is the name of the
application. If you decided to not use the asterisk (*) in the App ID section and gave your
app a formal name, then you will need to edit the info.plist file. You can locate this file
under resources in the HelloiPhone application drop-down in Groups & Files. Look for
the Bundle identifier and name it exactly as you did in the portal. Save the info.plist file
and you should be good to go.

In the top left-hand corner of Xcode, there is a drop-down that lets you decide whether
you are building for the simulator or device. You want to have the active SDK set to the
latest version of the device and the active configuration set to debug (unless you are
building for distribution). Select Build and Go and the application will be compiled and
installed to the device.

One last note: you can manage the applications that you are building from the Organizer
window in Xcode. You may want to delete the application currently on the device before
rebuilding it.

Chapter

Android

The Android operating system is released under the open source Apache License and is
built on Linux kernel version 2.6. Android is a project of the Open Handset Alliance (OHA).
Founded by Google, OHA is an association that includes 65 hardware/software
companies and operators, such as KDDI, NTT DoCoMo, Sprint Nextel, Telefénica, Dell,
HTC, Intel, Motorola, Qualcomm, Texas Instruments, Samsung, LG, T-Mobile, and Nvidia.

The first Android phone, T-Mobile G1 (also marketed as HTC Dream), was released in
October 2008, followed by the release of 12 additional android phones in 2009. There
are now dozens of Android mobile devices, including both phones and tablets. In
addition to the natural fragmentation of screen size, capabilities, and OS version,
developers saw incompatibilities between devices that require specific workarounds for
both native applications and browser-based applications.

The Android mobile operating system has a rich set of features. 2D and 3D graphics are
supported, based on OpenGL ES 2.0 specifications, and there is good media support
for common audio, video, and image formats. Animated transitions and high-resolution,
colorful graphics are integrated in the operating system and commonly seen in
applications. The Android operating system supports multi-touch input (although it is not
supported in every Android device). The web browser is based on the powerful WebKit
engine and includes Chrome’s V8 JavaScript runtime.

Multitasking of applications is supported. In Android, multitasking is managed by
structuring applications as “activities.” Activities have a distinct visual presentation and
should be single-purpose, such as taking a photo, searching and presenting results, or
editing a contact. Activities may be accessed by other applications as well. A simple
application may implement a single activity, but more complex applications may be
implemented as a number of activities cohesively presented as a single application.

Android lacks authoritative human interface guidelines, except for fairly narrow icon,
widget, and menu design guidelines and broad advice about structuring activities." This
lack of standards can make it more challenging to design and develop for Android;

" http://developer.android.com/guide/practices/ui_guidelines/index.html

35

CHAPTER 3: Android

however, Android does include a set of common user interface components that are
comparable to those available on the iPhone.

Android Development

To develop for the Android, you can use Windows, Linux, or Mac. Android applications
are typically written in Java, but there is no Java Virtual Machine on the platform;
instead, Java classes are recompiled in to Dalvik bytecode and run on a Dalvik virtual
machine. Dalvik was specially designed for Android to reduce battery consumption and
work well with the limited memory and CPU-power of a mobile phone. (Note that
Android does not support J2ME.) Since the release of the Android NDK (Native
Development Kit) in June 2009, developers may also create native libraries in C and C++
to reuse existing code or gain performance.

The most commonly used and recommended editor is Eclipse with the Android
Development Tools plug-in. The plug-in provides a full-featured development
environment that is integrated with the emulator. It provides debugging capabilities and
lets you easily install multiple versions of the Android platform. As you will see in this
chapter, the plug-in makes it easy to get a simple app up and running. If you don’t want
to use Eclipse, there are command-line tools to create a skeleton app, emulator,
debugger, and bridge to an actual device.

In this chapter, you will learn how to set up your Eclipse development environment,
create a simple “Hello World” application, launch the application in the emulator, and
then build and install the application on an Android device. We also review Android
distribution options are also reviewed at the end of this chapter.

Setting Up The Development Environment With Eclipse

You will need to install/set up the following components for your development
environment to follow the tutorials in this chapter. Note that Android does not require
that you use Eclipse, but it is an easy way to get started with native Android
development.

B The Eclipse IDE. Any of the package downloads for the IDE should
work fine. http://www.eclipse.org/downloads/

B Android Development Tools (ADT) Eclipse plug-in.
http://developer.android.com/sdk/eclipse-
adt.html#installing

B The Android SDK.

Install the Android SDK by following the instructions in the Android
developer site:
http://developer.android.com/sdk/installing.html.

The tutorial in this chapter assumes the tools are available on your
system PATH:

CHAPTER 3: Android

B On Mac or Linux (in ~/.profile or ~/.bashrc): export
PATH=${PATH}:<your_sdk_dir » /tools

B On Windows, add the tools path to your environment variables.

B One or more versions of the Android platform (to simulate different
devices). Unless you know that you’ll be using new APIs introduced in
the latest SDK, you should select a target with the lowest platform
version possible. For compatibility with all devices, we recommend
SDK 1.5, API 3.

1. On Mac and Linux, if you have set up your $PATH as described
previously, you can just type on the command line: android (note: if you
use the command-line tool, you will need to restart Eclipse to see the
installed targets).

On Windows, double-click SDK Setup.exe at the root of the SDK directory.
Or in Eclipse, select Window » Android SDK and AVD Manager.
2. Under Settings, select “Force https://...” (Figure 3-1).
@ Force https://... sources to be fetched using http://...
Figure 3-1. Force https

3. Then, under Available packages, select the SDK 1.5, API 3 and Google
APIs for Android API 3 (Figure 3-2).

OO Android SDK and AVD Manager d
Virtual Devices Sites, Packages and Archives
Installed Packages O VOhttps://dl-ssl.google.comlandroid/repository/reposi(ory.xml

Available Packages
Settings
About

> FT'W Documentation for Android SDK, API 8, revision 1

» i SDK Platform Android 2.2, API 8, revision 1

> &Samples for SDK API 8, revision 1

» & Coogle APIs by Google Inc., Android API 8, revision 1
» ' SDK Platform Android 2.1, API 7, revision 2

» & Samples for SDK APl 7, revision 1

» & Google APIs by Google Inc., Android API 7, revision 1
» & SDK Platform Android 1.6, API 4, revision 3

» & Google APIs by Google Inc., Android API 4, revision 2
» % SDK Platform Android 1.5, APl 3, revision 4

» & Google APIs by Google Inc., Android API 3, revision 3

RRCOOCOOO0O0OO

& »)<i»>

Description

Android SDK Platform 1.5_r3
Revision 4

Add Add-on Site... Delete Add-on Site...) (# Displ (Refresh) (Install Selected)

7

Figure 3-2. Android SDK and AVD Manager: selecting packages to install

4. Create an Android Virtual Device (AVD), as shown in Figure 3-3.

CHAPTER 3: Android

List of existing Android Virtual Devices located at /Users/sarah/.android/avd
Installed Packages

Available Packages
Settings
About

[AVD Name Target Name Platform APl Level
- No AVD available -- --

~ A valid Android Virtual Device. 13 A repairable Android Virtual Device.
X An Android Virtual Device that failed to load. Click 'Details’ to see the error.

Delete...

Repair...

Details...

Start...

N

Figure 3-3. Android SDK and AVD Manager: creating a virtual device

5. Click New and fill in your desired values for virtual device properties

(Figure 3-4).

Name: avd3
Target: | Android 1.5 - API Level 3 3]
SD Card:

@ size: 9 | [(mis_ %)

) File: (Browse...)
Skin:

@ Built-in: | Default (HVGA))

(O Resolution: x
Hardware:

Property Value

Delete
] Override the existing AVD with the same name
(cancel) (createavp)

Figure 3-4. Virtual device details

CHAPTER 3: Android

Building a Simple Android Application

We will build a simple Hello World application and test it in the Android emulator. While
there is a native development kit (NDK) that allows you to build code in C or C++, it is
only for creating high-performance libraries. Android applications are always written in
Java. This short tutorial will introduce you to building an Android application in Java
using the Eclipse IDE.

The goal of this application is to have the user enter his or her name into a text box,
press a button, and have the application greet them by name.

1. Select File » New » Project.

2. Select Android » Android Project, and click Next (Figure 3-5).

800 New Android Project

New Android Project
Creates a new Android Project resource. ﬁ

p- -
T

Project name: HelloAndroid

Contents
@ Create new project in workspace
() Create project from existing source

™ Use default location

Location: /Users/sarah/src/android_example/HelloAndroid Sl

() Create project from existing sample

Samples: ApiDemos

Build Target

Target Name Vendor Platform
¥ Android 1.5 Android Open Source Project Ls
[Google APIs Google Inc. L5
[— =}
Standard Android platform 1.5

Aww§
-

Properties

Application name:

Package name: hello.world

™ Create Activity: | Hello|)
Min SDK Version:

@ (<Back) (Nex>) (cancel) (- Finishe)

/4

Figure 3-5. New Android project

You will need to provide a package name for your app. This can be something like
hello.world or whatever you want it to be.

Make sure the box labeled Create Activity is checked and give your activity a
name such as Hello. An activity is a Ul class that allows you to display things on
the screen and get user input. We will modify this class to create a simple Ul.

CHAPTER 3: Android

If the box labeled Min SDK Version is empty, just click on the lowest SDK version
you want to support in the list labeled Build Target. This will automatically fill in
the correct number for you. This number will be important when you publish your
app because it will enable devices to determine if they are able to run your
application.

3. Click Finish.

Once you have completed the steps to create your application, take a look at the
resulting structure in the Eclipse Package Explorer. It should look like Figure 3-6.
Navigate into the src directory and find your activity class Hello.java. Double-click
on it to open the file in the editor.

m . X] Hierarchy'] = ml

Bl ~

=

v bg HelloAndroid
¥ (& src
v £ hello.world
» [J] Hello java
v E?}gen [Generated Java Files)
¥ {3 hello.world
» [J] Rjava
b =) Android 1.5
&= assets
v L}‘b res
¥ (= drawable
% icon.png
¥ = layout
|X] main.xml
¥ (= values
\X| strings.xml
|21 AndroidManifest.xml
default.properties

Figure 3-6. Eclipse Package Explorer

4. This class contains a method called “onCreate,” which calls the method
“setContentView” passing in “R.layout.main.” This loads the layout that
is defined in res/layout/main.xml (Figure 3-7).

CHAPTER 3: Android

package hello.world;
@import android.app.Activity;[]

public class Hello extends Activity {
/** (Called when the activity is first created. */
S @0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Figure 3-7. Hello.java generated source code

5. Double-click on main.xml to open it up in the Layout Editor. (You may
need to click on the Layout tab in the lower left corner of the main.xml/
panel to see the Layout Editor, as illustrated in Figure 3-8.) The Layout
Editor is a tool provided by the ADT plug-in for laying out Ul widgets in
your application. Notice that the main layout contains only a text widget
that displays the text “Hello World, Hello!”.

[J] Hello.java Iltg main.xml 53\ = [
Editing config: default {Expi;dew‘ lOutline‘
Devices | ADPL & | Config | Landscape, ... % Locale . &) [Theme +)| create...
R -
& Layours -, [Hello World, Hello!
(A) AbsoluteLayout
(D) DialerFilter
(E) ExpandablelList...
(F) FrameLayout

(® SurfaceView
@ View

@ Viewstub
(@ AnalogClock

@ AutoComplete...
7 v

Lﬂt, main.xml|
Figure 3-8. ADT Layout Editor
6. At this point, you can run your application. Go to the Run menu and

click Run. Select Android Application from the list and click OK. This
will launch the emulator and install your application.

CHAPTER 3: Android

NOTE: If your project contains errors such as: “The project cannot be built until build path errors
are resolved.”

Clean the project by choosing: Project » Clean
Then click Run.
7. The emulator takes a while to start up, and it may start up in a locked
state and say “Screen locked, Press Menu to unlock.” Just click the

Menu button and your application will be launched. Your running
application should look like the emulator shown in Figure 3-9.

Hello World, Hello!

Figure 3-9. Application running in Emulator

8. Now that we have a simple application up and running, let’s make it do
something a little more interesting. We will add a text box in which the
user enters his or her name, and a button that will prompt the Android
device to say hello to the user. In the Eclipse editor, open up
res/layout/main.xml in the Layout Editor. Remove the “Hello World” text
from the screen by right-clicking on it and selecting Remove from the
menu (and confirm when prompted by a pop-up message box).

9. Then add an input text field. Scroll through the Views menu (shown in
Figure 3-10) to get to the EditText item. Click and drag EditText into
the black layout window. You will now see an editable text item.

CHAPTER 3: Android

Editing config: default ‘Explode Outline ?!

Devices | ADP1 ﬂConﬁg Landstape'..._3]Locale : :' Theme —:] Create...

(= Layouts “| @+id/EditText01

[A] AbsoluteLayout
(D) DialerFilter

(E] ExpandableList...
[E Framelayout

Grid\hew
| con— =
| (= Views

et e
@ DatePicker
@ DigitalClock
(E) EditText

© Gallery

(D ImageButton

| Layout| main.xml

Figure 3-10. Edit Text added in the Layout Editor

10. The text that appears in the box is the default text. You can use this to
provide guidance to the user about what they should enter in the box. In
this application, we will ask the user to input his or her name into the
box so we will make the default text say “Name.” To do this, click on the
Properties tab (shown in Figure 3-11). To make it appear, you may
need to double-click on the EditText item on the Outline tab.

,EE Outline 53 = 0| % Welcome | =] Properties £3 =0
+ =137 Bl Em~

LinearLayout Property Value

(3 EditText01 (EditText) ¥ Deprecated m
Auto text
Capitalize
Editable
Enabled
Input meth
Numeric
Password
Phone num
Single line

VEditText
Auto link
Backgroun
Buffer type
Clickable
Cursor visi
Digits

Figure 3-11. Properties panel

CHAPTER 3: Android

11.

12,

Scroll down until you see the Text property. Click on its value to edit it and
change the value to “Name.” We will also change the size of the text box to be
more appropriate for a name. Scroll until you see the width property. Click on the
row to set its value. Give it a value of “300px.”

Next, find the Button control and add one to the layout. Edit the
button’s Text property to say “Hello Android!”. When this button is
clicked, we want to grab the contents of the name input box and display
text that says hello to the user. We will need to add an empty text
control to the layout to hold this text. Find the TextView control in the
list and drag it under the button. Then delete the default text in the
TextView.

Launch your app and see how the Ul Widgets look in the layout. Your
emulator should look like Figure 3-12. You should be able to type in the
text field, but if you click the button at this point nothing will happen.

Za il @ 8:58 Pm

Hello Android!

Figure 3-12. Application running in emulator with Ul Widgets.

13.

To make the button perform an action, you need to attach an event
listener. Open up your activity class file Hello.java in the src directory.
You can attach an event listener in the onCreate method. First, get a
reference to the button using its ID, as shown in Listing 3—1.

Listing 3—1. Button reference
Button myButton = (Button) findViewById(R.id.Buttono1);

You can find the ID of your button by looking at its ID property in the properties
list. When you first add this code, Eclipse will complain that it doesn’t recognize
the type Button. Eclipse will automatically add an import statement for you to
import the Button class. Just click on the red x that appears to the left of that line
of code and select Import 'Button' (android.widget) (Figure 3-13).

CHAPTER 3: Android

public class Hello extends Activity {
/** Called when the activity is first created. */
- @0verride
a public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedlnstanceState);
setContentView(R.layout.main);
8 Button myButton = (Button) findViewById(R.id.Button@l);

}

Figure 3-13. Find button reference

Now that you have a reference to the button, you can add an event listener for the
onclick event (see Listing 3-2).

Listing 3-2. onClickListener

myButton.setOnClickListener(new OnClickListener() {
@0verride
public void onClick(View v) {
}

1);

Listing 3-2 shows the code to create an empty event listener. Any code you add inside
the onClick method will be executed when the button is clicked. Get references to the
EditText and TextView controls using the same method used to get the button object
(shown in Listing 3-3).

Listing 3-3. References to EditText and TextView from the Layout

EditText et = (EditText) findViewById(R.id.EditTexto1); TextView tv = (TextView)
findViewById(R.id.TextViewo1);

Then set the text in the TextView using the name that was entered into the EditText (with
code shown in Listing 3-4).

Listing 3-4. References to EditText and TextView from the Layout
tv.setText("Hello " + et.getText());

The onCreate method should now look like Figure 3-14.

CHAPTER 3: Android

package hello.world;

~import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class Hello extends Activity {
/** Called when the activity is first created. */
= @0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Button myButton = (Button) findViewById(R.id.Buttondl);
= myButton.setOnClickListener(new OnClickListener() {
- public void onClick(View v) {
EditText et = (EditText) findViewById(R.id.EditText@l);
TextView tv = (TextView) findViewById(R.id.TextViewdl);
tv.setText("Hello " + et.getText());

s

Figure 3-14. Hello.java

Now run your application and type your name into the box and click “Hello Android!”.
The device will display a customized hello message, including the name you typed.

Simple Application Using Android WebView

This section shows how to embed a WebView, which could allow you to add HTML Ul to
your native Android application. Create a project, as you did in the previous tutorial
(Figure 3-15).

CHAPTER 3: Android

B0 NewsArrdroid Prgject |
New Android Project
Creates a new Android Project resource. 'l lCE '

S v

Project name: SampleWebView

Contents
{#) Creare new profect in werkspace

I
O Create project from existing source

[ﬂ Use default location

ocation: JUsers/sarahjsrc/android_example/SampleWebView

Browse...
() Create project from existingisample
. e N o
Samples: | ApiDemgs &
_Build Target _ [— I
i Ia?git ﬁ_am:_ |_’emr — = - | Platform AR L |
B Android 1.5 Android Open Source Project L5 3
| Goegle APIs Coogle inc. L.5 3

| e e BN T

Standard Android platform 1.5

P_raperﬂe_s

Application name: ‘F&mp[e WebWiew

Package name: ‘_sample.webview 1
¥ Create Activity: LS_ampIeWthiew{]|

' Min SDK Version:

@ (< Back)(Next >) (Cancel)&vﬁnﬂh—*—)

Figure 3-15. Create Project.

In this example, we don’t use a layout (although you could). Instead, we simply create a
new WebView and then set the ContentView to that instance of the WebView. Then we

dynamically create some html and load it into the WebView (Figure 3-16). This is a very
simply example of a powerful concept (Figure 3-17).

CHAPTER 3: Android

package sample.webview;

—import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class SampleWebView extends Activity {
/** (Called when the activity is first created. */
= @0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
WebView webview = new WebView(this);
setContentView(webview);

String hello = "<html><body><p>This could be HTML UI</p></body></htm1>"ﬂ
webview.loadDataChello, "text/html", "utf-8");

Figure 3-16. Code for adding a WebView to SampleWebView.java

Sample WebView
This could be HTML UI

Figure 3-17. Application with WebView running in the Android simulator

For more details on different ways to use WebView in Android, see
http://developer.android.com/reference/android/webkit/WebView.html.

Building for an Android Device

It is important to test your application on a range of target devices to understand its
usability and responsiveness. For example, a G1 is significantly slower than a Nexus
One. For some applications, that may make no difference, but for most it will be
noticeable. Also, some device features (such as the accelerometer) cannot be tested in

CHAPTER 3: Android

the emulator. Building for an Android Device is easier than other mobile platforms. You
do not need to sign up for a developer program or sign your executable just to run it on

a device. This section walks you through installing your application on an Android device
with USB.

1. Set your application as “debuggable.” In the manifest.xml, under the
Application tab, set Debuggable to “true,” as shown in Figure 3-18.

% Android Manifest Application
~ Application Toggle

11 The application tag describes application-level

comp ts ¢ i in the package, as well as general application attributes.
@ Define an lication> tag in the Android i xml

~ Application Attributes
Defines the attributes specific to the application.

Name \ Browse... ‘ Allow task reparenting

Theme ‘ Browse... | Has code

EIREIRE

Label @string /app_name ‘ Browse... ‘ Persistent
Icon @drawable/icon ‘ Browse... | Enabled 53]
Description ‘ Browse... ‘ Debuggable true 3

n— \ e
Permission ¥ | Manage space activity Browse...

Process | Browse... | Allow clear user data

=

Task affinity [Browse... |

Application Nodes IE @ E] @ E] @ @ Az

(&) Hello (Activity) Add \

Remove
up

Down

ﬁanifis’(\Applica!ion\f.m nissions | Inst ntatic } idManif xml\

Figure 3-18. Set application to debuggable in manifest.

2. Set your device so it allows USB Debugging. In settings, select
Application » Development, and make sure USB Debugging is checked.

3. Set your system to detect your device. On Mac, this just works. On
Windows, you need to install a driver.. On Linux, you need to set up USB
rules.. You can verify that your device is connected by executing adb
devices from your SDK tools/ directory. If connected, you’ll see the
device name listed as a “device.”

4, Then using Eclipse, run or debug as usual. You will be presented with a
Device Chooser dialog that lists the available emulator(s) and

connected device(s). Select the device upon which you want to install
and run the application.

? Download driver: http://developer.android.com/sdk/win-usb.html.

® See detailed Linux instructions: http://developer.android.com/guide/developing/device.html.

CHAPTER 3: Android

Distribution on the Web

In order to publish your application, you will need to digitally sign it with a private key.
This is a key that you can generate using standard tools, and that you, the developer,
hold on to. Self-signed certificates are valid. You can easily generate your private key
using Keytool and Jarsigner, both of which are standard Java tools. You can also use an
existing key if you already have one.

The Eclipse ADT plug-in makes signing your application very easy, as it provides a
wizard that will walk you through creating a private key if you don’t already have one,
and using it to sign your application. There is a wizard to sign and compile your
application for release. For more information on signing your application, see the
documentation in the Android developer site.:

Once you have a signed .apk file, you can place it on a web site and if you browse to it from
the web browser on an Android device, you will be prompted to install the application.

Android Market

The Android Market is the official Google directory for applications (Figure 3—19). With
web distribution described previously, this marketplace is just one option for distributing
your application. Some Android devices come preinstalled with an application called
“Market,” which allows people to access the Android Market. You may also access
applications from the Android Market web site.

For developers who would like to submit their applications to the Market, there is a
simple sign-up process with a $25 fee that must be paid with Google checkout.

Figure 3-19. The Android Market

* Signing your app: http://developer.android.com/guide/publishing/app-signing.html.

Chapter

BlackBerry

This chapter will discuss how to build native applications for BlackBerry smartphones.
The BlackBerry is a product of Research in Motion (RIM), a public company based in
Waterloo, Ontario. Founded in 1984, RIM released its first BlackBerry smartphone in
2002. Optimized for push email and with an easy-to-use QWERTY keyboard, the
BlackBerry became the “gold standard” in smartphones for business professionals and
executives in the US and Europe. The BlackBerry has the second largest market share
of smartphones in the US. The platform has recently lost some buzz over the success of
the iPhone and Android offerings. RIM has been criticized recently for being slow to
introduce color screens and touch interfaces to its devices although this has been
addressed with the release of its most current devices. The BlackBerry has a very large
relative market share in the enterprise, particularly in the US, and must be taken into
account when developing any enterprise application.

The web browser on the BlackBerry is proprietary and quite limited. RIM is expected to
address this in the next OS release when it includes a WebKit-based browser.

BlackBerry Platform

The BlackBerry platform supports different ways of developing applications:

B BlackBerry Web Development: This is the newest offering from RIM
using the Widget SDK. BlackBerry Widgets are small, discrete,
standalone web applications that use HTML, CSS, and JavaScript.

B Java Application Development: This is the classic way in which
BlackBerry apps are developed in Java using MIDP 2.0, CLDC 1.1 and
RIM’s proprietary APls. We will cover this method shortly and it is
assumed you have some experience programming in Java. Extensive
documentation, training videos, and downloads are available at the
BlackBerry Developers Web Site: http://na.blackberry.com
/eng/developers/. The tools to develop for BlackBerry are free.
Although the BlackBerry tools are based on Java, only the Windows
32-bit operating system is really supported for development. The

51

CHAPTER 4: BlackBerry

learning curve to develop native BlackBerry applications in Java is
relatively steep compared to other mobile platforms.

This chapter focuses on Java Application Development. See Chapter 14 for more detail
on developing BlackBerry Ul in HTML for use inside native applications with a Browser
control or as web applications or Widgets.

The BlackBerry runs a proprietary multitasking operating system. 5.0 is the most current
version, although you should be prepared to encounter much older versions since
BlackBerry owners sometimes do not upgrade for a while, especially if the devices are
being provided from their enterprise.

Central to understanding the BlackBerry platform is the BlackBerry Enterprise Server
(BES). BES provides advanced functionality for IT administrators. A BES allows
administrators to deploy and update applications, set policies for devices, and most
importantly, synchronize email, calendar entries, contacts, and tasks wirelessly using
push technology. BES is one of the reasons the BlackBerry is so dominant in the
enterprise market.

Set Up for Classic Java Development

The system requirements are:
B Computer monitor with resolution 1024x768 or higher
B Intel Pentium 4 Processor (minimum 3 GHz)
® 1.5GB Hard drive
= 1GB RAM
B Microsoft Windows Vista, or Windows XP

In our experience, a fast Windows machine is recommended. It is possible to develop on
a Mac by running these tools inside a Windows virtual machine, but for best
performance you should run Windows natively.

You need to download and install the following tools if you do not have them already:

B Sun JDK (Java Development Kit) from http://java.sun.com/javase/
downloads/index.jsp. The current version is JDK 6 Update 20, which
includes the JRE (Java Runtime Environment).

B Eclipse IDE for Java Developers from www.eclipse.org/downloads/.
Eclipse is a very popular, open source, multiianguage software
development environment comprising an integrated development
environment (IDE) and an extensible plug-in system. It is assumed that
you are familiar with how to use Eclipse. If not, you can find
documentation on the eclipse.org website. In this chapter, we will use
Eclipse 3.4.1.

CHAPTER 4: BlackBerry

B BlackBerry Plug-in for Eclipse and BlackBerry JDEs from
http://na.blackberry.com/eng/developers/resources/devtools. jsp.
You will need the plug-in and at least one JDE. You should download
the JDE for whichever version of the BlackBerry operating system you
are targeting. Download all the available JDEs for the versions of
BlackBerry operating systems that you need to support from 4.2 to
5.0. In this chapter, we will use BlackBerry JDE Component Package
4.70.

After you have downloaded and installed these tools, proceed to the next section.

Building a Simple BlackBerry Application

We will build a simple “Hello World” application and test it in the BlackBerry simulator.

Create the Eclipse Project

To create a new BlackBerry project from within Eclipse, choose New and then Project
from the File menu. A dialog box will appear (as seen in Figure 4-1) that prompts you to
pick what type of project you want to create. The BlackBerry project types are provided
by the BlackBerry plug-in referenced in the previous section.

Select a wizard p—<>
Create a new BlackBerry Project [

Wizards:

[type fiter text
(= General
== BlackBerry
i
(20| BlackBerry Resource File
& cvs
(= Java
(= JavaScript
(= Examples
@ » -

Figure 4-1. “New Project” dialog in Eclipse

CHAPTER 4: BlackBerry

Select BlackBerry Project and click the Next button. You will be prompted to enter the
name of your project (as seen in Figure 4-2). Enter a name, such as “Hello World,” and
click Finish. “Hello World” will then be listed in the Projects pane, as shown in Figure 4-3.

& New BlackBerry Project @|®

n »»
Create a new BlackBerry project -
Create new project from a BlackBerry workspace
Project name: | Hello World|]
Use default location
Location: | C:\Documents and Settings\Vidal\workspace\Hello World Browse..
® 2

Figure 4-2. BlackBerry Project creation dialog in Eclipse

& Java Browsing - Eclipse Platform

Fle fdt Sowrce Refactr Navigate Search Project Run Badderry Window reb
{» i $-O0-Q-PUFG- D S A
om0 = 0| Y packages 11 T 0] 1ypes 12 TS 0|(29 Mertrs 1 = 11| wekome 21
r =" AR~
= @ redo viord
e
= netrm_souw
B =

Figure 4-3. BlackBerry Project in Eclipse

CHAPTER 4: BlackBerry

From the BlackBerry menu, choose Configure BlackBerry Workspace. As seen in Figure 4-4,

enter 1.0 for the Project Version and XPlatform for the Project Vendor.

& Preferences

|type filter text

[#- General

[#-Ant

(= BlackBerry JDE
BlackBerry Workspace
Code Signing
Debug
Installed Components
MDS Simulator

[#-BlackBerry Web

[#-Help

[#- Install/lUpdate

#-Java

[#-Run/Debug

[Tasks

[# Team

[#- Usage Data Collector

Validation
[Web
XML

BlackBerry Workspace

. [BX)

v

General ‘ Build Rules |

C:\Documents and Settings\Vidal\workspace\.BlackBerry\BlackBerry.jdw

Project Version Override:

[10

Project Vendor Override:

i XPlatform

Preprocessor defines

[[] Compress resources if significant space gain

@

Figure 4-4. Configuring the BlackBerry Workspace for Eclipse

Next, click on Installed Components in the left panel. Choose the BlackBerry JDE that
you want to build for. In this example, we choose 4.7.0. Click OK to close the
BlackBerry Workspace Preferences

Create the Interface

When developing for BlackBerry, you will create the user interface programmatically by
creating containers and Ul elements as objects and then arranging and connecting them
in a hierarchy. First, you need to create a Java class for your simple application.

1. From the File menu, click New and then Package.

Enter the name of the package as “com.xplatform.helloworld”.

From the File menu, click New and then Class.

2
3. Click Finish.
4
5

Enter “HelloWorld” as the name of the new class. Leave all other fields
with their default values (as shown in Figure 4-5) and click the Finish

button.

CHAPTER 4: BlackBerry

& New Java Class @rz]
Java Class

Create a new Java dass. @
Source folder: [Hello World/src | [Browse...]
Package: l com. xplatform.helloworld] [Browse...]
[CJEndosing type: ‘ | Browse...
Name: [Helloworld I

Modifiers: (® public O default private protected

[abstract []final

Superclass: l java.lang.Object | [Browse...]
Interfaces: Add...

Which method stubs would you like to create?
[public static void main(String[] args)
[[] Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
[[] Generate comments

@ I‘ Finish | Cancel

Figure 4-5. Creating a Java class in Eclipse

Replace the contents of the generated HelloWorld.java with the source code of the
completed Hello World application that follows.

package com.xplatform.helloworld;

import net.rim.device.api.ui.*;

import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;

public class HelloWorld extends UiApplication {
public static void main(String []args)

HelloWorld theApp = new HelloWorld();
theApp.enterEventDispatcher();

}

public HelloWorld ()
{

pushScreen (new HelloWorldScreen());

}

class HelloWorldScreen extends MainScreen

CHAPTER 4: BlackBerry

public HelloWorldScreen()
{

super();
LabelField title = new LabelField("XPlatform Dev");
setTitle(title);

add(new RichTextField("Hello World!"));

}

public boolean onClose()

System.exit(0);
return true;

Code Explained

The following is a breakdown of the code sample just provided.

B Name the package. We do this on line number one with the package
statement. This has to be the first line in the file.

B Import the packages we will be using from the BlackBerry SDK
using import statements. Note, we can use the asterisk (*) at the end to
import all the packages below a certain level in the hierarchy.

B Define our application class, called HelloWorld, by extending the
UlApplication base class. UlApplication is the base class for all device
applications that provide a user interface. Class HelloWorld must have
one method main, which is the entry point into our application.

B Within main, create an instance of HelloWorld. Inside the constructor
for HelloWorld, we instantiate a HelloWorldScreen custom screen
object and call pushScreen() to display our custom screen for the
application. We will define HelloWorldScreen below.

B Call enterEventDispatcher(). Our thread now becomes the event-
dispatching thread that will execute all drawing and event-handling code.
Note that under normal circumstances this method does not return.

B Define a custom screen for the application called HelloWorldScreen by
extending MainScreen. MainScreen provides a full screen with
features common to standard RIM device applications. Main screen
objects contain a title section, a separator element, and a main
scrollable section.

B In the HelloWorldScreen constructor, call super() to invoke our
superclass constructor the MainScreen constructor. Then we create a
LabelField and set it as the title of the MainScreen. And finally, we
create a RichTextField and add it to main scrollable section of the
screen. LabelField and RichTextField are Ul elements provided by the
BlackBerry SDK.

CHAPTER 4: BlackBerry

Build and Test the Application

Build and Run As then BlackBerry Simulator. This will compile your application, load it
into the simulator, and launch the simulator. Once the simulator finishes starting,
navigate it to its Downloads folder. Figure 4-6 shows the icon you will see for the
HelloWorld application. Click it to launch.

2 BlackBorry 9530 Simalator
Me Edt Ven Smiste Toos heb

*#BlackBerry

XPlatform Dev

ello World!

LC0: (201,34

Figure 4-6. Finished Application Running in Simulator

Simple User Interface Application Using a Label, Text Field,
and Button
The goal of this application is to have the user enter his or her name into a text box,

press a button, and have the BlackBerry greet them by name (Figure 4-7). You can
compare this application and the process to the iPhone version from Chapter 2.

CHAPTER 4: BlackBerry

®. BlackBerry 9550 Skewilator
Fie [41 Ven Smsie Toch heo

Figure 4-7. Hello BlackBerry Application Running in the Simulator

First, set up a new BlackBerry Project. We explained how to setup and configure a new
BlackBerry project in the previous example. Next, we will create a new project called
User Interface and a new class that extends UiApplication called Userlnterface.

Replace the contents of the generated UserInterface with the source code of the
completed User Interface application that follows.

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
public class UserInterface extends UiApplication {
public static void main(String []args)
UserInterface theApp = new UserInterface();
theApp.enterEventDispatcher();
public UserInterface ()
pushScreen (new UserInterfaceScreen());
}
class UserInterfaceScreen extends MainScreen implements FieldChangelistener
LabelField greetinglabel;

BasicEditField userNameField;
ButtonField helloBtn;

CHAPTER 4: BlackBerry

public UserInterfaceScreen()

super();
LabelField title = new LabelField("XPlatform Dev");
setTitle(title);

greetinglabel = new LabelField("");
add(greetinglabel);

userNameField = new BasicEditField("Name: ", "");
add(userNameField);

helloBtn = new ButtonField("Hello BlackBerry!",«
ButtonField.CONSUME CLICK);

helloBtn.setChangelListener(this);

add(helloBtn);

public void fieldChanged(Field field, int context) {
greetinglabel.setText("Hello " + userNameField.getText());

}
public boolean onClose()
System.exit(0);
return true;
}
}
Code Explained

This code is similar to our previous example with the following differences:

B In our UserlnterfaceScreen class, we declare that we implement
FieldChangelListener interface. The method from this interface that we
will define is “public void fieldChanged(Field field, int context)”,
described in the following section.

B We declare instance variables for our greetingLabel and our
userNameField as LabelField and BasicEditField, respectively.
BasicEditField allows us to set a label and initial value for the text field.

We add these elements to the screen in our constructor.

B We also create a ButtonField with the label “Hello BlackBerry!”. We
call setChangeListener(this) on this button to tell it to refer to the
UserlnterfaceScreen object (this) when the button is clicked. The
fieldChanged method will be called. This is why we implemented
FieldChangeListener.

B In fieldChanged, we set the value of the greetingLabel to “Hello” plus
the current value of the userNameField.

CHAPTER 4: BlackBerry

Simple Application Using BlackBerry Browser Field

You can also display HTML content in your application using the BlackBerry Browser
Field. In this example we use BlackBerry OS 5.0 JDE, which supports the later Browser
Field version 2. Read about the differences between Browser Field version 1 and version
2 in chapter 14. The code is very similar to the previous example. Instead of creating an
instance of RichTextField, we create an instance of the BrowserField class.

import net.rim.device.api.browser.field2.*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.container.*;

public class HelloBrowser extends UiApplication {
public static void main(String[] args)

HelloBrowser app = new HelloBrowser();
app.enterEventDispatcher();

public HelloBrowser()

pushScreen(new HelloBrowserScreen());

class HelloBrowserScreen extends MainScreen
public HelloBrowserScreen()

BrowserField myBrowserField = new BrowserField();
add(myBrowserField);
myBrowserField.displayContent("<html><body><hi>Hello«
World!</h1></body></html>", "http://localhost");
}

}
Figure 4-8 shows the Hello Browser App Running in the Simulator.

You change this application to display HTML content from a web page by switching:

myBrowserField.displayContent("<html><body><h1>Hello«
World!</h1></body></html>", "http://localhost");

to
myBrowserField.requestContent("http://www.blackberry.com");

CHAPTER 4: BlackBerry

2 MackBerry 9550 Simulator
Fe B! Vew Seute Took reo

22 BlackBerry

Hello World!

Figure 4-8. Hello Browser App Running in the Simulator
Building for a BlackBerry Device

The BlackBerry simulator is quite good. There are versions for every BlackBerry model
and it is effective for viewing your application with different screen dimensions and
resolutions. However, there are always differences when you test on an actual device.
For example, a Ul element may seem usable when you are controlling it with mouse and
key board shortcuts in the simulator, but on the physical device, you may find that a
button is really too small to hit when you are using the Storm’s touch screen. You should
have a range of devices for testing and try it as early in the development process as
possible.

Signing of applications is not required to run applications using the BlackBerry
Smartphone simulator, but you must sign an application before you can install it on a
BlackBerry smartphone device. Cryptographic keys can only be acquired from RIM.

You will need to fill out a web form [www.blackberry.com/SignedKeys/] to register for
access to the BlackBerry runtime, application and cryptography APIs. Once registered,
you will be sent a set of keys and installation instructions via e-mail that can be used to
allow you to sign your applications using the BlackBerry Signature Tool. An
administration fee of $20.00 will be charged to a valid credit card to complete the
registration process. Allow a few days for RIM to process your application and send you
your keys.

CHAPTER 4: BlackBerry

Code signing registration is solely for the purpose of monitoring usage of these
particular APIs in third party application development and does not, in any way, indicate
RIM’s approval or endorsement of your application or your use of the APIs.

Over the Air (OTA) Distribution

You can distribute applications “over the air” by posting the files on the Web. BlackBerry
Java OTA files consist of one .jad file and one or more .cod files.

Provide a link to the “.jad” file and when someone clicks that link in the Web browser on
a BlackBerry device, the application will automatically download. If an application is too
large to fit within the 128KB limit (64KB of application data and 64KB of resource data),
it cannot be delivered as one large file, but must instead be broken up into a set of
smaller files (as illustrated in Figure 4-9). This can be done automatically using the
BlackBerry Java development tools.

ubyConf-1.cod 100x 93KB 93.3KB/s ne:vv
ubyConf-10.cod 100~ 83KB 83.2KB/s 00:00
ubyConf-11.cod 100~ 91KB 91.1KB/s 90:00
ubyConf-12.cod 1008~ 85KB 85.4KB/s 080:00
ubyConf-13.cod 100~ ??KB 76 .7KB/s 90:00
ubyConf-14.cod 100~ S57?KB 56.6KB/s 90:00
ubyConf-15.cod 100~ 61KB 61.8KB/s 00:00
ubyConf-16.cod 100 49KB 49.4KB/s 00:00
ubyConf-1?7.cod 100~ 70KB 70.0KB/s 90:00
ubyConf-18.cod 100~ 81KB 80.6KB/s
ubyConf-19.cod 1007 20KB 20.3KB/s (515}
ubyConf-2.cod 100~ 65KB 65.8KB/s [515)
ubyConf-3.cod 10082 82KB 82.1KB/s (517
ubyConf-4.cod 100~ 83KB 83.4KB/s (5]7]
ubyConf-5.cod 100 85KB 85.2KB/s 00: 0
ubyConf—6.cod 100~ 79KB 78.6KB/s [515)
ubyConf-7.cod 100~ 76KB 75.7KB/s
ubyConf-8.cod 100~ 81KB 81.4KB/s
ubyConf-9.cod 160~ 98KB 89.9KB/s

ubyConf .cod 10082 90KB 90.1KB/s

ubyConf . jad 108~ 3140 3.1KB/s 080:00

Figure 4-9. BlackBerry cod and jad files that compose the application for OTA distribution
BlackBerry App World

Research in Motion offers a marketplace for applications called “BlackBerry App World.”
To make your application available in BlackBerry App World, you must apply for a
“Vendor Portal” (Figure 4-10) — this is in addition to, and separate from, registration for
signing certificates.

CHAPTER 4: BlackBerry

Vendor Portal for BlackBerry App World™

Welcome to the Vendor Portal for BlackBerry
App World™

In order to have your application published in Blackﬂa-%m
World™ you must create a vendor account and submit the
application for evaluation by RIM. Password:

Create a vendor account following these easy steps:

1. Agree to the Vendor Agreement for BlackBerry App World

2. Enter your personal contact information

3. Enter your company contact information

4. Associate your PayPal account with your Vendor account.
You must have a PayPal account in order to participate in
the Vendor Portal for BlackBerry App World. A PayPal
account is required for both consumer purchases and
payments back to Vendors.

Once your account credentials have been confirmed you will receive
a confirmation email with instructions on how you can begin
submitting applications by RIM.

Applications must adhere to the BlackBe World™ Vendar
Guidelines in order to be considered for inclusion.

After your applications have been submitted, RIM will contact you
regarding the results and next steps.

’(TetStarted »

Figure 4-10. Vendor portal

Research in Motion offers a marketplace for applications called “BlackBerry App World.”
After you create a vendor account, you will be contacted via email to provide official
documentation verifying your identity (Figure 4-11). As a company, you must provide
articles of incorporation or a business license. As an individual, you must fill out a form
and have it notarized.

From: BlackBerry App World Requests <BI YApp im.com>

Subject: BlackBerry App World - RE: Vendor Application
Date: March 7,2010 8:49:53 AM PST

To: undisclosed-recipients:;
» & 1 Atachment, 18.0 KB (Save v) (Quick Look |

We are writing to inform you that your req for add to hin ’s vendor list has
been ived. To the we require the following di i
If you are a Company:

= Official ion to validate your y information (ex. Articles of Incorporation,

Business License). Please scan or return in PDF format.

If you are an Individual:
* Please complete the attached Notary Form and resubmit. We require the notary formin
order to confirm your identity and date of birth. Anyone certified as a Notary can complete
this for you (check your local listings).

Figure 4-11. BlackBerry App World request for documentation

Chapter

Windows Mobile

The Windows Mobile operating system provides a more desktop-like user experience
than other smartphones, adhering to the concepts of hierarchical organization with
nested folders and menus. Approximately 15% of smartphones currently subscribe to a
mobile plan run on the Windows Mobile platform, and Windows Mobile remains the third
most popular platform for business users, commanding approximately 1/4 of the
enterprise market. However, Windows Mobile market share has experienced a sharp
decline over the past few years (30% between 2008 and 2009, 4% in the third quarter of
2009 alone) and it continues to drop. '

Additionally, usage patterns for devices on the Windows Mobile platform are vastly
different from those found on more consumer-driven devices. A recent dataset released
by AdMob, a mobile-centric advertising network, indicates that relative to market share,
Windows Mobile users make approximately 1 request to every 15 requests made from
the iPhone. Android users have usage patterns similar to BlackBerry devices. The
diminished prevalence of web-based browsing on Windows Mobile devices undoubtedly
has roots in user requirements and preferences, but is most likely impacted by ease-of-
use and other usability issues.?

Although the Windows Marketplace for Mobile has only around 1000 applications, there
are 18,000 applications available for the Windows Mobile platform distributed
elsewhere, according to Microsoft.® In addition to distribution via an official channel,
applications can also be distributed through several ad-hoc channels, including SMS, e-
mail and physical media, as well as via direct web download.

" http://www.zdnet.co.uk/news/networking/2009/11/13/windows-mobile-loses-nearly-a-
third-of-market-share-39877964/

2 http://metrics.admob.com/wp-content/uploads/2010/03/AdMob-Mobile-Metrics-Feb-
10.pdf

®http://www.informationweek.com/blog/main/archives/2008/07/windows mobile 7.html;
jsessionid=W2KHQFB3KLA2TQE1GHPSKH4ATMY32JVN

CHAPTER 5: Windows Mobile

The forthcoming Windows Mobile platform has a new name: Windows Phone 7 and aims
to provide a user experience better suited to mobile use patterns. Note that Windows
Phone 7 will not be available as an upgrade for devices currently running Windows Mobile
6.5 and earlier operating systems. While the release of Windows Phone 7 may provide a
boost to sales of Windows Mobile devices, the lack of continued support and
development for legacy devices may provide the impetus for existing enterprise users to
migrate to a different platform. Additionally, with the release of Windows Phone 7, ad-hoc
distribution channels will no longer be available: devices running the Windows Phone 7
operating system will only run applications that have first been approved by Microsoft, and
these applications will only be available via the Windows Phone Marketplace.

In addition to developing C++ and C#-based applications with the .NET Compact
Framework, Windows Phone 7 will provide support for application development and
game development using Silverlight and XNA, respectively. Microsoft Visual Studio 2010
and Expression Blend 4 for Windows Phone will be the primary tools used for Windows
Phone 7 development. Unfortunately, Visual Studio 2010 does not support mobile
application development for versions of Windows Phone prior to Windows Phone OS
7.0, so in order to develop for both devices, you will need to purchase licenses for both
Visual Studio 2008 and 2010.

The focus of this chapter is Windows Mobile 6.5 Development, since that is the
operating system prevalent on devices today.

Setting Up for Windows Mobile 6.5 Development

You should expect to spend a few hours downloading and installing what you need to
build applications for Windows Mobile devices. The following tools are required to build
the native application in this chapter, as well as to use the cross-platform frameworks
covered later in this book.

B Microsoft Visual Studio 2008 Professional*
B Windows Mobile SDK.

B Windows Mobile 6 Professional and Standard Software Development
Kits Refresh

Windows Mobile 6.5 Developer Tool Kit

B ActiveSync

- Visual Studio Express editions are not supported for mobile development, but you can
download a free trial of Microsoft Visual Studio 2008 Professional from the MSDN web site.

CHAPTER 5: Windows Mobile

Building a Simple Windows Mobile App

This section demonstrates how to build a simple Windows Mobile 6.5 application using
MS Visual Studio 2008’s drag-and-drop interface for assembling the Ul and
implementing functionality in C#, as well as building and deploying your application in
the emulator and on a Windows Mobile device.

Creating a Smart Device Project

From the Visual Studio 2008 File menu, select New » Project.

In the New Project window, find the Project Types pane on the left, expand Visual C#
and select Smart Device (Figure 5-1). Select the Smart Device Project template from
the Templates pane on the right, and click OK.

New Project

' Project types: Templates: .NET Framework 3.5 M ‘@‘

Database
Reporting
Test J#]smart Device Project
WCF
WorkFflow My Templates
(=) Wisual C#
Windows
Web
Office
Database
Reporting
Test
WCF
Workflow
+ Mienal F44

[

Yisual Studio installed templates

\ﬂSearch Online Templates...

v

A project for Smart Device applications. Choose target platform, Framework version, and template in the next dialog box.

MName: ‘ SmartDeviceProject2 ‘

Location: ‘ C:\Developer\Windows Mobile v] [Browse. ..]
Solution: ‘ Create new Solution v l Create directory for solution

Solution Name: ‘ SmartDeviceProject2 l

OK Cancel

Figure 5-1. Selecting the Smart Device Project template

To create your application, in the Add New Smart Device Project wizard, select
Windows Mobile Professional 6 SDK as the target platform (Figure 5-2). Select the
Device Application template, and click OK to create the project.

CHAPTER 5: Windows Mobile

Add New Smart Device Project - SmartDeviceProject2

Target platform: '-.f-.hndo'.-«.'s Mobile 6 Professional SDK
\NET Compact Framework version: \.I\ET Compact Framework Version 3.5 v]
Templates:

r ' 4 ﬂﬁ % "@ @ ‘ripD;ion:

Device Class Library Console Control Library Empty Project A
dioces project for creating a NET
Application Application Compact Framework 3.5 Forms

application for Windows Mobile
6 Professional SDK Platform

[OK][Cancel]

Figure 5-2. The Add New Smart Device Project wizard

Setting Up Base Functionality

Visual Studio allows you to build your application forms by selecting Ul components in
the Toolbox pane on the left and dragging them onto the form in the Design view. To
make your application easier to work with, you should change the names of your Ul
components from the standard labeld, label2...label37 to something more recognizable.

CHAPTER 5: Windows Mobile

Add a Button to the View

From the Toolbox pane on the left, select a button and drag it onto the form (Figure 5-3).

*. SmartDeviceProject1 - Microsoft Visual Studio

File Edit Wiew Project Build Debug Data Tools Test ‘Window Help
(el i GF e @ % G 9 - - S 5L P Debug v Any CPU
I .. 0 &) 5 UsA Windows Mobile 6.5 Professional ~ o &4 A L e
Toolbox v 1 X v 1 x
Ekhllml;e Controls ~ ~ button1 System.Windows.Forms.Buttc ~
Pointer
A
tf,? BindingSource Zl
[EAepearans] contra
ackColor ontrol
v/
CheckBox A Font Tahoma, 9pt, style:
a ComboBox 3 ForeColor Il ControlText
R ContextMenu Text button
(1 DataGrid Bl Behavior
9] Dataset ContextMenu (none)
@ DateTimaRicker || DialogResult Mone
i N Enabled True
DocumentList TabIndex 0
[DomainpDown TabStop True
C HardwareButton visible True
“3 HscrollBar B oats
(5 Imagelist ‘ (DataBindings)
(1 InputPanel ‘ 189
B Design
A Label (Name) button1
A LinkLabel GenerateMember True
[=% ListBox Locked False
222 | iview Modifiers Private
B Layout
Anchor Top, Left
L MessageQueue ‘ Dock None
{72! MonthCalendar B Location 81,97
Natification @ Size 72,20
112 NumericUpDown
Eﬂ OpenFileDialog
{71 Panel
14 PictureBox
@) ProgressBar % mainMenul
() RadioButton &
i Server Explorer |>§:Toolbox ’ ‘
Output v & X (Name)
Show outout from: Refactor CRILARNI=I= Indicates the name used in code to
E‘rim” L Sq 3 Output ‘ identify the object.
Ready

Figure 5-3. Selecting a button from the toolbox pane

CHAPTER 5: Windows Mobile

Customize the Button

Click the button on your form once, and in the Properties pane under Appearance,
change the label in the text field to “Submit,” as shown in Figure 5-4. Then, under
Design, set the name of the button to “submitButton,” as shown in Figure 5-5.

20 SmartDeviceProject1 - Microsoft Visual Studio Q@]@
File Edit View Project Build Debug Data Tools Test Window Help
Al e %A@ 9~ LB) Debug ~ Any CPU
S IS T O BT P | ﬂ‘_‘ USA Windows Mabile 6.5 Professional ~ &b 53 |

Toolbox -~ 1 X‘

'=/_all Device Controls ol
2% BindingSource =
Appearance
(3] Button
P = BackColor [control
o Font Tahoma, 9pt, style=|
=% ComboBox ForeColor Il ControlText
FE| Contextienu Text Submit
] DataGrid Bl Behavior
;ﬂ DataSet ContextMenu (none)
| 77 DateTimePicker E'aloblg?s""t :Ione
= N nable ue
\.ﬂ DocumentList TabIndex 0
I3 DomainLipDown TabStop True
2 HardwareButton visible True
<> HscrollBar P 3 ¥l |2 pata
/=) ImageList — = @ (DataBindings)
Tag
(=1 InputPanel E mainMenul B Design
A Label gl [CZSI submitButton
S timtaoot
GenerateMembe True
o Server Explorer |33 Toolbox
57l1\—J Locked False
Error List ~ 1 X Modifiers Private
|0 0Errors l | 1\ 0Warnings | |k‘) 0 Messages | 8 ;:::n‘:t Top, Left
)
Description File Line Column Project Dock None
@ Location 129,65
Size 72,20
{Name)
Indicates the name used in code to
_3 Error List ‘E' Output ‘ identify the object.
Ready

4
Figure 5-4. Changing the label in the text field to “Submit”

CHAPTER 5: Windows Mobile

2 SmartDeviceProject! - Microsoft Visual Studio I

Fia Bt Vew Projet Bubl Detag Oata Tock Ted Window el
A e LA LD SRt v Oy

B R [e B 1 UISA Windows Meble 6,5 Prcfesscosl + 0, N S T <
i e * E——
X

A button Systen Wiedows. [ormng B+

aF Tmapmlict
i TnguaParml
A el

A s abt
Mg server Evplorr ./‘Jndm

Lrror Ust.
O 0Frmors | |)0 Warnegs| [1) 0 Messages -
Descrpton Fle

gy Ereor Uk | 3] s

Ready

Figure 5-5. Setting the name of the button to “submitButton”

Create a Click Event Handler

Back in the design view, double-click the button you just created. This opens Form1.cs
and generates an empty handler in the Form1.cs file (Figure 5-6).

22 SmartDeviceProject! - Microsoft Visual Studio EE®X

Flo Edt Vew Refator Pojxt Buld Debug Data Tooh Tost Widw Hebp

Bl Gl G @ A DA 000 800 b Ot . Aoy U e,)

. St e [] s wndows Mible 65 Professcral = o Al 0 5y o DGR ae R T2 3
‘v 3 X Formles Fomi.cs [Dessg) | Start Page vxX Ive@ X
= Gew .
- | 43 SmartDevceproects Fomi V| sukantrton_ Chdobmet sender, EvertArgs ¢) -

There 1Eusing System; ';‘. i Zl
aen o < | using System.ling:

i uSing System.Collections.Generic:

':‘,:' 4| using System.ComponentModel:

oo, S| using System.Data;

0: using System.Dreving:

Rem using System. Text;

ot “using Systemw.Vindows.Forms;

the E
tatto 104 namespace SmartbeviceProjectl

tothe 1] ¢

oot public parcial class Formi : Foz

{
148 public Formi()
15 ‘
t InicializeComponent ();
17)
private void submitbutton_Click(object sender, Eventirgs €)
¢
21 submitBucton. Text = "Clicked”;
)
)
| I vl
N [e =
rror Ust. v x
O 1 Lror | | f) 0 warnings | |(1) 0 Messates
Omscription Fim Lew Coem Promt Al
O 1 Thenane butont’ doms not exit i e curerd okt Formdcs 2 13 SmarDevkePromd] o)
Pl
Teerois) Saved Ln21 Col 25 Chis s

Figure 5-6. The Form1.cs file

CHAPTER 5: Windows Mobile

In the handler, type the following line of code:
submitButton.Text = "Clicked";

Deploying and Test your Application

In order to start debugging your application in the emulator, press the F5 key. Select the
Windows Mobile 6.5 Professional Emulator from the list of available emulators and
devices, and click Deploy (Figure 5-7).

Deploy SmartDeviceProject1

Choose where to deploy your application. Deploy
Device: | Cancel |

USA Windows Maobile 6.5 Professional Portrait QYGA Emulator
USA Windows Mobile 6.5 Professional Portrait WQYGA Emulator
USA Windows Mobile 6.5 Professional Square Emulator

USA Windows Mobile 6.5 Professional YGA Emulator
USA Windows Mobile 6.5 Professional WVYGA Emulator
Windows Mobile & Classic Emulator

Windows Mobile 6 Professional Device

Windows Mobile 6 Professional Emulator

Windows Mobile 6 Professional Square Emulator
Windows Mobile 6 Professional Square QYGA Emulator
‘Windows Mobile & Professional Square YGA Emulator
Windows Mobile 6 Professional ¥GA Emulator

Show me this dialog each time I deploy the application

Figure 5-7. Deploying SmartDeviceProject1
It might take a few minutes for your application to load after the emulator launches—be
patient.

When you click the button in your application, the button text should change from
“Submit” to “Clicked” See Figure 5-8.

CHAPTER 5: Windows Mobile

I~
ol

- e

Figure 5-8. The button text has changed to “Clicked”

Fleshing Out the Application

Return to Visual Studio and select the Form1.cs Design view, where you will flesh out
the rest of your application.

From the Toolbox pane on the left, select a label and drag it to the top of the form. Click
the label a single time and in the Properties pane under Appearance, change the Text to
“Name”, and under Design, change the Name to “fieldLabel”. Double-click the button to
generate the handler.

Drag a TextBox from the toolbox and place it underneath the fieldLabel on the form.
Click the label once and in the Properties pane under Appearance, leave the Text field
empty. Under Design, change the Name to “textField” and double-click the button to
generate the handler.

Position the submitButton below the textField.

Drag a Label from the toolbox to the bottom of the form. Click the label once and in the
Properties pane under Appearance, remove all text from the Text field. Under Design,
change the Name to “message” and double-click the button to generate the handler.

Your form should resemble Figure 5-9. Keep in mind that you will not be able to see the
label field that will contain the result unless it is selected—simply press Ctrl+A to select
all Ul components in the design view if you wish to locate the hidden label field.

CHAPTER 5: Windows Mobile

 Forml.cs 'Forml.cs [Design] v X

\ i
Figure 5-9. The new form

Update the submitButton handler to display a custom message when the button is
clicked. Add:

message.Text = "Hi there, "+textField.Text+"!";
to the submitButton_Click handler. Your handler should look like the following:

private void submitButtoni Click(object sender, EventArgs e)

buttoni.Text
message.Text

"Click!";
"Hi there, "+textField.Text+"!";

Press the F5 key to deploy the application. Select Windows Mobile 6.5 Professional
Emulator and click OK.

To test the application, enter your name into the text field then click the Submit button.
“Hi there, [[your name]]!” will be displayed in the message box, as seen in Figure 5-10.

CHAPTER 5: Windows Mobile

Name

IErnestine C. Clydmuffyn I

Hi there, Ernestine C. Clydmuffyn!

Figure 5-10. The message box now contains the typed in name

Embed a Web View in your Application

To embed a web view in your application, you can use the WebBrowser control.

Create an HTML page

First, you need to create a static HTML page that can be loaded from the browser. In the
solution browser, right-click on your project’s name, then click Add » New Iltem. Select
HTML Page, and name your file test.htm If you’re not feeling creative, a simple text file
containing the text “Hello World” will suffice.

To ensure that your HTML file is copied to the device, select the file name in the solution
browser. In the Properties section, ensure that the Copy to Output Directory field is set
to Copy Always.

Add a WebBrowser Control

Return to the Design view and from the toolbox drag a WebBrowser control onto your
layout. Double-click the control to create the handler then return to the design view.

CHAPTER 5: Windows Mobile

Load HTML in WebBrowser control

With the WebBrowser element selected, open the properties tab. Under Behavior, set
the value of the absolute path to the HTML file using the format below:

file:///Program Files/MyProjectName/test.htm

Note that you can also set this value to access sites hosted on external web servers by
entering the full URL with the http:// prefix. However, before you can access external
sites from the emulator, you must ensure that you have cradled the emulated device. To
connect to an emulator, select Device Emulator Manager from the Tools menu, select the
emulator name from the list, and click Actions » Connect. A green arrow will be displayed
beside the emulator when it is running. To cradle the emulator, select its name once
again, select Actions » Cradle, and go through the motions with the ActionSync dialogues
that are displayed.

You can redirect to a new page after your initial page loads by updating the webBrowser
handler as follows:

private void webBrowserl DocumentCompleted(object sender,+
WebBrowserDocumentCompletedEventArgs e)

{
//string myUrl = "http://www.yahoo.com";

//Uri myUri = new Uri(myUrl);

//webBrowser1.Navigate(myUri);

string myUrl = "file:///Program Files/SmartDeviceProject1/test.htm";
Uri myUri = new Uri(myUrl);

webBrowser1.Navigate(myUri);

}

You can find code samples for building a full-featured browser at
http://msdn.microsoft.com/en-us/1ibrary/3s8ys666.aspx

Packaging and Distributing Your App

Windows Mobile applications can be distributed on the Web or through the Windows
Marketplace for Mobile. To compress and package application files for distribution,
Windows Mobile uses Cabinet files, designated with the .cab extension. To distribute
your application, you need to build your application as a signed CAB file. The following
section provides an overview of the process required to release the "hello world”
application built in the previous section. Additional advanced configuration options may
be necessary for more complex applications outside the scope of this chapter.®

® Refer to http://msdn.microsoft.com/en-us/library/zcebx8f8.aspx for additional
information on advanced cabfile properties.

CHAPTER 5: Windows Mobile

Adding a CAB Project to the Solution

To create a CAB file, you first need to include a new CAB project to your application
solution. From the File menu, point to Add, and then click New Project. The Add New
Project dialog box will be displayed, as shown in Figure 5-11.

In the Project Types pane, expand Other Project Types, and select Setup and

Deployment. From the Templates pane on the right, select the Smart Device CAB
Project template.
, _

New Project

| Project types: Templates: ‘@‘
Wisual Basic Yisual Studio installed templates
[+ Visual G
Visual C++ [Setup Project > Web Setup Project
(= Other Project Types []Merge Module Project [Setup wizard
Setup and Deployment _,—_ﬂCAB Project :l;i Smart Device CAB Project
Database
Extensibility My Templates

Visual Studio Solutions

Test Projects (jIsearch Online Templates...

Create a CAB project to deploy Pocket PC, Smartphone and other Windows CE-based applications ‘ i

Name: l CABProject|]
Location: l C:\Developeriwindows Mobile v l [Browse...]
Solution: lCreate new Solution v } Create directory for solution

i Solution Name: ‘ CABProject ‘

OK Cancel

Figure 5-11. The Add New Project dialog box

In the Name field, type “CABProject”. Click OK to add the CAB project to the solution.
The CAB project will be displayed in the Solution Explorer.

Customizing Your Product Name

Open the Properties window by selecting select View » Properties Window.

The value in the ProductName field defines the display name for the application in the
application’s folder names and the Add or Remove Programs screen. In the property
grid, change the value of the ProductName field to “Hello World”.

Customizing the CAB File name

In the Solution Explorer, right-click CABProject and select Properties.
In the CABProject Property Pages dialog, change the file name and path in the Output
file name field to Debug\HelloWorld.cab. Click OK to update the file name.

CHAPTER 5: Windows Mobile

Adding the Application to the CAB Project

In the File System Editor, you will find the File System on the Target Machine pane on
the left. Note: if you cannot see the File System Editor, right-click the CAB project name
in Solution Explorer, click View, and then click File System.

Your application should be installed into the Application Folder. Select Application
Folder to specify that the files you select in the following steps will be installed in the
appropriate location on the target device.

From the Action menu, select Add » Project Output. In the Add Project Output Group
dialog box, select Hello World from the Project drop-down list. From the list of outputs,
select Primary output, ensure the Configuration is set to Active, and click OK.

Creating an Application Shortcut

To create a shortcut to allow users to easily access the application, from the right pane
of the File System Editor, select Primary output from Hello World(active). Select Action »
Create Shortcut to Primary output from Hello World. Rename the shortcut to "Hello World” or
another name of your choosing by right-clicking the Shortcut item » Rename to.

Next, define where the shortcut should be accessed from on the target device. In the
File System Editor’s left pane, right-click File System on Target Machine then select
either Add Special Folder » Start Menu Folder or Add Special Folder » Programs Folder.

Finally, drag the shortcut from the Application Folder into the Start Menu or Programs
Folder in the left pane of the File System Editor.

Adding a Registry Entry

In the Solution Explorer, select the CAB project and open the Registry Editor by
selecting View » Editor » Registry.

In the left pane of the Registry Editor, right-click HKEY_CURRENT_USER. Click New
Key, and rename the New Key entry from “New Key #1” to “SOFTWARE”.

Right-click SOFTWARE, and select New » Key. Rename the New Key entry from “New
Key #1” to “MyCompany”.

Right-click MyCompany, and select Properties Window to verify the Name value has
been changed to MyCompany.

Building and Deploying the CAB File
On the File menu, click Save All.

In Solution Explorer, right-click the Smart Device Cab project, and then click
Properties on the shortcut menu.

CHAPTER 5: Windows Mobile

On the Build page, select Authenticode Signature, and the Click Select from Store
button.

In the Select Certificate dialog box, select the certificate you want to use and click OK.

If you don’t have any visible certificates, click Manage Certificates to open the Manage
Certificates dialog box. If you have a certificate on your system you wish to use, you can
import it using the Import wizard. However, if you haven’t created a certificate on this
system before, you can do so from the command line. From the C:\Program Files\
Microsoft Visual Studio 9.0\SDK\v3.5\bin directory (or your local equivalent) issue the
following command:

makecert -r -pe -n "CN=Your Name" -b 01/01/2000 -e 01/01/2099 -eku 1.3.6.1.5.5.7.3.3¢«
-ss My

Exit the Manage Certificates window and select the new certificate when it appears in
the Select Certificate window, then click OK. The certificate will be displayed in the
Certificate box of the Build page.

On the Build page, click OK.
On the Build menu, click Build CABProject.
Or

Right-click CABProject in Solution Explorer, and click Build.

Installing the CAB File

In Windows Explorer, navigate to the folder where you stored this solution. You will find
the CAB file in the CABProject\Debug folder of your solution.

To deploy your CAB file on a device, cradle your device normally using ActiveSync.

To connect to an emulator using ActiveSync, from Visual Studio menu bar, select Tools »
Device Emulator Manager. Expand Datastore » Windows Mobile 6 Professional SDK and in the list
of devices, double-click USA Windows Mobile 6.5 Professional VGA Emulator. When
you see a green arrow, select Actions » Cradle to launch ActiveSync, and complete the
setup wizard.

In the ActiveSync window, click Explore, then copy the CAB file to a suitable location in
the filesystem.

On the device, navigate to the CAB file in File Explorer and tap the CAB file name to
automatically install the application and shortcuts into the appropriate locations on the
device.

CHAPTER 5: Windows Mobile

Distributing Your Application

There are several options for distributing your Windows Mobile 6 application:

B Include a link to download the .cab file in an e-mail message or SMS
message. When the user clicks the link, the application will be
downloaded and installed using Internet Explorer Mobile.

B E-mail the file as an attachment. When the user opens the attachment,
the application will be installed automatically.

B Physically distribute the .cab file on removable media cards that can
be inserted directly into the phone. You can include an autorun file to
automatically start the installation script upon insertion.®

Distribute the application through the Windows Marketplace for Mobile.’

® You can find more information at http://msdn.microsoft.com/en-
us/library/bb159776.aspx

" http://marketplace.windowsphone.com/

Part

Cross-Platform Native
Frameworks

In your hands is one of the most exciting devices to hit the market in quite some time:
the iPhone 4. This Quick Start Guide will help get you and your new iPhone 4 up and
running in a hurry. You’ll learn all about the buttons, switches, and ports, and how to use
the innovative and responsive touch screen and multitask with the new App Switcher
bar. Our App Reference Tables introduce you to the apps on your iPhone 4 —and serves
as a quick way to find out how to accomplish a task.

Chapter

Rhodes

Rhodes is a cross-platform smartphone application framework developed by Rhomobile
(www.rhomobile.com) a venture backed startup in Cupertino, CA. It was released in
December of 2008. Rhodes is available for most major smartphones including the
iPhone, Research in Motion (BlackBerry), Android, Windows Mobile, and Symbian. As of
this writing, Symbian is not actively maintained and therefore not addressed in this
chapter. A key value proposition for Rhodes is the ability for a company to build and
maintain a single code-base across this wide variety of device operating systems.

Rhodes allows developers to create cross-platform smartphone applications using
HTML, CSS, JavaScript and Ruby programming languages. It leverages developer
experience in web development to make native mobile applications, and is aimed at
developers who already have a background in web development and want to create
mobile applications without having to learn platform SDKs and the native languages on
each mobile device platform. The Rhomobile tools and framework can be used across
Mac, Windows and Linux; however, to build for specific devices, the device SDK must
be installed. BlackBerry and Windows Mobile devices require Windows; iPhone devices
requires Mac; Android and Symbian devices run on Java and are cross-platform.

Rhodes is targeted primarily at enterprise applications. The framework makes it easy to
create applications that present a series of screens that include standard Ul widgets,
including common phone Uls such as mapping. It is not suitable for fast-action games
and other such consumer applications with demands for rich interactive graphic
interfaces or platform-specific native Ul controls. A strength of Rhodes is that it makes
the traditional user interface patterns commonly found in most informational applications
easy and portable.

Rhodes is a commercially-supported open source product licensed under the MIT
License. Those companies requiring commercial grade support can purchase an
Enterprise License from Rhomobile. Because Rhodes is open source, you can examine
the code and see exactly what it is doing under the covers. You can extend it, contribute
improvements and fixes, or customize your own version of Rhodes if you need to.

Rhodes takes much of its inspiration from web-oriented Model-View-Controller (MVC)
style frameworks such as Ruby on Rails. However, it has several sfimplifications,

83

CHAPTER 6: Rhodes

extensions, and optimizations for the mobile scenario (see Differences Between Rhodes
and Ruby on Rails later in the chapter). If you are a Ruby on Rails developer, you should
find Rhodes familiar. Note that although certain patterns are borrowed from Rails,
Rhodes is its own unique framework and not a port of Ruby on Rails. Even developers
unfamiliar with Ruby on Rails can start developing quickly with Rhodes simply because
there is much less code to write than for a native application.

Rhodes includes a local Object Relational Manager (ORM), called Rhom, and includes
code to persist local data and sync remote data using RhoSync. Rhodes developers do
not have to worry about writing data storage and sync logic into their applications and
can focus instead on presentation and business logic.

The next sections provide details on creating device-only applications in Rhodes and
you will see how to persist local data and use geolocation and other device features.
However, the full power of the framework is seen when local data is synched to remote
data sources, which can be easily achieved with Rhomobile’s middleware server
RhoSync (see chapter 7).

Complete details on Rhodes are available in the Rhomobile wiki
(www.rhomobile.com/wiki) and the source to Rhodes is available at github
(http://github.com/rhomobile). There are also open source example applications
available. Finally, there is an active community of developers at
http://groups.google.com/group/rhomobile.

Development Architecture

Rhodes applications are installed and run as native applications. However, you develop
using the web development paradigm. You define the user interface of your application
in HTML and CSS. Then, at runtime, the HTML and CSS is rendered in a native browser
Ul control that is embedded in your application by the Rhodes framework. JavaScript
may be used for some interaction control the same way that you would use JavaScript
in a web application.

You can also add application logic to your views using embedded Ruby (ERB), as you
would in a Ruby on Rails application. ERB files are similar to PHP or JSP, where code
can be mixed with markup to create dynamic HTML. Rhodes will generate the complete
HTML, evaluating the Ruby code before the HTML is rendered by the browser Ul
Control, which will then dynamically execute any JavaScript that is on the page.

You also write Ruby code for the application logic that implements the flow of control for
your application. Rhodes follows the Model-View-Controller (MVC) pattern that is similar
to Ruby on Rails and other web frameworks. You implement methods in your controller
to define actions that map to HTTP requests. Your controller action will typically fetch
data from your model (implemented in the Rhodes ORM layer, Rhom) and render a view
(implemented as HTML ERB).

In Figure 6-1 you can see the MVC pattern illustrated with the Rhodes object model and
an example use case. In the example, there is a “New Product” page where the user can
fill in the form field to provide values for the new product attributes. When the user clicks

CHAPTER 6: Rhodes

the Create button, a request is made to a lightweight embedded web server in Rhodes
that only exists to respond to these Ul request and RhoController actions. When a user
clicks on a URL in the HTML view, a controller action is called. In this example, the
ProductController create method is called. The controller action then calls the Product
model, implemented with Rhom to save a new product in the local database. Then a
view is rendered to display the result to the user. The entire web response cycle
happens locally on the device.

request
: d RhoController Rhom L
render
J

= ~SSPONSE | LTL eRB files

Figure 6-1. The MVC Model

Runtime Architecture

Rhodes development files are compiled into a native executable that is installed on the
device or run in a desktop simulator using command line tools or the web interface on
rhohub.com.

Since Rhodes apps are native binary applications, they can be submitted and
distributed through the Apple iTunes App Store, BlackBerry World, Android
Marketplace, and other distribution channels. To build for a device, you typically need to
sign up for those developer programs and acquire cryptographic keys required to sign
applications, even though you will not be writing in the platforms native SDKs. You also
need to observe each platform’s user interface guidelines so that your applications can
be approved. (See Part 1 of the book on submitting apps for your target platform(s).)

On platforms where the primary development language is Java, such as BlackBerry,
Rhodes applications are cross-compiled into Java bytecode that are then executed
natively. On iPhone, Android, Windows Mobile and Symbian platforms, Rhodes
applications are compiled into Ruby 1.9 bytecode. On these platforms, Rhodes includes
a Ruby executor that runs the bytecode on the device. The Rhodes Ruby
implementation is a subset of Ruby 1.9. It does not include all of the libraries that you
would find on a desktop implementation of Ruby, although it is possible to extend it and
add additional libraries into your application. (See http://wiki.rhomobile.com/
index.php/Rhodes#Adding_Libraries to Your Rhodes Application.)

To connect your Rhodes application with web services, you can use RhoSync or
connect directly. You can connect directly via JavaScript, use the Ruby net/http library,
or the optimized Rho:AsyncHttp. However, with remote data, you almost always want to

CHAPTER 6: Rhodes

cache it locally for offline use and using a RhoSync server is ideal for that use case. As
detailed in chapter 7, you would write a source adapter that runs in the server
environment where you have access to the full Ruby language and complete libraries.

Although Ruby is an interpreted language, using Rhodes, you cannot run arbitrary Ruby
code at runtime by using, for example, string eval. That capability was intentionally
removed in Rhodes Ruby interpreter to comply with iPhone App Store’s Rule 3.3.2 that
states:

An Application may not itself install or launch other executable code by any
means, including without limitation through the use of a plug-in architecture,
calling other frameworks, other APIs or otherwise. No interpreted code may be
downloaded and used in an Application except for code that is interpreted and
run by Apple’s Published APIs and built-in interpreter(s).

(www.rhomobile.com/blog/2009/05/29/iphone-app-
store-rules-and-guidelines-on-use-of-frameworks/)

Rhodes is a fully native application and embeds the device’s built-in browser. This has
implications for the markup, CSS, and JavaScript that can be supported on each
platform. Some devices, such as the iPhone and Android, have full-featured browsers
while others like the BlackBerry do not. This means that you cannot write HTML and
CSS that take advantage of advanced or platform-specific browser features on one
device and expect it to work on another device with a less capable web browser. While
Rhodes apps are developed much like web apps, they run locally as native apps and not
remotely like web apps. All processing and database access is local.

Device Capabilities and Native Ul Elements

Rhodes provides access to device-specific capabilities such as GPS, PIM, camera,
SMS, video player, accelerometer, proximity detector, and native Ul controls. In some
cases, the native controls are specific to the device, for example, every BlackBerry
application has a menu that is invoked when you click the Berries button on the device;
however, iPhone applications do not uniformly have a menu. So when you define a
menu it appears on the BlackBerry, but is ignored if you were to build the same code for
the iPhone. See the Rhodes Device Capabilities section for more details and examples.

Database (Rhom)

Rhom is a mini object-mapper implemented in Ruby. It provides database-abstraction
functionality to the Rhodes micro-framework. It allows simple models to be used with a
“property bag” database. Rhom is backed by a local device-side database such as
SQLite or HSQLDB. The Rhodes framework abstracts the implementation details of the
local database.

CHAPTER 6: Rhodes

The main goal of Rhom is to provide a simple, intuitive model interface for a Rhodes
application. Under the hood, Rhom operates on the RhoSync object values
(http://wiki.rhomobile.com/index.php/Server to Backend Sync_Process) table by
collecting “property bags” or attributes for a given source into a model definition. This is
the same table used by the Rhodes sync engine.

The methods on a Rhom object are inspired by but not exactly the same as those in the
ActiveRecord ORM used by Ruby on Rails. Listing 6-1 shows sample client code to
illustrate the Rhom syntax with an Account object. In this example, Account is the model
object. Account.find in its simplest form takes the object’s id as a parameter and returns
the object (after fetching it from the local device storage). The second Account.find is
shown with :all as the first parameter, which indicates that all records will be returned,
the :select argument indicates the fields to lookup, optionally you could also pass
:conditions if you wanted to retrieve a subset of the records.

Listing 6-1. Rhom example code

acct = Account.find "3560c0a0-ef58-2140-68a5-48139163741b"
acct.name #=> "A.G. Parr PLC 37862"

accts = Account.find(:all, :select => ['name','address'])
accts[0].name #=> "A.G. Parr PLC 37862"
accts[0].telephone #=> nil

Threading

Rhodes applications are multithreaded, however, applications cannot spawn their own
threads; your code will run in a single thread. The three principal threads in a Rhodes
application are:

B Main thread (controls the user interface)
B Ruby thread
B Sync thread (when RhoSync is used)

There are also auxiliary threads that come and go on demand. Examples include
notifications, geolocation, client registration, and push.

One of the added benefits of Rhodes being multithreaded is that you can sync your data
to RhoSync in the background while your user interface is not blocked. The impact is
that many of the Rhodes API calls are non-blocking, asynchronous calls that you
register callbacks to use, such as sync notification and login.

CHAPTER 6: Rhodes

Differences Between Rhodes and Rails

B Rhodes is inspired by Ruby on Rails but is not a port of Ruby on
Rails. It is significantly smaller and simpler.

B There are no separate directories for models, controllers and views.
Each model is in its own directory. The controller file, model file, and
view files for the model exist in the directory. Business logic is
coded in the controller making Rhodes controllers somewhat fatter
than Rails controllers.

B Many other directories available are not present in the Rhomobile
app directory structure such as vendor, lib, log, and db. Their
equivalents are generally in the root directory of the application.

B There are no validations on models. There is no schema.rb and no migrations.

B You cannot run Rhodes applications interactively using
script/console. You need to compile your code and install it in the
simulator to execute it.

B Many of the differences from Rails are to make it easier to run on
mobile devices with limited memory. Rhodes is lighter weight
because it is only providing the core necessary functions. Examples
of features that either aren't necessary in Rhodes or not provided for
space reasons are: web services, XML, pluralization, and YAML.

Creating a Rhodes App

This section details how you install and set up Rhodes and build a simple application
that stores data locally on the device.

Installation and Setup

Before you install Rhodes, you will need to install Ruby and Ruby’s library packaging
system, RubyGems, as well as GNU make. Rhodes is distributed as a Ruby gem, which
includes the Rhodes framework and all of the tools needed to work with each target
smartphone platform.

B Ruby 1.8.6 or 1.8.7.
B RubyGems 1.3.5 or higher.

B GNU make 3.80 or higher (required by gem). You might already have it
installed if you are running Mac OS X or Linux. On Windows, download
it from http://gnuwin32.sourceforge.net/packages/make.htm and
install somewhere. Ensure you have the location where it installed in
your PATH environment variable.

CHAPTER 6: Rhodes

To install the gem (sudo is recommended on Mac and Linux):

gem install rhodes

You will also need the device SDKs for your target platform. For details on installing the
device SDKs, see chapters 2-5 or Rhomobile platform docs.’

Once you have the device SDK installed, run the Rhodes setup script (by typing
“rhodes-setup” on the command line). Listing 6-2 shows sample output from this
command run on a Mac with Android SDK installed. (Note: the iPhone SDK does not
require configuration.)

Listing 6-2. Rhodes setup commands

$ rhodes-setup
We will ask you a few questions below about your dev environment.

IDK path (required) (/System/Library/Frameworks/JavaVM.framework«
/Versions/CurrentIDK/Home/):

Android 1.5 SDK path (blank to skip) (): ~/android/android-sdk-mac_x86-1.5 12
Windows Mobile 6 SDK CabWiz (blank to skip) ():

BlackBerry JDE 4.6 (blank to skip) ():

BlackBerry JDE 4.6 MDS (blank to skip) ():

BlackBerry JDE 4.2 (blank to skip) ():

BlackBerry JDE 4.2 MDS (blank to skip) ():

If you want to build with other BlackBerry SDK versions edit:
<Home Directory>/src/rhomobile/rhodes/rhobuild.yml

Building a Rhodes Application

For your first application you are going to create an application that will let you enter
product inventory on your phone. This is a basic application with one model that will
allow you to create, edit, and delete inventory records on the device.

To create the initial skeleton of the application, you issue the “rhogen app” command.
This will generate a starting directory with support files; Rhodes applications are
organized in a fixed directory structure. The rhogen command is not required. You could
create the files you need manually or simply copy and modify a previous application.

On the command line, type “rhogen app inventory” to generate the initial skeleton for the
application (Listing 6-3).

Listing 6-3. Rhodes app generation

$ rhogen app inventory

Generating with app generator:
[ADDED] inventory/rhoconfig.txt
[ADDED] inventory/build.yml
[ADDED] inventory/app/application.rb
[ADDED] inventory/app/index.erb

" http://wiki.rhomobile.com//index.php?title=Building Rhodes on_ Supported Platforms

CHAPTER 6: Rhodes

[ADDED] inventory/app/index.bb.erb
[ADDED] inventory/app/layout.erb
[ADDED] inventory/app/loading.html
[ADDED] inventory/Rakefile

[ADDED] inventory/app/helpers
[ADDED] inventory/icon

[ADDED] inventory/app/Settings
[ADDED] inventory/public

This creates the boilerplate files for the application including a “Settings” screen that is
very useful in development, but will usually be replaced with one or more custom
screens before the application is complete. Table 6-1 lists all of the top-level files and
folders that are generated. Most of the development that you do will be to modify and
create new files in the /app directory. These files and subdirectories are listed in Table
6-2.

Table 6-1. Top-level files and folders generated by the “rhogen app” command

File/Folder Description

Rakefile Used for building Rhodes applications from the command line.

rhoconfig.txt Contains application specific options and configurations such as the start path
definition, logging options, and the optional URL for your sync server. To change
the default-landing page of your application, simply change start_path to point to
a different page within the directory structure.

build.yml Contains application-specific build information such as the name of the
application, and the version of the SDK to use when building for specific
platforms.

app/ This directory contains the models, device settings, default-landing page, and

application layout page.

public/ This directory contains static files that are accessible by your application, such as
CSS, images, and JavaScript libraries.

icon/ This directory contains the icons for your application.

CHAPTER 6: Rhodes

Table 6-2. Files and folders in the /app directory generated by the “rhogen app” command

Application File/Folders Description

/Settings Responsible for login and device specific settings.

/helpers Contains functions designed to help in the development process.

application.rb Application specific setup and configuration.

index.erb The default-landing page for the application. This page will typically have
links to the controllers for at least some of the data models.

layout.erb Contains the header file for the entire application.

loading.html The initial loading page on startup

The file types that have been generated for you in the application include Ruby files (*.rb)
that contain application business logic and configuration, and HTML with embedded
Ruby files (*.erb) (www.ruby-doc.org/stdlib/libdoc/erb/xrdoc/) for your user interface.
These are the two main file types that you will be working with when writing Rhodes
applications.

HTML, CSS, and Ruby are what Rhodes developers use to create the layout of the user
interface; rather than writing code to build native Ul controls with libraries such as UIKit
on the iPhone.

Running the Application

To run the application in a simulator or on the device, you may simply run a rake task
from your application directory. Rake is a simple Ruby build program with capabilities
similar to make. See Table 6-3 for a list of commands. Note that running the application
is not any harder on the device (and on some platforms it is faster than in the simulator),
but you do need to set up cryptographic digital signatures (see platform chapters 2-5 for
details).

Rhomobile also provides a desktop simulator for Rhodes that can be used on Windows
platforms, which has a much faster startup time than the simulators and can be effective
for quickly testing your application logic. To test your Ul code, you need to run it on the
simulator or device for the platforms you are targeting. The Windows simulator does not
attempt to simulate the browser differences between the different smartphone
platforms.

CHAPTER 6: Rhodes

Table 6-3. Rake commands for building and running Rhodes applications

Gommand

Purpose

rake clean:android
rake clean:bb
rake clean:iphone
rake clean:win32
rake clean:wm

rake device:android:debug

rake device:android:production

rake device:bb:debug

rake device:bb:production

rake device:iphone:production

rake device:wm:production
rake run:android

rake run:android:device
rake uninstall:android

rake uninstall:android:device
rake run:bb

rake run:iphone

rake run wm:emu

rake run wm:emucab

rake run wm:dev

rake run wm:devcab

Clean Android

Clean BlackBerry

Clean iPhone

Clean Rhomobile Win32 Desktop Simulator

Clean Windows Mobile

Build debug self-signed for Android device

Build production signed for Android device

Build debug for BlackBerry device

Build production for BlackBerry device

Build production for iPhone device

Build production for Windows Mobile device or emulator
Build and launch Android emulator

Build and install on Android device

Uninstall application from Android emulator

Uninstall application from Android device

Builds app, loads, and starts BlackBerry Simulator and MDS
Builds app, launches iPhone simulator

Build and run application on Windows Mobile 6 emulator
Build and install .cab on Windows Mobile 6 emulator
Build and run application on Windows Mobile 6 device

Build and install .cab on Windows Mobile 6 device

Running on the iPhone

You will need the iPhone SDK that is only available for Macintosh computers installed
for this section. For details on setting up the iPhone development environment, including
building for a device, see Chapter 2. This section will walk you through how to build
using the Rhodes platform, which depends on the Apple SDK and tools to build for the
iPhone or iPad. In your application directory, on the command line, enter: “rake
run:iphone”. You will see a lot of text output and it may take a minute or so before the
iPhone simulator launches. When the simulator appears, you won’t see your application.
You need to click on one of the dots on the bottom or drag the screen to show the
screen to the right where your application is. (Note: the simulator may appear as an iPad
or an iPhone Rhodes applications work on both. If you would like to see your application
on a different device, select Hardware » Device from the simulator menu and choose an
alternate device.) See Figure 6-2 for an illustration of how the simulator looks after
navigating to the screen with the application and then after the application is opened.

$ cd inventory/
$ rake run:iphone

If you get an error about it not finding the iphone sdk, please check your build.yml file and if
necessary, edit it to match the iPhone SDK version that you have installed.

-uil Carrier = 3:32 PM | -ail Carrier 3:32 PM

@ inventory,

Add Links Here...

Figure 6-2. Running on iPhone

CHAPTER 6: Rhodes

Running on Android

You can build for the Android on Mac, Windows or Linux. For details on setting up the
Android development environment, including building for a device, see chapter 3. Note
that you will need the Android Native development environment (NDK), as well as the
SDK and related components, but you will not need Eclipse. After the initial setup,
building for the Android and testing in the simulator is the same as building for the
iPhone, except that the rake tasks have “android” instead of “iphone” in the name and
the log files are found in different places.

In your application directory, on the command line, enter: “rake run:android”. You will
see a lot of text output and it will take several minutes before the Android emulator
launches. When the emulator appears, you won’t see your application. You need to
select the menu tab on the bottom of the screen to reveal all applications and you will
likely need to scroll to the bottom of that screen (Figure 6-3).

$ cd inventory/
$ rake run:android

-

EQS e &

Alarm Clock Browser Calculator

H& % &

Android ! Camcorder Camera Contacts Custom

s # W

DevTools Dialer

@

inventory Messaging

Figure 6-3. Running on Android

Running on BlackBerry

BlackBerry requires Windows to run its tools and simulator. It also requires Java, but
you won’t typically use Eclipse. For details on setting up the BlackBerry development
environment, including building for a device, see chapter 4. The business logic for a
BlackBerry application can be identical to every other platform; however, the view
implementation is often quite different due to limitations in the browser capabilities on

CHAPTER 6: Rhodes

the device. For more details on BlackBerry HTML Ul, see chapter 14, but the basics will
be covered in the rest of this section.

In your application directory, on the command line, enter: “rake run:bb”. You will see a
lot of text output and it will take several minutes before the BlackBerry simulator
launches.

$ cd inventory/
$ rake run:bb

Running on Windows Mobile 6

Windows Mobile 6 requires Windows to run its tools and simulator. It also requires MS
Visual Studio, even though you don’t typically use it for development with Rhodes. For
details on setting up the Windows Mobile development environment, including building
for a device, see chapter 5. (As of this writing, Rhodes does not support Windows
Mobile 7.) After the initial setup, building for Windows Mobile and running the application
in the simulator will be very similar to the Android and iPhone — there are some browser
differences, but the |E Browser is not as limited as the BlackBerry browser.

In your application directory, on the command line, enter: “rake run:wm:emu”. You will
see a lot of text output and it will take several minutes before the Windows Mobile
simulator launches.

$ cd inventory/
$ rake run:wm:emu

Generating a Model

Rhodes also includes a script to generate code that implements the Model-View-
Controller (MVC) pattern, similar to the Rails scaffold command. This will implement
common actions to display a list of items, show an individual item’s details, create,
update, and delete. To create a model and the corresponding views and controller
actions, use the “rhogen model” command. Note: more information about rhogen is
available at http://wiki.rhomobile.com/index.php/Rhogen. Just as with the “rhogen
app” command, you can also create the files by hand. Typically, your app will have one
or more models.

The model for the application that is detailed in this tutorial will be called “Product” (see
Listing 6-4). A product has attributes: brand, name, price, quantity, and sku. Issue
“rhogen model Product name,description,done” to generate the Product model for your
application.

Listing 6-4. Generating a model with views and a controller

$ rhogen model product brand,name,price,quantity,sku
Generating with model generator:
[ADDED] app/Product/index.erb

[ADDED] app/Product/edit.erb

[ADDED] app/Product/new.erb

[ADDED] app/Product/show.erb

CHAPTER 6: Rhodes

[ADDED] app/Product/index.bb.erb

[ADDED] app/Product/edit.bb.erb

[ADDED] app/Product/new.bb.erb

[ADDED] app/Product/show.bb.erb

[ADDED] app/Product/product_controller.rb
[ADDED] app/Product/product.rb

[ADDED] app/test/product_spec.rb

As you can see, more files have been added to the file system. Each model is defined in
its own subdirectory of the /app folder. The new files include the views for the default
controller actions, the configuration file for the model, and the controller.

In the model’s directory you will find product_controller.rb, which implements the
controller for the model. You will also see .erb files for all of the views associated with
the model. Finally, there is a product.rb file that sets properties on the model. Each
Rhodes controller implements actions to perform basic CRUD (create, read, update, and
delete) on the object generated by default by the scaffold. The template views generated
are shown in Table 6-4.

Table 6-4. Default views for Rhodes Model

View Purpose

index lists all of the objects

new displays the form to enter attributes for creating a new object
edit displays a form for editing object attributes

show displays the object attributes

The controller for the model (/app/Product/product_controller.rb) is very similar to a
Ruby on Rails controller in the sense that it contains all the basic CRUD actions with
consistent naming conventions. Most actions defined in the controller correspond to
view files in the same directory that have the action name with an .erb file type.

Now that you have the scaffold of the application and a basic understanding of the
structure, it’s time to finish our application by connecting the model’s view to our start
screen.

To do this you need to edit your application index by opening app/index.erb. If you were
to compile the application in its current state, you would still see the same start screen
that you saw when you first ran the application that displays “Add links here...”, with no
way to view the Ul for the model you just created. The code for the page should
currently look like Listing 6-5. The Sync and Login buttons in the toolbar are connected
to RhoSync by default (covered in the next chapter). You can delete them or modify the
Settings controller to use a web service rather than RhoSync.

CHAPTER 6: Rhodes

Listing 6-5. Default start screen (app/index.erb)

<div id="pageTitle">
<h1>Inventory</h1>
</div>

<div id="toolbar">
<div id="leftItem" class="blueButton">
<%= link_to "Sync", :controller => :Settings, :action => :do_sync %>
</div>
<% if SyncEngine::logged_in > 0 %>
<div id="rightItem" class="regularButton">
<%= link_to "Logout", :controller => :Settings, :action => :logout %>
</div>
<% else %>
<div id="rightItem" class="regularButton">
<%= link_to "Login", :controller => :Settings, :action => :login %></div>
<% end %>
</div>

<div id="content">

<1li>

Add Links Here...

</1i>

</div>

To add a connection to your Product model, change the title “Add links here...” to
“Products” and href to “Product” as shown in Listing 6-6. This will create a link to the
Product model’s index page: app/Product/index.erb—just with most web servers, the
default page for a URL is index and the relative URL will look for a sibling page to
index.erb that is also in the app folder. Note that most of the page is pure HTML and you
could put other links here or add graphics with an tag or add text. The part of the
page that is embedded Ruby code is inside <% ... %>.
Listing 6-6. Modified start screen (app/index.erb)
<div class="toolbar">

<h1 id="pageTitle">

Products

</h1>
</div>

<ul id="home" selected="true" title="Products">
Product</1i>

Rhodes links work by assuming the /app directory is the root directory of your
application. In the example you just wrote “Product” as the reference for the link. This is
because “Product” is a subdirectory of /app and since you didn’t specify a file in that
directory, it uses the default: the index page. This linking convention can be used
throughout your application.

CHAPTER 6: Rhodes

Now that you have your model index page hooked up to your application index you are
ready to build the application for one of the Rhodes supported platforms. Simply use the
appropriate “rake:run” command for your platform of choice. See Figures 6-4 to 6-8 to
see how all of the screens appear on the iPhone. The functionality is identical across
platforms; however, the visual details conform to the target platform.

-uil Carrier = 10:07 PM

Products

Figure 6-4. Modified start screen (app/index.erb) as seen on iPhone

.uil Carrier = 10:14 PM .aill Carrler = 10:19 PM

Figure 6-5. Tasks list page (app/Product/index.erb), empty and with items in the list

CHAPTER 6: Rhodes

il Carrier = 10:15 PM

 New

Create

Figure 6-6. Tasks new page (app/Product/new.erb)

-ail Carrier = 10:16 PM

. Back o)fe

Brand Ford

Name Flitter

Price $30,000

Quantity 4

Sku

Figure 6-7. Task details page (app/Product/show.erb)

CHAPTER 6: Rhodes

-aill Carrier = 10:18 PM

Ford
Flitter

$30,000

Update

Figure 6-8. Product edit page (app/Product/edit.erb)

Debugging Tips

Finding the Rhodes log file and tips for effective debugging differs depending on the
environment you are running for the application. Details are given below for some of the
platforms that Rhodes supports. The latest version of Rhodes offers an interactive
debugger, but you can also insert print statements (puts in Ruby) in your code and see
the output the log file that Rhodes generates called RhoLog.txt. RholLog includes the
generated HTML that is being rendered, information about requests being sent to your
controller, and even some logging about the sync process.

To enable debugging with the log file, you need to edit the rhoconfig.txt and make sure
that “LogToOutput=1". Rhodes may run slower when debugging is on, so you should
reset this to “0” when you build for production.

iPhone

You can find RhoLog.txt (and the sqlite DB) that rhodes uses in “~/Library/Application
Support/iPhone Simulator/User/Applications”. In this directory you may see several
directories that are long hexadecimal strings. These correspond to the different
applications you have installed in your simulator. Most likely you will just have one.
Change into that directory (cd) and then cd to the Documents subdirectory. In there, you
should file RhoLog.txt. You can watch this file with

CHAPTER 6: Rhodes

tail -f Rholog.txt
while the application is running.

You can also reset the simulator to a clean state using Reset Content and Settings... from
the iPhone Simulator menu if things go wrong and you want to start over again.

The log provides a lot of useful information by default. You can also put statements,
such as “p @product”, in your controller to diagnose issues you may run into.

BlackBerry

Configure your BlackBerry simulator to use a directory as an SD card.
When running in the BlackBerry simulator, you can find the log here:
<your JDE directory>\simulator\sdcard\Rho\<your app name>\RholLog.txt

Assuming you set <your JDE directory>\simulator\sdcard as the directory for the SD
card. You can watch this file while the simulator is running using tail -f.

To manually remote everything from your simulator:
1. open this directory: <your JDE directory>\simulator
2. delete sdcard folder
3. run clean.bat

You should install the complete BlackBerry JDE, not the standalone simulator
downloads. The standalone downloads do not contain clean.bat.

Android

Run the command:
adb logcat

Rhodes Device Capabilities

To create a compelling mobile application, you will want to take advantage of
capabilities that are available on a phone, differentiating the experience from a web or
desktop application. Most applications want to interface with native phone functionality
such as the GPS, the camera, and the contacts. Access to these features is
implemented quite differently on different smartphone platforms, but Rhodes lets you
write simple, clean code that will work on all the supported platforms.

By writing your application in Rhodes your application gains access to the same native
APIs that applications written directly in the native toolkits have access to. Moreover, by
coding to the Rhodes API, you do not have to worry about rewriting your application on
each platform where these APIs are implemented in completely different ways. Rhodes

CHAPTER 6: Rhodes

abstracts away and often simplifies accessing these capabilities so you can focus on
your application and business logic instead. See Table 6-5 for the level of support for
specific device capabilities across the platforms that are supportd by Rhodes.

Table 6-5. Rhodes device capabilities matrix *

Capability iPhone Windows Mobile BlackBerry Symbian Android
Geolocation Yes Yes Yes Yes Yes
PIM Contacts Yes Yes Yes Yes Yes
Camera Yes Yes Yes Yes Yes
Date/Time Picker Yes 2.0 Yes 2.1 Yes
Native Menu/Tab Bar Yes 2.0 Yes 21 1.5
Audio / Video Capture 2.0 2.0 2.0 2.1 2.0
Bluetooth 2.0 2.0 2.0 2.1 2.0
Push / SMS Yes 2.0 Yes 2.1 2.0
Landscape Orientation 2.0 2.0 2.0 2.1 2.0
Native Maps Yes 2.0 Yes 21 1.5

In Rhodes, device capabilities are invoked from within the Ruby environment. Some
device capabilities, such as geolocation, can also be invoked directly from JavaScript if
the browser on the platform supports it. This is independent of Rhodes implementation
of the same capability but gives you another option. Note, for example, if you code to
the browsers JavaScript API for geolocation, that code may not be portable to other
devices where the browser does not include this capability.

In this section we will explore three different device capabilities: contacts, camera, and
geolocation. For the rest, the Rhodes system APl samples project® has small examples
that show how each APl is used.

% http://wiki.rhomobile.com/index.php/Rhodes#Device Capabilities .2F Native UI Elements

® http://github.com/rhomobile/rhodes-system-api-samples . APl documentation is available
on the Rhodes wiki: http://wiki.rhomobile.com/index.php/Rhodes

CHAPTER 6: Rhodes

Contacts Example

Smartphones all have a built-in PIM (Personal Information Management) Contacts
application that allows end users to store phone numbers and addresses. Smartphone
platforms allow applications to access those contacts through APlIs that differ per
platform, but generally offer the same capabilities. In this section, we will step through
writing a Rhodes application that will allow you to show and edit native PIM contacts using
Rhodes APIs on both the iPhone and Android. This example is written using Rhodes 2.0.2.

The complete source code to the completed application is available online at:
http://github.com/VGraupera/Rho-Contacts-Sample.

Generate a skeleton application using the rhogen command as shown in Listing 6-7.
Listing 6-7. Creating the Contacts application using the rhogen command

> rhogen app Contacts

Generating with app generator:

[ADDED] Contacts/rhoconfig.txt

[ADDED] Contacts/build.yml

[ADDED] Contacts/app/application.rb
[ADDED] Contacts/app/index.erb
[ADDED] Contacts/app/index.bb.erb
[ADDED] Contacts/app/layout.erb
[ADDED] Contacts/app/loading.html
[ADDED] Contacts/Rakefile

[ADDED] Contacts/app/helpers
[ADDED] Contacts/icon

[ADDED] Contacts/app/Settings
[ADDED] Contacts/public

> cd Contacts/

> rhogen model Contact first name,last_name,email_address,business number

Generating with model generator:

[ADDED] app/Contact/index.erb

[ADDED] app/Contact/edit.erb
[ADDED] app/Contact/new.erb
[ADDED] app/Contact/show.erb
[ADDED] app/Contact/index.bb.erb
[ADDED] app/Contact/edit.bb.erb
[ADDED] app/Contact/new.bb.erb
[ADDED] app/Contact/show.bb.erb
[ADDED] app/Contact/contact_controller.rb
[ADDED] app/Contact/contact.rb
[ADDED] app/test/contact_spec.rb

Edit your rhoconfig.txt file and change

start_path = '/app'
to
start_path = '/app/Contact’

CHAPTER 6: Rhodes

Edit your contact_controller.rb file to look like Listing 6-8.
Listing 6-8. Contacts/app/Contacts/contact_controller. rb

require 'rho/rhocontroller’
require 'rho/rhocontact’

require 'helpers/browser_helper’

class ContactController < Rho::RhoController
include BrowserHelper

#GET /Contact
def index

@contacts = Rho::RhoContact.find(:all)

@contacts.to_a.sort! {|x,y| x[1]['first name'] <=> y[1]['first name'] } if @contacts
end

GET /Contact/{1}
def show

@contact = Rho::RhoContact.find(@params['id"'])
end

GET /Contact/new
def new
end

GET /Contact/{1}/edit
def edit

@contact = Rho::RhoContact.find(@params['id"'])
end

POST /Contact/create

def create
@contact = Rho::RhoContact.create! (@params['contact'])
redirect :action => :index

end

POST /Contact/{1}/update

def update
Rho: :RhoContact.update_attributes(@params['contact'])
redirect :action => :index

end

POST /Contact/{1}/delete
def delete
Rho: :RhoContact.destroy(@params['id"])
redirect :action => :index
end
end

You require ‘rho/rhocontact’ to load the Rhodes PIM contact API.

In the index action, you create an array of all the contacts on the device using
Rho::RhoContact.find(:all) and assign to an instance variable

@contacts = Rho::RhoContact.find(:all)

CHAPTER 6: Rhodes

Rho::RhoContact.find(:all) will return all the contacts on the device. Unfortunately, there
is no way to limit it to a certain number of contacts or to specify a sort order, so in the
next line you sort the contacts array manually in Ruby by first_name provided, of course,
there are any contacts at all.

Next, edit the Contact/index.erb to look like Listing 6-9.
Listing 6-9. Contacts/app/Contact/index.erb

<div id="pageTitle">
<h1>Contacts</h1>
</div>

<div id="toolbar">

<div id="leftItem" class="regularButton"><%= link to "Home",
Rho::RhoConfig.start _path %></div>

<div id="rightItem" class="regularButton"><%= link to "New", :controller =>
:Contact, :action => :new %></div>
</div>

<div id="content">

<% @contacts.each do |obj| %>
<1li>
<a href="<%= url for :action => :show, :id => obj[1]['id'] %>">
<%= "#{obj[1]['first_name']}
#{obj[1]['last_name']}" %>

</1i>
<% end %>

</div>

In this ERB template, you iterate through the array of contacts and output each one in a
list. Because of the special HTML CSS classes you use, the list will look like a native
iPhone table.

Now, build and run the application for the iPhone simulator:
> rake run:iphone

Before launching our Rhodes Contacts application in the simulator, open the native
Contacts application in the simulator and add some contacts. By default the iPhone
simulator address book is empty. | added two contacts: John Doe and Abraham Lincoln.

Now launch our Rhodes Contacts application, and you will see the same contacts
(Figure 6-9).

CHAPTER 6: Rhodes

-l Carrier = 10:02 PM

John Doe

Abraham Lincoln

Figure 6-9. Rhodes Contacts application

Similarly, rebuild the application for the Android using

> rake run:android

Again, add some contacts to the native Contacts application in the Android emulator
and then launch our Rhodes Contacts application.

The Rhodes Contacts API also allows you to create, update and delete native contacts.
The controller methods for these actions can be seen back in Table 6-4. These will work
with the standard views that were generated using the rhogen model command.

Camera Example

In this section, we will step through writing an application that will allow you to take
pictures using the camera and also pick images that are already on the smartphone
using Rhodes APIs on both the iPhone and Android. This example requires Rhodes 1.5.

The full source code to the completed application is available online at:
http://github.com/VGraupera/Rho-Photos-Sample

Generate a skeleton application using rhogen by typing the following into the command
line:

> rhogen app Photos

Then create a model for the Photos using

> cd Photos
> rhogen model Photo image uri

CHAPTER 6: Rhodes

In rhoconfig.txt at the root of your application directory, change the start_path to change

the startup page for your application:
start_path = '/app/Photo’

In your Photo directory, you can delete all the ERB files except for index.erb. Edit your

index.erb to look like the Listing 6-10.
Listing 6—10. Contacts/app/Photo/index.erb

<div class="toolbar">
<h1 id="pageTitle">Photos</h1>
</div>

<div id="photos" title="Photos" selected="true">
<%= link to '[Choose Picture]', { :action => :choose }%>
<%= link to '[Take Picture]', { :action => :new }%>

<% @images.reverse_each do |x|%>
<img src="<%=x.image_uri%>" width="300px'><a
href="<%=url for(:action => :delete, :id =>x.object)%>">Delete

<% end %>
</div>

Edit the photo_controller.rb file to look like the Listing 6-11.
Listing 6—11. Contacts/app/Photo/photo_controller.rb

require 'rho/rhocontroller’
class PhotoController < Rho::RhoController

def index
puts "Camera index controller"
@images = Photo.find(:all)

end

def new
Camera: :take_picture(url_for :action => :camera_callback)
redirect :action => :index

end

def choose
Camera: :choose_picture(url for :action => :camera_callback)
redirect :action => :index

end

def delete
@image = Photo.find(@params['id'])
@image.destroy
redirect :action => :index

end

def camera_callback
if @params['status'] == 'ok'
#icreate image record in the DB

CHAPTER 6: Rhodes

image = Photo.new({'image_uri'=>@params['image uri']})
image.save
puts "new Image object: " + image.inspect
WebView.navigate "/app/Photo"
end
end
end

You will save your photos using the Photo model. You can create new photos either by
using the camera with

Camera: :choose picture(url for :action => :camera_callback)

or selecting a pre-existing image on the phone using

Camera: :choose picture(url for :action => :camera_callback)

Both of these APIs are asynchronous and require you to provide a callback method (see
the camera_callback method in Listing 6-11 that is called after the picture is taken or
chosen by the user. In your callback, you navigate back to the home page that will load
all the photos including any new ones. You have to call WebView.navigate rather than
redirect because this callback is called in a different thread than the main Rhodes Ul
thread.

Geolocation and Mapping Example

Geolocation is supported on all of the devices that are compatible with Rhodes. Native
mapping is only supported on the iPhone, BlackBerry, and Android. You can still do
mapping on any platform using the web browser and you can use geolocation features
without mapping, although they are often used together. The example in this section
follows such a typical use case that integrates the results of geolocation into a map.

The example application illustrated in this section allows the user to fill in a web form
and check a box to use the current location or optionally fill in a zip code, and then
displays all of the locations on a map. The complete application was built to show where
conference attendees originated from and can be found at
http://github.com/blazingcloud/rhodes rubyconf—it is a connected application that
saves data to a server via RhoSync, but that isn’t required for using geolocation. The
example code in this section could be used offline or with other means of connecting to
a server.

When testing on the device simulators, you need to be aware of how to simulate your
location. On the iPhone simulator, your current location is always 1 Infinite Loop,
Cupertino, CA (Apple’s headquarters). On the BlackBerry, you can set the location
through the menu on the simulator. On the Android, you connect to the emulator using
netcat (see Listing 6-12) and send a “geo fix” command. Note that the two numbers
following geo fix are longitude then latitude.

CHAPTER 6: Rhodes

Listing 6-12. Using netcat to set the current location in the Android emulator.

nc localhost 5554

Android Console: type 'help' for a list of commands
0K

geo fix -122.1 37.2

0K

For the native mapping to work on the Android, you need to install the “Google APIs by
Google Inc., Android APl 3”package and then you can use the Google Map capabilities.
To do that, run android/android-sdk-r04-mac_86/tools/android (you’ll see a window
appear), click Settings, check Force https://... sources to be fetched using http://...
and press Save&Apply. Then select the Available item in left list, expand https://dlI-
ssl.google.com/...., check package Google APIs by Google Inc., Android API 3,
revision x and press Install selected.

Then you’ll need to obtain your own Google API key for Android as described here:
http://code.google.com/intl/en/android/add-ons/google-apis/mapkey.html and add
it to application’s build.yml (see Listing 6-13).

Listing 6-13. Section of build.yml file with Android configuration

android:
mapping: yes
http://code.google.com/intl/en/android/add-ons/google-apis/mapkey.html
apikey: "XXXYYYcZzZzvAaBbCcdddDDDXXX999"

Creating the application

Generate the application and a “person” model to which you will add geolocation and
mapping, using commands illustrated in Listing 6-14.

Listing 6-14. Generating the application and model using rhogen commands

rhogen app map_example
cd map_example
rhogen model person name,latitude,longitude,zip,twitter

Then modify the “new person” form, adding a checkbox for “Use Current Location.” This
will not be saved in the model, but is a flag that will be sent to the controller (see create
action in Listing 6-15).

Listing 6-15. In map_example/app/Person/new.erb

<form title="New Person"
class="panel"
id="person_new_form"
method="POST"
action="<%=url for(:action => :create)%>" selected="true">
<fieldset>
<input type="hidden" name="id" value="<%=@person.object%>"/>

<div class="row">
<label>Name: </label>
<input type="text" name="person[name]"/>
</div>

CHAPTER 6: Rhodes

<div class="row">
<label>Use Current Location: </label>
<input type="checkbox"
name="person[use_current_location]" />
</div>

<div class="row">
<label>City, State or Zip: </label>
<input type="text" name="person[zip]"/>
</div>

<div class="row">
<label>Twitter: </label>
<input type="text" name="person[twitter]"/>
</div>

</fieldset>
<input type="submit" value="Create"/>
</form>

When the user submits the “new person” form (defined in new.erb), the create action will
be called (defined in the create action of the PersonController class). Modify this code to
detect the current location if the user has checked the use current location checkbox.
In Listing 6-16, you see how to access GPS data programmatically: using the
GeolLocation class built into Rhodes. These are synchronous calls that return
immediately, and return floating-point numbers.

If either latitude or longitude are 0, it means the GPS is not ready to use. Note that
calling GeolLocation.latitude or GeolLocation.longitude for the first time will trigger a call
to the underlying geolocation capability; however, the devices will typically take several
calls to return a result since the user must allow the app to access their location and the
hardware can take several seconds to become responsive. Also note that Rhodes
requires that data be saved in String format, so the Ruby to_s (to string) method must be
called on each value after retrieving the location.

Listing 6-16. In map_example/app/Person/person_controller.rb, create action

def create
person_attrs = @params['person’]
if person_attrs['use_current location'] == "on"

person_attrs.delete('use_current location')
sleep(5) until Geolocation.latitude != 0
person attrs['latitude'] = GeolLocation.latitude.to s
person attrs['longitude'] = Geolocation.longitude.to s
end
@person = Person.new(person attrs)
@person.save
redirect :action => :index
end

This application also includes an example of mapping, showing the location of each
person on a map. Listing 6-17 shows the code; the MapView class in Rhodes produces
a map overlay. There are small differences in the map user interface that are appropriate

CHAPTER 6: Rhodes

to each platform: on the iPhone it has close button, on the BlackBerry a close menu
item, and on Android the user can simply use the back button. When the close/back
action is triggered, the previously displayed view is revealed.

Native map Ul is available on the iPhone, BlackBerry, and Android.
Listing 6-17. Controller method to instantiate a map overlay of a view

def map
@people = Person.find(:all)

platform = System::get property('platform')
if platform == 'APPLE' or platform == 'Blackberry' or platform == 'ANDROID'
annotations = @people.map do |person|
result = {}
unless person.latitude.nil? or person.latitude.empty?
result[:latitude] = person.latitude
result[:longitude] = person.longitude
end
result[:title] = person.name
result[:subtitle] = person.twitter
result[:street address] = person.zip
result[:url] = "/app/Person/#{person.object}/show"
result
end
p "annotations=#{annotations}"
MapView.create(
:settings => {:map_type => "hybrid", :region => [33.4,-150,60,60],
:zoom_enabled => true, :scroll enabled => true,«
:shows_user location => false},
:annotations => annotations

redirect :action => :index
end
end

Chapter

RhoSync

Synchronization servers provide the ability for mobile users to access information even
when the device is offline or disconnected. They can also dramatically simplify the
programming model. Developers can assume the data that they need is available locally
in a database instead of writing code to access the network and take apart the data
from some wire format.

In the past, synchronization servers assumed access to an underlying database for the
application they wanted to mobilize. This was true of sync servers such as IntelliSync
(now discontinued by Nokia) and Motorola Starfish. With the advent of Software As A
Service (SaaS), such as SalesForce, Siebel On Demand, SugarCRM On Demand, and
others, direct access to a database can no longer be assumed. This invalidated the
approaches of the whole first generation of mobile sync servers. And it’s now known to
be a worst practice to integrate via databases.

The good news is that all SaaS vendors now expose some form of web services
interface, typically a SOAP or REST web service. This creates an opportunity for a new
kind of sync server for mobile devices targeted to enterprise apps exposing web
services. A new sync server can also focus on today’s much more powerful
smartphones.

RhoSync is a new sync server framework concentrating on mobilizing applications
exposing web services to smartphones. Like Rhodes, the RhoSync server is open
source (but distributed under GPL), providing freedom and flexibility if needed. RhoSync
is written in Ruby, but more importantly, connections to back-end services (which are
pluggable extensions to RhoSync) are written in Ruby. RhoSync facilitates mobile
development by providing a simple way to integrate data from external web services into
Rhodes-based smartphone applications. The complexity and lines of code required to
connect users to your back-end services are orders of magnitude smaller than the size
and effort that has typically been associated with sync projects: for example, a basic
RhoSync source adapter requires only 20 lines of easily understandable code.

In this chapter, you’ll get the background you need to develop an understanding of the
RhoSync server, then it will guide you in using RhoHub, a hosted RhoSync server, or
setting up your own RhoSync server with a very simple application. The chapter

113

CHAPTER 7: RhoSync

concludes with a complete sample application to demonstrate end-to-end integration
and to introduce a real-world use case for using RhoSync with Rhodes.

How the Sync Server Works

The RhoSync server acts as a middle tier between a mobile application and the web
service that it accesses for remote data. The RhoSync server stores information from
back-end systems in its data store as object-attribute-value (OAV) “triples” capable of
representing any type of arbitrary data. OAV triples allow small changes between the
device and the back end to be communicated back and forth very efficiently. Because
RhoSync operates on individual attribute values rather than entire objects, RhoSync
handles conflicts elegantly.

Using the RhoSync server framework, you will create an application. An application
consists of one or more sources, subclasses of the SourceAdapter class, each of which
contains instructions for how the RhoSync server should perform sync operations. The
source adapter contains the instructions used to populate the data store on the
RhoSync server with information from a web service. When a client device syncs, the
source adapter manages the process used to take data from the device’s data store,
update its own data store, then populate your back-end system.

The RhoSync server framework also manages user authentication for your application.
All client applications connecting to a RhoSync server require authentication. However,
if your application does not require users to authenticate individually, you can simply
accept all client connections, and automatically authenticate anyone using the
application.

Data Storage: Why Triples?

RhoSync stores copies of data asOAV triples (see Table 7-1). This common data
representation technique is often referred to as either an Entity-Attribute-Value (EAV)
schema or a “property bag.” Wire formats for synchronization almost always use such a
format, as it allows more efficient handling of incremental changes, particularly in
conflicts where two users have changed the same record. The OAV triple format is also
good for handling arbitrary data types from the back end, in the event the data may not
be a simple relational database record. Additionally, the triple format handles changes to
database structure in a flexible way, without the need to migrate your database in yet
another environment.

Table 7-1. Object-attribute-value triples

Column Purpose
object ID of the object instance on the back-end system
attrib Attribute name

value Attribute value for the specified object

CHAPTER 7: RhoSync

RhoSync Source Adapters

A RhoSync source adapter is a Ruby class that contains a set of methods that are called
as needed by the RhoSync server. Source adapters are subclasses of the
SourceAdapter class. If you are running your own RhoSync server, you can run a
command-line script to generate your source adapter (see Listing 7-1). If you are using
RhoHub, a source adapter will automatically be generated for each object in your
application. The following two sections provide a detailed walkthrough of setting up an
application using RhoHub or a locally installed RhoSync server.

Listing 7-1. Commands for generating server app and source adapter

rhosync app storemanager-server
cd storemanager-server/
rhosync source product

The default source adapter class will resemble Listing 7-2.
Listing 7-2. Source Adapter Class Skeleton

class Products < SourceAdapter
def initialize(source, credential)
super(source, credential)
end

def login
end

def query(params=nil)
end

def sync
super
end

def create(create_hash, blob=nil)
end

def update(update_hash)
end

def delete(object id)
end

def logoff
end
end

Source adapters most commonly include seven core methods: login, query, sync,
create, update, delete, and logoff. To implement the functionality desired for your app,
simply implement the methods included in the source adapter. The following sections
provide an overview of these methods.

CHAPTER 7: RhoSync

Initialize

The initialize method is the ideal location for any setup you may need to include in your
source adapter. In the Ruby language, the initialize method is the class constructor.

The arguments passed to initialize are source and credential. Source is a reference to
the source settings in app/Settings/setting.yml. Credential is provided for backwards
compatibility, and is always nil in RhoSync 2.0.

Authenticating with Web Services: Login and Logoff

If your back-end application requires authentication in order to perform web service
queries, you will need to add a login method to your source adapter.

The login method shown in Listing 7-3 is taken from the source adapter for the
SugarCRM source adapter—you can find the full implementation in
RhoSync/vendor/sync/SugarCRM.

Listing 7-3. Login method with back-end authentication

def login
u=@source.login
pwd=Digest: :MD5.hexdigest(@source.password)
ua={'user_name' => u, 'password’' => pwd}
ss=client.login(ua,nil) # this is a WSDL
if ss.error.number.to i != 0
puts 'failed to login - #{ss.error.description}'
else
@session_id = ss['id']
uid = client.get user id(session_id)
end
end

This login method accesses parameters that have been set for the source as attributes
of the @source variable. The @source variable has several attributes that are stored on
the RhoSync server for each user for each app.

When accessing the session, it is recommended that you use the same instance variable
across all source adapters. In this example, you should use the @session_id variable to
access the state of the current session in subsequent source adapter methods.

Note that writing such a login method in your source adapter class does not manage
authentication of the user with the RhoSync server. The source adapter login method
merely performs the oft-required first step when interacting with a web service. RhoSync
requires that every client authenticate to allow them to use the RhoSync server.

There is also a current_user method you can use: current_user.login returns the current
username that was passed to authenticate.

Should you need to terminate the session with the back end, create a custom logoff
method. Often this is not required, since many web services simply timeout. This

CHAPTER 7: RhoSync

method would most typically be used in the event that the application allowed an end
user to log out for security reasons or to manage multiple identities.

Retrieving Data: Query and Sync

To populate data to your device, you’ll need to implement a query method in your
source adapter. The sync code then dissects the query results.

Query

Whether your web service uses SOAP, JSON, XML, or any other protocol or data format
(including direct access to a database), Ruby offers a wide assortment of standard and
third-party libraries that you can use to easily integrate with any kind of web service or
data source.

Imagine a simple back-end application where the web services are published as REST
interfaces and return JSON. A sample query method to interact with this simple product
catalog web service will retrieve all products in a JSON request. A sample result is given
in Listing 7-4.

Listing 7-4. JSON response returned from back end

[
{
"product":
{
"name": "inner tube", "brand": "Michelin", "price": "535",
llquantityll: ll142ll) Ilidll: 27, “Sku“: "it—931“,
"updated_at": "2010-03-25T08:41:03Z"

}
1
{
"product”:
"name": "tire", "brand": "Michelin", "price": "4525",
"quantity”: "14", "id": 29, "sku": "t-014",
"updated_at": "2010-03-25T08:41:03Z"
}
1
{
"product":
"name": "wheel", "brand": "Campagnolo", "price": "4525",
“quantity": lI8ll, llidll: 31, "Sku": “w—422“1
"updated_at": "2010-03-25T08:41:03Z"
}
}

]

In the Ruby language, a simple way to make web requests using the REST pattern is to
use the “rest-client” standard library and, likewise, JSON can be parsed with the ‘json’

CHAPTER 7: RhoSync

library (see Listing 7-5). These dependencies must be explicitly specified with the Ruby
“require” command at the top of the file. (This would be true of any Ruby application.)

Listing 7-5. Source adapter class with query implementation
require 'json'
require 'rest-client'

class Product < SourceAdapter
def initialize(source,credential)
@base = "http://rhostore.heroku.com/products’
super(source,credential)
end

def login
end

def query
parsed=JSON.parse(RestClient.get("#{@base}.json").body)

@result={}
if parsed
parsed.each do |item|
key = item["product"]["id"].to_s
@result[key]=item["product”]
end
end
end

def sync
super
this creates object value triples from an @result variable
containing a hash of hashes
end
end

The first part of the query method fetches the data from the web service and parses the
result into an interim format (stored in the variable “parsed”). The code then loops
through the items returned from the query, and creates name-value pair objects in the
format expected by the RhoSync server.

The RhoSync server expects the query method to return data by populating the @result
instance variable. In this example, as is typical, @result is returned as a hash of hashes,
indexed using each product’s id obtained from the JSON returned from the web service.

Each hash key in the inner hash represents an attribute of an individual object. All data
types must be strings; therefore, the hash values, including the product id numbers in
this example, need to be strings rather than integers. (This is accomplished by calling
to_s, which converts any Ruby object to a string.) The response to the client is formatted
as shown in Listing 7-6.

Listing 7-6. Result format returned to client device

"27"=> {"name"=>"inner tube","brand"=>"Michelin"} ,
"29"=> {"name"=>"tire","brand"=>"Michelin"},
"31"=> {"name"=>"wheel","brand"=>"Campagnolo"}

}

CHAPTER 7: RhoSync

Sync

The sync code dissects the query results and puts them into the RhoSync data store. If
you populate @result with a multidimensional hash as was illustrated in the previous
example, you can avoid this task and use the default sync method (see Listing 7-7).

Listing 7-7. Default sync method

def sync
super
end

However, if you have a very large volume of data (hundreds of thousands of records),
populating @result as a hash of hashes would add too much time and memory
consumption. In those cases, using the “stash_result” function in your query method will
take the current @result and incrementally stash it in RhoSync’s data store. Then when
sync is called, all of the stashed data will be stored in RhoSync’s data store master
document.

Submitting Data: Create, Update, and Delete

To send information from your device to the back-end system, you’ll need to write code
for create, update, and delete methods in your source adapter (though you don’t have to
implement all of them if your app doesn’t require it).

Create

In the create method, you can assume that you will receive an object in the form of a
hash of name-value pairs. The default name assigned to this argument is “create_hash,”
although since this is just the name of the argument to the method, you can feel free to
assign any name to the argument in your implementation.

In an inventory-tracking application, the hash returned from the client for a new record
might resemble Listing 7-8.

Listing 7-8. Create parameter format
{llskull=>II999ll’Ilnamell=>lltirell, Ilbrand“:)IlMichelinll’ Ilpricell=>ll$49“}

The create method needs to make use of the data in this parameter to do its work.
Listing 7-9 shows an example of a create method that posts to
http://rhostore.heroku.com/rhostore/products (defined as the instance variable
@base in the beginning of the previous example). The rhostore web service is a Rails
application, where the create takes parameters like: product[brand] = Michelin. Note
that this example continues to use the RestClient Ruby library, assuming that the
dependency was declared with a “require” statement with the previous example. You
need to return the ID of the newly created object from your create call.

CHAPTER 7: RhoSync

Listing 7-9. Source adapter create method

def create(create_hash, blob=nil)
result = RestClient.post(@base, :product => create_hash)

after create we are redirected to the new record.
The URL of the new record is given in the location header
location = "#{result.headers[:location]}.json"

We need to get the id of that record and return it as part of create
so rhosync can establish a link from its temporary object on the
client to this newly created object on the server

new_record = RestClient.get(location).body
JSON.parse(new_record)["product"]["id"].to_s
end

Update

To allow editing an object from the client, include an update method in your source
adapter (Listing 7-10). This method will receive a similar hash of attribute values
discussed previously in the Create section. For updated records, the “update_hash”
parameter contains the updated values for the specified object, which can be identified
by retrieving the value of the attribute named “id.” Use this method to invoke the
backend system to perform the update. The rhostore web service expects an http put
action with a hash passed that has a single item with the name “product” and the value
of a hash containing attribute values to modify.
Listing 7-10. Update method
def update(update_hash)

obj_id = update_hash ['id']

update_hash.delete('id")

) RestClient.put("#{@base}/#{obj_id}",:product => update_hash)

en

Delete

To allow users to delete objects from the back end, include a delete method in your
source adapter. This method receives the id of the object to delete. The delete method
can then instruct the back-end system to delete the object. In this example, the rhostore
API deletes the object when an http delete action is sent to a specific URL that includes
the object id.

Listing 7-11. Update and Delete Method

def delete(object_id)
RestClient.delete("#{@base}/#{object id}")
end

CHAPTER 7: RhoSync

User Authentication

The RhoSync server requires every device to authenticate with the server, but that
doesn’t require authentication with your back end. If your back-end services require
authentication, you write your authentication code in a file called application.rb, which is
at the root of your server app directory.

The authenticate method receives the login and password strings from the device, and a
reference to the client server session object. Note that the session isn’t encrypted, and
is sent between the client/server, so it shouldn’t include sensitive information. Instead,
the Store interface can store sensitive info server-side.

Listing 7-12. Authentication example

class Application < Rhosync::Base
class << self
def authenticate(username,password,session)
true # do some interesting authentication here...
end

Add hooks for application startup here
Don't forget to call super at the end!
def initializer(path)

super
end

Calling super here returns rack tempfile path:

i.e. /var/folders/J4/34wGI-16H7S313GEZ-XX5E+++TI

Note: This tempfile is removed when server stops or crashes...
See http://rack.rubyforge.org/doc/Multipart.html for more info

Override this by creating a copy of the file somewhere
and returning the path to that file (then don't call super!):
i.e. /mnt/myimages/soccer.png
ef store blob(blob)
super #=> returns blob[:tempfile]
end
end
end

#
#
#
#
#
#
#
#
d

Application.initializer(ROOT_PATH)

When the authenticate method is called, it should return true or false (nil evaluates to
false in Ruby, so that is also acceptable) to indicate if this user should be allowed to log
in to RhoSync. If a user does not exist on the RhoSync server, but authenticate returns
true, a new RhoSync user with that login is created. However, although user
authentication is delegated to the back end, authorization to access restricted data will
require some user data to be stored on the RhoSync server. In order to associate data
with an account, the username (but not the password) will be saved in the RhoSync data
store.

If you want to store additional data about the user, you can put and get data in the
RhoSync data store using the user’s login as a key. See Listing 7-13 for an example.

CHAPTER 7: RhoSync

Listing 7-13. Storing and retrieving user data

Store.put_value("#{current user.login}:preferences","something")

my pref = Store.get value("#{current_user.login}:preferences")

Product Inventory Example

In this chapter, you will create an application that connects to a remote web service for
tracking inventory. People using the app will be able to view product inventory from the
device, as well as create and edit records.

You can build the example in this chapter for either RhoHub or a local RhoSync server.
First, we will guide you through building on RhoHub, then the identical application will
be illustrated using local installations of RhoSync and Rhodes.

Creating Your Application on RhoHub

RhoHub is a service hosted by Rhomobile at http://rhohub.com. It is free for open
source applications and has tiered pricing for private applications. It is great for getting
started quickly. RhoHub significantly simplifies the development and deployment
experience by providing hosting for your source adapter, which is automatically
conveniently re-deployed when you edit and save the source in the web-based IDE. It
also has a GUI wizard to generate an application and allows you to build the platforms
that Rhodes supports (Figure 7-1).

As of this writing, RhoHub is not yet running Rhodes and RhoSync 2, so the code
examples in this section do not match those detailed previously. However, it is likely that
the workflow will be similar and version 2 code changes are minor.

RhoHub.

Dashboard [T AR R, T

Actlve Apps

) Grewtn appilcation... Account Info
=1 My apps Disk Space Used 211 MB of SOMB

Total Apps g

in
SRantery @ TotalColaborators a

e What's New on RhoHub!
= MaiBukkit Ze

" o]
Generie to-do st
New Ralease: Massaging,
Foll ree @)

. Rhy c 122 Support,
=’ InventorySync 20 coﬁs,,m he (ED
Track product invartory
o] LECI =)
Just Added' Rhodes 121
‘ Sup. nee QY
sliny-conabosaten apps .é:itnelessed:debugglng -5 @

Figure 7-1. Rhomobile GUI wizard

CHAPTER 7: RhoSync

To set up an application with RhoHub, simply log in and click Create Application. For
this example, we’ll use the name “Inventory,” as shown in Figure 7-2.

RhoHub.

Dashboard

Create App

Nama

Jrvantory

Descriptin

Produst inventery fracking|:

Upload App

no file seleated

1 you airesdy began workng an your app lbealy pou can uplosd 8 *must b in 7k formel
2Zpfils musst Gontan 2 top-iswel dractory contaring your app's fies

Figure 7-2. Naming the application
It is important to note that your application source code will be public by default, so if
you want to keep it private, you will need to sign up for a premium account.

Fill in the fields on the Create New Object page as shown in Figure 7-3, then click
Create Object.

CHAPTER 7: RhoSync

Create New Object

Name - Represents the name of the Rhodes model and corresponding RhoSync source adapter

Product

Attributes - Provide a list of one or more attributes for the object

brand

name o
price S
quantity &
sku @

) Add New Attribute

Create Object) * RhoHub will generate a Rhodes model with a comresponding RhoSync source adapter for your application using the name
and attributes you entered.

Figure 7-3. Filling in the fields of the Inventory application

This generates both the code for your client application as well as the skeleton for your
source adapter (Figure 7-4).

RhoHub.
Dashboard
> console Clear Corsole Server Tme Mar 31, 2010, 1357 Downicad Rhodas Dasktop Cllent Vislty
Cfitm || Servr Fincin progect Find ¥ GemList [ResatDatabase H Save
= buld.yml Deioia | [D

opon 8| | glose all | raftosh

[imvantory

[l]

& mn

& () eon
&£ publc

!) Rakeo
| R

rhoconfiott

-
‘|name. Iaventory
i|bbver: 4.6
4|edk: fusr/lin/ruby/geme/l.8/gems/riodes-1.2.2
3|version: 1.2.
¢|epplog: rholog.tar
‘.lvendnr: rhomobile
A|iphone:
confiquration: Dabag
1t sdx: iphoneaimulatori.0
11 codesignidentity:
entitlementas

14
15

Figure 7-4. The generated client and server code for your application

CHAPTER 7: RhoSync

At least one user must be subscribed to the application. This example will connect with
a user called “tester” (Figure 7-5, top screen). To create the "tester” user, from your
account Dashboard, select the Users tab (Figure 7-5, bottom screen), and add a user
with the login and password both set to “tester.”

User List

A o User info
K Regatored TotaiUsara 20of3 usars
& soychicka 2 mantns oga &
& wster 2 manths s99 &

p' 200 2 Al rights rescrved
1] I o1 RioH Hub b Torms of Ssrvice | Stats

RhoHub.

Edit User

Hame

tester

Phone

630-563-4365

Emalli:
=
my@emailAddress.cam

Pacrword

Figure 7-5 Connecting a user

After the user is created, you need to subscribe the user to your application. From the
Dashboard tab, select your application. Select the Settings and scroll to the bottom
where you can subscribe users. Select the check box next to the user you just created,
and click Save. Figure 7-6 shows that the user “tester” is subscribed. The fields under

CHAPTER 7: RhoSync

Associated Attributes for Backend Credentials only need to be filled in if they will be
used by the source adapter’s login method (as detailed in the previous Login section).
They do not need to be filled in for this application.

Permissions

Filter by user login (Save

Rnohub logn Subscribe Associaled Altributes for Backend Credentials
ultrasaurus

Backend URL Backend Login Backend Password Backend Token

tester T4

Figure 7-6. Subscribe user with RhoHub

Implementing Your Source Adapter

Next, you would complete the implementation of the source adapter using the online
editor, which you can see by clicking on the Editor tab and then selecting the Server
tab. The source adapter will be named the same name as the object you just created. In
the preceding example, it would be named product.rb and by selecting the file name on
the left, the code will be displayed on the right.

To follow this example, simply comment out the raise in login and add the query method
detailed earlier in the chapter.

Testing Your Source Adapter

When using RhoHub, the source adapter is automatically loaded when it is generated,
and reloaded whenever you save a change to your code.

The generated source adapter class is already easily testable. In your Editor screen,
select the Server tab, select your product.rb source adapter in the left panel, then click
Show Records (highlighted in Figure 7-7).

Figure 7-7. RhoHub Editor with Source Adapter product.rb selected.

CHAPTER 7: RhoSync

This will display a list of records retrieved from the web service, as illustrated in Figure 7-8.

J230 @
Atributes Values

brand Google &

croated_at 2009-11-02T03:21:52Z &

name G2 &

price $9.99 &

quantity 10 &

sku 55555 &

updated_at 2009-11-06T21:54:112 2

o5 @
Tolal Objects: 14
Total Records: 2

Figure 7-8. RhoHub Show Records (with first record opened)

Creating Your Application on a Local RhoSync Server

An alternate approach to using the hosted sync on RhoHub is to deploy your own
RhoSync server application. During development, you will typically run RhoSync on your
development machine, which is effective for connecting via a simulator. However, in
production and for testing on devices, you will typically need to deploy on a server with
a host name or fixed IP that is generally available on the network.

RhoSync is typically installed as a Ruby gem. If you want to use the very latest RhoSync,
it is straightforward to run from source." To prepare your environment, install the
following dependencies:

B Ruby1.8.7

B RubyGems 1.3.7 or higher
B Redis 1.2.6

B Ruby Web Server

' You can find additional instructions at: http://wiki.rhomobile.com/index.php/RhoSync_2.0
#Installing RhoSync.

CHAPTER 7: RhoSync

B RhoSync is tested with mongrel. WEBFrick, the default web server
that ships with Ruby, is known to cause problems with HTTP
headers/cookies and is not recommended.

B The Mongrel web server is installed as a Ruby gem: sudo gem
install mongrel

Download the RhoSync server from GitHub:
git clone git://github.com/rhomobile/rhosync.git

or download the tarball from www.github.com/rhomobile/rhosync

OR install the gem.?

gem install rhosync

You will also need the rRby gem “rake.”

gem install rake
rake db:create
rake db:bootstrap

Generate the RhoSync Application

To use the RhoSync server, we need to generate an application. To generate the
skeleton of a source adapter on your local RhoSync server, type the command “rhogen
source product,” which will create a file called product.rb in the RhoSync application’s
sources subdirectory along with a spec file product_spec.rb in the spec/sources/
subdirectory. Source adapters are loaded from the rhosync/lib directory or
rhosync/vendor/sync (or a first-level subdirectory). Listing 7-14 shows the creation of the
source adapter from the command line.

Listing 7-14. Generating a RhoSync application

$ rhosync app storemanager-server
Generating with app generator:
[ADDED] storemanager-server/config.ru
[ADDED] storemanager-server/settings/settings.yml
[ADDED] storemanager-server/settings/license.key
[ADDED] storemanager-server/application.rb
[ADDED] storemanager-server/Rakefile
[ADDED] storemanager-server/spec/spec_helper.rb
$ cd storemanager-server/
$rhosync source product
Generating with source generator:
[ADDED] sources/product.rb
[ADDED] spec/sources/product_spec.rb

2 As of this writing, Rhodes 2.0 is in beta. To install the beta version: [sudo] gem install rhosync --pre

CHAPTER 7: RhoSync

Setting up RhoSync Server

The first time you run the server, you will need to run the following steps (within the
application directory that you generated previously).

On Mac and Linux:
[sudo] rake dtach:install

On all platforms:

[sudo] rake redis:install

Start Redis:

rake redis:start

Start your RhoSync server:

rake rhosync:start

If everything went well, you should see something like the following output on your
console:

[07:01:15 PM 2010-05-04] Rhosync Server v2.0.0.beta7 started... [07:01:15 PM 2010-05-04]
Sk sk sk sk sk sk sk skoskesksk skosk sk sk skosk sk sk skoskesk sk sk sk sk sk sk sk sk sk skok sk sk skokesk sk skokesk sk skokeskoskeskokeskoskeskokeskokskokskok [07:01:15 PM 2010_05_04]

WARNING: Change the session secret in config.ru from <changeme> to something secure.
[07:01:15 PM 2010-05-04] i.e. running “rake secret’ in a rails app will generate a

secret you could use. [07:01:15 PM 2010-05-04]
skok sk ok sk ok ok sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk ok sk sk sk ok sk sk ok sk sk skok sk sk ok sk sk skok sk ok ok

The RhoSync server has a web console that you can access at http://localhost:9292, or
use the command-line shortcut:

rake rhosync:web

Testing Your Source Adapter

If you are running your own RhoSync server, then you will need to restart the server
when you update a source adapter or authentication code in application.rb. Once you
have done this, you can generate the application shown in Listing 7-15.

First, create an application that has a product model with the following attributes:
brand,name,price,quantity,sku

Listing 7-15. Client application code

$ rhogen app inventory app

Generating with app generator:

[ADDED] inventory app/rhoconfig.txt
[ADDED] inventory app/build.yml

[ADDED] inventory app/app/application.rb
[ADDED] inventory app/app/index.erb
[ADDED] inventory app/app/layout.erb
[ADDED] inventory_ app/app/loading.html
[ADDED] inventory_app/Rakefile

[ADDED] inventory app/app/helpers
[ADDED] inventory_app/icon

CHAPTER 7: RhoSync

[ADDED] inventory app/app/Settings
[ADDED] inventory app/public

$ cd inventory app/

$ rhogen model product brand,name,price,quantity,sku
Generating with model generator:

[ADDED] app/Product/config.rb

[ADDED] app/Product/index.erb

[ADDED] app/Product/edit.erb

[ADDED] app/Product/new.erb

[ADDED] app/Product/show.erb

[ADDED] app/Product/controller.rb

Debugging RhoSync Source Adapters

The statement “puts @result.inspect” is an example of a debugging technique
commonly used when building Rhodes applications. Here, puts is used to inspect the
structure of the hash before returning from the method. If you are running your application
using your own RhoSync server, the output goes to regular standard output. There is no
built-in support for file logging, but you can create any logging you like in Ruby.

If you are new to Ruby, there is one catch with the use of puts as a debugging
technique: never use puts on the last line of your method. The puts method outputs your
data to the screen, but will return nil from the method, so when debugging your
application, always make sure to have the value you wish to return as the last line
executed within your method.

In RhoHub, you can view this output in the console.

Testing Your Application

Once your source adapter has been set up on the RhoSync server, you can try out the
application in the device simulator of your choice.

In the default scaffold-generated app, the user login is performed from the Options menu,
Login screen. Sync will be triggered automatically after login.

Chapter

PhoneGap

PhoneGap (http://phonegap.com/) is an open source framework for building native
mobile applications using HTML, CSS, and Javascript for iPhone, Android, BlackBerry,
Palm webOS, and Symbian WRT (Nokia). PhoneGap is a perfect for transforming a
mobile web application to a native application. It is easy to use for web developers. In
order to use PhoneGap, a web developer will need to learn how to build using one or
more device SDKs and tools, but all the application code can be HTML, CSS, and
JavaScript. In fact, a developer must be fairly expert in JavaScript to take advantage of
this platform. Depending on the perspective of the developer, it is a benefit or a
drawback that it provides little in the way of design patterns for mobile applications. It
will not help you with an application that works off-line, which means it is possible on
Android and iPhone with Webkit's Web Storage support,’ but not on BlackBerry (as of
this writing).

PhoneGap provides a rich collection of client-side JavaScript APIs with a method for
hosting your web application within a native mobile application. PhoneGap is a
sponsored project of Nitobi (http://nitobi.com), a software consultancy headquartered
in Vancouver BC. The framework started in 2008, and is free to use under an MIT
license.

The key advantage of creating a native mobile application with PhoneGap is that you
can drop in a mobile web application and build it into a native application that an end
user may install (or purchase). As a native application, it can access certain capabilities
not available from a web application, such as access to contacts data, geolocation,
camera, and accelerometer using PhoneGap’s JavaScript APIs.

To create a native application with PhoneGap, you start by writing a mobile web
application using HTML, CSS, and Javascript using whatever tools you are most
comfortable with. PhoneGap does not require your application to conform to any

" The Web Storage spec is still in working draft (and now considered separate from HTML 5
by the World Wide Web Consortium (W3C). It has been implemented already by many
browsers including Android and iPhone mobile WebKit browsers. For more information, see:
http://dev.w3.org/html5/webstorage/.

131

CHAPTER 8: PhoneGap

particular structure, nor does it provide any specific guidance about how to create your
app. If you already have an existing mobile web application, you may be able to easily
convert it to use in PhoneGap. PhoneGap works particularly well on such platforms as
iPhone and Android that include the WebKit browser with the advanced JavaScript and
CSS of HTML 5.

In fact, PhoneGap tracks advanced features of HTML 5 and the work of standards
bodies such as the W3C Device API Group (http://www.w3.0rg/2009/dap/) that defines
standards for Javascript APIs for mobile phone features. PhoneGap attempts to
implement emerging APIs to interact with device services such as contacts, camera, and
so forth today and make them available as part of its framework ahead of these APIs
being available in mobile browsers. The goal of PhoneGap is to cease to exist once
mobile browsers expose these APIs. A selling point of PhoneGap is that you are not
coding to a proprietary API but instead to what may in the future turn out to be W3C
standards.

An express goal of the PhoneGap project is for the project to not exist. We
believe in the web and devices should too. The web is moving off the desktop
and into the pockets of people all over the world. Phones are the new window
to the internet and, currently, they are second class. PhoneGap aims to move
your device to a nice first class window. With a foot rest. Maybe a pillow.

—phonegap.com

Note that while PhoneGap attempts to be a non-proprietary API and tracks standards
from W3C, those standards are not fully developed. PhoneGap exists to bridge the gap
between the standard and what is required to build a real application, so it contains APIs
that diverge from the standard. This is also perhaps a reason why the PhoneGap APls
change frequently.

PhoneGap is well-suited for anything you could do with a mobile web application. Like
all of the cross-platform frameworks that leverage the browser for Ul, it is not well-suited
for applications that require intense math calculations or 3-D animations. Neither is it
well-suited for developers needing to write data-driven applications, like most enterprise
applications, that must work offline using sync’d local data. PhoneGap does not provide
specific database support and relies on HTML5 database APIs for persistence, which
are not widely available.

The key benefit of being able to package and distribute your mobile web application is
that you have a marketplace for your application, such as the Apple App Store, Nokia’s
QV Store, or Blackberry App World. Your application will then have screen real-estate
wherever the phone installs applications and users can typically configure their phone to
display the application for quick access.

When running inside PhoneGap, your application can access certain devices capabilities
from JavaScript that are not otherwise available to web apps. The PhoneGap API
provides access to the following device capabilities:

CHAPTER 8: PhoneGap

Geolocation
Contacts
Vibration
Accelerometer
Camera

Sound playback

Device information
® Click to call

For a complete list of device capabilities (which differ across platform), see
http://wiki.phonegap.com/Roadmap. Some capabilities, such as orientation, recording
audio, and maps are available on only one or two platforms.

Nitobi also provides a JavaScript library optimized for mobilize devices similar to jQuery
called XUl (http://xuijs.com). XUl is much faster and lighter-weight than jQuery but has
only a subset of the functionality.

There are a large number of PhoneGap applications at the Apple App Store:
http://phonegap.com/projects.

Getting Started with PhoneGap

In this chapter, we will build a sample application for iPhone, Android, and BlackBerry.
PhoneGap also supports Symbian and Palm webQOS, but we will not cover those in this
chapter. You need to download and install the SDKs for whichever platforms you want
to develop for. If you are going to follow along for iPhone, you need to download and
install the iPhone SDK and sign up for the Apple iPhone developer program. The free
version will allow you to test your application in the simulator. (For details on how to
build for the iPhone device, see Chapter 2.) If you are developing for BlackBerry, you
need to install BlackBerry SDK, as well as Eclipse and several plug-ins—Phonegap
documents these in detail at http://phonegap.pbworks.com/Getting-Started-with-
PhoneGap-%28BlackBerry%29, or see Chapter 4. As with iPhone, BlackBerry development
is free with preview in the simulator, but you need to sign up and purchase keys to build
on the device. If you want to develop for Android, you will need to download the latest
Android SDK at http://www.android.com/ (see Chapter 3).

The PhoneGap project is separated into native projects for each device that you will
compile using the native toolkits for each device. Download the PhoneGap source from
http://phonegap.com/download or http://github.com/phonegap. If you want to easily
stay up-to-date with the latest releases, you can download the source using git. The
PhoneGap source code is not large and fairly transparent to read over. PhoneGap
maintains a wiki at http://phonegap.pbworks.com/.

Because PhoneGap is still in pre-release (at version 0.9.1 as of this writing), the authors
have found it most effective to keep the code up-to-date using git. Note that the git

CHAPTER 8: PhoneGap

repository uses submodules, so there are extra steps to get all of the source. As noted
in the readme, use the commands from Listing 8-1 in your terminal or at a command line
(with git installed) to access the PhoneGap source.

Listing 8-1. Downloading PhoneGap Source Using git

git clone git://github.com/phonegap/phonegap.git
cd phonegap/
git submodule init
git submodule update

Sample Application

PhoneGap includes a system sample application that shows some of the basic device
capabilities of the framework. We will use this to also verify that we have everything
installed to build correctly.

PhoneGap iPhone

To develop for iPhone, you will need a Mac OS X computer. PhoneGapLib is a static
library that enables users to include PhoneGap in their iPhone application projects, and
also create new PhoneGap-based iPhone application projects through an Xcode project
template. Xcode is Apple’s development environment for Mac OS X and iPhone that
comes included with the iPhone SDK.

First you need to build and install the Installer Package:
1. Download phonegap-iphone source.
2. Launch Terminal.app.

3. Navigate to the folder where the Makefile is (in git repository, this is
phonegap/iphone).

4. Type “make”, then press Enter. If you see: “Warning: “Require Admin
Authorization” is recommended but not enabled. Installation may fail.”,
you can safely ignore this warning.

5. The make command should build PhoneGapLiblnstaller.pkg into this
folder. Make sure XCode is not running. Launch
PhoneGapLiblinstaller.pkg to run the PhoneGap installer, which installs
PhoneGapLib and the PhoneGap Xcode Template.

Then create a PhoneGap project:
1. Launch Xcode, then under the File menu, select New Project.

2. Navigate to the User Templates section, select PhoneGap, then in the
right pane, select PhoneGap-based Application.

CHAPTER 8: PhoneGap

3. Select the Choose button, name your project, and choose the location
where you want the new project to be.

4. To build your own application instead of the system sample, simply
replace the contents of the www folder with your web application HTML
and assets. We will cover this in the next section.

5. Select Simulator as the target, and then Build and Run. See Figures 8-1 and 8-2.

€ K tRekee

Figure 8-1. PhoneGap project loaded in XCode

.ail Carrier = 10:14 PM

Figure 8-2. PhoneGap system sample application running in iPhone Simulator

CHAPTER 8: PhoneGap

Android

For Android, you need to install the Android SDK and Eclipse plus the Android
Development Tools (ADT) development plug-in for the Eclipse. ADT extends the
capabilities of Eclipse to let you build Android projects and export signed (or unsigned)
APKs in order to distribute your application.

PhoneGap includes an Eclipse project in the Android directory. From your Eclipse
workspace choose File » Import.... Select General, Existing Project into Workspace and select
your phonegap/android directory.

Next, right-click over the project and select Android Tools » Fix Project Properties.

Next, select Build and Run as Android Application. You will need to create an android
virtual machine, aka AVD, the first time you run. See Figures 8-3 and 8-4.

4vm o, Ectipse SOK - {Users/widal/workspace;

PSR DO Qe | BHBe | ® P |l ot en

7 = 0[5 Outtine 7t -0ia
An ourline 15 not available

Jexport-phanegap jardesc
local properties
README

A Prodlems | @ Javadoc | Declaration | @ Comsale 32
Ansrond

Figure 8-3. PhoneGap Project loaded into Eclipse

CHAPTER 8: PhoneGap

5556:avd16

Welcome to PhoneGap!

Figure 8-4. PhoneGap running in Android 1.6 Simulator

BlackBerry

To develop for BlackBerry, you will need a Windows PC. Refer to the PhoneGap wiki for
detailed installation and setup instructions: http://phonegap.pbworks.com/
Getting+Started+with+PhoneGap+(BlackBerry).

Download and install Eclipse 3.4 or 3.4.1. You will need to install the BlackBerry JDE
Plug-in for Eclipse, and the Eclipse Software Update for the BlackBerry JDE v4.6.1
Component Pack to allow you to develop BlackBerry apps in Eclipse. You can
download these from the BlackBerry Developers site.

Create a PhoneGap project with Eclipse as follows:
1. Launch Eclipse, go to File » Import » Existing BlackBerry project.

2. Navigate over to where you downloaded the phonegap-blackberry
source code, and point it to the phonegap.jdp file located in
blackberry/framework/.

3. Before running, right-click on project root and make sure Activate for
BlackBerry is checked.

4. Run or debug from Eclipse as desired.

CHAPTER 8: PhoneGap

PhoneGap Simulator

You can also test your application in a cross-platform (Windows, Mac, and so forth)
PhoneGap simulator written in Adobe Air. You can find the simulator at
http://phonegap.com/download.The simulator uses the WebKit browser that is built into
Adobe Air to run your application. Start the simulator and choose your starting
index.html file or equivalent. This is very helpful since the build and test process can be
very time-consuming using the native device SDKs.

You must always test using the device simulator and the real device for full compatibility
verification; however, using the PhoneGap simulator for parts of your development cycle
will speed up the process. See Figures 8-5 and 8-6.

Debug Panel

file:///Applications/PhoneGap Simulator.a) v

8t e s
Accelerometer

X: 0.0000
Y: 0.0000

Z: 0.0000

PhoneGap %

Figure 8-5. PhoneGap Simulator Control Panel

CHAPTER 8: PhoneGap

R —

*i2BlackBerry

Vodalone

UUIo: NA

Figure 8-6. PhoneGap running in PhoneGap Simulator with BlackBerry Skin

Writing Hello World in PhoneGap

Now that you have built the sample application to verify that you have installed
PhoneGap correctly, you can build your own application. You start by deleting (or
setting aside) the default index.html in the /www folder, as we will be replacing it in this
example. The index.html file is the entry point for your application. Any code, HTML
layout, or images used by your application must be loaded or linked to by this file.

As of this writing (PhoneGap 0.9), the www folder is in a different location for each
platform supported by PhoneGap. See Table 8-1 for platform-specific locations (or, on
the command line, type: “find . | grep www”).

CHAPTER 8: PhoneGap

Table 8-1. Where to Put Your Application Files by Platform

Platform Where to Put Your Application Files

iPhone /iphone/PhoneGap-based Application/www
Android /android/framework/assets/www
BlackBerry /blackberry/framework/src/www

Windows Mobile /winmo/www

Symbian /symbian.wrt/framework/www

Palm /palm/framework/www

Edit the www/index.html so that it contains only the lines in Listing 8-2, then build and
run it in the simulator. See Figure 8-7 to see how it looks in the iPhone simulator. You
can see that it is a simple rendering of the index.html web page.

Listing 8-2. Hello World code

<html>
<h1>Hello World</hi1>
</html>

-ail Carrier = 4:30 AM

Hello World

Figure 8-7. Hello World running in an iPhone Simulator

CHAPTER 8: PhoneGap

Writing a PhoneGap Application

PhoneGap is completely unstructured. It does not require you to organize your
application in any particular way. To start writing your mobile app, it is easiest to begin
by writing a web application using whatever tools you are familiar with. In this example,
we will write a simple tip calculator and restaurant bill-splitting application. This is a
single-page application that uses JavaScript to change the contents of the page based
on user interaction.

The code for our sample application is shown in Listing 8-3. This was first written and
tested on the desktop using Firefox and Safari. Another advantage of writing this first for
a desktop browser is that you can use JavaScript debugging tools such as Firebug or
the Safari developer tools to get your programming logic correct. The Safari desktop
browser is very close in functionality to the WebKit mobile browsers on iPhone and
Android. This version of the application uses jQuery, which is compatible with iOS and
Android, but does not work on BlackBerry (more detail on BlackBerry to come). The key
take-away here is that this could be any mobile web application. The example in this
chapter is provided to help illustrate that fact, and to demonstrate how to build a custom
application across platforms—the actual code is not particularly important.

Listing 8-3. Code for the Simple Tip Calculator Application for WebKit

<html>
<head>

<script src="jquery-1.3.2.min.js" type="text/javascript"” charset=«
"utf-8"></script>

<script>

$(document).ready(function() {
$("#amount").focus();
$("#click").click(function(){$('form')[0].reset();});
$("#split form").submit(function(){
console.log($("#amount").val(), $("#gratuity").val(),«
$("#num_diners").val());
var result = $("#amount").val() * $("#gratuity").val()«
/ $("#num_diners").val();
$("#result").text("$"+result.toFixed(2));
return false;
D;
b;

</script>

</head>
<body>
<div id="index">
<h1>Tip Calculator and Bill Splitter</hi1>
<form action="#" id="split form">
<p><label>Amount</label><input type="text" name="amount"«
id="amount"></p>
<p><label># Diners</label><input type="text" name="num diners"«
id="num diners" value="1"></p>
<p>
<label>Gratuity</label>
<select id="gratuity" name="gratuity">

CHAPTER 8: PhoneGap

<option value="1.0">None</option>
<option value="1.10">10%</option>
<option value="1.15" selected="1.15">15%</option>
<option value="1.18">18%</option>
<option value="1.20">20%</option>
</select>
</p>
<p></p>
<p><input type="submit" value="Calc"></p>
<p>Clear</p>
</form>
</div>
</body>
</html>

To mobilize this application, simply delete the existing contents of the PhoneGap
iphone/www directory and copy the index.html and jquery.js files to that directory.
Choose Build and Run. Note: we chose to use jQuery here only because it made the
JavaScript simpler. It is absolutely not required, and in fact, does not work on some
mobile browsers (like BlackBerry). See Figures 8-8 and 8-9.

anm « index.html - PhoneGap =

[Simulator - 3.0 | Debug s - ‘\ ’g\ 5 Q((7] Q-
Overview Action Breakpoints Build BuildandRun Clean Tasks Info Search
File Name. ai~Cde © 4 O

B |4 index.htm!

Groups & Files

BT o m

o index.html:1 3 <No selected symbol> &

PhoneGap launched @ Succeeded

Figure 8-8. Tip calculator code in PhoneGap XCode project

CHAPTER 8: PhoneGap

-uil Carrier = 9:53 PM

Tip Calculator and
Bill Splitter

Amount|
Diners| 1

Gratuity [15% -

$0.00

Figure 8-9. Tip calculator running inside iPhone Simulator

To build this application for Android, copy the same index.html and jquery.js into the
PhoneGap android/assets/www directory. Then run as Android Application. See Figure 8-10.

M NN Java - file:/Users/vidal/code/phonegay

r3- BBFP 50 |BFG |- |l-ii-tme - 21 G
= 0| @ file:///users vidalcode/phonegap_apps/b B = O |G Outine 33 = 8@ welcome =0
8% ~ B & [s adaicoseronis) e [| A7 oioe s ook malable

g
» i Android 1.6

viBue Tip Calculator and

» {# com.phonegap
» @i Referenced Libraries 9 =
- . Bill Splitter
v & assets
¥ Ewww p\mnum'
@ nexbum
W iquery-13.2.minjs
R, #Diners’1
> Tores
@ AndroldManifest xmi Grawity (15%)
build xmi
(2 default. properties. Cak
lexport-phonegap jardesc o
README ‘What's New

Try out the samples

[2. Problems | @ Javadoc (2, Declaration & Console &% u5E|#@-5.-=0
Android ‘Workbench
[2009-11-25 22:01:13 - PhONEGEP]--~---=rn-mmnnrnsmmmsommmnnn Go to the workbench

[2009-11-25 22:01:13 - PhoneGapJAndroid Launch!
[2009-11-25 22:01:13 - PhoneGopJodb is running normally
[2009-11-25 22:01:13 - PhoneGaplPerforming com.phonegap.Droidiap activity
[2009-11-25 22:01:13 - t new emul
[2003-11-25 22:01:13 -
[2009-11-25 22:01:16 -
[2009-11-25 22:01:16 - PhoneGapINaiting for HOME (*
[2009-11-25 22:01:1 12009-11-25 22:01:1

PhoneGap

Figure 8-10. Tip calculator code in PhoneGap Eclipse project for Android

CHAPTER 8: PhoneGap

You can see that the application looks and functions identically off a single code base
on both platforms.

For BlackBerry, the application needs to be modified not to use jQTouch. As detailed in
Chapter 14, the BlackBerry browser supports limited JavaScript capabilities. Listing 8—4
shows a modified application that runs on BlackBerry (as shown in Figures 8-11 and 8-
12). To create this application, copy the code into
phonegap/blackberry/framework/src/www/ and then build the project in Eclipse as
detailed previously.

Listing 8-4. Code for the Simple Tip Calculator Application for BlackBerry

<html>
<head>
<script>

window.onload = function() {
document.getElementById("amount").focus();
document.getElementById("clear").addEventListener('click',«
function(event){document.forms[0].reset();}, false);

document.getElementById("split form").addEventListener«
('submit', function(event){

try {
var result = document.getElementById("amount").value *
document.getElementById("gratuity").value /«
document.getElementById("num_diners").value;
document.getElementById('result').value=+
"$"+result.toFixed(2);
} catch(err)

txt="There was an error on this page.\n\n";
txt+="Error description:\n\n" + err.message + "\n\n";
txt+="Click OK to continue.\n\n";

alert(txt);
}
return false;
}, false);
b
</script>
</head>
<body>

<div id="index">
<h1>Tip Calculator and Bill Splitter</hi>
<form action="#" id="split_form">
<p><label>Amount</label><input type="text" name="amount" «
id="amount"></p>
<p><label># Diners</label><input type="text" name="num_ diners"«
id="num_diners" value="1"></p>
<p>
<label>Gratuity</label>
<select id="gratuity" name="gratuity">
<option value="1.0">None</option>

CHAPTER 8: PhoneGap

<option value="1.10">10%</option>
<option value="1.15" selected="1.15">15%</option>
<option value="1.18">18%</option>
<option value="1.20">20%</option>
</select>
</p>
<p><input type="text" name="result" id="result"></p>
<p><input type="submit" value="Calc"></p>
<p>Clear</p>
</form>
</div>
</body>
</html>

== BlackBerry

PhoneGap

Tip Calculator and Bill Splitter
C—
ETNE

| o

Figure 8-11. Tip calculator in PhoneGap BlackBerry

CHAPTER 8: PhoneGap

N.YaNe! 5554:avd16

il @ 10:02PMm

Tip Calculator and
Bill Splitter

Diners|1

Gratuity [15% |/
Calc

1 [2 s lafsfe |7]s o fo
i e e
P e e e s s
2z e fvisvjm]. [
| |swle | vl

Figure 8-12. Tip calculator in PhoneGap Simulator

Contacts Example

For the next example, we will demonstrate using native device APIs that are made
available by PhoneGap. Smartphones all have a built-in Personal Information
Management (PIM) contacts applications that allows users to store phone numbers and
addresses. Smartphone platforms allow applications to access those contacts through
APIs that differ per platform, but generally offer the same capabilities.

In this section, we will step through writing a PhoneGap application that will allow you to
show and edit native PIM contacts using PhoneGap’s APIs on iPhone. This example
also uses jQTouch for styling and, because of that, will only work on the iPhone. Please
refer to Chapter 12 for more information about jQTouch. Note that the PIM contacts
APIs will work on any platform, but it is typical to style applications differently per
platform. PhoneGap does not provide any infrastructure to facilitate sharing code across
platforms; however, you can use standard mobile web techniques to support the range
of platforms you are targeting.

Create a new PhoneGap iPhone project using the steps from the previous examples.
Name the project pg_contacts. The complete source code to the completed application
is available online at: http://github.com/VGraupera/PhoneGap-Contacts-Sample.

Replace the generated index.html file in the www directory with the following:

<!doctype html>
<html>
<head>
<script src="jqtouch/jquery.1.3.2.min.js" type="text/javascript" charset=+

CHAPTER 8: PhoneGap

"utf-8"></script>

<script src="jqtouch/jqtouch.js" type="text/javascript" charset="utf-8"></script>

<link rel="stylesheet" href="jqtouch/jqtouch.css" type="text/css" media=«
"screen" title="no title" charset="utf-8">

<link rel="stylesheet" href="themes/apple/theme.css" type="text/css" media=+«
"screen" title="no title" charset="utf-8">

<script type="text/javascript" charset="utf-8" src="phonegap.js"></script>

<script type="text/javascript">
// initialize jQTouch with defaults
var jOT = $.jQTouch();

function getContacts(){
var fail = function(){};
var options = {pageSize:10};
var nameFilter = $("#some_name").val();
if (nameFilter) {
options.nameFilter = nameFilter;

navigator.contacts.getAllContacts(getContacts callback, fail, options);
};

function getContacts_callback(contactsArray)

{
var ul = $('#contacts');
// remove any existing data as we resuse this function to update contact list
ul.find("1i").remove();

for (var i = 0; i < contactsArray.length; i++) {
var contact = contactsArray[i];
var 1i = $(""+contact.name+'</1i>");
li.find('a").bind('click', function(e) {showContact(contact.recordID);});
ul.append(1i);

};
function showContact(contactId)

var options = { allowsEditing: true };
navigator.contacts.displayContact(contactId, null, options);
$('a").removeClass('loading active');
return false;
}

function submitForm() {
var contact = {};

contact.firstName = $('#first name').val();
contact.lastName = $('#last name').val();

navigator.contacts.newContact(contact, getContacts, {

'gui': false
D;

jOT.goBack();
$('#add form').reset();

CHAPTER 8: PhoneGap

return false;

};

function preventBehavior(e) {
e.preventDefault();

};

PhoneGap.addConstructor(function(){
// show initial data
getContacts();

// hook the add form
$('#add form').submit(submitForm);
$('#add .whiteButton').click(submitForm);

$("#some_name").keyup(getContacts);

document.addEventListener("touchmove", preventBehavior, false);

1

</script>
</head>
<body>
<div id="home">
<div class="toolbar">
<h1>Contacts</h1>
+
</div>
<ul class="edit rounded">
<input type="search" name="search" placeholder="Search" id="some_name"«
style="border:none; margin:0; padding:0;font-size:16px;"/></1i>

<ul id="contacts" class="edgetoedge">

</div>
<div id="add">
<form>
<div class="toolbar">
<h1>New Contact</h1>
Cancel
</div>
<ul class="edit rounded">
<input type="text" name="first name" placeholder="First Name"«
id="first name" />
<input type="text" name="last name" placeholder="Last Name"«
id="last _name" /></1i>
<input type="text" name="email address" placeholder="Email Address"<«
id="email address" type="email" /></1i>
<input type="text" name="business number" placeholder="Business+«
Number" id="business number" type="tel" /></1li>

Add
</form>
</div>
</body>
</html>

CHAPTER 8: PhoneGap

Contact Example Code Explained

We began the example by including jQuery and jQTouch JavaScript libraries and CSS.
We used these for convenience and style, but they are not absolutely required. However,
the phonegap.js we included is required. The following recaps what was done in the
remainder of the example:

1. We initialize the jQTouch library. Please refer to the Chapter 12 on
jQTouch for complete details.

2. We define a function called getContacts”. getContacts uses the
navigator.contacts.getAllContacts function provided by the PhoneGap
API. getAllContacts takes three arguments the last two of which are
optional. We pass in on success and on failure callback functions as the
first two arguments. Our on failure callback is a trivial function we define
inline called “fail”. Our on success callback “getContacts_callback” is
described next. Because the total number of contacts on the
smartphone can be very large, we limit the results to just ten contacts
using the pageSize option. In order to see more than just the first ten
contacts on the phone, we pass in a filter parameter in nameFilter if we
have one. The value of nameFilter comes from the some_name text
input field defined later.

3. Our getContacts_callback clears the list of contacts we have on the
screen and recreates it from the array of contacts that are passed in
from a successful return of the getAllContacts API. Using JavaScript, we
add new rows to our list of contacts and register onClick callbacks
for each so that when the user clicks any one of them, showContact will
be called for that record ID.

4. showContact uses the navigator.contacts.displayContact API provided
by PhoneGap to natively show a contact record. We do not need to
create any HTML forms for this. Nice!

5. We define submitForm. This function will be called when we create a
new contact and uses the navigator.contacts.newContact API provided
by PhoneGap. This function reads the values from our new contact form
defined later and also resets the form when we are done.

6. Finally, we call PhoneGap.addConstructor, which adds our initialization
function to a queue that ensures it will run and initialize only once
PhoneGap has been initialized. Within our initialization function, we get
the list of contacts (by default, the first 10) and register handlers for our
new contact form search box (see Figure 8-13) described later.

7. Our HTML markup consists of two major parts. The first DIV with
id="home" shows the list of contacts. There is a button to add a new

CHAPTER 8: PhoneGap

contact, and a search box to trigger refreshing the list of contacts based
on what is entered in the box. We bind to the onKeyUp event in the
search box so that our search is run live as the user types. The second
DIV is a form that is used to enter new contacts. We only include some
basic fields here in the example.

il Carrier 11:08 PM B J-uicarrier = 11:08 PM

Co

A

George Washington Abraham Lincoln
Abraham Lincoln

Barack Obama

Als|o|Flafuly|K]L
| = EBENa00 s
.7123 “ return

O

Figure 8-13. The Contacts example code in action

Camera Example

In this section, we will step through writing an application that will allow you to take
pictures using the smartphone camera using PhoneGap APIs on iPhone.

Create a new PhoneGap iPhone project, using the steps from the previous examples.
Name the project pg_camera. The complete source code to the completed application is
available online at: http://github.com/VGraupera/PhoneGap-Photos-Sample.

Replace the generated index.html file in the www directory with the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.0rg/TR/html4/strict.dtd">
<html>
<head>
<meta name="viewport" content="width=default-width; user-scalable=no" />
<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<script src="jqtouch/jquery.1.3.2.min.js" type="text/javascript" charset=«

CHAPTER 8: PhoneGap

"utf-8"></script>

<script src="jqtouch/jqtouch.js" type="text/javascript"” charset="utf-8"></script>

<link rel="stylesheet" href="jqtouch/jqtouch.css" type="text/css" media="screen"«
title="no title" charset="utf-8">

<link rel="stylesheet" href="themes/apple/theme.css" type="text/css" media="screen"«
title="no title" charset="utf-8">

<script type="text/javascript" charset="utf-8" src="phonegap.js"></script>
<script type="text/javascript" charset="utf-8">

// initialize jQTouch with defaults

var jOT = $.jQTouch();

function onBodyLoad()

document.addEventListener("deviceready",onDeviceReady,false);

}
function dump pic(data)

document.getElementById("test_img").src = "data:image/jpeg;base64," + data;

function fail() {
alert('problem');

b

function takePicture() {
navigator.camera.getPicture(dump pic, fail, { quality: 50 });

)

</script>

</head>

<body onload="onBodyLoad()">
<div id="home">
<div class="toolbar">

<h1>Pictures</h1>
+
</div>

</div>
</body>

</html>

CHAPTER 8: PhoneGap

Camera Example Code Explained

The code is similar but simpler than the pg_contacts example. We started by setting up
and loading the jQTouch and PhoneGap libraries. Then we define “takePicture,” which
uses the navigator.camera.getPicture API provided by PhoneGap. This will bring up the
native camera interface. You need to run this application on an actual iPhone as you
cannot test the camera in this way in the iPhone simulator. Finally, in our success
callback dump_pic, we set the src of our img tag to the inline data from the camera.
Figure 8-14 shows the end result.

a1 AT&T 11:29 PM 3 100%

Pictures

Figure 8-14. The Camera example code in action

Chapter

Titanium Mobile

This chapter will discuss how to build native applications for the iPhone and Android
using Appcelerator’s Titanium Mobile platform. Titanium is a commercially supported,
open source platform for developing native cross-platform applications using web
technologies. Source code is released under the Apache 2 license. Appcelerator, Inc.
(www.appcelerator.com/), a startup in Mountain View, CA., introduced the platform in
December 2008. Appcelerator has announced and will soon be releasing a version of
Titanium Mobile that also works for the BlackBerry.

Titanium consists of an SDK that provides the necessary tools, compilers, and APlIs for
building for the target platform, and a visual environment for managing your Titanium-
based projects called Titanium Developer. Titanium Developer provides a nice visual
way to build your projects, but to edit them you will need to use your favorite source
code editor. Titanium is available for Mac, Linux and Windows. To develop for the
iPhone (or iPad), you will need to run it on Mac using the iPhone SDK. Developing for the
Android requires the Android SDK and can be done using Mac, Windows, or Linux.

The Titanium API provides a platform-independent API to access native Ul components
including navigation bars, menus, dialog boxes, and alerts, and native device
functionality including the file system, sound, network, and local database. You code in
JavaScript that is compiled into native counterparts as part of the build process.

Titanium offers a free community edition that can be used to build and distribute your
applications. Developers can upgrade to the Titanium Professional Edition or the
Titanium Enterprise Edition that offers additional support and services. The Titanium
web site includes basic documentation and training videos. Developers can pay for
advanced videos and sign up for training classes on the Appcelerator web site.

Getting Started

You should start by downloading the iPhone SDK and Android SDK if you do not already
have them installed. These are not included with Titanium and you will need them to
build your application. (See Chapters 3 and 4, respectively, for details on setting up the

153

CHAPTER 9: Titanium Mobile

iPhone and Android. You will not need Eclipse for the Android, but the other
dependencies are the same.)

Download and install Titantium from the Appcelerator web site at
www.appcelerator.com/. Launch Titanium Developer. Titanium Developer will download
the latest Titanium SDK. You will need to sign up for a free account on the Appcelerator
Developer Center (see Figure 9-1).

- “Tiamum Peveloper {1.2.11

[}

Slgn Up

S’gn Up (it izes and aooll)

Create Moblle and Deskicp Apps Repeat Fassword’
interact with cther Titanium Developers

First Name
View video ulorials

Last Name:
And a whole lot more.

StawProvidence

ountry,

Twttie

Figure 9-1. Titanium Developer sign-up process

Once you have signed in, click the New Project icon at the top of the screen. Click
Project Type and select Mobile. Titanium Developer should automatically detect the
iPhone and Android SDKSs that you have installed. If it doesn’t, you can point it to where
you have them installed. It will also automatically download the Titanium Mobile SDK if
you do not already have it installed.

On the following screen (Figure 9-2), fill in the Name, Application ID, Directory, and
Publisher URL fields. Titanium Developer will create your project in a subdirectory of
the directory you choose with the name of the application.

Click the Test and Package tab and then the Launch button at the base of the screen.
If everything is configured correctly, this will build your application and launch it. By
default, Titanium will generate an application with two windows that you can tab
between.

CHAPTER 9: Titanium Mobile

-0 6 Titanium Developer {1.2.1)

Project ype.

Nama:

App I 0 Blackberry Beta
Preview

Directory.

Campany!Patsonal URL A in May with

Titanum SK version:

Instailed Mobile Platiorms:

Learn More'

Figure 9-2. Creating a new project

Writing Hello World

To change the behavior of the sample application, open and edit the app.js file that is
found in the Resources directory of your project. Here you will replace the default
contents with something simpler shown in Listing 9-1.

Listing 9-1. Creating a new project
// this sets the background color of the master UIView (when there are no windows/tab«

groups on it)
Titanium.UI.setBackgroundColoxr('#000");

var win = Titanium.UI.createWindow({backgroundColor: '#fff'});

var mylLabel = Titanium.UI.createlabel({
color:'#999',
text: 'Hello World',
font:{fontSize:20,fontFamily: 'Helvetica Neue'},
textAlign: 'center’,
width: 'auto’

D;
win.add(myLabel);
win.open({animated:true});

Go back to Test and Package and click Launch again. Figures 9-3 and 94 illustrate
how Hello World looks on iPhone and Android simulators.

CHAPTER 9: Titanium Mobile

Figure 9-3. iPhone Hello World

TN @ 2:34em

Cross Platform Dev

12 falolslslrlalalo
o e Jn [[x Ju i fo lo
15 o [s [[u) [y 12
@lz [fc v lo [n . [o

I 7 2 A P P

Figure 9-4. Android Hello World

CHAPTER 9: Titanium Mobile

Using JavaScript, you create your interface programmatically by creating containers and
Ul elements as objects and then arranging and connecting them in a hierarchy.

The Titanium APl is organized into modules. For example, Titanium.Ul is the main
Ul module responsible for native user-interface components and interaction inside
Titanium. Within Titanium.Ul you will find classes for Titanium.UI.AlertDialog,
Titanium.Ul.Button, etc. The iPhone/iPad specific Ul capabilities are found within
the Titanium.UL.iPhone module and the Android specific Ul capabilities are found
within the Titanium.Ul.Android module.

A complete listing of the modules and classes in the Titanium API are available at the
Appcelerator web site. The APl is quite extensive. As of version 1.3, it comprises 24
modules with 67 different objects.

Building for Device

The process for building Titanium Mobile applications for iPhone devices is very
straightforward. Download your Development Certificate and Provisioning Profile from
the Apple iPhone Provisioning Portal. You will need to enter them in the screen titled
“Run on Device.” Titanium will then build and sign your application, put it into iTunes,
and trigger a sync to install it on your device. The only caveat is that you need to do this
on a Mac that is configured to sync applications with your iPhone.

Alternately, navigate to the build/iphone subdirectory of your project and open the
.xcodeproj file. This will launch XCode and you can do Build and Run.

Titanium Mobile Device Capabilities

The Titanium platform offers access to a rich collection of native device capabilities
including:

B Vibration

Geolocation & Mapping
Accelerometer

Sound

Photo Gallery (View and Save To)

Orientation

Camera. This includes overlays on top of the camera view surface, and
Augmented Reality (combines Camera, forward and reverse
Geolocation)

Screenshot
® Shake

B Record Video

CHAPTER 9: Titanium Mobile

B Proximity Events
B Push Notifications

These are all accessed in a platform-independent way using the Titanium SDK from
JavaScript. Moreover, the platform also includes wrappers that make it easy to integrate
Twitter, Facebook, RSS, and SOAP APIs directly into your application, plus access to
sockets, http connections, the native file system, and local database storage.

For complete examples of these device capabilities, please refer to the Titanium Mobile
Kitchen Sink Demo (http://github.com/appcelerator/KitchenSink). The Kitchen Sink
project (see Figure 9-5) includes a wide variety of the APIs available in Titanium Mobile.

-ail Carrier = 9:59 PM

a
Tab Groups
Window Properties
Window Layout
Window (Standalone)
Views
Custom Events

Window Events

Vertical Layout

Figure 9-5. The Kitchen Sink example application

Camera Example

In this example, you will build a simple full-screen application that will take a picture
using the camera. For the iPhone, you will need to test this on a real device as you
cannot test taking photos using the simulator.

Create a new Titanium Mobile project and replace the contents of app.js with the code
shown in Listing 9-2.

CHAPTER 9: Titanium Mobile

Listing 9-2. Camera example

var tabGroup = Titanium.UI.createTabGroup();

var winMain = Titanium.UI.createWindow({title:'Camera Example', tabBarHidden:true});
var tabMain = Titanium.UI.createTab({title:'', window:winMain});
tabGroup.addTab(tabMain);

var buttonSnap = Titanium.UI.createButton({
title: 'Snap’,

height:4o0,

width:145,

top:160,

right:10

1

winMain.rightNavButton=buttonSnap;

buttonSnap.addEventListener('click', function() {
Titanium.Media.showCamera({

success:function(event)

{

var cropRect = event.cropRect;
var image = event.media;

// set image view

var imageView = Ti.UI.createImageView({top:0,+«
image:event.media});

winMain.add(imageView);

)
cancel:function()

1

error:function(error)

{

// create alert
var a = Titanium.UI.createAlertDialog({title:'Camera'});

// set message
if (error.code == Titanium.Media.NO CAMERA)

a.setMessage('Please run this test on device');

}

else

{

}

// show alert
a.show();

a.setMessage('Unexpected error: ' + error.code);

}s
allowImageEditing:true

};

D;
tabGroup.open();

CHAPTER 9: Titanium Mobile

In order to get a full-screen window with a Navigation controller at the top, you need to
create a tab group and set tabBarHidden to true. Next, you add a button to the right-
hand side of navBar and an event handler for the onClick event. This handler brings up
the camera, allows you to take a picture, and then creates an image view to see it on the
screen (see Figure 9-6). The code for taking the picture is taken from the Kitchen Sink
example.

_all ATET = 11:27 PM £ 84% E

Camera Example snap

Figure 9-6. Camera example running on iPhone

HTML Interfaces

Chapters 10-14 provide examples of how to work with mobile HTML and CSS both with
low-level code examples (in Chapters 10 and 14) and diving into three frameworks for
creating a native look and feel for iPhone and Android.

Chapter

Mobile HTML and GSS

In order to understand how to approach creating HTML and CSS to look and feel like a
native mobile interface, we first present common patterns in mobile visual and
interaction design as well as highlight specific widgets that are available on different
platforms. This chapter also presents specific HTML and CSS code for achieving
common effects on WebKit-based browsers. Because, as of this writing, BlackBerry has
such severe limitations in browser capabilities, Chapter 14 is dedicated to detailing how
to create HTML for the currently available devices. When RIM introduces its new
operating systems with a WebKit-based browser, the techniques presented in this
chapter may be helpful there as well.

Developers who are new to this approach might wonder why it is relevant to learn about
the details of building Ul components in HTML and CSS when Ul frameworks exist, such
as iWebKit, jQTouch, and Sencha Touch, which are presented in the following chapters.
There are three key reasons: understanding the fundamentals, size/performance, and
branding. First, it is valuable for developers to understand how these frameworks are
built in order to use them effectively. All of the frameworks and libraries discussed in this
book are open source and in active development. Sometimes the documentation lacks
detail and to understand how to achieve desired effects, you need to dive into the
source code. Secondly, when you are developing a very simple application, you may not
want to absorb the size and performance impact of a full library, in which case the
techniques presented in this chapter will help you craft a specific look and feel. Lastly,
and most importantly, the trend in visual design for mobile applications is to match the
company brand rather than the default look of the operating system. You will likely want
to modify the look of any CSS that you work with and before doing so, it is wise to
understand the fundamentals.

Platform Overview

This section details what browser is available on each platform and includes a high-level
overview of the capabilities and limitations of the platforms.

163

CHAPTER 10: Mobile HTML and CSS

i0S for iPhone, iPad, iPod Touch

The iOS operating system (for iPhone, iPad, and iPod Touch devices) includes a mobile
WebKit-based native browser, which is also available as a UIWebView component that
may be embedded in applications. The embedded browser component is as fully
featured as the stand-alone browser application. As far as mobile browsers, iOS has one
of the most robust browsers with a well-developed CSS3 implementation that allows
you to create visual elements that appear like native Ul, often without needing to embed
graphic images.

The iOS WebKit mobile browser displays web pages in a “view port” of fixed
dimensions. You can imagine a view port to be like a window that lets you see into the
application. You can touch the window and move what’s underneath in and out of view.
The browser does this by first rendering the complete web page, then allowing you to
move the page up and down under the view port. This is similar to a desktop browser (if
you were to ignore the resize control), but the rendering of zooming and panning is
much smoother because they are such common operations on the touch devices.

The browser component also offers sophisticated text detection algorithms allowing it to
recognize phone numbers, addresses, events, tracking numbers, and e-mail addresses.
Other ways to achieve similar functionality would be to add special attributes to the
beginning of the href attribute of your link tags (such as mailto: and sms:). The browser
will also redirect links to Google Maps and YouTube to their corresponding native
applications on the device.

All iPhone devices include a high-resolution touch screen and accelerometer. The new
iPhone 4 also adds a gyroscope and retina display, not seen in previous generations.
The uniformity of the devices makes it easy to create and test application UI.

Android

The Android operating system also includes a WebKit-based browser and a WebView
component, which may be embedded in applications as a fully featured browser
component. Android’s WebKit-based mobile browser has many of the same features as
the iOS mobile browser. It isn’t as robust as the Apple implementation and has even less
of a CSS2 implementation, but is still a far superior browser when compared to
BlackBerry and Windows Mobile.

Such companies as HTC, Motorola, and Google each have devices in the market, most
with varying hardware capabilities. This makes it difficult to develop applications that
work on Android-based phones. These compatibility issues don’t just affect the phone
from a hardware perspective; they affect the OS as well. Android is an open source
platform that makes it possible for vendors to make changes to the OS. Typically, device
vendors create custom branding and a unique design for the main screen of the device,
including hardware and software buttons; however, there may be functional changes as
well. Common hardware found on most devices include a touch screen, accelerometer,
GPS, camera, and wifi.

CHAPTER 10: Mobile HTML and CSS

BlackBerry

Research in Motion (RIM), maker of BlackBerry devices, has announced support for
Webkit; however, all currently shipping BlackBerry devices have a proprietary browser
with severe limitations (see Chapter 14 for details). There are two browser components
found in the OS. The first component has extremely limited HTML and CSS support, and
the second has better support for HTML and CSS standards but requires you to use a
mouse-like cursor to navigate around the screen even when you are on a non-touch
device. Most notably, the browser control that you can embed in your applications does
not have an identical feature set to the stand-alone web browser on the device.

BlackBerry has a range of devices with different screen resolutions. The most significant
difference between devices is between the track ball and the touch screen. With the
BlackBerry Storm, RIM introduced a touch-screen device with soft keyboard.
Unfortunately, the low performance of the device and awkward haptics, where the whole
screen depresses for click or tap actions, leads to different constraints on different
devices when creating applications.

Windows Mobile

Writing applications in HTML and CSS for Windows Mobile is a challenge because it has
a browser and browser control that is similar to Internet Explorer 5.5. It can render most
basic pages correctly, but has an incomplete implementation of CSS2. Windows Mobile
also has a wide variety of devices sold by various hardware vendors, resulting in high
device incompatibility. On top of that, some hardware vendors such as HTC have their
own proprietary Ul for the devices they sell. You can also install third-party Ul kit
software that will completely change the look on your device, making for an inconsistent
user interface.

The Windows Mobile user interface hasn’t changed much over the years. There is a
button bar on the bottom, which by default has a start menu and a quick launch button.
Windows Phone 7 is expected to have a significantly better user experience but,
because it is unreleased as of this writing, it is not covered in this book.

Common Patterns

There are common user experience patterns across mobile operating systems, which
make a cross-platform approach to implementing the user interface of your application
possible.

Screen-Based Approach

The screen-based approach is based on the small form factor of most mobile devices.
These small devices have tiny screens, which in turn makes it difficult to display much
content at any given time. In the screen-based approach, the application interface is
segmented into many views that each have very limited scope. There are several

CHAPTER 10: Mobile HTML and CSS

interaction design patterns commonly seen when designing a series of screens to
accommodate an interface that doesn’t fit in the available screen size:

B Scroll view: The simplest approach to accommodating more
information than can fit into a single screen is to allow the user to
scroll the view, showing only the top portion by default.

B Scalable view: Devices with large touch-sensitive screens often use
pan and zoom controls to see a large document or view. The
pan/zoom approach is most typically seen when displaying a map or a
web page.

B Wizard: Borrowing a desktop user interface pattern, some mobile
applications apply a wizard pattern where the user steps through a
series of screens to accomplish a task.

B Progressive Disclosure: Often when displaying a large amount of
information, it is helpful to divide it by category and sub-categories or
even to simply show a list of titles, which lead to the display of an
individual item. This generally involves some kind of navigation-based
hierarchy system. You will find lists of categories and as you delve into
each category you reach a subcategory. As you go into the
subcategory, you finally reach your desired content.

Navigation

Because a mobile application typically has many screens, navigational controls are often
helpful. Several different approaches to navigation are commonly implemented to help
users find different areas of the application. In addition to the navigational paradigms
implied by the design pattern details in the Screen-Based previoussection, many
devices implement toolbars, tabs, or menus.

Menus

Windows Mobile, BlackBerry, and Android have a standard menu to help their users
navigate the application. A menu is a consistent element of every application. These
menus usually provide general navigation like “Home” or “Settings” pages, but also might
have actions such as “Create” or “Save.” Menus are typically used like tab bars, in that
they include a small number of options for navigation. In many cross-platform iOS-
BlackBerry applications, you will see the BlackBerry menu include the same items as the
iOS tab bar. Android offers both menu and tab bar, providing flexibility for the
application designer.

CHAPTER 10: Mobile HTML and CSS

Tab Bars

Tab bars are found on iOS and Android (see Figures 10-1 and 10-2). These can sit on
the top or bottom of the screen. Most platforms also have a maximum number of these
that you can show at once. Each tab will hold a fully loaded view for fast context
switching. These are generally used to highlight key areas or create segmentation in the
application’s information architecture.

Figure 10-1. j0S tab bar

Call log Contacts Favorites

Figure 10-2. Android tab bar

Toolbars

iOS, Android, Blackberry, and Windows Mobile have toolbars (see Figures 10-3 and 10-
4). Toolbars sit on the bottom of the screen on iOS and Android, and in custom
locations on BlackBerry and Windows Mobile.

Figure 10-3. j0S toolbar

Figure 10-4. Android toolbar

CHAPTER 10: Mobile HTML and CSS

Navigation Bars

These are similar to toolbars, and usually have navigation-specific items; this can
include a title, or left and right navigation buttons (see Figures 10-5 and 10-6).
Navigation bars usually sit at the top of the screen.

Figure 10-6. Windows Mobile navigation bar

Button Bars and Context Menus

Like popup menus, in the sense that they can include general navigation, button bars
(see Figure 10-7) also can contain screen-specific functions such as “new” or “edit.”
These bars usually sit on the bottom of the screen like a toolbar.

Figure 10-7. Android button bar

Blackberry uses context menus (see Figure 10-8)instead of navigation bars to control
the flow of the application.

Check Spellng

Figure 10-8. Blackberry context menu

CHAPTER 10: Mobile HTML and CSS

Ul Widgets

Ul widgets are native Ul controls representing information that is user changeable. They
come in many different shapes and colors across each mobile platform. For example, a
checkbox and radio button can each be considered a Ul widget (See Figure 10-9). They
are both standard Ul controls that can represent a state that the user selects. The iOS
and Android operating systems by far have the most extensive collection of Ul widgets
compared to the other various platforms.

Checkboxes

Checkbox1 E
Checkbox2 " ToFF]
Checkbox3 ~ ToFF|

Radio Buttons

Radio Button1 v

Radio Button2

Radio Button3

Figure 10-9. Check boxes and radio buttons on i0S

This section of the text will primarily introduce you to the native UIWidgets that can be
found in the browser and how to override their functionality to give your application a
more consistent native feeling.

Check Boxes

All smartphone mobile platforms provide Ul widgets for check boxes to represent
boolean or on/off values. All of them have some concept of a check and most have the
box that surrounds them. This is the way traditional browsers have implemented
checkboxes. Keep in mind here we are talking about native components. To override
this functionality in the iOS mobile WebKit browser using CSS, refer to Listing 10-1. This
code example assumes you are using a check box image that looks like Figure 10-10.
You will need to have an application that implements a UIWebView (refer to Chapter 3).

Listing 10-1. Checkboxes in CSS3 with WebKit for i0S Look and Feel

HTML
<form action="#">

<input type="checkbox" name="checkboxiPhone" value="checkboxiPhone" />
</form>

CsS

CHAPTER 10: Mobile HTML and CSS

form input[type="checkbox"] {
-WebKit-appearance: none;
background: url('switch.png') no-repeat center;
background-position-y: -27px;
height: 27px;
width: 94px;
}

form input[type="checkbox"]:checked {
background-position-y: 0;

OFF

Figure 10-10. Checkbox image for Listing 10—1

Listing 10-1 illustrates how to construct an HTML form element that contains a check
box. To override the default appearance of the widget you make use of the WebKit
CSS83 appearence property. This property can offer default appearences for HTML
elements. Setting this property to “none” allows you to remove all default styling of the
element. Also, in adding the background image, change its appearence to have a
negative offset. This shows the off (or unchecked) version of the element by default. You
will also need to set the width to be the width of the image and the height to be only half
(on or off). When the check box is checked, now you move the image’s y axis to 0
showing the on state of the check box.

Android’s implementation of check boxes differs from iOS in that they have offered a
more traditional approach (see Figure 10-11). To override this for Android, refer to
Listing 10-2 in an Android WebKit browser control.

Checkbox2 4
Checkbox3 o)
Radio Butto... Q/
Radio Butto... &)
Radio Butto... &)

Figure 10-11. Check boxes and radio buttons on Android

CHAPTER 10: Mobile HTML and CSS

Listing 10-2. Android Check Box Implementation

HTML
<form action="#">
<input type="checkbox" name="checkboxDroid" value="checkboxDroid" />
</form>
Css
form input[type="checkbox"] {
-webkit-appearance: none;
background: url(btn_check off.png) no-repeat;
height: 31px;
width: 31px;

}
input[type="checkbox"]:checked {

background: url(btn_check on.png) no-repeat;
}

In this example, you once again have a form that contains an input-type checkbox
element. You will need to set -webkit-appearance to “none” and give the element a
width and height. In this example, you will simply be switching out the background
image to display a checked and unchecked state.

Neither Windows Mobile or BlackBerry devices currently support a CSS3-capable
browser. This means there is no way to truly override the default implementation of a
check box.

Selection Boxes

iOS and Android platforms both implement a native control for the browser’s selection
box. Clicking on a select box on either platform will result in a native picker control on
iOS (Figure 10-12) and a radio button select modal view on Android (Figure 10-13).

Select Box

’ Please select

Previous Next AutoFill

v Please select

iPhone

Figure 10-12. Select box on i0S

CHAPTER 10: Mobile HTML and CSS

Please select

iPhone

Android

BlackBerry

Windows Mobile

Figure 10-13. After tapping the select box on Android, will open a list of options for you to select one.

As previously stated, this functionality is provided for you in the iOS browser control.
Any select box the user interacts with will display the selection picker, however, you will
still need to style the select box to look more like a native component. By default, this
component looks like a standard browser select box (see Listing 10-3).

Listing 10-3. i0S Select Box Example

HTML
<form action="#">
<select name="select box">
<option selected>Please select</option>
<option value="apple">iPhone</option>
<option value="android">Android</option>
<option value="blackberry">BlackBerry</option>
<option value="winmo">Windows Mobile</option>
</select>
</form>

CSS
form select {
-webkit-appearance: none;
background: url('select.png') no-repeat right;
border: opx;
width:100%;
height:40px;
font-size: medium;
font-weight: bold;

CHAPTER 10: Mobile HTML and CSS

In Listing 10-3, you create an HTML form and select box in an iOS mobile WebKit
browser. Once again, you will need to override the default appearance using the -
webkit-appearance property. Finally, you will add the downward-facing disclosure
indicator to the right of the box. This will indicate to the user that this is a select box and
something will be happening beneath it. Find an example of the disclosure indicator in
Figure 10-14. Android follows a similar pattern, except here we will substitute the
background image property for another resource (Refer to Figure 10-15).

v

Figure 10-14. i0S downward-facing disclosure indicator

©

Figure 10-15. Android downward-facing disclosure indicator

Once again, BlackBerry and Windows Mobile do not have this capability and will only
show a standard browser select box.

Text Boxes

All smartphone platforms covered in this book have a fairly standard implementation of
text boxes. Android, Windows Mobile, and BlackBerry have a label followed by a text
box to its right. iOS doesn’t use a standard label, but instead employs the HTML5
placeholder attribute of the input type text element. Refer to Figure 10-16 for an
example of what this might look like on iOS and Listing 10-4 for an example of using the
placeholder attribute in an iOS browser control.

TextBoxes

Als|ofFfafufyfKfL

® 00CEDE00 S

Figure 10-16. Edit text box on i0S

CHAPTER 10: Mobile HTML and CSS

Listing 10-4. HTML Source Code for iOS Placeholder Text Example

<form action="#">
<input type="text" name=" title" placeholder="Title” />
</form>

As shown in Figure 10-17, Android makes use of left-justified labels and right-justified
text boxes.

TextBoxes

Title

Description

Figure 10-17. Text Boxes on Android

Text Areas

Text areas are a standard component between the platforms discussed in this chapter.
The biggest difference between them is their background shading and rounded corners
on iOS and Android, verses their plan background and square corners on Windows
Mobile and Blackberry. iOS has no background shading by default, while Android has a
gray gradient; both have rounded corners. You can see an example of an iOS text area
in Listing 10-5 and Figure 10-18.

Listing 10-5. i0S Implementation of a Text Area

HTML
<form action="#">
<textarea name="thing[text_area]" rows="5" cols="30" >Some great text</textarea>

</form>

Css

form textarea {
-webkit-appearance: none;
border: 1px solid #878787;
-webkit-border-radius: 8px;
font-size: medium;
width:280px;
line-height:20px;
background-color:white;

}

Some Great Text

Figure 10-18. i0S text area

CHAPTER 10: Mobile HTML and CSS

In Figure 10-18, you will first remove the default webkit styling applied to the text area.
You will then add a one pixel gray border around the outside and make the border
radius eight pixels. Set the font size, width, and line-height to the values shown in the
example.

Android’s implementation is very similar to iOS except that it will have background color.
Refer to Listing 10-6 for the implementation and Figure 10-19 for the resulting image.

Listing 10-6. Android Text Area Implementation

HTML
<form action="#">
<textarea name="thing[text area]" rows="5" cols="30" >Some Great+
Text</textarea>
</form>
Css
form textarea {
-webkit-appearance: none;
background: -webkit-gradient(linear, left top, left bottom, color-stop(0.0125,«
#d6d7d6),color-stop(0.25, #efefef),color-stop(0.95, #f7f7f7),color-stop(1.0, #f7f3f7));
border: 1px solid #d6d7d6;
-webkit-border-radius: 4px;
margin: 10px O 2px 10px;
font-size: 0.9em;
padding: 5px 0 2px 2px;
box-shadow:0 -1px 3px #000000;

}

Some Great Text

Figure 10-19. Android text area

In Listing 10-6, you will first need to remove the default webkit styling from the text area.
Then you will need to add a webkit background gradient and light gray border; the
borders are not as round as iOS at four pixels. Apply the default text styling, external
margin, and padding, then finish with a slight shadow to give the text area depth.

Radio Buttons

Radio buttons allow you to choose one item in a list of options. BlackBerry and
Windows Mobile use a standard radio-button implementation that shows an empty
circle when not selected and a filled circle when it has been selected. Android uses the
same implementation as BlackBerry and Windows Mobile, but instead of the entire circle
being filled, only the center of the circle is filled. iOS has the concept of radio buttons,
but Apple suggests using pickers (such as date pickers) instead in their Human Interface
Guidelines. If you truly want to use a radio button on iOS, they have a slightly different
concept from the other platforms. They choose to use left-bound labels and right-bound
check marks to indicate which option has been selected in the list. Refer to Figure 10-20
for an example of an iOS radio button.

CHAPTER 10: Mobile HTML and CSS

Radio Buttons

Green v

Red

Yellow

Figure 10-20. i0S radio buttons

To create this button, you will have to do a couple CSS tricks. Your end goal will be to
have the label inside the radio button and the check mark to appear on the right, as
shown in Figure 10-20. First, you will need to restyle the radio button by removing its
default appearance. By default, you will want the radio button to be unselected. When
the radio button has been selected, you will then use the background position attributes
to place your background image all the way to the right and 50 percent down the cell.
To get the check mark slightly located to the right, you will need to add some
transparent right margin to the image. By making the position relative of the radio
button, you are able to give it a higher z-index then the label and have it shown above it.
You will want the radio button to take up 100 percent of the width and height of the cell
so that it is clickable. See Listing 10-7.

Listing 10-7. i0S Radio Button Implementation

HTML
<form action="#">
<label for="thing[radio button]">Radio Buttoni</label>
<input type="radio" name="thing[radio_button]" value="radio1"/»
</form>
CsS
form input[type="radio"] {
-webkit-appearance: none;
position: relative;
display:block;
width:100%;
height: 40px;
line-height:40px;
margin:o;
-webkit-border-radius: 8px;

}

form input[type="radio"]:checked {
background: url('radiobutton.png') no-repeat;
background-position-x: 100%;
background-position-y: 50%;

}

form label {
float: left;
display:block;
color: black;
line-height: 40px;
padding: 0;

CHAPTER 10: Mobile HTML and CSS

margin: 0 20px O 10px;
width: 40%;

overflow: hidden;
text-overflow: ellipsis;
white-space: nowrap;
font-weight:bold;

}

Creating radio buttons on Android (Figure 10-21 and Listing 10-8)is not that different
from Windows Mobile and Blackberry and will use the same HTML as on iOS. The
biggest difference is on iOS you can select the entire cell to activate it. On Android,
Windows Mobile, and BlackBerry you will only be able to select the radio button itself
and not the entire cell. This approach doesn’t work very well for touch screen devices.

Radio Buttonl U
Radio Button2 @&
Radio Button3 Q)

Figure 10-21. Android radio button implementation

Listing 10-8. /0S Radio Button Implementation

HTML
<form action="#">
<label for="thing[radio button]">Radio Buttoni</label>
<input type="radio" name="thing[radio button]" value="radio1"/>
</form>
Css
form input[type="radio"] {
background: url(btn_radio _off.png) no-repeat right;
-webkit-appearance: none;
-webkit-box-sizing: border-box;
height: 64px;
width: 32px;
float:right;
margin: 0 5px 0 O;

}

form input[type="radio"]:checked {
background: url(btn_radio on.png) no-repeat right;

Additional Components

In addition to the standard HTML form controls, most smartphone platforms have
higher-level widgets for date picker and maps; however, you can’t add these using pure
HTML. They are available in some cross-platform frameworks, which have native code
extensions that you would need to hook into.

CHAPTER 10: Mobile HTML and CSS

WebKit Web Views

Web views on iOS and Android OS work very similarly; this is because they both use a
WebKit implementation. Try to think of the web view as more of a window on the page.
It lets you see any given portion of the page at any moment, while blocking your view of
the rest of the page. The WebKit browser engine renders the entire HTML page and
places it behind this window. The window stays static while moving the page beneath it.
You slide the page up and down beneath this window like a film reel. Understanding
how the web view works is important because it makes some CSS implementations a
little more difficult. For instance, both Android and iOS browsers do not handle the
‘Display: Fixed;’ CSS property correctly. This CSS property normally is used to position
something statically on the page and allow other content to move behind it, such as a
bottom toolbar on a web page. Both browsers will treat this property correctly at first,
but then when you move the page beneath the window, the object will move with the
page becoming unfixed to its original location. In the case of the bottom toolbar, the
toolbar will end up moving up with the page and if your page is long enough, out of the
window entirely.

Creating Lists

Lists are an integral part of mobile operating systems. Lists are the primary conduits
through which information is segmented. They also allow for hierarchal-based
navigation.

When displaying list elements, mobile web Ul will typically use an unordered list ()
and list items (), then use CSS to add styling. Listing 10-9 shows how to create a list
with disclosure indicators. See Figure 10-22 for how it looks when the HTML is
rendered. Note that this approach will work on iOS, Android, and Windows Mobile
(although this specific code has not been compatibility-tested across all of the mobile
web browsers). With BlackBerry, it is often easiest to implement table-based layout.

Listing 10-9. Implementation of List with Disclosure Indicators

<IDOCTYPE html SYSTEM "http://www.w3.o0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>HTML LIST</title>
<style type="text/css">

body {
margin: 0;

Jdist {
border-top: 1px solid #ccc;

Jdlist ul {
padding: 0;
margin: 0;

Jdist 11 {
width: 100%;
height: 75px;
list-style-type: none;
}

Jlist a |

display: block;
text-decoration: none;
color: #000;

font-size: 20px;
height: 100%;

width: 100%;
background-color: #eef;

}

.list a:active {
background-color: #cce;
border-bottom: 1px solid #fff;
border-top: 1px solid #ccc;

ul.simple disclosure list 1i {
border-bottom: 1px solid #ccc;
border-top: 1px solid #fff;

ul.simple disclosure list 1i a {
background-image: url(arrow.png);
background-repeat: no-repeat;
background-position: center right;

}

ul.simple disclosure list 1i a span.title {
margin-left: 30px;
font-weight: bold;
float: left;
position: relative;
top: 40%;

</style>
</head>
<body>

<div class="list">

<ul class="simple disclosure list">

Title 1

</1i>
<1li>

Title 2

</1i>

CHAPTER 10:

: Mobile HTML and CSS

CHAPTER 10: Mobile HTML and CSS

<1li>

Title 3

</1i>

</div>
</body>
</html>
Title 1 >
Title 2 >
Title 3 >

Figure 10-22. Implementation of progressive disclosure

Building a Navigation Bar

Navigation bars can be found on iOS, Android, and Windows Mobile devices. On iOS
and Windows Mobile, a bar is represented by a bar that sits on the top of the page. On
Android, a navigation bar is more like a button bar that sits on the bottom of the page.
Android’s version of a navigation bar is a little more difficult to construct. Earlier, we
explained how a web view works on Android and iOS. This is especially important in this
case because it will make it a lot more difficult to construct a proper navigation bar on
Android. As we explained earlier, the display fixed property doesn’t work for attaching
the bottom bar to the page. How do you get around this? There are a couple of options
and none of them are preferable. Firstly, you could wait for the Android development
team to release an update to address this issue. Secondly, you could create a floating
toolbar that works similarly to Android’s but moves with the page. Neither of these
options are ideal. Some developers have created their own scrolling implementation to
work around this issue. In particular, the iScroll library from Cubiq
(http://cubiqg.org/iscroll) provides the capability to allow scrolling and position a
toolbar or other widgets at the bottom of the screen.

Listing 10-10 and Figure 10-23 has an implementation of a very basic navigation bar;
however, this can be modeled into a replica of the iOS implementation of its navigation
bar, if given the proper resources and CSS3 attributes.

CHAPTER 10: Mobile HTML and CSS

Listing 10-10. Simple Implementation of the iOS Navigation Bar

<!DOCTYPE html SYSTEM "http://www.w3.o0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Navigation Bar</title>
<style type="text/css">
body {
margin: 0;

divi#tnavbar {
height: 40px;
line-height:40px;
background-color:gray;

divi#tnavbar div {
margin: 0 10px O 10px;

div#navbar div a {
text-decoration:none;
color:black;

}

div#tnavbar divi#tnavieft {
float: left;
}

divifnavbar divi#tnavRight {
float:right;

divi#tnavbar div#navTitle {
width: 100%;
height: inherit;
position: absolute;
text-align:center;
margin: 0;

}

</style>
</head>
<body>
<div id="navbar">
<div id="navLeft">Back</div>
<div id="navTitle"s>Nav Bar</div>
<div id="navRight">Home</div>
</div>
</body>
</html>

Figure 10-23. Simple implementation of the iOS navigation bar

CHAPTER 10: Mobile HTML and CSS

Listing 10-11 is a simple replica of an Android-like button bar. In this case, we use a
table so that when buttons are added or removed, the table takes care of the sizing of
its elements. The result is shown in Figure 10-24.

Listing 10-11. Simple Implementation of the Android Button Bar.

<IDOCTYPE html SYSTEM "http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Navigation Bar</title>
<style type="text/css">
body {
margin: 0;

divifnavbar {
height: 40px;
width: 100%;
line-height:40px;
background-color:gray;

display: table;
}

div#navbar div {
display: table-cell;
text-align:center;
border: 1px solid blue;

}

div#tnavbar div.row {
display: table-row;
margin:o;
padding: 0;

divi#tnavbar div a {
text-decoration:none;
color:black;

}

</style>
</head>
<body>
<div id="navbar">
<div class="row">
<div id="navLeft">Back</div>
<div id="navTitle"s>Nav Bar</div>
<div id="navRight">Home</div>
</div>
</div>
</body>
</html>

Figure 10-24. Simple Android button bar

Chapter

IWebKit

The iWebKit framework allows you to create HTML that matches the look and feel of
native iPhone applications. As the name implies, iWebKit is customized for browsers
based on the open source WebKit engine, specifically iPhone’s mobile Safari browser.
The iWebKit framework was developed in accordance with the Apple Human Interface
Guidelines, outlining application look and feel on the popular iPhone OS.

iWebKit was originally developed to optimize web sites for viewing on a mobile device.'
However, in mobile applications that use HTML in a web browser control (WebUI view)
for some or all of its application interface, it is practical to utilize toolkits originally
developed for web Ul, including iWebKit. iWebKit can be easily integrated into iPhone
applications developed in Objective-C, as well as the iPhone versions of applications
developed using the Rhodes and PhoneGap frameworks.

As discussed previously, all of these platforms allow you to produce native iPhone
applications that can be distributed through the iTunes App Store. However,
WebUIView-based applications do not match the look and feel of native iPhone
interfaces. iWebKit provides a quick and easy way to apply styles designed to match
native interface design to your user interface.

iWebKit is easy to use: anyone familiar with HTML and CSS can use the framework to
quickly create forms, hierarchical lists, and more, all integrated into a light and fast
application. iWebKit takes advantage of properties new in CSS3 supported in the mobile
Safari browser, such as background gradients, forms, and border properties—including
rounded corners that don’t require the clunky use of image files.

This chapter provides an overview of the features available in iWebKit and concludes
with several examples that illustrate how to integrate iWebKit in each of the cross-
platform development environments discussed in this book.

' Complete documentation for using iWebKit in mobile web sites is available at
http://iwebkit.net.

CHAPTER 11: iWebKit

Working With the iWebKit Framework

The iWebKit framework includes a comprehensive set of stylesheets, icons, javascript,
and a test index page that serves as a basic template for any views you may need to
add to your application.

You can download iWebKit from the project web site at
http://iwebkit.net/downloads.? In addition to the framework itself, the download
includes a demo directory containing samples for all of the features described in this
chapter. You can view the demo by opening index.html in a WebKit browser (such as
Safari or Chrome), then resizing the window so it fits the content. An example later in
this chapter shows you how to create a native application from the demo, but if you just
can’t wait to see what the demo looks like on your iPhone, visit
http://demo.iwebkit.net from your mobile browser.

Pages that integrate the iWebKit framework are standard HTML pages that include CSS
and JavaScript. However, some elements of the page structure will vary depending on
which iWebKit elements you opt to use. The sample code in Listing 11-1 illustrates the
type of document structure you may expect to see in an application that has integrated
iWebKit.

Listing 11-1. iWebKit Document Structure

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"«
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta content="minimum-scale=1.0, width=device-width, maximum-scale=0.6667,+
user-scalable=no" name="viewport" />
<link href="css/style.css" rel="stylesheet" media="screen" type="text/css" />
<script src="javascript/functions.js" type="text/javascript"></script>
<title>Demo App</title>
</head>
<body class="1ist">
<div id="topbar">
<div id="title">Demo App</div>
<div id="bluerightbutton">
New
</div>
</div>
<div class="searchbox">
<form action=""
<fieldset>
<input id="search" placeholder="search" type="text" />
<input id="submit" type="hidden" />
</fieldset>
</form>
</div>
<div id="content">

method="get">

2 The current version at the time of this writing is iWebKit 5.04.

CHAPTER 11: iWebKit

<1li class="title">Task Categories
Work<span«
class="arrow"></1i>
School<span+
class="arrow"></1i>
Home<span+
class="arrow"></1i>

</div>
</body>
</html>

Figure 11-1. iWebKit application

A Few Words of Caution

When using iWebKit, in most cases, your HTML must match the structure found in the
following examples in order to achieve the desired appearance in your application. This
means that you will typically need to edit existing HTML to create the look that you want.
This is in stark contrast with the approach you would likely take if you were creating your
own CSS for your HTML application. Unless the discussion surrounding one of the
following code examples refers to a tag or applied style as optional, the following code
samples reflect the structure that is required.

Also, note that iWebKit uses compressed style sheets and JavaScript files to increase
the load speed of the application, which means that the files included in your application

CHAPTER 11: iWebKit

will be hard to read and understand. However, the iWebKit download also contains
human-readable stylesheets and JavaScript files for debugging and understanding how
it works under the covers.

Required Header

Assuming the iWebKit framework has been included in your project’s resources
directory, you need to include links to the files inside your HTML <head> section of your
default HTML document (Listing 11-2).

Listing 11-2. Required iWebKit Header Links

<head>

<link href="css/style.css" rel="stylesheet" type="text/css" />

<script src="javascript/functions.js" type="text/javascript"></script>
</head>

Body

The <body> of an iWebKit document includes a <div> tag styled with the topbar class,
followed by a <div> tag styled with the content class. The topbar contains title and
navigation information at the top of the screen, while the content section contains your
application’s lists, forms, and custom screens. Several other styles are available for
<div> tags that are children of the <body> tag: searchbox, duobutton, tributton, and
footer.

To include a searchbox on your page like the one that follows, add an iWebKit form
containing a div styled with the searchbox class as a child of the <body> tag. As an
example, you can see a text field formatted to resemble the native iPhone search box in
the example form code in Listing 11-1.

(¢

~ N

Figure 11-2. SearchBox

If you are retrofitting an existing application with iWebKit, or if you are using a cross-
platform framework to generate your application HTML, you will need to manually
modify your HTML to include the appropriate classes on container tags. In the Rhodes
framework, which stores repeated code in a layout, you will need to move the <body>
tag into the page since iWebKit typically requires different classes for different <body>
tags. Alternately, you could include a JavaScript function that will place the class on the
<body> when the page is rendered.

CHAPTER 11: iWebKit

Organizing Data with Lists

Lists are one of the most frequently used components in iPhone applications, as they
provide a simple way to layout various types of information, and can optionally provide
hierarchical organization to allow for sub-lists and navigation. iWebKit provides several
different formatting options for lists in your application. You can choose to style your list
using the classic style, with support for images and comments; a list in the classic
iTunes style, containing album covers, artist, title, and rating information; an App Store
list with ratings and prices; an iTunes style list with ratings and album covers; an
iPod/music list that shows a numbered list of songs with times.

In iWebKit forms, as with a lot of mobile web Ul, and <1i> tags are used quite
differently than you would typically see on the Web. When considering the small amount
of screen real estate available on a mobile device, it makes sense that a single column
would take up the entire width of the screen. For this reason, it makes sense to use
unordered lists to vertically organize your content instead of divs and other containers.

Additionally, in order to utilize the custom iWebKit list styles, you need to ensure that
you have properly declared the list type in the required location. Most list classes require
you to apply a class to the <body> tag or the tag, and some list items require styles
as well. You can see an overview of available list types and corresponding body classes
in Table 11-1.

Use the following code samples as your guide to make sure you’ve got all the right
classes in all the right locations.

Table 11-1. ilWebKit List Types and <body> Tag Class

List Type Body Class Example
Classic list | List Group
List ltem >
3
’7@ List ltem With Image >
'0(Comment
<°
App Store applist __List Group
List ltem >
Ny
‘7,,7 List ltem With Image g
‘°< Comment
<&
iTunes Music musiclist | List Group

List Iltem With Image

Comment

CHAPTER 11: iWebKit

List Type Body Class Example

| List Grou

iTunes Classic n/a
List Item >

‘747»6 List ltem With Image

Comment

iPod ipodlist | List Group

‘747 List ltem With Image
o)

Comment

Classic Lists
There are two main ways to format content in a Classic list:

B Simple format: list items without a class display text (Figure 11-3 and
Listing 11-3)

B Pretty format: list items with the withimage class include an image,
main text and comment text (Figure 11-4 and Listing 11-4)

In addition to the simple and pretty formatting available for content cells, you can
include one or more Title cells in a list to logically group the items in your list. For
example, in a corporate directory application, you may wish to display employees
grouped by their department. Each department would then have a Title cell at the top of
the group and employees in that department would be listed alphabetically below. All of
these options require you to use unordered lists and list item <1i> tags inside your
document’s content <div> tag.

Technically, it is possible to mix-and-match all three types of list items within a list;
however, mixing different types of list items would create a non-standard Ul and could
negatively affect usability, as it will impede the user’s ability to visually parse the data
contained in the list. However, if your use case requires items to be displayed with
multiple formatting types on the same page, you should consider using a Title cell to
separate your list into groups.

List Item >

List Item >
List Item >

Figure 11-3. Classic list—simple Format

CHAPTER 11: iWebKit

Listing 11-3. Classic List—Simple Format

<body class="1ist">
<div id="content">

<1li class="title">Title Bar

List Item

</1i>

List Item

</1i>

List Item

</1i>

</div>
</body>
E
N)
'747 List Item with Image
< Comment
e
Ny
‘747 List Item with Image
A(((\ Comment
N)
'747 List Item with Image
o)
Comment
e

Figure 11-4. Classic list—pretty format

Listing 11-4. Classic Lists with Images in iWebkit

<body class="list">
<div id="content">

<1i class="title">Title Bar</1i>
<1li class="withimage">

List Item with Image
Comment

</1i>
<1li class="withimage">

List Item with Image
Comment

CHAPTER 11: iWebKit

</1i>
<1li class="withimage">

List Item with Image
Comment

</1i>

</div>
</body>

iTunes Classic Style Lists

iTunes Classic-style lists are like classic lists, except in a iTunes Classic-style list, the list
item doesn’t expand to the full width of the screen. Additionally, the top and bottom
cells in each iTunes Classic-style list will have rounded corners.

Store lists
\S\¢7 Comment
420 Sample Title >

(* & % %% 151 Ratings

Figure 11-5. iTunes classic-style list with title and sample list item

To include any of the options available to the cells in an App-store style list, simply add
a tag styled with the appropriate class inside the list item’s <a> tag (Listing 11-5).

Listing 11-5. Store List Item

<1li>

<span class="image" style="background-image:«
url(/public/img.jpg)">
This is a Comment
Cell Title

100 Ratings

$1.99

</1i>

You can also display a title above your store list by including a tag styled with
the graytitle class immediately above the <ul class="pageitem”> tag.

Although the iTunes Classic-style list type does not require a class to be added to the
<body> tag, you must include a pageitem class on the tag, as shown in Listing 11-6.

CHAPTER 11: iWebKit

Listing 11-6. Store List Example

<body>
<div id="content">
Store lists
<ul class="pageitem">
<1i class="store">

<span class="image" style="background-image: «~
url('images/sample.png')">
Comment
Sample Title

151 Ratings

</1i>

</div>
</body>
App Store-style Lists
App Store-style lists support background images, star rating comments, the number of
ratings, and price of the product.

Figure 11-6. App store list items

App Store-style lists also optionally include inline ads at the top of the lists. To include
ads at the top of the list, create a list item styled with the doublead class. Each doublead
list item has space for two ad links. Note that the ads are fixed in width and height, will
not resize if only a single ad is included, and the topmost list item may make the page
feel unbalanced.

To include background images for your links, simply apply an inline style to the <a> tag.
Listing 11-7 illustrates how to create the top ad element for an App Store-style list.

CHAPTER 11: iWebKit

Listing 11-7. Double Ad Link

<1i id="doublead">
<a href="http://iwebkit.mobi" style="background-image:+«
url('pics/adi.png')">
<a href="http://iwebkit.mobi" style="background-image:+«
url('pics/ad2.png')">
</1i>

App Store-style list items are structured in the same way as regular Store-list style
items. See Listing 11-8 for a stand-alone example.

Listing 11-8. App Store Style List Example

<body class="applist">
<div id="content">

<1li id="doublead">

</1i>
<1li>
<a class="noeffect" href="http://itunes.apple.com/us/app/«
bejeweled-2/1d284832142?mt=8">
<span class="image" style="background-image: «~
url('/images/bejeweled.jpg')">
Games
Bejeweled 2

16924 Ratings
$2.99

</1i>

<span class="image" style="background-image:«
url('images/sample.png')">
Comment
Sample Title

151 Ratings

</1i>

</div>
</body>

CHAPTER 11: iWebKit

iTunes style-lists

iTunes-style lists are simple lists that can display a number, title, and time comment. The
background of the cells in this class alternate between light and dark gray (see Figure
11-7 and Listing 11-9).

1 Sample Title (1:32:03) >

2 Second Sample (27.07) >
Figure 11-7. iTunes-style list with alternating table cells

Listing 11-9. iTunes List ltem Example

<body class="musiclist">
<div id="content">

1
Sample Title
(1:33:03)

</1i>

1
Second Sample
(33:03)

</1i>

</div>
</body>
iPod-style lists

iPod-style lists use the same basic structure as the other lists, but are designed with
play icons to visually indicate when music is playing (Figure 11-8).

1» Sample Song

2 Sample Song

Figure 11-8. iPod list selected and non-selected cell

CHAPTER 11: iWebKit

To play music using an iPod list, each list item should contain a link to a JavaScript call
that plays the music and toggles the pause/play icon.®

To include an iPod-style list, the <body> tag must be styled with the ipodlist class.

As with the iTunes-style lists, you are responsible for defining the track numbers for the
items in your list within the tag. Track numbers can be
generated dynamically with JavaScript, or you can hard-code the desired value inside
the .

Additionally, each list item must have a child that includes a tag styled with the
auto class (see Listing 11-10). This container serves as a placeholder for the location
where the play button will be displayed when the user selects the cell.

Listing 11-10. iWebKit iPod List Example

<body class="ipodlist">
<div id="content">

<1i>

1

Sample Song
4:11

</1i>

</div>
</body>
Navigation

Since most applications include more than just a single view, you’ll most likely want to
include a navigation bar in your iWebKit application (Figure 11-9). To add the navigation
bar, include a div tag with the topbar class as a child of the <body> tag.

.| Title Navigation

Figure 11-9. Sample Navigation Bar

You can embed up to three <div> tags in the topbar that allow users to navigate through
your application. Most applications include the page title and an element that allows the
user to move left/backward. It is less common to see elements that allow the user to
move forward, as forward navigation is typically accomplished by interacting with a list
item or other page content.

% iWebKit’s default JavaScript does not include functions to play streaming music. You need
to include your own custom JavaScript. However, the demo does include a sample
JavaScript that implements some of this functionality for you to use as a guide.

CHAPTER 11: iWebKit

Standard Ul conventions dictate the home button should be located on the left side of

the top bar.
Table 11-2. iWebKit Top Bar Navigation Elements
Element Sample Code
Title — <div id="title">This is a Title</div>
Home Button <div id="leftnav">
n <img alt="home" src="images/home.png"
/>
</div>

Left Navigation <div id="leftnav">Left Nav Button</div>

Left

Right Navigation m <div id="rightnav">Right Nav Button</div>

Left Button <div id="leftbutton">Left Button</div>
Left

Right Button <div id="rightbutton">Right Button</div>

Right

Blue Button - @iy <div id="bluerightbutton">Blue
Right Right Button </div>

Blue Button — | <div id="blueleftbutton"s>Blue
Left il Left Button </div>

CHAPTER 11: iWebKit

Forms

Forms can be styled using page items that group your form elements together. Use a
standard <form> and <fieldset> tags to create the form, as shown in Figure 11-10 and
Listing 11-11.

Insert text

Figure 11-10. The iWebKit 5 Demo Application

Listing 11-11. Example iWebKit Form

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"e«
"http://www.w3.o0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta content="minimum-scale=1.0, width=device-width, maximum-scale=0.6667,«
user-scalable=no" name="viewport" />
<link href="css/style.css" rel="stylesheet" media="screen" type="text/css" />
<script src="javascript/functions.js" type="text/javascript"></script>
<title>iWebKit Demo - Easy form elements!</title>
</head>
<body>
<div id="topbar">
<div id="title">iWebKit 5 Demo</div>
</div>
<div class="searchbox">
<form action="" method="get">
<fieldset>
<input id="search" placeholder="search"«
type="text" />
<input id="submit" type="hidden" />

CHAPTER 11: iWebKit

</fieldset>
</forms
</div>
<div id="content">
<form method="post">

<fieldset>
<ul class="pageitem">
<1li class="bigfield"><input placeholder="Username" type="text"«
/></1i>
<1i class="bigfield"><input placeholder="Password"«
type="password" /></1i>

<ul class="pageitem">
<1li class="textbox">
Insert text
<textarea name="TextArea" rows="4"></textarea>

</1i>

</fieldset>
</form>
</div>
</body>
</html>

iWebKit provides pre-styled login fields, input fields for names and telephone numbers,
radio buttons, selection boxes, text area, and input buttons. A list of the interface
components and code required to include those items in your view can be found in
Table 11-3.

Table 11-3. List Item Classes*

List Item Class Description

Bigfield <input type="text"> Big Field Example

Creates a text field spanning the entire available
horizontal width, often used for Username and
Password fields.

smallfield <input type="text"> Narrow Field Example with text and telephone input fields
<input type="tel"> .
Phone number

Small fields or narrow fields display labels inside the
field. The input field takes up half the width of the
cell and is right justified.

* Note: <input type="tel"> is a custom field on the iPhone that displays a popup dial pad
when selected.

CHAPTER 11: iWebKit

List Iltem Class

checkbox

radiobutton

Select

<input type="checkbox">

<input type="radio">

<select>

Description
On the iPhone, check Boxes look like On/Off
switches.
Checkboxes
‘ Remember Me ‘ | OFF I
‘ Save cookie | | OFF ‘

The labels are left-justified and the “On/Off switch” is
right-justified.

Radio Buttons

Green v

Red

Yellow

Radio Buttons fields have a label. When clicked, they
create a custom checkmark that is right-justified.

Selection boxes

Starter v

Leopard

Previous Next

Tiger
v Leopard
Snow Leopard

Selection Boxes have a left-justified label with a
right-justified down arrow. When clicked, they reveal
an iPhone Ulselection box.

CHAPTER 11: iWebKit

List Item Class Description

Textbox <input> Text Area Example

Creates a textbox that takes up the majority of the
vertical and horizontal space on the screen.

Apply to HTML form input element.

In forms, as with a lot of mobile web Uls, you use and <1i> tags quite differently
than you would typically see on the Web. To create a group, create an unordered list
styled with the pageitem class. To embed form elements in the group, wrap each item in
a list item tag styled with the appropriate class as shown in Listing 11-12.

Listing 11-12. iWebKit Example Form

<form method="post">
<fieldset>
<ul class="pageitem">
<1li class="bigfield"><input placeholder="Big Field" type=+«
"text" /></1i>
<li class="smallfield"><input placeholder="enter text" type="text" /></1i>
<li class="checkbox">
Title
<input name="Checkbox Name" type="checkbox" />

</1i>

</fieldset>
</form>
Labeling Field Sets

Add labels to your field sets by adding a tag as the first child
of the <fieldset> tag (Listing 11-13).

Listing 11-13. Fieldset Title Example

<form method="post">
<fieldset>
Fieldset Title
</fieldset>
</form>

Fieldset Title

Figure 11-11. ilWebKit fieldset title example

CHAPTER 11: iWebKit

Landscape Mode

iWebKit also offers landscape and portrait modes for all screens. As the orientation of
the device changes, the onscreen layout of the elements adapts to the new orientation.

Note that while the layout modification is handled by iWebKit's CSS, the UlWebView is
responsible for managing the rotation of content contained within. In order to prevent
rotation from occurring, you will need to modify your view programatically in Xcode.

Phone Integration

iWebKit offers several simple ways to trigger device functionality and launch other
applications. Table 11-4 shows how to format links so the associated application
launches on the device when a user follows the link.

Table 11-4. Integrating with iPhone Functionality

Application Link to... Url Format

New email mailto:[emailaddress] <a class="noeffect"
href="mailto:example@example.com">

iTunes Store URL for item in the iTunes <a class="noeffect"
store href="http://itunes.apple.com/us/album/the-
e-n-d-the-energy-never-dies/id318390146"/>
Appstore URL for item in the <a class="noeffect"
Appstore href="http://www.itunes.com/app/CameraBag"/>
SMS sms : [phonenumber]
Phone tel: [phonenumber] <a class="noeffect" href="tel:408-555-
5555"/>

Launches a dialogue
that asks if you
would like to call the
number provided

Youtube URL for a <a class="noeffect"
YouTube video href="http://www.youtube.com/watch?v=DWmQEvO
oF08"/>
Google Maps GoogleMaps query url, e.g. <a class="noeffect"
http://maps.google. href="http://maps.google.com?q=New+York,+NY"
com?g=New+York, +NY />

If you're familiar with the GoogleMaps API, you may wish to note that there is no need to
include an API key in your request.

CHAPTER 11: iWebKit

Integrating iWebKit in Mobile Applications

In this section, you’ll see how to integrate iWebKit into your UIWebView-based mobile
applications to match what users expect to see in an iPhone application. The following
sections walk you through integrating iWebKit in applications built in Xcode using
Objective-C, as well as applications built using the Rhodes and PhoneGap frameworks.
These examples build on the foundation provided in earlier chapters, so if it’s been
awhile, take a minute to refresh your memory before continuing on.

Creating a Native iPhone Application with iWebKit in
Objective C

Use the instructions in Chapter 2 to create a new native UIWebView-based application.

To include iWebKit in an application, you need to place a copy of the iWebKit framework
in your iPhone project directory. In this example, you will build an app using the iWebKit
feature demo.

In the root directory of the iWebKit Framework you downloaded earlier, find the folder
entitled Demo. Drag the contents of the Demo folder into the Resource folder in Xcode.
A dialogue box should prompt you for import handling of these files into your project:
check the Copy items into destination group’s folder (if needed) check box, and
select Create Folder References for any added folders. The Create Folder
References option will preserve your directory structure in Xcode and on the device, as
opposed to the soft folders Xcode normally uses that do not preserve your directory
structure.

The Xcode groups option creates groups to help you organize your files during
development. Note, though, that groups do not translate to directories when building: in
your compiled application, all files will be found at the root level.

Verify your prompt looks like Figure 11-12 and click the Add button to continue.

CHAPTER 11: iWebKit

@Copy items into destination group's folder (if needed)

Reference Type: | Default +

Text Encoding: | Unicode (UTE-8))

(O Recursively create groups for any added folders
(*) Create Folder References for any added folders

_Add To Targets

¥ oA iWebkitDemo

Z

Figure 11-12. Xcode file copy prompt

Then, to test-drive all the functionality available in iWebKit, implement the code from
Listing 11-14 in your viewDidLoad method.

Listing 11-14. viewDidLoad Method
- (void)viewDidLoad {
// String representation of the URL

NSString *urlAddress = [[NSBundle mainBundle] pathForResource:@"index"«
ofType:@"html"];

//Create an URL object.
NSURL *url = [NSURL fileURLWithPath:urlAddress];

//URL Request Object
NSURLRequest *requestObj = [NSURLRequest requestWithURL:url];

//Load the request in the UIWebView.
[webView loadRequest:requestObj];

}

Follow the instructions in Chapter 2 to build and test your application shown in Figure
11-13.

CHAPTER 11: iWebKit

Features
Discover iWebKit 5

Welcome to this demo. please "touch"
around to discover iWebKit's features!

a The Technologies >

IE! Navigation elements

[=4 Form elements

@ iPhone Integration

€ e iwebkit Blog

Figure 11-13. ilWebkit demo in UlWebViewSetting up Rhodes for iWebKit

Create an Application

Setting up Rhodes to use iWebKit is a simple process. The first thing you will need to do
is generate an application (Listing 11-15).

Listing 11-15. viewDidLoad Method
> rhogen app iWebKit

Generating with app generator:

[ADDED] iWebKit/rhoconfig.txt
[ADDED] iWebKit/build.yml

[ADDED] iWebKit/app/application.rb
[ADDED] iWebKit/app/index.erb
[ADDED] iWebKit/app/layout.erb
[ADDED] iWebKit/app/loading.html
[ADDED] iWebKit/Rakefile

[ADDED] iWebKit/app/helpers
[ADDED] iWebKit/icon

[ADDED] iWebKit/app/Settings
[ADDED] iWebKit/public

Rhodes generates default CSS, JavaScript and HTML. Although you can delete the
default Rhodes CSS, make sure to leave the JavaScript intact. Some features depend
on the included JavaScript to function.

CHAPTER 11: iWebKit

Copy the Framework folder from the iWebKit root directory to the public directory of
your Rhodes application. If you wish, you can rename the Framework folder to “iWebKit”
or something that compliments your workflow. The Framework folder will contain
everything you need to build an application.

Add iWebKit Framework to Application Layout Template

iWebKit/app/layout.erb contains the basic header and layout for your application. This
file will contain references to all the CSS files for each target device. To guarantee the
Framework works as intended, you will need to remove all global references to the
autogenerated stylesheets from the header of your application.

Additionally, in the header, you will see a series of conditional statements. These
statements define which HTML, CSS and JavaScript files are loaded at runtime. In this
case, you should modify the “APPLE” stanza to match Listing 11-16.

Listing 11-16. iWebKit Layout.erb
<% if System::get property('platform') == 'APPLE' %>

<meta name="viewport" content="width=device-width; initial-scale=1.0;+«
maximum-scale=1.0; user-scalable=0;"/>

<!-- iWebkit CSS and JavaScript -->

<link href="/public/Framework/css/style.css" rel="stylesheet" media="screen"«
type="text/css" />

<script src="/public/Framework/javascript/functions.js"«
type="text/javascript"></script>

<!-- Rhodes JavaScript -->
<script src="/public/js/jquery-1.2.6.min.js"></script>
<script src="/public/js/rho.js"></script>
<script src="/public/js/application.js"></script>
<% end %>

iWebkit expects its resources to be in the /images folder. However, in this scenario
iWebkit will be unable to find them in their default locations. To resolve this issue, you
should update the path to any resources referenced in the iWebKit CSS.

Build an application as you normally would, using the Rhodes generators. Refer to the
previous code examples to drop iWebKit components into your application.

The autogenerated HTML included in your Rhodes application is not compatible with the
iWebKit framework. To utilize the iWebKit components in a view, you will need to
replace the autogenerated HTML with its iWebKit equivalent. If you are using one of the
iWebKit list styles anywhere in your application, make sure to remove the <body> tag
from your iWebKit/app/layout.erb and place it as the outermost parent tag in every view
of your application.

For inspiration, refer to the code examples earlier in this chapter.

To test your application, build it as described in Chapter 6, Your First Rhodes App.

CHAPTER 11: iWebKit

Setting up PhoneGap for iWebKit

Using iWebKit with PhoneGap is very simple.

To create a new PhoneGap for iPhone project, see Chapter 8 for complete details. You
will need to be using XCode. Copy the contents of the iWebKit demo directory into the
www folder in your PhoneGap project, replacing the existing index.html. Target the
iPhone simulator and then choose Build and Run.

AOO [4) index.himl - iwebkit
Simulator - 3.2 | Debug bwe... ~| | & - ’(s : 4 a?) Q-
Ouerview Action Breakpaints Bulld buidandRun Ciean fasks (nfo Search
[Crouss & Fifes " e Name = = A iCode [} L3
T bkl Bl AddrassBook framewark o
¥ [v N2 AddressBockU) framewerk L] |
[atout himi e AuthoToolboa framewark o
[abpist himl K& AvFoundation framewneh o
@) brah bim| ;Wi CTNEwork ramewarh -
s blogrut.anp N# CoreGraphics.framewark r
changelog, hrm! | B¢ CorsLocation.tramework o
[classicie heal [* oetauieng]
> i <55 R Foundanion itamework o
[d rorm nemi [iean nna - J
(el images - -
&) Indes.nin 8] |

8 Integration_himi
1podlist.hemi
[itunesiist.heml
» (3 |zvascrint
[§) navigarian.hteml
» (G php
¥ [nics
[storelist.hemi
[technalogy.htmi
thumbs
[¢§ ransparenc himi

¥ B PhoneGapib. xcodepra)

[] Classes
w7 Phugins
(] Cther Sources
] Resources
£ rrameworks
; Products
¥ (&) Targets
< Exegutahies
¥ O, Find Reauhs
» |9 goskmarks

wikched

;

L
nderntml73 &

TR rshm) /DT el 1 -se i L)

DSucieeted

Figure 11-14. ilWebKit example in PhoneGap project

CHAPTER 11: iWebKit

Home Changelog About

Features
Discover iWebKit 5

Welcome to this demo. please "touch”
around to discover iWebKit's features!

a The Technologies

El Navigation elements

@ Form elements

@ iPhone Integration

a Rss Feed embedded >

Figure 11-15. iWebKit demo app running in PhoneGap

Chapter

Animated Ul with jQTouch

jQTouch is a jQuery plug-in for mobile web development originally developed for the
iPhone and iPod Touch.! jQTouch enables animated transitions, swipe detection, and
themes for HTML-based web applications based on features in WebKit. The most
exciting and interesting feature of jQTouch is that it allows you to quickly make HTML
pages look like a native iPhone application.

jQTouch enables you to quickly develop applications that take advantage of common Ul
patterns, leveraging the JavaScript skills many developers already have. jQTouch is
actively under development. With its simple and clean API, jQTouch is gaining in
popularity.

While you can use jQTouch in hosted mobile applications and access it on a device with
a web browser, you can also use it in native applications produced by several cross-
platform frameworks. To use jQTouch in a native application, you would include it in a
browser control, as discussed in Part 1, or leverage a cross-platform framework, such
as Rhodes or PhoneGap (Chapters 6 and 8), that enable the use of HTML Ul in a native
application. The visual themes and styling of jQTouch are suitable for any WebKit-based
mobile browser; however, its animated transitions only work on iOS, as of this writing.

In this chapter, we will cover how to use jQTouch in your device’s web browser, as well
as with the frameworks Rhodes and PhoneGap. The information presented is based on
jQTouch 1.0 beta ,2 which is the current version at the time of this writing.

In order to work effectively with jQTouch, you will need to be proficient in JavaScript,
CSS, and HTML. In particular, you should be comfortable with how AJAX applications
work, in making asynchronous requests, and modifying the Document Object Model
(DOM) of the HTML page based on the response.

! jQTouch is an open source project initially developed for mobile web applications by David
Kaneda, and is free to use under an MIT license. You can find more information about
iQTouch at http://www.jgtouch.com

207

CHAPTER 12: Animated Ul with jQTouch

Getting Started with jQTouch

jQTouch is a source code library that includes Javascript and CSS. It requires (and
includes) the popular JavaScript library, jQuery. In order to use jQTouch to control the
look and feel of your application, it requires that you structure your HTML in a specific
way and that you follow some specific patterns that are not clearly documented. This
section explains those patterns and the assumptions that jQuery makes about how your
code will work. In this chapter, we will use the terms “Application” and “Screen” as
follows:

B Screen: what the user sees from page to page. Each screen is
assumed to be a DIV element that is a child of the HTML body.

B Application: the HTML page that includes the jQTouch JavaScript and
CSS, as well as all of the screens (some of which may be dynamically
loaded).

Starting a new application that uses jQTouch is straightforward; however, modifying an
existing application is tricky because your application needs to work within the
constraints of jQTouch. These constraints will be made clear through the examples in
this chapter.

B You never leave the single page of the application.
B URLs must have full paths (or be relative to the root of your web app).

B Each screen isn’t a full web page; instead, it is a DIV that is an
immediate child of the application body.

B Make sure you don’t use IDs, except to identify screens.

Running Example Code

When you download the jQTouch source code,? you will find several sample applications
that you can examine for an overview of all the features in jQTouch. While you can view
the examples in any browser, to view the animations, you should run the jQTouch
examples using the iPhone simulator or in the WebKit-based desktop browser of your
choice to see the animations.

To load these examples in your iPhone simulator, right click on any of the index.html
files in the demo folders using the Finder and select Open With » iPhone Simulator.app. This
will load the HTML, CSS, and JavaScript into the browser on your iPhone simulator so
you can explore the examples and see what they would look like on an iPhone. To view
the same page on an iOS device, you must host the web page on a web server that can
be accessed via HTTP.

2 Source code and additional documentation is available at
http://code.google.com/p/jqtouch

CHAPTER 12: Animated Ul with jQTouch

Creating a Simple jQTouch Application

The user will go to a page that is the jQTouch application. This page includes jQuery,
jQTouch JavaScript, jQtouch CSS, and a theme to skin the application with. While you
don’t need to (and shouldn’t) modify the jQTouch CSS file, it is helpful to understand
that the jQTouch CSS file contains the transition classes (such as slide, pop, and so
forth) and defines the WebKit animations for each transition. Typically, you will use the
jQTouch styles by annotating your HTML with the jQTouch classes. You can, of course,
create your own styles that extend or modify jQTouch styles and you would typically
place those in your own CSS file loaded after the jQTouch CSS file.

The application begins with one or more screens already preloaded. In other words, the
source code to your application (your main HTML page) may declare one or more DIVs
as children of the body, which will each act as a screen. If a screen isn’t already marked
as current (by declaring the HTML attribute class="current”), jQTouch will interpret the
first DIV in the BODY tag as the first screen. Only the current screen is visible. Each
screen is assumed to be a single DIV element. Preloaded screens should have IDs
already assigned to them so they can be transitioned to via links in the document that
contain internal anchors that represent the screen IDs.

Listing 12-1 shows a starter application for jQTouch. The jQTouch libraries must be
included and you must also initialize the jQTouch library. If you are already using
jQTouch in your project, be sure to include the jQuery file included in your downloaded
jQTouch source to avoid a version mismatch. To get started, copy the jQTouch and
themes directories to the root of your web application (or simply experiment at the root
of the folder created when you unzip the jQTouch download).

As is common practice, this example initializes jQTouch in a script tag in the HTML
header. (Optional initialization parameters are discussed later in this chapter.) This
example uses a toolbar, which is an optional component, but commonly used in most
mobile applications. To get started, copy the jQTouch and themes directories to the root
of your web application with apple theme.

Listing 12-1. Starter

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<script src="jqtouch/jquery.1.3.2.min.js" type="text/javascript"></script>
<script src="jqtouch/jqtouch.js" type="text/javascript"></script>
<link rel="stylesheet" href="jqtouch/jqtouch.css" type="text/css"/>
<link rel="stylesheet" href="themes/apple/theme.css" type="text/css"/>
<script>
var jqt = $.jQTouch();
</script>
</head>
<body>
<div id="page-home">
<div class="toolbar">
<h1>Home</h1>
</div>

CHAPTER 12: Animated Ul with jQTouch

Figure 12-1 shows what this example looks like running in the Safari desktop browser,
which is recommended for quick iterative development.

N—
—

Figure 12-1. Starter application with apple theme

jQTouch ships with an alternate “jgt” theme. You can change the full look of your
application simply by specifying an alternate theme, as shown in Listing 12-2. Figure
12-2 shows what this example looks like running in the Safari desktop browser with the
jqt theme.

Listing 12-2. Including the jqt Theme
<link rel="stylesheet" href="themes/jqt/theme.css" type="text/css"/>

Figure 12-2. Starter application with the jqt theme

CHAPTER 12: Animated Ul with jQTouch

A theme is a directory made up of a CSS file and images. The jqgt theme?® will give your
application a jQTouch skin and is used by most of the jQTouch demos. The apple
theme* simulates a native iPhone UIKit interface. The behavior of the application remains
the same across themes, only the look is changed.

Adding Screens

Next we’ll add a few screens to the same example to illustrate how jQTouch modifies
the DOM to achieve its transition effects (see Listing 12-3).

Listing 12-3. Example Application with Three Screens and Links Between Them

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<script src="jqtouch/jquery.1.3.2.min.js" type="text/javascript"></script>
<script src="jqtouch/jqtouch.js" type="text/javascript"></script>
<link rel="stylesheet" href="jqtouch/jqtouch.css" type="text/css"/>
<link rel="stylesheet" href="themes/apple/theme.css" type="text/css"/>
<script>
var jqt = $.jQTouch();
</script>
</head>
<body>
<div id="page-home">
<div class="toolbar">
<h1>Home</h1>
</div>

<li class="arrow">Go to page 1</1i>
<li class="arrow">Go to page 2</1i>

</div>
<div id="page-1">
<div class="toolbar">
<h1>Page 1</h1>
Back
</div>

<1i class="arrow">Go home</1i>
<li class="arrow">Go to page 2

</div>
<div id="page-2">
<div class="toolbar">
<h1>Page 2</h1>
Cancel
</div>

<1li class="arrow">Go home</1i>

% Found in themes/jqt/theme.min.css.

* Found in themes/apple/theme.min.css.

CHAPTER 12: Animated Ul with jQTouch

<1li class="arrow">Go to page 1</1i>

</div>
</body>
</html>

To understand what is happening with your application, you will want to open the Safari
Inspector, as shown in Figure 12-3. To do so, select Show Web Inspector under the Develop
menu. (If you don’t see a Develop menu, open Safari Preferences and on the Advanced
tab, select Show Develop menu in menu bar.)

Note how the code is different once it is loaded. In particular, look closely at how the
screens page-home, page-1, and page-2 are modified at runtime. On initial load of the
application, jQTouch modified the DOM and now the page-home div has
class="current". When you click a link, you will see an animated transition to the next
screen, then you will see that a different DIV will have class = "current" and the page-
home DIV will not.

Go to page 1 > ‘
\
Go to page 2 > v

v

(X 'L‘QBemems(\#_ Resources :’ Scripts @ Timeline C Profiles E Storage UConsole

v<html xmlns="http://www.w3.0rg/1999/xhtml"> ‘ » Styles £~
» <head>..</head> ‘ » Metrics
v<body class="landscape"> f -
v<div id="page-home" class="current"> | » Properties
p <div class="toolbar">.</div> ‘ » Event Listeners E+ 33
p <uls.
</div>
» <div id="page-1"s>..</div>
» <div id="page-2">..</div> ‘
</body>
</html>

B > Q html body.landscape _ d

Figure 12-3. Safari Web Inspector showing the first page as current

Loading Additional Screens with Ajax

For jQTouch transitions to work, screens must already be in the DOM. jQTouch handles
this for you with Ajax requests as long as your application conforms to its
(undocumented) expectations.

In order to achieve the visual effects of animated page transitions, screens that are not
present in the initial application HTML page must be fetched with Ajax requests.
jQTouch detects which links are internal by inspecting the HREF of the link. The screen
is assumed to have been loaded if the HREF is an internal anchor, such as #screen-1. If

CHAPTER 12: Animated Ul with jQTouch

the HREF is a path, it will make an Ajax request to the URL the link is pointing to and
optimistically include whatever HTML snippet it receives. The returned content must be
one or more DIV elements, where each DIV element represents a screen.

NOTE: It is an HTML error to include a full document inside of another document. If a full HTML
page is returned by your web service, then your application will not work. Specifically, the screen
will appear blank. Also, if your web service returns an HTML element other than a DIV, jQTouch
styles may not apply correctly.

The content of the Ajax request is appended to the document and each of the links is
assigned an id (such as page-1, page-2, and so forth). If one of the screens has a
“current” class, jQTouch will transition to that screen after the external content has been
inserted. If you only have one DIV in the response or structure the response so that the
first DIV is the desired target page, then specifying a “current” class is not required—
jQTouch will make that assumption and annotate the DOM accordingly when the
response is received. The other change that jQTouch makes to the DOM is that the
HREF of the link that initiated the Ajax request is modified to include an anchor
reference to the ID of the new “current” screen. Listing 12-4 show a sample snippet
from a jQTouch application where the initial load is a single screen. Listing 12-5 shows
the AJAX response, which simply includes a snippet of HTML with a single DIV, not a
whole HTML page. Listing 12-6 shows the modified application page.

Listing 12-4. Application Body Before /beatles Link is Clicked

<body>
<div id="page-1" class="current">
Get Beatles
</div>
</body>

Listing 12-5. AJAX Response

<div>

<1li>John</1i>
Paul</1i>
George</1i>
Ringo</1i>

</div>

Listing 12-6. Application Body After the Link Was Clicked

<body>
<div id="page-1">

Get Beatles</1i>

</div>

<div id="page-2" class="current">

<1i>John¢/1i>

CHAPTER 12: Animated Ul with jQTouch

Paul</1i>
George</1i>
Ringo</1i>

</div>
</body>

The new screen has been inserted into the DOM with an ID and class. The HREF that
was originally “/beatles” is now “#page-2” and therefore, if the user were to click that
link again, no server request would be made.

WARNING: All paths must be full URLSs or relative to the root of your application.

Your entire application will end up being a single page. Relative paths in this context
don’t make sense. Because of this architecture, all links must be full URLs or relative to
the root of your application.

To navigate away from the application, include a target="
shown in Listing 12-7.

webapp" to your link, as

Listing 12-7. Linking Away from Your Application.

The Who

Cancel, Back, and Browser History

You can reverse a link animation by including a back or cancel class to your links. Those
links are then styled as buttons and will appear as top-left buttons in the application.
See Listing 12-8 for an example of how a Back button is placed within a page. Figure
12-4 shows the page with the apple theme.

Listing 12-8. Back Button Inside a Toolbar on a Page

<div id="page-1">

<div class="toolbar">
<h1>Page 1</h1>
Back

</div>

<1li class="arrow">Go home</1i>
<1i class="arrow">Go to page 2</1i>

</div>
Go home >
Go to page 2 >

Figure 12-4. Page with Back button, rendered with apple theme

CHAPTER 12: Animated Ul with jQTouch

jQTouch doesn’t interact well with the browser history. Back simply pops the previous
page off an internal stack—there is no implementation of Forward. Consider hiding the
browser Back and Forward buttons and instead embed back and cancel in your
application. Forward will then be just a function of clicking buttons and links within the
application.

Other Buttons

Buttons normally appear on the top-right. To define a button, just add the button class:
Home
If you want to force a button left, add both the button and leftButton class:

Home on the left

jQTouch Initialization Options

jQTouch must be initialized by calling $. jOTouch(), as shown in Listing 12-9.
jQTouch returns an object with public that enables you to interact with it via JavaScript:

B getOrientation
B goBack
m goTo

If you want to invoke any of these public methods programmatically, you can save the
jQTouch instance in a variable, otherwise ignore it.

You can also pass options to the initialize function.®
Listing 12-9. Initializing jQTouch with Options

$.jQTouch({

icon: 'jqtouch.png',

statusBar: 'black-translucent',

preloadImages: [
"themes/jqt/img/chevron_white.png',
"themes/jqt/img/bg_row select.gif',
"themes/jqt/img/back_button _clicked.png',
"themes/jqt/img/button_clicked.png'

1

The jQTouch initialization options are listed in Table12-1.

® You can find a full listing of options in Appendix A, jQTouch Options.

CHAPTER 12: Animated Ul with jQTouch

Table 12-1. jQTouch Initialization Options

Value Default Meaning
addGlossTolcon TRUE Set to false to prevent automatic glossy button effect
on icon.
backSelector .back, .cancel, A CSS selector for Back links/buttons. When clicked,
.goback'’ the page history goes back one, automatically

reversing whichever entrance animation was used.

cacheGetRequests TRUE Automatically caches GET requests, so subsequent
clicks reference the already loaded data.

cubeSelector .cube' Link selector for a cube animation.

dissolveSelector .dissolve' Link selector for a dissolve animation.

fadeSelector fade' Link selector for a fade animation.

fixedViewport TRUE Removes the user's ability to scale the page. Ensures

the site behaves more like an application.

flipSelector flip' Link selector for a 3-D flip animation.

formSelector form' Sets which forms are automatically submitted via Ajax.

fullScreen TRUE The web site will become a full-screen application
when saved to a user's home screen. Set to false to
disable.

fullScreenClass fullscreen' Adds a class to the <body> when running in full-

screen mode, to allow for easy detection and styling.
Set to false to disable.

icon FALSE Sets the home screen icon for the application. To use,
pass a string path for a 57x57px PNG. Example: icon:
'images/appicon.png’

initializeTouch a, .touch' Selector for items that are automatically given
expanded touch events. This makes ordinary links
more responsive and provides trigger events such as

swipe.
popSelector '.pop’ Link selector for a pop animation.
preloadimages FALSE Pass an array of image paths to load them before

page loads. Example: ['images/link_over.png',
'images/link_select.png']

CHAPTER 12: Animated Ul with jQTouch

Value Default Meaning

slideSelector '‘body > * > ul li a' Link selector for the default slide-left transition. By
default, applies to all links within an unordered list.
Accepts any jQuery-capable selector 'li > a,
a:not(.dontslide)’, and so forth.

slideupSelector .slideup’ Link selector for a slide up animation.
startupScreen null Pass a string path to a 320px x 460px startup screen
for full-screen apps. Use a 320px x 480px image if you

set 'statusBar' to black-translucent.

statusBar ‘default’ Styles the status bar when running as a full-screen
app. Other options are black and black-translucent.

submitSelector '.submit' Selector that, when clicked, will submit its parent form
(and close keyboard if open).

swapSelector ".swap’ Link selector for 3-D swap animation.

useAnimations true Set to false to disable all animations.

[source: http://code.google.com/p/jqtouch/wiki/InitOptions]

Basic Views

As seen in the examples so far, jQTouch applications consist of a single HTML file, used
to create the individual views in your the application. You can create additional views by
creating new DIVs as children of the body. .

The following is an example excerpt from an application with two views:

<body>
<div id="jqt">
<div id="index">
<div class="toolbar">
<h1>My Application</h1>
About
</div>
<p>Hello I am the index page</p>
</div>

<div id="about">
<div class="toolbar">
<h1>About</h1>
Back
</div>
<p>Hello I am the about page</p>
</div>
</div>
</body>

CHAPTER 12: Animated Ul with jQTouch

jQTouch also supports organizing your application into separate HTML files. You can
use the _webapp target to break up sections of your application and then refer to them
as you would an external link. In that case, your link should reference the new file’s
name and anchor tag, if appropriate (for example, <a class="button flip"
target="_webapp" href="/about_us.html#about">About).

Customizing Your jQTouch Applications
Animations

Specify the transition you wish to apply to a link by adding a CSS class to the link.
jQTouch includes eight default page animations: slide, slideup, dissolve, fade, flip, pop,
swap, and cube.® When the user presses the Back button, jQTouch automatically
handles reversing the animation for a natural transition.

Navigation Bar (aka the Toolbar)

jQTouch includes a special CSS class called toolbar that will turn a DIV into an element
resembling an iPhone Navigation Bar at the top of the screen (see Figure 12-5). The
jQTouch toolbar is simply a style generated from the jQTouch CSS, and shouldn’t be
confused with the toolbar element available in native Objective-C-based applications.

<div class="toolbar">

<h1>My Application</h1>

About
</div>

My Application

Figure 12-5. Navigation bar

Tables or Lists

In jQTouch, you can create lists that appear almost identical to those found in native
iPhone applications (see Figure 12-6). Create an unordered list <u/> and apply one of
the following classes to the ul element: edgetoedge, plastic, or metal to style your list.
Then you can add items to your list as you normally would, using the </i> tag.
<div id="jqt">
<div id="index">
<div class="toolbar">
<h1>Tables</h1>

</div>
<ul class="edgetoedge">

® In the event those eight animations just aren’t enough, the jQTouch documentation includes
details on how to add your own custom animations.

CHAPTER 12: Animated Ul with jQTouch

<1li>Hydrogen</1i>
Helium</1i>
Lithium</1i>

</div>
</div>

Hydrogen
Helium

Lithium

Figure 12-6. List

To round the corners of your lists, apply the “rounded” class to the unordered list (Figure
12-7).

<div id="jqt">
<div id="index">
<div class="toolbar">

<h1>Tables</h1>

</div>

<ul class="rounded">
<1li>Hydrogen</1i>
Helium</1i>
Lithium</1i>

</div>
</div>

CHAPTER 12: Animated Ul with jQTouch

-ull Carrier = 2:04 PM

Hydrogen
Helium

Lithium

Figure 12-7. List with rounded corners

To add a standard disclosure indicator to an item in your list, add the class “arrow” to
the list item </i> element.

<div id="jqt">
<div id="index">
<div class="toolbar">
<h1>Email</h1>
</div>
<ul class="edgetoedge">
<1i class="arrow">dev@example.com<small«
class="counter">3</small></1i>
<1i class="arrow">marketing@example.com<small«
class="counter">221</small></1i>
<1i class="arrow">webmaster@example.com<small«
class="counter">37</small></1i>

</div>
</div>

Finally, you can add numbers to the right-hand sides of your elements (see Figure 12-8)
by including a SMALL element with class="counter". Note: the body of the /i has to be
an anchor tag for this to display correctly. This style is used in the Apple Mail
application, for example.

CHAPTER 12: Animated Ul with jQTouch

-ull Carrier = 2:15 PM

Hydrogen
Helium

Lithium

Figure 12-8. List with disclosure indicator and numbers added

Customizing Your Views with Themes

jQTouch comes with two default themes. The first theme we’ve already seen matches
native iPhone Ul controls. The second is similar to the first, but the color scheme is
dominated by black (see Figure 12-9). You can change between them by including a
different theme.css file. You can create your own themes as well. To modify or add to
the existing styles, you can add your own CSS by including additional files or defining
additional styles in the HTML head after including the theme.

using <link rel="stylesheet" href="themes/jqt/theme.css" type="text/css"«
media="screen" title="no title" charset="utf-8">

CHAPTER 12: Animated Ul with jQTouch

-ull Carrier = 2:19 PM
Tables

Hydrogen
Helium

Lithium

Figure 12-9. Changing themes

There are additional features you might use to customize a stand-alone jQTouch mobile
web app, but we recommend using Rhodes or PhoneGap’s methods to customize such
features as application icons, caching, and geolocation.

Integration with Rhodes

In Rhodes 2.1,” jQTouch integration is built-in. By default, the iOS- and Android-
generated code includes animated transitions. The jQTouch library that ships with
Rhodes has been modified to be compatible with Android.®

Integration with PhoneGap

To use jQTouch features in a PhoneGap application, copy the jQTouch/ and themes/
directories into the www directory of your PhoneGap app.

" Rhodes 2.1 is in beta, as of this writing

8 Since both Rhodes and jQTouch are MIT Licensed. These can be expected to roll back into
the jQTouch project.

CHAPTER 12: Animated Ul with jQTouch

In your application’s index. html file, replace any the default CSS and JavaScript in the
HEAD section with the following:

<link rel="stylesheet" href="jqtouch/jqtouch.min.css" type="text/css" media="screen"«
title="no title" charset="utf-8">

<link rel="stylesheet" href="themes/apple/theme.min.css" type="text/css"«
media="screen" title="no title" charset="utf-8">

<script src="jqtouch/jquery.1.3.2.min.js" type="text/javascript" charset=«
"utf-8"></script>
<script src="jqtouch/jqtouch.min.js" type="text/javascript" charset="utf-8"></script>

<script>
var jOT = $.jQTouch();
</script>

Chapter

Sencha Touch

Sencha Touch (www.sencha.com/products/touch) is a JavaScript framework for creating
web applications targeted to touch-based devices. Sencha Touch is the flagship
product of Sencha (formerly Ext JS), a Palo Alto, Calif. company launched in 2007 that
makes application frameworks. Sencha Touch combines ExtJS, jQTouch and Raphaél.
Unlike jQTouch, Sencha Touch is not dependent on jQuery and is compatible with both
the iPhone and Android. Sencha Touch is distributed under the GPL v3 open source
license. As of this writing, it is in beta and not available for commercial distribution;
however, it is expected to have a commercial license upon final release.

Sencha Touch allows your web applications to have a consistent look and feel across
both the iPhone and Android. It does not strive for a native look in most cases, but
rather has created a blend of widgets that don’t look like any specific operating system
(with the exception of some iPhone-looking toolbars.)

Sencha Touch is powered by HTML5 and CSS83. Unlike the iWebKit and jQTouch, the
Sencha Touch API is pure JavaScript. Developers need to be fairly experienced at
JavaScript to take advantage of the Sencha Touch framework. Due to Sencha’s recent
release, still in beta at the time of this writing, this chapter focuses on providing a
foundation in the Sencha style of Ul layout and programming and does not provide full
recipes for how to develop applications.

Getting Started

In Sencha Touch, you write all of your application code in JavaScript. Focused on the
WebKit-based mobile browsers of iOS and Android, you will get the best results when
developing if you do your testing on the Safari desktop browser before testing it in the
simulator. As with all mobile development, be sure to test on target devices, not just the
simulator, before releasing your mobile application.

When implementing the visual design and client-side interaction and testing on your
desktop, you can simply open an HTML file in Safari. However, when integrating the
interface into your web application, you will make AJAX requests that require your HTML
file be hosted in a web server (for example, accessed via “http://..” rather than

225

CHAPTER 13: Sencha Touch

“file:///.”). Also, to run in a simulator, you will need to access your application via
your web server (which can run on your local machine, but you will need to access it as
a web server over the network).

There is no requirement for how you organize your files; however, to follow the code in
this chapter, your starter application directory should look like Figure 13-1 (the complete
list of files is provided in Table 13-1). In all of Sencha’s own demos, the application
JavaScript file is called index.js and they keep it at the root of the application directory
as a sibling of index.html; however, this chapter follows the convention of having
subfolders for JavaScript and CSS, which is a common convention in web application
development.

For development, we include ext-touch-debug.js but you will switch to ext-touch.js for
deployment. The debug version helps you detect and troubleshoot errors, as well as
isolate issues in your application code by seeing exactly where in the library errors
occur. We include the debug-with-comments.js for convenient reference.

¥ Bl css
&4 application.css
&4 ext-touch-debug.css
&4 ext-touch.css

) index.html

A javascript
s ext-touch-debug-w-comments.js
¢s| ext-touch-debug.js
&8 ext-touch.js
¢8| index.js

Figure 13-1. A typical directory structure for a Sencha application

There are a number of standard files that are included in a Sencha application tree.
These are listed in Table 13-1 along with an explanation of their purpose.

Table 13-1. Standard Files in a Sencha Touch Application

File Purpose

index.html| the entry-point of your application. You may have multiple HTML files; however,
a single HTML file will typically represent many “pages” in your application (or
multiple screens on a mobile device).

index.js for your application code

application.css for your application CSS

ext-touch.js Sencha JavaScript library. During development you will want to use ext-touch-
debug.js instead.

ext-touch.css ~ Sencha CSS library that is required to go with the JavaScript library.

CHAPTER 13: Sencha Touch

To get started with your application, you need to create an index.html file with the
content shown in Listing 13-1.

Listing 13-1. A Typical index.html File for a Sencha Application

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>My Application</title>
<link rel="stylesheet" href="css/ext-touch.css" type="text/css"/>
<link rel="stylesheet" href="css/application.css" type="text/css"/>
<script type="text/javascript" src="javascript/ext-touch-debug.js"></script>
<script type="text/javascript" src="javascript/index.js"></script>
</head>
<body/>
</html>

Create subfolders “javascript” and “css.” Place the Sencha Touch library files in
appropriate folders and create blank files for index.js and application.js.

Next, you need to fill in the boilerplate JavaScript in index.js as shown in Listing 13-2.
The Ext.setup method sets up a page for use on a touch-enabled device. It allows you
to set various startup properties and behaviors for your application. All of your
application code needs to be wrapped in a function called by the Sencha framework.
Your application code is declared as an anonymous function and assigned to the
“onReady” property.

Listing 13-2. The Minimum JavaScript You Need to Start Coding in index.js

Ext.setup({
onReady: function()
// your code goes here

}
1

The setup method optionally allows for properties that control how the application starts
up and appears on the device. A more typical boilerplate wrapper for a Sencha
application is shown in Listing 13-3.

Listing 13-3. The Typical Sencha Setup Properties Used in index.js
Ext.setup({
tabletStartupScreen: 'tablet_startup.png’,

phoneStartupScreen: 'phone_startup.png',
icon: 'icon.png',
glossOnIcon: true,
onReady: function() {
// your code goes here
1;

The key properties of the setup method are listed and described in Table 13-2.

CHAPTER 13: Sencha Touch

Table 13-2. The Properties of the Setup Method

File Purpose

Icon (String) specifies the name of the application's default icon file, such as
“icon.png.” This will apply to both tablet and phones (or you can specify
tabletlcon or phonelcon if you want different icons for different types of
devices). The image should be 72x72 and will be used as the application
icon when saving the app to the device’s home screen.

GlossOnlcon (Boolean) specifies whether you want the gloss effect to be applied to the default
icon (for iOS only)

fullscreen (Boolean) sets an appropriate meta tag for iOS devices to run in full-screen mode.

tabletStartupScreen specifies the name of an image to be used as a splash screen for iPad.
(String) The image must be 768x1004 and in portrait orientation.

phoneStartupScreen specifies the name of an image to be used on an iPhone or iPod touch.
(String) The image must be 320x460 and in portrait orientation.

statusBarStyle (String) sets the status bar style for fullscreen iPhone OS web apps. Valid options
are
e default
* black
* black-translucent

preloadimages (Array) specifies a list of urls of images to be loaded. This is useful for
applications with several screens where preloading the images gives a
smoother user experience than having them load on demand over a
potentially slow network.

onReady (Function) runs the specified function when the page is loaded and it is safe to
interact with the HTML DOM (Document Object Model).

scope (Object) A frequently used property in Sencha Touch that allows you to set the
execution context (the value of "this”) of a particular function. In this case
you can set the execution context of the onReady function. If not set, the
function will execute in the context of the "window” object.

Adding HTML Text with a Panel

Sencha applications are created dynamically using procedural code to create Ul objects,
in contrast to declarative Ul frameworks that use markup in XML or HTML to create
interface elements. Coding in Sencha Touch feels similar to traditional Ul frameworks
such as the Microsoft Foundation Classes (MFC) or Java Swing. You will add Ul
components to a “panel” and specify a layout to visually organize an application screen.

CHAPTER 13: Sencha Touch

You will start with a panel, which is a fairly generic container for application layout. In
this example, you’ll use the fullscreen config option to make the panel fill the screen.

Add a panel with some text in it by modifying index.js to include the code in Listing 13—
4. When you open the index.html file in Safari, you should see the text shown in Figure
13-2. Note that the panel has no visual appearance.

Listing 13-4. Adding a Panel With Text in it

Ext.setup({
onReady: function() {
new Ext.Panel({
id: 'mainscreen’,
html: 'This is some text in a panel.
<small>This is«
smaller text.</small>',
fullscreen: true
D;

}
1

NOTE: When testing in Safari, you will want to display the error console. Often when there are
JavaScript errors all you will see is a blank page. To display the error console, you will need to
enable the Developer menu and select Show Error Console. (To enable the Developer menu,
open Preferences, select the Advanced panel and check Show Develop menu in menu bar.)

This is some text in a panel.

This is smaller text.
Figure 13-2. Text in a panel

If you View Source in Safari, you will still see the HTML as shown back in Listing 13-1.
However, if you Show Web Inspector under the Develop menu and open all of the DOM
elements, you will see that Sencha Touch has dynamically added elements to the DOM
to display the text (see Figure 13-3).

¥ <html>
¥ <head id="ext-gen1006">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title> My Application </title>
<link rel="stylesheet” href="css/ext-touch.css" type="text/css">
<link rel="stylesheet" href="css/application.css" type="text/css">
<script type="text/javascript” src="javascript/ext-touch -debug.ijs">
<script type="text/javascript” src="javascript/index.is">
<meta id ="ext-gen1001" name ="viewport” content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0;">
<meta id ="ext-gen1002" name ="apple -mobile-web-app-capable” content="yes">
</head>
¥ <body>
v <div id ="mainscreen” class ="x-panel x-fullscreen x-landscape” style="width: 1303px; height: 516px; ">
¥ <div class ="x~panel -body" id ="ext-gen1008" style="|eft: Opx; top: Opx; width: 1303px; height: 516px; ">
“This is some text in a panel. *

<small>This is smaller text.</small>
</div>
</div>
</body>
</htmi>

Figure 13-3. Sencha modifies the HTML DOM at runtime to display text in a panel.

CHAPTER 13: Sencha Touch

While everything in Sencha Touch is implemented with procedural JavaScript, the
components are typically created using configuration. The panel is a “container” and any
container may be configured with a list of “items” that may be a single component, or an
array of child components. The components are then spatially arranged according to a
specified layout. Listings 13-5 and 13-6 show two variants of container configuration
values.

Listing 13-5. A Container May Be Configured With a Single Item and a Layout

// specifying a single item
items: {...},
layout: 'fit',

Listing 13-6. A Container May Be Configured With an Array of ltems and a Layout

// specifying multiple items
items: [{...}, {...}],
layout: ‘'hbox',

Each item may be an instance of a component or a component configuration with
specified “xtype.” Table 13-3 provides a list of visual and non-visual component xtypes.

Table 13-3. xtypes

Visual Gomponent xtypes Non-visual component xtypes

button component: super class of all components

slider container: a non-visual component that has a list of items and a layout
that specifies how to arrange its items

toolbar dataview, datapanel: can be bound to a data store for rendering
dynamic data

tabpanel panel: typically used for layout, a panel can have its own CSS style
(“baseCls”) and can detect orientation when in fullscreen mode

checkbox spacer: used for layout

select form: allows for layout in a typical manner for a form

field component: super class of all components

fieldset container: a non-visual component that has a list of items and a layout

that specifies how to arrange its items

numberfield dataview, datapanel: can be bound to a data store for rendering
dynamic data

CHAPTER 13: Sencha Touch

Visual GComponent xtypes Non-visual component xtypes

textarea panel: typically used for layout, a panel can have its own CSS style
(“baseCls”) and can detect orientation when in fullscreen mode

Radio spacer: used for layout

Textfield form: allows for layout in a typical manner for a form

Adding Components

Next you’ll add some user interface components to the application. In this case, you
want a toolbar across the top with three buttons that will navigate between screens. It is
easiest to understand (and debug) if you add one component at a time and test the
application. You'll start by adding a “splitbutton,” which is a component that has a list of
buttons as child items. Modify your code as shown in Listing 13-7 and the application
should appear as shown in Figure 13-4.

Listing 13-7. A Container May Be Configured With an Array of ltems and a Layout

Ext.setup({
onReady: function() {
var buttonsGroup = {
xtype: 'splitbutton',
items: [{
text: 'One’,
active: true

b

text: 'Two

)

text: 'Three'
b

new Ext.Panel({
id: 'mainscreen',
html: 'This is some text in a panel.
<small>This is«
smaller text.</small>',
fullscreen: true,
items: buttonsGroup

1

}
};

CHAPTER 13: Sencha Touch

' One ’ Two \ Three]
fl'hls is some textin a panel

This is smaller text.
Figure 13-4. A simple button bar added to the panel.

Creating Interactivity

To illustrate how to make the application interactive and respond when someone clicks
a button, the examples in this section show how to simply change text and then how to
swap which panel is shown. These examples provide a guide to fundamental concepts
in Sencha Touch that should provide insight on implementing any interactivity. Note that
this specific example of panel hiding/showing is more easily achieved with an
Ext.TabPanel, but the general coding techniques will give you a feel for what it is like to
develop web Ul with Sencha Touch.

As shown in Listing 13-8, you can define a handler for any button. The handler is just a
JavaScript function that is passed a reference to the button and the event that triggered
the call. Ext.getCmp('mainscreen’) will get a reference to the component with the id
‘mainscreen’ (the panel component with text in it). Then “update(txt)” will set the HTML
of the component to the text in the local variable “txt.”

Listing 13-8. A Handler May Be Associated With a Button

Ext.setup({
onReady: function() {
var tapHandler = function(button, event) {
var txt = "User tapped the '" + button.text + "' button.";
Ext.getCmp('mainscreen').update(txt);

)
var buttonsGroup = {
xtype: 'splitbutton',
items: [{
text: 'One’,
active: true,
handler: tapHandler

1
{ text: 'Two’',
handler: tapHandler

{’text: 'Three',
handler: tapHandler
1
};

new Ext.Panel({
id: 'mainscreen’,
html: 'This is some text in a panel.
<small>This is«
smaller text.</small>’,
fullscreen: true,

CHAPTER 13: Sencha Touch

items: buttonsGroup

1

}
1

A more meaningful action would be to create multiple panels where selecting one of the
buttons displays a corresponding panel. It is also typical to arrange the buttons in a
toolbar, which can be done by nesting the splitButton component in a toolbar
component. The code that combines these features can be seen in Listing 13-9. Portrait
and Landscape views are shown in Figures 13-5 and 13-6, respectively.

Listing 13-9. Interface Elements to Display Multiple Screens Selected by a “splitButton”

Ext.setup({
onReady: function() {
var tapHandler = function(button, event) {

var txt = "User tapped the '" + button.id + "' button.";
panel_id = 'panel' + button.id
Ext.getCmp('panelone’).hide();
Ext.getCmp('paneltwo’).hide();
Ext.getCmp('panelthree').hide();

Ext.getCmp(panel id).show();
};

var buttonsGroup = {
xtype: 'splitbutton’,

items: [{
id: 'one',
text: 'One’,

handler: tapHandler,
active: true

1
{

id: "two',
handler: tapHandler,
text: 'Two'

1>
{

id: "three',
handler: tapHandler,
text: 'Three'
1
};

var panelOne = {
id: 'panelone’,
xtype: 'panel’,
html: 'This is some text in a panel.
<small>This is«
smaller text.</small>’,

};

var panelTwo = {
id: 'paneltwo’,
xtype: 'panel’,

CHAPTER 13: Sencha Touch

html: 'Here is the second panel’,
hidden: true

)
var panelThree = {
id: 'panelthree',
xtype: 'panel’,
html: 'This is number 3',
hidden: true

};

var mytoolbar = {

xtype: 'toolbar',

ui: "dark’,

items: buttonsGroup,

dock: "top',

layout: { pack: 'center' }
}

new Ext.Panel({
id: 'mainscreen',

items: [mytoolbar, panelOne, panelTwo, panelThree],
fullscreen: true

1

-all Carrier = 6:06 PM
My Application

192.168.1.102/sencha/ &

[This is some text in a panel.
[This is smaller text.

-l Carrier =

192.168.1.102/sencha

his is some text in a panel.
is is smaller text.

Figure 13-5. SplitButton in a toolbar Figure 13-6. SplitButton in a toolbar (landscape)
(portrait)

Chapter

BlackBerry HTML Ul

The BlackBerry platform was one of the earliest smartphone platforms to gain
widespread adoption in the business- and gadget-loving communities. Developed by
Research in Motion (RIM), it remains one of the leaders in market share for devices in the
United States; however, the BlackBerry is outpaced by iPhone and Android sales in
terms of market growth.

Support for the BlackBerry is included in both the Rhomobile and PhoneGap platforms.
However, the limited capabilities of the embedded web Ul control limit the degree of
creativity and flexibility you can include in designing the layout and visual design of your
application. Quite possibly the greatest limitation for developing native applications for
the BlackBerry using HTML for Ul lies not within these development environments, but
within the BlackBerry platform itself.

Note that for mobile web applications, the BlackBerry has an added limitation: all
network traffic for BlackBerry devices is routed through a central gateway. In the case of
enterprise data transfer, it’s routed through the BlackBerry MDS Connection Service; for
web traffic, it’s routed through the BlackBerry Internet service. Both services aim to
minimize bandwidth usage by optimizing content for the requesting device’s rendering
capabilities, transcoding incompatible content, and only transferring data not currently in
the device’s local cache. Instead of allowing the developer to optimize content as
desired, RIM applies a transformation to the HTML, adding to the challenges presented
by the rendering limitations of the browser. However, when building a native application
with a cross-platform framework, the HTML Ul is delivered as part of the app and
therefore bypasses the gateway transformation.

RIM recommends that your content be designed to meet the needs of users with the
first-generation browser (4.2). Whether you are developing web applications or native
applications with web Ul controls for the BlackBerry, the number of users who will be
using a first-generation BlackBerry browser to access content is currently much larger
than the number of users with second-generation browsers.

RIM recently demoed a new WebKit-based browser with full support for HTML5,
modern JavaScript, and improved CSS support. While at the time of this writing there is
no stated timeline for release and no word on which devices will support the WebKit-

235

CHAPTER 14: BlackBerry HTML Ul

based browser, this yields hope for improved support for future generations of
BlackBerry devices.

The remainder of the sections in this chapter detail the features and limitations often
encountered when building applications that make use of web Ul controls for BlackBerry
devices.

BlackBerry Browser Ul Controls

Developing for the BlackBerry web Ul requires a disciplined approach to work within the
limitations of the target browser.

There are two separate browser-rendering engines included on the BlackBerry platform

B browser.field (available since ~v3.8 with most recent changes made
in v4.5); The level of content support provided by this browser is
limited to:

m Document Object Model (DOM) L1 (read only access to the
DOM).

m Partial support for HTML, JavaScript and CSS. Content rendered
using this browser field will look similar to content rendered by
the BlackBerry browser on a 4.5 device.

m Interaction model supports quick traversal of form fields with
trackpad, trackwheel or trackball.

B browser.field2.BrowserField RIM’s second rendering engine for the
BlackBerry was introduced with the BlackBerry Bold (version 4.6
handheld software). This browser field greatly improved the
capabilities of the BlackBerry browser; however, the interaction model
was changed significantly by adding:

B Support for industry standards such as HTML 4.01, JavaScript
1.5,CSS 2.1.

m Support for DOM L2 (read/write) and XmIHttpRequest (AJAX).
However, modern Javascript frameworks, such as JQuery and
XUI, are not supported.

m Interaction model for control of the pointer require spatial motion
that is similar to a mouse on a computer screen or touch
interface. This negatively affects usability when using the
trackpad, trackwheel or trackball.

The differences between browser.field (4.2) and browser.field2 (4.6) are reviewed in
detail. Note that PhoneGap automatically includes the 4.6 control and only supports 4.6
or later devices. By default, Rhodes applications use the 4.2 browser control, but a
configuration option allows you to use the 4.6 control. Rhodes supports BlackBerry OS
versions 4.2 and above.

CHAPTER 14: BlackBerry HTML Ul

BlackBerry 4.2 Browser Control

Targeting the 4.2 browser control allows your application to reach a wider audience and
allows your user interface to conform to the conventions users have come to expect
from other BlackBerry applications.

CSS

Although the BlackBerry documentation leads you to believe you can use CSS, it buries
the fact that it lacks the ability to position divs and style lists in fact, there isn’t support
for float, left, right, or any other modern positioning tag available in the 4.2 browser. For
this reason, if you plan on building a single cross-platform application that also targets
BlackBerry 4.2, table-based layouts are your best option.

The following tables were adapted from the BlackBerry Browser Version 4.2 Content
Developer Guide.'

background styles
Background

background-color
background-image
background-repeat

font styles
Color

Font
font-family
font-size
font-style
font-weight

border styles

border border-color Border-style border-width
border-bottom border-bottom- Border-bottom-style border-bottom-width
color

border-left border-left-color Border-left-style border-left-width
border-right border-right-color Border-right-style border-right-width
border-top border-top-color Border-top-style border-top-width

" http://docs.blackberry.com/en/developers/deliverables/1143/browser devguide.pdf

CHAPTER 14: BlackBerry HTML Ul

font Text- text- background- back
styles align decor color groun
ation d
styles
a
body
div
head
img
p
span
title
frame
frameset
legend
blink
marquee

XXXXXXXXXXXXX
X X X X X X X X X X X X
X X X X X X X X X X X X X
X X X X X X X X X X X X X

X

Font background-

styles color
blockquot X X
e
h1 - h6
pre
sub
sup
b
big
center
cite
code
dfn
i
em
font
kbd
S
samp
small
strike
strong
tt
u
var

HXXXXXXXXXXXXXXXXXXXXXX
XX X

CHAPTER 14: BlackBerry HTML Ul

Font border text- text- background heig width
styles styles align decoratio -color ht
n
form X X X X
fieldset X X X X
textarea X X X X
input X X X X
select X X X X
optgroup X X X X
option X X X X
button X X X X X X
input X X X X X X
type="button”
input X X X X X X
type="submit”
input X X X X X X
type="reset”
input type="text” X X X X
img X X X
background- Font styles text- text-

color align decoration
ol X X X X
ul X X X X
li X X X X
dd X X X X
dt X X X X
dir* X X X X
menu* X X X X

A complete guide to supported tags can be found in the BlackBerry Browser Version 4.2
Content Developer Guide.

Fonts

There are three font families supported in the BlackBerry browser: Arial, Courier, and an
oddly pixelated version of Helvetica (see Figure 14-1). The code for these fonts is
provided in Listing 14-1. You can use custom font sizes in the stylesheet, but any font
styles not included in the previous list of supported CSS must be applied through inline
tags such as , , and so forth.

CHAPTER 14: BlackBerry HTML Ul

Arial bold
Arial 12pt bold

Courier bold

Courier 12pt bold

Helvetica bold

Helvetica 1Zpt bold

Figure 14-1. The three fonts are shown in their default and 12px sizes.

Listing 14-1. The Code For the Font Text in Figure 14-1

.arial {
font-family: "Arial";

.arial12 {

font-family: "Arial"; font-size: 12px;
}

.c{

font-family: "Courier";

.c12 {
font-family: "Courier"; font-size: 12px;

}
.helv {
font-family: "Helvetica";

.helvi2 {
font-family: "Helvetica"; font-size: 12px;

<p>no font</o>
<div class="arial">

<p>Arial bold</p>
</div>
<div class="arial12">

<p>Arial 12pt bold</p>
</div>
<div class="c">

<p>Courier bold</p>
</div>

CHAPTER 14: BlackBerry HTML Ul

<div class="c12">

<p>Courier 12pt bold</p>
</div>
<div class="helv">

<p>Helvetica bold</p>
</div>
<div class="helv12">

<p>Helvetica 12pt bold</p>
</div>

Frames

The browser supports the <frameset> and <frame> elements, but does it not support
inline frames (the <iframe> element). Instead, frames will be rendered vertically in a
single column. See page 42 of the BlackBerry Browser Version 4.2 Content Developer
Guide for more information if you wish to use frames in your application.

JavaScript

Regardless of the specific JavaScript capabilities, the most notable limitation is that the
BlackBerry 4.2 browser will not allow you to modify the DOM. The browser supports
JavaScript 1.0, 1.1, 1.2, 1.3, and small subsets of JavaScript 1.4 and 1.5. Additionally, a
custom location function is supported on devices running BlackBerry Device Software
Version 4.1 or later, but will likely be integrated into the cross-platform solution you have
selected. However, when working directly with JavaScript on the BlackBerry, there are a
few issues you may wish to note.

B In BlackBerry Device Software version 4.5 or earlier, if the BlackBerry
Browser encounters any script that produces common dynamic HTML
effects, the browser executes without error but produces no visual
effect. JavaScript that is not supported simply produces an error, and
unless the error is handled to satisfaction within the script, the script
will be prevented from executing any further.

B On the BlackBerry Browser, users can turn JavaScript support on or
off. Perhaps more importantly, JavaScript support can also be turned
off through a centralized IT policy, leading to confusion in user
expectations about what they should see on the screen.

In translation: Make sure your JavaScript degrades gracefully. Again, refer to your copy
of the BlackBerry Browser Version 4.2 Content Developer Guide to determine if a
particular feature you are interested in is available in the embedded browser.

CHAPTER 14: BlackBerry HTML Ul

Rhodes Tip for Dynamic Layout

If you need to layout a screen dynamically and you can divide the screen into table cells
that are a percentage of the width or height, then you can use simple width and height
attributes that specify a percentage. If you need to calculate width and height based on
specific values, then it normally would not be possible to create a dynamic layout for the
BlackBerry 4.2 browser. In Rhodes, however, you can do a calculation in the ERb
(Embedded Ruby) HTML file.

This technique is demonstrated in Listings 14-2 and 14-3. The sample application
(illustrated in Figure 14-2) has a layout for two images that can’t be calculated based on
a percentage of the screen width. To work around the browser limitation, this example
includes a layout (in Listing 14-2) that dynamically determines the size of the outer and
inner margin by calculating the size based on screen width and the width of the two
images. This can be accomplished using Rhodes because the HTML page is processed,
evaluating the Ruby code inside <%= %> before it is rendered in the browser control.

Day Trips Night Life
Explore San Francisco. Choose "day
trips" or “night life" to find fun things
to do in and around San Francisco.

Login

Figure 14-2. In this layout, note that to create even spaces around the images, the screen cannot use
percentages for table widths.

Listing 14-2. This Code in layout.erb Dynamically Generates the Width of the Table Cells When the Page is
Rendered, So That it Will Be Laid Out Proportionally On Different Screen Sizes

<% if System::get property('platform') == 'Blackberry' %>
<link href="/public/css/blackberry.css" type="text/css" rel="stylesheet"/>

<style type="text/css">
#start td.space {
width: <%= (System.get screen width - 333)/3 %>px;

CHAPTER 14: BlackBerry HTML Ul

#start td.blurb {
width: <%= (System.get_screen_width - 333)/3 +333 %>px;
}

#start td.sf1 {
text-align: center;
width: 133px;

#start td.sf2 {
text-align: center;
width: 200px;

}
</style>

<% else %>
<link href="/public/css/xhtml.css" type="text/css" rel="stylesheet"/>
<% end %>

Listing 14-3. The Elements Can Be Laid Out in a Table in the Page With the Table Sizes Controlled By the CSS
Specified in layout.erb Shown in Listing 14-2

<table id="start">
<tr height="40"/>
<tr>
<td class="space"/>
<td class="sf1"></td>
<td class="space"/>
<td class="sf2"></td>
<td class="space"/>

</tr>

<tr>
<td class="space"/>
<td class="sf1">Day Trips</td>
<td class="space"/>
<td class="sf2">Night Life</td>
<td class="space"/>

</tr>

<tr>

<td class="space"/>

<td class="blurb">Explore San Francisco. Choose "day trips" or "night life" to find
fun things to do in and around San Francisco.</td>

<td class="space"/>

</tr>
</table>

CHAPTER 14: BlackBerry HTML Ul

BlackBerry 4.6 Browser Control

The BlackBerry 4.6 browser control is significantly easier for development than the 4.2
browser, since you can modify the DOM and you do have access to more CSS. While
the 4.6 browser technically supports the latest standards (HTML 4.01, CSS 2.1, and
DOM Level 2), in reality, modern desktop and other mobile browsers have moved
forward. As of this writing, most popular JavaScript frameworks (jQuery, XUI, etc.) do
not work on any BlackBerry web browser. The 4.6 browser also brings with it an
awkward usability issue: in the 4.2 browser, the user can easily navigate form fields and
links by a brief gesture with the trackball which jumps from field to field; however, the
new browser requires that you navigate just as you would with a mouse or a touch
screen by rolling the pointer around the screen which ends up being a slow and
awkward experience with the trackball or trackpad.

Display and User Interaction

BlackBerry produces a wide variety of devices but along with choice and variety
inevitably comes complexity. Blackberry devices are known to have at least 11 different
listed screen resolutions, with variation ranging from 132x65 up to 360x480 (see

Table 14-1).

Additionally, the range of pointer accuracy on BlackBerry devices is vast—from the
precision of the Bold or Curve where the trackball lets you roll from element to element,
to the tactile frustrations of the Storm where you need to leave wide spaces around your
Ul elements in order to give people any hope of hitting them. The usability of your
application will not be apparent in the simulator, even if you try it on simulators that
target different devices. It is easy to create a layout which looks and feels like an
effective design in the simulator and then completely fails to allow someone to enter text
or click a button on a specific device. For these reasons, it is critical that you test on the
device early (and often) on actual devices for all of your target platforms.

Table 14-1. BlackBerry Screen Resolutions

Listed resolution Model numbers Brands
132 x 65 950

160 x 160 857, 957

240 x 160 7520

240 x 240 7730, 7750, 7780

240 x 260 7100, 7130, 8100, 8120, 8130 Pearl

240 x 320 8130, 8220 Pearl Flip

CHAPTER 14: BlackBerry HTML Ul

Listed resolution =~ Model numbers Brands
320 x 240 8830, 8300, 8310, 8320, 8330, 8700, 8703¢, 8707, 8800,8820 Curve
324 x 352 Charm
480 x 320 9000 Bold
480 x 360 8900 Curve
360 x 480 9500, 9530 Storm

Development Environment

One final complication: The native BlackBerry development environment is currently only
fully accessible in Windows development environments. If you’re developing your
applications on a map and want to test your BlackBerry builds (which you should do
early and often), you’ll need to track down a development system running Windows XP
or Vista. Windows 7 is not supported at the time of this writing. However, it is possible to
develop on Macintosh hardware using a virtual machine, such as VMWare or Parallels.

Appendix

Cascading Style Sheets

Cascading Style Sheets (CSS) define how HTML elements are displayed. Styling can
happen in a few different places. The most common place for CSS is an external style
sheet (which is a file with a .css extension). You place a <link> between your HTML
<head> tags like Listing A-1.

Listing A-1. HTML header - External Stylesheet

<head>
<link href="stylesheet.css" rel="stylesheet" type="text/css">
</head>

NOTE: You can use relative or absolute paths to your style sheets for the href attribute of <link>.

You can also place a <style> tag in the <head> portion of your HTML document and
define your CSS there (Listing A-2); this is called an internal style sheet.

Listing A-2. HTML Header - Internal Stylesheet

<head>
<style type="text/css">

</st§1e>
</head>

Finally you can add a style attribute to any HTML element and define your styles there;
this is called an inline style (Listing A-3).

Listing A-3. Inline Style
<div style="width:50px;height:50px;">..</div>

The Cascading in Style Sheets

When an HTML element has multiple styles defined on it, the one with the highest
priority will be chosen and override the rest. An inline style (a style defined on the HTML
element) has the highest priority and will override any other CSS defined. Next is an
internal style sheet (one defined in the header of your HTML document), then external

247

APPENDIX: Cascading Style Sheets

style sheets (you reference these with a link tag in the header of your HTML document,
which are typically declared before the internal style sheets). Finally, browser default
options are at the bottom of the list, and will have the lowest priority.

B Inline styles
B Internal/external style sheets (last one defined determines style)
B Browser defaults

Note that overwriting happens only if the specificity of the selectors is the same. So, for
example, let's say you have a style that applies to p elements in a div, and then later on
you have a style that applies to all p elements.

p elements inside a div will get the first style, because the most specific style wins, even
if there's a more general one later.

Style declarations aren't monolithic. When something gets "overridden," what's really
happening is that any declarations that are the same level of specificity and the same
property are overridden, but all the other properties remain.

So, for example, let's say you have something similar to Listing A-4.
Listing A-4. Paragraph tag with color

div p { /* applies to p elements inside a div */
color: blue;

And then later on, you have Listing A-5.
Listing A-5. Paragraph Tag with color and text decoration

p { /* applies to all p elements */
color: black;
text-decoration: underline;

<p> elements in a div will be blue and underlined and all other <p> elements will be
black. The more-specific declaration has a color so that overrides the general color,
even though it is defined first. Because it doesn't say anything about text-decoration,
that style is determined from the more-general set.

CSS Syntax

A typical CSS statement looks like this:
SELECTOR {DECLARATION[PROPERTY: VALUE];DECLARATION[PROPERTY:VALUE]; }

For example, consider Listing A-6.

APPENDIX: Cascading Style Sheets

Listing A-6. Header 1 tag with color
h1 { color: #FFFFFF; }

Selector-> hi

Declaration-> color: #FFFFFF;
Property-> color

Value-> #FFFFFF

CSS declarations always end with a semicolon, and curly brackets surround declaration
groups.

NOTE: Do not leave spaces between property values and units.
Incorrect top: 20 px;

Correct top: 20px;

Comments

A CSS comment begins with "/*", and ends with "*/", like Listing A-7.
Listing A-7. Comments

/* This is a comment */

/*

This is a
multiline
comment
*/

Identifying Elements with ID and Class

ID defines a special and unique case for an element (this means that it can only be used
once per document). These should be treated like global variables and used sparingly.
In CSS, an ID is declared with a pound sign (#) followed by a unique name, such as
#unique_box in Listing A-8.

Listing A-8. CSS ID Example

<html>
<head>
<style type="text/css">
#unique_box {
width: 50px;
height: 50px;
background-color: blue;

</style>
</head>
<body>
<div id="unique_box"></div>

APPENDIX: Cascading Style Sheets

</body>
</html>

In CSS, if you follow a class declaration with a selector, you can define specific
declarations for that element.

CSS classes define a special non-unique case for elements. Classes should be used
when multiple elements require the same styling. CSS classes are declared with a period
(-) followed by a unique name, such as .box in Listing A-9.

Listing A-9. CSS Class Example

<html>
<head>
<style type="text/css">
.box {
width: 50px;
height: 50px;

</style>

</head>

<body>
<div class="box"></div>
<div class="box"></div>
<div class="box"></div>

</body>

</html>

In CSS, if you follow a class declaration with a selector, you can define specific

declarations for that element. Where ".box" is the class, "p" is the selector, and "color:
green;" is the declaration (Listing A-10).

Listing A-10. Apply a class to a <p> tag

.box p {
color: green;
}

Common Patterns

Generally, you won't be writing CSS that applies to all <p> elements, or all <a>
elements. You will write CSS that applies only to certain elements based on how they
are placed relative to other elements. For example, you might have a specific style for all
<p> elements inside any <div> with class 'bounding-box."

Examples of nesting selectors include Listing A-11 and examples of grouping selectors
include listing A-12.

Listing A-11. Examples of nesting selectors

div p { /* all p elements that are inside a div */
color: green;

div p.box { /* all p elements with class box that are inside a div */
color: black;

APPENDIX: Cascading Style Sheets

}

div.main-text p.box { /* all p elements with class box that are inside
a div with class main-text */
color: blue;

}
Listing A-12. Examples of grouping selectors

/* all p and h1 elements inside the div with class main-text */
div.main-text p, div.main-text h1 {
color: black;

Common CSS Attributes (Display: block verses
inline)

The display property controls how an element is displayed. It does this with two
properties called block and inline. The block property tells the element to take up the full

width available and forces line breaks in text. The inline property tells the element to take
up just as much width as necessary and doesn’t force line breaks.

NOTE: "display: none;" will hide an element, making it invisible.

These HTML elements have a display: block; by default:

<p>, <hi>.<h4>, <div>

These HTML elements have a display: inline; by default:

<a>,

Visibility has two values, visible or hidden, to control whether an element is visible or not.
[visibility: hidden;]

Margin clears the area outside of the container. Margin takes four values in a clockwise
rotation: MARGIN TOP RIGHT BOTTOM LEFT. Each value must be defined in pixels, pt,
em, or % (Listing A-13).

NOTE: Negatives values are allowed, so that you may overlap content.

Listing A-13. Margin Example

margin-left: VALUE;

margin-right: VALUE;

margin-top: VALUE;

margin-bottom: VALUE;

Padding clears the area inside the container (Listing A-14). Padding takes four values in
a clockwise rotation: PADDING TOP RIGHT BOTTOM LEFT. Each value must be defined
in pixels, pt, em, or %. [p { padding: Opx 10px Opx 10px;}]

APPENDIX: Cascading Style Sheets

NOTE: Negative values are not allowed.

Listing A-14. Padding Example

padding-left: VALUE;

padding-right: VALUE;

padding-top: VALUE;

padding-bottom: VALUE;

Background controls the background color or image of an HTML element (Listing A-15).
It has options BACKGROUND: COLOR IMAGE REPEAT ATTACHMENT POSITION.
[body { background: #00ff00 url(‘image.png’) no-repeat fixed top; }]

Listing A-15. Background Example

background-color: VALUE;
background-image: VALUE;
background-repeat: VALUE;
background-attachment: VALUE;
background-position: VALUE;

Color controls text color. Colors can be defined by name [color: red;], RGB [color:
rgb(255,0,0);], or hex representation. [color: #ff0000;].

Text-align is used to set the horizontal alignment of text. [p {text-align: center;}]

Text-decoration allows you to over-line, under-line, line-through, or blink text. The blink
option will flash the text and hide it at a fixed rate. It is not supported in |IE, Safari, or
Chrome. It is most commonly used to remove the decoration for link elements. [a { text-
decoration: none; }]

Text-transform is used to turn everything into uppercase or lowercase letters, or
capitalize the first letter of each word (Listing A-16). [h1 { text-transform: uppercase; }]

Float specifies how elements lay out relative to each other. Elements can be told to
move as far left or right as they can, allowing other elements to wrap around them.
Floating <div>(s) or (s) is common.

Listing A-16. Float Example<html>

<head>
<style type="text/css">
img {
float: right;
</style>
</head>
<body>

<p> This text is only here to show wrapping around the image. You will see that the text
will continue to flow on the left around the image on the right. You will also see that the
image has floated as far right as possible (Listing A-17).

APPENDIX: Cascading Style Sheets

Listing A-17. Text wrapping and images

</p>
</body>
</html>

Listing A-18. Clear Example

.foo {
clear: both;

Index

A

<a> tag, 190-191
Action menu, File System Editor, 78
Activate for BlackBerry option, 137
ActiveSync window, Visual Studio 2008, 79
adb devices utility, 49
Add a New Item context menu item, Visual
Studio 2008, 75
Add Devices button, iPhone Developer
Program Portal, 30
Add New Project dialog box, Visual Studio
2008, 77
Add New Smart Device Project wizard,
Visual Studio 2008, 67-68
Add or Remove Programs screen, Visual
Studio 2008, 77
Add Project Output Group dialog box, File
System Editor, 78
addGlossTolcon option, 216
AdHoc application, 31
ADT (Android Development Tools), 36, 136
ADT Layout Editor, 41
ADT plug-in, 41
Advanced panel, 229
Advanced tab, 212
Ajax, adding screens with jQTouch, 212-214
anchor tag, 218
Android
building for Android device, 48-49
development for
building application, 39-46
with Eclipse, 36-38
embedding WebView in application,
46-48
digitally signing application, 50
HTML and CSS support on, 164
overview, 35
PhoneGap, open source framework for,
136
and Rhodes

debugging on, 101
running application on, 94
Android Development Tools (ADT), 36, 136
Android Market, 50
Android SDK and AVD Manager, 37
Android Virtual Device (AVD), 37
Android WebKit browser control, 170
/android/framework/assets/www directory,
140
Any iPhone OS Device option, Xcode, 32-33
.apk file, 50
app folder, 90, 96-97
App IDs, iPhone Developer Program Portal,
31
App Store style, list styles with iWebKit,
191-192
App World, BlackBerry, 63-64
Appearance section, Visual Studio 2008, 70,
73
app.js file, 155, 158
Apple Mail application, 220
Application Folder, 78
Application ID field, Titanium, 154
Application tab, 49
application.css file, 226
application.js file, 227
application.rb file, 91, 121, 129
applications
adding to CAB Projects, 78
building and testing, 58
creating shortcuts, 78
distributing, 80
embedding Web View in, 75
layout template, adding iWebKit
framework to, 204
marketplace, 2-4
applist class, 187
app/Product/index.erb page, 97
apps
building. See also base functionality;
interfaces, creating

255

adding WebBrowser controls, 75
create Xcode project, 19
creating HTML pages, 75
creating Smart Device Projects, 67
deploying and testing, 72
embedding Web View in
applications, 75
loading HTML in WebBrowser
controls, 76
overview, 18
installing on devices
creating provisioning profiles, 32
finding device IDs, 31
install provisioning profiles, 32
installing and running on devices,
32-33
manually setting up iPhone
provisioning, 30
using development provisioning
assistant, 29-30
packaging and distributing
adding applications to CAB Projects,
78
adding CAB Projects to solutions, 77
adding Registry entries, 78
building and deploying CAB files, 78—
79
creating application shortcuts, 78
customizing product names, 77
installing CAB files, 79
overview, 76
app/Settings/setting.yml file, 116
Appstore application, 200
arrow class, 220
Ask, Julie, 4
Associated Attributes for Backend
Credentials section, RhoHub, 126
Attribute Inspector, Interface Builder, 23
attributes, for CSS, 251-253
Attributes Inspector, Interface Builder, 28
authenticate method, in RhoSync, 121
authentication, in RhoSync, 116-117
Authenticode Signature option, Solution
Explorer, 79
auto class, 194
AVD (Android Virtual Device), 37

Back button, 214-215, 218
back class, 214

background
attribute, 252
image property, 173
position attributes, 176
backSelector option, 216
base functionality
adding buttons to views, 69
creating click event handlers, 71-72
customizing buttons, 70
overview, 68
basic views, in jQTouch, 217-218
BasicEditField class, 60
/beatles HREF, 214
/beatles link, 213
Behavior section, Visual Studio 2008, 76
Berries button, 86
BES (BlackBerry Enterprise Server), 52
Bigfield class, 197
BlackBerry
applications, building and testing, 58
BlackBerry Browser Field
BlackBerry App World, 63-64
building for BlackBerry devices, 62—
63
over the air (OTA) distribution, 63
overview, 61
browser-rendering engine 4.2
CSS in, 237-239
dynamic layout in with Rhodes, 242—-
243
fonts for, 239-241
frames in, 241
JavaScript support in, 241
browser-rendering engine 4.6, 244
code, 57-60
creating Eclipse project, 53-55
creating interfaces, 55-57
development environment for, 245
HTML and CSS support on, 165
Java Development, 52-53
labels, text fields, and buttons, 58-60
and limitations of target browser, 236
overview, 235
PhoneGap, open source framework for,
137
platform of, 51-52
and Rhodes
debugging on, 101
running application on, 94-95
screen resolutions for, 244-245
user interaction on, 244-245

BlackBerry Enterprise Server (BES), 52
BlackBerry JDE Plug-in, 137
BlackBerry menu, Eclipse, 55
BlackBerry Project option, Eclipse, 54
BlackBerry Signature Tool, 62
BlackBerry Workspace, Eclipse, 55
blackberry/framework/ directory, 137, 140
Blue Button - Left element, 195
Blue Button - Right element, 195
body, with iWebKit, 186
<body> tag, 186-187, 190, 194, 204, 216
browser.field (4.2) engine, 236
BrowserField class, 61
browser-rendering engine 4.2, for
BlackBerry
CSS in, 237-239
dynamic layout in with Rhodes, 242-243
fonts for, 239-241
frames in, 241
JavaScript support in, 241
browser-rendering engine 4.6, for
BlackBerry, 244
Build and Go option, Xcode, 26, 33
Build and Run as Android Application menu
option, 136
Build and Run command, Xcode, 157
Build and Run option, 135, 142, 205
Build page, Solution Explorer, 79
Build tab, Xcode, 33
Build Target list, 40
build.yml file, 90, 93
Button Bar, Android, 182
button bars, HTML and CSS support for,
168
Button class, 44, 215
Button control, 44
button xtype, 230
buttons
adding to views, 69
customizing, 70
layout of, 22-23
overview, 58-60
on screens with jQTouch, 215

C

CAB files, 78-79

CAB Projects
adding applications to, 78
adding to solutions, 77

CABProject Property Pages dialog box,
Solution Explorer, 77
CABProject\Debug folder, 79
cacheGetRequests option, 216
Camera example
in PhoneGap, 150-152
Rhodes application framework, 106-108
Titanium Mobile, 158-160
cancel and back, adding screens with
jQTouch, 214-215
cancel class, 214
Cascading Style Sheets. See CSS
Certificate box, Solution Explorer, 79
Certificates option, iPhone Developer
Program Portal, 30
check boxes, HTML and CSS support for,
169-171
checkbox class, 198, 230
Choose button, 135
class, identifying elements in CSS with, 250
class attribute, 209, 220
Class menu item, Eclipse, 55
classic style, list styles with iWebKit, 188-
190
Classic type, 187
clean.bat file, 101
click event handlers, creating, 71-72
Click Select from Store button, Solution
Explorer, 79
close/back action, 111
code, 25, 57-60
Code Signing Identity, Xcode, 33
color attribute, 252
comments, in CSS, 249
components
adding in Sencha Touch, 231
xtype, 230
com.xplatform.helloworld package, 55
Configure BlackBerry Workspace, Eclipse,
55
connecting code to views, 26
Connection Inspector, Interface Builder, 28
contact_controller.rb file, 104
Contact/index.erb page, 105
Contacts example
in PhoneGap, 146-150
Rhodes application framework, 103-106
Contacts/app/Contact/index.erb page, 105
Contacts/app/Photo/index.erb page, 107
Contacts/app/Photo/photo_controller.rb file,
107

container xtype, 230
content <div> tag, 188
content class, 186
ContentView control, 47
context menus, HTML and CSS support for,
168
controller code, writing, 23-25
controls, WebBrowser, 75-76
Copy items into destination group's folder (if
needed) check box, 201
Copy to Output Directory field, solution
browser, 75
create, read, update, and delete (CRUD), 96
Create Application button, RhoHub, 123
Create Folder References for any added
folders check box, 201
Create Folder References option, 201
create method, in RhoSync, 119
Create New Object page, RhoHub, 123
Create Object button, RhoHub, 123
create_hash argument, 119
cross-platform development, 9-10
cross-platform frameworks, 5-6, 10-13
CRUD (create, read, update, and delete), 96
CSS (Cascading Style Sheets)
applying to elements, based on
placement, 250
attributes for, 251-253
on BlackBerry, browser-rendering engine
4.2,237-239
comments in, 249
identifying elements, 249-250
priority of styles in, 247-248
syntax for, 248-249
css folder, 227
cubeSelector option, 216
current_user method, 116
current_user.login method, 116

Dashboard, RhoHub, 125

data storage format, in RhoSync, 114
database (Rhom), for Rhodes, 86-87
datapanel xtype, 230

dataview xtype, 230

dealloc method, 25
Debug\HelloWorld.cab, 77
debug-with-comments.js file, 226
delete method, in RhoSync, 120
Demo folder, 201

Design section, Visual Studio 2008, 70
Design view, Visual Studio 2008, 68
Developer menu, 229
Developer Portals Device registration page,
31
development
architecture, for Rhodes, 84-85
environment, for BlackBerry, 245
provisioning assistant, 29-30
Device Application template, Visual Studio
2008, 67
device capabilities, in Titanium Mobile, 157-
158
Device Chooser dialog box, 49
Device Emulator Manager menu item, Visual
Studio 2008, 76, 79
devices
capabilities with Rhodes, 101-102
IDs, finding, 31
iPhone Developer Program Portal, 30
digitally signing application for Android, 50
Directory field, Titanium, 154
display: none attribute, 251
dissolveSelector option, 216
<div> tag, 186, 194, 250
DOM (Document Object Model), 207, 236
doublead class, 191
Downloads folder, 58
downward-facing disclosure indicator, 173
dump_pic callback, 152

Eclipse
creating Eclipse project, 53-55
development for Android with, 36-38
edgetoedge class, 218
Edit Text item, 43
Editor screen, RhoHub, 126
Editor tab, RhoHub, 126
EditText control, 45
EditText item, 42-43
elements, in CSS, 249-250
Embedded Ruby (ERB), 84, 242
enterEventDispatcher() method, 57
Entity-Attribute-Value (EVA), 114
ERB (Embedded Ruby), 84, 242
EVA (Entity-Attribute-Value), 114
event handlers
click, 71
creating, 72

example applications
Rhodes application framework
Camera, 106-108
Contacts, 103-106
Geolocation, 108-111
RhoSync, product inventory, 122-130
Titanium Mobile, Camera, 158-160
Ext.getCmp('mainscreen’) call, 232
Ext.setup method, 227
Ext.TabPanel class, 232
ext-touch.css file, 226
ext-touch-debug.js file, 226
ext-touch.js file, 226

F

fadeSelector option, 216

fail callback, 149

field xtype, 230

fieldChanged method, 60

FieldChangelL.istener method, 60

fieldset xtype, 230

<fieldset> tag, 196, 199

File menu

Registry Editor, 78
Visual Studio 2008, 67, 77

File System context menu item, Solution
Explorer, 78

File System Editor, 78

File System on Target Machine, File System
Editor, 78

files, CAB, 78-79

fixedViewport option, 216

flipSelector option, 216

float attribute, 252

fonts, on BlackBerry, 239-241

Force https://... option, Android SDK and
AVD Manager, 37

Force https://... sources to be fetched using
http://... check box, 109

form xtype, 230-231

<form> tag, 196

Form1.cs Design view, Visual Studio 2008,
73

Form1.cs file, 71

forms, with iWebKit, 196-199

formSelector option, 216

Forward button, 215

<frame> element, 241

frames, on BlackBerry, 241

<frameset> element, 241

Framework folder, 204

frameworks, cross-platform, 5-6, 10-13
fullscreen (Boolean) property, 228
fullscreen config option, 229

fullScreen option, 216

fullScreenClass option, 216

G

geo fix command, 108

Geolocation class, 110

Geolocation example, Rhodes application
framework, 108-111

GET requests, 216

getContacts function, 149

getContacts_callback, 149

glossOnlcon (Boolean) property, 228

Google Maps application, 200

graytitle class, 190

greetinglLabel, Interface Builder, 25, 60

greetingLabel IBOutlet, 24

greetingLabel property, 24

greetings text, aligning, 22

Groups & Files section, Xcode, 32-33

Hammerschmidt, Christoph, 3

HEAD section, 223

<head> tag, 186, 247

headers, required for iWebKit, 186

Hello BlackBerry Application, 59

Hello iPhone! button, Interface Builder, 25

Hello World application

in PhoneGap, 139-140
Titanium Mobile, 155-157

Hello World project, 54

HelloiPhone file, 32

HelloiPhone project, 19

HelloiPhoneViewController implementation
declaration, 24

HelloiPhoneViewController.h file, 23

HelloiPhoneViewController.m file, 24

HelloiPhoneViewController.xib file, 20, 25

Hello.java class, 40-41, 44, 46

helloMessage string, 24

HelloWorld application, 58

HelloWorld class, 55, 57

HelloWorld.java file, 56

HelloWorldScreen class, 57

HelloWorldScreen constructor, 57
/helpers folder, 91
HKEY_CURRENT_USER, Registry Editor, 78
Home Button element, 195
home screen, iPhone Developer Program
Portal, 30
href attribute, 247
HTML
on Android, 164
on BlackBerry, 165
button bars, 168
check boxes, 169-171
context menus, 168
on iOS, 164
lists, 178-180
loading in WebBrowser controls, 76
menus, 166
navigation bars, 168-180
overview, 163
pages, creating, 75
radio buttons, 175-177
screen-based considerations, 165-166
selection boxes, 171-173
tab bars, 167
text areas, 174-175
text boxes, 173-174
toolbars, 167
Ul widgets, 169
and WebKit web views, 178-182
on Windows Mobile, 165

IBAction keyword, 23-24
IBOutlet keyword, 23
Icon (String) property, 228
icon/ folder, 90
icon option, 216
ID
finding, 31
identifying elements in CSS with, 249-
250
IDE (integrated development environment),
52
<iframe> element, 241
/images folder, 204
 tag, 97, 152
Import 'Button' (android.widget) option, 44
Import wizard, Solution Explorer, 79
index.erb file, 91
index.erb page, 97, 107

index.html file, 138-139, 142-143, 146, 150,
184, 205, 223, 226
index.html web page, 140
index.js file, 226-227, 229
initialization options, for jQTouch, 215-223
initialize method, in RhoSync, 116
initializeTouch option, 216
inline style, 247
inline tags, 239
<input type="checkbox">, 198
<input type="radio"> tag, 198
<input type="tel"> tag, 197
<input type="text"> tag, 197
<input> tag, 199
Install selected button, 109
Installed Components, Eclipse, 55
Installer Package, 134
interactivity, in Sencha Touch, 232
interfaces, creating
add Ul elements, 21
adding Ul elements, 21
aligning text greetings, 22
buttons and text field layouts, 22-23
connecting code to views, 25-26
overview, 20
simple user application, 55-57
Web View, 26-28
writing controller code, 23-25
internal style sheet, 247
Inventory application, 123
iOS, HTML and CSS support on, 164
iPhone Developer Program Portal, 30
iPhone OS Application option, Xcode, 19, 26
iPhone Simulator menu, 101
iPhone Simulator.app, 208
/iphone/PhoneGap-based Application/www
directory, 140
iPhones
building apps, 18-28. See also
interfaces, creating
development of, 18
installing apps on devices
creating provisioning profiles, 32
finding device IDs, 31
install provisioning profiles, 32
installing and running on devices,
32-33
manually setting up provisioning, 30
using development provisioning
assistant, 29-30

PhoneGap, open source framework for,
134-135
and Rhodes
debugging on, 100-101
running application on, 93
Xcode, 17
iphone/www directory, 142
iPod style, list styles with iWebKit, 193-194
ipodlist class, 188, 194
iScroll library, Cubiq, 180
iTunes, 190-191, 193
iWebDemo project, 26
iWebDemoViewController.xib file, 26
iWebKit
body, 186
forms with, 196-199
headers required, 186
and HTML structure, 185-186
integrating in mobile applications
adding framework to application
layout template, 204
native iPhone application, 201-202
with Rhodes, 203-204
setting up PhoneGap for, 205
and landscape mode, 200
lists with
App Store style, 191-192
classic, 188-190
iPod style, 193-194
iTunes classic style, 190-191
iTunes style, 193
overview, 187
navigation with, 194-195
overview, 183-184
phone integration in, 200
iWebKit/app/layout.erb file, 204
iWebkitDemoViewController.h file, 26
iWebkitDemoViewController.m file, 27-28
iWebkitDemoViewController.xib file, 28

J

Jarsigner tool, 50

Java Development, 52-53

Java Development Kit (JDK), 52

Java Runtime Environment (JRE), 52
JavaScript, support for on BlackBerry, 241
javascript folder, 227

JDK (Java Development Kit), 52

jqt theme, 210-211

jQTouch

adding screens
with Ajax, 212-214
buttons on, 215
cancel and back, 214-215
overview, 211
basic views, 217-218
creating simple application, 209-211
customizing application animations, 218
initialization options for, 215-223
integration
with PhoneGap, 222-223
with Rhodes, 222
lists, 218-220
overview, 207
running example code, 208
themes in, 221-222
toolbars, 218
jquery.js file, 142-143
JRE (Java Runtime Environment), 52

K

Kaneda, David, 207

Kawamoto, Dawn, 3

Keychain Access, 30

Keytool tool, 50

Kim, Gary, 4

Kitchen Sink application, Titanium, 158

L

Label element, Interface Builder, 22

LabelField class, 57, 60

labels, text fields, and buttons, 58-60

landscape mode, and iWebKit, 200

Landscape view, 233

Launch Assistant, iPhone Developer
Program Portal, 30

Launch button, Titanium, 154-155

Layout Editor, 41, 43

Layout menu, Interface Builder, 22

Layout tab, 41

layout.erb file, 91, 204, 242-243

Left Button element, 195

Left Navigation element, 195

leftButton class, 215

 tag, 149, 178, 187-188, 199, 218, 220

Library menu item, Interface Builder, 20

Library window, Interface Builder, 20-21, 26

<link> tag, 247

list class, 187
lists
HTML and CSS support for, 178-180
with iWebKit
App Store style, 191-192
classic, 188-190
iPod style, 193-194
iTunes classic style, 190-191
iTunes style, 193
overview, 187
in jQTouch, 218-220
loading.html file, 91
Login screen, 130

main method, 57

MainScreen class, 57

main.xml panel, 41

make command, 134

Manage Certificates option, Solution
Explorer, 79

Manage tab, iPhone Developer Program
Portal, 30

manifest.xml file, 49

map_example/app/Person/person_controller
.rb file, 110

MapView class, 110

margin attribute, 251

Market application, 50

Menu button, 42

menus, HTML and CSS support for, 166

metal class, 218

MFC (Microsoft Foundation Classes), 228

Min SDK Version box, 40

mobile applications, 6-10

models, generating in Rhodes, 95-98

Model-View-Controller (MVC), 18, 83-84, 95

musiclist class, 187

MVC (Model-View-Controller), 18, 83-84, 95

MyCompany, Registry Editor, 78

Name field, Titanium, 154

Name value, Registry Editor, 78
namekFilter parameter, 149

Native Development Kit (NDK), 36, 39
native picker control, iOS, 171

native Ul elements, and runtime
architecture, 86

navigation

bars, HTML and CSS support for, 168-
180
with iWebKit, 194-195

navigator.camera.getPicture function, 152

navigator.contacts.displayContact function,
149

navigator.contacts.getAllContacts function,
149

navigator.contacts.newContact function,
149

NDK (Native Development Kit), 36, 39

New App ID button, iPhone Developer
Program Portal, 31

New email application, 200

New Key option, Registry Editor, 78

new person form, 109

New Project dialog box, Eclipse, 53

New Project icon, Titanium, 154

New Project menu item, Visual Studio 2008,
77

New Project window, Visual Studio 2008, 67

New Referencing Outlet, Interface Builder,
26

new.erb page, 110

Nielson, Jacob, 6

NSURLRequest, Xcode, 28

numberfield xtype, 230

0

OAV (object-attribute-value), 114
Object Relational Manager (ORM), 84
object-attribute-value (OAV), 114
OHA (Open Handset Alliance), 35
onClick callbacks, 149

onClick event, 45, 160

onClick method, 45

onCreate method, 40, 44-45
onKeyUp event, 150

onReady (Function) property, 228
onReady property, 227

Open Handset Alliance (OHA), 35
Options menu, 130

Organizer window, Xcode, 31, 33
ORM (Object Relational Manager), 84
OTA (over the air) distribution, 63
Other Project Types, Visual Studio 2008, 77
QOutline tab, 43

Output file name field, Solution Explorer, 77
over the air (OTA) distribution, 63

P

p elements, 248
<p> tag, 248, 252
Package menu item, Eclipse, 55
padding attribute, 251
page-home div, 212
pageitem class, 190, 199
pages, HTML, 75
pageSize option, 149
/palm/framework/www directory, 140
panel xtype, 230-231
pause/play icon, 194
Perez, Bryan, 6
Personal Information Management (PIM),
103, 146
PersonController class, 110
pg_camera project, 150
pg_contacts project, 146, 152
Phone application, 200
PhoneGap
camera example, 150-152
contacts example, 146-150
Hello World application in, 139-140
overview, 131-133
PhoneGap simulator for, 138
setting up for
Android, 136
BlackBerry, 137
iPhone, 134-135
iWebKit, 205
tip calculator example, 141-145
PhoneGap Simulator, 138, 146
PhoneGap.addConstructor function, 149
phonegap/android directory, 136
PhoneGap-based Application option,
Xcode, 134
phonegap/blackberry/framework/src/www/
directory, 144
phonegap/iphone folder, 134
phonegap.jdp file, 137
phonegap.js file, 149
PhoneGapLib library, 134
PhoneGapLiblnstaller.pkg file, 134
phoneStartupScreen (String) property, 228
photo_controller.rb file, 107
PIM (Personal Information Management),
103, 146

Placeholder attribute
HTML5, 173
Interface Builder, 23
plastic class, 218
platform, 51-52
popSelector option, 216
Portrait view, 233
preloadimages (Array) property, 228
preloadlmages option, 216
Pretty format, 188
Product edit page, 100
product inventory example, in RhoSync
debugging source adapters, 130
generating RhoSync application, 128
implementing source adapter, 126
overview, 122-125
setting up RhoSync server, 129
testing application, 130
testing source adapter, 126-130
product names, customizing, 77
product_controller.rb file, 96
product_spec.rb file, 128
ProductName field, Visual Studio 2008, 77
product.rb file, 96, 126, 128
product.rb source adapter, 126
Products link, 97
Program Portal, 31
Programs Folder, File System Editor, 78
Progressive Disclosure, 166
Project creation dialog box, Eclipse, 54
Project drop-down list, File System Editor,
78
Project Type field, Titanium, 154
Project Types pane, Visual Studio 2008, 67,
77
projects, Eclipse, 53-55
Properties context menu item, Solution
Explorer, 77-78
Properties pane, Visual Studio 2008, 70, 73
Properties panel, 43
Properties section, solution browser, 75
Properties tab, 43, 76
Properties Window
Registry Editor, 78
Visual Studio 2008, 77
property grid, Visual Studio 2008, 77
provisioning
manually setting up, 30
profiles, creating, 32
public/ folder, 90

public void fieldChanged(Field field, int
context) method, 60

Publisher URL field, Titanium, 154

pushScreen() method, 57

puts @result.inspect statement, 130

Q

query method, in RhoSync, 117-118

radio buttons
HTML and CSS support for, 175-177
select modal view, Android, 171
Radio xtype, 231
radiobutton class, 198
Rails. See Ruby on Rails, and Rhodes
rake clean:android command, 92
rake clean:bb command, 92
rake clean:iphone command, 92
rake clean:win32 command, 92
rake clean:wm command, 92
rake commands, 92
rake device:android:debug command, 92
rake device:android:production command,
92
rake device:bb:debug command, 92
rake device:bb:production command, 92
rake device:iphone:production command,
92
rake device:wm:production command, 92
rake program, 91
rake run wm:dev command, 92
rake run wm:devcab command, 92
rake run wm:emu command, 92
rake run wm:emucab command, 92
rake run:android command, 92
rake run:android:device command, 92
rake run:bb command, 92, 95
rake run:iphone command, 92-93
rake run:wm:emu command, 95
rake task, 91
rake uninstall:android command, 92
rake uninstall:android:device command, 92
Rakefile file, 90
rake:run command, 98
Received Actions, Interface Builder, 25
Registry entries, adding, 78
Remove context menu item, 42

Request Certificate button, iPhone
Developer Program Portal, 30
Research in Motion (RIM), 51, 165, 235
Reset Content and Settings... menu item,
iPhone Simulator menu, 101
resignFirstResponder method, 25
res/layout/main.xml file, 40, 42
resources directory, 186
rhoconfig.txt file, 90, 100, 103, 107
Rhodes application framework
building application, 89-91
Camera example, 106-108
Contacts example, 103-106
database for (Rhom), 86-87
debugging in
on Android, 101
on BlackBerry, 101
on iPhone, 100-101
development architecture for, 84-85
device capabilities with, 101-102
dynamic layout with, for BlackBerry
browser-rendering engine 4.2, 242—
243
example applications
Camera, 106-108
Contacts, 103-106
Geolocation, 108-111
generating model in, 95-98
Geolocation example, 108-111
installing, 88-89
integrating iWebKit in mobile
applications with, 203-204
overview, 83-84
and Ruby on Rails, 88
running application
on Android, 94
on BlackBerry, 94-95
on iPhone, 93
overview, 91-92
on Windows Mobile 6, 95
runtime architecture for, 85-86
threading in, 87
rhogen app command, 89
rhogen model command, 95, 106
RhoLog.txt file, 100
Rhom, database for Rhodes, 86-87
Rhomobile app directory structure, 88
Rho::RhoContact.find(:all) function, 104-105
RhoSync
authenticate method, 121
authentication in, 116-117

create method, 119
data storage format in, 114
delete method, 120
initialize method, 116
methods in
authenticate, 121
create, 119
delete, 120
initialize, 116
query, 117-118
sync, 119
update, 120
overview, 113
product inventory example
debugging source adapters, 130
generating RhoSync application, 128
implementing source adapter, 126
overview, 122-125
setting up RhoSync server, 129
testing application, 130
testing source adapter, 126-130
query method, 117-118
source adapters in, 115
sync method, 119
update method, 120
rhosync/lib directory, 128
rhosync/vendor/sync directory, 128
RichTextField class, 57, 61
Right Button element, 195
Right Navigation element, 195
RIM (Research in Motion), 51, 165, 235
R.layout.main parameter, 40
rounded class, 219
Ruby on Rails, and Rhodes, 88
Run menu, 41
Run on Device screen, Titanium, 157
runtime architecture, for Rhodes, 85-86

S

Saa$S (Software As A Service), 113
SampleWebView.java class, 48
sayHelloToUser method, 24-25
scaffold-generated app, 130
Scalable view, 166
schema.rb file, 88
scope (Object) property, 228
screens
adding with jQTouch
with Ajax, 212-214
buttons on, 215

cancel and back, 214-215
overview, 211
resolutions, for BlackBerry, 244-245
Scroll view, 166
SDK directory, 37
SDK Setup.exe file, 37
SDK tools/ directory, 49
Search box, Interface Builder, 21
searchbox class, 186
Select Certificate window, Solution Explorer,
79
Select class, 198
select xtype, 230
<select> tag, 198
selection boxes, HTML and CSS support
for, 171-173
Sencha Touch
adding components in, 231
interactivity in, 232
overview of framework, 227-231
setting up, 225-227
Sencha Touch library files, 227
Server tab, RhoHub, 126
servers, RhoSync, 129
setChangelListener(this) method, 60
setContentView method, 40
Settings, RhoHub, 125
Settings drop-down menu, Interface Builder,
20
/Settings folder, 91
Settings screen, 90
Setup and Deployment, Visual Studio 2008,
77
shortcuts, applications, 78
Show Develop menu in menu bar option,
212,229
Show Error Console menu option, 229
Show Records option, RhoHub, 126
Show Web Inspector option, 229
showContact function, 149
Simple format, 188
Simple Tip Calculator Application for
BlackBerry, 144
Simulator option, 135
slider xtype, 230
slideSelector option, 217
slideupSelector option, 217
SMALL element, 220
smallfield class, 197
Smart Device Cab project, Solution
Explorer, 78

Smart Device CAB Project template, Visual
Studio 2008, 77
Smart Device option, Visual Studio 2008, 67
Smart Device Projects, creating, 67
SmartDeviceProject1 project, 72
smartphones
application marketplace, 2-4
cross-platform frameworks, 5-6, 10-13
mobile applications, 6-10
overview, 1
web techniques, 10
SMS application, 200
SOFTWARE, Registry Editor, 78
Software As A Service (SaaS), 113
Solution Explorer, 78
source adapters, in RhoSync
debugging, 130
implementing, 126
overview, 115
testing, 126-130
source class, 114
SourceAdapter class, 114
sources subdirectory, 128
spacer xtype, 230-231
 tag, 199
 tag, 194
 tag, 190, 194
spec/sources/ subdirectory, 128
splitbutton component, 231, 233-234
src directory, 40, 44
Start Menu Folder, File System Editor, 78
startupScreen option, 217
stash_result function, 119
statusBar option, 217
statusBarStyle (String) property, 228
<style> tag, 247
Submit button, Visual Studio 2008, 74
submitButton handler, Visual Studio 2008,
74
submitForm function, 149
submitSelector option, 217
super() method, 57
swapSelector option, 217
/symbian.wrt/framework/www directory, 140
sync method, in RhoSync, 119
syntax, for CSS, 248-249

T

tab bars, HTML and CSS support for, 167
tab group, Titanium, 160

tabBarHidden property, Titanium, 160
tabletStartupScreen (String) property, 228
tabpanel xtype, 230
tail -f command, 101
takePicture function, 152
target attribute, 214
Target Machine pane, File System Editor, 78
Targets drop-down, Xcode, 33
Task details page, 99
Tasks list page, 98
Tasks new page, 99
Templates pane, Visual Studio 2008, 67, 77
Terminal.app application, 134
Test & Package tab, Titanium, 154-155
text areas, HTML and CSS support for, 174—
175
text boxes, HTML and CSS support for,
173-174
text fields, 22-23, 58-60
text greetings, aligning, 22
Text property, 44
text-align attribute, 252
textarea xtype, 231
Textbox class, 199
text-decoration attribute, 252
Textfield xtype, 231
text-transform attribute, 252
TextView control, 44-45
theme.css file, 221
themes, in jQTouch, 221-222
themes/ directory, 222
themes/apple/theme.min.css file, 211
themes/jgt/theme.min.css file, 211
threading in Rhodes, 87
tip calculator example, in PhoneGap, 141-
145
Titanium Mobile
building applications in, 157
Camera example, 158-160
device capabilities in, 157-158
Hello World application, 155-157
overview, 153-154
Titanium.Ul module, 157
Titanium.Ul.AlertDialog class, 157
Titanium.Ul.Android module, 157
Titanium.Ul.Button class, 157
Titanium.ULiPhone module, 157
Title element, 195
to_s method, 110, 118
toolbar component, 234
toolbar xtype, 230

toolbars
HTML and CSS support for, 167
in jQTouch, 218
toolbox, Visual Studio 2008, 73
Toolbox pane, Visual Studio 2008, 69, 73
Tools menu
Interface Builder, 20, 22, 25-26
Visual Studio 2008, 76
topbar class, 186, 194
Touch Up Inside option, Interface Builder,
25

UDIDs (Unique Device Identifiers), 30
Ul elements

adding, 21

native, and runtime architecture, 86
Ul widgets, HTML and CSS support for, 169
UiApplication class, 57, 59
UlWebView, Interface Builder, 27
<ul class="pageitem"> tag, 190
 tag, 178, 187-188, 190, 199, 218
Unique Device Identifiers (UDIDs), 30
update method, in RhoSync, 120
update_hash parameter, 120
update(txt) function, 232
USB Debugging check box, 49
Use Current Location check box, 109-110
useAnimations option, 217
user interaction, for BlackBerry, 244-245
User Templates section, 134
UserlInterface class, 59
UserInterfaceScreen class, 60
userNameField class, 24-25, 60
Users tab, RhoHub, 125

'}

View context menu item, Solution Explorer,
78

View Icons and Descriptions setting,
Interface Builder, 20

View Source option, 229

View window, Interface Builder, 26

View-based Application template, Xcode,
19, 26

viewDidLoad method, 202-203

views

adding buttons to, 69

connecting code to, 25-26
Views menu, 42
virtual device properties, Android SDK and
AVD Manager, 38
visibility attribute, 251

1}

W3C (World Wide Web Consortium), 131
Wasserman, Todd, 6
web techniques, 10
Web View
HTML and CSS support for, 178-182
Xcode, 26-28, 75
_webapp target, 218
WebBrowser controls
adding, 75
loading HTML in, 76
WebBrowser element, Visual Studio 2008,
76
WebKit web views, HTML and CSS support
for, 178-182
-webkit-appearance property, 173
WebView, embedding in application, 46-48
WebView.navigate method, 108
Widarsson, Fredrik, 3
width property, 44
Windows Marketplace for Mobile, 76, 80
Windows Mobile
building apps. See also base
functionality
adding WebBrowser controls, 75
creating HTML pages, 75
creating Smart Device Projects, 67
deploying and testing, 72
embedding Web View in
applications, 75
loading HTML in WebBrowser
controls, 76
distributing applications, 80
HTML and CSS support on, 165
overview, 65
packaging and distributing apps
adding applications to CAB Projects,
78
adding CAB Projects to solutions, 77
adding Registry entries, 78
building and deploying CAB files, 78—
79
creating application shortcuts, 78
customizing product names, 77

installing CAB files, 79
overview, 76
version 6, 95
version 6.5 development, 66
Windows Phone Marketplace, 66
/winmo/www directory, 140
withimage class, 188
Wolfe, Alexander, 4
World Wide Web Consortium (W3C), 131
WWDR (Worldwide Developers Relation), 30

www directory, 139, 146, 150, 205, 222
www/index.html file, 140

=X

Xcode, 17-19

Xcode file copy prompt, 202

Xcode groups option, 200-201
.xcodeproj file, 157

	Title Page
	Copyright Page

	Contents at a Glance
	Table of Contents

	Foreword
	About the Authors
	About the Technical Reviewer
	Acknowledgments

	Introduction
	Part 1: Platform Development and Distribution
	Part 2: Cross-Platform Native Frameworks
	Part 3: HTML Interfaces

	Chapter 1 The Smartphone is the New PC

	Application Marketplace
	Increase in Mobile Usage and Trend Toward Smartphones

	What is a Smartphone?
	Smartphone Landscape
	Cross-Platform Frameworks
	The Branded Experience of Mobile Applications
	Cross-Platform Development

	Web Techniques
	Cross-Platform Frameworks
	About this Book

	Part I Platform Development and Distribution

	Chapter 2 iPhone

	Introducing Xcode
	iPhone Development Standard Practices
	Building a Simple iPhone app
	Create the Xcode Project
	Create the Interface
	Add UI Elements
	Align the Text Greeting
	Button and Text Field Layout
	Writing the Controller Code
	Connect the Code to the Views
	Skinning an iPhone Web View

	Installing the App on the Device
	Using the Development Provisioning Assistant
	Manually Setting Up iPhone Provisioning
	Finding Your Device ID
	Create the Provisioning Profile
	Install the Provisioning Profile
	Install and Run on the Device

	Chapter 3 Android

	Android Development
	Setting Up The Development Environment With Eclipse
	Building a Simple Android Application
	Simple Application Using Android WebView

	Building for an Android Device
	Distribution on the Web
	Android Market

	Chapter 4 BlackBerry

	BlackBerry Platform
	Set Up for Classic Java Development
	Building a Simple BlackBerry Application
	Create the Eclipse Project
	Create the Interface
	Code Explained
	Build and Test the Application
	Simple User Interface Application Using a Label, Text Field, and Button

	Code Explained
	Simple Application Using BlackBerry Browser Field
	Building for a BlackBerry Device
	Over the Air (OTA) Distribution
	BlackBerry App World

	Chapter 5 Windows Mobile

	Setting Up for Windows Mobile 6.5 Development
	Building a Simple Windows Mobile App
	Creating a Smart Device Project
	Setting Up Base Functionality
	Add a Button to the View
	Customize the Button
	Create a Click Event Handler

	Deploying and Test your Application
	Fleshing Out the Application
	Embed a Web View in your Application
	Create an HTML page
	Add a WebBrowser Control
	Load HTML in WebBrowser control

	Packaging and Distributing Your App
	Adding a CAB Project to the Solution
	Customizing Your Product Name
	Adding the Application to the CAB Project
	Creating an Application Shortcut
	Adding a Registry Entry
	Building and Deploying the CAB File
	Installing the CAB File

	Distributing Your Application

	Part 2 Cross-Platform Native
Frameworks
	Chapter 6 Rhodes

	Development Architecture
	Runtime Architecture
	Device Capabilities and Native UI Elements

	Database (Rhom)
	Threading
	Differences Between Rhodes and Rails
	Creating a Rhodes App
	Installation and Setup

	Building a Rhodes Application
	Running the Application
	Running on the iPhone
	Running on Android
	Running on BlackBerry
	Running on Windows Mobile 6

	Generating a Model
	Debugging Tips
	iPhone
	BlackBerry
	Android

	Rhodes Device Capabilities
	Contacts Example
	Camera Example
	Geolocation and Mapping Example
	Creating the application

	Chapter 7 RhoSync

	How the Sync Server Works
	Data Storage: Why Triples?

	RhoSync Source Adapters
	Initialize
	Authenticating with Web Services: Login and Logoff
	Retrieving Data: Query and Sync
	Query
	Sync

	Submitting Data: Create, Update, and Delete
	Create
	Update
	Delete

	User Authentication
	Product Inventory Example
	Creating Your Application on RhoHub
	Implementing Your Source Adapter
	Testing Your Source Adapter

	Creating Your Application on a Local RhoSync Server
	Generate the RhoSync Application
	Setting up RhoSync Server
	Testing Your Source Adapter

	Debugging RhoSync Source Adapters
	Testing Your Application

	Chapter 8 PhoneGap

	Getting Started with PhoneGap
	Sample Application
	PhoneGap iPhone

	Android
	BlackBerry
	PhoneGap Simulator

	Writing Hello World in PhoneGap
	Writing a PhoneGap Application
	Contacts Example
	Contact Example Code Explained

	Camera Example
	Camera Example Code Explained

	Chapter 9 Titanium Mobile

	Getting Started
	Writing Hello World
	Building for Device
	Titanium Mobile Device Capabilities
	Camera Example

	Part 3 HTML Interfaces

	Chapter 10 Mobile HTML and CSS

	Platform Overview
	iOS for iPhone, iPad, iPod Touch
	Android
	BlackBerry
	Windows Mobile

	Common Patterns
	Screen-Based Approach
	Navigation
	Menus
	Tab Bars
	Toolbars
	Navigation Bars
	Button Bars and Context Menus

	UI Widgets
	Check Boxes
	Selection Boxes
	Text Boxes
	Text Areas
	Radio Buttons
	Additional Components
	WebKit Web Views
	Creating Lists
	Building a Navigation Bar

	Chapter 11 iWebKit

	Working With the iWebKit Framework
	A Few Words of Caution
	Required Header
	Body
	Organizing Data with Lists
	Classic Lists
	iTunes Classic Style Lists
	App Store-style Lists
	iTunes style-lists
	iPod-style lists

	Navigation
	Forms
	Labeling Field Sets

	Landscape Mode
	Phone Integration
	Integrating iWebKit in Mobile Applications
	Creating a Native iPhone Application with iWebKit in Objective C

	Create an Application
	Add iWebKit Framework to Application Layout Template
	Setting up PhoneGap for iWebKit

	Chapter 12 Animated UI with jQTouch

	Getting Started with jQTouch
	Running Example Code
	Creating a Simple jQTouch Application

	Adding Screens
	Loading Additional Screens with Ajax
	Cancel, Back, and Browser History
	Other Buttons

	jQTouch Initialization Options
	Basic Views
	Customizing Your jQTouch Applications Animations

	Navigation Bar (aka the Toolbar)
	Customizing Your Views with Themes
	Integration with Rhodes
	Integration with PhoneGap

	Chapter 13 Sencha Touch

	Getting Started
	Adding HTML Text with a Panel
	Adding Components
	Creating Interactivity

	Chapter 14 BlackBerry HTML UI

	BlackBerry Browser UI Controls
	BlackBerry 4.2 Browser Control
	CSS
	Fonts
	Frames
	JavaScript
	Rhodes Tip for Dynamic Layout

	BlackBerry 4.6 Browser Control
	Display and User Interaction
	Development Environment

	Appendix Cascading Style Sheets

	The Cascading in Style Sheets
	CSS Syntax
	Comments
	Identifying Elements with ID and Class
	Common Patterns
	Common CSS Attributes (Display: block verses inline)

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

