
Pro PowerShell
for Amazon
Web Services

Second Edition
—
Brian Beach
Steven Armentrout
Rodney Bozo
Emmanuel Tsouris

www.allitebooks.com

http://www.allitebooks.org

Pro PowerShell for
Amazon Web Services

Second Edition

Brian Beach
Steven Armentrout
Rodney Bozo
Emmanuel Tsouris

www.allitebooks.com

http://www.allitebooks.org

Pro PowerShell for Amazon Web Services

ISBN-13 (pbk): 978-1-4842-4849-2 ISBN-13 (electronic): 978-1-4842-4850-8
https://doi.org/10.1007/978-1-4842-4850-8

Copyright © 2019 by Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484248492. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Brian Beach
Raleigh, NC, USA

Steven Armentrout
Mountlake Terrace, WA, USA

Rodney Bozo
Sterling, VA, USA

Emmanuel Tsouris
North Bend, WA, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4850-8
http://www.allitebooks.org

iii

Table of Contents

Chapter 1: AWS Architecture Overview �� 1

What Is Cloud Computing? �� 1

Regions ��� 2

Availability Zones �� 3

Services �� 4

Management ��� 4

Storage �� 5

Network ��� 6

Compute �� 6

Monitoring ��� 7

Misc� �� 7

Summary��� 8

Chapter 2: Getting Started �� 9

Creating an AWS Account �� 9

Creating an IAM User Account �� 10

Logging in As an IAM User �� 13

Configuring PowerShell �� 14

Specifying Credentials and Region ��� 15

Setting Defaults �� 17

About the Authors ��xv

About the Technical Reviewers ���xvii

Acknowledgments ��xix

Introduction ��xxi

www.allitebooks.com

http://www.allitebooks.org

iv

Persisting Defaults �� 18

Using Stored Credentials �� 19

Using Key Pairs ��� 20

Using IAM Roles �� 21

Summary��� 24

Chapter 3: Basic Instance Management ��� 25

Creating Instances �� 25

Launching an Instance with the Web Console ��� 25

Launching an Instance with PowerShell ��� 30

Checking the Instance Console Screenshot �� 33

Checking the Instance Console System Log ��� 34

Connecting to an Instance �� 36

Managing the Instance Life Cycle ��� 39

Listing Instances and Metadata �� 41

Using the Metadata URL �� 44

Using User Data �� 46

Working with Tags ��� 49

Working with Filters �� 52

Summary��� 58

Chapter 4: Elastic Block Storage �� 59

Managing Volumes at Launch ��� 60

Encrypting Volumes at Launch �� 66

Adding a Volume to a Running Instance ��� 68

Managing Quality of Service ��� 70

Working with Snapshots ��� 72

Managing Public Snapshots �� 74

Summary��� 83

Table of ConTenTs

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 5: Virtual Private Cloud ��� 85

Creating a VPC��� 86

Creating a Subnet ��� 88

Creating an Internet Gateway ��� 90

Managing Route Tables ��� 91

Managing Network ACLs ��� 95

Securing the Public Subnet ��� 97

Securing the Private Subnet �� 99

Managing DHCP �� 101

VPC Peering��� 104

Summary��� 115

Chapter 6: Advanced Instance Management �� 117

Managing Security Groups �� 117

Displaying Security Groups ��� 119

Adding and Removing Rules �� 121

Launching Instances into a VPC �� 125

Subnets and Public IP Addresses �� 128

Managing Elastic IP Addresses ��� 129

Managing Private IPs �� 132

Managing Elastic Network Interfaces ��� 133

Summary��� 155

Chapter 7: Amazon Machine Images �� 157

Working with Scripted Builds and Prepared Images ��� 157

Listing AMIs ��� 158

Limiting the Number of Instance Results �� 159

Finding an Instance by Name �� 160

Locating the Most Common Images �� 160

Introducing EC2Launch ��� 161

Preparing an AMI Using EC2LaunchSettings ��� 164

Table of ConTenTs

vi

Creating an AMI ��� 166

Sharing an AMI �� 168

Summary��� 171

Chapter 8: Monitoring and High Availability ��� 173

Architecting for High Availability ��� 174

Managing Elastic Load Balancers ��� 177

Preparing the VPC for an ELB �� 178

Configuring an NLB �� 180

Configuring a Health Check ��� 181

Configuring an ELB for HTTPS ��� 182

Monitoring with CloudWatch ��� 183

Using Auto Scaling �� 186

Using Route 53 �� 191

Summary��� 196

Chapter 9: Identity and Access Management ��� 199

Managing Users �� 199

Managing Groups �� 202

Managing Policies ��� 203

Policy Actions �� 205

Policy Resources ��� 208

Policy Actions �� 212

Policy Conditions ��� 212

Creating Policies with PowerShell �� 213

Managed Policies �� 214

Managing Roles �� 217

Auditing IAM Access ��� 220

Miscellaneous IAM Commands ��� 221

Managing Password Policy �� 221

Setting the Account Alias ��� 222

Summary��� 235

Table of ConTenTs

vii

Chapter 10: Relational Database Service ��� 237

RDS Architecture ��� 237

Creating a VPC ��� 239

Creating a Subnet Group ��� 239

Configuring Security Groups �� 240

Managing RDS Instances �� 241

Launching an Instance �� 241

Joining a Domain �� 247

Multi-AZ Instances �� 249

Modifying an Instance ��� 251

Deleting an Instance �� 253

Configuring a Database Engine ��� 253

Modifying Parameters ��� 253

Modifying Options �� 255

Working with Snapshots ��� 258

Using Point-in-Time Restores ��� 260

Working with Tags, Events, and Logs �� 262

Tags ��� 263

Events �� 264

Logs ��� 267

Amazon Aurora �� 267

Summary��� 274

Chapter 11: Simple Storage Service ��� 275

Managing Buckets �� 275

Managing Objects ��� 277

Managing Folders ��� 279

Managing Public Access ��� 281

Managing Versions �� 281

Using Life-Cycle Management and Glacier�� 284

Cross-Region Replication �� 287

Table of ConTenTs

viii

Tagging ��� 290

Miscellaneous S3 Options ��� 291

Pagination �� 292

Encryption ��� 292

Logging �� 292

Content Type �� 293

Summary��� 299

Chapter 12: AWS Directory Service �� 301

Selecting the Right Directory �� 301

AWS Directory Service for Microsoft Active Directory ��� 302

AD Connector ��� 302

Simple AD �� 303

Managed Microsoft AD Architecture ��� 303

Prerequisites ��� 303

Creating a VPC ��� 304

Creating Private Subnets ��� 304

Creating a Managed Microsoft AD Directory ��� 304

Creating Public Subnet �� 306

Creating Internet Gateway ��� 306

Configuring VPC Routing �� 306

Configuring DNS Hostname Name Resolution ��� 307

Creating Management Workstation ��� 307

Configuring Management Workstation �� 308

Joining EC2 Instance to the Domain �� 309

Install AD Tools �� 313

Delegation Model ��� 315

Add Additional Domain Controller �� 316

Create a Snapshot ��� 317

Restore a Snapshot ��� 318

Enable Single Sign-On ��� 319

Creating an Access URL ��� 319

Table of ConTenTs

ix

Enabling AWS Apps and Services �� 320

Enable Multi-Factor Authentication ��� 320

Disable Multi-Factor Authentication �� 321

Reset Admin Password �� 321

Create a Trust Relationship �� 322

Approve Trust Relationship �� 322

Remove a Trust Relationship ��� 322

Deleting the Managed Microsoft AD Directory �� 323

AWS Created Security Group ��� 323

AD Connector �� 324

AD Connector Prerequisites ��� 324

Creating AD Connector �� 325

Deleting AD Connector ��� 326

Simple AD �� 327

Creating Simple AD �� 327

Prerequisites ��� 327

Creating a VPC ��� 327

Creating Private Subnets ��� 328

Creating Public Subnet �� 328

Creating Internet Gateway ��� 328

Configuring VPC Routing �� 329

Configuring DNS Hostname Name Resolution ��� 329

Creating a Simple AD ��� 329

Creating Management Workstation ��� 330

Configuring Management Workstation �� 331

Joining EC2 Instance to the Domain �� 333

Install AD Tools �� 335

AWSAdminD-xxxxxxx ��� 336

Create a Snapshot ��� 337

Restore a Snapshot ��� 338

Enable Single Sign-On ��� 338

Table of ConTenTs

x

Creating an Access URL ��� 339

Enabling AWS Apps and Services �� 340

Enable Multi-Factor Authentication ��� 341

Disable Multi-Factor Authentication �� 342

Deleting Simple AD Directory �� 342

AWS Created Security Group ��� 342

Application Compatibility ��� 343

Summary��� 344

Chapter 13: Amazon WorkSpaces and Amazon AppStream 2�0 ��������������������������� 345

Amazon WorkSpaces Architecture �� 345

Client Requirements �� 347

Managing Amazon WorkSpaces �� 347

Amazon AppStream 2�0 ��� 359

Amazon AppStream 2�0 Architecture ��� 359

Requirements �� 360

Getting Started with AppStream 2�0 �� 361

Summary��� 400

Chapter 14: Amazon WorkDocs �� 401

Client Requirements �� 401

Setting Up WorkDocs �� 402

Managing WorkDocs Users ��� 409

Getting List of WorkDocs Users ��� 409

Adding WorkDocs Users �� 410

Enabling WorkDocs Users �� 411

Disabling WorkDocs Users ��� 412

Setting Role for WorkDocs Users ��� 412

Creating Collaboration Folder �� 414

Creating New WorkDocs Folder ��� 415

Deleting WorkDocs Folder ��� 416

Listing WorkDocs Folders Metadata �� 417

Table of ConTenTs

xi

Describing WorkDocs Folders Contents ��� 418

Getting WorkDocs Folder Path ��� 419

Removing WorkDocs Folder Contents�� 421

Managing WorkDocs Content �� 421

Summary��� 422

Chapter 15: Systems Manager Basics �� 423

Systems Manager Prerequisites ��� 423

IAM Access to Systems Manager �� 424

Creating an IAM Instance Profile for Systems Manager �� 424

AWS Resource Groups �� 425

Creating New Resource Groups ��� 426

Updating Resource Groups �� 427

Finding Resources with a Resource Query �� 428

Listing Resource Groups �� 429

Deleting Resource Groups ��� 429

Listing Resources in a Resource Group ��� 429

Built-In Insights ��� 430

Session Manager �� 430

Connecting with Session Manager �� 431

Parameter Store �� 434

Using Parameter Store �� 434

Finding the Latest Windows AMI ��� 435

Finding the Latest Linux AMI ��� 435

Referencing Values with Systems Manager �� 435

Summary��� 440

Chapter 16: Systems Manager: Run Command, Automation,
and State Manager ��� 441

AWS Systems Manager (SSM) Documents ��� 442

SSM Document Types �� 442

Working with Documents in the AWS Systems Manager Console ��������������������������������������� 443

Working with Documents Using PowerShell ��� 448

Table of ConTenTs

xii

Run Command �� 451

Run Command Using the AWS Systems Manager Console ��� 451

Run Command Using PowerShell �� 455

AWS Systems Manager Automation �� 458

User Access to Automation �� 458

Automation Roles �� 458

Listing Automation Documents �� 458

Starting an Automation Execution ��� 459

Getting Automation Execution Status �� 460

AWS Systems Manager State Manager �� 460

Creating an Association ��� 460

Summary��� 464

Chapter 17: Systems Manager: Inventory and Patch Manager ���������������������������� 465

AWS Systems Manager Inventory ��� 466

Systems Manager Inventory in the Console �� 466

Creating an Inventory Association ��� 467

Inventory Schemas �� 468

Viewing Inventory Data �� 469

Aggregating Inventory Data ��� 471

AWS Systems Manager Patch Manager �� 472

Patch Baselines ��� 473

Patch Groups ��� 475

Maintenance Windows �� 476

Summary��� 486

Chapter 18: Lambda with PowerShell �� 487

PowerShell-Based Lambda Prerequisites ��� 487

Authoring PowerShell-Based Lambda Functions �� 489

Creating a Script Template �� 489

Understanding Modules ��� 491

Understanding Input �� 492

Table of ConTenTs

xiii

Understanding Output and Logging ��� 492

Understanding Errors��� 493

The LambdaContext Variable ��� 493

Creating a PowerShell Lambda Package ��� 494

Publishing a PowerShell-Based Lambda Function �� 497

Invoking Lambda Functions ��� 502

Lambda CloudWatch Logs ��� 504

Lambda Event Trigger �� 506

Summary��� 512

Index ��� 513

Table of ConTenTs

xv

About the Authors

Brian Beach has over 20 years of experience as a Developer

and Architect and has spent the past 4 years focusing on

Amazon Web Services. He holds a Computer Engineering

degree from NYU-Poly and an MBA from Rutgers Business

School. He published Pro PowerShell for Amazon Web

Services in 2014. He is a regular author and has spoken at

a number of events around the world. Brian lives in North

Carolina with his wife and three kids.

Steven Armentrout is a Systems Engineer at a major cloud

provider. He has over 15 years of experience in the public

and private sectors with roles as System Administrator,

Network Engineer, and Systems Engineer. Steven has earned

over a dozen information technology certifications to

include Microsoft Certified Solutions Expert (MCSE), Cisco

Certified Network Associate (CCNA), and Certified Ethical

Hacker (CEH). Steven has a BS in Business from Northern

Arizona University.

xvi

Rodney Bozo is a Solutions Architect for a major public

cloud provider. Previously, Rodney worked in the field

supporting Microsoft services and technologies for almost

20 years. Rodney is an AWS Certified Solutions Architect

and Developer and holds other AWS and Microsoft

certifications. Rodney has a BS in Information Technology

from George Mason University and an MS in Information

Systems Technology and an MBA from George Washington

University.

Emmanuel Tsouris is a Systems Development Engineer

at a major cloud provider. Emmanuel builds scalable

cloud computing services which enable running Windows

Workloads on AWS, along with expanding compute services

to customers in new regions around the globe. Previously,

Emmanuel spent nearly two decades building enterprise

solutions and applications at a Fortune 500 company.

abouT The auThors

xvii

About the Technical Reviewers

Eric Battalio has been working in software development for more than 25 years,

most recently at Amazon. He has a degree in English Literature from Texas A&M and

still enjoys working with technology through the perspective a liberal arts education

provides.

Ryan Pothecary started using Amazon Web Services 6

years ago while working for a large UK-based NPO. There,

he saw firsthand the benefit that a move to AWS could bring

to a business, not only in cost reduction and becoming

more agile but in the case of the business being able to

use technology, such as machine learning, which was way

outside their capability before.

Ryan has been with AWS Professional Services for

nearly 3 years after being in the IT industry for over 25 years

working predominantly on the Microsoft technology stack

with a focus on Active Directory and Automation. Since

joining AWS, he specializes in helping customers running

Microsoft Workloads move to AWS working with some amazing customers delivering

business-changing projects around EMEA.

Ryan has a beautiful wife and four children to keep him busy outside of work. He is

also sometimes a roadie for his sons’ band, The Pitchforks.

xix

Acknowledgments

I would like to thank my wife, Karin. I know I said I would never write another book.

I appreciate your support. I love you.

—Brian Beach

If not for my family, I wouldn’t have been able to contribute to this project or have done

many things in life and in my career. Thank you Chandana, Aparna, Karina, Federico,

and Niam for being patient and encouraging.

I would also like to thank Brian Beach, who gave me an opportunity to help him in

this endeavor. Also, thank you Steve and Emmanuel for joining me on this journey.

—Rodney Bozo

xxi

Introduction

Pro PowerShell for Amazon Web Services is for the Windows professional who is ready

to make the leap to the cloud. While cloud computing has been around for a while now,

enterprise adoption is just beginning. Pro PowerShell for Amazon Web Services is written

specifically for Windows professionals who already know PowerShell and want to learn

to host Windows workloads in the Amazon cloud.

Windows professionals find themselves under pressure to move workloads to AWS,

but few books have been written for Windows users. Pro PowerShell for Amazon Web

Services will introduce you to Amazon Web Services using a language you already know,

Microsoft PowerShell.

This book assumes you have experience with Microsoft PowerShell. It will not teach

you how to write PowerShell scripts. There are numerous excellent books on the market

already. Apress offers a book titled Pro Windows PowerShell by Hristo Deshev.

On the other hand, we do not expect you to have any experience with AWS. We will

start with the basics and build on that foundation. By the time you get to the end of the

book, you will know everything you need to run Windows workloads.

 What Does This Book Cover?
Amazon offers a wide selection of cloud services, enough to fill many books. This book

focuses on running Windows workloads on AWS. The first version covered Elastic

Compute Cloud (EC2), Virtual Private Cloud (VPC), Simple Storage Service (S3),

Identity and Access Management (IAM), Simple Notification Service (SNS), Cloud

Watch, Auto Scaling, and Elastic Load Balancing (ELB). As you likely know, AWS has

been continuously innovating and these chapters have been updated to reflect the new

features and capabilities. In addition, AWS has released numerous new services since

the first edition was published. We have added additional chapters to cover this new

material. These chapters include Systems Manager, Workspaces, AppStream, Lambda,

and others.

xxii

In general, each chapter will introduce a specific topic (e.g., compute, storage,

networking, etc.) and provide an overview of the capabilities. Then, we discuss the

PowerShell commands available and how to use each. Each chapter ends with one or

two exercises that bring together all of the commands introduced in the chapter.

In the early chapters, we begin by showing you how to use the Web Console and

then introduce the various commands available in the PowerShell API. As the chapters

progress and you get more comfortable with AWS, we will focus less on the Web

Console and more on PowerShell. By the end of the book, we will be using PowerShell

exclusively.

 How Much Will This Cost?
In short, not much. AWS offers the “free tier” which allows you to use some resources for

free each month. The free tier covers 30GB of storage and 750 hours of micro instance

usage each month for the first year of your account. Micro instances are small servers

ideal for getting started. These are too small to run most production workloads, but more

than enough to launch a few servers and get comfortable with the platform.

The free tier does not cover everything, but if you use micro instances and are

diligent about cleaning up after each exercise, your bill should be very small. Over the

roughly 6 months I was writing the first edition, I spent a grand total of about $25. You

should be able to complete the examples for much less.

 A Note on the Code Examples
PowerShell is a complicated language with many tricks and shortcuts. Many developers,

the authors included, pride themselves on being able to accomplish as much as possible

with a single line of code. We have done our best to focus on readability and avoid

complicated syntax. For example, the following code

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'vpc-id'

$VPCFilter.Value = 'vpc-12345678'

Get-EC2SecurityGroup -Filter $VPCFilter

InTroduCTIon

xxiii

could have been written in one line like this:

Get-EC2SecurityGroup –Filter @{ Name='vpc'; Value='vpc-12345678' }

While we think the first version is easier to understand, don’t assume that the

AWS Toolkit does not support advanced syntax features. You are free to use pipelining,

splatting, and so on.

In addition, we want to point out that the examples in this book are riddled with

resource IDs. For instance, in the preceding example, 'vpc-12345678' is the ID of a

Virtual Private Cloud (VPC). Your VPC would have a different ID. Every time you create a

resource, it is assigned a new ID. As you are reading the book, be sure to replace the IDs

with IDs specific to your resources.

InTroduCTIon

1
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_1

CHAPTER 1

AWS Architecture
Overview
If you are anything like us, you cannot wait to get started and launch an application

in the cloud. But, before we dive in and start launching servers, let’s take a step back

and look at the big picture. Amazon Web Services (AWS) is a global platform with data

centers around the globe. A little time spent on the architecture will help you understand

why, and not just what, we are doing with AWS.

In this chapter, we will discuss the AWS global infrastructure, including regions and

availability zones, and how to use them to design a robust application in the cloud. We

will also introduce all of the services we are going to discuss throughout the book. Before

we do, let’s begin by defining cloud computing.

 What Is Cloud Computing?
It seems that every company has a different definition of cloud computing. Amazon

describes cloud computing as “the on-demand delivery of IT resources via the Internet

with pay-as-you-go pricing” (http://aws.amazon.com/what-is-cloud-computing/).

Cloud computing is about leasing servers and storage from a provider like Amazon.

But, it’s also about so much more. The cloud offers information technology workers

significant cost savings and unimaginable agility. Tasks that traditionally took weeks of

work, costing thousands of dollars, can be completed in minutes for fractions of a penny.

In addition, cloud computing offers inconceivable scalability. With a single line of

code, you can provision thousands of servers. Most important, you pay only for what you

need and give the equipment back when you’re done. Furthermore, because you are

paying by the hour, running one server for a thousand hours costs the same amount as

running a thousand servers for 1 hour. This is unthinkable in a traditional data center.

http://aws.amazon.com/what-is-cloud-computing/

2

Finally, cloud computing is often used in concert with automation. When we

combine scalability with automation, we have the ability to build an application

that responds to load. In Chapter 8, we will build a self-healing web application that

automatically reconfigures itself in response to changes in load. That’s what cloud

computing is all about.

 Regions
AWS is organized into multiple regions around the globe. Each region is designed

to be independent of the others. This isolation allows us to design highly available

applications that span the globe and ensure low-latency response times to our users.

All of the examples in this book were completed in Northern Virginia (us-east-1), but

you can use the region closest to you. In fact this is the whole idea. By selecting a region

closest to your users, you can deliver the best experience by minimizing latency.

Imagine you run an e-commerce site for a US-based clothing company. Most of your

users are also in the United States, but recently you have had a small following in Australia.

These users are complaining about the web site. They say it is slow and transactions often

time out. Before the cloud, you would have to build another data center in Australia.

But using AWS, you can launch a few servers in Amazon’s data center. Remember

that you are only paying for what you use, so if you only need three or four servers in

Australia, that’s all you pay for. And it might cost just $1–2 an hour. This is one of the

advantages of cloud computing.

Even more important, it may turn out that we are wrong. Maybe the users in Australia

were just an anomaly. Within a month, all of the Australian users have moved on. We

simply shut down the site in Australia and immediately stop paying. Cloud computing

allows us to “fail fast,” which lets the company try new things that would have been too

expensive in the past.

Another reason you may want to use multiple regions is data privacy. Many

companies are required to store data in a specific region. The European Union requires

that data about its citizens be stored in Europe. In this case, the Ireland region (eu- west- 1)

would be a great choice.

As of this writing, there are 20 regions in production with 12 more planned. Two of

these regions, GovCloud East and GovCloud West, are specifically designed to store data

for the US government. If you are doing work for the US government, GovCloud may be

an option for you.

Chapter 1 aWS arChiteCture OvervieW

3

Regions allow you to deliver your application from the location closest to your users

and build redundant applications served from multiple regions. While this is great,

Amazon also offers another layer of redundancy called availability zones.

 Availability Zones
Each region is further organized into two or more availability zones (AZs). You can think

of each AZ as a separate data center. The AZs within a region are isolated from failures

but connected with high-speed, low-latency links.

Each AZ has separate power, cooling, and Internet access. In addition, their locations

are chosen so they are never in the same flood plain and so on. This allows you to

architect highly available applications that span multiple data centers.

Imagine we are deploying an application in a region with two availability zones

(see Figure 1-1). We could deploy two servers, one in each AZ, and use an Elastic Load

Balancer (ELB) to balance traffic between them. If one of the AZs suffered an outage,

the ELB would automatically send all of the traffic to the other AZ. If we are using a

Relational Database Service (RDS), we could also enable the multi-AZ option, and AWS

will automatically replicate data between availability zones. (We will discuss ELB in

Chapter 8 and RDS in Chapter 10.)

Figure 1-1. Availability zones

Regions and availability zones allow you to build a highly available, low-latency

application that you could never dream of building in your own data center. Only a

handful of companies around the globe have the resources to match this functionality in

their own data centers. Before we wrap up, let’s look quickly at the services available.

Chapter 1 aWS arChiteCture OvervieW

4

 Services
AWS offers a lot of services and they are adding new services every day. This book is

focused on Microsoft Windows, and I discuss only those services that are relevant to

building Microsoft applications. Figure 1-2 provides an overview of the services we are

going to use in this book. Note that there are many, many more services that we are not

going to discuss.

Let’s spend a minute discussing these options.

 Management
The services in the management category are used to access and configure AWS:

• AWS Management Console – The console is the web GUI for

configuring AWS. You can configure almost anything using the

console, but this is a book on PowerShell. In the early chapters, I

will show you how to get started using the console, but once we get

comfortable, we will be using PowerShell almost exclusively.

Figure 1-2. AWS reference architecture

Chapter 1 aWS arChiteCture OvervieW

5

• Identity and Access Management (IAM) – IAM allows you to control

access to your account. You can create users and groups and write

policies to control access to resources. (We will discuss IAM briefly in

Chapter 2 and in detail in Chapter 9.)

• PowerShell API – PowerShell gives you full control over all services.

You can do things in PowerShell that you cannot do in the AWS

Management Console. AWS supports many scripting languages, but

this book will focus on PowerShell.

• Systems Manager – Systems Manager allows you to manage your

fleet of Windows and Linux servers. This includes patching, inventory

management, maintenance windows, and much more. Chapters 15, 16,

and 17 cover Systems Manager.

 Storage
Starting at the bottom of Figure 1-2 and working up, we have multiple storage options:

• Elastic Block Storage (EBS) – EBS is a storage area network we use

to create disks for our instances. EBS is a network-based solution

similar to iSCSI. You can create volumes from 1GB to 1TB. You can

also manage IO operations per second (IOPS). We will use EBS

throughout the book, and focus on it in Chapter 4.

• Simple Storage Service (S3) – S3 is highly durable object storage in

the cloud. You can use S3 to store an unlimited number of files up

to 5GB each. S3 uses HTTP/HTTPS to read and write objects. Most

important, you get 99.999999999% durability. (We will focus on S3 in

Chapter 11.)

• Amazon Glacier – Glacier is a low-cost, cold-storage solution.

Glacier offers the same high durability as S3 for about 1/10 the cost,

but stores data offline and requires advanced notice to access your

data. This is a great alternative to tape backup. (We will discuss

Glacier in Chapter 11.)

Chapter 1 aWS arChiteCture OvervieW

6

 Network
Moving up the stack in Figure 1-2, we have multiple network services that work together:

• Virtual Private Cloud (VPC) – VPC allows us to create a private

network to isolate your instances from those of other AWS tenants.

You can create a custom network topology and control network

security. (We will use VPC throughout the book, but focus on it in

Chapter 5.)

• Elastic Load Balancer (ELB) – ELB is a managed load balancing

solution. You can balance traffic between multiple servers across

availability zones. You can create public ELBs on the Internet or

use a private ELB to balance traffic between layers of a multitier

application. (We will discuss ELB in Chapter 8.)

• Route 53 – Route 53 is Amazon’s managed DNS solution. If you use

Route 53, you can balance traffic between multiple regions, and AWS

will determine which region is closest to the user and route them

automatically. (We will discuss Route 53 briefly in Chapter 8.)

 Compute
At the top of the stack, there are four compute services we will discuss:

• Elastic Compute Cloud (EC2) – EC2 is Amazon’s virtual server

service. This is how we launch servers, called instances, in the cloud.

EC2 offers thousands of images and hardware configurations for

every imaginable use case. This is the focus of the book, and we will

use EC2 throughout.

• WorkSpaces and AppStream – WorkSpaces is a fully managed virtual

desktop infrastructure (VDI) service. It allows you to manage Windows

7 and Windows 10 desktops at scale. AppStream allows you to stream

Windows application into a browser. Both are covered in Chapter 13.

• Lambda – Lambda is serverless computing or functions as a service

(FaaS). It allows you to run code in response to events using many

languages including PowerShell and .Net. Lambda is covered in

Chapter 18.

Chapter 1 aWS arChiteCture OvervieW

7

 Monitoring
Finally, we have a collection of monitoring services:

• CloudWatch – CloudWatch is used to monitor the environment.

CloudWatch allows you to create custom alarms and defines what

actions to take when an issue arises. For example, you might raise an

alarm when CPU utilization is above 80% for an extended period of

time. (We will use CloudWatch to monitor instances in Chapter 8.)

• Auto Scaling – Auto Scaling, combined with CloudWatch, allows you

to automatically respond to changing conditions. In Chapter 8 we

will create an application that automatically launches new instances

when the application is under high load.

• Simple Notification Service (SNS) – SNS is Amazon’s notification

system. CloudWatch can publish messages to SNS whenever an

alarm occurs. You can use SNS to subscribe to events using e-mail,

SMS text messages, and many other options.

 Misc.
Finally, we have a few miscellaneous services:

• Relational Database Service (RDS) – RDS is Amazon’s managed

database service. RDS supports MySQL, Oracle, PostgreSQL, and

Microsoft SQL Server. You can install any of these on an EC2 instance,

but with RDS, Amazon manages the administration for you. (We will

do a deep dive on RDS in Chapter 10.)

• Directory Service – Directory Service makes it easy to manage Active

Directory in the cloud. Directory Service is used by many services

including EC2, RDS, WorkSpaces, and WorkDocs. We cover Directory

Service in Chapter 12.

• WorkDocs – WorkDocs is a service for secure collaboration in the

cloud. You can use WorkDocs to store and manage documents.

WorkDocs is covered in Chapter 14.

Chapter 1 aWS arChiteCture OvervieW

8

 Summary
As you can see, Amazon offers everything you need to create a world-class application

in the cloud. Regions and availability zones give you access to resources across the globe

and allow you to build a highly available, low-latency application. In addition, Amazon

offers numerous services that can be used in concert to create a robust application.

In the next chapter, we will create an account and configure our PowerShell

environment. With this in place, we can begin using all the services we just discussed.

What are we waiting for? Let’s get going.

Chapter 1 aWS arChiteCture OvervieW

9
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_2

CHAPTER 2

Getting Started
In the previous chapter, we described cloud computing and then discussed the benefits

of scripting your AWS configuration. Before we get started writing these scripts, we need

to create an AWS account and prepare our PowerShell environment.

We will begin by creating a new AWS account and credentials for PowerShell. Then

we will install the AWS Toolkit and configure a few default values. Although this might

not be the most exciting chapter, it is an important one because the examples in the rest

of the book assume that you have followed the steps in this chapter.

 Creating an AWS Account
If you don’t already have an Amazon Web Services (AWS) account, go to http://aws.

amazon.com and click Create a Free Account to get started. If you already have one, skip

ahead to the next section.

To create an AWS account, you will have to sign in using an Amazon.com account (see

Figure 2-1). This can be the same account you use to shop on Amazon.com. If you are

creating an AWS account for work, you might want to create a separate Amazon account

using your work e-mail rather than using your personal account. If you want to create

a new account, or have been living under a rock and don’t have an Amazon account

already, you can create one now.

After you create an AWS account, it’s time to create an IAM account, which is

discussed next.

http://aws.amazon.com
http://aws.amazon.com

10

From the IAM dashboard, click the Users on the left navigation and then click the

Add User button. This will start the add user wizard.

 Creating an IAM User Account
Now that you have an AWS account, you will need to create a new IAM user. (IAM stands

for Identity and Access Management.) AWS has two types of users: account credentials

and IAM users. The e-mail address you used to create the AWS account is called an

“AWS account credential.” You should not use your account credentials for day-to-day

activities on AWS. Save your AWS account credentials to change account options and

access your bills. Create an IAM user for day-to-day activities instead.

IAM allows you to create multiple user accounts and configure the permissions of

each user. If you already have an IAM user with administrator privileges, you can skip to

the next section.

Open http://console.aws.amazon.com. If you are not already signed in, use your

AWS account credential (i.e., the e-mail address used to create the account) to sign in.

You will be taken to the AWS Management Console. Click Services from the menu bar at

the top of the screen and search for IAM (see Figure 2-1).

Figure 2-1. AWS Console

Chapter 2 GettinG Started

http://console.aws.amazon.com

11

Figure 2-2. Add user Step 1

Enter admin as the User name and choose both Programmatic access and AWS
Management Console access. You can enter a password here or let the wizard generate

a random password for you. Click the Next button. (See Figure 2-2.)

On the next page, click the Create group button. Enter the name admins and select

the AdministratorAccess policy. Click Create group and then click Next: Tags. (See

Figure 2-3.)

Chapter 2 GettinG Started

12

Skip the Tags screen by clicking the Next: Review button. Then, click the Create
User button. Finally, click the Download .csv file. Keep this file somewhere safe. You will

need it later.

TYPES OF CREDENTIALS

iaM users have three types of credentials, and each one is used for a different purpose:

Username and Password – the Username and password are used to access the Web

Console. in addition to the password, you can also opt for Multi-Factor authentication (MFa).

MFa uses an authentication code for extra security. MFa requires an authentication device or

smartphone application like Google authenticator.

Access Key ID and Secret Key – the access Key id and Secret Key are used to access

the reSt api. Both powerShell and the aWS Command-Line interface (CLi) use the reSt

api. therefore, you need to download keys to use powerShell.

Figure 2-3. Add user Step 2

Chapter 2 GettinG Started

13

Signing Certificates – Signing Certificates are used for the SOap web services. the SOap

service is being deprecated, so i will not discuss it in this book.

note that not all users will have all types of credentials. an administrator that does not use the

api may only have a username and password, for example, while a developer that does not

have access to the Web Console may only have an access Key id and Secret Key.

 Logging in As an IAM User
The last thing we need to do is get the custom sign-in URL for your new account. In order

to sign in using your IAM username and password, you must visit the account sign-in

URL. Each account has a unique sign-in URL, but the default URL is very difficult to

remember; let’s change it to something we can remember.

To change the sign-in URL, return to the IAM dashboard and find the IAM user sign-
in link (see Figure 2-4). Click the Customize link to specify a friendly account alias.

At this point you should sign out using the menu at the top right of the screen

(see Figure 2-5).

Figure 2-4. Setting an account alias

Figure 2-5. Signing out

Chapter 2 GettinG Started

14

Finally, navigate to the custom sign-in link and sign on as admin. If you let the wizard

generate a password, you can find it in the csv file you downloaded earlier.

Note that you are now logged in as an IAM user. Compare the IAM user listed in the

top right corner (see Figure 2-6) to the account credential in Figure 2-3. Note the IAM

user includes the “@ alias.”

At this point you have an AWS account and an IAM user with administrative

privileges. Next, we are going to install the AWS Tools for PowerShell and configure a few

default values.

 Configuring PowerShell
You can download the AWS tools from http://aws.amazon.com/powershell/. If you

are running your script on an AWS Windows instance (e.g., a server running in the AWS

Cloud), the tools are already installed. If you want to run the tools on your own machine,

download the installer from the preceding site.

The AWS tools are also available from the PowerShell gallery. There are two

versions: AWSPowerShell and AWSPowerShell.NetCore. If you are running

PowerShell on Linux, you will want to install AWSPowerShell.NetCore. For the rest of

this book, I will assume you are running on Windows. However, nearly everything will

work on PowerShell Core.

I usually write scripts using the PowerShell Integrated Script Environment (ISE)

because it supports IntelliSense and debugging. The PowerShell ISE is a Windows

feature. If it is not already enabled, you may need to enable the feature from Windows

Server Explorer. This feature is enabled by default on AWS instances.

Figure 2-6. Signed in as an IAM user

Chapter 2 GettinG Started

http://aws.amazon.com/powershell/

15

Let’s check if the AWS tools are working. Type Get-AWSRegion at the PowerShell

command prompt and press Enter, as shown here.

PS> Get-AWSRegion

Get-AWSRegion will list all of the AWS regions (described in Chapter 1) around the

globe, as shown in the following code output:

Region Name

------ ----

us-east-1 US East (Virginia)

...

us-east-2 US East (Ohio)

...

us-west-1 US West (N. California)

...

us-west-2 US West (Oregon)

...

eu-west-1 EU West (Ireland)

...

...

If the command succeeds, your PowerShell environment is set up correctly. Notice

that we did not use the credentials we downloaded earlier. The Get-AWSRegion method

does not require authentication. Before you can do anything exciting, you are going to

have to supply your credentials. Let’s see how to do this in the next section.

 Specifying Credentials and Region
Now that we have the AWS tools installed and PowerShell configured, let’s try something

more complicated. Type the Get-EC2Instance command to list all of the instances

deployed in the cloud. Remember that an instance is Amazon’s term for a server.

PS> Get-EC2Instance

Note that you have not deployed any instances yet, so this command is not expected

to return anything. But when we run the command, we get the following error:

Get-EC2Instance : No credentials specified or obtained ...

Chapter 2 GettinG Started

16

Before you can use AWS, you need to log in. Remember that PowerShell uses

the REST API. Therefore, you will need an access key and secret key in order to use

PowerShell.

All of the AWS commands support the AccessKey and SecretKey parameters. You

must include the keys you downloaded in the last section. For example, type

PS> Get-EC2Instance -AccessKey AKIA...ZHDA -SecretKey 9wVJ...iXdG

Note, however, that we still get an error:

Get-EC2Instance : No region specified or obtained ...

The credential error is gone, but now we have a new error – we also need to

specify a region. Each AWS region is independent. You need to tell AWS which region

you want to list the instances in. Note that you cannot list the instances in all regions

in a single command. Let’s list your instances in the Northern Virginia region. Type

the following:

PS> Get-EC2Instance -AccessKey AKIA...ZHDA -SecretKey 9wVJ...iXdG -Region

us-east-1

This code produces the following results:

ReservationId : r-12345678

OwnerId : 123456789012

RequesterId :

GroupId : {}

GroupName : {}

RunningInstance : {ip-10-1-1-5.brianbeach.com}

At this point, you should receive a list of your instances deployed in the specified

region. If you just created a new account, you probably don’t have any instances yet.

As long as you don’t get an error, it’s working correctly. This is everything you need to

execute the scripts in this book, but there are still a few things we can do make life easier.

For example, it would be nice to save the default credentials and region so we don’t have

to add them to every command.

Chapter 2 GettinG Started

17

 Setting Defaults
It can get cumbersome including the keys on every line of every script. Life would be

easier if you had to specify the keys only once. Luckily, Amazon thought of this and

included the Set-AWSCredentials and Set-DefaultAWSRegion commands.

Note i am no longer including the command prompt (PS>) in my examples. From
here on, most examples will be multiline scripts. i am using the powerShell iSe to
edit and run my scripts as a batch.

Just type the script into the top window and click the play button (or press the F5 key). If

you prefer, you can enter these commands, one at time, at the command prompt. Personally,

I prefer the IDE.

Set-DefaultAWSRegion us-east-1

Set-AWSCredentials -AccessKey ACCESS_KEY -SecretKey SECRET_KEY

Get-EC2Instance

This script results in the following:

ReservationId : r-12345678

...

Notice that once I set a default region and credentials, I can run the

Get- EC2Instance command without any parameters. This is so much easier. I can

simply include these two lines at the top of the script, and I don’t have to worry

about it again.

If you want to clear the defaults, you can use the Clear-AWSCredentials and

Clear- DefaultAWSRegion commands. For example:

Clear-AWSCredentials

Clear-DefaultAWSRegion

Setting defaults is great, but we have to remember to set them each time we start

PowerShell. We can take it one step further and persist the defaults between PowerShell

sessions.

Chapter 2 GettinG Started

18

 Persisting Defaults
The Initialize-AWSDefaults command will persist the credentials and region between

sessions. PowerShell will remember your defaults when you restart PowerShell or reboot

your computer. Once you persist the credentials, you no longer need to specify them

in your script. This makes the script portable between developers and AWS accounts.

Note that unlike the PowerShell profiles, persisted defaults set in the ISE also affect the

command line. Type the following:

Set-DefaultAWSRegion us-east-1

Set-AWSCredentials -AccessKey ACCESS_KEY -SecretKey SECRET_KEY

Initialize-AWSDefaults

Notice the results:

Credentials retrieved from Session

Region retrieved from Session

Credentials and region will be saved in this session

When you start a new PowerShell session, the default values will be loaded

automatically. For example:

Get-EC2Instance

Now, if the defaults were not already loaded, they will be loaded as needed. This

command now produces the following results:

Default credentials for this shell initialized from stored default profile

Default region for this shell initialized from stored default profile

ReservationId : r-12345678...

If you want to clear the defaults, you can use the Clear-AWSDefaults command:

Clear-AWSDefaults

We are almost done discussing defaults, but there is one more option I want to

mention: stored credentials. Stored credentials allow you to store multiple credentials

and switch between them quickly.

Chapter 2 GettinG Started

19

 Using Stored Credentials
You may find that you have more than one set of credentials to manage. Maybe you have

separate AWS accounts for development and production servers; in my opinion, this is

a really good idea. (And I hope you’re not running these examples in the same account

that you use to host production workloads.)

You can use the Set-AWSCredentials command we discussed earlier to create

named profiles and quickly switch between them. To create a named profile, use the

StoreAs attribute. For example:

Set-AWSCredentials -AccessKey ACCESS_KEY -SecretKey SECRET_KEY -StoreAs

"Production"

Set-AWSCredentials -AccessKey ACCESS_KEY -SecretKey SECRET_KEY -StoreAs

"Development"

Now we can use the stored credentials as an attribute to any command. For example,

if you want to list the servers in the production environment, type

Get-EC2Instance -StoredCredentials Production

Here is the result:

ReservationId : r-12345678...

And, if you want to list the servers in the development environment, type

Get-EC2Instance -StoredCredentials Development

The preceding script produces this result:

ReservationId : r-87654321...

If you want to swap the default credentials between the development and production

profiles, you can use the Set-AWSCredentials command with the StoredCredentials

attribute. All subsequent commands will use the production credentials.

Set-AWSCredentials -StoredCredentials Production

You can list the various credentials you have stored using Get-AWSCredentials. For

example, type

Get-AWSCredentials –ListStoredCredentials

Chapter 2 GettinG Started

20

to get this result:

Development

Production

Finally, you can remove credentials using the Clear-AWSCredentials command:

Clear-AWSCredentials -StoredCredentials Development

At this point your PowerShell environment is ready. In the next chapter, we are going to

launch a few instances. Before you do that, however, you are going to need an EC2 key pair.

 Using Key Pairs
Before we move on to creating instances, you will need a key pair. This key pair is used

to encrypt the Windows Password for a new instance. AWS keeps the public key, and

you keep the private key. When you create a Windows instance, AWS creates a local

administrator account and generates a random password. It then encrypts the random

password with the public key and stores the encrypted copy.

You can retrieve the password any time and decrypt it with your private key. Note

that AWS does not keep the plain-text password. Therefore, only you can decrypt the

password.

Caution if you lose your private key, you will not be able to decrypt the
password. Be careful with your keys!

To create a key pair, log in using your IAM admin user and choose a region. I will be

using Northern Virginia, but you can select the location nearest you. Then, navigate to

the EC2 service and choose Key Pairs from the left navigation. Click Create Key Pair.

Name the key pair and click Create. Your browser will download the private key.

Make sure you save it. Note that the examples in this book assume your key is stored in

c:\aws\mykey.pem.

Chapter 2 GettinG Started

21

You can also create a new key pair using the New-EC2KeyPair command. This

command generates a new key pair and returns the private key. You can save the private

key to a file using the Out-File command. Note that you must specify the encoding as

ASCII. For example:

$KeyPair = New-EC2KeyPair -KeyName MyKey

$KeyPair.KeyMaterial | Out-File -FilePath 'c:\aws\MyKey.pem' -Encoding ASCII

That’s everything you need to complete the exercises in this book. If you cannot wait

any longer to launch an instance, feel free to move on to Chapter 3. But, if you have the

patience, I would like to tell you about one more feature: IAM roles.

 Using IAM Roles
We have covered a lot of material already in this chapter, but there is one more feature I

want to discuss. It is a bad idea to have your production scripts running as an individual

user. What happens if that user leaves the company? If you delete her account, all of your

scripts will stop working.

You could create an additional IAM user just for running production scripts. But,

how do you keep those keys secret? How do you keep a disgruntled administrator you

fired from using the keys to terminate all your servers? Luckily, AWS provides a solution

for this, too: IAM roles.

An IAM role allows you to grant permission to an EC2 instance. This way, you

don’t need keys to run PowerShell scripts. In other words, if you assign an IAM role to

an instance, the instance has permission to run scripts rather than a user. Any scripts

that are run on that instance are implicitly granted the permissions defined to the IAM

role. Therefore, you don’t have to bother with keys at all. Although you don’t have to set

credentials, you still need to set the region.

Of course this only works for instances running in AWS. You cannot use IAM roles for

machines running in your data center. In addition, you have to assign the role when you

create the instance; you cannot assign it later.

To create an IAM role, open the AWS Management Console and navigate to the IAM

Console. (I assume you know how to do this by now. If not, go back to the “Creating

a User Account” section at the beginning of this chapter.) Choose Roles from the left

navigation. Then, click the Create Role button and name your new role (see Figure 2-6).

I will use the name AdminRole for the scripts in this book.

Chapter 2 GettinG Started

22

There are many types of roles available. On the first screen of the create role wizard,

choose AWS Service and EC2, then click Next: Permissions. (See Figure 2-7.)

On the next screen, choose AdministratorAccess and click Next:Tags (see

Figure 2- 8). Note that in a real-life scenario you would want to restrict the role.

With administrator permissions assigned to an EC2 instance, anyone who runs a

script on that instance will have full control over your account. For the purposes of

this book, this is fine, but please be more restrictive in real life.

Figure 2-7. Creating an IAM role

Chapter 2 GettinG Started

23

You can skip the Tags screen by clicking Next: Review. On the last screen, name the

role AdminRole and click the Create role button. (See Figure 2-9.)

Figure 2-8. Selecting the Amazon EC2 role

Figure 2-9. Naming the EC2 role

We will use this role in the second exercise of Chapter 3.

Chapter 2 GettinG Started

24

 Summary
In this chapter, we created an AWS account and IAM user. Then we installed the AWS

Tools for PowerShell and configured our PowerShell scripting environment with a

default region and credentials. Finally, we created an EC2 key pair and an IAM role.

We now have everything in place to begin using the cloud. In the next chapter, we will

launch a few basic instances.

Chapter 2 GettinG Started

25
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_3

CHAPTER 3

Basic Instance
Management
Now that we’re done configuring our environment, we’ll jump right in and get started by

creating an instance. An EC2 instance is, simply, a server running in the cloud. With a

few quick clicks, we will have our first server up and running.

In this chapter, we will learn to create new instances and connect them. Then we will

discuss how to start, stop, and terminate instances. We will learn various ways to access

metadata and add custom metadata tags. In the exercises at the end of the chapter,

we will build a PowerShell script to automate the launch process and customize the

configuration of an instance.

 Creating Instances
Let’s get started by creating a new instance. In this section we’ll launch a Windows

Server 2019 instance. I’ll begin by using AWS Management Console. The console will

give us a good overview of all the options available. Then, we will see how to do the same

thing with a single line using PowerShell.

 Launching an Instance with the Web Console
For this first exercise – launching an instance with the Web Console – we are going to

include step-by-step instructions with figures. The Web Console changes often so don’t

be surprised if the console screens look a bit different from the following figures.

We will sign in using the URL and IAM account we created in Chapter 2. Do not use the

e-mail address we used to create the account. When we sign in, we will be taken to the AWS

Management Console home page. The home page lists all of the AWS services available.

Under the All services drop-down and Compute group, click the EC2 link (see Figure 3-1).

Elastic Compute Cloud (EC2) is Amazon’s service for creating servers in the cloud.

26

On the EC2 dashboard, make sure the region in the top right corner is the same one

we used to create our key pair in the last chapter (e.g., Northern Virginia), as shown in

Figure 3-2. Then click the Launch Instance button to start the wizard.

Figure 3-1. The home page

Figure 3-2. EC2 dashboard

Chapter 3 BasiC instanCe ManageMent

27

The first page of the wizard lists the Amazon Machine Images (AMI). An AMI is a

template image used to create a new instance. The Quick Start tab includes some of

these images created by Amazon Web Services for public use. There are additional

images available from the other tabs, currently more than 115,000. For now, we just need

a basic version of Windows to get our feet wet. Find Microsoft Windows Server 2019 Base

and click the Select button (see Figure 3-3).

On the instance details page, ensure that the instance type is set to t2 micro and

click the button Next: Configure Instance Details (see Figure 3-4). The instance type is

the virtual hardware we want to use. There are numerous combinations of processors,

memory, network, and so on.

Only the micro instance is eligible for the free tier and will be labeled as such in the

console. Read more about the free tier on the AWS web site. (An up-to-date description

of the instance types are available at http://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/instance-types.html.)

Figure 3-3. Choosing an AMI

Chapter 3 BasiC instanCe ManageMent

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

28

Skip the page labeled as “Step 3: Configure Instance Details” by clicking Next: Add

Storage. Skip the page labeled as “Step 4: Configure Instance Details” by clicking Next:

Add Tags. We will review all of these advanced options in future chapters.

On the Tag Instance page, select the Add Tag button, and for Key field enter “Name”

and for the Value field enter “My First Instance” and click Next: Configure Security

Group (see Figure 3-5).

Figure 3-4. Choosing an Instance Type

Chapter 3 BasiC instanCe ManageMent

29

On the Configure Security Group screen, select the default group from the list of

existing security groups (see Figure 3-6) and click the button that says Review and

Launch. Security groups act like a firewall within AWS. We can use security groups to

control what traffic is allowed to flow to and from the instance. (We will spend time

looking at security groups in Chapter 6).

Figure 3-5. Tagging the Instance

Figure 3-6. Configure Security Group

Chapter 3 BasiC instanCe ManageMent

30

Take a minute to review the options we selected on the next page and click Launch.

This will load the key pair dialog box. Select the key pair we created in the previous

chapter (see Figure 3-7). Remember that AWS uses this key to encrypt the Windows

administrator password. Select the confirmation box and then click Launch Instances.

We just launched our first server in the cloud. Click the View Instances button, and

we will be taken to the EC2 Instances page. We should see our new instance in the list

with a state of pending.

It will take about 10 minutes for the instance to launch. While we are waiting, let’s

discuss how we can do the same thing in PowerShell using a single line of code.

 Launching an Instance with PowerShell
In PowerShell, we use the New-EC2Instance command to create instances. This is a

really rich command that can do everything the wizard can do. For now we will focus on

the basics of the New-EC2Instance command.

Figure 3-7. Choosing our key pair

Chapter 3 BasiC instanCe ManageMent

31

In the following example, we specify only the required parameters to successfully

launch an instance.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType

't2.micro' -MinCount 1 -MaxCount 1

Let’s look at each parameter in turn, most of which are the same ones we saw when

using the wizard in the preceding section:

• An AMI is uniquely identified by an image ID value. The image

IDs are different in each region. The ImageId parameter specifies

which AMI we want to launch; therefore, the examples will use Get-

EC2ImageByName to look up the correct ID in our currently defined

default region. (We will discuss the Get-EC2ImageByName command

in Chapter 7).

• MinCount and MaxCount specify how many instances to launch. See

the sidebar on reservations for details.

• KeyName is the name of the key pair we created in the last chapter.

It is used to encrypt the administrator password. Technically, this

parameter is optional, but without it we will not be able to retrieve

the administrator password.

• InstanceType describes the hardware we wish to use, and again we

will use the t2.micro.

RESERVATIONS

Let’s spend a minute talking about the MinCount and MaxCount parameters. new-eC2instance

always creates instances in batches called reservations. We are going to be using the

reservation object in many of the scripts later in this chapter.

a reservation is a batch of instances launched at the same time. even if we only want a single

instance, we create a batch of size one. every account has a limit on the number of runnable

instances for each instance type per region. some instance types support many dozens of

launches by default, while some very powerful instance types may only allow one or two

launches. even amazon has a finite number of instances available.

Chapter 3 BasiC instanCe ManageMent

32

aWs will try to launch the number of instances specified in MaxCount. if it cannot launch the

MaxCount due to account or regional capacity limits, amazon will launch the largest possible

number above MinCount. if the MinCount is more than amazon eC2 will permit, no instances

are launched and there will be a capacity or limit error.

Despite the name, new-eC2instance actually returns a reservation object rather than an

instance. if we want to check the individual instances, the reservation includes a list called

runninginstance.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

$Reservation = New-EC2Instance –ImageId $AMI[0].ImageId -KeyName 'MyKey'

-InstanceType 't2.micro' -MinCount 2 -MaxCount 2

$Reservation.Instances

We can use a zero-based array syntax to read the individual instances. For example:

$Reservation.RunningInstance[0].InstanceId

$Reservation.RunningInstance[1].InstanceId

this will produce output similar to the following instance iDs:

i-05ebc32ffa7c0ed38

i-072bf9d8756b8c17d

By the way, although the attribute is called runninginstance, it also contains instances that are

in a stopped state.

Notice that we did not specify the security group (i.e., firewall). Unlike the Web

Console wizard, the API will use the default group if we don’t specify one. There

are numerous additional parameters to the New-EC2Instance command. These

correspond to the options we skipped in the wizard. Don’t worry. We will talk about

them all in later chapters.

Windows instances take about 10 minutes to launch regardless of how we create

them. The instance(s) we launched with PowerShell are probably still launching, but

the one we launched with the AWS Management Console is probably ready; let’s go

check it now.

Chapter 3 BasiC instanCe ManageMent

33

 Checking the Instance Console Screenshot
Returning to the Web Console, let’s check on that instance we launched earlier. To view

the running instances, select the services drop-down in the AWS Web Console. Either

find and locate EC2 under the Compute group or use the find tool using EC2 as our

search string and select EC2. When the EC2 dashboard console loads, select the Running

Instances link.

We will now check on the instance using the Get Instance Screenshot tool. This tool

will take a snapshot of our instances display output in its current state and show it to us.

This can be a very useful for diagnosing instances that are not responding or are failing

to launch. If a bug check occurred or service failed to start, we can usually find details by

reviewing the instance screenshot.

On the instances page, select the instance, and right-click the instance and we will

be presented with a drop-down menu. Alternatively, after selecting our instance we can

select the Actions button at the top. In the drop-down menu, highlight Instance Settings

and click Get Instance Screenshot (see Figure 3-8).

A new page will load displaying a screenshot of our new instance. In our example we

should see the login prompt (see Figure 3-9).

Figure 3-8. Selecting the Instance Console Screenshot

Chapter 3 BasiC instanCe ManageMent

34

Select Close on the bottom right corner of instance screenshot window to return

back to the Instance Web Console.

 Checking the Instance Console System Log
When an AWS provided image is launched, it performs some configurations and

customizations at boot to prepare it for use. A summary log of these activities can be

seen using the Get System Log tool.

To review our instance log, on the instances page, select the instance and right-click

it and we will be presented with a drop-down menu. Alternatively, after selecting our

instance we can select the Actions button at the top. In the drop-down menu, highlight

Instance Settings and click Get System Log (see Figure 3-10).

Figure 3-9. Displaying the Instance Console Screenshot

Chapter 3 BasiC instanCe ManageMent

35

A pop-up screen will load displaying the log output. If the instance was successfully

configured at launch, we should see a “Windows is Ready to Use” message near the end

of the System Log (see Figure 3-11).

Figure 3-10. Selecting the Get System Log

Figure 3-11. Displaying the System Log

Chapter 3 BasiC instanCe ManageMent

36

Select Close on the bottom right corner of System Log window to return back to the

Instance Web Console.

 Connecting to an Instance
Remember, from the last chapter, that AWS will generate a new administrator password

and encrypt it using our key pair. On the instances page, select the instance, and click

the Connect button at the top of the screen. Then click the Get Password button (see

Figure 3-12).

Now, click the Choose File button (see Figure 3-13) and locate the private key we

created in Chapter 2. Then click the Decrypt Password button.

Figure 3-12. Connect to Your Instance

Chapter 3 BasiC instanCe ManageMent

37

The dialog will now show the temporary password. Select the password and copy it

to our clipboard and then click the Download Remote Desktop File link and run it

(see Figure 3-14). This will launch a Remote Desktop session and prompt us for the

password we just decrypted and copied to our clipboard. Paste the password in and click

the Connect button.

Figure 3-13. Decrypting the password

Chapter 3 BasiC instanCe ManageMent

38

Great! Now we know how to create and connect to an instance using the Web

Console.

Note if the rDp connection fails, we may need to add a rule to the security group
to allow remote Desktop protocol (rDp) access from our ip. Follow the following
instructions. We will discuss security groups in detail in Chapter 6.

 1. From the eC2 Web Console selections on the left under network &
security, choose security groups.

 2. select the group named Default and choose the inbound tab and
select the edit button.

 3. in the edit inbound rules window, choose the add rule button.

 4. Under type, select the drop-down and choose rDp.

Figure 3-14. Downloading the Remote Desktop File

Chapter 3 BasiC instanCe ManageMent

39

 5. Under source, select the drop-down and choose My ip.

 6. Finally, click the save button.

We can, of course, retrieve the password using powershell. the powershell
command is get-eC2passwordData command. get- eC2passwordData takes an
instance iD and the path to the private key and returns the password.

note that the instance iD will be different from these examples. each instance
has a different iD. We can get the iD from the instances page of the aWs
Management Console.

Get-EC2PasswordData -InstanceId 'i-0824365ea545616fe' –PemFile 'c:\aws\

MyKey.pem'

The preceding code will return an error if the password is not available yet.

Remember, it takes about 10 minutes to launch a new instance. We will discuss how to

test for password availability in the first exercise at the end of this chapter.

Now that we know how to launch and connect to an instance, let’s talk about

starting, stopping, rebooting, and terminating instances.

 Managing the Instance Life Cycle
Now that we have a few instances created, we will want to manage them. We can

Start, Stop, Reboot, and Terminate (i.e., Delete) an instance by right-clicking it in the

AWS Management Console and highlighting Instance State. Figure 3-15 shows the

context menu.

Note stop - hibernate is a new aWs feature that allows instances to be stopped
in a powered down hibernation state instead of using a full shutdown. this can
be helpful for customers who need scale their servers up and down quickly. as
of this writing, Windows servers are not yet supported and will not be selectable.
the latest information and configuration requirements can be found at https://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/Hibernate.html.

Chapter 3 BasiC instanCe ManageMent

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Hibernate.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Hibernate.html

40

The equivalent PowerShell commands are pretty simple. They each have a

parameter called Instance, which is the ID of the instance we want to start, stop, and

so on.

To stop an instance, we use Stop-EC2Instance:

Stop-Ec2Instance -Instance i-0824365ea545616fe

To start an instance, we use Start-EC2Instance:

Start-Ec2Instance -Instance i-0824365ea545616fe

To reboot an instance, we use Restart-EC2Instance:

Restart-Ec2Instance -Instance i-0824365ea545616fe

To terminate an instance, we use Remove-EC2Instance. We will be asked to confirm

the termination. We can add the force attribute to suppress the prompt.

Remove-EC2Instance -Instance i-0824365ea545616fe -Force

Figure 3-15. Instance Life-Cycle Menu Options

Chapter 3 BasiC instanCe ManageMent

41

 Listing Instances and Metadata
We have already seen the list of instances in the Web Console. We can use the Get-

EC2Instance to list instances in PowerShell. The primary purpose of Get-EC2Instance

is to return a list of all the instances in our account. In addition, we will use the

Get-EC2Instance command to get metadata about the instance. Metadata includes

information such as the IP address, drive configuration, and type of instance.

Get-EC2Instance

The preceding command returns the following results:

GroupNames : {}

Groups : {}

Instances : {MyKey}

OwnerId : 123456789012

RequesterId :

ReservationId : r-0a585598e4c8ab8c4

GroupNames : {}

Groups : {}

Instances : {MyKey, MyKey}

OwnerId : 123456789012

RequesterId :

ReservationId : r-0182baba42744a323

If we want a specific instance, use the Instance parameter, for example, reading the

Get-EC2Instance -Instance i-0824365ea545616fe

This command returns the following results:

GroupNames : {}

Groups : {}

Instances : {MyKey}

OwnerId : 123456789012

RequesterId :

ReservationId : r-0a585598e4c8ab8c4

Chapter 3 BasiC instanCe ManageMent

42

Note that Get-EC2Instance returns a reservation object. Remember that New-

EC2Instance always creates a batch called a reservation. When we call Get-EC2Instance,

AWS returns the reservation that includes its collection of instances.

The instances attribute contains the metadata of the instances we requested.

Of course, we can dot source the AWS commands using PowerShell to get details of

the instances object, for example, to get a list of all instances as a table.

(Get-EC2Instance).Instances

The preceding command returns the following results:

InstanceId InstanceType Platform PrivateIpAddress

PublicIpAddress SecurityGroups SubnetId VpcId

---------- ------------ -------- ----------------

--------------- -------------- -------- -----

i-0824365ea545616fe t2.micro Windows 172.31.23.186

35.182.226.61 {default} subnet- 0433d96d vpc-dd608bb4

i-072bf9d8756b8c17d t2.micro Windows 172.31.1.36

99.79.67.159 {default} subnet- bed9d3c6 vpc-dd608bb4

i-05ebc32ffa7c0ed38 t2.micro Windows 172.31.4.75

35.183.48.244 {default} subnet- bed9d3c6 vpc-dd608bb4

To access the instance metadata of a specific instance, we use the Instance

parameter and dot source the instances output object. For example:

(Get-EC2Instance -Instance i-0824365ea545616fe).Instances

This command returns the following results:

InstanceId InstanceType Platform PrivateIpAddress

PublicIpAddress SecurityGroups SubnetId VpcId

---------- ------------ -------- ----------------

--------------- -------------- -------- -----

i-0824365ea545616fe t2.micro Windows 172.31.23.186

35.182.226.61 {default} subnet- 0433d96d vpc-dd608bb4

To see all the properties of a specific instance, we can pipe the output to either use

format-list or select-object. For example:

(Get-EC2Instance -Instance i-0824365ea545616fe).Instances | Select-Object ∗

Chapter 3 BasiC instanCe ManageMent

43

This results in

Tag : {Name}

AmiLaunchIndex : 0

Architecture : x86_64

BlockDeviceMappings : {/dev/sda1}

ClientToken :

CpuOptions : Amazon.EC2.Model.CpuOptions

EbsOptimized : False

ElasticGpuAssociations : {}

EnaSupport : True

Hypervisor : xen

IamInstanceProfile :

ImageId : ami-0f5c2aa18ff9af152

InstanceId : i-0824365ea545616fe

InstanceLifecycle :

InstanceType : t2.micro

KernelId :

KeyName : MyKey

LaunchTime : 3/3/2019 11:03:22 PM

Monitoring : Amazon.EC2.Model.Monitoring

NetworkInterfaces : {ip-172-31-23-186..compute.internal}

Placement : Amazon.EC2.Model.Placement

Platform : Windows

PrivateDnsName : ip-172-31-23-186.compute.internal

PrivateIpAddress : 172.31.23.186

ProductCodes : {}

PublicDnsName : ec2-35-182-226-61.compute.amazonaws.com

PublicIpAddress : 35.182.226.61

RamdiskId :

RootDeviceName : /dev/sda1

RootDeviceType : ebs

SecurityGroups : {default}

SourceDestCheck : True

SpotInstanceRequestId :

SriovNetSupport :

Chapter 3 BasiC instanCe ManageMent

44

State : Amazon.EC2.Model.InstanceState

StateReason :

StateTransitionReason :

SubnetId : subnet-0433d96d

Tags : {Name}

VirtualizationType : hvm

VpcId : vpc-dd608bb4

This will give us a great deal of information about the instance including storage,

network, and other details. We will use this information throughout the rest of the book.

Before we get into that, let’s look at one other way to access some instance metadata

using the metadata URL.

 Using the Metadata URL
Get-EC2Instance is a great way to get information about an instance, but there is another

way. The metadata URL returns much of the same information as Get-EC2Instance, but

always returns information about the current instance.

The metadata URL is a web service that runs under each instance that returns

metadata about the current instance. The URL is http://169.254.169.254/latest/

meta- data.

note the metadata service is only available from executing queries and scripts
directly on the eC2 instance. We cannot use the api from a machine outside aWs,
nor can we use the metadata service to get information about another instance.

Opening the metadata URL in Internet Explorer on an instance lists all of the options

available (see Figure 3-16).

Chapter 3 BasiC instanCe ManageMent

http://169.254.169.254/latest/meta-data
http://169.254.169.254/latest/meta-data

45

Navigating to any of the sub-URLs will return useful information about the instance.

For example, navigating to http://169.254.169.254/latest/meta-data/instance-type will

return the type of hardware we are running on (see Figure 3-17).

Figure 3-16. Metadata URL

Figure 3-17. Using the metadata URL

Chapter 3 BasiC instanCe ManageMent

46

Of course, we can also access metadata from PowerShell using the Invoke-

RestMethod command and passing the metadata URL.

Invoke-RestMethod 'http://169.254.169.254/latest/meta-data/instance-type'

This results in

t2.micro

A common use of the metadata URL is to discover the ID of the current instance and

then use it to make calls to the AWS API. This way, we can write a generic script that will

run on any EC2 instance.

The following script uses the metadata API to discover the instance ID and then calls

Get-EC2Instance on it. Note that the instance ID was not known ahead of time. Instead,

it was discovered by the script.

$InstanceID = Invoke-RestMethod 'http://169.254.169.254/latest/meta-data/

instance-id'

Get-EC2Instance $InstanceID

 Using User Data
One of the options we skipped over in the section on launching new instances was user

data. User data is similar to metadata, but it allows us to include any custom data we

want. The user data is available via a web service call, just like the metadata in the prior

section.

One common use of user data is to include information needed to bootstrap the

instance, or configure it after launch. We will do this in the second exercise at the end of

this chapter.

To include user data, simply type whatever we want into the text box at the bottom of

the third page under Advanced Details of the Launch Instance wizard (see Figure 3-18).

It is common, but not required, to use XML in the user data section. Using XML

makes it easier to parse the data later. In the example in Figure 3-18, we are using a

combination of free-form text and XML-formatted data.

Chapter 3 BasiC instanCe ManageMent

47

Once the instance launches and we Remote Desktop in, we can retrieve the data

using the user data URL http://169.254.169.254/latest/user-data (see Figure 3-19).

Figure 3-18. Setting User Data

Figure 3-19. Retrieving User Data

Similar to the metadata URL, this URL will always return the user data for the

running instance. Each instance has its own unique user data.

Chapter 3 BasiC instanCe ManageMent

http://169.254.169.254/latest/user-data

48

We can also include user data when calling New-EC2Instance from PowerShell

using the UserData parameter. AWS anticipates that the user data will include

XML. Remember that the API call is also a web service that may be formatted as

XML. Therefore, to avoid confusion, we must base 64 encode the user data section. For

example, the following code is equivalent to the console example shown earlier:

$UserData = @' This is a Test!!!

<TestValue>42</TestValue> '@

$UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.

GetBytes($UserData))

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'

-InstanceType 't2.micro' -MinCount 1 -MaxCount 1 -UserData $UserData

note the @'...'@ syntax, this is just a convenient way to include a multiline string
in powershell.

We can also use the Invoke-RestMethod command that we used in the previous

section to retrieve the user data from PowerShell. For example:

Invoke-RestMethod 'http://169.254.169.254/latest/user-data'

This results in

This is a Test!!!

<TestValue>42</TestValue>

We can change the user data after launching an instance, but the instance must be

in a stopped state. Let’s stop our instance and try replacing the user data with well-

formed XML.

From the EC2 Instances Web Console, right-click our instance and highlight

Instance State then select Stop. After a couple minutes, the instance should be in the

stopped state.

Again, right-click the instance and highlight Instance Settings then select View/

Change User Data. Clear the current user data and input the following XML into the user

data box and save it. Start the instance again.

Chapter 3 BasiC instanCe ManageMent

49

<documentation>

<document>

<name>GettingStarted</name> <url>http://awsdocs.s3.amazonaws.com/EC2/

latest/ec2-gsg.pdf</url> </document> <document>

<name>UserGuide</name> <url>http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-

ug.pdf</url> </document> <document>

<name>APIReference</name> <url>http://awsdocs.s3.amazonaws.com/EC2/latest/

ec2-api.pdf</url> </document> </documentation>

The benefit of using XML is that the Invoke-RestMethod command will parse the

response. This means that we can interact with the response like any other object in

PowerShell and we get IntelliSense in the IDE as well. Note how we can navigate the

object hierarchy and format the response:

$Response = Invoke-RestMethod 'http://169.254.169.254/latest/user-data'

$Response.documentation.document | Format-Table

The preceding code results in the following output:

name url

---- ---

GettingStarted http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-gsg.pdf

UserGuide http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf

APIReference http://awsdocs.s3.amazonaws.com/EC2/latest/ec2-api.pdf

There is one other really cool feature of user data. We can include scripts that we

want to run when the instance boots the first time. We can include Windows command

shell scripts inside <script>...</script> or PowerShell scripts inside <powershell>...

</powershell> tags. We will do this in the second exercise at the end of this chapter.

 Working with Tags
Every object in AWS supports tags. Tags are a great way to keep track of all our instances

and other objects. A tag is simply a key/value pair used to describe the object. For

example, we can use a tag to record the name of an instance or which department owns

it. We can use tags to record any additional information we need.

Chapter 3 BasiC instanCe ManageMent

50

Each object can have up to 50 tags. The key can be up to 128 characters, and the

value can be up to 256 characters long. Note how we can access tags on the EC2 Web

Console using the Tags tab when selecting an instance (see Figure 3-20). We can edit the

tags using the Add/Edit Tags button.

In PowerShell we can read the tags from the tag collection of any object. To get the

tags for an instance, just get a reference to the instance and read the Tag property:

$Reservation = Get-EC2Instance -Instance i-0824365ea545616fe

$Instance = $Reservation.Instances

$Instance.Tag

Here is the result:

Key Value

--- -----

Department Information Technology

Name My First Instance

If we want to retrieve a specific tag, use the where-object command to find it:

$Tag = $Instance.Tag | Where-Object {$_.Key -eq "Name"}

$Tag.Value

Figure 3-20. The Tags tab

Chapter 3 BasiC instanCe ManageMent

51

Creating tags is a bit harder. A tag is a .Net object so there is no PowerShell command

to create an EC2 tag. Instead, we use the generic new-object command to create a .Net

object of type Amazon.EC2.Model.Tag. Once we have the new tag object, we can use the

New-EC2Tag PowerShell command to set the Key and Value properties.

Let’s add another descriptive tag to our instance:

$Tag = New-Object Amazon.EC2.Model.Tag

$Tag.Key ='Role'

$Tag.Value = 'File Server'

New-EC2Tag -ResourceId i-0824365ea545616fe -Tag $Tag

When there is only a few instances, it is relatively simple to keep track of everything.

Once we launch ten or more, it quickly gets very confusing.

One trick is to tag everything. Each instance has at least one volume and one network

interface attached. Whenever a new instance is created, tag the instance and all of the

attached resources.

AWS makes it easy to tag multiple objects at once. We simply pass all the IDs to New-

EC2Tag as an array. There is no need to tell AWS what type of object each is. It can figure

that out on its own. In this example we will launch a new instance and tag the instance

and its resources.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'

-InstanceType 't2.micro' -MinCount 1 -MaxCount 1

$InstanceId = $Reservation.Instances.InstanceId

Start-Sleep -s 60 #Wait for drives to be created and mounted, etc.

$Reservation = Get-EC2Instance -Instance $InstanceId

$VolumeId = $Reservation.Instances.Blockdevicemappings.EBS.VolumeId

$NetworkInterfaceId = $Reservation.Instances.NetworkInterfaces.

NetworkInterfaceId

$Tag = New-Object Amazon.EC2.Model.Tag

$Tag.Key = 'Name'

$Tag.Value = 'Multi Tagged Server'

New-EC2Tag -ResourceId $InstanceId, $VolumeId, $NetworkInterfaceId -Tag $Tag

Notice that Start-Sleep in the previous command. When we create a new instance,

the command may return before all of the resources have been allocated. Therefore, we

may find that a volume or network interface is null if we move too quickly.

Chapter 3 BasiC instanCe ManageMent

52

To get around this, we have the script sleep for a few seconds. Then we query AWS

for an updated copy of the instance metadata. This gives AWS enough time to allocate

resources.

 Working with Filters
In the previous section, we used the Where-Object command to filter a collection and

find a specific tag. This same method could be applied to other objects – for example, to

find all of the instances owned by a given department.

AWS provides a better solution: filters. A filter allows us to specify search criteria

to be executed on the server side. This way we don’t have to download metadata

from hundreds of instances and sort through them when we are only interested in a

handful.

The Get methods usually include a filter parameter. The filter allows us to return

only those resources with a specific value for a given attribute. For example, if we want

to return a list of instances that are currently in a running state, we can use the instance-

state- code filter. A value of 16 indicates an instance is running.

The filter names and values are not always intuitive. They use the AWS CLI syntax,

which may be foreign to a user of the PowerShell API. Included is a list of filters and

values with each Get command in Appendix C.

Once again, we use the generic New-Object to create the filter. For example:

$Filter = New-Object Amazon.EC2.Model.Filter

$Filter.Name = 'instance-state-code'

$Filter.Value = 16

Get-EC2Instance -Filter $Filter

Optionally we can just use a hashtable using the name and value key pair. In this

example we will use the friendlier ‘instance-state-name’ filter of ‘running’.

$Filter = @{name='instance-state-name';value='running'}

Get-EC2Instance -Filter $Filter

We can also use filters to search for custom tags. For example, assume we record the

department that owns each instance. If we wanted to retrieve all instances that belong to

the Information Technology department, we could use

Chapter 3 BasiC instanCe ManageMent

53

$Filter = @{name='tag:Department';value='Information Technology'}

Get-EC2Instance -Filter $filter

When we filter on tags, we use the format tag, followed by the key name. Remember

that keys and their values are case sensitive. When creating keys manually using the Web

Console, be consistent.

If we wanted to retrieve all of the running and pending instances that belong to the

Information Technology department, we could use multiple filters that specify the tag of

“Department” with the value of “Information Technology” and an instance-state- name

with a value of “running” or “pending”. To do that we can add multiple comma- separated

values for a given name and pass multiple hashtables as an array.

$Filter = @(@{name='instance-state-name';value='running','pending'};

@{name='tag:Department';value='Information Technology'})

Get-EC2Instance -Filter $filter

EXERCISE 3.1: WAITING FOR AN INSTANCE TO LAUNCH

For this exercise let’s assume that we often receive requests to create new instances from

developers in our organization and those developers don’t have access to the aWs Web

Console. as aWs adoption has grown, this has become very time-consuming. it would be nice

to script the build in powershell.

We can create a new instance and get the password with a few lines of code, and it would be

great if a script could wait for the build to finish and then automatically e-mail the password to

the requestor. But, how do we know when the server is finished?

One way to determine whether the server is finished is to poll the instance to check if

the password is available. We can call the get-eC2passwordData command to check if a

password exists. this provides a convenient way to check for password availability.

Let’s start by creating a new method, called getpasswordWhenready. this method checks

once every minute until the password is ready and then returns it. the method takes three

parameters. the first is the iD of the instance to wait on. the second is the location of the

private key used to decrypt the password. the third is the number of minutes to wait for the

password, after which the script will give up.

Chapter 3 BasiC instanCe ManageMent

54

note that the script writes periods to the screen each minute to let the user know that it is still

working. also note that we had the set Warningaction to stop as the cmdlet get-eC2password

Data throws a warning to our catch statement when the password has yet to be generated.

Function GetPasswordWhenReady

{

 Param(

 [string][Parameter(Mandatory=$True)] $InstanceId,

 [string][Parameter(Mandatory=$True)] $PemFile,

 [Int] $TimeOut = 35

)

 $RetryCount = $TimeOut

 Write-Host "Waiting for password..." -NoNewline

 While($RetryCount -gt 1)

 {

 Try {

 $Password = Get-EC2PasswordData -InstanceId $InstanceId -PemFile

$PemFile -WarningAction stop

 Write-Host ""

 Return $Password

 }

 Catch {

 $RetryCount--

 Start-Sleep -s 60 #It's not ready. Let's wait for it.

 Write-Host "..." -NoNewline #It's nice to give a little feedback

now and then

 }

 }

 throw "Failed to get password from $InstanceId after waiting $Timeout minutes."

}

all we need now is a method that sends e-mails. this method will take three parameters:

recipient, instance address, and password. note that we have hard-coded the from address

and sMtp server name in my script. We will need to change them to our own sMtp server

settings if one is configured.

Function SendInstanceReadyEmail {

 Param(

 [string][Parameter(Mandatory=$True)] $Recipient,

Chapter 3 BasiC instanCe ManageMent

55

 [string][Parameter(Mandatory=$True)] $InstanceAddress,

 [string][Parameter(Mandatory=$True)] $Password

)

 $Message = "Access the instance at $InstanceAddress. The administrator

password is $Password."

 #Create the message

 $Email = New-Object Net.Mail.MailMessage

 $Email.From = "admin@brianbeach.com"

 $Email.ReplyTo = "admin@brianbeach.com"

 $Email.To.Add($Recipient)

 $Email.Subject = "Instance is Ready"

 $Email.Body = $Message

 #Send the message

 $SMTP = New-Object Net.Mail.SmtpClient('smtp.brianbeach.com')

 $SMTP.Send($Email)

}

now we can test it. here we are creating a new instance and retrieving the iD. then we wait

for the password to become available. this usually takes about 5–10 minutes. Once the

password is ready, we refresh the metadata. remember that some attributes are not available

when new-eC2instance returns. By refreshing the metadata after the build completes, we

know that all variables are present. now we can send an e-mail to the requestor.

Param(

 [string][Parameter(Mandatory=$false)] $ImageID,

 [string][Parameter(Mandatory=$false)] $KeyName = 'MyKey',

 [string][Parameter(Mandatory=$false)] $PemFile = 'c:\aws\MyKey.pem',

 [string][Parameter(Mandatory=$false)] $InstanceType = 't2.micro',

 [string][Parameter(Mandatory=$true)] $EmailRecipient

)

#Create a new instance

If([System.String]::IsNullOrEmpty($ImageID))

{

 $ImageID = (Get-EC2ImageByName -Name "WINDOWS_2016_BASE")[0].ImageId

}

$Reservation = New-EC2Instance -ImageId $ImageID -KeyName $KeyName

-InstanceType $InstanceType -MinCount 1 -MaxCount 1

$InstanceId = $Reservation.Instances[0].InstanceId

#Get the password to the new instance

Chapter 3 BasiC instanCe ManageMent

56

$Password = GetPasswordWhenReady -Instance $InstanceId -PemFile $PemFile

#Get the latest meta-data including the DNS name

$Reservation = Get-EC2Instance –Instance $InstanceId

$InstanceAddress = $Reservation.RunningInstance[0].PrivateIPAddress

#Send an email with connection info

SendInstanceReadyEmail -Recipient $EmailRecipient -InstanceAddress

$InstanceAddress -Password $Password

EXERCISE 3.2: BOOTSTRAPPING WITH USER DATA

at this point we know how to launch and manage instances. Before we close this chapter,

let’s spend a minute talking about how we can customize instances. We could, of course,

just log in and configure each instance manually, but the cloud is all about automation and

standardization.

if we script the configuration of our server, the results will be more consistent and

reproducible.

amazon thought of this, and it included the capability to run configuration scripts when a

server boots. in this exercise, we are going to configure our instance for remote administration.

We will use a powershell script in the user data to complete the configuration.

amazon includes the eC2Config or eC2Launch service agent (depending on the Os version) in

every Windows aMi they provide. the first time an instance boots, this agent service will check

the user data for <script>...</script> or <powershell>...</powershell> tags and then execute

them at the command prompt or powershell prompt, respectively. By default, scripts are run

only the first time an instance boots, but we can configure it to run every time the instance

starts (we will look at this in Chapter 7).

We talked in the last chapter about specifying default credentials and a default region. We will

use a server role to provide credentials, but remember that we still need to set the default

region and we can use powershell in the user data to accomplish this. When a new aWs

instance launches, it will be ready to run scripts without further configuration.

On our next instance launch, let’s make a few more changes with a user data script to enable

powershell remoting for administration and Windows Management instrumentation (WMi) for

monitoring and management.

Chapter 3 BasiC instanCe ManageMent

57

powershell remoting is really easy. the command is simply enable-psremoting. WMi is a bit

more complicated. WMi is already running, but Windows Firewall will block external access.

Fortunately, the firewall rules are already configured. they just need to be enabled. all we need

to do is use the powershell command enable-netFirewallrule. here we enable psremoting

and then find and enable all of the WMi firewall rules:

Enable-PSRemoting

Get-NetFirewallRule | Where { $_.DisplayName -like "Windows Management

Instrumentation ∗" } |
Enable-NetFirewallRule

the complete script is available with the accompanying code in a file called Bootstrap.ps1. For

information on downloading the sample code, see Chapter 1. We could use the “as file” option

under advanced details in the Configure instance page of the Launch instance Wizard to open this

file, but we are going to generate the user data and launch the instance using only powershell.

the following script will open the bootstrap script from disk. then it will format the script for

use with the aWs api. Finally, it will launch the instance, passing the script as user data.

param(

 [parameter(mandatory=$false)][string]$KeyName = 'MyKey',

 [parameter(mandatory=$false)][string]$RoleName = 'AdminRole',

 [parameter(mandatory=$false)][string]$UserDataFile = 'C:\AWS\Chapter3\

Exercise2\Bootstrap.ps1',

 [parameter(mandatory=$false)][string]$ImageId,

 [parameter(mandatory=$false)][string]$InstanceType = 't2.micro'

)

#If no image was specified, assume 2016 base

If([System.String]::IsNullOrEmpty($ImageID)){$ImageID = (Get-EC2ImageByName

-Name "WINDOWS_2016_BASE")[0].ImageId}

#Read the bootstrap script from the file specified

#Get-Content returns an array of strings. Raw converts the array to a single

string

$BootstrapScript = Get-Content -Raw $UserDataFile

#Add the PowerShell tags to the script

$BootstrapScript = @"

<powershell>

$BootstrapScript

</powershell>

Chapter 3 BasiC instanCe ManageMent

58

"@

#Base 64 encode the script

$UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.

GetBytes($BootstrapScript))

#Get the IAM Role to apply to the new instance

$Profile = Get-IAMInstanceProfile -InstanceProfileName $RoleName

#Launch the new instance with bootstrap script

$Reservation = New-EC2Instance -ImageId $ImageId -KeyName $KeyName

-InstanceType $InstanceType -MinCount 1 -MaxCount 1 -UserData $UserData

-InstanceProfile_Arn $Profile.Arn

$InstanceId = $Reservation.Instances[0].InstanceId

Write-Host "Launched new instance with ID $InstanceId"

User data is a really powerful option. We can use this to make just about any customizations

we need without ever logging into a server. as our adoption of aWs matures, we will likely

begin to use features such as auto scaling, which deploys instances automatically in response

to load. Obviously, it is critical that we can auto configure these instances at launch. (We will

talk more about auto scaling in Chapter 8).

 Summary
In this chapter, we got a good introduction to instances. We learned to launch and verify

instances using both Web Console and PowerShell. We learned how to start, stop, and

terminate instances. We also learned how to discover information about our instance

using both PowerShell and the metadata URL. Next, we learned how to include custom

data with user data and tags. Then we discussed how to use filters to find specific

instances. In the examples we created a complete script to manage launching instances.

Then we learned how to customize our instance at launch using user data.

In the next chapter, we will discuss storage including volumes and snapshots.

Volumes are the disks that are attached to an instance, and snapshots are point-in-time

backups of our volumes.

Chapter 3 BasiC instanCe ManageMent

59
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_4

CHAPTER 4

Elastic Block Storage
In the last chapter, we learned how to launch and manage instances. In this chapter,

we will focus on the volumes, or disks, attached to the instance. We will learn how

to customize and add additional volumes at launch. Then we will look at modifying

the volumes after launch. This chapter will also cover snapshots. Snapshots are

a point-in- time copy of a volume, often used for backups. Snapshots can be used

to create copies of volumes or to recover from a disaster. We will talk about using

snapshots to create a backup of a volume and how to restore a volume when a

disaster occurs.

Let’s start with a little background. Volumes are based on a technology Amazon

calls Elastic Block Storage (EBS). EBS is network-attached storage used by EC2

instances. Like iSCSI in a traditional data center, EBS shares bandwidth with other

network-attached storage traffic. This means performance is affected by network

load. We will see how to configure quality of service to guarantee the minimum

performance of our volumes.

EBS volumes are redundant within an availability zone. Therefore, there is no

need to create RAID arrays of EBS disks within the operating system. Remember

that an availability zone is a single data center. Despite the redundancy EBS

provides, it is possible to lose an entire availability zone in a disaster. Therefore,

we still need to back up our volumes using snapshots. Snapshots are backups

of volumes stored in the Simple Storage Service (S3). (We will talk about S3 in

detail in Chapter 11.) Each snapshot is stored in multiple availability zones within

a region to provide very high durability. In addition, we will see how to copy

snapshots from one region to another.

Let’s get started by building on our experience in Chapter 3. In the next section, we

will extend our launch scripts to control volumes at launch.

60

 Managing Volumes at Launch
In the last chapter, we discussed launching a new EC2 instance. Remember when we

skipped over a few of the screens in the wizard. Let’s return to the wizard and look at the

Add Storage configuration screen. This screen allows us to specify the number, size, and

performance characteristics of the volumes that will be attached to the instance.

Open the AWS EC2 Management Console and click the Launch Instance button

on the EC2 dashboard. Navigate through the wizard and stop on the Add Storage

screen (see Figure 4-1). This screen lists the default volumes that come with the

Amazon Machine Image (AMI) we choose. Remember that an AMI is the template that

describes an instance as well as snapshots of its volume data. Most Windows images

include a 30GB root volume. SQL images are larger, and most Linux distributions are

significantly smaller.

We can change the size of the root volume by simply typing into the text box under

the heading Size (GiB). The initial size is the minimum size the AMI snapshot requires

and cannot be reduced. Thirty GB is good enough for most Windows applications, but

some applications, such as SQL Server, require more storage and will start at a higher

value. A single volume can be set between 1GB and 16TB. In addition, we can configure

the IO operations per second (IOPS) for a volume. (We will talk about provisioned IOPS

later in this chapter).

Figure 4-1. Add Storage configuration

Chapter 4 elastiC BloCk storage

61

We can also choose to delete the volume on termination. If we check this box, the

volume will be automatically deleted when we terminate the instance. In general, the

root volume is configured to auto delete by default, and any additional volumes we

attach are not.

WHAT’S A GIBIBYTE (GIB)?

if we look closely at Figure 4-2, we may notice the Volume size is measured in giB, which

is the abbreviation for gibibyte. a gibibyte (giB) is closely related to, but not equal to, a

gigabyte (gB).

We know that 1kB = 1024 bytes but in other scientific disciplines 1k = 1000. Computer

scientists prefer 1024 because it is a power of 2 (2^10 = 1024).

amazon is using the unambiguous gibibyte. in these examples we will use the old gB but

really mean giB.

Manipulating the root volume in PowerShell is verbose, but straightforward.

PowerShell uses .NET objects to describe the drive configuration. We simply pass the

.NET object to the New-EC2Instance we used in Chapter 3.

First, we use the Amazon.EC2.Model.EbsBlockDevice object to describe the volume.

Here we want a 55GB GP2 volume, which does not use provisioned IOPS. In addition, we

want the volume to be deleted when we terminate the instance.

$Volume = New-Object Amazon.EC2.Model.EbsBlockDevice

$Volume.VolumeSize = 55

$Volume.VolumeType = 'GP2'

$Volume.DeleteOnTermination = $True

Next, we use the Amazon.EC2.Model.BlockDeviceMapping object to describe how

the volume should be attached to the instance. The root volume is always attached

to “/dev/sda1”. Notice that we are passing the EbsBlockDevice object created by the

preceding code.

$Mapping = New-Object Amazon.EC2.Model.BlockDeviceMapping

$Mapping.DeviceName = '/dev/sda1'

$Mapping.Ebs = $Volume

Chapter 4 elastiC BloCk storage

62

Finally, we call New-EC2Instance and include the BlockDeviceMapping parameter

describing how we want the volume configured.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'

-InstanceType 't2.micro' -MinCount 1 -MaxCount 1 -BlockDeviceMapping

$Mapping

$Instance = $Reservation.RunningInstance[0]

Write-output $Instance.InstanceId

We can also add additional volumes to the instance at launch. See Figure 4-2.

Windows instances will support up to 26 total volumes. The New Instance Wizard allows

us to add additional volumes using the Add New Volume button in the Add Storage

Configuration page. Most of these options are the same as the root volume with a couple

of differences, described next.

We can choose to use a snapshot to initialize our disk. Recall that a snapshot is a

copy of a volume at a specific point in time. The root volume always uses the snapshot

specified for the AMI we selected, but additional volumes can use any snapshot. We can

choose our own snapshot, or there are numerous interesting datasets available for public

use. Leaving the snapshot entry field blank results in a new empty volume.

Figure 4-2. EBS volumes

Chapter 4 elastiC BloCk storage

63

We must set a device name. The device name describes how the EBS volume is

attached to the instance. This is like describing which port the disk is plugged into on

a physical machine. For EBS volumes we should use xvd[b-z]. Just use them in order:

xvdb, xvde, xvdf, and so on. These device names are auto-filled in using the console for

Windows AMIs but need to be specified when using PowerShell.

Additional volumes are handled just like the root volume when using

PowerShell. For each additional volume, we create another EbsBlockDevice and

BlockDeviceMapping objects. Note that the root volume is always attached at device

name “/dev/sda1” and the second EBS disk is attached at “xvdb”.

In the following example, note that we have chosen to delete the root volume

when the instance is terminated, but we will keep the second volume by setting

DeleteOnTermination attribute to false. We separate the mapping objects by commas

when calling New-EC2Instance to create an array of mappings.

$Volume1 = New-Object Amazon.EC2.Model.EbsBlockDevice

$Volume1.DeleteOnTermination = $True

$Volume1.VolumeSize = 30

$Volume1.VolumeType = 'gp2'

$Mapping1 = New-Object Amazon.EC2.Model.BlockDeviceMapping

$Mapping1.DeviceName = '/dev/sda1'

$Mapping1.Ebs = $Volume1

$Volume2 = New-Object Amazon.EC2.Model.EbsBlockDevice

$Volume2.DeleteOnTermination = $False

$Volume2.VolumeSize = 100

$Volume2.VolumeType = 'gp2'

$Mapping2 = New-Object Amazon.EC2.Model.BlockDeviceMapping

$Mapping2.DeviceName = 'xvdf'

$Mapping2.Ebs = $Volume2

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'

-InstanceType 't2.micro' -MinCount 1 -MaxCount 1 -BlockDeviceMapping

$Mapping1, $Mapping2

$Instance = $Reservation.RunningInstance[0]

Write-output $Instance.InstanceId

Chapter 4 elastiC BloCk storage

64

If we want to use a snapshot to initialize the second volume, we can use the

SnapshotId parameter. We can use a snapshot we created or use one of the many

already available. For example, the following partial code will generate a 100GB

volume containing the Windows 2016 installation media from a snapshot found in

Northern Virginia. Note that there are no CD/DVD drives in EC2 instances. (Later in

this chapter, we will talk more about discovering the numerous snapshots available

with AWS).

$MediaSnapshot = Get-EC2Snapshot -Filter @(@{name='description';value="Wind

ows 2016 English Installation Media"},@{name='owner-alias';value="amazon"})

$Volume2 = New-Object Amazon.EC2.Model.EbsBlockDevice

$Volume2.DeleteOnTermination = $False

$Volume2.VolumeSize = 100

$Volume2.VolumeType = 'gp2'

$Volume2.SnapshotId = $MediaSnapshot[0].SnapshotId

When launching some instance types in the console such as m5d or i2, we will

see additional volume types. In the Add Storage launch step, they will appear with

Volume Type names like “Instance Store 0” or “ephemeral0”. These are what is known as

ephemeral volumes. Ephemeral volumes allow us to access disks local to the host server.

While EBS volumes are network-attached storage, ephemeral (instance store) volumes

are directly attached storage.

There can be significant performance gains using the directly attached ephemeral

volumes, but this approach comes with some limitations. The ephemeral drives are

not persisted when the instance is stopped. If an instance is stopped or placed into a

shutdown state, the data is simply deleted. Therefore, ephemeral drives are good only

for temporary storage such as a cache or when used in a high availability or clustering

architecture to preserve the data. Note however this data loss does not happen during a

reboot since the instance never reaches a stopped state.

If we selected a micro instance, there are no ephemeral volumes. In Figure 4-3,

we have chosen an i2.xlarge that includes an 800GB ephemeral SSD. We also added

a second 100GB EBS volume. Note that the ephemeral drives are attached by default.

Some ephemeral drives can be removed if we want, but we don’t pay anything extra by

leaving them attached. Just be careful that we’re not using the ephemeral drives when we

expect to be using an EBS volume.

Chapter 4 elastiC BloCk storage

65

When we create an instance using PowerShell, the ephemeral drives are also

attached automatically. There is no reason to remove them, but we can do so by creating

a BlockDeviceMapping with NoDevice set to true. Note in the following partial code

example that there is no EbsBlockDevice object in this case.

$Mapping = New-Object Amazon.EC2.Model.BlockDeviceMapping

$Mapping.DeviceName = 'xvdca'

$Mapping.NoDevice = $true

Figure 4-4 shows the disk configuration of a Windows Server 2016 instance with all

three volume types: a 30GB root volume, one additional 100GB EBS volume, and an

800GB ephemeral volume. Not all instance types have 800GB ephemeral volumes. Some,

such as the t2.micro, have no ephemeral volumes. Other instance types can have as

much as 48TB total of ephemeral storage.

Figure 4-3. Ephemeral volumes

Chapter 4 elastiC BloCk storage

66

As we have seen, Amazon makes it easy to manage volumes when launching an

instance. Unfortunately, we don’t always know exactly what the volumes should look

like. We do our best to estimate how big each volume needs to be, but requirements

change. New software is installed, usage patterns change, and so on.

 Encrypting Volumes at Launch
When configuring and adding volumes in the Add Storage step, an encrypted selection

exists. Enabling this setting will enable data at reset security by encrypting our volume

and resultant snapshots with keys defined in the AWS Key Management Service (KMS).

This will enable an extra layer of defense to protect our data and to meet regulatory or

compliance needs. Enabling encryption does result in some changes to be aware of:

• Encrypts data at rest inside the volume.

• Encrypts all data moving between the volume and the instance.

• Encrypts all snapshots created from the volume.

• Encrypts all volumes created from those snapshots.

• Once encrypted, a volume cannot be unencrypted.

• Not all instance types support encrypted volumes.

Figure 4-4. EBS and ephemeral volumes as seen by Windows

Chapter 4 elastiC BloCk storage

67

• Only new empty volumes can be encrypted.

• Encrypted volumes and snapshots have sharing restrictions.

• Encryption is limited to EBS volumes only and requires an

encryption key from the AWS Key Management Service (KMS).

Key Management Service is outside the scope of this chapter so more information

about using KMS for EBS encryption can be found at https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/EBSEncryption.html.

To encrypt a volume using PowerShell, we first need to find the KMS KeyId. We will

use the default EBS key by searching KMS for the key with alias “alias/aws/ebs” and

getting its TargetKeyId property. We then will create a secondary 100GB EBS volume

with encryption enabled using this key ID.

This default EBS encryption key gets created the first time we launch an instance

from the console and have encryption enabled set on a volume. If the key cannot be

found, try launching an instance with an encrypted volume from the console first.

$KMSKeyId = (Get-KMSAliasList | Where-Object {$_.AliasName -eq "alias/aws/

ebs"}).TargetKeyId

$Volume1 = New-Object Amazon.EC2.Model.EbsBlockDevice

$Volume1.DeleteOnTermination = $True

$Volume1.VolumeSize = 30

$Volume1.VolumeType = 'gp2'

$Mapping1 = New-Object Amazon.EC2.Model.BlockDeviceMapping

$Mapping1.DeviceName = '/dev/sda1'

$Mapping1.Ebs = $Volume1

$Volume2 = New-Object Amazon.EC2.Model.EbsBlockDevice

$Volume2.DeleteOnTermination = $False

$Volume2.VolumeSize = 100

$Volume2.VolumeType = 'gp2'

$Volume2.Encrypted = $true

$Volume2.KmsKeyId = $KMSKeyId

$Mapping2 = New-Object Amazon.EC2.Model.BlockDeviceMapping

$Mapping2.DeviceName = 'xvda'

$Mapping2.Ebs = $Volume2

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

Chapter 4 elastiC BloCk storage

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

68

$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'

-InstanceType 't2.micro' -MinCount 1 -MaxCount 1 -BlockDeviceMapping

$Mapping1,$Mapping2

$Instance = $Reservation.RunningInstance[0]

In the next section, we will discuss how to add volumes to a running instance, and in

Exercise 4.1 we will resize a volume.

 Adding a Volume to a Running Instance
Often, we want to add a volume after the instance is already running. We can create a

new volume and attach it to a running instance at any time.

To create a volume from the EC2 Web Console, on the left side click the plus sign

next to ELASTIC BLOCK STORE field to expand it and select Volumes. Click the Create

Volume button on the Volumes page that opens. The Create Volume page will open, and

we will need to specify all the options we discussed earlier, plus the Availability Zone

(see Figure 4-5). Remember from Chapter 1 that an availability zone is one of many

data centers in a region, so we can only attach a volume to an instance in the same

availability zone.

Figure 4-5. Creating a new volume

Chapter 4 elastiC BloCk storage

69

Creating a volume in PowerShell is simple. But before we attach volumes, let’s create

a new Windows Server 2016 instance:

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'

-InstanceType 't2.micro' -MinCount 1 -MaxCount 1

$Instance = $Reservation.RunningInstance[0]

Now we find the availability zone of our new instance by getting the AvailabilityZone

property of the subnet we launched in.

$AvailZone = (Get-EC2Subnet -SubnetId $Instance.SubnetId).AvailabilityZone

The following example creates a new 100GB empty volume:

$LargeVolume = New-EC2Volume -Size 100 -AvailabilityZone $AvailZone

-VolumeType gp2

If we want to use a snapshot to initialize our volume, just specify the snapshot ID.

This example creates a new volume with the public Windows 2016 install media:

$MediaSnapshot = Get-EC2Snapshot -Filter @(@{name='description';value="Wind

ows 2016 English Installation Media"},@{name='owner-alias';value="amazon"})

$SnapshotVolume = New-EC2Volume -SnapshotId $MediaSnapshot[0].SnapshotId

-AvailabilityZone $AvailZone -VolumeType gp2

Once the volumes are created, we can attach them to an instance using the

Add- EC2Volume command. In the following example, we use a while loop to wait

for the volumes to become available. Then we attach them to an instance using

Add- EC2Volume and wait for them to become in use.

While ($addvolumes.status -ne "available") {Start-Sleep -Seconds

10; $addvolumes = Get-EC2Volume -VolumeIds $LargeVolume.

VolumeId,$SnapshotVolume.VolumeId }

Add-EC2Volume -VolumeId $LargeVolume.VolumeId -InstanceId $Instance.

InstanceId -Device 'xvdg'

Add-EC2Volume -VolumeId $SnapshotVolume.VolumeId -InstanceId $Instance.

InstanceId -Device 'xvdh'

Chapter 4 elastiC BloCk storage

70

While ($usedvolumes.status -ne "in-use") {Start-Sleep -Seconds

10; $usedvolumes = Get-EC2Volume -VolumeIds $LargeVolume.

VolumeId,$SnapshotVolume.VolumeId}

Once we are done with the volumes, we can detach them from the instance using

Dismount-EC2Volume. We can also delete them using Remove-EC2Volume. We will

again use a while loop to check that the volumes are in an available state before deleting

them. If the volumes fail to reach an available state after a minute, they may be locked

by the OS on the instance. It’s best practice to offline volumes in the instance before

running the EC2 dismount. Ensure the volumes are offline in the instance and restart the

following code again:

Dismount-EC2Volume -VolumeId $LargeVolume.VolumeId

Dismount-EC2Volume -VolumeId $SnapshotVolume.VolumeId

While ($detachvolumes.status -ne "available") {Start-Sleep -Seconds

10; $detachvolumes = Get-EC2Volume -VolumeIds $LargeVolume.

VolumeId,$SnapshotVolume.VolumeId }

Remove-EC2Volume -VolumeId $LargeVolume.VolumeId –Force

Remove-EC2Volume -VolumeId $SnapshotVolume.VolumeId –Force

 Managing Quality of Service
Some instances – database servers, for example – are more IO intensive and some

instance workloads are more throughput intensive, while others still just need low-cost

storage for long-term data archiving. AWS offers several options for EBS storage types,

and they each have unique benefits:

• General Purpose SSD (GP2) is the default general purpose storage

type recommended for most workloads. It’s a SSD-based storage with

a balance between price and performance. We get three IOPS per GB

for minimum baseline performance and many thousands of burst

IOPS per volume.

• Throughput Optimized HDD (st1) are low-cost volumes suited for

throughput intensive workloads.

Chapter 4 elastiC BloCk storage

71

• Cold HDD (sc1) is the lowest-cost storage option recommended for

infrequently accessed large volumes of data.

• Provisioned IOPS SSD (io1) is designed for mission critical high-

throughput and low-latency workloads. Like GP2, io1 is SSD based

but allows for much higher baseline performance that’s explicitly

defined for the volume.

• Io1 volumes allow for up to 50 IOPS per GB sustained performance

with a maximum of 64,000 IOPS per volume on Nitro-based instance

types.

Aside from choosing the proper storage type for our workload, we also need to

consider that EBS volumes are shared network storage. Obviously, there are many

AWS tenants competing for the same resources. In addition, the EBS traffic is typically

competing for bandwidth with the other traffic to and from our own instance. EBS-

optimized instances get guaranteed network bandwidth between the instance and the

EBS volumes. This ensures that we get the expected performance regardless of how

congested the network gets.

To create an EBS-optimized instance, we can launch our instance on an instance

type that is EBS Optimized by default or we can enable the EbsOptimized flag on a

new or existing instance. Note that most current generation instance types enable EBS

Optimization by default and not all instance types support EBS optimization. In the

following example, we are launching an EBS-optimized instance on m1.large that does

support it but is not enabled by default.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' –

InstanceType 'm1.large' -MinCount 1 -MaxCount 1 -EbsOptimized:$true

$Instance = $Reservation.RunningInstance[0]

In the following example, we are going to launch a new instance with a Provisioned

IOPS SSD (io1) root volume. To specify IOPS at launch time, use the EbsBlockDevice

object. Simply, set the volume type to “io1” and specify the IOPS desired. In the following

example, we are launching a new EBS-optimized instance with a root volume of 30GB

provisioned at 1000 IOPS.

$Volume = New-Object Amazon.EC2.Model.EbsBlockDevice

$Volume.DeleteOnTermination = $True

Chapter 4 elastiC BloCk storage

72

$Volume.VolumeSize = 30

$Volume.VolumeType = 'io1'

$volume.IOPS = 1000

$Mapping = New-Object Amazon.EC2.Model.BlockDeviceMapping

$Mapping.DeviceName = '/dev/sda1'

$Mapping.Ebs = $Volume

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

$Reservation = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'

-InstanceType 'm1.large' -MinCount 1 -MaxCount 1 -BlockDeviceMapping

$Mapping -EbsOptimized:$true

$Instance = $Reservation.RunningInstance[0]

We can also create a new volume with provisioned IOPS and attach it to an

existing instance:

$AvailZone = (Get-EC2Subnet -SubnetId $Instance.SubnetId).AvailabilityZone

$Volume = New-EC2Volume -Size 100 -AvailabilityZone $AvailZone -VolumeType

io1 -IOPS 2000

We could attach this volume to an instance the same way we did in the previous

section:

Add-EC2Volume -VolumeId $Volume.VolumeId -InstanceId $Instance.InstanceId

-Device 'xvdf'

Now we know how to create and manage volumes. We can add volumes when

launching a new instance or add a volume to a running instance. We can also manage

the quality of service to guarantee performance. Next, we will talk about snapshots.

Snapshots allow us to take a point-in-time copy of a volume.

 Working with Snapshots
Snapshots are used to create a point-in-time copy of a volume often used for backup

and recovery. Creating a new snapshot is simple. Just call New-EC2Snapshot and

pass the ID of the volume. We can also add an optional description. For example,

let’s assume we are about to do a risky upgrade and we want to take a snapshot of

Chapter 4 elastiC BloCk storage

73

an instance. First, stop the instance and create the snapshot of its root volume. Note

that our instance and volumes will have different IDs than the ones explicitly defined

in the following examples:

$Snapshot = New-EC2Snapshot -VolumeId vol-0b8daf5e53c94fd69 -Description

'Before upgrade to version 3.22'

Now, let’s assume that our suspicions were correct, and we need to roll back the

change. We already know how to restore a snapshot. We did it in the last section. We

just create a new volume using the snapshot and verify that the volume is in the same

availability zone as the instance we want to restore.

$Volume = New-EC2Volume -AvailabilityZone us-east-1b -VolumeType gp2

-SnapshotId $Snapshot.SnapshotId

Note that we did not define a volume size here. When specifying a snapshot in a new

volume creation, if the volume size is not set, then the new volume is automatically set to

the snapshot size.

We cannot overwrite the contents of an existing volume. A restore always creates a

new volume. Therefore, to replace the volume of an existing instance, we must detach

the current volume and replace it with the one restored from the snapshot. Let’s replace

it with the restored volume. Note that this is the root volume and the instance should be

stopped first.

Dismount-EC2Volume -VolumeId vol-0b8daf5e53c94fd69

While($BadVolume.Status -ne 'available') {Start-Sleep -Seconds 10;

$BadVolume = Get-EC2Volume -VolumeId vol-0b8daf5e53c94fd69}

Add-EC2Volume -VolumeId $Volume.VolumeId -InstanceId i-0af9c78cd49747e08

-Device '/dev/sda1'

While($Volume.Status -ne 'in-use') {Start-Sleep -Seconds 10; $Volume =

Get- EC2Volume -VolumeId $Volume.VolumeId }

Remove-EC2Volume -VolumeId vol-0b8daf5e53c94fd69 -Force

Now, boot the instance, and we are back where we were before the upgrade.

Let’s assume the upgrade works the second time, and we want to delete the snapshot.

Just use Remove-EC2Snapshot:

Remove-EC2Snapshot -SnapshotId $Snapshot.SnapshotId –Force

Chapter 4 elastiC BloCk storage

74

Before we move on, let’s talk about backup strategy. Many firms are accustomed to

taking tape backups each night and storing them offsite. Can a snapshot replace offsite

tape backups? Absolutely! Snapshots are stored in the AWS S3. S3 data is replicated three

times across multiple availability zones within a region. This provides 99.999999999%

durability. But, let’s say we have a truly critical application that cannot stand an outage.

It is possible that an entire region will suffer a power outage or other catastrophe that

could bring our application down temporarily.

We can optionally copy the snapshot to another region using snapshot copy.

Let’s assume we have an application running in Northern Virginia (us-east-1) and

want to copy it to Northern California (us-west-1). The copy is always initiated from the

destination region.

Copy-EC2Snapshot -SourceRegion 'us-east-1' -SourceSnapshotId ‘snap-

0f390256dde249d88' -Region 'us-west-1' -Description 'Copied from Northern

Virginia'

Now, in the unlikely case that all the data in the Northern Virginia region was

destroyed, we could recover our application in Northern California. While the previous

examples are an effective strategy as a backup solution, there are some more advanced

strategies using AWS Systems Manager that we will learn about in Chapter 16. To learn

how Systems Manager Run command can manage backups, see https://docs.aws.

amazon.com/systems-manager/latest/userguide/integration-vss.html.

 Managing Public Snapshots
At the beginning of this chapter, we created a volume that included the Windows 2016

install media from a public snapshot. There are numerous snapshots available for our

use. We can get a list by running Get-EC2Snapshot, but be warned that there are a lot of

snapshots to sift through, and not all of them are from trustworthy sources.

To get a list of snapshots provided by Amazon, filter on the owner-alias property.

This will narrow the list considerably. In the following example, we use two filters when

looking for Windows 2016 media.

Get-EC2Snapshot -Filter @(@{name='description';value="Windows

2016∗Installation Media"},@{name='owner-alias';value="amazon"})

Chapter 4 elastiC BloCk storage

https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-vss.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-vss.html

75

In addition to software, Amazon has numerous datasets that can be used for testing.

For example, the following command will return US Census snapshot data located in the

us-east-1 region:

Get-EC2Snapshot -Filter @(@{name='description';value="* US Census

(Windows)"},@{name='owner-alias';value="amazon"}) -Region us-east-1

If we have an interesting dataset to make available to others, we can share our

snapshots. We can choose to share with a specific AWS account or with all AWS accounts.

If we want to share our snapshot with everyone, we call Edit-EC2SnapshotAttribute

with the UserGroup attribute set to all. The following examples will also use a sample

snapshot ID. To try these examples, we just need to replace the snapshot ID with our

own but keep in mind that this snapshot will be usable by anyone within AWS. Share the

snapshot and check the permissions using the Get-EC2SnapshotAttribute cmdlet.

Edit-EC2SnapshotAttribute –SnapshotId 'snap-0f390256dde249d88' -Attribute

'createVolumePermission' -OperationType 'add' -UserGroup 'all'

(Get-EC2SnapshotAttribute -Attribute 'createVolumePermission' -SnapshotId

snap-0f390256dde249d88).CreateVolumePermissions

Note that changes to permissions can take some time to propagate. Some upstream

services and the EC2 Console may take several minutes before the snapshot can be

accessed in other accounts. A direct describe call using the snapshot ID is the best way

to get the most accurate permission settings. To remove the public access, rerun the

command but change the OperationType value to remove.

Edit-EC2SnapshotAttribute –SnapshotId 'snap-0f390256dde249d88' -Attribute

'createVolumePermission' -OperationType 'remove' -UserGroup 'all'

If we prefer to share with a specific account, use the UserId attribute and supply

the account number. We will again read back the snapshot CreateVolumePermissions

attribute to validate our change. Note that we must remove the dashes from the account

number, for example, if the account number is 1234-1234-1234.

Edit-EC2SnapshotAttribute –SnapshotId 'snap-0f390256dde249d88' -Attribute

'createVolumePermission' -OperationType 'add' -UserId '123412341234'

(Get-EC2SnapshotAttribute -Attribute 'createVolumePermission' -SnapshotId

snap-0f390256dde249d88).CreateVolumePermissions

Chapter 4 elastiC BloCk storage

76

If we want to remove a user’s permission, once again set the OperationType to

“remove”. For example:

Edit-EC2SnapshotAttribute –SnapshotId 'snap-0f390256dde249d88' -Attribute

'createVolumePermission' -OperationType 'remove' -UserId '123412341234'

And, if we want to remove all permissions to a snapshot, use the Reset-

EC2SnapshotAttribute cmdlet. For example:

Reset-EC2SnapshotAttribute –SnapshotId 'snap-0f390256dde249d88' -Attribute

'createVolumePermission'

In this chapter, we learned about volumes and snapshots. We learned how to add

volumes to an instance and make copies of a volume using snapshots. In the first

exercise, we will build a script to resize a volume. In the second exercise, we will build a

script to back up all the volumes in an account.

EXERCISE 4.1: RESIZING A VOLUME

over time, we may find that a volume is not big enough, and we need to resize it. in this

example we will build a script that automates the process. the exercise script takes two

parameters, the volume iD we want to resize and the incremental size in gigabytes we want

to add.

Param(

 [string][Parameter(Mandatory=$True)] $VolumeId,

 [int][Parameter(Mandatory=$True)] $GBIncrement

)

Before we start, let’s get a reference to the volume so we know how it is attached and what

instance it is attached to.

$TargetVolume = Get-EC2Volume -Volume $VolumeId

$Attachment = $TargetVolume.Attachment[0]

Chapter 4 elastiC BloCk storage

77

Note that we cannot make the volume smaller as there would not be room for the partition or

snapshot data.

[int]$NewSize = $TargetVolume.Size + $GBIncrement

If ($Attachment.InstanceId -ne $null)

{

 If ((Get-EC2InstanceStatus $Attachment.InstanceId).InstanceState -ne

"stopped")

 {

 Write-Warning "Instance not in a stopped state. File system integrity

errors may be exist in the snapshot." -WarningAction Continue

 }

}

Now, we can create a new snapshot backup of the volume before we resize it. let’s also give

the new snapshot a description. remember to wait until the snapshot completes before we try

to resize it.

$Snapshot = New-EC2Snapshot -VolumeId $TargetVolume.VolumeId -Description

"$(get-date -f o). Snapshot before extending volume: $($TargetVolume.

VolumeId) on Instance:$($Attachment.InstanceId)"

While ($Snapshot.Status -ne 'completed')

{

$Snapshot = Get-EC2Snapshot -SnapshotId $Snapshot.SnapshotId; Start-Sleep

-Seconds 15

}

Next, we extend the current volume.

 Edit-EC2Volume -VolumeId $TargetVolume.VolumeId -Size $NewSize

the script is complete, but we are not quite done yet. the eBs volume has been resized, but

the Windows partition has not. see Figure 4-6 for a visualization. to extend the partition, log

into Windows and start the Computer Management MMC. on the Disk Management page,

right-click the partition and select extend Volume. accept the defaults to extend it to its

maximum size.

Chapter 4 elastiC BloCk storage

78

optionally we can run the following script on the instance to scan for a volume partition that

has a drive letter. it extends the first matching partition with all available unused space.

Foreach ($Partition in $(Get-Partition | Where-Object {$_.Driveletter -ne

$Null}))

{Update-Disk -Number $Partition.Disknumber

$maxSize = $((Get-PartitionSupportedSize -DiskNumber $Partition.Disknumber

-PartitionNumber $Partition.PartitionNumber).sizeMax)

If ($Partition.Size -lt $maxSize){Resize-Partition -DiskNumber $Partition.

Disknumber -PartitionNumber $Partition.PartitionNumber -Size $maxSize;break}}

Finally, we can delete the snapshot if all goes well.

Remove-EC2Snapshot -SnapshotId $Snapshot.SnapshotId -Force

Figure 4-6. Extending the partition

Chapter 4 elastiC BloCk storage

79

in this exercise we resized a volume while taking a snapshot as a backup for safety. in

the next exercise, we will create a script to back up all the volumes in our account on a

schedule.

EXERCISE 4.2: CREATING A BACKUP AGENT

aWs gives us the tools to back up and recover a volume on demand, but we really need

scheduled backups and the ability to delete snapshots after a specified retention period. let’s

create a script that will back up every volume in a region for our aWs account.

Note that this backup agent script will run from an instance. to perform the activities in this

exercise, the instance must be configured with the adminrole iaM role we created in Chapter 2.

our script will take three parameters: a type parameter used to differentiate backup sets,

retentionDays for the number of days to keep the backups, and the region to perform the

backups. these parameters allow us to run multiple instances of the script with different

configurations. For example, the following parameters indicate to run a daily backup retained

for two weeks and a weekly backup retained for 90 days.

param(

 [parameter(mandatory=$false)][string]$Type = 'Daily',

 [parameter(mandatory=$false)][string]$RetentionDays = 14,

 [parameter(mandatory=$false)][string]$Region = "us-east-1"

)

the first thing we need to do is determine which volumes to back up. We may not want every

volume backed up. For example, we don’t want to back up our sQl data files. We only want to

create a snapshot of the volume that contains the sQl backup files.

let’s use a tag to determine which volumes should be backed up. We will create a new tag,

named “Backupenabled”. We prefer to back up all volumes by default; therefore, the first part

of the script will look for any volumes that have not been tagged. if it finds any, it will assume

they should be backed up, and set the Backupenabled tag to true. if we don’t want a volume

backed up, just change the tag value to “false”.

Chapter 4 elastiC BloCk storage

80

Unfortunately, we can only use a filter to find items that have been tagged. We cannot use

a filter to find items that have not been tagged. therefore, we need to get all instances and

loop over them and check for the tag. if it does not exist, we add it using the New-eC2tag we

learned about in the last chapter.

First, find any new volumes that have not been marked for backup

Set-DefaultAWSRegion -region $Region

Get-EC2Volume | ForEach-Object {

 $HasKey = $False

 $_.Tag | ForEach-Object { If ($_.Key -eq 'BackupEnabled')

{ $HasKey = $True } }

 If ($HasKey -eq $False) {

 # Add Tag to this volume

 $VolumeId = $_.VolumeId

 $Tag = New-Object amazon.EC2.Model.Tag

 $Tag.Key='BackupEnabled'

 $Tag.Value='true'

 Write-Host "Found new volume: $VolumeId"

 New-EC2Tag -ResourceId $VolumeId -Tag $Tag }

}

Now that our volumes are tagged, we can use a filter to find all the volumes that need to be

backed up. We can then loop over the volumes and take a snapshot.

$Filter = New-Object Amazon.EC2.Model.Filter

$Filter.Name = 'tag:BackupEnabled'

$Filter.Value = 'True'

Get-EC2Volume -Filter $Filter | ForEach-Object {

#Backup routine goes here

}

if there is a disaster, we may not be able to access the metadata about which snapshot came

from which instance. therefore, if the volume is currently attached to an instance, we should

record the name and attachment information in the snapshot description. the following code

uses the get-eC2instance command we learned about in the last chapter to get information

about the instance.

Backup Routine

If ($_.state -eq "in-use"){

$Device = $_.Attachment[0].Device

Chapter 4 elastiC BloCk storage

81

$InstanceId = $_.Attachment[0].InstanceId

$Reservation = Get-EC2Instance $InstanceId

$Instance = $Reservation.RunningInstance | Where-Object {$_.InstanceId -eq

$InstanceId}

$Name = ($Instance.Tag | Where-Object { $_.Key -eq 'Name' }).Value

$Description = "Attached to InstanceID $InstanceId with Name '$Name' as

$Device;" }

Else{$Description = "Unattached to Instance"}

$Volume = $_.VolumeId

Write-Host "Creating snapshot of volume: $Volume; $Description"

$Snapshot = New-EC2Snapshot $Volume -Description "$Type backup of volume

$Volume; $Description"

We should also tag the snapshots, so we know which were created by our script. We don’t

want our script to delete snapshots it didn’t create. For example, if a developer takes a

snapshot before rolling out a new version of an application, they may not want that to be

deleted after two weeks. let’s add a tag called “Backuptype” used to differentiate scheduled

backups from any others.

Add a tag so we can distinguish this snapshot from all the others

$Tag = New-Object amazon.EC2.Model.Tag

$Tag.Key='BackupType'

$Tag.Value=$Type

New-EC2Tag -ResourceId $Snapshot.SnapshotID -Tag $Tag

great! the routine to create a snapshot is done. Now we just have to create a routine to delete

old backups after the retention period expires. in this routine, we find all of the snapshots that

were created by the backup agent, using the Backuptype tag. then, check how old it is. if it is

older than the retention period, the snapshot is deleted.

Retention routine. Delete any snapshots created by this tool that are older

than the specified number of days

$Filter = New-Object Amazon.EC2.Model.Filter

$Filter.Name = 'tag:BackupType'

$Filter.Value = $Type

$RetentionDate = ([DateTime]::Now).AddDays(-$RetentionDays)

Get-EC2Snapshot -Filter $filter |

Where-Object { [datetime]::Parse($_.StartTime) -lt $RetentionDate} |

Chapter 4 elastiC BloCk storage

82

ForEach-Object { $SnapshotId = $_.SnapshotId

Write-Host "Removing snapshot: $SnapshotId"

Remove-EC2Snapshot -SnapshotId $SnapshotId -Force }

at this point all we must do is schedule the script to run once a day. We have this script

deployed on an aWs instance, and it’s saved as C:\aWs\DailyBackup.ps1.

to schedule the job, log into the instance that is going to run the script and open task

scheduler. then follow these steps:

 1. Click the Create a Basic task link.

 2. Name the task “DailyBackup” and click Next.

 3. Choose Daily and click Next.

 4. pick a time of day for the script to run and click Next.

 5. Choose start a program and click Next.

 6. Fill in the next screen, as shown in Figure 4-7, and click Next.

Figure 4-7. Configure a scheduled task

Chapter 4 elastiC BloCk storage

83

 7. Check the “open the properties dialog for this task when i click Finish” option

and click Finish.

 8. Click the Change User or group... button.

 9. Change the user to NetWork serViCe, as shown in Figure 4-8, and click ok.

 10. Click ok to close the wizard.

in this exercise we created a scheduled task that uses snapshots to create a backup of all

volumes in a region. let’s stop and reflect on how easy that was. a few lines of code just

replaced backup tapes forever. We don’t need an operator on staff after hours to put tapes

in servers. We don’t need to manage tape storage and rotation. if we added a call to Copy-

eC2snapshot targeting another region, we would never have to ship tapes to an offsite storage

location again.

 Summary
In this chapter, we examined volumes and snapshots. We learned how to customize

and add additional volumes at launch as well as modify volumes after launch. We

learned how to back up and restore a volume using highly durable snapshots and

copy snapshots to another region for even greater durability. In the first example, we

Figure 4-8. Configure User or Group

Chapter 4 elastiC BloCk storage

84

created a script to resize a volume. We can use this script anytime we are running out

of space in an existing instance. In the second example, we created a scheduled task

that backs up all the volumes for a region in our account. We can use this script to

replace tape backups.

In the next chapter, we will learn how to configure a Virtual Private Cloud (VPC).

VPC allows us to create your own private network configuration in the cloud. We will

discuss subnets, routing, and security.

Chapter 4 elastiC BloCk storage

85
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_5

CHAPTER 5

Virtual Private Cloud
In this chapter we are going to discuss Virtual Private Cloud (VPC). VPC allows you

to configure a custom network topology, as well as manage IP routing and security.

A network topology is the structure of the network and controls how data flows

between nodes.

This chapter will be a bit different from the prior ones. On one hand, the commands

are relatively simple. Most only have one or two parameters. On the other hand, these

primitive commands can be woven together in countless ways to create a seemingly

endless combination of network topologies.

Throughout this chapter, we will continue to explore the Web Console and the

individual PowerShell commands. In previous chapters, each section stood alone. All

the sections in this chapter will build upon each other and come together at the end to

produce a single solution, pictured in Figure 5-1.

Figure 5-1. Simple VPC network topology

86

Figure 5-1 shows a simple network with two subnets. The public subnet is Internet

accessible. We would use the public subnet to host our web servers. The private subnet is

not connected to the Internet and is used to host our database. This is a common pattern

in IT. Typically we put the web servers in the “DMZ” and keep the database behind a

firewall with more stringent policies.

Note This chapter often takes a roundabout solution in order to show you each
command. For example, I could have created a new route table for the public
subnet rather than altering the Main route table and then creating a new main
table. But then I would not have reason to talk about deleting route tables and
altering associations. If you want a streamlined script, Exercise 5.1 includes a
complete script that will build the network pictured in Figure 5-1 in a much more
direct manner than I followed throughout the chapter.

Let’s get started with the first step in this process: creating a VPC.

 Creating a VPC
VPC allows you to create one or more networks of EC2 instances. Note that by default,

each account can have up to five VPCs per region. For example, you can implement a

layered security approach or span multiple availability zones for high availability. This

chapter and Chapter 6 focus on security, while Chapter 8 focuses on high availability.

As usual, let’s start in the Web Console and then move to PowerShell. In the Web

Console, from the Services drop-down at the top of the screen, choose VPC. We will

build up our VPC in stages so we can discuss each piece. Note that AWS offers a VPC

wizard, which we are not going to use. The second option in the VPC wizard, “VPC

with Public and Private Subnets,” is similar to the network we are going to create in this

chapter.

To create a new VPC, navigate to the Your VPCs page and click the Create VPC

button. The Create VPC dialog has only one tab (see Figure 5-2). Enter the CIDR range

you wish to use.

ChapTEr 5 VIrTual prIVaTE Cloud

87

You can provision an IPv4 CIDR block up to a “/16.” A “/16” network will give

you about 65,535 hosts. You can use any network, but note that VPC addresses are

not Internet accessible. Your hosts will access the Internet using Network Address

Translation (NAT). Therefore, you should use a private (non-routable) segment such as

10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16. VPC also supports associating IPv6 CIDR

block addresses to your VPC and also subnets, which use IPv6 addresses that are public

and Internet accessible. In this chapter, we won’t go into detail on IPv6, what we will say

is that it is supported and there is a migration path from IPv4.

Most organizations are already using the 10.0.0.0 network. Therefore, I tend to use

10.0.0.0 for any VPC that will be attached to the corporate network. AWS uses 172.16.0.0

for the default VPC; support for new deployments of EC2-Classic has been deprecated.

That leaves 192.168.0.0. I like to use 192.168.0.0 for VPCs that are neither attached to the

corporate network nor the default VPC. This makes it easy to tell which VPC is which later.

The Tenancy option allows you to provision a dedicated VPC. If you choose a

dedicated VPC, you can only launch dedicated instances into that VPC. A dedicated

instance runs on dedicated hardware that is not shared with other AWS clients. This is an

expensive option and not one I have used often.

Figure 5-2. The Create VPC dialog box

ChapTEr 5 VIrTual prIVaTE Cloud

88

The equivalent PowerShell is equally simple.

$VPC = New-EC2Vpc -CidrBlock '192.168.0.0/16'

$VPC.VpcId

As you can see, creating a VPC is really easy. Before we can launch a machine into

the VPC, we need to carve it up into multiple subnets. In the next section, we will create

a subnet.

 Creating a Subnet
Now that we have our VPC created, we want to carve it up into multiple subnets to host

our instances. (We will add hosts to the subnet in Chapter 6.)

Each subnet is assigned to an availability zone. Remember from Chapter 1 that

an availability zone is one of multiple data centers that comprise a region. We can use

multiple availability zones to ensure high availability. (I will cover high availability in

Chapter 8.)

Each subnet is also assigned a subset of the VPC’s address space, again using CIDR

notation. Here I am using a “/24.” This will divide the VPC into 256 subnets of about 256

hosts each.

RESERVED IPS

In reality, we will not get 256 hosts per subnet when using “/24.” The first four and last

addresses are reserved. The reserved addresses are used as follows:

First - Network Id

Second - Gateway

Third - dhCp and dNS services

Fourth - reserved for future use

last - Network Broadcast

Creating a subnet using the Web Console is relatively easy. You simply identify the

availability zone and CIDR range (see Figure 5-3).

ChapTEr 5 VIrTual prIVaTE Cloud

89

Creating a subnet with PowerShell is equally easy. Just use New-EC2Subnet. This

command takes the same parameters as the Web Console: the VPC, availability zone,

and CIDR block. In this example, we will store the newly created VPC in the “Subnet1a”

variable, so we can reference the object later.

$Subnet1a = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.2.0/24'

-AvailabilityZone 'us-east-1a'

You can list the subnets with the Get-EC2Subnet command. Unfortunately, Get-

EC2Subnet does not have a VPC parameter. This is true of all the VPC-related commands.

If you want to list the subnets in a given VPC, you have to use a filter. For example:

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'vpc-id'

$VPCFilter.Value = $VPC.VpcId

Get-EC2Subnet -Filter $VPCFilter

Figure 5-3. The Create subnet dialog box

ChapTEr 5 VIrTual prIVaTE Cloud

90

Of course you can delete a subnet using the Remove-EC2Subnet command. Note

that if the subnet has instances assigned, the remove command will fail. $Subnet1a is a

variable that was instantiated when we created our subnet. In the preceding example,

we created a filter based on this variable. Alternatively, we can manually create a filter by

replacing $VPCFilter.Value = $VPC.VpcId with $VPCFilter.Value = 'vpc-xxxxxx'.

Remove-EC2Subnet -SubnetId $Subnet1a -Force

At this point we have a VPC with a single subnet. We could launch an instance into

this subnet, but you would not be able to connect to the instance because our VPC has

no connection to the outside world. In the next section, we will add an Internet gateway,

which is a connection to the Internet.

 Creating an Internet Gateway
At this point your VPC is isolated from the world. You can launch an instance, but it

cannot connect to the Internet. More importantly, you cannot connect to it either. To

create a connection to the Internet, you need an Internet gateway.

Think of the Internet gateway like your router at home. It connects all of the instances

in your VPC to the Internet using Network Address Translation (NAT). While your home

network probably only has only one public IP address, the EC2 Internet gateway allows

you to assign a public IP address to each instance. These public IP addresses are known

as elastic IP addresses. (We will be assigning elastic IP addresses in Chapter 6.)

The process of creating an Internet gateway is the same using the Web Console

or PowerShell. First you create a new gateway and then you connect it to a VPC. In

PowerShell it looks like this ($InternetGateway is a variable containing the unique

identifier of the Internet gateway you just created):

$InternetGateway = New-EC2InternetGateway

Add-EC2InternetGateway -InternetGatewayId

$InternetGateway.InternetGatewayId -VpcId

 $VPC.VpcId

Despite the two-step process, you can only connect the gateway to one VPC at

a time. If necessary, you can disconnect the gateway from VPC and connect it to

another. Alternatively, you can create additional Internet gateways to connect other

VPCs to the Internet.

ChapTEr 5 VIrTual prIVaTE Cloud

91

At this point you have a VPC with a subnet and Internet connection. In the next

section, we will configure routing within the VPC.

 Managing Route Tables
Now that we have an Internet connection, we need to tell instances how to find that

connection. We use routes to do this. Every subnet is associated with a route table that

tells an instance the best way to reach a given destination.

Note routing is a fairly complicated topic. If you are not familiar with Ip routing,
I recommend reading up on the basics.

When we create the VPC, AWS created a default route table (see Figure 5-4). Notice

that the route table is associated with 0 subnets; this is deceiving. The route table is not

explicitly associated with any subnets, but it is identified as the Main route table in the

VPC. Subnets will use the Main route table unless you explicitly configure them to use

another route table. Therefore, all of the subnets in our VPC are using this route table.

The Main route table has only one route by default. This route says that all traffic

destined for 192.168.0.0/16 should stay local. Remember that our VPC is using the range

192.168.0.0/16. In other words, only local traffic is configured by default; there is no route

to the Internet.

Figure 5-4. Sample route table displayed in the Web Console

ChapTEr 5 VIrTual prIVaTE Cloud

92

To list route tables in PowerShell, use Get-EC2RouteTable. If you have more than

one VPC, use a filter to display only those route tables in a given VPC. In this scenario,

the previously created filter can be used or a new filter can be created, as shown in

the following. Previously, we used a filter based on the VPC we created. Here, we will

manually set the filter by replacing $VPCFilter.Value = $VPC.VpcId with $VPCFilter.

Value = 'vpc-xxxxxx'.

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'vpc-id'

$VPCFilter.Value = 'vpc-57074739'

Get-EC2RouteTable -Filter $VPCFilter

Each route table has a Routes property that contains a list of the individual routes. It

is easier to read if you pipe the list to Format-Table:

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'vpc-id'

$VPCFilter.Value = 'vpc-57074739'

 (Get-EC2RouteTable -Filter $VPCFilter).Routes | Format-Table

If you want to get a reference to the Main route table, use the association.main filter

with a value of true. Note that true will be passed as a string and must be specified in

lowercase. We will use the manually created filter (i.e., $VPCFilter.Value =

'vpc- xxxxxx') in this example.

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'vpc-id'

$VPCFilter.Value = 'vpc-57074739'

$IsDefaultFilter = New-Object Amazon.EC2.Model.Filter

$IsDefaultFilter.Name = 'association.main'

$IsDefaultFilter.Value = 'true'

$DefaultRouteTable = Get-EC2RouteTable -Filter $VPCFilter, $IsDefaultFilter

$DefaultRouteTable.Routes | Format-Table

Now we want to tell our instances about the Internet gateway. To do this, we add a

new route to the route table. In Figure 5-5, I am adding a route to 0.0.0.0/0 to the Internet

gateway we created.

ChapTEr 5 VIrTual prIVaTE Cloud

93

The route table works like this. Whenever a request is received, AWS looks at the

route table to determine what to do with it. It tries to match the request with the most

specific route. The larger the number after the forward slash, the more specific the route.

Since the rule we just added has a zero after the slash, this rule will be evaluated last.

For example, assume a request is destined for www.google.com at 173.194.43.2. AWS

will first check it against the most specific rule. In this case the 192.168.0.0/16 is the most

specific. The rule says to check if the first 16 bits of the destination (e.g., 173.194) match

the route (192.168). Since they do not match, AWS tries the next route. The next route has

a zero after the slash. Since there are zero bits to match, this rule always matches (this is

called the default route). Therefore, AWS routes the request to the Internet gateway.

To add a new route to the route table using PowerShell, use the New-EC2Route

command. We will use previously created variables for this command. For simplicity

reasons, we will be using the $InternetGateway.InternetGatewayId variable

previously created.

New-EC2Route -RouteTableId $DefaultRouteTable.RouteTableId -DestinationCidrBlock

'0.0.0.0/0'

 -GatewayId $InternetGateway.InternetGatewayId

You can also create a route that points to a specific instance. You might do this if you

want to take specific actions on the traffic. For example, you might want to run a software

firewall or web proxy on an EC2 instance. AWS offers many such virtual appliances in the

marketplace. There is an example of this in the exercises at the end of Chapter 6.

To route traffic to a specific instance in PowerShell, use InstanceId rather than

GatewayId.

New-EC2Route -RouteTableId 'rtb-52007473c' -DestinationCidrBlock

'0.0.0.0/0' -InstanceId

 'i-12345678'

Figure 5-5. Adding a new route to a route table

ChapTEr 5 VIrTual prIVaTE Cloud

http://www.google.com

94

Not all subnets in a VPC need to use the same route table. You can create a custom

route table for each subnet. A common use of this is to create a private subnet that does

not have Internet connectivity and a public subnet that does. Security standards often

require that databases be hosted in a private subnet without Internet connectivity.

Let’s create a new route table that does not have Internet connectivity.

$CustomRoute = New-EC2RouteTable -VpcId $VPC.VpcId

Now that we have more than one route table, we need to associate the subnet with a

route table. To this we use a route table association.

Register-EC2RouteTable -RouteTableId $CustomRoute.RouteTableId -SubnetId

$Subnet1a.SubnetId

At this point, we have two route tables in our VPC. Remember that we added Internet

connectivity to our Main route. This is the route that will be used by default. It would be

better security practice to have our Main route table be private. This way, if we create

a new subnet, it defaults to the subnet without Internet access and only gets it if we

explicitly assign it to the public subnet.

Changing the Main route table is less than intuitive because there is no command

to change the Main route table. First, you have to find the Main route table using filters.

Then, you find the Main route table association. Typically, an association maps a route

table to a subnet, but the main association is special in that the subnet is blank.

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'vpc-id'

$VPCFilter.Value = 'vpc-57074739'

$IsDefaultFilter = New-Object Amazon.EC2.Model.Filter

$IsDefaultFilter.Name = 'association.main'

$IsDefaultFilter.Value = 'true'

$MainRouteTable = Get-EC2RouteTable -Filter $VPCFilter, $IsDefaultFilter

$Association = $MainRouteTable.Associations | Where-Object {$_.Main -eq $True}

$Association

This command returns

RouteTableAssociationId RouteTableId SubnetId Main

----------------------- ------------ -------- ----

rtbassoc-5307473d rtb-5207473c True

ChapTEr 5 VIrTual prIVaTE Cloud

95

Since there is no command to change the Main route table, we have to reassign the

existing association to a new route table using the Set-EC2RouteTableAssociation

command.

Set-EC2RouteTableAssociation -AssociationId 'rtbassoc-5307473d'

 -RouteTableId 'rtb-d65006b8'

I know that was a lot of material very quickly. I used as many variables as possible

to make things more consumable. In any case, I strongly recommend that you work

through the examples at the end of this chapter to better understand EC2 routing. Let’s

review our progress so far. We created a VPC, added a subnet and Internet gateway, and

configured routing. In the next section, we will configure network security.

 Managing Network ACLs
Network access control lists (ACLs) allow you to control what types of traffic can enter

and leave a subnet. Each ACL contains an ordered list of inbound and outbound rules.

If you have worked with EC2 Classic in the past, you are likely familiar with security

groups. ACLs and security groups are similar in that they allow you to filter traffic on

the network. (We will cover security groups in Chapter 6.) The main differences are the

following:

 1. ACLs are applied to a network segment, while security groups are

applied to individual instances.

 2. Security groups are stateful, while ACLs are stateless. This means

ACLs require a rule for both the request and response, while

security groups only require a request rule.

AWS creates a default ACL for each new VPC. As you can see in Figure 5-6, the

default ACL contains two rules. The first allows all traffic to anywhere and second denies

all traffic to anywhere. Rules are executed in order. Therefore, the first rule is always

applied, and the default behavior is to allow all traffic to and from anywhere. Obviously it

is a good idea to create more conservative rules.

ChapTEr 5 VIrTual prIVaTE Cloud

96

To get the same list using PowerShell, use the Get-EC2NetworkACL command. Again,

I am using a filter to only return the ACLs from one VPC because you may have more

than one VPC in a given region. Notice that there are both inbound (egress=false) and

outbound (egress=true) rules. Figure 5-6 was displaying the inbound rules only.

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'vpc-id'

$VPCFilter.Value = 'vpc-57074739'

$ACL = Get-EC2NetworkAcl -Filter $VPCFilter

$ACL.Entries | Format-Table

This code returns the following output:

RuleNumber Protocol RuleAction Egress CidrBlock Icmp PortRange

---------- -------- ---------- ------ --------- ---- ---------

100 -1 allow True 0.0.0.0/0

32767 -1 deny True 0.0.0.0/0

100 -1 allow False 0.0.0.0/0

32767 -1 deny False 0.0.0.0/0

As you can see from the two rules numbered 100, the default ACL allows all traffic

into and out of the subnet. Now let’s learn how to modify the default rules.

Figure 5-6. Network ACLs

ChapTEr 5 VIrTual prIVaTE Cloud

97

 Securing the Public Subnet
It is bad practice to allow all traffic into our network. Let’s assume that we are running a

web site. The public subnet hosts a web server and the private subnet hosts a database.

We want to allow the minimum set of traffic possible into each subnet.

First let’s remove the rule 100 that allows all traffic. Note that I am removing both

the inbound and outbound rules. To get the ACL ID, we will return the value of the

previously created variable, that is, $ACL.NetworkAclId. For ease of use, the variable will

be used for the subsequent examples.

Remove-EC2NetworkAclEntry -NetworkAclId acl-5507473b -RuleNumber 100 -Egress

$true -Force

Remove-EC2NetworkAclEntry -NetworkAclId acl-5507473b -RuleNumber 100 -Egress

$false -Force

Now let’s add rules for the public subnet. First, we need to allow HTTP traffic from

the Internet. Remember that 0.0.0.0/0 means traffic from anywhere. Also, HTTP uses

port 80 and TCP is protocol 6.

New-EC2NetworkAclEntry -NetworkAclId acl-5507473b -RuleNumber 100 -CidrBlock

'0.0.0.0/0'

 -Egress $False -PortRange_From 80 -PortRange_To 80 -Protocol 6

-RuleAction 'Allow'

Remember that ACLs are stateless. This means that we need to create separate rules

for the request and response. Security groups on the other hand are stateful. You only

need to create a rule for the request, and AWS takes care of the response.

When the browser makes a request to our web server, the destination port is 80. But,

there is also a source port, called the ephemeral port. The ephemeral port is chosen

at random in the range 49152 to 65535. The web server sends its reply back to the

ephemeral port the request was received from. Therefore, we need a corresponding

egress rule for the reply:

New-EC2NetworkAclEntry -NetworkAclId 'acl-5507473b' -RuleNumber 100

-CidrBlock '0.0.0.0/0'

 -Egress $True -PortRange_From 49152 -PortRange_To 65535 -Protocol 6

-RuleAction 'Allow'

ChapTEr 5 VIrTual prIVaTE Cloud

98

The web server also needs to talk to the database. Let’s assume the database server is

running Microsoft SQL Server and is located in the private subnet. SQL Server uses port

1433 and the CIDR range for the private subnet is 192.168.2.0/24. Therefore, we need

to allow the request on port 1433 and the response in the ephemeral range.

New-EC2NetworkAclEntry -NetworkAclId 'acl-5507473b' -RuleNumber 200

-CidrBlock '192.168.2.0/24'

 -Egress $True -PortRange_From 1433 -PortRange_To 1433 -Protocol 6

-RuleAction 'Allow'

New-EC2NetworkAclEntry -NetworkAclId 'acl-5507473b' -RuleNumber 200

-CidrBlock '192.168.2.0/24'

 -Egress $False -PortRange_From 49152 -PortRange_To 65535 -Protocol 6

-RuleAction 'Allow'

Notice that I have incremented the rule number by 100. It is common to increment

by 100 to allow room to insert additional rules later. Remember that the rules are always

executed in order, until a rule is found that either allows or denies the traffic. Before

moving on to the private subnet, let’s spend a minute looking at deny rules.

You may have noticed that we allow HTTP traffic from any source (i.e., 0.0.0.0/0).

This includes the private subnet. This is not really what we intended. We wanted to allow

traffic from the Internet, but not within the VPC. We can block this by adding a deny rule

that fires before rule 100.

New-EC2NetworkAclEntry -NetworkAclId 'acl-5507473b' -RuleNumber 50

-CidrBlock '192.168.0.0/16'

 -Egress $False -PortRange_From 80 -PortRange_To 80 -Protocol 6

-RuleAction 'Deny'

New-EC2NetworkAclEntry -NetworkAclId 'acl-5507473b' -RuleNumber 50

-CidrBlock '192.168.0.0/16'

 -Egress $True -PortRange_From 49152 -PortRange_To 65535 -Protocol 6

-RuleAction 'Deny'

In the preceding example, I have added a new rule with rule number 50. This rule

will fire first. If a request is received from within the VPC, the request will be denied

and processing will stop. If the request is received from outside the VPC, this rule

will not match and rule 100 will fire next. Rule 100 will then allow the request and

processing will stop.

ChapTEr 5 VIrTual prIVaTE Cloud

99

Now let’s look at what would happen if we received a request we didn’t anticipate.

We didn’t plan for HTTPS requests. If we received a request on port 443, rules 50, 100,

and 200 would again fire in order, but none would match because none of the existing

rules are for port 443. Next, rule 32767 would fire and deny the request. Rule 32767 is the

max rule number. It is always present and cannot be deleted. In other words, if none of

the rules that we create match, the traffic is always denied.

FINDING THE NEXT ACL RULE NUMBER

When you create new rules, you often need to know the largest rule number in the list so you

can use the next number. here is a quick script to find the largest egress rule in powerShell.

The first portion of the script will gather the largest aCl rule entry and store it in the $MaxAcl

variable.

|

$MaxAcl = ((Get-EC2NetworkAcl -NetworkAclId acl-5507473b).Entries | Where-

Object

 {$_.Egress -and $_.RuleNumber -lt 32767 } | Measure-Object RuleNumber

 -Maximum).Maximum

Next we will add 100 to the $Maxacl entry.

$NextAcl = $MaxAcl + 100

Finally, we will view the next largest egress rule number.

$NextAcl

Now that we have the public subnet configured, let’s look at the private subnet.

 Securing the Private Subnet
At this point we have our public subnet locked down, but we have ignored our private

subnet. Even worse, we have been applying the rules to the only access control list in the

VPC. This means that the rules we applied to the public subnet have also been applied to

the private one that is going to host our database server. Let’s fix this.

ChapTEr 5 VIrTual prIVaTE Cloud

100

First, let’s create a new access control list for the private subnet. In PowerShell, we

use the New-EC2NetworkAcl command.

$ACL = New-EC2NetworkAcl -VpcId 'vpc-57074739'

$ACL.Entries | Format-Table

This code returns the following output:

RuleNumber Protocol RuleAction Egress CidrBlock Icmp PortRange

---------- -------- ---------- ------ --------- ---- ---------

32767 -1 deny True 0.0.0.0/0

32767 -1 deny False 0.0.0.0/0

Notice that the list is effectively empty. The only entries are the default deny rules.

This is different from the ACL that was created when we created the VPC. That ACL

allowed all traffic, and this one denies all traffic.

Let’s add rules to allow all traffic in and out of our private subnet. This may seem

like we are cutting corners. Why don’t we create specific rules like we did for the public

subnet? We could, and we probably should, but remember that the public subnet is

Internet accessible. The public subnet is much more likely to be attacked. It is common

to put much stronger controls on the public subnets and leave the private subnets free to

communicate among one another. Think of this like your house. You likely have a much

better lock on your front door than you do on your bedroom. For now let’s keep it simple

and allow all traffic.

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 100

-CidrBlock '0.0.0.0/0'

 -Egress $True -Protocol '-1' -RuleAction 'Allow'

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 100

-CidrBlock '0.0.0.0/0'

 -Egress $False -Protocol '-1' -RuleAction 'Allow'

Now, all we have to do is attach this ACL to the private subnet, which was created at

the beginning of this chapter. The process is similar to changing the Main route table.

First, we use a filter to find the ACL associated with the subnet. Then, we get a reference

to the association for the ACL. Next, we get a reference to the new ACL we want to

assign to the subnet. Finally, we use the Set-EC2NetworkAclAssociation to point the

association to the new ACL.

ChapTEr 5 VIrTual prIVaTE Cloud

101

$SubnetFilter = New-Object Amazon.EC2.Model.Filter

$SubnetFilter.Name = 'association.subnet-id'

$SubnetFilter.Value = 'subnet-334e185d'

$OldACL = Get-EC2NetworkAcl -Filter $SubnetFilter

$OldAssociation = $OldACL.Associations | Where-Object { $_.SubnetId -eq

$SubnetFilter.Value}

Set-EC2NetworkAclAssociation -AssociationId $OldAssociation.

NetworkAclAssociationId

 -NetworkAclId $ACL.NetworkAclID

Working with ACLs can be very tedious. You must very careful to identify the traffic in

both directions. In Chapter 6 we will discuss security groups, which offer a much easier

solution to filter traffic to and from individual instances. Before we end this chapter, let’s

have a quick look at configuring DHCP.

 Managing DHCP
VPC uses Dynamic Host Configuration Protocol (DHCP) to configure the instances in

the VPC. Although you are likely familiar with DHCP, it works a bit differently at AWS.

First, IP addresses are assigned to the instance for life. Once a primary IP address

is assigned, it cannot be changed and cannot be assigned to another instance until the

instance is terminated. (Note that you can add and remove secondary IP addresses,

which we will do in Chapter 6.)

Second, you cannot change the network configuration from within the instance. AWS

does not use layer two broadcasts to discover network configuration changes. Rather it

depends on the instance metadata to make forwarding decisions. If you change an IP

address from within Windows, AWS will not learn of the change, and traffic will not be

forwarded to the server.

In addition to managing IP addresses, DHCP is also used to configure DNS, NetBIOS,

and Network Time Protocol (NTP). AWS offers DNS and NTP services, but if you prefer,

you can choose to override the default settings to use another service.

Let’s imagine that we are going to launch an Active Directory (AD) server into

our private subnet. Our AD instance will be assigned the IP address 192.168.2.10.

The domain name is brianbeach.com. We want AD to be the primary DNS, NetBIOS,

and NTP server. Using the Web Console, you simply create a new option set and then

associate it with a VPC (see Figure 5-7).

ChapTEr 5 VIrTual prIVaTE Cloud

102

To change the DHCP configuration using PowerShell, we first create an array of

configuration options. Then, we use New-EC2DHCPOption to create a new option set.

Finally, we associate to the new option set with our VPC using Register-EC2DhcpOption:

$Domain = New-Object Amazon.EC2.Model.DhcpConfiguration

$Domain.Key = 'domain-name'

$Domain.Value = 'brianbeach.com'

$DNS = New-Object Amazon.EC2.Model.DhcpConfiguration

$DNS.Key = 'domain-name-servers'

$DNS.Value = '192.168.2.10'

$NTP = New-Object Amazon.EC2.Model.DhcpConfiguration

$NTP.Key = 'ntp-servers'

$NTP.Value = '192.168.2.10'

$NetBios= New-Object Amazon.EC2.Model.DhcpConfiguration

$NetBios.Key = 'netbios-name-servers'

$NetBios.Value = '192.168.2.10'

$NetBiosType = New-Object Amazon.EC2.Model.DhcpConfiguration

$NetBiosType.Key = 'netbios-node-type'

$NetBiosType.Value = '2'

Figure 5-7. Creating a new DHCP option set

ChapTEr 5 VIrTual prIVaTE Cloud

103

$DHCP = New-EC2DHCPOption -DhcpConfiguration $Domain, $DNS, $NTP, $NetBios,

$NetBiosType

Register-EC2DhcpOption -DhcpOptionsId $DHCP.DhcpOptionsId -VpcId 'vpc-

57074739'

Note that the DHCP configuration is associated with a VPC rather than a subnet.

You cannot have a different configuration in each subnet. If you choose to use your

own DNS or other service, it is a good idea to launch more than one of each service

for high availability. For instance, you might have two AD servers. One uses IP

192.168.2.10, and one uses 192.168.12.10. To configure this, just include both in the

Options array. For example:

$Domain = New-Object Amazon.EC2.Model.DhcpConfiguration

$Domain.Key = 'domain-name'

$Domain.Value = 'brianbeach.com'

$DNS1 = New-Object Amazon.EC2.Model.DhcpConfiguration

$DNS1.Key = 'domain-name-servers'

$DNS1.Value = '192.168.2.10'

$DNS2 = New-Object Amazon.EC2.Model.DhcpConfiguration

$DNS2.Key = 'domain-name-servers'

$DNS2.Value = '192.168.12.10'

$DHCP = New-EC2DHCPOption -DhcpConfiguration $Domain, $DNS1, $DNS2

In the preceding example, note that not all options are required. You can choose to

configure only some options. If you choose to omit DNS, be sure to include a reference

to AmazonProvidedDNS or you will not be able to resolve any DNS names. Here is an

example if you want to change the default domain name, but use Amazon’s DNS:

$Domain = New-Object Amazon.EC2.Model.DhcpConfiguration

$Domain.Key = 'domain-name'

$Domain.Value = 'brianbeach.com'

$DNS = New-Object Amazon.EC2.Model.DhcpConfiguration

$DNS.Key = 'domain-name-servers'

$DNS.Value = 'AmazonProvidedDNS'

$DHCP = New-EC2DHCPOption -DhcpConfiguration $Domain, $DNS

In the next section, we will cover one of the most popular VPC features, as it allows

connectivity of multiple VPCs, either within region or across regions.

ChapTEr 5 VIrTual prIVaTE Cloud

104

 VPC Peering
Since the first book was written, there have been a lot of VPC service features and

enhancements released. One of such features is the support for VPC Peering, which

allows two VPCs to communicate as if they were part of the same network. These peering

connections can be within the same AWS region or AWS accounts, different regions or

accounts. One benefit for using a VPC Peering connection is that the connectivity does

not use a customer managed component; instead, all network traffic uses the AWS

networking backbone which eliminates a single point of failure or bandwidth bottlenecks.

To get started with creating a VPC Peering connection between two VPCs, we first

need to make sure the prerequisites for setting up the connection are met. These are

some of the most important prerequisites, although these may change depending on

your network configuration and requirements:

• Ensure you don’t have overlapping CIDR blocks, as they are not

supported.

• IAM user with the privileges to create a VPC Peering connection.

In order to provide an example and visualize the creation of a VPC Peering

connection, we will create two new simple VPCs which will be used for the peering.

The first set of commands will create a new VPC in the US-EAST-2 region and create

a new VPC within this region. We will store the newly created variable object of the VPC

into the $VPC2 variable.

Figure 5-8. VPC Peering

ChapTEr 5 VIrTual prIVaTE Cloud

105

Set-DefaultAWSRegion -Region us-east-2

$VPC2 = New-EC2Vpc -CidrBlock '10.0.0.0/16'

$VPC2.VpcId

Once we get the VPC ID and confirm that the new VPC got created successfully,

we can create a subnet within this VPC. As usual, we will store the object of the newly

created subnet in a variable.

$Subnet2a = New-EC2Subnet -VpcId $VPC2.VpcId -CidrBlock '10.0.0.0/24'

-AvailabilityZone 'us-east-2a'

Once this is completed, we will follow the same process to create another VPC

and subnet in the US-WEST-1. As examples, we will use both $VPC3.VpcId and VpcId

directly.

Set-DefaultAWSRegion -Region us-west-1

$VPC3 = New-EC2Vpc -CidrBlock '192.168.0.0/24'

$VPC3.VpcId

$Subnet3a = New-EC2Subnet -VpcId 'vpc-xxxxxxx' -CidrBlock '192.168.0.0/24'

-AvailabilityZone 'us-west-1a'

After both VPCs are created, we can then proceed with configuring the peering

connection. The first step to make this happen is to submit a peering request to the

owner of the destination VPC. Once the request has been made, we will locate the owner

of the target VPC and ask him/her to accept the request.

Set-DefaultAWSRegion -Region us-east-2

New-EC2VpcPeeringConnection -VpcId $VPC3.VpcId -PeerVpcId $VPC2.VpcId

-PeerOwnerId XXXXXXX

Note The peerownerId is for the account Id of the owner of the target VpC. If the
peering connection performed is within the same account, then the account name
for the source VpC must be included. This is also the account that must approve
the peering connection, which is outlined in next section. In the previous section,
ensure the VpC Ids for VpC2 and VpC3 are different and that they reference each
other when creating the peering connection.

ChapTEr 5 VIrTual prIVaTE Cloud

106

If you encounter any issues creating the peering request from PowerShell, go to the

AWS Console and make the request.

Once the request has been submitted, it must be approved from the target VPC

account, from the target region. The approval can either be done from the AWS Console

as shown in Figure 5-9 or by using the following command. Replace the appropriate VPC

Peering connection ID prior to running the following command:

Set-DefaultAWSRegion -Region us-west-1

Approve-EC2VpcPeeringConnection -VpcPeeringConnectionId pcx-XXXXXXXXXX

Accepting the peering request will be equivalent to setting up physical connectivity

between these two networks. After it has been set up, the routing must be configured to

ensure nodes in these networks know how to find the right path for connectivity. In the

following example, I will set up the route from US-WEST-1 to US-EAST-2. The reverse

must also be done, so that both networks can communicate with each other. Reference

the appropriate route table and gateway IDs prior to executing the following command:

New-EC2Route -RouteTableId rtb-XXXXXXXXXX -DestinationCidrBlock 10.0.0.0/24

-GatewayId pcx-XXXXXXXXXX

Note Network access control lists and security groups must be configured to
allow traffic between these two networks. please reference either prior section of
this chapter or Chapter 6 for additional guidance.

Figure 5-9. VPC peering request

ChapTEr 5 VIrTual prIVaTE Cloud

107

One very important thing to remember about VPC Peering connections is that they

are not transitive, meaning, if there are three VPCs, VPC1, VPC2, and VPC3. The fact that

VPC1 and VPC2, and VPC2 and VPC3 are peered does not mean that VPC1 will be able

to communicate with VPC3; all VPCs must be peered individually.

That was a lot of content to get through. I’m glad you made it! At this point your

VPC is complete. In the next chapter, we will launch a few instances into the new

VPC. But, before we do, let’s look at this chapter’s exercises. In the first exercise, we will

build a streamlined script that creates a new VPC identical to the one described in this

chapter. In the second example, we will use a virtual private gateway to connect the

VPC to a local office.

EXERCISE 5.1: CREATING A VIRTUAL PRIVATE CLOUD

In this exercise, we will create an end-to-end script to provision a Virtual private Cloud (see

Figure 5-8). The VpC wizard, available in the Web Console, does a good job of creating a VpC,

but you want more control. In addition, you want the process to run unattended. Therefore, you

decide to script the build in powerShell.

In continuous integration, you want to start fresh to ensure that manual changes made the day

before do not impact the results of testing. In the cloud, we can truly start from the ground up

every day. Imagine how difficult this would be with physical switches and routers. aWS makes

continuous integration really easy.

This exercise will create and configure the VpC shown in Figure 5-10. I assume our application

is a simple web application with a SQl Server database. The script will create a public subnet

for the web server and a private subnet for the SQl Server. Note that the script will not launch

the instances. We will build on this recipe in later chapters. here are the main components of

our script:

• Create a VpC

• Create a dhCp option set

• Create subnets

• add an Internet gateway

• Configure a routing table

• Configure aCls

ChapTEr 5 VIrTual prIVaTE Cloud

108

our script takes a few parameters. First, it requires a domain name (e.g., brianbeach.com).

Second, it takes the CIdr range of the VpC and two subnets.

param

(

 [string][parameter(mandatory=$true)]$DomainName,

 [string][parameter(mandatory=$false)]$VPCCIDR = '192.168.0.0/16',

 [string][parameter(mandatory=$false)]$PublicSubnetCIDR = '192.168.1.0/24',

 [string][parameter(mandatory=$false)]$PrivateSubnetCIDR = '192.168.2.0/24'

)

Next, we create a new VpC. I wait a few seconds to avoid errors. The following Create Subnet

command will fail if the VpC has not been created.

$VPC = New-EC2Vpc -CidrBlock $VPCCIDR

Start-Sleep -s 15 #This can take a few seconds

Figure 5-10. Simple VPC (Note: Our script will not add instances.)

ChapTEr 5 VIrTual prIVaTE Cloud

109

Then, we configure the dhCp options. here I am using the default dNS provider.

#Configure the DHCP Options

$Domain = New-Object Amazon.EC2.Model.DhcpConfiguration

$Domain.Key = 'domain-name'

$Domain.Value = $DomainName

$DNS = New-Object Amazon.EC2.Model.DhcpConfiguration

$DNS.Key = 'domain-name-servers'

$DNS.Value = 'AmazonProvidedDNS'

$DHCP = New-EC2DHCPOption -DhcpConfiguration $Domain, $DNS

Register-EC2DhcpOption -DhcpOptionsId $DHCP.DhcpOptionsId -VpcId $VPC.VpcId

Now we can create our two subnets. The web servers will be hosted in the public subnet and

have Internet access. The SQl Server will be hosted in the private subnet and will not have

Internet access.

#Pick the first availability zone in the region.

$AvailabilityZones = Get-EC2AvailabilityZone

$AvailabilityZone = $AvailabilityZones[0].ZoneName

#Create and tag the Public subnet.

$PublicSubnet = New-EC2Subnet -VpcId $VPC.VpcId

 -CidrBlock $PublicSubnetCIDR -AvailabilityZone $AvailabilityZone

Start-Sleep -s 15 #This can take a few seconds

$Tag = New-Object Amazon.EC2.Model.Tag

$Tag.Key = 'Name'

$Tag.Value = 'Public'

New-EC2Tag -ResourceId $PublicSubnet.SubnetId -Tag $Tag

#Create and tag the Private subnet.

$PrivateSubnet = New-EC2Subnet -VpcId $VPC.VpcId

 -CidrBlock $PrivateSubnetCIDR -AvailabilityZone $AvailabilityZone

Start-Sleep -s 15 #This can take a few seconds

$Tag = New-Object Amazon.EC2.Model.Tag

$Tag.Key = 'Name'

$Tag.Value = 'Private'

New-EC2Tag -ResourceId $PrivateSubnet.SubnetId -Tag $Tag

ChapTEr 5 VIrTual prIVaTE Cloud

110

Now, we add an Internet gateway and configure the route table.

#Add an Internet Gateway and attach it to the VPC.

$InternetGateway = New-EC2InternetGateway

Add-EC2InternetGateway -InternetGatewayId $InternetGateway.InternetGatewayId

-VpcId $VPC.VpcId

#Create a new routeTable and associate it with the public subnet

$PublicRouteTable = New-EC2RouteTable -VpcId $VPC.VpcId

New-EC2Route -RouteTableId $PublicRouteTable.RouteTableId

-DestinationCidrBlock '0.0.0.0/0'

 -GatewayId $InternetGateway.InternetGatewayId

$NoEcho = Register-EC2RouteTable -RouteTableId $PublicRouteTable.RouteTableId

 -SubnetId $PublicSubnet.SubnetId

Finally, we configure the aCls.

#Create a new Access Control List for the public subnet

$PublicACL = New-EC2NetworkAcl -VpcId $VPC.VpcId

New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 50

 -CidrBlock $VPCCIDR -Egress $false -PortRange_From 80

 -PortRange_To 80 -Protocol 6 -RuleAction 'Deny'

New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 50

 -CidrBlock $VPCCIDR -Egress $true -PortRange_From 49152

 -PortRange_To 65535 -Protocol 6 -RuleAction 'Deny'

New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 100

 -CidrBlock '0.0.0.0/0' -Egress $false -PortRange_From 80

 -PortRange_To 80 -Protocol 6 -RuleAction 'Allow'

New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 100

 -CidrBlock '0.0.0.0/0' -Egress $true -PortRange_From 49152

 -PortRange_To 65535 -Protocol 6 -RuleAction 'Allow'

New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 200

 -CidrBlock $PrivateSubnetCIDR -Egress $true -PortRange_From 1433

 -PortRange_To 1433 -Protocol 6 -RuleAction 'Allow'

New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 200

 -CidrBlock $PrivateSubnetCIDR -Egress $false -PortRange_From 49152

 -PortRange_To 65535 -Protocol 6 -RuleAction 'Allow'

New-EC2NetworkAclEntry -NetworkAclId $PublicACL.NetworkAclId -RuleNumber 300

 -CidrBlock '0.0.0.0/0' -Egress $false -PortRange_From 3389

 -PortRange_To 3389 -Protocol 6 -RuleAction 'Allow'

ChapTEr 5 VIrTual prIVaTE Cloud

111

#Associate the ACL to the public subnet

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'vpc-id'

$VPCFilter.Value = $VPC.VpcId

$DefaultFilter = New-Object Amazon.EC2.Model.Filter

$DefaultFilter.Name = 'default'

$DefaultFilter.Value = 'true'

$OldACL = (Get-EC2NetworkAcl -Filter $VPCFilter, $DefaultFilter)

$OldAssociation = $OldACL.Associations | Where-Object { $_.SubnetId -eq

$PublicSubnet.SubnetId }

$NoEcho = Set-EC2NetworkAclAssociation -AssociationId $OldAssociation.

NetworkAclAssociationId

 -NetworkAclId $PublicACL.NetworkAclId

#Log the most common IDs

Write-Host "The VPC ID is" $VPC.VpcId

Write-Host "The public subnet ID is" $PublicSubnet.SubnetId

Write-Host "The private subnet ID is" $PrivateSubnet.SubnetId

as you can see, it is easy to create and re-create a VpC. The examples in the next chapter will

build on this VpC. Feel free to use the script to create a new VpC for each exercise in Chapter 6.

In the next example, we will build a new VpC that is attached to our corporate network.

EXERCISE 5.2: CREATING A VIRTUAL PRIVATE GATEWAY

In this exercise, we will use a VpN connection to extend a company’s private network directly

to the VpC. This will allow you to connect to the private instance in your VpC and allow VpC

instances to access resources on your local network. We will create a virtual private gateway

and connect our offices to amazon using an IpSec tunnel.

Figure 5-11 provides an overview of the configuration. our corporate laN is using the

private Ip range 10.0.0.0/0. We have decided to allocate a section of this, 10.200.0.0/16, for

use at aWS.

ChapTEr 5 VIrTual prIVaTE Cloud

112

I’m going to assume that you know how to create the VpC, subnets, and so on. let’s get right

to configuring the VpN connection. Note that you will be charged for the VpN connection as

soon as you create the virtual private gateway, even if you never connect the local side of the

VpN connection.

The first step is describing your customer gateway to aWS. The customer gateway is your

side of the tunnel. If you have multiple office locations, you can connect up to five customer

gateways to each VpC. You need to tell aWS your public Ip address to connect to and the

type of tunnel you want to create. at this time, IpSec is the only type of tunnel supported. The

powerShell command is New-EC2CustomerGateway.

$CustomerGateway = New-EC2CustomerGateway -Type 'ipsec.1' -IpAddress

'198.51.100.12'

The next thing you need to do is to create the virtual private gateway. This is amazon’s side of

the tunnel. You simply tell aWS which availability zone to use and the type of tunnel you want

to create. Then you attach it to an existing VpC.

$VpnGateway = New-EC2VpnGateway -Type 'ipsec.1' -AvailabilityZone

$AvailabilityZone

Add-EC2VpnGateway -VpnGatewayId $VpnGateway.VpnGatewayId -VpcId $VpcId

Figure 5-11. VPC with a virtual private gateway

ChapTEr 5 VIrTual prIVaTE Cloud

113

Now that we have both sides of the tunnel established, we create a new connection between

them by calling New-EC2VpnConnection. You need to pass the Id of the customer gateway

and the virtual private gateway as well as passing the type of tunnel one more time.

$VPNConnection = New-EC2VpnConnection -Type 'ipsec.1' -CustomerGatewayId

 $CustomerGateway.CustomerGatewayId -VpnGatewayId $VpnGateway.

VpnGatewayId

 -StaticRoutesOnly $true

Note that I have configured this tunnel to use static routes. This means that you need to tell

aWS what networks are available on your side of the tunnel. You could also use dynamic

routing and allow Border Gateway protocol (BGp) to learn the routes. BGp is beyond the scope

of this book.

Before we can add static routes, we need to wait for the configuration to complete. I am using

the following loop to wait for the VpN connection to come online.

While ($VPNConnection.VpnConnectionState -eq 'pending') {

 #Wait for the VPN connection to become available

 Start-Sleep -s 15

 $VPNConnection = Get-EC2VpnConnection

 -VpnConnectionId $VPNConnection.VpnConnectionId

}

Now that the tunnel is up, we have to configure the static routing. We need to tell aWS that the

rest of the private network is available on the other side of the tunnel. The following rule tells

aWS that it can find the 10.0.0.0/8 network by sending traffic over the tunnel. Note that aWS

already knows that 10.200.0.0/16 is the local network. remember that the most specific route

(the one with the largest number after the slash) is chosen first.

New-EC2VpnConnectionRoute -VpnConnectionId $VPNConnection.VpnConnectionId

 -DestinationCidrBlock '10.0.0.0/8'

We could also choose to have traffic from our private instances bound for the Internet go over

the tunnel rather than using a NaT gateway from the prior section. The benefit of this is that

we can configure the traffic to use all of existing network appliances such as black lists, data

loss prevention, and so on. The downside is that we introduce a lot of latency, specifically

when accessing an Internet address hosted in the amazon data center such as S3.

New-EC2VpnConnectionRoute -VpnConnectionId $VPNConnection.VpnConnectionId

 -DestinationCidrBlock '0.0.0.0/0'

ChapTEr 5 VIrTual prIVaTE Cloud

114

The last thing we need to do is configure the route tables for the individual subnets in our VpC.

let’s assume that we want our private instances to access the public Internet over the VpN

tunnel and our public instances to use the Internet gateway. Both subnets will have access to

the rest of the private network over the VpN tunnel.

My private route table looks like this. Note that the default route (0.0.0.0/0) is pointed to the

virtual gateway.

(Get-EC2RouteTable -RouteTableId $PrivateRouteTableID)[0].routes | Format- Table

===

DestinationCidrBlock GatewayId InstanceId State

-------------------- --------- ---------- ------

10.200.0.0/16 local active

10.0.0.0/8 vgw-e424c48d active

0.0.0.0/0 vgw-e424c48d active

and, my public route table looks like this. Note that the default route (0.0.0.0/0) is pointed to

the Internet gateway.

(Get-EC2RouteTable -RouteTableId $PublicRouteTableID)[0].routes | Format- Table

===

DestinationCidrBlock GatewayId InstanceId State

-------------------- --------- ---------- ------

10.200.0.0/16 local active

10.0.0.0/8 vgw-e424c48d active

0.0.0.0/0 igw-79095f17 active

of course, you would want to configure your aCls as well, but I think we have spent enough

time on aCls in the chapter. I’ll leave that up to you.

please note that the preceding VpN configuration is for amazon. You will also need to configure

your side of the tunnel on whatever device you are using. The process is different on each

device type, but amazon will help you by autogenerating a script for common hardware types.

From the Web Console, go to the VpN service, click VpN connection from the left navigation,

and click the download Configuration button. Now choose your hardware configuration (see

Figure 5-12) and click “Yes, download” to download a script for your device.

ChapTEr 5 VIrTual prIVaTE Cloud

115

once the VpN tunnel is established, you will be able to communicate with the aWS instances

as if they were on the local network.

 Summary
In this chapter, we learned about networking with AWS. We learned to create a VPC,

add subnets, control how traffic is routed and filtered, and even how to connect two

VPCs in different regions. As you can see, VPC is very powerful and very simple.

You can quickly build network topologies that would take weeks to implement with

physical equipment.

In addition, we saw how easy it was to script the build. When used with continuous

integration, a scripted VPC can be used to wipe and rebuild the entire environment on a

daily basis.

In the next chapter, I will show you how to launch instances into our new VPC

and manage their behavior. We will learn how to configure IP addresses and network

interfaces and security groups. Grab a cup of coffee and keep reading!

Figure 5-12. Downloading a VPN configuration for your local device

ChapTEr 5 VIrTual prIVaTE Cloud

117
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_6

CHAPTER 6

Advanced Instance
Management
In the last chapter, we learned how to create a Virtual Private Cloud (VPC) and specify

our network topology. In this chapter, we are going to build on the VPC concepts

by discussing how we can configure our instances in a VPC.

Before launching our instances, we first need to understand and configure the

appropriate security groups. Security groups protect the Elastic Network Interface (ENI)

attached to each of our instances, which is how they differ from the network access

control lists (ACLs) discussed in Chapter 5.

In this chapter, we are going to learn how to create and manage rules, discuss the

differences between security groups and traditional firewalls, and walk through the

process of adding servers to a security group.

Once we have our security groups configured, we can launch our instances into

one of our VPCs. We will discuss managing private IP addresses and assigning public

IP addresses. Finally, we will wrap up the chapter with a look at creating, attaching, and

managing Elastic Network Interfaces (ENIs).

 Managing Security Groups
A security group is a stateful virtual firewall that protects the ENI attached to our

instance. Traditionally, firewalls protect trusted networks from untrusted ones, creating

security zones. For example, a firewall protects our private network from the Internet,

but the machines on the private network may have no restrictions when communicating

with others on that same private network.

118

In recent years, firewall costs have decreased dramatically, and we have begun to

use them to protect much smaller segments of our networks. For example, we may use a

firewall to separate the finance department from the rest of the organization or to protect

a single application that hosts sensitive data.

Amazon EC2 security groups take this idea to the next level. An EC2 security group is

similar to having a firewall in front of each network interface attached to our instances.

No two instances can communicate without traversing that firewall, not even if they are

in the same subnet or security group. In other words, the security group is part of our

instances network interface, rather than part of the network itself. We can even attach

multiple ENIs to our instances, each with multiple security groups associated with it!

Our security group allows us to control the flow of traffic to and from our instances.

This includes controlling the type of traffic (e.g., TCP, UDP, or ICMP) allowed, port ranges

to allow, and the source and destination addresses permitted to communicate.

We refer to the rules controlling traffic flow into our instances as ingress (inbound)

rules, while the rules controlling the traffic flowing away from our instances are called

egress (outbound) rules. When we define our security group rules later, we will see

the terms ingress and egress used to describe these inbound and outbound rules,

respectively.

Note While there were security groups in EC2 Classic, you could only filter
inbound traffic. With VPC, security groups filter both inbound and outbound traffic.

When we launch a new instance using PowerShell and do not specify a security

group, the instance will be associated with our default security group. The default group

allows an instance to communicate freely with any other instance in the same default

security group. It does this because the security group itself is included in the inbound

rules for all protocols over any port. In order to connect to our new instance using RDP,

we will need to add an inbound (or ingress) rule allowing incoming connections over the

RDP port (3389).

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

119

Caution If you use the Create EC2 Instance Wizard in the aWs Management
Console, it will give you an option to create a new security group for each instance
or select an existing group. When choosing the default option to create a new
group, the wizard sets an ingress rule allowing the port to be open to the world
(0.0.0.0/0). You should change this rule before proceeding with the wizard, unless
you truly want it open to the world. It is a good idea to only allow rdP or ssh
connections from trusted IP addresses or network address ranges. so, be sure and
restrict the inbound security group rules when using the wizard.

 Displaying Security Groups
We can find our security groups by opening up the AWS Management Console, finding

the EC2 service, and then looking for the Network & Security heading in the left pane. We

will go ahead and start by looking at our default security group. In Figure 6-1 you can see

that there is only one inbound rule.

Notice that this inbound rule allows all traffic, for all protocols, on any port from the

security group sg-b3c79dd7, the same security group we are already looking at. In other

words, this rule allows any instance in the security group to communicate with any other

instance in the group. The security group blocks other inbound traffic by default.

Figure 6-1. Inbound security group rules

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

120

Now we will look at the outbound rules in Figure 6-2. Again, there is only a single

rule. This rule allows outbound traffic for any protocol, on any port, to any destination.

Specifically, the security group allows all outbound traffic by default.

Unlike traditional firewall rules, we are not specifying individual instances by

IP address. In fact, we might not even have an instance in our VPC yet. The security

architect can define all of the rules necessary before adding instances. We can then give

developers permission to add instances to security groups that have been predefined,

and our developers will not have to wait for a change request approval to open the

firewall ports later.

Returning to PowerShell, we can list the security groups using the Get- EC2Security

Group command.

Get-EC2SecurityGroup | Select-Object Description, GroupId | Format-Table

This command returns a list of security groups for all our VPCs.

Description GroupId

----------- -------

default VPC security group sg-b3c79dd7

Now, take note of your specific GroupID for the default VPC. In the next section, we

will use that GroupID to modify the security group.

Figure 6-2. Outbound security group rules

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

121

 Adding and Removing Rules
We are now going to add an inbound rule to our default VPC security group, allowing us

to access our Windows instances with Remote Desktop Protocol (RDP).

To add inbound rules to the group, we use the now-common pattern of creating a

.Net object to describe the rule and then call Grant-EC2SecurityGroupIngress.

Tip the IpRanges property expects IP ranges specified with CIdr notation.
While the FromPort and ToPort properties specify a range of destination ports,
not the source and destination port.

RDP runs on TCP port 3389; therefore, the PowerShell command is the following:

$RDPRule = New-Object Amazon.EC2.Model.IpPermission

$RDPRule.IpProtocol='tcp'

$RDPRule.FromPort = 3389

$RDPRule.ToPort = 3389

We could use '0.0.0.0/0' and open up traffic to the whole world, but we should

take a more secure and least access approach by narrowing down the range needed

for our environment. To do this, we would use a specific IP address or subnet range for

IpRanges.

For this next example, use your IP address to set the IP range. Replace the IP address

in the following CIDR with your specific IP address:

$RDPRule.IpRanges = '99.86.37.184/32'

Tip If you do not know your IP address, you can try searching google for “My IP
address,” and google will display your outbound IP address.

However, if we really needed to open up this rule to the whole world (or entire

Internet), then we could use that special '0.0.0.0/0' value.

$RDPRule.IpRanges = '0.0.0.0/0'

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

122

Caution Using '0.0.0.0/0' for the IpRanges property goes against
numerous best practices since you are enabling all IP addresses on the Internet
to access that port on your instance. For rdP and ssh, the recommendation is
always to limit the exposure of these ports to only those who need the access.
While opening up these ports may be needed for a short time during testing,
troubleshooting, or development, when it comes to your production configuration,
you will want to authorize only trusted IP addresses or subnet ranges to access
these ports on your instances.

Now that we have defined our IpPermission object, we can create our ingress rule:

Note replace the security group Id in the following examples with your own
specific security group Id.

Grant-EC2SecurityGroupIngress -GroupId 'sg-b3c79dd7' -IpPermissions $RDPRule

The process to add an outbound rule is almost identical, but we would use the

Grant-EC2SecurityGroupEgress command. Note that there is no need to add outbound

rules because the default group already allows all traffic outbound.

Grant-EC2SecurityGroupEgress -GroupId 'sg-b3c79dd7' -IpPermissions $RDPRule

We can easily create a security group using the New-EC2SecurityGroup command.

For example, if we were developing a web application, we might create a security group

allowing HTTP and HTTPS requests from the Internet.

Note replace the VPC Id in the following example with your own specific VPC Id.

$GroupId = New-EC2SecurityGroup -VpcId 'vpc-881acde9' -GroupName 'Web'

-GroupDescription

 "Allows HTTP/S traffic from the internet."

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

123

New security groups allow all outbound traffic by default, but do not allow any

inbound traffic. With this rule, we will allow any IP address to reach our instance using

TCP over ports 80 (HTTP) and 443 (HTTPS):

$HTTPRule = New-Object Amazon.EC2.Model.IpPermission

$HTTPRule.IpProtocol='tcp'

$HTTPRule.FromPort = 80

$HTTPRule.ToPort = 80

$HTTPRule.IpRanges = '0.0.0.0/0'

$HTTPSRule = New-Object Amazon.EC2.Model.IpPermission

$HTTPSRule.IpProtocol='tcp'

$HTTPSRule.FromPort = 443

$HTTPSRule.ToPort = 443

$HTTPSRule.IpRanges = '0.0.0.0/0'

Grant-EC2SecurityGroupIngress -GroupId $GroupId -IpPermissions $HTTPRule,

$HTTPSRule

We can also remove inbound and outbound rules using Revoke- EC2Security

GroupIngress and Revoke-EC2SecurityGroupEgress, respectively. For example, we

might want to remove the default rule that allows all outbound traffic from our web

group.

Unlike ACLs, security groups are stateful, so we do not need rules explicitly allowing

return traffic. Our security group knows that the originating HTTP request is going

to have a corresponding response and will automatically allow it. We only need the

outbound rule when the instance is acting as the client, surfing the Web, or downloading

software. For our new group, we want to prevent any unauthorized outbound traffic from

our instance. Therefore, we will not need the default outbound rule and will remove it.

$Rule = New-Object Amazon.EC2.Model.IpPermission

$Rule.IpProtocol='-1'

$Rule.IpRanges = '0.0.0.0/0'

Revoke-EC2SecurityGroupEgress -GroupId $GroupId -IpPermissions $Rule

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

124

Note We used an IpProtocol of "-1", which means all protocols. We can
create security group rules by either specifying the name or IP protocol number,
for example, ICMP (protocol 1), tCP (protocol 6), and UdP (protocol 17). For
convenience, we can use the name or the number for these common protocols.
however, for less common protocols, we must specify the protocol number.

As we saw in Figure 6-1, we can create rules based on other security groups. For

example, imagine our web application has an SQL database. The web servers must

be able to access the SQL Server. However, the number of web servers will change

throughout the day depending on the load.

For this scenario, we will create a new SQL group for our SQL Servers.

Note replace the VPC and security group Ids in the following example with your
own specific Ids.

 $GroupId = New-EC2SecurityGroup -VpcId vpc-881acde9 -GroupName SQL

-GroupDescription

 "Allows SQL Queries from the web server."

Next, we need to create a UserIdGroupPair object to hold our security group ID.

$WebGroup = New-Object Amazon.EC2.Model.UserIdGroupPair

$WebGroup.GroupId = 'sg-0c3b9863'

Then we will grant access to any instance in the web security group we created. Since

we are using Microsoft SQL Server, we will specify TCP port 1433.

$SQLRule = New-Object Amazon.EC2.Model.IpPermission

$SQLRule.IpProtocol='tcp'

$SQLRule.FromPort = 1433

$SQLRule.ToPort = 1433

$SQLRule.UserIdGroupPair = $WebGroup

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

125

Finally, we pass the GroupId and $SQLRule to Grant-EC2SecurityGroupIngress in

order to apply the rule to the security group.

Grant-EC2SecurityGroupIngress -GroupId $GroupId -IpPermissions $SQLRule

With this new security group in place, all we have to do is add new web servers to

our web security group and AWS will allow our instances to communicate with the

SQL Server. When launching new instances, there is no need to update the security

group rules.

Before we close this section, we should look at a scenario where we might want to

create an ICMP rule, for example, being able to ping all of our instances from outside of

our VPC.

Caution allowing ping from outside a VPC is not recommended and poses a
security risk, but is covered here to illustrate how ICMP rules work.

Say we like throwing caution to the wind and decide to add a new rule to our default

security group allowing ICMP Echo Request messages from anywhere. ICMP uses

message types rather than ports. To enable an ICMP message, you use an IpProtocol of

"icmp" and then put the message type in FromPort. For example, an ICMP Echo Request

is message type 8. Note that the ToPort is not used and should be set to -1.

In this section, we discussed security groups and security group rules. We learned

how a security group is similar in concept to a firewall, but in reality, the rules apply to an

instances network interface rather than the network segment. Finally, we looked at how

we can add or remove various security group rules to fit the needs of our applications.

Now, we will move on to launching an instance into our VPC.

 Launching Instances into a VPC
VPC gives us considerable control over network configuration of our EC2 instances. We

are going to start by launching a new instance into the VPC we created in Chapter 5. If

you have not created a VPC, use the script from Exercise 5.1.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

126

We are going to begin by looking at the Launch Instance Wizard. From the Amazon

EC2 Console, when we click the Launch Instance button, it takes us into the Launch

Instance Wizard. On the third step, Configure Instance Details, if we select a specific

subnet, a new Network Interfaces section appears. Notice the network configuration

options shown in Figure 6-3. This section allows us add additional network interfaces to

our instance. It also allows us to choose a subnet and specify an IP address. In addition,

we can add secondary IP addresses to our instance.

Launching an instance into our VPC with PowerShell is almost how we launched

an instance in Chapter 3. Once again, we will use the New-EC2Instance command, but

this time we add one new parameter: the ID of the subnet to launch our instance in.

Note that we can only connect with RDP to instances in a public subnet, so we will use a

public subnet here.

Note Key pair names are case sensitive.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType

't2.micro' -SubnetId subnet-7922ea18

That is all it takes to launch an instance into our VPC. The instance we just launched

has a random public IP address assigned by EC2, along with a randomly assigned private

IP address for use within our VPC. This private IP falls within the CIDR range of the

subnet we specified and is assigned using DHCP.

Figure 6-3. Network options in the Launch Instances Wizard

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

127

If we need to control the private IP address of the instance, we can specify an IP

address to set at launch, using the PrivateIPAddress parameter. This is similar to setting

a static DHCP address (or DHCP reservation).

Note Your private IP range might be different.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType

't2.micro' -SubnetId subnet-7922ea18 -PrivateIpAddress 192.168.1.5

Note that the IP address must fall within the CIDR range configured within the

subnet and is immutable. We can set it when launching a new instance, but cannot

change it once the instance is running. Also, remember that the first four IP addresses

and the last IP address of each subnet are reserved.

Of course, we can also select existing security groups when launching an instance.

As we can see in Figure 6-4, when we choose to select an existing security group, we have

the option of selecting more than one group. For example, we can associate our new

instance to the web and default groups that we discussed earlier. Our web group allows

HTTP traffic and our default group allows RDP.

Figure 6-4. Security groups in the Launch Instance Wizard

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

128

To add an instance to a security group using PowerShell, we use the

SecurityGroupId parameter and pass an array of security group IDs.

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType

't2.micro' -SubnetId subnet-7922ea18 -SecurityGroupId sg-b3c79dd7,

sg- 07b5a276da8f0588c

As we have just seen, launching instances into a specific VPC gives us the ability to

control the private network configuration of our instances. We launched an instance into

our public subnet and enabled HTTP and RDP traffic from the Internet using security

groups.

 Subnets and Public IP Addresses
For instances to be public, we launch them in a public subnet (one with a route to the

Internet gateway), and it must have a public IP address associated with it. Our default

VPC already has both an Internet gateway and subnets that automatically map a public

IP address to our EC2 instance when we launch it.

We can use this public IP address to connect to our instances with RDP. However,

when we stop our instance and restart it, this auto-assigned public IP address will

change. The public IP address changes because EC2 randomly assigns it when

we start our instance. We can look at any of our running EC2 instances and their

PublicIpAddress by examining the RunningInstance property of the Get-EC2Instance

cmdlet:

$RunningInstances = (Get-EC2Instance).RunningInstance

$RunningInstances.PublicIpAddress

EC2 knows when to assign a public IP address because subnets have a property,

MapPublicOnLaunch. This property tells EC2 if it should auto-assign a public IP address

to instances when launched in this subnet. We can also create subnets with this property

set to false, which would result in our instances not getting a public IP address assigned.

This is useful for our database servers, which only need to talk to our frontend web

servers. However, keep in mind, to RDP (or SSH) to instances with only private IP

addresses, we must use a bastion host (or jump box) that has a public IP and can talk to

our instance via subnet, VPC, and security group configuration.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

129

To view our subnets and see which ones have this property assigned, we can use Get-

EC2Subnet and look at the MapPublicOnLaunch property:

Get-EC2Subnet | Select-Object SubnetId, MapPublicIpOnLaunch

We can see from the output which subnets have the MapPublicIpOnLaunch property

set to true.

SubnetId MapPublicIpOnLaunch

-------- -------------------

subnet-600e232a True

subnet-842dcded True

subnet-59858621 True

When launching a new instance, even if our subnet has the MapPublicOnLaunch

property set to true, we can still choose whether to auto-assign it a public IP or not.

We do that by calling New-EC2Instance and specify $true or $false for the AssociatePublicIp

property:

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType

't2.micro' -SubnetId subnet-7922ea18 -AssociatePublicIp $false

As we talked about before, the public IP address will change when our instance stops

and starts again. There will be times when we need a public IP address that does not

change, for example, when we want to be able to stop and start an instance, but ensure

it always uses the same IP address for RDP, or is associated with a domain name. For

these scenarios, we can use an elastic IP address.

 Managing Elastic IP Addresses
For cases when a random public IP address is not what we need, but would like to

associate a fixed public IP address with our instance, we have the ability to create an

Elastic IP (EIP) address.

AWS uses Network Address Translation (NAT) to map traffic between the private IP

and the EIP. The NAT is implemented in the Internet gateway.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

130

To create an EIP address, we use New-EC2Address and specify VPC for the Domain

property, which tells EC2 that we are going to use the EIP in a VPC rather than with EC2

Classic. For example:

$EIP = New-EC2Address -Domain vpc

EC2 will randomly assign an EIP. In order to associate the EIP to our instance, we use

the Register-EC2PrivateIpAddress cmdlet.

Note replace InstanceId with your own Instance Id.

Register-EC2Address -InstanceId i-1234567890 -AllocationId $EIP.

AllocationId

LOGGING INTO A VPC INSTANCE

at this point, we have learned that we can open the aWs Web Console, decrypt our password

using our key pair, and click the connect link to log into our instance using remote desktop. If

this does not sound familiar, jump back to Chapter 3 and review.

If you have any issues, walk through these troubleshooting steps:

 1. Check your VPC, and make sure it has an Internet gateway.

 2. the public subnet has a route to the Internet gateway.

 3. the subnet has an aCL allowing rdP in from the Internet.

 4. the subnet has an aCL allowing a reply in from the ephemeral ports.

 5. the instance is in a public subnet.

 6. the default security group allows rdP in from your computer or the Internet.

 7. the instance is a member of the default security group.

 8. the instance has either a public IP or an EIP address assigned.

VPC is a powerful feature that gives you a lot of control over your environment, but as a result,

it can also be complicated. If you run into trouble seting up new VPCs initially, don’t worry, you

will get very good at diagnosing issues as you learn more about VPCs.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

131

It is common to reassign an EIP as part of a disaster recovery plan. If the EIP is

already associated with another instance, EC2 returns an error when we try to reassign it.

We can avoid this error by passing $true to the AllowReassign attribute, which allows us

to reassign an EIP that is assigned to another instance.

Register-EC2Address -InstanceId i-1234567890 -AllocationId $EIP.

AllocationId

 -AllowReassociation:$true

We can remove the EIP address from an instance using the Unregister-EC2Address

command. First, we get a reference to the EIP using Get-EC2Address. Then, we call

Unregister-EC2Instance and pass the association ID.

Note specify the public IP for your specific EIP.

$EIP = Get-EC2Address -PublicIp '54.208.194.131'

Unregister-EC2Address -AssociationId $EIP.AssociationId

Caution aWs charges a small hourly fee for any EIP that is not associated with a
running instance.

If you no longer need an EIP or intend to stop your instance for a while, consider

disassociating the EIP by using the Remove-EC2Address command to avoid paying any

extra fees.

$EIP = Get-EC2Address -PublicIp '54.208.194.131'

Remove-EC2Address -AllocationId $EIP.AllocationId -Force

Now that we know how to manage our IP addresses, we will look more closely at

private IP addresses. As you will see in the next section, spending a little extra time

planning can make your application easier to manage.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

132

 Managing Private IPs
In the previous sections, we referred to the private IP as an attribute of an instance. This

was oversimplification. In reality, an instance can have many network interfaces and

each interface can have many IP addresses. We will look at adding network interfaces in

the next section. For now, we will focus on IP addresses.

When AWS displays the private IP address of an instance, we see the first IP address

of the first network interface. Earlier, we discussed we could not change the private IP

address of an instance. Specifically, this means we can not change the first IP address

of a network interface. What we can do, however, is add additional IP addresses to an

interface.

One common use is for disaster recovery. We could easily move a secondary IP

between instances. If we have a critical application that relies on a single instance, we

might want to keep a second instance on standby. If we detect a failure on our primary

instance, we could then move the IP address to a secondary instance.

To add a secondary IP address to an instance, first we must find the network

interface. All of the network interfaces are available from the NetworkInterfaces

property of the Instance object.

$Reservation = Get-EC2Instance -Instance i-b67722cd

$Instance = $Reservation.RunningInstance[0]

$ENI = $Instance.NetworkInterfaces[0]

Now that we have the network interface, we can use the Register-

EC2PrivateIpAddress method to add a secondary IP address. For example:

Note When specifying a private IP address, you must use a valid IP address
within the subnet range associated with your EnI.

Register-EC2PrivateIpAddress -NetworkInterfaceId $ENI.NetworkInterfaceId

 -PrivateIpAddresses '192.168.1.6'

Unfortunately, DHCP will not configure secondary IP addresses. In order to use

secondary IPs, you must disable DHCP and configure the network interface manually.

Luckily, there are PowerShell commands for this. The following example will configure

an instance with a static network configuration.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

133

Note Log in to the instance to configure and execute these commands locally.

#Disable DHCP

Set-NetIPInterface -InterfaceAlias 'Ethernet' -Dhcp Disabled

#Configure the primary IP

New-NetIPAddress -InterfaceAlias 'Ethernet' -IPAddress '192.168.1.5'

-PrefixLength 24

 –DefaultGateway '192.168.1.1'

#Configure DNS

Set-DnsClientServerAddress -InterfaceAlias 'Ethernet' -ServerAddresses

'192.168.0.2'

#Add the secondary IP address

New-NetIPAddress -InterfaceAlias 'Ethernet' -IPAddress '192.168.1.6'

-PrefixLength 24

Caution static network configurations can be dangerous. You must be careful
to ensure that the IP addresses assigned within Windows match those assigned
in aWs. remember that EC2 implements security groups at the network interface
attached to the instance. this means that if you assign a different IP address, the
security groups may not allow traffic to flow to the instance. taking a snapshot
before manually configuring the security groups is highly recommended to give
yourself a way to back out any breaking changes.

Now that we know how to manage IP addresses, let’s take a closer look at the network

interfaces.

 Managing Elastic Network Interfaces
As we have covered so far, an EC2 instance can have multiple network interfaces.

Amazon calls these interfaces Elastic Network Interfaces (ENIs). The maximum number

of interfaces varies with the instance type. Unlike secondary IP addresses, we can assign

different subnets to each network interface. See Figure 6-5.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

134

Every instance has at least one ENI, but we can add additional interfaces when

launching an instance. Remember that the SubnetId, PrivateIpAddress, and

SecurityGroupId attributes of the New-EC2Instance command act on the default

ENI. We cannot use these parameters to launch instances with multiple interfaces.

If we want to add multiple interfaces to an instance, we would use a .Net object to

describe them. Then, we pass an array of interfaces to the New-EC2Instance command

using the NetworkInterfaces attribute. Each ENI has its own IP address and can be in

a different subnet. In addition, each ENI can be in a different set of security groups. To

launch the instance pictured in Figure 6-5, I used the following PowerShell script:

$ENI0 = New-Object Amazon.EC2.Model.InstanceNetworkInterfaceSpecification

$ENI0.PrivateIpAddress = '192.168.1.10'

$ENI0.SubnetId = 'subnet-7922ea18'

Figure 6-5. A multihomed instance

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

135

$ENI0.DeviceIndex = 0

$ENI0.Groups.Add('sg-e775d688')

$ENI1 = New-Object Amazon.EC2.Model.InstanceNetworkInterfaceSpecification

$ENI1.PrivateIpAddress = '192.168.2.10'

$ENI1.SubnetId = 'subnet-2f22ea4e'

$ENI1.DeviceIndex = 1

$ENI1.Groups.Add('sg-e775d688')

$AMI = Get-EC2ImageByName -Name 'WINDOWS_2016_BASE'

New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey' -InstanceType

't2.micro' -NetworkInterfaces $ENI0, $ENI1

Unfortunately, the reservation returned from New-EC2Instance does not include the

network interfaces. The command returns asynchronously, and it takes a few seconds

for the interfaces to attach. To see the details, we will have to wait a few seconds and then

run Get-EC2Instance to refresh our copy of the metadata. For example:

$Reservation = Get-EC2Instance -Instance i-b67722cd

$Instance = $Reservation.RunningInstance[0]

$Instance.NetworkInterfaces | Format-Table

This command returns

NetworkInterfaceId SubnetId MacAddress PrivateIpAddress

------------------ --------------- ---------------- ----------------

eni-cc478fad subnet-7922ea18 2a:5b:de:70:8... 192.168.1.10

eni-cf478fae subnet-2f22ea4e 2a:5b:de:7b:8... 192.168.2.10

If we would like to add an interface to an existing instance, we can. First, we create a

new ENI using the New-EC2NetworkInterface command. Then, attach it to an instance

using the Add-EC2NetworkInterface command. For example:

$NIC = New-EC2NetworkInterface -SubnetId subnet-1619ce77 -PrivateIpAddress

192.168.1.15

 -GroupId sg-d23596bd

Add-EC2NetworkInterface -NetworkInterfaceId $NIC.NetworkInterfaceId

-InstanceId i-c829b8b3

 -DeviceIndex 1

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

136

If we want to remove an ENI, we detach it using Dismount-EC2NetworkInterface.

First, we get the attachment ID and then pass that to the Dismount-EC2NetworkInterface

command.

$NIC = Get-EC2NetworkInterface eni-c00ad7a1

Dismount-EC2NetworkInterface -AttachmentId $NIC.Attachment.AttachmentId

There are a few reasons that we might choose to add multiple interfaces to a server.

On physical machines, we often include multiple interfaces to increase reliability and

bandwidth. In EC2, and all virtual machine environments, the interfaces all share

the same physical interface in the hypervisor. Therefore, there is no real reliability or

bandwidth gain.

Another reason for multiple interfaces is to allow a machine to span multiple

subnets. Again, there are multiple reasons we may choose this. One common practice is

to have a management subnet used for administration and backup that is separate from

the primary subnet. Again, this is likely not valuable with EC2. Security groups allow us

to control administrative traffic, and backups do not use our private network.

We might choose to span subnets to allow our instance to route traffic from one

subnet to another. We could launch an application firewall that does traffic inspection

or data loss prevention. The instance would have an interface in the private and public

subnets, and we would configure the route table to route all Internet traffic through the

application firewall.

Note that if we want use an instance to route traffic, we first must disable the source/

destination check. Typically, AWS will discard any traffic sent to an instance where the

instance’s IP address is not the source or destination. In order for the instance to forward

traffic, we must disable this check. (We will do this in Exercise 6-1.)

Edit-EC2NetworkInterfaceAttribute -NetworkInterfaceId eni-c00ad7a1

-SourceDestCheck:$false

One other reason to use multiple interfaces is disaster recovery. Just as you might

move a secondary IP from the primary to standby instance, you could move the

ENI. There are two advantages of moving an ENI rather than a secondary IP. First, route

tables refer to the interface rather than IP. If your disaster recovery plan involves an

instance that is routing traffic, you should use an ENI. Second, we can use DHCP to

configure multiple ENIs, but not multiple IP addresses on the same interface.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

137

At this point, we know how to manage security groups, private IPs, EIPs, and ENIs.

Finally, let us test our knowledge with a couple of examples.

EXERCISE 6.1: MANAGING PRIVATE INSTANCES

In Chapter 5, we created a private subnet. remember that instances in a private subnet are

not accessible from the Internet. While this is a good security practice, it introduces some new

challenges.

the obvious issue is how we administer the private instances. how do we log in to a private

instance to configure it, debug issues, and so on? One way to address this is to launch a

remote desktop gateway (rdgW) server in the public subnet and use it as a proxy to access

the private instances.

In addition, the private instances are not able to access the Internet. this means that they

cannot connect to the Internet resources to get patches, antivirus definitions, and so on. a

common solution to this problem is to launch a proxy server in the public subnet and configure

the route table to route traffic from the private subnet through this proxy.

Figure 6-6 describes the complete solution. We will launch two new instances in a new

subnet. administrative traffic comes in through the rdP gateway, and outbound web traffic

goes out through the nat gateway.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

138

this example is, by far, the most complicated example in the book. don’t worry if you have to

read through it more than once. We could have simply put all the instances in a public subnet

or left the aCLs and security groups open to all traffic. however, this is a common pattern for

a real-world enterprise VPC architecture. these security controls are very likely to please any

enterprise security architect.

Let’s begin by altering our network configuration. this exercise assumes you already have

a VPC that we can use. If you would like to create a new VPC, and leave your existing ones

alone, use Exercise 5.1 to create one. We are going to add a new public subnet to host our

resources (the nat and rdP gateways) with the CIdr block 192.168.0.0/24.

First, we define a few variables including the VPCId, CIdr block, and the aMIs to use.

Figure 6-6. VPC with a NAT gateway and RDP gateway

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

139

param

(

 [string][parameter(mandatory=$true)]$VPCID,

 [string][parameter(mandatory=$false)]$ResourcesSubnetCIDR =

'192.168.0.0/24',

 [string][parameter(mandatory=$false)]$NAT_AMI,

 [string][parameter(mandatory=$false)]$RDP_AMI

)

If the user does not provide an aMI, let’s assume they want the default nat and Windows

server 2016.

If([System.String]::IsNullOrEmpty($NAT_AMI)){ $NAT_AMI = (Get- EC2ImageByName

-Name 'VPC_NAT')[0].ImageId}

If([System.String]::IsNullOrEmpty($RDP_AMI)){ $RDP_AMI = (Get- EC2ImageByName

-Name 'WINDOWS_2016_BASE')[0].ImageId}

next, we choose an availability zone. We can simply get the first availability zone in the region.

$VPC = Get-EC2VPC -VpcID $VPCID

$AvailabilityZones = Get-EC2AvailabilityZone

$AvailabilityZone = $AvailabilityZones[0].ZoneName

now we create the resources subnet, which will use a route table configured just like the

public subnet that we created in Chapter 5.

$ResourcesSubnet = New-EC2Subnet -VpcId $VPCID -CidrBlock

$ResourcesSubnetCIDR

 -AvailabilityZone $AvailabilityZone

$ResourcesRouteTable = New-EC2RouteTable -VpcId $VPC.VpcId

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'attachment.vpc-id'

$VPCFilter.Value = $VPCID

$InternetGateway = Get-EC2InternetGateway -Filter $VPCID

New-EC2Route -RouteTableId $ResourcesRouteTable.RouteTableId

-DestinationCidrBlock

 '0.0.0.0/0' -GatewayId $InternetGateway.InternetGatewayId

Register-EC2RouteTable -RouteTableId $ResourcesRouteTable.RouteTableId

-SubnetId

 $ResourcesSubnet.SubnetId

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

140

next, we need to configure the aCLs for our new subnet. First, we will allow traffic in to

configure the nat and rdP gateway servers. the nat instance is running Linux and requires

ssh port 22. the rdP instance is running Windows and requires rdP port 3389. In addition,

we need to remember to open the ephemeral ports to allow the return traffic.

$ACL = New-EC2NetworkAcl -VpcId $VPCID

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 100

-CidrBlock

 '0.0.0.0/0' -Egress $false -PortRange_From 22 -PortRange_To 22 -Protocol 6

 -RuleAction Allow

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 110

-CidrBlock

 '0.0.0.0/0' -Egress $false -PortRange_From 3389 -PortRange_To 3389

-Protocol 6

 -RuleAction Allow

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 120

-CidrBlock

 '0.0.0.0/0' -Egress $true -PortRange_From 49152 -PortRange_To 65535

-Protocol 6

 -RuleAction Allow

now, we need to pass through the nat gateway to download patches over httP and

httPs. therefore, we need to allow traffic on 80 and 443 from our private subnets, through

the resources subnet, and out to the Internet.

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 200

-CidrBlock

 $VPC.CidrBlock -Egress $false -PortRange_From 80 -PortRange_To 80

-Protocol 6

 -RuleAction Allow

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 210

-CidrBlock

 $VPC.CidrBlock -Egress $false -PortRange_From 443 -PortRange_To 443

-Protocol 6

 -RuleAction Allow

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 230

-CidrBlock

 $VPC.CidrBlock -Egress $true -PortRange_From 49152 -PortRange_To 65535

-Protocol 6

 -RuleAction Allow

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

141

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 240

-CidrBlock

 '0.0.0.0/0' -Egress $true -PortRange_From 80 -PortRange_To 80 -Protocol 6

 -RuleAction Allow

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 250

-CidrBlock

 '0.0.0.0/0' -Egress $true -PortRange_From 443 -PortRange_To 443

-Protocol 6

 -RuleAction Allow

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 260

-CidrBlock

 '0.0.0.0/0' -Egress $false -PortRange_From 49152 -PortRange_To 65535

-Protocol 6

 -RuleAction Allow

We will also need to allow rdP traffic in through our rdP gateway. the rdP gateway creates

an ssL tunnel (port 443) from the client to the gateway. then it uses rdP (port 3389) from the

gateway to the server. again, we need to remember the ephemeral ports.

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 300

-CidrBlock

 '0.0.0.0/0' -Egress $false -PortRange_From 443 -PortRange_To 443

-Protocol 6

 -RuleAction Allow

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 310

-CidrBlock

 '0.0.0.0/0' -Egress $true -PortRange_From 49152 -PortRange_To 65535

-Protocol 6

 -RuleAction Allow

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 320

-CidrBlock

 $VPC.CidrBlock -Egress $true -PortRange_From 3389 -PortRange_To 3389

-Protocol 6

 -RuleAction Allow

New-EC2NetworkAclEntry -NetworkAclId $ACL.NetworkAclId -RuleNumber 330

-CidrBlock

 $VPC.CidrBlock -Egress $false -PortRange_From 49152 -PortRange_To 65535

-Protocol 6

 -RuleAction Allow

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

142

next, we have to create security groups to protect the instances we are going to launch in the

resources subnet. First, we will create a security group for administration. this will allow ssh

port 22 and rdP port 3389 to configure the servers.

$RDPRule = New-Object Amazon.EC2.Model.IpPermission

$RDPRule.IpProtocol='tcp'

$RDPRule.FromPort = 3389

$RDPRule.ToPort = 3389

$RDPRule.IpRanges = '0.0.0.0/0'

$SSHRule = New-Object Amazon.EC2.Model.IpPermission

$SSHRule.IpProtocol='tcp'

$SSHRule.FromPort = 22

$SSHRule.ToPort = 22

$SSHRule.IpRanges = '0.0.0.0/0'

$AdminGroupId = New-EC2SecurityGroup -VpcId $VPCID -GroupName 'Admin'

-GroupDescription

 "Allows RDP and SSH for configuration."

Grant-EC2SecurityGroupIngress -GroupId $AdminGroupId -IpPermissions $RDPRule,

$SSHRule

second, we will create a security group to allow httP and httPs traffic from anywhere in the

VPC to the nat gateway.

$HTTPRule = New-Object Amazon.EC2.Model.IpPermission

$HTTPRule.IpProtocol='tcp'

$HTTPRule.FromPort = 80

$HTTPRule.ToPort = 80

$HTTPRule.IpRanges = $VPC.CidrBlock

$HTTPSRule = New-Object Amazon.EC2.Model.IpPermission

$HTTPSRule.IpProtocol='tcp'

$HTTPSRule.FromPort = 443

$HTTPSRule.ToPort = 443

$HTTPSRule.IpRanges = $VPC.CidrBlock

$NatGroupId = New-EC2SecurityGroup -VpcId $VPCID -GroupName 'NATGateway'

 -GroupDescription "Allows HTTP/S from the VPC to the internet."

Grant-EC2SecurityGroupIngress -GroupId $NatGroupId -IpPermissions $HTTPRule,

$HTTPSRule

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

143

third, we will create a security group to allow rdP over ssL from the Internet to the rdP

gateway.

$RDPRule = New-Object Amazon.EC2.Model.IpPermission

$RDPRule.IpProtocol='tcp'

$RDPRule.FromPort = 443

$RDPRule.ToPort = 443

$RDPRule.IpRanges = '0.0.0.0/0'

$RdpGroupId = New-EC2SecurityGroup -VpcId $VPCID -GroupName 'RDPGateway'

 -GroupDescription "Allows RDP over HTTPS from the internet."

Grant-EC2SecurityGroupIngress -GroupId $RdpGroupId -IpPermissions $RDPRule

Fourth, we must allow rdP traffic from the rdP gateway to the instances in the default subnet.

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'vpc-id'

$VPCFilter.Value = $VPCID

$GroupFilter = New-Object Amazon.EC2.Model.Filter

$GroupFilter.Name = 'group-name'

$GroupFilter.Value = 'default'

$DefaultGroup = Get-EC2SecurityGroup -Filter $VPCFilter, $GroupFilter

$RDPGatewayGroup = New-Object Amazon.EC2.Model.UserIdGroupPair

$RDPGatewayGroup.GroupId = $RdpGroupId

$RDPRule = New-Object Amazon.EC2.Model.IpPermission

$RDPRule.IpProtocol='tcp'

$RDPRule.FromPort = 3389

$RDPRule.ToPort = 3389

$RDPRule.UserIdGroupPair = $RDPGatewayGroup

Grant-EC2SecurityGroupIngress -GroupId $DefaultGroup.GroupId -IpPermissions

$RDPRule

now we associate the resource subnet we created with the new aCL.

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'vpc-id'

$VPCFilter.Value = $VPCID

$DefaultFilter = New-Object Amazon.EC2.Model.Filter

$DefaultFilter.Name = 'default'

$DefaultFilter.Value = 'true'

$OldACL = (Get-EC2NetworkAcl -Filter $VPCFilter, $DefaultFilter)

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

144

$OldAssociation = $OldACL.Associations | Where-Object { $_.SubnetId -eq

 $ResourcesSubnet.SubnetId }

$NoEcho = Set-EC2NetworkAclAssociation -AssociationId $

 OldAssociation.NetworkAclAssociationId -NetworkAclId $ACL.NetworkAclId

next, we launch a nat gateway to serve as an outbound proxy. a nat gateway is simply a

red hat Linux instance that forwards traffic to the Internet. there are numerous other proxies

available in the aWs marketplace that can do advanced inspection, but they are all relatively

expensive. the nat gateway is offered by amazon as an inexpensive (you pay only for the

instance) solution.

$Reservation = New-EC2Instance -ImageId $NAT_AMI -KeyName 'MyKey'

-InstanceType

 't2.micro' -SubnetId $ResourcesSubnet.SubnetId

$NATInstance = $Reservation.RunningInstance[0]

$Tag = New-Object Amazon.EC2.Model.Tag

$Tag.Key = 'Name'

$Tag.Value = 'NATGateway'

New-EC2Tag -ResourceId $NATInstance.InstanceID -Tag $tag

We must wait for the instance to boot before moving on. this is different from the exercise in

Chapter 3. here we are just waiting for the instance to boot. We do not have to wait for the

initialization to complete and the password to be available.

Start-Sleep -s 60

While ((Get-EC2InstanceStatus -InstanceId $NATInstance.InstanceID).

InstanceState.name

 -ne 'running')

{

 Start-Sleep -s 60

 $NATInstance = (Get-EC2Instance -Instance $NATInstance.InstanceID).

RunningInstance[0]

}

In order for the nat instance to route traffic, we need to disable the source/destination

check on the network interface. Usually an instance must be either the source or

destination of any traffic that it sends or receives. to disable the check, we use the Edit-

EC2NetworkInterfaceAttribute command.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

145

$NIC = $NATInstance.NetworkInterfaces[0]

Edit-EC2NetworkInterfaceAttribute -NetworkInterfaceId $NIC.NetworkInterfaceId

 -SourceDestCheck:$false

next, we assign the instance an EIP. remember that the Internet gateway uses nat to

translate private IP addresses to Internet IP addresses. therefore, traffic from an instance in

a private subnet to the Internet gets translated twice. First, the nat gateway translates the

private IP of the sender to its own private IP. second, the Internet gateway translates from the

private IP of the nat gateway to its corresponding EIP.

$EIP = New-EC2Address -Domain 'vpc'

Register-EC2Address -InstanceId $NATInstance.InstanceID -AllocationId $EIP.

AllocationId

Finally, we find the Main route table for the VPC and set the default route to the nat gateway. I

assume here that all of your private subnets are using the Main route table.

#Find the Main Route Table for this VPC

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'vpc-id'

$VPCFilter.Value = $VPC.VpcId

$IsDefaultFilter = New-Object Amazon.EC2.Model.Filter

$IsDefaultFilter.Name = 'association.main'

$IsDefaultFilter.Value = 'true'

$MainRouteTable = (Get-EC2RouteTable -Filter $VPCFilter, $IsDefaultFilter)

#Replace the default route with reference to the NAT gateway

$MainRouteTable.Routes | Where-Object { $_.DestinationCidrBlock -eq

'0.0.0.0/0'} | %

 {Remove-EC2Route -RouteTableId $MainRouteTable.RouteTableId

-DestinationCidrBlock $_.DestinationCidrBlock -Force}

New-EC2Route -RouteTableId $MainRouteTable.

RouteTableId -DestinationCidrBlock

 '0.0.0.0/0' -InstanceId $NATInstance.InstanceId

that takes care of the outbound traffic. Instances on the private subnets will route their traffic

out through the nat gateway, which will, in turn, route it through the Internet gateway. now

let’s move on to the rdP gateway.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

146

remote desktop gateway is a Windows feature available beginning with Windows server

2008 r2 and above which allows the rdP client to connect securely over the public Internet

using httPs to instances on a remote private network. the complete configuration of remote

desktop gateway requires ssL certificates and is beyond the scope of this book. (For more

details about the configuration of rdP gateway, see http://technet.microsoft.com/

en-us/library/dd983941(v=ws.10).aspx.)

For now, let’s use the user data section we learned about in Chapter 3 to enable the rdP

gateway feature after the instance launches.

#Create a user data script to configure the RDP Gateway

$UserData = @'

<powershell>

Add-WindowsFeature -Name RDS-Gateway -IncludeAllSubFeature

</powershell>

'@

$UserData =

 [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.

GetBytes($UserData))

next, we will launch the instance, remembering to include the subnet and pass the user data

script to execute after launch.

$Reservation = New-EC2Instance -ImageId $RDP_AMI -KeyName 'MyKey'

-InstanceType

 't2.micro' -SubnetId $ResourcesSubnet.SubnetId -UserData

 $UserData

$RDPInstance = $Reservation.RunningInstance[0]

$Tag = New-Object Amazon.EC2.Model.Tag

$Tag.Key = 'Name'

$Tag.Value = 'RDPGateway'

New-EC2Tag -ResourceId $RDPInstance.InstanceID -Tag $tag

now, we wait for the instance to boot and allocate an additional EIP for the nat instance and

we are done.

Start-Sleep -s 60

While ((Get-EC2InstanceStatus -InstanceId $RDPInstance.InstanceID).

InstanceState.name

 -ne 'running')

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

http://technet.microsoft.com/en-us/library/dd983941(v=ws.10).aspx.)
http://technet.microsoft.com/en-us/library/dd983941(v=ws.10).aspx.)

147

{

 Start-Sleep -s 60

 $RDPInstance = (Get-EC2Instance -Instance $RDPInstance.InstanceID).

RunningInstance[0]

}

$EIP = New-EC2Address -Domain 'vpc'

Register-EC2Address -InstanceId $RDPInstance.InstanceID -AllocationId $EIP.

AllocationId

If you have completed the configuration of the rdP gateway, you should be able to connect to

a private instance and attempt to run Windows update. In order to connect to an instance in

the private network, you need to tell your remote desktop client about the gateway server. see

Figure 6-7. From the advanced tab, click the settings button, and enter the name of the server

gateway. now you can connect to the VPC instances as if they were publicly accessible.

Figure 6-7. Remote Desktop Connection with an RDP gateway

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

148

EXERCISE 6.2: LEAST PRIVILEGE SECURITY GROUPS

so far, we have been placing all of our private instances in the default group. the default

group allows unrestricted communications between all the group members. While this makes

configuration easy, it is not as secure as it could be.

In information security, the principle of least privilege requires that a system only have access

to the resources it requires to do its job. In this example, we will build a set of security groups

that allows the minimum set of permissions required for a simple application. Our simple

application, shown in Figure 6-8, consists of a web server and sQL server, both of which are

members of an active directory domain.

at a high level, our application requires the following traffic flows:

• httP/httPs from the Internet to the IIs server

• tds from IIs to sQL

• Multiple protocols from the domain members (IIs and sQL) to the domain

controllers

• replication between the domain controllers

Figure 6-8. Least privilege security groups

note that the IIs and sQL servers are members of two groups. rather than adding the domain

member rules to the Webserver and sQLserver groups, it is better to have a group of each

distinct role a server can hold. this will make it easier to maintain the rules over time.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

149

First, we have to create the four groups pictured in Figure 6-8.

$DomainMembersGroupId = New-EC2SecurityGroup -GroupName 'DomainMembers'

-GroupDescription

 "Domain Members" -VpcId $VPCID

$DomainControllersGroupId = New-EC2SecurityGroup -GroupName

'DomainControllers'

 -GroupDescription "Domain controllers" -VpcId $VPCID

$WebServersGroupId = New-EC2SecurityGroup -GroupName 'WebServers'

-GroupDescription "Web

 servers" -VpcId $VPCID

$SQLServersGroupId = New-EC2SecurityGroup -GroupName 'SQLServers'

-GroupDescription "SQL

 Servers" -VpcId $VPCID

next, we add rules to the web group. the web group will allow httP (port 80) and httPs

(port 443) from anywhere on the Internet.

#First, the Web instances must allow HTTP/S from the internet

$HTTPRule = New-Object Amazon.EC2.Model.IpPermission

$HTTPRule.IpProtocol='tcp'

$HTTPRule.FromPort = 80

$HTTPRule.ToPort = 80

$HTTPRule.IpRanges = '0.0.0.0/0'

$HTTPSRule = New-Object Amazon.EC2.Model.IpPermission

$HTTPSRule.IpProtocol='tcp'

$HTTPSRule.FromPort = 443

$HTTPSRule.ToPort = 443

$HTTPSRule.IpRanges = '0.0.0.0/0'

Grant-EC2SecurityGroupIngress -GroupId $WebServersGroupId

 -IpPermissions $HTTPRule, $HTTPSRule

then, we add rules to the sQL group. the sQL server should only be accessed from the

web server. sQL uses a protocol called tabular data stream (tds) that runs on port 1433. In

addition, applications are increasingly using sQL Filestream to store attachments. Filestream

requires netBIOs (port 139) and sMB (port 445) to stream the attachments to and from the

sQL server.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

150

$WebGroup = New-Object Amazon.EC2.Model.UserIdGroupPair

$WebGroup.GroupId = $WebServersGroupId

$SQLRule = New-Object Amazon.EC2.Model.IpPermission

$SQLRule.IpProtocol='tcp'

$SQLRule.FromPort = 1433

$SQLRule.ToPort = 1433

$SQLRule.UserIdGroupPair = $WebGroup

$NetBIOSRule = New-Object Amazon.EC2.Model.IpPermission

$NetBIOSRule.IpProtocol='tcp'

$NetBIOSRule.FromPort = 139

$NetBIOSRule.ToPort = 139

$NetBIOSRule.UserIdGroupPair = $WebGroup

$SMBRule = New-Object Amazon.EC2.Model.IpPermission

$SMBRule.IpProtocol='tcp'

$SMBRule.FromPort = 445

$SMBRule.ToPort = 445

$SMBRule.UserIdGroupPair = $WebGroup

Grant-EC2SecurityGroupIngress -GroupId $SQLServersGroupId -IpPermissions

$SQLRule, $NetBIOSRule, $SMBRule

now, we add rules to the domainMembers group. the domainMembers group is simple,

allowing only ping from the domain controllers. the domain controllers will occasionally ping

the domain members to check that they are still running. In addition, the domainMembers

group is the source of all the rules in the domainControllers group.

$DCGroup = New-Object Amazon.EC2.Model.UserIdGroupPair

$DCGroup.GroupId = $DomainControllersGroupId

$PingRule = New-Object Amazon.EC2.Model.IpPermission

$PingRule.IpProtocol='icmp'

$PingRule.FromPort = 8

$PingRule.ToPort = -1

$PingRule.UserIdGroupPair = $DCGroup

Grant-EC2SecurityGroupIngress -GroupId $DomainMembersGroupId -IpPermissions

$PingRule

Finally, we add rules to the domainControllers group. this group has several rules. We will

break them down by IP protocol.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

151

First, assuming we have more than one domain controller, they must be able to replicate data

between each other. therefore, we are allowing unrestricted communications between the

controllers.

$AllRule = New-Object Amazon.EC2.Model.IpPermission

$AllRule.IpProtocol='-1'

$AllRule.UserIdGroupPair = $DCGroup

Grant-EC2SecurityGroupIngress -GroupId $DomainControllersGroupId

-IpPermissions $AllRule

second, the domain controllers allow ping from any of the domain members:

$DMGroup = New-Object Amazon.EC2.Model.UserIdGroupPair

$DMGroup.GroupId = $DomainMembersGroupId

$PingRule = New-Object Amazon.EC2.Model.IpPermission

$PingRule.IpProtocol='icmp'

$PingRule.FromPort = 8

$PingRule.ToPort = -1

$PingRule.UserIdGroupPair = $DMGroup

Grant-EC2SecurityGroupIngress -GroupId $DomainControllersGroupId

-IpPermissions $PingRule

third, the domain controller must allow an array of tCP communication types from the domain

members. these include

• 53 – dns queries. note dns uses both tCP and UdP.

• 88 – Kerberos authentication. note Kerberos uses both tCP and UdP.

• 135 – remote procedure calls. note: rPC will also use a port in the range

49152-65535.

• 137–139 – netBIOs. note Kerberos uses both tCP and UdP.

• 389 and 636 – Lightweight directory access Protocol (LdaP).

• 445 – server Message Block (sMB).

• 464 – Password reset. note that it uses both tCP and UdP.

• 3268 – Microsoft global catalog.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

152

#Domain controllers must allow numerous TCP protocols from domain members

$DNSRule = New-Object Amazon.EC2.Model.IpPermission

$DNSRule.IpProtocol='tcp'

$DNSRule.FromPort = 53

$DNSRule.ToPort = 53

$DNSRule.UserIdGroupPair = $DMGroup

$KerberosRule = New-Object Amazon.EC2.Model.IpPermission

$KerberosRule.IpProtocol='tcp'

$KerberosRule.FromPort = 88

$KerberosRule.ToPort = 88

$KerberosRule.UserIdGroupPair = $DMGroup

$NetBIOSRule = New-Object Amazon.EC2.Model.IpPermission

$NetBIOSRule.IpProtocol='tcp'

$NetBIOSRule.FromPort = 137

$NetBIOSRule.ToPort = 139

$NetBIOSRule.UserIdGroupPair = $DMGroup

$RPCRule = New-Object Amazon.EC2.Model.IpPermission

$RPCRule.IpProtocol='tcp'

$RPCRule.FromPort = 135

$RPCRule.ToPort = 135

$RPCRule.UserIdGroupPair = $DMGroup

$LDAPRule = New-Object Amazon.EC2.Model.IpPermission

$LDAPRule.IpProtocol='tcp'

$LDAPRule.FromPort = 389

$LDAPRule.ToPort = 389

$LDAPRule.UserIdGroupPair = $DMGroup

$SMBRule = New-Object Amazon.EC2.Model.IpPermission

$SMBRule.IpProtocol='tcp'

$SMBRule.FromPort = 445

$SMBRule.ToPort = 445

$SMBRule.UserIdGroupPair = $DMGroup

$PasswordRule = New-Object Amazon.EC2.Model.IpPermission

$PasswordRule.IpProtocol='tcp'

$PasswordRule.FromPort = 464

$PasswordRule.ToPort = 464

$PasswordRule.UserIdGroupPair = $DMGroup

$LDAPSRule = New-Object Amazon.EC2.Model.IpPermission

$LDAPSRule.IpProtocol='tcp'

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

153

$LDAPSRule.FromPort = 636

$LDAPSRule.ToPort = 636

$LDAPSRule.UserIdGroupPair = $DMGroup

$ADRule = New-Object Amazon.EC2.Model.IpPermission

$ADRule.IpProtocol='tcp'

$ADRule.FromPort = 3268

$ADRule.ToPort = 3269

$ADRule.UserIdGroupPair = $DMGroup

$RpcHpRule = New-Object Amazon.EC2.Model.IpPermission

$RpcHpRule.IpProtocol='tcp'

$RpcHpRule.FromPort = 49152

$RpcHpRule.ToPort = 65535

$RpcHpRule.UserIdGroupPair = $DMGroup

Grant-EC2SecurityGroupIngress -GroupId $DomainControllersGroupId

-IpPermissions $DNSRule,

 $KerberosRule, $RPCRule, $LDAPRule, $PasswordRule, $LDAPSRule, $ADRule,

$RpcHpRule

Fourth, the domain controller must allow an array of UdP communication types from the

domain members. these include

• 53 – dns queries. note dns uses both tCP and UdP.

• 88 – Kerberos authentication. note Kerberos uses both tCP and UdP.

• 123 – network time Protocol.

• 137–139 – netBIOs. note Kerberos uses both tCP and UdP.

• 389 – Lightweight directory access Protocol (LdaP).

• 464 – Password reset. note that it uses both tCP and UdP.

#Domain controllers must allow numerous TCP protocols from domain members

$DNSRule = New-Object Amazon.EC2.Model.IpPermission

$DNSRule.IpProtocol='udp'

$DNSRule.FromPort = 53

$DNSRule.ToPort = 53

$DNSRule.UserIdGroupPair = $DMGroup

$KerberosRule = New-Object Amazon.EC2.Model.IpPermission

$KerberosRule.IpProtocol='udp'

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

154

$KerberosRule.FromPort = 88

$KerberosRule.ToPort = 88

$KerberosRule.UserIdGroupPair = $DMGroup

$NTPRule = New-Object Amazon.EC2.Model.IpPermission

$NTPRule.IpProtocol='udp'

$NTPRule.FromPort = 123

$NTPRule.ToPort = 123

$NTPRule.UserIdGroupPair = $DMGroup

$NetBIOSRule = New-Object Amazon.EC2.Model.IpPermission

$NetBIOSRule.IpProtocol='udp'

$NetBIOSRule.FromPort = 137

$NetBIOSRule.ToPort = 139

$NetBIOSRule.UserIdGroupPair = $DMGroup

$LDAPRule = New-Object Amazon.EC2.Model.IpPermission

$LDAPRule.IpProtocol='udp'

$LDAPRule.FromPort = 389

$LDAPRule.ToPort = 389

$LDAPRule.UserIdGroupPair = $DMGroup

$PasswordRule = New-Object Amazon.EC2.Model.IpPermission

$PasswordRule.IpProtocol='udp'

$PasswordRule.FromPort = 464

$PasswordRule.ToPort = 464

$PasswordRule.UserIdGroupPair = $DMGroup

Grant-EC2SecurityGroupIngress -GroupId $DomainControllersGroupId

-IpPermissions $DNSRule,

 $KerberosRule, $NTPRule, $NetBIOSRule, $LDAPRule, $SMBRule,

$PasswordRule

as we have seen, security groups allow us to create very specific rules to secure our

resources. By writing rules that are based on other security groups, we define our security

policy before launching instances. this gives us the benefit of not needing to change the rules

as we launch each instance. the rules in this example are just a starting point. You will need to

add additional groups and rules as your infrastructure grows.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

155

 Summary
Amazon VPC gives us numerous capabilities to build our ultimate virtual network, with

the isolation and security we need for our applications, all without the headaches of

managing traditional networking equipment.

We can define outbound rules in our security groups. We can control the network

configuration at launch including subnet, security group, and private IP address. We can

assign publicly addressable EIPs. We can even add multiple IP addresses and multiple

network interfaces.

All of these features allow us to create network configurations that are as simple or

complex as we need them to be. In the examples, we explored advanced patterns for

managing enterprise networks. First, we discussed how to manage and patch private

instances using an RDP and NAT gateway. Second, we created a series of security groups

to implement least privileged access for Windows instances in an Active Directory

domain.

While VPC brings us numerous capabilities, it can also involve complexity. We

will keep things relatively simple in the remaining chapters on EC2, by using a VPC

configuration that allows us to focus on features without the complexity discussed in

Chapters 5 and 6. In the next chapter, we discuss creating our own Amazon Machine

Images.

ChaPtEr 6 adVanCEd InstanCE ManagEMEnt

157
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_7

CHAPTER 7

Amazon Machine Images
In the last few chapters, we have focused on creating and managing instances. This

chapter is about the templates we use to create those instances. Amazon refers to these

templates as Amazon Machine Images (AMIs). In this chapter we will explore the AMIs

that already exist, and we will discuss how to create your own AMI and share it with

others. Finally, we learn how to import a VM from VMware or Hyper-V into AWS.

Many users will never have occasion to create a custom AMI. Most users will be

happy with the countless images that Amazon and its partners make available. But some

users will want to have complete control over their environment. For example, you

may have a corporate server image that you want to make available to your companies’

employees that are using AWS.

As your experience progresses, you will likely find that you want to automate

instance builds. Configuration management tools are all about scripting server builds

to minimize build time and ensure consistency between builds. Assuming you want

to automate the build, there are many options. Most fall on a spectrum somewhere

between scripted builds and prepared images.

 Working with Scripted Builds and Prepared Images
At one end of the spectrum is the scripted build. With a scripted build, you start with a

generic image and use a series of scripts to configure the server as needed. For example,

to create a Web Server, you might start with the Amazon Windows Server 2019 Base

image. Then you could use the user data to include a custom PowerShell script that

enables the Web Server role and downloads the application from source control.

At the other end of the spectrum is the prepared image. With a prepared image, you

configure the server, usually manually, and then create an image. When a user needs a

new server, he or she selects your server image and creates a new instance. If you choose

a prepared image, be sure to update the image periodically with the latest security

patches and virus definitions.

158

Both options have benefits and drawbacks. The scripted build is best when the

application is changing often. You always get the latest code and can change the script

as requirements change. The prepared image, on the other hand, is best when the

application is stable. There are fewer external dependencies that can cause errors and

the build is usually faster.

Of course, there are many options on the spectrum between scripted build and

prepared image. The Amazon Windows AMIs provide a good example. Amazon offers

a base image as well as SQL Server images. By using the SQL Server image, you do

not have to script the configuration of SQL Server. You simply focus on scripting the

deployment of your application.

Most of this chapter is focused on preparing images, but don’t overlook scripting as

an option. There are many AWS Services that will help you script instance configuration

such as CloudFormation and OpsWorks. Chapters 15–17 will cover Systems Manager

which can be used to script instance configuration with Ansible, Salt, or PowerShell

Desired State Configuration (DSC).

 Listing AMIs
Before we create our own AMI, or simply an image, let’s take a deeper look at the images

that are already available. We don’t want to spend time creating and maintaining an

image if an identical image already exists.

Caution There are over 100,000 images available giving you a ton of options to
choose from, but be careful! You should only launch images from publishers you
trust. As you will see later in this chapter, anyone can publish an image.

You can find images using the Get-EC2Image command, but this command will

return the complete list of over 100,000 images. Obviously, this is far too many to look

through one at a time.

ChApTer 7 AmAzon mAChine imAges

159

 Limiting the Number of Instance Results
As you might expect, you can use filters to limit the number of instances. For example,

if you are interested in a Windows image, you can use the platform filter. The following

example will return about 15,000 Windows images in the Northern Virginia region.

$Filter = New-Object Amazon.EC2.Model.Filter

$Filter.Name = "platform"

$Filter.Value = "windows"

Get-EC2Image -Filter $Filter | Select-Object Name

We can also filter by publisher using owner-alias. For example, you might list only

those images that Amazon publishes. Again, it is a really good idea to only use images

published by an owner you trust, such as Amazon. The following example will return

about 5000 images:

$Filter = New-Object Amazon.EC2.Model.Filter

$Filter.Name = "owner-alias"

$Filter.Value = "amazon"

Get-EC2Image -Filter $Filter | Select-Object Name

This is still too many images to comb through one by one. Of course, you can

combine two or more filters. If we combine the platform and owner alias, we get a more

reasonable list of about 1800 images.

$Filter1 = New-Object Amazon.EC2.Model.Filter

$Filter1.Name = "platform"

$Filter1.Value = "windows"

$Filter2 = New-Object Amazon.EC2.Model.Filter

$Filter2.Name = "owner-alias"

$Filter2.Value = "amazon"

Get-EC2Image -Filter $Filter1, $Filter2 | Select-Object Name

ChApTer 7 AmAzon mAChine imAges

160

 Finding an Instance by Name
The prior examples assume you do not yet know which image you are looking for. If you

know the name of the image you want to find, you can use the name filter. For example, to

find the Windows Server 2019 Base image, use

$Filter = New-Object Amazon.EC2.Model.Filter

$Filter.Name = "name"

$Filter.Value = "Windows_Server-2019-English-Full-Base-2019.01.10"

Get-EC2Image -Filter $Filter

Note that that command is going to fail. Amazon updates most of its images

periodically with the latest patches and updates. By the time you read this, that image

will likely no longer exist. Luckily, filters support the wildcard character (*). For example:

$Filter = New-Object Amazon.EC2.Model.Filter

$Filter.Name = "name"

$Filter.Value = "Windows_Server-2019-English-Full-Base*"

Get-EC2Image -Filter $Filter

So, let’s review. We can use a combination of the platform and owner-alias filters

to discover new images from a trusted source. Then, once we know the name, we can

search by name. If all of this seems cumbersome to you, I agree. Wouldn’t it be great if

we had a short list of the most common images?

 Locating the Most Common Images
Luckily Amazon thought of the idea of getting a short list of the most common images

and included another command, Get-EC2ImageByName. This command will return most

of the images that you find on the Quick Start tab of the New Instance Wizard in the

AWS Management Console. Note that the command may return an array with multiple

versions of a given instance. The most recent version will be listed first in the array. For

example:

Get-EC2ImageByName -Name "WINDOWS_2016_BASE"

You can run Get-EC2ImageByName without any parameters to get a list of

available names.

ChApTer 7 AmAzon mAChine imAges

161

Finally, if you have launched your own images, as described later in this chapter,

you can find them by using the Owner parameter of the Get-EC2Image command. For

example:

Get-EC2Image -Owner self

Now that we know how to find images, we can decide whether we need to create our

own. Let’s assume that none of the existing images meet our needs and we have decided

to create our own image. Images are created using SysPrep and the EC2Config Service.

Before we get started creating an image, let’s look at EC2Launch.

 Introducing EC2Launch
Before we move on to creating an image, I want to introduce EC2Launch. Note that

EC2Launch runs on Windows 2016 or newer images. It replaces the EC2Config Service

that was installed on Windows images through 2012 R2. We have mentioned these tools

a few times in prior chapters, but now is a good time to look at it in detail.

EC2Launch is used to configure Windows instances. It plays a critical role in

configuring an instance when it boots for the first time. For example, the EC2Launch is

responsible for encrypting the administrator password and executing scripts in the

user data.

When an instance boots for the first time, the EC2Config Service performs the

following tasks:

 1. Renames the computer. This is disabled by default.

 2. Sets the administrator password. By default, a new, random

password will be generated and encrypted with the specified key

pair.

 3. Creates RDP certificate. A new self-signed host certificate is

created for Remote Desktop connection. You cannot use RDP

without a certificate.

 4. Extends the OS partition. Remember that you can change the size

of the OS volume at launch. Therefore, the service extends the

partition to fill the volume.

 5. Activates Windows if necessary.

ChApTer 7 AmAzon mAChine imAges

162

 6. Writes event log entries to the AWS System Log. This can help

debug errors that occur before RDP is available in the boot

sequence.

 7. Creates a new wallpaper image. This includes useful information

(name, type, memory, etc.) about the image.

 8. Configures a few custom routes. For example, 169.254.169.250 and

169.254.169.251 are the default KMS servers and 169.254.169.254

is the metadata URL we used in Chapter 3.

Most of these actions are enabled by default, but you can customize them as needed

by editing the file:

C:\ProgramData\Amazon\EC2-Windows\Launch\Config\LaunchConfig.json

There is also a GUI tool available for editing the JSON. It is located at

C:\ProgramData\Amazon\EC2-Windows\Launch\Settings\Ec2LaunchSettings.exe

The GUI looks like Figure 7-1.

ChApTer 7 AmAzon mAChine imAges

163

Figure 7-1. EC2 Launch Settings

ChApTer 7 AmAzon mAChine imAges

164

The default behavior is to run EC2Launch on the first launch. However, there may be

times when you want to run it on every boot. If you want to configure it, run on every boot,

run the following command, or check the check box seen at the bottom of Figure 7- 1.

C:\ProgramData\Amazon\EC2-Windows\Launch\Scripts\InitializeInstance.ps1

-SchedulePerBoot

Now that we understand EC2Launch, let’s look at the EC2LaunchSettings tool.

 Preparing an AMI Using EC2LaunchSettings
In the prior section, we learned about EC2Launch. In this section we will prepare an

image of our own. To start, launch a new Windows Server 2019 Base instance that will

serve as our template. You remember how to do that right?

Once the instance boots, you can log in and make whatever changes you want. Let’s

assume we are developing a web application and we want to create a server to test it on.

Our application requires that we enable a few unique features of IIS.

In Figure 7-2 I have configured the required roles and services. First, I enabled the

Web Server (IIS) role (see the Select server roles dialog in Figure 7-2). Next, I enabled the

Windows Identity Foundation feature (see the Select features dialog in Figure 7- 2).

Finally, I enabled six of the nine Web Server Security Role Services (see the Select

role services dialog in Figure 7-2). Obviously your configuration will depend on the

applications you intend to run on the instance.

ChApTer 7 AmAzon mAChine imAges

165

Once you have configured your server and installed any software you want in the

template, it is time to prepare the image. As I mentioned in the prior section, you use

EC2LaunchSettings to create an image. Behind the scenes, EC2LaunchSettings uses

SysPrep to do the heavy lifting.

Caution Before continuing, you should take a snapshot of the instance. once
we sysprep the image, there is no going back. if the instance fails to boot, you will
have to start over from scratch.

Figure 7-2. Configuring the Web Server role

ChApTer 7 AmAzon mAChine imAges

166

Open the Ec2LaunchSettings application (see Figure 7-1 for reference). Leave

the defaults and simply click the Shutdown with SysPrep button. This will take a few

minutes. Once it’s done, we can finally create the AMI.

 Creating an AMI
The instance is now configured and waiting to run setup. We want to clone the instance

in this state, so that each copy runs setup when it first boots. It’s finally time to create

an image. Let’s look at the AWS Administration Console first and then discuss the

PowerShell commands.

In the AWS Management Console, right-click the instance you want to create an

image of and select Create Image (EBS AMI). Figure 7-3 shows the Create Image dialog

box. From here you can give your image a name and description and configure the

volumes. Remember, from Chapter 4, that the user will have the option of modifying the

volume configuration when he or she launches an instance of your image. If the image

requires multiple volumes, you can set default values here.

Figure 7-3. Create Image dialog box

ChApTer 7 AmAzon mAChine imAges

167

The equivalent PowerShell command is New-EC2Image. The command takes the ID

of the instance you want to make a template from, as well as a name and description,

and returns the ID of the new image. For example:

$AMIID = New-EC2Image -InstanceId i-99999999 -Name "WIN2019WEB"

-Description "Windows Web Server"

Note that you must replace the instance ID with the instance you want to create an

image of. As you might expect, it takes a few minutes to create the image. You can check

the ImageState to see if the image is ready. To wait for an image, you can use a while

loop similar to the following example:

$AMI = Get-EC2Image $AMIID

While($AMI.ImageState -ne "available") {

 $AMI = Get-EC2Image $AMIID

 Start-Sleep -Seconds 15

}

Modifying the drive configuration works just like it did when we used the

New- EC2Instance command in Chapter 4. Let’s add another 100GB volume to our image

to store IIS log files. Remember that the EC2Config Service is configured to automatically

mount and format any additional volumes that we attach. All we need to do is create a

block device and mapping descriptor and pass it to the New-EC2Image command using

the BlockDeviceMapping attribute. For example:

$Volume1 = New-Object Amazon.EC2.Model.EbsBlockDevice

$Volume1.DeleteOnTermination = $True

$Volume1.VolumeSize = 30

$Volume1.VolumeType = "standard"

$Mapping1 = New-Object Amazon.EC2.Model.BlockDeviceMapping

$Mapping1.DeviceName = "/dev/sda1"

$Mapping1.Ebs = $Volume1

$Volume2 = New-Object Amazon.EC2.Model.EbsBlockDevice

$Volume2.DeleteOnTermination = $False

$Volume2.VolumeSize = 100

$Volume2.VolumeType = "standard"

ChApTer 7 AmAzon mAChine imAges

168

$Mapping2 = New-Object Amazon.EC2.Model.BlockDeviceMapping

$Mapping2.DeviceName = "xvdf"

$Mapping2.Ebs = $Volume2

$AMIID = New-EC2Image -InstanceId i-9999999

 -Name "WIN2019WEB2" -Description "Windows Web Server 2"

 -BlockDeviceMapping $Mapping1, $Mapping2

At this point you have your own custom AMI and you can create instances. This same

process can be used to make as many variations as you need. If you find that an image is

particularly useful, you may want to share it with others. In the next section, I will show

you how to share your image.

 Sharing an AMI
You may find that you want to share an image with other accounts. Maybe your company

has multiple accounts and you want to use a single corporate image across all accounts.

Or maybe you have an image that includes a trial version of your company’s software and

you want to share it with the world.

To share an image with another account, you use the Edit-EC2ImageAttribute

command. In the following example, I am granting permission to launch an instance of

an image to users of the account 1234-1234-1234. Obviously your image ID and account

ID will be different.

Edit-EC2ImageAttribute -ImageId 'ami-71ebba18' -Attribute 'launchPermission'

 -OperationType 'add' -UserId '123412341234'

To share an image with all accounts, you grant permission to the group “all.”

For example:

Edit-EC2ImageAttribute -ImageId 'ami-71ebba18' -Attribute

'launchPermission'

 -OperationType "add" -UserGroup "all"

ChApTer 7 AmAzon mAChine imAges

169

You can check which accounts and groups have access by using the Get-

EC2ImageAttribute command.

Get-EC2ImageAttribute -ImageId 'ami-71ebba18' -Attribute 'launchPermission'

To revoke the launch permission from an account, use the remove operation type.

For example:

Edit-EC2ImageAttribute -ImageId 'ami-71ebba18' -Attribute

'launchPermission'

 -OperationType 'remove' -UserId '123412341234'

You can revoke the launch permission from the group the same way. For example:

Edit-EC2ImageAttribute -ImageId 'ami-71ebba18' -Attribute 'launchPermission'

 -OperationType 'remove' -UserGroup 'all'

If you want to revoke the launch permission from all users and groups, you can use

the Reset-EC2ImageAttribute command. For example:

Reset-EC2ImageAttribute -ImageId 'ami-71ebba18' -Attribute

'launchPermission'

Finally, if you are sharing images between accounts, you can list the images owned

by a specific account by supplying the account number to the Get-EC2Image command.

For example:

Get-EC2Image -Owner 123412341234

As you can see, AMIs are a powerful tool. You can leverage the tens of thousands of

existing images, create your own images, and even share your images with others.

Although it is easy to customize an Amazon AMI, it would be great if we could

leverage the library of images we already have onsite. In Exercise 7.1, I will show you how

to import an existing VM image from an onsite hypervisor like VMware or Hyper-V.

ChApTer 7 AmAzon mAChine imAges

170

EXERCISE 7.1: UPLOADING A VM

many of us already have a library of images that we have built for our Vmware or hyper-V

environments. Luckily Amazon allows you to upload an existing image into eC2.

There are a few ways to do this. if you have a lot of instances to import, you should look at the

server migration service (sms). sms is easiest way to import Vms into AWs. however, this is a

book on powershell, so let's import an image using powershell.

Before you export the image, you should prepare the Vm by checking the following:

 1. Check that remote desktop is enabled.

 2. Check that Windows Firewall allows public rDp traffic.

 3. ensure that DhCp is enabled.

 4. Disable antivirus and intrusion detection systems.

 5. remove any virtualization tools such as the Vmware Tools.

 6. Disconnect any DVD (or other removable media) devices.

 7. stop the Vm before importing it.

now, it is time to export the image from your hypervisor. The import process supports VmDK,

VhD, and oVF file formats. Let’s assume that our file is called goldenimage.vmdk.

next we upload the file to an s3 bucket. We are going to do this in two parts: first, upload the

file to s3 and, second, import the image. splitting it into two parts is really ingenious. it means

that we could bulk import a bunch on Vms using an AWs snowball. snowball is a hardware

appliance for importing (or exporting) large volumes of data through the mail.

We will cover s3 in detail in Chapter 11. For now, i will assume you have an s3 bucket called

mybucket. You can upload the file like this:

Write-s3object -File goldenimage.vmdk -Bucketname mybucket

once the file is uploaded, we can import it. First we need to create a .net object to describe

our image, called an imageDiskContainer. The DiskimageContainer tells the Api the type of

image and where to find the file in s3. For example:

 $container = New-Object Amazon.EC2.Model.ImageDiskContainer

 $container.Format="VMDK"

 $container.UserBucket = New-Object Amazon.EC2.Model.UserBucket

ChApTer 7 AmAzon mAChine imAges

171

 $container.UserBucket.S3Bucket = "mybucket"

 $container.UserBucket.S3Key = "GoldenImage.vmdk"

now we can import the image using the import-eC2image command like this:

Import-EC2Image -DiskContainer $container -ClientToken GoldenImage

-Description "Golden Image" -Platform Windows -LicenseType AWS

As you might expect, the import operation takes a while. import-eC2image will return an

importTaskid that you can use to check on the status. For example:

ec2-resume-import "c:\aws\MyImage.vhd" -t import-i-fh37272p

 -o %AWS_ACCESS_KEY% -w %AWS_SECRET_KEY%

once the upload completes, Amazon will begin the conversion behind the scenes. There is no

progress bar for this, but you can check on the conversion progress using ec2-describe-

conversion-tasks command and passing your Taskid. For example:

ec2-describe-conversion-tasks import-i-fh37272p

once the conversion completes, you will have an instance running in eC2 Classic. The import

command does not clean up the temporary data stored in s3. You can delete it manually or use

the ec2-delete-disk-image command.

once your instance is imported, you can either use it as is or follow the instructions in this

chapter to create derivative images. As you can see, the import-eC2image command will allow

you to leverage your existing image library in the cloud and ensure that you have the same

bits running on site and in the cloud.

 Summary
In this chapter, we learned about Amazon Machine Images. We saw how to find and

leverage the over 100,000 images already available. Then we discussed how to create our

own custom images. We discussed how to prepare a Windows instance using SysPrep.

Finally, we learned how to share our images with others and import images from our

on- prem infrastructure.

Then, in the first exercise, we saw an alternative to rolling a custom image: scripted

builds. In the second exercise, we saw how to import an existing image from VMware or

Hyper-V. In the next chapter, we will talk about scalability and high availability.

ChApTer 7 AmAzon mAChine imAges

173
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_8

CHAPTER 8

Monitoring and High
Availability
This chapter is about architecting your application for high availability. We have covered

almost all of the PowerShell commands for EC2, but EC2 is only one of many services

that AWS offers. In this chapter, we will examine a few of the services that you can use in

concert with EC2 to build a highly available application. These services include Elastic

Load Balancers (ELBs), Simple Notification Service (SNS), CloudWatch, Auto Scaling,

and Route 53.

We will start by creating a new VPC focused on high availability. This will be a great

opportunity to review the material in the prior chapters. Next, we will create an ELB to

balance HTTP and HTTPS web traffic across multiple instances. We will configure the

ELB to automatically detect errors and remove unhealthy instances. Then, we will use

SNS and CloudWatch to create an early warning system that can email us when the

application is under stress.

Once that detection system is running, we will use Auto Scaling to automatically

scale the application by monitoring load. Auto Scaling will leverage scripted builds

to launch and terminate instances throughout the day without human involvement.

Finally, we will discuss how Route 53 can be used to extend our application across

multiple regions, serving each user from the location nearest them.

This chapter has two exercises. In the first, we consolidate everything we learned in

the chapter into one streamlined script. In the second, we create a script to scale up (or

resize) an instance. Let’s get started.

174

 Architecting for High Availability
In Chapters 5 and 6, we spent a lot of time discussing VPC with a focus on security. This

section focuses on availability. This is not to suggest that we must trade security for high

availability. AWS gives you everything you need to achieve both.

We have also discussed regions and availability zones on multiple occasions.

Remember that each region includes multiple availability zones connected by high-

speed, low-latency links. Each availability zone is a stand-alone data center with distinct

power, cooling, and resources. By designing an application to span availability zones,

you can build redundancy into your application.

A VPC is limited to a single region, but as shown in Figure 8-1, it can span multiple

availability zones. As you already know, a VPC can contain multiple subnets, and

each subnet can be in its own availability zone. By spreading our application across

availability zones, we can achieve high availability. If once the data centers were to fail,

the application could continue running in the other.

Chapter 8 Monitoring and high availability

175

Figure 8-1. High availability VPC

Let’s get started by creating the VPC in Figure 8-1. This will be a great opportunity to

review much of what we learned in prior chapters.

Let’s assume our application is a simple, single-tier web application with no

database. First, we create a new VPC and pick two availability zones in the same region.

For example, I am using a private 192.168.0.0 network and the Northern Virginia region.

You may have to change the script to use availability zones in your region.

$VPC = New-EC2Vpc -CidrBlock '192.168.0.0/16'

$AvailabilityZone1 = 'us-east-1a'

$AvailabilityZone2 = 'us-east-1b'

Chapter 8 Monitoring and high availability

176

Next, we create two subnets in our VPC. Notice that each subnet is using a different

availability zone. (If any of this is unfamiliar, go back and review Chapter 5.)

$WebSubnet1 = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.3.0/24'

 -AvailabilityZone $AvailabilityZone1

$WebSubnet2 = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.4.0/24'

 -AvailabilityZone $AvailabilityZone2

We also need to configure security groups. Let’s assume our servers will accept HTTP

and HTTPS requests on ports 80 and 443.

$ElbGroupId = New-EC2SecurityGroup -GroupName 'NLBTargets'

-GroupDescription "NLB Target"

 -VpcId $VPC.VpcId

$HTTPRule = New-Object Amazon.EC2.Model.IpPermission

$HTTPRule.IpProtocol='tcp'

$HTTPRule.FromPort = 80

$HTTPRule.ToPort = 80

$HTTPRule.IpRanges = '0.0.0.0/0'

$HTTPSRule = New-Object Amazon.EC2.Model.IpPermission

$HTTPSRule.IpProtocol='tcp'

$HTTPSRule.FromPort = 443

$HTTPSRule.ToPort = 443

$HTTPSRule.IpRanges = '0.0.0.0/0'

$NoEcho = Grant-EC2SecurityGroupIngress -GroupId $ElbGroupId -IpPermissions

$HTTPRule, $HTTPSRule

We need to launch at least two instances. This is going to be a web application, so I am

using the user data parameter to install and configure IIS. You could use the same method

to install your application. (If you have forgotten how to do this, return to Chapter 3.)

$UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.

GetBytes(@'

<powershell>

Install-WindowsFeature Web-Server -IncludeManagementTools

-IncludeAllSubFeature3

</powershell>

'@))

Chapter 8 Monitoring and high availability

177

Finally, we launch the two instances being careful to specify different subnets. (We

covered this in Chapter 6 if you want to review.)

$AMI = Get-EC2ImageByName 'WINDOWS_2012_BASE'

$Reservation1 = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'

 -InstanceType 't2.micro' -MinCount 1 -SecurityGroupId $ElbGroupId

 -MaxCount 1 -SubnetId $WebSubnet1.SubnetId -UserData $UserData

$Instance1 = $Reservation1.RunningInstance[0]

$Reservation2 = New-EC2Instance -ImageId $AMI[0].ImageId -KeyName 'MyKey'

 -InstanceType 't2.micro' -MinCount 1 -SecurityGroupId $ElbGroupId

 -MaxCount 1 -SubnetId $WebSubnet2.SubnetId -UserData $UserData

$Instance2 = $Reservation2.RunningInstance[0]

At this point we have new VPC with two subnets each in a different availability zone.

In addition, we have launched two identical instances. If one of the instances fails, the

other will keep running. In fact, even if the entire availability zone failed, the instance

in the other zone will keep running. In the next section, we create a load balancer to

distribute the load between our two instances.

 Managing Elastic Load Balancers
Now that we have multiple instances deployed in multiple data centers, we need a way

to distribute requests between them. This is the role of a load balancer. A load balancer

receives requests and forwards them to instances in our VPC. The load balancer also

monitors the health of the instances and stops sending requests to unhealthy instances

automatically. In addition, the load balancer can be configured to terminate SSL and

offload the encryption/decryption from the instances acting as web servers.

Elastic Load Balancing (ELB) is actually a family of load balancers including the

Classic Load Balancer, Network Load Balancer (NLB), and Application Load Balancer

(ALB). I am only going to cover the NLB here, but I want you to be aware that the other

variations exist. The functionality of the Classic Load Balancer has been replaced by the

ALB and NLB so you can mostly ignore the Classic Load Balancer. The ALB adds support

for content-based routing and other enterprise features. You can route traffic to different

targets based on host header or URI path.

Chapter 8 Monitoring and high availability

178

Figure 8-2 shows our VPC from the prior section with an NLB added. Notice that the

NLB is configured in both availability zones. Obviously we need the NLB to be highly

available just like the instances we created in the last section. Luckily Amazon does a lot

of the heavy lifting for us when we use an NLB. Let’s create one now.

Figure 8-2. VPC with ELB

 Preparing the VPC for an ELB
First, we need to create a subnet in each availability zone for the NLB to live in. When we

configure the NLB, we tell Amazon to use these subnets. Initially, Amazon will launch an

NLB into either one of the subnets. If that availability zone fails, Amazon routes all traffic

to the other availability zone. Let’s create two more subnets.

Chapter 8 Monitoring and high availability

179

$ElbSubnet1 = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.1.0/24'

 -AvailabilityZone $AvailabilityZone1

$ElbSubnet2 = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.2.0/24'

 -AvailabilityZone $AvailabilityZone2

This NLB is going to accept requests from the Internet; therefore, we need to add an

Internet gateway to our VPC.

$InternetGateway = New-EC2InternetGateway

Add-EC2InternetGateway -InternetGatewayId $InternetGateway.

InternetGatewayId -VpcId $VPC.VpcId

Note not all elbs are internet facing. you can create an internal elb that
balances traffic between tiers of your application. you can also use privatelink to
share your application with other aWS accounts.

Now that we have an Internet gateway, we are going to need to configure the

route table to use it. One great side effect of using an ELB is that only the ELB needs

to be exposed to the Internet. Our instances can live on the private network with no

connection to the Internet. Let’s configure a new route table so that only our NLB

subnets are public. (If you need to review Internet gateways and route tables, see

Chapter 5.)

$PublicRouteTable = New-EC2RouteTable -VpcId $VPC.VpcId

New-EC2Route -RouteTableId $PublicRouteTable.RouteTableId

-DestinationCidrBlock '0.0.0.0/0'

 -GatewayId $InternetGateway.InternetGatewayId

$NoEcho = Register-EC2RouteTable -RouteTableId $PublicRouteTable.RouteTableId

 -SubnetId $ElbSubnet1.SubnetId

$NoEcho = Register-EC2RouteTable -RouteTableId $PublicRouteTable.RouteTableId

 -SubnetId $ElbSubnet2.SubnetId

Now that we have our VPC configured, let’s create an NLB.

Chapter 8 Monitoring and high availability

180

 Configuring an NLB
Let’s get started by configuring an NLB for HTTP. We will configure HTTPS in the next

section. First we create the load balancer. In the following example, I am specifying that

I want a Network Load Balancer (as opposed to an Application Load Balancer). I also tell

it which subnets the load balancer should run it.

$LoadBalancer = New-ELB2LoadBalancer -Type network -Name 'WebLoadBalancer'

-Subnets $ElbSubnet1.SubnetId, $ElbSubnet2.SubnetId

Next, we need to create a target group. A target group is simply a list of instances

behind the load balancer. The NLB will balance traffic among the instances in this group.

The target group also tracks the health of the instances and takes them out of service if

they fail. In the following code, I create a new target group and add our two instances.

$TargetGroup = New-ELB2TargetGroup -Name 'WebTargetGroup' -Protocol TCP

-Port 80 -VpcId $VPC.VpcId

Register-ELB2Target -TargetGroupArn $TargetGroup.TargetGroupArn -Target

@{id=$Instance1.InstanceId}

Register-ELB2Target -TargetGroupArn $TargetGroup.TargetGroupArn -Target

@{id=$Instance2.InstanceId}

Now we just need to connect the NLB to the target group. We do this by defining a

listener. In the following example, I use a .Net object to create a listener that forwards all

traffic it receives to the target group we created earlier. Note that the ALB supports other

actions not covered here including redirection, static responses, and authentication.

$Action = New-Object 'Amazon.ElasticLoadBalancingV2.Model.Action'

$Action.Type = 'forward'

$Action.TargetGroupArn = $TargetGroup.TargetGroupArn

$Listner = New-ELB2Listener -Protocol TCP -Port 80 -LoadBalancerArn

$LoadBalancer.LoadBalancerArn -DefaultAction $Action

It will take a few minutes for the load balancer to launch and complete the initial

health checks on the instances to ensure they are healthy. Once it’s ready, you can get

the DNS name of the load balancer using the DNSName parameter. You can copy this

and paste it into your browser to test the configuration. You can also use a DNS CNAME

to map this address to a friendly name (e.g., www.example.com).

$LoadBalancer.DNSName

Chapter 8 Monitoring and high availability

181

Now that we have an NLB up and running, let’s look how we can control

health checks.

 Configuring a Health Check
When we created the preceding target group, we used the default health check

configuration. Let’s describe our target group to see that configuration.

Get-ELB2TargetGroup -Name WebTargetGroup

The previous command returns the following results:

TargetGroupName : WebTargetGroup

HealthCheckEnabled : True

HealthCheckIntervalSeconds : 30

HealthCheckPath :

HealthCheckPort : traffic-port

HealthCheckProtocol : TCP

HealthCheckTimeoutSeconds : 10

HealthyThresholdCount : 3

UnhealthyThresholdCount : 3

LoadBalancerArns : {...}

Port : 80

Protocol : TCP

TargetType : instance

VpcId : vpc-123456789012

This is the default health check and it works as follows. Every 30 seconds

(HealthCheckInterval) the ELB will attempt to create a TCP (protocol) connection

on port 80 (port). If it succeeds three times (HealthyThresholdCount), the

instance is healthy. If the connection is not completed within 10 seconds

(HealthCheckTimeoutSeconds), the instance is unhealthy. If the instance fails to

respond three times (UnhealthyThresholdCount), the ELB will stop forwarding

traffic. At this point, the ELB will continue to monitor the instance. If the instance

recovers, the ELB will continue to monitor it until it succeeds three times (the

HealthyThresholdCount), at which point the ELB will begin forwarding traffic to it again.

Chapter 8 Monitoring and high availability

182

Note that the NLB we are using only supports checking the TCP connection. The ALB

can do additional checks. For example, you can configure the ALB to request a specific

page (e.g., default.htm) using HTTP on port 80 and ensure the web server responds with

a 200 status.

If you want, you can check the health of the instances behind the load balancer

using Get-ELB2TargetHealth. This command will return a list of instances along with the

health of each instance.

(Get-ELB2TargetHealth -TargetGroupArn $TargetGroup.TargetGroupArn).

TargetHealth

At this point our NLB is running and forwarding HTTP requests to our instances. In

the next section, we add support for HTTPS.

 Configuring an ELB for HTTPS
Most applications today require TLS for at least some portion of the site. As I mentioned

earlier, an ELB can be configured to terminate HTTPS. Note that the ELB can also receive

an HTTPS request and forward it to the instance without decrypting it, but I did not

include an example. Let’s add a new listener to our NLB that terminates HTTPS.

The first step is to create a TLS certificate. You could also import a certificate you

already own, but AWS Certificate Manager (ACM) will allow you to easily create free

certificates. In the following example, I am creating a certificate for www.example.com. Of

course you need to change example.com to a domain that you own.

$CertificateArn = New-ACMCertificate -DomainName www.example.com

-ValidationMethod EMAIL

ACM will validate the certificate by sending an email to the address in the domain

registrar (i.e., the email address returned by a whois command). You can also choose

to use DNS validation. In this case you will need to prove control over the authoritative

DNS for the domain by adding a few CNAME records to the database. Either way, the

New-ACMCertificate command will return the ARN of the certificate.

After you have approved your certificate, it will take a few minutes before it is issued.

You can check the status with the Get-ACMCertificateDetail command.

(Get-ACMCertificateDetail -CertificateArn $CertificateArn).Status

Chapter 8 Monitoring and high availability

183

Once the certificate is issued, you can create a new listener for HTTPS. This

command is similar to the HTTP listener we created earlier. However, we need an

additional .Net object to describe the certificate. Also note that I have changed the

protocol to TLS and the port to 443.

$Action = New-Object 'Amazon.ElasticLoadBalancingV2.Model.Action'

$Action.Type = 'forward'

$Action.TargetGroupArn = $TargetGroup.TargetGroupArn

$Certificate = New-Object 'Amazon.ElasticLoadBalancingV2.Model.Certificate'

$Certificate.CertificateArn = $CertificateArn

$Listner = New-ELB2Listener -Protocol TLS -Port 443 -LoadBalancerArn

$LoadBalancer.LoadBalancerArn -DefaultAction $Action -Certificate $Certificate

Obviously you are going to have to create a CNAME record to map your domain (e.g.,

www.example.com) to the ALB. Now that our load balancer is up and running, let’s spend

a minute on CloudWatch.

 Monitoring with CloudWatch
Our application is now highly available. If one of the instances becomes unhealthy, the

load balancer will remove it from service and send all the traffic to the other instance.

While automatic issue resolution is desirable, we still want to know what is happening

with our application in the cloud. We need monitoring to alert us when something goes

wrong. In this section we will use CloudWatch to create an alert that will email us when

CPU utilization exceeds 75% for an extended period of time.

CloudWatch is Amazon’s monitoring solution. CloudWatch can be used to monitor

most of the AWS services. In addition, you can create custom metrics using the

CloudWatch API. You can configure CloudWatch to take multiple actions when it detects

an issue, including sending an email, terminating the instance, launching additional

instances, executing a Lambda function, and many other actions.

The first step in creating an email alert is to create a topic with Simple Notification

Service (SNS). SNS is a service for sending notifications. It uses a publish-subscribe

architecture where many receivers subscribe to notifications that are published using the

SNS API. Let’s begin by creating a new topic using the New-SNSTopic command.

$Topic = New-SNSTopic -Name 'MyTopic'

Chapter 8 Monitoring and high availability

184

Now that our topic is defined, we want to subscribe to it using email. To create

a subscription, use the Connect-SNSNotification command. You will get an email

asking you to confirm your email address, and you must accept it before you can receive

notifications.

Connect-SNSNotification -TopicArn $Topic -Protocol 'email' -Endpoint

'alerts@example.com'

Now that our notification is configured, let’s test it. Remember that SNS is a generic

notification service. CloudWatch uses it to send alerts, but you can also use it to send

custom notifications. To publish a new message, use the Publish-SNSMessage command.

You should receive an email notification with the custom message. For example:

Publish-SNSMessage -TopicArn $Topic -Message "This is a test!"

Now that our notification is configured, we can create an alert. We want to monitor

our two instances and receive a notification when CPU utilization exceeds 75% for

an extended period of time. The first thing we need to do is define the CloudWatch

dimension. A dimension is used to group alerts. In this case we want to group our alerts

by instance. Without this dimension we would be measuring the average CPU utilization

of all instances in our account. We use a .Net object to create a dimension for the first

instance.

$Dimension = New-Object 'Amazon.CloudWatch.Model.Dimension'

$Dimension.Name = 'InstanceId'

$Dimension.Value = $Instance1.InstanceId

Now we can create the alarm using the Write-CWMetricAlarm command. This

command has a ton of parameters. Here is a description of each:

• AlarmName is just a name unique within the account.

• AlarmDescription is anything that will help you remember what the

alarm does.

• Namespace defines which AWS service is being monitored.

• MetricName is what we want to monitor, for example, CPU Utilization

(see appendix E for a list).

• Statistic describes how to aggregate the metric, for example,

average, minimum, maximum, and so on.

Chapter 8 Monitoring and high availability

185

• Threshold is the value to compare the metric to.

• Unit is the unit the metric is measured in, for example, MB, GB, and

so on.

• ComparisonOperator can be greater than, less than, and so on.

• EvaluationPeriods is the number of periods the condition must be

true before the alarm is raised.

• Period is the length of the evaluation period. In my example, we are

waiting for two periods of 5-minute before raising the alarm.

• Dimensions are the dimensions we created earlier.

• AlarmActions is the action to take when the alarm is raised. In my

example, send a notification.

The following example will create an alarm when the average CPU utilization

exceeds 75% for two consecutive 5-minute monitoring periods.

Write-CWMetricAlarm -AlarmName 'CPU75' -AlarmDescription 'Alarm when CPU

exceeds 75%'

 -Namespace 'AWS/EC2' -MetricName 'CPUUtilization' -Statistic

'Average' -Threshold 75

 -ComparisonOperator 'GreaterThanThreshold' -EvaluationPeriods 2

-Period (60*5)

 -Dimensions $Dimension -AlarmActions $Topic -Unit 'Percent'

CloudWatch is now monitoring our instance. You could create another alarm to

monitor the other instance if you want, but I will show an easier way to monitor an entire

group of instances in the next section. It will take at least 10 minutes (two periods of 5

minutes) to gather enough data to determine the current state. In the meantime, let’s test

our notification by explicitly setting the alarm using the Set-CWAlarmState command.

Set-CWAlarmState -AlarmName 'CPU75' -StateValue 'ALARM' -StateReason 'Testing'

You should receive an email alarm just like the one you would receive if an instance

were in distress. This section has hardly scratched the surface of SNS and CloudWatch.

Spend some time reading the documentation about these powerful services. In the next

section, we will use Auto Scaling to automatically add and remove instances depending

on load.

Chapter 8 Monitoring and high availability

186

Figure 8-3. Auto Scaling

 Using Auto Scaling
Notifications are a great start, but depending on an administrator to respond to alarms

is slow. The cloud brings infinite elasticity and with it a whole new way of thinking.

Auto Scaling allows us to build an application that automatically responds to changes in

demand. Our application can scale out when demand is high and scale in when demand

is low. In addition, Auto Scaling can detect issues and replace unhealthy instances.

Figure 8-3 shows the same web application we have been working on throughout

this chapter, but the two web instances have been replaced by an Auto Scaling group.

The Auto Scaling group is responsible for measuring current load and launching the

appropriate number of instances to serve our users.

Chapter 8 Monitoring and high availability

187

The first thing we need to do is terminate the two instances we launched earlier.

Going forward, we are going to let the Auto Scaling group launch all of our instances. We

don’t want to confuse things by launching instances manually.

Remove-EC2Instance -Instance $Instance1.InstanceId

Remove-EC2Instance -Instance $Instance2.InstanceId

Rather than launching instances one at a time, we are going to define a launch

configuration and save it for later. The launch configuration is simply a template that the

Auto Scaling group will use whenever it needs to launch an instance. Creating a launch

configuration is very similar to launching an instance. First, we define the user data script.

$UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.

GetBytes(@'

<powershell>

Install-WindowsFeature Web-Server -IncludeManagementTools

-IncludeAllSubFeature

</powershell>

'@))

Then, we call the New-ASLaunchConfiguration command.

New- ASLaunchConfiguration takes all the same parameters as New-EC2Instance and a

name used to save the configuration.

$AMI = Get-EC2ImageByName 'WINDOWS_2012_BASE'

New-ASLaunchConfiguration -LaunchConfigurationName 'MyLaunchConfig'

-ImageId $AMI[0].ImageId

 -KeyName 'MyKey' -SecurityGroups $ElbGroupId -UserData $UserData

 -InstanceType 't2.micro'

With our launch configuration defined, we can create an Auto Scaling group using

New-ASAutoScalingGroup. The Auto Scaling group defines how many instances can

be launched. DesiredCapacity is the number of instances we think we need, but we

also define a min and max that Auto Scaling can work within depending on load. Auto

Scaling will ensure that we always have at least the minimum number of instances, but

not more than the max.

Chapter 8 Monitoring and high availability

188

In addition, we tell the group what subnets to launch instances into, and optionally,

which load balancer target group to register with when they start. Note that not all

applications will require a load balancer. Some applications will get work from a queue

or database table. If you are using a load balancer, you should set HealthCheckType=ELB

to adopt the same health check the load balancer is using. By default, Auto Scaling will

use instance health – as reported by the hypervisor – to ensure the instance is healthy.

You don’t want to end up in a situation where the load balancer has marked all the

instances as unhealthy, but the Auto Scaling group is keeping them in service because it

thinks they are healthy.

Finally, we can define a HealthCheckGracePeriod and DefaultCoolDown. These

last two parameters are really important. HealthCheckGracePeriod defines how long,

in seconds, to wait before evaluating the health of a new instance. The default value

is 5 minutes, but it can sometimes take longer for a Windows instance to launch and

configure itself. If we do not override the defaults, the Auto Scaling group will think

the instance is unhealthy and replace it before it finishes configuration. Similarly,

DefaultCoolDown defines how long to wait between each Auto Scaling action. Again the

default is 5 minutes. If we don’t change this, Auto Scaling will keep launching more and

more instances while it waits for the first instance to boot up.

$VPCZoneIdentifier = $WebSubnet1.SubnetId + "," + $WebSubnet2.SubnetId

New-ASAutoScalingGroup -AutoScalingGroupName 'MyAutoScalingGroup'

 -LaunchConfigurationName 'MyLaunchConfig'

 -MinSize 2 -MaxSize 8 -DesiredCapacity 2

-VPCZoneIdentifier $VPCZoneIdentifier

 -TargetGroupARNs $TargetGroup.TargetGroupArn

 -HealthCheckType 'ELB' -HealthCheckGracePeriod (10*60)

-DefaultCooldown (15*60)

As soon as we run New-ASAutoScalingGroup, the group will begin to launch new

instances. You can use the Get-ELBInstanceHealth command to monitor the instances

that the group is managing and determine the status of each. You will use this command

often while you tune your Auto Scaling rules.

(Get-ELB2TargetHealth -TargetGroupArn $TargetGroup.TargetGroupArn).TargetHealth

Chapter 8 Monitoring and high availability

189

At this point, the Auto Scaling group will launch the desired number of instances and

monitor health. If an instance fails, it will be replaced, but we have not defined any Auto

Scaling rules so it will not yet respond to changes in load. We use CloudWatch to define

the rules just like we did before, but rather than sending a notification, the rule will

trigger an Auto Scaling policy.

The first thing we need to do is define a new CloudWatch dimension. In the previous

example, we measured the load of an individual instance. In this example, we want to

measure the average load of all the instances in our Auto Scaling group. The following

dimension will calculate the aggregate over the entire group.

$Dimension = New-Object 'Amazon.CloudWatch.Model.Dimension'

$Dimension.Name = 'AutoScalingGroupName'

$Dimension.Value = 'MyAutoScalingGroup'

Now we can define a policy to scale up using Write-ASScalingPolicy. This policy

simply says to increase the capacity by two instances. Note that you can also override the

default cool down to ensure the instance has time to boot before the next scaling occurs.

$ScaleUpPolicy = Write-ASScalingPolicy -PolicyName 'MyScaleOutPolicy'

 -AutoScalingGroupName 'MyAutoScalingGroup'

 -ScalingAdjustment 2 -AdjustmentType 'ChangeInCapacity' -Cooldown (15∗60)

You can also define a percentage change rather than a specific count.

$ScaleUpPolicy = Write-ASScalingPolicy -PolicyName 'MyScaleOutPolicy'

 -AutoScalingGroupName 'MyAutoScalingGroup'

 -ScalingAdjustment 20 -AdjustmentType 'PercentChangeInCapacity'

-Cooldown (30*60)

With the scaling policy defined, we can create a cloud watch alarm to trigger it. This

is almost identical to the alarm we created for notification except that the action invokes

the scaling policy rather than sending an email.

Write-CWMetricAlarm -AlarmName 'AS75'

 -AlarmDescription 'Add capacity when average CPU within the auto

scaling group is more than 75%' -Threshold 75

 -MetricName 'CPUUtilization' -Namespace 'AWS/EC2' -Statistic 'Average'

-Period (60*5)

Chapter 8 Monitoring and high availability

190

 -ComparisonOperator 'GreaterThanThreshold' -EvaluationPeriods 2

 -AlarmActions $ScaleUpPolicy.PolicyArn -Unit 'Percent' -Dimensions

$Dimension

Of course, we also need a policy to remove instances when load diminishes.

Otherwise our application will grow and never contract. The policy and alarm are almost

identical with a few exceptions. First, the ScalingAdjustment is a negative number to

indicate we are removing instances. Second, our alarm is defined as less than 25%.

$ScaleInPolicy = Write-ASScalingPolicy -PolicyName 'MyScaleInPolicy'

 -AutoScalingGroupName 'MyAutoScalingGroup'

 -ScalingAdjustment -2 -AdjustmentType 'ChangeInCapacity' -Cooldown (30∗60)

Write-CWMetricAlarm -AlarmName 'AS25'

 -AlarmDescription 'Remove capacity when average CPU within the auto

scaling group is less than 25%' -Threshold 25

 -MetricName 'CPUUtilization' -Namespace 'AWS/EC2' -Statistic 'Average'

-Period (60*5)

 -ComparisonOperator 'LessThanThreshold' -EvaluationPeriods 2

 -AlarmActions $ScaleInPolicy.PolicyArn -Unit 'Percent' -Dimensions

$Dimension

Once your Auto Scaling group is running, it will work continuously to keep the

application properly scaled. In fact, if you manually terminate an instance, it will be

replaced within a few minutes. We have launched a lot of infrastructure in the chapter.

Let’s delete the Auto Scaling group and load balancer before moving on. First, we set the

desired capacity of Auto Scaling group to zero to terminate all the instances.

Update-ASAutoScalingGroup -AutoScalingGroupName 'MyAutoScalingGroup'

-MinSize 0 -DesiredCapacity 0

Once that is complete, you can delete the Auto Scaling group.

Remove-ASAutoScalingGroup -AutoScalingGroupName 'MyAutoScalingGroup'

Then you can delete the load balancer and target group.

Remove-ELB2LoadBalancer -LoadBalancerArn $LoadBalancer.LoadBalancerArn

Remove-ELB2TargetGroup -TargetGroupArn $TargetGroup.TargetGroupArn

Chapter 8 Monitoring and high availability

191

At this point, we have created a self-healing, Auto Scaling application, but we

can go a step further. In the next section, we will look at how Route 53 distribute load

across the globe.

 Using Route 53
Our application is now architected for high availability, but we could go even further.

At the moment, we have achieved high availability by launching redundant instances

across availability zones in Northern Virginia. We could also launch a redundant stack in

another region. This way the application would continue to work even if an entire region

failed. This is where Route 53 comes in.

As seen in Figure 8-4, Route 53 can be used to balance traffic between regions,

similar to how an ELB routes traffic between instances. Route 53 is a DNS service and

requires that you make AWS your DNS provider. This is a significant commitment you

are not likely willing to make to run a few samples from a book. As a result, I have not

included any examples in this section, but I wanted you to be aware of Route 53 and how

it can help you scale.

Figure 8-4. Route 53

Chapter 8 Monitoring and high availability

192

There is another advantage to this architecture beyond high availability. As you

know, AWS offers multiple regions around the world. If we deploy our application in

many regions, we can serve users from the region closest to them, minimizing latency.

This will give the user the best experience.

The advantage of using Amazon’s DNS service is that it offers latency-based routing.

Latency-based routing uses geolocation to determine which region is closest to the user

and will therefore give them the best experience. In addition, Route 53 can monitor the

health of each region and will not route users to a region that is unhealthy.

As we have seen throughout this chapter, AWS offers many services that can be used

to monitor and scale an application. In the first exercise, we will pull together everything

we learned in this chapter into a single script.

EXERCISE 8.1: SCALING OUT

in this chapter, we learned how to use eC2, vpC, SnS, CloudWatch, auto Scaling, and route

53 to create a self-healing application that automatically responds to changes in load. in the

process, we took a roundabout approach focused more on exploring each technology than

the final solution. in this exercise, we will pull together everything we learned into a single

provisioning script that will add an auto Scaling group to an existing vpC.

First, we need to define the input parameters. this script will add to an existing vpC; therefore,

we expect the vpC, subnets (two for the elbs and two for the application instances), and

security groups to be defined already. in addition, the script takes the instance type, aMi, and

user data configuration script.

param

(

 [string][parameter(mandatory=$true)]$VpcId,

 [string][parameter(mandatory=$true)]$ElbSubnet1Id,

 [string][parameter(mandatory=$true)]$ElbSubnet2Id,

 [string][parameter(mandatory=$true)]$WebSubnet1Id,

 [string][parameter(mandatory=$true)]$WebSubnet2Id,

 [string][parameter(mandatory=$true)]$SecurityGroupId,

 [string][parameter(mandatory=$false)]$InstanceType = 't2.micro',

 [string][parameter(mandatory=$false)]$AmiId,

Chapter 8 Monitoring and high availability

193

 [string][parameter(mandatory=$true)]$UserData,

 [string][parameter(mandatory=$false)]$KeyName = 'MyKey'

)

note that the instance type and aMi are optional. if the aMi is missing, we will look up the

2012 base image for the current region.

If([System.String]::IsNullOrEmpty($AmiId)){ $AmiId = (Get-EC2ImageByName -Name

 'WINDOWS_2012_BASE')[0].ImageId}

next, we launch the new load balancer for our application. in this exercise i am only

configuring http, but you could easily adapt the script to support httpS as described in the

chapter.

$LoadBalancer = New-ELB2LoadBalancer -Type network -Name 'WebLoadBalancer'

-Subnets $ElbSubnet1Id, $ElbSubnet2Id

$TargetGroup = New-ELB2TargetGroup -Name 'WebTargetGroup' -Protocol TCP -Port

80 -VpcId $VpcId

$Action = New-Object 'Amazon.ElasticLoadBalancingV2.Model.Action'

$Action.Type = 'forward'

$Action.TargetGroupArn = $TargetGroup.TargetGroupArn

$Listner = New-ELB2Listener -Protocol TCP -Port 80 -LoadBalancerArn

$LoadBalancer.LoadBalancerArn -DefaultAction $Action

now, we create a launch configuration based on the instance type, aMi, and user data passed in.

$UserData = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.

GetBytes($UserData))

New-ASLaunchConfiguration -LaunchConfigurationName 'MyLaunchConfig'

 -ImageId $AmiId -KeyName $KeyName -InstanceType $InstanceType

 -SecurityGroups $SecurityGroupId -UserData $UserData

then, we create the auto Scaling group. here i am specifying two to eight instances with a

10-minute grace period and cool down. this is probably too high, but again we don’t know

what the application is; therefore, it is better to err on the high side. if the instance is not

up and running within the cool-down period, it will be killed and replaced. this will result in

thrashing, where the auto Scaling continuously kills and replaces instances without giving

them time to become effective.

Chapter 8 Monitoring and high availability

194

New-ASAutoScalingGroup -AutoScalingGroupName 'MyAutoScalingGroup'

 -LaunchConfigurationName 'MyLaunchConfig'

 -MinSize 2 -MaxSize 8 -DesiredCapacity 2 -TargetGroupARNs $TargetGroup.

TargetGroupArn

 -VPCZoneIdentifier "$WebSubnet1Id, $WebSubnet2Id" -HealthCheckType 'ELB'

 -HealthCheckGracePeriod (10∗60) -DefaultCooldown (15∗60)

now we can configure CloudWatch to monitor our application. First, we create a new

dimension that aggregates metrics across the entire auto Scaling group.

$Dimension = New-Object 'Amazon.CloudWatch.Model.Dimension'

$Dimension.Name = 'AutoScalingGroupName'

$Dimension.Value = 'MyAutoScalingGroup'

next, we create a policy and alarm to add two instances when CpU utilization exceeds 75%.

$ScaleUpArn = Write-ASScalingPolicy -PolicyName 'MyScaleOutPolicy'

 -AutoScalingGroupName 'MyAutoScalingGroup'

 -ScalingAdjustment 2 -AdjustmentType 'ChangeInCapacity' -Cooldown (15*60)
Write-CWMetricAlarm -AlarmName 'AS75'

 -AlarmDescription 'Add capacity when average CPU within the auto scaling

group is more than 75%'

 -MetricName 'CPUUtilization' -Namespace 'AWS/EC2' -Statistic 'Average'

 -Period (60*5) -Threshold 75
 -ComparisonOperator 'GreaterThanThreshold' -EvaluationPeriods 2

 -AlarmActions $ScaleUpArn.PolicyArn

 -Unit 'Percent' -Dimensions $Dimension

Finally, we create a policy and alarm to remove two instances when CpU utilization is below 25%.

$ScaleInArn = Write-ASScalingPolicy -PolicyName 'MyScaleInPolicy'

 -AutoScalingGroupName 'MyAutoScalingGroup'

 -ScalingAdjustment -2 -AdjustmentType 'ChangeInCapacity' -Cooldown (15*60)
 Write-CWMetricAlarm -AlarmName 'AS25'

 -AlarmDescription 'Remove capacity when average CPU within the auto

scaling group is less than 25%'

 -MetricName 'CPUUtilization' -Namespace 'AWS/EC2' -Statistic 'Average'

 -Period (60*5) -Threshold 25

Chapter 8 Monitoring and high availability

195

 -ComparisonOperator 'LessThanThreshold' -EvaluationPeriods 2

 -AlarmActions $ScaleInArn.PolicyArn

 -Unit 'Percent' -Dimensions $Dimension

that’s all you need to build a self-healing application that automatically responds to changes

in load. auto Scaling is a great solution, but the application must be built with scaling in mind.

Some applications are simply not built to scale out. For these applications, you must scale up.

in the next section, we create a script to scale up, or move from one instance type to another.

EXERCISE 8.2: SCALING UP

in this chapter, we created a solution to scale out in response to load. Scaling out refers to

adding additional instances in response to demand. another option is to scale up, or increase

the size of an instance. Some systems, such as relational databases, do not scale out easily.

these applications must be scaled up.

luckily aWS has a command for this named Edit-EC2InstanceAttribute. Edit-

EC2InstanceAttribute allows you to change many of instance’s attributes including

• BlockDeviceMappings

• DisableApiTermination

• EbsOptimized

• Groups

• InstanceInitiatedShutdownBehavior

• InstanceType

• Kernel

• Ramdisk

• SourceDestCheck

• UserData

We are interested in changing the InstanceType. let’s create a quick script to resize an

instance. our script will take two simple parameters, the instance id you want to modify and

the new instance type.

Chapter 8 Monitoring and high availability

196

Param(

 [string][Parameter(Mandatory=$false)] $InstanceId,

 [string][Parameter(Mandatory=$false)] $NewInstanceType

)

now all we need to do is call Edit-EC2Instance specifying the InstanceType attribute.

Edit-EC2InstanceAttribute -InstanceId $InstanceId -InstanceType

$NewInstanceType

that’s all there is to it. once again aWS makes it easy to do something that would be really

hard with physical servers in a traditional data center.

before we wrap up, i want to point out a few limitations of this script:

 1. your instance must be stopped before you can resize it.

 2. be really careful with ephemeral storage. ephemeral disk configurations depend

on the instance type and are not always compatible across systems. be really

careful with elastic network interfaces (enis) and secondary ip addresses.

again, enis and secondary ip configurations differ among instance types.

 3. be careful with marketplace instances. Marketplace instances cannot be

resized as you are licensed for a specific size.

in this exercise we created a script that can be used to resize an instance. in general, scaling

out is preferred, but when the application does not support it, we can always scale up.

 Summary
In this chapter, we saw the true power of the cloud and AWS. We used VPC to build a

highly available application served from two or more active-active data centers. We

developed a notification system using SNS and CloudWatch to provide an early warning

system that informs the administrator before the application fails.

We also used an ELB to balance traffic across multiple instances and monitor the

health of the individual instances. In addition, we used Auto Scaling to monitor load in

real time to dynamically resize the application by launching and terminating instances

in response to load. Finally, we deployed our application in multiple regions and used

Route 53 to automatically route users to the nearest region, minimizing latency.

Chapter 8 Monitoring and high availability

197

In the exercises we created scripts to scale out and scale up depending on the

application.

It is very easy to overlook the power of what we just did. Very few traditional

enterprises can achieve web scale using their own data centers and enterprise solution.

But, using the cloud, a single person can build a world-class application from their

favorite coffee shop.

This chapter wraps up our discussion on Elastic Compute Cloud (EC2). In the

remaining three chapters, we will examine Relational Database Service (RDS), Simple

Storage Service (S3), and Identity and Access Management (IAM).

Chapter 8 Monitoring and high availability

199
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_9

CHAPTER 9

Identity and Access
Management
If you have been following along from the beginning, we have completed all of the

examples in this book while signed in as a user with administrator privileges. While

this is a convenient way to learn a new technology, you should never run a production

system with administrator privileges. If part of the system were compromised, you want

to ensure you limit access as much as possible.

This chapter is all about Identity and Access Management (IAM). IAM is how you

manage users, groups, and permissions. In this chapter, I show you how to create users

and groups. I also explain how IAM policies work and how to create them. IAM policies

describe which resources a user can access and the operations they can perform on

those resources. You will see that IAM gives you unprecedented control over access.

Finally, in the two exercises at the end of the chapter, we will create a framework for

least privileged access and grant access to billing and support. Let’s get started.

 Managing Users
Let’s begin by adding a few users to our AWS account. We added a single user back in

Chapter 2 using the AWS Management Console. Now let’s add a few using PowerShell.

To add users, you use the New-IAMUser command. The following script will add six users:

New-IAMUser -UserName 'alice'

New-IAMUser -UserName 'bob'

New-IAMUser -UserName 'chris'

New-IAMUser -UserName 'dan'

New-IAMUser -UserName 'eve'

New-IAMUser -UserName 'frank'

200

As you might expect, there is also a Get-IAMUser command that can be used to get

information about a user, such as the username and date the account was created.

Get-IAMUser -UserName 'alice'

Get-IAMUser works a bit differently from other commands. Most “get” methods

return a list of all objects when you call them without parameters. If you call Get-IAMUser

without the UserName parameter, it returns the currently logged in user. This is useful

when writing a generic script that needs to discover who is currently logged in. For

example, you might want to tag an instance with the name of the current user.

$User = Get-IAMUser

$Tag = New-Object Amazon.EC2.Model.Tag

$Tag.Key ='Owner'

$Tag.Value = $User.UserName

Note that Get-IAMUser only works for users. Toward the end of this chapter, we will

talk about IAM roles. If you are writing code to get the current user, I suggest using

Get- STSCallerIdentity. Get-STSCallerIdentity will work for both users and roles.

If you want to list all of the users in the account, use the Get-IAMUsers command.

Get-IAMUsers | Format-Table

You may remember from Chapter 2 that there are multiple types of credentials.

We discussed that users need a password to access the AWS Management Console and

access keys to use the REST API and PowerShell. But not all users require both types of

credentials. To allow a user to access the AWS Management Console, you must assign a

password using the New-IAMLoginProfile command.

New-IAMLoginProfile -UserName 'alice' -Password 'PASSWORD'

-PasswordResetRequired:$True

Note that PasswordResetRequired is optional. If you omit PasswordResetRequired,

the user will not be forced to reset their password on the next console login. There are

two commands for changing a user’s password. The first, Edit-IAMPassword, allows a

user to change their own password. It always acts on the current user and requires the

old password.

Edit-IAMPassword -OldPassword 'PASSWORD' -NewPassword 'Du2[/uiCq8LKjW'

Chapter 9 IdentIty and aCCess ManageMent

201

The second, Update-IAMLoginProfile, is an administrative action. Update-

IAMLoginProfile can change any user’s password and does not require the original

password.

Update-IAMLoginProfile -UserName alice -Password 'Du2[/uiCq8LKjW'

If you want to remove a login profile, and deny access to the AWS Management

Console, use the Remove-IAMLoginProfile command.

Remove-IAMLoginProfile -UserName 'alice' -Force

If you want the user to be able to use the REST API, you must create an access key

using the New-IAMAccessKey command. Remember that we are using the REST API

with PowerShell. Therefore, a user needs an access key to use PowerShell for AWS. The

New-IAMAccessKey command returns an object that includes both the AccessKeyId and

SecretAccessKey.

$Keys = New-IAMAccessKey -UserName 'alice'

$Keys.AccessKeyId

$Keys.SecretAccessKey

Remember to save the secret key because you cannot get it again. To store a copy in

your PowerShell session, you can use the Set-AWSCredentials command discussed in

Chapter 2. For example:

$Keys = New-IAMAccessKey -UserName 'alice'

Set-AWSCredentials -AccessKey $Keys.AccessKeyId -SecretKey $Keys.

SecretAccessKey -StoreAs 'alice'

If you want to delete a user’s access keys, you can use Remove-IAMAccessKey. A user

can have more than one Access Key; therefore, you must specify which Access Key to

remove.

Remove-IAMAccessKey -UserName 'alice' -AccessKeyId 'AKIAJV64XS4XLRAJIBAQ'

-Force

You may find that you need to check if a user has either a password or access keys.

You can use Get-IAMLoginProfile and Get-IAMAccessKey to check if they exist.

Get-IAMLoginProfile -UserName 'alice'

Get-IAMAccessKey -UserName 'alice'

Chapter 9 IdentIty and aCCess ManageMent

202

Both of these methods return a create date for the credential. Given that each user can

have two sets of access keys, the security conscious user will rotate these keys on a regular

basis. For example, you might replace the older set of keys every 30 days. The following

script will find the oldest set of keys for a user, delete them, and create a new set.

$Key = Get-IAMAccessKey -UserName 'alice' | Sort-Object CreateDate

-Descending | Select AccessKeyId -First 1

Remove-IAMAccessKey -UserName 'alice' -AccessKeyId $Key.AccessKeyId-Force

$Keys = New-IAMAccessKey -UserName 'alice'

$Keys.AccessKeyId

$Keys.SecretAccessKey

Now that we have a user created, we need to assign the user permissions. Before

we do, let’s look at groups. Groups allow you to group related users together and assign

them permissions as a unit. This process is usually less time-consuming and less error

prone.

 Managing Groups
When you apply permissions to individual users, it is very difficult to keep track of who

has access to which resources. Grouping related users makes managing permissions

much easier. Groups reduce the number of unique permissions sets you need to keep

track of. (In the first exercise at the end of this chapter, we build a set of common groups

as a starting point.)

To create a new group, use the New-IAMGroup command and assign a name.

New-IAMGroup -GroupName 'AWS_USERS'

Initially the group is empty. To add a user to a group, use the Add-IAMUserToGroup

command and pass the name of the user and the group to add him or her to.

Add-IAMUserToGroup -UserName 'alice' -GroupName 'AWS_USERS'

If you want to remove a user from a group, use the Remove-IAMUserFromGroup

command passing the name of the user and the group to remove him or her from.

Remove-IAMUserFromGroup -UserName 'alice' -GroupName 'AWS_USERS' -Force

Chapter 9 IdentIty and aCCess ManageMent

203

Listing groups is similar to listing users. You use the Get-IAMGroups (plural)

command to list all the groups in your account.

Get-IAMGroups

You use the Get-IAMGroup (singular) command to get a specific group.

Get-IAMGroup -GroupName 'AWS_USERS'

Note that these two commands return different information. The Get-IAMGroups

(plural) command returns a group object that does not include the group members. The

Get-IAMGroup (singular) command returns a GetGroupResult object that includes the

group and a collection of users.

Therefore, to list the members of a group, use Get-IAMGroup and then read the users

property.

(Get-IAMGroup -GroupName 'AWS_USERS').Users

To get the opposite – a list of groups a user is a member of – you can use the Get-

IAMGroupForUser command. For example:

Get-IAMGroupForUser 'alice'

Unlike the Get-IAMUser command, Get-IAMGroupForUser cannot be called without

a group parameter. It would be nice if calling Get-IAMGroupForUser would list the groups

the current user is a member of. We can use a little PowerShell magic to combine Get-

IAMUser and Get-IAMGroupForUser to get the list. For example:

Get-IAMUser | Get-IAMGroupForUser

At this point we have created a few users and groups and have added users to groups.

But, our users still don’t have permission to do anything. In the next section, we will

grant permission to our users.

 Managing Policies
We use policies to grant permissions to users and groups. Policies are JSON statements

that describe what API calls a user or group is allowed to call. You can grant or deny

access to every API call. Before we get started, let’s do a quick review of JSON.

Chapter 9 IdentIty and aCCess ManageMent

204

JSON PRIMER

Javascript Object notation (JsOn) was first used to send objects from a web server to a

browser. JsOn uses key/value pairs to represent attributes. here are a few examples of

attributes in JsOn:

"Name": "Joe"

"Age": 35

"Male": true

an array can be represented by a single key and multiple values in square brackets.

For example:

"Children": ["Mary", "Charles", "Sam"]

an object is simply a list of key/value pairs separated by commas and enclosed in curly

braces. For example, we might represent a person as

{

 "Name": "Joe",

 "Age": 35,

 "Male": true,

 "Children": ["Mary", "Charles", "Sam"]

}

We can also nest objects inside other objects. For example:

{

 "Name": "Joe",

 "Age": 35,

 "Male": true,

 "Children": [

 {

 "Name": "Mary",

 "Age": 3,

 "Male": false

 },

 {

 "Name": "Charles",

 "Age": 5,

Chapter 9 IdentIty and aCCess ManageMent

205

 "Male": true

 },

 {

 "Name": "Sam",

 "Age": 7,

 "Male": true

 }

]

}

this is a very brief introduction, but you can see that JsOn can be used to represent very

complex structures. I could write a whole book on JsOn – and others have – but this is all we

need to understand IaM policy statements.

Policy statements are written in JSON. The statement must include three sections:

effect, action, and resource. The effect of the statement is to either allow access or deny

access. The action is a list of API calls that are allowed. The resource section lists the

objects the user is allowed to act on. For example, the following statement will allow a

user to call any method on any object. In other words, this is an administrator policy.

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "*",

 "Resource": "*"

 }

]

}

 Policy Actions
Actions determine which API calls are allowed or denied by a policy. Remember that

PowerShell commands call API WebMethods. In other words, you can grant or deny

access to each individual PowerShell command.

Chapter 9 IdentIty and aCCess ManageMent

206

Before we can write a policy, we need to know the API method name. There is

a helper cmdlet, Get-AWSCmdletName, which you can use to map cmdlets to API

methods. For example:

PS C:\> Get-AWSCmdletName | Where CmdletName -eq New-Ec2Instance

CmdletName ServiceOperation ServiceName

---------- ---------------- -----------

New-EC2Instance RunInstances Amazon Elastic Compute Cloud

Now that we know the API names, let’s write a custom policy. We use an array to

list multiple methods in a single policy. Note that the method name is preceded by the

service type (i.e., "iam:") The following example allows access to all the read methods in

IAM. In other words, this policy grants read-only access to IAM.

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "iam:GetAccountPasswordPolicy",

 "iam:GetAccountSummary",

 "iam:GetGroup",

 "iam:GetGroupPolicy",

 "iam:GetInstanceProfile",

 "iam:GetLoginProfile",

 "iam:GetRole",

 "iam:GetRolePolicy",

 "iam:GetServerCertificate",

 "iam:GetUser",

 "iam:GetUserPolicy",

 "iam:ListAccessKeys",

 "iam:ListAccountAliases",

 "iam:ListGroupPolicies",

 "iam:ListGroups",

 "iam:ListGroupsForUser",

Chapter 9 IdentIty and aCCess ManageMent

207

 "iam:ListInstanceProfiles",

 "iam:ListInstanceProfilesForRole",

 "iam:ListMFADevices",

 "iam:ListRolePolicies",

 "iam:ListRoles",

 "iam:ListServerCertificates",

 "iam:ListSigningCertificates",

 "iam:ListUserPolicies",

 "iam:ListUsers",

 "iam:ListVirtualMFADevices"

],

 "Resource": "*"

 }

]

}

You can also use a wildcard or “∗” character to specify API methods that start with a

specific pattern. For example, we could simplify the preceding policy using wildcards.

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "iam:Get*",

 "iam:List*"

],

 "Resource": "*"

 }

]

}

Often you want to grant access to an entire service such as EC2. We can also scope a

wildcard to grant access to a specific service. The following example will grant access to

EC2 and S3.

Chapter 9 IdentIty and aCCess ManageMent

208

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "ec2:*",

 "s3:*"

],

 "Resource": "*"

 }

]

}

As you can see, IAM policies allow fine-grained control over access. In Exercise 9.1

we will develop a set of least privileged roles for EC2. Now let’s look at resources.

 Policy Resources
So far, the policies we have written apply to all resources. When we granted access to

S3 in the following example, we allowed the user to act on all objects in all buckets. Some

services allow you to scope the access. In S3, we might want to allow access to a specific

bucket or folder.

For example, to scope access to the “MyBucket” bucket

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": *,

 "Resource": "arn:aws:s3:::MyBucket"

 }

]

}

Chapter 9 IdentIty and aCCess ManageMent

209

The resource statement is always written using an Amazon Resource Name (ARN).

An ARN is used to uniquely identify an AWS resource across accounts and regions. The

ARN format is as follows:

arn:aws:service:region:account:resource

Note that S3 is a special case. The bucket name is already unique; therefore, the ARN

does not include the account and region and follows the format

arn:aws:s3:::BUCKET/KEY

Many, but not all, services support resource-level permission that allows you to

scope a policy to specific resources. For example, you could scope access to a specific

object in S3 as follows:

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": *,

 "Resource": "arn:aws:s3:::MyBucket/MyFolder/MyFile.txt"

 }

]

}

Of course, you can use wildcards here as well. The following example will scope

access to all objects in the MyFolder folder in the MyBucket bucket:

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": *,

 "Resource": "arn:aws:s3:::MyBucket/MyFolder/*"

 }

]

}

Chapter 9 IdentIty and aCCess ManageMent

210

IAM also allows a few variables in the policy statements. (See the sidebar for a list of

supported variables.) Variables make it easier to create a generic policy. For example,

let’s assume that every user has a personal folder in S3 that is named with the user’s

username. It would be really tedious to write a policy for each user in the following

format:

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": *,

 "Resource": "arn:aws:s3:::MyBucket/alice/*"

 }

]

}

You can write a generic policy that grants each user access to his or her own folder as

follows:

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": *,

 "Resource": "arn:aws:s3:::MyBucket/${aws:username}/*"

 }

]

}

Chapter 9 IdentIty and aCCess ManageMent

211

POLICY VARIABLES

here is a list of variables supported in IaM policy statements.

Name Description

aws:CurrentTime date and time of the request

aws:EpochTime date and time in Unix time format

aws:TokenIssueTime date and time that temporary credentials were issued

aws:principaltype a value that indicates whether the principal is an account,

user, federated, or assumed role (see the explanation that

follows)

aws:SecureTransport Boolean representing whether the request was sent using ssL

aws:SourceIp the requester’s Ip address, for use with Ip address conditions

aws:UserAgent Information about the requester’s client application, for use

with string conditions

aws:userid Unique Id for the current user

aws:username Username of the current user

s3:prefix prefix passed in some s3 commands

s3:max-keys Max-Keys information passed in some s3 commands

sns:Endpoint endpoint passed in some sns calls

sns:Protocol protocol passed in some sns calls

Unfortunately, not all services support resources. For example, S3 and IAM do, but

EC2 does not. Luckily we can use conditions to control access to EC2 objects by tag. But,

before we talk about conditions, let’s look at policy actions.

Chapter 9 IdentIty and aCCess ManageMent

212

 Policy Actions
All of the policy statements we have written so far allow access to a resource. You can

also deny access to a resource by using the deny action. For example, I could keep a user

from terminating instances by denying access to the ec2:TerminateInstances action.

{

 "Statement": [

 {

 "Effect": "Deny",

 "Action": "ec2:TerminateInstances",

 "Resource": "*"

 }

]

}

Effect, resource, and action are required components of every policy statement.

There are also numerous optional components. I’m not going to cover all of the options

here, but I do want to discuss conditions. Conditions are very useful for controlling

access to EC2. Let’s have a look.

 Policy Conditions
Conditions allow you to write custom logic to determine if an action is allowed. This is

a complex topic that could easily fill a chapter. I am only going to show you how to write

conditions based on EC2 tags. You can read more about conditions in the IAM user guide.

Imagine you want to allow users to terminate instances tagged DEV but not those

considered QA or PROD. You could grant access to the terminate action, but use a

condition to limit access to those instances that have a tag called "environment" with the

value "dev".

{

 "Version": "2012-10-17",

 "Statement": [{

 "Effect": "Allow",

 "Action": "ec2:TerminateInstances",

 "Resource": "arn:aws:ec2:us-east-1:123456789012:instance/*",

Chapter 9 IdentIty and aCCess ManageMent

213

 "Condition": {

 "StringEquals": {

 "ec2:ResourceTag/environment": "dev"

 }

 }

 }

]

}

Notice that I have included the optional version to tell AWS this policy requires

the latest version of the policy language. Also notice the format of the resource

ARN. Remember to replace the 123456789012 with your account number.

Now that we know how to write a policy, let’s associate it with a user and group using

PowerShell.

 Creating Policies with PowerShell
Creating an IAM policy in PowerShell is really easy. You simply create the JSON

statement as a string and then associate it with a user or group. For example, to grant

Alice full control, use the Write-IAMUserPolicy command.

$Policy = @"

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "*",

 "Resource": "*"

 }

]

}

"@

Write-IAMUserPolicy -UserName "alice" -PolicyName "alice-FullControl"

-PolicyDocument $Policy

Chapter 9 IdentIty and aCCess ManageMent

214

Assigning a policy to a group is just as easy. For example, to grant full control to the

ADMINS group, use the Write-IAMGroupPolicy command.

Write-IAMGroupPolicy -GroupName "ADMINS" -PolicyName "ADMINS-FullControl"

-PolicyDocument $Policy

As you can see, IAM policies give you fine-grained control over access to AWS. You

can be very specific about who has access to which resources. The details are all

contained in the policy statement. In Exercise 9.1 we will create a common set of groups

with least privileged policy defined. Before we end the section on policies, let’s spend a

moment on managed policies.

 Managed Policies
Up to this point, we have been creating policies by hand. In practice, this can get tedious.

In addition, it is easy to make mistakes that grant more permission than you intend

and compromise security. As you might expect, there are many common patterns that

emerge. For example, most organizations have a team of system administrators and they

grant them access to EC2, ECS, and so on, or network administrators that need access to

VPC, Route 53, and so on.

Luckily, AWS has created a collection of managed policies that solve common

problems. It is often much easier to use these policies rather than writing your own

policies. In addition, you can create your own managed policies.

Why would you want to create a managed policy when you can attach a policy

directly to a user? You can define a policy once and use it across many users, groups, and

roles. This promotes consistent permissions across your security principals. In addition,

managed policies support versioning so you can maintain a history of changes. Policies

attached directly to a user do not support versioning.

Let’s begin by looking at the managed policies in your account.

 Get-IAMPolicies

If you want to list only those managed policies defined by AWS, excluding any

customer managed policies, you can add the Scope=AWS attribute.

Get-IAMPolicies -Scope AWS

Chapter 9 IdentIty and aCCess ManageMent

215

Conversely, you can list only those customer managed policies by adding the scope

equals local attribute.

Get-IAMPolicies -Scope local

You can get details about a specific policy using the Get-IAMPolicy cmdlet. This

command requires the Arn of the policy you are interested in.

Get-IAMPolicy -PolicyArn arn:aws:iam::aws:policy/AmazonGlacierReadOnlyAccess

You may notice that this command does not return the actual policy. Why?

Remember that managed policies support versions. Therefore, each managed policy

may have many versions. You can list the policies with the Get-IAMPolicyVersions

cmdlet.

Get-IAMPolicyVersions -PolicyArn arn:aws:iam::aws:policy/

AmazonGlacierReadOnlyAccess

And, you can get a specific version using the Get-IAMPolicyVersion cmdlet.

Get-IAMPolicyVersion -PolicyArn arn:aws:iam::aws:policy/

AmazonGlacierReadOnlyAccess -VersionId v1

As I mentioned earlier, you can create your own managed policies. This allows you

define your policies once and maintain version history. For example, let’s assume you

want to create a managed policy for system administrators. Of course, there is already an

AWS-defined policy for system administrators. In general, I recommend using the built-

in policies rather than writing your own. However, let’s assume we want to create our

own. Here I am granting the system administrators full control over EC2. Note that the

version attribute is required when creating a managed policy.

$Policy = @"

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "ec2:*",

Chapter 9 IdentIty and aCCess ManageMent

216

 "Resource": "*"

 }

]

}

"@

New-IAMPolicy -PolicyName MySysAdminPolicy -PolicyDocument $Policy

Now, let’s assume that we have started using containers and want to also give you

system administrators access to Elastic Container Service (ECS) in addition to EC2.

Therefore, I update the policy with a new version. Notice that I am setting the new

version as the default.

$Policy = @"

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": ["ec2:*", "ecs:*"],

 "Resource": "*"

 }

]

}

"@

New-IAMPolicyVersion -PolicyArn arn:aws:iam::123456789012:policy/

MySysAdminPolicy -PolicyDocument $Policy -SetAsDefault $true

Finally, let’s assume we changed our mind and want to roll back to version 1. We can

do this with the Set-IAMDefaultPolicyVersion cmdlet.

Set-IAMDefaultPolicyVersion -PolicyArn arn:aws:iam::123456789012:policy/

MySysAdminPolicy -VersionId v1

This command will update the policy of all the security principals (user, groups,

and roles) that are using the policy. Of course, the astute reader realizes that there are

no principals using the policy. At this point we have created a policy, but we have not

Chapter 9 IdentIty and aCCess ManageMent

217

assigned the policy to a principal. The last thing we need to do is add the policy to a

user, group, or role. Note: We will talk more about roles in the next section. Let’s add the

managed policy to the user Alice we created earlier.

Register-IAMUserPolicy -UserName alice -PolicyArn

arn:aws:iam::123456789012:policy/MySysAdminPolicy

 Managing Roles
Remember from Chapter 2 that an IAM role can be used to associate a policy with an

instance, rather than a user. This is just one example of a much more powerful concept.

Roles allow you assign permission to AWS services, AWS accounts, SAML identities, and

other resources. Let’s look a few examples.

To list the roles defined in your account, use the Get-IAMRoles command. If you run

this command, you should see the “AdminRole” we created using the AWS Management

Console in Chapter 2.

Get-IAMRoles

You can also get a specific role using the Get-IAMRole command.

Get-IAMRole -Rolename AdminRole

Let’s define a few roles to understand how they work. Creating a new role is similar

to the process we used to create a user or group, but we also need a second policy that

defines what resources can assume the role. There are two policies required: the first

describes who can use the role, and the second describes what the role can do.

Let’s begin by defining who can use this role. The policy shown here allows the EC2

service to assume this role. In other words, this policy can be used by EC2 instances, but

not ECS containers.

$AssumeRolePolicy = @"

{

 "Version":"2008-10-17",

 "Statement":[

 {

 "Sid":"",

 "Effect":"Allow",

Chapter 9 IdentIty and aCCess ManageMent

218

 "Principal":{"Service":"ec2.amazonaws.com"},

 "Action":"sts:AssumeRole"

 }

]

}

"@

Next, we create an access policy just like we did in the prior section. This policy gives

the role administrator access to all services. Note that I cannot think of any reason to

create an EC2 role with administrator permissions. You should be creating a policy with

much less permission than I am in the example.

$AccessPolicy = @"

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "*",

 "Resource": "*"

 }

]

}

"@

Now we can create the role using the New-IAMRole command, passing in the access

policy.

New-IAMRole -RoleName 'MyAdminRole' -AssumeRolePolicyDocument

$AssumeRolePolicy

Next, we use Write-IAMRolePolicy to associate the access policy to the role, just like

we did with users and groups earlier.

Write-IAMRolePolicy -RoleName 'MyAdminRole' -PolicyName 'MyAdminRole-

FullControl' -PolicyDocument $AccessPolicy

For most roles this is all you need to do. However, roles that will be assigned to EC2

instances need one last step. Before you can associate a role with an EC2 instance, you

must create a new instance profile and add the new role to it.

Chapter 9 IdentIty and aCCess ManageMent

219

New-IAMInstanceProfile -InstanceProfileName 'MyAdminRoleInstanceProfile'

Add-IAMRoleToInstanceProfile -RoleName 'MyAdminRole'

-InstanceProfileName 'MyAdminRoleInstanceProfile'

Let’s look at another example. This time we will create a cross-account role. A cross-

account role is simply a role that can be assumed by users in another account. The

process is identical to creating a service role. However, rather than specifying a service as

the principal, we specify another AWS account.

$AssumeRolePolicy = @"

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {"AWS": "arn:aws:iam::987654321000:root"},

 "Action": "sts:AssumeRole"

 }

]

}

"@

Now we can create the new role just like we did in the prior example.

New-IAMRole -RoleName 'MyCrossAccountRole' -AssumeRolePolicyDocument

$AssumeRolePolicy

Rather than attaching a policy directly to this role, I will use a managed policy. Once

again, I am using the admin policy in the example, but I want to stress that you should

use a role with less privilege in real life.

Register-IAMRolePolicy -RoleName MyCrossAccountRole -PolicyArn

arn:aws:iam::aws:policy/AdministratorAccess

You can also use roles to grant permissions to other services. For example, Auto

Scaling needs to launch and terminated instances as load changes. You need to create

a role that grants the Auto Scaling service permission to make these changes in your

Chapter 9 IdentIty and aCCess ManageMent

220

account. Luckily, AWS offers service-linked roles. Service-linked roles automatically

define all of the permissions needed for a given service so you don’t have to create them

manually. Let’s create a service-linked role for Auto Scaling.

New-IAMServiceLinkedRole -AWSServiceName autoscaling.amazonaws.com

Note that you have used auto scaling at some point in the past, you will likely
get an error because this role already exists.

At this point it should be clear that AWS offers a robust permission model that gives

you tremendous control over your identities. Of course, this can get confusing so let’s

look at options to audit your IAM policies with PowerShell.

 Auditing IAM Access
IAM gives you fine-grained control over your users and groups. It also gives you tools to

audit user access. Let’s start with a high-level summary and drill down. At the highest

level, Get-IAMAccountSummary will return a report of IAM entities and quotas. We can

use this to get the total number of users, groups, and roles. We can also get the number of

MFA devices in use and check if MFA is enabled on the root account, along with a lot of

other useful data.

Get-IAMAccountSummary

Another useful tool is the credential report. This report includes a high-level

summary of each IAM credential (user or group). It will tell you when the user last logged

in, how long it’s been since they changed their password, when they last rotated their

keys, and so on. You create the report in two steps. First, you request the report. This will

take a few seconds so I am going to call Start-Sleep. If you have thousands of users, you

may need to wait longer. Then I get the report in CSV format and convert to a PowerShell

object. Then I can query the data as usual.

Request the report

Request-IAMCredentialReport

Wait for report generation

Start-Sleep 30

Chapter 9 IdentIty and aCCess ManageMent

221

Get the report as CSV

$Report = Get-IAMCredentialReport -AsTextArray | ConvertFrom-Csv

Print a high-level summary

$Report | Format-Table

Get details about a specific user

$Report | Where user -eq alice

The credential report tells you about a user’s activity. If you want to see a report of

the permissions attached to a user, check out the Get- IAMAccountAuthorizationDetai

ls. Get-IAMAccountAuthorizationDetails will tell you what groups, managed policies,

inline policies, and so on are associated with a specific user or group. For example, the

following example will get all their permissions for Alice.

(Get-IAMAccountAuthorizationDetails).UserDetailList | Where UserName -eq alice

Finally, you may want to test that a user has permission to complete an action

without actually doing it. For example, you may want to test that Alice has permission to

terminate an EC2 instance without actually terminating anything. You can use the

Test- IAMPrincipalPolicy cmdlet to validate a user’s permissions.

Test-IAMPrincipalPolicy -PolicySourceArn arn:aws:iam::123456789012:user/

alice -ActionName ec2:TerminateInstance

At this point you know how to manage permissions for user, groups, and roles. Before

we close this chapter, I want to discuss a few miscellaneous IAM commands.

 Miscellaneous IAM Commands
I want to discuss a few miscellaneous IAM commands that did not warrant their own

section. Therefore, I included them all here.

 Managing Password Policy
Users that have access to the AWS Management Console need to have a password. Many

organizations require a specific password policy. You can control the IAM password

policy using the Update-IAMAccountPasswordPolicy command.

Chapter 9 IdentIty and aCCess ManageMent

222

Update-IAMAccountPasswordPolicy

 -MinimumPasswordLength 8

 -RequireSymbols $false

 -RequireNumbers $true

 -RequireUppercaseCharacters $true

 -RequireLowercaseCharacters $true

 -AllowUsersToChangePassword $true

You can also get the current policy using Get-IAMAccountPasswordPolicy and

remove the policy using Remove-IAMAccountPasswordPolicy.

 Setting the Account Alias
Finally, you can get and set the account alias. Remember from Chapter 2 that the

account alias is used to create an easy-to-remember sign-in URL.

You can set the account alias using the New-IAMAccountAlias command.

New-IAMAccountAlias -AccountAlias 'brianbeach'

You can also get the current alias using Get-IAMAccountAlias and remove the alias

using Remove-IAMAccountAlias.

That brings us to the exercises. As you have seen, IAM gives you fine-grained control

over access to AWS resources. You can be very specific about who has access to which

resources. In Exercise 9.1 we create a set of common groups that provide least privileged

access. In Exercise 9.2 we will learn how to permit access to billing and support.

EXERCISE 9.1: CREATING LEAST PRIVILEGED GROUPS

throughout this book we have been using a single account that has administrator access to all

services. Obviously this is a bad idea in production. We only want to allow those permissions

that each user needs. Let’s create a few common groups as a starting point.

note: aWs supplies a series of managed policies called AWS Managed Policies for Job
Functions. these policies define roles for common job functions. you should consider using

them rather than creating your own policies and groups as I am doing in this example.

Let’s assume that our company is using aWs for development. the main users are software

developers. We have a team of aWs experts who support the developers. In addition, the

Chapter 9 IdentIty and aCCess ManageMent

223

developers are supported by the traditional system administrators and network administrators.

the system administrators support the operating system, and the network administrators are

responsible for routing, load balancers, and network security.

First, all users require a few common permissions. at a minimum they all need the ability

to change their own password. Let’s start by creating a group that allows a user to see the

password policy change his or her own password. all users should be a member of this group.

note that all of these examples are included with the source code for this chapter.

$Policy = @"

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "iam:ChangePassword",

 "iam:GetAccountPasswordPolicy"

],

 "Resource": "*"
 }

]

}

"@

New-IAMGroup -GroupName "USERS"

Write-IAMGroupPolicy -GroupName "USERS" -PolicyName "USERS-ChangePassword"

 -PolicyDocument $Policy

second, the aWs administrators require full access. Let’s create a group that has full control of

all services. this should be a very small group of people.

$Policy = @"

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "*",

 "Resource": "*"
 }

Chapter 9 IdentIty and aCCess ManageMent

224

]

}

"@

New-IAMGroup -GroupName "ADMINS"

Write-IAMGroupPolicy -GroupName "ADMINS" -PolicyName "ADMINS-FullControl"

 -PolicyDocument $Policy

third, the developers are using continuous development. they need to be able to create, start,

stop, and terminate instances. Let’s create a group for the developers.

$Policy = @"

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "ec2:AttachVolume",

 "ec2:CopySnapshot",

 "ec2:CreateKeyPair",

 "ec2:CreateSnapshot",

 "ec2:CreateTags",

 "ec2:CreateVolume",

 "ec2:DeleteKeyPair",

 "ec2:DeleteSnapshot",

 "ec2:DeleteTags",

 "ec2:DeleteVolume",

 "ec2:DescribeAddresses",

 "ec2:DescribeAvailabilityZones",

 "ec2:DescribeBundleTasks",

 "ec2:DescribeConversionTasks",

 "ec2:DescribeCustomerGateways",

 "ec2:DescribeDhcpOptions",

 "ec2:DescribeExportTasks",

 "ec2:DescribeImageAttribute",

 "ec2:DescribeImages",

 "ec2:DescribeInstanceAttribute",

 "ec2:DescribeInstances",

 "ec2:DescribeInstanceStatus",

Chapter 9 IdentIty and aCCess ManageMent

225

 "ec2:DescribeInternetGateways",

 "ec2:DescribeKeyPairs",

 "ec2:DescribeLicenses",

 "ec2:DescribeNetworkAcls",

 "ec2:DescribeNetworkInterfaceAttribute",

 "ec2:DescribeNetworkInterfaces",

 "ec2:DescribePlacementGroups",

 "ec2:DescribeRegions",

 "ec2:DescribeReservedInstances",

 "ec2:DescribeReservedInstancesOfferings",

 "ec2:DescribeRouteTables",

 "ec2:DescribeSecurityGroups",

 "ec2:DescribeSnapshotAttribute",

 "ec2:DescribeSnapshots",

 "ec2:DescribeSpotDatafeedSubscription",

 "ec2:DescribeSpotInstanceRequests",

 "ec2:DescribeSpotPriceHistory",

 "ec2:DescribeSubnets",

 "ec2:DescribeTags",

 "ec2:DescribeVolumeAttribute",

 "ec2:DescribeVolumes",

 "ec2:DescribeVolumeStatus",

 "ec2:DescribeVpcs",

 "ec2:DescribeVpnConnections",

 "ec2:DescribeVpnGateways",

 "ec2:DetachVolume",

 "ec2:EnableVolumeIO",

 "ec2:GetConsoleOutput",

 "ec2:GetPasswordData",

 "ec2:ImportKeyPair",

 "ec2:ModifyInstanceAttribute",

 "ec2:ModifySnapshotAttribute",

 "ec2:ModifyVolumeAttribute",

 "ec2:MonitorInstances",

 "ec2:RebootInstances",

 "ec2:ReportInstanceStatus",

 "ec2:ResetInstanceAttribute",

 "ec2:ResetSnapshotAttribute",

Chapter 9 IdentIty and aCCess ManageMent

226

 "ec2:RunInstances",

 "ec2:StartInstances",

 "ec2:StopInstances",

 "ec2:TerminateInstances",

 "ec2:UnmonitorInstances",

 "elasticloadbalancing:RegisterInstancesWithLoadBalancer"

],

 "Resource": "*"
 }

]

}

"@

New-IAMGroup -GroupName "DEVELOPERS"

Write-IAMGroupPolicy -GroupName "DEVELOPERS" -PolicyName "DEVELOPERS-

ManageInstances"

 -PolicyDocument $Policy

Fourth, the network administrators need full control over the VpC features. they also create

and configure load balancers and manage security groups. On the other hand, network

administrators do not need to create and destroy instances. Let’s create a group for the

network administrators.

$Policy = @"

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "directconnect:*",
 "ec2:AllocateAddress",

 "ec2:AssociateAddress",

 "ec2:AssociateDhcpOptions",

 "ec2:AssociateRouteTable",

 "ec2:AttachInternetGateway",

 "ec2:AttachNetworkInterface",

 "ec2:AttachVpnGateway",

 "ec2:AuthorizeSecurityGroupEgress",

 "ec2:AuthorizeSecurityGroupIngress",

Chapter 9 IdentIty and aCCess ManageMent

227

 "ec2:CreateCustomerGateway",

 "ec2:CreateDhcpOptions",

 "ec2:CreateInternetGateway",

 "ec2:CreateNetworkAcl",

 "ec2:CreateNetworkAclEntry",

 "ec2:CreateNetworkInterface",

 "ec2:CreateRoute",

 "ec2:CreateRouteTable",

 "ec2:CreateSecurityGroup",

 "ec2:CreateSubnet",

 "ec2:CreateTags",

 "ec2:CreateVpc",

 "ec2:CreateVpnConnection",

 "ec2:CreateVpnGateway",

 "ec2:DeleteCustomerGateway",

 "ec2:DeleteDhcpOptions",

 "ec2:DeleteInternetGateway",

 "ec2:DeleteNetworkAcl",

 "ec2:DeleteNetworkAclEntry",

 "ec2:DeleteNetworkInterface",

 "ec2:DeleteRoute",

 "ec2:DeleteRouteTable",

 "ec2:DeleteSecurityGroup",

 "ec2:DeleteSubnet",

 "ec2:DeleteTags",

 "ec2:DeleteVpc",

 "ec2:DeleteVpnConnection",

 "ec2:DeleteVpnGateway",

 "ec2:DescribeAddresses",

 "ec2:DescribeAvailabilityZones",

 "ec2:DescribeBundleTasks",

 "ec2:DescribeConversionTasks",

 "ec2:DescribeCustomerGateways",

 "ec2:DescribeDhcpOptions",

 "ec2:DescribeExportTasks",

 "ec2:DescribeImageAttribute",

 "ec2:DescribeImages",

 "ec2:DescribeInstanceAttribute",

Chapter 9 IdentIty and aCCess ManageMent

228

 "ec2:DescribeInstances",

 "ec2:DescribeInstanceStatus",

 "ec2:DescribeInternetGateways",

 "ec2:DescribeKeyPairs",

 "ec2:DescribeLicenses",

 "ec2:DescribeNetworkAcls",

 "ec2:DescribeNetworkInterfaceAttribute",

 "ec2:DescribeNetworkInterfaces",

 "ec2:DescribePlacementGroups",

 "ec2:DescribeRegions",

 "ec2:DescribeReservedInstances",

 "ec2:DescribeReservedInstancesOfferings",

 "ec2:DescribeRouteTables",

 "ec2:DescribeSecurityGroups",

 "ec2:DescribeSnapshotAttribute",

 "ec2:DescribeSnapshots",

 "ec2:DescribeSpotDatafeedSubscription",

 "ec2:DescribeSpotInstanceRequests",

 "ec2:DescribeSpotPriceHistory",

 "ec2:DescribeSubnets",

 "ec2:DescribeTags",

 "ec2:DescribeVolumeAttribute",

 "ec2:DescribeVolumes",

 "ec2:DescribeVolumeStatus",

 "ec2:DescribeVpcs",

 "ec2:DescribeVpnConnections",

 "ec2:DescribeVpnGateways",

 "ec2:DetachInternetGateway",

 "ec2:DetachNetworkInterface",

 "ec2:DetachVpnGateway",

 "ec2:DisassociateAddress",

 "ec2:DisassociateRouteTable",

 "ec2:GetConsoleOutput",

 "ec2:GetPasswordData",

 "ec2:ModifyNetworkInterfaceAttribute",

 "ec2:MonitorInstances",

 "ec2:ReleaseAddress",

 "ec2:ReplaceNetworkAclAssociation",

Chapter 9 IdentIty and aCCess ManageMent

229

 "ec2:ReplaceNetworkAclEntry",

 "ec2:ReplaceRoute",

 "ec2:ReplaceRouteTableAssociation",

 "ec2:ResetNetworkInterfaceAttribute",

 "ec2:RevokeSecurityGroupEgress",

 "ec2:RevokeSecurityGroupIngress",

 "ec2:UnmonitorInstances",

 "elasticloadbalancing:ConfigureHealthCheck",

 "elasticloadbalancing:CreateAppCookieStickinessPolicy",

 "elasticloadbalancing:CreateLBCookieStickinessPolicy",

 "elasticloadbalancing:CreateLoadBalancer",

 "elasticloadbalancing:CreateLoadBalancerListeners",

 "elasticloadbalancing:DeleteLoadBalancer",

 "elasticloadbalancing:DeleteLoadBalancerListeners",

 "elasticloadbalancing:DeleteLoadBalancerPolicy",

 "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",

 "elasticloadbalancing:DescribeInstanceHealth",

 "elasticloadbalancing:DescribeLoadBalancers",

 "elasticloadbalancing:DisableAvailabilityZonesForLoadBalancer",

 "elasticloadbalancing:EnableAvailabilityZonesForLoadBalancer",

 "elasticloadbalancing:RegisterInstancesWithLoadBalancer",

 "elasticloadbalancing:SetLoadBalancerListenerSSLCertificate",

 "elasticloadbalancing:SetLoadBalancerPoliciesOfListener"

],

 "Resource": "*"
 }

]

}

"@

New-IAMGroup -GroupName "NETWORK_ADMINS"

Write-IAMGroupPolicy -GroupName "NETWORK_ADMINS" -PolicyName

 "NETWORK_ADMINS-ManageNetwork" -PolicyDocument $Policy

Fifth, system administrators need full control over the instances. they need all the access a

developer has so they can support the developers. In addition they need to be able to create

new amazon Machine Images (aMIs). they do not need access to the networking features

that are being supported by the network administrators. Let’s create a group for the system

administrators.

Chapter 9 IdentIty and aCCess ManageMent

230

$Policy = @"

{

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "ec2:AttachVolume",

 "ec2:CancelConversionTask",

 "ec2:CancelExportTask",

 "ec2:CancelSpotInstanceRequests",

 "ec2:CopySnapshot",

 "ec2:CreateImage",

 "ec2:CreateInstanceExportTask",

 "ec2:CreateKeyPair",

 "ec2:CreatePlacementGroup",

 "ec2:CreateSnapshot",

 "ec2:CreateSpotDatafeedSubscription",

 "ec2:CreateTags",

 "ec2:CreateVolume",

 "ec2:DeleteKeyPair",

 "ec2:DeletePlacementGroup",

 "ec2:DeleteSnapshot",

 "ec2:DeleteSpotDatafeedSubscription",

 "ec2:DeleteTags",

 "ec2:DeleteVolume",

 "ec2:DeregisterImage",

 "ec2:DescribeAddresses",

 "ec2:DescribeAvailabilityZones",

 "ec2:DescribeBundleTasks",

 "ec2:DescribeConversionTasks",

 "ec2:DescribeCustomerGateways",

 "ec2:DescribeDhcpOptions",

 "ec2:DescribeExportTasks",

 "ec2:DescribeImageAttribute",

 "ec2:DescribeImages",

Chapter 9 IdentIty and aCCess ManageMent

231

 "ec2:DescribeInstanceAttribute",

 "ec2:DescribeInstances",

 "ec2:DescribeInstanceStatus",

 "ec2:DescribeInternetGateways",

 "ec2:DescribeKeyPairs",

 "ec2:DescribeLicenses",

 "ec2:DescribeNetworkAcls",

 "ec2:DescribeNetworkInterfaceAttribute",

 "ec2:DescribeNetworkInterfaces",

 "ec2:DescribePlacementGroups",

 "ec2:DescribeRegions",

 "ec2:DescribeReservedInstances",

 "ec2:DescribeReservedInstancesOfferings",

 "ec2:DescribeRouteTables",

 "ec2:DescribeSecurityGroups",

 "ec2:DescribeSnapshotAttribute",

 "ec2:DescribeSnapshots",

 "ec2:DescribeSpotDatafeedSubscription",

 "ec2:DescribeSpotInstanceRequests",

 "ec2:DescribeSpotPriceHistory",

 "ec2:DescribeSubnets",

 "ec2:DescribeTags",

 "ec2:DescribeVolumeAttribute",

 "ec2:DescribeVolumes",

 "ec2:DescribeVolumeStatus",

 "ec2:DescribeVpcs",

 "ec2:DescribeVpnConnections",

 "ec2:DescribeVpnGateways",

 "ec2:DetachVolume",

 "ec2:EnableVolumeIO",

 "ec2:GetConsoleOutput",

 "ec2:GetPasswordData",

 "ec2:ImportInstance",

 "ec2:ImportKeyPair",

 "ec2:ImportVolume",

Chapter 9 IdentIty and aCCess ManageMent

232

 "ec2:ModifyImageAttribute",

 "ec2:ModifyInstanceAttribute",

 "ec2:ModifySnapshotAttribute",

 "ec2:ModifyVolumeAttribute",

 "ec2:MonitorInstances",

 "ec2:PurchaseReservedInstancesOffering",

 "ec2:RebootInstances",

 "ec2:RegisterImage",

 "ec2:ReportInstanceStatus",

 "ec2:RequestSpotInstances",

 "ec2:ResetImageAttribute",

 "ec2:ResetInstanceAttribute",

 "ec2:ResetSnapshotAttribute",

 "ec2:RunInstances",

 "ec2:StartInstances",

 "ec2:StopInstances",

 "ec2:TerminateInstances",

 "ec2:UnmonitorInstances"

],

 "Resource": "*"
 }

]

}

"@

New-IAMGroup -GroupName "SYS_ADMINS"

Write-IAMGroupPolicy -GroupName "SYS_ADMINS" -PolicyName "SYS_ADMINS-

ManageImages"

 -PolicyDocument $Policy

In this exercise we created a group for each of the teams that uses aWs at our fictitious

company. Obviously you will need to tweak these groups to fit your company’s needs, but I

hope this will create a good framework to get you started. In the next exercise, we will grant

access to billing and support to IaM users.

Chapter 9 IdentIty and aCCess ManageMent

233

EXERCISE 9.2: DELEGATING ACCOUNT ACCESS TO IAM USERS

Back in Chapter 2, we discussed the difference between aWs account credentials and IaM

users. remember that the aWs account is the e-mail address you used to create your account.

you almost never use this account, but there are a few times you need it. two of these reasons

are accessing your bill and getting support.

By default, you must log in using your aWs account credentials to see your bill or access

support, but you can also grant access to IaM users. and, as you might expect, you can control

exactly which users can access the billing and support features. note that you have to pay

extra for support.

you cannot enable IaM access to billing using powershell. you must sign into the aWs

Management Console using your account credentials to enable it. the following steps show

you how:

 1. sign into the console using the e-mail address and password you used to

create your account.

 2. Click your name on the menu bar at the top right of the screen.

 3. Click My account from the drop-down menu.

 4. scroll down until you see the section shown in Figure 9-1.

Figure 9-1. IAM access to the AWS web site

 5. select both the account activity page check box and the Usage reports page

check box. Click the activate now button.

Chapter 9 IdentIty and aCCess ManageMent

234

next we have to create an IaM policy granting access to IaM users. Interestingly, you cannot

configure billing and support from the IaM wizard. you must create the policy manually. Luckily

we know exactly how to do that. Let’s create two groups: one for billing and one for support.

to create a group for billing, you allow access to ViewBilling and ViewUsage. Billing is the

summary information and usage is the raw detail. Just like the last exercise, we will associate

this policy with a new group called BILLIng.

$Policy = @"

{

 "Statement": [

 {

 "Action": [

 "aws-portal:ViewBilling",

 "aws-portal:ViewUsage"

],

 "Effect": "Allow",

 "Resource": "*"
 }

]

}

"@

New-IAMGroup -GroupName "BILLING"

Write-IAMGroupPolicy -GroupName "BILLING"

 -PolicyName "BILLING-BillingAndUsage" -PolicyDocument $Policy

to create a group for support, we will create a policy that allows access to support:* and

associate it with a new group called sUppOrt.

$Policy = @"

{

 "Statement": [

 {

 "Action": "support:*",
 "Effect": "Allow",

 "Resource": "*"
 }

]

}

"@

Chapter 9 IdentIty and aCCess ManageMent

235

New-IAMGroup -GroupName "SUPPORT"

Write-IAMGroupPolicy -GroupName "SUPPORT"

 -PolicyName "SUPPORT-FullAccess" -PolicyDocument $Policy

now, whenever you want to grant a user access to billing or support, you simply add the user

to the appropriate group.

 Summary
In this chapter, we saw how IAM provides unprecedented control over access. We

learned to create users and manage their passwords and access keys. Then, we learned

to create groups and manage membership. We also learned to create roles for EC2

instances.

Next we learned to create policies and saw that IAM offers the granularity to enable

least privileged access control over all of the AWS services. In the exercises we created a

collection of groups for common IT roles and enabled access to billing and support. This

is a great start for creating an enterprise access policy.

In the next chapter, we will focus on Simple Storage Service (S3). S3 is a highly

resilient data solution for storing files. This is the data store AWS uses to keep snapshots

and RDS backups, but you can use it to store anything you want.

Chapter 9 IdentIty and aCCess ManageMent

237
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_10

CHAPTER 10

Relational Database
Service
Relational Database Service (RDS) is a service that makes it easy to create and manage

a database in the cloud. RDS supports MySQL, MariaDB, PostgreSQL, Oracle, and SQL

Server. While you could install and run any of these on an EC2 instance, RDS greatly

simplifies the effort. RDS instances are managed by AWS, eliminating time-consuming

activities, such as patching and backups, and allowing you to focus on your application.

In this chapter, we discuss the RDS architecture and learn to launch an SQL Server

RDS instance. Next, we will learn to configure an RDS instance using parameters and

options. Then, we will learn to manage backups and restores using both snapshots and

point-in-time restores. We will also briefly cover Amazon Aurora in this chapter. Aurora

is a MySQL- and PostgreSQL-compatible database optimized for the cloud.

In the exercises we will focus on securing an RDS instance running SQL Server. In

the first exercise, we will enable SSL to encrypt the connection to SQL Server. In the

second exercise, we will enable Transparent Database Encryption (TDE) to encrypt data

and back up files stored on disk.

 RDS Architecture
RDS is designed to be deployed in multiple availability zones for high availability.

Therefore, your VPC must have subnets in at least two availability zones. Even if you

choose to launch only a single stand-alone instance, you must have two subnets in

different availability zones to use RDS.

AWS uses a DB Subnet Group to identify which subnets are reserved for RDS.

You simply create two or more subnets in multiple availability zones and add them to

the Subnet Group. In addition, we use VPC ACL and security groups to control access

to the RDS instances.

238

Figure 10-1 shows the basic configuration of a single instance RDS configuration.

Later on we will deploy a highly available Multi-AZ configuration. Let’s assume we

have two web servers running on EC2 instances, and they will use an RDS SQL Server

instance to store data. The RDS instance will be launched into one of the two subnets

that make up the DB Subnet Group. Let’s first configure the VPC.

Figure 10-1. Single instance deployment

Chapter 10 relational Database serviCe

239

 Creating a VPC
Before we can create a database instance, we need to configure a VPC for it to live in.

Let’s begin by creating a new VPC. If you prefer, you can add two new subnets to an

existing VPC (e.g., the VPC created in Chapter 8). First, I create a new VPC using the

192.168.0.0 private IP range:

$VPC = New-EC2Vpc -CidrBlock '192.168.0.0/16'

Next, I create two subnets in our VPC. These are the subnets that the database

instance will live in. Because we want to be able to support a multi-AZ deployment, I am

using two different availability zones (this should all be familiar by now, but if you need

to review, go back to Chapter 5); therefore

$AvailabilityZone1 = 'us-east-1a'

$AvailabilityZone2 = 'us-east-1b'

$PrimarySubnet = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock

'192.168.5.0/24' -AvailabilityZone $AvailabilityZone1

$StandbySubnet = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock

'192.168.6.0/24' -AvailabilityZone $AvailabilityZone2

 Creating a Subnet Group
Now that we have our VPC configured, we need to describe how we plan to use it.

We need to tell RDS which subnets to use for database instances. We do this using a

subnet group. To create a subnet group, use the New-RDSSubnetGroup command.

New- RDSSubnetGroup requires a name and description, along with a list of subnets to use.

You will use the name rather than an ID to refer to this subnet group later. For example:

New-RDSDBSubnetGroup -DBSubnetGroupName 'MySubnetGroup'

-DBSubnetGroupDescription 'Pair of subnets for RDS' -SubnetIds

$PrimarySubnet.SubnetId, $StandbySubnet.SubnetId

Even if you do not plan to deploy a multi-AZ RDS instance, you must specify at least

two subnets when creating a subnet group. In addition, the subnets must be in different

availability zones.

Chapter 10 relational Database serviCe

240

 Configuring Security Groups
The last thing we need is a security group. This security group is used to define which

EC2 instances can connect to the RDS database instance. Let’s create a new security

group for the database and then allow traffic from EC2 instances in the default security

group. First, we create a new security group for the RDS instance:

$RDSGroupId = New-EC2SecurityGroup –VpcId $VPC.VpcId -GroupName 'RDS'

-GroupDescription "RDS Instances"

Next, we get a reference to the default group. In this example I am going to allow any

instance in the default group to access to our database instance. I am using filters to find

the default group (if you need to review, see Chapter 6):

$VPCFilter = New-Object Amazon.EC2.Model.Filter

$VPCFilter.Name = 'vpc-id'

$VPCFilter.Value = $VPC.VpcId

$GroupFilter = New-Object Amazon.EC2.Model.Filter

$GroupFilter.Name = 'group-name'

$GroupFilter.Value = 'default'

$DefaultGroup = Get-EC2SecurityGroup -Filter $VPCFilter, $GroupFilter

$DefaultGroupPair = New-Object Amazon.EC2.Model.UserIdGroupPair

$DefaultGroupPair.GroupId = $DefaultGroup.GroupId

Then, we create a new rule allowing access on the default SQL Server port 1433 and

specify the default group as the source:

$SQLServerRule = New-Object Amazon.EC2.Model.IpPermission

$SQLServerRule.IpProtocol='tcp'

$SQLServerRule.FromPort = 1433

$SQLServerRule.ToPort = 1433

$SQLServerRule.UserIdGroupPair = $DefaultGroupPair

Grant-EC2SecurityGroupIngress -GroupId $RDSGroupId -IpPermissions

$SQLServerRule

Chapter 10 relational Database serviCe

241

In addition, we are going to use MySQL in the Aurora example later in this chapter,

so let’s configure rules for MySQL as well:

$MySQLRule = New-Object Amazon.EC2.Model.IpPermission

$MySQLRule.IpProtocol='tcp'

$MySQLRule.FromPort = 3306

$MySQLRule.ToPort = 3306

$MySQLRule.UserIdGroupPair = $DefaultGroupPair

Grant-EC2SecurityGroupIngress -GroupId $RDSGroupId -IpPermissions

$MySQLRule

Now that we have our VPC configured, we are ready to launch a database instance.

In the next section, we will create an SQL Server instance. We will start my launching a

single-AZ database. Later in the chapter, we will examine a multi-AZ configuration for

high availability.

 Managing RDS Instances
Now that we have our VPC configured, we can begin working with RDS instances. Let’s

get started by launching a new SQL Server database on RDS.

 Launching an Instance
To launch a new instance, we use the New-RDSDBInstance command. It takes a few

minutes for a new instance to launch – especially using the micro instances – so let’s

jump right in and launch one. This is another one of those commands with a ton

of options. While the new instance is launching, we can examine all of the optional

parameters available.

Since you’re reading a book on PowerShell, I assume you are most interested in

SQL Server. Let’s start with a stand-alone, single-AZ instance. This will not be highly

available, but it will launch relatively quickly. To create a new stand-alone SQL Server

instance, enter the following command:

New-RDSDBInstance -DBInstanceIdentifier 'SQLServer01' -Engine 'sqlserver-

ex' -AllocatedStorage 20 -DBInstanceClass 'db.t2.micro' -MasterUsername

'sa' -MasterUserPassword 'password' -DBSubnetGroupName 'MySubnetGroup'

-VpcSecurityGroupIds $GroupId

Chapter 10 relational Database serviCe

242

Note never use “password” as a password. please choose something more
complex and novel.

The previous command includes the minimum set of the parameters required to

launch a database instance into a VPC, which are

• DBInstanceIdentifier is simply a unique name you will use to refer

to the database instance later. Unlike the EC2 and VPC commands we

have been using, RDS uses a name, called an identifier, rather than

an ID.

• Engine defines which type of database you want to use. RDS supports

multiple versions of MySQL, Oracle, and SQL Server. If you are not

familiar with the various versions of each database, see the vendor’s

web site for details. The specific engine types are

• mysql – There is only one version of MySQL that includes all

options.

• mariadb – There is only one version of MariaDB that includes all

options.

• oracle-se1 – Oracle Standard Edition One.

• oracle-se2 – Oracle Standard Edition Two.

• oracle-se – Oracle Standard Edition.

• oracle-ee – Oracle Enterprise Edition.

• postgres – There is only one version of PostgreSQL that includes

all options.

• sqlserver-ex – SQL Server Express.

• sqlserver-web – SQL Server Web Express.

• sqlserver-se – SQL Server Standard Edition.

• sqlserver-ee – SQL Server Enterprise Edition.

Chapter 10 relational Database serviCe

243

• AllocatedStorage describes how much storage to allocate to the

database. The maximum storage is 16TiB, and each engine type has

a different minimum. See Table 10-1 for details of each database

engine.

Table 10-1. Storage by Engine Type

Engine Min Storage Max Storage

mysql 5Gb 16tib

mariadb 5Gb 16tib

oracle-se1 10Gb 16tib

oracle-se2 10Gb 16tib

oracle-se 10Gb 16tib

oracle-ee 10Gb 16tib

postgres 5Gb 16tib

sqlserver-ee 200Gb 16tib

sqlserver-se 200Gb 16tib

sqlserver-ex 30Gb 16tib

sqlserver-web 30Gb 16tib

Note the default storage type is magnetic disk which has a 1tib storage limit
and cannot be resized. i strongly suggest you override the default and use gp2
(ssD). see details under the storage type attribute later in this section.

• DBInstanceClass describes the hardware your database instance will

use. This is similar to the EC2 instance types. SQL Server licensing

limits which engines support instance types.

• MasterUsername and MasterUserPassword are used to log into

the database. Note that the master user does not have system

administrator rights to the database. Remember that you do not

have access to the underlying operating system when using RDS.

Chapter 10 relational Database serviCe

244

Therefore, the master user has limited access. In addition, note that

SQL Server only supports database accounts. Of course you can

create additional database accounts after logging in.

• DBSubnetGroupName is the name of the subnet group we created

earlier. RDS will launch the instance into one of the subnets in this

group. If you want to specify which subnet to use, see the optional

AvailabilityGroup parameter described later.

• VpcSecurityGroupIds is a list of security groups the RDS instance

should be placed into.

In addition to the required parameters, New-RDSDBInstance also supports a bunch of

optional parameters, which include

• LicenseModel allows you to choose from multiple software licensing

models. Depending on the engine you are using, you can choose to

bring your own license or have the cost of license included in with

the hourly cost of the instance.

• EngineVersion defines the specific version of each database type. For

example, RDS supports SQL Servers 2008, 2012, 2014, 2016, and 2017.

If you omit this parameter, RDS will use the latest version. At the

time I am writing this, the latest version of SQL Server is SQL Server

2017. If you want to list all of the supported engine versions, use the

command Get-RDSDBEngineVersion | Format-Table.

• AutoMinorVersionUpgrade tells RDS to automatically apply minor

updates. Updates are applied during the maintenance windows

defined later. Major upgrades (e.g., SQL 2008 R2 to SQL 2012) are not

supported. This option is enabled by default.

• MultiAZ specifies that you want to create both a primary and standby

instance. The primary and standby will be launched into subnets in

different availability zones as defined in the subnet group. (See the

section on multi-AZ configuration later in this chapter.)

• AvailabilityZone specifies which availability zone to launch the

instance into. In a VPC, RDS will use the subnet in the specified

availability zone. You cannot specify availability zone if you are using

the MultiAZ option.

Chapter 10 relational Database serviCe

245

• StorageType specifies the disk type to use. The options are standard,

gp2, and io1. Note that standard (e.g., magnetic) is the default. I

strongly suggest you use gp2.

• IOPS specifies the IO operations per second (IOPS) desired from

the disk. This is similar to provisioned IOPS in EC2, and you pay a

premium for this option just like EC2. RDS uses striping and can

support 1000–30,000 IOPS.

• StorageEncrypted is a Boolean indicating the disk should be

encrypted.

• KmsKeyId specifies which key to use for encryption.

• PreferredMaintenanceWindow defines a weekly outage window when

Amazon can apply patches to the RDS instance. For example, you

might specify sat:22:00-sat:23:00. If you omit this option, AWS will

choose a random 30-minute window from an 8-hour block defined

for each region. AWS will choose a time that is generally considered

“off hours” for the region, but it is best to specify your own window.

• PreferredBackupWindow defines when the daily full backup is taken.

For example, you might specify 23:00-24:00. The backup windows

cannot overlap the maintenance window and must be a minimum of

30 minutes. (There is more detail on backup and recovery later in this

chapter.)

• BackupRetentionPeriod defines how long to save backups. You can

specify 0–8 days. The default is 1 day and specifying 0 days disables

backup.

• PubliclyAccessible specifies that the instance will be assigned a

public IP address and can be accessed from the Internet. In general

this is a bad idea; I prefer to have a micro instance on the VPC that I

can use for administration.

• Port allows you to change the default port for your database.

Table 10-2 lists the default ports for each engine.

Chapter 10 relational Database serviCe

246

• DBParameterGroupName allows you to alter engine parameters. For

example, I will show you how to enable the Common Language

Runtime (CLR) in the next section.

• DBOptionGroupName allows you to alter engine options. For example,

I will show you how to enable Transparent Data Encryption (TDE) in

the next section.

Wow, that was a lot of options to discuss. By now our instance should be

running. You can use the Get-RDSDBInstance command to check on it. Check the

DBInstanceStatus attribute. For example:

(Get-RDSDBInstance -DBInstanceIdentifier 'SQLServer01').DBInstanceStatus

It will take a while for the instance to start. Once it is running, you can get the

endpoint address needed to connect to SQL Server. For example:

(Get-RDSDBInstance -DBInstanceIdentifier 'SQLServer01').Endpoint.Address

In my case this returned

sqlserver01.cz8cihropmwk.us-east-1.rds.amazonaws.com

You can now enter the address into SQL Server Management Studio to connect.

Figure 10-2 shows an example.

Table 10-2. Default Port by Engine Type

Engine Default Port

MysQl/MariaDb 3306

oracle 1521

postgresQl 5432

sQl server 1433

Chapter 10 relational Database serviCe

247

 Joining a Domain
You can optionally join your RDS instance to an Active Directory Domain using Directory

Service. I’m not going to assume you already have Directory Service configured.

Note rDs only supports the Microsoft active Directory version of Directory
service. You cannot use simple active Directory or active Directory Connector.

RDS is going to need permission to join the domain. There is a managed policy

defined for RDS Directory Service Access, but you need to create an IAM role. Go back to

Chapter 9 to review IAM roles.

$AssumeRolePolicy = @"

{

 "Version":"2008-10-17",

 "Statement":[

Figure 10-2. Logging into an RDS with SQL Server Authentication

Chapter 10 relational Database serviCe

248

 {

 "Sid":"",

 "Effect":"Allow",

 "Principal":{"Service":"rds.amazonaws.com"},

 "Action":"sts:AssumeRole"

 }

]

}

"@

New-IAMRole -RoleName 'RDSDomainJoin' -AssumeRolePolicyDocument $AssumeRolePolicy

Register-IAMRolePolicy -RoleName 'RDSDomainJoin' -PolicyArn

'arn:aws:iam::aws:policy/service-role/AmazonRDSDirectoryServiceAccess'

Now we can launch an RDS instance just like we did earlier with the addition

of two new parameters. Domain is the ID of your Directory Service domain, and

DomainIAMRoleName is the IAM role we just created.

New-RDSDBInstance -DBInstanceIdentifier 'SQLServer02' -Engine 'sqlserver-

ex' -AllocatedStorage 20 -DBInstanceClass 'db.t2.micro' -MasterUsername

'sa' -MasterUserPassword 'password' -DBSubnetGroupName 'MySubnetGroup'

-VpcSecurityGroupIds $GroupId -Domain 'd-xxxxxxxxxx' -DomainIAMRoleName

'RDSDomainJoin'

Now you can log in with directory credentials, for example (Figure 10-3).

Chapter 10 relational Database serviCe

249

All of the database we have launched so far have been single instance. Let’s launch a

highly available multi-AZ database next.

 Multi-AZ Instances
RDS supports multi-AZ instances for high availability and durability. When you deploy

a multi-AZ database, AWS deploys a primary instance in one AZ and a synchronous

replica in another AZ (see Figure 10-4). All of the complexity is hidden from you, and the

database appears to be one logical instance. If the primary database were to fail, RDS

automatically fails over and updates the DNS entry so your application begins using the

secondary without manual intervention.

Figure 10-3. Logging into an RDS with Windows Authentication

Chapter 10 relational Database serviCe

250

Figure 10-4. Multi-AZ deployment

Launching a multi-AZ instance is just like launching a stand-alone instance, except

that we add the MultiAZ option. I am also going to override the default storage type to

specify SSD disk. For example:

New-RDSDBInstance -DBInstanceIdentifier 'SQLServer03' -Engine 'sqlserver-

ex' -AllocatedStorage 20 -DBInstanceClass 'db.r4.large' -MasterUsername

'sa' -MasterUserPassword 'password' -DBSubnetGroupName 'MySubnetGroup'

-VpcSecurityGroupIds $GroupId -StorageType gp2 -MultiAZ $true

Chapter 10 relational Database serviCe

251

That is all there is to it! RDS takes care of the heavy lifting. All of the preceding

options we discussed are supported, except for the AvailabilityZone parameter, on any

of the commands that have it. You cannot choose which AZ the primary database runs

in. RDS manages that behind the scenes.

Of course, we hope that we never need the standby instance, but we should plan for

failure. It’s also good to test your application and ensure if the failover works as expected.

You can test the failover by running Start-RDSDBClusterFailover. For example:

Start-RDSDBClusterFailover -DBClusterIdentifier SQLServer03 -Force

In addition to replicating to a standby instance, RDS can also replicate to additional

read replicas. Let’s take a look in the next section.

 Modifying an Instance
No sooner do you launch a new instance than you realize you need to change something.

Many of the options we discussed in the last section can be modified after the RDS

instance has been launched by using Edit-RDSDBInstance.

For example, let’s assume we are running out of disk space and need to increase the

volume size.

Edit-RDSDBInstance -DBInstanceIdentifier 'SQLServer03' -AllocatedStorage 30

-ApplyImmediately:$True

Notice that I have included the ApplyImmediately attribute. If I did not, the change

would be applied during the next maintenance window. The following options can be

altered using Edit-RDSDBInstance.

• AllocatedStorage

• AllowMajorVersionUpgrade

• ApplyImmediately

• AutoMinorVersionUpgrade

• BackupRetentionPeriod

• DBInstanceClass

• DBParameterGroupName

Chapter 10 relational Database serviCe

252

• DBSecurityGroups

• EngineVersion

• IOPS

• MasterUserPassword

• MultiAZ

• NewDBInstanceIdentifier

• OptionGroupName

• PreferredBackupWindow

• PreferredMaintenanceWindow

• VpcSecurityGroupIds

Notice that I can change the DBInstanceClass either scaling up or down. This allows

me to resize my database when I need to. If you have a multi-AZ instance, RDS will

perform this change without taking an outage. It will first resize the standby instance,

then perform a failover, and finally resize the primary. Imagine we are approaching a

busy period and want to scale up our db.r4.large to db.r4.xlarge.

Edit-RDSDBInstance -DBInstanceIdentifier 'SQLServer03' -DBInstanceClass

'db.r4.xlarge' -ApplyImmediately:$True

Note even with the graceful failover, active connections when the failover occurs
will fail. therefore, this is a modification best done without applying immediately.

As you can see, modifications are easy to make. You can also change database engine

options. Will get to that shortly, but first let’s look at how we delete a database.

Chapter 10 relational Database serviCe

253

 Deleting an Instance
When you no longer need an instance, you can delete it using the

Remove- RDSDBInstance command. If you want to take a snapshot of the database before

deleting it, you can simply specify the identifier when you call remove. (I will explain

RDS snapshots later in the chapter.) The following command will delete the database we

created:

Remove-RDSDBInstance -DBInstanceIdentifier 'SQLServer03'

-FinalDBSnapshotIdentifier

 'SQLServer01-Final-Snapshot' -Force

If you don’t need a backup of the instance, you can use the SkipFinalSnapshot

parameter to tell RDS not to back up the instance.

Remove-RDSDBInstance -DBInstanceIdentifier 'SQLServer03' -SkipFinalSnapshot

$true -Force

As you can see, RDS makes launching and managing a database instance really easy.

In the next section, we will discuss how to configure options specific to SQL Server.

 Configuring a Database Engine
So far, all of the parameters we have configured are common to all of the database

engines. Obviously there are also engine-specific configuration options to choose from.

RDS breaks these into two categories: parameters and options. Let’s spend a minute

looking at parameters and options specific to SQL Server.

 Modifying Parameters
Parameters allow you to configure your database engine. RDS organizes parameters

into parameter groups for each engine type. For example, the default parameter group

for SQL Server Express is default.sqlserver-ex-14.0. You can get a list of parameter

groups using the Get-RDSDBParameterGroup command.

There are numerous parameters available for SQL Server, and not all parameters

are available on all SQL Server editions. For example, some options are only available

on the Enterprise Edition. To list the parameters available, use the Get-RDSDBParameter

Chapter 10 relational Database serviCe

254

command. For example, the following code will list the parameters specific to SQL

Server Express:

Get-RDSDBParameter -DBParameterGroupName default.sqlserver-ex-14.0 |

 Format-Table ParameterName, Description, ParameterValue –AutoSize

If you want to customize the parameters, you can create your own parameter group

using the New-RDSDBParameterGroup command. For example, let’s assume you want to

enable the Common Language Runtime (CLR) to support stored procedures written in

.Net. Start by creating a new parameter group.

New-RDSDBParameterGroup -DBParameterGroupName 'SQL2017'

-DBParameterGroupFamily 'sqlserver-ex-14.0' -Description "SQL2017 with CLR

enabled"

Now you can configure the individual parameters in the group. Once again, we

use a .Net object to describe the change and pass it to the EditRDSDBParameterGroup

command. For example:

$Parameter = New-Object Amazon.RDS.Model.Parameter

$Parameter.ParameterName = 'clr enabled'

$Parameter.ParameterValue = 1

$Parameter.ApplyMethod = 'immediate'

Edit-RDSDBParameterGroup -DBParameterGroupName 'SQL2012' -Parameters

$Parameter

Note the ApplyMethod parameter. Some parameter changes can be applied

immediately, while others require a reboot. You can check if a reboot is required by

checking the apply type returned by Get-RDSDBParameter. If the apply type is static, then

a reboot is required. If the apply type is dynamic, you can choose to apply the change

immediately or after a reboot. To apply the change immediately, set the ApplyMethod

parameter to immediate. To wait for the next reboot, set the ApplyMethod parameter to

pending- reboot. You can force the reboot using the Restart-RDSDBInstance method.

Use the DBParameterGroupName of the New-RDSDBInstance or Edit-RDSDBInstance

command to associate the new parameter group with an instance.

Chapter 10 relational Database serviCe

255

 Modifying Options
Some database engines offer optional features that you can choose to enable. For

example, SQL Server Enterprise Edition offers Transparent Data Encryption (TDE) or

enabling backup and recovery to S3.

Option groups work a lot like parameter groups. First, you create a custom option

group, and then you associate your instance with the custom group. Let’s get started by

creating a custom option group to enable S3 Backup on SQL 2017 Express Edition. This

option allows RDS to read and write SQL backups (∗.bac files) to S3. This is a great way

to import data from an on-prem database to SQL Server. Let’s begin by creating a new S3

bucket for our role.

New-S3Bucket -BucketName pwsh-book-rds-backup

RDS is going to need permission to S3 to read and write ∗.bac files. Therefore, we

are going to need to create a new IAM role for RDS. If you need to review how IAM roles

work go back to Chapter 9. Let’s start by creating a new role and specifying the RDS

service as the principal.

$AssumeRolePolicy = @"

{

 "Version":"2008-10-17",

 "Statement":[

 {

 "Sid":"",

 "Effect":"Allow",

 "Principal":{"Service":"rds.amazonaws.com"},

 "Action":"sts:AssumeRole"

 }

]

}

"@

$Role = New-IAMRole -RoleName 'RDSS3Backup' -AssumeRolePolicyDocument

$AssumeRolePolicy

Chapter 10 relational Database serviCe

256

Next we will define the permissions allowing RDS to access to the new S3 bucket we

created earlier.

$AccessPolicy = @"

{

 "Version": "2012-10-17",

 "Statement":

 [

 {

 "Effect": "Allow",

 "Action":

 [

 "s3:ListBucket",

 "s3:GetBucketLocation"

],

 "Resource": "arn:aws:s3:::pwsh-book-rds-backup"

 },

 {

 "Effect": "Allow",

 "Action":

 [

 "s3:GetObjectMetaData",

 "s3:GetObject",

 "s3:PutObject",

 "s3:ListMultipartUploadParts",

 "s3:AbortMultipartUpload"

],

 "Resource": "arn:aws:s3:::pwsh-book-rds-backup/∗"
 }

]

}

"@

Write-IAMRolePolicy -RoleName 'RDSS3Backup' -PolicyName 'RDSS3Backup-

S3Access' -PolicyDocument $AccessPolicy

Chapter 10 relational Database serviCe

257

Now we can create a new option group.

New-RDSOptionGroup -OptionGroupName 'SQL2017S3Backup'

-OptionGroupDescription "SQL2017 With S3 Backup Enabled" -EngineName

sqlserver-ex -MajorEngineVersion '14.00'

Similar to parameter groups, we use a .Net object to define the settings. In this case

we enable the SQLSERVER_BACKUP_RESTORE option and specify the Arn of the new role we

just created.

$OptionSetting = New-Object Amazon.RDS.Model.OptionSetting

$OptionSetting.Name = 'IAM_ROLE_ARN'

$OptionSetting.Value = $Role.Arn

$Option = New-Object Amazon.RDS.Model.OptionConfiguration

$Option.OptionName = 'SQLSERVER_BACKUP_RESTORE'

$Option.OptionSettings = $OptionSetting

Edit-RDSOptionGroup -OptionGroupName 'SQL2017S3Backup' -OptionsToInclude

$Option -ApplyImmediately $true

Now you can launch a new SQL Server instance and specify the option group.

New-RDSDBInstance -DBInstanceIdentifier 'SQLServer04' -Engine 'sqlserver-

ex' -AllocatedStorage 20 -DBInstanceClass 'db.t2.micro' -MasterUsername

'sa' -MasterUserPassword 'password' -DBSubnetGroupName 'MySubnetGroup'

-VpcSecurityGroupIds $GroupId -OptionGroupName 'SQL2017S3Backup'

Finally, we can restore a SQL Server backup from S3. Note that this command is run

from SQL studio rather than the PowerShell command prompt.

exec msdb.dbo.rds_restore_database

 @restore_db_name='ledger',

 @s3_arn_to_restore_from='arn:aws:s3:::pwsh-book-rds-backup/ledger.

bac';

Check out the exercises at the end of this chapter for an example of enabling

Transparent Database Encryption (TDE). Next, let’s look at native RDS backups using

snapshots.

Chapter 10 relational Database serviCe

258

 Working with Snapshots
RDS supports two types of backup: snapshots and point-in-time recovery. The backup

windows and retention period we discussed earlier are related to point-in-time recovery

and will be discussed in the next section. This section is about RDS snapshots, which are

similar to EC2 snapshots.

A RDS snapshot creates a copy of the database just like an EC2 snapshot creates a

copy of a volume. They are created manually using either the AWS Management Console

or the API. You can create as many snapshots as you want, any time you want. Snapshots

are retained until you manually delete them and are not affected by the retention period

specified when you create the instance.

When you restore a RDS snapshot, AWS always creates a new instance. You cannot

overwrite an existing database using a snapshot. This is just like restoring an EC2

 snapshot, which, we already know, always creates a new volume rather than overwriting

an existing one.

You can create a new snapshot using the New-RDSDBSnapshot command. This

command simply takes the name of the instance you want to back up and a name to

identify the snapshot.

New-RDSDBSnapshot -DBSnapshotIdentifier 'MySnapshot' -DBInstanceIdentifier

'SQLServer01'

It will take a few minutes to create the snapshot. You can check on the status of

the snapshot using the Get-RDSDBSnapshot command. For example, to check on the

snapshot we just created, use the following command:

Get-RDSDBSnapshot -DBSnapshotIdentifier 'MySnapshot'

The Get-RDSDBSnapshot command can also be used to list all the snapshots taken

for a given database instance. The following command will list all snapshots taken of the

SQLServer01 instance:

Get-RDSDBSnapshot -DBInstanceIdentifier 'SQLServer01'

You can restore a snapshot using the Restore-RDSDBInstanceFromDBSnapshot

command. Remember that restoring a snapshot always creates a new instance.

Therefore, we need to include a new identifier. In addition, we can change many of the

parameters we specified when we created the database instance.

Chapter 10 relational Database serviCe

259

The following command will restore a RDS snapshot creating a new RDS instance

called SQLServer03. The new instance will have a new DNS name, and you must update

your application to use the new name.

Restore-RDSDBInstanceFromDBSnapshot -DBSnapshotIdentifier 'MySnapshot'

-DBInstanceIdentifier 'SQLServer01a' -DBSubnetGroupName 'MySubnetGroup'

Note that I had to specify the subnet group in the preceding command. In addition,

I could have changed any of the following options. If you leave these options blank, RDS

will use the settings that were present on the original instance rather than the defaults

defined for New-RDSDBInstance:

• DBInstanceClass

• Port

• AvailabilityZone

• MultiAZ

• PubliclyAccessible

• AutoMinorVersionUpgrade

• LicenseModel

• Engine – Note that the engine must be compatible. You cannot

restore an SQL Server snapshot to an Oracle database, but you can

move from Standard Edition to Enterprise Edition.

• IOPS

Just like EC2, RDS snapshots can be copied to another region for an additional level

of redundancy. You can copy a snapshot using Copy-RDSDBSnapshot. The copy is always

initiated from the target region. Rather than specifying the source region as we did with

EC2 snapshots, you must use the fully qualified Amazon Resource Name (ARN) for the

source snapshot. The ARN uses the format

arn:aws:rds:<region>:<account number>:<type>:<identifier>

Chapter 10 relational Database serviCe

260

For example, the following command will copy our snapshot from the Northern

Virginia region to the Northern California region:

Copy-RDSDBSnapshot -SourceDBSnapshotIdentifier 'arn:aws:rds:us-

east- 1:123456789012:snapshot:MySnapshot' -TargetDBSnapshotIdentifier

'MySnapshot' -Region us-west-1

Obviously you are charged for the storage required to keep the snapshot. When

you no longer need a snapshot, you can delete it using the Remove-RDSDBSnapshot

command.

Remove-RDSDBSnapshot -DBSnapshotIdentifier 'MySnapshot' -Force

Snapshots are a great way to back up a database when you can plan for a specific

risk. For example, you might take a snapshot before upgrading the application code.

But, snapshots are not well suited for unexpected issues. For example, if a disk failed,

you might not have taken a snapshot recently. For unexpected issues, we need to take

regularly scheduled database backups. In the next section, we will examine how to do this.

 Using Point-in-Time Restores
In addition to snapshots, RDS also supports database and transaction log backups. Using

these backups, we can restore a database within a second of any point in time within the

retention period. The best part is that AWS takes care of all the work required to create

and maintain the backups.

When we launched the RDS instance at the beginning of this chapter, we accepted

the default backup windows and retention period. Remember that the default retention

period is 1 day. As long as the retention period is greater than zero, database backups

are enabled. If backups are enabled, RDS will take a full backup of the database once a

day during the backup window. In addition, it will back up the transaction log every 5

minutes.

These backups can be used to create a point-in-time restore. Point-in-time restores

allow you to specify a specific time you want to restore, and since transaction log

backups are taken every 5 minutes, you will never lose more than 5 minutes.

Now, I want to mention a few details specific to SQL Server. First, if your SQL Server

has multiple databases, the individual databases will be restored to within 1 second of

one another. Second, RDS does not support multi-AZ SQL Server instances. As a result,

Chapter 10 relational Database serviCe

261

you should expect a momentary outage when the full backup is taken. This does not

occur with multi-AZ databases because the backup is taken on the secondary instance.

Similar to snapshots, RDS point-in-time restores always create a new RDS instance.

You cannot overwrite an existing instance. Before restoring an instance, you should

check when the last transaction log backup was taken and how many days the backups

are retained. You can restore to any point within this period. For example, to check the

time of the last transaction log backup and retention period of our SQL database, use the

following code:

$DBInstance = Get-RDSDBInstance -DBInstanceIdentifier 'SQLServer01'

$DBInstance.LatestRestorableTime

$DBInstance.BackupRetentionPeriod

The output of this command, shown as follows, indicates that you can restore to

any point within a 1-day window between November 4 at 5:22 p.m. and November 5 at

5:22 p.m.

Tuesday, November 5, 2013 5:22:42 PM

1

We can use the Restore-RDSDBInstanceToPointInTime command to create a

new RDS instance restored to any point within this range. For example, to restore to

November 5, 2013, at 11:15 a.m., use the following command. This is almost identical

to the Restore-RDSDBInstanceFromDBSnapshot command except that I am specifying a

time and day to restore to. Note that RDS expects the time in UTC.

Restore-RDSDBInstanceToPointInTime -SourceDBInstanceIdentifier 'SQLServer01'

 -TargetDBInstanceIdentifier 'SQLServer03' -DBSubnetGroupName 'MySubnetGroup'

 -RestoreTime (Get-date('2013-11-05T11:15:00')).ToUniversalTime()

If you omit the RestoreTime parameter, RDS will restore to the latest time possible.

For example:

Restore-RDSDBInstanceToPointInTime -SourceDBInstanceIdentifier 'SQLServer01'

 -TargetDBInstanceIdentifier 'SQLServer04'

 -DBSubnetGroupName 'MySubnetGroup' -UseLatestRestorableTime $true

Chapter 10 relational Database serviCe

262

Just like when restoring a snapshot , you are creating a new instance, and you can

specify many of the options that were available when we created the original instance,

including

• DBInstanceClass

• Port

• DBSubnetGroupName

• AvailabilityZone

• MultiAZ

• PubliclyAccessible

• AutoMinorVersionUpgrade

• LicenseModel

• Engine

• IOPS

Unlike snapshots, there is no need to delete database backup files. They are

automatically deleted after the retention period. This is the benefit of the RDS platform.

AWS takes care of the maintenance for you. In addition, you cannot copy backups to

another region.

In the next section, we discuss how to keep track of our RDS instances using tags and

how to monitor our instances using events and logs.

 Working with Tags, Events, and Logs
As your inventory of servers grows, it will become more and more difficult to keep

track of everything. It is really important that you have a strategy for organizing and

monitoring your resources. RDS offers tags to help categorize everything and events and

logs for monitoring. Let’s look at each.

Chapter 10 relational Database serviCe

263

 Tags
We saw the power of tags with EC2. The same holds true for RDS. You can use tags to

include metadata describing your RDS resources. For example, you might want to tag

an instance with the department that owns it so you can create a chargeback report and

know whom to contact if something goes wrong.

Creating a tag is similar to EC2. You begin by creating a .Net object used to describe

the tag. Then you add a key and value. For example, the following code will create a tag

specifying the department=marketing.

$Tag = New-Object('Amazon.RDS.Model.Tag')

$Tag.Key = 'Department'

$Tag.Value = 'Marketing'

To add the tag to a RDS resource, you use the Add-RDSTagsToResource command.

Remember that RDS uses names rather than ids to identify resources. Different resource

types can have the same name. For example, I can name both an instance and snapshot

“database1.” As a result, we have to use the fully qualified Amazon Resource Name (ARN)

to uniquely identify a resource. Remember that ARNs follow the format

arn:aws:rds:<region>:<account number>:<type>:<identifier>

Therefore, to add the department=marketing tag to our instance, use

Add-RDSTagsToResource -ResourceName 'arn:aws:rds:us-east-

1:123456789012:db:SQLServer01' -Tags $Tag

And, to add the department=marketing tag to our snapshot, use

Add-RDSTagsToResource -ResourceName 'arn:aws:rds:us-east-1:123456789012:

snapshot:MySnapshot'-Tags $Tag

You can retrieve the tags using the Get-RDSTagForResoure command. For example:

Get-RDSTagForResource -ResourceName 'arn:aws:rds:us-east-

1:123456789012:db:SQLServer01'

Chapter 10 relational Database serviCe

264

You can also remove a tag using the Remove-RDSTagsFromResource command. For

example:

Remove-RDSTagFromResource -ResourceName 'arn:aws:rds:us-east-

1:123456789012:db:SQLServer01'

 -TagKeys 'Name' –Force

Tags are a great way to organize RDS resources. In the next section, we will look at

using RDS events to monitor our instances.

 Events
It is important that you always know what is going on in the cloud. Events allow us to

monitor our RDS instances and receive notifications from SNS when specific events

occur. For example, you might want to be notified when the disk is filling up.

To get a list of all events, we use the Get-RDSEvent command. For example:

Get-RDSEvent

You can control how many events are returned using the Duration and MaxRecords

parameters. For example, the following command will return the first 25 events that

occurred in the last 15 minutes:

Get-RDSEvent -Duration 15 -MaxRecords 25

You can also specify a specific range using StartTime and EndTime, but events are

only stored for 15 days. For example:

Get-RDSEvent -StartTime '2013-11-01' -EndTime '2013-11-15'

RDS captures many event types. Events are organized into source types that

correspond to the RDS resource types and include db-instance, db-security-group,

db- parameter- group, and db-snapshot. Events are further organized into categories. To

get a list of categories, use the Get-RDSEventCategories command. For example, to get

the categories available for an RDS instance

(Get-RDSEventCategories -SourceType 'db-instance').EventCategories

Chapter 10 relational Database serviCe

265

You can use the parameters of the Get-RDSEvent command to limit the events

returned. For example, to only retrieve events for the SQL instances we created earlier,

use the following command:

Get-RDSEvent -SourceType 'db-instance' -SourceIdentifier 'SQLServer01'

Similarly you can filter for specific event categories. For example, the following

command will return all information about the backup of any RDS instance:

Get-RDSEvent -SourceType 'db-instance' -EventCategories 'backup'

Of course, you can combine these in various combinations to return the events you

want. The following command will return all of the backup events for a specific instance:

Get-RDSEvent -SourceType 'db-instance' -SourceIdentifier 'SQLServer01'

-EventCategories 'backup'

Being able to query events is great, but we cannot expect someone to sit in front of

PowerShell all day looking for issues. We really want a more proactive solution. Luckily

RDS allows us to subscribe to events using Simple Notification Service (SNS) with the

New-RDSEventSubscription command.

For example, let’s assume we want to know whenever a failure occurs or the disk

space is getting low. More specifically, we want to receive a notification via e-mail so we

can respond quickly. First we need to create an SNS topic and e-mail notification. This is

exactly what we did in Chapter 8, for example:

$Topic = New-SNSTopic -Name 'RDSTopic'

Connect-SNSNotification -TopicArn $Topic -Protocol 'email' -Endpoint

'alerts@brianbeach.com'

Now we can create a RDS subscription. The RDS subscription will publish a

notification to the SNS topic we just created whenever a new RDS event occurs

that matches the criteria we specify. To create the subscription, we use the New-

RDSEventSubscription command. For example, the following command will subscribe

to all failure and low- storage events and send a notification to our SNS topic:

New-RDSEventSubscription -SubscriptionName 'MyRDSSubscription'

 -SnsTopicArn 'arn:aws:sns:us-east-1:123456789012:RDSTopic'

 -SourceType 'db-instance' -EventCategories 'failure', 'low storage'

Chapter 10 relational Database serviCe

266

We can also subscribe to events from specific sources. For example, you might have

both development and production RDS instances in the same account. You don’t want

to get a notification in the middle of the night if a development instance fails, so you

only set up notifications for the production instances. The following example creates a

subscription for a specific instance, SQLServer01:

New-RDSEventSubscription -SubscriptionName 'MyRDSSubscription2'

 -SnsTopicArn 'arn:aws:sns:us-east-1:123456789012:RDSTopic'

 -SourceType 'db-instance' -SourceIds 'sqlserver01'

Caution the source iD in the previous example is all lowercase. Your source iD
must be lowercase or you will get an error.

As our application changes over time, you may want to add or remove instances from

the subscription. You can do this using the Add-RDSSourceIdentifierToSubscripti

on and Remove-RDSSourceIdentifierFromSubscription commands. The following two

examples add and then remove an instance from the subscription:

Add-RDSSourceIdentifierToSubscription -SubscriptionName 'MyRDSSubscription2'

 -SourceIdentifier 'SQLServer03'

Remove-RDSSourceIdentifierFromSubscription -SubscriptionName

'MyRDSSubscription2'

 -SourceIdentifier 'SQLServer03' –Force

Finally, you may want to delete a subscription altogether and stop receiving

notifications. You can do so using the Remove-RDSEventSubscription command. For

example:

Remove-RDSEventSubscription -SubscriptionName 'MyRDSSubscription' –Force

Events are a great way to monitor your RDS instances, but you will likely need more

detail to debug a failure when it occurs. In the next section, we discuss how to retrieve

logs from the database engine.

Chapter 10 relational Database serviCe

267

 Logs
With RDS you do not have access to the operating system and therefore cannot access

the file system. This means that you cannot see the detailed logs produced by the

database engine. In order to access the logs, you need to use an API call.

To list the log files available on the instance, you use the Get-RDSDBLogFiles

command. This command will list the log files available on the server. For example:

Get-RDSDBLogFiles -DBInstanceIdentifier 'SQLServer01'

You can also use the FilenameContains parameter to find specific files. For example,

to find the error log on an SQL Server, use the following command. Note that the file

name is case sensitive.

Get-RDSDBLogFiles -DBInstanceIdentifier 'SQLServer01' -FilenameContains

'ERROR'

Once you know which file you are looking for, you can download the contents using

the Get-RDSDBLogFilePortion command. For example, to read the error log on our SQL

instance, use the following command:

$Log = Get-RDSDBLogFilePortion -DBInstanceIdentifier 'SQLServer01'

-LogFileName 'log/ERROR'

$Log.LogFileData

As you can see, RDS gives us all the tools we need to manage and monitor our

database instance. In the next section, we will briefly discuss Amazon Aurora.

 Amazon Aurora
Amazon Aurora is a cloud native database engine that supports both MySQL and

PostgreSQL. According to Amazon, Aurora is up to five times faster than MySQL and

three times faster than PostgreSQL. To achieve this, Aurora using a different from the

RDS databases we have been discussing so far (Figure 10-5).

Chapter 10 relational Database serviCe

268

Aurora is built on a cloud native shared storage solution that is replicated across

three availability zones. This storage solution can scale up to 64TB per database. That’s

four times the size of traditional RDS databases. In addition, you only pay for storage you

are using rather than the storage you provision.

Rather than replicate data between a primary and secondary instance like other

RDS databases, Aurora allows you to add up to 15 read replicas to a cluster that share the

same storage. If the writer node fails, any of the read replicas can be promoted.

Let’s start by creating a new cluster. This is very similar to launching a new RDS

database. However, you may notice that I am not specifying an instance size. That is

because the cluster only creates the underlying storage, and you add database instances

separately.

Figure 10-5. Amazon Aurora Architecture

Chapter 10 relational Database serviCe

269

New-RDSDBCluster -DBClusterIdentifier aurora01 -Engine aurora-mysql

-MasterUsername 'sa' -MasterUserPassword 'password' -DBSubnetGroupName

mysubnetgroup -VpcSecurityGroupIds $GroupId

Now let’s add a database to the cluster. This first instance will become the writer

node. This is the node that handles all CRUD operations.

New-RDSDBInstance -DBClusterIdentifier aurora01 -DBInstanceIdentifier

aurora01a -Engine aurora-mysql -DBInstanceClass 'db.r4.large'

Next, we can add read replicas to the cluster. You can spread read operations over

many read replicas. In addition, this instance will be promoted if the writer fails.

New-RDSDBInstance -DBClusterIdentifier aurora01 -DBInstanceIdentifier

aurora01b -Engine aurora-mysql -DBInstanceClass 'db.r4.large'

If you want to control which instance is promoted on failure of the writer, you can

specify a PromotionTier. By default, instances are added as tier 1.

New-RDSDBInstance -DBClusterIdentifier aurora01 -DBInstanceIdentifier

aurora01c -Engine aurora-mysql -DBInstanceClass 'db.r4.large'

-PromotionTier 2

If we describe the cluster, you will notice that we have three instances. aurora01a is

the writer instance. In addition, aurora01b has a higher tier and will be promoted before

aurora01c if the writer fails.

(Get-RDSDBCluster -DBClusterIdentifier aurora01).DBClusterMembers

DBClusterParameterGroupStatus DBInstanceIdentifier IsClusterWriter

PromotionTier

----------------------------- -------------------- --------------- --------

in-sync aurora01a True 1

in-sync aurora01b False 1

in-sync aurora01c False 2

Chapter 10 relational Database serviCe

270

The Endpoint attribute will always return the IP address for the writer instance.

This is always the same IP, assuming the writer has not failed. If you run the following

command a few times, you will keep getting the same IP address which is the IP address

of the aurora01a instance:

Resolve-DnsName (Get-RDSDBCluster -DBClusterIdentifier aurora01).Endpoint

ReaderEnpoint, on the other hand, will load balance across the two reader nodes.

If you run this command a few times, you notice that you randomly get one of the

two reader IP addresses. Of course you can still send read requests to the writer node;

however, it’s better to distribute your load across all the nodes in the cluster.

Resolve-DnsName (Get-RDSDBCluster -DBClusterIdentifier aurora01).

ReaderEndpoint

As you can see, RDS and Aurora offer everything you need to build a robust database

platform without having to worry about the day-to-day details of system administration

and backup. Let’s wrap up this chapter with two exercises focused on securing SQL

Server. The first will enable SSL to protect your connection and the second will enable

Transparent Data Encryption.

EXERCISE 10.1: SQL SERVER AND SSL ENCRYPTION

it is always a good practice to encrypt the connection between your client and server. it is

common to do so between the user and a web server, but less common between the web

server and database. sQl server supports encrypting the connection using ssl.

You can enable ssl when using an sQl server rDs instance. all rDs instances include a

self- signed certificate. of course, your client machine will not trust the self-signed certificate

until we import the public key into the trusted store. let’s build a script to do so.

You can download the public key from https://rds.amazonaws.com/doc/rds-ssl-

ca-cert.pem. let’s use powershell to save a copy of the key on our client machine. this

command must be run on the client machine.

Invoke-WebRequest 'https://rds.amazonaws.com/doc/rds-ssl-ca-cert.pem'

 -OutFile "$env:TEMP\rds-ssl-ca-cert.pem"

Chapter 10 relational Database serviCe

https://rds.amazonaws.com/doc/rds-ssl-ca-cert.pem
https://rds.amazonaws.com/doc/rds-ssl-ca-cert.pem

271

next, we can use powershell to import the certificate into our trusted store. note that you must

run powershell as an administrator on our client machine to complete this step.

Import-Certificate -FilePath "$env:TEMP\rds-ssl-ca-cert.pem"

 -CertStoreLocation 'Cert:\LocalMachine\authRoot' -Confirm:$false

Finally, we should clean up the temporary copy of the certificate.

Remove-Item "$env:TEMP\rds-ssl-ca-cert.pem"

that’s all there is to it. all you have to do to enable encryption is add two parameters to the

connection string: encrypt=true and TrustServerCertificate=true. For example:

Server=sqlserver01.cz8cihropmwk.us-east-1.rds.amazonaws.

com;Database=myDataBase;

 User Id=sa;Password=password;encrypt=true;TrustServerCertificate=true"

encrypting your database connection is a simple way to add an extra layer of security. in the

next example, i will show you how to encrypt the data that is stored on disk using tDe.

EXERCISE 10.2: SQL SERVER TOTAL DATABASE ENCRYPTION

earlier in this chapter, we talked about option groups, and i showed you how to create an

option group that enables sQl server transparent Data encryption (tDe). in this exercise, we

build on that example to fully configure sQl tDe in a new instance. We will create an option

group that enables tDe, launch a rDs instance that uses the new option group, create a new

database on the rDs instance, and encrypt the new database.

First, we need to accept a few parameters as input to our script. these should all look familiar;

they are all the parameters that will be passed to New-RDSDBInstance. notice that the

default engine is sQl server enterprise edition. remember that tDe is only supported on the

enterprise edition of sQl server. in addition, notice that the default instance class is small

and i have allocated 200Gb of disk. these are the minimum values for sQl server enterprise

edition.

param(

 [parameter(mandatory=$true)][string]$DBInstanceIdentifier,

 [parameter(mandatory=$false)][string]$DBInstanceClass = 'db.m1.small',

 [parameter(mandatory=$false)][string]$Engine = 'sqlserver-ee',

 [parameter(mandatory=$false)][string]$AllocatedStorage = 200,

Chapter 10 relational Database serviCe

272

 [parameter(mandatory=$true)][string]$MasterUsername,

 [parameter(mandatory=$true)][string]$MasterUserPassword,

 [parameter(mandatory=$true)][string]$DBSubnetGroupName,

 [parameter(mandatory=$true)][string]$VpcSecurityGroupIds

)

next, we create the new option group just like i did earlier in this chapter. in the following

example, i first check if the option group already exists and, if not, create a new group.

Try {

 $OptionGroup = Get-RDSOptionGroup -OptionGroupName 'SQL2012TDE'

}

Catch [Amazon.RDS.Model.OptionGroupNotFoundException]{

 $OptionGroup = New-RDSOptionGroup -OptionGroupName 'SQL2012TDE'

 -OptionGroupDescription "SQL2012 with TDE"

 -EngineName sqlserver-ee -MajorEngineVersion '11.00'

 $Option = New-Object Amazon.RDS.Model.OptionConfiguration

 $Option.OptionName = 'TDE'

 Edit-RDSOptionGroup -OptionGroupName 'SQL2012TDE' -OptionsToInclude $Option

 -ApplyImmediately $true

}

now that the option group has been created, we can launch a new instance using the

parameters passed into the script.

New-RDSDBInstance -DBInstanceIdentifier $DBInstanceIdentifier -Engine $Engine

 -AllocatedStorage $AllocatedStorage

 -DBInstanceClass $DBInstanceClass -MasterUsername $MasterUsername

 -MasterUserPassword $MasterUserPassword

 - DBSubnetGroupName $DBSubnetGroupName -VpcSecurityGroupIds

$VpcSecurityGroupIds

 -OptionGroupName 'SQL2012TDE'

it will take a while for the instance to start. let’s add a while loop that will wait for it.

While ($Instance.DBInstanceStatus -ne 'available') {$Instance = Get-

RDSDBInstance $DBInstanceIdentifier; Write-Host "Waiting for RDS

instance to launch.";

 Start-Sleep -s 60}

Chapter 10 relational Database serviCe

273

once it’s done, we can get the address and report it back to the user so he or she can log into

sQl server and finish the configuration.

$Instance = (Get-RDSDBInstance -DBInstanceIdentifier 'SQLServer01').Endpoint.

Address

Write-Host "The RDS instance $DBInstanceIdentifier is ready. The address is

$Address."

at this point tDe is enabled on the instance, but the individual databases are not encrypted.

tDe allows you to selectively encrypt individual databases on an instance. each database

has its own encryption keys, and the individual encryption keys are protected by the server’s

certificate, which was created by amazon when we enabled tDe.

We can use sQl scripts to create and encrypt a database. the remaining scripts in this

exercise are sQl scripts that should be run in sQl Management studio against the rDs

instance.

let’s begin getting the name of the server certificate. Make reference of the name that is

returned; you will need it later.

USE [master]

SELECT TOP 1 Name FROM sys.certificates WHERE name LIKE 'RDSTDECertificate%'

next, we create a new database that we will encrypt. if you already have a database on the

instance, you can just skip this step.

USE [master]

CREATE DATABASE MyDatabase

then, we create a new encryption key for our database. replace <<pUt_naMe_here>> with

the name of the certificate you found earlier.

Use [MyDatabase]

CREATE DATABASE ENCRYPTION KEY WITH ALGORITHM = AES_128 ENCRYPTION BY SERVER

CERTIFICATE

 <<PUT_NAME_HERE>>

Finally, you can alter the database to enable encryption.

ALTER DATABASE MyDatabase SET ENCRYPTION ON

that’s all there is to it. With tDe enabled, everything sQl writes to disk is encrypted including

data files and backups.

Chapter 10 relational Database serviCe

274

 Summary
RDS provides a developer everything that he or she needs to launch a database server

without the burden of managing it. AWS will take care of the maintenance, backups,

replication, and monitoring, so you can concentrate on your application.

We have seen how to launch and configure SQL Server instances. We learned how

to restore instances from snapshots and perform point-in-time recovery from database

backups. We also learned to create scalable, highly available architectures using multi-

AZ instances and read replicas. Finally, we learned how to secure SQL Server using SSL

to encrypt the connection and TDE to encrypt files on disk.

In the next chapter, we will focus on Simple Storage Service (S3). S3 is a highly

resilient data solution for storing files. This is the data store AWS uses to keep snapshots

and RDS backups, but you can use it to store anything you want.

Chapter 10 relational Database serviCe

275
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_11

CHAPTER 11

Simple Storage Service
Simple Storage Service (S3) is used to store in the cloud. S3 can scale to enormous size.

You can store an unlimited number of objects and access them from anywhere. You

access S3 over HTTP or HTTPS using a REST API.

S3 provides 99.999999999% (that’s 11 nines) durability by storing data multiple times

across multiple availability zones within a region. A single object can be anywhere from

1 byte to 5 terabytes and you can store an unlimited number of objects.

Unlike Elastic Block Storage, you cannot attach S3 storage to an instance. All access

is through the REST API. In this chapter, I will show you how to create and manage

buckets, which are used to store data. I will also show you how to upload and download

objects and manage storage options.

Next, we will discuss versioning and object life cycle. I will go on to show you how to

save money by using Glacier cold storage. Finally, we will talk about security, including

encryption at rest and enabling public access to objects in your bucket.

This chapter has two exercises. The first will show you how to host a static web site

in S3. We will deploy and configure a web site using PowerShell. The second will discuss

how to create pre-signed URLs that allow a user to access data for a specific period of

time. At the end of that period, the URL expires, and the user can no longer access the

content. Let’s get started.

 Managing Buckets
S3 stores objects in buckets. It may help to think of a bucket as a drive in a file system.

Like a drive, a bucket contains files and the files can be organized into a hierarchy of

folders. But that is where the analogy ends. Unlike a drive, a bucket is infinitely large and

can store an unlimited number of objects. Buckets are also accessible anywhere in the

world using HTTP or HTTPS.

276

Each account can have up to 100 buckets, and each bucket must have a name that

is unique across all accounts and regions. To create a bucket, use the New-S3Bucket

command. For example, to create a bucket named pwsh-book-exercises, I call

New- S3Bucket and supply the name.

New-S3Bucket -BucketName pwsh-book-exercises

Note Your bucket name must be unique and comply with DNS naming
conventions. The name can include 3–63 characters. It must start with a number
or letter and cannot include uppercase characters or underscore.

Each bucket is created in a region and data is replicated across multiple availability

zones in that region. If you want to specify a region, other than the default region you

specified in Chapter 2, you can add a region attribute.

New-S3Bucket -BucketName pwsh-book-exercises-02 -Region us-west-2

As you might expect, there is a Get-S3Bucket command that can be used to list the

buckets in your account. When called without any parameters, it lists all the buckets in

your account.

Get-S3Bucket

If you want to get information about a specific bucket, you can call Get-S3Bucket

with the BucketName parameter.

Get-S3Bucket -BucketName pwsh-book-exercises

If you just want to verify that a bucket exists, there is a separate command,

Test- S3Bucket, that will return true if the bucket exists and false if it does not. Of course,

you can always use Get-S3Bucket and compare the result to null, but Test-S3Bucket is

more convenient.

Test-S3Bucket -BucketName pwsh-book-exercises

The Get-S3Bucket command returns very little information. It only includes the

name and creation date of the bucket. If you want to know where the bucket is located,

use the Get-S3BucketLocation command.

Get-S3BucketLocation -BucketName pwsh-book-exercises

ChapTer 11 SImple STorage ServICe

277

Note Buckets in the Northern virginia region will return NUll. This is expected
behavior. The Northern virginia region was the first, and since then aWS has
standardized the design. Buckets in all other regions will return the region name
(e.g., us-west-1).

Finally, if you want to delete a bucket, you can use the Remove-S3Bucket command.

The bucket must be empty before you can delete it or you can add the –DeleteObjects

parameter to delete the contents of a bucket. Of course, you also need to include the

Force option to avoid being prompted for confirmation.

Remove-S3Bucket -BucketName pwsh-book-exercises -Force

Enough about buckets. Let’s put some data in there already. In the next section, we

learn how to read and write objects.

 Managing Objects
Now that we have a bucket created, we can start to upload files using the Write- S3Object

command. For example, the following command uploads the local file HelloWorld.txt to

the pwsh-book-exercises bucket and saves it as HelloWorld.txt.

Write-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt' -File

'HelloWorld.txt'

You can also use the Content parameter to upload data without storing it on the local

file system first. For example:

Write-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-Content "Hello World!!!"

If you want to list the objects in a bucket, you use the Get-S3Object command.

Get- S3Object does not return the objects, but rather lists the objects and a few

attributes. This is equivalent of a dir in Windows or a ls on Linux.

Get-S3Object -BucketName pwsh-book-exercises

ChapTer 11 SImple STorage ServICe

278

You can also use Get-S3Object to discover information about a specific object. For

example, the following command will list information about the HelloWorld.txt file we

uploaded earlier.

Get-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

When you are ready to download a file, you use the Read-S3Object command.

Unlike Write-S3Object, Read-S3Object does not support the content parameter

and must be used to write to a file on the local file system. For example, the following

command will download the HelloWorld.txt file and overwrite the original copy.

Read-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt' -File

'HelloWorld.txt'

Obviously we can create a copy of an object by downloading and uploading it with a

different name. But, remember that we pay for the bandwidth used. Therefore, it is more

efficient to use the Copy-S3Object to create a copy on the server without transferring the

data. For example:

Copy-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-DestinationKey 'HelloWorldCopy.txt'

We can also use Copy-S3Object to copy an object from one bucket to another. These

buckets can even be in different regions allowing you to move data directly from one

region to another without making a local copy.

Copy-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-DestinationBucket pwsh-book-exercises-02' -DestinationKey

'HelloWorldCopy.txt'

When you no longer need an object, you can delete it using the Remove-S3Object

command. Remember to use the Force option to avoid the confirmation prompt.

Remove-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorldCopy.txt'

-Force

Now that we know how to create and use objects, let’s look at how we can use folders

to organize them.

ChapTer 11 SImple STorage ServICe

279

 Managing Folders
In the previous examples, we copied objects into the root of the bucket. As you add more

objects, you will end up with a confusing mess. However, we can use folders to organize

objects. For example, we could have uploaded the HelloWorld.txt file into a folder called

MyFolder by modifying the Key.

Write-S3Object -BucketName pwsh-book-exercises -Key 'MyFolder/HelloWorld.

txt' -File 'HelloWorld.txt'

If you want to list the files in a folder, use the KeyPrefix parameter with Get- S3Object.

Get-S3Object -BucketName pwsh-book-exercises -KeyPrefix 'MyFolder'

Note Before we go any further, I want to mention that folders don’t really exist
in S3. at least they do not exist like they do in a traditional file system. There is
no folder object. The previous example is simply listing all files that begin with
‘myFolder.’ I could just have easily uploaded a file called ‘myFolder_helloWorld.
txt.’ aWS would not have cared, and get-S3object would still have listed the file
because it begins with ‘myFolder.’ Folders are just a conversion used by the aWS
management Console. When the console sees a forward slash, it creates a folder
icon and groups the files under it. With that said, you will likely find the folders in
the console very convenient.

You may find that on occasion you want to make an empty folder appear in the AWS

Management Console. To create an empty folder, just create a dummy object that has a

key that ends with a slash.

Write-S3Object -BucketName pwsh-book-exercises -Key 'EmptyFolder/' -Content

"Dummy Content"

The KeyPrefix (or folder) can be really useful. One great feature is the ability to

upload an entire directory of files with a single command. For example, the following

command will upload all the files in the C:\aws folder and prefix all the files with “utils/.”

Write-S3Object -BucketName pwsh-book-exercises -KeyPrefix 'utils' -Folder

'c:\aws'

ChapTer 11 SImple STorage ServICe

280

The previous command will ignore subfolders, but there is also an option to

recursively upload all files in all of the subfolders.

Write-S3Object -BucketName pwsh-book-exercises -KeyPrefix 'utils' -Folder

'c:\aws' -Recurse

When you read files, you can use the KeyPrefix parameter to download all files that

begin with a certain string. Rather than using the File parameter as we did in a previous

command, you use the Folder parameter. The Folder parameter specifies where to put

the files on the local file system. Note that Read-S3Object is always recursive.

Read-S3Object -BucketName pwsh-book-exercises -KeyPrefix 'utils' -Folder

'c:\aws'

On occasion you may find that you want to upload files that match a certain

pattern. For example, you can upload all executables in the c:\aws folder by using the

SearchPattern parameter.

Write-S3Object -BucketName pwsh-book-exercises -KeyPrefix 'utils' -Folder

'c:\aws' -SearchPattern '*.exe'

Unfortunately, there is no SearchPattern attribute on Read-S3Object. We can use a

combination of Get-S3Object and Read-S3Object to produce a little PowerShell magic.

For example:

Get-S3Object -BucketName pwsh-book-exercises -KeyPrefix 'utils' |

 Where-Object {$_.Key -like '*.exe'} | % {

 Read-S3Object -BucketName $_.BucketName -Key $_.Key -File

('C:\' + $_.Key.Replace('/','\'))

 }

Note obviously these commands that specify C:\ are not going to run on a linux
machine running powerShell Core. In addition, on a linux machine there is no need
to replace the backslash with forward slash as I did in the last example.

As you can see, folders are a really powerful way to act on multiple objects at once.

Next, we will look at how to deal with large numbers of files.

ChapTer 11 SImple STorage ServICe

281

 Managing Public Access
Many buckets require public or anonymous access. For example, we might be using S3

to store images for a web site or the installer for our latest application. In both cases we

want the objects to be available to the general public. To make an object public, you can

add the PublicReadOnly attribute to Write-S3Object cmdlet. For example:

Write-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-Content "Hello World!!!" -PublicReadOnly

In addition, you can make the bucket public read only. That does not make every

object in the bucket public; it means anyone can list the contents of the bucket. You still

have to mark the individual objects as public when you upload them.

New-S3Bucket -BucketName pwsh-book-exercises –PublicReadOnly

You can also configure a bucket to allow anonymous users to write to a bucket. For

example, you might allow customers to upload log files to your server so you can help

debug an issue they are having. In general it is dangerous to allow unauthenticated

user to upload files. Not only could the individual files be dangerous, but you are also

charged for files they upload. If you allow anonymous uploads, there is nothing stopping

a nefarious user from uploading large amounts of data, costing you thousands of dollars.

If you still want to create a bucket with anonymous read/write access, you can use the

PublicReadWrite attribute with New-S3Bucket. For example:

New-S3Bucket -BucketName pwsh-book-exercises -PublicReadWrite

We will discuss Identity and Access Management in detail in the next chapter.

 Managing Versions
Often you want to store multiple versions of a document as you make changes. You may

have regulatory requirements that demand it, or you may just want the option to roll

back. S3 supports this through bucket versioning.

When you enable versioning, S3 stores every version of every document in the

bucket. If you overwrite an object, AWS keeps the original. If you delete a document, AWS

simply marks the document as deleted, but keeps all the prior versions. When you read a

document, AWS returns the latest version, but you can always request a specific version.

ChapTer 11 SImple STorage ServICe

282

Before we enable versioning, let’s overwrite the HelloWorld document we created

earlier so we have a clean starting point. When you do, the old copy is replaced by this

new copy.

Write-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-Content "Hello World Version 1!!!"

Now, let’s enable versioning. Versioning is always enabled at the bucket. You

cannot enable versioning within a specific folder. To enable versioning, use the Write-

S3BucketVersioning command.

Write-S3BucketVersioning -BucketName pwsh-book-exercises -VersioningConfig_

Status 'Enabled'

Now that versioning is enabled, let’s overwrite the HelloWorld document. You do

not have to do anything special to create a version. Just write the new object and S3 will

create a new version and retain the original.

Write-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-Content "Hello Version 2!!!"

If you were to call Get-S3Object, you would not see any difference. In fact, all of the

commands we have used so far are unaffected by versioning. The following command

will return the latest version, which you can verify by checking the date:

Get-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

To list the versions of all the objects in a bucket, use the Get-S3Version command.

Note that Get-S3Version returns a complicated structure. You can ignore most of it and

use the Versions property to list the versions. For example:

(Get-S3Version -BucketName pwsh-book-exercises).Versions

Unfortunately, there is no way to specify a specific object, only a prefix. Often this is

enough. For example, you could get the versions of our HelloWorld.txt document like this:

(Get-S3Version -BucketName pwsh-book-exercises -Prefix 'HelloWorld.txt').

Versions

ChapTer 11 SImple STorage ServICe

283

But, there are times when the prefix is not unique. For example, if we had both

HelloWorld.doc and HelloWorld.docx in a folder, it is impossible to list the versions

of HelloWorld.doc without getting HelloWorld.docx. Therefore, it is best to check the

versions you get back by piping it to Where-Object.

(Get-S3Version -BucketName pwsh-book-exercises -Prefix 'HelloWorld.doc').

Versions | Where-Object {$_.Key -eq 'HelloWorld.doc'}

If you want to download a specific version of a document, the Read-S3Object

accepts a version parameter. First, you have to get the version using Get-S3Version.

Note that Get-S3Version returns an array and the array is sorted in reverse order so that

the latest version is position 0. Once you find the version you want, you can pass the ID

to Read-S3Object. For example:

$Versions = (Get-S3Version -BucketName pwsh-book-exercises -Prefix

'HelloWorld.txt').Versions

Read-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-Version $Versions[1].VersionId -File 'versiontest.txt'

If you check the versiontest.txt file, you can verify that it contains the content from

version 1, “Hello World version 1!!!” You can delete a version the same way:

Remove-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-VersionId $Versions[1].VersionId

When you delete a version, it is physically removed from the bucket. But, when you call

Remove-S3Object without specifying a VersionId, S3 simply marks the object as deleted.

If you delete an object and then call Get-S3Object, it appears that the object is gone.

Remove-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt' -Force

Get-S3Object -BucketName pwsh-book-exercises

However, if you list the versions, you will see that there is a new version called a

delete marker.

 (Get-S3Version -BucketName pwsh-book-exercises -Prefix 'HelloWorld.txt').

Versions

ChapTer 11 SImple STorage ServICe

284

Note that the delete marker has the attribute IsDeleteMaker=True and a size of 0.

You can still access the old versions by specifying a version ID. For example:

$Versions = (Get-S3Version -BucketName pwsh-book-exercises -Prefix

'HelloWorld.txt').Versions

Read-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-Version $Versions[1].VersionId -File 'deletetest.txt'

You can also undelete an object by removing the delete marker. Just find the version

with IsDeleteMaker=True and use Remove-S3Object to remove it.

$Marker = (Get-S3Version -BucketName pwsh-book-exercises -Prefix

'HelloWorld.txt').Versions | Where-Object {$_.IsDeleteMaker -eq $true}

Remove-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-VersionId $Marker.VersionId -Force

Once you have versioning enabled, you cannot disable it, but you can choose

to suspend versioning. When versioning is suspended, the existing versions are

maintained but new versions are not created. To suspend versioning, call Write-

S3BucketVersioning and set the status to Enabled.

Write-S3BucketVersioning -BucketName pwsh-book-exercises -VersioningConfig_

Status 'Suspended'

As you can imagine, versioning, combined with 99.99999999% durability, will ensure

that you almost never lose an object again. Of course, storing objects forever can get

expensive. In the next section, we will explore life-cycle policies to manage aging objects.

 Using Life-Cycle Management and Glacier
Over time you will accumulate a vast collection of objects. Sometimes you want to save

these forever, but usually you do not. You may need to keep to certain documents for a

specified period of time. For example, the Sarbanes-Oxley Act, enacted after the Enron

collapse, recommends that you keep ledgers for 7 years and invoices for 3.

Obviously you have the tools to create a PowerShell script to delete objects older

than a certain date. But, S3 also has a built-in life-cycle policy that can manage retention

for you. In addition, life-cycle management can be used to copy objects to a cold storage

solution called Glacier.

ChapTer 11 SImple STorage ServICe

285

Glacier provides the same high durability as S3 for about 25% the price. The trade-off

is that objects stored in Glacier are not immediately available. You have to request that

objects be restored, which takes up to 12 hours.

We describe the policy using a series of .Net objects. Let’s assume our bucket holds

log files from a web server running on EC2. The development team often refers to the

logs to diagnose errors, but this almost always happens within a few hours of the error

occurring. In addition, the security team requires that we maintain logs for 1 year.

Therefore, we decide to keep the logs online, in S3, for 1 week. After 1 week, the logs are

moved to cold storage, in Glacier, for 1 year. After 1 year the logs can be deleted.

First, we define a life-cycle transition. The transition defines how long the logs are

maintained in S3 and where to move them after. The policy is always defined in days.

The transition also defines the storage class to move the document to. In the following

example, I am moving the object to Glacier. You can also move an object to Infrequent

Access (S3-IA) storage, but I am not going to cover that here.

$Transition = New-Object Amazon.S3.Model.LifecycleTransition

$Transition.Days = 7

$Transition.StorageClass = "Glacier"

Next, we define the expiration policy. The expiration policy defines how long to keep

the object before it is deleted. In this case, I am keeping the object for 365 days. Note that

the expiration is defined from the day the object was first uploaded to S3, not the day it

was transitioned to Glacier.

$Expiration = New-Object Amazon.S3.Model.LifecycleRuleExpiration

$Expiration.Days = 365

Now that we have both the transition and expiration defined, we can combine them

into a single rule and apply it to the bucket. Note that you do not need to define both

the transition and expiration. Some rules only define a transition, and the object is

maintained in Glacier until you manually delete it. Other rules only define an expiration

and the document is deleted from S3 without being transitioned.

$Rule = New-Object Amazon.S3.Model.LifecycleRule

$Rule.Transition = $Transition

$Rule.Expiration = $Expiration

$Rule.Prefix = "

ChapTer 11 SImple STorage ServICe

286

$Rule.Status = 'Enabled'

Write-S3LifecycleConfiguration -BucketName pwsh-book-exercises

-Configuration_Rules $Rule

Sometimes you want to have different rules applied to each folder in a bucket. You

can define a folder-level rule by adding a prefix. For example:

$Rule = New-Object Amazon.S3.Model.LifecycleRule

$Rule.Transition = $Transition

$Rule.Expiration = $Expiration

$Rule.Prefix = "logs/"

$Rule.Status = 'Enabled'

Write-S3LifecycleConfiguration -BucketName pwsh-book-exercises

-Configuration_Rules $Rule

Now, let’s assume a user of our web site claims his data was deleted a few months

ago and we need to understand why. We need to pull the log files from July 22 to

diagnose the cause. First we check if the object exists and where it is by using Get-

S3Object. For example:

Get-S3Object -BucketName pwsh-book-exercises -Key 'logs/2013-07-22.log'

This command returns the following output. Note that the log files have been moved

to Glacier, but have not yet been deleted.

Key : logs/2013-07-22.log

BucketName : pwsh-book-exercises

LastModified : Mon, 22 July 2013 23:59:39 GMT

ETag : "793466320ce145cb672e69265409ffeb"

Size : 1147

Owner : Amazon.S3.Model.Owner

StorageClass : GLACIER

To restore the object, we use the Restore-S3Object command. Restore-S3Object

requires the bucket and key. In addition, the Days parameter defines how long to keep

the object in S3. In the following example, I request that the object be restored for 7

days. This should be plenty of time to figure out what happened to our user’s data. After

7 days, the object is automatically deleted from S3, but is still stored in Glacier until the

expiration date.

ChapTer 11 SImple STorage ServICe

287

Restore-S3Object -BucketName pwsh-book-exercises -Key '/logs/2013-07-22.

log' -Days 7

If you want to remove the life-cycle policy from a bucket, you can use the Remove-

S3LifecycleConfiguration command. For example:

Remove-S3LifecycleConfiguration -BucketName pwsh-book-exercises

Life-cycle policies provide an easy solution to managing storage classes and

minimizing your S3 spend. Next we look at replicating data from one bucket to another.

 Cross-Region Replication
As I already mentioned, S3 provides 99.999999999% durability and 99.99% availability.

This is enough for most any use case; however, there may be times that you want even

greater durability or availability. S3 replication allows you to replicate objects in one

bucket to second bucket. If S3 were to fail in one region, you could still access your

objects in another region. Let’s set up replication from Northern Virginia to Ohio.

I’ll start by creating a new bucket in Northern Virginia (us-east-1) and enabling

version. Note that versioning must be enabled on the source bucket.

New-S3Bucket -BucketName pwsh-book-exercises-source -Region us-east-1

Write-S3BucketVersioning -BucketName pwsh-book-exercises-source

-VersioningConfig_Status 'Enabled'

Next, I will create a second bucket in Ohio (us-east-2). We need to enable replication

again.

New-S3Bucket -BucketName pwsh-book-exercises-destination -Region us-east-2

Write-S3BucketVersioning -BucketName pwsh-book-exercises-destination

-VersioningConfig_Status 'Enabled'

Now that the buckets are created, we need to create an IAM role that grants S3

permission to access our data. The following policy allows S3 read from the source

bucket and write to the destination bucket. If you need to review IAM roles and policies,

go back to Chapter 9.

ChapTer 11 SImple STorage ServICe

288

$AssumeRolePolicy = @"

{

 "Version":"2008-10-17",

 "Statement":[

 {

 "Sid":"",

 "Effect":"Allow",

 "Principal":{"Service":"s3.amazonaws.com"},

 "Action":"sts:AssumeRole"

 }

]

}

"@

$AccessPolicy = @"

{

 "Version":"2012-10-17",

 "Statement":[

 {

 "Effect":"Allow",

 "Action":[

 "s3:GetReplicationConfiguration",

 "s3:ListBucket"

],

 "Resource":[

 "arn:aws:s3:::pwsh-book-exercises-source"

]

 },

 {

 "Effect":"Allow",

 "Action":[

 "s3:GetObjectVersion",

 "s3:GetObjectVersionAcl",

 "s3:GetObjectVersionTagging"

],

ChapTer 11 SImple STorage ServICe

289

 "Resource":[

 "arn:aws:s3:::pwsh-book-exercises-source/*"

]

 },

 {

 "Effect":"Allow",

 "Action":[

 "s3:ReplicateObject",

 "s3:ReplicateDelete",

 "s3:ReplicateTags"

],

 "Resource":"arn:aws:s3:::pwsh-book-exercises-destination/*"

 }

]

}

"@

$Role = New-IAMRole -RoleName 'CrossRegionReplication'

-AssumeRolePolicyDocument $AssumeRolePolicy

Write-IAMRolePolicy -RoleName $Role.RoleName -PolicyName

'ReplicateSourceToDestination' -PolicyDocument $AccessPolicy

Now we can configure replication. Similar to life-cycle rules we just covered, we are

going to use a .Net object to describe the replication rule. Each rule has an ID to help

you keep track of what is being replicated. The destination is a second .Net object and

identifies the destination bucket by Arn.

$Rule = New-Object Amazon.S3.Model.ReplicationRule

$Rule.Id = 'MyFirstRule'

$Rule.Status = 'Enabled'

$Rule.Destination = New-Object Amazon.S3.Model.ReplicationDestination

$Rule.Destination.BucketArn = 'arn:aws:s3:::pwsh-book-exercises- destination'

Finally, we call Write-S3BucketReplication to configure the rule and specify the

source bucket to apply the rule to.

Write-S3BucketReplication -BucketName pwsh-book-exercises-source

-Configuration_Rule $Rule -Configuration_Role $Role.Arn

ChapTer 11 SImple STorage ServICe

290

At this point S3 will begin to replicate changes from the source bucket to the

destination bucket. In the preceding rule, I am replicating everything in the bucket. If

you want to replicate specific folders, you can modify the prefix. Note that you must

delete MyFirstRule before adding this one.

$Rule = New-Object Amazon.S3.Model.ReplicationRule

$Rule.Id = 'MySecondRule'

$Rule.Prefix = 'MyFolder/'

$Rule.Status = 'Enabled'

$Rule.Destination = New-Object Amazon.S3.Model.ReplicationDestination

$Rule.Destination.BucketArn = 'arn:aws:s3:::pwsh-book-exercises- destination'

In the following examples, the destination copy is using the same storage class as the

source copy. You might want to replicate to a different storage class. For example, you might

want to save money on the second copy by using infrequent access. Infrequent access

stores data for about half the cost of standard, but you are charged to read the data. This

makes sense if the second copy will only be read in the rare case that the primary copy fails.

You can cover destination storage class by specifying it in the destination object.

For example:

$Rule = New-Object Amazon.S3.Model.ReplicationRule

$Rule.Id = 'MyThirdRule'

$Rule.Status = 'Enabled'

$Rule.Destination = New-Object Amazon.S3.Model.ReplicationDestination

$Rule.Destination.BucketArn = 'arn:aws:s3:::pwsh-book-exercises-

destination'

$Rule.Destination.StorageClass = 'STANDARD_IA'

We are getting close to the end. Before we move on, let’s cover tagging.

 Tagging
We have seen the power of tagging in EC2. S3 also supports tagging at the bucket and

object level. To tag a bucket, create a tag using the Write-S3BucketTagging command

and a few .Net classes. For example:

$Tag = New-Object Amazon.S3.Model.Tag

$Tag.Key = 'Owner'

ChapTer 11 SImple STorage ServICe

291

$Tag.Value = 'Brian Beach'

Write-S3BucketTagging -BucketName pwsh-book-exercises -TagSets $Tag

You can also get the tags using the Get-S3BucketTagging command

Get-S3BucketTagging -BucketName pwsh-book-exercises

And, you can remove all tags using the Remove-S3BucketTagging command

Remove-S3BucketTagging -BucketName pwsh-book-exercises -Force

Tagging individual objects is similar. We can use the Write-S3ObjectTagSet

command to add tags to an object. For example:

$Tags = New-Object Amazon.S3.Model.Tag

$Tags.Key = "Owner"

$Tags.Value = "Brian Beach"

Write-S3ObjectTagSet -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-Tagging_TagSet $Tags

Just like buckets, you can query the tags for object using the Get-S3ObjectTagSet

command.

Get-S3ObjectTagSet -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

And, of course you can delete them as well. Don’t forget to add the force attribute to

suppress the confirmation dialog.

Remove-S3ObjectTagSet -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-Force

In the next section, we will look at a few miscellaneous commands and then move on

to the exercises.

 Miscellaneous S3 Options
In this section we will look at a few miscellaneous options, none of which are big enough

to warrant their own section.

ChapTer 11 SImple STorage ServICe

292

 Pagination
As you add more and more objects to S3, it can become very difficult to sort through

them all. AWS gives you the ability to list files in batches. This is really convenient if you

are trying to display the objects on a web page or other user interface.

Imagine you have hundreds of files in a bucket and you need to browse through

them all. The following example will return the first ten objects in the bucket:

$Objects = Get-S3Object -BucketName pwsh-book-exercises -MaxKeys 10

After you browse through these first ten, you want to get ten more. You can use the

MaxKeys parameter to tell the S3 to return the next ten objects. For example:

$Objects = Get-S3Object -BucketName pwsh-book-exercises -MaxKeys 10 -Marker

$Objects[9].Key

 Encryption
When you upload an object to S3, you can have S3 encrypt the file before saving it.

To enable encryption, use the ServerSideEncryption parameter.

Write-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-Content "Hello World!!!" -ServerSideEncryption AES256

Encryption is a critical part of your security strategy, but maintaining an audit log is

equally important. Let’s look at how to enable logging.

 Logging
S3 supports access logs to audit access to the objects in your bucket. When you enable

logging, S3 writes log files to the bucket you specify. In this example I am going to create

a new bucket to hold all my log files. I am adding the log-delivery-write ACL to grant the

logging service the ability to write log files.

New-S3Bucket -BucketName pwsh-book-exercises-logging -CannedACLName log-

delivery- write

Now I am going to enable logging on pwsh-book-exercises that writes log files to

MyLoggingBucket I just created. You should specify a prefix so you can keep track of

which logs came from which sources.

ChapTer 11 SImple STorage ServICe

293

Write-S3BucketLogging -BucketName pwsh-book-exercises -LoggingConfig_

TargetBucketName pwsh-book-exercises-logging -LoggingConfig_TargetPrefix

'Logs/pwsh-book-exercises/'

If you do enable logging, you should consider enabling a life-cycle policy to clean up the

log files over time. Let’s wrap up with a quick look at the ability to manage content types.

 Content Type
When you upload an object, the content type is set to “application/octet-stream.”

You can optionally include the content type to tell the client what type of file it is. For

example, your browser will always download files of type “application/octet-stream”.

If you want the browser to display the file, change the type to “text/plain.”

Write-S3Object -BucketName pwsh-book-exercises -Key 'HelloWorld.txt'

-Content "Hello World!!!" -ContentType 'text/plain'

We will see an example of content type used in Exercise 11.1 where we create a

static web site.

EXERCISE 11.1: STATIC HOSTING ON S3

You may have noticed that S3 feels a lot like a web server. We use hTTp or hTTpS to get

objects using a Url. In fact, you can use S3 to host a static web site with a few minor

alterations. First, we are going to want a vanity Url that does not reference S3. Second, we

are going to want to support a default and custom error page. S3 supports all of this and more.

let’s create a simple web site with only two pages. I am going to use the domain name

www.pwsh-book-exercises.com, but you can use anything you want. The first thing we

need to do is create a bucket. The bucket must be named with the domain name of our web

site. For example:

New-S3Bucket -BucketName 'www.pwsh-book-exercises.com'

Next we need to create a page. a page is just an S3 object with the content type set to

“text/html.” remember that if you do not set the content type, it will be set to “application/

octet-stream” and your browser will download the file rather than displaying it. You can upload

ChapTer 11 SImple STorage ServICe

http://www.pwsh-book-exercises.com

294

images and other resources, but you have to set the content type correctly for each. We also

need to enable the public read-only access to each file. The following example creates a new

page called index.htm:

$Content = @"

<HTML>

 <HEAD>

 <TITLE>Hello World</TITLE>

 </HEAD>

 <BODY>

 <H1>Hello World</H1>

 <P>Hello from my Amazon Web Services site.</P>

 </BODY>

</HTML>

"@

Write-S3Object -BucketName 'www.pwsh-book-exercises.com' -Key 'index.htm'

-Content $Content -ContentType 'text/html' -PublicReadOnly

Next, we need to create an error page. This page will be displayed whenever an error occurs.

once again, remember the content type and public read-only flag.

$Content = @"

<HTML>

 <HEAD>

 <TITLE>Oops</TITLE>

 </HEAD>

 <BODY>

 <H1>Oops</H1>

 <P>Something seems to have gone wrong.</P>

 </BODY>

</HTML>

"@

Write-S3Object -BucketName 'www.pwsh-book-exercises.com' -Key 'error.htm'

-Content $Content -ContentType 'text/html' -PublicReadOnly

Now that our bucket is all set up, we can enable the Website feature. Write- S3BucketWebsite

allows us to identify the default and error documents in the site. The default document will be

shown if the user requests http://aws.brainbeach.com without including the path to a

document. The error page will be displayed whenever something goes wrong.

ChapTer 11 SImple STorage ServICe

http://aws.brainbeach.com

295

Write-S3BucketWebsite -BucketName 'www.pwsh-book-exercises.com'

-WebsiteConfiguration_IndexDocumentSuffix 'index.htm' -WebsiteConfiguration_

ErrorDocument 'error.htm'

You’re almost there. at this point the site is up and running on the Url http://BUCKET.

s3-website-REGION.amazonaws.com. For example, my site is running on www.pwsh-

book- exercises.com.s3-website-us-east-1.amazonaws.com. You can create a

DNS CName from pwsh-book-exercises.com to www.pwsh-book-exercises.com.s3-

website- us-east-1.amazonaws.com, and S3 will begin to respond to the vanity Url. The

process will depend on your provider.

once the CName is done, we can test:

• If you navigate to www.pwsh-book-exercises.com/index.htm, you should

see the welcome page we uploaded.

• If you navigate to www.pwsh-book-exercises.com, you should again see

the welcome page.

• If you navigate to www.pwsh-book-exercises.com/DoesNotExist, you

should see our custom error page.

as you can see, S3 is a reliable and inexpensive way to host a static web site. In the next

exercise, we will use pre-signed Urls to grant temporary access to a customer without

requiring them to log in.

EXERCISE 11.2: USING PRE-SIGNED URLS

at the beginning of this chapter, we discussed enabling anonymous access to a bucket, and

I mentioned there is a better way: pre-signed Urls. This is a really simple command to use

and does not warrant an exercise of its own, but it is a great opportunity to describe how aWS

authentication works using access keys.

Imagine that you run a help desk and you often need to make tools and patches available

to customers. You want these tools available only to customers who call the help desk.

Furthermore, customers should not be able to download the tools later or share the link with

friends. You could create a username and password for the user, but then you have to manage

another user. This is a great use case for a pre-signed Url.

ChapTer 11 SImple STorage ServICe

http://bucket.s3-website-region.amazonaws.com
http://bucket.s3-website-region.amazonaws.com
http://www.pwsh-book-exercises.com.s3-website-us-east-1.amazonaws.com
http://www.pwsh-book-exercises.com.s3-website-us-east-1.amazonaws.com
http://www.pwsh-book-exercises.com.s3-website-us-east-1.amazonaws.com
http://www.pwsh-book-exercises.com.s3-website-us-east-1.amazonaws.com
http://www.pwsh-book-exercises.com/index.htm
http://www.pwsh-book-exercises.com
http://www.pwsh-book-exercises.com/DoesNotExist

296

a pre-signed Url has been signed with a secret key. In addition, the Url includes an

expiration date, after which it can no longer be used. Note that the Url has been signed with

the secret key, but does not include the secret key. This allows aWS to prove the authenticity

of the Url without exposing the secret key to the customer.

In fact, this is how all aWS web service calls work. Your secret key is never sent to

aWS. Whenever we use a powerShell method, powerShell creates the request and includes a

digital signature to prove that the user knows the secret.

let’s get back to the help desk. You want to create a pre-signed Url. powerShell has a

command for this called Get-S3PresignedURL. You need to pass in your access key and

secret key as well as the hTTp verb, bucket, key, and expiration date.

Note You should use StoredCredentials rather than passing the access keys
explicitly. (See Chapter 2 for details.) I am including them here only to help explain
how the encryption works.

#Authentication Keys

$AccessKey = 'AKIAJ5N3RMX5LGUMP6FQ'

$SecretKey = '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'

#Web Query

$Verb = "GET"

$ExpirationDate = [DateTime]::Parse('2019-01-01')

$Bucket = 'pwsh-book-exercises'

$Key = 'HelloWorld.txt'

Get-S3PreSignedURL -Verb $Verb -Expires $ExpirationDate -Bucket $Bucket -Key

$Key -AccessKey $AccessKey -SecretKey $SecretKey

The preceding code will return the following Url, which you can share with your customer.

Notice that the Url includes the access key and expiration date we supplied. The expiration

date has been converted to seconds from January 1, 1970. In addition, the Url incudes a

signature created by the powerShell command. also notice that your secret key is not included

in the Url.

ChapTer 11 SImple STorage ServICe

297

https://s3.amazonaws.com/MyBucket/MyPath/MyFile.txt?AWSAccessKeyId=

AKIAIQPQNCQG3EYO6LIA&Expires=1388552400&Signature=wBUgYztEdlE%2Btw9argXicUKv

ftw%3D

You can share this Url with your customer and they can download a single file. They do not

have the secret key and therefore cannot use it for anything else. In addition, aWS will refuse it

after the expiration date. If the customer changes anything in the Url, he or she will invalidate

the signature and aWS will refuse it. What a simple solution to a difficult problem.

While the Get-PreSignedURL method is really simple to use, this is a great opportunity to

see how aWS signatures work. let’s write our own code to create a signature so we better

understand how it works. If you’re not interested, feel free to skip the rest of this example, but

remember the Get-S3PreSignedURL method.

First, we will accept the same parameters as the Get-PreSignedURL command. my method

only works for geT requests, but you could easily add support for other hTTp verbs.

Param

(

 [string][parameter(mandatory=$true)]$AccessKey,

 [string][parameter(mandatory=$true)]$SecretKey,

 [string][parameter(mandatory=$false)]$Verb = 'GET',

 [DateTime][parameter(mandatory=$true)]$Expires,

 [string][parameter(mandatory=$true)]$Bucket,

 [string][parameter(mandatory=$true)]$Key

)

Next, we must calculate the expiration. remember that the expiration is expressed in seconds

since January 1, 1970. also note that I am converting the time to UTC because the aWS

servers may be in a different time zone than our client.

$EpochTime = [DateTime]::Parse('1970-01-01')

$ExpiresSeconds = ($Expires.ToUniversalTime() - $EpochTime).TotalSeconds

Then, we need to canonicalize the input parameters to be signed. Before we can sign the data,

we must agree on how the data will be formatted. If both sides don’t agree on a common

format, the signatures will not match. This process is called canonicalization.

ChapTer 11 SImple STorage ServICe

298

For aWS, we include the following data separated by a newline character:

• hTTp verb

• mD5 hash of the content

• Content type

• expiration date

• optional hTTp headers

• Url-encoded path

In our case, we are only supporting geT; therefore, the content and content type will always be

blank. In addition, I am not supporting any hTTp headers.

$Path = [Amazon.S3.Util.AmazonS3Util]::UrlEncode("/$Bucket/$Key", $true)

$Data = "$Verb`n`n`n$ExpiresSeconds`n$Path"

Now that we have the canonicalized data, we can use the .Net crypto libraries to sign it with

our secret key. here I am using the Sha1 algorithm to generate the signature. Note that you

must be very careful with how data is encoded. The secret key must be UTF8 encoded, and

the resulting signature must be Url encoded.

$HMAC = New-Object System.Security.Cryptography.HMACSHA1

$HMAC.key = [System.Text.Encoding]::UTF8.GetBytes($SecretKey);

$signature = $HMAC.ComputeHash(

 [System.Text.Encoding]::UTF8.GetBytes($Data.ToCharArray()))

$signature_encoded = [Amazon.S3.Util.AmazonS3Util]::UrlEncode(

 [System.Convert]::ToBase64String($signature), $true)

Finally, we can build the Url. The result should be identical to what get- preSignedUrl

returned earlier.

"https://s3.amazonaws.com/$Bucket/$Key" + "?AWSAccessKeyId=$AccessKey&Expires=

$ExpiresSeconds&Signature=$signature_encoded"

That may have been a bit more than you wanted to know, but now that you know how to sign

a request, you can call the S3 web service methods directly in any language.

ChapTer 11 SImple STorage ServICe

299

 Summary
In this chapter, we reviewed Simple Storage Service (S3). S3 allows you to store a

seemingly limitless number of objects in the cloud. We learned to create and manage

buckets and folders, and we learned to upload and download objects.

We learned how versioning can be used to store multiple versions of a document as it

changes over time. We also learned to use life-cycle policies to create retention rules and

how to use Glacier cold storage to reduce costs for long-term storage.

In the exercises, we created a static web site hosted entirely in S3 and then learned

to create a pre-signed URL that can be shared without needing AWS credentials. We also

learned how AWS uses digital signatures in authentication. In the next chapter, we will

learn how to use PowerShell to automate Identity and Access Management.

ChapTer 11 SImple STorage ServICe

301
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_12

CHAPTER 12

AWS Directory Service
In this chapter, we will cover the AWS Directory Service, which is a highly scalable and

managed multi-directory store; it can be used for authentication and Single Sign-On

services. As mentioned, there are multiple directories supported by AWS Directory

Service, each one helping solve a unique business problem, including authentication

services for traditional applications, support for SaaS application developers, and

cloud applications with complex authentication relationships. The directories available

include Amazon Cloud Directory, AD Connector, Amazon Cognito, Simple AD, and

Microsoft AD. As one can imagine, each of these directories has enough depth, nuance,

and complexity to warrant a dedicated chapter in this book. However, in this section we

will focus on the services that are most frequently used with Microsoft Workloads and

managed with PowerShell; these are Microsoft AD, AD Connector, and Simple AD.

In this section we will guide you choose the right directory for your use case, as well

as provide you with step-by-step instructions on how to get started with authentication

and federation using these directories. The exercises at the end of the chapter will spend

time deploying, configuring, and securing Microsoft AD, AD Connector, and Simple AD.

 Selecting the Right Directory
As previously mentioned, AWS Directory Service has different options and selecting

the right directory for your specific use case and business need is very important,

as the wrong choice can result in compatibility problems or expensive rework. To help

you make the right choice for your project or workload, we will review specifics of

each directory.

302

 AWS Directory Service for Microsoft Active Directory
AWS Directory Service for Microsoft Active Directory is a managed service that leverages

an actual Microsoft Windows Server Active Directory (AD) infrastructure (Windows

Server 2012 R2). As it does on premises, Managed Microsoft AD plays a critical role

for Active Directory-aware applications in the AWS Cloud. Some of these applications

include Microsoft SQL Server, Microsoft SharePoint, as well as a myriad of .NET

applications. AWS Directory Service for Microsoft Active Directory, also known as

Managed Microsoft AD, provides directory services for other AWS applications including

Amazon WorkSpaces, Amazon QuickSight, and services such as RDS for SQL Server,

Amazon Connect, and Amazon Chime.

If there is a requirement to have Active Directory- or LDAP-based directory services

for a workload, AWS Managed Microsoft AD tends to be the right choice. There are

additional benefits to using this directory option, including US Health Insurance

Portability and Accountability Act (HIPAA) and Payment Card Industry Data Security

Standard (PCI DSS) compliance eligibility, ability to extend the Active Directory schema,

support for Secure LDAP access to the directory, AWS Single Sign-On, and Multi-Factor

(MFA) authentication.

 AD Connector
The AD Connector is a proxy service that provides on-premises based Active Directory

users, access to AWS Enterprise applications, including QuickSight, WorkSpaces,

WorkDocs, WorkMail, and Chime. Additionally, the service can also be used to provide

seamless domain join to EC2 instances located in your VPC, with requirements being

appropriate network connections and a service account to connect to the on-premises

domain.

There are additional benefits the AD Connector can provide customers, including

the ability to provide Multi-Factor Authentication (MFA) using an existing RADIUS

implementation, provide AWS Console access using on-premises credentials, and also

continue to leverage your existing domain’s security policies, such as password policies.

Chapter 12 aWS DireCtory ServiCe

303

 Simple AD
Simple AD is a fully Managed Microsoft Active Directory compatible directory, which

is powered by Samba 4 and provides the ability to use Active Directory features such as

users and groups, machine domain join for both Windows and Linux, group policies,

LDAP access, and Kerberos-based authentication.

If your use case is to provide your users authentication service to access AWS

applications, including Amazon WorkSpaces, Amazon WorkDocs, Amazon QuickSight,

and Amazon WorkMail, and perhaps Simple Active Directory functionality, then Simple

AD may be the right choice, especially if you’re price conscious. Currently, the cost for

running a Small deployment of Simple AD is about half of what it costs to run a Standard

Edition deployment of Managed Microsoft AD.

 Managed Microsoft AD Architecture
Managed Microsoft AD is designed for high availability and is deployed in at least two

subnets, in two different availability zones (AZs). At deployment time, the subnets can be

explicitly selected or the service can randomly select two subnets. These subnets will be

used to host two domain controllers (DCs), each of which will receive an IP address from

the subnets specified. Once the directory is created, for greater resiliency, additional DCs

can be added to either new or existing availability zones.

The aforementioned subnets can either be part of an existing VPC or a new

VPC; VPC must use default hardware tenancy. In addition to a VPC, there is also a

requirement to create a security group, which will allow the DCs to communicate with

each other. The security group will be automatically created and attached to Managed

Microsoft AD during directory creation. Let’s begin by configuring the VPC.

 Prerequisites
To create a Managed Microsoft AD directory, there are some prerequisites that must be

considered:

• AWS created security group.

• Default tenancy is required for the VPC hosting Managed Microsoft AD.

Chapter 12 aWS DireCtory ServiCe

304

• Directory cannot be created in a VPC using network address range

198.19.0.0/16.

• Network Address Translation with Active Directory is not supported.

 Creating a VPC
To create a Managed Microsoft AD directory, we must first configure a VPC to host the

domain controllers in separate subnets. Alternatively, these subnets can be placed in

existing VPCs (e.g., the VPC created in Chapter 5). For demonstration purposes, we will

create a new VPC in the 192.168.0.0 private IP range.

The following line will create a new VPC and store the details in a variable:

$VPC = New-EC2Vpc -CidrBlock '192.168.0.0/16'

We will continue by creating two subnets in the newly created VPC. For resiliency,

these subnets will be in two separate AZs, which is a requirement for the service.

(If necessary, review Chapter 5, as we have done this before.)

 Creating Private Subnets
The first two variables, delimited with a $, will store the details of the newly created

availability zones and will be used when creating the new subnets.

$AvailabilityZone1 = 'us-east-1a'

$AvailabilityZone2 = 'us-east-1b'

$FirstSubnet = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.5.0/24'

-AvailabilityZone $AvailabilityZone1

$SecondSubnet = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock '192.168.6.0/24'

-AvailabilityZone $AvailabilityZone2

 Creating a Managed Microsoft AD Directory
Once the VPC and the subnets are created, we can move onto setting up the Managed

Microsoft AD directory to the subnets.

The following line will create a new domain, with the fully qualified domain name

(FQDN) of corp.example.com, a NetBIOS name of CORP, a short description, with the

networking settings to use the subnets previously created.

Chapter 12 aWS DireCtory ServiCe

305

New-DSMicrosoftAD -Name corp.example.com –ShortName corp –Password

'password' -Edition Standard –Description "Managed Microsoft AD"

-VpcSettings_VpcId $VPC.VpcID VpcSettings_SubnetId $FirstSubnet.SubnetId,

$SecondSubnet.SubnetId

Note Never use “password” as a password. please choose something complex
and difficult to guess.

The previous command includes the minimum set of the parameters required to set

up a Managed Microsoft AD directory into a VPC. These commands are

• New-DSMicrosoftAD creates the directory.

• Name is the fully qualified domain name used for the directory

created, which can be accessed within the VPC.

• ShortName is the NetBIOS name and will also be the name of the

delegated OU created for your directory.

• Description is the freeform text used to identify the directory.

• Password is the password used for the Admin account, which is the

delegated administrator account used to manage the directory.

• Edition is used to set the edition for the directory, either Standard

or Enterprise. The Standard Edition is recommended for small

and medium size organizations with an estimated 5000 users or

30,000 directory objects. The Enterprise Edition is targeted for large

enterprises and can support up to 100,000 users or 500,000 objects.

• VpcSettings_VpcId is used to identify the VPC where the directory

will be set up.

• VpcSettings_SubnetId is used to specify the two subnets where

the domain controllers will be deployed. The subnets must be in

two separate availability zones, which are used to provide high

availability for the service. Once the directory is set up, additional

domain controllers can be provisioned for greater resiliency.

Chapter 12 aWS DireCtory ServiCe

306

 Creating Public Subnet
To manage the new Managed Microsoft AD directory, we will need to set up a

public subnet and a Remote Desktop Gateway (RDGW), the latter will serve as an

administration workstation.

The first step will be to create a new subnet, which will be public.

$AvailabilityZone3 = 'us-east-1c'

$PublicSubnet = New-EC2Subnet -VpcId $VPC.VpcId -CidrBlock

'192.168.100.0/24'-AvailabilityZone $AvailabilityZone3

 Creating Internet Gateway
Once the subnet has been created, the next step is to create an Internet gateway and

associating it with the previously created VPC.

The following script will create an Internet gateway and attaching it with the VPC

previously created.

$InternetGateway = New-EC2InternetGateway

Add-EC2InternetGateway -InternetGatewayId $InternetGateway.

InternetGatewayId -VpcId $VPC.VpcID

After the Internet gateway is attached to the VPC, we must make sure the local traffic

stays local and traffic intended for the Internet is routed to the Internet gateway as a

default route.

 Configuring VPC Routing
The next script will create a new routing table, associate it with the VPC we have been

working with, and set the default route to use the Internet gateway.

$Route = New-EC2RouteTable -VpcId $VPC.VpcID

Register-EC2RouteTable -RouteTableId $Route.RouteTableId -SubnetId

$PublicSubnet.SubnetId

New-EC2Route -RouteTableId $Route.RouteTableId -DestinationCidrBlock

'0.0.0.0/0' -GatewayId $InternetGateway.InternetGatewayId

Chapter 12 aWS DireCtory ServiCe

307

 Configuring DNS Hostname Name Resolution
Next, to have DNS name resolution, we will enable DNS Hostnames for the VPC.

Edit-EC2VpcAttribute -VpcId $VPC.VpcId -EnableDnsHostnames $true

 Creating Management Workstation
In order for administrators to connect to the administration workstation (i.e., RDGW),

we must make sure there is a security group in place before the management instance is

deployed. To create the security group with the appropriate inbound rules, we will run

the following commands.

Note it is recommended the inbound ip ranges are more restrictive than in the
example provided.

The script that follows will create a security group to allow inbound Remote Desktop

connections via port TCP 3389 to the management workstation.

$SecurityGroup = New-EC2SecurityGroup -GroupName RDGW -Description "Remote

Desktop access from Internet" -VpcId $VPC.VpcID

$RDPRule = New-Object Amazon.EC2.Model.IpPermission

$RDPRule.IpProtocol='tcp'

$RDPRule.FromPort = 3389

$RDPRule.ToPort = 3389

$RDPRule.IpRanges = '0.0.0.0/0'

Grant-EC2SecurityGroupIngress -GroupId $SecurityGroup -IpPermissions $RDPRule

Once the security group rules are set up, the remote desktop instance can be

deployed; we will use the latest version of the Windows Server 2016 Base image

(ami- 2d360152).

With the following line, we will deploy an EC2 Instance, granting it a public IP

address and associating the security group we just created to it.

$RDPInstance = New-EC2Instance -ImageId ami-2d360152 -MinCount 1 -MaxCount

1 -KeyName 'key' -AssociatePublicIp $true -SecurityGroupId $SecurityGroup

-InstanceType t2.medium -SubnetId $PublicSubnet.SubnetId

Chapter 12 aWS DireCtory ServiCe

308

 Configuring Management Workstation
Once the management instance is deployed, in order to connect to it, we will get the IP

address and password of the instance from the AWS Console. See Figures 12-1 and 12-2.

Once we get the Public DNS name of the administration instance, as shown in

Figure 12-1, we will right-click the instance and use the Connection information to

connect to it using the Remote Desktop client. See Figure 12-3.

Figure 12-1. Running EC2 Instance from within the EC2 Console

Figure 12-2. Connection information for accessing the EC2 Instance

Chapter 12 aWS DireCtory ServiCe

309

 Joining EC2 Instance to the Domain
Once connected, we will change the DNS settings of the administration instance to

point to the Managed Microsoft AD’s domain controller’s IP addresses. In order to do

this, we can either go to the AWS Console (Figure 12-4) to get the information or run the

command shown in the next section (i.e. Add-Computer -Credential CORP\admin

-DomainName corp.example.com -Restart):

Figure 12-3. Example of the Remote Desktop connection client

Figure 12-4. Managed Microsoft AD details from the Directory Service Console

The line that follows will provide details of the Active Directory domain we will use in

the chapter. We will first get the details of our domain and input them into the $Directory

variable (Figure 12-5). Then, we will output the details of the variable.

$Directory = Get-DSDirectory -DirectoryID d-906711f2bb

Chapter 12 aWS DireCtory ServiCe

310

Once connected to the management workstation/administration instance, we will

need to ensure we configure the machine to use the right network interface card to join

the domain. To set the IP address on the administration instance, we will need to identify

the network interface that will get the DNS servers setting.

The next command will locate the active Ethernet network interface on the server.

Get-NetIPAddress | Where-Object {$_.InterfaceIndex -eq 3}

If the command does not yield any results, run the command without the filter (e.g.,

{$_.InterfaceIndex -eq 3}) and locate the active network interface on the public subnet.

See Figure 12-6.

Get-NetIPAddress

Figure 12-5. Active Directory domain details

The IP addresses of the domain controllers will be listed in the DNsIPAddrs section

of the output.

Chapter 12 aWS DireCtory ServiCe

311

Once the network interface has been located, run the following command:

Set-DnsClientServerAddress -InterfaceAlias "Ethernet 2" -ServerAddresses

192.168.5.33, 192.168.6.181

Alternatively, the changes can be made by right-clicking Start and selecting Network

Connections and setting the DNS server settings manually. Additional information can

be found in the “Manually Join a Windows Instance” documentation page https://

docs.aws.amazon.com/directoryservice/latest/admin-guide/join_windows_

instance.html. See Figure 12-7.

Figure 12-6. Depicts Ethernet network card needed to be configured

Chapter 12 aWS DireCtory ServiCe

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/join_windows_instance.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/join_windows_instance.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/join_windows_instance.html

312

Once the DNS settings have been updated, we will use the following command to

join the administration instance to the CORP domain.

Add-Computer -Credential CORP\admin -DomainName corp.example.com -Restart

When prompted, type the appropriate password and click the OK button (Figure 12- 8).

At this point, the instance will reboot as part of the domain join process.

Figure 12-7. Example of how to configure DNS manually

Chapter 12 aWS DireCtory ServiCe

313

 Install AD Tools
Once restarted, reconnect using the Remote Desktop client with the CORP\admin

account. At this point, we will install the required AD administration tools to manage the

directory. To do this, run the following command.

The command installs the Active Directory Windows Server Administration Tools.

Add-WindowsFeature RSAT-AD-Tools

Once the AD Tools are fully installed, go to Start/Run and type DSA.MSC. See

Figure 12-9. This will open the Active Directory Users and Computes Snap-In, which can

be used to manage the resources in the domain, including user and computer objects

and so on. See Figure 12-10.

Figure 12-8. Authentication prompt required to join Corp domain

Chapter 12 aWS DireCtory ServiCe

314

Additional information can be found in the “Installing the Active Directory

Administration Tools” documentation page https://docs.aws.amazon.com/

directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html.

Figure 12-9. Launching Active Directory Users and Computers Management Console

Figure 12-10. Corp domain depicted via Active Directory Users and Computers
Management Console

Chapter 12 aWS DireCtory ServiCe

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html

315

 Delegation Model
Because Managed Microsoft AD is a managed service, with a similar delegation model

to RDS, customers don’t get Domain or Enterprise Administrator access to the directory;

therefore, we need to acknowledge some key details about the directory configuration.

Creating a Managed Microsoft AD Domain will result in the creation of a delegated

Organizational Unit (OU), with the NetBios name that was specified during domain creation.

For example, in our case the NetBios name was CORP. Under the delegated OU, there are a

couple of other OUs, which are intended for computers and users. See Figure 12-11.

Along with the deleted OU, there are a set of security groups created to delegate

privileges for the routine operational tasks and activities, required to manage domain

resources for an organization. Some of these operational tasks include resetting

password and unlocking accounts, joining machines to a domain, managing and

configuring domain services such as DNS and DHCP, and deploying and administering

licensing and certificate services. For a complete list of delegation security groups and

their description, visit the “What Gets Created” documentation page https://docs.aws.

amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started_what_

gets_created.html.

Figure 12-11. Delegation security groups for the domain we created

Chapter 12 aWS DireCtory ServiCe

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started_what_gets_created.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started_what_gets_created.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_getting_started_what_gets_created.html

316

As part of providing support services, AWS retains ownership of an OU called AWS

Reserved. In this OU resides the administrator account, as well as security groups

designated for support purposes; these include the AWSAdministrators and AWS

Application and Service Delegated Group security groups. See Figure 12-12.

Figure 12-12. View of Active Directory domain created

 Add Additional Domain Controller
One of the common tasks for Managed Microsoft AD administrators is to add additional

domain controllers to the domain for additional resiliency and performance. In this

section, we will increase the number of domain controllers in the domain.

The following script will add an additional domain controller to the previously

deployed directory.

Set-DSDomainControllerCount -DesiredNumber 3 -DirectoryID $Directory.

DirectoryId

Chapter 12 aWS DireCtory ServiCe

317

The list as follows explains in detail the command shown earlier:

• Set-DSDomainControllerCount specifies the action that the

command will execute, in this case is either add or remove domain

controllers to the directory.

• DesiredNumber specified the number of desired domain controllers

in the directory.

• DirectoryId identifies the directory that will get the additional

domain controllers, or removal of DCs if appropriate.

Once the command is run, we can verify the number of domain controllers via the

AWS Directory Service Console. See Figure 12-13. The “How to Increase the Redundancy

and Performance of Your AWS Directory Service for Microsoft AD Directory by

Adding Domain Controllers” blog is highly recommended for additional information

(https://aws.amazon.com/blogs/security/how-to-increase-the-redundancy-and-

performance-of-your-aws-directory-service-for-microsoft-ad-directory-by-

adding-domain-controllers/).

Figure 12-13. List of additional domain controller being created

 Create a Snapshot
Once the directory is operational, it is critical to make sure that backups are regularly taken.

The following command will create a manual snapshot of the directory. There is a limit

of five manual snapshots for the directory; once the limit is reached, one of the snapshots

must be deleted in order to create any others. There are also daily automatic snapshots that

are taken; these are in addition to the manual snapshot limit. Once a directory is deleted,

all snapshots associated with that directory will be deleted and cannot be recovered.

Chapter 12 aWS DireCtory ServiCe

https://aws.amazon.com/blogs/security/how-to-increase-the-redundancy-and-performance-of-your-aws-directory-service-for-microsoft-ad-directory-by-adding-domain-controllers/
https://aws.amazon.com/blogs/security/how-to-increase-the-redundancy-and-performance-of-your-aws-directory-service-for-microsoft-ad-directory-by-adding-domain-controllers/
https://aws.amazon.com/blogs/security/how-to-increase-the-redundancy-and-performance-of-your-aws-directory-service-for-microsoft-ad-directory-by-adding-domain-controllers/

318

The following line creates a manual snapshot of the directory, naming the snapshot

“1stManualSnapshot”. See also Figure 12-14.

New-DSSnapshot -DirectoryId $Directory.DirectoryId -Name 1stManualSnapshot

Figure 12-14. Image of manual snapshot being created

Note Manual snapshots are highly recommended to be taken prior to any major
directory change, such as extending the schema.

 Restore a Snapshot
If you have an issue with the data integrity of your directory, a snapshot can be restored

from either a manual or automatic snapshot.

The line that follows will restore the manual snapshot previously created:

Restore-DSFromSnapshot -SnapshotId s-906560c8e8

Note a snapshot restore does a point-in-time restore of the entire directory,
which means there is risk of data loss. therefore, it is highly recommended that
before a snapshot is restored, a support case is created from the aWS Support
Center to request assistance with restoring the individual object(s) that may be in
question.

Chapter 12 aWS DireCtory ServiCe

319

 Enable Single Sign-On
As previously mentioned in the beginning of the chapter, Managed Microsoft AD can

also be leveraged to provide access to the AWS Enterprise applications. In this section,

we will discuss the way to grant directory users access to WorkDocs using Single Sign-

On; however, one of the requirements is the Creation of an Access URL. Currently, the

process of creating an Access URL can only be via the AWS Console. Once the Access

URL is created, the Single Sign-On can be configured using the commands in the

following sections:

 Creating an Access URL
An Access URL can be created by following the next steps. See also Figure 12-15.

 1. Go to the AWS Directory Service Console and select the

appropriate directory.

 2. Go to the Directory details and select the Application

Management tab.

 3. In the directory alias field, enter the alias appropriate for your

organization. In our case, the one selected is corpex.awsapps.com.

Figure 12-15. Enabling Application access URL

 Enabling Single Sign-On

The following command provides any machine joined to the domain, access to Amazon

WorkDocs, without having to enter credentials separately:

Enable-DSSso -DirectoryId $Directory.DirectoryId -Username admin -Password

'password'

Chapter 12 aWS DireCtory ServiCe

320

 Disabling Single Sign-On

If required, Single Sign-On can be disabled by running the following command:

Disable-DSSso -DirectoryId $Directory.DirectoryId -Username admin -Password

'password'

 Enabling AWS Apps and Services
Once the Access URL has been created, other AWS Apps and Services can be enabled

to integrate with Managed Microsoft AD. Currently, enabling these services can only be

performed via the AWS Console. Detailed documentation for enabling these services

can be found in the Enable Access to AWS Application and Services documentation

page: https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_

manage_apps_services.html.

• Amazon WorkSpaces

• Amazon WorkSpaces Application Manager

• Amazon WorkDocs

• Amazon WorkMail

• Amazon QuickSight

• Amazon Connect

• RDS SQL Server

• AWS Management Console

 Enable Multi-Factor Authentication
Multi-Factor Authentication (MFA) is a mechanism that can be used to increase the

security posture of your Microsoft Managed AD workloads, including Amazon Enterprise

applications, such as WorkDocs, WorkSpaces, QuickSight, and Single Sign-On to the

AWS Console. One of the requirements for enabling MFA is either having an MFA plugin

or a Remote Authentication Dial-In User Service (RADIUS), which can be located either

in your VPC or on-premises. In this scenario, the RADIUS server would authenticate

users via username and one-time passcode. Step-by-step instructions and additional

Chapter 12 aWS DireCtory ServiCe

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_apps_services.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_apps_services.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_apps_services.html

321

information can be found in the “How to Enable Multi-Factor Authentication for AWS

Services by Using AWS Microsoft AD and On-Premises Credentials” blog (https://

aws.amazon.com/blogs/security/how-to-enable-multi-factor-authentication-

for-amazon-workspaces-and-amazon-quicksight-by-using-microsoft-ad-and-on-

premises-credentials/).

The following script will enable RADIUS for your Active Directory domain

previously created:

Enable-DSRadius -DirectoryId $Directory.DirectoryId -RadiusSettings_

AuthenticationProtocol <RadiusAuthenticationProtocol> -RadiusSettings_

DisplayLabel <String> -RadiusSettings_RadiusPort <Int32> -RadiusSettings_

RadiusRetry <Int32> -RadiusSettings_RadiusServer <String[]>

-RadiusSettings_RadiusTimeout <Int32> -RadiusSettings_SharedSecret <String>

-RadiusSettings_UseSameUsername <Boolean> -PassThru <SwitchParameter>

-Force <SwitchParameter>

 Disable Multi-Factor Authentication
The Multi-Factor Authentication server can be removed by running a command to

disable RADIUS from the directory.

Disable-DSRadius -DirectoryId Directory.DirectoryId

 Reset Admin Password
In some cases, there may be a need to change a user’s password, and more importantly

there may be a need to change the Admin password. If necessary, the following

command will reset the password for the Admin password in the working directory:

Reset-DSUserPassword -Username Admin -DirectoryID $Directory.DirectoryId

-NewPassword 'password'

The following list of parameters decomposes the command:

• Reset-DSUserPassword is the action to change the password for any

user in the directory.

• Username specifies the username that will get a new password.

Chapter 12 aWS DireCtory ServiCe

https://aws.amazon.com/blogs/security/how-to-enable-multi-factor-authentication-for-amazon-workspaces-and-amazon-quicksight-by-using-microsoft-ad-and-on-premises-credentials/
https://aws.amazon.com/blogs/security/how-to-enable-multi-factor-authentication-for-amazon-workspaces-and-amazon-quicksight-by-using-microsoft-ad-and-on-premises-credentials/
https://aws.amazon.com/blogs/security/how-to-enable-multi-factor-authentication-for-amazon-workspaces-and-amazon-quicksight-by-using-microsoft-ad-and-on-premises-credentials/
https://aws.amazon.com/blogs/security/how-to-enable-multi-factor-authentication-for-amazon-workspaces-and-amazon-quicksight-by-using-microsoft-ad-and-on-premises-credentials/

322

• DirectoryID identifies the directory where the user is located.

• NewPassword sets new password for the user.

 Create a Trust Relationship
If there is a need for customers to access resources that belonged to the Managed

Microsoft AD using their on-premises credentials, there may be a need to create a

forest trust between Managed Microsoft AD or on-premises directories. The forest trust

grants access of AWS-based resources to users in a remote forest. To create the trust, the

following command can be run to configure the forest trust. The command creates the

forest trust between your Managed Microsoft AD and your on-premises domain.

New-DSTrust -DirectoryId $Directory.DirectoryId -ConditionalForwarderIpAddr

172.16.1.153 -RemoteDomainName onprem.corporate.local -TrustDirection

OneWayOutgoing -TrustPassword ‘password’ -TrustType Forest

There is an extensive list of prerequisites for creating the trust; these include

network connectivity for specific network ports, a user account for creating a trust,

and conditional forwarders to route the authentication requests properly. To get a

complete list of prerequisites, review the “Create a Trust Relationship Between Your AWS

Managed Microsoft AD and Your On-Premises Domain” (https://docs.aws.amazon.

com/directoryservice/latest/admin-guide/ms_ad_tutorial_setup_trust.html)

documentation.

 Approve Trust Relationship
Once the forest trust actions have been put in motion, these must be manually approved

to running using the commands in the following section:

The command that follows approves the trust previously created:

Approve-DSTrust -TrustId <String>

 Remove a Trust Relationship
An existing forest trust can be deleted by running the following command:

Remove-DSTrust -TrustId <String> -DeleteAssociatedConditionalForwarder $true

Chapter 12 aWS DireCtory ServiCe

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_setup_trust.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_setup_trust.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_setup_trust.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_tutorial_setup_trust.html

323

 Deleting the Managed Microsoft AD Directory
Once a Managed Microsoft AD directory is no longer needed, the following command

can be used to delete the directory. This command will eliminate all components of the

directory, including domain objects and domain controllers:

Remove-DSDirectory -DirectoryId $Directory.DirectoryId

 AWS Created Security Group
When a directory is set up, a security group is created to provide communication

between the domain controllers and the client machines in EC2 and RDS. The

description of the security group should read like the following “AWS created security

group for d-xxxxxx directory controllers”. This security group is also associated with the

network interfaces the domain controllers are using to connect to the assigned subnets.

The default ports configured in the security group are the following (subject to change):

• TCP/UDP 53 – DNS

• TCP/UDP 88 – Kerberos authentication

• UDP 123 – NTP

• TCP 135 – RPC

• UDP 137–138 – Netlogon

• TCP 139 – Netlogon

• TCP/UDP 389 – LDAP

• TCP/UDP 445 – SMB

• TCP 636 – LDAPS (LDAP over TLS/SSL)

• TCP 873 – Rsync

• TCP 3268 – Global catalog

• TCP/UDP 1024–65535 – Ephemeral ports for RPC

It is recommended that the default ports of this security group are reviewed and if

necessary adjusted to meet your organization’s security policy.

Chapter 12 aWS DireCtory ServiCe

324

 AD Connector
Another component part of the AWS Directory Service is the AD Connector, which is a

proxy service that can be used to redirect authentication requests to your on-premises

Microsoft Active Directory, eliminating the need to have to extend your directory or

move data to the cloud. The connector is intended to be used with AWS applications

such as Amazon WorkSpaces, Amazon WorkDocs, or Amazon WorkMail. It can also

be used to provide your on-premises users access to the AWS Console, leveraging

existing credentials and user account and password policies. The AD Connector can

also integrate with RADIUS-based Multi-Factor Authentication services to increase the

security posture of your AWS applications. The AD Connector also provides the ability to

perform EC2 Instance seamless domain join, which can programmatically join instances

to the domain during deployment.

Note if you need authentication services for Windows-based applications,
Managed Microsoft active Directory is recommended.

 AD Connector Prerequisites
To deploy the AD Connector, the following prerequisites must be met:

• VPC with at least two subnets, each in a separate availability zone.

• The VPC must be configured in default hardware tenancy.

• Network connectivity between the on-premises site, where Active

Directory is hosted, and the VPC.

• On-premises Active Directory domain must be in Windows Server

2003 functional level or higher.

• Service account on the on-premises domain, with the following

permissions:

• Read users and computers

• Create computer objects

• Join computers to the domain

Chapter 12 aWS DireCtory ServiCe

325

• Firewall policies allowing inbound communication to the

on- premises network, from the VPC, over the following

network ports:

• TCP/UDP 53 – DNS

• TCP/UDP 88 – Kerberos authentication

• TCP/UDP 389 – LDAP

• Kerberos pre-authentication must be enabled.

 Creating AD Connector
To create an AD Connector, we will use the VPC and subnets we used in the “Managed

Microsoft AD” section of this chapter. See Figure 12-16. We will also mimic the on-

premises setup by connecting to the Managed Microsoft AD directory instead of a

domain located in your corporate network.

The command that follows will connect AD Connector to Managed Microsoft AD.

Connect-DSDirectory -Name corp.example.com -Password 'password'

-ConnectSettings_CustomerDnsIp 192.168.5.33,192.168.6.181 -ConnectSettings_

CustomerUserName admin -Description "AD Connector" -ShortName CORP

-Size Small -ConnectSettings_SubnetId subnet-05873b56385adc497, subnet-

098883977cc4701bf -ConnectSettings_VpcId vpc-0e7632d32bdd1ced6

The following are the parameters used in the command just completed:

• Connect-DSDirectory is the action to create a new AD Connector.

• Name corp.example.com is the fully qualified name of the directory

that will be connected to AD Connector.

• Password is the password for the service account used for the AD

Connector.

• ConnectSettings_CustomerDnsIp is for the IP address or addresses

of the domain controllers of the on-premises directory.

• ConnectSettings_CustomerUserName is the name service account

for the AD Connector; it must have the right level of privileges to

access the on-premises domain.

Chapter 12 aWS DireCtory ServiCe

326

• Description is the freeform text description of the AD Connector.

• ShortName is the NetBIOS name of the on-premises directory.

• Size specifies the size of the AD Connector; values can be either

Small or Large.

• ConnectSettings_SubnetId are the subnet IDs to be used with the

AD Connector. Two subnets in separate availability zones must be

specified.

• ConnectSettings_VpcId is the name of the VPC that is hosting the

preceding two subnets listed.

 Deleting AD Connector
If you no longer need the AD Connector or if you are moving to using Managed Microsoft

AD, then the directory can be removed. In order to do this, we will run the commands in

the next section:

Because we didn’t store the newly created AD Connector into a variable, what we

will do is add the directory object into a variable. To do this, we will run the following

command:

$ADConnector = Get-DSDirectory | where-object {($_.Type -like '*Connector

*')}

Once we have the $ADConnector variable storing the right object, then we well run the

following command to permanently remove the AD Connector from your AWS account:

Remove-DSDirectory -DirectoryId $ADConnector.DirectoryId

Figure 12-16. AD Connector being created

Chapter 12 aWS DireCtory ServiCe

327

 Simple AD
Simple AD is a managed directory, which is an Active Directory (AD)-compatible

service, and allows for many applications and workloads that require AD to use Simple

AD in place of full-blown Active Directory. Examples of these applications include AWS

applications, such as Amazon WorkSpaces, Amazon WorkDocs, and Amazon WorkMail.

As part of the managed offering, Simple AD provides backup and recovery services,

with daily automated snapshots, with point-in-time recovery. High availability,

monitoring, and maintenance are also included as part of the managed service.

 Creating Simple AD
To launch and manage a new Simple AD directory, we will follow the networking

requirements outlined in the “Microsoft AD” section. This includes creating the VPC,

subnets, routing configuration, and the management workstation.

 Prerequisites
As with the two other directory offerings, Simple AD requires that you have a VPC

with multiple subnets, each associated with a separate availability zone for resiliency.

Hardware tenancy for the VPC must also be set to default or shared.

 Creating a VPC
One of the requirements for hosting Simple AD, the same as Microsoft AD and the AD

Connector, is networking. To move forward, what we must do is first create and configure

a VPC with separate subnets and place directory controllers in each one of these subnets,

which should be in different availability zones for high availability. These subnets can also

reside in an existing VPC, such as the VPC created in Chapter 5 or the one created earlier

in this chapter. For completeness, we will create a new VPC in the 10.0.0.0 private IP range.

$SimpleADVpc = New-EC2Vpc -CidrBlock '10.0.0.0/16'

Chapter 12 aWS DireCtory ServiCe

328

We will continue by creating two subnets in the newly created VPC. As it is always

best practice, these subnets should be in separate AZs for resiliency and is a service

requirement.

 Creating Private Subnets
These sets of commands will create two availability zones with two separate subnets.

We will also save the newly created objects into variables we will use in the rest of the

chapter.

$AvailabilityZone1 = 'us-east-1a'

$AvailabilityZone2 = 'us-east-1b'

$FirstSubnet = New-EC2Subnet -VpcId $SimpleADVpc.VpcId -CidrBlock

'10.0.1.0/24' -AvailabilityZone $AvailabilityZone1

$SecondSubnet = New-EC2Subnet -VpcId $SimpleADVpc.VpcId -CidrBlock

'10.0.2.0/24' -AvailabilityZone $AvailabilityZone2

 Creating Public Subnet
To manage the new Managed Microsoft AD directory, we will need to set up a

public subnet and a Remote Desktop Gateway (RDGW), the latter will serve as an

administration workstation.

The first step will be to create a new subnet, which will be public.

$AvailabilityZone3 = 'us-east-1c'

$PublicSubnet = New-EC2Subnet -VpcId $SimpleADVpc.VpcId -CidrBlock

'10.0.0.0/24'-AvailabilityZone $AvailabilityZone3

 Creating Internet Gateway
Once the subnet has been created, the next step is to create an Internet gateway and

associating it with the previously created VPC.

$InternetGateway = New-EC2InternetGateway

Add-EC2InternetGateway -InternetGatewayId $InternetGateway.

InternetGatewayId -VpcId $SimpleADVpc.VpcID

Chapter 12 aWS DireCtory ServiCe

329

 Configuring VPC Routing
After the Internet gateway is attached to the VPC, we must make sure the local traffic

stays local and traffic intended for the Internet is routed to the Internet gateway as a

default route.

The script that follows will create a new route table and add a default route:

$Route = New-EC2RouteTable -VpcId $SimpleADVpc.VpcID

Register-EC2RouteTable -RouteTableId $Route.RouteTableId -SubnetId

$PublicSubnet.SubnetId

New-EC2Route -RouteTableId $Route.RouteTableId -DestinationCidrBlock

'0.0.0.0/0' -GatewayId $InternetGateway.InternetGatewayId

 Configuring DNS Hostname Name Resolution
Next, to have DNS name resolution, we will enable DNS Hostnames for the VPC:

Edit-EC2VpcAttribute -VpcId $SimpleADVpc.VpcId -EnableDnsHostnames $true

 Creating a Simple AD
To create a Simple AD directory, we need to take the various prerequisite components

previously created and use them when running during the directory creation. To do this,

we will execute the following PowerShell command:

$SimpleAD = New-DSDirectory -Name corp.example.com -Password 'password'

-Description "Simple AD" -ShortName CORP -Size Small -VpcSettings_

SubnetId $FirstSubnet.SubnetId,$SecondSubnet.SubnetId -VpcSettings_VpcId

$SimpleADVpc.VpcId

Note Never use “password” as a password. please choose a more complex
password.

Chapter 12 aWS DireCtory ServiCe

330

The previous command includes the minimum set of the parameters required to set

up a Simple AD directory into a VPC. These commands are

• New-DSDirectory creates the directory.

• Name is the fully qualified domain name used for the directory

created, which can be accessed within the VPC.

• ShortName is the NetBIOS name for your directory.

• Description is the freeform text used to identify the directory.

• Password is the password used for the administrator account used to

manage the directory. It is important not to lose this password, as it

cannot be retrieved or reset. If this occurs, you will not be able to add

objects to the directory.

• Size is used to set the edition for the directory, either Small or Large.

The Small is recommended organizations that will have a maximum

of 500 users and 2000 directory objects, including users, groups,

and computers. Large supports up to 5000 users and approximately

20,000 objects.

• VpcSettings_VpcId is used to identify the VPC where the directory

will be set up.

• VpcSettings_SubnetId is used to specify the two subnets where

the domain controllers will be deployed. The subnets must be in

two separate availability zones, which are used to provide high

availability for the service. Once the directory is set up, additional

domain controllers can be provisioned for greater resiliency.

 Creating Management Workstation
To administer Simple AD, we need a management workstation (i.e., RDGW), where

we will have the tools to manage the directory. We will first create the security group

to associate with management workstation. Note: It is recommended the inbound IP

ranges are more restrictive than in the example provided.

Chapter 12 aWS DireCtory ServiCe

331

The script that follows will create security group configure a policy to allow port 3389

(the Remote Desktop Protocol (RDP)) from the Internet to the management workstation:

$SecurityGroup = New-EC2SecurityGroup -GroupName RDGW -Description "Remote

Desktop access from Internet" -VpcId $SimpleADVpc.VpcID

$RDPRule = New-Object Amazon.EC2.Model.IpPermission

$RDPRule.IpProtocol='tcp'

$RDPRule.FromPort = 3389

$RDPRule.ToPort = 3389

$RDPRule.IpRanges = '0.0.0.0/0'

The next command, will allow outbound access from the management

workstation to the world.

Grant-EC2SecurityGroupIngress -GroupId $SecurityGroup -IpPermissions $RDPRule

Once the security group rules are set up, the remote desktop instance can be

deployed; we will use the latest version of the Windows Server 2016 Base image

(ami- 2d360152).

The command that follows will deploy a new instance using a T2.Medium instance

type and associate the security group we just created it:

$RDPInstance = New-EC2Instance -ImageId ami-2d360152 -MinCount 1 -MaxCount

1 -KeyName 'key' -AssociatePublicIp $true -SecurityGroupId $SecurityGroup

-InstanceType t2.medium -SubnetId $PublicSubnet.SubnetId

 Configuring Management Workstation
Once the management instance is deployed, in order to connect to it, we will get the IP

address and password of the instance from the EC2 Console, where we will right-click

the instance we just created and select Get Windows Password. See Figure 12-17.

Chapter 12 aWS DireCtory ServiCe

332

Once we get the Public DNS name of the administration instance, we will use the

Remote Desktop client to connect to it. See Figure 12-18.

Figure 12-18. Remote Desktop client view

Figure 12-17. Management workstation connectivity information

Chapter 12 aWS DireCtory ServiCe

333

 Joining EC2 Instance to the Domain
Once connected, we will change the DNS settings of the administration instance to point

to the Simple AD’s domain controller’s IP addresses. See Figure 12-19. To get the DNS IP

addresses, we can either go to the AWS Console or run output the contents of variable

$SimpleAD.

If the variable is empty, you can repopulate it by running the following command:

$SimpleAD = Get-DSDirectory -DirectoryId d-906710bc74

The IP addresses of the domain controllers will be listed in the DnsIPAddrs section

of the output, as shown in Figure 12-19.

To change the DNS settings on the management workstation, we will need to identify

the network interface that will get DNS servers setting. To get the specific network

address, we will run the following set of commands:

The next command will locate the active Ethernet network interface on the server:

Get-NetIPAddress | Where-Object {$_.InterfaceIndex -eq 3}

If the command does not yield any results, run the command without the filter and

locate the active network interface on the public subnet.

Get-NetIPAddress

Figure 12-19. DNS IP address details

Chapter 12 aWS DireCtory ServiCe

334

Once the network interface has been located, run the following command to set the

DNS servers to the Simple AD authentication servers:

Set-DnsClientServerAddress -InterfaceAlias "Ethernet" -ServerAddresses

10.0.1.44, 10.0.2.248

Alternatively, the changes can be made by right-clicking Start and selecting Network

Connections and setting the DNS server settings manually. See Figure 12-20. Additional

information can be found in the “Manually Join a Windows Instance” documentation

page (https://docs.aws.amazon.com/directoryservice/latest/admin-guide/join_

windows_instance.html).

Figure 12-20. DNS server configuration

Chapter 12 aWS DireCtory ServiCe

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/join_windows_instance.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/join_windows_instance.html

335

Once the DNS settings have been updated, we will use the following command to

join the management workstation/administration instance to the CORP domain:

Add-Computer -Credential CORP\administrator -DomainName corp.example.com

-Restart

When prompted, type the appropriate password and click the OK button. See

Figure 12-21. At this point, the instance will reboot as part of the domain join process.

You can use this same process to join additional machines to the domain.

 Install AD Tools
Once restarted, reconnect using the Remote Desktop client with the CORP\

administrator account. We will then need to install the required AD administration tools

to manage the directory. To do this, run the following command. The command will

install the Active Directory Users and Computers Management Console.

Add-WindowsFeature RSAT-AD-Tools

Once the AD Tools are fully installed, go to Start/Run and DSA.MSC. This will open

the Active Directory Users and Computes Snap-In, which can be used to manage the

resources in the domain, including user and computer objects and so on. See Figure 12- 22.

Figure 12-21. Authentication prompt

Chapter 12 aWS DireCtory ServiCe

336

Additional information can be found in the “Installing the Active Directory

Administration Tools” documentation page (https://docs.aws.amazon.com/

directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html).

 AWSAdminD-xxxxxxx
When the Simple AD directory is created, there will be an administrator account created,

used by the service to perform various automated maintenance operations. This account

should not be disturbed, as it may impact service availability. See Figure 12-23.

Figure 12-22. Active Directory Users and Computers Snap-In

Chapter 12 aWS DireCtory ServiCe

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_install_ad_tools.html

337

 Create a Snapshot
As with Managed Microsoft AD, backups are critical to ensure there is an ability to

recover from human error or any other unexpected event. The following command will

create a manual snapshot of the directory. There is a limit of five manual snapshots for

the directory; once the limit is reached, one of the snapshots must be deleted in order

to create any others. There are also daily automatic snapshots that are taken, which

are in addition to the manual snapshot limit. Once a directory is deleted, all snapshots

associated with that directory will be deleted and cannot be recovered.

The command that follows will create a manual snapshot of the recently created

Simple AD directory. Also see Figure 12-24.

New-DSSnapshot -DirectoryId $SimpleAD.DirectoryId -Name 1stManualSnapshot

Figure 12-23. AWSAdminD-XXXXX account

Chapter 12 aWS DireCtory ServiCe

338

Note Manual snapshots are highly recommended to be taken prior to any major
directory change.

 Restore a Snapshot
If you have an issue with the data integrity of your directory, a snapshot can be restored

from either a manual or automatic snapshot.

The command that follows will restore the directory from a snapshot:

Restore-DSFromSnapshot -SnapshotId s-90655b5c66

Note a snapshot restore does a point-in-time restore of the entire directory,
which means there is risk of data loss.

 Enable Single Sign-On
As with Managed Microsoft AD, Simple AD can be used to grant users in your

organizations access to AWS Enterprise applications. In this section, we will configure

your directory’s users access to WorkDocs using Single Sign-On; however, one of the

requirements is the Creation of an Access URL. Currently, the process of creating an

Access URL can only be via the AWS Console. Once the Access URL is created, the Single

Sign-On can be configured using the commands in the following section.

Figure 12-24. View of snapshot being taken

Chapter 12 aWS DireCtory ServiCe

339

 Creating an Access URL
An Access URL can be created by following these steps:

 1. Go to the AWS Directory Service Console and select the

appropriate directory.

 2. Go to the Directory details and select the Application

Management tab.

 3. In the Application access URL, click the Create button

(Figure 12-25).

Figure 12-26. Configuring custom Application access URL

Figure 12-25. Enable Application access URL

 4. When we get the popup, we will enter excorpo.awsapps.com

(Figure 12-26).

Chapter 12 aWS DireCtory ServiCe

340

 5. Once the URL has been created, we will be able to enable Single

Sign-On to AWS applications for the directory (Figure 12-27).

 Enabling Single Sign-On

The following command provides any machine joined to the domain, access to Amazon

WorkDocs, without having to enter credentials separately:

Enable-DSSso -DirectoryId $SimpleAD.DirectoryId -Username administrator

-Password 'passwor'

 Disabling Single Sign-On

If required, Single Sign-On can be disabled by running the following command:

Disable-DSSso -DirectoryId $SimpleAD.DirectoryId -Username administrator

-Password 'password'

 Enabling AWS Apps and Services
Once the Access URL has been created, the following AWS Apps and Services can be

enabled to integrate with Simple AD. Currently, enabling these services can only be

performed via the AWS Console. Detailed documentation for enabling these services

can be found in the Enable Access to AWS Application and Services documentation page

(https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_

manage_apps_services.html).

Figure 12-27. Enabled Application access URL

Chapter 12 aWS DireCtory ServiCe

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_apps_services.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_apps_services.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ms_ad_manage_apps_services.html

341

• Amazon WorkSpaces

• Amazon WorkSpaces Application Manager

• Amazon WorkDocs

• Amazon WorkMail

• Amazon QuickSight

• Amazon Connect

• RDS SQL Server

• AWS Management Console

 Enable Multi-Factor Authentication
Simple AD can also be configured to use Multi-Factor Authentication (MFA). One

of the requirements for enabling MFA is either having an MFA plugin or a Remote

Authentication Dial-In User Service (RADIUS), which can be located either in your

VPC or on-premises. In this scenario, the RADIUS server would authenticate users via

username and one-time passcode. Step-by-step instructions and additional information

can be found in the “How to Enable Multi-Factor Authentication for AWS Services by

Using AWS Microsoft AD and On-Premises Credentials” blog (https://aws.amazon.

com/blogs/security/how-to-enable-multi-factor-authentication-for-amazon-

workspaces-and-amazon-quicksight-by-using-microsoft-ad-and-on-premises-

credentials/).

The command that follows will enable RADIUS for Simple AD; parameters for the

settings used will be specific to the RADIUS solution being used.

Enable-DSRadius -DirectoryId $SimpleAD.DirectoryId -RadiusSettings_

AuthenticationProtocol <RadiusAuthenticationProtocol> -RadiusSettings_

DisplayLabel <String> -RadiusSettings_RadiusPort <Int32> -RadiusSettings_

RadiusRetry <Int32> -RadiusSettings_RadiusServer <String[]> -RadiusSettings_

RadiusTimeout <Int32> -RadiusSettings_SharedSecret <String> -RadiusSettings_

UseSameUsername <Boolean> -PassThru <SwitchParameter> -Force <SwitchParameter>

Chapter 12 aWS DireCtory ServiCe

https://aws.amazon.com/blogs/security/how-to-enable-multi-factor-authentication-for-amazon-workspaces-and-amazon-quicksight-by-using-microsoft-ad-and-on-premises-credentials/
https://aws.amazon.com/blogs/security/how-to-enable-multi-factor-authentication-for-amazon-workspaces-and-amazon-quicksight-by-using-microsoft-ad-and-on-premises-credentials/
https://aws.amazon.com/blogs/security/how-to-enable-multi-factor-authentication-for-amazon-workspaces-and-amazon-quicksight-by-using-microsoft-ad-and-on-premises-credentials/
https://aws.amazon.com/blogs/security/how-to-enable-multi-factor-authentication-for-amazon-workspaces-and-amazon-quicksight-by-using-microsoft-ad-and-on-premises-credentials/

342

 Disable Multi-Factor Authentication
The Multi-Factor Authentication server can be removed by running a command to

disable RADIUS from the directory.

Disable-DSRadius -DirectoryId $SimpleAD.DirectoryId

 Deleting Simple AD Directory
If the directory is no longer needed, it can be removed from your AWS account using the

following PowerShell command. This will permanently delete the entire directory.

Remove-DSDirectory -DirectoryId $Simple.DirectoryId

 AWS Created Security Group
When a directory is set up, a security group is created to provide communication

between the domain controllers and EC2 instances. The description of the security

group should read like the following “AWS created security group for d-xxxxxx directory

controllers”. This security group is also associated with the network interfaces the

domain controllers are using to connect to the assigned subnets. The default ports

configured in the security group are the following (subject to change):

• TCP/UDP 53 – DNS

• TCP/UDP 88 – Kerberos authentication

• UDP 123 – NTP

• TCP 135 – RPC

• UDP 137–138 – Netlogon

• TCP 139 – Netlogon

• TCP/UDP 389 – LDAP

• TCP/UDP 445 – SMB

• TCP 636 – LDAPS (LDAP over TLS/SSL)

• TCP 873 – Rsync

Chapter 12 aWS DireCtory ServiCe

343

• TCP 3268 – Global catalog

• TCP/UDP 1024–65535 – Ephemeral ports for RPC

It is recommended that the default ports of this security group are reviewed and, if

necessary, adjusted to meet your organization’s security policy.

 Application Compatibility
Because Simple AD is running Samba under the covers, it provides the basic features of

Active Directory. If you have a third-party application, which requires advanced Active

Directory features, Simple AD may not be a good fit. It is recommended that thorough

testing is performed to ensure your third-party application will have no issues. Microsoft

services and server applications compatible with Simple AD include IIS, SharePoint, and

SQL Server.

EXERCISE 12.1: CREATE DOMAIN USER IN MICROSOFT AD

in this section, we will install and use the active Directory powerShell module.

to begin, we will go to the management workstation used for managing the Microsoft aD

directory. We will then import the active Directory module, so we can begin our exercise.

open powerShell and run the following command:

Import-Module ActiveDirectory

once successfully imported, we use powerShell to create new domain user and set the title

and e-mail address.

New-ADUser -Name "Bob Smith" -OtherAttributes

@{'title'="CEO";'mail'="bsmith@corp.example.com"}

once the user is created, we will need to enable the user. however, we won’t be able to do

that because the account does not have a password set. We will first set a password for the

aD account.

$NewPassword = (Read-Host -Prompt "Provide New Password" -AsSecureString)

Set-ADAccountPassword -Identity 'Bob Smith' -NewPassword $NewPassword -Reset

Chapter 12 aWS DireCtory ServiCe

344

once the password is set, we can then enable the user in the directory.

Enable-ADAccount -Identity "Bob Smith"

once the user is enabled, it can be used to authenticate to directory resources, assuming the

user has been granted privileges to access those resources.

to get a full understanding of the user attributes that can be set when creating an

account and also the commands used in this exercise, review the following articles on the

Microsoft documentation sites: New-aDUser (https://docs.microsoft.com/en-us/

powershell/module/addsadministration/new-aduser?view=win10- ps),

Set-aDaccountpassword (https://docs.microsoft.com/en-us/powershell/

module/addsadministration/set-adaccountpassword?view=win10-ps), and

enable-aDaccount (https://docs.microsoft.com/en-us/powershell/module/

addsadministration/enable-adaccount?view=win10-ps).

 Summary
In this chapter, we saw how AWS Directory Service can be used to centralize access and

resource management using Managed Microsoft AD, AD Connector, and Simple AD. We

also saw how existing on-premises credential can be used to access resources hosted on

the AWS Cloud.

Throughout the chapter, we created directories, configured multi-factor

authentication, created forest trust between on-premises directories and Managed

Microsoft AD, and finally used the AD Connector and Simple AD to grant on-premises

users access to AWS applications, such as WorkDocs. As we saw, there are multiple

options for access and resource management. It is important to understand how each

one option works and what it was designed to do, so you can select the one that fits your

use case. Of course, you can always mix and match if your use case justifies the need.

Chapter 12 aWS DireCtory ServiCe

https://docs.microsoft.com/en-us/powershell/module/addsadministration/new-aduser?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/addsadministration/new-aduser?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/addsadministration/set-adaccountpassword?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/addsadministration/set-adaccountpassword?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/addsadministration/enable-adaccount?view=win10-ps
https://docs.microsoft.com/en-us/powershell/module/addsadministration/enable-adaccount?view=win10-ps

345
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_13

CHAPTER 13

Amazon WorkSpaces and
Amazon AppStream 2.0
An important area in which cloud can add value to your organization is in End-User

Computing; this is because you are able to quickly and easily provision virtual desktops,

streaming applications, without the need of purchasing expensive hardware and

making a long-term financial commitment. There are two specific End-User Computing

AWS services which we will focus on, Amazon WorkSpaces and Amazon AppStream

2.0. These services provide users access to their documents, applications, and other

resources, from anywhere and anytime, as long as they, users, are on a supported device.

These services both provide a pay-as-you-go model and also give you the flexibility to

always have the resources running or run them when you need them.

Amazon WorkSpaces is a cloud-based virtual desktop service, which offers both

Windows and Linux desktop environments. These virtual desktops can be accessed from

any supported client, downloadable from AWS or your favorite mobile app store. Benefits

of the service include centralized management, repeatability, and flexibility, as well as the

ability to publish or install application packages, with various licensing options.

Amazon AppStream 2.0 is also an End-User Computing service, but unlike Amazon

WorkSpaces, there is no need to deploy a desktop environment to grant your users access

to your applications. The applications can be imported to AWS and published, made

accessible via your favorite HTML5-compatible browser. There are also security benefits

for using AppStream 2.0, because data is not stored on the end-user devices.

 Amazon WorkSpaces Architecture
We will begin with Amazon WorkSpaces by provisioning virtual desktops via PowerShell.

In order to move forward, there are certain things that we need to determine, such as

the region and the operating system to use, Windows or Amazon Linux desktops are

346

available. Once we have selected the right region and operating system, we will need

to determine the right hardware resource configuration, as this will directly impact the

performance of the desktop’s user experience.

Once the user experience configuration options have been identified, the next thing

to determine is whether Simple AD, AD Connector, or AWS Managed Microsoft AD

will be used for authentication and resource management services. Depending on the

directory being used, the configuration and management options may vary.

Figure 13-1 depicts the Amazon WorkSpaces architecture, which outlines the

WorkSpaces architecture and network requirements which use AWS Directory Service

for authentication. If selecting the Quick Setup, which is one of the deployment options,

Simple AD will be deployed. If customization for Managed AD or AD Connector is

needed, then an Advanced Setup configuration is required.

Figure 13-1. WorkSpaces architecture using Managed Microsoft AD

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

347

 Client Requirements
The Amazon WorkSpaces virtual desktop service is accessible via client application that

is available for various supported devices.

Client applications are available for the following devices:

• Windows computers

• Mac computers

• Chromebooks

• iPads

• Android tables

• Fire tables

• Zero client devices

Browser-based access is also available for Windows WorkSpaces, for the following

supported browsers:

• Chrome 53 and later

• Firefox 49 and later

 Managing Amazon WorkSpaces
In order to get started with launching Amazon WorkSpaces, we have to go to the

WorkSpaces console to complete this task. Once the WorkSpaces service has been

deployed, the management of the resources can be performed via PowerShell.

 Basic Setup

The following steps show you how to perform the basic setup:

 1. From the Amazon WorkSpaces Console, click the Get Started Now

link.

 2. Once on the Get Started with Amazon WorkSpaces page, there will

be an option for selecting either a Quick Setup or an Advanced

Setup. See Figure 13-2.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

348

If the Quick Setup is selected, the following tasks will be completed:

 a. IAM role, workspaces_DefaultRole, with permissions to create

Elastic Network Interfaces and also list WorkSpaces directories.

 b. Creates a VPC.

 c. Sets up and configures Simple AD, which will be used to store

user and WorkSpaces resources objects.

 d. A service account will be created to add WorkSpaces to the

directory.

 e. Creates WorkSpace desktop environments with a public IP

address.

 f. Sends e-mail communications to the designated WorkSpaces

users.

On the other hand, if the Advanced Setup is selected, you will

have the flexibility to configure the setup that meets your business

needs, including having the ability to determine whether to use an

AD Connector, a Simple AD, or a Managed Microsoft AD domain,

with or without the use of a Trusted Domain. If the latter option

is selected, then you will need to make sure the VPC, subnets,

and availability zones, as well as the directory components, are

properly configured.

Figure 13-2. Basic or Advanced Setup selection window

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

349

 3. The next thing in the Quick Setup option is to select a Bundle,

as shown in Figure 13- 3, which is a package that is optimized

for a particular use case, and comes with a set of predetermined

resources (e.g., CPU and Memory) and applications (e.g.,

Microsoft Office).

Figure 13-3. Bundle selection window

 4. Once a bundle is selected, the next step will allow you to create an

Amazon WorkSpaces user in the Simple AD directory previously

created, as well as notify the user about the availability of their

WorkSpaces instance. See Figure 13-4.

Figure 13-4. WorkSpaces user assignment form

 5. The last step is to select the Launch WorkSpaces button to launch

the instance.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

350

 Connecting to Your WorkSpaces

Once an e-mail invitation is sent, the user who received the invitation can connect to

their WorkSpace by downloading their preferred client from the link included in the

invitation:

 1. In the invitation e-mail, there will be instructions included to set

up credentials. Follow the instructions to set up your credentials.

 2. Once the credentials have been set up, you will be prompted to

download the client.

 3. After downloading and installing the WorkSpaces client, start it. At

the prompt, enter the registration code included in the e-mail and

select Register.

 4. In the sign-in prompt, enter your username and password, and

click Sign In.

 Advanced Setup

As previously mentioned, the Advanced Setup option offers the flexibility to be explicit

on the networking and directory configurations.

Creating WorkSpaces with Microsoft AD

As you may have guessed, the instructions provided in Chapter 12, AWS Directory Service,

can be used to create a Microsoft AD directory and leveraged with Amazon WorkSpaces:

 1. To create a Microsoft AD, follow the instructions provided in

Chapter 12.

 2. Go to the WorkSpaces Console, and click the Directories link

(Figure 13-5).

Figure 13-5. Directory selection option

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

351

 3. The Directories list should include the list of available directories,

including any directory using Microsoft AD, AD Connector, or

Simple AD. Select the Microsoft AD directory to be used with

WorkSpaces, then click the Actions link, and finally select the

Register.

 4. When prompted, confirm directory registration by selecting

Register (Figure 13-6).

 5. The registration will take a few minutes, wait until the registration

is complete, as shown in Figure 13-7.

Figure 13-6. Directory registration option

Figure 13-7. Directory registration confirmation page

 6. Once the registration is complete, we will be able to launch

WorkSpaces via PowerShell. See the next section for detailed

instructions.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

352

Creating WorkSpaces with AD Connector

The instructions for connecting WorkSpaces to AD Connector were also included in

Chapter 12. However, for completeness, we will also provide the instructions in this

section:

 1. Follow the instructions provided in Chapter 12 to create an AD

Connector.

 2. Go to the WorkSpaces Console, and click the Directories link

(Figure 13-8).

 3. The Directories list should include the list of available directories,

including any directory using Microsoft AD, AD Connector, or

Simple AD. Select the AD Connector to be used with WorkSpaces,

then click the Actions link, and finally select the Register.

 4. When prompted, confirm directory registration by selecting

Register (Figure 13-9).

Figure 13-8. List of directories available to select

Figure 13-9. Register directory page

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

353

 5. The registration will take a few minutes, wait until the registration

is complete. See Figure 13-10.

 6. Once the registration is complete, we will be able to launch

WorkSpaces via PowerShell. See the next section for detailed

instructions.

Launching New WorkSpace

In order to launch a new WorkSpace, we will store required parameters for deploying a

virtual desktop into variables.

The first variable we will store is for the directory object for the active Microsoft AD

directory associated with WorkSpaces.

$WKSManagedAD = Get-WKSWorkspaceDirectory | where-object {($_.DirectoryType

-like 'MicrosoftAD')}

Note If there are multiple microsoft ad directories, it would be recommended
to filter for a directory Id, instead of filtering by a directory type. See the following
example.

$WKSManagedAD_Id = Get-WKSWorkspaceDirectory | where-object
{($_.DirectoryId -eq 'd-XXXXXXX')}

Figure 13-10. Directory registration confirmation page

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

354

The next parameter we will need to store as a variable, in order to deploy

WorkSpaces, is of the WorkSpaces Bundle. As previously mentioned, a Bundle is a

predetermined set of packages that include software and virtual hardware resources

(e.g., Windows 7 and 8GB of Memory).

$WKSBundle = Get-WKSWorkspaceBundle -Owner Amazon | where-object {($_.Name

-eq 'Value with Windows 7')}

Once we have those objects stored in variables, we will use the following command

to create a WorkSpace assigned for the CORP\Bob user, which is a domain user in the

Microsoft AD directory we previously created.

$WorkSpace = New-WKSWorkspace -Workspace @{"BundleID" = $WKSBundle.

BundleId; "DirectoryId" = $WKSManagedAD.DirectoryId; "UserName" = "admin"}

Note Since multiple components need to be created and configured to launch a
WorkSpace (e.g., enI, security groups, etc.), the creation process may take some
time.

If deploying the WorkSpace against AD Connector, the directory information can be

stored with the following command:

$WKSADConnector = Get-WKSWorkspaceDirectory | where-object {($_.

DirectoryType -like 'AD_Connector')}

Managing WorkSpace

Once the WorkSpace is fully launched, we can begin managing it.

As an administrator, there are often times when you need uninterrupted access

to a system, making sure that other users don’t make reboot, start, stop, or rebuild the

system. In these cases, the WorkSpace can be put into an ADMIN_MAINTENANCE

mode, which prevents the execution of API calls that will run the operations listed

previously. See Figure 13-11.

Edit-WKSWorkspaceState -WorkspaceId $Workspace.WorkspaceId -WorkspaceState

ADMIN_MAINTENANCE

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

355

Once the dedicated access to the virtual desktop is no longer required, then with a

simple command, as shown as follows, this can be changed.

Edit-WKSWorkspaceState -WorkspaceId $Workspace.WorkspaceId -WorkspaceState

AVAILABLE

Another example of modifying a workstation is changing the resources associated

with the bundle that was selected during deployment. In this example, the command

provided as follows can be used to change the compute type from its current value to

something that better meets a customer’s business needs.

Note WorkSpace’s properties can’t be changed within 6 hours of creation (i.e.,
21,600 seconds).

Modify Compute Type

The bundle associated with a WorkSpace can be edited by changing the property

associated with that setting. The following example will change the compute type from

Value, which was specified when created, to Standard:

Edit-WKSWorkspaceProperty -WorkspaceId $Workspace.WorkspaceId

-WorkspaceProperties_ComputeTypeName STANDARD

Additional values for the compute type property are the following (Figure 13-12):

• Graphics – Includes 8 vCPUs, 15GiB of Memory, 1 vGPU, 4GiB

of Video Memory, and 100GB of SSD Root Volume and also User

Storage

• Performance – Includes 2 vCPUs, 7.5GiB of Memory, and 175GB of

SSD Root Volume and 100GB of User Storage

Figure 13-11. Viewing the Status change triggered by the previous command

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

356

• Power – Includes 4 vCPUs, 16GiB of Memory, and 80GB of SSD Root

Volume and 100GB of User Storage

• Standard – Includes 2 vCPUs, 4GiB of Memory, and 80GB of SSD

Root Volume and 75GB of User Storage

• Value – Includes 1 vCPU, 2GiB of Memory, and 80GB of SSD Root

Volume and 10GB of User Storage

In addition to being able to edit the compute type attribute, the following attributes

can also be modified:

• WorkspaceProperties_RootVolumeSizeGib – Specifies the size of

the root volume, in Gib

• WorkspaceProperties_RunningMode – Sets the attribute between

ALWAYS_ON and AUTO_STOP

• WorkspaceProperties_RunningModeAutoStopTimeoutInMinute –

Provides the ability to set the auto stop time, in 60 minutes

increments

• WorkspaceProperties_UserVolumeSizeGib – Sets the attribute for

the user volume, in GiB

Figure 13-12. Amazon WorkSpaces Bundles options

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

357

As an additional example, we will change the default running mode of the virtual

desktop we created and change the WorkSpace to auto stop.

Edit-WKSWorkspaceProperty -WorkspaceId $Workspace.WorkspaceId

-WorkspaceProperties_RunningMode AUTO_STOP

To view the current properties of the existing WorkSpaces, the following command

can be fun:

get-wksworkspace | format-list

In most cases, organizations will have more than one WorkSpace; therefore, it is

important to only focus on getting details of the WorkSpaces we care about. In this case,

we will filter on the username property, but we can use any WorkSpace property as a filter.

Get-WKSWorkspace | where-object {($_.UserName -eq 'Bob')} | format-list

Tagging a WorkSpace

Tagging a WorkSpace is something useful and in some cases required for managing

resources effectively. To tag WorkSpaces, we can run the following command to both

create the object with the tag and set the properties to the correct values. Once the object

has the right data, we can run the New-WKSTag cmdlet to set tag(s) for a WorkSpace.

$WKSTag = New-Object Amazon.WorkSpaces.Model.Tag

$WKSTag.Key = "Name"

$WKSTag.Value = "Development"

New-WKSTag -WorkspaceId $Workspace.WorkspaceId -Tag $WKSTag

Typical administrator and end-user tasks are starting, stopping, or restarting a

WorkSpace.

Starting a WorkSpace

To start a WorkSpace, use the following command:

Start-WKSWorkspace -WorkspaceId $Workspace.WorkspaceId

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

358

Stopping a WorkSpace

On the other hand, if a WorkSpace needs to get stopped, the following command can be

used:

Stop-WKSWorkspace -WorkspaceId $Workspace.WorkspaceId

Restarting a WorkSpace

A WorkSpace virtual desktop can also be restarted in a similar fashion. Of course, if

an instance is stopped, it can’t be restarted, so it must be in an available status to be

restarted. When a rebuild is executed, the latest available image of the original bundle

will be used. The user data drive will be restored from a snapshot, which could be as old

as 12 hours. This is because currently the automatic snapshot process takes place every

12 hours.

Restart-WKSWorkspace -WorkspaceId $Workspace.WorkspaceId

Rebuilding a WorkSpace

Another important administration task, especially addressing issues with software or

operating system, is of rebuilding a WorkSpace. This can be accomplished by running

the following command:

Reset-WKSWorkspace -WorkspaceId $Workspace.WorkspaceId

Deleting a WorkSpace

When a WorkSpace is no longer needed, the following command can be run to

completely eliminate the virtual desktop and the associated user’s data:

Remove-WKSWorkspace -WorkspaceId $Workspace.WorkspaceId

Note When a WorkSpace is deleted, all of the user data is destroyed. If data
persistence is required, a backup of the user data must be performed to an
external destination, such as S3.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

359

 Amazon AppStream 2.0
Imagine having the ability to run your enterprise applications, without needing to

download or install any application files to your workstation. With Amazon AppStream

2.0, you have the ability to do just that. The service is a HTML5 compatible and can

stream applications from AWS to any client globally, in a pay-as-you-go model. As

typical with AWS managed services, it can easily scale to offer expected performance

while at the same time eliminating the need to store any user or application files locally,

thus increasing the security posture of your application.

 Amazon AppStream 2.0 Architecture
We must understand the following concepts in order to design, deploy, and manage

AppStream 2.0 for your organization. The options that affect the settings of the

components discussed in this section will determine the behavior of AppStream for

users, so it is important to ensure you have a good handle of these concepts.

• Image – In a similar vein to the way Amazon Machine Images (AMIs)

work, AppStream images contain applications that users can stream.

Customers can choose to use custom images or base images provided

by AWS. Images are region specific, but can be copied across regions.

Also, images can’t be changed once they are created. If changes

are required, a new image needs to be created. To familiarize

yourself with the images available, it is recommended you review

the AppStream 2.0 Base Image Version History documentation

page (https://docs.aws.amazon.com/appstream2/latest/

developerguide/base-image-version-history.html).

• Image Builder – The images described earlier can be created with an

Image Builder, which is a virtual machine used to install and test your

applications.

• Fleet – The instances streaming your application make up a Fleet,

which can either be static or elastic in nature. There is a requirement

to have one user per instance.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

https://docs.aws.amazon.com/appstream2/latest/developerguide/base-image-version-history.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/base-image-version-history.html

360

• Stack – The streaming application makes up the stack, which is

comprised of a fleet, access policies, and storage configurations.

• User Pool – A User Pool is used to manage users and associates

Stacks (i.e., streaming applications) to users.

 Requirements
Amazon AppStream 2.0 has requirements for publishing applications and for accessing

applications that have been published. In this section, we will discuss both sets of

requirements.

 Publishing Requirements

The first set of requirements for publishing applications are networking requirements,

as the streaming instances and Image Builders need to be accessible, and should also be

able to access network resources (e.g., databases, network shares, etc.) and the Internet.

When deploying fleet instances in a VPC, it is recommended that these instances are

deployed in multiple availability zones for high availability and redundancy reasons.

One thing to keep in mind is that every instance in your fleet will require an Elastic

Network Interface (ENI), so it is important that service limits are reviewed prior to

making your application available to your users.

If the streaming application requires domain authentication or resources in a

domain, the standard domain port connectivity access is required. The streaming

instances must also be able to communicate with the EC2 metadata service, via

http://169.254.169.254.

Note the appStream service uses two network interfaces, one for local VpC
resource access and the Internet and the second one for management (port 8443)
and streaming to client devices (port 8300). the management interface uses the Ip
range of 192.19.0.0/16, so it is critical to prevent conflicts with this network range.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

361

 Client Requirements

In order for client devices to connect to the AppStream 2.0 service, port 443 and port 53

are required from the client connectivity. Additionally, in order for both Session Gateway

and CloudFront can be accessed correctly, domains *.amazonappstream.com and

*.cloudfront.net must be whitelisted, respectively.

 Getting Started with AppStream 2.0
In order to get started, we will first go to the AppStream 2.0 Console; once in the console, we

will explore the two options for publishing applications. If you’re a new customer and need

to get familiar with the service, a user-friendly way of starting is by using the Quick Links

screen and deploying a stack with sample applications. The second deployment option and

the one recommended for production environments is a deployment of a custom stack.

 Deploying a Sample Applications Stack

As mentioned before, an easy way to get familiar with AppStream 2.0 is by deploying a stack

with sample applications. To do this we will go to the Amazon AppStream 2.0 Console:

 1. Go to the AppStream 2.0 Console.

 2. Click the Get started button (Figure 13-13).

Figure 13-13. Amazon AppStream 2.0 Get Started page

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

362

 3. Click the Agree and Continue button.

 4. At this point, you should be on the Quick Links screen (Figure 13-14).

Launching Sample Applications

In order to get familiar with the architecture and the service, we will deploy a sample

application. To do this, we will use one of the Quick Links options from the previous

section:

 1. To get started with sample apps, we will click the Setup with

sample apps button.

 2. Enter Name, Display Name, Description, and optional Redirect

and Feedback URLs. Click Next once all the fields have been

populated. See Figure 13-15.

Figure 13-14. Quick Links page

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

363

 3. On the next screen, scroll down and select the Amazon-

AppStream2- Sample-Image-06-20-2017 image. Click Next.

 4. From the Configure fleet page, select the following settings:

• Instance type: General purpose – stream.standard.medium, 2

vCPUs, 4 Memory (GiB)

• Fleet type: On-Demand

• User session details:

• Maximum session duration: 15 minutes

• Disconnect timeout: 15 minutes

Figure 13-15. Stack details form

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

364

• Fleet capacity:

• Minimum capacity: 1

• Maximum capacity: 2

• Scaling details: Leave default

 5. On the Configure network page, select the default settings and

click Next.

 6. From the Enable Storage page, leave the default settings and click

Next.

 7. Click Review, to leave the defaults, on the User Settings page.

 8. On the Review page, click Create.

 9. When prompted, click the check box to acknowledge the charges,

and click Create. See Figure 13-16.

 10. From the Stacks page, select the ExampleStack stack and click

Actions, then click Create streaming URL.

 11. For the User ID, enter a user ID, and then select an expiration to

set the duration of the generated URL.

 12. When prompted, click the Copy Link button. See Figure 13-17.

Figure 13-16. AppStream 2.0 Stack pricing user acknowledgment form

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

365

 13. Go to your favorite HTML5-compatible browser and paste and

go to the URL. The URL should render a page with the sample

applications published with the package. See Figure 13-18.

Figure 13-17. Unique streaming URL

Figure 13-18. Sample Stack application selection page

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

366

 Deploying Custom Applications Stack

When deploying a custom application stack, the first thing to identify is whether the

applications being streamed will reside in a new or existing VPC. If the applications will

interact with some existing network resources, then it will likely reside in an existing VPC.

If a new VPC is required, one can be created with the instructions provided in

the VPC chapter of this book. In order to have high availability and redundancy, it is

recommended that streaming instances are placed in at least two availability zones,

which means that these will also need to be created in the newly created VPC. The

subnets associated with the availability zones must be public, as AppStream 2.0 requires

Internet access via an Internet gateway.

If you want to leverage advanced networking configuration, you can also configure

the AppStream 2.0 resources to reside in a private subnet, behind a NAT gateway.

The AppStream 2.0 and Active Directory authenticated and SAML 2.0 Single Sign-

On Federated implementations have so many layers, that each would require a separate

chapter on their own, if covered in depth. For brevity, we will cover a some of the Active

Directory integration options, mainly because Active Directory should be used for

production implementations of the AppStream 2.0 service.

Creating Directory Configuration

When domain resources are required for the AppStream 2.0 applications, one of the

required settings is to create a directory configuration, which will associate a service

account with the service. The following commands will create an AppStream directory

configuration. If you don’t have an Active Directory domain available, one can be

created following the instructions provided in Chapter 12.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

367

Once an Active Directory domain is available, the following command can be used to

set up an AppStream 2.0 Directory Configuration:

$DirectoryConfiguration = New-APSDirectoryConfig -DirectoryName

corp.example.com -ServiceAccountCredentials_AccountName corp\

admin -ServiceAccountCredentials_AccountPassword 'password'

-OrganizationalUnitDistinguishedName OU=Computers,OU=corp,DC=corp,

DC=example,DC=com

To verify if the Directory Configuration was created as expected, you can log in to the

AWS Console and look at the settings. An example is depicted in Figure 13-19.

If the streaming applications will leverage Active Directory domain-based resources,

it is important to ensure the connectivity between steaming instances and image

builders is available and open to the directory services. This means that networking

between the subnets that have both AppStream 2.0 resources and Active Directory is

configured and security groups are configured to allow port connectivity.

Figure 13-19. Directory Configuration verification page

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

368

The following port connectivity is required between the AppStream 2.0 VPC and

your domain controllers:

• TCP/UDP 53 – DNS

• TCP/UDP 88 – Kerberos authentication

• UDP 123 – NTP

• TCP 135 – RPC

• UDP 137–138 – Netlogon

• TCP 139 – Netlogon

• TCP/UDP 389 – LDAP

• TCP/UDP 445 – SMB

• TCP 1024–65535 – Dynamic ports for RPC

Note the service account used in the directory Configuration must have the
following minimum permissions to the organizational Unit (oU) within active
directory: Create Computer object, Change password, reset password, and Write
description.

Getting Directory Config List

If you are unsure about the Directory Configurations that have been made, you can run

the Get-APSDirectoryConfigList cmdlet to get the list of available configurations.

To get a complete list of configuration, as shown in the code that follows and in

Figure 13-20

Get-APSDirectoryConfigList

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

369

Launching an Image Builder

The first step to publishing and AppStream 2.0 application is to create an application

builder, which will be used to customize an image for the custom application.

In order to avoid issues with running the New-APSImageBuilder command, we will

create a variable for the Organizational Unit which will store the computer objects for the

AppStream instances.

$ImageBuilderOU = OU=Computers,OU=corp,DC=corp,DC=example,DC=com

$ImageBuilder = New-APSImageBuilder -ImageName Base-Image-

Builder-06-12-2018 -AppstreamAgentVersion LATEST -Description

custom-image-builder -DomainJoinInfo_DirectoryName corp.example.com

-DisplayName Custom-Image-Builder -EnableDefaultInternetAccess $true

-InstanceType stream.standard.medium -Name Example -DomainJoinInfo_

OrganizationalUnitDistinguishedName $ImageBuilderOU -VpcConfig_

SecurityGroupId sg-00XXXXXXXXXX -VpcConfig_SubnetId subnet-00XXXXXXXXXX

While the image builder is being created, the Status will be set to pending until the

image builder is ready.

Figure 13-20. Directory Configuration list

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

370

Optionally, variables for all the New-APSImageBuilder settings can also be created as

shown as follows:

$ImageBuilderDomain = corp.example.com

$ImageBuilderBaseImage = Base-Image-Builder-06-12-2018

$ImageBuilderDisplayName = Custom-Image-Builder

$ImageBuilderDescription = Custom-Image-Builder

$ImageBuilderName = Custom-ImageBuilder

$ImageBuilderSGiD = sg-0XXXXXXXXXXXX

$ImageBuilderSubnetId = subnet-00XXXXXXXXXX

If you don’t need domain resources, the Image Builder can be deployed with as

simply as running an appropriate non-domain-based Image Builder launch. See

example as follows:

$NonDomainImageBuilder = New-APSImageBuilder -ImageName Base-Image-

Builder-06-12-2018 -AppstreamAgentVersion LATEST -Description NonDomain-

image- builder -DisplayName NonDomain-image-builder -InstanceType stream.

standard.medium -Name NonDomain-Image-Builder -EnableDefaultInternetAccess

$true -VpcConfig_SecurityGroupId sg-0XXXXXXXXXXXX -VpcConfig_SubnetId

subnet-00XXXXXXXXXX

Once the $NonDomainImageBuilder is deployed, it should come online with a status

set to running. Other status states include pending, snapshotting, stopping, starting, and

deleting.

Starting Image Builder

Once the image builder is ready, it can be started with the following command:

Start-APSImageBuilder -Name $NonDomainImageBuilder.Name

• Start-APSImageBuilder is for starting the image builder.

• Name specifies the name of the image builder to start.

• AppstreamAgentVersion is for specifying the AppStream agent

version; using LATEST is recommended (optional).

• Force overrides confirmation prompts to continue operation

(optional).

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

371

Stopping Image Builder

To avoid unintended usage charges, an Image Builder can be stopped at any time by

running the following command:

Stop-APSImageBuilder -Name $NonDomainImageBuilder.Name -Force

• Stop-APSImageBuilder is for stopping the image builder.

• Name specifies the name of the image builder to stop.

• Force overrides confirmation prompts to continue operation

(optional).

The following sets of parameters can also be used across all the operations (e.g.,

New-APSImageBuilder, Start-APSImageBuilder, and Stop-APSImageBuilder) to specify

region or common credentials:

• AccessKey is for the AWS access key for the user account.

• Credential AWSCredentials object instance containing access and

secret key details.

• ProfileLocation specifies the name and location of the ini-format

credential file.

• ProfileName is the user-defined name (optional).

• NetworkCredential is the profile name of the SAML role profile.

• SecretKey AWS secret key for the user account.

• SessionToken is for the session token if the access and secret keys

are used for temporary session-based credentials.

• Region is for the AWS region.

• EndpointURL specifies the endpoint.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

372

Connecting to the Image Builder

Once an Image Builder is deployed, we will go to the AppStream 2.0 Console and make

sure it is in a running state. The next step is to connect to the Image Builder to continue

the configuration. To do so, we will go to the App Stream Console, click the Images

on the left navigation pane, select the Image Builder, then select the radial button for

the Image Builder to connect. Once selected, click the Connect button, as shown in

Figure 13-21.

Once connected to the Image Builder, we will select Administrator to install

applications using Image Assistant. See Figure 13-22. All applications can be

downloaded and installed at this point. The AWS Schema Conversion Tool will be used

for demonstration purposes. Once the AWS Schema Conversion Tool is installed, we will

use the Image Assistant to AppStream 2.0 Application Catalog.

Figure 13-21. List of Images

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

373

Creating an AppStream 2.0 Application Catalog

To begin, click the Image Assistant icon on the desktop.

Then, we will click Add App and locate and map the executable, as well as the rest of

the App Launch Settings (Figure 13-23). Once the settings are selected, we will click the

Save button (Figure 13-24).

Figure 13-22. AppStream 2.0 user selection page

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

374

The next step is to click the Next button (Figure 13-25).

Figure 13-24. App Launch Settings page

Figure 13-23. AppStream 2.0 image installation page

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

375

In the next step, we will follow the instructions to create the default app and

Windows settings for your users (Figure 13-26).

Figure 13-25. Application installation confirmation

Figure 13-26. Application Configuration tab

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

376

Once the settings are selected for the Template User, we will switch back to the

Administrator user, and click Save settings (Figure 13-27).

Then, click the Next button (Figure 13-28).

Figure 13-27. Application Configuration being saved

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

377

In the next window, we will be able to optimize the application by clicking the

Launch button (Figure 13-29).

Figure 13-28. Application image creation

Figure 13-29. Optional image optimization

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

378

Click Continue when prompted (Figure 13-30).

In the CONFIGURE IMAGE tab, label the Name, Display name, and Description.

Click Next when prompted, as shown in Figure 13-31.

Image Builder must be used to recreate a new Image .

Figure 13-30. Image optimization

Figure 13-31. Image publishing details

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

379

Note Launch performance can be optimized by specifying the files that
need to be included pre-warm configuration file. to do this, run the following
command: dir -path "C:\Path\Folder\FileToOptimize" -Recurse
-ErrorAction SilentlyContinue | %{$_.FullName} | Out-File
"C:\ProgramData\Amazon\Photon\Prewarm\PrewarmManifest.txt"
-encoding UTF8 -append

On the REVIEW tab, click the Disconnect and Create Image button (Figure 13-32).

Once disconnected, the state of the Image Builder will change to Snapshotting

(Figure 13-33).

Figure 13-32. Image Creation finalization

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

380

Creating Images

Once the previous process is completed, the Images created using the preceding process

will be listed in the Image Registry as shown in Figure 13-34. Once an image is created,

the settings and configuration are permanent. If a change needs to be made, the Image

Builder must be used to recreate a new Image.

Note If an Image Builder has been deleted, a new Image Builder can be deployed
using the Image that was created using the deleted Image Builder.

Figure 13-33. Image Builder confirmation

Figure 13-34. Image Registry page

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

381

Images in the Image Registry can be categorized as either Private, as when once is

built and published using the Image Builder; other categories include Public or Shared,

with the later shared from another AWS account.

AppStream 2.0 Agent is the software running on the stream instances and is used to

stream published applications. There are various versions of this software that can be

installed. Ideally, the latest version should be installed; however, you can also customize

the version that will be used by redeploying the Image Builder with the appropriate

agent version.

Getting Image Builder List

The following command can be used to get the details of an Image Builder; it can also be

used to get the complete list by running the command without any options (Figure 13- 35):

• Get-APSImageBuilderList specifies the list of a single or more Image

Builders.

• Name is the string name of the Image Builders to describe.

• MaxResult is the max integer size of each page results.

• NextToken provides string pagination options.

Get-APSImageBuilderList -Name $ImageBuilder.Name

Figure 13-35. Image Builder list

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

382

Tagging Image Builder List

An Image Builder can be tagged by using the following command:

• Add-APSResourceTag is used to add or replace one or many tags.

• Tag is the hashable key pair combination for a tag.

• ResourceArn is to specify the Image Builder ARN.

• PassThru returns passed value (optional).

• Force overrides confirmation prompts to continue operation.

The following command creates the key value pair for the tag:

$ImageBuilderTag = @{}

$ImageBuilderTag.Add('Name', 'Schema Conversion Tool')

The following command adds a tag to a resource:

Add-APSResourceTag -Tag $ImageBuilderTag -ResourceArn

Getting Images List

The following command can be used to list one or more Images in the Images catalog:

• Get-APSImageList specifies the list of a single or more Images.

• Name is the string name of the Image Builders to describe.

• Arn is for the ARNs of the images to describe.

• Type is the type of image to describe (e.g., private, public, or shared).

• MaxResult is the max integer size of each page results.

• NextToken provides string pagination options.

The following command creates a variable with the list of all images.

$Images = Get-APSImageList

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

383

The following command creates a variable for the working Image we have been

working with in this chapter:

$SCTImage = Get-APSImageList | Where-Object {$_.Name -eq

'SchemaConversionTool'}

Filters an Image to display the image that was created in this chapter.

Get-APSImageList | Where-Object {$_.Name -eq SchemaConversionTool}

Copying Images

Images can be copied within region or across regions within the same AWS account

using the following command:

• Copy-APSImage is for copying an image.

• DestinationImageDescription is for specifying a description of the

new image.

• DestinationImageName is for specifying the name of the new image.

• DestinationRegion specifies a region for the new image.

• SourceImageName is for specifying the source image.

• Force overrides confirmation prompts to continue operation.

$SCTImageCopy = Copy-APSImage -DestinationImageDescription

SchemaConversionToolCopy -DestinationImageName SchemaConversionToolCopy

-DestinationRegion us-east-1 -SourceImageName S

chemaConversionTool

Note an Image can be shared with other aWS accounts by using the appStream 2.0
Console, selecting the image to share, and going to the permissions tab.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

384

Removing Images

In order to remove existing Images created in the previous steps, the following command

can be run:

• Remove-APSImage deletes a specified image.

• Name is for the image name.

• Force overrides confirmation prompts to continue operation.

$SCTImageCopy = Get-APSImageList | Where-Object {$_.Name -eq

'SchemaConversionTool'}

Remove-APSImage -Name $SCTImageCopy -Force

Creating Fleets

When creating Fleets, which are comprised of streaming instances, we first have to

determine the type of Fleet to have. There are two options that determine how you pay

for the instances and when these instances run:

• Always On – Instances run all the time and allow users to access their

applications immediately.

• On-Demand – Instances run when applications are being streamed,

when idle they go to a stopped state. If stopped, there is an estimated

1–2-minute hydration time for the instances to become available.

When selecting a Fleet, it is also important to understand the Instance Families

available, because the selection made will directly impact the performance of

your application; the same is true for the image selected at launch. The following

list summarizes the Instance Families available for selection; the selection should match

the use case of your application, as well as an appropriate application image.

Instance Family and Use Case

• General Purpose – Basic use cases for common business

applications

• Memory Optimized – Suitable for memory intensive applications

• Compute Optimized – Intended for use with compute intensive

applications

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

385

• Graphics Design – AMD FirePro S7150x2 GPU-optimized instances

for use with DirectX, OpenGL, or OpenCL

• Graphics Desktop – NVIDIA GRID K520 GPU-optimized instances

for use with DirectX, OpenGL, or OpenCL

• Graphics Pro – NVIDIA Tesla M60 GPU optimized for graphic

applications that use DirectX, OpenGL, or OpenCL

Once you have identified fleet type to use and instance family, we will then use the

following commands to create the fleet:

• New-APSFleet creates a fleet of streaming instances that run on a

specific image.

• Name sets the fleet name.

• Description sets a description for the fleet.

• ComputeCapacity_DesiredInstance sets the number of instances

for the fleet.

• DomainJoinInfo_DirectoryName is for the fully qualified domain

name of the directory (e.g., example.com)(optional).

• DisconnectTimeoutInSecond sets the amount of time for a session

to be considered to have ended. If a user reconnects within the

timeout period, then they will reconnect to the previous session.

Value can be between 60 to 57,600 seconds.

• DisplayName is for the display name for a fleet.

• EnableDefaultInternetAccess enables or disables Internet access for

a fleet.

• FleetType sets the fleet as either ALWAYS_ON or ON_DEMAND.

• ImageArn is for the ARN for the image to use.

• ImageName is for the name of the image used to create the fleet.

• InstanceType sets the instance to one of the available instance types

(e.g., stream.standard.medium).

• MaxUserDurationInSecond sets the max time a session can last.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

386

• DomainJoinInfo_OrganizationalUnitDistinguishedName sets

the distinguished name of the Organizational Unit for the computer

objects (optional).

• VpcConfig_SecurityGroupId is for setting security group for a fleet.

• VpcConfig_SubnetId is for the subnet where the network interfaces

will be placed.

• Force overrides confirmation prompts to continue operation.

$Fleet = New-APSFleet -Name NonDomain-Fleet -Description NonDomain-

Fleet -ComputeCapacity_DesiredInstance 2 -DisconnectTimeoutInSecond 60

-DisplayName NonDomain-Fleet -EnableDefaultInternetAccess $true -FleetType

ON_DEMAND -ImageName SchemaConversionTool -InstanceType stream.standard.

medium -MaxUserDurationInSecond 1800 -VpcConfig_SecurityGroupId sg-

00XXXXXXXXXX -VpcConfig_SubnetId subnet-00XXXXXXXXXX

Getting Fleet List

There are cases in which you will need to get a list of one or many Fleets. In order to get

the list, you can run the Get-APSFleetList cmdlet or apply a filter to only get the details

for one Fleet.

To get details of the NonDomain-Fleet, apply the following filter and feed the results

to the $Fleet variable:

$Fleet = Get-APSFleetList | Where-Object {$_.Name -eq 'NonDomain-Fleet'}

Starting a Fleet

Once Fleet has been created, it can be started using the following commands:

• Start-APSFleet starts a Fleet.

• Name specifies the name of the Fleet to start.

• PassThru returns the value passed to the Name parameter.

• Force overrides confirmation prompts to continue operation.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

387

To start a Fleet that is stopped, run the following command, referencing the $Fleet

variable previously created:

Start-APSFleet -Name $Fleet.Name

Stopping a Fleet

If a Fleet is running, then it can be stopped using the following commands:

• Stop-APSFleet starts a Fleet.

• Name specifies the name of the Fleet to start.

• PassThru returns the value passed to the Name parameter.

• Force overrides confirmation prompts to continue operation.

To stop a running Fleet, you can run the following command using the $Fleet

variable:

Stop-APSFleet -Name $Fleet.Name

Creating Stacks

Once a Fleet has been created, the next step is to create a stack to control access to

your fleet:

• New-APSStack creates a stack to associate fleet, user access policies,

and storage configurations.

• Name sets the name of the stack.

• Description sets the description of the stack.

• DisplayName sets the display name for the stack.

• ApplicationSettings_Enabled sets the path prefix for the S3 bucket

to use for persistency of application settings.

• FeedbackURL is for providing a URL where feedback can be

provided (optional).

• RedirectURL is for the redirect to send a user after a session ends

(optional).

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

388

• ApplicationSettings_SettingsGroup is for enabling or disabling

persistent application settings.

• StorageConnector identifies the storage connectors to enable.

Connectors include Home Folders which stores persistent user data

in S3, Google Drive for G suite that stores data in Google Drive, and

OneDrive for Business which saves all users data in OneDrive.

• UserSetting sets the actions that are enabled or disabled during

streaming sessions, enabled by default. These settings include

enabling a clipboard, ability to perform file transfers, and printing to

a local device.

• Force overrides confirmation prompts to continue operation.

The following command creates an object to specify the storage connector setting.

The setting can be enabled and disabled from the console.

$StackConnectorType = New-Object Amazon.AppStream.Model.StorageConnector

The following command will create a stack associated with the non-domain Fleet:

$NonDomainStack = New-APSStack -Name NonDomain-Stack -Description

NonDomain-Stack -DisplayName NonDomain-Stack -StorageConnector

$StorageConnectorType

Getting Stack List

If you need to get a list of Stacks configured in your account, the Get-APSStackList

cmdlet can be used to get a list of all Stacks or a filter can be used to only retrieve a

single Stack.

To get details of the NonDomain-Stack, apply the following filter and feed the results

to the $Stack variable:

$Stack = Get-APSStackList | Where-Object {$_.Name -eq 'NonDomain-Stack'}

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

389

Configuring Persistent Storage

One important setting to identify, which will significantly impact user experience, is

whether to have persistent storage (e.g., Home Folders) for your users. There are three

options for this setting, which include Google Drive for G Suite, OneDrive for Business,

and Home Folders, which is an AWS native solution.

If the latter option is selected, the data stored in the fleet’s Home Folders (i.e.,

C:\Users\PhotonUser\My Files\Home Folder for non-domain instances or C:\

Users\%username%\My Files\Home Folder for domain joined instances), then all files

stored in this location will be automatically backed up to an S3 bucket that gets created

the first time a Stack is created; bucket is in the same region as the stack. The data in

transit and at rest will be encrypted, using Amazon S3-managed keys.

By detail the AppStream service creates and attaches a secure S3 bucket policy to

the bucket on which persistent files will be saved. For support or security hardening

purposes, bucket polices can be further customized to ensure users other than the

primary user and the admins can access the files in the S3 bucket. Useful details on how

to perform these actions can be found in the “Controlling Access to AppStream 2.0 with

IAM Policies and Service Roles” documentation page (https://docs.aws.amazon.com/

appstream2/latest/developerguide/controlling-access.html#s3-iam-policy).

If S3 access is required, the following policy can be attached to the VPC endpoint to

grant access to the service. Going with this approach, as opposed to accessing S3 via the

Internet, may result in unexpected network usage charges.

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "Allow-AppStream-to-access-home-folder-and-application-

settings",

 "Effect": "Allow",

 "Principal": {

 "AWS": "arn:aws:sts::account-id-without-hyphens:assumed-role/

AmazonAppStreamServiceAccess/AppStream2.0"

 },

 "Action": [

 "s3:ListBucket",

 "s3:GetObject",

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

https://docs.aws.amazon.com/appstream2/latest/developerguide/controlling-access.html#s3-iam-policy
https://docs.aws.amazon.com/appstream2/latest/developerguide/controlling-access.html#s3-iam-policy

390

 "s3:PutObject",

 "s3:DeleteObject",

 "s3:GetObjectVersion",

 "s3:DeleteObjectVersion"

],

 "Resource": [

 "arn:aws:s3:::appstream2-36fb080bb8-*",

 "arn:aws:s3:::appstream-app-settings-*"

]

 }

]

}

Registering Fleet with Stack

Once we have a Stack and a Fleet created, the next step is to associate the Fleet with a

Stack. To do this, we will use the Register-APSFleet command:

• Register-APSFleet associates a fleet with a specified stack.

• StackName is to set the Stack name.

• FleetName is to set the Fleet name.

• PassThru returns the value passed to the StackName parameter.

• Force overrides confirmation prompts to continue operation.

To associate a Stack with a Fleet, we will run the following command and using the

$Stack and $Fleet variables we created in previous sections:

Register-APSFleet -StackName $Stack.Name -FleetName $Fleet.Name

Granting Users Access

Once all the previous steps have been completed, including creating a Stack, users can

be granted to the AppStream 2.0 service. Ways in which users can access the service

include using a User Pool, Single Sign-On via SAML 2.0 federation, and the AppStream

2.0 API.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

391

Note appStream 2.0 User pool users can’t be assigned to Stacks with Fleets that
are joined to active directory.

Adding AppStream 2.0 User Pool Users

In this section, we will create AppStream 2.0 User Pool users, which can be assigned to

the previously created stacks. In order to do this, we will get familiar with the following

command:

• New-APSUser creates a new user in the user pool.

• AuthenticationType is to set the authentication type, which can be

API, SAML, or USERPOOL.

• FirstName is for the user’s first name.

• LastName is for the user’s last name.

• MessageAction specifies whether the welcome e-mail will be sent,

resent, or suppressed. If sent, welcome e-mail has a temporary

password valid for 7 days.

• UserName sets the username.

• Force overrides confirmation prompts to continue operation.

In this example, we will create a user for Bob in the AppStream 2.0 User Pool.

The first step to do this is to create an authentication type object and specify the

user pool.

$AppStreamUserPool = New-Object Amazon.AppStream.

AuthenticationType('USERPOOL')

The next step is to create the actual user for Bob. To do this, we will execute the

following command:

$Bob = New-APSUser -AuthenticationType $AppStreamUserPool -FirstName Bob

-LastName Smith -UserName Bob@example.com

Once the user is created, the AppStream 2.0 Console can be used to verify if the user

was created as expected (Figure 13-36).

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

392

The person with the newly created user will receive an e-mail with details on how to

access the AppStream 2.0 service (Figure 13-37).

When the user clicks the login page link, they will be prompted to log in with

their e-mail address and the temporary password that is provided (Figure 13-38). The

temporary password is valid for 7 days from the time issued.

Figure 13-36. AppStream User Pool account created

Figure 13-37. AppStream 2.0 automated e-mail

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

393

The user must change their password after successfully authenticating to the service

(Figure 13-39).

Figure 13-38. AppStream 2.0 login page

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

394

Disabling AppStream 2.0 User Pool Users

In order to disable AppStream 2.0 User Pool users, we will need to make sure we have an

object that specifies the authentication type pointing to the user pool as the location of

the user:

• Disable-APSUser disables a user.

• AuthenticationType is to set the authentication type, which can be

API, SAML, or USERPOOL.

• UserName specifies the user to disable.

• Force overrides confirmation prompts to continue operation.

Figure 13-39. Password change page

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

395

As a refresher, to create an authentication type object, we will run the following

command:

$AppStreamUserPool = New-Object Amazon.AppStream.

AuthenticationType('USERPOOL')

The following command will disable the user for username Bob@example.com:

Disable-APSUser -AuthenticationType $AppStreamUserPool -UserName Bob@

example.com

Enabling AppStream 2.0 User Pool Users

Enabling AppStream 2.0 User Pool users is very similar to disabling the users, except that

we perform an action in reverse. We will still need to make sure we have an object that

specifies the authentication type pointing to the user pool as the location of the user:

• Enable-APSUser disables a user.

• AuthenticationType is to set the authentication type, which can be

API, SAML, or USERPOOL.

• UserName specifies the user to disable.

• Force overrides confirmation prompts to continue operation.

The following command will enable the user for username Bob@example.com:

Enable-APSUser -AuthenticationType $AppStreamUserPool -UserName Bob@

example.com

Assigning AppStream 2.0 User Pool Users to Stacks

One of the ways in which users are granted access to Stacks is by assigning users to

specific Stacks. As you can imagine, these assignments can be done either by API, CLI,

AWS Console, or PowerShell. To perform the actions in PowerShell, we will leverage the

following cmdlet to make this association:

• Register-APSUserStackBatch associates a user to a specified Stack.

• UserStackAssociation lists the user stack association.

• Force overrides confirmation prompts to continue operation.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

396

In order to assign User Pool Users to a Stack, we first have to create a

UserStackAssociation object and specify all the parameters required for the association.

For example, we will associate user Bob@example.com with the NonDomain-Stack.

$APSUserStack = New-Object Amazon.AppStream.Model.UserStackAssociation

$APSUserStack.AuthenticationType = $AppStreamUserPool

$APSUserStack.SendEmailNotification = $true

$APSUserStack.UserName = 'Bob@example.com'

$APSUserStack.StackName = 'NonDomain-Stack'

Once we have all the parameters configured as expected, we will run the Register-

APSUserStackBatch command.

$NonDomainUserStack = Register-APSUserStackBatch -UserStackAssociation

$APSUserStack

Once the association is completed, the user associated with a Stack will receive an

e-mail to access the login page, as shown in Figure 13-40.

Once you log in to the AppStream 2.0 service using the login page in the e-mail,

you will be able to access the Schema Conversion Tool published in earlier parts of this

section (Figure 13-41).

Figure 13-40. AppStream 2.0 assignment notification

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

397

If we click the application link, we will be able to launch the application which may

take several minutes. See Figure 13-42. The application streaming experience can be

heavily optimized, but it is outside of the scope of this chapter. If you need additional

guidance on optimizing your application, review the Customize an AppStream 2.0

Fleet to Optimize Your Users’ Application Streaming Experience documentation page

(https://docs.aws.amazon.com/appstream2/latest/developerguide/customize-

fleets.html).

Figure 13-41. AWS Schema Conversion Tool page

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

https://docs.aws.amazon.com/appstream2/latest/developerguide/customize-fleets.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/customize-fleets.html

398

Figure 13-42. Launching AppStream 2.0 image

EXERCISE 13.1: LAUNCH CUSTOM STACK, FLEET, AND IMAGE

In this exercise, we will create an Image, launch a Fleet, create a Stack, and associate a non-

domain user with an application.

open the aWS tools for powerShell and run the following command:

$NonDomainImageBuilder = New-APSImageBuilder -ImageName Base-Image-

Builder-06-12-2018 -AppstreamAgentVersion LATEST -Description 'Description'

-DisplayName 'DisplayName' -InstanceType stream.standard.medium -Name

'Name' -EnableDefaultInternetAccess $true -VpcConfig_SecurityGroupId sg-

0XXXXXXXXXXXX -VpcConfig_SubnetId subnet-00XXXXXXXXXX

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

399

Once completed, we will start the Image Builder.

Start-apSImageBuilder -name $nondomainImageBuilder.name

Go to the appStream 2.0 Console connect to the Image Builder and follow the instructions

provided in this section to publish a streaming application and Image.

once an Image has been created and is available in the Image registry, create a Fleet using

the commands as follows:

$Fleet = New-APSFleet -Name NonDomain-Fleet -Description 'Description'

-ComputeCapacity_DesiredInstance X -DisconnectTimeoutInSecond 60

-DisplayName 'DisplayName' -EnableDefaultInternetAccess $true -FleetType

ON_DEMAND -ImageName 'ImageName' -InstanceType stream.standard.medium

-MaxUserDurationInSecond 1800 -VpcConfig_SecurityGroupId sg-00XXXXXXXXXX

-VpcConfig_SubnetId subnet-00XXXXXXXXXX

once a Fleet is created, use the following commands to create a Stack:

$StackConnectorType = New-Object Amazon.AppStream.Model.StorageConnector

$Stack = New-APSStack -Name 'Name' -Description 'Description' -DisplayName

'DisplayName' -StorageConnector $StorageConnectorType

once the Stack has been created, associate a Stack with a Fleet.

Register-APSFleet -StackName $Stack.Name -FleetName $Fleet.Name

then, we will create a user in the appStream 2.0 User pool.

$AppStreamUserPool = New-Object Amazon.AppStream.

AuthenticationType('USERPOOL')

$User = New-APSUser -AuthenticationType $AppStreamUserPool -FirstName

'FirstName' -LastName 'LastName' -UserName 'user@domain.com'

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

400

once a user has been created, we will assign a Stack to a User by running the following

commands:

$APSUserStack = New-Object Amazon.AppStream.Model.UserStackAssociation

$APSUserStack.AuthenticationType = $AppStreamUserPool

$APSUserStack.SendEmailNotification = $true

$APSUserStack.UserName = user@domain.com'

$APSUserStack.StackName = 'StackName'

once the parameters are configured, the following cmdlet can be run:

$UserStack = Register-APSUserStackBatch -UserStackAssociation $APSUserStack

 Summary
In this chapter, we saw the Amazon Desktop and Application Streaming services, which

provide organizations the ability to deliver their workforce secure, centrally managed

desktops and applications, at a global scale. Although we spent a lot of time learning

about the AppStream Service 2.0 functionality without domain authentication, we

also learned how to leverage AWS Directory Services to provide access control to these

services, which can help you increase the security posture of your portfolio, by leveraging

existing user credentials.

Each section also included a step-by-step walkthrough to help you get started with

setting up both Amazon WorkSpaces and Amazon AppStream 2.0. The goal of the step

through is to give you a jump start to begin delivering these services to customers within

your organization.

Chapter 13 amazon WorkSpaCeS and amazon appStream 2.0

401
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_14

CHAPTER 14

Amazon WorkDocs
In the last couple of decades, collaboration platforms have become a necessity to

organizations that want to increase productivity with their workforce, by using services

that foster collaboration. Amazon WorkDocs is a managed, enterprise storage and

sharing service that allows organizations to collaborate on content in a secure and safe

fashion, both internally and outside of the organization.

As a managed service, the WorkDocs service is able to scale users and storage

easily, from any supported device, and with a pay-as-you-go model and no long-term

commitment, organizations can take advantage of full-featured collaboration platform

without much risk. In this chapter, we will focus on getting the Amazon WorkDocs

provisioned and made available users in your organization. Although some content

management can also be performed via PowerShell, we will focus mainly on getting the

service up and running with the objective of being to start collaboration.

 Client Requirements
Amazon WorkDocs content can be accessed from a supported browser, from any operating

system, running a supported version of a browser. Alternatively, content can also be

accessed using one of the Amazon WorkDocs apps from either an Android or an iOS device.

The following are the currently supported web browsers for accessing Amazon

WorkDocs:

• Google Chrome version 30 or later

• Mozilla Firefox ESR version 24.6 or later

• Mozilla Firefox version 30 or later

• Apple Safari version 7 or later

• Microsoft Internet Explorer 10 or later

402

The Amazon WorkDocs Android and iOS mobile apps can be installed on one of the

supported devices.

Mobile phones:

• An Android phone with Android 4.0.3 or later

• An iPhone with iOS 7.0 or later

Tablets:

• An Android tablet with Android 2.3.3 or later

• Kindle Fire HD 7 (2nd Gen) and Kindle Fire HD 8.9 (2nd Gen)

• Kindle Fire HD 7 (3rd Gen)

• Kindle Fire HDX 7 (3rd Gen) and Kindle Fire HDX 8.9 (3rd Gen)

• iPad or iPad 2 with iOS 6.1.2 or later

In addition to the Amazon WorkDocs client and a sync application can be

downloaded and installed on a supported Microsoft Windows and macOS devices. The

Amazon WorkDocs Sync Client synchronizes files and folders from the WorkDocs service

to your desktop, laptop, or tablet.

System requirements for the Sync Client are

• Microsoft Windows 7, Windows 8, or Windows 10

• Microsoft Windows Server 2008

• Microsoft Windows Server 2012 R2 (with Microsoft AD, not Simple AD)

• macOS 10.10 or later

 Setting Up WorkDocs
One of the requirements for setting up WorkDocs is to have a directory, to provide access

management and authentication to the service. The Directory Service components

supported by WorkDocs is Microsoft AD, AD Connector, and Simple AD.

In order to create and deactivate WorkDocs sites, we will need to go to the

Amazon WorkDocs Console. From there, users, storage, and security can be managed. In

Chapter 12, we set up a Managed Microsoft AD directory. In this section, we will leverage

that directory and associate it with WorkDocs, although any other supported directory

would work the same way.

Chapter 14 amazon WorkDoCs

403

Once in the console, we will click the “Get Started Now” link (Figure 14-1).

Figure 14-1. Amazon WorkDocs Get Started page

On the Select a Directory page, we will select the corp.example.com directory, as

this is the Managed Microsoft Active Directory. Once selected, we will click the “Enable

Directory” link (Figure 14-2). The corpex.awsapps.com URL was created in Chapter 12.

Chapter 14 amazon WorkDoCs

404

Note When microsoft managed active Directory is associated with WorkDocs,
a security group named GorillaBoyadministrator is added to the customer’s
organizational Unit (oU). the group is a member of the delegated admins group.

After the directory is enabled for WorkDocs, we assign a domain user as a WorkDocs

Administrator. We will type “admin” in the Username field. See Figure 14-3.

Figure 14-2. Enable Directory page

Figure 14-3. Setting WorkDocs Administrator page

Chapter 14 amazon WorkDoCs

405

Once the WorkDocs administrator is set, the WorkDocs administrator will receive an

e-mail with details on how to access the WorkDocs site. If the WorkDocs Administrator

account selected does not have an e-mail address populated in the active directory’s

user object, an e-mail will not be sent or received. See Figure 14-4.

Once the “Get Started!” link is clicked from inside the WorkDocs e-mail, the

administrator will be taken to the WorkDocs site.

When prompted, enter the WorkDocs Administrator’s e-mail address and click the

“Log in” link. See Figure 14-5.

Figure 14-4. Amazon WorkDocs Administrator notification message

Chapter 14 amazon WorkDoCs

406

Figure 14-5. WorkDocs login page

Chapter 14 amazon WorkDoCs

407

Then, enter the WorkDocs Administrator’s username and password. Click “Sign In”.

See Figure 14-6.

Once logged in, the WorkDocs Administrator will be able to access the service, create

and upload content, and begin collaborating. See Figure 14-7.

Figure 14-6. Administrator login page

Chapter 14 amazon WorkDoCs

408

WorkDocs sites configured can be viewed from within the Amazon WorkDocs

Console. See Figure 14-8.

Figure 14-7. Successfully authenticated to WorkDocs

Figure 14-8. WorkDocs Sites Management page

Chapter 14 amazon WorkDoCs

409

Once the WorkDocs service (i.e., site) has been configured, we can begin using

PowerShell cmdlets to interact with the service.

 Managing WorkDocs Users
In this section, we will view how to list users available in the domain, enable and disable

users, and also grant access to the Amazon WorkDocs service.

 Getting List of WorkDocs Users
The first PowerShell cmdlet we will use is Get-WDUserList. This command will allow you

to get a list of all users in the directory connected to WorkDocs:

• Get-WDUserList describes users.

• OrganizationId specifies the directory ID, which can be pulled from

the Directory Service (e.g., either Managed Active Directory or AD

Connector).

• AuthenticationToken specifies the WorkDocs authentication token.

• Field sets a comma-separated list of values.

• Include specifies the state of the users, including specifying “ALL”

when querying for inactive users.

• Order sets the ordering of the results.

• Query can set a query to filter users by user name.

• Sort sets the sorting order.

• UserId sets the user ID.

• Limit sets the maximum number of items to return.

• Marker allows to set a market for the next set of results.

To get a list of WorkDocs users, we will run the Get-WDUserList command feeding

the results to a variable.

$WDUserList = Get-WDUserList -OrganizationID d-XXXXXXX

Chapter 14 amazon WorkDoCs

410

The following command will filter the results to get details of just one user, User1:

$User1 = $WDUserList | Where-Object {$_.Username -eq 'user1'}

Note the Get-WDUserList will not show the WorkDocs administrator user, only
standard WorkDocs users.

 Adding WorkDocs Users
To create users with access to WorkDocs, we will use the following cmdlet:

• New-WDUser creates a user in Simple AD or Managed Active

Directory.

• OrganizationId sets the ID of the organization.

• AuthenticationToken is for the WorkDocs authentication token.

• EmailAddress is for the user’s e-mail address.

• GivenName sets the given name for a user.

• Password sets the password for a user.

• StorageRule_StorageAllocatedInByte sets the storage allocated

by bytes.

• StorageRule_StorageType sets the type of storage; the options are

UNLIMITED or using a QUOTA.

• Surname sets the surname for the user.

• TimeZoneId sets the time zone ID of the user.

• Username sets the login name for the user.

• Force overrides confirmation prompts to continue operation.

To create a user for James, we will execute the following command:

$James = New-WDUser -OrganizationId d-906711f2bb -EmailAddress james@

example.com -GivenName James -Password 'password' -StorageRule_

StorageAllocatedInByte 500 -StorageRule_StorageType UNLIMITED -Surname

Smith -Username James

Chapter 14 amazon WorkDoCs

411

Note adding WorkDocs accounts using the new-WDUser cmdlet will create a
user in the directory associated with WorkDocs. It is only applicable with microsoft
managed active Directory and simple aD. example is depicted in Figure 14-9.

 Enabling WorkDocs Users
Once a user is created using the cmdlet in the previous example, we will see that the

newly created account is disabled. The new WorkDocs user can be enabled by running

the Enable-WDUser cmdlet:

• Enable-WDUser enables a WorkDocs user.

• UserId specifies a user.

• AuthenticationToken is for setting the authentication token.

• Force overrides confirmation prompts to continue operation.

We will enable the previously created account by running the following command:

Enable-WDUser -UserId $James.Id

Figure 14-9. Domain user created via New-WDUser cmdlet

Chapter 14 amazon WorkDoCs

412

 Disabling WorkDocs Users
If necessary, we can also disable a WorkDocs user. To perform this action, we will use the

Disable-WDUser cmdlet:

• Disable-WDUser enables a WorkDocs user.

• UserId specifies a user.

• AuthenticationToken is for setting the authentication token.

• Force overrides confirmation prompts to continue operation.

The following command will disable James’ account:

Disable-WDUser -UserId $James.Id

 Setting Role for WorkDocs Users
After a user has been added to the directory and enabled, the next step will be to assign a

role for a user from the User’s profile:

• Guest User is a user who can only view files.

• User is a user who can save files and collaborate.

• Power User is a user with special permissions delegated by the

administrator.

• Admin is the user with administrative permissions for the entire site,

which includes user management and site settings.

In order to do this, we will log in to the WorkDocs site using the admin account.

Once authenticated, click the My Account icon on the top right hand side of the screen

(Figure 14-10).

Chapter 14 amazon WorkDoCs

413

Figure 14-10. Successfully authenticated user

After the “My Account” panel comes up, click the “Open admin control panel” link

(Figure 14-11).

Figure 14-11. Accessing admin control panel

Chapter 14 amazon WorkDoCs

414

From inside the “Administration” page, scroll down to the bottom of the page to view

all WorkDocs users. Then, locate the user with Username James, and click the edit profile

link (Figure 14-12).

Once the “Edit user” form comes up, change James’ user from “Guest User” to a

“User” role. After the role is changed, then James will be able to use WorkDocs and begin

collaborating (Figure 14-13).

 Creating Collaboration Folder
Once James’ account is able to create folders within WorkDocs, we will create a parent

Folder and will use PowerShell to manage the content within that folder.

Figure 14-12. Edit James Smith’s profile

Figure 14-13. WorkDocs role assignment

Chapter 14 amazon WorkDoCs

415

In order to do this, click the “Create” folder link and select “Folder” (Figure 14-14).

When the “Create Folder” form comes up, type James’ name as the name of the

folder. Then, click the “Create” link (Figure 14-15).

Figure 14-14. Creating a Collaboration Folder

Figure 14-15. Naming Collaboration Folder

After the folder has been created, we will click the link to the “James” folder to go

inside the folder. Once inside the folder, we will take long alphanumeric folder ID and

use PowerShell cmdlets to further manage the content in James’ folder. Folder ID is

shown as follows in bold:

https://corpex.awsapps.com/workdocs/index.html#/folder/9674f6123d9faa3a0

bff6d61fa99894258710552167813f0d8a2621127f1d8c7

 Creating New WorkDocs Folder
New WorkDocs folders can be created inside the previously created folder using the

New-WDFolder cmdlet:

• New-WDFolder creates a new WorkDocs folder.

• ParentFolderId specifies the unique identifier of the parent folder.

Chapter 14 amazon WorkDoCs

https://corpex.awsapps.com/workdocs/index.html#/folder/9674f6123d9faa3a0bff6d61fa99894258710552167813f0d8a2621127f1d8c7
https://corpex.awsapps.com/workdocs/index.html#/folder/9674f6123d9faa3a0bff6d61fa99894258710552167813f0d8a2621127f1d8c7

416

• AuthenticationToken is for the WorkDocs authentication token.

• Name is the unique name of the folder being created.

• Force overrides confirmation prompts to continue operation.

To create a new folder, we will run the following command:

$PersonalFolder = New-WDFolder -ParentFolderId

9674f6123d9faa3a0bff6d61fa99894258710552167813f0d8a2621127f1d8c7 -Name

Personal

We can verify if the folder has been created by going to the WorkDocs site

(Figure 14-16).

 Deleting WorkDocs Folder
In order to delete a WorkDocs folder, the Remove-WDFolder cmdlet can be used:

• Remove-WDFolder permanently deletes a WorkDocs folder.

• FolderId specifies the unique identifier of folder.

• AuthenticationToken is for the WorkDocs authentication token.

• PassThru returns passed value (optional).

• Force overrides confirmation prompts to continue operation.

To delete a folder, we will run the following command:

Remove-WDFolder -FolderId

9674f6123d9faa3a0bff6d61fa99894258710552167813f0d8a2621127f1d8c7

Figure 14-16. Verifying Folder creation

Chapter 14 amazon WorkDoCs

417

 Listing WorkDocs Folders Metadata
If you need to get the metadata for a folder, you can use the Get-WDFolder cmdlet and

store the results in a variable:

• Get-WDFolder retrieves metadata for a specific folder.

• FolderId sets the unique folder ID.

• AuthenticationToken is for the WorkDocs authentication token.

• IncludeCustomMetadata specifies whether the command should

include custom metadata.

The following command will store the results of the Get-WedFolder in a variable:

$JamesFolder = Get-WDFolder -FolderId

9674f6123d9faa3a0bff6d61fa99894258710552167813f0d8a2621127f1d8c7

-IncludeCustomMetadata $true

We can then view the contents of the metadata by viewing the contents of the

$JamesFolder variable. See Figure 14-17.

$JamesFolder.Metadata

Figure 14-17. Collaboration Folder details

Chapter 14 amazon WorkDoCs

418

Custom metadata can also be viewed, if it has been added for the folder. See

Figure 14-18.

 Describing WorkDocs Folders Contents
If you need to get a list of the contents of a folder, the Get-WDFolderContent can be used:

• Get-WDFolderContent describes the contents of a folder.

• FolderId is for the unique folder ID.

• AuthenticationToken is for the WorkDocs authentication token.

• Include specifies which content to include.

• Order sets the order for the contents.

• Sort sets the sorting criteria.

• Type sets the type of items to describe.

• Limit is for the maximum number of items to return with the cmdlet.

• Marker sets the marker for the next set of results.

In order to view the contents of the James folder, we will store the results of the Get-

WDFolderContent into a variable.

$JamesFolderContents = Get-WDFolderContent -FolderId

9674f6123d9faa3a0bff6d61fa99894258710552167813f0d8a2621127f1d8c7 -Type ALL

Figure 14-18. Custom metadata details

Chapter 14 amazon WorkDoCs

419

We can then view the contents by seeing what’s stored in the $JamesFolderContents

variable. As we can see in Figure 14-19, there are two folders in the James folder, Shared

and Personal.

 Getting WorkDocs Folder Path
There are cases in which you will need to get a list of all the WorkDocs folder IDs for the

folders that make up the hierarchy of a specific folder. For example, getting the folder

hierarchy may help to identify a path for getting additional lists of content and narrow

down on a particular structure for creating other folders, as well as other administrative

functions, to name a few. In order to get a folder path, we will use the Get- WDFolderPath

cmdlet:

• Get-WDFolderPath gets the folder path information.

• FolderId is for the unique folder ID.

• AuthenticationToken is for the WorkDocs authentication token.

• Field can be used as a comma-separated list of values; name can be

used to include folder names in the output.

• Limit is for the maximum number of items to return with the cmdlet.

• Marker sets the marker for the next set of results.

Figure 14-19. Describing Folder contents

Chapter 14 amazon WorkDoCs

420

We will run the following command and store the results in the $FolderPath variable.

See Figure 14-20.

$FolderPath = Get-WDFolderPath -FolderId

94655552f6d553500f619fa0718e9d2b993d6d656d6c96b1b25bd4b7f82aa5b9 -Field NAME

We can then view the content of the $FolderPath.Components, as shown in

Figure 14-21.

Figure 14-20. Folder content path

Figure 14-21. Viewing Folder components

Chapter 14 amazon WorkDoCs

421

 Removing WorkDocs Folder Contents
If there is ever a need to remove all the content from a specified folder, the Remove-

WDFolderContent cmdlet can be used to do so:

• Remove-WDFolderContent removes content from a specified folder.

• FolderId sets the unique folder ID.

• AuthenticationToken is for the WorkDocs authentication token.

• PassThru returns passed value (optional).

• Force overrides confirmation prompts to continue operation.

We will run the following command to delete all contents from the personal folder:

Remove-WDFolderContent -FolderId

94655552f6d553500f619fa0718e9d2b993d6d656d6c96b1b25bd4b7f82aa5b9

 Managing WorkDocs Content
This chapter provides enough context and insight to get started with the Amazon

WorkDocs service. Currently, there are some content management API operations

exposed to PowerShell, but those are outside of the scope of this chapter. If you need

to manage content via available cmdlets, further reading of the PowerShell Reference

documentation for Amazon WorkDocs page is recommended (https://docs.aws.

amazon.com/powershell/latest/reference/items/Amazon_WorkDocs_cmdlets.html).

EXERCISE 14.1: LAUNCHING AMAZON WORKDOCS

In this exercise, we will associate an amazon WorkDocs to an existing microsoft managed

active Directory forest.

For provisioning a managed microsoft active Directory forest, follow the steps provided in

Chapter 12.

once completed, follow the following steps to associate WorkDocs with the managed

Directory service.

From the WorkDocs Console, we will click the “Get started now” link.

Chapter 14 amazon WorkDoCs

https://docs.aws.amazon.com/powershell/latest/reference/items/Amazon_WorkDocs_cmdlets.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Amazon_WorkDocs_cmdlets.html

422

on the select a Directory page, we will select the directory you created in Chapter 12. once

selected, we will click the “enable Directory” link.

after the directory is enabled for WorkDocs, assign a domain user as a WorkDocs

administrator. type a user of your choice.

once the WorkDocs administrator is set, follow the steps in the welcome e-mail received.

once logged in to the WorkDocs service, create some folders and upload content.

 Summary
In this chapter, we saw how Amazon WorkDocs can be deployed quickly and easily to

provide collaboration services to the enterprise in a secure and globally scale fashion.

We configured WorkDocs to authenticate against Managed Microsoft AD because it most

likely will be the choice for a production deployment. There are also other Directory

Service components supported, including AD Connector and Simple AD and the setup

process is the same as the process used with Managed Microsoft AD. For example,

the PowerShell commands used to manage users stored in AD can also be used with

Simple AD. As the AD Connector does not perform any write operations, some of the

commands, such as creating new WorkDocs users, are not applicable with the AD

Connector.

Chapter 14 amazon WorkDoCs

423
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_15

CHAPTER 15

Systems Manager Basics
Now that you’ve been creating resources in the cloud with PowerShell, you’ll need

a simple and secure way to manage all those resources. AWS Systems Manager is a

convenient set of management tools that lets you configure and manage your AWS

resources at scale.

In this chapter, I’ll explain some basics to get you started with Systems Manager.

We’ll begin by going over some important prerequisites, and then I’ll show you how

to get organized by grouping your resources using AWS Resource Groups. We’ll walk

through Session Manager which allows you to connect and run PowerShell on your

Amazon EC2 instances. Finally, I’ll show you a few ways to use Parameter Store with your

PowerShell scripts.

There are two exercises in this chapter. In the first, I’ll show you how to use

Parameter Store to find the latest Windows AMI and use it to launch an EC2 instance. In

the second exercise, you’ll create a resource group to list resources that match a certain

resource query.

To explore and learn more about the many features we’ll be talking about, open your

browser and head over to the AWS Systems Manager Console at https://console.aws.

amazon.com/systems-manager.

Note If you’ve been using AWS for a while, you’ll remember AWS Systems
Manager under its former name: Amazon EC2 Systems Manager.

 Systems Manager Prerequisites
Remember when we covered IAM in detail back in Chapter 11? Well before you begin

using Systems Manager, there are a few IAM permissions you’ll need to set up.

https://console.aws.amazon.com/systems-manager
https://console.aws.amazon.com/systems-manager

424

 IAM Access to Systems Manager
If your IAM user or role has full administrative access to your AWS account, you won’t

need to add any additional permissions. For those of you who need to configure your

IAM user with the least amount of privileges, there are a few permissions you’ll need

to add depending on the specific features you’ll be using. You can find the details at

https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-access-

user.html.

 Creating an IAM Instance Profile for Systems Manager
Systems Manager won’t be able to do anything with your Amazon EC2 instances by

default. The way you allow Systems Manager to take action, connect, or manage your

instances is with an IAM instance profile. You can create one or many roles with the

specific permissions you need. We talked about IAM and instance profiles back in

Chapters 2 and 3. We’ll cover it again in the next few steps, focusing on the permissions

needed for Systems Manager.

We’ll first define a policy that will allow the Systems Manager service to assume a role.

Once we have that policy in JSON format, we’ll create the new role and attach the policy.

Then we must create a new instance profile and add the IAM role to that instance profile.

$assumeRolePolicy = @{}

$assumeRolePolicy['Version'] = "2012-10-17"

$assumeRolePolicy['Statement'] = @{}

$assumeRolePolicy['Statement']['Effect'] = "Allow"

$assumeRolePolicy['Statement']['Principal'] = @{}

$assumeRolePolicy['Statement']['Principal']['Service'] = "ssm.amazonaws.com"

$assumeRolePolicy['Statement']['Action'] = "sts:AssumeRole"

Next, we create the new IAM role with the assume role policy JSON. The assume role

policy allows the Systems Manager service (ssm.amazonaws.com) to assume the new

role we are creating.

$role = New-IAMRole -RoleName "MySystemsManagerRole"

-AssumeRolePolicyDocument ($assumeRolePolicy | ConvertTo-Json) -Region us-

east- 1

ChAptEr 15 SyStEMS MAnAgEr BASICS

https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-access-user.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-access-user.html

425

Now, attach the AmazonEC2RoleforSSM managed policy to the role using Register-

IAMRolePolicy, and pass in the ARN for the managed policy. This managed policy

permits communication to the Systems Manager API.

Register-IAMRolePolicy -RoleName $role.RoleName -PolicyArn

'arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforSSM' -Region us- east- 1

Then we create a new instance profile with New-IAMInstanceProfile. This is what

we’ll be attaching to our EC2 instance to enable Systems Manager.

$instanceProfile = New-IAMInstanceProfile -InstanceProfileName

"MyNewInstanceProfile" -Region us-east-1

Finally, we use Add-IAMRoleToInstanceProfile to add the IAM role to the instance

profile, which finishes up our new instance profile.

Add-IAMRoleToInstanceProfile -InstanceProfileName $instanceProfile.

InstanceProfileName -RoleName $role.RoleName -Region us-east-1

Note the Systems Manager profile in this example doesn’t allow access to other
services such as Amazon S3. Be sure to create instance profiles that have access
to only the services needed in each specific use case.

To use this profile with Systems Manager, you’ll need to either launch a new instance

with the profile attached as discussed in Chapter 3, or attach it to an existing EC2 instance.

 AWS Resource Groups
Now that you’ve been creating resources, you need a way to group them and keep

things organized. With AWS Systems Manager Resource Groups, you’re able to group

your many AWS resources by tags. You can use Resource Groups in many different ways

that will help you manage your cloud resources at scale. Some examples for grouping

your resources are to group them by application, by environment (development, test,

production), or for billing (by customer, department, or cost center).

ChAptEr 15 SyStEMS MAnAgEr BASICS

426

Note Systems Manager resource groups are regional, so you’ll only see AWS
resources in the same region. to view resources in other regions, you’ll need to
create a resource group in those regions as well.

 Creating New Resource Groups
In order to create a new resource group, we’ll need a JSON query which represents the

tags by which we’ll group resources. I’ve built the JSON using PowerShell hashtables, but

you can just as easily pass the JSON from a file or string.

First, let’s begin by defining a hashtable for the tag we’ll be filtering on.

$tagFilter = @{}

$tagFilter["Key"] = "Application"

$tagFilter["Values"] = @("MyApplication")

Next, we’ll define another hashtable that represents the query and we’ll reference

our tag filter hashtable. In this query we’re limiting the resources to EC2 instances and S3

buckets. These resource filters follow the standard naming scheme found in AWS ARNs.

You can find a complete list of supported resources at https://docs.aws.amazon.com/

ARG/latest/userguide/supported-resources.html.

$query = @{}

$query["ResourceTypeFilters"]=@("AWS::EC2::Instance", "AWS::S3::Bucket")

$query["TagFilters"]=@($tagFilter)

Now that we have our query constructed, we can convert it to JSON. We need to

make sure we have the depth set with ConvertTo-Json, and we’ll also use the compress

switch to remove whitespace.

$queryJSON = $query | ConvertTo-Json -Depth 4 –Compress

If we look at the contents of the $queryJSON variable, we can see the resource types

specified in the hashtable, along with the tag values.

PS C:\> $queryJSON

{"ResourceTypeFilters":["AWS::EC2::Instance","AWS::S3::Bucket"],"TagFilters":

[{"Key":"Application","Values":["MyApplication"]}]}

ChAptEr 15 SyStEMS MAnAgEr BASICS

https://docs.aws.amazon.com/ARG/latest/userguide/supported-resources.html
https://docs.aws.amazon.com/ARG/latest/userguide/supported-resources.html

427

Next, we’ll define our query type.

$queryType = [Amazon.ResourceGroups.QueryType]::TAG_FILTERS_1_0

Tip If you receive an invalid operation exception in powerShell telling you that
it is unable to find [Amazon.resourcegroups.Querytype], then you are most likely
using an older version of the AWS powerShell module which is missing the object
we are trying to create. the way to fix this error is to update your AWS powerShell
module.

Now it’s time to put it all together into a resource query object. We’ll do that by using

New-Object and assigning $queryType and $queryJSON to the type and query properties,

respectively.

$resourceQuery = New-Object Amazon.ResourceGroups.Model.ResourceQuery

$resourceQuery.Type = $queryType

$resourceQuery.Query = $queryJSON

Finally, we can create our resource group using New-RGGroup and passing our

resource query object.

New-RGGroup -DescNew-RGription "My Resource Group Description" -Name

"MyFirstResourceGroup" -ResourceQuery $resourceQuery -Region us-east-1

 Updating Resource Groups
Let’s take a look at how to update a resource groups. In the previous section, we

constructed a query with hashtables and converted the hashtables to JSON. An

alternative method is to pass the query as a string already formatted as JSON.

We’ll begin by defining our query type.

$queryType = [Amazon.ResourceGroups.QueryType]::TAG_FILTERS_1_0

Then we’ll create a resource query object, and pass $queryType, which is the query

type we just defined.

$resourceQuery = New-Object Amazon.ResourceGroups.Model.ResourceQuery

$resourceQuery.Type = $queryType

ChAptEr 15 SyStEMS MAnAgEr BASICS

428

We’re going to pass the query as a JSON-formatted string. In the previous example,

we passed EC2 instances and S3 buckets as the resource type filters; this time let’s limit

to just EC2 instances.

$resourceQuery.Query = '{"ResourceTypeFilters":["AWS::EC2::Instance"],

"TagFilters":[{"Key":"Department"}]}'

Once we have our new resource query object, we can update the

resource group query by passing the resource query and resource group name to

Update-RGGroupQuery.

Update-RGGroupQuery -ResourceQuery $resourceQuery -GroupName

"MyFirstResourceGroup" -Region us-east-1

 Finding Resources with a Resource Query
There may be times when you want to test a resource query or quickly search for

resources without first creating a resource group. Using Find-RGResource, you can do

just that. Just as we did before, we’ll define a query type for tag filters.

$queryType = [Amazon.ResourceGroups.QueryType]::TAG_FILTERS_1_0

Then we’ll create a new resource query object using New-Object and set its type

property to $queryType and also pass the query JSON.

$resourceQuery = New-Object Amazon.ResourceGroups.Model.ResourceQuery

$resourceQuery.Type = $queryType

$resourceQuery.Query = '{"ResourceTypeFilters":["AWS::EC2::Instance"],

"TagFilters":[{"Key":"Department"}]}'

Finally, we’ll pass the resource query object to Find-RGResource.

Find-RGResource -ResourceQuery $resourceQuery

 -Region us-east-1

ChAptEr 15 SyStEMS MAnAgEr BASICS

429

 Listing Resource Groups
To list resource groups in your account, use Get-RGGroupList which returns the name,

description, and ARN of the groups.

Get-RGGroupList -Region us-east-1

 Deleting Resource Groups
Use Remove-RGGroup to delete groups. PowerShell will ask you to confirm the action to

be sure you really want to delete the group. You can use the –Force switch to override the

confirmation.

Remove-RGGroup -GroupName "MyFirstResourceGroup" -Region us-east-1

Confirm

Are you sure you want to perform this action?

Performing the operation "Remove-RGGroup (DeleteGroup)" on target

"MyFirstResourceGroup".

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default

is "Yes"): Y

Description GroupArn Name

----------- -------- ----

Test Description arn:aws:reso... MyFirstResourceGroup

 Listing Resources in a Resource Group
There are a few ways to view resources in resource groups. With the Systems Manager

Console, you get a rich visual view of your resources. For scripting and automation,

you’ll want to use Get-RGGroupResourceList and pass the group name.

Get-RGGroupResourceList -GroupName "MyFirstResourceGroup" -Region us-east-1

| Format-List

ResourceArn : arn:aws:ec2:us-east-1:12...:instance/i-11...

ResourceType : AWS::EC2::Instance

ChAptEr 15 SyStEMS MAnAgEr BASICS

430

 Built-In Insights
Within the Systems Manager Console, under the “Resource Groups” section, you’ll find

Insights. We’ll go into detail on some of these in the next chapter, but there’s one feature

here that directly ties into the Resource Groups we just learned about. That’s the Built-In

Insights as shown in Figure 15-1. From the Built-In Insights, you first choose a resource

group and can then view AWS Config rule compliance, Resource compliance, and Config

history. This is a powerful feature to keep track of your resources and the changes made

to them.

 Session Manager
Using Session Manager, you’re able to connect to your Windows and Linux EC2

instances with a powerful web-based interactive shell. We’ll take a look at Session

Manager with a Windows instance, which gives us a PowerShell command-line interface

in a web browser!

Tip Session Manager gives you command-line access to your instances. If you
typically use rDp or SSh to run command and scripts, you may be able to keep
those inbound ports closed and just use Session Manager instead!

Figure 15-1. The Built-In Insights within AWS Systems Manager Console

ChAptEr 15 SyStEMS MAnAgEr BASICS

431

 Connecting with Session Manager
Head over to the Systems Manager Console and, as shown in Figure 15-2, you’ll find

Session Manager under the Actions. You can also go directly via the URL https://

console.aws.amazon.com/systems-manager/session-manager.

Figure 15-3 shows you the Preferences tab. You have the option to set an S3 bucket

for storing output, configure encryption, and enable CloudWatch logging.

Figure 15-2. The AWS Systems Manager Console, where Session Manager can be
found

Figure 15-3. The Session Manager Preferences tab allows you to configure a
location for storing output and enabling CloudWatch Logs

ChAptEr 15 SyStEMS MAnAgEr BASICS

https://console.aws.amazon.com/systems-manager/session-manager
https://console.aws.amazon.com/systems-manager/session-manager

432

Back on the Sessions tab in Figure 15-4, you’ll see a list of sessions and their status.

On the upper right of the Session Manager Console, you’ll see the Start session

button as shown in Figure 15-5. Click the button and select an instance to connect to.

Figure 15-4. The Sessions tab shows you a list of current sessions

Figure 15-5. The Start session button allows you to begin a new session

ChAptEr 15 SyStEMS MAnAgEr BASICS

433

Once connected, as in Figure 15-6, you’ll have a regular PowerShell session in your

web browser. From here, you can run any of the usual commands you would run on an

instance. Two great aspects of this feature are that you don’t need remote desktop and

you don’t need to open port 3389 on your security group.

Note Connecting to an instance with Session Manager requires that you have
the Systems Manager agent installed and running on your instance. the agent
is preinstalled on Amazon-provided AMIs by default. you’ll also need to launch
your instance with an instance profile that has Systems Manager permissions
associated with it. See the previous section in this chapter on “Creating a Systems
Manager IAM instance profile.”

Figure 15-6. A PowerShell session from your instance in a web browser

ChAptEr 15 SyStEMS MAnAgEr BASICS

434

 Parameter Store
Parameter Store is a powerful shared feature within AWS Systems Manager and is

designed to store configuration parameters for anything you build in the cloud. People

often use it for application settings, database connection strings, passwords, license keys,

and other runtime parameters. Parameter Store also features public parameters that can

help you find the latest Windows or Linux AMI. You’ll find Parameter Store at the bottom

of the AWS Systems Manager Console, under Shared Resources as shown in Figure 15-7.

 Using Parameter Store
A parameter’s name follows a hierarchical format. This allows you to get all parameters

matching the hierarchical path. You create entries in Parameter Store with Write-

SSMParameter, though keep in mind as with most AWS resources, your parameters are

stored in the region you create them.

Write-SSMParameter -Name "/Test/ParameterName" -Description

"MyParameterDescription" -Value "ParameterValue" -Type String -Region us- east- 1

Now, let’s look at using that hierarchical path to get any parameters that begin with /

Test. This returns a parameter object where the value we set is stored in the value property.

Get-SSMParametersByPath -Path "/Test" -Region us-east-1

If you want to get the specific parameter, then Get-SSMParameter is the right cmdlet

here, and we just need to pass the parameter name.

Get-SSMParameter -Name "/Test/ParameterName" -Region us-east-1

Figure 15-7. Parameter Store can be found under the Shared Resources menu

ChAptEr 15 SyStEMS MAnAgEr BASICS

435

Finally, to remove a parameter, you call Remove-SSMParameter. PowerShell

will prompt you to confirm. If you would like to suppress the confirmation prompt,

remember to use the –Force switch.

Remove-SSMParameter -Name "/Test/ParameterName" -Region us-east-1

 Finding the Latest Windows AMI
One of the Parameter Store features I use the most is finding the latest Windows AMI

published by Amazon using a public parameter. Let’s take a look at how this works

using Get-SSMParametersByPath, which will return all the entries with the path /aws/

service/ami-windows-latest, and the respective AMI Ids.

Get-SSMParametersByPath -Path "/aws/service/ami-windows-latest" -region

us- east- 1

From the list returned by Get-SSMParametersByPath, we can pick a specific

parameter and use Get-SSMParameter to return the AMI ID for that specific entry.

Get-SSMParameter -Name /aws/service/ami-windows-latest/Windows_Server-2016-

English-Full-Base -region us-east-1

 Finding the Latest Linux AMI
We saw how we were able to retrieve the latest Windows AMI using Get- SSMParametersByPath,

we can do the same for Amazon Linux AMIs which are under the path /aws/service/

ami-amazon-linux-latest:

Get-SSMParametersByPath -Path "/aws/service/ami-amazon-linux-latest"

-region us-east-1

 Referencing Values with Systems Manager
Systems Manager has quite a few capabilities such as Run Command, Automation, and

State Manager where you can reference Parameter Store values by using a specific syntax

of {{ssm:ParameterName}}.

ChAptEr 15 SyStEMS MAnAgEr BASICS

436

For a parameter with the name of /Test/ParameterName, you would use the

following syntax:

{{ssm:/Test/ParameterName }}

We’ll dive deeper into Run Command, Automation, and State Manager in the next

couple of chapters, so remember that syntax for Parameter Store.

EXERCISE 15.1: LAUNCH AN EC2 INSTANCE WITH THE LATEST AMI

When running Windows, it’s important to use the latest AMI which contains the latest Microsoft

Updates along with the latest drivers for Amazon EC2. If you’ve ever run get-EC2Image without

specifying a filter or specific image ID for an AMI, you’ll know that there are quite a few AMIs

available! If you’re new to AWS, it can indeed be difficult to determine which AMI to use when

launching a new Amazon EC2 Instance.

In this exercise, we’ll be using parameter Store to quickly and easily find the latest Windows AMI

and launch a new instance using it. In order to keep track of this new instance, we’ll also use

what we learned about tagging an EC2 instance in earlier chapters to apply a couple of tags.

Write Some Reusable Values to Parameter Store

First, let’s create a variable to use for our region. then we’ll store a few values in parameter

Store to reuse in our script.

$region = "us-east-1"

the first value will be the name of our application.

Write-SSMParameter -Name "/Test/Application/Name" -Description "The

application name." -Value "MyTestApplication" -Type String -Region $region

the second value is what we’ll use to set the name of our application server instance.

Write-SSMParameter -Name "/Test/Application/ServerName" -Description "The

application server name." -Value "MyTestApplicationServer" -Type String

-Region $region

third, we’ll need to set the instance type to use when spinning up an EC2 instance for the

application server. We’ll set this in parameter Store, so when we need to scale up the instance

type in future launches, we can do so without needing to modify the script.

ChAptEr 15 SyStEMS MAnAgEr BASICS

437

Write-SSMParameter -Name "/Test/Application/ServerInstanceType" -Description

"The application server instance type." -Value "t3.large" -Type String

-Region $region

Get the Parameter Store Values

here, we’re going to grab the application server name, the application name, and instance

type from parameter Store.

$applicationServerName = (Get-SSMParameter -Name "/Test/Application/

ServerName" -Region $region).Value

$applicationName = (Get-SSMParameter -Name "/Test/Application/Name" -Region

$region).Value

$instanceType = (Get-SSMParameter -Name "/Test/Application/

ServerInstanceType" -Region $region).Value

Create a Tag Specification for Our New Instance

Let’s create a name and application tag using a couple of hashtables and use our parameter

Store values to set them.

$nameTag = @{Key="Name"; Value=$applicationServerName}

$applicationTag = @{Key="Application"; Value=$applicationName}

In this step, we’ll create a tag specification using new-Object and reference the tag

specification type. then we’ll set the resource type to instance, since this is being used with

an EC2 instance.

$tagSpec = New-Object Amazon.EC2.Model.TagSpecification

$tagSpec.ResourceType = "instance"

now it’s time to add the hashtables we created earlier.

$tagSpec.Tags.Add($nameTag)

$tagSpec.Tags.Add($applicationTag)

ChAptEr 15 SyStEMS MAnAgEr BASICS

438

Find the Latest AMI Using Parameter Store

to find the latest AMI from parameter Store, we’ll need to reference the parameter path.

parameterpath.

$parameterPath = "/aws/service/ami-windows-latest/Windows_Server-2016-

English-Full-Base"

next, we’ll use the parameter path we just defined with get-SSMparameter and store the

result. the object returned has a few different properties and we only need the image ID for

the AMI in the next step, so we’ll use the value property.

$latestImageId = (Get-SSMParameter -Name $parameterPath -Region $region).Value

Launch the EC2 Instance

Using our tag specification and latest Windows AMI, we’re now ready to launch an EC2

instance. We’ll do that with new-EC2Instance.

$newInstance = New-EC2Instance -ImageId $latestImageId -InstanceType

$instanceType -TagSpecification $tagSpec -Region $region

Finally, we can assign the runningInstances property of the newly created instance to a

variable.

$runningInstance = $newInstance.RunningInstance

If we look at this $runningInstance variable, we will see details for the running instance. If we

wanted to build more automation around our running instance, we could use this variable to

pass the Instance ID to another function. For now, we’ll keep it simple and stop here.

now we have seen how easy it is to create parameter Store values and use them to launch

an EC2 Instance. Our instance has two tags, the first one is a name that shows up in the main

EC2 Console view, and the second is an application tag that we’ll use in the next exercise.

ChAptEr 15 SyStEMS MAnAgEr BASICS

439

EXERCISE 15.2: CREATING AND USING A RESOURCE GROUP

When building in the cloud with all the different AWS services, we need an easy way to group

all of our resources together. Luckily, we can use resource groups to do just that!

Creating a Resource Group

Begin by creating a region variable and retrieving the application name from parameter Store.

remember, we wrote to parameter Store in Exercise 15.1.

$region = "us-east-1"

$applicationName = (Get-SSMParameter -Name "/Test/Application/Name" -Region

$region).Value

next, we’ll create our tag filter and query hashtables.

$tagFilter = @{}

$tagFilter["Key"] = "Application"

$tagFilter["Values"] = @($applicationName)

$query = @{}

$query["ResourceTypeFilters"]=@("AWS::EC2::Instance", "AWS::S3::Bucket")

$query["TagFilters"]=@($tagFilter)

Since the query accepts a JSOn-formatted string, we’ll convert our hashtable to JSOn, with a

depth of 4, and the compress switch to remove whitespace.

$queryJSON = $query | ConvertTo-Json -Depth 4 –Compress

now we can create our resource query.

$queryType = [Amazon.ResourceGroups.QueryType]::TAG_FILTERS_1_0

$resourceQuery = New-Object Amazon.ResourceGroups.Model.ResourceQuery

$resourceQuery.Type = $queryType

$resourceQuery.Query = $queryJSON

Finally, we’re going to create the resource group using the same application name to prepend

the name of the resource group.

New-RGGroup -Name "$applicationName -ResourceGroup" -Description "My Resource

Group Description" -ResourceQuery $resourceQuery -Region $region

ChAptEr 15 SyStEMS MAnAgEr BASICS

440

Listing Resources in a Resource Group

In this next activity, we are going to use the resource group we just created to list what

resources are picked up by the query. First, we’ll create a variable for our region.

$region = "us-east-1"

then we’ll grab our application name from parameter Store.

$applicationName = (Get-SSMParameter -Name "/Test/Application/Name" -Region

$region).Value

Finally, we’ll get the resources in our resource group.

Get-RGGroupResourceList -GroupName "$applicationName -ResourceGroup" -Region

$region

remember, you can also view your resources using the “resource groups” section of the

Systems Manager Console at https://console.aws.amazon.com/resource-groups/.

In this exercise you learned how to use resource groups to group resources for an application

using a common tag. to better explore how resource groups can help you manage your

resources, you can try tagging an Amazon S3 bucket with the same tag as the resource group

query and see if it shows up in the resource group.

 Summary
We saw that Resource Groups are a powerful way to group your AWS resources by using

queries based on tags. With Built-In Insights, we saw how we can use our Resource

Groups to look at some useful insights that are built right into the Systems Manager

Console. Taking a look at Session Manager, we learned how we can run PowerShell from

a web-based console without the need for RDP to our Windows instance. We wrapped

up the chapter with Parameter Store and learned how to find the latest Windows or

Linux AMIs, store custom application settings, and use those settings in our script. These

are just a few of Systems Manager’s powerful tools to help you manage your fleet of

resources.

In the next chapter, we’ll continue to dive into Systems Manager, occasionally

coming back to both Parameter Store and Resource Groups as we discuss the different

features that integrate with them.

ChAptEr 15 SyStEMS MAnAgEr BASICS

https://console.aws.amazon.com/resource-groups/

441
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_16

CHAPTER 16

Systems Manager: Run
Command, Automation,
and State Manager
AWS Systems Manager includes several powerful features which can help you manage

fleets of Amazon EC2 instances. In this chapter, we’ll take a look at AWS Systems

Manager Run Command, Automation, and State Manager which are all built upon an

common object known as Systems Manager (SSM) documents. Since SSM documents

are a common thread between all these features, it makes sense to dive into them first.

So we’ll look at what documents are and how to work with them, and then we’ll see how

they are used with Run Command, Automation, and State Manager.

Finally, we’ll end the chapter with an exercise that shows you how to start an

automation that builds an updated Windows AMI.

Note The previous chapter covered AWS Systems Manager basics which also
included an important prerequisite, the IAM instance profile. By default, AWS
Systems Manager isn’t able to do anything with your EC2 Instances, so to enable
connectivity between the AWS Systems Manager and the Amazon SSM Agent on
your EC2 instances, you’ll need that IAM instance profile discussed in the previous
chapter, with the correct IAM role attached.

442

 AWS Systems Manager (SSM) Documents
Before we dive into Run Command, Automation, and State Manager, let’s go over AWS

Systems Manager (SSM) documents. SSM documents are a JSON based object used by

the various features within AWS Systems Manager and define how actions are performed

by Systems Manager.

There are a good number of predefined documents provided by Amazon which

can help you manage your fleet of Amazon EC2 instances and perform all sorts of

activities. SSM documents also have the ability to use parameters which allow you to

pass configuration settings at runtime. Let’s talk about the different document types and

then look at how to work with these documents using either the AWS Systems Manager

Console or PowerShell.

 SSM Document Types
SSM documents come in a few different types which correspond to specific Systems

Manager features. Document types can include command documents, policy

documents, and automation documents which we’ll be learning about later in this

chapter.

A printed list of document types might never be up to date since Systems Manager,

like many AWS Services, grows and has new feature added. These features might

introduce new document types or use existing ones. As new features are added, you

can always take a look at the “AWS Systems Manager User Guide” https://docs.aws.

amazon.com/systems-manager/latest/userguide/sysman-ssm-docs.html which gives

you information on the various document types.

 Command Documents

Command documents define the commands that the SSM Agent should run on a

targeted instance. Both Run Command and State Manager use these types of documents.

The command document AWS-RunPowerShellScript, for example, allows you to execute

PowerShell commands on one or more instances in your fleet.

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-ssm-docs.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-ssm-docs.html

443

 Policy Documents

Policy documents are used by State Manager to enforce policies on your targeted

instances. A policy is basically a configuration that you define, and Systems Manager

makes sure that your instances match that configuration. An example use of policy

documents would be to configure newly launched instances to match a standard

configuration, optimize instances in an Auto Scaling group with a certain configuration,

or even join Windows instances to a domain.

 Automation Documents

Automation documents are used by Systems Manager Automation, a feature that you

can use to automate systems management workflows. One popular use of Systems

Manager Automation is to create custom AMIs by defining steps that can launch the

latest Windows AMI from Amazon, add your custom software to it, update it, and then

create a new AMI from that updated instance.

 Working with Documents in the AWS Systems Manager
Console
Let’s open up the AWS Systems Manager Console using our web browser and going

to https://console.aws.amazon.com/systems-manager. If we look under Shared

Resources, we’ll see a link to the Documents page, where we can browse any documents

we’ve created as well as those created by Amazon (Figure 16-1). From here we can also

create a new document by clicking the Create document button.

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

https://console.aws.amazon.com/systems-manager

444

When we click the name of a document in the list, such as AWS-AttachEBSVolume,

we’ll be taken to a details page for that document (Figure 16-2). This details page

shows us the Description, Parameters, Permissions, Content, Versions, and Tags for the

document.

Figure 16-1. Documents in the AWS Systems Manager Console

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

445

If we click the Parameters tab, we can see the parameters that the document accepts.

Some parameters might be required, while others are optional. These are defined

by the document author within the document’s content. In this case, we’re looking at

an automation document created by Amazon. Automation documents (to little

surprise) are used by Systems Manager Automation. Now let’s take a look at the Content

tab (Figure 16-3).

Figure 16-2. Automation Document Parameters in the AWS Systems Manager
Console

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

446

We can see that the Content tab shows us a document version (not to be confused

with the schema version), along with a blob of JSON.

The JSON content defines parameters and actions for the document and include a

schema version. This schema version is important since the document schema might

change with newer versions of Systems Manager to support new features. So if you’re

looking at two documents and notice the formats are different, look at the document

type and the schema version.

Now, scroll down through the JSON, you’ll see a section where the steps of the

document are defined (Figure 16-4). For automation documents with a schema version

of 0.3, each step is made up of a step name, actions, and inputs. If we go back and look at

a command document with a version of 1.2, AWS-ApplyPatchBaseline, for example, we’ll

see it not only has different schema version, but the JSON structure is also a bit different.

Figure 16-3. Automation Document Content in the AWS Systems Manager
Console

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

447

Documents can have different schema versions, and each version can be used with

a specific document type; we can see a mapping of document types and the schemas

that they can use in Table 16-1.

Figure 16-4. Command Document Content in the AWS Systems Manager
Console

Table 16-1. AWS Systems Manager

Document Schema Versions

Document Type Uses Schema Versions

Command 1.2, 2.0, 2.2

Automation 0.3

policy 2.0

Each schema version may have a different structure, support different features,

and may use different section names in the content. You can read more about these

document schemas and their features on the “AWS Systems Manager User Guide”

 https://docs.aws.amazon.com/systems-manager/latest/userguide/document-

schemas- features.html.

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

https://docs.aws.amazon.com/systems-manager/latest/userguide/document-schemas-features.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/document-schemas-features.html

448

 Working with Documents Using PowerShell
While the AWS Systems Manager Console provides a rich GUI interface to browse and

work with documents, often we’ll want a programmatic way to automate our work with

PowerShell scripts.

 Listing SSM Documents

We can easily list documents using Get-SSMDocumentList, which returns a list of

documents and includes properties such as document name, owner, and the type of

document.

$documents = Get-SSMDocumentList -Region us-east-1

To see only the different types of documents available, we can use Group-Object

along with the output of Get-SSMDocumentList.

$documents | Group-Object -Property DocumentType | Select-Object Name, Count

 Listing SSM Documents with Document Filters

If we want to get a list of documents that match certain filter criteria, we can do so

with a document filter. For example, to get all the command documents, create an

Amazon.SimpleSystemsManagement.Model.DocumentFilter object. Then set the key to

DocumentType, and set the value to Command. When we use –DocumentFilterList to pass

the document filter to Get-SSMDocumentList, we’ll only see command documents.

$documentFilter = New-Object Amazon.SimpleSystemsManagement.Model.

DocumentFilter

$documentFilter.Key = "DocumentType"

$documentFilter.Value = "Command"

Get-SSMDocumentList -DocumentFilterList $documentFilter -Region us-east-1

We can also combine document filters in an array. This allows us to filter on multiple

properties. Say, for instance, we want to list all command documents that begin with

“AWSSupport”.

$docTypeFilter = New-Object Amazon.SimpleSystemsManagement.Model.

DocumentFilter

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

449

$docTypeFilter.Key = "DocumentType"

$docTypeFilter.Value = "Command"

$docNameFilter = New-Object Amazon.SimpleSystemsManagement.Model.

DocumentFilter

$docNameFilter.Key = "Name"

$docNameFilter.Value = "AWSSupport"

$docFilters = @($docTypeFilter,$docNameFilter)

$documents = Get-SSMDocumentList -DocumentFilterList $docFilters -Region

us-east-1

 Getting an SSM Document Object

To take a closer look at a document, we can use Get-SSMDocument and pass it the name

of a document, in this case we’ll look at AWS-RunPowerShellScript. One detail we can

see is that the content property is the same JSON string containing details that define the

document actions similar to what we saw on the Content tab in the console.

$ssmDoc = Get-SSMDocument -Name "AWS-RunPowerShellScript" -Region us-east-1

$ssmDoc.Content

If you’d prefer to see the content formatted as YAML instead of JSON, you can set the

-DocumentType parameter to YAML.

Get-SSMDocument -Name "AWS-RunPowerShellScript" -DocumentFormat "YAML"

-Region us-east-1

 Creating a New SSM Document

When we want to create a new SSM Document, we must first create the document JSON

content. A command document with a schema version of 2.2 looks something like this:

{

 "schemaVersion": "2.2",

 "description": "This is an example Run Command document.",

 "parameters": {

 "MyParameter": {

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

450

 "type": "String",

 "description": "(Optional) An example parameter.",

 "default": "Hello World!",

 "maxChars": 256

 }

 },

 "mainSteps": [

 {

 "name": "MyNewCommandDocument",

 "action": "aws:runPowerShellScript",

 "precondition": {

 "StringEquals": [

 "platformType",

 "Windows"

]

 },

 "inputs": {

 "timeoutSeconds": 300,

 "runCommand": [

 "Write-Host '{{MyParameter}}'",

 "Write-Host 'This is a new Run Command document'"

]

 }

 }

]

}

Then using New-SSMDocument, we would create a new document with our JSON

content and set the name of the document and the correct document type (in this case,

we are creating a Run command document, so we’ll set it to Command).

$docJson = Get-Content .\MyNewCommandDocument.json | Out-String

New-SSMDocument -Content $docJson -DocumentType Command -Name

"MyNewCommandDocument"

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

451

 Run Command
Run Command is one of the oldest and original AWS Systems Manager features. It’s

both powerful and secure, giving you the ability to run commands on your Amazon EC2

Instances and on-premises computers. A Run command document simply includes

the details and instructions needed for the Amazon SSM Agent to perform actions

on your behalf. As we’ll learn later, Automation, State Manager, and other Systems

Manager features build upon Run Command as a foundation. You’ll find there are many

documents predefined and published by Amazon. We also saw how you can create your

own documents to meet your specific needs. You might want to use Run Command

to enable server roles, install applications, perform routine maintenance, or even

troubleshoot issues.

Note The following sections require your EC2 Windows Instance have an IAM
instance profile with the appropriate roles and trust in order for AWS Systems
Manager to function. If you skipped the previous chapters on IAM and Systems
Manager Basics, it might be a good idea to go back and review those. Without the
IAM instance profile, the Amazon SSM Agent on your EC2 instances won’t be able
to communicate with the backend services.

 Run Command Using the AWS Systems Manager Console
If we go back to the AWS Systems Manager Console, under the Actions sub-heading,

we’ll find Run Command (Figure 16-5).

Figure 16-5. Run Command in the AWS Systems Manager Console

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

452

On the Run Command page, we can run a new command, view currently running

commands, and view command history. To run a new command, we simply click the

Run command button and we’ll be taken to the next page which shows us a list of

command documents that we can select from (Figure 16-6).

Figure 16-6. Running a command in the AWS Systems Manager Console

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

453

As we learned earlier, we can click the Name of a command document, and we will

see a details page. Now if we want to run a command document, we must click the radio

button to select it. Let us look closer at AWS-FindWindowsUpdates, a document which

searches for missing Windows Updates on an instance we choose. Once selected, we

can scroll down the page and see document details including its Command parameters

(Figure 16-7).

These Command parameters map to the command document’s parameters we

discussed earlier in the section on SSM Documents. The AWS Systems Manager Console

shows parameters as input fields. For this document, we can see that the document

author has added two parameters, one sets the Update Level and the other specifies

Microsoft Knowledge Base (KB) articles. Continuing to scroll down, we’ll see the Targets

section (Figure 16-8).

Figure 16-7. Command parameters for running a command

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

454

This is where we define which instances (or targets) we want to run the

command on. We can use two methods for selecting targets. We can use a tag, and

any instances with that tag will be selected, or we can manually choose manually

using instance ID, activation ID, Amazon SSM Agent version, IAM role name,

platform, or even resource type.

In the other parameters section, we can optionally enter a comment or set the

timeout for the command. We’ll also find a rate control section, which gives us options to

limit the number of concurrent targets (this is useful if we are to throttle our command

and have only a few run the command at a time). Error threshold also gives us the ability

to stop running the command if we get a set number of errors (or percentage).

From here, we also get output options which can enable writing command output to

an S3 bucket, CloudWatch Logs, and even trigger an SNS notification that we can use to

kick off other workflows or connect to other AWS services.

Finally, there’s a Run button at the bottom of the page that runs the command. Once

running, we can view the status of the command from the console, and eventually when

it’s done running, we can look at the output.

Figure 16-8. Targets for running a command

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

455

 Run Command Using PowerShell
Since this is a PowerShell book, let’s take a deeper look at how we can use Run

Command from our PowerShell scripts. There’s one particular command document

that we should look at, and that’s AWS-RunPowerShellScript. As the name implies, this

document lets you run PowerShell scripts on your target instances. If you want to run

shell commands on Linux, there’s a document for that too!

Now we can run this command document using the console just as we learned a

little bit ago, but let’s look at how we can run it using PowerShell.

The document has a few parameters which can be seen in the content section of the

document properties either by reading the JSON content or by converting it to an object

using ConvertFrom-JSON.

$ssmDoc = Get-SSMDocument -Name "AWS-RunPowerShellScript" -Region us-east-1

$ssmDoc.Content | ConvertFrom-Json | Select-Object parameters

The parameters you’ll find in the content property match up with those parameters

you’ll find in AWS Systems Manager Console (Figure 16-9).

Figure 16-9. Parameters for AWS-RunPowerShellScript

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

456

We can see that the only required parameter is the one named commands. This is a

string list (or array) of PowerShell commands. There are also two optional parameters,

workingDirectory and executionTimeout. Working directory is simply the path to

a working directory on your instance. So if you want your script to start in a specific

directory, you will set that here. Execution timeout has a default value of 1 hour,

which means if your script is going to run longer than an hour, you’ll need to set this

accordingly; otherwise, execution of the command might timeout. The maximum

timeout you can set is 48 hours.

 Sending an SSM Command

Now, let’s send an SSM command that tells the Amazon SSM Agent to run some

PowerShell script using, you guessed it, the AWS-RunPowerShellScript document.

For convenience, let’s define an instance ID in a PowerShell variable. Remember,

you must use an instance ID that’s running and has an appropriate IAM instance profile

attached. Then we’ll define a variable which represents the document parameters. The

only required one is commands, and we’ll use it to pass Get-Date and Get-Service.

$instanceId = "your instance id"

$parameter = @{'commands'=@('Get-Date', 'Get-Service')}

Next, let’s use Send-SSMCommand to run the PowerShell commands on your instance.

Pay close attention to the region parameter; it must be the same region as your instance.

Also, by returning the result into a variable, you can easily use the CommandId later to get

status of the command. In addition, if you pass an array of instance ids, you will run the

command on all of them.

$ssmCommand = Send-SSMCommand -DocumentName AWS-RunPowerShellScript

-Parameter $parameter -Comment 'Testing Run Command' -InstanceId

$instanceId -Region us-east-1

Examine the command output by printing the contents of the $ssmCommand variable.

You’ll see the status and status details are both pending. To get the status, we would use

Get-SSMCommand with the CommandId property.

Get-SSMCommand -CommandId $ssmCommand.CommandId –Region us-east-1

When the Status is no longer pending, you’re able to view command invocation

details with Get-SSMCommandInvocation.

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

457

$commandInvocation = Get-SSMCommandInvocation -CommandId $ssmCommand.

CommandId -Detail $true -Region us-east-1

The command invocation details have a property named CommandPlugins; if we

expand the property, we can see the output returned by our PowerShell commands.

$commandInvocation | Select-Object -ExpandProperty CommandPlugins

Handling Run Command Output

If output is longer than 2500 characters, it’ll be truncated. You’ll know it was truncated

because Systems Manager adds ---Output truncated--- as the last entry in the output

to let you know. You can get the full output in a couple of ways, either by using an S3

bucket or with CloudWatch Logs. Both of these methods require that your IAM instance

profile have the appropriate access roles to allow writing to the S3 bucket or CloudWatch

Logs depending on which you choose to use.

Sending Output to an S3 Bucket

To save the output in an S3 bucket, make sure your IAM instance profile has write access

to the S3 bucket, and use the –OutputS3BucketName property with Send-SSMCommand.

You’ll get the full output of the PowerShell commands stored in your bucket.

Send-SSMCommand -DocumentName AWS-RunPowerShellScript -Parameter $parameter

-Comment 'Testing Run Command' -InstanceId $instanceId -OutputS3BucketName

"MyTestBucket12345" -OutputS3KeyPrefix "SomeKeyPrefix" –Region us-east-1

Sending Output to CloudWatch Logs

To use CloudWatch Logs, configure the two CloudWatch properties of Send-SSMCommand

-CloudWatchOutputConfig_CloudWatchOutputEnabled and -CloudWatchOutputConfig_

CloudWatchLogGroupName. If we don’t pass a CloudWatch Log Group Name, Systems

Manager uses the default log group name /aws/ssm/<document name>. So in this case, it

would be /aws/ssm/AWS-RunPowerShellScript.

Send-SSMCommand -DocumentName AWS-RunPowerShellScript -Parameter

$parameter -Comment 'Testing Run Command' -InstanceId $instanceId

-CloudWatchOutputConfig_CloudWatchOutputEnabled $true -Region us-east-1

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

458

 AWS Systems Manager Automation
AWS Systems Manager Automation executes automation workflows that string together

actions to perform a more complex task. Automation uses SSM Documents much like

Run Command, and those documents can perform a wide variety of activities such as

creating a new instance, stopping that instance, updating it with the latest drivers or

patches, and then creating an AMI from that newly updated instance.

 User Access to Automation
If you are using an IAM user account, group, or role with administrator permissions, then

you should be able to use the Automation service without any access issues; otherwise,

you’ll need to grant your account, group, or role access to the Automation service. You

can grant access using an AWS managed policy named AmazonSSMFullAccess.

 Automation Roles
Much like Run Command, Automation needs an instance profile for any instances

that you are launching or targeting with an Automation. Creating that instance profile

is covered in the previous chapter under prerequisites. Remember, if you’re using

CloudWatch, SNS, or other AWS services with Automation, you’ll also need to grant

your instance profile access to those services. The “AWS Systems Manager User Guide”

also contains information on how to configure those needed roles and even provides

a CloudFormation template to get you started. See “Configuring Access for Systems

Manager Automation” at https://docs.aws.amazon.com/systems-manager/latest/

userguide/automation-setup-user.html.

 Listing Automation Documents
As we learned in the section on SSM documents, listing automation documents with

PowerShell can be done easily using the Get-SSMDocumentList command and a

document filter.

$docFilter = New-Object Amazon.SimpleSystemsManagement.Model.DocumentFilter

$docFilter.Key = "DocumentType"

$docFilter.Value = "Automation"

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

https://docs.aws.amazon.com/systems-manager/latest/userguide/automation-setup-user.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/automation-setup-user.html

459

$documents = Get-SSMDocumentList -DocumentFilterList $ docFilter -Region

us-east-1

$documents | Select-Object Name

To see the details for each document, look at “Systems Manager Automation

Documents Reference” located within the “Systems Manager User Guide” https://

docs.aws.amazon.com/systems-manager/latest/userguide/automation-documents-

reference-details.html.

 Starting an Automation Execution
To start an Automation workflow, we can use Start-SSMAutomationExecution and pass

it a document name and parameters. The specific parameters will vary depending on the

document.

$params = @{'InstanceId' = "i-12345", 'InstanceType' = "t3.xlarge"}

$execId = Start-SSMAutomationExecution -DocumentName "AWS-ResizeInstance"

-Parameter $params –Region us-east-1

This example uses the SSM automation document AWS-ResizeInstance which

executes the following steps:

• Creates a CloudFormation Stack

• Changes the Instances State to stopped

• Invokes a Lambda function that changes the Instance Size

• Changes the Instance State to Running

• Deletes the CloudFormation Stack

See the “Systems Manager User Guide” for details on each automation

document; for example, the details on AWS-ResizeInstance can be found at https://

docs.aws.amazon.com/systems-manager/latest/userguide/automation-aws-

resizeinstance.html.

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

https://docs.aws.amazon.com/systems-manager/latest/userguide/automation-documents-reference-details.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/automation-documents-reference-details.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/automation-documents-reference-details.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/automation-aws-resizeinstance.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/automation-aws-resizeinstance.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/automation-aws-resizeinstance.html

460

 Getting Automation Execution Status
We can view execution status of our automation using Get-SSMAutomationExecution

and pass it the automation execution ID we got from Start-SSMAutomationExecution.

Get-SSMAutomationExecution -AutomationExecutionId $execId

 AWS Systems Manager State Manager
Managing a fleet of instances, whether they are in the cloud or on-premises can be

challenging. State Manager can help you define policies and enforce those policies to

ensure your systems remain in the state you desire. Remember those documents we

were talking about? Well State Manager allows you to associate those documents with

your instances. You can add a schedule to do things like keep software up to date or

perform some routine maintenance task.

 Creating an Association
Let’s look at how we can use New-SSMAssociation to create an association with State

Manager. We’ll define a tag which will be used for the association (so any instances with

that tag will run the document), pass the document name, and create a schedule. This

association will run the AWS-UpdateSSMAgent document every 24 hours and target any

instances that have a tag named UpdateSSM with a value set to true.

$targetTags = @{Key = "tag:UpdateSSM"; Values = @("true")}

New-SSMAssociation -AssociationName TestAssociation1 -Name AWS-

UpdateSSMAgent -Target $targetTags -ScheduleExpression "rate(24 hours)"

State Manager supports a number of cron and rate expressions. Table 16-2 outlines

the field positions and possible values you can use to construct a cron expression. Cron

expressions, as shown in Table 16-3, are composed of six required fields separated by

spaces and can also feature a seventh optional field which represents seconds (and

comes first before the other six). For a few examples of cron expressions, see Table 16-4.

Rate expressions are a little different where you specify the rate and unit; to see some

examples of rate expressions, take a look at Table 16-5.

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

461

Table 16-4. Cron Examples for Systems Manager

Expression Meaning

cron(0/15 * * * ? *) Every 15 minutes

cron(0/30 * * * ? *) Every 30 minutes

cron(0 0/1 * * ? *) Every hour

cron(30 5 ? * * *) Every day at 5:30 a.m.

Table 16-3. Cron Field Positions for Systems Manager

Minutes Hours Day of the Month Month Day of the Week Year

* * * * * *

Table 16-2. Cron Expression Values for Systems Manager

Field Wildcards Possible Values

Minutes , - * / 0–59

hours , - * / 0–23

day of the Month , - * ? / L W 1–31

Month , - * / 1–12 or JAn–dEC

day of the Week , - * ? / L 1–7 or Sun–SAT

year , - * / 1970–2199

Table 16-5. Rate Examples for

Systems Manager

Expression Meaning

rate(30 minutes) Every 30 minutes

rate(1 hour) Every hour

rate(14 days) Every 14 days

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

462

To learn more about “Cron and Rate Expressions for Systems Manager,” check out the

user guide at https://docs.aws.amazon.com/systems-manager/latest/userguide/

reference-cron-and-rate-expressions.html.

EXERCISE 16.1: BUILD A WINDOWS AMI USING AUTOMATION

Amazon provides a great number of Windows AMIs that are maintained monthly and kept up

to date. There are cases where you may want to build your own customized AMI and keep it

up to date with the latest patches and AWS software. In this exercise, we are going to use AWS

Systems Manager Automation to take an AMI as input and build us a new AMI.

Create an IAM Instance Profile

We’ll create an IAM instance profile. If you already have one created, feel free to skip this and

substitute your instance profile throughout the exercise.

First, we’ll begin by defining our assume role policy, which allows the AWS Systems Manager

service (ssm.amazonaws.com) to assume the role we’re going to create.

$assumeRolePolicy = @"

{

 "Version": "2012-10-17",

 "Statement": {

 "Effect": "Allow",

 "Principal": {

 "Service": [

 "ec2.amazonaws.com",

 "ssm.amazonaws.com"

]

 },

 "Action": "sts:AssumeRole"

 }

}

"@

next, we’ll create a new role and apply the assume role policy document we defined in

$assumerolepolicy.

$role = New-IAMRole -RoleName "DemoSSMRole" -AssumeRolePolicyDocument

$assumeRolePolicy

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

https://docs.aws.amazon.com/systems-manager/latest/userguide/reference-cron-and-rate-expressions.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/reference-cron-and-rate-expressions.html

463

now, let’s add the AmazonEC2roleforSSM managed policy.

Register-IAMRolePolicy -RoleName $role.RoleName -PolicyArn

'arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforSSM'

To allow our managed instances to write to CloudWatch, we’ll also add the CloudWatch

Managed policy.

Register-IAMRolePolicy -RoleName $role.RoleName -PolicyArn

'arn:aws:iam::aws:policy/CloudWatchFullAccess'

once we’ve registered all the needed policies, let’s create the instance profile. This profile will

be attached to an Amazon EC2 instance and will enable the Amazon SSM Agent.

$instanceProfile = New-IAMInstanceProfile -InstanceProfileName

"DemoSSMInstanceProfile"

Finally, we’ll add the role to the instance profile.

Add-IAMRoleToInstanceProfile -InstanceProfileName $instanceProfile.

InstanceProfileName -RoleName $role.RoleName

Finding the Latest Windows Server 2019 AMI

While you can use your own custom AMI Id, let’s use the latest Windows Server 2019

AMI. remember parameter Store? We’ll go back to what we learned in the previous chapter to

use parameter Store which is kept up to date with the latest AMI Id in each region.

$parameterPath = "/aws/service/ami-windows-latest/Windows_Server-2019-

English-Full-Base"

$latestImageId = (Get-SSMParameter -Name $parameterPath -Region $region).

Value

Configure the Automation Document Parameters

Automation documents feature parameters, which allow you to pass values to the document.

We’ll be using the automation document AWS-updateWindowsAmi which has a number of

parameters; there are two in particular that we need to set to ensure the automation doesn’t

fail. That’s the source AMI Id, which will be used to launch an instance, and the IAM instance

profile we just created. The other parameters either have default values or are optional, so

we’ll leave them out to keep things simple.

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

464

$parameters = @{

 SourceAmiId=$latestImageId;

 IamInstanceProfileName="DemoSSMInstanceProfile";

}

Kick Off the Automation Document

Let’s kick off the automation and pass the parameters.

$execId = Start-SSMAutomationExecution -DocumentName "AWS-UpdateWindowsAmi"

-Parameter $parameters

Finally, let’s get Automation Execution Status to see progress of our automation workflow.

Get-SSMAutomationExecution -AutomationExecutionId $execId

When our automation is complete, we’ll find a new AMI that has been created which contains

the latest AWS drivers and Software, along with the latest Microsoft updates.

 Summary
In this chapter, we learned about SSM documents and how they are used with AWS

Systems Manager Run Command, Automation, and State Manager. We went through the

steps of taking an AMI and running it through an automation workflow that updated the

operating system and AWS software. In the next chapter, we’ll wrap up our look at AWS

Systems Managers with some of the remaining features we haven’t covered yet including

Patch Manager.

ChApTEr 16 SySTEMS MAnAgEr: run CoMMAnd, AuToMATIon, And STATE MAnAgEr

465
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_17

CHAPTER 17

Systems Manager:
Inventory and Patch
Manager
Two AWS Systems Manager features that help manage your fleet at scale are Systems

Manager Inventory and Systems Manager Patch Manager. With Systems Manager

Inventory, you can specify the type of metadata you want to collect from your instances,

which instances to collect it from, and when to collect it. AWS Systems Manager Patch

Manager gives you the tools you need to automate the process of scanning or installing

patches on your instances.

In this chapter, we’ll first look at how we can use AWS Systems Manager Inventory to

collect some information from our instances. Secondly, we’ll run through the basics of

configuring and using AWS Systems Manager Patch Manager to keep our instances up to

date on a regular schedule. Finally, we’ll end the chapter with two exercises. The first one

walks us through configuration of inventory, and the second one focuses on a common

patch management scenario.

Note AWS Systems Manager Inventory and AWS Systems Manager Patch
Manager both build on the concepts discussed in earlier chapters, specifically
Systems Manager prerequisites and AWS Systems Manager (SSM) documents.
These previous chapters covered an important prerequisite, the IAM instance
profile. By default, AWS Systems Manager is not able to do anything with your EC2
Instances; so to enable connectivity between the AWS Systems Manager and the
Amazon SSM Agent on your EC2 instances, you’ll need that IAM instance profile
discussed in those chapters, with the correct IAM role attached.

466

 AWS Systems Manager Inventory
Systems Manager Inventory gives you the ability to define metadata collection rules.

Assuming you’ve attached correct IAM instance profile needed by the Amazon SSM

Agent, inventory collection will occur based on the rules and schedule you specify. In

the next section, we’ll take a look at how we define those both in the console and using

PowerShell.

 Systems Manager Inventory in the Console
Open up the “AWS Systems Manager Console” at https://console.aws.amazon.com/

systems-manager, and you’ll find Inventory listed under the Insights sub-heading. See

Figure 17-1.

Figure 17-1. Finding Systems Manager Inventory in the console

Once you click Inventory, you’ll be taken to the AWS Systems Manager Inventory

Dashboard, where you can set up inventory or look at data. See Figure 17-2.

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

https://console.aws.amazon.com/systems-manager
https://console.aws.amazon.com/systems-manager

467

Figure 17-2. Systems Manager Inventory Dashboard in the console

 Creating an Inventory Association
Assuming you have one or more managed instances already running in a particular

region, here’s how you can enable Inventory by creating an Inventory Association. We

are going to focus on what’s referred to as a global inventory association, and that means

that all instances in a particular region will begin collecting inventory data. We can also

specify a specific instance, and we’ll see how to do that in the next few steps.

If you’d like to inventory all of your instances in a particular region, you can create a

global inventory association by using New-SSMAssociation and specifying a wildcard for

the Instance ID.

$target = @{Key = "InstanceIds"; Values = "*"}

We’ll define a schedule using the rate format.

$schExp = "rate(30 minutes)"

Define parameters that tell SSM what items to inventory (applications, AWS

components, etc.).

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

468

$params = @{

 applications='Enabled';

 awsComponents='Enabled';

 customInventory='Enabled';

 instanceDetailedInformation='Enabled';

 networkConfig='Enabled';

 services='Enabled';

 windowsRoles='Enabled';

 windowsUpdates='Enabled'

}

Then, we create an association for the AWS-GatherSoftwareInventory document,

passing the target, schedule, and parameters.

New-SSMAssociation -Name AWS-GatherSoftwareInventory -Target $target

-ScheduleExpression $schExp -Parameter $params -Region us-west-2

 Inventory Schemas
In order to understand what inventory types are available, we can look at the schemas

available to us in a particular region using Get-SSMInventorySchema.

Get-SSMInventorySchema -Region us-west-2

If we want to look at just the type names available in a nice list, we can simply look at

the TypeName property.

PS C:\> (Get-SSMInventorySchema -Region us-west-2).TypeName

AWS:AWSComponent

AWS:Application

AWS:ComplianceItem

AWS:File

AWS:InstanceDetailedInformation

AWS:InstanceInformation

AWS:Network

AWS:PatchCompliance

AWS:PatchSummary

AWS:ResourceGroup

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

469

AWS:Service

AWS:Tag

AWS:WindowsRegistry

AWS:WindowsRole

AWS:WindowsUpdate

When working with these schemas, we’ll need to know the attributes for each

schema type. We can do that by looking ata specific schema’s attributes.

PS C:\>(Get-SSMInventorySchema -TypeName "AWS:AWSComponent" -Region us-

west- 2).Attributes

DataType Name

-------- ----

string Name

string ApplicationType

string Publisher

string Version

string InstalledTime

string Architecture

string URL

To view the inventory schemas that support the use of an aggregator, we just pass

$true to the -Aggregator parameter. An aggregator groups and summarizes larger

amounts of inventory data.

Get-SSMInventorySchema -Aggregator $true -Region us-west-2

 Viewing Inventory Data
Once inventory has completed, we’ll want to look at what’s been collected. We can do

that using Get-SSMInventory.

Get-SSMInventory -Region us-west-2

For convenience, let’s assign the result to an array of Inventory Result Entity data

types, which helps us work with the data structure.

[Amazon.SimpleSystemsManagement.Model.InventoryResultEntity[]]$invResults =

Get-SSMInventory -Region us-west-2

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

470

To keep things simple, let’s look at the first object in the array.

$inventoryResultEntity = $invResults | Select-Object -First 1

Looking at the inventory result entity data structure, we can see two properties.

There’s an ID which corresponds to the Instance ID, and a data property.

PS C:\> $inventoryResultEntity | Format-List

Data : {[AWS:InstanceInformation, Amazon.SimpleSystemsManagement.Model.

InventoryResultItem]}

Id : i-1234567890

The Data property contains a key value pair. We can look at this property to see the

specific inventory schema data type (key) and inventory data (value). You might see

different data types and values depending on the specific inventory data that has been

collected in your account.

PS C:\>$inventoryResultEntity.Data | Format-List

Key : AWS:InstanceInformation

Value : Amazon.SimpleSystemsManagement.Model.InventoryResultItem

Now let’s look at the content stored within the value property.

$inventoryResultItem = ($inventoryResultEntity.Data).Values

$inventoryContent = $inventoryResultItem.Content

When we look at $inventoryContent, we can see various key value pairs which

contain our inventory data. For example, the AWS:InstanceInformation data type gives

us AgentType, AgentVersion, InstanceStatus, IpAddress, PlatformName, PlatformType,

and other relevant properties related to an Amazon EC2 Instance.

To look at a specific data type, for a specific instance, we can use Get-

SSMInventoryEntryList.

$instInv = Get-SSMInventoryEntryList -TypeName "AWS:InstanceInformation"

-InstanceId i-1234567890 -Region us-west-2

$instInv.Entries

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

471

You can also use Get-SSMInventoryEntryList with a filter.

$invFilter = New-Object -TypeName Amazon.SimpleSystemsManagement.Model.

InventoryFilter

To define the filter, simply set its properties which are a key, list of value, and type

(which defines how to evaluate the filter).

$invFilter.Key = "AWS:WindowsUpdate.HotFixId"

$invFilter.Values = @("KB4091664")

To set the type, we’ll create a InventoryQueryOperatorType object, which can be set

to Equal, NotEqual, BeginWith, LessThan, GreaterThan, or Exists.

$invFilter.Type = [Amazon.SimpleSystemsManagement.InventoryQueryOperator

Type]::Equal

Then, we just pass the type name, filter, instance ID to Get-SSMInventoryEntryList.

$instInv = Get-SSMInventoryEntryList -TypeName "AWS:WindowsUpdate" -Filter

$invFilter -InstanceId i-1234567890 -Region us-west-2

We can see the results by looking at the Entries property.

PS C:\>$instInv.Entries

Key Value

--- -----

Description Update

HotFixId KB4091664

InstalledBy NT AUTHORITY\SYSTEM

InstalledTime 2019-01-01T00:00:00Z

 Aggregating Inventory Data
Oftentimes, you’ll have a lot of inventory data and need to look at a summary (or

aggregate) of that data. We first need to create an InventoryAggregator object.

$inventoryAggregator = New-Object Amazon.SimpleSystemsManagement.Model.

InventoryAggregator

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

472

Then, we’ll need to set the expression property to a schema type along with an

attribute in the format “SchemaTypeName.Attribute”.

$inventoryAggregator.Expression = "AWS:InstanceInformation.PlatformType"

Now we can pass the aggregator to Get-SSMInventory.

$invAggResults = Get-SSMInventory -Aggregator $inventoryAggregator -Region

us-west-2

Let’s look at the values property of the object we get back.

$invAggResultItem = ($invAggResults.Data).Values

Now, look at the content property. If you have multiple Windows and Linux

instances that have run inventory, you’ll see a count of those.

PS C:\>$invAggResultItem.Content

Key Value

--- -----

Count 2

PlatformType Linux

Count 18

PlatformType Windows

 AWS Systems Manager Patch Manager
Keeping your running instances up to date can be a challenge, especially at scale. Having

a systems management solution at your fingertips can not only save you time, but keep

your infrastructure and applications secure. AWS Systems Manager Patch Manager

helps you automate the actions you’d normally have to take on your Windows and Linux

systems to keep them up to date.

Before we begin, we’ll dive a little deeper into some of the basic concepts of Patch

Manager: patch baselines, patch groups, and maintenance windows.

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

473

 Patch Baselines
There are two sorts of patch baselines with AWS Systems Manager, one is the default

baseline, and the other is a custom patch baseline. With the default baseline, you get a

set of predefined patch baselines for various operating systems. A custom patch baseline

is one that you define, and tell Patch Manager how and what to patch. This can give you

the granularity, for example, to make sure a certain operating system patch doesn’t take

down your application.

 Viewing Existing Patch Baselines

To view the patch baselines available to us in a given region, we can use Get-

SSMPatchBaseline, and it will return a list of our baselines in addition to the default ones

provided by AWS.

Get-SSMPatchBaseline -Region $region

In the list, we’ll see a number of patch baselines, including the default ones for

Windows and Amazon Linux.

BaselineDescription : Default Patch Baseline Provided by AWS.

BaselineId : arn:aws:ssm:us-west-2:280605243866:patchbaseline/

pb- 04fb4ae6142167966

BaselineName : AWS-DefaultPatchBaseline

DefaultBaseline : True

OperatingSystem : WINDOWS

BaselineDescription : Default Patch Baseline for Amazon Linux 2 Provided

by AWS.

BaselineId : arn:aws:ssm:us-west-2:280605243866:patchbaseline/

pb- 0e930e75b392d70da

BaselineName : AWS-AmazonLinux2DefaultPatchBaseline

DefaultBaseline : True

OperatingSystem : AMAZON_LINUX_2

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

474

 Creating a New Patch Baseline

To create a new custom patch baseline, we’ll need to set up a few variable first to make

things a little easier. First, we’ll set up a name, description, and tags for our new patch

baseline.

$pbName = "Development-Baseline"

$pbDesc = "My Patch Baseline"

$pbTags = @{Key="Environment";Value="Production"}

Now, we’ll need a couple of patch filters which consist of key/value pairs. For a list of

valid options, take a look at the class reference for Amazon.SimpleSystemsManagement.

Model.PatchFilter in the AWS SDK for .Net.

$pFilter1 = New-Object Amazon.SimpleSystemsManagement.Model.PatchFilter

$pFilter1.Key = "MSRC_SEVERITY"

$pFilter1.Values = @("Critical","Important")

$pFilter2 = New-Object Amazon.SimpleSystemsManagement.Model.PatchFilter

$pFilter2.Key = "CLASSIFICATION"

$pFilter2.Values = @("SecurityUpdates","Updates","UpdateRollups","Critical

Updates")

The patch filters will be grouped together in a patch filter group.

$pfGroup = New-Object Amazon.SimpleSystemsManagement.Model.PatchFilterGroup

$pfGroup.PatchFilters = @($pFilter1,$pFilter2)

Now we can create a patch rule. The Patch Compliance Level property can be set to

Critical, High, Medium, Low, Informational, or Unspecified.

$patchRule = New-Object Amazon.SimpleSystemsManagement.Model.PatchRule

$patchRule.ComplianceLevel = [Amazon.SimpleSystemsManagement.

PatchComplianceLevel]::HIGH

$patchRule.PatchFilterGroup = $pfGroup

$patchRule.ApproveAfterDays = 7

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

475

We’ll put the patch rule into an array of rules.

$patchRules = @($patchRule)

Finally, using the New-SSMPatchBaseline cmdlet, we can create our new patch

baseline using the variables we’ve just set up.

$pBaseline = New-SSMPatchBaseline -Name $pbName -Description $pbDesc

-OperatingSystem WINDOWS -Tags $pbTags -ApprovalRules_PatchRules

$patchRules -Region $region

 Deleting a Patch Baseline

To remove (or delete) a patch baseline, we simply use the Remove-SSMPatchBaseline

cmdlet and pass it a valid baseline ID. If you want to remove the patch baseline without

PowerShell prompting you to confirm, simply add the -Force switch.

Remove-SSMPatchBaseline -BaselineId pb-1234567890 -Region $region

 Patch Groups
When patching your servers, you may find yourself needing a way to group your

instances by some arbitrary grouping strategy.

Some common groupings might include

• Production, Testing, and Development Server Groups

• Frontend and Backend Server Groups

• Web and Database Server Groups

• Windows and Linux Server Groups

Patch groups are simply created with Amazon EC2 tags. If you have spent a lot of

time tagging your instances into some logical grouping, this capability gives you the

power to use those tags for your patch and update management needs.

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

476

 Viewing Patch Groups

To see patch groups (or a specific patch group), we use the Get-SSMPatchGroup cmdlet.

Get-SSMPatchGroup -Region $region

If we are looking for a high-level aggregated patch compliance state for a patch

group, then we can use the Get-SSMPatchGroupState cmdlet.

Get-SSMPatchGroupState -PatchGroup <patchGroup> -Region $region

 Registering a Patch Baseline to a Patch Group

For registering (or associating) a patch baseline to a patch group, we can use the

Register-SSMPatchBaselineForPatchGroup cmdlet and pass it the baseline ID, along

with a patch group name.

Register-SSMPatchBaselineForPatchGroup -BaselineId $pBaseline -PatchGroup

"Production" -Region $region

 Viewing Patch Baselines by Patch Group

When we need to find a patch baseline for a given patch group, we can use the Get-

SSMPatchBaselineForPatchGroup cmdlet.

Get-SSMPatchBaselineForPatchGroup -PatchGroup "Production" -Region $region

 Maintenance Windows
AWS Systems Manager Patch Manager uses maintenance windows to define when

software updates should be applied to instances. This allows us to pick a reasonable

schedule for any activities which might impact users or business processes. Maintenance

windows are defined with a schedule, a maximum duration, registered targets

(instances), and tasks. There are four distinct tasks we can use with maintenance

windows: Run Command, AWS Systems Manager Automation workflows, AWS Lambda

functions, and tasks within AWS Step Functions.

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

477

 Viewing Maintenance Windows

Listing all of the maintenance windows in a given account for a specific region is done

using the Get-SSMMaintenanceWindowList cmdlet.

Get-SSMMaintenanceWindowList -Region $region

Getting information for an existing maintenance window is done using the Get-

SSMMaintenanceWindow cmdlet and passing it an existing maintenance window ID.

Get-SSMMaintenanceWindow -WindowId <window ID> -Region $region

 Creating Maintenance Windows

When we want to create a maintenance window, we can do so by using the New-

SSMMaintenanceWindow cmdlet and passing a cron or rate expression as the schedule,

duration in hours, and cutoff which defines the number of hours before the end of a

window when SSM should stop scheduling new tasks.

$fridayNights = "cron(0 0 21 ? * FRI *)"

New-SSMMaintenanceWindow -Name "Production-Fridays" -Schedule $fridayNights

-Duration 1 -Cutoff 0 -Region $region

 Registering Instances with Maintenance Windows

In order for instances to be associated with a maintenance window, we must register

them using the Register-SSMTargetWithMaintenanceWindow cmdlet and pass a

maintenance window ID, target, owner information, and resource type.

Here, we’ll define a task target using a maintenance window target ID.

$taskTarget = @{Key="WindowTargetIds";Values=$mwTargetWed}

Then, we’ll create a task parameters hashtable that contains instructions for a scan

operation.

$taskParameters = @{}

$taskParam = New-Object Amazon.SimpleSystemsManagement.Model.

MaintenanceWindowTaskParameterValueExpression

$taskParam.Values = @("Scan")

$taskParameters.Add("Operation", $taskParam)

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

478

Finally, we can register the task with our maintenance window, where $mWinId is

our maintenance window ID.

Register-SSMTaskWithMaintenanceWindow -WindowId $mWinId -Target $taskTarget

-TaskArn "AWS-ApplyPatchBaseline" -TaskType RUN_COMMAND -MaxConcurrency 2

-MaxError 1 -Priority 1 -TaskParameter $taskParameters -Region $region

EXERCISE 17.1: COLLECTING INVENTORY DATA

oftentimes, you’ll have instances running in your AWS account and will need to know what’s

on those instances. In this exercise, we’ll look at enabling inventory for a single Amazon EC2

instance. once inventory has been collected, we’ll look for some applications and settings

using the inventory data.

Do We Have Managed Instances Running?

Before we can configure inventory, we’ll need at least one (or more) Amazon EC2 instances.

The instances must have an instance profile attached with the correct role. This enables AWS

Systems Manager (SSM) to communicate with the agent running on the instance. If you’d

prefer to use an EC2 instance you already have running, feel free to do so, but just make sure

it has the necessary instance profile attached.

Launch a Windows Instance with SSM Enabled

To begin this exercise, we’ll first define the region we’ll be working in.

$region = "us-west-2"

next, let’s define the AWS Systems Manager Parameter Store path which will give us the latest

Windows Server 2016 AMI.

$parameterPath = "/aws/service/ami-windows-latest/Windows_Server-2016-

English-Full-Base"

Using that parameter path, we’ll get the image Id.

$latestImageId = (Get-SSMParameter -Name $parameterPath -Region $region).

Value

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

479

now, let’s create a hashtable representing the necessary IAM role policy (we’ll convert it to

JSon later).

$assumeRolePolicy = @{}

$assumeRolePolicy['Version'] = "2012-10-17"

$assumeRolePolicy['Statement'] = @{}

$assumeRolePolicy['Statement']['Effect'] = "Allow"

$assumeRolePolicy['Statement']['Principal'] = @{}

$assumeRolePolicy['Statement']['Principal']['Service'] = "ssm.amazonaws.com"

$assumeRolePolicy['Statement']['Action'] = "sts:AssumeRole"

here’s where we define our new IAM role and give it the policy which is our hashtable

converted to JSon.

$role = New-IAMRole -RoleName "MySystemsManagerRole"

-AssumeRolePolicyDocument ($assumeRolePolicy | ConvertTo-Json) -Region

$region

We’ll need to register the managed SSM policy to our newly created role.

Register-IAMRolePolicy -RoleName $role.RoleName -PolicyArn

'arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforSSM' -Region $region

With the role created and the AmazonEC2roleforSSM registered, we can create the instance

profile which is what we will attach to our instance.

$instanceProfile = New-IAMInstanceProfile -InstanceProfileName

"MyNewInstanceProfile" -Region $region

our instance profile still doesn’t have a role, so let’s add the role we just created.

Add-IAMRoleToInstanceProfile -InstanceProfileName $instanceProfile.

InstanceProfileName -RoleName $role.RoleName -Region $region

remember, if we want to get the password to our instance, we’ll need to use a key pair. Let’s

create one (or you can use an existing one).

(New-EC2KeyPair -KeyName "MyNewKeyPair" -Region $region).KeyMaterial | Out-

File .\MyNewKeyPair.pem

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

480

Using our latest Windows AMI, we’re now ready to launch an EC2 instance and attach the new

instance profile. We’ll do that with new-EC2Instance.

$newInstance = New-EC2Instance -ImageId $latestImageId -InstanceType "t3.

medium" -InstanceProfile_Name "MyNewInstanceProfile" -KeyName "MyNewKeyPair"

-Region $region

We can see the instance Id by looking at the runningInstances property of the newly created

instance.

$runningInstance = $newInstance.RunningInstance

Configure Inventory by Association

To begin our inventory configuration, we’ll define our target as the instance we just launched

using the $runningInstance variable.

$target = @{Key = "InstanceIds"; Values = ($runningInstance.InstanceId)}

now we’ll define a cron or rate expression for the inventory collection schedule. We’ll use 30

minutes here, but in production work, you’d want to spread the inventory schedule out a little

more.

$schExp = “rate(30 minutes)”

Let’s enable a few inventory items.

$params = @{

 applications='Enabled';

 awsComponents='Enabled';

 customInventory='Enabled';

 instanceDetailedInformation='Enabled';

 networkConfig='Enabled';

 services='Enabled';

 windowsRoles='Enabled';

 windowsUpdates='Enabled'

}

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

481

now we’ll associate the AWS Systems Manager document, AWS- gatherSoftwareInventory, to

our running instance using the parameters we just set.

New-SSMAssociation -Name AWS-GatherSoftwareInventory -Target $target

-ScheduleExpression $schExp -Parameter $params -Region $region

Since we configured it to run inventory every 30 minutes, we’ll need to wait at least that long

before we can see any inventory data for this instance.

Checking Inventory Status

We can look at the SSM associations which will include the one we created for inventory

collection.

Get-SSMAssociationList -Region $region

By passing the association Id of our association, we can view the status of it.

Get-SSMAssociationExecution -AssociationId <id> -Region $region

Look at Inventory Data

Finally, let’s see what inventory we have.

$instInv = Get-SSMInventoryEntryList -TypeName "AWS:InstanceDetailed

Information" -InstanceId ($runningInstance.InstanceId) -Region $region

$instInv.Entries

you can see now that when inventory is complete, we have some interesting data which can

help us manage our instances. Many features within AWS Systems Manager work together

to give you a complete systems management solution. Inventory, just like many of the other

Systems Manager features, uses documents and associations, one of the foundational

concepts of how SSM works.

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

482

EXERCISE 17.2: PATCHING DURING A MAINTENANCE WINDOW

Let’s take a look at how we would patch servers using a custom patch baseline, some patch

groups, and a maintenance window. Since Microsoft releases patches the second Tuesday of

the month, we’ll create two maintenance windows. one will be a recurring Wednesday night

scan task, and the other will be a patching task on every Friday night.

Create a Custom Patch Baseline

First, we’ll begin by defining our region.

$region = "us-west-2"

next, let’s create a name and description for our patch baseline.

$pbName = "Production-Patch-Baseline"

$pbDesc = "My Patch Baseline"

We’ll give our patch baseline a production tag, so we know which environment we’ve created

it for.

$pbTags = @{Key="Environment";Value="Production"}

now, we’ll need a patch filter to define what patches this will be applicable to. Let’s set the

first filter to only include Critical and Important patches (as rated by the Microsoft Security

response Center), represented by MSrC_SEvErITy.

$pFilter1 = New-Object Amazon.SimpleSystemsManagement.Model.PatchFilter

$pFilter1.Key = "MSRC_SEVERITY"

$pFilter1.Values = @("Critical","Important")

The second filter specifies patches that have a classification of Security Updates, Updates,

Update rollups, and Critical Updates.

$pFilter2 = New-Object Amazon.SimpleSystemsManagement.Model.PatchFilter

$pFilter2.Key = "CLASSIFICATION"

$pFilter2.Values = @("SecurityUpdates","Updates","UpdateRollups","CriticalUp

dates")

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

483

We’ll add both of these new filters to a patch filter group.

$pfGroup = New-Object Amazon.SimpleSystemsManagement.Model.PatchFilterGroup

$pfGroup.PatchFilters = @($pFilter1,$pFilter2)

our new patch group then gets added to a patch rule. The rule will specify how many days

should pass before approving the patch and also specify the compliance level.

$patchRule = New-Object Amazon.SimpleSystemsManagement.Model.PatchRule

$patchRule.ComplianceLevel = [Amazon.SimpleSystemsManagement.

PatchComplianceLevel]::HIGH

$patchRule.PatchFilterGroup = $pfGroup

$patchRule.ApproveAfterDays = 3

The rules need to be in an array, so we’ll add them to one.

$patchRules = @($patchRule)

now, we can create our new patch baseline and pass all of our parameters we’ve created.

$pBaseline = New-SSMPatchBaseline -Name $pbName -Description $pbDesc

-OperatingSystem WINDOWS -Tags $pbTags -ApprovalRules_PatchRules $patchRules

-Region $region

Register the Patch Baseline in a Patch Group

We’ll create a patch group named Production group and register our patch baseline with that

group.

Register-SSMPatchBaselineForPatchGroup -BaselineId $pBaseline -PatchGroup

"Production" -Region $region

Creating Two Maintenance Windows

Let’s create a tag that will let us know our maintenance windows are for our production

environment.

$tags = @{Key="Environment";Value="Production"}

now, we can create our Wednesday morning maintenance window by creating a cron

expression for 9 p.m. every Wednesday. The duration of the maintenance window will be 2

hours after it begins, and we’ll set the cutoff to 0.

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

484

$wednesdayMornings = "cron(0 0 21 ? * WED *)"
$mWinWed = New-SSMMaintenanceWindow -Name "Production-Wednesdays" -Schedule

$wednesdayMornings -Tags $tags -Duration 3 -Cutoff 1 -AllowUnassociatedTarget

$false -Region $region

We’ll do it again, but this time we’re creating a Friday night maintenance window. Since this

will be our patching Window, let’s give it 3 hours with a cutoff of 1 hour. The cutoff prevents

any new tasks from starting after 11 p.m.

$fridayNights = "cron(0 0 21 ? * FRI *)"
$mWinFri = New-SSMMaintenanceWindow -Name "Production-Fridays" -Schedule

$fridayNights -Tags $tags -Duration 3 -Cutoff 1 -AllowUnassociatedTarget

$false -Region $region

Registering Servers with Our New Maintenance Windows

now we can register the production servers with our two maintenance windows, using the

patch group as the target.

$target = @{Key="tag:Patch Group";Values=@("Production")}

Then, we can register our patch group target to our Wednesday maintenance window.

$mwTargetWed = Register-SSMTargetWithMaintenanceWindow -WindowId $mWinWed

-Target $target -OwnerInformation "Production Servers" -ResourceType INSTANCE

-Region $region

next, we’ll register our patch group target to our Friday maintenance window.

$mwTargetFri = Register-SSMTargetWithMaintenanceWindow -WindowId $mWinFri

-Target $target -OwnerInformation "Production Servers" -ResourceType INSTANCE

-Region $region

Register the Wednesday Scan Task

For our scan task, we’ll run a scan on our production servers every Wednesday night. Let’s

define a task target by creating a hashtable where WindowTargetIds is the key and our target

registered to our Maintenance Window for Wednesday is the value.

$ttWed = @{Key="WindowTargetIds";Values=$mwTargetWed}

now, we’ll define a scan task operation.

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

485

$scanTasks = @{}

$scanTask = New-Object Amazon.SimpleSystemsManagement.Model.

MaintenanceWindowTaskParameterValueExpression

$scanTask.Values = @("Scan")

$scanTasks.Add("Operation", $scanTask)

next, we’ll register the scan task with our Wednesday maintenance window.

Register-SSMTaskWithMaintenanceWindow -WindowId $mWinWed -Target $ttWed

-TaskArn "AWS-ApplyPatchBaseline" -TaskType RUN_COMMAND -TaskParameter

$scanTasks -MaxConcurrency 2 -MaxError 1 -Priority 1 -Region $region

Register the Friday Patch Task

The Friday patch task will be very similar to the task we just created, except we are going to

specify our Friday maintenance window target.

$ttFri = @{Key="WindowTargetIds";Values=$mwTargetFri}

Create a patch task operation.

$patchTasks = @{}

$patchTask = New-Object Amazon.SimpleSystemsManagement.Model.

MaintenanceWindowTaskParameterValueExpression

$patchTask.Values = @("Patch")

$patchTasks.Add("Operation", $patchTask)

Then, register our Friday maintenance window with the patch task we just defined.

Register-SSMTaskWithMaintenanceWindow -WindowId $mWinFri -Target $ttFri

-TaskArn "AWS-ApplyPatchBaseline" -TaskType RUN_COMMAND -TaskParameter

$patchTasks -MaxConcurrency 2 -MaxError 1 -Priority 1 -Region $region

Tag an EC2 Instance to be Included in the Group

Associate an EC2 Instance with Our Patch Group

Since we specified when we created our maintenance window, we’ll need our EC2 instances

to have a patch group tag. Let’s tag an instance with Patch group as the key and Production

(our patch group name) as the value.

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

486

$tag = New-Object Amazon.EC2.Model.Tag

$tag.Key = "Patch Group"

$tag.Value = "Production"

New-EC2Tag -Resource "i-1234567890" -Tag $tag -Region $region

Get the State of Our Patch Group

We now have scan and patch tasks set up in our maintenance windows. Let’s view the state of

our production patch group.

Get-SSMPatchGroupState -PatchGroup "Production" -Region $region

once our scanning and patch maintenance windows have completed, we’ll be able to look at

the state of our patch groups and also be able to tie it into inventory data for a more complete

picture of our servers.

 Summary
In this chapter, we learned about AWS Systems Manager Inventory and Patch Manager,

two features you can use to manage your fleet of instances. We went through some

steps to configure inventory and query that data. We also took a deep look at patch

management and maintenance windows. Using PowerShell, you can automate some of

the more complex tasks related to systems management and manage your servers in the

cloud. This information coupled with the other chapters on AWS Systems Manager gives

you a starting point to building a cloud-based systems management solution for your

specific needs.

ChAPTEr 17 SySTEMS MAnAgEr: InvEnTory And PATCh MAnAgEr

487
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8_18

CHAPTER 18

Lambda with PowerShell
With AWS Lambda you can deploy and execute code that can be triggered from a

multitude of event sources without provisioning or the need to maintain any host

servers. Lambda functions can run a number of different languages to include

PowerShell Core. In this chapter, we’ll explain how to set up AWS Lambda using

PowerShell and to execute PowerShell code as a Lambda function.

We’ll begin by going over prerequisites to set up your development environment and

install required packages and modules. Then we’ll show you a couple ways to generate

and deploy a PowerShell-Based Lambda function. We’ll walk through the execution of

this Lambda function. We will evaluate the function execution and resultant output logs.

Finally, we will set up an execution schedule for our new Lambda function.

There is one exercise at the end of this chapter. We’ll show you how to use AWS

PowerShell on Lambda function to update an AWS Auto Scaling group ImageId that is

triggered by an SNS notification.

To explore and learn more about the many features we’ll be talking about, open your

browser and head over to the AWS Lambda console at https://console.aws.amazon.

com/lambda.

 PowerShell-Based Lambda Prerequisites
Lambda’s support for PowerShell is based on the cross-platform PowerShell Core.

Because PowerShell Core is built on top of .NET Core, we will also need .NET Core

installed. There are several new PowerShell publishing cmdlets to generate and deploy

PowerShell-Based Lambda functions, and these require the .NET Core SDK.

We can download and install the latest .NET Core SDK from www.microsoft.com/

net/download.

https://console.aws.amazon.com/lambda
https://console.aws.amazon.com/lambda
http://www.microsoft.com/net/download
http://www.microsoft.com/net/download

488

Once download and installation is complete, we need to install PowerShell Core.

Downloads for various Linux and Windows installers can be found at https://github.

com/PowerShell/PowerShell/releases.

Instructions for installing PowerShell Core on your specific development

environment can be found at https://docs.microsoft.com/en-us/PowerShell/

scripting/setup/installing-PowerShell?view=PowerShell-6.

Once both the SDK and PowerShell Core are installed, we open a PowerShell

Console session and verify the .NET Core SDK version installed meets the minimum

requirements by executing the dotnet.exe with version parameter.

dotnet.exe --version

Note Lambda support for PowerShell requires version 2.1 or greater of the .NET
Core SDK.

We initialize the PowerShell Core executable from the PowerShell Console by

executing pwsh.exe.

pwsh.exe

We can verify the current PowerShell version by reviewing the output of the

$PSVersionTable variable.

write-output $PSVersionTable

Note Lambda support for PowerShell requires PowerShell Core Edition 6.0
or greater. This version number can be seen as the PSVersion key value of the
$PSVersionTable variable.

Next we install the AWS Lambda Core Module and import it into our current session.

Confirm the request to install the NuGet package provider and trust the PSGallery

repository modules if prompted. We then verify the AWS Lambda PowerShell Core

module is found in the available module list using the Get-Module cmdlet.

Install-Module AWSLambdaPSCore -Scope CurrentUser -Force

Get-Module -ListAvailable -Name AWSLambdaPSCore

ChaPTEr 18 LambDa wiTh PowErShELL

https://github.com/PowerShell/PowerShell/releases
https://github.com/PowerShell/PowerShell/releases
https://docs.microsoft.com/en-us/PowerShell/scripting/setup/installing-PowerShell?view=PowerShell-6
https://docs.microsoft.com/en-us/PowerShell/scripting/setup/installing-PowerShell?view=PowerShell-6

489

Finally, we complete the requirements by installing the AWSPowerShell.NetCore

module from the PSGallery and verifying its version.

Install-Module AWSPowerShell.NetCore -MinimumVersion 3.3.270.0 -Scope

CurrentUser –Force

Get-Module -ListAvailable -Name AWSPowerShell.NetCore

Note be sure to use version 3.3.270.0 or greater of awSPowerShell.NetCore,
which optimizes the cmdlet import process. if you use an older version, you will
experience longer cold starts. To update your existing install to the latest version,
run Update-Module AWSPowerShell.NetCore –Force.

The AWSPowerShell.NetCore module provides the SDK PowerShell cmdlets to

interact with AWS infrastructure and services.

 Authoring PowerShell-Based Lambda Functions
There are four new cmdlets available that we now have access to as a result of installing

these prerequisites. Each of these cmdlets provides the tools necessary to quickly build,

package, and deploy a PowerShell-Based Lambda function.

 Creating a Script Template
First, we are going to list the common templates using the Get-

AWSPowerShellLambdaTemplate cmdlet. A number of templates will be listed, and they

can be distinguished by the type of trigger we expect to use for our Lambda function.

Get-AWSPowerShellLambdaTemplate

You should see a number of template listed as seen in Table 18-1.

ChaPTEr 18 LambDa wiTh PowErShELL

490

We are now going to create a script named LatestAMIID using the basic template.

Set-Location $env:HOMEPATH

New-AWSPowerShellLambda -ScriptName LatestAMIID -Template Basic

Using Windows Explorer, when we look at our home directory we should now see

a folder named LatestAMIID. The folder contains a corresponding named ps1 starter

script and a Readme.txt file containing some additional details on the generated starter

script. When we open the LatestAMIID.ps1 script template in the PowerShell ISE editor,

we see content similar to Figure 18-1.

Table 18-1. Lambda Templates

Template Description

basic bare bones script

CloudFormationCustomresource PowerShell handler base for use with CloudFormation custom

resource events

CodeCommitTrigger Script to process awS CodeCommit Triggers

DetectLabels Use amazon rekognition service to tag image files in S3 with

detected labels

KinesisStreamProcessor Script to process a Kinesis Stream

S3Event Script to process S3 events

S3EventToSNS Script to process SNS records triggered by S3 events

S3EventToSNSToSQS Script to process SQS messages, subscribed to an SNS Topic

that is triggered by S3 events

S3EventToSQS Script to process SQS messages triggered by S3 events

SNSSubscription Script to be subscribed to an SNS Topic

SNSToSQS Script to be subscribed to an SQS Queue, that is, subscribed

to an SNS Topic

SQSQueueProcessor Script to be subscribed to an SQS Queue

ChaPTEr 18 LambDa wiTh PowErShELL

491

Included in the script are a number of comments that will guide us in creating

our PowerShell-Based Lambda function. In the next sections, we will investigate and

understand the components of this template. We will also be adding some of our own

code before saving it.

 Understanding Modules
Near the top of the script template is the "#Requires" statement. This statement lists

the modules that are needed by the PowerShell script and loads them when the Lambda

function is executed. There can be many requires statements in a single script, and these

modules must be packaged with your Lambda function for it to execute properly. These

same statements are read by the AWS commands Publish-AWSPowerShellLambda and

New-AWSPowerShellLambdaPackage that we will learn about later in this chapter. In

our script templates, we see the following statement:

#Requires -Modules @{ModuleName='AWSPowerShell.NetCore';ModuleVersi

on='3.3.335.0'}

This statement indicates that the script requires the AWSPowerShell.NetCore

module with a version of 3.3.335.0 or greater, we had installed earlier in this

chapter. Note that 3.3.335.0 is the minimum version at the time of this books writing and

Figure 18-1. Latest AMI ID template

ChaPTEr 18 LambDa wiTh PowErShELL

492

any value greater than this in the script template is acceptable. For more information

on the "#Requires" statement, see https://docs.microsoft.com/en-us/powershell/

module/microsoft.powershell.core/about/about_requires?view=powershell-6.

 Understanding Input
At the top of the script template, we see how input is defined in a PowerShell-Based

Lambda function. The $LambdaInput variable is a PSObject that contains all the data

that is passed as input to the Lambda function when executed. This includes the

data passed from triggering events. In Figure 18-2 we see that the SNS event trigger

subject and message property values have already been assigned to the $subject and

$message variables. We can easily adapt our code to perform logical operations from the

$LambdaInput variable or one of its properties.

We may not know all the input properties and values from a triggering event so

we will write them all as a JSON-formatted document upon execution of the Lambda

function. To allow all input data to be written to CloudWatch Logs as output, we will

uncomment or remove the # mark in front of the following statement in our script:

Write-Host (ConvertTo-Json -InputObject $LambdaInput -Compress -Depth 5)

 Understanding Output and Logging
Lambda functions write their log data to CloudWatch Logs service. The write cmdlets

that do not place data in the pipeline are written as logs. Cmdlets such as Write-Host and

Write-Information as well as Write-Verbose and Write-Error if enabled are all written

to CloudWatch Logs. Each CloudWatch Logs entry will also display its corresponding

log level such as Information, Warning, or Verbose. See Figure 18-2 for example of

CloudWatch Logs output.

Figure 18-2. Lambda CloudWatch Logs

ChaPTEr 18 LambDa wiTh PowErShELL

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_requires?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_requires?view=powershell-6

493

Write-Output places data into the pipeline so it does not get written to CloudWatch

Logs. It shares a similar characteristic to the return statement in that it can be used

in place of a return. Lambda function output will either be the last item added to the

pipeline such as the last Write-Output statement or from a return statement if utilized.

More details on Lambda function logging using PowerShell can be found at https://

docs.aws.amazon.com/lambda/latest/dg/PowerShell-logging.html.

 Understanding Errors
Lambda function executions end in either a succeeded or failed result. Failure to

execute, timeouts, or script-level terminating errors are some of the ways that a Lambda

function will result in a failed state. A successful execution of a Lambda function is all

that’s needed for a passing result.

You can control the result of your Lambda function by using the throw or write-

error statement in your script. The throw statement is a terminating error that will exit

your script and Lambda function immediately. The write-error statement will continue

executing your Lambda function script but will ultimately result in your function ending

with a failed result. For more information on Lambda function errors in PowerShell, see

https://docs.aws.amazon.com/lambda/latest/dg/PowerShell-exceptions.html.

 The LambdaContext Variable
We also have the $LambdaContext variable listed at the top of our script templates. This

variable provides runtime details about the overall execution of the Lambda function.

This includes context object properties such as FunctionName, MemoryLimitInMB,

and RemainingTime. Like the $LambdaInput object, the $LambdaContext is also an

object that can be converted to a JSON document and written to CloudWatch Logs. For

our testing purposes, we want to add the following line of code after the Write-Host for

$LambdaInput statement in our script.

Write-Host (ConvertTo-Json -InputObject $LambdaContext -Compress -Depth 5)

Additional data on the Lambda Context Object for PowerShell can be found at

https://docs.aws.amazon.com/lambda/latest/dg/PowerShell-context-object.html.

ChaPTEr 18 LambDa wiTh PowErShELL

https://docs.aws.amazon.com/lambda/latest/dg/powershell-logging.html
https://docs.aws.amazon.com/lambda/latest/dg/powershell-logging.html
https://docs.aws.amazon.com/lambda/latest/dg/powershell-exceptions.html
https://docs.aws.amazon.com/lambda/latest/dg/PowerShell-context-object.html

494

The script should now look similar to Figure 18-3.

 Creating a PowerShell Lambda Package
Now we have a basic template script that can be used in a Lambda function, but does

not perform any real actions other than importing modules and writing logs. Add the

following lines of code to our LatestAMIID.ps1 script:

$VerbosePreference = "continue"

If ([string]::IsNullOrEmpty($LambdaInput.AliasName))

{

 [string]$AliasName = "Windows_Server-2016-English-Full-Base"

 Write-Warning "AliasName value missing. Using default Alias Name"

}

Else

{

 [string]$AliasName = $LambdaInput.AliasName

}

Write-information "Getting latest regional ImageId for public Amazon

Machine Image with alias:$($AliasName)"

$ImageId=(Get-SSMParameter -Name /aws/service/ami-windows-

latest/$($AliasName)).Value

Write-Verbose "Latest ImageId for Alias:$($AliasName) is:$($ImageId)"

return $ImageId

Figure 18-3. Log Only Template

ChaPTEr 18 LambDa wiTh PowErShELL

495

In this example script, we are going to return the latest Public ImagId for a matching

alias name. You may recognize this code from Chapter 15 in the section titled “Finding

the Latest Windows AMI.” Note that we are using a few different logging types for

demonstration. Your final script should look similar to the following:

PowerShell script file to be executed as a AWS Lambda function.

#

When executing in Lambda the following variables will be predefined.

$LambdaInput - A PSObject that contains the Lambda function input data.

$LambdaContext - An Amazon.Lambda.Core.ILambdaContext object that

contains information about the currently running Lambda environment.

#

The last item in the PowerShell pipeline will be returned as the result

of the Lambda function.

#

To include PowerShell modules with your Lambda function, like the

AWSPowerShell.NetCore module, add a "#Requires" statement

indicating the module and version.

Requires –Modules @{ModuleName='AWSPowerShell.NetCore';ModuleVersi

on='3.3.335.0'}

Uncomment to send the input event to CloudWatch Logs

Write-Host (ConvertTo-Json -InputObject $LambdaInput -Compress -Depth 5)

Write-Host (ConvertTo-Json -InputObject $LambdaContext -Compress -Depth 5)

$VerbosePreference = "continue"

If ([string]::IsNullOrEmpty($LambdaInput.AliasName))

{

 [string]$AliasName = "Windows_Server-2016-English-Full-Base"

 Write-Warning "AliasName value missing. Using default Alias Name"

}

Else

{

 [string]$AliasName = $LambdaInput.AliasName

}

Write-information "Getting latest regional ImageId for public Amazon

Machine Image with alias:$($AliasName)"

ChaPTEr 18 LambDa wiTh PowErShELL

496

$ImageId=(Get-SSMParameter -Name /aws/service/ami-windows-

latest/$($AliasName)).Value

Write-Verbose "Latest ImageId for Alias:$($AliasName) is:$($ImageId)"

return $ImageId

Now that we have a better understanding of PowerShell-Based Lambda functions

script components and a completed script, save the changes and close it.

Before we can deploy our function, we first need to create a deployment package.

There are a couple cmdlets to create a Lambda package. The first cmdlet Publish-

AWSPowerShellLambda will create a temporary package and then publish it to Lambda

automatically. The second cmdlet New-AWSPowerShellLambdaPackage will only create

a named package we can deploy later. New-AWSPowerShellLambdaPackage is primarily

used to generate packages as a part of an automated deployment package such as a CI/

CD pipeline or as a part of a CloudFormation template. We are going to start with the

New-AWSPowerShellLambdaPackage cmdlet so we can look at the generated package

components and demonstrate a couple different deployment options.

To generate a Lambda package using our LatestAMIID.ps1 script, execute the

following code in the PowerShell 6 Core Console we opened earlier in this chapter.

$LambdaPackage = New-AWSPowerShellLambdaPackage -ScriptPath .\LatestAMIID\

LatestAMIID.ps1 -OutputPackage .\LatestAMIIDPackage.zip

Upon completion of the package creation, we see console output detailing the steps

to creating the package. Make note of the reference to the handler value in the output.

We will be using this value to deploy this package in future steps. We can also see this

value by looking at the LambdaHandler property of the $LambdaPackage variable

output as seen in Figure 18-4.

Figure 18-4. New Lambda Package Output

ChaPTEr 18 LambDa wiTh PowErShELL

497

Open the output package LatestAMIIDPackage.zip and review its contents. Among

the many dll assemblies needed to host PowerShell Core, notice that our LatestAMIID.

ps1 file is contained in this package as well as a folder labelled “Modules”. The modules

folder contains the AWSPowerShell.NetCore module that is listed in our script requires

statement. When we use either the New-AWSPowerShellLambdaPackage or Publish-

AWSPowerShellLambda cmdlets, the requires statement is read from the script and

those modules are placed into the packaged modules directory.

 Publishing a PowerShell-Based Lambda Function
We are now ready to publish our new package. We will be working through a couple

PowerShell-Based methods to publish a PowerShell Lambda package. The first

method will use the package we just created and publish using some of the legacy

AWS PowerShell Lambda cmdlets. The second method will use the newer Publish-

AWSPowerShellLambda cmdlet.

Note The remainder of this chapter will require administrative-level privileges to
make modification to your awS account. if you have not done so already, load your
credentials in the current PowerShell 6 Core Console and set your default region to
us-east-1. Lambda is a regional service, and the following chapter activities will be
performed in the us-east-1 region.

Lambda functions require some privileges to access AWS resources. Required

permissions will vary greatly depending on the Lambda function activities. For the

sake of completion, we included the code to create a least privilege IAM role that will

be assigned to our new Lambda function. To better understand the IAM role creation

process, refer back to Chapter 2. Create a new IAM role with the name of “Lambda_

LatestAMIID_Role” by using the following code:

$assumeRolePolicy = @"

{

 "Version": "2012-10-17",

 "Statement": {

 "Effect": "Allow",

 "Principal": {

ChaPTEr 18 LambDa wiTh PowErShELL

498

 "Service": "lambda.amazonaws.com"

 },

 "Action": "sts:AssumeRole"

 }

}

"@

$rolepolicy = @"

{

 "Version": "2012-10-17",

 "Statement": [{

 "Effect": "Allow",

 "Action": [

 "logs:CreateLogStream",

 "logs:CreateLogGroup",

 "logs:PutLogEvents",

 "ssm:GetParameter"

],

 "Resource": "*"

 }]

}

"@

Import-Module AWSPowerShell.NetCore

$role = New-IAMRole -RoleName "Lambda_LatestAMIID_Role"

-AssumeRolePolicyDocument $assumeRolePolicy

$newpolicy = New-IAMPolicy -PolicyName Lambda_LatestAMIID_Policy

-PolicyDocument $rolepolicy

Register-IAMRolePolicy -rolename $role.RoleName -PolicyArn $newpolicy.arn

We now have an IAM role that only has write access to CloudWatch Logs and read

access to AWS Systems Manager Parameter Store. To deploy the Lambda package we

previously generated, we first assign a function name to the LMFunctionName variable

that we will reuse.

$LMFunctionName = 'LatestAMIID'

ChaPTEr 18 LambDa wiTh PowErShELL

499

Note Due to the large number of parameters, many of the remaining examples
in this chapter will pass parameters as a hashtable. This is known as PowerShell
Splatting. more information on Splatting can be found at https://docs.
microsoft.com/en-us/powershell/module/microsoft.powershell.
core/about/about_splatting.

We will now use the Publish-LMFunction cmdlet and pass it a few parameters to

create our new Lambda function using the following code:

$PublishLMParams = @{

"ZipFilename" = ".\LatestAMIIDPackage.zip"

"Handler" = $LambdaPackage.LambdaHandler

"MemorySize" = 256

"Timeout" = 30

"Runtime" = "dotnetcore2.1"

"Role" = $role.arn

}

$PublishLM = Publish-LMFunction -FunctionName $LMFunctionName @PublishLMParams

Let’s spend a minute talking about some of the Publish-LMFunction parameters

before continuing. The ZipFilename parameter identifies the location of our Lambda

package zip. Handler defines what script Lambda calls as the entry point in our package

to begin execution. If you recall, this value was defined when we created the Lambda

package earlier in this chapter. The Role parameter gets assigned the ARN value of the

IAM role we just created.

Timeout is the maximum amount of time the Lambda function can execute before

force stopping with a failure result. Runtime is the environment our function will execute

under. For PowerShell code we use the dotnetcore2.1 value.

MemorySize determines how performant our function will be as this value

determines both available memory and the CPU power available but increases the cost

of an execution. CPU power will effectively double every 128MB of memory allocated

and can have considerable impact on how quickly your function executes. Too little

memory can result in unexpected failures or hitting the function timeout, while too

much results in costly unutilized capacity.

ChaPTEr 18 LambDa wiTh PowErShELL

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_splatting

500

PowerShell modules and script executions require a bit more resources than the

defaults allow. We increase the timeout from the default of 3 seconds to 30 seconds and

increased the MemorySize from the default of 128 to 256.

For more details on configuration settings go to https://docs.aws.amazon.com/

lambda/latest/dg/resource-model.html.

We now have successfully deployed a PowerShell-Based Lambda function. When we

open the Lambda service in the AWS Management Console and select the LatestAMIID

function, we see configuration data similar to Figure 18-5.

While we are reviewing the console, let’s run a manual invocation. In the upper

right corner of the LatestAMIID Lambda console window, select the Test button. When

prompted by the Configure Test Event window, input “test1” into the event name box

and click the Create button to close the window. The Lambda test console requires a Test

Event configured before we can execute even if our function does not require any input.

In the upper right corner of the LatestAMIID Lambda function console, select the

Test button again and the Lambda function will execute automatically. After a short

time, you should see a green “Execution result: succeeded” message at the top. Clicking

the arrow under this message expands the details similar to Figure 18-6.

Figure 18-5. Lambda Function Console View

ChaPTEr 18 LambDa wiTh PowErShELL

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html

501

Now that we know the function works, let’s run some PowerShell describe cmdlets to

review the function configuration from the cmd line. Execute the following cmdlet:

Get-LMFunctionConfiguration -FunctionName $LMFunctionName

We see that the parameter values we used to publish the function match the console

and Get-LMFunctionConfiguration output.

We are now going to remove this Lambda function and demonstrate deployment

using the new Publish-AWSPowerShellLambda cmdlet. To remove the LatestAMIID

Lambda function, execute:

Remove-LMFunction -FunctionName $LMFunctionName -Force

We executed with the force switch to automatically accept confirmation prompts. If

we check the console or try the Get-LMFunctionConfiguration query again, we find the

function no longer exists.

To deploy our script with Publish-AWSPowerShellLambda, we do not need the

package we previously generated. This cmdlet automatically generates a package

during the publication process for us. To redeploy our Lambda function, we execute the

following example:

Publish-AWSPowerShellLambda -ScriptPath .\LatestAMIID\LatestAMIID.ps1 -Name

$LMFunctionName -IAMRoleArn $role.arn

Figure 18-6. Lambda Execution Console View

ChaPTEr 18 LambDa wiTh PowErShELL

502

Now let’s once again look at the deployed functions configuration using the

following code:

Get-LMFunctionConfiguration -FunctionName $LMFunctionName

We can now see that a number of the properties we had to define earlier

are automatically configured for us. The Handler, Runtime, Timeout, and

MemorySize properties are all set automatically with default values that would

allow executing a basic PowerShell script. Another nice feature of the Publish-

AWSPowerShellLambda cmdlet is it can be run repeatedly to make a code change or

update modules. It will automatically update the target Lambda function with whatever

components that need changed.

Note Publish-awSPowerShellLambda cmdlet has a number of additional
parameters to publish and update PowerShell-based Lambda functions. For a full list,
review the cmdlet help by executing “get-help Publish-AWSPowerShellLambda -full”.

Before we get into executing our Lambda function using PowerShell cmdlets, we will

set the Timeout and MemorySize parameters to the values we originally set using the

following command:

Update-LMFunctionConfiguration -FunctionName $LMFunctionName -MemorySize

256 -Timeout 30

 Invoking Lambda Functions
Now that we have seen a couple ways to create and publish a PowerShell-Based Lambda

function, let’s see how we can manually execute it and review the output.

Normally Lambda functions are invoked as a result of an event trigger such as an

SNS notification, CloudWatch event, or write to an S3 bucket, to name a few. We can also

invoke a Lambda function manually. This can be useful for debugging, testing or even

creating our own code to initiate a Lambda function when appropriate.

The cmdlet we will be using to execute our newly published function is Invoke-

LMFunction. First, let’s execute without any input payload by executing:

$ExecuteLMFunction = Invoke-LMFunction

-FunctionName $LMFunctionName -LogType Tail

ChaPTEr 18 LambDa wiTh PowErShELL

503

The LogType parameter with “Tail” value tells our script to wait for the Lambda

function to complete and retrieves the last 4KB of log data written during the execution.

To see these logs, we need to review the LogResult property of our execution. The

LogResult data is Base64Encoding so we need to wrap it in a decoder by executing the

following:

[System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String($

ExecuteLMFunction.LogResult))

We then see several lines of text where some are labelled as Information and others

as Warning or Verbose. Remember that our code uses several different approaches to

write log, and we can see here how Lambda automatically tags the log entry with the log

level it was written under. Make note of the log entry labelled with Warning.

Now we are going to run our Lambda function again, but this time we are going to

give it an input payload and capture its output data.

The Payload parameter allows us to pass JSON-formatted input to our Lambda

function. In our example we will define an AMI AliasName with value as “Windows_

Server- 2012- R2_RTM-English-64Bit-Base” by executing the following parameter JSON

coded for PowerShell:

$LMPayload = @"

{"AliasName": "Windows_Server-2012-R2_RTM-English-64Bit-Base"}

"@

We also add the InvocationType parameter. InvocationType can be set to one of

three options:

• RequestResponse – Executes and collects the output data upon

completion

• Event – Performs a quick asynchronous execution with no output data

• DryRun – Used to test execution without actually executing the function

We will be using RequestResponse value for InvocationType so we can review

the return data. Define the parameters and execute the Lambda function with the

following code:

$ExecuteLMParams = @{

"FunctionName" = $LMFunctionName

ChaPTEr 18 LambDa wiTh PowErShELL

504

"LogType" = "Tail"

"InvocationType" = "RequestResponse"

"Payload" = $LMPayload}

$ExecuteLMFunction = Invoke-LMFunction @ExecuteLMParams

Once again we decode the logs.

[System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String($

ExecuteLMFunction.LogResult))

We no longer see the Warning log entry and now see that one of the Information

entries that was previously empty now contains data. Remember the "Write-Host

(ConvertTo-Json -InputObject $LambdaInput -Compress -Depth 5)" and "Write-

Host (ConvertTo-Json -InputObject $LambdaContext -Compress -Depth 5)" that

we uncommented and added earlier to our script? These have correlating log entries

we now see. LambdaInput object contains the data we passed as input with the Payload

parameter. We also have another log entry that contains JSON-formatted data that

includes FunctionName, LogGroupName, and MemoryLimitInMB, among many other

attributes of the Lambda execution. This correlates to writing the LambdaContext object

to logs.

The Lambda execution output data is assigned to the Payload property. If we

look at $ExecuteLMFunction.Payload, we see that Payload is defined as a System.

IO.MemoryStream. We cannot simply read it as a string value, so to read the output data,

we wrap it in a StreamReader. Executing the following code will show a single ImageId

value was returned.

([System.IO.StreamReader]::new($ExecuteLMFunction.Payload)).ReadToEnd()

 Lambda CloudWatch Logs
As we know, all log outputs for Lambda functions are recorded in CloudWatch Logs

automatically. There will be times when we will need to check the history of a Lambda

execution or need more granular data to debug our function. While this is not specific

to Lambda, it can be difficult to find relevant examples for searching CloudWatch Logs

using PowerShell. We will filter for and return the CloudWatch Logs for our recent

Lambda execution as a demonstration.

ChaPTEr 18 LambDa wiTh PowErShELL

505

First we need to identify the RequestID for the last Lambda function execution we

invoked. This is actually a property of our last invocation. It can be found under the

ResponseMetadata property using the following query:

$LMRequestId = $ExecuteLMFunction.ResponseMetadata.RequestId

CloudWatch Logs are separated as log groups. All AWS Lambda functions write to

the /aws/lambda/{Function Name} log group. Log groups are further broken down as

log streams. Log streams in Lambda log groups are a collection of executions and their

events that occurred within a time range.

To get our execution event logs, we need to filter through all of CloudWatch Logs

and get the CloudWatch Logs log stream name that contains our recent Lambda

execution request ID. We can only search through 1MB of logs per query so we use a do

while loop to keep searching through the logs. The loop runs until we find a matching log

entry or we complete searching through all log streams.

The following code returns the log stream events matched by our request ID string:

do {

 $MatchingLogs = (Get-CWLFilteredLogEvent –LogGroupName /aws/

lambda/$LMFunctionName @args -FilterPattern "'"$($LMRequestId)'"")

 if ($MatchingLogs.Events){

 $LogStreamName = $MatchingLogs.Events[0].LogStreamName

 $LogStream = (Get-CWLLogEvent -LogGroupName /aws/

lambda/$LMFunctionName -LogStreamName $LogStreamName)

 write-output $LogStream.Events | Format-Table –Wrap

 break

 }

 $args = @{"NextToken"=$([string]$MatchingLogs.Nexttoken)}

} While($MatchingLogs.Nexttoken)

Notice how we formatted the request ID as the FilterPattern value. This is because

CloudWatch Logs filtering requires string matching searches to be in double quotes.

We used escape characters to ensure that the double quotes were retained in the query.

When we find matching logs, we identify the log stream name from the first matching log

found and write the entire log stream as output. The matching log stream output will be

formatted as a table so we can wrap the text to our screen for review.

Using this query, we can see the complete log for our Lambda execution.

ChaPTEr 18 LambDa wiTh PowErShELL

506

 Lambda Event Trigger
Up to this point, we have created a Lambda PowerShell script and packaged and

published it. We also manually executed our Lambda function and evaluated output and

log data. For our function to be useful, we also have to define a trigger. There are many

Amazon services and conditions that can be used as triggers for Lambda functions.

The configurations of these different triggers could easily span several chapters of their

own. In this final topic and the chapter exercise, we will demonstrate two of the possible

options.

Lambda service does not support schedules but the CloudWatch service does. In

the following steps, we will be creating a CloudWatch Rule that will target our Lambda

function every 60 minutes. We will then set a policy on our function allowing the

60 minute CloudWatch rule to invoke it.

Retrieve the ARN of our Lambda function by using the Get-

LMFunctionConfiguration we executed earlier and retrieving the FunctionArn property.

$LambdaArn = (Get-LMFunctionConfiguration -FunctionName $LMFunctionName

-Region us-east-1).FunctionArn

Now we create a CloudWatch Event Rule. We will define the name as

“60MinuteTimer”. The ScheduleExpression parameter takes a rate or cron expression.

In our example, we define a rate expression of 60 minutes. For details on Schedule

Expressions, go to https://docs.aws.amazon.com/lambda/latest/dg/tutorial-

scheduled- events-schedule-expressions.html.

The State parameter sets the Event Rule to either enabled or disabled. We intend to

use this rule so we will set it to enabled with the following code:

$CWRuleName = "60MinuteTimer"

$CWRuleParams = @{

 ScheduleExpression = "rate(60 minutes)"

State = "ENABLED"

}

Now that we have defined our parameters, run the Write-CWERule cmdlet and

evaluate that the $NewCWERule variable contains an ARN value for the new rule.

$NewCWERule = Write-CWERule -name $CWRuleName @CWRuleParams

Write-Output $NewCWERule

ChaPTEr 18 LambDa wiTh PowErShELL

https://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-schedule-expressions.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-schedule-expressions.html

507

Set our Lambda function ARN as the target for the CloudWatch rule using the

following code:

$CWEventTarget = New-Object Amazon.CloudWatchEvents.Model.Target

$CWEventTarget.Arn = $LambdaArn

$CWEventTarget.Id = (Get-random)

Write-CWETarget -Rule $CWRuleName -Target $CWEventTarget

We can verify the configuration for our CloudWatch event rule using the following

two commands:

Get-CWERuleDetail -Name 60MinuteTimer

Get-CWETargetsByRule -Rule 60MinuteTimer

Finally, we need to set a policy on our Lambda function allowing our new

60MinuteTimer to invoke it. The Action parameter indicates that our function can be

invoked. The Principal parameter is the source service being given permissions to invoke

it. The SourceArn limits the invoke permissions to the 60MinuteTimer CloudWatch Rule.

The FunctionName parameter limits the permissions to invoke our Lambda function

ARN. The StatementId is a unique value we provide for this policy. We will fill it with a

randomly generated number for this example. We now execute:

$LMPermissionParams = @{

Action = 'lambda:InvokeFunction'

Principal = "events.amazonaws.com"

SourceArn = $NewCWERule

FunctionName = $LMFunctionName

StatementId = (Get-Random)

}

Add-LMPermission @LMPermissionParams

All done. Our PowerShell-Based Lambda function will execute every 60 minutes.

You can easily verify this by reviewing the function CloudWatch Logs for hourly entries.

ChaPTEr 18 LambDa wiTh PowErShELL

508

EXERCISE 18.1: UPDATE AUTO SCALE GROUP WITH LATEST IMAGEID

in Chapter 8 we learned how to create an auto Scaling group and corresponding Launch

Configuration. in Chapter 15 we learned how to get the latest imageid using SSm

Parameter Store. in this exercise we will combine what we learned from those two chapters

along with what we learned in this chapter to create a new Lambda function. This new

function will automatically update our auto Scale group with the latest imageid whenever a

new version is announced through a public SNS topic subscription.

Create the Script

First let’s identify the new Lambda function name and generate a script using the

SNSSubscription template.

$FunctionName = "AutoUpdateASG"

New-AWSPowerShellLambda -ScriptName $FunctionName -Template SNSSubscription

open the .\autoUpdateaSG\autoUpdateaSG.ps1 script in an editor and uncomment the

following line of code:

Write-Host (ConvertTo-Json -InputObject $LambdaInput -Compress -Depth 5)

add the following lines of code and save it:

$VerbosePreference = "continue"

[string]$AliasName = "Windows_Server-2012-RTM-English-64Bit-Base"

[string]$ASGroupName = "MyAutoScalingGroup"

Write-information "Getting latest regional ImageId for public Amazon Machine

Image with alias:$($AliasName)"

$ImageId = (Get-SSMParameter -Name /aws/service/ami-windows-

latest/$($AliasName)).Value

Write-Verbose "Latest ImageId for Alias:$($AliasName) is:$($ImageId)"

$MyASGroup = Get-ASAutoScalingGroup -AutoScalingGroupName $ASGroupName

$MyASLaunchConfig = Get-ASLaunchConfiguration -LaunchConfigurationName

$($MyASGroup.LaunchConfigurationName)

$MyASLCImageID = $MyASLaunchConfig.ImageId

Write-Verbose "ImageId for Auto Scaling Group:$($ASGroupName)

is:$($MyASLCImageID)"

If ($MyASLCImageID -ne $ImageId)

ChaPTEr 18 LambDa wiTh PowErShELL

509

{

 $MyNewASLaunchConfigName = "MyLaunchConfig_$(Get-Date -format yyyy.MM.dd.

hh.mm.ss)"

 Write-information "New ImageId available. Updating Auto Scaling group

$($ASGroupName) with new Launch Configuration $($MyNewASLaunchConfigName)"

 $ASLaunchConfigParam = @{

 LaunchConfigurationName = $MyNewASLaunchConfigName

 ImageId = $ImageId

 KeyName = $MyASLaunchConfig.KeyName

 SecurityGroup = $MyASLaunchConfig.SecurityGroups

 Userdata = $MyASLaunchConfig.UserData

 InstanceType = $MyASLaunchConfig.InstanceType

 }

 $NewASLaunchConfig = New-ASLaunchConfiguration @ASLaunchConfigParam

 $UpdateASGroup = Update-ASAutoScalingGroup -AutoScalingGroupName

$ASGroupName -LaunchConfigurationName $MyNewASLaunchConfigName

}

You can see in the script that we find the latest public imageid from Parameter Store and

compare it to the value set in the auto Scale groups Launch Configuration we created in

Chapter 8. The two imageid values are compared, and if they do not match, a new Launch

Configuration is created. The new Launch Configuration is then assigned to the auto Scale

group.

Create the IAM Role

before we deploy this function, we need to create an iam role with the required permissions.

This new iam role is an extension of the iam role we created earlier in Chapter 18. The new

role includes full control permissions for the awS auto Scaling service. Execute the following

code to create our new iam role:

$assumeRolePolicy = @"

{

 "Version": "2012-10-17",

 "Statement": {

 "Effect": "Allow",

 "Principal": {

 "Service": "lambda.amazonaws.com"

 },

ChaPTEr 18 LambDa wiTh PowErShELL

510

 "Action": "sts:AssumeRole"

 }

}

"@

$labrole = New-IAMRole -RoleName "$($FunctionName)_Role"

-AssumeRolePolicyDocument $assumeRolePolicy

$labrolepolicy = @"

{

 "Version": "2012-10-17",

 "Statement": [{

 "Effect": "Allow",

 "Action": [

 "logs:CreateLogStream",

 "logs:CreateLogGroup",

 "logs:PutLogEvents",

 "ssm:GetParameter"

"autoscaling:*"

],

 "Resource": "*"

 }]

}

"@

$newlabpolicy = New-IAMPolicy -PolicyName "$($FunctionName)_Policy"

-PolicyDocument $labrolepolicy

Register-IAMRolePolicy -rolename $labrole.RoleName -PolicyArn $newlabpolicy.

arn

Publish the Lambda Function

we now publish our Lambda function using the Publish-awSPowerShellLambda cmdlet using

the new iam role we just created. we also set the memory and timeout values to ensure our

function has enough time and resources to execute completely.

Publish-AWSPowerShellLambda -ScriptPath .\AutoUpdateASG\AutoUpdateASG.ps1

-Name $FunctionName -IAMRoleArn $labrole.Arn -Memory 512 -Timeout 10

ChaPTEr 18 LambDa wiTh PowErShELL

511

Subscribe to the SNS Topic

Get the details of our new Lambda function and assign them to the $LMFunctionConfig

variable.

$LMFunctionConfig = Get-LMFunctionConfiguration -FunctionName $FunctionName

our Lambda function is ready so we subscribe its arN to the public SNS topic used to

announce new amazon machine image windows versions.

$SNSTopicARN = "arn:aws:sns:us-east-1:801119661308:ec2-windows-ami-update"

$Subscription = @{

 Protocol = 'lambda'

 Endpoint = $LMFunctionConfig.FunctionArn

 TopicArn = $SNSTopicARN

}

Connect-SNSNotification @Subscription

Note This is a public SNS topic used by awS to announce when new versions
of public amazon machine images have been released. This occurs at least once
a month, and more details can be found at https://docs.aws.amazon.com/
AWSEC2/latest/WindowsGuide/windows-ami-version-history.html.

Permit SNS Invocation

Finally, we give our Lambda function the permissions to be invoked by an SNS notification.

$LMPermission = @{

 FunctionName = $FunctionName

 Action = 'lambda:InvokeFunction'

 Principal = 'sns.amazonaws.com'

 StatementId = 1

}

Add-LMPermission @LMPermission

in this exercise we learned how to build and deploy a Lambda function that will update our

auto Scaling group with a new amazon machine image. we also learned how to subscribe to

and enable SNS as a trigger for our Lambda function.

ChaPTEr 18 LambDa wiTh PowErShELL

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/windows-ami-version-history.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/windows-ami-version-history.html

512

 Summary
In this chapter, we saw how to install the prerequisites for creating and deploying

PowerShell-Based Lambda functions. We saw how to create a script, understand its

components, and deploy it as a Lambda function. Using a few cmdlets, we saw how to

execute our function and review the output as well as parse resulting CloudWatch Logs.

Finally, we demonstrated how to create and assign a schedule trigger for our function.

Lambda is a truly powerful tool to execute PowerShell code without owning or managing

a single server.

ChaPTEr 18 LambDa wiTh PowErShELL

513
© Brian Beach, Steven Armentrout, Rodney Bozo, Emmanuel Tsouris 2019
B. Beach et al., Pro PowerShell for Amazon Web Services, https://doi.org/10.1007/978-1-4842-4850-8

Index

A
AccessKeyId command, 201
Account access, IAM

AWS management Console, 233
AWS web site, 233
support, 234, 235
viewbilling/viewusage, 234

Active directory (AD), 101, 302
AD connector

creation, 325, 326
deletion, 326
prerequisites, 324
proxy service, 324

ADMIN_MAINTENANCE mode, 354
Amazon AppStream 2.0, 345

architecture, 359, 360
client requirements, 361
custom application stack (see Custom

application stack, AppStream 2.0)
pay-as-you-go model, 359
publishing requirements, 360

Amazon Aurora
architecture, 268
cloud database engine, 267
cluster, 268, 269
CRUD operations, 269
robust database platform, 270
TDE, 270

Amazon EC2 security groups, 118

Amazon Glacier, 5
Amazon machine images

(AMIs), 27, 229, 359
image dialog box, creation, 166
New-EC2Instance command, 167
listing, 158

Get-EC2ImageByName, 160, 161
limiting the number of

instance, 159
name filter, 160
owner-alias filters, 160

scripted build, 157
benefits and drawbacks, 158
DSC, 158
prepared image, 158

sharing image, 168, 169
VMware or Hyper-V, 157

AmazonProvidedDNS, 103
Amazon resource name (ARN), 209, 259
Amazon Web Services (AWS)

account, creation, 9
AZs, 3
creating IAM user account

add user button, 10, 12
AdministratorAccess, 22
create role button, 21
credentials, 12, 13
logging in, 13, 14
selecting EC2 role, 23
services, 10

https://doi.org/10.1007/978-1-4842-4850-8

514

credentials, 15, 16
persist defaults, 18
PowerShell, 15
regions, 2
services

compute, 6
management, 4, 5
miscellaneous, 7
monitoring, 7
network, 6
reference architecture, 4
storage, 5

set defaults, 17
using keypairs, 20, 21
using stored credentials, 19, 20

Amazon WorkDocs
adding user, 410
admin control panel access, 413
administrator notification

message, 405
administrator page, 404
authentication, 408, 413
client requirements, 401, 402
collaboration folder, 414, 415
describing folder contents, 418, 419
disable user, 412
domain user, 411
edit user, 414
enable directory page, 404
enable user, 411
enterprise storage, 401
folder content path, 419, 420
folder deletion, 416
Get Started page, 403
getting user list, 409, 410
login page, 406, 407
managing content, 421

metadata, 417, 418
new folder creation, 415, 416
removing folder content, 421
role assignment, 414
sites management page, 408
user’s profile, 412

Amazon WorkSpaces, 345
AD Connector, 352, 353
architecture, 346
basic setup, 347–349
client applications, 347
connection, 350
deletion, 358
launching, 353, 354
manage, 354, 355
Microsoft AD directory,

creation, 350, 351
modify compute type, 355–357
rebuild, 358
restarting, 358
starting, 357
stopped, 358
tagging, 357

Application load balancer (ALB), 177, 182
ApplyMethod parameter, 254
Auto scaling

DefaultCoolDown, 188
Get-ELBInstanceHealth

command, 188
group, 508
HealthCheckGracePeriod, 188
New-ASLaunchConfiguration

command, 187
user data script, 187
web application, 186
Write-ASScalingPolicy, 189, 190

Availability zones (AZs), 3
AWS directory service

Amazon Web Services (AWS) (cont.)

INDEX

515

AD connector (see AD connector)
amazon cloud directory, 301
Microsoft AD directory (see Microsoft

AD directory)
simple AD directory (see Simple AD

directory)
AWS managed policies for job

functions, 222
AWS systems manager automation

access, 458
listing, 458
roles, 458
starting, 459
status, 460

AWS systems manager inventory
aggregating data, 471, 472
association creation, 467, 468
finding, 466
schemas, 468, 469
viewing data, 469–471

AWS systems manager state manager, 460

B
BlockDeviceMapping attribute, 62, 167
Border gateway protocol (BGP), 113
Built-In Insights, 430
Bundle selection window, 349

C
Canonicalization, 297
Clear-AWSCredentials command, 20
Clear-AWSDefaults command, 18
Clear-DefaultAWSRegion commands, 17
Client requirements, 401, 402
Cloud computing, 1–2
CloudWatch

Connect-SNSNotification
command, 184

Publish-SNSMessage command, 184
Set-CWAlarmState command, 185
SNS, 183
Write-CWMetricAlarm

command, 184, 185
Collaboration folder, 414, 415
Common language runtime

(CLR), 246, 254
Connect-SNSNotification command, 184
Cron expression, 460, 461
Cron field positions, 461
Cross-region replication

bucket, creation, 287
configuration, 289
IAM roles, 287–289
storage class, 290

Custom application stack, AppStream 2.0
application catalog, 373, 376, 378, 379
configuring persistent

storage, 389, 390
connect to image builder, 372, 373
copying images, 383
creating directory

configuration, 366, 368
deployment, 361, 362
details form, 363, 364
directory config list, 368, 369
fleet list, 386
fleets, creation, 384–386
image builder, 369, 370
Image Builder list, get, 381
image creation, 380, 381
image list, get, 382, 383
launching, 362
pricing user acknowledgment

form, 364

Index

516

registering fleet with stack, 390
removing images, 384
selection page, 365
stack list, 388
stacks, creation, 387, 388
starting fleet, 386, 387
starting image builder, 370
stopping fleet, 387
stopping image builder, 371
tagging Image Builder list, 382
unique streaming URL, 365
user pool users, 391, 392

assigning users, 395–398
disabling, 394
enabling, 395

users access, grant, 390

D
Database engine, configuration

options modification, 255, 257
parameters modification, 253, 254

Delegation model, 315, 316
Desired state configuration

(DSC), 158
Dismount-EC2NetworkInterface, 136
Dynamic Host Configuration Protocol

(DHCP) management
AD servers, 103
AmazonProvidedDNS, 103
DNS, NetBIOS, and NTP, 101
IP addresses, 101
network configuration, 101
New-EC2DHCPOption, 102
Register-EC2DhcpOption, 102
option set, creation, 102

E
ec2-delete-disk-image command, 171
EC2 Instance, 436–438

patch group, 485
EC2Launch, AMI

configuring windows instances, 161
settings, 163

preparing image, 164
web server role, 165

tasks, 161, 162
ec2:TerminateInstances action, 212
Elastic block storage (EBS), 5

adding volumes
availability zone, 68, 69
EC2, 69, 70

back up agent, exercise, 79–81, 83
definition, 59
encrypting volumes, 66, 67
managing volumes

add storage, 60
Amazon.EC2.Model.

EbsBlockDevice object, 61
disk configuration, 65
EBS, 62
EC2 instances, 64
ephemeral drives, 64, 65
New-EC2Instance, 63

quality of service, 70, 71
resize volume, exercise, 76, 77
snapshots, 72–75

Elastic Compute Cloud (EC2), 6, 25
Elastic Container Service (ECS), 216
Elastic IP (EIP), 129

addresses management, 129, 131
Elastic load balancing (ELB), 3

configuring HTTPS, 182, 183
configuring NLB, 180

Custom application stack,
AppStream 2.0 (cont.)

INDEX

517

health check configuration, 181, 182
with VPC, 178, 179

Elastic network interface (ENI), 117, 360
Elastic network interfaces (ENIs)

management
application firewall, traffic

inspection, 136
DHCP to configure, 136
Get-EC2Instance, 135
multihomed instance, 134
New-EC2Instance command, 134
New-EC2NetworkInterface

command, 135
PowerShell script, 134
private instances, 137–147

Events, 264–266

F
Firewall costs, 118

G
General Purpose SSD (GP2), 70
Get-AWSRegion method, 15
Get-EC2Instance command, 15, 17, 41
Get-EC2NetworkACL command, 96
Get-EC2RouteTable, 92
Get-EC2SecurityGroup command, 120
Get-EC2Subnet command, 89, 129
Get-ELBInstanceHealth command, 188
Get-IAMGroupForUser command, 203
Get-IAMGroup (singular) command, 203
Get-IAMGroups (plural) command, 203
Get-IAMRoles command, 217
GetPasswordWhenReady method, 53
Get-PreSignedURL method, 297
Get-S3BucketTagging command, 291

Gibibyte (GiB), 61
Grant-EC2SecurityGroupEgress

command, 122

H
High available application

ELB (see Elastic load balancing (ELB))
monitoring with CloudWatch

(see CloudWatch)
security groups, configuration, 176
with VPC, 174, 175, 177

I
Identity and access

management (IAM), 5, 10
audit user access

credential report, 220
EC2 instance, 221
MFA devices, 220
user’s activity, 221

creating policy, PowerShell, 213, 214
instance Profile, 462
managed policies

AWS, 214
ECS, 216
Get-IAMPolicy cmdlet, 215

managing groups, 202, 203
managing roles, 217–220
managing users

Get-IAMLoginProfile command, 201
Get-IAMUser command, 200
New-IAMUser command, 199, 200
Remove-IAMAccessKey

command, 201
Remove-IAMLoginProfile

command, 201

Index

518

Set-AWSCredentials command, 201
Update-IAMUser command, 201

role, 509
Initialize-AWSDefaults command, 18
Instance management

bootstrapping user data, 56–58
check console screenshot, 33, 34
check console system log, 34–36
connection, 36–39
filters, 52
Get-EC2Instance command, 41, 42, 44
launching, PowerShell, 30–32
launching, web console

AMI, 27
configure instance details, 27, 28
EC2, 25, 26
security groups, 29
selecting key pair, 30
tag instance page, 28

life-cycle, 39, 40
metadata URL, 44–46
tags, 49, 51
user data, 46, 48, 49
waiting to launch

GetPasswordWhenReady
method, 53, 54

New-EC2Instance returns, 55
SMTP server settings, 54

Integrated script environment (ISE), 14
Internet gateway, 90, 91, 128
IO operations per second (IOPS), 60, 245
IpProtocol, 125

J
JavaScript Object Notation (JSON), 203–205

K
Key Management Service (KMS), 66–67

L
Lambda, 6
Lambda CloudWatch Logs, 504, 505
Lambda event trigger

CloudWatch event rule, 506
Get-LMFunctionConfiguration, 506
State parameter, 506, 507

Lambda functions
errors, 493
input, 492
invoking

InvocationType parameter, 503
Invoke-LMFunction, 502
LogType parameter, 503
Payload parameter, 503

$LambdaContext variable, 493, 494
modules, 491
output and logging, 492
package (see Lambda package)
publishing, 510

IAM role, 497, 498
LatestAMIID, 500, 501
memorySize, 499
Publish-AWSPowerShell

Lambda, 501
Publish-LMFunction, 499
timeout, 499

SNS notification, 511
SNSSubscription template, 508
SNS topic, 511
templates, 489–491

Lambda package
LatestAMIID.ps1 script, 494–496
modules, 497

Identity and access
management (IAM) (cont.)

INDEX

519

New-AWSPowerShellLambda
Package, 496

output, 496
Publish-AWSPowerShellLambda, 496

Lambda prerequisite
AWS Lambda PowerShell Core

module, 488
AWSPowerShell.NetCore module, 489
.NET Core SDK, 487
PowerShell Core, 488

Launch instance wizard
network options, 126
security groups, 127

Least privilege security groups, 148–154
Logs, 267

M
Maintenance windows

creation, 477
patching, 482, 483
register, 477, 478
view, 477

MapPublicOnLaunch property, 128, 129
Microsoft AD directory

AWS apps and services, 320
configuration

DNS name resolution, 307
management workstation, 308
VPC routing, 306

creation
internet gateway, 306
management workstation, 307
private subnets, 304
public subnet, 306
VPC, 304

delegation model, 315, 316
deletion, 323

domain controller, 303, 316, 317
EC2 instance

authentication prompt, 313
directory service console, 309
DNS configuration, 312
domain details, 309, 310
Ethernet network, 310, 311

MFA, 320, 321
prerequisites, 303
reset admin password, 321
security group, 323
set up, 304, 305
single sign-on enabling, 319
snapshot

creation, 317, 318
restore, 318

tools installation, 313, 314
trust relationship, 322
URL access

creation, 319
single sign-on, 319, 320

Miscellaneous IAM commands
account alias, setup, 222
password policy, 221, 222

Multi-AZ instances
AvailabilityZone parameter, 251
deletion, 253
deployment, 250
DNS entry, 249
modification, 251, 252

Multi-Factor Authentication
(MFA), 12, 302, 320, 341

N, O
NAT gateway, 144, 145
Network access control lists (ACLs)

filter traffic, 95

Index

520

Get-EC2NetworkACL command, 96
inbound and outbound rules, 95, 96
private subnet security, 99–101
public subnet configuration, 97–99
security groups, 95

Network address translation (NAT), 90, 129
NetworkInterfaces, 132, 134
Network load balancer (NLB), 177
Network time protocol (NTP), 101
New-ASLaunchConfiguration

command, 187
New-EC2Instance command, 30, 126, 134
New-EC2KeyPair command, 21
New-EC2NetworkInterface

command, 135
New-EC2SecurityGroup command, 122

P, Q
Parameter Store

AMI, 438
Linux AMI, 435
shared resources, 434
Systems Manager, 435
use of, 434, 435
Windows AMI, 435

Patch baselines
creation, 474
register, 483
remove/delete, 475
view, 473

Patch group
registering/associating baseline, 476
view, 476

Patch task, 485
pay-as-you-go model, 345, 359
PeerOwnerId, 105

Policy management, IAM
actions, 205–207
conditions, 212, 213
deny actions, 212
JSON statements, 203, 205
resources, 208–211

Policy resources
ARN, 209
generic, 210
resource-level permission, 209

Policy variables, 211
PowerShell session, 433
Pre-signed URLs

AWS, 296, 298
Get-S3PresignedURL command, 296
secret key, 296
SHA1 algorithm, 298

PrivateIPAddress parameter, 127
Private IPs management, 132, 133
Private subnet, 86, 94, 99–101
Public IP addresses, 128, 129
Public subnet, 86, 94, 97–99
Publish-SNSMessage command, 184

R
RDP gateway, 143
Register-EC2PrivateIpAddress cmdlet, 130
Relational database service (RDS), 7, 237

architecture
EC2 instances, 238
security group, 240, 241
single instance configuration, 238
subnet group, 239
VPC, 239

backup
point-in-time restores, 260–262
snapshots, 258–260

Network access control lists (ACLs) (cont.)

INDEX

521

events, 264–266
instance to launch

authentication, 247
CLR, 246
DBInstanceClass, 243
DBInstanceIdentifier, 242
default port, 245
domain, 247–249
engine type storage, 242, 243
IOPS, 245
licensing models, 244
MasterUserPassword, 243
PreferredBackupWindow, 245
SQL server, 241, 244, 246
StorageEncrypted, 245
subnet group, 244
TDE, 246

logs, 267
tags, 263, 264

Remote authentication dial-in user
service (RADIUS), 302, 341

Remote Desktop connection,
RDP gateway, 147

Remote Desktop gateway (RDGW), 137, 306
Remote Desktop protocol (RDP), 38, 121
Remove-EC2Address command, 131
Remove-EC2Subnet command, 90
Remove-S3BucketTagging command, 291
Resource groups

creation, 426, 427, 439
delete, 429
list, 429, 440
resource query, 428
updation, 427, 428

RestoreTime parameter, 261
Retention period, 260
Route 53, 191, 192
Route tables management, VPC

association.main filter, 92
AWS, 91, 93
creation, 94
Get-EC2RouteTable, 92
New-EC2Route command, 93
new route, adding, 93
PowerShell, 93
Routes property, 92
Set- EC2RouteTableAssociationomm

and, 95
subnets, 91
Web Console, 91

Run command
AWS systems manager, 451, 452
output, 457
parameters, 453
PowerShell, 455
SSM command, 456, 457
targets, 454

S
Scan task, 484
SecretAccessKey command, 201
Security groups, 106, 323, 342, 343

control administrative traffic, 136
Security groups management

ACLs, 123
Amazon EC2, 118
controlling traffic flow, rules, 118
Grant-EC2SecurityGroupIngress, 121
ICMP rule, 125
inbound and outbound

rules, 118–120, 123
instances network interface, 118
instance using PowerShell, 118
IP address, 121
IpPermission object, 122

Index

522

IpProtocol, 125
Microsoft SQL Server, 124
New-EC2SecurityGroup

command, 122
outbound traffic, 123
rules, creation, 124
$SQLRule to Grant-

EC2SecurityGroupIngress, 125
stateful virtual firewall, 117
unauthorized outbound traffic, 123
UserIdGroupPair object, 124

Server migration service (SMS), 170
Session Manager

AWS Systems, 431
CloudWatch Logs, 431
current sessions, 432
new sessions, 432
PowerShell, 433
Windows instance, 430

Set-AWSCredentials commands, 17, 19
Set-CWAlarmState command, 185
Set-DefaultAWSRegion commands, 17
Set-EC2RouteTableAssociation

command, 95
Set-IAMDefaultPolicyVersion cmdlet, 216
Simple AD directory

administrator account, 336, 337
application compatibility, 343
AWS apps and services, 340, 341
configuration

DNS name resolution, 329
management workstation, 331, 332
VPC routing, 329

creation
internet gateway, 328
management workstation, 330, 331
private subnets, 328

public subnet, 328
VPC, 327, 328

deletion, 342
EC2 instance

authentication prompt, 335
DNS IP address details, 333
DNS server configuration, 334

MFA, 341, 342
prerequisites, 327
security group, 342, 343
set up, 329, 330
single sign-on enabling, 338
snapshot

creation, 337, 338
restore, 338

tools installation, 335, 336
URL access

creation, 339, 340
single sign-on, 340

Simple Notification Service
(SNS), 7, 173, 183

Simple storage service (S3), 5, 235
buckets

Get-S3Bucket command, 276
Get-S3BucketLocation

command, 276
New-S3Bucket command, 276
Remove-S3Bucket command, 277
Test-S3Bucket command, 276

Copy-S3Object command, 278
folders

file parameter, 280
KeyPrefix parameter, 279
SearchPattern parameter, 280

Get-S3Object command, 277
options

content type, 293
encryption, 292

Security groups management (cont.)

INDEX

523

logging, 292, 293
pagination, 292

public access, 281
Read-S3Object command, 278
Remove-S3Object command, 278
Write-S3Object command, 277

SQLServer03, 259
Static hosting

bucket set up, 294
error page, 294
page, 293
testing, 295

S3 versions
expiration policy, 285
folder-level rule, 286
Get-S3Objectcommand, 282, 286
Get-S3Version command, 282
glacier, 284
life-cycle transition, 285
Read-S3Object, 283
Remove-S3Object, 283
Restore-S3Object command, 286
Write-S3BucketVersioning, 282, 284

Subnets, 128, 129
creation, web console, 88
dialog box, 89
New-EC2Subnet, 89
Remove-EC2Subnet command, 90
route table, 91
VPC’s address, 88

Systems Manager
IAM access, 424
IAM instance profile creation, 424, 425

Systems manager (SSM) documents
automation document content, 446
automation document

parameters, 445
automation documents, 443

command document content, 447
command documents, 442
policy documents, 443
PowerShell, 448–449
schema version, 447
types, 442
working with documents, 443, 444

T
Tags, 263, 264
Transparent database

encryption (TDE), 237, 257

U
User assignment form, 349

V
Virtual private cloud (VPC), 6

ACLs (see Network access control lists
(ACLs))

creation, 86, 88, 108
ACLs configuration, 110, 111
DHCP options, configuration, 109
dialog box, 87
Internet gateway, 110
private subnet, 109
route table configuration, 110
subnet creation, 108

DHCP (see Dynamic Host
Configuration Protocol (DHCP)
management)

ENIs (see Elastic network interfaces
(ENIs) management)

internet gateway, creation, 90, 91
launching instances, 125–128

Index

524

NAT gateway and RDP gateway, 138
network topology, 85
peering connection

AWS networking backbone, 104
configuration, 105
creation, 104
network configuration and

requirements, 104
prerequisites, 104
request, 106
route table and gateway IDs, 106
US-EAST-2 region, 104

route tables management, 91–95

subnet creation, Web Console, 88–90
virtual private gateway, 111–115

Virtual private gateway, 111–114
VMware/Hyper-V

GoldenImage.vmdk, 170, 171
SMS, 170

W, X, Y, Z
Web Console, 85
Windows management instrumentation

(WMI), 56
Write-CWMetricAlarm command, 184
Write-S3BucketTagging command, 290

Virtual private cloud (VPC) (cont.)

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: AWS Architecture Overview
	What Is Cloud Computing?
	Regions
	Availability Zones
	Services
	Management
	Storage
	Network
	Compute
	Monitoring
	Misc.

	Summary

	Chapter 2: Getting Started
	Creating an AWS Account
	Creating an IAM User Account
	Logging in As an IAM User
	Configuring PowerShell
	Specifying Credentials and Region
	Setting Defaults
	Persisting Defaults
	Using Stored Credentials
	Using Key Pairs
	Using IAM Roles
	Summary

	Chapter 3: Basic Instance Management
	Creating Instances
	Launching an Instance with the Web Console
	Launching an Instance with PowerShell

	Checking the Instance Console Screenshot
	Checking the Instance Console System Log
	Connecting to an Instance
	Managing the Instance Life Cycle
	Listing Instances and Metadata
	Using the Metadata URL

	Using User Data
	Working with Tags
	Working with Filters
	Summary

	Chapter 4: Elastic Block Storage
	Managing Volumes at Launch
	Encrypting Volumes at Launch
	Adding a Volume to a Running Instance
	Managing Quality of Service
	Working with Snapshots
	Managing Public Snapshots
	Summary

	Chapter 5: Virtual Private Cloud
	Creating a VPC
	Creating a Subnet
	Creating an Internet Gateway
	Managing Route Tables
	Managing Network ACLs
	Securing the Public Subnet
	Securing the Private Subnet

	Managing DHCP
	VPC Peering
	Summary

	Chapter 6: Advanced Instance Management
	Managing Security Groups
	Displaying Security Groups
	Adding and Removing Rules

	Launching Instances into a VPC
	Subnets and Public IP Addresses
	Managing Elastic IP Addresses
	Managing Private IPs
	Managing Elastic Network Interfaces
	Summary

	Chapter 7: Amazon Machine Images
	Working with Scripted Builds and Prepared Images
	Listing AMIs
	Limiting the Number of Instance Results
	Finding an Instance by Name
	Locating the Most Common Images

	Introducing EC2Launch
	Preparing an AMI Using EC2LaunchSettings
	Creating an AMI
	Sharing an AMI
	Summary

	Chapter 8: Monitoring and High Availability
	Architecting for High Availability
	Managing Elastic Load Balancers
	Preparing the VPC for an ELB
	Configuring an NLB
	Configuring a Health Check
	Configuring an ELB for HTTPS

	Monitoring with CloudWatch
	Using Auto Scaling
	Using Route 53
	Summary

	Chapter 9: Identity and Access Management
	Managing Users
	Managing Groups
	Managing Policies
	Policy Actions
	Policy Resources
	Policy Actions
	Policy Conditions

	Creating Policies with PowerShell
	Managed Policies
	Managing Roles
	Auditing IAM Access
	Miscellaneous IAM Commands
	Managing Password Policy
	Setting the Account Alias

	Summary

	Chapter 10: Relational Database Service
	RDS Architecture
	Creating a VPC
	Creating a Subnet Group
	Configuring Security Groups

	Managing RDS Instances
	Launching an Instance

	Joining a Domain
	Multi-AZ Instances
	Modifying an Instance
	Deleting an Instance

	Configuring a Database Engine
	Modifying Parameters
	Modifying Options

	Working with Snapshots
	Using Point-in-Time Restores
	Working with Tags, Events, and Logs
	Tags
	Events
	Logs

	Amazon Aurora
	Summary

	Chapter 11: Simple Storage Service
	Managing Buckets
	Managing Objects
	Managing Folders
	Managing Public Access
	Managing Versions
	Using Life-Cycle Management and Glacier

	Cross-Region Replication
	Tagging
	Miscellaneous S3 Options
	Pagination
	Encryption
	Logging
	Content Type

	Summary

	Chapter 12: AWS Directory Service
	Selecting the Right Directory
	AWS Directory Service for Microsoft Active Directory
	AD Connector
	Simple AD

	Managed Microsoft AD Architecture
	Prerequisites
	Creating a VPC
	Creating Private Subnets
	Creating a Managed Microsoft AD Directory
	Creating Public Subnet
	Creating Internet Gateway
	Configuring VPC Routing
	Configuring DNS Hostname Name Resolution
	Creating Management Workstation
	Configuring Management Workstation
	Joining EC2 Instance to the Domain
	Install AD Tools
	Delegation Model
	Add Additional Domain Controller
	Create a Snapshot
	Restore a Snapshot
	Enable Single Sign-On
	Creating an Access URL
	Enabling Single Sign-On
	Disabling Single Sign-On

	Enabling AWS Apps and Services
	Enable Multi-Factor Authentication
	Disable Multi-Factor Authentication
	Reset Admin Password
	Create a Trust Relationship
	Approve Trust Relationship
	Remove a Trust Relationship
	Deleting the Managed Microsoft AD Directory
	AWS Created Security Group

	AD Connector
	AD Connector Prerequisites
	Creating AD Connector
	Deleting AD Connector

	Simple AD
	Creating Simple AD
	Prerequisites
	Creating a VPC
	Creating Private Subnets
	Creating Public Subnet
	Creating Internet Gateway
	Configuring VPC Routing
	Configuring DNS Hostname Name Resolution
	Creating a Simple AD
	Creating Management Workstation
	Configuring Management Workstation
	Joining EC2 Instance to the Domain
	Install AD Tools
	AWSAdminD-xxxxxxx
	Create a Snapshot
	Restore a Snapshot
	Enable Single Sign-On
	Creating an Access URL
	Enabling Single Sign-On
	Disabling Single Sign-On

	Enabling AWS Apps and Services
	Enable Multi-Factor Authentication
	Disable Multi-Factor Authentication
	Deleting Simple AD Directory
	AWS Created Security Group
	Application Compatibility

	Summary

	Chapter 13: Amazon WorkSpaces and Amazon AppStream 2.0
	Amazon WorkSpaces Architecture
	Client Requirements
	Managing Amazon WorkSpaces
	Basic Setup
	Connecting to Your WorkSpaces
	Advanced Setup
	Creating WorkSpaces with Microsoft AD
	Creating WorkSpaces with AD Connector
	Launching New WorkSpace
	Managing WorkSpace
	Modify Compute Type
	Tagging a WorkSpace
	Starting a WorkSpace
	Stopping a WorkSpace
	Restarting a WorkSpace
	Rebuilding a WorkSpace
	Deleting a WorkSpace

	Amazon AppStream 2.0
	Amazon AppStream 2.0 Architecture
	Requirements
	Publishing Requirements
	Client Requirements

	Getting Started with AppStream 2.0
	Deploying a Sample Applications Stack
	Launching Sample Applications

	Deploying Custom Applications Stack
	Creating Directory Configuration
	Getting Directory Config List
	Launching an Image Builder
	Starting Image Builder
	Stopping Image Builder
	Connecting to the Image Builder
	Creating an AppStream 2.0 Application Catalog
	Creating Images
	Getting Image Builder List
	Tagging Image Builder List
	Getting Images List
	Copying Images
	Removing Images
	Creating Fleets
	Getting Fleet List
	Starting a Fleet
	Stopping a Fleet
	Creating Stacks
	Getting Stack List
	Configuring Persistent Storage
	Registering Fleet with Stack
	Granting Users Access
	Adding AppStream 2.0 User Pool Users
	Disabling AppStream 2.0 User Pool Users
	Enabling AppStream 2.0 User Pool Users
	Assigning AppStream 2.0 User Pool Users to Stacks

	Summary

	Chapter 14: Amazon WorkDocs
	Client Requirements
	Setting Up WorkDocs
	Managing WorkDocs Users
	Getting List of WorkDocs Users
	Adding WorkDocs Users
	Enabling WorkDocs Users
	Disabling WorkDocs Users
	Setting Role for WorkDocs Users
	Creating Collaboration Folder
	Creating New WorkDocs Folder
	Deleting WorkDocs Folder
	Listing WorkDocs Folders Metadata
	Describing WorkDocs Folders Contents
	Getting WorkDocs Folder Path
	Removing WorkDocs Folder Contents
	Managing WorkDocs Content

	Summary

	Chapter 15: Systems Manager Basics
	Systems Manager Prerequisites
	IAM Access to Systems Manager
	Creating an IAM Instance Profile for Systems Manager

	AWS Resource Groups
	Creating New Resource Groups
	Updating Resource Groups
	Finding Resources with a Resource Query
	Listing Resource Groups
	Deleting Resource Groups
	Listing Resources in a Resource Group

	Built-In Insights
	Session Manager
	Connecting with Session Manager

	Parameter Store
	Using Parameter Store
	Finding the Latest Windows AMI
	Finding the Latest Linux AMI
	Referencing Values with Systems Manager

	Summary

	Chapter 16: Systems Manager: Run Command, Automation, and State Manager
	AWS Systems Manager (SSM) Documents
	SSM Document Types
	Command Documents
	Policy Documents
	Automation Documents

	Working with Documents in the AWS Systems Manager Console
	Working with Documents Using PowerShell
	Listing SSM Documents
	Listing SSM Documents with Document Filters
	Getting an SSM Document Object
	Creating a New SSM Document

	Run Command
	Run Command Using the AWS Systems Manager Console
	Run Command Using PowerShell
	Sending an SSM Command
	Handling Run Command Output
	Sending Output to an S3 Bucket
	Sending Output to CloudWatch Logs

	AWS Systems Manager Automation
	User Access to Automation
	Automation Roles
	Listing Automation Documents
	Starting an Automation Execution
	Getting Automation Execution Status

	AWS Systems Manager State Manager
	Creating an Association

	Summary

	Chapter 17: Systems Manager: Inventory and Patch Manager
	AWS Systems Manager Inventory
	Systems Manager Inventory in the Console
	Creating an Inventory Association
	Inventory Schemas
	Viewing Inventory Data
	Aggregating Inventory Data

	AWS Systems Manager Patch Manager
	Patch Baselines
	Viewing Existing Patch Baselines
	Creating a New Patch Baseline
	Deleting a Patch Baseline

	Patch Groups
	Viewing Patch Groups
	Registering a Patch Baseline to a Patch Group
	Viewing Patch Baselines by Patch Group

	Maintenance Windows
	Viewing Maintenance Windows
	Creating Maintenance Windows
	Registering Instances with Maintenance Windows

	Summary

	Chapter 18: Lambda with PowerShell
	PowerShell-Based Lambda Prerequisites
	Authoring PowerShell-Based Lambda Functions
	Creating a Script Template
	Understanding Modules
	Understanding Input
	Understanding Output and Logging
	Understanding Errors
	The LambdaContext Variable
	Creating a PowerShell Lambda Package
	Publishing a PowerShell-Based Lambda Function
	Invoking Lambda Functions
	Lambda CloudWatch Logs
	Lambda Event Trigger

	Summary

	Index

