Pro iPhone -
Development
with Swift 5

Design and Manage Top Quality Apps
Second Edition

Wallace Wang

Apress:

http://www.allitebooks.org

Pro iPhone Development
with Swift 5

Design and Manage Top Quality Apps
Second Edition

Wallace Wang

Apress’

vww .allitebooks.cond

http://www.allitebooks.org

Pro iPhone Development with Swift 5: Design and Manage Top Quality Apps

Wallace Wang
San Diego, CA, USA

ISBN-13 (pbk): 978-1-4842-4943-7 ISBN-13 (electronic): 978-1-4842-4944-4
https://doi.org/10.1007/978-1-4842-4944-4

Copyright © 2019 by Wallace Wang

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4943-7. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-4944-4
http://www.allitebooks.org

The secret to success is persistence. Never give up,
never doubt yourself. The path to any goal will never be easy,
but that’s exactly what makes striving for goals so rewarding.
Talent, intelligence, and skill are never as important
as persistence. Remember, never be afraid of failure. Be afraid of
giving up too soon and never realizing your true potential in
whatever dream you want to achieve. You may not always
reach your dreams, but pursuing big dreams will always give
you a far richer life than if you never bothered trying at all.

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas Xi
About the Technical REVIEWETccussessssasssssanssssansssssnsssssnsssssnsssssnsssssnsssssnsssssnnssss xiii
Chapter 1: Organizing Code........ccusssssmsssnsssssnssssansssssnnsssansssssnsssssnsssssnsssssnnssssnnssssnnssss 1
Using the // MARK: COMIMENT........cccceereririerieresensenesessssese s ssesessessessesssssssessesasssssessesaesssssssesseses 3
USING EXEENSIONS......ciueiveerierereserseressessesessessessesessessessessesessessesassassessesaessessssesnesasssssessessesssssnsesseses 5
Using Files and FOIEIS.......cceiirrirre st a e s s a e s a e s sn e s s n 11
USE COAE SNMIPPELSveiviircririe s e e e b p e p e nnan 14
Creating Custom Code SNIPPELS.......ccvvrrrrerierrer e re s s s s s e se e s s e e sn e sae s ens 17
Deleting Custom Code SNIPPEetSccccvcrerninnnne s 18
Using @IBDesignable and @IBInSpectable...........ccoveerrcrnsnrencrsscrsese e 19
SUMIMAIY....cetierrresese s rs e e s e R e e e e e e e e R e e s R e e nenae e e Re e s re e nenannnnrnnnns 26
Chapter 2: Debugging COdeccssummsmmmsasssssssssnsssssssssssssssssassssassssnsssansssassssnsssansas 27
Simple Debugg@ing TECANIQUESccovvrrrcererr s s ne s 30
Using the XCode DEDUGQET.......ccrvrrereririerere s ses e ses s e ssesse e s e s sae e s e ssessessesessesnesaessssensesaes 34
USING Bre@KPOiNTSccceevrererierieresesseresessessssessessessssessessessessssessessesssssssessesssssssessessesssssnsessens 35
Stepping TRIOUQN COUEcverererrererertrsersere s s s e ssesae e s e s sse s e e s e ssesaese s e ssessessesesnessesas 36
Managing Bre@KpPOintS.........ucvvriererennerseressnsessesessessssessessesssssssessessssessessessessssessessesssssssessees 4
Using Symbolic BreakpointS........cuvcvverernnenseriesessssessessesssssssessessessssessessesssssssessessessssessessens 45
Using Conditional BreaKpPointscucvrerererserierenessessesesssssssessesessssessessesssssssessessessssessessens 48

£ 11114 7R 49
A%

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 3: Understanding ClOSUIeSccccurrmsssmmnsmssssnnsssssssnssssssssssnssssssssnssssssnnnsnsss 51
Closures with Multiple Parameters..........coceorecrninnicrire e sessenens 54
Understanding Value Capluring........c.ccovvrirrinininns s s s sss s sssssssessesnes 56
Using CloSUres LIKE DAtccccveeererenerenerresesesesesese s sesse s e sessesessssesessesenns 57
10T 111 1T o SRRSO 59

Chapter 4: Multithreaded Programming Using Grand Central Dispatch................. 61
Understanding TRrEadS........ccvvvrrrierinin s sa e s sp e e nnen 62
Using Grand Central DIiSPAtCRccevevrrrierennsersere s s serese s s e e s s sse e s e saesee e e e saesnes 68
Displaying FEEUDACK.........ccccviirrrrerr e e e s 77
USing DiSPatCh GrOUPS.......cccveiiriircre s sr s bbb s r e s 80
SUIMIMANY....eeeertecre s s e Re s e e e e e Re e e e se e e e s Re e pa e nen e e nrnnnes 87

Chapter 5: Understanding the Application Life Cyclecccinnssnmmnmnssssnnnnsssssnnnsasns 89
Getting State-Change NOTIfiCatioNS.........ccocuerrinrnsnnese e 90
Using Execution State ChanQESccvvrrverernrensenesesessessessessssesessessssessessessesssssssessessesessensesas 98

ACHIVE D> INACLIVEcovrvriiciiririsssc s 98
INActive D> BACKOIOUNGcccviereriniirieresis s s e s e e sse s sss e s saessesessesaesaesssnensesnens 98
Background > INACHIVEccvcvierierrsren e e 99
INACEIVE P> ACLIVEccrrriiriccini s s 99
Displaying the LAUNCH SCrEENccccviviririerenr e se s s se s s sae s s e ssesaesessessesnes 99
Using the NOtIfication CENTENccvcvevrrrere st sre s saesre e e e s naens 101
SUMIMANY ..ttt s E e e e e e R e e e e e e e Re e R e e e e e Re e Re R e e e e e Re b e e e e e aennin 111

Chapter 6: Understanding Data Persistence........ccccuemmmmmssssnnnmmsssssnnsssssssnssssssnnnnns 113
Storing Preferences in USErDefaults..........ccccovvrernenerenernsesesesess s se s sessenenns 114
Storing Preferences in UserDefaults in the AppDelegate File.......c.ccocevvvnininnincnnnnvenseniennn, 120
Reading and Writing 10 FIlESc.ccvvrirnrriererrsirse s sessese e ses s sss e s e e sseses e saessesassessesaens 131
U0 0= D | U 136

Creating @ Data Model File ... ses 137
Customizing @ Data Model Fileccvcererrrerierieresirserere s sessesesse e sessessessessssessesnees 141

TABLE OF CONTENTS

Designing the USer INTErfacec.ccvvvvvrenininsin s s e s ssens 145
WHEING SWITt COUB....vevtrerrererrererserere st ser s e s s e e e s saese s saesae e s e s s snesa e e s e naeenes 148

£ 11T 1117 o OO RS 152
Chapter 7: Passing Data Between FileSccccuueeurrmssssnsnmsssssnnssssssssnsssssssssssssssnnnnss 155
Sharing Data with the AppDelegate.Swift File.........cooeerrenrerree e 155
Sharing Data Between View CONrOlIErsScuovvererrenerensesesesesssesesesessesessssesessssessssesessssenns 161
Passing Data FOrWaArdccovvrmrenmrnsesnesessse s s sessesessssessssenenses 163
Passing Data Backward with @ ProtocCol............cccveerrcennnesresc s 179
Passing Data Backward with @ Delegate............cccvverrrenrneneresrnsesese s 187
Passing Data with the Notification Center ..o 192
BT 11134 OO 198

Chapter 8: Translating with Localization............cccevssemmmnnssennnnnsssssnnnnssssssssssssnnens 201

Designing the USer INTErface.........c.ccvverrirninn s ss s s s 202
Creating a Localization File..........cccovevrecerecerncsire et ses s 205
£33 (0] T - T 209
Creating a Localized String Filecovoeierenrrrre e 213
LOCAlIZING IMAYES ...vcvrveerrecrrnesesse s e sr s s sn s ne s 222
Customizing the APP NAME.......cccvererrrrierere e sa e e s sa e e nnen 226
Formatting NUMDErs and DAteS.........ccovrerrererenrerrererssensesesesessessessessssessessesssssssessessesssssssessens 228
£ 11134 7 232
Chapter 9: USing 3D TOUCK.........cccumsemmsmmmssmsasssnsssssmssssssssnssssssssssssssnsssnsssnsnsnsnnnsnnnas 235
Understanding 3D TOUCK ..o s 236
Detecting 3D Touch AVAIIADIIILYccceerrnsererererrenersse s s nns 239
DEteCiNG PreSSUIE......ccceeiecriresirieserre s e ne s 242
Creating Home Screen QUICK ACLIONScccevrvververierenessenseseses s ssesessesessessssesessessesessessesnes 245
Responding to Quick ACTION HEMSccoiieviieiirccrr e 252
Adding Dynamic Home Screen QUICK ACHIONS........cccvvvrnienncnrc s 259
Adding Peeking, Popping, and PrevVieWing.......c.ccouvcnvniennnnnnennessssssessesessssessessesssssssessessens 266
£ 11T T 276

vii

TABLE OF CONTENTS

Chapter 10: Detecting Motion and Orientationccccivnnneemnrnssssnnnnnsssssnsesssssnnns 277
Detecting SNAKE GESTUIES.......cccovueeercccrirerere ettt e se e e 277
Understanding Core MOLION ... s s st snens 281

Detecting ACCEIErationcccviincnininn s s 282
Detecting Rotation with the GYrOSCOPEccccvcrerirrine e 285
Detecting Magnetic FIelds........ccciinninnsnr s 289
Detecting Device Motion Data ... 290
£SO 292

Chapter 11: Using Location and Mapsccccuseemmmmssssnnnmssssssnnssssssssnsssssssssssssssnnnss 293

USING COre LOCALIONccceveerrserirrenerre e ses e srs s s e 293
DEfiNiNG ACCUIACY.....cvveerreerrssesrssesesesesrssesssese e e s sr s e e sr s sr s sn e sa e ss s e e s e nennis 294
Defining @ DiStanCe FIlLErcccuovcriiernesrne s 295
Requesting @ LOCALION.........c.cuceerveseresernse s s e se e s sn s sss e s s senns 296
Retrieving LOCAtion Datacoccoerenernnesrnesenese s s se s s s sennes 296
Requesting AUtNOFZAtioN ... s 297

AdUING @ MAD ...cveveerirerireer e e e r R nr s 298

Z00MiING iN @ LOCATION.....c..ciiierierere s s ss s saesa e se s ae s ae e e e nne e 303

D00 o [T oA 4 T0] P2 0] 307

SUMIMANY ..ttt R e e e e e R e e e e e e e R e R e e e e e Re e Re R e b e e e RenR e e e e naenrs 311

Chapter 12: Playing Audio and Vide0cccsuussssmmsmsssssnnnssssssnsnsssssssnnsssssssnssssssnnnnss 313
Playing @an AUCio File........cccvrieirenerese s s se s s se s s sesssnenns 314
Playing VIARO......ccoveeeerreseriee s se e s sr s s nenss s 323
Playing Videos on the INTErNEL ... eaens 327
£ 11134 7R 332

Chapter 13: Using the Camera..........cousummemmsnmssansssasmssnssssnsssasssssssssnsssassssnsssanssans 333
Setting Privacy SELNGS.......cccvrrrrrerre st e 333
Checking for @ CAMEIa..........cccvvieririrsiren e p s e s b s e 335
Designing a Simple USer INTErface........c.cccvvirerrnssncsese s 337
TaKiNG @ PICTUIE ...cveuceeecerree e sn s pe e e nne s nsenens 339

viii

TABLE OF CONTENTS

T 10 T £ O 340
31111117 o OO RS 344
Chapter 14: Using WebKit........ccccuussemmnmmssssnnnmmssssssssssssssssssssssssssssssssnsssssssssssssssnnnnss 345
Displaying Web Pages from the Internet............ooooeenrccrecreee e 345
Displaying HTIML FIlES.......cccvrrerereserreserensesesesessssesessesessesessssessnns 351
11T 111 1T o OSSOSO 356
Chapter 15: Displaying Animationc.cccccmmmmsnmnnmmssssnsnmsssssssnmsssssssssssssssssssssssnnns 357
Moving ltems With ARIMALION........cccviirrrr e s eae s 358
Customizing Animation with Delays and OptionS.........ccccvvevrevernserienenensensesessssessesessesessessesses 363
Customizing Animation with Damping and VEIOCIEYcccccvrenrnccrniennnrers s 367
Resizing ltems with ANIMaLiON.........ccovrinin e 369
Rotating Items with ANIMation............cccovenrerrerrr e 372
Changing Transparency with ANImMation.........cocccvvennirn s 376
Animating Transitions Between View COntrollers........cccuvevrvnseniennsensensenessssessesesesessesensens 379
Simple Animation Transition Between View COntrollers..........ccocvvvverenenserierienessensessessesessessenses 393
£ 11134 7 398
Chapter 16: Using Machine Learning.......ccucescsssssesssssssssnsesssnsssssssssssnssssssnssssanssssas 399
Understanding Maching LEarningc.ccccoveerererernsressenesesesessesesesese s sesesessssesssesessesenns 400
Finding @ Core ML MOGE!ccovenerreerensesessesesrese s sessese s s s ss s s sessssssssssssssssessssenns 402
IMAgE RECOGNITIONeeveeeieerrrcsire e e 403
Identifying Objects from the CAMEraccocevvvrrrienn s enens 415
JAV 01\ 741 T TR T4 IN T Uo [S 424
£ 11134 7 432
Chapter 17: Using Facial and Text Recognitionccceusssemnsnsssssnnsssssssnsssssssnnnns 433
Recognizing FACES iN PICTUIEScccoeccrrecrereeree e e 433
Highlighting Faces in an IMAJE..........ccccvurmrmeserenmrnsesessesese s ses s e sesessssenns 442
Highlighting Parts of @ Face in an Image..........ccccvvvrnennenennse s s 450
Recognizing Text in @n IMAJEccvcevevririere e s e s sa e saesae s e e ssesaees 458
£ 1§14 7R 469

ix

TABLE OF CONTENTS

Chapter 18: USing SPeeCh......ccccrrrssnmmmrmssssnnnmsssssnsnssssssnsnsssssssnsssssssnnssssssnnnssssssnnnnss 471
Converting SPEeCh 10 TEXL ..o e 471
Recognizing Spoken COmMmMANUS..........ccccveriininnnnen s s e st sessesnens 482
Turning TeXt 10 SPEECH.....cv e 486
B30T 1117 o OSSR 490

Chapter 19: Understanding SiriKit.........ccoousummmssnnmssnsmmsssnmssssnmsssssmssssssssssssssssnssssns 491
HOW SiFIKITWOTKS ...t s 492
Defining How Siri Interacts With the USErcccvvvererrrerienesessesesessssessessessssessessessessssessessens 497
Understanding the IntentHandler.Swift File...........cccviininnecnsnr s 500
Understanding the ExtensionUl FOIEr ..o sesesnens 504
Creating a Payment App With Sificoveeorerrrre e 510
B30T 111 1T o OSSR 518

Chapter 20: Understanding ARKit..........ccoussammmmsanmmsssnsmsssnsmsssssssssssssssnsssssnsssssnnsnssns 519
HOW ARKIt WOTKS......ccvcuiiiriresiiscsiss s s s s 519
Drawing Augmented Reality ODJECES.......ccvcrerrrrrrierererrere s sesese s s sse e ses e ssessessssessesaens 528
Resetting the World Origin ... s ses e sens 531
Drawing CuStOm SHAPES.......cccuciiriiinrrr e st 537
Modifying the Appearance 0f SHAPEScccevivrirrnnr 539
Playing With LIGRTINGccoeeerneninenerese s se s ss s s sssssse s sesssnenns 548
BT 1] 134 OO 553

Chapter 21: Interacting with Augmented Realitycccinsseemnmnssssnnnmnssssnnsnnssssnnns 555
Storing and AccesSing GraphiC ASSEIS......cciuvvrerrrrererersrsererss e s sse s ssessessssessesses 556
Working With TOUCK GESIUIES.......cuecericrircrire st 559
Detecting a Horizontal Plane............coovinnncnnnn s sessesnens 565
MOIfying @n IMAJEcereecrererireer s 571
Creating Virtual ODJECEScccvcceereierncrrre e 572
BT 11134 RS 584

1T - 585

About the Author

Wallace Wang has written dozens of computer books over the years beginning with
ancient MS-DOS programs like WordPerfect and Turbo Pascal, migrating to writing
books on Windows programs like Visual Basic and Microsoft Office, and finally switching
to Swift programming for Apple products like the Macintosh and the iPhone. He
currently teaches iOS programming through UCSD Extension in San Diego.

When he’s not helping people discover the fascinating world of programming, he
performs stand-up comedy and appears on two radio shows on KNSJ in San Diego
(http://knsj.org) called Notes from the Underground (with Dane Henderson, Jody
Taylor, and Kristen Yoder) and Laugh In Your Face Radio (with Chris Clobber and Sarah
Burford).

He also writes a screenwriting/storytelling blog called The 15 Minute Movie Method
(http://15minutemoviemethod.com) designed for screenwriters and novelists. For fun,
he also writes a blog about the latest cat news on the Internet called Cat Daily News
(http://catdailynews.com).

xi

http://www.knsj.org
http://www.15minutemoviemethod.com
http://www.catdailynews.com

About the Technical Reviewer

Massimo has more than 22 years of experience in Security, Web and Mobile
Development, Cloud, and IT Architecture. His true IT passions are Security and Android.
He has been programming and teaching how to program with Android, Per], PHP,

Java, VB, Python, C/C++, and MySQL for more than 20 years.

He holds a Master of Science in Computing Science from the University of Salerno,
Italy.

He has worked as a Project Manager, Software Engineer, Research Engineer, Chief
Security Architect, Information Security Manager, PCI/SCADA Auditor, and Senior Lead
IT Security/Cloud/SCADA Architect for many years.

His technical skills include Security, Android, Cloud, Java, MySQL, Drupal, Cobol,
Perl, Web and Mobile Development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He currently works as Chief Information Security Officer (CISO) for Cargotec Oyj.

xiii

CHAPTER 1

Organizing Code

Programs are rewritten and modified far more often than they are ever created. That
means most of the time developers will be changing and altering existing code either
written by someone else or written by you sometime in the past. Since you may be
writing code that you or someone else will eventually modify in the future, you need to
make sure you organize your code to make it easy to understand.

While every developer has their own programming style and no two programmers
will write the exact same code, programming involves writing code that works and
writing code that’s easy to understand.

Writing code that works is hard. Unfortunately once developers get their code to
work, they rarely clean it up and optimize it. The end result is a confusing mix of code
that works but isn’t easy to understand. To modify that code, someone has to decipher
how it works and then rewrite that code to make it cleaner to read while still working
as well as the original code. Since this takes time and doesn’t add any new features, it’s
often ignored.

Since few developers want to take time to clean up their code after they get it to work,
it'’s best to get in the habit of writing clear, understandable code right from the start. That
involves several tasks:

e Writing code in a consistent and understandable style

e Making the logic of your code clear so anyone reading it later can
easily understand how it works

e Organizing code to make it easy to modify later

Writing code in a consistent and understandable style means predictability. For
example, some programmers give all IBOutlet variables a prefix of “IB” to stand for
IBOutlet such as

@IBOutlet vaxr IBnamelabel: UILabel!

© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_1

CHAPTER 1 ORGANIZING CODE

This type of programming style makes it easy to tell the difference between using an
IBOutlet variable and an ordinary variable. Other programmers add a prefix or suffix to
variable names to identify the type of data they contain such as

var nameStr : String
var agelnt : Int
var salaryDbl : Double

The ultimate goal is to write self-documenting code that makes it easy for anyone
to understand at first glance. One huge trap that programmers often make is assuming
they’ll be able to understand their own code months or even years later. Yet even after
a few weeks, your own code can seem confusing because you're no longer familiar with
your assumptions and logic that you had when you wrote the code originally.

If you can’t even understand your own code months or even weeks later, imagine
how difficult other programmers will find your code when they have to modity it in your
absence. Good code doesn’t just work, but it’s easy for other programmers to understand
how it works and what it does as well.

When developing your own programming style, strive for consistency and
organization. Consistency means you use the same convention for writing code whether
it’s naming variables with prefixes or suffixes that identify the data type or indenting
code the same way to highlight specific steps.

Organization means using spacing and storing related code together such as putting
IBOutlets and variables near the top and placing IBAction methods at the bottom with
ordinary functions in the middle. This can group chunks of code in specific places to
make looking for specific code easier as shown in Figure 1-1.

CHAPTER 1 ORGANIZING CODE

import Foundation
import UIKit

class YiewController: UIViewController, UICollectionViewDataSource, UICollectionViewDelegate {

@IBOutlet weak var photosCollectionView:UICollectionView!

@IBOutlet weak var maxDegreesValuelLabel:UILabel!
IBO I d @IBOutlet weak var coverDensityValuelLabel:UILabel!
Ut etS an @IBOutlet weak var minOpacityValuelLabel:UILabel!

w @IBOutlet weak var minScaleValuelLabel:UILabell
variables

@IBOutlet weak var maxDegreesSlider: UISlider!
@IBOutlet weak var coverDensitySlider: UISlider
@IBOutlet weak var minScaleSlider: UISlider!
@IBOutlet weak var minOpacitySlider: UISlider!

var originalItemSize = CGSize.zero
var originalCollectionViewSize = CGSize.zero

// MARK: Lifecycle

super.viewDidlLoad({)

originalCollectionViewSize = photosCollectionView.bounds.size

. }

Functlons override func viewDidAppear(_ animated: Bool) {
super.viewDidAppear(animated)
DispatchQueue.main.asyncAfter(deadline: DispatchTime.now() + Double{Inté4(2 » NSEC_PER]

Double(NSEC_PER_SEC)) {
self.photosCollectionView.reloadData()

5!!!:!Jon !un: Hens:.!y!!:!erua!ueuangesl_ senaer:M!hEer! !

photosCollectionView. reloadData()
}

IBACt'On @IBAction func opacitySliderValueChanged(_ sender:ulSlider) {
photosCollectionView. reloadData()
methods 1

@IBAction func scaleSliderValueChanged(_ sender:UISlider) {

e <

Figure 1-1. Grouping related code together makes it easy to know where to look
for certain information

The exact grouping of different parts of code is arbitrary, but what’s important is that
you organize code so it’s easy to find what you want.

Using the // MARK: Comment

Besides physically grouping related items together such as IBOutlets and variables,

you can also make searching for groups of related code easier by using the // MARK:
comment. By placing a //MARK: comment, followed by descriptive text, you can make
it easy to jump from one section of code to another through Xcode’s pull-down menu as
shown in Figure 1-2.

CHAPTER 1 ORGANIZING CODE

o] & Restaurant) 19 RestaurantWidget) [C Y s M swi @ <h)D>
import UIKit @ sharedManager
@ initg)

class MenultemsManager: NSObject {

(Z] Public Methods

static let sharedManager = MenultemsManager() [0 loadDatal)

private override init() {} =] Private Methods

@ constructmenul FromArray(array:)
// MARK: - Public Methods

func loadData() -> [MenuItem] {
let path = Bundle.main.path(forResource: "Menu
if let dataArray = NSArray(contentsOfFile:
return constructMenultemsFromArray(a

} else {
return [Menultem]()

", ofType: "plist")
{
" dataArray)

}
}

// MARK: - Private Methods
private func constructMenultemsFromArray(array: NSArray) =-> [Menultem] {
var resultltems = (Menultem]()

for object in array {
let obj = object as! NSDictionary
let name = obj["name"] as! String
let ingredients = obj["ingredients"] as! String
let image = obj["image"] as! String
let price = obj["price"] as! String
let discount = obj["discount®] as? String

let loadedMenultem = Menultem(name: name, ingredients: ingredients, image: image, price: price,
discount: discount)
resultItems.append(loadedMenultem)
}

return resultItems

Figure 1-2. The // MARK: comment creates categories in Xcode’s pull-down menus

The structure of the // MARK: comment looks like this:
// MARK: Descriptive text

The two // symbols define a comment. The MARK: text tells Xcode to create a pull-
down menu category. The descriptive text can be any arbitrary text you want to identify
the code that appears underneath.

Once you've defined one or more // MARK: comments, you can quickly jump to any
of them by clicking the last item displayed above Xcode’s middle pane to open a pull-
down menu as shown in Figure 1-3.

CHAPTER 1 ORGANIZING CODE

8 < [& DeleteMe) [7] DeleteMe) B ViewController.swift) No Selecliunh Clicking the Iast
item here...

R < [y DeleteMe) [7] DeleteMe) [l ViewController. swilll [SIRULT eI 10

@ oscarLabel

i ; @ boView .
class ViewController: UIViewController { © wobview _“d|splays a pu"-
® @IBOutlet var oscarLabel: UILabel! 0 playerve down menu
® @IBOutlet var boView: WKwWebView! B playerview
[0 viewDidLoad()
var webView = WKwebView() =) Override functions

var playerVC = AVPlayerViewController()
var playerView = AVPlayer()

[0 viewwillAppear(_:)

m viewDidAppear(_:)

override func viewDidLoad() { [0 playButton(_:)
super.viewDidLoad() [D setwebkitview(videoURL:)
// Do any additional setup r 14 @ newPlay(_:)

}

// MARK: Override functions

override func viewwillAppear(_ animated: Bool) {
oscarLabel.center.y —-= view.bounds.height // Hides the label off the

Figure 1-3. Displaying Xcode’s pull-down menu that lists all // MARK: comments

Use the // MARK: comment generously throughout each .swift file. This will make it
easy to jump to different parts of your code to modify it or simply study it later.

Using Extensions

When creating different classes, it’s likely you'll need to extend them. For
example, a class file that uses table views often needs to extend its class with
UlTableViewDataSource and UlTableViewDelegate such as

class ViewController: UIViewController, UITableViewDelegate,
UITableViewDataSource {

Once you extend a class, you need to implement its required functions. For example,
extending a class with UlTableViewDataSource requires that you include the following
two functions:

func tableView(_ tableView: UITableView, numberOfRowsInSection section:
Int) -> Int {
// Code here

CHAPTER 1 ORGANIZING CODE

func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {
// Code here

}

You can place these two functions anywhere in your .swift file, but it’s generally a
good idea to keep these two functions together. If you extend a ViewController class with
UlTableViewDelegate and UITableViewDataSource, the entire ViewController.swift file
might look like this:

import UIKit

class ViewController: UIViewController, UITableViewDelegate,
UITableViewDataSource {

@IBOutlet var petTable: UITableView!

let petArray = ["cat", "dog", "parakeet", "parrot", "canary", "finch",
"tropical fish", "goldfish", "sea horses", "hamster", "gerbil",
"rabbit", "turtle", "snake", "lizard", "hermit crab"]

let cellID = "cellID"

override func viewDidLoad() {
super.viewDidLoad()
petTable.dataSource = self
petTable.delegate = self
// Do any additional setup after loading the view, typically from a nib.

}

func tableView(_ tableView: UITableView, numberOfRowsInSection section:
Int) -> Int {
return petArray.count

}

func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {

var cell = tableView.dequeueReusableCell(withIdentifier: celllD)
if (cell == nil) {
cell = UITableViewCell(

CHAPTER 1 ORGANIZING CODE

style: UITableViewCell.CellStyle.default,
reuseldentifier: celllD)
}
cell?.textlLabel?.text = petArray[indexPath.row]
return cell!

}

func tableView(_ tableView: UITableView, didSelectRowAt indexPath:
IndexPath) {
let selectedItem = petArray[indexPath.row]
let alert = UIAlertController(title: "Your Choice", message: "\
(selectedItem)", preferredStyle: .alert)

let okAction = UIAlertAction(title: "OK", style: .default, handler:
{ action -> Void in
//Just dismiss the action sheet

1)
alert.addAction(okAction)

self.present(alert, animated: true, completion: nil)

While it’s easy to identify the three tableView functions (numberOfRowsInSection,
cellForRowAt, and didSelectRowAt), it’s not easy to see which functions belong to
the UlTableViewDelegate and which belong to UlTableViewDataSource. Even more
troublesome is that it’s possible to insert multiple functions in between all three
tableView functions.

To make it much easier to see which required functions are required by which class,
you can extend a class a second way by adding specific extension code at the end of a
class file as follows:

import UIKit
class ViewController: UIViewController {

@IBOutlet var petTable: UITableView!

CHAPTER 1 ORGANIZING CODE

let petArray = ["cat", "dog", "parakeet", "parrot", "canary", "finch",
"tropical fish", "goldfish", "sea horses", "hamster", "gerbil",
"rabbit", "turtle", "snake", "lizard", "hermit crab"]

let cellID = "cellID"

override func viewDidlLoad() {
super.viewDidLoad()
petTable.dataSource = self
petTable.delegate = self
// Do any additional setup after loading the view.

}

extension ViewController: UITableViewDataSource {
func tableView(_ tableView: UITableView, numberOfRowsInSection section:
Int) -> Int {
return petArray.count

}

func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {
var cell = tableView.dequeueReusableCell(withIdentifier: cellID)
if (cell == nil) {
cell = UITableViewCell(
style: UITableViewCell.CellStyle.default,
reuseldentifier: celllD)
}
cell?.textlLabel?.text = petArray[indexPath.row]
return cell!

}

extension ViewController: UITableViewDelegate {
func tableView(_ tableView: UITableView, didSelectRowAt indexPath:
IndexPath) {
let selectedItem = petArray[indexPath.row]

CHAPTER 1 ORGANIZING CODE

let alert = UIAlertController(title: "Your Choice", message:
"\(selectedItem)", preferredStyle: .alert)

let okAction = UIAlertAction(title: "OK", style: .default, handler:
{ action -> Void in
//Just dismiss the action sheet

1)
alert.addAction(okAction)

self.present(alert, animated: true, completion: nil)

Notice that this method separates the tableView functions from the rest of the
ViewController.swift code and explicitly shows that the numberOfRowsInSection and
cellForRowAt tableView functions belong to the UITableViewDataSource while the
didSelectRowAt tableView function belongs to the UITableViewDelegate.

By using the extension keyword at the end of .swift class files, it's much easier to
group and organize related code. With the extension keyword, Xcode automatically
identifies extensions in its pull-down menus to make it easier to find as shown in

Figure 1-4.

CHAPTER 1 ORGANIZING CODE

B < > ootez) B ontoen) [viewconvoter o

2 T, @ petTable
impor i

" @ petarray
clals ViewController: UIViewController { @ cellio

[viewDidLoad!()
[viewControlier
[@ tableview(_:numberOfRowsinSection:)

® @IBOutlet var petTable: UITableView!

let petArray = [“cat", "dog", "parake
horses", "hamster", "gerbil®, % i t crab”
L ¢ 8 o A viewController 1

let cellID = "cellID® () tableView(_:didSelectRowAt:)

override func viewDidLoa
super.viewDidLoad
petTable.dataSo
petTable.dele,
// Do any

= self
= self

tional setup af loading the view.

extension ViewController: UITa
func tableView(_ tableVi
return petArray.cou

iewDataSource {
UITableView, numberOfRowsInSection section: Int) -> Int {

}
func tableview(_ ta UITableView, cellForRowAt indexPath: IndexPath) -> UITableViewCell {
var cell = tablWiew.dequeueReusableCell(withIdentifier: celllD)
if (cell == n
cell
: UITableViewCell.CellStyle.default,
eldentifier: celllD)
}
cell? tLabel?.text = petArray[indexPath.row]
retu
}

extension ViewController: UITableViewDelegate {
func tableView(_ tableView: UITableView, didSelectRowAt indexPath: IndexPath) {
let selectedItem = petArray[indexPath.row]

let okAction = UIAlertAction(title: "OK", style: .default, handler: { action -> Void in
//Just dismiss the action sheet

hH

alert.addAction(okAction)

Figure 1-4. Displaying extensions in Xcode’s pull-down menu

| [0 tableview(_:cellForRowAt:) j Tish®, Sgoldfish®,

let alert = UIAlertController{title: "Your Choice", message: "\(selectedItem)”, preferredStyle:

“sea

.alert)

The preceding two methods of extending a class are equivalent so it’s just a matter

of using which method you like best. Just be aware that using the extension keyword to

separate code can help you organize code without any extra work on your part.

10

Using Files and Folders

CHAPTER 1 ORGANIZING CODE

Theoretically, you could create a single ViewController.swift file and cram it full of code.
While this would work, it’s likely to be troublesome to read and modify. A far better
solution is to divide your project into multiple files and store those multiple files in

separate folders in Xcode’s Navigator pane.

Separate files and folders exist solely for your benefit to organize your project.
Xcode ignores all folders and treats separate files as if they were all stored in a single file.
When creating separate files, the two most common types of files to create are shown in

Figure 1-5:
e Cocoa Touch Class

o Swift File

Choose a template for your new file:

m watch0S wOS macOS

Source

T
Cocoa Touch Ul Test
Class Case Class
S
Header File C File
User Interface
Storyboard View

Cancel

i 3 m
Unit Test Swift File Objective-C File
Case Class
C+ N\
C++ File Metal File
Empty Launch Screen

Figure 1-5. The two most common types of .swift files in a project

11

CHAPTER 1 ORGANIZING CODE

Cocoa Touch Class files are mostly used to connect to view controllers displayed in a
storyboard. When you need a .swift file to control part of your app’s user interface, use a
Cocoa Touch Class file.

The Swift File option creates blank .swift files which are most often used to store and
isolate code that you don’t want to cram in an existing .swift file such as defining a list of
variables, data structures, or classes.

The more .swift files you add to a project, the harder it can be to find any particular
file. To help organize all the files that make up a project, Xcode lets you create folders.
By using folders, you can selectively hide or display the contents of a folder as shown in
Figure 1-6.

BERQAOQEo @
L
¥ & Restaurant
v RestaurantWidget
Cells

FOldeI'S + MenultemTableViewCell.swift
¥ Common
» MenultemsManager.swift
Data
Fi Ies Menultems._plist
Model

s Menultem.swift
Resources
TodayViewController.swift
Maininterface.storyboard
Info.plist

Frameworks

Restaurant

» . Products

Figure 1-6. Folders help organize all the files in a project

To create an empty folder, choose File » New » Group. Once you've created an
empty folder, you can drag and drop other folders or files into that empty folder.

Another option is to select one or more files and/or folders by holding down the
Command key and clicking a different file and/or folder. Then choose File » New »
Group from Selection. This creates a new folder and automatically stores your selected
items into that new folder.

You can also right-click the Navigator pane to display a popup menu with the New
Group or New Group from Selection commands as shown in Figure 1-7.

12

CHAPTER 1 ORGANIZING CODE

& Xcode E@ Edit View Find Navigate Editor Product Debug £

BERQAQAOEo @

eoce ..!_ Tab 6T ¢ s
 AddFiles to “DeleteMe2”.. 3A Window ¥t - v [7] DeleteMe2
BERQ : o r -
v [E DeloteMe2 = Open... o File.. #N Open in New Tab
v [Deleteez OPEN Recent p Target. Open in New Window
.| AppDele OPEN Quickly... @30 Playground... NN Show in Finder
= ViewCol ~yoco Window gaew Project.. 3N Open with External Editor
Y. NewGrt (rioce Tab BW Workspace... ~HEN i Open As >
Close “File.swift" S 38N Show File Inspector
M“_ at Close Project cxw Group with Folder New File...
ain.sto -
Bgassesy Save EECIE CIEHR (OIS e L Add Files to “DeleteMe2"...
) Launchs Dupllggte.., S Delete
Info.plis > ._ '
» L | Products = : New Group
Export... New Group without Folder
Open in New Tab New Group from Selection
Open in New Window
Show in Finder
Open with External Editor
Save As Workspace... Source Control >
Project Settings...
Project Navigator Help
Page Setup... %P
Print... #P
, ' Right-click pop-u
File pull-down menu 9 pop-up
menu

Figure 1-7. Menu commands to create a new folder

Note If the Group or Group from Selection commands are grayed out, click a
.Swift file to select it before choosing the File » New » Group or File » New »
Group from Selection command.

Once you've created a folder, you can always delete that folder afterward. To delete a
folder, follow these steps:

1. Click the folder you want to delete in the Navigator pane.

2. Choose Edit » Delete, or right-click the folder, and when a
popup menu appears, choose Delete. If the folder is not empty,
Xcode displays a dialog to ask if you want to remove references to
any stored files in that folder or just delete them all as shown in
Figure 1-8.

13

CHAPTER 1 ORGANIZING CODE

Do you want to move “File.swift"” to the Trash, or only remove
A the reference to it?

Figure 1-8. Xcode alerts you if you're deleting a folder that contains files

Note Deleting a folder also deletes its contents, which can include other folders
and files.

3. Click the Move to Trash button to delete the files completely (or
click Remove Reference to keep the file and disconnect the file

from your project but without deleting it).

Use Code Snippets

Remembering the exact syntax to create switch statements or for loops in Swift can be
troublesome. As a shortcut, Xcode offers code snippets, which let you insert generic code
in your .swift files that you can customize afterward. This lets you focus on the purpose
of your code without worrying about the specifics of how Swift implements a particular
way of writing branching or looping statements. In addition, code snippets help you
write consistent code that’s formatted the same way.

To use code snippets, follow these steps:

1. Click the .swift file where you want to type code.

2. Click the Library icon. The Snippets window appears as shown in
Figure 1-9.

14

CHAPTER 1 ORGANIZING CODE

Library icon
Phone Xr \ {1 E @ & I e |
b e
Identity and Type
¥ Name File.swift
o\ Bmppets Type Default - Swift Source -+
Location Relative to Group <
C API Availability Check - Conditionally execute code based on whether File =
the API Is avallable at runtime. -swift 1
Full Path /Users/wallacewang/
Documents/Book Projects/
Pro iPhone Development/
C Block typedef - Define a block as a type. Source Code/DeleteMe2/
File.swift [+]
' on Demand Resource Tags
C Inline Block as Variable - Save a block 1o a variable to allow reuse or Hee
passing It as an argument. r t
j Target Membership
m C typedef - Define a typedet. ﬁ DeleteMe2
m C++ #ifdef _cplusplus Guard - Add a guard for C code definitions within ' Text Settings
C++ code.
Text g No Explicit] <
Line Endings | ! <
C++ Class Declaration - Declare a new class type containing instance
variables, member functions, etc.. Indent Using Spaces <
Widths | 4 e
Tab B Indent :
m C++ Class Template - Detine a new class template. Wrap lines

m C++ Function Template - Define a new function template.

C++ Namespace Definition - Define a new namespace or extend an
existing namespace.

C++ Range-based For St - code for each value In
arange.

Figure 1-9. The Code Snippets window

15

CHAPTER 1 ORGANIZING CODE

3. Scroll through the Code Snippets window and click a snippet
you want to use. Xcode displays a brief description of that code
snippet as shown in Figure 1-10.

Q_ Snippets

m GCD: Dispatch After - Execute a block after a set amount of time.

GCD: Dispatch Once - Execute code only once, such as for inltializing
a singleton.

GCD: Dispatch Source (Timer) - Execute code when a periodic
timer fires.

If-Else Statement
All Platforms

m If Statement - Execute code only when a certain condition Is true.

| If-Else Statement - Execute code when a conaftion Is true, or different
code if the condition s false.

m Instrument - Defines an Instrument that appears In the Instruments library.

Instrument Aggregation Detail - Creates an aggregate view (e.g.
summary with totals and averages) In the detall area.

Instrument Defaults - Defines the default values used when the Instrument
I first added 10 a trace document.

Figure 1-10. The Code Snippets window

4. Drag a snippet from the Code Snippet window and drop it in
your .swift file. Xcode displays your snippet with placeholders for
customizing the code with your own data as shown in Figure 1-11.

if (CLLERSSTLD {
} eise {
}

Figure 1-11. A code snippet ready for customization

16

CHAPTER 1 ORGANIZING CODE

Creating Custom Code Snippets

The Code Snippet window can make it easy to use common types of Swift statements
without typing them yourself. However, you might create your own code that you might
want to save and reuse between multiple projects. Rather than copy and paste from one
project to another, you can store your own code in the Code Snippet window.

To store your own code as a snippet, follow these steps:

1. Select the code you want to store.

2. Choose Editor » Create Code Snippet, or right-click your selected
code, and when a popup menu appears, choose Create Code
Snippet as shown in Figure 1-12. Xcode adds your selected code to
the Code Snippet window as shown in Figure 1-13.

Cut
Copy Symbol Name

JEIZ Product Debug Sourc Facte

Show Completions ~ Space Refactor >

it All i £
Ez'f‘a:m'r" SEope xf Find Selected Text in Workspace
I Find Selected Symbol in Workspace
Find Call Hierarchy
Issues >
Selection >
Structure >
Code Folding > Create Code Snippet
Syntax Coloring >
Font Size » Open in Assistant Editor
| Theme » Reveal in Project Navigator
Reveal in Symbol Navigator
Show Invisibles Show in Finder

Show Code Coverage

Services >

Editor pull-down menu
Right-click popup menu

Figure 1-12. The Create Code Snippet command for adding your own code to the
Code Snippet library

17

CHAPTER 1 ORGANIZING CODE

i Tile My Code Snippet
summﬂf" otll qqqqqqqq L} BEimnhl Bevaninal Fiakt Banaldfsahn L
Platform | All <! Language | Generic - rt O\
Completion Shortcut
Completion Scopes | All -l +
var cell = m My Code Snippet
tableview
.dequeueReusableCell(withIdentifier:
celllD) C API Availability Check - C y execute code based on whether
if (cell == nil) { e the AP Is avallable at runtime.
cell = UITableviewCell(

style:

UITableViewCell.CellStyle C Block typedef - Define a block as a type.

}

’ ; , C Inline Block as Variable - Save a block to a variable 1o allow reuse or

extension ViewController: UITableViewDataSource { passing It as an argument.

func tableView(_ tableView: UITableView, numberOf
return petArray.count

} C typedef - Define a typedet.

func tableView(_ tableView: UITableView, cellForf
var cell = tableView.dequeueReusableCell (with

if (cell == nil) ¢ C++ #ifdef _cplusplus Guard - Add a guard for C code definitions within

- C ode.
cell = UITableViewCell(SHE
style: UITableViewCell.CellStyle.defa
reuseldentifier: celliD) C++ Class Declaration - Declare a new class type containing instance
) | variables, member functions, etc..
cell?.textlLabel?.text = petArray[indexPath.r¢
return cell!
} } m C++ Class Template - Define a new class template.

Figure 1-13. Adding custom code to the Code Snippet window

3. Clickin the Title text field and type a descriptive name for your
code snippet. You may also want to edit your code or modify other
options. From now on, you'll be able to use your custom code

snippet in any Xcode project.

Deleting Custom Code Snippets

After adding one or more code snippets, you may want to delete them. You can only
delete any code snippets you added to Xcode; you can never delete any of Xcode’s
default code snippets. To delete a user-defined code snippet from the Code Snippet

window, follow these steps:
1. Click a .swift file in the Navigator pane.
2. Click the Library icon to open the Code Snippet library.

3. Click the code snippet you want to delete.

18

CHAPTER 1 ORGANIZING CODE

4. Press Shift+Delete. Xcode asks if you really want to delete the code
snippet as shown in Figure 1-14.

Are you sure you want to delete the
™ selected library item?
This action cannot be undone

Figure 1-14. Verifying the deletion of a code snippet

5. Click Delete. Xcode removes your code snippet from the Code
Snippet window.

Using @IBDesignable and @IBInspectable

When you design a user interface, you place various objects on a view such as buttons,
sliders, labels, and text fields. To customize these objects, you have two choices:

o Write Swift code to modify objects programmatically.
e Change an object’s properties in the Attributes Inspector.

As a general rule, it’s always best to try to write as little code as possible because the
less code you have, the easier it will be to examine and debug that code. Unfortunately,
the Attributes Inspector doesn’t list all possible ways to customize an object. That means
you have to resort to writing Swift code to customize an object.

Suppose you wanted to create a button, define a border width and border color, and
also a corner radius so the corners of the button appear rounded. You could create an
IBOutlet variable and then modify that IBOutlet variable like this:

@IBOutlet var oldButton: UIButton!

override func viewDidlLoad() {
super.viewDidlLoad()
// Do any additional setup after loading the view.
oldButton.layer.cornerRadius = 20
oldButton.layer.borderWidth = 3
oldButton.layer.borderColor = UIColor.red.cgColor

19

CHAPTER 1 ORGANIZING CODE

The preceding code programmatically changes the appearance of a button at
runtime. However, if you don’t like the appearance of the border width, color, or corner
radius, you have to go back and modify the code all over again.

A far better solution would be to modify these properties in the Attributes Inspector
and see your changes affect the appearance of a button at the same time. To do this, we
need to use @IBInspectable and @IBDesignable.

@IBInspectable defines properties we want to appear in the Attributes Inspector.
@IBDesignable tells Xcode to make any changes visible in Xcode. We need to create a
Cocoa Touch Class file based on the object we want to customize. Then we need to make
that class file @IBDesignable and create variables that are @BInspectable.

To see how @IBDesignable and @IBInspectable work, follow these steps:

1. Create an iOS Single View App project and name it
InspectableApp.

2. Click the Main.storyboard in the Navigator pane.

3. Clickthe Library icon and drag and drop two buttons onto the
view where one button appears above the other.

4. Resize both buttons so they’re larger and wider.

5. Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints. Xcode adds constraints to both buttons.

6. Double-click the top button, type Custom Button, and press
Enter.

7. Double-click the bottom button, type Old Button, and press Enter.

8. Choose View » Inspectors » Assistant Editor » Show Assistant
Editor, or click the Assistant Editor icon in the upper right
corner of the Xcode window. The Main.storyboard file and
ViewController.swift file appear side by side.

9. Move the mouse pointer over the Old Button, hold down the
Control key, and Ctrl-drag under the class ViewController line in
the ViewController.swift file.

10. Release the Control key and the left mouse button. A popup
window appears.

20

11.

12.

13.

14.

15.

16.

17.

CHAPTER 1 ORGANIZING CODE

Click in the Name text field, type oldButton, and click the Connect
button. Xcode creates an IBOutlet as follows:

@IBOutlet var oldButton: UIButton!
Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
oldButton.layer.cornerRadius = 20
oldButton.layer.borderWidth = 3
oldButton.layer.borderColor = UIColor.red.cgColor

Click the Main.storyboard file in the Navigator pane.
Choose File » New » File. A template dialog appears.

Click Cocoa Touch Class under the iOS category and click the
Next button. Another dialog appears, asking for a class name and
subclass.

Click in the Class text field and type RoundedButton.

Click the Subclass of popup menu and choose UIButton as shown
in Figure 1-15. (Note that if you wanted to customize a different
user interface object such as a label, you would choose UlLabel in
the Subclass of popup menu.)

21

CHAPTER 1

ORGANIZING CODE

Choose options for your new file:

Class: RoundedBunod

Subclass of: UlButton

Language: Swift

Cancel

Figure 1-15. Creating a new Cocoa Touch Class file for a UIButton

22

18.

19.

20.

21.

22.

Click the Next button and then click the Create button. Xcode
displays the RoundedButton.swift file in the Navigator pane.

Click the Custom Button on the Main.storyboard to select it; then
choose View » Inspectors » Show Identity Inspector, or click
the Identity Inspector icon in the upper right corner of the Xcode

window.

Click the Class popup menu and choose RoundedButton. This
links the RoundedButton.swift file to the button labelled Custom

Button.

Click the RoundedButton.swift file in the Navigator pane.

Add the following code so the entire RoundedButton.swift looks

like this:

import UIKit

@IBDesignable class RoundedButton: UIButton {

@IBInspectable var cornerRadius :

CGFloat = 0 {

23.

24.

CHAPTER 1 ORGANIZING CODE

didSet {
layer.cornerRadius = cornerRadius
}
}
@IBInspectable var borderWidth : CGFloat = 1.0 {
didSet {
layer.borderWidth = borderWidth
}
}
@IBInspectable var borderColor : UIColor = .white {
didSet {
layer.borderColor = borderColor.cgColor
}
}

The @IBDesignable keyword makes any object linked to this class
file display its changes in Xcode when the user modifies the class
file’s defined properties.

The @Inspectable keyword makes all properties appear in the
Attributes Inspector pane. Notice that each property uses the
didSet keyword to immediately make any changes to these
properties appear in the object displayed in Xcode.

Click the Main.storyboard file in the Navigator pane.

Click the Old Button and choose View » Inspectors » Show
Attributes Inspector, or click the Attributes Inspector icon in the
upper right corner of the Xcode window. Notice that the first
options at the top of the Attributes Inspector display a Type, State
Contfig, and Title popup menu as shown in Figure 1-16.

23

CHAPTER 1 ORGANIZING CODE

Button
Type

State Config

Title

Font

Text Color
Shadow Color
Image
Background

Accessibllity
Shadow Offset

Drawing

Line Break
Drag and Drop

System

Default

Plain

Old Button
System 15.0
I Default

— Default

Adjusts Image Size
0l 0
Width Helght
| Reverses On Highlight
| Shows Touch On Highlight
Highlighted Adjusts Image
Disabled Adjusts Image
Truncate Middle
Spring Loaded

<

v

(4]

[+ 20K¢)

oo

£

Figure 1-16. An ordinary Attributes Inspector for a button

25. Click the Custom Button. Notice that since this top button is
connected to the RoundedButton.swift file that has defined three
@Inspectable properties, those three properties now appear at the
top of the Attributes Inspector as shown in Figure 1-17.

24

CHAPTER 1

hem¥vioe

. Rounded Button

ormer Radlus
Border Width
Border Color

Button
Type

State Config

Title

Font

Text Color
Shadow Color
Iimage
Background
Accessibility
Shadow Offset

Drawing

B Custom

System
Default

Plain

Custom Button
System 156.0
. Default

— Default

IIUEEE] o] off of

| Adjusts Image Size
02]
Width Helght
| Reverses On Highlight
Shows Touch On Highlight

ORGANIZING CODE

Highlighted Adjusts Image
Disabled Adjusts Image
Line Break | Truncate Middle B

Drag and Drop Spring Loaded

Figure 1-17. A custom Attributes Inspector for a button

26. Clickin the Corner Radius text field and type a value such as 36.
Notice that the higher the value, the more rounded the corners of
the button.

27. Clickin the Border Width text field and type a value such as 3. The
higher the value, the thicker the border.

28. Click the Border Color popup menu and choose a color such as

orange or red. Xcode displays the border in your chosen color.

By using the @IBInspectable, @IBDesignable, and didSet keywords, you can
customize different user interface objects, make those custom properties appear in the
Attributes Inspector, and see the changes in Xcode.

25

CHAPTER 1 ORGANIZING CODE

Summary

Writing i0S apps involves writing new code and modifying existing code. To do both
tasks, you need to understand how any existing code works so you don’t accidentally
duplicate or break it. In many cases, you'll have to edit other people’s code, which may or
may not have been written in a clear, understandable manner.

Although you can’t control how other programmers write code, you can control how
you write code. The general principle is to write code that’s easy to understand. This can
involve adding comments (especially // MARK: comments to make it easy to jump to
specific parts of your code). You should also use descriptive variable names and organize
the related code in logical groups. You can do that by storing different parts of your code
together. You can also organize code by storing code in separate files that you can group
in folders.

To ensure you write common Swift statements in a consistent manner, you can use
code snippets to insert the basic Swift code for you. Then you just have to customize
it with your own data. For more flexibility, store your own code in the Code Snippet
window. That way you can reuse your own code between multiple projects in Xcode.

If you want to customize a user interface object, create a separate Cocoa Touch Class
file, use @IBInspectable to display properties in the Attributes Inspector pane, use didSet
to make Xcode apply changes immediately, and use @IBDesignable to visually display
those changes.

Organizing code is never necessary, but since most programs are modified multiple
times, proper organization ahead of time can make modifying code much easier. Always
assume that someone else will modify your code and make it easy on that person for the
future, especially because that person could be you.

26

CHAPTER 2

Debugging Code

In the professional world of software, you'll actually spend more time modifying existing
programs than you ever will creating new ones. When writing new programs or editing
existing ones, it doesn’t matter how much experience or education you might have
because even the best programmers can make mistakes. In fact, you can expect that you
will make mistakes no matter how careful you may be. Once you accept this inevitable
fact of programming, you need to learn how to find and fix your mistakes.

In the world of computers, mistakes are commonly called “bugs,” which gets
its name from an early computer that used physical switches to work. One day the
computer failed, and when technicians opened the computer, they found that a moth
had been crushed within a switch, preventing the switch from closing. From that point
on, programming errors have been called bugs and fixing computer problems has been
known as debugging.

Three common types of computer bugs are

e Syntax errors - Occurs when you misspell something such as a
keyword, variable name, function name, or class name or use a

symbol incorrectly

e Logic errors - Occurs when you use commands correctly, but the
logic of your code doesn’t do what you intended

e Runtime errors - Occurs when a program encounters unexpected
situations such as the user entering invalid data or when another
program somehow interferes with your program unexpectantly

Syntax errors are the easiest to find and fix because they’re merely misspellings
of variable names that you created or misspelling of Swift commands that Xcode can
help you identify. If you type a Swift keyword such as “var” or “let’, Xcode displays that
keyword in pink (or whatever color you specify for displaying keywords in the Xcode
editor).

27
© Wallace Wang 2019

W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_2

CHAPTER 2 DEBUGGING CODE

Now if you type a Swift keyword and it doesn’t appear in its usual identifying color,
then you know you probably typed it wrong somehow. By coloring your code, Xcode’s
editor helps you visually identify common misspellings or typos.

Besides using color, the Xcode editor provides a second way to help you avoid
mistakes when you need to type the name of a method or class. As soon as Xcode
recognizes that you might be typing a known item, it displays a popup menu of possible
options. Now instead of typing the entire command yourself, you can simply select a
choice in the popup menu and press the Tab or Enter key to let Xcode type your chosen
command correctly as shown in Figure 2-1.

myMediaPlayer.p i) © Value of type 'MPMusicPlayerApplicationController has no member 'p°

@ Void prepareToPlay()

[M] oid play()

@ Void pause()

[0 unmanaged<AnyObject>! perform{aSelector: Selector!)

@ id prepend(descriptor: MPMusicPlayerQueueDescriptor)
(v] laybackState playbackState

m »>! perform{aSelector: Selector!, with: Any!)

Changes the contents of the media items in the queue.

Figure 2-1. Xcode displays a menu of possible commands you might want to use

Syntax errors often keep your program from running at all. When a syntax error
keeps your program from running, Xcode can usually identify the line (or the nearby
area) of your program where the misspelled command appears so you can fix it as shown

in Figure 2-2.

Click here to display
possible corrections

override func viewDidLoad() {
var myMessage : String
myMess = “"Hello" © Use of unresolved identifier ‘'myMess’; did you mean ‘'myMessage'?
super.viewDidLoad()
loadAudioFile()

»

Figure 2-2. Syntax errors often keep a program from running, which allows Xcode
to identify the syntax error

Ifyou click the red dot that appears on the left of the error message, Xcode can often
display possible suggestions for fixing your error. Then you can let Xcode fix the error for
you by clicking the Fix button that appears to the right of the solution you want to use as

shown in Figure 2-3.

28

CHAPTER 2 DEBUGGING CODE

override func viewDidLoad() {
var myMessage : String
myMess = "Hello"|

Super. "iewpidmad(© Use of unresolved identifier 'myMess"; did you mean 'myMessage'?
loadAudioFile()
} Replace 'myMess' with 'myMessage’

Figure 2-3. Xcode can often suggest ways to fix errors

Logic errors are much harder to find and detect than syntax errors. Logic errors
occur when you use Swift code correctly, but it doesn’t do what you want it to do. Since
your code is actually valid, Xcode has no way of knowing that it’s not working the way
you intended. As a result, logic errors can be difficult to debug because you think you
wrote your code correctly but you (obviously) did not.

How do you find a mistake in code that you thought you wrote correctly? Finding
your mistake can often involve starting from the beginning of your program and
exhaustively searching each line all the way until the end. (Of course there are faster
ways than searching your entire program, line by line, which you'll learn about later in
this chapter.)

Finally, the hardest errors to find and debug are runtime errors. Syntax errors usually
keep your program from running, so if your program actually runs, you can assume that
you have eliminated most, if not all, syntax errors in your code.

Logic errors can be tougher to find, but they’re predictable. For example, if your
program asks the user for a password but fails to give the user access even though the
user types a correct password, you know you have a logic error. Each time you run your
program, you can reliably predict when the logic error will occur.

Runtime errors are more insidious because they don’t always occur predictably. For
example, your app may run perfectly well on an iPhone, but the moment you run the
same app on an iPad (or vice versa), the app fails. That’s because conditions between
two different iOS devices will never be exactly the same.

The problem is that unexpected, outside circumstances can affect an app’s behavior
such as another app taking up too much memory or one device might be running a
different version of iOS than another device. Because runtime errors can’t always be
duplicated, they can be frustrating to find and even harder to fix since you can’t always
examine every possible condition your app might face when running on different iOS
devices. Some apps can work perfectly - except if the user accidentally presses two keys
at the same time. Other apps work just fine - until the user happens to save a file at the
exact moment that another app tries to receive data over a WiFi connection.

29

CHAPTER 2 DEBUGGING CODE

Usually you can eliminate most syntax errors and find and fix most logic errors.
However, it may not be possible to find and completely eliminate all runtime errors in a
program. The best way to avoid spending time hunting for bugs is to strive to write code
and test it carefully to make sure it’s as error-free as possible.

Simple Debugging Techniques

When your app isn’t working, you often have no idea what could be wrong. While you
could tediously examine your code from beginning to end, it’s often faster to simply
guess where the mistake might be.

Once you have a rough idea what part of your app might be causing the problem,
you have two choices. First, you can delete the suspicious code and run your app
again. If the problem magically goes away, then you’ll know that the code you deleted
was likely the culprit.

However if your app still doesn’t work, you have to retype your deleted code back
into your program. A simpler solution might be to cut and paste code out of Xcode and
store it in a text editor such as the TextEdit program that comes with every Macintosh,
but this can be tedious.

That’s why a second solution is to just temporarily hide code that you suspect might
be causing a problem. Then if the problem persists, you can simply unhide that code
and make it visible again. To do this in Xcode, you just need to turn your code into
comments.

Remember, comments are text that Xcode completely ignores. You can create

comments in three ways:

e Add the // symbols at the beginning of each line that you want to
convert into a comment. This method lets you convert a single line

into a comment.

e Add the /* symbols at the beginning of code and add the */ at the end
of code you want to convert into a comment. This method lets you
convert one or more lines into a comment.

o Select the lines of code you want to turn into a comment and choose
Editor » Structure » Toggle Comments (or press Command+/). This
method lets you convert one or more lines into a comment by placing
the // symbols at the beginning of each line of code you selected.

30

CHAPTER 2 DEBUGGING CODE

Note Xcode color codes comments in green (or whatever color you may have
defined to identify comments). After creating a comment, make sure Xcode color
codes it properly to ensure you have created a comment. If Xcode fails to recognize
your comments, it will treat your text as a valid Swift command, which will likely
keep your code from running properly.

By turning code into comments, you essentially hide that code from Xcode. Now if
you want to turn that comment back into code again, you just remove the // or /* and */
symbols that define your commented out code.

If you commented out code by choosing Editor » Structure » Toggle Comments (or
pressing Command+/), just repeat the command again to convert that commented code
back to working code once more.

Besides turning your code into comments to temporarily hide it, a second simple
debugging technique is to use the print command. The idea is to put the print command
in your code to print out the values of a variable wherever you think your code may be
making a mistake.

By doing this, you can see what values one or more variables may contain. Putting
multiple print commands throughout your program gives you a chance to make sure
your program is running correctly.

To see how using the print command along with commenting out code can work to
help you debug a program, follow these steps:

1. Choose File » New » Project to create a Single View App iOS
project and name it DebugApp.

2. Click the ViewController.swift file in the Navigator pane and edit
the ViewController.swift file as follows:

import UIKit
class ViewController: UIViewController {

override func viewDidlLoad() {
super.viewDidlLoad()
var myMessage = "Temperature in Celsius:"
let temp = 100.0
print (myMessage + "\(temp)")

31

CHAPTER 2 DEBUGGING CODE

myMessage = "Temperature in Fahrenheit:"
print (myMessage + "\(C2F(tempC: temp))")
}

func C2F (tempC : Double) -> Double {
var tempF : Double
tempF = tempC + 32 * 9/5
return tempF

3. Click the Run button or choose Product » Run. The Simulator
window appears showing a blank screen.

4. Choose Simulator » Quit Simulator. Notice that the debug area at
the bottom of the middle Xcode pane displays the following text
from the two print statements in our code:

Temperature in Celsius:100.0
Temperature in Fahrenheit:157.6

If you know anything about temperatures in Fahrenheit and Celsius, you know that
the boiling point in Celsius is 100 degrees and the boiling point in Fahrenheit is 212
degrees. Yet our temperature conversion program calculates that 100 degrees Celsius is
equal to 157.6 degrees in Fahrenheit, which means the Fahrenheit temperature should
be 212 rather than 157.6. Obviously something is wrong, so let’s use the print command
and comments to help debug the problem.

1. Make sure the DebugApp project is loaded in Xcode.

2. Click the ViewController.swift file in the Navigator pane and edit
the C2F function as follows:

func C2F (tempC : Double) -> Double {
var tempF : Double
tempF = tempC + 32 //* 9/5
return tempF

32

CHAPTER 2 DEBUGGING CODE

This comment will let us check if the tempC parameter is properly
coming into the C2F function and getting stored in the tempF
variable.

Add a “print (tempC)” command above the return statement as
follows:

func C2F (tempC : Double) -> Double {
var tempF : Double
tempF = tempC + 32 //* 9/5
print (tempF)
return tempF

Click the Run button or choose Product » Run. The Simulator
window appears showing a blank screen.

Choose Simulator » Quit Simulator. Notice that the debug area at
the bottom of the middle Xcode pane displays the following text
from the two print statements in our code:

Temperature in Celsius:100.0
132.0
Temperature in Fahrenheit:132.0

By commenting out the calculation part of the code and using
the “print (tempF)” command, we can see that the C2F function
is storing 100.0 correctly in the tempC variable and adding 32

to this value before storing it in the tempF variable. Because we
commented out the calculation part of the code, we can assume
that the error must be in our commented out code.

Although the formula might look correct, the error occurs because
of the way Swift (and most programming languages) calculate
formulas. First, they start from left to right. Second, they calculate
certain operations such as multiplication before addition.

33

CHAPTER 2 DEBUGGING CODE

The error occurs because our conversion formula first multiples
32 by 9 (288) and then divides the result (288) by 5 to get

57.6. Finally, it adds 57.6 to 100.0 to get the incorrect result of
157.6. What it should really be doing is multiplying 9/5 by the
temperature in Celsius and then adding 32 to the result.

6. Modify the C2F function as follows:

func C2F (tempC : Double) -> Double {
var tempF : Double
tempF = tempC * (9/5) + 32
print (tempF)
return tempF

7. Click the Run button or choose Product » Run. The Simulator
window appears showing a blank screen.

8. Choose Simulator » Quit Simulator. Look in the debug area and
you'll see that the program now correctly converts 100 degrees
Celsius to 212 degrees Fahrenheit.

For simple debugging, turning code temporarily into comments and using the
print command can work, but it’s fairly clumsy to keep adding and removing comment
symbols and print commands. A much better solution is to use breakpoints and variable
watching, which essentially duplicates using comments and print commands.

Using the Xcode Debugger

While comments and the print command can help you isolate problems in your code,
they can be clumsy to use. The print command can be especially tedious since you have
to type it into your code and then remember to remove it later when you're ready to ship
your app.

Although leaving one or more print commands buried in your program won't likely
hurt your program’s performance, it’s poor programming practice to leave code in your
program that no longer serves any purpose.

34

CHAPTER 2 DEBUGGING CODE

As an alternative to typing the print command throughout your program, Xcode
offers a more convenient alternative using the Xcode debugger. The debugger gives you
two ways to hunt out and identify bugs in your program:

e Breakpoints

e Variable watching

Using Breakpoints

Breakpoints let you identify a specific line in your code where you want your program to
stop. Once your program stops, you can step through your code, line by line. As you do
so, you can also peek at the contents of one or more variables to check if the variables are
holding the right values.

For example, if your program converts Celsius to Fahrenheit, but somehow converts
100 degrees Celsius into -41259 degrees Fahrenheit, you know your code isn’t working
right. By inserting breakpoints in your code and examining the values of your variables
at each breakpoint, you can identify where your code calculates its values. The moment
you spot the line where it miscalculates a value, you know the exact area of your program
that you need to fix.

You can set a breakpoint by doing one of the following:

o Clicking to the left of the code where you want to set the breakpoint

e Moving the cursor to a line where you want to set the breakpoint and

pressing Command+\
e Choosing Debug » Breakpoints » Add Breakpoint at Current Line

Xcode displays breakpoints as blue arrows in the left margin as shown in Figure 2-4.

35

CHAPTER 2 DEBUGGING CODE

import UIKit
class ViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()

var myMessage = "Temperature in Celsius:"
let temp = 100.0

- print (myMessage + "\(temp)")
’ myMessage = "Temperature in Fahrenheit:"
. print (myMessage + "\(C2F(tempC: temp))")
Breakpoints }

func C2F (tempC : Double) -> Double {
var tempF : Double

| — tempF = tempC * (9/5) + 32
print (tempF)
return tempF

Figure 2-4. Breakpoints appear in the left margin

Stepping Through Code

Once a breakpoint has stopped your program from running, you can step through
your code line by line using the Step command. Xcode offers a variety of different Step
commands, but the three most common are

o Step Over
e Step Into
e Step Out

The Step Over command examines the next line of code, treating function or method
calls as a single line of code.

The Step Into command works exactly like the Step Over command until it highlights
a function or method call. Then it jumps to the first line of code in that function or
method.

The Step Out command is used to prematurely exit out of a function or method that
you entered using the Step Into command. The Step Out command returns to the line of
code where a function or method was called.

All three Step commands are used after a program temporarily stops at a breakpoint.
By using a Step command, you can examine your code, line by line, and see how values
stored in different variables may change.

36

CHAPTER 2 DEBUGGING CODE

Such variable watching lets you examine the contents of one or more variables to

verify if it’s holding the correct data. The moment you spot a variable holding incorrect

data, you can zero in on the line of code that’s creating that error.

The best part about breakpoints is that you can easily add and remove them since

they don’t modify your code at all, unlike comments and multiple print commands.

Xcode can remove all breakpoints for you automatically so you don’t have to hunt

through your code to remove them one by one.

To see how to use breakpoints, step commands, and variable watching, follow these

steps:

Make sure the DebugApp project is loaded in Xcode.

Click the ViewController.swift file in the Navigator pane and
modify the C2F function as follows:

func C2F (tempC : Double) -> Double {
var tempF : Double
tempF = tempC + 32 * 9/5
return tempF

}

Move the cursor on the following line in the viewDidLoad
method:

var myMessage = "Temperature in Celsius:"

Choose Debug » Breakpoints » Add Breakpoint at Current Line.
Xcode displays a breakpoint as a blue arrow.

Click the Run button or choose Product »Run. The Simulator
window appears showing a blank screen. Notice that Xcode
highlights the line where the breakpoint appears and that the
myMessage variable does not yet contain a value as shown in the
debug area in Figure 2-5.

37

CHAPTER 2 DEBUGGING CODE

import VIKit
class ViewController: UIViewController {

override func viewDidLoad() {
super.viewDidLoad()

= var myMessage = "Temperature in Celsius:® = Thread 1: breakpoint 1.1

let temp = 100.0

print (myMessage + “\(temp)")

myMessage = "Temperature in Fahrenheit:"

print (myMessage + "\(CZF(tempC: temp))")
}

func C2F (tempC : Double) -» Double {
var tempF : Double
tempF = tempC + 32 = 9/5
return tempF

E » b & L+ 2@ S0 <7 | % pebugapp) @D Thread 1) T 0 ViewControllerviewDidLoad()
3 gotroller) 0x000071bb14¢c12450 (11db)

inginterpolation)

@ temp (Double)

Auto < G) All Qutput £ @

Figure 2-5. A breakpoint temporarily stops a program from running

6. Choose Debug » Step Over (or press F6). Xcode highlights the
next line under your breakpoint. The information in the left-hand
side of the debug area displays the current values that your
program is using as shown in Figure 2-6. Notice that after the
breakpoint code runs, the value of the myMessage variable is now
defined as the string “Temperature in Celsius:”.

38

i a0

CHAPTER 2 DEBUGGING CODE

import VIKit
class ViewController: UIViewController {

override func viewDidLoad() {
super.viewDidLoad()
= var myMessage = "Temperature in Celsius:"
let temp = 100.0

print (myMessage + "\(temp)") = Thread 1: step over

myMessage = "Temperature in Fahrenheit:®
print (myMessage + “\(C2F(tempC: temp))")
}

func C2F (tempC : Double) -> Double {
var tempF : Double
tempF = tempC + 32 * 9/5
return tempF

450 (11db)

P FPpOTAtion TO8Ts
temp = (Double) 100

Auto * ® All Output ®

wO0

Figure 2-6. By watching how variables change, you can see how each line of code

affects each variable

7. Choose Debug » Step Over (or press F6) several more times until
Xcode highlights the following line:

print (myMessage + "\(C2F(tempC: temp))")

8. Choose Debug » Step Into (or press F7). Xcode now highlights the
first line of code in the C2F function as shown in Figure 2-7.

39

CHAPTER 2 DEBUGGING CODE

import UIKit
class ViewController: UIViewController {
override func viewDidLoad() {
super.viewDidLoad()
- var myMessage = "Temperature in Celsius:"
let temp = 108.0
print (myMessage + "\(temp)”)
myMessage = "Temperature in Fahrenheit:®
print (myMessage + "\(C2F(tempC: temp))")
}
func C2F (tempC : Double) -> Double {
var tempF : Double
tempF = tempC + 32 % 9/5 = Thread 1: step in
return tempF

}
}

E = o i 20>

3 tempC = (Double) 100 Temperature in Celsius:180.8
» [self = (DebugAppViewControlier) 0x00007fbb14c12450 (11db)

G tempF = (Double) O

Figure 2-7. The Step Into command lets you step through the code stored in a
function or method

9. Choose Debug » Step Out (or press F8). Xcode now highlights the
line that called the C2F function.

10. Choose Debug » Continue to continue running the program until
the next breakpoint. In this program there’s only one breakpoint
so the program displays its empty user interface.

11. Choose Simulator » Quit Simulator to return back to Xcode.

12. Choose Debug » Deactivate Breakpoints. Xcode dims the
breakpoint. Xcode will ignore deactivated breakpoints.

13. Click the Run button or choose Product » Run. The Simulator
window appears showing a blank screen. Notice that since you
deactivated breakpoints, Xcode runs the entire program without
stopping at any of the breakpoints.

40

14.

15.

16.

17.

CHAPTER 2 DEBUGGING CODE

Choose Simulator » Quit Simulator to return back to Xcode.

Choose Debug » Activate Breakpoints. Notice that Xcode no
longer dims the breakpoint arrow in the left margin any more.

Move the mouse pointer over the breakpoint and drag to the left

or right.

Release the left mouse button. Xcode deletes the breakpoint.

Managing Breakpoints

There’s no limit to the number of breakpoints you can put in a program so feel free

to place as many as you need to help you track down an error. Of course if you place

breakpoints in a program, you may lose track of how many breakpoints you've set

and where they might be set. To help you manage your breakpoints, Xcode offers a

Breakpoint Navigator.

You can open the Breakpoint Navigator in one of three ways:

Choose View » Navigators » Show Breakpoint Navigator.
Press Command+8.

Click the Show Breakpoint Navigator icon in the Navigator pane.

The Breakpoint Navigator lists all the breakpoints set in your program and identifies
the files the breakpoints are in and the line number of each breakpoint as shown in

Figure 2-8.

41

CHAPTER 2 DEBUGGING CODE

Breakpoint Navigator icon
B 2 Q A © &= D(@] DebugApp) |] DebugApp) . ViewController.swift) [[J viewDidLoad()

| v @ DebugApp 3 Breakpoints /r
¥ . ViewController.swift // ViewController.swift
» [I) viewDidLoad() line 15 i i DebugApp
hmwawt)ndLoadullme 19 // Created by Wallace Wang on 2/27/19.
» [c2F(tempC:) line 24 // Copyright ® 2019 Wallace Wang. All rights reserved.
/7

import UIKit
class ViewController: UIViewController {

override func viewDidLoad() {
super.viewDidLoad()

[var myMessage = "Temperature in Celsius:"
let temp = 1€0.0
print (myMessage + "\(temp)")
myMessage = "Temperature in Fahrenheit:"
[print (myMessage + "\(C2F(tempC: temp))")

}

func C2F (tempC : Double) -> Double {
var tempF : Double
- tempF = tempC + 32 * 9/5
return tempF

Figure 2-8. The Breakpoint Navigator identifies all your breakpoints

Since the Breakpoint Navigator identifies breakpoints by line number, you might
want to display line numbers in the Xcode editor (see Figure 2-8). To turn on line

numbers, follow these steps:

1. Choose Xcode » Preferences. The Xcode Preferences window

appears.
2. Click the Text Editing icon. The Text Editing options appear.

3. Select the “Line numbers” check box as shown in Figure 2-9.

42

CHAPTER 2 DEBUGGING CODE

‘® Text Editing
oae! ¢ -
L@ v ¢ 4 /B Yy
G A ts Behavi Navigati Fonts & Colors Text Editing Key Bindings S Control C L i Server & Bots

show
.

Editor overscroll:

Code completion

While editing

Default text encoding:

Default line endings:

Code coverage

Editing Indentation

ode 1010 Doon

Page guide at column: #
Highlight instances of selected symbol

Delay: : seconds

Medium

: &4 Suggest completions while typing
Use Escape key to show completion suggestions
Automatically insert closing braces (*}")
Enable type-over completions
Automatically balance brackets in Objective-C method calls
Enclose selection in matching delimiters

: Automatically trim trailing whitespace
Including whitespace-only lines

~
~

Unicode (UTF-8)
macOS / Unix (LF)

Convert existing files on save

: [Show iteration counts

Figure 2-9. The Line numbers check box lets you show or hide line numbers in the

Xcode editor

4. Click the close button (the red button) in the upper left corner of

the Xcode Preferences window. Xcode now displays line numbers

in the left margin of

the editor.

To see how to use the Breakpoint Navigator, follow these steps:

1.

Make sure the DebugApp project is loaded in Xcode.

2. Turn on line numbers in Xcode.

3. Click the ViewController.swift file in the Navigator pane.

43

CHAPTER 2 DEBUGGING CODE

4. Place three breakpoints anywhere in your code using whatever
method you like best such as clicking in the left margin of the
Xcode editor, pressing Command+\, or choosing Debug »
Breakpoints » Add Breakpoint at Current Line). (The exact
location doesn’t matter.)

5. Choose View » Navigators » Show Breakpoint Navigator. The
Breakpoint Navigator displays your three breakpoints.

6. Click any breakpoint. Xcode displays the file containing your
chosen breakpoint.

7. Right-click any breakpoint in the Breakpoint Navigator pane.
A popup menu appears as shown in Figure 2-10.

B 2 Q A © =D B8 |8
v (&) DebugApp 3 Breakpoints
¥ . ViewController.swift
v [) viewDidLoad() line 15 =
3 DebugApp.ViewCon... line 15 [

m Edit Breakpoint...

- [ﬂ?’ Disable Breakpoint
B‘ Share Breakpoint

Delete Breakpoint
Move Breakpoint To »

Breakpoint Navigator Help
—

Figure 2-10. The Breakpoint Navigator lets you see where you have placed
breakpoints throughout a project

8. Choose Disable Breakpoint. Notice this lets you deactivate or
disable breakpoints individually instead of deactivating all of them
at once through the Debug » Deactivate Breakpoints command.

9. Right-click any breakpoint in the Breakpoint Navigator pane and
choose Delete Breakpoint. (Another way to delete a breakpoint is
to drag the breakpoint away from your code and release the left
mouse button.)

10. Delete all your breakpoints until no more breakpoints are left.

44

CHAPTER 2 DEBUGGING CODE

Using Symbolic Breakpoints

When you create a breakpoint, you must place it on the line where you want your
program’s execution to temporarily stop. However, this often means guessing where the
problem might be and then using the various step commands to examine your code line
by line.

To avoid this problem, Xcode offers a Symbolic breakpoint. A Symbolic breakpoint
stops program execution only when a specific function or method runs. In case you
don’t want your program’s execution to stop every time a particular function or method
runs, you can tell Xcode to ignore it a certain number of times such as 10. That means
the function or method will run up to 10 times, and then on the 11th time it’s called, the
Symbolic breakpoint will temporarily halt execution so you can step through your code
line by line.

To create a Symbolic breakpoint, you can define the following:

o Symbol - The name of the function or method to halt program

execution

e Module - The file name containing the function or method defined
by the Symbol text field

e Ignore - The number of times from 0 or more that you want the
function or method to run before temporarily halting program
execution

To see how a Symbolic breakpoint works, follow these steps:
1. Make sure the DebugApp project is loaded in Xcode.

2. Choose Debug » Breakpoints » Create Symbolic Breakpoint.
A Symbolic Breakpoint popup window appears as shown in
Figure 2-11.

45

CHAPTER 2 DEBUGGING CODE

B E 2 QAOG =D 3|8 <> B Debugapp)mDe
¥ [E) DebugApp 1 Breakpoint I
(3] » // ViewController.s

i J// DebugApp
Symbolic Breakpoint
Symbol | b

Module
Condition
ignore 0 < times before stopping
Action Add Action
Options Automatically continue after evaluating actions

Figure 2-11. The Symbolic Breakpoint popup window lets you define a breakpoint

3. Clickin the Symbol text field and type C2F, which is the name of
the function or method you want to examine.

4. (Optional) If the function or method name you specified in the
Symbol text field is used in other files, click in the Module text
field and type a file name. This file name will limit the Symbolic
breakpoint only to that function or method in that particular
file. Since the C2F function is only used once, you can leave the
Module text field empty.

5. (Optional) Click in the Ignore text field and type a number to
specify how many times to ignore a function or method being
called before halting program execution. In this case, leave 0 in
the Ignore text field.

6. Click anywhere away from the Symbolic Breakpoint popup
window to make it disappear.

7. Click the Run button or choose Product » Run. The Simulator
window appears showing a blank screen. The C2F Symbolic
breakpoint causes the program to temporarily halt execution on
the first line of code in the C2F function that calculates a result as
shown in Figure 2-12.

46

CHAPTER 2 DEBUGGING CODE

BERQMAC=Eoc B|E <)« ViewController swift) [[) viewDidLoad()

¥ | DebugApp PID 80518

& cru 0%
P Mamory 43.7 MB 127419
L:]Dlsk Zoro KB/s wang. All rights reserved.
@ Neotwork Zero KB/s
i t UIKit
¥ () Theead 1 Queue: com._thread {serial) g
} 4 0 ViewController.C2F (tempC:) class ViewController: UlViewController {
Y 1 ViewControllerviewDidLoad()
1 35 UiApplicationMain override func viewDidLoad() {
FY 36 main super.viewDidLoad()) Vi
R L] var myMessage = “Temperature in Celsius:®
ke let temp = 100.8
38 start print (myMessage + "\(temp)”)
» () Theead 2 myMessage = "Temperature in Fahrenheit:®
») Theoad 3 print (myMessage + "\(CZF(tempC: temp)}*)
» () Thread 4 ¥
» (D) Theead 5
g e func C2F (tempC : Double) =-> Double {
*) com.apple.vikit.eventietch-thread (6) var tempF : Double
tempF = tempC + 32 = 9/5 ~ Thread 1: breakpoint 1.1
return tempF
}
}
FE ®» I & & 1| 50 < |4 oevugape) @ Thread 1} Y 0 ViewControlier. C2F (tempC:)
[tempc = (pounie) 100 Temperature in Celsius:108.8
> [self = gAppViewContrallar] Trdaf 30 (11db)

[tompF = (Dousie] 0

TOE)| A © 00

Figure 2-12. The Symbolic breakpoint halts program execution in the C2F
function defined by the Symbol text field

8. Choose Product » Stop, or click the Stop button, to make your
program stop running.

9. Choose View » Navigators » Show Breakpoint Navigator. The
Breakpoint Navigator pane appears.

10. Right-click the C2F breakpoint in the Breakpoint Navigator pane,
and when a popup menu appears, choose Delete Breakpoint.
There should be no breakpoints displayed in the Breakpoint
Navigator pane.

Note Another way to set a breakpoint without specifying a specific line of code
is to create an Exception breakpoint. Normally if your program crashes, Xcode
displays a bunch of cryptic error messages and you have no idea what caused the
error. If you set an Exception breakpoint, Xcode can identify the line of code that
created the crash so you can fix it.

47

CHAPTER 2 DEBUGGING CODE

Using Conditional Breakpoints

Breakpoints normally stop program execution at a specific line every time. However, you
may want to stop program execution on a particular line only if a certain condition holds
true, such as if a variable exceeds a certain value, which can signal when something has
gone wrong.

To see how a Conditional breakpoint works, follow these steps:

1. Make sure the DebugApp project is loaded in Xcode.
2. Click the ViewController.swift file in the Navigator pane.

3. Place a breakpoint on the following line by clicking in the left margin
or moving the cursor in the line and pressing Command+)\ or
choosing Debug » Breakpoints » Add Breakpoint at Current Line:

print (myMessage + "\(C2F(tempC: temp))")

4. Choose View » Navigators » Show Breakpoint Navigator, or click
the Breakpoint Navigator icon. The Breakpoint Navigator pane
appears, showing the breakpoint you just created.

5. Right-click the breakpoint in the Breakpoint Navigator pane and
choose Edit Breakpoint. A popup window appears.

6. Clickin the Condition text field, and type C2F(tempC: temp) > 20
as shown in Figure 2-13.

BER2BQACE D B|B < [DebugApp De
v El“ DebugApp 1 Breakpoint
¥ .| ViewController.swift // ViewController.s
v [0 viewDidLoad() line 19 m /; DebugApp
PR e Nl /

ViewController.swift:19
Condition | C2F(tempC: temp) > 20 |

ignore 0 < times before stopping
Action Add Action
Options Automatically continue after evaluating actions

Figure 2-13. The Symbolic breakpoint halts program execution in the C2F
function defined by the Symbol text field

48

CHAPTER 2 DEBUGGING CODE

7. Click the Run button or choose Product » Run. Xcode highlights
your breakpoint to temporarily stop program execution, which
means that the condition (C2F(temp) > 20) must be true.

8. Choose Product » Stop, or click the Stop button, to make your
program stop running and return back to Xcode.

9. Choose View » Navigators » Show Breakpoint Navigator, right-
click the breakpoint you created, and choose Edit Breakpoint. The
popup window appears.

10. Click in the Condition text field and edit the text so it reads
C2F(temp > 500). Press Enter.

11. Click the Run button or choose Product » Run. Notice that this
time your breakpoint does not stop program execution because its
condition (C2F(temp) > 500) is not true. Because the breakpoint
didn’t stop your app, your app’s blank user interface appears.

12. Choose Simulator » Quit Simulator to return back to Xcode.

13. Drag the breakpoint away from the left margin and release the
left mouse button to delete the breakpoint. (You can also right-
click the breakpoint in the Breakpoint Navigator pane and choose
Delete Breakpoint.)

Summary

Errors or bugs are unavoidable in any app. While syntax errors are easy to find and fix,
logic errors can be tougher to find because you thought your code would create one
type of result but it winds up creating a different result. Now you're left trying to figure
out what you did wrong when you thought you were doing everything right. Even harder
errors to track down are runtime errors that occur seemingly at random because of
unknown conditions that affect an app.

To help you track down and eliminate most bugs, you can use the print command
along with comments, but for most robust debugging, you should use Xcode’s built-in
debugger. With the debugger you can set breakpoints in your code and watch how values
get stored in one or more variables.

49

CHAPTER 2 DEBUGGING CODE

A conditional breakpoint only stops program execution when a certain condition
occurs. A Symbolic breakpoint only stops program execution when a specific function or
method gets called. Once a breakpoint stops a program, you can continue examining your
code line by line using various step commands. The Step Into command lets you view code
stored inside a function or method, while the Step Out command lets you prematurely exit
out of a function or method and jump back to the function or method call.

By using breakpoints and step commands, you can exhaustively examine how your
program works, line by line, to eliminate as many errors as possible. The fewer errors
your app contains, the happier your users will be.

50

CHAPTER 3

Understanding Closures

Reading a single sentence isn’t difficult for most people, but when you combine

thousands of sentences together, reading a long mass of text can be cumbersome. That’s

why people divide large amounts of text into parts such as paragraphs and chapters.
Programming is no different.

Rather than write code as one large mass of text, programmers typically divide a
large program into smaller functions where each function performs a single task. Not

only do functions help make a large program easier to understand, but functions also act

like building blocks that you can reuse in other programs.

You should already be familiar with the standard way to create a function by using
the func keyword followed by a descriptive name, parameter list, and a block of code
such as

func descriptiveName() {
// Code here

}

To run a function, you have to call it by name such as
descriptiveName()

If a function returns a value, you can assign a function to represent a value such as
var x = descriptiveName()

To use functions, you need to follow a two-step process:
1. Create a function.

2. Call that function.

© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_3

51

CHAPTER 3 UNDERSTANDING CLOSURES

Another way to write a function is as a closure. Closures simply let you create and call
a function in a single step. By using closures as a different way to write functions, you can
write more concise code (with the drawback of being harder to read and understand).
Closures are most often used in completion handlers that run as soon as another
command finishes running as shown in Figure 3-1.

'\ func present(_ viewControllerToPresent: UIViewController, animated flag: Bool, fcompletion: (() => Void)? = nil)

Completion handler
code goes here

Figure 3-1. Closures are often used in completion handlers

You could simply write one command followed by a function call immediately after
it, but a completion handler makes it obvious that the command and its completion
handler work together.

Closures can be written in several different ways. When you create a function, you

need to use the func keyword followed by a descriptive name, a parameter list, and code
that calculates a result such as

func multiplyBy2 (x: Int) -> Int {
return x * 2

One way to rewrite this function as a closure involves dropping the func keyword and
the function name, then enclose the rest of the code in curly brackets like this:

let y = {(x: Int) -> Int in return x * 2}

A second way to write a closure is to eliminate the parameter list altogether like this:
let z = {x in return x * 2}

Still another shortcut is to eliminate the return keyword altogether like this:
let w = {x in x * 2}

An even more condensed version of a closure simply displays the return calculation
by eliminating any variables and replacing them with placeholders that identify different
parameters such as

let v = {$0 * 2}
52

CHAPTER 3 UNDERSTANDING CLOSURES

To see how to use closures, follow these steps:

1.

Choose File » New » Playground and create an iOS Blank
playground.

Name it ClosurePlayground.

Type the following:

print ("func multiplyBy2 (x: Int) -> Int {")
func multiplyBy2 (x: Int) -> Int {
return x * 2

}

print(multiplyBy2(x: 4))
print(multiplyBy2(x: 17))

print("{(x: Int) -> Int in return x * 2}")
let y = {(x: Int) -> Int in return x * 2}
print (y(4))
print (y(17))

print("{x in return x * 2}")
let z = {x in return x * 2}
print (z(4))
print (z(17))

print("{x in x * 2}")
let w = {x in x * 2}
print (w(4))
print (w(17))

print("{$0 * 2}")
let v = {$0 * 2}
print(v(4))
print(v(17))

53

CHAPTER 3 UNDERSTANDING CLOSURES

4. Click the Run button. The debug area prints the following:

func multiplyBy2 (x: Int) -> Int {
8

34

{(x: Int) -» Int in return x * 2}
8

34

{x in return x * 2}

8

34

{x in x * 2}

8

34

{$0 * 2}

8

34

Notice how all versions of the closure work exactly the same as the function
declaration. The only difference is how concise each written closure appears. By
understanding the different ways closures can be written, you can recognize them in
code written by other people.

When it’s time to write completion handlers, you can use a closure and write it out in
whatever style you wish that makes most sense to you. For simplicity, many programmers
use the concise version that uses $0 as a placeholder for the first passed parameter, $1 for
the second passed parameter, $2 for the third passed parameter, and so on.

Closures with Multiple Parameters

When declaring a function, you need to explicitly define the data type of each parameter
such as

func addNumbers (x: Int, y: Int) -> Int {
return x +y

54

CHAPTER 3 UNDERSTANDING CLOSURES

When using closures, you need to enclose all parameters inside parentheses. In
many cases, you do not need to define the data type of each parameter since Swift can
infer that value based on the data type of the return value. For example, if the return
value data type is an integer, Swift infers that the passed parameters must be integers as
well such as

{(x, y) -> Int in return x + y}

However, if there is any ambiguity, you must explicitly define the data types of your
parameters such as

{(x: Int, y: Int) in return x + y}
{(x: Int, y: Int) in x + y}
{$0 as Int + $1 as Int}

Notice that the top two examples define the integer data type with a colon and the
Int keyword, while the last example defines the integer data type with the “as” and Int
keywords.

Modify your ClosurePlayground file as follows and click the Run button:

print ("func addNumbers (x: Int, y: Int) -> Int ")
func addNumbers (x: Int, y: Int) -> Int {
return x + vy

}

print(addNumbers(x: 4, y: 5))
print(addNumbers(x: 17, y: 9))

print("{(x, y) -> Int in return x + y}")
let y = {(x, y) -> Int in return x + y}
print (y(4, 5))
print (y(17, 9))

print("{(x: Int, y: Int) in return x + y}")
let z = {(x: Int, y: Int) in return x + y}
print (z(4, 5))
print (z(17, 9))

55

CHAPTER 3 UNDERSTANDING CLOSURES

print("{(x: Int, y: Int) in x + y}")
let w = {(x: Int, y: Int) in x + y}
print (w(4, 5))
print (w(17, 9))

print("{$0 as Int + $1 as Int}")
let v = {$0 as Int + $1 as Int}
print(v(4, 5))
print(v(17, 9))

Understanding Value Capturing

When you declare variables and constants within a function, they can only be accessed
inside that function. However, when you declare a variable or constant outside of a
function, that function can access that value as shown in Figure 3-2.

let randomValue = 2
e
func addNumbers (x: Int, y: Int) -=> Int {

let wildCard = 4
let 50" 2 8% y + wildcard
return sum asssss

Value capturing
+ randomValue

P —————

}

Figure 3-2. A function can access variables inside and above a function

In Figure 3-2, the “randomValue” constant is declared outside of the function but the
function can still access its value. However, the “wildcard” constant is declared inside the
function so it can only be accessed inside that function and nowhere else.

Since “wildcard” is declared inside the function, we cannot access that value outside
that function as shown in Figure 3-3.

func addNumbers (x: Int, y: Int) => Int {
let wildCard = &4
let sum = x + y + wildCard + randomValue
return sum

}

print(wildCard) © Use of unresolved identifier 'wildCard'

Figure 3-3. Values declared inside a function cannot be accessed outside that
Jfunction

56

CHAPTER 3 UNDERSTANDING CLOSURES

Because closures are just another way of writing a function, closures can also capture
and modify values declared outside of their scope.

Using Closures Like Data

Perhaps the most versatile use of closures is to treat them like chunks of data that you
can use like any fixed value. That means you can pass a closure as a parameter in a
function (or another closure), store closures in data structures like arrays, or assign a
closure to a variable.

When you declare a function, you must give that function a unique name such as

func addNumbers (x: Int, y: Int) -> Int {
return x + vy

To call this function, you would use the function name and pass it parameters such as
addNumbers(x: 17, y: 9)
Likewise, you can assign a closure to a variable name like this:

let addNumbersi
let addNumbers2
let addNumbers3
let addNumbers4

{(x, y) -> Int in return x + y}
{(x: Int, y: Int) in return x + y}
{(x: Int, y: Int) in x + y}

{$0 as Int + $1 as Int}

Then you can run this closure by using its name and pass it parameters such as

addNumbers1(17, 9)
addNumbers2(17, 9)
addNumbers3(17, 9)
addNumbers4(17, 9)

You can pass a closure as data to another closure like this:
addNumbers2(17, addNumbers1(17,9))
Since the value of addNumbers1(17,9) is 26, the preceding code is equivalent to

addNumbers2(17, 26)

57

CHAPTER 3 UNDERSTANDING CLOSURES

This calculates the value 43 (17 + 26).

Another interesting use for closures is to store them in data structures. Unlike fixed
values, the same closure can represent different values depending on its parameters.
Modify the ClosurePlayground as follows and click the Run button:

let addNumbersi = {(x, y) -> Int in return x + y}
let addNumbers2 = {(x: Int, y: Int) in return x + y}
let addNumbers3 = {(x: Int, y: Int) in x + y}

let addNumbers4 = {$0 as Int + $1 as Int}

let closureArray = [addNumbers1(9,1), addNumbers2(2,3), addNumbers3(7,6),
addNumbers4(10,2)]
print (closureArray.count)
for i in closureArray {
print(i)

The first four lines define four different closures that work exactly alike, which is to
accept two integers as parameters, add them together, and return the sum. The fifth line
creates an array that holds each closure where each closure gets different parameters.

The sixth line prints the total number of items in the closureArray (4) and then the
for-in loop prints each item in the closureArray so the output looks like this:

10
5

13
12

Remember, closures are functions. There are different ways to write a closure where
each succeeding version gets sparser and more cryptic. Suppose you had a function like
this:

func multiplyBy2 (x: Int) -> Int {
return x * 2

58

CHAPTER 3 UNDERSTANDING CLOSURES
You could rewrite this function as a closure in four different ways:

{(x: Int) -> Int in return x * 2}
{x in return x * 2}
{x in x * 2}

{$0 * 2}

When passing parameters into a closure, enclose them in parentheses. In case the data
type of a closure’s parameters might not be clear, explicitly define the data type like this:

{(x: Int, y: Int) in return x + y}
{(x: Int, y: Int) in x + y}
{$0 as Int + $1 as Int}

Summary

Closures are nothing more than another way to write a function. Instead of creating a
function and then calling that function in a two-step process, you can create and use a
closure in one step.

Be aware that closures can access and modify variables declared outside of the
closure. You can assign closures to a name or simply use closures in place of data. Any
place where you can use data, you can use a closure. Just be careful since closures
aren’t always obvious how they work. Closures offer efficiency in exchange for possible
confusion so use closures sparingly or add comments to explain how a closure works.

59

CHAPTER 4

Multithreaded
Programming Using
Grand Central Dispatch

The next time you pay for groceries in a supermarket, look at the lines at the checkout
stands. If there’s only one open checkout stand, there’s likely a long line of customers
waiting to pay. That means everyone has to wait their turn before they can leave.
However if there are multiple checkout stands open, more customers can pay at the
same time and the wait time for everyone is much less. That’s the basic idea behind
multithreaded programming.

In the old days of computers, tasks were fairly simple so processors were fast enough
to handle them one at a time no matter how many there might be. Gradually as software
got more sophisticated and tasks got more complex, processors couldn’t handle so many
complicated tasks simultaneously. Speeding up the processor by itself could only solve
the problem to a limited extent, so processors started offering multiple cores, which were
essentially separate processors that could work on different tasks simultaneously.

While multicore processors offered a solution, the bigger problem was none of
these multicore processors could work to their full potential unless the software took
advantage of these multiple cores. This forced programmers to write code that could run
at the same time known as concurrent programming. Writing code was hard enough,
and writing additional code to make different parts of a program run at the same time
was often confusing and difficult. As a result, most programmers didn’t bother, which
meant their software wouldn’t take full advantage of multicore processors.

61
© Wallace Wang 2019

W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_4

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

To solve the problem of managing code to run in parallel, Apple created a solution
called Grand Central Dispatch (GCD), which provides support for concurrent code
execution on multicore hardware in iOS and macOS. Instead of forcing developers to
worry about the details of managing code to run in parallel, known as threads, Grand
Central Dispatch lets developers simply identify which chunks of code to run at the same
time, and Grand Central Dispatch takes care of the actual details to do so.

In the old days, software was mostly self-contained in that it didn’t need to rely
on anything else. Today, software often depends on external factors that are largely
unpredictable such as waiting for a file to load or a network connection to complete.
While waiting, the entire program is effectively paused. If this pause is too long, it makes
the program look like it’s frozen and unresponsive.

That’s why you want to use Grand Central Dispatch to allow multiple threads of
execution within a program. That way even if a single thread is stuck waiting for a
specific event, the other threads can keep going. By using Grand Central Dispatch, your
apps should never feel slow and unresponsive to the user.

Note Grand Central Dispatch works identically in both i0S and macOS.

Understanding Threads

To fully understand the advantage of Grand Central Dispatch, it’s important to see how
delays can ruin the responsiveness of an app in the eyes of a user. To do this, we'll see
what happens when a process runs for too long, essentially forcing the entire app to wait
until the process finishes. During this time, the app appears frozen and unresponsive.

We'll deliberately create an app that will lock up the user interface. To see how to
create an app that appears unresponsive, follow these steps:

1. Create a new iOS Single View App and name it ThreadApp.
2. Click the Main.storyboard file in the Navigator pane.
3. Click the Library icon to open the Object Library window.

4. Dragand drop a button, a text view, and a slider anywhere on the
view as shown in Figure 4-1.

62

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Lorem ipsum dolor sit er elit lamet,
consectetaur cillium adipisicing
pecu, sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea

Figure 4-1. Adding a button, a text view, and a slider to create the user interface

10.

11.

Choose Editor » Resolve Auto Layout Issues » Reset to
Suggested Constraints at the bottom half of the menu. Xcode adds
constraints to the button, text view, and slider.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard and ViewController.
swift file side by side.

Move the mouse pointer over the text view, hold down the
Control key, and Ctrl-drag from the text view to under the “class
ViewController” line in the ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field and type resultsTextView. Then click
the Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var resultsTextView: UITextView!

Move the mouse pointer over the button, hold down the Control
key, and Ctrl-drag from the button to above the last curly bracket
at the bottom of the ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

63

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

12. Click in the Name text field, type doButton, click the Type popup
menu and choose UIButton, then click the Connect button. Xcode
creates a blank IBAction method as follows:

@IBAction func doButton(_ sender: UIButton) {
}

13. Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.
14. Click the ViewController.swift file in the Navigator pane.

15. Add the following code underneath the viewDidLoad method:

func fetchSomethingFromServer() -> String {
Thread.sleep(forTimeInterval: 1)
return "Hi there"

}

func processData(_ data: String) -> String {
Thread.sleep(forTimeInterval: 2)
return data.uppercased()

}

func calculateFirstResult(_ data: String) -> String {
Thread.sleep(forTimeInterval: 3)
let message = "Number of chars: \(String(data).count)"
return message

}

func calculateSecondResult(_ data: String) -> String {
Thread.sleep(forTimeInterval: 4)
return data.replacingOccurrences(of: "E", with: "e")

64

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH
16. Edit the doButton IBAction method as follows:

@IBAction func doButton(_ sender: UIButton) {
let startTime = NSDate()
self.resultsTextView.text =
let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
let firstResult = self.calculateFirstResult(processedData)
let secondResult = self.calculateSecondResult(processedData)
let resultsSummary =
"First: [\(firstResult)]\nSecond: [\(secondResult)]"
self.resultsTextView.text = resultsSummary
let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince(startTime as
Date)) seconds")

}

The entire ViewController.swift file should look like this:

import UIKit
class ViewController: UIViewController {
@IBOutlet var resultsTextView: UITextView!

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
}
func fetchSomethingFromServer() -> String {
Thread.sleep(forTimeInterval: 1)
return "Hi there"

}

func processData(_ data: String) -> String {
Thread.sleep(forTimeInterval: 2)
return data.uppercased()

65

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

func calculateFirstResult(_ data: String) -> String {
Thread.sleep(forTimeInterval: 3)
let message = "Number of chars: \(String(data).count)"
return message

}

func calculateSecondResult(_ data: String) -> String {
Thread.sleep(forTimeInterval: 4)
return data.replacingOccurrences(of: "E", with: "e")

}

@IBAction func doButton(_ sender: UIButton) {
let startTime = NSDate()
self.resultsTextView.text =
let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
let firstResult = self.calculateFirstResult(processedData)
let secondResult = self.calculateSecondResult(processedData)
let resultsSummary =
"First: [\(firstResult)]\nSecond: [\(secondResult)]"
self.resultsTextView.text = resultsSummary
let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince(startTime
as Date)) seconds")

17. Click the Run button or choose Product » Run. The Simulator
screen appears as shown in Figure 4-2.

66

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Button

Lorem ipsum dolor sit er elit lamet,
consectetaur cillium adipisicing
pecu, sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea

Figure 4-2. The initial appearance of the user interface
18. Drag the slider left and right. Notice that you can easily drag the
slider back and forth.

19. Click the button. Notice that the button dims. Try dragging the
slider back and forth. Because the app is running a process, the
user interface now appears frozen and unresponsive for about 10
seconds. After the process completes, it displays the results on the
screen as shown in Figure 4-3.

Button

First: [Number of chars: 8]
Second: [HI THeRe]

Figure 4-3. The altered appearance of the user interface

67

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

20. Drag the slider left and right. Notice that the slider now easily
moves once again.

21. Choose Simulator » Quit Simulator to return back to Xcode.

This example lets you see how a process can freeze an app and make it appear
unresponsive even though the app is still running. If you submit an app that freezes its
user interface periodically, Apple will reject it from the App Store.

Most modern operating systems (including iOS) support multiple threads of
execution. If there’s just one processor core, the operating system will switch between all
executing threads, much like it switches between all executing processes. If more than
one core is available, the threads will be distributed among them, just as processes are.

All threads in a process share the same executable program code and the same
global data. Each thread can also have some data that is exclusive to the thread through
a special structure called a mutex (short for mutual exclusion) or a lock. Such a lock
ensures that a particular chunk of code can’t be run by multiple threads at once, which
can keep multiple threads from accessing the same data simultaneously.

When writing code, you need to make sure your code is thread-safe. As a
general rule, any code that controls the user interface is not thread-safe. Because
threads increase the chance of multiple processes interfering with each other, most
programmers don’t use threads directly. That’s why Apple created Grand Central
Dispatch (GCD) to help make concurrent programming easier and safer.

Note To learn more about thread safety, read Apple’s documentation:
https://developer.apple.com/library/ios/documentation/
Cocoa/Conceptual/Multithreading/ThreadSafetySummary/
ThreadSafetySummary.html

Using Grand Central Dispatch

A key concept of GCD is the queue. GCD splits tasks into units of work and puts those
units into queues for execution. The system manages the queues for us, executing units
of work on multiple threads. We don’t need to start or manage the background threads
directly, and we are freed from much of the bookkeeping that’s usually involved in
implementing multithreaded applications.

68

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

GCD provides a number of predefined queues, including a queue that’s guaranteed
to always do its work on the main thread which is perfect for code that manages the user
interface (the non-thread-safe UIKit software framework). GCD lets you create as many
queues as you need. Units of work added to a GCD queue will always be started in the order
they were placed in the queue. That said, they may not always finish in the same order, since
a GCD queue will automatically distribute its work among multiple threads, if possible.

To use GCD, we first need to create a queue using the DispatchQueue keyword such as

let queuel = DispatchQueue(label: "queuel")

Once we've created a queue, we need to define the code to run in that queue. This
code runs in a closure and can run synchronously or asynchronously. An asynchronous
queue runs whenever the processor has time to complete it. A synchronous queue runs
and must complete before any other code can run. In general, asynchronous queues
are most useful when you want to run multiple tasks at the same time, but the order and
time that they complete isn’t important.

To make a queue run, we have to define whether it’s asynchronous or synchronous
and specify the code to run in a closure like this:

queuel.sync { () -> Void in
// Code here

}

queue2.async { () -> Void in
// Code here

To see how asynchronous queues can work, but may complete at different,
unpredictable times, follow these steps:

1. Choose File » New » Playground and create a Blank iOS
playground. Name this new playground QueuePlayground.

2. Edit the playground code so it looks like this:

import UIKit

let queuel = DispatchQueue(label: "queuel")
let queue2 = DispatchQueue(label: "queue2")
let queue3 = DispatchQueue(label: "queue3")

69

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

queuel.async { () -> Void in
print(queuel.label)

}

queue2.async { () -> Void in
print(queue2.label)

}

queue3.async { () -> Void in
print(queue3.label)
}

print("Program stopped")

This code creates three queues and then runs tasks in each queue
that simply prints the name of the queue. Finally, the code ends by
printing “Program stopped”.

3. Click the Run button. Notice that the debug area displays the
output of the code such as

queuel
Program stopped
queue2
queue3

4. Click the Run button to run the program again. Notice that the
output may change such as

Program stopped
queuel
queue3
queue2

Even though the code is identical, asynchronous queues may complete at different

times. Each time you click the Run button, you'll likely see a different result. While you

can have multiple tasks running on different asynchronous queues, you cannot predict

when any given queue will complete its task.

70

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

To see how synchronous queues work in the exact same order every time, modify the
playground code to change all async calls to sync as follows:

import UIKit

let queuel
let queue2
let queue3

DispatchQueue(label: "queuel")
DispatchQueue(label: "queue2")
DispatchQueue(label: "queue3")

queuel.sync { () -> Void in
print(queuel.label)

}

queue2.sync { () -> Void in
print(queue2.label)

}

queue3.sync { () -> Void in
print(queue3.label)

}
print("Program stopped")

No matter how many times you run this code, the output will always be predictable
and in order like this:

queuel
queue2
queue3
Program stopped

The only way you can change the order of the output is to change the position of the
queues such as putting queue3 ahead of queuel. Since synchronous queues are little
different than not using concurrency at all, asynchronous queues are used most often as
long as the order of task completion isn’t important.

71

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Now that we know how GCD can run multiple tasks at the same time, we need to use
GCD to fix the unresponsive user interface of our ThreadApp. First, we need to identify
which code is causing the delay. In our example, it’s this code inside the doButton
IBAction method:

let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
let firstResult = self.calculateFirstResult(processedData)
let secondResult = self.calculateSecondResult(processedData)
let resultsSummary =
"First: [\(firstResult)]\nSecond: [\(secondResult)]"
self.resultsTextView.text = resultsSummary
let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince(startTime as Date))
seconds™)

Logically, it would seem like we could simply wrap this code inside a closure and run
itin a queue. However, look out for this line:

self.resultsTextView.text = resultsSummary

This line updates the resultsTextView on the user interface. As a general rule,
updating the user interface in a queue is not thread-safe, which means trying to update
the user interface in a queue will cause an error. To see what happens when you try to
update the user interface within a queue, follow these steps:

1. Make sure the ThreadApp project is loaded in Xcode.
2. Click the ViewController.swift file.

3. Edit the doButton IBAction method as follows:

@IBAction func doButton(_ sender: UIButton) {
let startTime = NSDate()
self.resultsTextView.text =
let queue = DispatchQueue.global(qos: .default)
queue.async {

72

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)

let firstResult = self.calculateFirstResult(processedData)

let secondResult = self.calculateSecondResult(processedDa

ta)
let resultsSummary =

"First: [\(firstResult)]\nSecond: [\(secondResult)]"

self.resultsTextView.text = resultsSummary
let endTime = NSDate()

print("Completed in \(endTime.timeIntervalSince(startTime

as Date)) seconds")

First, we grab a preexisting global queue that’s always available,
using the DispatchQueue.global() function. That function takes
one argument to define a priority. If you specify a different priority
in the argument, you will actually get a different global queue,
which the system will prioritize differently. For now, we’ll stick
with the default global queue.

The queue is then passed to the queue.async() function, along
with the closure. GCD takes the closure and puts it on the queue,
from where it will be scheduled to run on a background thread
and executed one step at a time, just as when it was running in the
main thread.

Note that we defined a variable called startTime just before the
closure is created, and then use its value at the end of the closure.
Intuitively, this may not make sense because by the time the
closure is executed, the doButton IBAction method has returned.
However, the closure can “capture” the value of variables declared
ahead of it, allowing access.

73

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

4. Click the Run button or choose Produce » Run. Notice that Xcode
displays an error message in the debug area with a message such
as the following:

Main Thread Checker: UI API called on a background thread:
-[UITextView setText:]

PID: 94760, TID: 14970143, Thread name: (none), Queue name: com.
apple.root.default-qos, 0oS: 0

Backtrace:

5. Choose Simulator » Quit Simulator to return to Xcode where you
can see another error message highlighting the line that caused
the error as shown in Figure 4-4.

"First: [\(firstResult)]\nSecond: [\(secondResult)]"

self.resultsTextView.text = resultsSummary B UlTextView.text must be used from main thread only)
let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince(startTime as Date)) seconds®)

Figure 4-4. Xcode highlights the line causing the error
To fix this problem, we need to update the user interface on the
main thread like this:

DispatchQueue.main.async {
self.resultsTextView.text = resultsSummary

Note As a general rule, use the main thread any time you want to update the
user interface.

6. Edit the doButton IBAction method like this:

@IBAction func doButton(_ sender: UIButton) {
let startTime = NSDate()
self.resultsTextView.text =
let queue = DispatchQueue.global(qos: .default)

74

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

queue.async {
let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
let firstResult = self.calculateFirstResult(processedData)
let secondResult = self.calculateSecondResult(processedData)
let resultsSummary =
"First: [\(firstResult)]\nSecond: [\(secondResult)]"

DispatchQueue.main.async {
self.resultsTextView.text = resultsSummary

}

let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince
(startTime as Date)) seconds")

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {
@IBOutlet var resultsTextView: UITextView!

override func viewDidlLoad() {

super.viewDidLoad()

// Do any additional setup after loading the view.
}

func fetchSomethingFromServer() -> String {
Thread.sleep(forTimeInterval: 1)
return "Hi there"

}

func processData(_ data: String) -> String {
Thread.sleep(forTimeInterval: 2)
return data.uppercased()

75

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

func calculateFirstResult(_ data: String) -> String {
Thread.sleep(forTimeInterval: 3)
let message = "Number of chars: \(String(data).count)"
return message

}

func calculateSecondResult(_ data: String) -> String {
Thread.sleep(forTimeInterval: 4)
return data.replacingOccurrences(of: "E", with: "e")

}

@IBAction func doButton(_ sender: UIButton) {
let startTime = NSDate()
self.resultsTextView.text =
let queue = DispatchQueue.global(qos: .default)
queue.async {

let fetchedData = self.fetchSomethingFromServer()

let processedData = self.processData(fetchedData)

let firstResult = self.calculateFirstResult(processedData)
let secondResult = self.calculateSecondResult(processedData)
let resultsSummary =

"First: [\(firstResult)]\nSecond: [\(secondResult)]"

DispatchQueue.main.async {
self.resultsTextView.text = resultsSummary

}

let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince
(startTime as Date)) seconds")

76

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

7. Click the Run button or choose Produce » Run. The Simulator
screen appears.

8. Click the button.

9. Dragthe slider left and right. Notice that even though the app is
processing, the user interface is still responsive. Eventually, the
app finishes its processing and displays its results in the text view,
but during that entire time, the user could still interact with the
interface.

10. Choose Simulator » Quit Simulator.

Displaying Feedback

Fixing the unresponsive user interface is a huge step, but there’s still a perception
problem. After the user taps the button, the app runs a process, but from the user’s point
of view, nothing seems to be happening. Whenever an app is busy processing, it’s best to
give the user some kind of visual feedback that the app is still running. To do that, we'll
add an Activity Indicator View that displays a constantly spinning icon on the screen to
show that the app is doing something. When the app is finished processing, the spinning
icon will go away.

To add a spinning icon (Activity Indicator View), follow these steps:

1. Make sure the ThreadApp project is loaded in Xcode.
2. Click the Main.storyboard file in the Navigator pane.
3. Click the Library icon to open the Object Library window.

4. Dragand drop an Activity Indicator View in the middle of the view
as shown in Figure 4-5.

77

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

9:41

¥ (L) View Controller

v View
['o]] safe Area Button
O\ BH
VUpBLY e S .
Lorem ipsum dolor sit er elit lamet,
consectetaur cillium adipisicing
pecu, sed do eiusmod tempor
1 B Seg ted C ol - Displays g each of which functions incididunt ut labore et dolore
as a discrete button. magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation
ullamco laboris nisi ul aliquip ex ea

Text | Text Field - Displays editable text and sends an action message to a target
ext | object when Return is tapped.

Slider - Displays a continuous range of values and allows the selection of a
single value.

h - Displays an el fing the boolean state of a value. Allows CR]
tapping the contro Ljbrary the value.

M

Activity Indicator View - f feedback on the progress of a task o

Progress View - Depicts the progress of a task over time.

Figure 4-5. The Activity Indicator View

5. Click the Activity Indicator View to select it and then choose
Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints in the top half of the menu to set constraints on the
Activity Indicator View.

6. Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard and ViewController.
swift file side by side.

7. Move the mouse pointer over the Activity Indicator View,
hold down the Control key, and Ctrl-drag from the Activity
Indicator View to under the “class ViewController” line in the
ViewController.swift file.

8. Release the Control key and the left mouse button. A popup
window appears.

78

10.

11.

12.

13.

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Click in the Name text field and type spinnerView. Then click the
Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var spinnerView: UIActivityIndicatorView!

Choose View » Standard Editor »Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.
Click the ViewController.swift file in the Navigator pane.

Modify the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
spinnerView.hidesWhenStopped = true

}

This spinnerView.hidesWhenStopped line hides the Activity
Indicator View until it starts animating. The moment it stops
animating, it disappears from view again.

Edit the doButton IBAction method by adding a startAnimating
line ahead of the queue and a stopAnimating line inside the main
thread as follows:

@IBAction func doButton(_ sender: UIButton) {
let startTime = NSDate()
self.resultsTextView.text = ""

spinnerView.startAnimating()

let queue = DispatchQueue.global(qos: .default)

queue.async {

let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)

let firstResult = self.calculateFirstResult(processedData)
let secondResult = self.calculateSecondResult(processedData)

let resultsSummary =

"First: [\(firstResult)]\nSecond: [\(secondResult)]"

79

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

DispatchQueue.main.async {
self.resultsTextView.text = resultsSummary
self.spinnerView.stopAnimating()

}

let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince
(startTime as Date)) seconds")

14. Click the Run button or choose Product » Run. The Simulator
screen appears.

15. Click the button. Notice that the Activity Indicator View appears
and spins around. As soon as the app finishes processing, the
Activity Indicator View disappears again.

16. Choose Simulator » Quit Simulator to return back to Xcode.

Using Dispatch Groups

In the previous example, we created a background thread and then jumped back to
the main thread to update the user interface. While this is acceptable, we can optimize
the code a bit further using dispatch groups. Right now our calculateFirstResult() and
calculateSecondResult() methods are called in sequence, yet there’s no reason to do this
since they’re completely independent of each other.

A better solution is to call these two methods in a dispatch group. This lets each
function run independent of the other, which can improve performance since the
methods are now operating concurrently rather than sequentially. Finally, we can also
use dispatch_group_notify() to specify an additional closure that will run only when all
the other closures in the group have completed running.

To create a dispatch group, we just need to create a DispatchGroup object like this:

let group = DispatchGroup()
Then we run each queue inside this dispatch group like this:
queue.async(group: group) {

80

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

firstResult = self.calculateFirstResult(processedData)

}

To run a final closure after all other closures have finished, we create a group.notify
queue like this:

group.notify(queue: queue) {
let resultsSummary = "First: [\(firstResult!)]\nSecond: [\
(secondResult!)]"
DispatchQueue.main.async {
self.resultsTextView.text = resultsSummary
self.spinnerView.stopAnimating()

}
let endTime = Date()

print("Completed in \(endTime.timeIntervalSince(startTime))
seconds™)

}

One final difference is that the group.notify and the queue.async queues need to
access the firstResult and secondResult variables, so we need to declare them outside of
both queues like this:

var firstResult: String!
var secondResult: String!

To see how to use dispatch groups, follow these steps:
1. Make sure the ThreadApp project is loaded in Xcode.
2. Click the Main.storyboard file in the Navigator pane.
3. Click the Library icon to open the Object Library window.
4. Dragand drop a second button anywhere near the first button.

5. Double-click this second button, type Group, and press Enter. The
second button should now display “Group” as its title as shown in
Figure 4-6.

81

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Lorem ipsum dolor sit er elit lamet,
consectetaur cillium adipisicing
pecu, sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea

Figure 4-6. Adding a second button to the user interface

6. Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints at the top half of the menu. Xcode adds constraints to
the second button.

7. Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard and ViewController.
swift file side by side.

8. Move the mouse pointer over the second button, hold down the
Control key, and Ctrl-drag from the button to above the last curly
bracket in the ViewController.swift file.

9. Release the Control key and the left mouse button. A popup
window appears.

10. Click in the Name text field and type doGroupButton. Click the
Type popup menu and choose UIButton, then click the Connect
button. Xcode creates an IBAction method.

11. Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.

82

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

12. Click the ViewController.swift file in the Navigator pane.

13. Edit the doGroupButton IBAction method as follows:

@IBAction func doGroupButton(_ sender: UIButton) {
let startTime = Date()
self.resultsTextView.text = ""

spinnerView.startAnimating()

let queue = DispatchQueue.global(qos: .default)

queue.async {
let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
var firstResult: String!
var secondResult: String!

let group = DispatchGroup()

queue.async(group: group) {
firstResult = self.calculateFirstResult(processedData)
}
queue.async(group: group) {
secondResult = self.calculateSecondResult(processed
Data)

}

group.notify(queue: queue) {

let resultsSummary = "First: [\(firstResult!)]\

nSecond: [\(secondResult!)]"

DispatchQueue.main.async {
self.resultsTextView.text = resultsSummary
self.spinnerView.stopAnimating()

}

let endTime = Date()

print("Completed in \(endTime.

timeIntervalSince(startTime)) seconds™)

83

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

The entire ViewController.swift file should look like this:
import UIKit
class ViewController: UIViewController {

@IBOutlet var resultsTextView: UITextView!
@IBOutlet var spinnerView: UIActivityIndicatorView!

override func viewDidlLoad() {
super.viewDidLoad()
spinnerView.hidesWhenStopped = true

}

func fetchSomethingFromServer() -> String {
Thread.sleep(forTimeInterval: 1)
return "Hi there"

}

func processData(_ data: String) -> String {
Thread.sleep(forTimeInterval: 2)
return data.uppercased()

}

func calculateFirstResult(_ data: String) -> String {
Thread.sleep(forTimeInterval: 3)
let message = "Number of chars: \(String(data).count)"
return message

}

func calculateSecondResult(_ data: String) -> String {
Thread.sleep(forTimeInterval: 4)
return data.replacingOccurrences(of: "E", with: "e")

}

@IBAction func doButton(_ sender: UIButton) {
let startTime = NSDate()
self.resultsTextView.text = ""

spinnerView.startAnimating()
let queue = DispatchQueue.global(qos: .default)

84

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

queue.async {
let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
let firstResult = self.calculateFirstResult(processed
Data)
let secondResult = self.calculateSecondResult(processe
dData)
let resultsSummary =
"First: [\(firstResult)]\nSecond: [\(secondResult)]"

DispatchQueue.main.async {
self.resultsTextView.text = resultsSummary
self.spinnerView.stopAnimating()

}

let endTime = NSDate()
print("Completed in \(endTime.timeIntervalSince
(startTime as Date)) seconds")

}

@IBAction func doGroupButton(_ sender: UIButton) {
let startTime = Date()
self.resultsTextView.text =
spinnerView.startAnimating()
let queue = DispatchQueue.global(qos: .default)
queue.async {

let fetchedData = self.fetchSomethingFromServer()
let processedData = self.processData(fetchedData)
var firstResult: String!

var secondResult: String!

let group = DispatchGroup()

queue.async(group: group) {
firstResult = self.calculateFirstResult(processed
Data)

85

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

queue.async(group: group) {
secondResult = self.calculateSecondResult(processed
Data)

}

group.notify(queue: queue) {

let resultsSummary = "First: [\(firstResult!)]\

nSecond: [\(secondResult!)]"

DispatchQueue.main.async {
self.resultsTextView.text = resultsSummary
self.spinnerView.stopAnimating()

}

let endTime = Date()

print("Completed in \(endTime.timeIntervalSince

(startTime)) seconds")

}

14. Click the Run button or choose Product » Run. The Simulator
screen appears.

15. Click the first button. Notice that when the process completes,
Xcode’s debug area displays a message such as

Completed in 10.00560998916626 seconds

16. Click the second button labelled “Group”. Notice that when this
process completes, Xcode’s debug area displays a message such as

Completed in 7.014010071754456 seconds

17. Choose Simulator » Quit Simulator to return back to Xcode.

What was once a 10-second operation now takes just 7 seconds, thanks to the fact
that we're running both of the calculations simultaneously. Obviously, our contrived
example gets the maximum effect because these two “calculations” don’t actually do
anything but cause the thread they’re running on to sleep. In a real app, the speedup
would depend on what sort of work is being done and what CPU is available.

86

CHAPTER 4 MULTITHREADED PROGRAMMING USING GRAND CENTRAL DISPATCH

Summary

Grand Central Dispatch (GCD) is a way to run multiple parts of your code separately.
You can do this using threads, but manipulating individual threads can be troublesome
and error-prone. Instead of working with threads, you can use GCD, which takes care of
the details needed to start, run, and stop different threads safely.

As you can see, GCD can help speed up bottlenecks in your code where a single
process might take a long time to complete, which can make your app seem to freeze and
be unresponsive. By using GCD at points in your app where speed is essential or where
your app lags in responses to the user, you can easily provide a better user experience,
even in situations where you can’t improve the actual performance.

87

CHAPTER 5

Understanding the
Application Life Cycle

Every time you create an iOS project, it will likely include at least two .swift files:
ViewController.swift and AppDelegate.swift. A ViewController.swift file connects to a
scene in a storyboard and lets you write code that manages the user interface. Each
time you add another view controller scene to the storyboard, you'll likely need another
ViewController.swift file (under a different name) to manage any user interface objects
such as buttons, text fields, or switches.

Where a project can have multiple ViewController.swift files connected to different
scenes in a storyboard, a project will have one AppDelegate.swift file that contains code
to manage the different states of an app. Initially, an app is not running. When the user
launches the app, the app becomes active and appears in the foreground. As long as the
user continues interacting with the app, it remains active in the foreground. However, if
the user switches to another app, this pushes the other app into the background. Finally,
the user may simply shut down an app altogether.

The AppDelegate.swift file monitors these different states so the app can respond
accordingly. When an app first launches, it might need to retrieve data such as the last
document the user had been working on before exiting the app. The app might also need
to load any custom settings the user might have defined earlier such as color settings.

If the user switches to another app and pushes the previously active app into the
background, that app might need to save data in case the user later exits out of the
app altogether without making it active again. Finally, if the user terminates the app
completely, the app might need one last chance to save data before exiting.

89
© Wallace Wang 2019

W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_5

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

The various states an app might be in during its life cycle include

e Not Running - This is the state that all apps are in on a freshly
rebooted device.

e Active - This is the normal running state of an application when it’s
displayed on the screen to receive user input and update the display.

e Background - In this state, an app is given some time to execute some
code, but it can’t directly access the screen or get any user input. All
apps enter this state briefly when the user presses the home button;
most of them quickly move onto the Suspended state. Apps that want
to do any sort of background processing stay in this state until they’re
made Active again.

o Suspended - A Suspended app is frozen. This is what happens to
normal apps after their brief stint in the Background state. All the
memory the app was using while it was active is held just as it was.

If the user brings the app back to the Active state, it will pick up right
where it left off. On the other hand, if the system needs more memory
for whichever app is currently Active, any Suspended apps may be
terminated (and placed back into the Not Running state) and their
memory freed for other use.

e Inactive - An app enters the Inactive state only as a temporary rest
stop between two other states. The only way an app can stay Inactive
for any length of time is if the user is dealing with a system prompt
(such as those shown for an incoming call or SMS message) or if the
user has locked the screen. This state is basically a sort of limbo.

Getting State-Change Notifications

To manage changes between these states, the AppDelegate.swift file contains methods
that its delegate can implement as follows:

o application(_:didFinishLaunchingWithOptions:) - Detects
when an app starts running

90

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

o applicationWillResignActive() - Detects when the user returns
to the Home screen, which will push the app into the background

o applicationDidBecomeActive() - Detects when an app, formerly in
the background, reappears in the foreground once more

o applicationDidEnterBackground() - Detects when an app gets
sent into the background

o applicationWillEnterForeground() - Detects when an app is
about to be sent into the background

o applicationWillTerminate() - Detects when an app is about to
stop running

The applicationWillResignActive() and applicationDidBecomeActive() methods
can be useful when detecting interruptions such as someone using your app when
a phone call comes in and interrupts your app. This pair of methods brackets the
movement of an app from the Active state to the Inactive state, which makes them
good places to enable and disable any animations, in-app audio, or other items
that deal with the app’s presentation to the user. Because of the multiple situations
where applicationDidBecomeActive() is used, you may want to put some of your app
initialization code there instead of in application(_:didFinishLaunchingWithOptions:).
Note that you should not assume in applicationWillResignActive() that the application is
about to be sent to the background; it may just be a temporary change that ends up with
a move back to the Active state.

The two applicationDidEnterBackground() and applicationWillEnterForeground()
methods deal with an app that is definitely being sent to the background. The
applicationDidEnterBackground() method is where an app should free all
resources such as saving all user data, closing network connections, and so forth.

This is also the spot where you can request more time to run in the background

ifyou need it, as we'll see shortly. If you spend too much time doing things in
applicationDidEnterBackground() - more than about 5 seconds - the system will decide
that your app is misbehaving and terminate it.

91

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

You should implement applicationWillEnterForeground() to re-create
whatever was torn down in applicationDidEnterBackground(), such as
reloading user data, reestablishing network connections, and so on. Note
that when applicationDidEnterBackground() is called, you can safely assume
that applicationWillResignActive() has also been recently called. Likewise,
when applicationWillEnterForeground() gets called, you can assume that
applicationDidBecomeActive() will soon be called as well.

Finally, applicationWillTerminate(), which you'll probably rarely use, if ever, is called
only if your application is already in the background and the system decides to skip
suspension for some reason and simply terminate the app.

Now that you have a basic theoretical understanding of the states an application
transitions between, let’s see how this works with a simple app that does nothing more
than write a message to Xcode’s console log each time one of these methods is called.
We’'ll then manipulate the running app in a variety of ways, just as a user might, and see
which transitions occur. To get the most out of this example, you'll need an iOS device.
If you don’t have one, you can use the Simulator and skip over the parts that require a
device.

To see how the different AppDelegate.swift methods work, follow these steps:

1. Create a new iOS Single View App and name it StateApp.
2. Click the AppDelegate.swift file in the Navigator pane.

3. Edit the AppDelegate.swift file and add a print(#function) line in
each method so the entire file looks like this:

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [UIApplication.
LaunchOptionsKey: Any]?) -> Bool {

print (#function)

return true

92

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

func applicationWillResignActive(_ application: UIApplication)

// Sent when the application is about to move from active
to inactive state. This can occur for certain types of
temporary interruptions (such as an incoming phone call or
SMS message) or when the user quits the application and it
begins the transition to the background state.

// Use this method to pause ongoing tasks, disable timers,
and invalidate graphics rendering callbacks. Games should
use this method to pause the game.

print (#function)

}

func applicationDidEnterBackground(_ application:
UIApplication) {
// Use this method to release shared resources, save user
data, invalidate timers, and store enough application
state information to restore your application to its
current state in case it is terminated later.
// If your application supports background execution, this
method is called instead of applicationWillTerminate: when
the user quits.
print (#function)

}

func applicationWillEnterForeground(_ application:
UIApplication) {
// Called as part of the transition from the background to
the active state; here you can undo many of the changes
made on entering the background.
print (#function)

93

CHAPTER 5

94

UNDERSTANDING THE APPLICATION LIFE CYCLE

func applicationDidBecomeActive(_ application: UIApplication) {
// Restart any tasks that were paused (or not yet started)
while the application was inactive. If the application was
previously in the background, optionally refresh the user
interface.
print(#function)

}

func applicationWillTerminate(_ application: UIApplication) {
// Called when the application is about to terminate. Save
data if appropriate. See also applicationDidEnterBackground: .
print(#function)

}

The literal expression #function evaluates to the name of the
method in which it appears, and the print statement simply prints
this information in Xcode’s debug area. This allows us to track
which method has been called at any given time.

Click the Run button or choose Product » Run. The Simulator
screen appears and displays a blank screen since we didn’t design
any type of user interface. Notice that the Xcode debug area
displays the following:

application(_:didFinishLaunchingWithOptions:)
applicationDidBecomeActive(_:)

This shows that the :didFinishLaunchingWithOptions
method runs first as soon as the app launches, followed by the
applicationDidBecomeActive method.

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

Choose Hardware » Home to emulate the user returning to the
Home screen. Notice the following message appears in Xcode’s
debug area:

applicationWillResignActive(_:)
applicationDidEnterBackground(_:)

This shows that when the app is no longer active, the
applicationWillResignActive method runs first, followed by the
applicationDidEnterBackground method. These two lines show
the app actually transitioning between two states: it first becomes
Inactive and then goes to Background. What you can’t see here is
that the app also switches to a third state: Suspended. Remember
that you do not get any notification that this has happened; it’s
completely outside your control.

Click the StateApp icon on the Home screen to relaunch it. Notice
that the Xcode debug area now displays the following:

applicationWillEnterForeground(_:)
applicationDidBecomeActive(_:)

This shows that the app was previously Suspended, is woken up to
Inactive, and then ends up Active again.

Press Command-+Shift and press H twice in rapid succession. The
sideways-scrolling screen of apps appears as shown in Figure 5-1.

95

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

(i B reain 8 statenrn

Figure 5-1. The sideways-scrolling view of currently running apps

8. Move the mouse pointer over the StateApp screen and drag up
until the StateApp screen disappears off the top of the Simulator
screen. Notice that the Xcode debug area displays the following:

applicationDidEnterBackground(_:)

applicationWillTerminate(_:)

Note Do not rely on the applicationWillTerminate() method
being called to save the state of your application — do this in the
applicationDidEnterBackground() method instead.

96

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

By experimenting with the Simulator, you can see how the AppDelegate.swift file’s
various methods run at different times. If you have an iPhone, you can see what happens
when an app runs and gets interrupted by a phone call.

To see how an app handles an interruption like a phone call, follow these steps:

1. Connect an iPhone to your Macintosh through its USB cable.
2. Make sure the StateApp project is loaded in Xcode.
3. Click the Active Scheme menu to choose the iPhone as shown in

Figure 5-2.

Active Scheme menu

e 9 »r |] A StateApp) B iPhone 7 (Mine)

B 4 - ¥ < B StateApp

Figure 5-2. Clicking the Active Scheme menu lets you choose to run the StateApp
project on an iPhone instead of in the Simulator

4. Click the Run button or choose Product » Run. The StateApp
appears on your iPhone. If you look in Xcode’s debug area, you'll
see these two lines showing that the app launched:

application(_:didFinishLaunchingWithOptions:)
applicationDidBecomeActive(_:)

5. From another phone, call the iPhone currently running the
StateApp while connected to your Macintosh. Notice that the
following line appears in Xcode’s debug area:

applicationlillResignActive(_:)

This shows that the StateApp is no longer active since the iPhone
screen displays the phone call information.

97

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

6. Stop the phone call from the other phone. Notice that the
StateApp screen appears again (a blank screen) and that the
Xcode debug area displays the following:

applicationDidBecomeActive(_:)

7. Click the Stop button or choose Product » Stop in Xcode to stop
the StateApp on your iPhone.

Using Execution State Changes

Based on what was just demonstrated, each state change serves different purposes:

Active > Inactive

Use applicationWillResignActive() to “pause” your app’s display. If your app is a game,
you probably already have the ability to pause the gameplay in some way. For other
kinds of apps, make sure no time-critical demands for user input are running because
your app won'’t be getting any user input for a while.

Inactive > Background

Use applicationDidEnterBackground() to release any resources that don’t need to

be kept around when the app is tucked in the background (such as cached images or
other easily reloadable data) or that might not survive backgrounding anyway (such as
active network connections). Getting rid of excess memory usage here will make your
app’s eventual Suspended snapshot smaller, thereby decreasing the risk that your app
will be purged from RAM entirely. You should also use this opportunity to save any
application data that will help your users pick up where they left off the next time your
app is relaunched. If your app comes back to the Active state, normally this won’t matter;
however, in case it’s purged and must be relaunched, your users will appreciate starting
off in the same place.

When this transition is underway, the system won’t give your app an unlimited
amount of time to save any changes; it just gives you a few seconds. If your app takes
longer than that, then your app will be purged from memory and pushed into the Not
Running state.

98

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

Background > Inactive

Use applicationWillEnterForeground() to undo anything you did when switching from
Inactive to Background. For example, here you can reestablish persistent network
connections.

Inactive > Active

Use applicationDidBecomeActive() to undo anything you did when switching from
Active to Inactive. Note that, if your app is a game, this probably does not mean dropping
out of pause straight to the game; you should let your users do that on their own.
Also keep in mind that this method and notification are used when an app is freshly
launched, so anything you do here must work in that context as well.

There is one special consideration for the Inactive » Background transition. Not
only does it have the longest description in the previous list, but it’s also probably the
most code- and time-intensive transition in applications because of the amount of

bookkeeping you may want your app to do.

Displaying the Launch Screen

Every iOS project has a launch screen, which is actually the first screen that appears
when the app first starts. After a few seconds, the launch screen disappears and the
initial view controller appears. The launch screen, sometimes called a splash screen,
appears first, which can give your initial view controller time to load. In addition, a
launch screen typically displays a flashy graphic image of some kind that represents
your app. By default, the launch screen is named LaunchScreen.storyboard, but you can
choose a different .storyboard file to represent the launch screen.

To define the .storyboard file you want to use as the launch screen, follow these steps:

1. Click the project name at the top of the Navigator pane.

2. Click the Launch Screen File popup menu and choose the
.storyboard file you want to use for your launch screen as shown
in Figure 5-3.

99

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

eoe » % UserDetaultsAgp }) iPhone Xn UserDefaultsAop: Ready | Today at 1:40 Pud
B ER QA O BEo O B <> vt Ca>
O A UserDetautarsn General Canabiites Resource Tags o Buid Seftngs Buld Phases Buld Rules
¥ | UserDetaultspn
« AppDelegate swift ¥ identity
» ViewControberswift
Main storyboard Disclay Name

B Assets. casaets
LaunchScreen. storyboard
Infa plst
¥ Products

Bundie identfier com loptananas UserDetaultsApn
Version 10

Duild 1

¥ Signing
Automatically manage signing
Toam Wallace Wang B
Provisioning Profde Xode Managed Prafile
Sigaing Certificate. {Phone Developer: Wallace Wang (MEBSKESVLW)

¥ Deployment infa
Cuployment Target

Devices Universal

Main Interisce Min

Dwcice Oriectation B Porteait
Upside Down
[Landscape Left

B Landscape Right
Status Bar Sty Detault B
Hede 3%tus bar
Requires ful screen

T App beons and Lausch Images

App booms Source

Appicon

+ 1@ OE

Figure 5-3. Defining the Launch Screen File

To see how launch screens work, follow these steps:

Identity and Tyee
Hame UserDetautisron
Lotation
UseMDetauREAGE SE00RRrD]
Fut Parh Users/watacewang/
Documents Mook Projects]
Peo iPhore Development/
Sousce Codef
UserDetauit:
UserDateutshop scodecrol O
Prasct Document
Project Feemat Xcode 3-compatie |
Orgasization Wallace Wang
Claws Prafix

Teut Sattings
Indent Using Spaces B

Widths L= 4
e Indert
{3 wrap fines.

1. Create a new iOS Single View App and name it LaunchScreenApp.

2. Click the LaunchScreen.storyboard file in the Navigator pane.
A blank view controller appears.

3. Click View Controller Scene » View Controller » View in the
Document Outline.

4. Choose View » Inspectors » Show Attributes Inspector, or click

the Attributes Inspector icon in the upper right corner of the
Xcode window.

5. Click the Background popup menu and choose a color such as

green or blue. This will make it easy to recognize when the launch

screen appears and then disappears.

6. Click the Library icon to open the Object Library window.

100

10.

11.

12.

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

Drag and drop a label anywhere on the view.
Double-click the label, type Launch Screen, then press Enter.

Click the Run button or choose Product » Run. The Simulator
screen appears. Notice that it displays the colored launch screen
for a few seconds before displaying the blank screen of the initial
view controller defined in the Main.storyboard file.

Choose Hardware » Home to return to the Home screen.

Double-click the LaunchScreenApp icon. Notice that the launch
screen does not appear.

Choose Simulator » Quit Simulator to return back to Xcode.

The first time an app launches, it displays its launch screen for a few seconds before

displaying the initial view controller in the Main.storyboard file. From now on, the

launch screen will be hidden until the app completely terminates and restarts.

Using the Notification Center

The AppDelegate.swift file contains methods that can track different states of an app

such as when an app starts, goes into the background, and becomes active again.

However, you may want to track other states of your app such as when a user makes a

certain choice by clicking different user interface objects. In that case, you can use the

notification center.

To use the notification center, you need to follow several steps:

Define a unique name for each action you want to detect.

Define one or more notification center observers to receive
notifications when certain actions occur.

Write functions to run when a notification center observer receives a
notification.

Write code to send a notification when a certain action occurs.

Think of the notification center as a broadcasting station that allows certain parts of

an app to listen and take action when certain actions occur.

101

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

To see how to use the notification center, follow these steps:

1. Create a new iOS Single View App and name it
NotificationCenterApp.

2. Click the Main.storyboard file in the Navigator pane.
3. Click the Library icon to open the Object Library window.

4. Drag and drop a label onto the view and resize its width to make it
stretch from the left edge to the right edge.

5. Dragand drop a button onto the view.

6. Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints. Xcode adds constraints to the label and the button.

7. Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard file side by side with
the ViewController.swift file.

8. Move the mouse pointer over the label, hold down the Control
key, and Ctrl-drag under the “class ViewController” line in the
ViewController.swift file.

9. Release the Control key and the left mouse button. A popup
window appears.

10. Click in the Name text field, type myLabel, and click the Connect
button. Xcode creates an IBOutlet as follows:

@IBOutlet var mylabel: UILabel!

11. Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.

12. Click the ViewController.swift file in the Navigator pane.

102

13.

14.

15.

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

Add the following underneath the “import UIKit” line:
import UIKit

extension Notification.Name {
static let firstSegment = Notification.Name("first")
static let secondSegment = Notification.Name("second")
static let buttonPressed = Notification.Name("button")

}

This extension simply defines arbitrary names that will be used
to identify our different notification center observers that we’ll
define next.

Add the following underneath the IBOutlet line:

@objc func firstSegmentTapped(notification: Notification) {
mylLabel.text = "First segment of segmented control tapped"

}

@objc func secondSegmentTapped(notification: Notification) {
mylLabel.text = "Second segment of segmented control tapped"

}

@objc func buttonTapped(notification: Notification) {
myLabel.text = "Button tapped"

Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()

NotificationCenter.default.addObserver(self, selector:
#selector (firstSegmentTapped(notification:)), name:
.firstSegment, object: nil)

103

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

NotificationCenter.default.addObserver(self, selector:
#selector(secondSegmentTapped(notification:)), name:
.secondSegment, object: nil)

NotificationCenter.default.addObserver(self, selector:
#selector (buttonTapped(notification:)), name: .buttonPressed,
object: nil)

}
The entire ViewController.swift file should look like this:
import UIKit

extension Notification.Name {
static let firstSegment = Notification.Name("first")
static let secondSegment
static let buttonPressed

Notification.Name("second")
Notification.Name("button™)

}

class ViewController: UIViewController {
@IBOutlet var mylLabel: UILabel!

@objc func firstSegmentTapped(notification: Notification) {
myLabel.text = "First segment of segmented control tapped"

}

@objc func secondSegmentTapped(notification: Notification) {
myLabel.text = "Second segment of segmented control tapped"

}

@objc func buttonTapped(notification: Notification) {
myLabel.text = "Button tapped"

}

override func viewDidlLoad() {
super.viewDidLoad()

NotificationCenter.default.addObserver(self, selector:
#selector (firstSegmentTapped(notification:)), name:
.firstSegment, object: nil)

104

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

NotificationCenter.default.addObserver(self, selector:
#selector(secondSegmentTapped(notification:)), name:
.secondSegment, object: nil)

NotificationCenter.default.addObserver(self, selector:
#selector (buttonTapped(notification:)), name:
.buttonPressed, object: nil)

16. Click the Main.storyboard file in the Navigator pane.
17. Click the Library icon to open the Object Library window.

18. Dragand drop a View Controller into the storyboard as shown in
Figure 5-4.

SenterApp) . Main.storyboard) . Main.storyboard (Base)) View Controller Scene) View Controller

BTN AT - LADISYS S0 6CMSDH SEArCH DAr, CONAINNAG Ehe SEMEN icon,
that sends an action message 10 a target object when Return is tapped

Search Bar and Search Display Controller - Displays an edtable search
Bar conmected 1o a search display controlier for managing searching. WView Controlier +«]

2 9:41 -
..q Fized Space Bar Button Item - Represents a flued space item on 8 8 -
Ui'Toolbar object.

L

Flexible Space Bar Button Item - Represents a flesible space item on &
UiToolbar object.

Label

View Controller - A controller that manages a view.

Storyboard Reference - Provides a placoholder for 3 view controlier in an
external storyboard,

< Mavigation Controller - A controller that manages navigation through a
higrarchy of views.

Table View Controller - A contraller that manages a table view.

Collection View Controller - A contraller tha: manages a collection vew.

Tab Bar Controller - A controller that manages a set of view controllers
that represent tab bar items.

A

Figure 5-4. Adding a second view controller to a storyboard
105

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

19. Move the mouse pointer over the button on the first view
controller, hold down the Control key, and Ctrl-drag onto the
second view controller as shown in Figure 5-5.

View Controller

L

Figure 5-5. Ctrl-dragging from the button to the second view controller

y
[view |

20. Release the Control key and the left mouse button. A popup menu
appears as shown in Figure 5-6.

106

Figure 5-6. Choosing a segue from the button to the second view controller

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.
31.

32.

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

Action Segue

(deprecated)

Choose Show. This creates a segue that lets the button display the
second view controller. Xcode displays a segue arrow connecting
the two view controllers.

Click the Library icon to open the Object Library window.

Drag and drop a segmented control and a button anywhere on the

second view controller.

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints in the bottom half of the submenu. Xcode adds
constraints to the segmented control and the button.

Choose File » New » File. A template dialog appears.

Click Cocoa Touch Class in the iOS category and click the Next
button. Another dialog appears.

Click in the Name text field and type SecondViewController.
Make sure the Subclass of popup menu displays UIViewController.

Click the Next button and then click the Create button. Xcode
displays SecondViewController.swift in the Navigator pane.

Click the Main.storyboard file in the Navigator pane.

Click the View Controller icon that appears on the second view
controller (the one with the button and segmented control).

Choose View » Inspectors » Show Identity Inspector, or click
the Identity Inspector icon in the upper right corner of the Xcode

window.

107

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

33. Click the Class popup menu and choose SecondViewController
as shown in Figure 5-7. Notice that Second View Controller now
appears at the top of the second view controller.

D @ E ¢ 0 @

Custo s
Class SecondViewController © g
Module -

Inherit Module From Target

Identity

Storyboard ID

Restoration ID
Use Storyboard ID

Figure 5-7. Connecting the SecondViewController.swift file to the second view
controller

34. Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard file side by side with
the SecondViewController.swift file.

35. Move the mouse pointer over the button, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
SecondViewController.swift file.

36. Release the Control key and the left mouse button. A popup
window appears.

37. Make sure the Connection popup menu displays Action, then
click in the Name text field and type tapButton.

38. Click the Type popup menu and choose UIButton, then click the
Connect button. Xcode creates a tapButton IBAction method.

39. Move the mouse pointer over the segmented control, hold down
the Control key, and Ctrl-drag above the last curly bracket at the
bottom of the SecondViewController.swift file.

108

40.

41.

42.

43.

44,

45.

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

Release the Control key and the left mouse button. A popup
window appears.

Make sure the Connection popup menu displays Action, then
click in the Name text field and type tapSegmentedControl.

Click the Type popup menu and choose UISegmentedControl,
then click the Connect button. Xcode creates a
tapSegmentedControl IBAction method.

Click the segmented control to select it. Notice that the first
segment appears highlighted.

Choose View » Inspectors » Show Attributes Inspector, or click
the Attributes Inspector icon in the upper right corner of the
Xcode window.

Clear the “Selected” check box as shown in Figure 5-8.

Second...Controller view) @] First, Second < > D @ &a U0 6

Segmented Control
Style Plain

State Momentary
Drag and Drop Spring Loaded

o841 - Segments 22
| Segment Segment O - First B

Title First
Image g

Behavior @ Enabled
Content Offset 1] 02
X Y
B 1

Figure 5-8. Clearing the Selected check box

46.

47.

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode
window.

Click the SecondViewController.swift file in the Navigator pane.

109

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE
48. Edit the tapButton IBAction method as follows:

@IBAction func tapButton(_ sender: UIButton) {
NotificationCenter.default.post(name: .buttonPressed,
object: nil)
dismiss(animated: true, completion: nil)

}

This sends a notification that the user tapped the button on the
second view controller.

49. Edit the tapSegmentedControl IBAction method as follows:

@IBAction func tapSegmentedControl(_ sender: UISegmentedControl) {

switch sender.selectedSegmentIndex {

case 0:
NotificationCenter.default.post(name: .firstSegment,
object: nil)

case 1:
NotificationCenter.default.post(name: .secondSegment,
object: nil)

default:
print ("Default")

}

dismiss(animated: txue, completion: nil)

}

This sends a notification that the user tapped the segmented
control and identifies which segment the user tapped, the first one
or the second one.

50. Click the Run button or choose Product » Run. The Simulator
screen appears, displaying the button and label.

51. Click the button. The second view controller appears.

110

CHAPTER 5 UNDERSTANDING THE APPLICATION LIFE CYCLE

52. Click the button or the segmented control. The first view controller
appears and displays a message, identifying whether you tapped
the button or segmented control.

53. Choose Simulator » Quit Simulator to return back to Xcode.

Summary

As you can see, an app often goes through multiple states just to load and stop. If the
user returns to the Home screen or gets interrupted by another process such as a phone
call, that can affect an app’s state too. To help you track and respond to different states,
you can use various methods stored in the AppDelegate.swift file, which monitors and
responds to different states of an app.

When an app first launches, it may need to retrieve various setting information or
data that the user was working on the last time your app ran. When the user returns to
the Home screen or gets interrupted, an app may need to temporarily store data that it
will need again once the user returns back to the app. When an app finally terminates,
then the app may need to store data one last time to prepare for the next time the user
launches the app.

The first time an app starts, it displays a launch screen, which is any .storyboard file
you wish to use. After an app is running, it won’t display its launch screen again until the
user terminates the app and starts it up again. By using launch screens, you can display a
distinctive visual image on the screen while loading the rest of your app.

If you want to track the specific actions on the user interface, you can use the
notification center. This allows different parts of your project to receive notifications and
respond to those notifications. Now you can track not only the different stages an app
goes into but also what happens on the user interface.

111

CHAPTER 6

Understanding Data
Persistence

All but the simplest apps need to store data. The Stocks app lets users track their favorite
stocks, so it needs to store the list of stocks to follow that the user chose. Each time

the user launches the Stocks app again, it displays the list of stocks the user inputted
previously. If the user adds or deletes stocks from this list, the Stocks app needs to store
this updated list and retrieve it again the next time the user loads the Stocks app.

Other types of apps may have various settings that allow users to customize an app
such as defining its background color or sounds to play when certain events occur such
as one sound to represent a text message received and another sound to represent a
voicemail someone left you.

Storing and retrieving data is known as data persistence. The three common ways to
store and retrieve data in an iOS app include

e UserDefaults
» Reading and writing files
e Core Data

Each method offers different advantages and disadvantages, so it depends on what
type of data you want to store and its purpose that can define which storage method your
app should use.

UserDefaults is generally used to store small amounts of data such as user
preferences for a particular app. This method uses a dictionary data structure and saves
data in a .plist file, similar to the Info.plist file that every Xcode project includes. It’s the
simplest method to save common types of data such as strings, numbers, dates, and data
structures such as dictionaries or arrays and is best suited for small amounts of data.

113
© Wallace Wang 2019

W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_6

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

Reading and writing data to a file can be useful to store longer amounts of data such
as several lines of text. However, reading and writing to a file can be slow if you have lots
of data, which requires code to search through the entire file to find specific data.

Core Data lets you store different types of data in groups called entities, which are
similar to tables or records in a database. If you need to store large amounts of diverse
data, use Core Data over the other two options for storing data.

Storing Preferences in UserDefaults

UserDefaults is meant to store small amounts of data such as a number, Boolean value,
or a string. This makes UserDefaults best for storing an app’s settings such as its default
background color. Using UserDefaults involves a two-step process:

e Store data in UserDefaults.
¢ Retrieve data from UserDefaults.

To store data using UserDefaults, you need to define a key and the data you want
to store in this format where “dataToSave” represents an actual value and “keyString”
represents a unique string:

UserDefaults.standard.set(dataToSave, forKey: "keyString")

The set command saves the key and its associated data. To retrieve previously saved
data, you need to know the key value and the type of data stored such as an integer,
Boolean, or double data type. Knowing the data type you want to retrieve, you can use
one of the following:

integer(forKey: “keyString”) - Returns an integer if the key exists, or 0
if not

e bool(forKey: “keyString”) - Returns a Boolean if the key exists, or
false if not

o float(forKey: “keyString”) - Returns a float value if the key exists, or
0.0 if not

o string(forKey: “keyString”) - Returns a string value if the key exists, or
nil if not

114

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

double(forKey: “keyString”) - Returns a double value if the key exists,
or 0.0 if not

object(forKey: “keyString”) - Returns AnyObject? so you'll need to
conditionally typecast it to a specific data type, or nil if not

url(forKey: “keyString”) - Returns a URL if the key exists, or nil if not

To see how to save data as UserDefaults, follow these steps:

1.

2.

Create a new iOS Single View App and name it UserDefaultsApp.
Click the Main.storyboard file in the Navigator pane.
Click the Library icon to open the Object Library window.

Drag and drop a switch, a text field, and a slider. Then drag and
drop three buttons on the view as well.

Double-click the left button, type Save, and press Enter.
Double-click the middle button, type Clear, and press Enter.

Double-click the right button, type Load, and press Enter. The
user interface looks something like Figure 6-1.

Savel Clear Load

Figure 6-1. Designing a user interface with a switch, text field, a slider, and three

buttons

115

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

116

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard file side by side with
the ViewController.swift file.

Move the mouse pointer over the switch, hold down the Control
key, and Ctrl-drag under the “class ViewController” line.

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type mySwitch, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mySwitch: UISwitch!

Move the mouse pointer over the slider, hold down the Control
key, and Ctrl-drag under the “class ViewController” line.

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type mySlider, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mySlider: UISlider!

Move the mouse pointer over the text field, hold down the Control
key, and Ctrl-drag under the “class ViewController” line.

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type myTextField, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!
Move the mouse pointer over the Save button, hold down the

Control key, and Ctrl-drag above the last curly bracket at the
bottom of the ViewController.swift file.

19.

20.

21.

22.

23.

24.

25.

26.

27.

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type saveData, click the Type popup
menu and choose UIButton, and click the Connect button. Xcode
creates a saveData IBAction method.

Move the mouse pointer over the Clear button, hold down the
Control key, and Ctrl-drag above the last curly bracket at the
bottom of the ViewController.swift file.

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type clearData, click the Type popup
menu and choose UIButton, and click the Connect button. Xcode
creates a clearData IBAction method.

Move the mouse pointer over the Load button, hold down the
Control key, and Ctrl-drag above the last curly bracket at the
bottom of the ViewController.swift file.

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type loadData, click the Type popup
menu and choose UIButton, and click the Connect button. Xcode
creates a loadData IBAction method.

Edit the saveData IBAction method as follows:

@IBAction func saveData(_ sender: UIButton) {
UserDefaults.standard.set(myTextField.text, forKey: "Text")
UserDefaults.standard.set(mySwitch.isOn, forKey: "Switch")
UserDefaults.standard.set(mySlider.value, forKey: "Slider")

117

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

118

28. Edit the clearData IBAction method as follows:

@IBAction func clearData(_ sender: UIButton) {
mySwitch.isOn = true
mySlider.value = 0.5
myTextField.text = ""

29. Edit the loadData IBAction method as follows:

@IBAction func loadData(_ sender: UIButton) {
mySwitch.isOn = UserDefaults.standard.bool(forKey: "Switch")
mySlider.value = UserDefaults.standard.float(forKey: "Slider")
myTextField.text = UserDefaults.standard.string(forKey:
"Text")

}

Note that mySwitch.isOn retrieves Boolean data from
UserDefaults, mySlider.value retrieves a floating point value
(decimal number), and myTextField.text retrieves a string.

The entire ViewController.swift file should look like this:
import UIKit
class ViewController: UIViewController {

@IBOutlet var mySwitch: UISwitch!
@IBOutlet var mySlider: UISlider!
@IBOutlet var myTextField: UITextField!

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.

30.

31.

32.

33.

34.

35.

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

@IBAction func saveData(_ sender: UIButton) {
UserDefaults.standard.set(myTextField.text, forKey:
"Text")

UserDefaults.standard.set(mySwitch.isOn, forKey: "Switch")
UserDefaults.standard.set(mySlider.value, forKey:
"Slider")

}

@IBAction func clearData(_ sender: UIButton) {
mySwitch.isOn = true
mySlider.value = 0.5
myTextField.text = ""

}

@IBAction func loadData(_ sender: UIButton) {
mySwitch.isOn = UserDefaults.standard.bool(forKey:
"Switch")
mySlider.value = UserDefaults.standard.float(forKey:
"Slider")
myTextField.text = UserDefaults.standard.string
(forKey: "Text")

Click the Run button or choose Product » Run. The Simulator

screen appears and displays the user interface.
Click the switch to turn it off (the switch appears on the left).

Click in the text field and type any text you wish such as Hello,
there!

Drag the slider to the far left.
Click the Save button. This saves the settings in UserDefaults.

Click the Clear button. Notice that the switch moves back to its
default position (the switch on the right), the text field appears
empty, and the slider moves back to its default position (the slider
in the middle).

119

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

36. Click the Load button. Notice that this loads the data previously
saved in UserDefaults, so the switch appears to the left, the text
field displays the text you typed, and the slider moves back to the
far left.

37. Choose Simulator » Quit Simulator.

Storing Preferences in UserDefaults
in the AppDelegate File

An app can always save data in UserDefaults anywhere and load them back again in
aviewDidLoad method. In the previous example, we could simply load data from
UserDefaults automatically like this:

override func viewDidlLoad() {
super.viewDidLoad()
mySwitch.isOn = UserDefaults.standard.bool(forKey: "Switch")
mySlider.value = UserDefaults.standard.float(forKey: "Slider")
myTextField.text = UserDefaults.standard.string(forKey: "Text")

}

Rather than save and store data in separate .swift files, it’s generally better to do all
the saving and retrieving of UserDefaults data in the AppDelegate.swift file, which can
save data before an app terminates and load data back again when the app starts up
again.

The AppDelegate.swift file needs to store and retrieve UserDefaults data. That means
the AppDelegate.swift file needs to retrieve data from other .swift files (so it can save it)
and pass that data back to another .swift file (so that view controller can use the saved
data).

That means we need a way for the AppDelegate.swift file to share data with the
ViewController.swift file. One way to do this is through the Notification Center (see
Chapter 5). Another way is through defining properties in both the AppDelegate.swift
file and the ViewController.swift file and sending or retrieving data to and from those
properties.

120

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

To see how to save and load UserDefaults data in the AppDelegate.swift file, follow

these steps:

1.

2.

Create a new iOS Single View App and name it AppDelegateApp.
Click the Main.storyboard file in the Navigator pane.

Click the Library icon and then drag and drop a slider, text field,
switch, and a button onto the view.

Double-click the button, type Clear, and press Enter. The user
interface should look similar to Figure 6-2.

. @

Clear

Figure 6-2. Creating a user interface with a text field, switch, slider, and button

5.

Move the mouse pointer over the switch, hold down the Control
key, and Ctrl-drag under the “class ViewController” line.

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type mySwitch, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mySwitch: UISwitch!

Move the mouse pointer over the slider, hold down the Control
key, and Ctrl-drag under the “class ViewController” line.

Release the Control button and the left mouse button. A popup
window appears.

121

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

122

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Click in the Name text field, type mySlider, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mySlider: UISlider!

Move the mouse pointer over the text field, hold down the Control
key, and Ctrl-drag under the “class ViewController” line.

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type myTextField, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

Move the mouse pointer over the Clear button, hold down the
Control key, and Ctrl-drag above the last curly bracket at the
bottom of the ViewController.swift file.

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type clearData, click the Type popup
menu and choose UIButton, and click the Connect button. Xcode
creates a clearData IBAction method.

Move the mouse pointer over the switch, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
ViewController.swift file.

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type changeSwitch, click the Type
popup menu and choose UlSwitch, and click the Connect button.
Xcode creates a changeSwitch IBAction method.

Move the mouse pointer over the slider, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
ViewController.swift file.

21.

22.

23.

24.

25.

26.

27.

28.

29.

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type changeSlider, click the Type
popup menu and choose UlSlider, and click the Connect button.
Xcode creates a changeSlider IBAction method.

Move the mouse pointer over the text field, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
ViewController.swift file.

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type changeTextField, and click the
Type popup menu and choose UlTextField.

Click the Event popup menu and choose Editing Changed and
then click the Connect button. Xcode creates a changeTextField
IBAction method.

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.
Click the AppDelegate.swift file in the Navigator pane.

Add the following under the var : UIWindow? Line:

var sliderData : Float = 0.5
var textFieldData = ""
var switchData = true

static func shared() -> AppDelegate {
return UIApplication.shared.delegate as! AppDelegate

The first three lines create three properties that will later be
accessed by ViewController.swift file to store data in. The shared()
function allows another .swift file to access the AppDelegate.swift
file’s properties.

123

CHAPTER 6 UNDERSTANDING DATA PERSISTENCE
30. Modify the didFinishLaunchingWithOptions method as follows:

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [UIApplication.
LaunchOptionsKey: Any]?) -> Bool {
// Override point for customization after application launch.
switchData = UserDefaults.standard.bool(forKey: "Switch")
sliderData = UserDefaults.standard.float(forKey: "Slider")
textFieldData = UserDefaults.standard.string(forKey: "Text")!
return true

}

This method runs when the app starts up and retrieves any
UserDefaults data. Then it stores this data in the AppDelegate.
swift file’s properties.

31. Modify the applicationDidEnterBackground method as follows:

func applicationDidEnterBackground(_ application: UIApplication) {
// Use this method to release shared resources, save user
data, invalidate timers, and store enough application state
information to restore your application to its current state
in case it is terminated later.
// If your application supports background execution, this
method is called instead of applicationWillTerminate: when the
user quits.
UserDefaults.standard.set(textFieldData, forKey: "Text")
UserDefaults.standard.set(switchData, forKey: "Switch")
UserDefaults.standard.set(sliderData, forKey: "Slider")

}

This method runs right before the app leaves the active state and
goes into the background, which occurs when the user switches
to another app. This saves all data in UserDefaults. The entire
AppDelegate.swift file should look like this:

124

CHAPTER 6 UNDERSTANDING DATA PERSISTENCE
import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

var sliderData : Float = 0.5
var textFieldData = ""
var switchData = true

static func shared() -> AppDelegate {
return UIApplication.shared.delegate as! AppDelegate

}

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [UIApplication.
LaunchOptionsKey: Any]?) -> Bool {
// Override point for customization after application
launch.
switchData = UserDefaults.standard.bool(forKey: "Switch")
sliderData = UserDefaults.standard.float(forKey: "Slider")
textFieldData = UserDefaults.standard.string(forKey: "Text")!
return true

}

func applicationWillResignActive(_ application: UIApplication)
{
// Sent when the application is about to move from active
to inactive state. This can occur for certain types of
temporary interruptions (such as an incoming phone call or
SMS message) or when the user quits the application and it
begins the transition to the background state.
// Use this method to pause ongoing tasks, disable timers,
and invalidate graphics rendering callbacks. Games should
use this method to pause the game.

125

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

126

func applicationDidEnterBackground(_ application:
UIApplication) {
// Use this method to release shared resources, save user
data, invalidate timers, and store enough application
state information to restore your application to its
current state in case it is terminated later.
// If your application supports background execution, this
method is called instead of applicationWillTerminate: when
the user quits.
UserDefaults.standard.set(textFieldData, forKey: "Text")
UserDefaults.standard.set(switchData, forKey: "Switch")
UserDefaults.standard.set(sliderData, forKey: "Slider")

}

func applicationWillEnterForeground(_ application:
UIApplication) {
// Called as part of the transition from the background to
the active state; here you can undo many of the changes
made on entering the background.

}

func applicationDidBecomeActive(_ application: UIApplication) {
// Restart any tasks that were paused (or not yet started)
while the application was inactive. If the application was
previously in the background, optionally refresh the user
interface.

}

func applicationWillTerminate(_ application: UIApplication) {
// Called when the application is about to terminate. Save
data if appropriate. See also applicationDidEnterBackground: .

32.

33.

34.

35.

36.

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

Click the ViewController.swift file in the Navigator pane.

Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
mySlider.value = AppDelegate.shared().sliderData
mySwitch.isOn = AppDelegate.shared().switchData
myTextField.text = AppDelegate.shared().textFieldData

}

This retrieves the data stored in the AppDelegate.swift file’s
properties, which contain the UserDefaults data loaded in from
the didFinishLaunchingWithOptions method.

Edit the changeTextField IBAction method as follows:

@IBAction func changeTextField(_ sender: UITextField) {
AppDelegate.shared().textFieldData = sender.text ?? ""

}

As the user edits the contents of the text field, this IBAction
method stores the text field contents in the AppDelegate.swift file’s
textFieldData property.

Edit the changeSlider IBAction method as follows:

@IBAction func changeSlider(_ sender: UISlider) {
AppDelegate.shared().sliderData = sender.value

}

When the user changes the slider, the slider’s value gets stored in
the AppDelegate.swift file’s sliderData property.

Edit the changeSwitch IBAction method as follows:

@IBAction func changeSwitch(_ sender: UISwitch) {
AppDelegate.shared().switchData = sender.isOn

127

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

128

37.

When the user changes the switch, the switch’s isOn property
(true or false) gets stored in the AppDelegate.swift file’s
switchData property.

Edit the clearData IBAction method as follows:

@IBAction func clearData(_ sender: UIButton) {
mySwitch.isOn = true
mySlider.value = 0.5
myTextField.text = ""

This simply sets the switch back to true and the slider to 0.5 and
clears the text field. The entire ViewController.swift file should
look like this:

import UIKit
class ViewController: UIViewController {

@IBOutlet var mySwitch: UISwitch!
@IBOutlet var myTextField: UITextField!
@IBOutlet var mySlider: UISlider!

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
mySlider.value = AppDelegate.shared().sliderData
mySwitch.isOn = AppDelegate.shared().switchData
myTextField.text = AppDelegate.shared().textFieldData

}

@IBAction func changeTextField(_ sender: UITextField) {
AppDelegate.shared().textFieldData = sender.text ?? ""

}

@IBAction func changeSlider(_ sender: UISlider) {
AppDelegate.shared().sliderData = sender.value

38.

39.

40.

41.

42.

43.

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

@IBAction func changeSwitch(_ sender: UISwitch) {
AppDelegate.shared().switchData = sender.isOn

}

@IBAction func clearData(_ sender: UIButton) {
mySwitch.isOn = true
mySlider.value = 0.5
myTextField.text = ""

Click the Run button, or choose Product » Run. The Simulator
screen appears.

Click the switch so it appears to the left.
Click in the text field and type some text such as Hello, there!
Drag the slider all the way to the left.

Click the Clear button. Notice that the switch moves back to the
right, the text field clears, and the slider moves back to the middle.

Press Command+Shift and press H twice in rapid succession to
display the app screen shrunken as shown in Figure 6-3.

129

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

. AppDelegateApp

Figure 6-3. Terminating the app in the Simulator

44. Move the mouse pointer over the app screen and drag up to slide
it out of sight. This terminates the app.

45. Double-click the AppDelegateApp icon on the Home screen to
load the app again. This will load the UserDefaults data. When the
app appears again, notice that the switch is on the left, the slider is
to the left, and the text field displays the data you typed earlier.

46. Choose Simulator » Quit Simulator to return back to Xcode.

130

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

Reading and Writing to Files

On ordinary computers like the Macintosh, it's common for a program to read data from
a file and write data back to a file. On an iOS device, an i0S app can do that too. Writing
data to a file offers another way an app can save data.

Although i0S shields users from the folder hierarchy of the operating system, it still
exists. To write a file, we first need to use the FileManager object like this:

let fm = FileManager.default

Next, we need to define a location for the file, which is the document directory in the
home folder:

let urls = fm.urls(for: .documentDirectory, in: .userDomainMask)
Finally, we need to create a file name (such as “file.txt”) to store data like this:
let url = urls.last?.appendingPathComponent("file.txt")

Once we've stored text in a file, we can retrieve it by using the FileManager again and
look for the file in the document directory in the home folder. To see how to write data to
a file and then read it back again, follow these steps:

1. Create a new iOS Single View App and name it ReadWriteApp.
2. Click the Main.storyboard file in the Navigator pane.

3. Click the Library icon and then drag and drop two buttons and
two text views onto the view. Place one text view at the top of the
screen and the second text view near the middle of the screen. Put
the two buttons in between the two text views.

4. Double-click one button, type Write File, and press Enter.

5. Double-click the second button, type Read File, and press Enter.
The user interface should look similar to Figure 6-4.

131

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

Lorem ipsum dolor sit er elit lamet,
consectetaur cillium adipisicing
pecu, sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea

Write File Read File

Lorem ipsum dolor sit er elit lamet,
consectetaur cillium adipisicing
pecu, sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea

Figure 6-4. Creating a user interface with two text views and two buttons

6. Move the mouse pointer over the top text view, hold down the
Control key, and Ctrl-drag below the class ViewController line in
the ViewController.swift file.

7. Release the Control button and the left mouse button. A popup
window appears.

8. Clickin the Name text field, type createText, and click the
Connect button. Xcode creates a createText IBOutlet as follows:

@IBOutlet var createText: UITextView!

9. Move the mouse pointer over the bottom text view, hold down the
Control key, and Ctrl-drag below the class ViewController line in
the ViewController.swift file.

10. Release the Control button and the left mouse button. A popup
window appears.

132

11.

12.

13.

14.

15.

16.

17.

18.

19.

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

Click in the Name text field, type displayText, and click the
Connect button. Xcode creates a createText IBOutlet as follows:

@IBOutlet var displayText: UITextView!
Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
createText.text = "Type your text here"

displayText.text =
}

Move the mouse pointer over the Write File button, hold down
the Control key, and Ctrl-drag above the last curly bracket in the
bottom of the ViewController.swift file.

Release the Control button and the left mouse button. A popup

window appears.

Click in the Name text field, type writeFile, click the Type popup
menu and choose UIButton, and click the Connect button. Xcode
creates a writeFile IBAction method.

Move the mouse pointer over the Read File button, hold down
the Control key, and Ctrl-drag above the last curly bracket in the
bottom of the ViewController.swift file.

Release the Control button and the left mouse button. A popup
window appears.

Click in the Name text field, type readFile, click the Type popup
menu and choose UIButton, and click the Connect button. Xcode
creates a readFile IBAction method.

Edit the writeFile IBAction method as follows:

@IBAction func writeFile(_ sender: UIButton) {
let fm = FileManager.default
let urls = fm.urls(for: .documentDirectory, in:
.userDomainMask)

133

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

let url = urls.last?.appendingPathComponent("file.txt")
do {
try createText.text.write(to: url!, atomically: true,
encoding: String.Encoding.utf8)
} catch {
print("File writing error")

20. Edit the readFile IBAction method as follows:

@IBAction func readFile(_ sender: UIButton) {
let fm = FileManager.default
let urls = fm.urls(for: .documentDirectory, in:

.userDomainMask)
let url = urls.last?.appendingPathComponent("file.txt")
do {

let fileContent = try String(contentsOf: url!, encoding:
String.Encoding.utf8)
displayText.text = fileContent
} catch {
print("File reading error")

}

The entire ViewController.swift file should look like this:
import UIKit
class ViewController: UIViewController {

@IBOutlet var createText: UITextView!
@IBOutlet var displayText: UITextView!

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
createText.text = "Type your text here"

displayText.text =

134

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

}

@IBAction func writeFile(_ sender: UIButton) {
let fm = FileManager.default
let urls = fm.urls(for: .documentDirectory, in:

.userDomainMask)
let url = urls.last?.appendingPathComponent("file.txt")
do {

try createText.text.write(to: url!, atomically: true,
encoding: String.Encoding.utf8)

} catch {
print("File writing error")

}

@IBAction func readFile(_ sender: UIButton) {
let fm = FileManager.default
let urls = fm.urls(for: .documentDirectory, in:

.userDomainMask)
let url = urls.last?.appendingPathComponent("file.txt")
do {

let fileContent = try String(contentsOf: url!,
encoding: String.Encoding.utf8)
displayText.text = fileContent

} catch {
print("File reading error")

21. Click the Run button or choose Product » Run. The Simulator
screen appears, displaying your two buttons and the top text view
that displays the text “Type your text here”.

22. Edit the text in the top text view to contain any text you wish to

write.

23. Click the Write File button. This saves the text in a file.

135

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

24. Click the Read File button. Whatever text you saved in the file now
appears in the bottom text view.

25. Choose Simulator » Quit Simulator to return back to Xcode.

Using Core Data

If you only need to store small amounts of data, you can store data in UserDefaults. If
you need to store larger amounts of data that are unstructured, you can store them in a
file. However, if you want to store large amounts of structured data, then it’s better to use
Core Data.

Core Data is a framework to help you manage data in an app. Core Data lets you
define the type of data you want to save and the relationships between these different
chunks of data. Then Core Data helps you manipulate this data and their relationships
without worrying about the actual details of storing and retrieving the data or learning
cryptic SQL database commands.

Core Data stores data using entities and attributes. An attribute defines a single
chunk of data to store such as a name, address, age, gender, e-mail address, and phone
number. An entity represents all of these attributes used to define a single chunk of
related data such as a person as shown in Figure 6-5. Think of a Core Data entity like a
database record or table and a Core Data attribute like a database field.

136

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

A single entity

Name
Address
Age

“ Geader

Email address

Attributes

Phene number

Figure 6-5. Core Data stores data in attributes, grouped together to represent a
single entity

The basic steps to using Core Data involve

o Creating entities and defining attributes in the Xcode data model
editor

e Writing Swift code to manipulate data

Creating a Data Model File

A data model is a Core Data file that lets you define entities and attributes where an
entity represents a single object such as a person and attributes represent details such as
a name, phone number, and e-mail address. You can manually add a data model file to
any project or let Xcode add a data model file when you create a new project.

To add a Core Data file manually to a project, follow these steps:

1. Choose File » New » File. A template dialog appears.
2. Click the iOS category.

3. Scroll down and click the Data Model under the Core Data
category as shown in Figure 6-6.

4. Click the Next button. A dialog appears, letting you choose a name
that ends with the .xcdatamodeld file extension.

137

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

Choose a template for your new file:

m watchOS tvOS macOS j (
User Interface
Storyboard View Empty Launch Screen
Core Data
—
L L.}
Data Model Mapping Model
—
Apple Watch
Cance et

Figure 6-6. Creating a Core Data data model file

5.

Choose a name for your Core Data file and click the Create button.

Xcode displays your .xcdatamodeld Core Data file in the Navigator

pane.

If you know ahead of time that you want to use Core Data, it’s easier to create a Core

Data file when you create a new project. This lets Xcode add the necessary Swift code to

access Core Data.

To create a new project that includes a Core Data file, follow these steps:

1.

2.

138

Choose File » New » Project. A template dialog appears.

Click the iOS category and click the Single View App. Then click
the Next button. Another dialog appears.

Click in the Product Name text field and type CoreDataApp.
(When creating your own projects, choose any name you wish.)

Make sure the Use Core Data check box is selected as shown in
Figure 6-7.

Click the Next button and then click the Create button.

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

Choose options for your new project:

Product Name: Epmeﬁatal\pp
Team: Wallace Wang K
Organization Name: Wallace Wang
Organization Identifier: com.topbananas
Bundle Identifier: com.topbananas.CoreDataApp

Language: Swift B

Use Core Data
nciude Unit Tests

Include Ul Tests

Cancel Previous m

Figure 6-7. Selecting the Use Core Data check box when creating a new project

6. Click the AppDelegate.swift file in the Navigator pane. When you
create a new project using Core Data, Xcode adds the following
code at the end of the AppDelegate.swift file:

lazy var persistentContainer: NSPersistentContainer = {

/*

The persistent container for the application. This
implementation creates and returns a container, having
loaded the store for the application to it. This property is
optional since there are legitimate error conditions that
could cause the creation of the store to fail.

*/

let container = NSPersistentContainer(name: "CoreDataApp")
container.loadPersistentStores(completionHandler: {
(storeDescription, error) in

139

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

if let error = error as NSError? {
// Replace this implementation with code to handle the
error appropriately.
// fatalError() causes the application to generate
a crash log and terminate. You should not use this
function in a shipping application, although it may be
useful during development.

Vo
Typical reasons for an error here include:
* The parent directory does not exist, cannot be
created, or disallows writing.
* The persistent store is not accessible, due to
permissions or data protection when the device 1is
locked.
* The device is out of space.
* The store could not be migrated to the current
model version.
Check the error message to determine what the actual
problem was.
*/
fatalError("Unresolved error \(error), \(error.
userInfo)")

1)

return container

10
// MARK: - Core Data Saving support

func saveContext () {
let context = persistentContainer.viewContext
if context.hasChanges {
do {
try context.save()
} catch {

140

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

// Replace this implementation with code to handle the
error appropriately.

// fatalError() causes the application to generate

a crash log and terminate. You should not use this
function in a shipping application, although it may be
useful during development.

let nserror = error as NSError

fatalError("Unresolved error \(nserror),
\(nserror.userInfo)")

Note If you add a Core Data file to an existing project, you’ll need to add the
preceding code to the AppDelegate.swift file.

Customizing a Data Model File

Creating a Core Data file creates a file with the .xcdatamodeld file extension. First, you'll
need to create at least one entity and one or more attributes in each entity (see Figure 6-5)
where an entity represents a group of related data such as a person that contains data
such as a name, age, address, or phone number.

To create an entity in a Core Data file, follow these steps:

1. Click the .xcdatamodeld file in the Navigator pane. Xcode displays
a data editor as shown in Figure 6-8.

141

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

| < [coreDataapp) [17] CoreDataApp) [{#] CoreDataApp.xcdatamodeld) |, CoreDataApp.xcdatamodel) [& Default < >
ENTITIES ¥ Entities
FETCH REQUESTS Entity ~ Abstract Class

CONFIGURATIONS

= - O. .
Qutline Style Add Entity 1 t Editor Style

Figure 6-8. The data editor lets you view and edit entities and attributes

2. Click the Add Entity icon, or choose Editor » Add Entity. Xcode
displays an Entity under the ENTITIES category.

3. Click this Entity to select it and press Enter to highlight the entire
name.

4. Type Item and press Enter. Entity names must always begin with
an uppercase letter such as Item, Person, or Vehicle.

After you've created at least one entity, you'll need to add one or more attributes to
hold data. An attribute consists of descriptive name (typed in lowercase) and the type of
data the attribute will hold such as a string, integer, or date.

142

To define an attribute in an entity, follow these steps:
1.

CHAPTER 6 UNDERSTANDING DATA PERSISTENCE
Click the .xcdatamodeld file in the Navigator pane. Xcode displays
the data model editor (see Figure 6-8).

g8 <

@1 CoreDataApp)
ENTITIES

2. Click the Entity that you want to modify. Xcode displays an
Attributes category as shown in Figure 6-9.

[E] Entity

CoreDataApp) [17) CoreDataApp.xcdatamodeld) g CoreDataApp.xcdatamodel) 3 entity
¥ Attributes

FETCH REQUESTS

CONFIGURATIONS

{A>
Attribute ~ Type
[3 pefault
¥ Relationships
Relationship ~ Destination Inverse
+
¥ Fetched Properties
Fetched Property ~ Predicate
+
= - O. O
Outline Style Add Entity Add Attribute Editor Style
Figure 6-9. The Add Attribute button appears in two places
3. Click the Add Attribute button in the bottom of the Xcode window
or underneath the Attribute column, or choose Editor » Add
Attribute. Xcode displays an attribute and a type as shown in
Figure 6-10.

143

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

¥ Attributes

Attribute ~ Type

Do O

Figure 6-10. Creating a new attribute

4. Type name and press Enter. All attribute names must use
lowercase letters.

5. Click the Type popup menu to display a list of data types the
attribute can store as shown in Figure 6-11.

¥ Attributes

Attribute ~ Type

v Undefined
Integer 16
Integer 32
Integer 64
Decimal
Double

¥ Relationships Float

] String
Relationship Boolean Inverse
Date
Binary Data
uuiD
URI
+ Transformable

+_

Figure 6-11. Defining the type of data to store in an attribute

6. Choose String.

7. Click the Add Attribute button in the bottom of the Xcode window
or underneath the Attribute column, or choose Editor » Add
Attribute. Xcode displays an attribute and a type (see Figure 6-10).

8. Type price and press Enter.

9. Click the Type popup menu and choose String. The two attributes
and one entity should look like Figure 6-12.

144

88 < & coreDatarpp)
ENTITIES

B ltem

FETCH REQUESTS
CONFIGURATIONS

[3 Default

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

CoreDataApp) [17 CoreDataApp.xcdatamodeld) g CoreDataApp.xcdatamodel) [ttem) [B] price 4 >

¥ Attributes

Attribute ~ Type

¥ Relationships

Relationship ~ Destination Inverse

+

¥ Fetched Properties

Fetched Property ~ Predicate

Figure 6-12. Defining a name and price attribute for an Item entity

Designing the User Interface

For our CoreDataApp project, we’ll design a simple user interface that will consist of two
text fields, two buttons, and a label. The two text fields will allow us to input data, the
label will display all stored data, and the two buttons will let us add or delete data.

To design the user interface for the CoreDataApp project, follow these steps:

1. Make sure the CoreDataApp project is loaded into Xcode.

2. Click the Main.storyboard file in the Navigator pane.

3. Click the Library icon and drag and drop two text fields (one above

the other), two buttons, and a label onto the view.

4. Resize the label and text fields to make them both wider.

5. Click the label and choose View » Inspectors » Show Attributes
Inspector, or click the Attributes Inspector icon in the upper right

corner of Xcode window.

6. Clickin the Lines text field and change the value to 0. This will
allow the label to display multiple lines of text.

145

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

7.

10.

Click the top text field, click in the Placeholder text field on the
Attributes Inspector pane, type Enter product name, and press
Enter.

Click the bottom text field, click in the Placeholder text field on the
Attributes Inspector pane, type Enter price, and press Enter.

Double-click one button, type Add Data, and press Enter.

Double-click the second button, type Delete Data, and press
Enter. The user interface should look similar to Figure 6-13.

Label

Figure 6-13. The user interface of a text field, label, and two buttons

11.

12.

146

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints at the bottom half of the submenu. Xcode adds
constraints to all the objects on the user interface.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard file side by side with
the ViewController.swift file.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

CHAPTER 6 UNDERSTANDING DATA PERSISTENCE
Under the import UIKit line, add the following:

import Foundation
import CoreData

Move the mouse pointer over the top text field, hold down the
Control key, and Ctrl-drag under the class ViewController line.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type myProductTextField, and click
the Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var myProductTextField: UITextField!

Move the mouse pointer over the bottom text field, hold down the
Control key, and Ctrl-drag under the class ViewController line.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type myPriceTextField, and click the
Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var myPriceTextField: UITextField!

Move the mouse pointer over the label, hold down the Control
key, and Ctrl-drag under the class ViewController line.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type myLabel, and click the Connect
button. Xcode creates an IBOutlet as follows:

@IBOutlet var mylabel: UILabel!
Under the IBOutlets, add the following two lines:

var dataManager : NSManagedObjectContext!
var listArray = [NSManagedObject]()

147

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

24. Move the mouse pointer over the Add Data button, hold down
the Control key, and Ctrl-drag above the last curly bracket at the
bottom of the ViewController.swift file.

25. Release the Control key and the left mouse button. A popup
window appears.

26. Click in the Name text field, type addDataButton, click the Type
popup menu and choose UlButton, and click the Connect button.
Xcode creates an addDataButton IBAction method.

27. Move the mouse pointer over the Delete Data button, hold down
the Control key, and Ctrl-drag above the last curly bracket at the
bottom of the ViewController.swift file.

28. Release the Control key and the left mouse button. A popup
window appears.

29. C(lickin the Name text field, type deleteDataButton, click the
Type popup menu and choose UlButton, and click the Connect
button. Xcode creates a deleteDataButton IBAction method.

30. Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode
window.

Writing Swift Code

Once we've defined the user interface, it’s time to write Swift code to save, search, and
delete data. We need to write Swift code to add data from the two text fields when the
user clicks the Add Data button. Then we need more Swift code to delete data when the
user clicks the Delete Data button.

To write code to save, search, and delete data, follow these steps:

1. Make sure the CoreDataApp project is loaded into Xcode.

2. Click the ViewController.swift file in the Navigator pane.

148

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

3. Edit the viewDidLoad method as follows:

4.

override func viewDidlLoad() {

}

super.viewDidLoad()

// Do any additional setup after loading the view.

let appDelegate = UIApplication.shared.delegate as! AppDelegate
dataManager = appDelegate.persistentContainer.viewContext
myLabel.text?.removeAll()

fetchData()

The first two lines under the comment access the AppDelegate.

swift file, which contains persistentContainer (Core Data). The

next two lines simply clears the myLabel object on the user

interface and calls a function called fetchData().

Under the viewDidLoad method, add the fetchData() function as
follows:

func fetchData() {

let fetchRequest : NSFetchRequest<NSFetchRequestResult> =
NSFetchRequest(entityName: "Item")

do {
let result = try dataManager.fetch(fetchRequest)
listArray = result as! [NSManagedObject]
for item in listArray {
let product = item.value(forKey: "name") as! String
let cost = item.value(forKey: "price") as! String
mylLabel.text! += product + " "

+ cost + ",

}
} catch {

print ("Error retrieving data")

149

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

)

This fetchData() function tries to retrieve data stored in the “Item’
entity. Then it stores the item in listArray. A for-in loop retrieves
the name and price for each item and adds it to the myLabel
object.

5. Edit the addDataButton IBAction method as follows:

@IBAction func addDataButton(_ sender: UIButton) {
let newEntity = NSEntityDescription.
insertNewObject(forEntityName: "Item", into: dataManager)

newEntity.setValue(myProductTextField.text!, forKey: "name"
newEntity.setValue(myPriceTextField.text!, forKey: "price")

do {
try self.dataManager.save()
listArray.append(newEntity)
} catch {
print ("Error saving data")
}
myLabel.text?.removeAll()
myProductTextField.text?.removeAll()
myPriceTextField.text?.removeAll()
fetchData()

}

This creates new data for the “Item” entity and retrieves the data
from myProductTextField and myPriceTextField into the name
and price attributes. Then it saves the data and appends the new
data to listArray, which stores all the data currently saved.

Finally it clears myLabel, myProductTextField, and
myPriceTextField before calling fetchData(), which will display the
updated data into the myLabel object.

150

6.

10.

11.

12.

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

Edit the deleteDataButton IBAction method as follows:

@IBAction func deleteDataButton(_ sender: UIButton) {
let deleteItem = myProductTextField.text!
for item in listArray {
if item.value(forKey: "name") as! String == deleteItem {
dataManager.delete(item)

}
}
do {
try self.dataManager.save()
} catch {
print ("Error deleting data")
}

myLabel.text?.removeAll()
myProductTextField.text?.removeAll()
fetchData()

}

This method retrieves whatever appears in the
myProductTextField object and then uses a for-in loop to see if
that item exists in the stored data. If so, then it deletes that item.

Then it saves the data and clears the myLabel object and the
myProductTextField object before calling fetchData(), which
displays the updated data in the myLabel object again.

Click the Run button or choose Product » Run. The Simulator
screen appears.

Click in the top text field and type car.
Click in the bottom text field and type any number such as 6000.

Click the Add Data button. The myLabel object displays “car 6000,”
on the screen.

Click in the top text field and type oven.

Click in the bottom text field and type any number such as 850.

151

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

13. Click the Add Data button. The myLabel object displays “car 6000,
oven 650” on the screen.

14. Choose Hardware » Home. The Simulator displays the Home

screem.

15. Double-click the CoreDataApp icon to make its user interface
reappear. Notice that the data “car 6000, oven 650” still appears,
which shows that Core Data saved the information. (You can even
quit out of the Simulator here and run your app again to see that
Core Data will save the data even if the app stops running.)

16. Clickin the top text field and type car.

17. Click the Delete Data button. Notice that the myLabel object now
only displays “oven 650,” on the screen.

18. Clickin the top text field and type oven.

19. Click the Delete Data button. Notice that the myLabel object now
appears blank, showing that no data exists any more.

20. Choose Simulator » Quit Simulator to return back to Xcode.

Summary

Many simple apps, such as the Calculator app, can run perfectly fine without the need
to store data at all. However, most apps need to store data of some kind that the app can
retrieve each time it loads. For example, the Stocks app lets users customize the list of
stocks they want to follow. Once they enter this list, they want that list to appear every
time they launch the Stocks app again.

To store app settings, store data in UserDefaults, which lets you store data in a
dictionary so you'll need to define a unique key for each chunk of data you want to store.
Once you've stored data in UserDefaults, you can always retrieve that data again by using
the key associated with each chunk of data.

You can store and retrieve UserDefault data anywhere in an app, but it’s often
stored and retrieved in the AppDelegate.swift file that monitors when an app enters the
background or returns to the foreground.

152

CHAPTER6 UNDERSTANDING DATA PERSISTENCE

In addition to storing data in UserDefaults, you can also read or write data to a file.
This can be handy for storing larger amounts of data in a sequential list.

If you need to store larger amounts of related data, use Core Data to save this
information. Whether you store data in UserDefaults, files, or Core Data, you can always
retrieve that data again so an app can display that data automatically without requiring
the user to manually load data each time.

Beyond the technical aspects of storing data, data persistence also involves privacy
and security issues. For example, users generally don’t want to share their data with
others without their permission, especially health data or other personal information.
When storing data, be sure to keep security and privacy in mind so any data your app
saves can’t be accessed by another app.

153

CHAPTER 7

Passing Data
Between Files

Every storyboard consists of one or more view controllers that displays a view or window
of your program’s user interface. To control the user interface objects on a scene, such as
buttons or text fields, each view controller is connected to its own .swift class file where
you can write Swift code to create IBOutlets and IBAction methods.

In most i0S projects, there is a single AppDelegate.swift file and one or more view
controller files that manage the views and the user interface objects displayed on
that view such as buttons, text fields, and labels. So you need to know how to share
data between a view controller and the AppDelegate.swift file along with sharing data
between two different view controllers.

Sharing Data with the AppDelegate.swift File

The AppDelegate.swift file tracks an app’s various states such as when it first launches,
when it goes into the background, and when it returns to the foreground. That means
the AppDelegate.swift often needs to retrieve data from other view controllers to save the
data before an app terminates or goes into the background.

Likewise, when the AppDelegate.swift file detects an app launching or returning to
the foreground, it may need to retrieve stored data and pass that data to a view controller
to display on the user interface.

155
© Wallace Wang 2019

W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_7

CHAPTER 7 PASSING DATA BETWEEN FILES

To pass data to the AppDelegate.swift file, we need to make the AppDelegate.swift
file accessible to any view controller. To do this, we just need the following function
inside the AppDelegate.swift file:

static func shared() -> AppDelegate {
return UIApplication.shared.delegate as! AppDelegate

}

In addition, we also need to declare properties inside the AppDelegate.swift file to
hold any passed data. When a view controller wants to pass data to the AppDelegate.
swift file, it simply needs to use code like this:

AppDelegate.shared().propertyHere = dataToPass

In the preceding code, propertyHere is the name of a property defined inside the
AppDelegate.swift file and dataToPass is the data being sent from a view controller to the
AppDelegate.swift file.

To send data from the AppDelegate.swift file to a view controller, the Swift code
in the view controller just needs to assign an AppDelegate property to a variable or
property like this:

variable = AppDelegate.shared().propertyHere

To see how to pass data to and from a view controller to the AppDelegate.swift file,
follow these steps:

1. Create a Single View App from the iOS category and name it
AppDelegateDataApp.

2. Click the Main.storyboard file in the Navigator pane.

3. Click the Library icon and drag and drop a text field, a button, and
a label onto the view. You may want to expand the width of both
the text field and label as shown in Figure 7-1.

156

CHAPTER 7 PASSING DATA BETWEEN FILES

Label

Figure 7-1. Creating a user interface for passing data to and from the
AppDelegate.swift file

4,

10.

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints at the bottom half of the submenu. Xcode adds
constraints to all the user interface objects.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard and ViewController.
swift file side by side.

Move the mouse pointer over the text field, hold down the Control
key, and Ctrl-drag underneath the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type myTextField, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

Move the mouse pointer over the label, hold down the Control
key, and Ctrl-drag underneath the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

157

CHAPTER 7 PASSING DATA BETWEEN FILES

158

11.

12.

13.

14.

15.

16.

17.

Click in the Name text field, type myLabel, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mylabel: UILabel!

Move the mouse pointer over the button, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type sendDataButton, click the Type
popup menu and choose UIButton, and click the Connect button.
Xcode creates a sendDataButton IBAction method.

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.
Click the AppDelegate.swift file in the Navigator pane.

Under the var window: UIWindow? Line, add the following:

var receivedData : String =
var sentData : String = "Data from AppDelegate”

static func shared() -> AppDelegate {
return UIApplication.shared.delegate as! AppDelegate

}

The receivedData property will hold the data passed to the
AppDelegate.swift file from a view controller. The sentData
property contains a string “Data from AppDelegate’, which will be
sent to a view controller. The shared() function will allow any view
controller to access the AppDelegate.swift file to send or receive
data.

CHAPTER 7 PASSING DATA BETWEEN FILES
18. Edit the applicationDidEnterBackground method as follows:

func applicationDidEnterBackground(_ application: UIApplication) {

print("The AppDelegate file received this data = " +
receivedData)

}

This applicationDidEnterBackground method will run when the
user returns to the Home screen. Then a message will appear

in Xcode’s debug area, showing that the AppDelegate.swift file
received data from a view controller.

The entire AppDelegate.swift file should look like this:
import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

var receivedData : String =
var sentData : String = "Data from AppDelegate”

static func shared() -> AppDelegate {
return UIApplication.shared.delegate as! AppDelegate

}

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [UIApplication.
LaunchOptionsKey: Any]?) -> Bool {

// Override point for customization after application

launch.

return true

}

func applicationWillResignActive(_ application: UIApplication) {
}

159

CHAPTER 7 PASSING DATA BETWEEN FILES

func applicationDidEnterBackground(_ application:
UIApplication) {
print("The AppDelegate file received this data = " +

receivedData)

}

func applicationWillEnterForeground(_ application: UIApplication) {
}

func applicationDidBecomeActive(_ application: UIApplication) {
}

func applicationWillTerminate(_ application: UIApplication) {
}

19. Click the ViewController.swift file in the Navigator pane.

20. Edit the sendDataButton IBAction method as follows:

@IBAction func sendDataButton(_ sender: UIButton) {
AppDelegate.shared().receivedData = myTextField.text ??
"default value"
myLabel.text = AppDelegate.shared().sentData

}

The first line retrieves the text in the myTextField object and stores
itin the AppDelegate.swift file’s receivedData property. Then the
second line retrieves the sentData property from the AppDelegate.
swift file and stores it in the myLabel object on the user interface.

The entire ViewController.swift file should look like this:
import UIKit
class ViewController: UIViewController {

@IBOutlet var myTextField: UITextField!
@IBOutlet var mylLabel: UILabel!

160

21.

22.

23.

24.

25.

CHAPTER 7 PASSING DATA BETWEEN FILES

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.

}

@IBAction func sendDataButton(_ sender: UIButton) {
AppDelegate.shared().receivedData = myTextField.text ??
"default value"

myLabel.text = AppDelegate.shared().sentData

}

Click the Run button, or choose Product » Run. The Simulator
screen appears.

Click in the text field and type a message such as Data from view

controller.

Click the button. Notice that the label now displays Data from
AppDelegate, which is the data sent from the AppDelegate to the
ViewController.swift file.

Choose Hardware » Home. The Home screen appears on the
Simulator. Notice that the debug area in Xcode now displays “The
AppDelegate file received this data = Data from view controller”
(or whatever data you typed into the text field). This shows that the
AppDelegate.swift file received data sent from the ViewController.
swift file.

Choose Simulator » Quit Simulator to return back to Xcode.

Sharing Data Between View Controllers

Many times view controllers need to pass data to each other. Normally when a view

controller receives data from its user interface, that data remains trapped in the .swift

file connected to that view controller in the Identity Inspector pane. Fortunately, view

controllers can pass data to other view controllers.

161

CHAPTER 7 PASSING DATA BETWEEN FILES

For example, suppose you have two view controllers labelled SceneA and SceneB
where a segue links SceneA to SceneB. That means the user first sees SceneA then taps a
button to view SceneB. Tapping another button can make SceneA appear again.

If the user enters data in SceneA, you want to pass that data forward to SceneB. If
a segue points from SceneA to SceneB, you can use a special segue function that runs
when SceneA uses a segue to display SceneB. Within this segue function, you can create
an object from SceneB’s .swift class file and pass data to this object.

However, what if you want to pass data back from SceneB to SceneA? SceneB can't
create an object from SceneA’s Swift class file because this risks creating a circular
reference where SceneA creates an object from SceneB and SceneB turns around and
creates an object from SceneA. Instead, you must pass data back to a view controller
using a delegate. SceneB passes data to a delegate and then this delegate then passes
data back to SceneA.

Essentially when you're passing data forward from one view controller to another
through a segue, you can pass data using objects, but when you're passing data
backward from one view controller to another without a segue, you must pass data using
a delegate as shown in Figure 7-2.

Scene A Scene B

Pass data to
Scene B's Swift
class file
Delegate A&m toa
passes data to delegate
Scene A's

Swift class file

Delegate

Figure 7-2. Passing data forward and backward between scenes in a storyboard

162

CHAPTER 7 PASSING DATA BETWEEN FILES

Passing Data Forward

Before you can pass data between two view controllers, you need to connect them with

a segue. Then you need to make sure that each view controller has its own .swift file that

you can connect it to through the Identity Inspector. Finally, you need to write Swift code

in the .swift files of both view controllers to send and receive data.

To see how to pass data forward between two view controllers, follow these steps:

1.

Create a Single View App from the iOS category and name it
PassForwardApp.

Click the Main.storyboard file in the Navigator pane.

Click the Library icon and drag and drop a button and a text field
onto the view. You may want to expand the width of the text field.

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints in the bottom half of the submenu. Xcode adds
constraints to the button and text field.

Click the Library icon and drag and drop a View Controller into
the storyboard.

Move the mouse pointer over the button on the first view
controller, hold down the Control key, and Ctrl-drag from the
button over the second view controller as shown in Figure 7-3.

163

CHAPTER 7 PASSING DATA BETWEEN FILES

C View Controller

241 - a4]

oGa
o,

A _— A

- - - = -)A-

Figure 7-3. Ctrl-dragging from a button to another view controller creates a segue

7. Release the Control key and the left mouse button. A popup menu
appears as shown in Figure 7-4.

Action Segue
Show
Show Detail
Present Modally
Present As Popover

Custom

Non-Adaptive Action Segue
Push (deprecated)
Modal (deprecated)

Figure 7-4. Choosing the type of segue between view controllers

164

8. Choose Show. Xcode creates a segue (arrow) connecting the two

view controllers in the storyboard.

9. Click the Library icon and drag and drop a label and a button onto
the second view controller. You may want to expand the width of

the label.

10. Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints in the bottom half of the submenu. Xcode adds
constraints to all the user interface objects. The entire storyboard

should look similar to Figure 7-5.

=3 &

o — A

Figure 7-5. The complete user interface

CHAPTER 7 PASSING DATA BETWEEN FILES

. &

Label

165

CHAPTER 7 PASSING DATA BETWEEN FILES

11.

12.

13.

14.

15.

16.

17.

18.

Choose File » New » File. A template window appears.

Click Cocoa Touch Class under the iOS category and click the
Next button. Another window appears asking for a Class name
and Subclass.

Click in the Class text field and type SecondViewController.

Click the Subclass popup menu and choose UIViewController.
Then click the Next button and the Create button. Xcode adds the
SecondViewController.swift file in the Navigator pane.

Click the Main.storyboard file in the Navigator pane.

Click the second View Controller Scene in the Document Outline
to select the second view controller.

Choose View » Inspectors » Show Identity Inspector, or click
the Identity Inspector icon in the upper right corner of the Xcode

window.

Click the Class popup menu and choose SecondViewController as
shown in Figure 7-6.

Class| SecondViewController © B¢

Module

Inherit Module From Target

Figure 7-6. Connecting the SecondViewController.swift file to the second view
controller in the storyboard

166

19.

20.

21.

22.

23.

24.

25.

CHAPTER 7 PASSING DATA BETWEEN FILES

At this point, we’ve designed a simple user interface where the
first view controller contains a text field and a button. We'll be able
to type in the text field on the first view controller, click the button,
and pass the data to the second view controller so the text appears
in the label on that second view controller.

First, we need to define a property in the SecondViewController.
swift to hold any passed data. Then we need to load that data into
the label.

Click Second View Controller Scene in the Document Outline.

Choose View » Assistant Editor » Show Assistant Editor, or
click the Assistant Editor icon in the upper right corner of the
Xcode window. Xcode displays the Main.storyboard file and the
SecondViewController.swift file side by side.

Move the mouse pointer over the label, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type myLabel, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mylabel: UILabel!

Underneath this IBOutlet, add the following property:

var receivedData : String =
Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
myLabel.text = receivedData
// Do any additional setup after loading the view.

167

CHAPTER 7 PASSING DATA BETWEEN FILES

26. Move the mouse pointer over the button, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
ViewController.swift file.

27. Release the Control key and the left mouse button. A popup
window appears.

28. Click in the Name text field, type closeButton, click the Type
popup menu and choose UlButton, and click the Connect button.
Xcode creates a closeButton IBAction method.

29. Edit this closeButton IBAction method as follows:

@IBAction func closeButton(_ sender: UIButton) {
dismiss(animated: true, completion: nil)

}

The entire SecondViewController.swift file should look like this:
import UIKit
class SecondViewController: UIViewController {

@IBOutlet var mylLabel: UILabel!

var receivedData : String =

override func viewDidlLoad() {
super.viewDidLoad()
mylLabel.text = receivedData
// Do any additional setup after loading the view.

}

@IBAction func closeButton(_ sender: UIButton) {
dismiss(animated: true, completion: nil)

30. Click View Controller Scene in the Document Outline to select the
first view controller. Xcode displays the Main.storyboard file and
the ViewController.swift file side by side.

168

31.

32.

33.

34.

CHAPTER 7 PASSING DATA BETWEEN FILES

Move the mouse pointer over the text field, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type myTextField, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!
Add the following function under the viewDidLoad method:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
if let secondVC = segue.destination as? SecondViewController {
secondVC.receivedData = myTextField.text ?? "default value"

}

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {
@IBOutlet var myTextField: UITextField!

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.

}

override func prepare(for segue: UIStoryboardSegue, sender:

Any?) {
if let secondVC = segue.destination as?
SecondViewController {

169

CHAPTER 7 PASSING DATA BETWEEN FILES

35.

36.

37.

38.

39.

secondVC.receivedData = myTextField.text ??
"default value"

Click the Run button or choose Product » Run. The Simulator
screen appears, showing the user interface of the first view
controller (a button and a text field).

Click in the text field and type any text such as Hello, there!

Click the button. The user interface of the second view controller
appears (a button and a label) where the label displays the text
you typed into the first view controller.

Click the button. The second view controller disappears and the
first view controller appears again. Repeat steps 35-36 as often as
you like, typing different text into the text field to see how the data
gets passed forward from the first view controller to the second
view controller.

Choose Simulator » Quit Simulator to return back to Xcode.

In this app, we passed data using a segue such as

override func prepare(for segue: UIStoryboardSegue, sender: Anmy?) {

}

if let secondVC = segue.destination as? SecondViewController {
secondVC.receivedData = myTextField.text ?? "default value"

This code creates a constant called secondVC (you can use any arbitrary name you

want) and checks to make sure the segue links to the second view controller, which

is linked to the SecondViewController.swift file. If so, then it takes the text that the
user typed in the text field and stores it in the receivedData property defined in the
SecondViewController.swift file. (If the user did not type any text in the text field, then
the receivedData property gets sent “default value” instead.)

170

CHAPTER 7 PASSING DATA BETWEEN FILES

There’s another way to pass data through a segue that involves giving the segue
aname. Then your code can run depending on the segue name. This method can be
handy in case you have multiple segues linked to the same view controller.

To see how to pass data forward using segue names, follow these steps:

1. Create a Single View App from the iOS category and name it
PassForwardNameApp.

2. Click the Main.storyboard file in the Navigator pane.

3. Click the Libraryicon and drag and drop two buttons, a text field,
and a slider onto the view. You may want to expand the width of
the text field.

4. Double-click one button, type Pass Text, and press Enter.
5. Double-click the second button, type Pass Value, and press Enter.

6. Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints in the bottom half of the submenu. Xcode adds
constraints to all the user interface objects. The user interface
should look similar to Figure 7-7.

Figure 7-7. The user interface of the first view controller

7. Click the Library icon and drag and drop a View Controller into
the storyboard.

171

CHAPTER 7 PASSING DATA BETWEEN FILES

8.

10.

11.

12.

13.

Move the mouse pointer over the Pass Text button on the first
view controller, hold down the Control key, and Ctrl-drag from the
button over the second view controller.

Release the Control key and the left mouse button. A popup menu
appears (see Figure 7-4).

Choose Show. Xcode creates a segue (arrow) connecting the two
view controllers in the storyboard.

Click the segue or click Show segue to “View Controller” in the
Document Outline.

Choose View » Inspectors » Show Attributes Inspector, or click
the Attributes Inspector icon in the upper right corner of the
Xcode window.

Click in the Identifier text field, type textSegue, and press Enter as
shown in Figure 7-8.

DeaE ¥ i &

Storyboard Segue
Idemmarﬂ textSegue l
Class @ n
Module -
Kind | Show (e.g. Push) B
Animates

Peek & Pop Preview & Commit Segues

Figure 7-8. Giving a segue an identifier

172

14.

15.

Move the mouse pointer over the Pass Value button on the first
view controller, hold down the Control key, and Ctrl-drag from the
button over the second view controller.

Release the Control key and the left mouse button. A popup menu
appears (see Figure 7-4).

16.

17.

18.

19.

20.

21.

CHAPTER 7 PASSING DATA BETWEEN FILES

Choose Show. Xcode creates a second segue (arrow) connecting
the two view controllers in the storyboard.

Click the segue or click Show segue to “View Controller” in the
Document Outline.

Choose View » Inspectors » Show Attributes Inspector, or click
the Attributes Inspector icon in the upper right corner of the
Xcode window.

Click in the Identifier text field, type sliderSegue, and press Enter.
At this point, we have two segues that point to the same view
controller.

Click the Library icon and drag and drop a label and a button onto
the second view controller. You may want to expand the width of
the label.

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints in the bottom half of the submenu. Xcode adds
constraints to all the user interface objects. The entire storyboard
should look similar to Figure 7-9. Notice the two segues linking
the view controllers.

173

CHAPTER 7 PASSING DATA BETWEEN FILES

Citslar

-\ G\

o — Vi g — A

Figure 7-9. The complete user interface

174

22.

23.

24.

25.

26.

27.

Choose File » New » File. A template window appears.

Click Cocoa Touch Class under the iOS category and click the Next
button. Another window appears asking for a Class name and
Subclass.

Click in the Class text field and type SecondViewController.

Click the Subclass popup menu and choose UIViewController.
Then click the Next button and the Create button. Xcode adds the
SecondViewController.swift file in the Navigator pane.

Click the Main.storyboard file in the Navigator pane.

Click the second View Controller Scene in the Document Outline
to select the second view controller.

28.

29.

30.

31.

32.

33.

34.

35.

CHAPTER 7 PASSING DATA BETWEEN FILES

Choose View » Inspectors » Show Identity Inspector, or click
the Identity Inspector icon in the upper right corner of the Xcode

window.

Click the Class popup menu and choose SecondViewController
(see Figure 7-6).

At this point, we've designed a simple user interface where the first
view controller contains a text field, a slider, and two buttons. If we
type in the text field and click the Pass Text button, we’ll pass text

to the second view controller. If we drag the slider left or right and
click the Pass Value button, we’'ll pass a numeric value to the second
view controller. Depending on which segue opens the second view
controller, the label on the second view controller will display either
the text (from the text field) or a value (from the slider).

First, we need to define a property in the SecondViewController.
swift to hold any passed data. Then we need to load that data into
the label.

Click Second View Controller Scene in the Document Outline.

Choose View » Assistant Editor » Show Assistant Editor, or
click the Assistant Editor icon in the upper right corner of the
Xcode window. Xcode displays the Main.storyboard file and the
SecondViewController.swift file side by side.

Move the mouse pointer over the label, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup

window appears.

Click in the Name text field, type myLabel, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mylabel: UILabel!
Underneath this IBOutlet, add the following property:

var receivedData : String =

175

CHAPTER 7 PASSING DATA BETWEEN FILES

176

36.

37.

38.

39.

40.

Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
myLabel.text = receivedData
// Do any additional setup after loading the view.

}

Move the mouse pointer over the button, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
SecondViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type closeButton, click the Type
popup menu and choose UIButton, and click the Connect button.
Xcode creates a closeButton IBAction method.

Edit this closeButton IBAction method as follows:

@IBAction func closeButton(_ sender: UIButton) {
dismiss(animated: true, completion: nil)

}

The entire SecondViewController.swift file should look like this:
import UIKit
class SecondViewController: UIViewController {

@IBOutlet var mylLabel: UILabel!
var receivedData : String = ""

override func viewDidlLoad() {
super.viewDidLoad()
mylLabel.text = receivedData
// Do any additional setup after loading the view.

41.

42.

43.

44,

45.

46.

47.

48.

CHAPTER 7 PASSING DATA BETWEEN FILES

@IBAction func closeButton(_ sender: UIButton) {
dismiss(animated: true, completion: nil)

Click View Controller Scene in the Document Outline to select the
first view controller. Xcode displays the Main.storyboard file and
the ViewController.swift file side by side.

Move the mouse pointer over the text field, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type myTextField, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

Move the mouse pointer over the slider, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type mySlider, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mySlider: UISlider!

Add the following function under the viewDidLoad method:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
let secondVC = segue.destination as? SecondViewController
if segue.identifier == "textSegue" {
secondVC?.receivedData = myTextField.text ?? "default value"

177

CHAPTER 7 PASSING DATA BETWEEN FILES

178

if segue.identifier == "sliderSegue" {
secondVC?.receivedData = "Slider value = \(mySlider.value)

}

The entire ViewController.swift file should look like this:
import UIKit
class ViewController: UIViewController {

@IBOutlet var myTextField: UITextField!
@IBOutlet var mySlider: UISlider!

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.

}

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
let secondVC = segue.destination as? SecondViewController

if segue.identifier == "textSegue" {
secondVC?.receivedData = myTextField.text ?? "default
value"

}

if segue.identifier == "sliderSegue" {
secondVC?.receivedData = "Slider value = \(mySlider.
value)"

}

49. Click the Run button or choose Product » Run. The Simulator
screen appears, showing the user interface of the first view
controller (two buttons, a text field, and a slider).

50. Clickin the text field and type any text such as Hello, there!

51.

52.

53.

54.

55.

CHAPTER 7 PASSING DATA BETWEEN FILES

Click the Pass Text button. The user interface of the second view
controller appears (a button and a label) where the label displays
the text you typed into the first view controller.

Click the button. The second view controller disappears and the
first view controller appears again.

Drag the slider to the far left and click the Pass Value button. The
second view controller appears where the label displays the value
from the slider on the first view controller.

Click the button to make the second view controller disappear and
make the first view controller appear again. Repeat the preceding
steps with different text and slider values to see how the first view
controller passes data to the second view controller depending on
which segue runs.

Choose Simulator » Quit Simulator to return back to Xcode.

Passing Data Backward with a Protocol

The first step to passing data backward between view controllers in a storyboard is to

define a protocol. You can give this protocol any arbitrary name you wish, but the key

feature is that the protocol must define a function that accepts one or more parameters

that represent the data you want to send back.

So the three parts of the protocol you must define are

The protocol name (which can be anything you wish)
A function name (which can also be anything you wish)

One or more parameters that represent the data and data type (such
as String or Int) that you want to pass back

A protocol declaration can look as simple as this:

protocol ProtocolName {
func functionName(dataToSendBack : DataType)

179

CHAPTER 7 PASSING DATA BETWEEN FILES

In the preceding example, the function’s parameter list contains one item, which
means it can pass back one item, but if you want, you could add more items to the
function’s parameter list to send back two or more items.

You need to place the protocol declaration above the class line in the Swift class file
such as

import UIKit

protocol MyProtocol {
func sendBackData(thisData: String)

}

class SecondViewController: UIViewController {

After defining a protocol, you just create a delegate inside the class like this:
class SecondViewController: UIViewController {

var delegate : MyProtocol?

You must use the exact word “delegate” but the protocol name can be anything you wish.
Once you've defined a delegate, you must then use that delegate, combined with the
function defined by the protocol, to send back data such as

delegate?.functionName(valueSent: DatatoSend)

To see how to pass data forward between two view controllers, follow these steps:

1. Create a Single View App from the iOS category and name it
PassBackwardApp.

2. Click the Main.storyboard file in the Navigator pane.

3. Click the Library icon and drag and drop two buttons and a label
onto the view. You may want to expand the width of the label.

4. Double-click one button, type Open, and press Enter.

5. Double-click the other button, type View Data, and press Enter.
The user interface should look similar to Figure 7-10.

180

CHAPTER 7 PASSING DATA BETWEEN FILES

Label

Figure 7-10. Designing the user interface of the initial view controller

6.

10.

11.

12.

13.

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints in the bottom half of the submenu. Xcode adds
constraints to all the user interface objects.

Choose View » Assistant Editor » Show Assistant Editor, or
click the Assistant Editor icon in the upper right corner of the
Xcode window. Xcode displays the Main.storyboard file and the
ViewController.swift file side by side.

Move the mouse pointer over the label, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type myLabel, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mylabel: UILabel!

Under this IBOutlet, add the following property:

var receivedData : String =

Move the mouse pointer over the View Data button, hold down
the Control key, and Ctrl-drag above the last curly bracket at the
bottom of the ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

181

CHAPTER 7 PASSING DATA BETWEEN FILES

14.

15.

Click in the Name text field, type viewDataButton, click the Type
popup menu and choose UIButton, and click the Connect button.
Xcode creates a viewDataButton IBAction method.

Edit this viewDataButton IBAction method as follows:

@IBAction func viewDataButton(_ sender: UIButton) {
mylLabel.text = receivedData

}

This completes the user interface of the first (initial) view controller. At this point,

we need to add a second view controller to the storyboard, design its user interface, and

write Swift code to define a protocol. After we're done writing Swift code in the second

view controller, we'll need to go back to the first view controller .swift file and finish

editing the code there.

Let’s design the second view controller, attach a .swift file to this view controller, and

write Swift code in its .swift file.

1.

182

Choose View » Standard Editor » Show Standard Editor, or
click the Standard Editor icon in the upper right corner of the
Xcode window.

Click the Main.storyboard file in the Navigator pane.

Click the Library icon and drag and drop a View Controller in the
storyboard.

Move the mouse pointer over the Open button on the first view
controller, hold down the Control key, and Ctrl-drag over the
second view controller.

Release the Control key and the left mouse button. A popup menu
appears.

Choose Show. Xcode displays a segue between the two view
controllers.

Choose File » New » File. A template window appears.

Click Cocoa Touch Class under the iOS category and click the Next
button. Another window appears asking for a Class name and
Subclass.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

CHAPTER 7 PASSING DATA BETWEEN FILES

Click in the Class text field and type SecondViewController.

Click the Subclass popup menu and choose UIViewController.
Then click the Next button and the Create button. Xcode adds the
SecondViewController.swift file in the Navigator pane.

Click the Main.storyboard file in the Navigator pane.

Click the second View Controller Scene in the Document Outline
to select the second view controller.

Choose View » Inspectors » Show Identity Inspector, or click
the Identity Inspector icon in the upper right corner of the Xcode
window.

Click the Class popup menu and choose SecondViewController
(see Figure 7-6).

Click the Library icon and drag and drop a button and a text field
onto the view. You may want to expand the width of the text field.

Choose View » Assistant Editor » Show Assistant Editor, or
click the Assistant Editor icon in the upper right corner of the
Xcode window. Xcode displays the Main.storyboard file and the
SecondViewController.swift file side by side.

Move the mouse pointer over the text field, hold down the Control
key, and Ctrl-drag under the class SecondViewController line in
the SecondViewController.swift file.

Release the Control key and the left mouse button. A popup

window appears.

Click in the Name text field, type myTextField, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!
Add the following under the import UIKit line:

protocol MyProtocol {
func sendBackData(thisData: String)

183

CHAPTER 7 PASSING DATA BETWEEN FILES

This defines our protocol, which we’ll have to implement in the
ViewController.swift file.

21. Add the following variable under the IBOutlet as follows:
var delegate : MyProtocol?

22. Move the mouse pointer over the button, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
SecondViewController.swift file.

23. Release the Control key and the left mouse button. A popup
window appears.

24. Clickin the Name text field, type closeButton, click the Type
popup menu and choose UlButton, and click the Connect button.
Xcode creates a closeButton IBAction method.

25. Edit this closeButton IBAction method as follows:

@IBAction func closeButton(_ sender: UIButton) {
delegate?.sendBackData(thisData: myTextField.text ?? "default
value")
dismiss(animated: true, completion: nil)

}

This code uses the protocol function to send data back from
myTextField. Then it removes the second view controller from the
screen. The entire SecondViewController.swift file should look like
this:

import UIKit

protocol MyProtocol {
func sendBackData(thisData: String)

}

class SecondViewController: UIViewController {

@IBOutlet var myTextField: UITextField!
var delegate : MyProtocol?

184

26.

27.

28.

29.

CHAPTER 7 PASSING DATA BETWEEN FILES

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view.
}

@IBAction func closeButton(_ sender: UIButton) {
delegate?.sendBackData(thisData: myTextField.text ??
"default value")
dismiss(animated: true, completion: nil)

Click the ViewController.swift file in the Navigator pane. We now
have to make sure the ViewController.swift file conforms to the
protocol we just defined in the SecondViewController.swift file.

Add MyProtocol to the class ViewController line like this:
class ViewController: UIViewController, MyProtocol {
Add the following function underneath the viewDidLoad method:

func sendBackData(thisData: String) {
self.receivedData = thisData

}

Add the following function above the viewDataButton IBAction
method:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
let secondVC = segue.destination as! SecondViewController
secondVC.delegate = self

}

185

CHAPTER 7 PASSING DATA BETWEEN FILES

186

30.

31.

32.

33.

34.

The entire ViewController.swift file should look like this:
import UIKit
class ViewController: UIViewController, MyProtocol {

@IBOutlet var mylLabel: UILabel!

var receivedData : String =

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.

}

func sendBackData(thisData: String) {
self.receivedData = thisData

}

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
let secondVC = segue.destination as! SecondViewController
secondVC.delegate = self

}

@IBAction func viewDataButton(_ sender: UIButton) {
mylLabel.text = receivedData

Click the Run button or choose Product » Run. The Simulator
screen appears.

Click the Open button. The second view controller appears on the

screen.
Click in the text field and type any text such as Hello, there!

Click the button. The second view controller disappears and the
first view controller appears.

Click the View Data button. Notice that the label now displays the
text typed from the second view controller.

CHAPTER 7 PASSING DATA BETWEEN FILES

Passing Data Backward with a Delegate

Another way to pass data backward is to declare the first view controller as a delegate.
Then define properties in both view controllers that hold the data you want to pass back
from the second view controller.

To see how to use a delegate to pass data backward, follow these steps:

1. Create a Single View App from the iOS category and name it
PassBackDelegateApp.

2. Click the Main.storyboard file in the Navigator pane.

3. Click the Library icon and drag and drop a button and a label onto
the view. You may want to expand the width of the label.

4. Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints in the bottom half of the submenu. Xcode adds
constraints to all the user interface objects.

5. Choose View » Assistant Editor » Show Assistant Editor, or
click the Assistant Editor icon in the upper right corner of the
Xcode window. Xcode displays the Main.storyboard file and the
ViewController.swift file side by side.

6. Move the mouse pointer over the label, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

7. Release the Control key and the left mouse button. A popup
window appears.

8. Clickin the Name text field, type myLabel, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mylabel: UILabel!
9. Underneath this IBOutlet, add the following to define a property:

var receivedText : String =

187

CHAPTER 7 PASSING DATA BETWEEN FILES

188

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Add the following method in the ViewController.swift file:

override func viewWillAppear(_ animated: Bool) {
mylLabel.text = receivedText

}

Choose View » Standard Editor » Show Standard Editor, or
click the Standard Editor icon in the upper right corner of the
Xcode window.

Click the Main.storyboard file in the Navigator pane.

Click the Library icon and drag and drop a View Controller in the
storyboard.

Move the mouse pointer over the button on the first view
controller, hold down the Control key, and Ctrl-drag anywhere
over the second view controller.

Release the Control key and the left mouse button. A popup menu
appears (see Figure 7-4).

Choose Show. Xcode adds a segue from the first view controller to
the second view controller.

Click the Library icon and drag and drop a button and a text field
onto the second view controller. You may want to resize the width
of the text field.

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints in the bottom half of the submenu. Xcode adds
constraints to all the user interface objects.

Choose File » New » File. A template window appears.

Click Cocoa Touch Class under the iOS category and click the Next
button. Another window appears asking for a Class name and
Subclass.

Click in the Class text field and type SecondViewController.

Click the Subclass popup menu and choose UIViewController.
Then click the Next button and the Create button. Xcode adds the
SecondViewController.swift file in the Navigator pane.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

CHAPTER 7 PASSING DATA BETWEEN FILES

Click the Main.storyboard file in the Navigator pane.

Click the second View Controller Scene in the Document Outline
to select the second view controller.

Choose View » Inspectors » Show Identity Inspector, or click
the Identity Inspector icon in the upper right corner of the Xcode

window.

Click the Class popup menu and choose SecondViewController
(see Figure 7-6).

Choose View » Assistant Editor » Show Assistant Editor, or
click the Assistant Editor icon in the upper right corner of the
Xcode window. Xcode displays the Main.storyboard file and the
SecondViewController.swift file side by side.

Move the mouse pointer over the text field, hold down the Control
key, and Ctrl-drag under the class SecondViewController line in
the SecondViewController.swift file.

Release the Control key and the left mouse button. A popup

window appears.

Click in the Name text field, type myTextField, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!
Add the following under the IBOutlet to define a delegate and a

property to hold a string:

var sentText : String =
var delegate : ViewController!

Move the mouse pointer over the button, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
SecondViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

189

CHAPTER 7 PASSING DATA BETWEEN FILES

190

33.

34.

Click in the Name text field, type closeButton, click the Type
popup menu and choose UIButton, and click the Connect button.
Xcode creates a closeButton IBAction method.

Edit this closeButton IBAction method as follows:

@IBAction func closeButton(_ sender: UIButton) {
sentText = myTextField.text ?? "default value"
delegate.receivedText = sentText
dismiss(animated: true, completion: nil)

}

This closeButton IBAction method takes the text from the text field
and stores it in the receivedText property of the delegate, which is
defined as the ViewController.swift file connected to the first view

controller.

The entire SecondViewController.swift file should look like this:
import UIKit
class SecondViewController: UIViewController {

@IBOutlet var myTextField: UITextField!

var sentText : String =
var delegate : ViewController!

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view.
}

@IBAction func closeButton(_ sender: UIButton) {
sentText = myTextField.text ?? "default value"
delegate.receivedText = sentText
dismiss(animated: true, completion: nil)

35.

36.

37.

CHAPTER 7 PASSING DATA BETWEEN FILES

Choose View » Standard Editor » Show Standard Editor, or
click the Standard Editor icon in the upper right corner of the
Xcode window.

Click the ViewController.swift file in the Navigator pane.

Add the following method:

override func prepare(for segue: UIStoryboardSegue, sender: Amy?) {

let vc = segue.destination as! SecondViewController
vc.sentText = self.receivedText
vc.delegate = self

This method defines a constant called vc that represents the
segue destination, which is the second view controller that’s
connected to the SecondViewController.swift file. Then it sends
the receivedText value (in the first view controller) to the sentText
property (in the second view controller). Finally, it defines itself
(the ViewController.swift file) as the delegate declared in the
second view controller.

The entire ViewController.swift file should look like this:
import UIKit
class ViewController: UIViewController {

@IBOutlet var mylLabel: UILabel!

var receivedText : String =

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.

}

override func viewWillAppear(_ animated: Bool) {
mylLabel.text = receivedText

191

CHAPTER 7 PASSING DATA BETWEEN FILES

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
let vc = segue.destination as! SecondViewController
vc.sentText = self.receivedText
vc.delegate = self

38. Click the Run button or choose Product » Run. The Simulator
screen appears, displaying a button.

39. Click the button. The second view controller appears with a button
and a text field.

40. Clickin the text field and type text such as Hello, there!

41. Click the button. The first view controller appears, displaying the
text (from the second view controller) in its label.

42. Choose Simulator » Quit Simulator to return back to Xcode.

Passing Data with the Notification Center

Yet another way to pass data between view controller files is through the notification
center. Using the notification center to pass data can be especially useful when you
need to share data between two or more view controllers at the same time, or if the
view controllers are not connected by a segue. There’s a three-step process to using

notification center:
e Define a unique name for a notification center.
e Add an observer to that notification center.
e Send a notification to the observer and pass data.

To define a name for a notification center, you can choose any arbitrary name such as

static let notificationName = Notification.Name("myNotification")

192

CHAPTER 7 PASSING DATA BETWEEN FILES

To add a notification center observer involves defining a function to run when it
receives a notification and defining the name of the notification center to observe. This
can be done with a statement like this:

NotificationCenter.default.addObserver(self, selector: #selector(functionNa
me(notification:)), name: notificationName, object: nil)

Where “functionName” is the name of your function to run when the notification is
received, and “notificationName” is the name of the notification center you defined.

Finally, you need to send a notification and pass data at the same time. This can be
done using this statement:

NotificationCenter.default.post(name: NSNotification.Name(rawValue:
"Notification Name"), object: dataSent)

Where “Notification Name” is the name you chose for the notification center, and
“dataSent” is any data you wish to pass to a notification observer.
To see how to pass data using notifications, follow these steps:

1. Create anew iOS Single View App and name it NotificationPassApp.
2. Click the Main.storyboard file in the Navigator pane.

3. Click the Library icon and drag and drop a button and a label onto
the view. You may want to resize the label to make it wider.

4. Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints at the bottom half of the submenu. Xcode adds
constraints to the button and label.

5. Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard file side by side with
the ViewController.swift file.

6. Move the mouse pointer over the label, hold down the Control
key, and Ctrl-drag under the class ViewController line.

7. Release the Control key and the left mouse button. A popup
window appears.

193

CHAPTER 7 PASSING DATA BETWEEN FILES

194

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Click in the Name text field, type myLabel, and click the Connect
button. Xcode creates an IBOutlet as follows:

@IBOutlet var mylabel: UILabel!

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode
window.

Click the Main.storyboard file in the Navigator pane.

Click the Library icon and drag and drop a View Controller in the
storyboard.

Move the mouse pointer over the button on the initial (first) view
controller, hold down the Control key, and Ctrl-drag anywhere
over the second view controller.

Release the Control key and the left mouse button. A popup menu
appears (see Figure 7-4).

Choose Show. Xcode adds a segue between the two view
controllers.

Click the Library icon and drag and drop a button and a text field
onto the second view controller.

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints at the bottom half of the submenu. Xcode adds
constraints to the button and text field.

Choose File » New » File. A template window appears.

Click Cocoa Touch Class under the iOS category and click the Next
button. Another window appears asking for a Class name and
Subclass.

Click in the Class text field and type SecondViewController.

Click the Subclass popup menu and choose UIViewController.
Then click the Next button and the Create button. Xcode adds the
SecondViewController.swift file in the Navigator pane.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

CHAPTER 7 PASSING DATA BETWEEN FILES

Click the Main.storyboard file in the Navigator pane.

Click the second View Controller Scene in the Document Outline
to select the second view controller.

Choose View » Inspectors » Show Identity Inspector, or click
the Identity Inspector icon in the upper right corner of the Xcode

window.

Click the Class popup menu and choose SecondViewController
(see Figure 7-6).

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard file side by side with
the SecondViewController.swift file.

Move the mouse pointer over the text field, hold down the Control
key, and Ctrl-drag under the class SecondViewController line in
the SecondViewController.swift file.

Release the Control key and the left mouse button. A popup

window appears.

Click in the Name text field, type myTextField, and click the
Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var myTextField: UITextField!

Move the mouse pointer over the button, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
SecondViewController.swift file.

Release the Control key and the left mouse button. A popup

window appears.

Click in the Name text field, type closeButton, click the Type
popup menu and choose UlButton, and click the Connect button.
Xcode creates a closeButton IBAction method.

195

CHAPTER 7 PASSING DATA BETWEEN FILES

32. Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.
33. Click the ViewController.swift file in the Navigator pane.

34. Add the following under the IBOutlet to give the notification
center a unique name:

static let notificationName = Notification.Name("myNotification")

35. Add the following function under the static let line you just write
in the previous step:

@objc func onNotification(notification:Notification)

{
let data = notification.object
let temp = String(describing: datal!)
mylLabel.text = temp

}

This function is called “onNotification” although you can choose
any arbitrary name for the function. First, it stores the notification.
object in a constant called “data” (this can be any arbitrary name).
The notification.object is the data sent.

Next, another constant called “temp” (which can be any arbitrary
name) takes the string value of the passed data and unwraps it
since it’s an optional. Finally, it stores this string in the myLabel
object. The entire ViewController.swift file should look like this:

import UIKit
class ViewController: UIViewController {
@IBOutlet var mylLabel: UILabel!

static let notificationName = Notification.
Name ("myNotification")

196

CHAPTER 7 PASSING DATA BETWEEN FILES

@objc func onNotification(notification:Notification)

{
let data

let temp

notification.object

String(describing: data!)
myLabel.text = temp
}

override func viewDidlLoad() {
super.viewDidlLoad()
// Do any additional setup after loading the view.
NotificationCenter.default.addObserver(self, selector:
#selector (onNotification(notification:)), name:
ViewController.notificationName, object: nil)

36. Click the SecondViewController.swift file in the Navigator pane.

37. Edit the closeButton IBAction method as follows:

@IBAction func closeButton(_ sender: UIButton) {
let dataSent = myTextField.text
NotificationCenter.default.post(name: NSNotification.
Name(rawValue: "myNotification"), object: dataSent)
dismiss(animated: true, completion: nil)

This IBAction method retrieves the text in the text field and stores
itin a constant called “dataSent” (which can be any arbitrary
name). Next, this IBAction method sends a notification with the
post command. This post command identifies the notification
center by name (“myNotification”) and then passes data
(“dataSent”) to any observer. Finally, the dismiss command makes
the second view controller disappear.

197

CHAPTER 7 PASSING DATA BETWEEN FILES

The entire SecondViewController.swift file should look like this:

import UIKit

class SecondViewController: UIViewController {
@IBOutlet var myTextField: UITextField!

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.

}

@IBAction func closeButton(_ sender: UIButton) {
let dataSent = myTextField.text
NotificationCenter.default.post(name: NSNotification.
Name(rawValue: "myNotification"), object: dataSent)
dismiss(animated: true, completion: nil)

38. Click the Run button or choose Product » Run. The Simulator
screen appears.

39. Click the button. The second view controller appears, displaying a
button and a text field.

40. Clickin the text field and type text such as Hello, there!

41. Click the button. This first view controller appears, displaying the
text sent by the second view controller.

42. Choose Simulator » Quit Simulator to return back to Xcode.

Summary

Most apps will likely contain multiple view controllers. Data entered into one view
controller will likely need to be used by another view controller. By adding a shared()
function in the AppDelegate.swift file, you can make the AppDelegate.swift file
accessible to any other .swift file in a project. That way the AppDelegate.swift file can
receive data from another file or send data to another file.

198

CHAPTER 7 PASSING DATA BETWEEN FILES

If the two view controllers are connected by a segue, you can pass data using the
prepare for segue function. You can even name segues to make it easy to identify which
segue is used to display the next view controller. Passing data from one view controller to
another one, connected by a segue, passes data forward.

If you need to pass data backward from one view controller that does not have a
segue leading to the previous view controller, you need to use a protocol as a middleman
to temporarily hold data before passing it to the previous view controller.

Another way to pass data between view controllers is through the notification center.
This can be especially handy to pass data to multiple view controllers at once or to view
controllers that are not connected by a segue.

Passing data between different files helps avoid the use of global variables. By using
different ways to pass data, your app can access data no matter which view controller it
came from.

199

CHAPTER 8

Translating with
Localization

Most people create apps in their native language, but if you translate your app into other
languages, you could sell and distribute your app to other parts of the world. Translating
text from one language to another requires an experienced translator, but from a technical
point of view, how do you create a single app and let it display different languages?

The hard way is to create separate apps for each language. The easy way is to create
a single app and use something called localization. The idea behind localization is that
you create your app once, then instead of typing text to appear in the app, you use a
special localized string that represents the text to display.

Now you store different text in separate files stored in a localization folder.
Depending on the language the user’s iOS device uses, your app then yanks out the
correct file that matches the user’s language. So if you wanted your app to display text
in English, Arabic, and Russian, you would create one file containing English words to
appear in your app, a second file containing Arabic words that represent equivalent
English text, and a third file containing Russian words that represent equivalent text.

If the user switches the settings on their iOS device to display text in Russian, then
your app will automatically replace all text with Russian text. If the user switches to
Arabic, then your app will automatically replace all text with Arabic text. By creating text
in different languages, you can create an app that adapts to different languages.

An app that supports localization will likely need to replace the following to adjust to
different languages:

o Textin the user interface such as buttons and labels
o Images
o Textdisplayed by code

e The name of the app displayed on the Home screen

201
© Wallace Wang 2019

W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_8

CHAPTER 8 TRANSLATING WITH LOCALIZATION

Besides changing text and images that appear on the user interface, localization also
needs to adjust the app’s user interface. For example, buttons that may look perfect when
displayed in English may look too small when displaying equivalent text in German
or may look too big when displaying equivalent text in Chinese. When designing a
user interface, you need to consider the size of displayed text and make sure your user
interface adapts to different size text.

Besides the size and text itself, you must also consider how different cultures and
regions display dates and numbers. In some areas, people separate decimal numbers
with a period such as 3.1415, while in others, people separate decimal numbers with a
comma such as 3,1415.

Likewise, some areas display dates with the month first followed by the day and the
year like June 4, 2019, while other places display dates differently such as 4 June 2019. So
not only must your app display the proper text adjusted on the user interface to appear
correctly, but your app must also recognize different number and date formats.

Designing the User Interface

When you place objects on the user interface that display text such as buttons or labels,
you generally resize these objects so the text appears completely visible. However when
replacing your native language with equivalent words in other languages, those words
may be shorter or longer. That means your user interface objects need to adapt to text.

Xcode helps you design user interfaces in two ways. First, always define constraints
on your user interface objects. This uses Auto Layout that allows the user interface
to dynamically adapt to longer or shorter text of different languages. When setting
constraints, avoid defining fixed values such as widths.

Second, Xcode offers a preview feature that lets you see how user interface objects
will look with different pseudolanguages that mimic real languages by displaying extra-
long text or text with accent characters above and below text. This lets you see if your
user interface provides enough width and height to display different types of text.

To see how to design a user interface for different languages, follow these steps:

1. Create a Single View App from the iOS category and name it
LocalApp.

2. Click the Main.storyboard file in the Navigator pane.

202

CHAPTER 8 TRANSLATING WITH LOCALIZATION

3. Click the Library icon and drag and drop three labels onto the
view similar to Figure 8-1.

Label

Label

Label

Figure 8-1. Designing a user interface for multiple languages

4. Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard and ViewController.
swift file side by side.

5. Click the double circle icon at the top in the assistant editor
(the window on the right). A popup menu appears as shown in

Figure 8-2.
(1] mManual 33
g8 < @ Automatic (1) » t) [[) viewDidLoad()

1 @) Top Level Objects (1) B

/

4 @ Localizations (1) B

¥ 4

/ 3/11/1%9.
@) Preview (1) > Main.storyboard (Preview)

Figure 8-2. Choosing the preview of the user interface

6. Choose Preview » Main.storyboard (Preview). Xcode displays a
preview of the Main.storyboard file in the assistant editor
(the right pane). In the bottom right corner of the assistant editor,
a Language button displays your native language such as English.

203

CHAPTER 8 TRANSLATING WITH LOCALIZATION

7. Click this Language button that displays your current language
(such as English). A popup menu appears as shown in Figure 8-3.

English — Development Language

Double-Length Pseudolanguage
Accented Pseudolanguage
Bounded String Pseudolanguage

Figure 8-3. Choosing a different pseudolanguage

8. Choose Double-Length Pseudolanguage, which simply duplicates
your current text to show you how longer text will look on your
user interface. Notice that the labels cut off text, which tells you
that the labels are not wide enough.

9. Click the Language button and choose Accented Pseudolanguage.
Xcode displays text with accent characters above and below the

text as shown in Figure 8-4.

Label

e
ety

Ot

o,

Labél

Figure 8-4. Viewing accented pseudolanguage

204

10.

11.

12.

13.

CHAPTER 8 TRANSLATING WITH LOCALIZATION

Click the Language button and choose Bounded String
Pseudolanguage. Xcode displays the text cut off, which shows that
the labels are not wide enough.

Click View Controller Scene in the Document Outline and then
choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints in the bottom half of the submenu. Xcode adds
constraints to all the user interface objects.

Click the Language button in the assistant editor and choose
Double-Length Pseudolanguage, Accented Pseudolanguage, and
Bounded String Pseudolanguage. Notice that with constraints
defined, Auto Layout automatically adjusts the width of the label
to accommodate larger and shorter text.

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.

By using Xcode’s Auto Layout features (constraints) and the preview feature of the

assistant editor, you can design a user interface that adapts to different languages.

Creating a Localization File

Localization works by creating multiple files to store the text you want to display in other

languages. To create localization files, you need to define which languages you want your

Xcode project to support. For each language you want your app to support, you'll need to

define one localization setting.

To see how to add localization to a project, follow these steps:

1.

2.

Make sure the LocalApp project is loaded into Xcode.

Click the project name at the top of the Navigator pane as shown
in Figure 8-5. Xcode displays information about the project in the
middle pane.

205

CHAPTER 8 TRANSLATING WITH LOCALIZATION

BEHKIQAANO =Eo B8
v LocalApp
s AppDelegate.swift
» ViewController.swift
v Main.storyboard
Main.storyboard (Base)
7 Main.strings (French)
¥ Assets.xcassets
> LaunchScreen.storyboard
Info.plist
» . Products

Figure 8-5. Selecting the project name

3. Click the Select popup menu in the upper left corner of the middle
Xcode pane. A popup menu appears as shown in Figure 8-6.

B8 < B LocalApp

D General Capabilities Resource Tags Info Build Settings Build Phases
K Clicking the Select
pPopup menu...
iP Project
G LocalApp |
3 Targets :‘\ . --displays diﬁerent
|E v A tocameo choices

Add Target...

Figure 8-6. Selecting the project name

4. Click the project name (such as LocalApp) under the Project
category at the top of the popup menu.

5. Click Info at the top of the middle Xcode pane. Xcode displays an
Info pane as shown in Figure 8-7.

206

Build Rules

CHAPTER 8 TRANSLATING WITH LOCALIZATION

[p———— T e le + 00 O
b no

Bk Bategs artity and Type
e Lotsttrs
Coemin :
[} Locatpy weoepey -
P Atrabicieng]
Cotemerm ook Pragcte
Prs PP one Cavaiopmand
Surce Croed oeslhony
Buaad on Codigurntion File Lecsihpp uiodeprs o
e Cortpuarmens Se1 —
[P —

ettt Roode 8 -computice [
Orpwrmtin ety Wang

o Pt
[B o sommang-snn betds
-
oAb wosn ey Sesces B
Languagn encurzen weata 4)
: = e

Englsh — Devsiogererd Lingutze ins Locaiens B

G Use Bata mmmasonsiauen,

Figure 8-7. The project Info pane

6. Click the +icon under the Localizations category. A popup menu
appears of different languages as shown in Figure 8-8.

¥ Localizations

Language Resources
English — Development Language 2 Files Localized
+

English (United Kingdom) (en-GB)
English (Australia) (en-AU)
English (india) (en-IN)

Chinese (Simplified) (zh-Hans)
Chinese (Traditional) (zh-Hant)
Chinese (Hong Kong [China]) (zh-HK)
Japanese (ja)

Spanish (es)

Spanish (Latin America) (es-419)
French (Canada) (fr-CA)

German (de)

Russian (ru)

Portuguese (Brazil) (pt-BR)
Portuguese (Portugal) (pt-PT)
Italian (it)

Korean (ko)

Turkish (tr)

Dutch (nl)

Arabic (ar)

Thai (th)

Swedish (sv)

Danish (da)

Vietnamese (vi)

Norwegian Bokmal (nb)

Polish (pl)

Finnish (fi)

Indonesian (id)

Figure 8-8. The project Info pane

207

CHAPTER 8 TRANSLATING WITH LOCALIZATION

7. Choose a language you want your app to support. For this
example, choose French. A window appears, displaying all the
files to localize.

8. Make sure all options are selected and click the Finish button.
Notice that Xcode now displays a gray disclosure triangle to the
left of the Main.storyboard file in the Navigator pane.

9. Click this gray disclosure triangle to the left of the Main.storyboard
file. Notice that Xcode has now created two additional files: Main.
storyboard (Base) that represents your native language and Main.
strings (French) (or whatever language you chose) as shown in
Figure 8-9.

B QA = o &8
v &3 LocalApp
¥ LocalApp

» AppDelegate.swift

» ViewController.swift

Main.storyboard (Base)
' Main.strings (French)
9 Assets.xcassets
4 LaunchScreen.storyboard
Info.plist
> . Products

Figure 8-9. Viewing multiple files in the Main.storyboard

The Main.storyboard (Base) file contains the storyboard of your project where you
can design the user interface. The Main.strings file contains text to display on the user
interface. Xcode identifies the text to appear in the user interface by the Object ID, which
appears on the Identity Inspector pane.

To view the Object ID of a user interface object, follow these steps:

1. Make sure the LocalApp project is loaded into Xcode.

2. Click the Main.storyboard file in the Navigator pane.

208

CHAPTER 8 TRANSLATING WITH LOCALIZATION

3. Click a user interface object and choose View » Inspectors »

Show Identity Inspector, or click the Identity Inspector icon in the

upper right corner of the Xcode window. The Object ID appears as

shown in Figure 8-10.

r View) L Date Label

9:41

‘Lapel
?@3’95

Label

Custom Class

Class © n

Module

Identity

Restoration ID

User Defined Runtime Attributes
Key Path Type Value

Document
Label

X

Object ID JzJ-vs-9Y7
Loc nherted - (Nothing) E

Localizer Hint

Accessibility
Accessibility £ Enabled
Label
Hint

Identifier

Figure 8-10. Finding the Object ID of a user interface object

Storing Text

The most common way to store text in an app is by simply typing it in code such as

var greeting = "Hello"

Unfortunately, such “hard coding” of text makes it difficult to change the text for

other languages. Instead of typing the actual text to appear, we need to identify where

we want text to appear and then let our app replace the text with the appropriate words

depending on the user’s language displayed on the iOS device.

209

CHAPTER 8 TRANSLATING WITH LOCALIZATION

If you're familiar with mail merge, the idea is to insert fields where you want specific
names and addresses to appear. String localization works the same way. Instead of
typing the actual text, we identify all text with NSLocalizedString like this:

var greeting = NSLocalizedString("Hello", comment: String)

You still type the actual text to appear but it appears as an NSLocalizedString. Then
you’ll need to create a list of NSLocalizedStrings with their equivalent translated text into
another language such as French, Russian, or Arabic.

The comment portion of the NSLocalizedString is optional, but is meant to help a
translator understand the context of the text. This can help a translator more accurately
translate your text based on the comment you provide.

Once you've identified text in your code as NSLocalizedString, the next step is to
edit the Main.strings file that shows the user interface (identified by Object ID) and its
equivalent word or term in another language.

In our example, let’s assume that we want to display a greeting in the top label, the
date in the middle label, and a number in the bottom label. That means we’ll need both
our native language text and the foreign language text to appear in each label, identified
by its Object ID.

When we define a localization file (such as French), Xcode automatically creates a
Main.strings file that identifies user interface objects by their Object ID such as

/* Class = "UILabel"; text = "Label"; ObjectID
"FBY-Dx-bNj.text" = "Label";

"FBY-Dx-bNj"; */

/* Class = "UILabel"; text
"JzJ-vs-9Y7.text" = "Label";

"Label”; ObjectID

"JzJ-vs-9Y7"; */

/* Class = "UILabel"; text = "Label"; ObjectID
"aby-R3-3e4.text" = "Label";

"aby-R3-3e4"; */

What we need to do is customize this Main.strings file to display the foreign language
equivalent. To do this with the LocalApp project, follow these steps:

1. Make sure the LocalApp project is loaded into Xcode and that you
have defined a localization file for French.

2. Click the Main.storyboard file in the Navigator pane.

210

CHAPTER 8 TRANSLATING WITH LOCALIZATION

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard and ViewController.
swift file side by side.

Move the mouse pointer over the top label, hold down the Control
key, and Ctrl-drag underneath the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type greetingLabel, and click the
Connect button.

Repeat steps 4-6 for the middle and bottom label, except name
the middle label dateLabel and the bottom label numberLabel.
You should have the following three IBOutlets:

@IBOutlet var greetinglabel: UILabel!
@IBOutlet var datelabel: UILabel!
@IBOutlet var numberlLabel: UILabel!

Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
greetinglabel.text = NSLocalizedString("Hello",
comment: "Formal greeting")
datelabel.text = NSLocalizedString("Date", comment:
"Date format")
numberLabel.text = NSLocalizedString("Number",
comment: "Number format")

}

This code defines the text to appear in each label when the app
runs. In this case, the top label will display “Hello’, the middle
label will display “Date’; and the bottom label will display
“Number”.

211

CHAPTER 8 TRANSLATING WITH LOCALIZATION

9. Click the Main.strings (French) file in the Navigator pane under
the Main.storyboard group. Notice that Xcode identifies each label
by its Object ID, which is a mix of letters and numbers such as
JzJ-us-9Y7. (The exact Object ID of your labels will be different for
every Xcode project.)

10. Edit the Main.strings file similar to the following:

/* Class = "UILabel"; text = "Label"; ObjectID
"FBY-Dx-bNj.text" = "Bonjour";

"FBY-Dx-bNj"; */

/* Class = "UILabel"; text = "Label"; ObjectID
"JzJ-vs-9Y7.text" = "La date";

"JzJ-vs-9Y7"; */

/* Class = "UILabel"; text = "Label"; ObjectID
"aby-R3-3e4.text" = "Nombre";

"aby-R3-3e4"; */

11. Click the Main.storyboard file in the Navigator pane.

12. Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard and ViewController.
swift file side by side.

13. Click the double circle icon at the top in the assistant editor (the
window on the right). A popup menu appears (see Figure 8-2).

14. Choose Preview » Main.storyboard (Preview). Xcode displays
a preview of the Main.storyboard file in the assistant editor (the
right pane). In the bottom right corner of the assistant editor, a
Language button displays your native language such as English.

15. Click this Language button that displays your current language
(such as English). A popup menu appears (see Figure 8-3).

16. Choose French. Notice that Xcode now displays the French
translated text in the user interface as shown in Figure 8-11.

212

9:41

Label

Label

Label

CHAPTER 8

2:41

TRANSLATING WITH LOCALIZATION

Nombre

La date

Bonjour

Figure 8-11. The preview pane showing French text defined in the Main.strings

(French) file

17. Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.

Creating a Localized String File

At this point if you run our localApp, it will always display the text “Hello’, “Date format’,

and “Number format” in the labels that appear on the user interface regardless of the i0OS

device’s language preference. That’s because even though we defined what French text

to appear on the user interface through the Main.strings (French) file, we still need to

define what strings to appear when the app actually runs. The Main.strings (French) file

just lets us preview our user interface with different languages, but does not define which

foreign language words to use while the app runs.

To do this, we need to define each text to replace everywhere we defined text as

NSLocalizedString. That means we need to follow these steps:

o Replace text everywhere in our NSLocalizedString code to define

placeholder text to appear.

o Create alocalized string file that defines which native language terms

to replace in the placeholder text.

o Create one or more additional localized string files to define which

foreign language terms to replace in the placeholder text.

213

CHAPTER 8 TRANSLATING WITH LOCALIZATION

To see how to create localized string files for each foreign language you want to
support, follow these steps:

1. Make sure the LocalApp project is loaded in Xcode.

2. Make sure you have created at least one localization file for an
additional foreign language to support such as French.

3. Choose File » New » File. A template dialog appears.

4. Scroll down and click the Strings File icon under the Resource
category under iOS as shown in Figure 8-12.

Choose a template for your new file:

m watchOS tvOS mac0S ®
Resource
Notitication Asset Catalog GeoJSUN File GPX File Hroperty List

Simulation File

- .
F L} v 4
Rich Text File SceneKit Catalog ScenekKit Particle ScenekKit Settings Bundle
System File Scene File
o
b4 b L A
SiriKit Intent SpriteKit Action SpriteKit SpriteKit Scene SpriteKit Tile Set
Definition File Particle File
a0

Sticker Catalog Stringsdict File

Cancel Next

Figure 8-12. Creating a Strings File

5. Click the Next button. A dialog appears, asking where you want to
save the file.

6. Change the file name to Localizable.strings.

214

CHAPTER 8 TRANSLATING WITH LOCALIZATION

7. Click the Create button. Xcode adds the Localizable.strings file
to the Navigator pane and also displays a File Inspector pane as
shown in Figure 8-13.

D o

I Identity and Type
Name File.strings

Type Default - Localizable Strin...

Location Relative to Group B
File.strings [=
Full Path [Users/wallacewang/
Documents/Book Projects/
Pro iPhone Development/
Source Code/DeleteMe/
File.strings]

On Demand Resource Tags

Localization
Localize...

| Target Membership
A\ DeleteMe

' Text Settings
Text Encoding No Explicit Encoding

Line Endings

Indent Using Spaces

S ol o] o)

Widths 40 4
Tab Indent

Wrap lines

Figure 8-13. The File Inspector pane for the Strings File

215

CHAPTER 8 TRANSLATING WITH LOCALIZATION

8. Click the Localize button in the File Inspector pane. A dialog
appears asking if you want to localize this file as shown in
Figure 8-14.

) Do you want to localize this file?
7 The file will be moved into the lproj folder for the
following language.
English

Figure 8-14. Xcode asks if you want to localize the Strings File

9. Click the Localize button. Xcode displays a Localization category
in the File Inspector pane. Notice that your native language check
box appears selected (such as English), while the other foreign
language check box is clear as shown in Figure 8-15.

216

CHAPTER 8 TRANSLATING WITH LOCALIZATION

Do
Identity and Type
Name File.strings
Type Default - Localizable Strin... B

<>

Location
en.lproj/File.strings s

Full Path fUsers/wallacewang/
Documents/Book Projects/
Pro iPhone Development/
Source Code/LocalApp/
en.lproj/File.strings o

On Demand Resource Tags

Localization
7 English

French

Target Membership
LocalApp

Text Settings
Text Encoding No Explicit Encoding 2
Line Endings
Indent Using Spaces B
Widths als ais
Tab Indent
Wrap lines

Figure 8-15. The Localization category in the File Inspector pane

10. Select the French check box. Xcode displays a gray disclosure
triangle to the left of Localizable.strings in the Navigator pane.

11. Click the gray disclosure triangle that appears to the left of
Localizable.strings. Notice that Xcode has now created two
Localizable.strings, one for each language you want to support as

shown in Figure 8-16.

217

CHAPTER 8 TRANSLATING WITH LOCALIZATION

BERKR QAOSO=o B
M | neals

v R Localizable.strings
* Localizable.strings (English)
' Localizable.strings (French)
» AppDelegate.swift
» ViewController.swift
v Main.storyboard
Main.storyboard (Base)
r Main.strings (French)
¥ Assets.xcassets
| LaunchScreen.storyboard

Info.plist
P . Products

Figure 8-16. Xcode creates a separate .strings file for each language you want to
support in your app

At this point, both .strings files are empty. What we need to do is go through our
code, put placeholder text in all NSLocalizedStrings, and define what actual text we want
to appear for each placeholder text.

The names we give our placeholder text can be any arbitrary text as long as it’s
distinct and unique. For our example, we’ll use the following placeholder text:

[GREETING]
[DATE]
[NUMBER]

We could just as easily choose the following for our placeholder text, which shows
that the placeholder text style isn’t as important as its uniqueness:

Greeting.screenl
Date.screeni
Number.screenil

To see how to display text in foreign languages in our app, follow these steps:
1. Make sure the LocalApp project is loaded in Xcode.

2. Make sure you have created at least one localization file for an
additional foreign language to support such as French.

218

CHAPTER 8 TRANSLATING WITH LOCALIZATION

3. Make sure you have created a separate .strings file for each

language you want your app to support (such as two .strings files

for English and French).

4. Click the ViewController.swift file in the Navigator pane.

5. Edit the viewDidLoad method as follows:

override func viewDidlLoad() {

}

super.viewDidLoad()

// Do any additional setup after loading the view.
greetinglabel.text = NSLocalizedString("[GREETING]", comment:
"Formal greeting")

datelLabel.text = NSLocalizedString("[DATE]", comment: "Date
format")

numberLabel.text = NSLocalizedString("[NUMBER]", comment:
"Number format")

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

@IBOutlet var greetinglabel: UILabel!
@IBOutlet var datelabel: UILabel!
@IBOutlet var numberlLabel: UILabel!

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
greetinglabel.text = NSLocalizedString("[GREETING]",
comment: "Formal greeting")
datelLabel.text = NSLocalizedString("[DATE]", comment:
"Date format")
numberLabel.text = NSLocalizedString("[NUMBER]",
comment: "Number format")

219

CHAPTER 8 TRANSLATING WITH LOCALIZATION

6. Click the Localizable.strings (English) file in the Navigator pane.

7. Add the following inside the Localizable.strings (English) file:

"[GREETING]" = "Hello";
"[DATE]" = "Date";
"[NUMBER]" = "Number";

Note Make sure you put a semicolon at the end of each line or else Xcode won’t
know where the line ends and your project won’t run.

8. Click the Localizable.strings (French) file in the Navigator pane.

9. Add the following inside the Localizable.strings (French) file:

"[GREETING]" = "Bonjour";
"[DATE]" = "La Date";
"[NUMBER]" = "Nombre";

Now that we’ve defined placeholder text along with English and French words to
appear when the app runs, it’s time to test the app as if the iOS Simulator were running
in a different language. To change the language of the iOS Simulator, you need to define
a different language in the project scheme.

To change the i0S Simulator language for your app to run in, follow these steps:

1. Click the Scheme button (it displays your project’s name) that
appears in the upper left corner of the Xcode window. A popup
menu appears as shown in Figure 8-17.

Scheme button

® ® > #% LocalApp) il iPhone Xr
Popup v ¢\ LocalApp >
menu T —
New Scheme...
| Manage Schemes...

Figure 8-17. The Scheme popup menu

220

CHAPTER 8 TRANSLATING WITH LOCALIZATION

2. Choose Edit Scheme. A window appears.
3. Click Options.
4. Click Run in the left pane.

5. Click the Application Language popup menu and choose the
language you want the Simulator to mimic such as French
(see Figure 8-18).

LocalApp) @ iPhone Xr

Build f i !
> ;s S Info Arguments Diagnostics
Core Location Allow Location Simulation
Default Location None B
3 Borl
i Application Data None B
Profile
> ﬁ Release
Routing App Coverage File None <
> a Analyze o g
Debug
Background Fetch Launch due to a background fetch event
Archive
< 'p Release i & .
Localization Deb Show localized strings
Application Language French
Application Region System Region
XPC Services Debug XPC services used by this application
Queue Debugging Enable backtrace recording
Duplicate Scheme Manage Schemes... Shared m

Figure 8-18. The Application Language popup menu

6. Click the Close button.

7. Click the Run button or choose Product » Run. If you chose
French as the Application Language in step 5, then the Simulator
will load the French version of your app.

8. Choose Simulator » Quit Simulator.

221

CHAPTER 8 TRANSLATING WITH LOCALIZATION

Localizing Images

To localize text, we needed to insert placeholder text in our code. Then we had to
create two separate Localizable.strings files where each .strings file contained both
the placeholder text we used and its actual text we want the app to use for different
languages such as

"[GREETING]" = "Hello";

Localizing images is no different except you use placeholder text to specify a file
name to display. Then you need a different image for each language such as an image for
English and a different image for French such as

let imageFile = NSLocalizedString("[FLAG]", comment: "National flag")
myImageView.image = UIImage(named: imageFile)

In each language’s Localizable.strings file, you need to specify the exact file name
such as

"[FLAG]" = "usaFlag";

Now you just need an image named usaFlag in your project. You can create your own
images, have someone create one for you, or download images off the Internet. Some
free sources of images include

e pixnio.com
e publicdomainvectors.org
e www.pdclipart.org

Visit one of these sites and download an American flag and a French flag image and
make sure they have distinct names. For the purposes of this project, we’ll assume the
American flag image is called usaFlag.png and the French flag is called franceFlag.png.

Drag both flag images into your LocalApp project’s Navigator pane. When a dialog
appears, click Finish button. Xcode should now display the two flag images in the
Navigator pane.

To see how to display these different images in an app, follow these steps:

1. Make sure the LocalApp project is loaded into Xcode.

2. Make sure you have added two flag images into the Navigator pane.

222

http://pixnio.com
http://publicdomainvectors.org
http://www.pdclipart.org

CHAPTER 8 TRANSLATING WITH LOCALIZATION

3. Click the Main.storyboard file in the Navigator pane.

4. Clickthe Library icon and drag and drop an Image View onto the
view as shown in Figure 8-19.

Q_ [object 8

|) +J Stepper - Provides a user interface for incrementing or decrementing
a value.

Horizontal Stack View - Arranges views linearly.

2:41]

Vertical Stack View - Arranges views linearly.

Label

Table View - Displays data in a list of plain, sectioned, or grouped rows.

Label

Table View Cell - Defines the attributes and behavior of cells (rows) in a
table view.

Label —
Image View - Displays a single image, or an animation described by an array
| of images.

Collection View - Displays data in a collection of cells.

Collection View Cell - Defines the attributes and behavior of cells in a
collection view.

> = Collection Reusable View - Defines the attributes and behavior of
reusable views in a collection view, such as a section header or footer.

Text View - Displays multiple lines of editable text and sends an action
message o a target object when Return is tapped.

Figure 8-19. Adding an Image View to the user interface

5. Choose Editor » Resolve Auto Layout Issues » Reset to
Suggested Constraints in the top half of the submenu. Xcode adds

constraints to the image view.

6. Choose View » Assistant Editor » Show Assistant Editor, or
click the Assistant Editor icon in the upper right corner of the
Xcode window. Xcode displays the Main.storyboard file and the
ViewController.swift file side by side.

223

CHAPTER 8 TRANSLATING WITH LOCALIZATION

7. Move the mouse pointer over the image view, hold down the
Control key, and Ctrl-drag under the class ViewController line in
the ViewController.swift file.

8. Release the Control key and the left mouse button. A popup
window appears.

9. C(lickin the Name text field, type flaglmageView, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var flagImageView: UIImageView!

10. Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.

11. Add the following two lines inside the viewDidLoad method:

let imageFile = NSLocalizedString("[FLAG]", comment: "National flag")
flagImageView.image = UIImage(named: imageFile)

The entire ViewController.swift file should look like this:
import UIKit
class ViewController: UIViewController {

@IBOutlet var greetinglabel: UILabel!
@IBOutlet var datelabel: UILabel!
@IBOutlet var numberlLabel: UILabel!
@IBOutlet var flagImageView: UIImageView!

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
greetinglabel.text = NSLocalizedString("[GREETING]",
comment: "Formal greeting")
datelLabel.text = NSLocalizedString("[DATE]", comment:
"Date format")
numberLabel.text = NSLocalizedString("[NUMBER]", comment:
"Number format")

224

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

CHAPTER 8 TRANSLATING WITH LOCALIZATION

let imageFile = NSLocalizedString("[FLAG]",
comment: "National flag")
flagImageView.image = UIImage(named: imageFile)

Click the Localizable.strings (English) file and add the following line:

"[FLAG]" = "usaFlag";

Click the Localizable.strings (French) file and add the following line:

"[FLAG]" = "franceFlag";

Click the Scheme button (it displays your project’s name) that
appears in the upper left corner of the Xcode window. A popup
menu appears (see Figure 8-17).

Choose Edit Scheme. A window appears.
Click Options.
Click Run in the left pane.

Click the Application Language popup menu and choose the
language you want the Simulator to mimic such as French
(see Figure 8-18).

Click the Close button.

Click the Run button or choose Product » Run. If you chose
French as the Application Language in step 5, then the Simulator
will load the French version of your app and display the French
flag.

Repeat steps 14-20 except choose English in step 18. Notice that
when you run the app under English, the American flag image
appears on the Simulator screen.

Choose Simulator » Quit Simulator.

225

CHAPTER 8 TRANSLATING WITH LOCALIZATION

Customizing the App Name

One final step to localization is customizing the app name. To do this, you need to create
a separate InfoPlist.strings file for each language you want to support. Then in each
InfoPlist.strings file, you define the CFBundleDisplayName value such as

"CFBundleDisplayName" = "App Name";

Whatever name you define here is what appears underneath the app’s icon when it
appears on the Home screen.
To see how to localize the name for your app, follow these steps:

1. Make sure the LocalApp project is loaded into Xcode.
2. Choose File » New » File. A template dialog appears.

3. Scroll down and click the Strings File icon under the Resource
category under iOS (see Figure 8-12).

4. Click the Next button. A dialog appears, asking where you want to
save the file.

5. Change the file name to InfoPlist.strings.

6. Click the Create button. Xcode adds the InfoPlist.strings file to
the Navigator pane and also displays a File Inspector pane (see
Figure 8-13).

7. Click the Localize button in the File Inspector pane. A dialog
appears asking if you want to localize this file (see Figure 8-14).

8. Click the Localize button. Xcode displays a Localization category
in the File Inspector pane. Notice that your native language check
box appears selected (such as English), while the other foreign
language check box is clear (see Figure 8-15).

9. Select the French check box. Xcode displays a gray disclosure
triangle to the left of InfoPlist.strings in the Navigator pane.

10. Click the gray disclosure triangle that appears to the left of
InfoPlist.strings. Notice that Xcode has now created two InfoPlist.
strings, one for each language you want to support.

226

11.

12.

13.

14.

15.

CHAPTER 8 TRANSLATING WITH LOCALIZATION
Click the InfoPlist.strings (English) file in the Navigator pane.
Add the following to the InfoPlist.strings (English) file:
"CFBundleName" = "$(PRODUCT_NAME)";
"CFBundleDisplayName" = "USA App";

Click the InfoPlist.strings (French) file in the Navigator pane.

Add the following to the InfoPlist.strings (French) file:
"CFBundleDisplayName" = "French App";

Click the Run button or choose Product » Run. The Simulator

scCreen appears.

Note

Although you have defined the French version of the app to display “French

App” as the app name on the Home screen, you must also change the language on
the Simulator (or on a real i0S device) to make the app name change.

16.

17.

18.

19.

20.

21.

22.

Choose Hardware » Home to display the Home screen on the
Simulator.

Click the Settings icon.

Click General.

Click Language & Region.

Click iPhone Language. A list of languages appears.

Choose French and then click Done. Notice that now your app
displays “French App” on the Home screen. You may want to
repeat steps 17-21 to change the Simulator’s language back to
your native language again.

Choose Simulator » Quit Simulator to return back to Xcode.

227

CHAPTER 8 TRANSLATING WITH LOCALIZATION

Formatting Numbers and Dates

Every region tends to display numbers and dates in different ways. To make your app
format data such as numbers and dates based on the user’s language and region, use
Apple’s various Formatters such as NumberFormatter or DateFormatter.

Apple’s various formatters can automatically adjust the appearance of data based
on the iOS device’s language and region. Your app just needs to calculate the data to
appear on the user interface. To learn more about the different formatters available, read
Apple’s documentation (https://developer.apple.com/documentation/foundation/
formatter).

The basic step to using a formatter involves choosing which formatter to use such as

let formatter = DateFormatter()

Then define one or more settings for how to format the information such as
formatter.dateStyle = .full

Finally, use the formatter to convert the data such as
let myDate = formatter.string(from: Date())

To see how to use formatters to display data in different languages and regions,
follow these steps:

1. Make sure the LocalApp project is loaded into Xcode.
2. Click the ViewController.swift file in the navigator pane.

3. Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
let formatter = DateFormatter()
formatter.dateStyle = .full
let myDate = formatter.string(from: Date())

let formatter2 = NumberFormatter()
formatter2.numberStyle = .currency
let myMoney = formatter2.string(from: 123456)

228

https://developer.apple.com/documentation/foundation/formatter
https://developer.apple.com/documentation/foundation/formatter

}

CHAPTER 8 TRANSLATING WITH LOCALIZATION

greetinglabel.text = NSLocalizedString("[GREETING]",
comment: "Formal greeting")

dateLabel.text = NSLocalizedString("\(myDate)", comment:
"Date format")

numberLabel.text = NSLocalizedString("\(myMoney!)",
comment: "Number format")

let imageFile = NSLocalizedString("[FLAG]", comment:
"National flag")
flagImageView.image = UIImage(named: imageFile)

To see the differences in how the formatters work, we need to run

our app as if we're in a different region of the world. So not only

can we set the language for the Simulator to use, but we can also

define the region for the Simulator to mimic.

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

@IBOutlet var greetinglabel: UILabel!
@IBOutlet var datelabel: UILabel!
@IBOutlet vaxr numberlLabel: UILabel!
@IBOutlet var flagImageView: UIImageView!

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
let formatter = DateFormatter()
formatter.dateStyle = .full
let myDate = formatter.string(from: Date())

let formatter2 = NumberFormatter()
formatter2.numberStyle = .currency
let myMoney = formatter2.string(from: 123456)

229

CHAPTER 8 TRANSLATING WITH LOCALIZATION

230

greetinglabel.text = NSLocalizedString("[GREETING]",
comment: "Formal greeting")

datelabel.text = NSLocalizedString("\(myDate)", comment:
"Date format")

numberLabel.text = NSLocalizedString("\(myMoney!)",
comment: "Number format")

let imageFile = NSLocalizedString("[FLAG]", comment:
"National flag")
flagImageView.image = UIImage(named: imageFile)

}

Click the Scheme button (it displays your project’s name) that
appears in the upper left corner of the Xcode window. A popup
menu appears (see Figure 8-17).

Choose Edit Scheme. A window appears.
Click Options.
Click Run in the left pane.

Click the Application Language popup menu and choose the
language you want the Simulator to mimic such as French
(see Figure 8-18).

Click the Application Region popup menu and choose a different
region such as France as shown in Figure 8-20.

CHAPTER 8 TRANSLATING WITH LOCALIZATION

#\ LocalApp) @l iPhone Xa

» ;; Build Info Arguments Options Diagnostics
. bt

m Core Location Allow Location Simulation

Default Location None B
> f' T‘.““
i Application Data None i
2, it
. Routing App Coverage File None
Analyze ol B
> B
: Background Fetch Launch due to a background fetch event
Archive
» P e
: Localization Debuggi Show localized strings
iy "
Application Language French
Application Region France
XPC Services Debug XPC services used by this application
Queue Debugging Enable backtrace recording
Duplicate Scheme Manage Schemes... Shared m

Figure 8-20. Choosing a region for the Simulator to mimic

10. Click the Close button.

11. Click the Run button or choose Product » Run. If you chose
French as the Application Language and France as the Application
Region, then the Simulator will load the French version of your
app and display the date and currency as shown in Figure 8-21.

Bonjour

mardi 12 mars 2019

123 456,00 €

Figure 8-21. The French version of the app displays dates and currency in French
format

231

CHAPTER 8 TRANSLATING WITH LOCALIZATION

12. Choose Simulator » Quit Simulator.

13. Repeat steps 5-10 except choose English as the language and the
United States as the region. Notice that when you run the app
under English, the date and currency appear in the format familiar
to America as shown in Figure 8-22.

Hello

Tuesday, March 12, 2019

$123,456.00

Figure 8-22. The English version of the app displays dates and currency in
American format

14. Choose Simulator » Quit Simulator to return back to Xcode.

Summary

Creating an app in your native language may be fine, but if you want to reach other
markets, you need to translate the text of your app into other languages. By using Xcode’s
preview feature, you can mimic other languages to make sure your user interface adapts
to longer or shorter text. You can also display text in other languages to see how specific
foreign words and phrases will look on your app’s user interface.

Once you've defined the layout of your user interface and added constraints through
Auto Layout, you can define all text in your app as NSLocalizedStrings. Then you can
create a list of equivalent text to appear wherever your code finds an NSLocalizedString.
You'll need to create a different file for each language you want your app to support.

232

CHAPTER 8 TRANSLATING WITH LOCALIZATION

Finally, don’t forget that some languages and regions display data differently such
as dates and numbers. Use a formatter to let your app adapt automatically to different
regional differences. You can simulate different languages and regions by changing the
scheme of your app before running it in the Simulator.

Creating an app can be hard work, so it only makes sense to distribute your app as
broadly as possible so it can reach as many people as possible.

233

CHAPTER 9

Using 3D Touch

When Apple introduced the iPhone, smartphones often displayed rows of buttons or
sported keyboards that folded or flipped out. Having to display so many buttons meant
that the smartphone couldn’t display much of the screen. Fortunately, the iPhone
changed the smartphone world when they introduced the touch screen interface.
Instead of crowding the smartphone with physical buttons, the touch screen interface
displayed a single screen that could offer virtual buttons.

Such virtual buttons meant the screen could adapt to the user’s needs. If you were
typing an e-mail message, the virtual keyboard could display characters to type. If you
were browsing the Internet, the virtual keyboard could display commonly used keys
such as the @ symbol or the .com extension. Virtual keyboards made the iPhone far
more versatile than older smartphones that relied on physical buttons.

The touch screen interface of the iPhone initially focused on taps and gestures.
Tapping an icon on the screen would select it, while swiping on that same icon might
make it move or slide away. While useful, such two-dimensional interaction can be
limiting. That’s why the latest iPhones offer a third way to interact with the touch screen
called 3D Touch.

The idea behind 3D Touch is to add a third dimension to interaction with the touch
screen: pressure. By pressing your finger on an icon for an extended period of time,
3D Touch can display shortcuts. By adding support for 3D Touch, your app can take
advantage of the iPhone’s latest touch gestures.

Note Only the iPhone 6s and later support 3D Touch with the exception of the
iPhone Xr. The iPad does not support 3D Touch.

235
© Wallace Wang 2019

W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_9

CHAPTER9 USING 3D TOUCH

Understanding 3D Touch

3D Touch first appeared on the iPhone 6s and has been a standard feature of every
iPhone (with the exception of the iPhone Xr) since then. The two most common ways
to interact with 3D Touch are from the Home screen and from within your app itself. 3D
Touch works by detecting the amount of pressure a user places on the touch screen.
When you use 3D Touch from the Home screen, a popup menu appears, listing
several common actions you're most likely to want from that app. This popup menu can
display shortcuts, called Quick Actions, that consist of up to two lines of text and an icon
as shown in Figure 9-1.

Show Reading List

Show Bookmarks

New Private Tab

New Tab

Figure 9-1. 3D Touch can display Quick Actions

By tapping on a Quick Action, users can immediately access common features of an
app. The second common way to use 3D Touch is within an app itself, which can involve
three steps:

o Peekavailability
o Peek

e Peek quick actions

236

CHAPTER9 USING 3D TOUCH

When you first press on an item within an app, peek availability blurs the
surrounding screen to show you that it supports 3D Touch as shown in Figure 9-2.

wil ¥ 41 AM 7 § 0N

Inbox

Wallace Wang

Book excerpt

Wallace Wang

Siores

Barnes & Noble 3y
Members Only! Double Your Store Discount Th...

Barnes & Noble

mited Time Only - Extra 20% O Books

Wallace Wang

Notes to Superstructure

Figure 9-2. Peek availability blurs the surrounding area to show that the app
supports 3D Touch

Once an app reveals that it supports 3D Touch through blurring the screen, the user
can continue pressing to peek at more detailed information in a window that doesn’t
quite fill up the screen. This Peek action lets you view information without taking the

time to open it as shown in Figure 9-3.

237

CHAPTER9 USING 3D TOUCH

From: Barnes & Noble

To: me.com Hide

Members Only! Double Your Store
Discount This Weekend

View In Browser

I BARNES<-NOBLE

@ Find Your Local B.

MEMBER APPRECIATION DAYS

DOUBLE

NDISCOLINT

Figure 9-3. Peek lets you view information without opening it fully in an app

If you release your finger from the screen, this Peek information will disappear.
However, if you swipe up, a menu of Peek Quick Actions appears at the bottom of the
screen. This lets you perform common actions without opening the data within the
app. At this point, the user can stop touching the screen to tap on one of the Peek Quick
Actions as shown in Figure 9-4.

238

CHAPTER9 USING 3D TOUCH

[—

IES BARNES -NOBLE

MEMBER APPRECIATION DAYS

DOUBLE

NISCOILINT
Reply
Forward
Mark...

Notify Me...
Move Message...
Figure 9-4. A Peek Quick Action menu lets the user choose a common action for

the displayed data

To make this Peek Quick Action menu go away, the user can tap the top of the screen.

Detecting 3D Touch Availability

Since your app may be used on an iPad, iPhone Xr, or iPhone model earlier than the
iPhone 6s, your app must first check if a device supports 3D Touch or not. To see how 3D
Touch works, follow these steps:

1. Create a new iOS Single View App project and name it
3DTouchApp.

2. Click the ViewController.swift file in the Navigator pane.

239

CHAPTER9 USING 3D TOUCH

3. Add the following underneath the viewDidLoad method:

override func touchesMoved(_ touches: Set<UITouch>, with event:
UIEvent?) {
if touches.first != nil {
if #available(iOS 9.0, *) {
if traitCollection.forceTouchCapability ==
UIForceTouchCapability.available {
print ("3D Touch available!")
} else {
print ("3D Touch not available")
}
} else {
print ("Need i0OS 9 or higher")

}

This code first detects a touch and then checks if the device is
running iOS 9 or higher. That’s because 3D Touch is only supported
by iOS 9 and higher. The next if statement checks if 3D Touch
capability is available. If 3D Touch is available and the device is
running iOS 9 or higher, then the preceding code prints “3D Touch

'l’

available!” It’s best to ensure a device can support 3D Touch to avoid

possible crashes.

Note To test 3D Touch in the Simulator, you need a Magic Trackpad that’s either
built-in to a Macintosh laptop or a separate accessory that works with a desktop
Macintosh.

4. Click the Scheme button in the upper left corner of the Xcode
window and choose iPhone 8 as shown in Figure 9-5.

DO rren

Figure 9-5. Choosing an iPhone 8 in the Scheme button

240

CHAPTER9 USING 3D TOUCH

5. Click the Run button or choose Product » Run. The Simulator
screen appears.

6. Choose Hardware » Touch Pressure and make sure a check mark
appears in front of Use Trackpad Force as shown in Figure 9-6.

@& Simulator File Edit BREICOCL

Touch Pressure

Figure 9-6. Choosing Use Trackpad Force if you have a Magic Trackpad with your
Macintosh

7. Move the mouse pointer over the Simulator screen and press and
hold down on the trackpad to simulate a 3D Touch. Notice that the
debug area in Xcode displays the message “3D Touch is available!”

8. Choose Simulator » Quit Simulator to return back to Xcode.

9. Click the Scheme button in the upper left corner of the Xcode
window and choose iPhone Xr.

241

CHAPTER9 USING 3D TOUCH

10. Click the Run button or choose Product » Run. The Simulator
screen appears.

11. Move the mouse pointer over the Simulator screen and press and
hold down on the trackpad to simulate a 3D Touch. Notice that the
debug area in Xcode now displays the message “3D Touch is not
available!”

12. Choose Simulator » Quit Simulator to return back to Xcode.

13. Click the Scheme button in the upper left corner of the Xcode
window and choose iPhone 8 so you can continue testing 3D
Touch in the Simulator.

Detecting Pressure

Once you know that a device offers 3D Touch, you may want to detect the pressure from
the user pressing down on the screen. To simulate 3D Touch, you need to run your app
on one of the following:

o Inthe Simulator running on a laptop Macintosh with a touch pad or a
desktop Macintosh with a Magic Trackpad

e On aniPhone 6s or later (except for an iPhone Xr) connected to a
Macintosh through its USB cable

The two properties for detecting the pressure of 3D Touch includes “force” and
“maximumPossibleForce”. The force property measures the current amount of pressure,
while the maximumPossibleForce property defines the maximum pressure iOS can
recognize.

To see how to detect pressure with 3D Touch, follow these steps:

1. Make sure the 3DTouchApp project is loaded into Xcode.
2. Click the Main.storyboard file in the Navigator pane.

3. Clickthe Library icon and drag and drop a label onto the view.
You may want to expand the width of the label.

242

10.

11.

CHAPTER9 USING 3D TOUCH

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints. Xcode adds constraints to the label.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard side by side with the
ViewController.swift file.

Move the mouse pointer over the label, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type forceLabel, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var forcelabel: UILabel!

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.
Click the ViewController.swift file in the Navigator pane.

Edit the touchesMoved function as follows:

override func touchesMoved(_ touches: Set<UITouch>, with event:
UIEvent?) {
if touches.first != nil {
if #available(i0S 9.0, *) {
if traitCollection.forceTouchCapability ==
UIForceTouchCapability.available {
//print ("3D Touch available!")
let touch
let force

touches.first
Float(touch!.force)/Float(touch!.
maximumPossibleForce)

forcelLabel.text = "\(force * 100)% force"

243

CHAPTER9 USING 3D TOUCH

244

12.

13.

} else {
print ("3D Touch not available")
}
} else {
print ("Need i0S 9 or higher")
}
}
}

Once we know that 3D Touch is available (touches.first is not

nil), then we can assign a constant “touch” to represent the value
stored in touches.first. Then we divide the force of the touch by the
maximumPossibleForce to get a numeric result (converted into
Float data types). Finally, we display this force, multiplied by 100
to show a percentage, in the label on the user interface.

Click the Run button or choose Product » Run. The Simulator
screen appears.

Click the Simulator screen with a trackpad press down. The
Simulator screen displays the amount of force as shown in
Figure 9-7.

CHAPTER9 USING 3D TOUCH

14.750001% force

Figure 9-7. Detecting the amount of pressure from a 3D Touch

14. Choose Simulator » Quit Simulator to return back to Xcode.

Creating Home Screen Quick Actions

Quick Actions give the user the option of opening an app using different options.
For example, when you use Quick Actions on the Safari icon on the Home screen, you’ll
have the option of opening a new tab, a privacy tab, a reading list, or a list of bookmarks
(see Figure 9-1). Quick Actions provide shortcuts to commonly used features in an app.
There are two parts to creating Quick Actions. First, you need to create a menu of up
to four Quick Actions by defining multiple strings in a dictionary stored in the info.plist
file. Each Quick Action can display a title, a subtitle, and an icon. Second, you need to
write Swift code in a method to handle every Quick Action.

245

CHAPTER9 USING 3D TOUCH

To see how to create Home screen Quick Actions, follow these steps:
1. Make sure the 3DTouchApp project is loaded into Xcode.
2. Click the Info.plist file in the Navigator pane.

3. Click the mouse pointer over the up/down arrow icons that
appear to the right of any key item in the property list. A + and
a - icon appears to the right of the up/down arrow as shown in
Figure 9-8.

Key Type Value
¥ Information Property List (13 items)
Localization native development re... $(DEVELOPMENT_LANGUAGE)
$(EXECUTABLE_NAME)
$(PRODUCT_BUNDLE_IDENTIFIER)

Executable file
Bundle identifier

<
<
InfoDictionary version & 6.0
Bundie name o $(PRODUCT_NAME)
Bundie OS Type code o APPL
Bundle versions string, short o 1.0
Bundle version o~ 1
Application requires iPhone enviro... 2 YES
Launch screen interface file base... 2 LaunchScreen
Main storyboard file base name +- Main
» Required device capabilities e (1 item)
| » Supported interface orientati... r ~ (3 items)

Figure 9-8. Clicking on the up/down arrows displays a + and - icon
4. Clickthe +icon to create a new property list item. Xcode creates a
new property list item.

5. Clickin the new property list item key column, type
UIApplicationShortcutltems, and press Enter.

6. Click the popup menu in the Type column and choose Array as
shown in Figure 9-9.

246

Key

¥ Information Property List

Localization native development re...

Executable file

Bundle identifier
InfoDictionary version
Bundle name

Bundle OS Type code
Bundle versions string, short
Bundle version

Application requires iPhone enviro...
Launch screen interface file base...

Main storyboard file base name
» Required device capabilities

[} » UlApplicationShortcutitems 2 © © _

CHAPTER9 USING 3D TOUCH

Type Value

(14 items)
$(DEVELOPMENT_LANGUAGE)
$(EXECUTABLE_NAME)
$(PRODUCT_BUNDLE_IDENTIFIER)
6.0

$(PRODUCT_NAME)

APPL

1.0

1

YES

LaunchScreen

Main

€2 L2 D LY LD P LD L LD LY O

(1 item)
(3 items)
£ (0items)

Figure 9-9. Defining a new property list item as UlApplicationShortcutltems as

an Array type

7.

Click the + icon to create a new property list item and name this

Item 0 with a Type of Dictionary.

Click the + icon to create a new property list item and name this

Item 1 with a Type of Dictionary.

9. Right-click Item 0. A popup menu appears as shown in Figure 9-10.

¥ UlApplicationShortcutitems o Array (0 items)
| ¥ Item O = (0 items)

*Item 1 Cut {0 items)

Copy

Paste

Shift Row Right

Value Type >

Add Row

Show Raw Keys/Values

Property List Type »
Property List Editor Help

Figure 9-10. Indenting a row in the Info.plist file

10. Choose Shift Row Right. Xcode indents Item 0 under the
UlApplicationShortcutltems key.

247

CHAPTER9 USING 3D TOUCH

11. Right-click Item 1. A popup menu appears (see Figure 9-10).

12. Choose Shift Row Right. Xcode indents Item 1 under the
UlApplicationShortcutltems key.

13. Create three additional rows under Item 0 and Item 1 and shift
them to the right so they appear indented under each item.

14. Name these three rows under each item as follows:

o UlApplicationShortcutltemTitle - Defines the Quick Action
shortcut title (required)

o UlApplicationShortcutltemSubtitle - Defines the Quick Action
shortcut subtitle that appears in a smaller font size under the title
text (optional)

o UlApplicationShortcutltemType - Defines a required string to
create a Quick Action shortcut menu (required)

For our 3D Touch app, we'll just create two Quick Action shortcuts to create nine new
rows in the Information Property List that looks like the following table and Figure 9-11:

Key Type Value
UlApplicationShortcutlitems Array (2 items)
[tem O Dictionary (3 items)

UlApplicationShortcutitemTitle String View
UlApplicationShortcutitemSubtitle String View favorite items
UlApplicationShortcutltemType String $(PRODUCT_BUNDLE_IDENTIFIER).First

ltem 1 Dictionary (3 items)
UlApplicationShortcutitemTitle String Share
UlApplicationShortcutitemSubtitle String Share items with friends

UlApplicationShortcutitemType String $(PRODUCT_BUNDLE_IDENTIFIER).Second

248

CHAPTER9 USING 3D TOUCH

Bundle version 1

Application requires iPhone environm... YES
Launch screen interface file base name LaunchScreen
Main storyboard file base name Main

» Required device capabilities (1 item)

Of> <> & O OO

Array < (2 items)

v item O Dictionary (3 items)
UlApplicationShortcutitemTitle String View
UlApplicationShortcutitemSubtitle String View favorite items
UlApplicationShortcutitemType String $(PRODUCT_BUNDLE_IDENTIFIER).First
vitem 1 Dictionary (3 items)
UlApplicationShortcutitemTitle String Share
UlApplicationShortcutitemSubtitle String Share items with friends
UlApplicationShortcutitemType String $(PRODUCT_BUNDLE_IDENTIFIER).Second

Figure 9-11. Defining Quick Action shortcuts in the Information Property List

Note Use a real iPhone that supports 3D Touch to test your app.

15. Connect an iPhone that supports 3D Touch to your Macintosh
through a USB cable.

16. Click the Scheme button in the upper left corner of the Xcode
window and choose the iPhone connected to your Macintosh as
shown in Figure 9-12.

000 > B A

Figure 9-12. You must choose an actual iOS device that supports 3D Touch to test
your app

17. Click the Run button or choose Product » Run. The 3DTouchApp
appears on your iPhone.

18. Press the Home button or swipe up from the bottom of the screen
to return back to the Home screen.

19. Press firmly on the 3DTouchApp icon on the Home screen. The
Quick Action shortcut menu appears as shown in Figure 9-13.

249

CHAPTER9 USING 3D TOUCH

View °
View favorite items

Share
Share items with friends

Figure 9-13. Quick Action shortcuts appear next to the icon

250

20.

21.

22.

Click the Stop button in Xcode to stop running the app.

If you notice the Quick Action menu, the title appears in large
font and the subtitle appears in a smaller font. However, you
may notice a black dot. This is where you can define an icon to
appear. Apple provides icons to represent common tasks such as
sharing, adding, or choosing a favorite item. To view a complete
list of available icons, visit https://developer.apple.com/
documentation/uikit/uiapplicationshortcuticontype.

Click the Info.plist file in the Navigator pane.

Create an additional row under Item 0 and Item

1 for each Quick Action shortcut that defines
UIApplicationShortcutltemIconType. Then define this as

an icon using UIApplicationShortcutlconTypeFavorite and
UlIApplicationShortcutlconTypeShare as shown in Figure 9-14.

https://developer.apple.com/documentation/uikit/uiapplicationshortcuticontype
https://developer.apple.com/documentation/uikit/uiapplicationshortcuticontype

¥ UlApplicationShortcutitems

¥ ltem O
UlApplicationShortcutitemTitle
UlApplicationShortcutitemSubtitle
UlApplicationShortcutitemType
UlApplicationShortcutitemiconType

¥item 1
UlApplicationShortcutitemTitle
UlApplicationShortcutitemSubtitle
UlApplicationShortcutitemType
UlApplicationShortcutitemiconType

200 Aray

Dictionary
String
String
String
String
Dictionary
String
String
String
String

CHAPTER9 USING 3D TOUCH

(2 items)
4 items)
View
View favorite items
${PRODUCT_,BUNDLE_lDENTIFIER].First’
UlApplicationShortcuticonTypeFavorite
4 items)
Share
Share items with friends

t{PRODUCT_BUNDLE_[DENTIFIER].Secy
UlApplicationShortcuticonTypeShare

Figure 9-14. Adding icons to the Quick Action menu items

Note Make sure you spell everything (including uppercase and lowercase letters)
exactly right. Be especially careful when defining an icon type. Under the Key
column heading, you must use UlApplicationShortcutltemliconType (Ul Application
Shortcut ltem Icon Type) but under the Value column heading, you need to use
UlApplicationShortcutlconType (Ul Application Shortcut Icon Type) followed by the
icon name you want to use such as Share or Favorite.

23. Make sure your project will run on an iPhone connected to your

Macintosh. Then click the Run button or choose Product » Run.

The 3DTouchApp’s screen appears on the iPhone.

24. Press the Home button or swipe up from the bottom of the screen

to return back to the Home screen.

25. Press firmly on the 3DTouchApp icon on the Home screen. The

Quick Action shortcut menu appears with icons as shown in

Figure 9-15.

251

CHAPTER9 USING 3D TOUCH

View
View favorite items *

Share I'I'l
Share items with friends

Figure 9-15. Displaying icons in the Quick Action menu items

26. Click the Stop button in Xcode to stop running the app.

Responding to Quick Action Items

Once you've created a list of Quick Action menu items, the last step is to write Swift code
to respond to the Quick Action the user chose. To do that, you need to write Swift code in
the AppDelegate.swift file of your project. The AppDelegate.swift file needs to contain an
enumeration that identifies each Quick Action item with a descriptive name.

There are two parts to creating an enumeration. First, you must create an
enumeration that has an equal number of Quick Actions you want to display. So if
you want to respond to four Quick Actions, you must have four items defined in the
enumeration.

252

CHAPTER9 USING 3D TOUCH

In our project, we just have two Quick Action menu items, so our enumeration only
needs to define two items like this:

enum MenuItems: String {
case First
case Second

}

The exact name of your enumeration is arbitrary (such as Menultems). Also the
name you give for each item in the enumeration is also arbitrary (First and Second).
Next, we need to initialize the enumeration items using the following code as part of the
enumeration:

enum MenuItems: String {
case First
case Second

init?(fullType: String) {
guard let last = fullType.components(separatedBy: ".").last
else { return nil }

self.init(rawvalue: last)

}

var type: String {
return Bundle.main.bundleldentifier! + ".\(self.rawValue)"

}

To respond to Quick Action items, we need a variable of the type
UlApplicationShortcutltem in the AppDelegate.swift file like this:

var launchedShortcutItem: UIApplicationShortcutItem?

The AppDelegate.swift file needs two application functions. The first application
function runs when the user selects a Quick Action item. This function stores the
selected Quick Action selection in the launchedShortcutltem variable like this:

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [UIApplication.
LaunchOptionsKey: Any]?) -> Bool {

253

CHAPTER9 USING 3D TOUCH

if let shortcutItem = launchOptions?[UIApplication.
LaunchOptionsKey.shortcutItem] as? UIApplicationShortcutItem {

launchedShortcutItem = shortcutItem
}

return true

}

The second application function does nothing more than call a function to handle
the completion of the user choosing a Quick Action item:

func application(_ application: UIApplication, performActionFor
shortcutItem: UIApplicationShortcutItem, completionHandler: @escaping
(Bool) -» Void) {

completionHandler (handleShortCutItem(shortcutItem))
}

The preceding function calls a function called handleShortCutltem (this name is
arbitrary and can be anything you want to call it). This handleShortCutltem function
does the actual work of deciding how to respond to which Quick Action item the user
chose.

Now we need to write the handleShortCutltem function to respond to the Quick
Action the user chose. There are two ways to identify the user’s chosen Quick Action.
One way is to identify the choice defined by the enumeration. The second way is to
identify the localizedTitle property, which identifies the UIApplicationShortcutltemTitle
for the Quick Action shortcut you defined in the Info.plist file.

However you want to identify the Quick Action the user chose, you'll likely need
a switch statement to identify the chosen Quick Action and then respond to it. In our
project, we'll just identify the Quick Action chosen. Add the handleShortCutltem
function to the AppDelegate.swift file as follows:

func handleShortCutItem(_ shortcutItem: UIApplicationShortcutItem) ->
Bool {
var handled = false

guard MenuItems(fullType: shortcutItem.type) != nil else {
return false

254

CHAPTER9 USING 3D TOUCH

guard let shortCutType = shortcutItem.type as String? else {
return false

}

switch (shortCutType) {

case MenuItems.First.type:
print ("View favorites")
handled = true

case MenuItems.Second.type:
print ("Share")
handled = true

default:
break

}

let alertController = UIAlertController(title: "Shortcut Chosen",
message: "\"\(shortcutItem.localizedTitle)\"", preferredStyle:
.alert)

let okAction = UIAlertAction(title: "OK", style: .default,
handler: nil)

alertController.addAction(okAction)
window!.rootViewController?.present(alertController, animated:
true, completion: nil)

return handled

}

First, we need to declare a Boolean variable called handled and set it to false.
Then we have two guard statements to ensure that a Quick Action was actually
chosen. The switch statement identifies the chosen Quick Action by its enumeration
value. Then an alert dialog appears to display the chosen Quick Action by its
UlIApplicationShortcutltemTitle value.

To see how to respond to Quick Action items, follow these steps:

1. Make sure the 3DTouchApp project is loaded into Xcode.
2. Click the AppDelegate.swift file in the Navigator pane.

3. Modify the AppDelegate.swift file so it appears like this:

255

CHAPTER9 USING 3D TOUCH

256

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

enum MenuItems: String {

}

case First
case Second

init?(fullType: String) {
guard let last = fullType.components(separatedBy:
".").last else { return nil }

self.init(rawvalue: last)

}

var type: String {
return Bundle.main.bundleldentifier! + ".\(self.rawValue)"

var window: UIWindow?

var launchedShortcutItem: UIApplicationShortcutItem?

func application(_ application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [UIApplication.
LaunchOptionsKey: Any]?) -> Bool {

}

if let shortcutItem = launchOptions?[UIApplication.
LaunchOptionsKey.shortcutItem] as?
UIApplicationShortcutItem {

launchedShortcutItem = shortcutItem
}

return true

func application(_ application: UIApplication,
performActionFor shortcutItem: UIApplicationShortcutItem,
completionHandler: @escaping (Bool) -> Void) {

CHAPTER9 USING 3D TOUCH

completionHandler (handleShortCutItem(shortcutItem))
}

func handleShortCutItem(_ shortcutItem:
UIApplicationShortcutItem) -> Bool {
var handled = false

guard MenuItems(fullType: shortcutItem.type) != nil else {
return false

}

guard let shortCutType = shortcutItem.type as String? else {
return false

}

switch (shortCutType) {

case MenuItems.First.type:
print ("View favorites")
handled = true

case MenuItems.Second.type:
print ("Share")
handled = true

default:
break

}

let alertController = UIAlertController(title: "Shortcut
Chosen", message: "\"\(shortcutItem.localizedTitle)\"",
preferredStyle: .alert)

let okAction = UIAlertAction(title: "OK", style: .default,
handler: nil)

alertController.addAction(okAction)
window!.rootViewController?.present(alertController,
animated: true, completion: nil)

return handled

257

CHAPTER9 USING 3D TOUCH

258

func applicationWillResignActive(_ application: UIApplication) {

}
func applicationDidEnterBackground(_ application: UIApplication) {

}
func applicationWillEnterForeground(_ application: UIApplication) {

}
func applicationDidBecomeActive(_ application: UIApplication) {

}
func applicationWillTerminate(_ application: UIApplication) {

}
}

Make sure your project will run on an iPhone connected to your
Macintosh. Then click the Run button or choose Product » Run.
The 3DTouchApp’s screen appears on the iPhone.

Press the Home button or swipe up from the bottom of the screen
to return back to the Home screen.

Press firmly on the 3DTouchApp icon on the Home screen. The
Quick Action shortcut menu appears with icons (see Figure 9-15).

Tap on a Quick Action item. An alert dialog appears, displaying
your chosen Quick Action by its UIApplicationShortcutltemTitle
value as shown in Figure 9-16.

CHAPTER9 USING 3D TOUCH

Shortcut Chosen
"Share"

OK

Figure 9-16. An alert dialog shows the Quick Action shortcut the user chose

8. Tap OK to make the alert dialog go away.
9. Click the Stop button in Xcode.

Adding Dynamic Home Screen Quick Actions

The two Quick Actions we defined so far are known as static actions because they appear
all the time. A second type of Quick Action is known as Dynamic Quick Actions, which
you can create in Swift code to appear after your app is already running. This allows the
Quick Action menu to display different options depending on what the user might be
doing at the moment.

259

CHAPTER9 USING 3D TOUCH

Note Remember, you can only have a maximum of four Quick Actions such
as one static Quick Action and three Dynamic Quick Actions or four static Quick
Actions and zero Dynamic Quick Actions.

To add Dynamic Quick Actions, you must modify the enumeration for each Dynamic
Quick Action you want to add. In our project, we had two items in our enumeration so
we need to add two more for the two Dynamic Quick Actions we want to add such as

enum MenuItems: String {
case First
case Second
case Third
case Fourth

init?(fullType: String) {
guard let last = fullType.components(separatedBy: ".").last
else { return nil }

self.init(rawValue: last)

}

var type: String {
return Bundle.main.bundleIdentifier! + ".\(self.rawValue)"

Note The Quick Action defined by the top enumeration value will appear at the
bottom of the Quick Action menu. So the Quick Action defined by Fourth will appear
at the top, the one defined by Third will appear second, the one defined by Second
will appear third, and the one defined by First will appear at the bottom as shown
in Figure 9-17.

260

CHAPTER9 USING 3D TOUCH

View
View favorite items

Share
Share items with friends

Play
Play audio

Add
Add an item

Figure 9-17. Displaying the Quick Action menu with a maximum of four items

Now we need to modify the existing application didFinishLaunchingWithOptions
functions in two ways. First, we need to define each Dynamic Quick Action by identifying
its place in the enumeration list (such as Third and Fourth) and giving it a localizedTitle
and localizedSubtitle and a corresponding icon (UIApplicationShortcuticon) such as

if let shortcutItems = application.shortcutItems, shortcutItems.
isEmpty {

let shortcut3 = UIMutableApplicationShortcutIt
em(type: MenuItems.Third.type, localizedTitle:
"Play", localizedSubtitle: "Play audio", icon:
UIApplicationShortcutIcon(type: .play)

)

261

CHAPTER9 USING 3D TOUCH

262

}

let shortcut4 = UIMutableApplicationShortcutIte
m(type: MenuItems.Fourth.type, localizedTitle:
"Add", localizedSubtitle: "Add an item", icon:
UIApplicationShortcutIcon(type: .add)

)

// Update the application providing the initial "dynamic"
shortcut items
application.shortcutItems = [shortcut3, shortcut4]

To see how to add Dynamic Quick Action items, follow these steps:

1.

2.

3.

Make sure the 3DTouchApp project is loaded into Xcode.

Click the AppDelegate.swift file in the Navigator pane.

Modify the AppDelegate.swift file so it appears like this:

import UIKit

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

enum Menultems: String {
case First
case Second
case Third
case Fourth

init?(fullType: String) {
guard let last = fullType.components(separatedBy:

.").last else { return nil }

self.init(rawValue: last)

}

var type: String {
return Bundle.main.bundleIdentifier! + ".\(self.rawValue)"

CHAPTER9 USING 3D TOUCH

var window: UIWindow?

var launchedShortcutItem: UIApplicationShortcutItem?

func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions: [UIApplication.
LaunchOptionsKey: Any]?) -> Bool {
// If a shortcut was launched, display its information and

take the appropriate action

if let shortcutItem = launchOptions?[UIApplication.
LaunchOptionsKey.shortcutItem] as?
UIApplicationShortcutItem {

}

launchedShortcutItem = shortcutItem

// Install our two extra dynamic Quick Action items
if let shortcutItems = application.shortcutItems,
shortcutItems.isEmpty {

}

let shortcut3 = UIMutableApplicationShortcutIt
em(type: MenuItems.Third.type, localizedTitle:
"Play", localizedSubtitle: "Play audio", icon:
UIApplicationShortcutIcon(type: .play)

)

let shortcut4 = UIMutableApplicationShortcutIte
m(type: Menultems.Fourth.type, localizedTitle:
"Add", localizedSubtitle: "Add an item", icon:
UIApplicationShortcutIcon(type: .add)

)

// Update the application providing the initial
"dynamic" shortcut items
application.shortcutItems = [shortcut3, shortcut4]

return true

263

CHAPTER9 USING 3D TOUCH

264

func application(_ application: UIApplication,
performActionFor shortcutItem: UIApplicationShortcutItem,
completionHandler: @escaping (Bool) -> Void) {

completionHandler (handleShortCutItem(shortcutItem))
}

func handleShortCutItem(_ shortcutItem:
UIApplicationShortcutItem) -> Bool {
var handled = false

guard MenuItems(fullType: shortcutItem.type) != nil else {
return false

}

guard let shortCutType = shortcutItem.type as String? else {
return false

}

switch (shortCutType) {

case MenuItems.First.type:
print ("View favorites")
handled = true

case MenuItems.Second.type:
print ("Share")
handled = true

default:
break

}

let alertController = UIAlertController(title: "Shortcut
Chosen", message: "\"\(shortcutItem.localizedTitle)\"",
preferredStyle: .alert)

let okAction = UIAlertAction(title: "OK", style: .default,
handler: nil)

alertController.addAction(okAction)
window!.rootViewController?.present(alertController,
animated: true, completion: nil)

CHAPTER9 USING 3D TOUCH

return handled

}

func applicationWillResignActive(_ application: UIApplication) {
}

func applicationDidEnterBackground(_ application: UIApplication) {
}

func applicationWillEnterForeground(_ application: UIApplication) {
}

func applicationDidBecomeActive(_ application: UIApplication) {
}

func applicationWillTerminate(_ application: UIApplication) {
}

}

Make sure your project will run on an iPhone connected to your
Macintosh. Then click the Run button or choose Product » Run.
The 3DTouchApp’s screen appears on the iPhone.

Press the Home button or swipe up from the bottom of the screen
to return back to the Home screen.

Press firmly on the 3DTouchApp icon on the Home screen. The
Quick Action shortcut menu appears with icons (see Figure 9-15).

Tap on a Quick Action item. An alert dialog appears, displaying
your chosen Quick Action by its UIApplicationShortcutltemTitle
value (see Figure 9-16).

Tap OK to make the alert dialog go away.

Click the Stop button in Xcode.

265

CHAPTER9 USING 3D TOUCH

Adding Peeking, Popping, and Previewing

The final use of 3D Touch is to add peeking to our project. Peeking lets the user press

on an item to focus just on that item (see Figure 9-2). Holding a finger over that item
pops up a new view of itself in a smaller form (see Figure 9-3). Previewing lets you view a
menu of items to perform a task of some kind (see Figure 9-4).

Peeking and popping involve two different views. The first view displays an item, and
when the user presses on an item, a second view pops up. Because you're working with
two different views, you need to write code in the view controller files connected to each
view (such as ViewController.swift).

To see how peeking, popping, and previewing work, follow these steps:

1. Create a new Single View App iOS project and name it
3DPeekPopApp.

2. Click the Main.storyboard file in the Navigator pane.

3. Click the Library icon and drag and drop a button in the middle of
the view.

4. Double-click the button, type Touch Me to Peek, and press Enter.

5. Choose View » Inspectors » Show Attributes inspector, or click
the Attributes Inspector icon in the upper right corner of the
Xcode window.

6. Click the Background popup menu and choose a distinctive color
such as yellow or orange to make the button easier to see.

7. Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints. Xcode adds constraints to the button. The user
interface should look similar to Figure 9-18.

266

CHAPTER9 USING 3D TOUCH

Figure 9-18. The initial user interface of the 3DPeekPopApp project

8.

10.

11.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard and ViewController.
swift file side by side.

Move the mouse pointer over the button, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type peekButton, and click the
Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var peekButton: UIButton!

267

CHAPTER9 USING 3D TOUCH

268

12.

13.

14.

15.

16.

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode
window.

Click the ViewController.swift file in the Navigator pane.

Edit the viewDidLoad method as follows to make sure 3D Touch is
available:

override func viewDidlLoad() {
super.viewDidLoad()

if traitCollection.forceTouchCapability == .available {
registerForPreviewing(with: self, sourceView: view)

}

Edit the class ViewController line as follows:

class ViewController: UIViewController,
UIViewControllerPreviewingDelegate {

The UIViewControllerPreviewingDelegate requires two
previewingContext functions to work. The first function runs when
the user first presses down on an item. This function must identify
a second view to appear and verify that the user pressed within on
an item such as our UIButton. Then this function needs to define a
smaller size for displaying the second view.

Add the following function to the ViewController.swift file:

func previewingContext(_ previewingContext:
UIViewControllerPreviewing, viewControllerForlLocation location:
CGPoint) -> UIViewController? {
guaxrd let showMyView = storyboard?.instantiateViewController(withI
dentifier: "PeekVC"), peekButton.frame.contains(location) else {
return nil
}
showMyView.preferredContentSize = CGSize(width: 0.0, height: 300.0)
return showMyView

17.

CHAPTER9 USING 3D TOUCH

Note that the second view (which we haven’t created yet) needs a
Storyboard ID of “PeekVC”.

Add the following function to the ViewController.swift file:

func previewingContext(_ previewingContext:
UIViewControllerPreviewing, commit viewControllerToCommit:
UIViewController) {

show(viewControllerToCommit, sender: self)

}

The complete code for the ViewController.swift file should look like this:
import UIKit

class ViewController: UIViewController,
UIViewControllerPreviewingDelegate {

@IBOutlet var peekButton: UIButton!

override func viewDidlLoad() {
super.viewDidLoad()

if traitCollection.forceTouchCapability == .available {
registerForPreviewing(with: self, sourceView: view)

}

func previewingContext(_ previewingContext:
UIViewControllerPreviewing, viewControllerForLocation
location: CGPoint) -> UIViewController? {

guard let showMyView = storyboard?.instantiateViewCon

troller(withIdentifier: "PeekVC"), peekButton.frame.

contains(location) else {

return nil

}

showMyView.preferredContentSize = CGSize(width: 0.0,

height: 300.0)

return showMyView

269

CHAPTER9 USING 3D TOUCH

func previewingContext(_ previewingContext:
UIViewControllerPreviewing, commit viewControllerToCommit:
UIViewController) {

show(viewControllerToCommit, sender: self)

18. Click the Main.storyboard file in the Navigator pane.

19. Click the Library icon and drag and drop a View Controller next to
the existing view.

20. Click the Library icon and drag and drop a label near the top of
this new view controller.

21. Resize the label. Double-click the label, type Touch Me to Peek,
and press Enter.

22. Choose View » Inspectors » Show Attributes inspector, or click
the Attributes Inspector icon in the upper right corner of the
Xcode window.

23. Click the Background popup menu and choose a distinctive color
such as green or purple to make the label different from the button

on the other view controller.

24. Click the Center icon in the Alignment group to center text. The
Main.storyboard file should look similar to Figure 9-19.

270

CHAPTER9 USING 3D TOUCH

View Controller » =
9:41 AM - 241 AM -
Touch Me to Peek
» Touch Me to Peekl

Figure 9-19. The second view of the 3DPeekPopApp project
25. Click the View Controller Scene in the Document Outline that
represents this second view controller.

26. Choose View » Inspectors » Show Identity inspector, or click
the Identity Inspector icon in the upper right corner of the Xcode

window.

27. Clickin the Storyboard ID text field and type PeekVC, then press
Enter as shown in Figure 9-20.

271

CHAPTER9 USING 3D TOUCH

Controller Scene) (L) View Controller 4 > O & < 0@ O

Custom Class

o > B 1 Class On

Module

identity ’
|

Storyboard 1D | PeekVC

Touch Me to Peek Restoration ID
Use Storyboard ID

User Defined Runtime Attributes

Key Path Type Value

Figure 9-20. Identifying the second view controller with a Storyboard ID of PeekVC

272

28.

29.

30.

31.

32.

33.

34.

Choose File » New » File. A template dialog appears.

Click Cocoa Touch Class under the iOS category and click the Next
button. Another window appears.

Click in the Class text field and type PeekViewController.

Make sure the Subclass of popup menu displays UIViewController
and then click the Next button and then click the Create button.
Xcode displays a PeekViewController.swift file in the Navigator
pane.

Click the Main.storyboard file and click View Controller Scene in
the Document Outline that represents the second view controller
that contains the large label.

Choose View » Inspectors » Show Identity inspector, or click
the Identity Inspector icon in the upper right corner of the Xcode

window.

Click in the Class popup menu and choose PeekViewController.
This connects the PeekViewController.swift file with the second
view controller on the storyboard.

35.

36.

37.

CHAPTER9 USING 3D TOUCH

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.

Click the PeekViewController.swift file in the Navigator pane.

Add the following to the PeekViewController.swift file:

override var previewActionItems : [UIPreviewActionItem] {

}

let defaultAction = UIPreviewAction(title: "Default style",
style: .default) { (action, viewController) -> Void in
print("Default")

}

let selectAction = UIPreviewAction(title: "Selected style",
style: .selected) { (action, viewController) -> Void in
print("Selected")

}

let destructiveAction = UIPreviewAction(title: "Destructive
style", style: .destructive) { (action, viewController) -»
Void in

print("Destructive")

}

return [defaultAction, selectAction, destructiveAction]

The entire PeekViewController.swift file should look like this:

import UIKit

class PeekViewController: UIViewController {

override func viewDidLoad() {
super.viewDidLoad()

// Do any additional setup after loading the view.

273

CHAPTER9 USING 3D TOUCH
override var previewActionItems : [UIPreviewActionItem] {

let defaultAction = UIPreviewAction(title: "Default style",
style: .default) { (action, viewController) -> Void in
print("Default")

}

let selectAction = UIPreviewAction(title: "Selected style",
style: .selected) { (action, viewController) -> Void in
print("Selected")

}

let destructiveAction = UIPreviewAction(title:
"Destructive style", style: .destructive) { (action,
viewController) -> Void in

print("Destructive")

}

return [defaultAction, selectAction, destructiveAction]

Note To test 3D Touch in the Simulator, your Macintosh needs a Magic Trackpad.

38. Click the Scheme button in the upper left corner of the Xcode
window and choose iPhone 8 (or any iPhone model that supports
3D Touch).

39. Click the Run button, or choose Product » Run. The Simulator
screen appears, displaying your first Touch Me to Peek button.

40. Move the mouse pointer over this Touch Me to Peek button and
press one finger down on the Magic Trackpad. The second view
controller displaying the large label appears.

274

CHAPTER9 USING 3D TOUCH

41. Swipe up. The Touch Me to Peek label slides up and displays a
menu underneath displaying different styles (Default, Selected,
and Destructive) as shown in Figure 9-21.

Touch Me to Peek

Default style
Selected style v

Destructive style

Figure 9-21. Displaying three different types of preview menu items

42. Click any of the menu options such as Default style or Destructive
style. The initial view controller appears again displaying the
Touch Me to Peek button.

43. Choose Simulator » Quit Simulator to return to Xcode.

275

CHAPTER9 USING 3D TOUCH

Summary

3D Touch provides another way for users to interact with your app. Although 3D Touch
is currently only available on the iPhone (but not the iPad or certain iPhone models such
as the iPhone Xr), adding 3D Touch to your app can provide users with the latest features
they’'ve come to expect from iPhone apps.

When testing 3D Touch, you need a Magic Trackpad to test in the Simulator, but it’s
more reliable to test on an actual iPhone connected to your Macintosh through a USB
cable. Just make sure that iPhone supports 3D Touch.

3D Touch isn’t crucial for any app, but it’s just an added feature that can make your
app feel modern and up to date with the latest version of iOS.

276

CHAPTER 10

Detecting Motion
and Orientation

Mobile computer devices like the iPhone and iPad essentially put a PC in your pocket,
letting you use a computer wherever you happen to be. However, unlike a desktop or even
a laptop PC, mobile computers can track movement and orientation. This can come in
handy for tracking the user’s arm movements in a game or helping you measure angles.

To track motion and orientation, every iOS device comes with a built-in
accelerometer that can detect movement. In addition to the accelerometer, the iOS
devices also include a gyroscope to detect positions of the iOS device. By adding motion
and orientation detection, you can create apps that respond to physical gestures as well
as touch gestures.

Detecting Shake Gestures

The shake gesture is the easiest gesture to detect. Many apps use the shake gesture as a
shortcut to undo actions. If you type text in the Notes app on an iPhone or iPad, you can
shake your device to undo the last text you typed. Detecting a shake gesture involves

using the motionEnded function:

override func motionEnded(_ motion: UIEvent.EventSubtype, with event:
UIEvent?) {

}

Inside this motionEnded function, you need to check if the motion that ended was
the .motionShake event (a shake gesture) like this:

if motion == .motionShake {

}

277
© Wallace Wang 2019

W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_10

CHAPTER 10 DETECTING MOTION AND ORIENTATION

Once you detect that the motion is a shake gesture, then your app can respond. To
see how to detect a shake gesture, follow these steps:

1. Create a new iOS Single View App project and name it ShakeApp.
2. Click the Main.storyboard file in the Navigator pane.

3. Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard side by side with the
ViewController.swift file.

4. Move the mouse pointer over the middle of the view controller,
hold down the Control key, and Ctrl-drag under the class
ViewController line in the ViewController.swift file.

5. Release the Control key and the left mouse button. A popup
window appears.

6. Clickin the Name text field, type myLabel, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var myView: UIView!

7. Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.
8. Click the ViewController.swift file in the Navigator pane.

9. Add the following underneath the viewDidLoad method:

override func motionEnded(_ motion: UIEvent.EventSubtype, with
event: UIEvent?) {
if motion == .motionShake {
if myView.backgroundColor == UIColor.red {

myView.backgroundColor = UIColor.green
} else {
myView.backgroundColor = UIColor.red

278

10.

11.

CHAPTER 10 DETECTING MOTION AND ORIENTATION

This code simply detects a shaking gesture and alternates between
changing the background color to red and green each time it
detects another shake gesture. The entire ViewController.swift file
should look like this:

import UIKit
class ViewController: UIViewController {
@IBOutlet var myView: UIView!

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.

}

override func motionEnded(_ motion: UIEvent.EventSubtype, with

event: UIEvent?) {

if motion == .motionShake {
if myView.backgroundColor == UIColor.red {
myView.backgroundColor = UIColor.green
} else {
myView.backgroundColor = UIColor.red

Click the Run button or choose Product » Run. The Simulator
screen appears.

Choose Hardware » Shake Gesture as shown in Figure 10-1.
Notice that the Simulator screen turns red.

279

CHAPTER 10 DETECTING MOTION AND ORIENTATION

& Simulator File Edit BRELCGE G

Figure 10-1. Choosing the Shake Gesture in the Simulator

12. Choose Hardware » Shake Gesture. Notice that this time the
Simulator screen turns green. If you keep choosing the Shake
Gesture command, the Simulator screen will alternate between
red and green.

13. Choose Simulator » Quit Simulator to return back to Xcode.

280

CHAPTER 10 DETECTING MOTION AND ORIENTATION

Understanding Core Motion

To detect movement beyond simple shakes, Apple provides a software framework called

Core Motion. Core Motion lets an app access the following types of motion data:
e Acceleration in three dimensions
¢ Rotation around the %, y, and z axes

o Magnetometer data that measures the device’s orientation relative to
the Earth’s magnetic field

e Device motion data such as its orientation relative to gravity

Note To test motion and orientation, you need a real iOS device connected

to your Macintosh through a USB cable. The Simulator can only detect shaking

motions but cannot detect changes in physical movements and different
orientations.

To use Core Motion in an app, you need to import the CoreMotion framework and

then create a CMMotionManager object like this:
import CoreMotion
let motionManager = CMMotionManager()

To detect motion, your app first needs to check if the iOS device contains the
necessary equipment such as an accelerator or a gyroscope. This can be done by
checking to make sure one of the following is true:

e .isAccelerometerAvailable
e .isGyroAvailable
e .isMagnetometerAvailable
e .isDeviceMotionAvailable
Next, we need to determine a time interval to detect data such as
o accelerometerUpdatelnterval

o gyroUpdatelnterval

281

CHAPTER 10 DETECTING MOTION AND ORIENTATION

o magnetometerUpdatelnterval
e deviceMotionUpdatelnterval

Finally, you need to check for data updates on a special queue called
OperationQueue. Without this OperationQueue, motion-detecting data could arrive
faster than the app could process it, making the app feel frozen or unresponsive.

Detecting Acceleration

The accelerometer can measure both acceleration and gravity in three dimensions. The
accelerometer can determine not only how an iOS device is being held, but also whether
it’s lying face down or face up on a flat surface such as a table. Accelerometers measure
g-forces (g for gravity), so a value of 1.0 returned by the accelerometer means that 1 g is
sensed in a particular direction, as in these examples:

o Ifthe device is being held perfectly upright, in portrait orientation, it
will detect and report about 1 g of force exerted on its y axis.

o Ifthe device is being held at an angle, that 1 g of force will be
distributed along different axes depending on how it is being held.
When held at a 45-degree angle, the 1 g of force will be split roughly
equally between two of the axes.

Sudden movement can be detected by looking for accelerometer values considerably
larger than 1 g. In normal usage, the accelerometer does not detect significantly more
than 1 g on any axis. If you shake, drop, or throw your device, the accelerometer will
detect a greater amount of force on one or more axes as shown in Figure 10-2.

282

CHAPTER 10 DETECTING MOTION AND ORIENTATION

+Y A

TN 1 trom

r v u 4
-

-X X Z [+z

-4 > = F—
I_/\D;I
Yy

Figure 10-2. The iPhone accelerometer’s axes in three dimensions. The front view of
an iPhone on the left shows the x and y axes. The side view on the right shows the z axis.

To see how to use the accelerometer, follow these steps:

1.

Create a new iOS Single View App project and name it
AccelerateApp.

Click the Main.storyboard file in the Navigator pane.

Click the Library icon and drag and drop a label onto the view.
Expand the width and height of the label.

Choose View » Inspectors » Show Attributes inspector, or click the
Attributes Inspector in the upper right corner of the Xcode window.

Click in the Lines text field and change it to 0. A 0 value means that
the label can hold an unlimited number of lines of text.

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints. Xcode adds constraints to the label.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard side by side with the
ViewController.swift file.

Move the mouse pointer over the label, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

283

CHAPTER 10 DETECTING MOTION AND ORIENTATION

9. Release the Control key and the left mouse button. A popup
window appears.

10. Click in the Name text field, type myLabel, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mylabel: UILabel!

11. Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.
12. Click the ViewController.swift file in the Navigator pane.

13. Add the following underneath the IBOutlet to access the Core
Motion manager:

let motionManager = CMMotionManager()

14. Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
if motionManager.isAccelerometerAvailable {
motionManager.accelerometerUpdateInterval = 2.5
motionManager.startAccelerometerUpdates(to:
OperationQueue.main) { (motion, error) -> Void in
if let trackMotion = motion {
let userAcceleration = trackMotion.acceleration
let displayText = "x: \(userAcceleration.x) \ny: \
(userAcceleration.y) \nz: \(userAcceleration.z)"
DispatchQueue.main.async {
self.mylLabel.text = displayText

284

15.

16.

17.

18.

19.

20.

CHAPTER 10 DETECTING MOTION AND ORIENTATION

Once we know that the accelerometer is available, we can assign
an arbitrary update interval as 2.5 seconds. This will update the
values slowly so we can see the different values as we move the
iOS device. Finally, we track the acceleration of the iOS device
and store this data in a string (displayText), which uses the \n
character to define a new line. Finally, we display this string in the
label. Notice that updating this label occurs on the main thread
because the label is part of the user interface and updating the
user interface always needs to occur on the main thread.

Connect an iOS device to your Macintosh through a USB cable.
Click the Run button or choose Product » Run.

Lay the iOS device on a flat surface such as a table. The z value
should appear close to -1.0.

Hold the iOS device in portrait orientation so it’s vertical. The y
value should appear close to -1.0.

Lay the iOS device on its side. The x value should appear
close to -1.0.

Click the Stop button in Xcode.

Detecting Rotation with the Gyroscope

A gyroscope measures orientation and rotation around the x, y, and z axes. Rotation

around the x axis occurs when the iOS device tumbles backward or forward around

its horizontal center. Rotation around the y axis occurs when the iOS device twists

around its vertical center. Rotation around the z axis occurs when the iOS device rotates

clockwise or counterclockwise as if pierced by a line through its front and back as shown

in Figure 10-3.

285

CHAPTER 10 DETECTING MOTION AND ORIENTATION

y-axis

X-axis

z-axis

Figure 10-3. Rotation around the x, y, and z axes

To see how to use the gyroscope to detect and measure rotation, follow these steps:

1.

286

Create a new iOS Single View App project and name it
RotationApp.

Create the user interface exactly as you created the AccelerateApp
in the previous example with an enlarged label connected to the
IBOutlet in the ViewController.swift file.

Click the RotationApp project name at the top of the Navigator
pane.

Click General and clear the Landscape Left and Landscape Right
check boxes so only the Portrait check box remains selected

as shown in Figure 10-4. This will keep the user interface from
changing when you rotate the iOS device around.

CHAPTER 10 DETECTING MOTION AND ORIENTATION

ene » B A RowtionApp) Il iPhone 7 (Mine] Finished running RotationApp on iPhane 7 (Mine) {}
BESQA LN EC B 8¢ B RotationApp
¥ 2 RotationApp] & RotationAgp General Capabilities Resource Tags Info Build Settings. Build Phases Build Rules
v RotationApp
. AppDelegate.swift ¥ Identity
= ViewControllor. swift
Main.storyboard Display Name

o Assets.xcassets
LaunchScreen.storyboard
Info.plist

* . Products Build 1

Bundie identifier com.topbananas.RotationApp

Version 1.0

¥ Signing

18 Automatically manage signing

Team Wallace Wang B
Provisioning Profile Xcods Managed Profile

Signing Certificate iPhone Developer: Wallace Wang (MESSKEIVLW)

¥ Deployment Info

Deployment Target 12,1

2
3
H
)
<
i
£
Boo

Main Interface Main
RS

Device Orientation [Portrait
Upside Down
Landscape Left
Landscape Right

Status Bar Style Default B

Hide status bar

Requires full screen

¥ App lcons and Launch Images

App lcons Source Appleon Be

Figure 10-4. Defining Portrait orientation only

5. Click the ViewController.swift file in the Navigator pane.

6. Edit the ViewController.swift file so the entire file looks like the

following:

import UIKit
import CoreMotion

class ViewController: UIViewController {
@IBOutlet var mylLabel: UILabel!
let motionManager = CMMotionManager()

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
if motionManager.isGyroAvailable {

287

CHAPTER 10 DETECTING MOTION AND ORIENTATION

288

10.

11.

12.

motionManager.gyroUpdateInterval = 2.5

motionManager.startGyroUpdates(to: OperationQueue.

main) { (motion, error) -> Void in

if let trackMotion = motion {
let userRotation = trackMotion.rotationRate
let displayText = "x: \(userRotation.x) \ny:
(userRotation.y) \nz: \(userRotation.z)"
DispatchQueue.main.async {
self.mylabel.text = displayText

Connect an iOS device to your Macintosh through a USB cable.
Click the Run button or choose Product » Run.

Rapidly dip your iOS device forward and backward across its
horizontal center (x axis). Notice that the x value displayed on the
screen changes drastically away from 0 such as reaching a value of
-8 or 10.

Twist your iOS device around its vertical center (y axis). Notice
that the y value displayed on the screen changes drastically away
from 0 such as reaching a value of 7 or -6.

Rotate your iOS device clockwise and counterclockwise around its
z axis that pierces the front and back of the device. Notice that the
z value displayed on the screen changes drastically away from 0
such as reaching a value of -6 or 5.

Click the Stop button in Xcode to stop running the app.

CHAPTER 10 DETECTING MOTION AND ORIENTATION

Detecting Magnetic Fields

A magnetometer measures the Earth’s magnetic field relative to the iOS device that
contains the magnetometer. The values returned measure the Earth’s magnetic field in
microteslas where the x value measures horizontal displacement to the nearest magnetic
field, the y value measures the vertical displacement, and the z value measures the
altitude above/below the Earth’s magnetic field.

To see how to get data from the magnetometer, follow these steps:

1. Create a new iOS Single View App project and name it
MagnetApp.

2. Create the user interface exactly as you created the AccelerateApp
in the previous example with an enlarged label connected to the
IBOutlet in the ViewController.swift file.

3. Click the ViewController.swift file in the Navigator pane.

4. Edit the ViewController.swift file so the entire file looks like the
following:

import UIKit
import CoreMotion

class ViewController: UIViewController {
@IBOutlet var mylLabel: UILabel!
let motionManager = CMMotionManager()

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
if motionManager.isMagnetometerAvailable {
motionManager.magnetometerUpdateInterval = 0.5
motionManager.startMagnetometerUpdates(to:
OperationQueue.main) { (motion, error) -> Void in
if let trackMotion = motion {
let userField = trackMotion.magneticField
let displayText = "x: \(userField.x) \ny: \
(userField.y) \nz: \(userField.z)"

289

CHAPTER 10 DETECTING MOTION AND ORIENTATION

DispatchQueue.main.async {
self.mylLabel.text = displayText

5. Connect an iOS device to your Macintosh through a USB cable.
6. Click the Run button or choose Product » Run.
7. Move your iOS device around to see the x, y, and z values change.

8. Click the Stop button in Xcode to stop running the app.

Detecting Device Motion Data

Detecting device motion data lets you retrieve roll, pitch, and yaw data. Roll measures
the rotation around the vertical axis, pitch measures the rotation around the horizontal
axis, and yaw measures the rotation around an axis that pierces through the front and
back of an iOS device as shown in Figure 10-5.

Figure 10-5. Identifying roll, pitch, and yaw on an iOS device

290

CHAPTER 10 DETECTING MOTION AND ORIENTATION

To see how to detect roll, pitch, and yaw, follow these steps:

1. Create a new iOS Single View App project and name it
DeviceMotionApp.

2. Create the user interface exactly as you created the AccelerateApp
in the previous example with an enlarged label connected to the
IBOutlet in the ViewController.swift file.

3. Click the ViewController.swift file in the Navigator pane.
4. Edit the ViewController.swift file so the entire file looks like the following:

import UIKit
import CoreMotion

class ViewController: UIViewController {
@IBOutlet var mylabel: UILabel!

let motionManager = CMMotionManager()

override func viewDidlLoad() {
super.viewDidlLoad()
// Do any additional setup after loading the view.
if motionManager.isDeviceMotionAvailable {
motionManager.deviceMotionUpdateInterval = 2.5
motionManager.startDeviceMotionUpdates(to:
OperationQueue.main) { (motion, error) -> Void in
if let trackMotion = motion {
let userField = trackMotion.attitude
let displayText = "Roll: \(userField.roll) \nPitch:
\(userField.pitch) \nYaw: \(userField.yaw)"
DispatchQueue.main.async {
self.mylLabel.text = displayText

291

CHAPTER 10 DETECTING MOTION AND ORIENTATION

5. Connect an iOS device to your Macintosh through a USB cable.
6. Click the Run button or choose Product » Run.

7. LayyouriOS device flat on a table. The x, y, and z values should be

near 0.

8. Twist your iOS device around its vertical axis. The Roll value
should deviate from 0 such as -2 or 3.

9. Flip the front of your iOS device backward and forward. The Pitch
value should deviate from 0 such as 1 or -2.

10. Rotate your iOS device on the flat surface clockwise and
counterclockwise. The Yaw value should deviate from 0
such as -2 to 1.

11. Click the Stop button in Xcode to stop running the app.

Summary

Every iOS device comes with built-in sensors to measure movement. Shake gestures are
the easiest to detect, which an app can use to represent the Undo command for reversing
the last action a user took. To detect other types of movements of an iOS device, you
need to use the CoreMotion framework.

Some of the different types of motion data an app can detect includes acceleration,
rotation, and even nearby magnetic fields. Detecting the movement of an iOS device lets
an app respond appropriately, giving movement another way to control an app.

292

CHAPTER 11

Using Location and Maps

One of the most useful features of mobile computers like smartphones and tablets is
the ability to identify their location in the real world. Just this feature alone has made
possible ride-sharing services that allow devices to track the position of both cars and
waiting passengers in real time.

Tracking the location of an iOS device involves Global Positioning System (GPS),
cell ID location, and WiFi positioning service (WPS). By using three different services,
Apple’s Core Location framework can pinpoint the location of an iOS device with varying
degrees of accuracy.

Fortunately, Core Location hides the details of using these various technologies.
Instead, Core Location lets you simply specify the degree of accuracy you wish, such as
finding the location of an iOS device within 10 or 200 meters while also detecting any
changes in the location of an iOS device. By tracking locations within a specified degree
of accuracy and the distance an iOS device must travel before detecting movement, Core
Location makes it easy for any app to identify the location of any iOS device.

Note The more accurate and more often you need to track the movement of an
i0S device’s location, the more battery power the app will require, so you need to
trade off between greater accuracy and constant updates against longer battery life.

Using Core Location

The first step to using Core Location is to import the Core Location framework into an
app like this:

import Corelocation

293
© Wallace Wang 2019

W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_11

CHAPTER 11 USING LOCATION AND MAPS

After importing the Core Location framework, the next step is to access the location
manager with any arbitrary name such as locationManager like this:

let locationManager = ClLLocationManager()

A class needs to conform to the CLLocationManagerDelegate protocol, which you
can do in one of two ways. First, you can simply add this to the class line like this:

class ViewController: UIViewController, CLLocationManagerDelegate {

Then you can declare that this class is the CLLocationManagerDelegate inside the
viewDidLoad method:

override func viewDidlLoad() {
super.viewDidLoad()
locationManager.delegate = self

}

The other way to conform to the CLLocationManagerDelegate protocol is to use an
extension at the end of the class ViewController file like this:

extension CLLocationManagerDelegate {

}

Then you can declare that this class is the CLLocationManagerDelegate inside the
viewDidLoad method:

override func viewDidlLoad() {
super.viewDidlLoad()
locationManager.delegate = self as? CLLocationManagerDelegate

Defining Accuracy

When using Core Location, you need to define the amount of accuracy you want.
Remember, the greater the accuracy, the more power the iOS device will require so
it’s best to choose the level of accuracy your app absolutely needs. If you just need to
identify the user’s geographical location such as a city, then you don’t need specific
accuracy. However, if your app needs to know the iOS device’s precise location to

294

CHAPTER 11 USING LOCATION AND MAPS

locate the user such as for a ride-sharing service that needs to know where to pick up a
passenger, then you'll need greater precision.

You can define a specific level of accuracy in meters such as 150 meters. However,
Core Location provides several constants you can use that define varying degrees of
accuracy:

e kCLLocationAccuracyBestForNavigation - The highest possible
accuracy used for navigation apps

e kCLLocationAccuracyNearestTenMeters - Accurate to within 10
meters

e kCLLocationAccuracyHundredMeters - Accurate to within 100 meters
o kCLLocationAccuracyKilometer - Accurate to the nearest kilometer

o kCLLocationAccuracyThreeKilometers - Accurate to the nearest 3
kilometers

To define accuracy, you need to set the desiredAccuracy property to a value or to one
of the preceding constants like this:

locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters.

Defining a Distance Filter

In addition to defining the accuracy you want, you can also define a distance filter that
specifies how far the iOS device needs to move to detect movement. The default value is
stored in a constant called kCLDistanceFilterNone, which tells an app to be notified of all
movement.

However, if you define a specific value in meters, you can modify this distance filter
such as only detecting movement when an iOS device travels 100 meters such as

locationManager.distanceFilter = 100

295

CHAPTER 11 USING LOCATION AND MAPS

Requesting a Location

Core Location gives you two ways to request the location of an iOS device. The first
method requests the location once. This can be useful for apps that don’t need constant
updating to track movement. To request location once, use the requestLocation method
like this:

locationManager.requestLocation()

Because the requestLocation method only checks for a location once, it requires
far less power than the second method, which requests locations continuously.
To track locations continuously, you need to use the startUpdatinglL.ocation and
stopUpdatingLocation methods like this:

locationManager.startUpdatinglLocation()
locationManager.stopUpdatinglLocation()

Core Location also offers two Boolean values you can modify as follows:

o pausesLocationUpdatesAutomatically - Allows an app to temporarily
pause updating a location

o allowsBackgroundLocationUpdates - Defines whether an app can
continue receiving location updates even when the app is suspended

Retrieving Location Data

When Core Location retrieves the location of an iOS device, it provides several different
types of values:

o coordinate.latitude and coordinate.longitude - Returns the latitude
and longitude of a location

o horizontalAccuracy - Returns a distance of how accurate Core
Location believes the defined location might be, measured in meters

o altitude - Returns the distance above or below sea level, measured in

meters

» verticalAccuracy - Returns a distance of how accurate Core Location
believes the altitude might be, measured in meters

296

CHAPTER 11 USING LOCATION AND MAPS

o floor - Returns the floor of a building where the iOS device is located

o timestamp - Returns the time the location was retrieved

Requesting Authorization

Apps often need to request permission to access many hardware features of an i0S
device. By forcing an app to request permission, Apple wants to make sure users
authorize an app’s access to features such as the camera, the microphone, and the
device’s location. Requesting authorization provides privacy for users and allows them
to know exactly when an app might need to request access to specific hardware features.

Any app that uses Core Location must request authorization to track an iOS device’s
location. Core Location provides two ways to request authorization:

o requestWhenInUseAuthorization() - Uses location services only
when your app is running

o requestAlwaysAuthorization() - Uses location services all the time

In most cases, you'll only want to use location services while your app is running.
Besides using one of the preceding methods, an app also needs to modify its Info.plist
file and add the Privacy - Location When In Use Usage Description key as shown in
Figure 11-1. In addition, you'll need to add descriptive text explaining why your app

needs to access location services.

| Privacy - Location When In Use Usage Description 00
Privacy - HomekKit Usage Description
Privacy - Location Always and When In Use Usage Desc...
Privacy - Location Always Usage Description
Privacy - Location Usage Description
Privacy - Media Library Usage Description
Privacy - Microphone Usage Description
Privacy - Motion Usage Description
Privacy - Music Usage Description
Privacy - NFC Scan Usage Description

Figure 11-1. Requesting to use location services in the Info.plist file

297

CHAPTER 11 USING LOCATION AND MAPS

Adding a Map

While you could display location data as text, you’ll more likely want to display a location
visually on a map. To do this, you need to use a Map Kit View, which displays a map on
the screen. Then you'll need to import the MapKit framework such as

import MapKit

Finally, you'll need to make the Map Kit View display the current location. To do this,
you just need to set the showsUserLocation property to true such as

@IBOutlet var mapView: MKMapView!
mapView.showsUserLocation = true

To see how to identify the location of an iOS device and display it on a map, follow
these steps:

1. Create a new iOS Single View App project and name it
LocationApp.

2. Click the Main.storyboard file in the Navigator pane.

3. Click the Library icon and drag and drop a Map Kit View at the top
and a text view at the bottom of the view controller as shown in
Figure 11-2.

298

CHAPTER 11 USING LOCATION AND MAPS

Lorem ipsum dolor sit er elit lamet, consectetaur cillium
adipisicing pecu, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit
anim id est laborum. Nam liber te conscient to factor
tum poen legum odioque civiuda.

N —— 4

Figure 11-2. Placing a Map Kit View and a text view on the user interface

4. Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints at the bottom half of the submenu. Xcode adds
constraints to the Map Kit View and the text view.

5. Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard side by side with the
ViewController.swift file.

6. Move the mouse pointer over the Map Kit View, hold down the
Control key, and Ctrl-drag under the class ViewController line in
the ViewController.swift file.

299

CHAPTER 11 USING LOCATION AND MAPS

7. Release the Control key and the left mouse button. A popup
window appears.

8. Clickin the Name text field, type mapView, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mapView: MKMapView!

9. Move the mouse pointer over the text view, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

10. Release the Control key and the left mouse button. A popup
window appears.

11. Clickin the Name text field, type myTextView, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextView: UITextView!

12. Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.
13. Click the ViewController.swift file in the Navigator pane.

14. Add the following underneath the import UIKit line:

import Corelocation
import MapKit

This code imports the Core Location framework to retrieve
location data and imports the MapKit framework to allow the Map
Kit View to display a scrollable map.

15. Add the following under the IBOutlets:
let locationManager = ClLLocationManager()
16. Edit the class ViewController line as follows:

class ViewController: UIViewController, ClLLocationManagerDelegate {

300

17.

CHAPTER 11 USING LOCATION AND MAPS

This makes the ViewController.swift file the
CLLocationManagerDelegate. That means we need to define the
ViewController.swift file as the delegate later.

Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
locationManager.delegate = self
locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters
locationManager.requestiWhenInUseAuthorization()
locationManager.startUpdatinglocation()
mapView.showsUserLocation = true

}

This code makes the ViewController.swift file the
CLLocationManager delegate. Then it defines the accuracy to
10 meters. The next line requests authorization to use location
services, which means we’ll need to edit the Info.plist file later.

The startUpdatingLocation() method retrieves location data,
while the showsUserLocation property is set to true to allow the
Map Kit View to display the location. The entire ViewController.
swift file should look like this:

import UIKit
import Corelocation
import MapKit

class ViewController: UIViewController, CLLocationManagerDelegate {

@IBOutlet var myTextView: UITextView!
@IBOutlet var mapView: MKMapView!

let locationManager = CLLocationManager()

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.

301

CHAPTER 11

302

18.

19.

20.

21.

22.

23.

USING LOCATION AND MAPS

locationManager.delegate = self
locationManager.desiredAccuracy = kCLLocationAccuracy
NearestTenMeters
locationManager.requestiWhenInUseAuthorization()
locationManager.startUpdatinglocation()
mapView.showsUserLocation = true

}

func locationManager(_ manager: CLLocationManager,
didUpdatelocations locations: [CLLocation]) {
if let newlocation = locations.last {

let latitudeString = "\(newLocation.coordinate.latitude)"
let longitudeString = "\(newLocation.coordinate.longitude)"

myTextView.text = "Latitude: " + latitudeString + "\

nLongitude: " + longitudeString

}

Click the Info.plist file in the Navigator pane.

Move the mouse pointer over the bottom row until a + and - icon
appears. Click the + icon to add another row.

Click in the newly added row, and when a popup menu appears,
choose Privacy - Location When In Use Usage Description (see
Figure 11-1).

Click in the Value column of this row and type a message such as
“Need to access location services”.

Click the Run button or choose Product » Run. The Simulator
screen appears.

Choose Debug » Location » Apple to mimic the location of Apple’s
headquarters as shown in Figure 11-3. You can mimic a two-finger
pinch gesture by holding down the Option key and dragging the
mouse so you can zoom in and out of the displayed map.

CHAPTER 11 USING LOCATION AND MAPS

CANADA

UNITED STATES

HOMDURAS
MICARAG

pa

Latitude: 37.33067784
Longitude: -122.02998825

Figure 11-3. Displaying the location of Apple’s headquarters on a map

24. Choose Simulator » Quit Simulator to return back to Xcode.

Note If you run this app on a real iOS device, you can see your actual location in
the world.

Zooming in a Location

Although Core Location can find coordinates to our current location (or a simulated
location such as Apple’s headquarters), the app currently displays the location on a large
map. While the user could pinch to zoom in, ideally the app should display a closer view
of our location automatically.

303

CHAPTER 11 USING LOCATION AND MAPS

To do this, not only do we need to know a location, but we also need to define a
region to show around that location. Defining a region around a location involves
defining the following:

o latitudeDelta - Measures north-to-south distance (measured in
degrees) to display

o longitudeDelta - Measures east-to-west distance (measured in
degrees) to display

To see how to zoom in on a location, follow these steps:
1. Make sure the LocationApp project is loaded into Xcode.
2. Click the ViewController.swift file in the Navigator pane.

3. Edit the class ViewController line as follows:

class ViewController: UIViewController, ClLLocationManagerDelegate,
MKMapViewDelegate {

The MKMapViewDelegate gives us access to a mapView function
that will let us zoom in to the defined location. After defining

a MKMapViewDelegate, the next step is to make sure the map
knows that the ViewController.swift file is the delegate.

4. Edit the viewDidLoad method by adding the mapView.delegate =
self line at the end as follows:

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
locationManager.delegate = self
locationManager.desiredAccuracy = kCLLocationAccuracy
NearestTenMeters
locationManager.requestWhenInUseAuthorization()
locationManager.startUpdatinglocation()
mapView.showsUserLocation = true
mapView.delegate = self

304

CHAPTER 11 USING LOCATION AND MAPS
5. Add the following mapView function:

func mapView(_ mapView: MKMapView, didUpdate userlLocation:
MKUserLocation) {
let zoomArea = MKCoordinateRegion(center: self.mapView.
userLocation.coordinate, span: MKCoordinateSpan
(latitudeDelta: 0.05, longitudeDelta: 0.05))
self.mapView.setRegion(zoomArea, animated: true)

}

The latitudeDelta and longitudeDelta values are 0.05, but
you can experiment with larger or smaller values. The entire
ViewController.swift file should look like this:

import UIKit
import Corelocation
import MapKit

class ViewController: UIViewController, ClLLocationManagerDelegate,
MKMapViewDelegate {

@IBOutlet var myTextView: UITextView!
@IBOutlet var mapView: MKMapView!

let locationManager = CLLocationManager()

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
locationManager.delegate = self
locationManager.desiredAccuracy = kCLLocationAccuracy
NearestTenMeters
locationManager.requestWhenInUseAuthorization()
locationManager.startUpdatinglocation()
mapView.showsUserLocation = true
mapView.delegate = self

}

func locationManager(_ manager: CLLocationManager,
didUpdatelocations locations: [CLLocation]) {

305

CHAPTER 11 USING LOCATION AND MAPS

if let newlocation = locations.last {

let latitudeString
let longitudeString

"\ (newLocation.coordinate.latitude)"

"\(newLocation.coordinate.longitude)"

myTextView.text = "Latitude:
nLongitude: " + longitudeString

+ latitudeString + "\

}

func mapView(_ mapView: MKMapView, didUpdate userLocation:
MKUserLocation) {
let zoomArea = MKCoordinateRegion(center:
self.mapView.userlLocation.coordinate, span:
MKCoordinateSpan(latitudeDelta: 0.05, longitudeDelta:
0.05))
self.mapView.setRegion(zoomArea, animated: true)

6. Click the Run button or choose Product » Run. The Simulator
screen appears and zooms in on the location of Apple’s
headquarters as shown in Figure 11-4.

306

CHAPTER 11 USING LOCATION AND MAPS

Latitude: 37.33065541
Longitude: -122.03032381

Figure 11-4. Zooming in on a location on a map

7. Choose Simulator » Quit Simulator to return back to Xcode.

Adding Annotations

An annotation allows the user to identify a location and place a cartoon pin on a map
along with descriptive text. An annotation needs a location, which we can define by
wherever the user presses on the map for an extended period of time, known as a long
press.

Once we know where the user pressed on the map, we can display the annotation
by adding it to the map along with any additional text. In addition, we’ll store the
annotations in an array and include a button to clear the annotations from the map.

307

CHAPTER 11 USING LOCATION AND MAPS

To see how to add annotations, follow these steps:
1. Make sure the LocationApp project is loaded into Xcode.
2. Click the ViewController.swift file in the Navigator pane.

3. Add the following under the IBOutlets to define an array to hold
all annotations added to the map:

var myAnnotations = [CLLocation]()

4. Edit the viewDidLoad method to recognize a long press gesture
and add it to the map view as follows:

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.
locationManager.delegate = self
locationManager.desiredAccuracy = kCLLocationAccuracy
NearestTenMeters
locationManager.requestiWhenInUseAuthorization()
locationManager.startUpdatinglocation()
mapView.showsUserLocation = true
mapView.delegate = self

let longGesture = UILongPressGestureRecognizer(target: self,
action: #selector(addPin(longGesture:)))
mapView.addGestureRecognizer(longGesture)

}

This long press gesture defines a function called addPin to
respond to a long press, which means we now need to create that
addPin function.

5. Add the following function under the viewDidLoad method:

@objc func addPin(longGesture: UIGestureRecognizer) {
let touchPoint = longGesture.location(in: mapView)
let touchLocation = mapView.convert(touchPoint,
toCoordinateFrom: mapView)

308

10.

11.

12.

13.

CHAPTER 11 USING LOCATION AND MAPS

let location = CLLocation(latitude: touchlLocation.latitude,
longitude: touchLocation.longitude)

let myAnnotation = MKPointAnnotation()
myAnnotation.coordinate = touchlLocation
myAnnotation.title = "\(touchLocation.latitude) \
(touchLocation.longitude)"
myAnnotations.append(location)
self.mapView.addAnnotation(myAnnotation)

}

Click the Main.storyboard file in the Navigator pane.

Click the Library icon and drag and drop a button on the user
interface such as between the map view and the text view.

Double-click the button, type Clear Pins, and press Enter.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard side by side with the
ViewController.swift file.

Move the mouse pointer over the button, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
ViewController.swift file.

Release the Control key and the left mouse button. A popup

window appears.

Click in the Name text field, type clearPins, click the Type popup
menu and choose UIButton, and click the Connect button. Xcode
creates a clearPins IBAction method.

Edit this clearPins IBAction method as follows:

@IBAction func clearPins(_ sender: UIButton) {
mapView.removeAnnotations(mapView.annotations)
myAnnotations.removeAll()

309

CHAPTER 11 USING LOCATION AND MAPS

14. Click the Run button or choose Product » Run. The LocationApp
appears on your iPhone.

15. Move the mouse pointer to different parts of the map and hold
down the left mouse button until a pin appears. Repeat as often as
you like to see multiple pins placed wherever you hold down the
left mouse button as shown in Figure 11-5.

37.35256042439315 -
122.01338122187182

34436474203069 -
2.04621312023808

37.317056503056534 -
122.0206663795919

Clear Pins

Latitude: 37.33024947
Longitude: -122.0273368

Figure 11-5. Placing multiple annotations on a map

16. Click the Clear Pins button. Notice that all the annotations
disappear off the map.

17. Choose Simulator » Quit Simulator to return back to Xcode.

310

CHAPTER 11 USING LOCATION AND MAPS

Summary

Mobile devices such as the iPhone and iPad can be especially useful when tracking
the user’s current location. When combined with a map display, an app can show the
location of the user and the locations of other places or people as well.

When identifying a user’s location, you can define the accuracy you want and the
magnification of the map. To add annotations, you can detect a long press gesture and
place a cartoon pin wherever the user presses on the map.

Remember that the greater the accuracy you need, the more power the app will
require, which can drain the iOS device’s battery, so only use greater accuracy when
you need it. Also make sure that any app that uses location services requests permission
to do so. An app won't be able to use location services until the user gives permission to
do so.

311

CHAPTER 12

Playing Audio and Video

Not every app needs audio and video, but playing audio and video within an app can

create an interesting way to deliver information to the user. For example, an app might

want to play music or different sounds to alert the user or play a video to demonstrate
steps for the user to follow. With both audio and video, an app can provide a more

dynamic user experience.

When working with audio and video files, it’s important to identify the file format.

Some popular audio formats supported by iOS include
e .mp3 - Popular format that compresses audio files

e .aac - Advanced Audio Coding format that improves upon
the mp3 format

o .aif - Audio Interchange File Format
e .wav - Waveform Audio file mostly found on Windows PCs
e .mp4 - MPEG-4 audio file
Some popular video formats supported by iOS include
¢ .mov - QuickTime media format
e .mp4 - MPEG-4 video file

e .m4v - An MPEG-4 video file, often called an iTunes video file

because this is the format of videos downloaded from the iTunes

Store

Note If you have an audio or video file stored in a different format, you’ll need to

convert it to a format that iOS can recognize.

© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_12

313

CHAPTER 12 PLAYING AUDIO AND VIDEO

Playing an Audio File

To play audio, you need to import AVFoundation into your project like this:
import AVFoundation

After you've imported AVFoundation into your project, you can create a variable to
represent the AVAudioPlayer such as

var audioPlayer: AVAudioPlayer!

To play an audio file, you need to drag and drop an audio file into the Navigator pane.
Then you need to write code that loads the audio file into the AVAudioPlayer variable.
Finally, you can use the play(), pause(), and stop() methods to control the playing of the
audio file.

To complete this example, you'll need an audio file stored in a supported file format
such as .mp3 or .mov. If you don’t have any audio files stored on your Macintosh, you
can download free audio files from the following sites:

o soundbible.com
e archive.org
e pond5.com
e gamesounds.xyz

You can also record audio files on a Macintosh by loading the QuickTime Player
program and choosing File » New Audio Recording. Once you have an audio file, either
one you downloaded or created through QuickTime Player program, you can test how to
play an audio file in an iOS app.

When working with files of any type, you need to specify the file name and the
file path. The file name is the complete name of the file and its file extension such as
HappyBirthday.mp3 or JingleBells.mov. The file path defines the location of the file
within your app.

To retrieve the file path, you need to identify the file name and type you want to find
such as

let audioFilePath = Bundle.main.path(forResource: "Streetlife", ofType: "mp3")

Once you know the path of the file you want to play, then you can load that file and
path into the AVAudioPlayer to play it.

314

http://soundbible.com
http://archive.org
http://pond5.com

CHAPTER 12 PLAYING AUDIO AND VIDEO

To see how to play an audio file, follow these steps:

1. Create a new iOS project using the Single View App template and
name this new project PlayAudioApp. This creates a single view
for the user interface.

2. Click the Main.storyboard file in the Navigator pane. Xcode
displays the single view.

3. Click the Library icon to open the Object Library window.

4. Drag and drop a Toolbar onto the view as shown in Figure 12-1.

Toolbar - Provides a mechanism for displaying a toolbar at the bottom of
the screen.

Figure 12-1. The Toolbar in the Object Library window

5. Click the Library icon to open the Object Library window. Then
drag and drop three Bar Button Items on the Toolbar as shown in
Figure 12-2.

Bar Button Item - Represents an item on a UlToolbar or

item UlNavigationitem object.

Figure 12-2. The Bar Button Item in the Object Library window

6. Click the Library icon to open the Object Library window. Then
drag and drop two Flexible Space Bar Button Items on the Toolbar
as shown in Figure 12-3. One Bar Button Item should appear on
the left followed by a Flexible Space Bar Button. Then the second
Bar Button Item appears in the middle followed by the second
Flexible Space Bar Button. Finally, the last Bar Button Item
appears on the far right.

315

CHAPTER 12 PLAYING AUDIO AND VIDEO

Flexible Space Bar Button Item - Represents a flexible space item on a
UlToolbar object.

Figure 12-3. The Flexible Space Bar Button Item in the Object Library window

Click the Bar Button Item on the far left of the Toolbar to select it.

Choose View » Inspectors » Show Attributes Inspector, or click
the Attributes Inspector icon in the upper right corner of the
Xcode window.

Click the System Item popup menu. A popup menu appears as
shown in Figure 12-4.

Custom

Flexible Space
Fixed Space

Add
Edit
Done
Cancel
Save
Undo
Redo

Compose
Reply
Action
Organize
Trash

Bookmarks
Search
Refresh
Stop

Camera

Play

Rewind
Fast Forward

Page Curl

Figure 12-4. Defining a Bar Button Item’s System Item property

316

10.

11.

12.

13.

14.

CHAPTER 12 PLAYING AUDIO AND VIDEO

Choose Pause.
Click the middle Bar Button Item.

Click the System Item popup menu in the Attributes Inspector
pane and choose Play.

Click the far right Bar Button Item.

Click the System Item popup menu in the Attributes Inspector
pane and choose Stop. Your Toolbar should display three Bar
Button Items with icons as shown in Figure 12-5.

Pause Play Stcs
1! > X

%

Flexible Spacing

Figure 12-5. The completed Toolbar with three Bar Button Items separated by two
Flexible Space Bar Button Items

The Toolbar with three Bar Button Items (separated by two Flexible Space Bar Button

Items) represents the entire user interface. The next steps involve connecting the three

Bar Button Items to IBAction methods to load, play, pause, and stop the audio file.

To write Swift code to play an audio file, follow these steps:

1.

Make sure the PlayAudioApp project is loaded into Xcode.

2. Click the Main.storyboard file in the Navigator pane.

3.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard file side by side with
the ViewController.swift file.

Move the mouse pointer over the Pause button (the button
on the far left) in the Toolbar, hold down the Control key, and
Ctrl-drag just above the last curly bracket at the bottom of the
ViewController.swift file.

317

CHAPTER 12

318

5.

10.

11.

12.

13.

14.

15.

PLAYING AUDIO AND VIDEO

Release the Control key and the left mouse button. A popup
window appears. Make sure the Connection popup menu displays
Action.

Click in the Name text field, type pauseAudio, and press Enter.

Click in the Type popup menu and choose UIBarButtonItem.
Then click the Connect button. Xcode creates an empty IBAction
method as follows:

@IBAction func pauseAudio(_ sender: UIBarButtonItem) {

}

Move the mouse pointer over the Play button (the button in
the middle) in the Toolbar, hold down the Control key, and
Ctrl-drag just above the last curly bracket at the bottom of the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears. Make sure the Connection popup menu displays
Action.

Click in the Name text field, type playAudio, and press Enter.

Click in the Type popup menu and choose UIBarButtonItem.
Then click the Connect button. Xcode creates an empty IBAction
method.

Move the mouse pointer over the Stop button (the button on
the far right) in the Toolbar, hold down the Control key, and
Ctrl-drag just above the last curly bracket at the bottom of the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears. Make sure the Connection popup menu displays
Action.

Click in the Name text field, type stopAudio, and press Enter.

Click in the Type popup menu and choose UIBarButtonItem.
Then click the Connect button. Xcode creates an empty IBAction
method.

CHAPTER 12 PLAYING AUDIO AND VIDEO

16. Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon on the upper right corner of the Xcode
window.

17. Click the ViewController.swift file in the Navigator pane.

18. Add the following underneath the import UIKit line:
import AVFoundation

19. Add the following underneath the classViewController line to
create a variable that represents the AVAudioPlayer:
var audioPlayer: AVAudioPlayer!

20. Dragand drop an audio file from the Finder window into the
Navigator pane as shown in Figure 12-6. Xcode displays a window
for different options in adding a file to a project.

v PlayAudioApp . . Downloads
vimr “;;:‘:" : 3 = BN ad BB K= K-
. ViewController.swift | Foverites Name Size Kind Date Added

Me be o D d ife.mp3

& Penci-3.04.dmg

> Ilustrating The...esOf Touchinput
B Earth.mov

‘r: Musie options-sanitize php
W Xcode-beta

» iCarousel-master-2

Figure 12-6. Adding an audio file to an Xcode project

21.

22.

Click the Finish button. Notice that your audio file now appears in
the Navigator pane.

Type the following function underneath the audioPlayer variable
as follows:

func loadAudioFile() {
guard let audioFilePath = Bundle.main.path(forResource:
"Streetlife"”, ofType: "mp3") else {
print("Audio file not found")
return

319

CHAPTER 12

320

23.

PLAYING AUDIO AND VIDEO
let audioFileUrl = NSURL.fileURL(withPath: audioFilePath)

do {
audioPlayer = try AVAudioPlayer(contentsOf: audioFileUrl,
fileTypeHint: nil)
audioPlayer.numberOflLoops = 0
} catch {
print ("AVAudioPlayer error = \(error)")

}

The preceding code creates a constant to represent the audio file
named “Streetlife” that’s stored in the .mp3 file format (identified
by its .mp3 file extension). Replace this file name and extension
with the name and file type of your own audio file that you added
to the Navigator pane in step 20.

The guard statement loads the audio file into a constant called
audioFilePath to make sure that the audio file exists. If the audio
file does exist, it creates a path to that audio file (audioFileUrl) and
then loads that audio file into the audioPlayer variable. Otherwise

it prints an error message.

Finally, notice the numberOfLoops property, which is set to 0.
This property defines how many times the audio file plays after
playing once, so a value of 0 means the audio file plays exactly
once and then stops, a value of 1 means the audio file plays once
and then plays one more time, a value of 2 means the audio file
plays once and then plays two more times, and so on.

If the value of numberOfLoops is set to a negative number, the
audio file will loop endlessly, which can be handy for background
music while your app runs.

Modify the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
loadAudioFile()

24.

25.

26.

CHAPTER 12 PLAYING AUDIO AND VIDEO

The viewDidLoad file runs as soon as the view loads in memory.
Then it calls the loadAudioFile to load the audio file into memory.

Edit the pauseAudio IBAction method as follows:

@IBAction func pauseAudio(_ sender: UIBarButtonItem) {
audioPlayer.pause()

Edit the playAudio IBAction method as follows:

@IBAction func playAudio(_ sender: UIBarButtonItem) {
audioPlayer.play()

Edit the stopAudio IBAction method as follows:

@IBAction func stopAudio(_ sender: UIBarButtonItem) {
audioPlayer.stop()
loadAudioFile()

}

This stopAudio IBAction method stops the audio and then reloads
it to set it back to the beginning. The entire ViewController.swift
file should look like this:

import UIKit
import AVFoundation

class ViewController: UIViewController {
var audioPlayer: AVAudioPlayer!

func loadAudioFile() {
guaxd let audioFilePath = Bundle.main.path(forResource:
"Streetlife", ofType: "mp3") else {
print("Audio file not found")
return

321

CHAPTER 12 PLAYING AUDIO AND VIDEO

322

let audioFileUrl = NSURL.fileURL(withPath: audioFilePath)

do {
audioPlayer = try AVAudioPlayer(contentsOf:
audioFileUrl, fileTypeHint: nil)
audioPlayer.numberOflLoops = 0

} catch {
print ("AVAudioPlayer error = \(error)")

}

override func viewDidlLoad() {
super.viewDidLoad()
loadAudioFile()

}

@IBAction func pauseAudio(_ sender: UIBarButtonItem) {
audioPlayer.pause()

}

@IBAction func playAudio(_ sender: UIBarButtonItem) {
audioPlayer.play()

}

@IBAction func stopAudio(_ sender: UIBarButtonItem) {
audioPlayer.stop()
loadAudioFile()

}

27. Click the Run button or choose Product » Run. The Simulator
appears, displaying the Toolbar and the pause, play, and stop
buttons.

28. Click the play button. The Simulator starts playing your audio file.

29. Click the pause button. The Simulator halts playing of your
audio file.

CHAPTER 12 PLAYING AUDIO AND VIDEO

30. Click the play button. The Simulator plays the audio file starting
from the point where it was paused.

31. Click the stop button. The Simulator stops playing the audio file.

32. Click the play button. Notice now the Simulator starts playing the
audio file from the beginning again.

33. Click the stop button.

34. Choose Simulator » Quit Simulator to return back to Xcode.

Experiment with different audio files and file formats such as a .wav or .mov
audio file. Remember to modify your code to use the exact name and file format
of each new audio file you test in this project. Also experiment with changing the
numberOfLoops property defined in the loadAudioFile() function. By changing the value
of numberOfLoops, you can make the audio file play multiple times.

Playing Video

Videos can display tutorials or tips on how to use an app. Just keep in mind that video
files tend to be much larger than audio files, so you'll generally want to use short videos
to avoid taking up too much space.

To play videos, your app needs the AVKit framework. Then you need to retrieve the
path of the video file by defining the video file name and file extension such as “SaturnVv”
as the file name and “mov” as the file extension like this:

let videoFilePath = Bundle.main.path(forResource: "SaturnV", ofType: "mov"

After retrieving the path of a video file, you can then use the AVPlayer to play the
video file. To display the video along with controls to let you fast-forward, pause, or
rewind, you can use the AVPlayerViewController. To complete the following exercise,
you’ll need a video file. You can record your own videos using the QuickTime Player on
a Macintosh or record a video on an iOS device such as an iPhone or iPad. You can also
find free video files at the following sites:

e nasa.gov
o publicdomainfiles.com

o archive.org

323

http://nasa.gov
http://publicdomainfiles.com
http://archive.org

CHAPTER 12

324

PLAYING AUDIO AND VIDEO

To see how to play a video, follow these steps:

1.

10.

11.

12.

Create a new iOS project using the Single View App template and
name this new project PlayVideoApp. This creates a single view
for the user interface.

Click the Main.storyboard file in the Navigator pane. Xcode
displays the single view.

Click the Library icon to open the Object Library window, and
then drag and drop a button on the view.

Double-click the button, type Play Video, and press Enter.

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints. Xcode adds constraints to the button.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard file side by side with
the ViewController.swift file.

Move the mouse pointer over the Play Video button, hold down
the Control key, and Ctrl-drag just above the last curly bracket at
the bottom of the ViewController.swift file.

Release the Control key and the left mouse button. A popup

window appears.

Click in the Name text field, type playVideo, click the Type popup
menu and choose UIButton, and click the Connect button. Xcode
creates a playVideo IBAction method.

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.
Click the ViewController.swift file in the Navigator pane.

Add the following underneath the import UIKit line:

import AVKit

13.

14.

15.

CHAPTER 12 PLAYING AUDIO AND VIDEO
Add the following underneath the class ViewController line:

var player:AVPlayer?
var vcPlayerController = AVPlayerViewController()

Drag and drop a video file into the Navigator pane. When a dialog
appears displaying options for copying the file into your project,
click the Finish button. Note the name of the video file (such as
“SaturnV”) and its file extension (such as “mov”).

Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()

guard let videoFilePath = Bundle.main.path(forResource:
"SaturnV", ofType: "mov") else {

print ("Video file not found")

return

}

let videoURL = NSURL(fileURLWithPath: videoFilePath)
player = AVPlayer(url: videoURL as URL)
vcPlayerController.player = player

The guard statement makes sure that the video file exists. Make
sure you substitute the name and file extension of your own video
file here to replace the preceding example, which loads a video file
called SaturnV.mov.

If the guard statement finds the video file defined by its name

and file extension, the next step is to load that path as an NSURL
into the videoURL constant. This videoURL constant is then
passed to the AVPlayer so it knows which file to play. Finally, the
AVPlayerViewController (defined by vcPlayerController) loads the
AVPlayer and displays it on the screen.

325

CHAPTER 12

326

16.

17.

18.

PLAYING AUDIO AND VIDEO
Edit the playVideo IBAction method as follows:

@IBAction func playVideo(_ sender: UIButton) {

present(self.vcPlayerController, animated: true, completion:

self.vcPlayerController.player?.play()

1)
}

This displays the vcPlayerController on the screen, and as soon as
it fills the screen, it starts playing the video.

Click the Run button or choose Product » Run. The Simulator
screen appears.

Click the Play Video button. The video player appears and starts
playing the video file you defined. Notice that the video player
displays controls that let you pause, fast-forward, rewind, or stop
the video as shown in Figure 12-7.

{

CHAPTER 12 PLAYING AUDIO AND VIDEO

Figure 12-7. Playing a video on an iOS device

19. Choose Simulator » Quit Simulator.

Playing Videos on the Internet

One huge problem with videos is that each video file takes up a large amount of space.
Just adding one or two videos to your app will greatly bloat its size. As an alternative, you
can store videos on a video-sharing site like YouTube. Then you can simply provide a
link to that video that your app can run.

The advantage of using a link is that it avoids bloating the size of your app with large
video files. The disadvantage is that unlike a stored video file, an app may not be able
to play a video if the iOS device does not have an Internet connection through WiFi or
through a cellular telephone network.

327

CHAPTER 12 PLAYING AUDIO AND VIDEO

The basic idea to playing Internet videos in an app involves using the AVKit
framework to play videos and the WebKit framework to access web pages. Then you
need to add a WebKit View to your user interface, which essentially adds a browser to
your app. Now you just need to define the video URL to load.

To see how to play a video, follow these steps:

1. Create a new iOS project using the Single View App template and
name this new project PlayInternetVideoApp. This creates a single
view for the user interface.

2. Click the ViewController.swift file in the Navigator pane.

3. Add the following under the import UIKit line:

import WebKit
import AVKit

4. Click the Main.storyboard file in the Navigator pane.

5. Click the Library icon to open the Object Library window, and
then drag and drop a WebKit View onto the user interface as
shown in Figure 12-8.

328

CHAPTER 12 PLAYING AUDIO AND

VIDEO

y = o B |8 « & PlayinternetvideoApp) [7] Playl..eoApp) B Main...board) [Main...Base)) 5] View..Scene) () View..troller)

w [] View Controller Scene

w () View Controller

Q we o =

Web View (deprecated) - Legacy UiwebView to display and Interact with
] web content.

WebKit View - Displays embedded web content and enables content
navigation.

Figure 12-8. Adding a WebKit View

[» B

—————

Note Make sure you drag and drop a WebKit View and not a WebKit View, which

has been deprecated and is far less versatile.

6. Resize the WebKit View to fill the screen.

7. Choose Editor » Resolve Auto Layout Issues » Reset to Suggested

Constraints. Xcode adds constraints to the WebKit View.

329

CHAPTER 12

330

8.

10.

11.

12.

13.

14.

15.

16.

PLAYING AUDIO AND VIDEO

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode displays the Main.storyboard file side by side with
the ViewController.swift file.

Move the mouse pointer over the WebKit View, hold down the
Control key, and Ctrl-drag under the class ViewController line in
the ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type webView, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet vaxr webView: WKWebView!
Add the following underneath the IBOutlet:
var myView = WKWebView()

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode
window.

Click the ViewController.swift file in the Navigator pane.

Open your browser and find a YouTube video you want to display
in your app.

Right-click the YouTube video. A popup menu appears as shown
in Figure 12-9.

CHAPTER 12 PLAYING AUDIO AND VIDEO

Copy video URL

Copy video URL at current time
Copy embed code

Loop

Troubleshoot playback issue

Copy debug info

Stats for nerds

Figure 12-9. Getting the video URL

17.

18.

Choose Copy video URL.

Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()

if let url = URL(string: "Your video URL goes here") {
let request = URLRequest(url: url)
webView.load(request)

} else {
print ("Couldn't find file to load")

}

Make sure you replace the text “Your video URL goes here”

with the video URL of the file you copied in step 17. The entire
ViewController.swift file should look like this with your video URL
replacing the string “Your video URL goes here”:

import UIKit
import WebKit
import AVKit

class ViewController: UIViewController {

@IBOutlet var webView: WKWebView!
var myView = WKWebView()

331

CHAPTER 12 PLAYING AUDIO AND VIDEO

override func viewDidlLoad() {
super.viewDidLoad()

if let url = URL(string: "https://youtu.be/bivXtohVufk") {
let request = URLRequest(url: url)
webView.load(request)

} else {
print ("Couldn't find file to load")

}

19. Click the Run button or choose Product » Run. The Simulator
screen appears, displaying your chosen video.

20. Click the Play button on the video to watch it play. WebKit View
essentially adds a browser to your app.

21. Chose Simulator » Quit Simulator.

Summary

Any app can enhance the user’s experience by playing audio or video. Audio files can
play in the background, while an app runs or plays only when the user requests it. The
audio file can play once, multiple times, or repeat continuously in a loop.

Video files let you display movies that users can watch. Because video files can take
up large amounts of space, use video files sparingly or else the size of your app can
dramatically increase in size each time you add another video file to an app.

To avoid gobbling up large amounts of storage space for video files, another
alternative is to play videos off the Internet. This keeps an app’s size down because it
doesn’t need to load one or more video files. However, the drawback is that the app can
only play a video if it can connect to the Internet through WiFi or a fast cellular telephone
network. Audio and video can enhance a user’s experience with an app.

332

CHAPTER 13

Using the Camera

One of the most useful accessories on every smartphone has been the camera. While
early smartphone cameras could only capture low-resolution images, today’s cameras
on the iPhone can capture amazingly high-quality images with resolutions that rival
professional cameras of just a few generations ago. Not surprisingly, the camera is one of
the most popular hardware accessories for an app to access and control.

To access the camera in an i0S device, you need to follow several steps:

e Set privacy settings in the Info.plist file to request access to both the
camera and the photo library.

e Use the image picker controller to access the camera (and check to
make sure the iOS device has a camera).

« Display the image on the screen so the user can capture an image.

e Optionally save the image in the photo library.

Note You can only test the camera on a real i0OS device such as an iPhone or
iPad because the Simulator cannot duplicate a camera.

Setting Privacy Settings

By default, no app can access the camera in an iOS device for privacy reasons. This
prevents apps from recording images without the user’s knowledge. So if an app wants to
access the camera, it must request permission. There are two privacy settings you need
to modify in the Info.plist file:

o Privacy - Camera Usage Description

e Privacy - Photo Library Additions Usage Description

333
© Wallace Wang 2019

W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_13

CHAPTER 13 USING THE CAMERA

The Privacy - Camera Usage Description key in the Info.plist file requests permission

to access the camera. The Privacy - Photo Library Additions Usage Description key

requests permission to store images in the Photos library. Only if the user grants

permission to accessing the camera and the photo library can an app retrieve images

through the camera and save them in the Photos library.

To see how to set privacy settings in an app, follow these steps:

1.

Create a new iOS Single View App project and name it
CameraApp.

Click the Info.plist file in the Navigator pane.

Move the mouse pointer over the last row displayed.
A + and - button appears.

Click the + button to add a new row in the Info.plist file. Xcode
displays a popup menu as shown in Figure 13-1.

I Application Category 0@
Application Category

Application does not run in bac...
Application fonts resource path
Application has localized displa...
Application is agent (UIElement)
Application is background only
Application is visible in Classic
Application prefers Carbon envi...
Application prefers Classic envi...
Application presents content in...

Figure 13-1. An app needs to request permission in the Info.plist file to access the
camera and photo library

334

Scroll down the list and choose Privacy - Camera Usage
Description.

Click in the Value column and type any arbitrary text to display to
the user such as “Need to access camera’.

Move the mouse pointer over the last row until a + and - button
appears.

CHAPTER 13 USING THE CAMERA

8. Click the + button to add a new row. Xcode displays a popup
menu (see Figure 13-1).

9. Scroll down the list and choose Privacy - Photo Library Additions
Usage Description.

10. Click in the Value column and type any arbitrary text to display to
the user such as “Need to access photo library”. You should now
have two privacy keys in the Info.plist as shown in Figure 13-2.

Key Type Value
¥ Information Property List (16 items)
$(DEVELOPMENT_LANGUAGE)
$(EXECUTABLE_NAME)
$(PRODUCT_BUNDLE_IDENTIFIER)

Localization native development region
Executable file
Bundle identifier

InfoDictionary version 6.0

Bundle name $(PRODUCT_NAME)
Bundle OS Type code APPL

Bundle versions string, short 1.0

Bundle version 1

Application requires iPhone environment YES

Launch screen interface file base name LaunchScreen

Main storyboard file base name Main

» Required device capabilities (1 item)

(3 items)

PO OO DD OOHN OO

» Supported interface orientations

tamel

Privacy - Camera Usage Description Need to access camera

Privacy - Photo Library Additions Usage Description Need to access photo library

Figure 13-2. Accessing the camera and photo library requires setting two privacy
keys in the Info.plist file

Once you've defined the two privacy settings to access the camera and photo library,
you'll be ready to design the user interface and write Swift code.

Checking for a Camera

Most iOS devices come with a built-in camera. However, older iOS devices, such as
the first iPod touch and early iPad models, did not come with a camera. In case your
app may run on older iOS devices without a camera, you need to check to make sure a

camera is available.

335

CHAPTER 13 USING THE CAMERA

To access the camera in an i0S device, we need to use the UllmagePickerController.
This allows us to not only detect if a camera exists but also to specify which camera to
use, the front or rear camera. If you don’t specify a camera to use, your app will default to
using the rear camera.

To check if a camera exists, follow these steps:

1. Make sure the CameraApp is loaded into Xcode.
2. Click the ViewController.swift file in the Navigator pane.

3. Edit the class ViewController line as follows:

class ViewController: UIViewController, UIImagePicker
ControllerDelegate, UINavigationControllerDelegate {

This allows the ViewController.swift file to access the camera
through the image picker controller and view the image that the
camera currently sees.

4. Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
if !UIImagePickerController.isSourceTypeAvailable(.camera){
let alertController = UIAlertController.init(title: nil,
message: "No camera available.", preferredStyle: .alert)

let okAction = UIAlertAction.init(title: "OK", style:
.default, handler: {(alert: UIAlertAction!) in

1)

alertController.addAction(okAction)
self.present(alertController, animated: true, completion: nil)

}

This code simply checks if a camera is available. If it is not true that a camera is
available, then it displays “No camera available” in an alert that pops up on the screen.
In a shipping app, you'd also want the app to shut down if it lacks a camera.

336

CHAPTER 13 USING THE CAMERA

Designing a Simple User Interface

The user interface for our CameraApp project will consist of the following:
o Two buttons
o Asingle image view

One button will access the camera and let us take a picture. After we take a picture,
we can show that picture in the image view. Now we’ll be able to use the second button
to save the picture into the Photos library.

To create the user interface for our CameraApp project, follow these steps:

1. Make sure the CameraApp project is loaded into Xcode.
2. Click the Main.storyboard file in the Navigator pane.

3. Click the Library icon and drag and drop two buttons and an

image view onto the user interface.
4. Double-click one button, type Take Picture, and press Enter.

5. Double-click the second button, type Save Picture, and press
Enter. The user interface should look similar to Figure 13-3.

Figure 13-3. The user interface of the CameraApp project

337

CHAPTER 13

338

6.

10.

11.

12.

13.

14.

15.

16.

USING THE CAMERA

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints. Xcode adds constraints to the buttons and image view.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard side by side with the
ViewController.swift file.

Move the mouse pointer over the image view, hold down the
Control key, and Ctrl-drag under the class ViewController line in
the ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type imageView, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var imageView: UIImageView!

Move the mouse pointer over the Take Picture button, hold down
the Control key, and Ctrl-drag above the last curly bracket at the
bottom of the ViewController.swift file.

Release the Control key and the left mouse button. A popup

window appears.

Click in the Name text field, type takePicture, and click the
Connect button. Xcode creates a takePicture IBAction method.

Move the mouse pointer over the Save Picture button, hold down
the Control key, and Ctrl-drag above the last curly bracket at the
bottom of the ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type savePicture, and click the
Connect button. Xcode creates a savePicture IBAction method.

CHAPTER 13 USING THE CAMERA

Taking a Picture

Before taking a picture, we first verify that the device has a camera. Then we use
UllmagePickerController and define its source to be the camera in the iOS device. By
default, the UllmagePickerController will use the rear camera, but if we want to specify
the front camera, we’'ll need to use the following:

let picker = UIImagePickerController()
picker.cameraDevice = UIImagePickerController.CameraDevice.front

After we take a picture and capture an image, we need to store that image in the
image view and dismiss the camera view.
To see how to take a picture and display it in the image view, follow these steps:

1. Make sure the CameraApp project is loaded into Xcode.
2. Click the ViewController.swift file in the Navigator pane.

3. Edit the takePicture IBAction method as follows:

@IBAction func takePicture(_ sender: UIButton) {
if (UIImagePickerController.isSourceTypeAvailable(UIImagePicke
rController.SourceType.camera)){
let picker = UIImagePickerController()
picker.delegate = self
picker.sourceType = UIImagePickerController.SourceType.camera
//picker.cameraDevice = UIImagePickerController.CameraDevice.
front
self.present(picker, animated: true, completion: nil)

}

The if statement checks to make sure a camera exists in the i0S
device. If so, then it creates a UllmagePickerController object,
sets the delegate to the ViewController.swift file, and accesses
the camera through the image picker controller. By default, the
camera chosen will be the rear camera, but we can specify the
front camera. Finally, the image displayed in the camera appears
on the screen.

339

CHAPTER 13

USING THE CAMERA

Now we need to write two additional functions. First, the camera
view will display a Cancel button so we need to make this Cancel
button hide the camera view. Second, if the user takes a picture,
we need to hide the camera view and display this image in the
image view.

Add the following two functions in the ViewController.swift file:

func imagePickerController(_ picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [UIImagePickerController.
InfoKey : Any]) {
if let capturedImage = info[UIImagePickerController.InfoKey.
originalImage] as? UIImage {
picker.dismiss(animated: true, completion: nil)
imageView.contentMode = .scaleToFill
imageView.image = capturedImage

}

func imagePickerControllerDidCancel(_ picker:
UIImagePickerController) {
picker.dismiss(animated: true, completion: nil)

Saving a Picture

After the user takes a picture with the camera, our app displays that image in the image

view. Now the user has the option of saving this image in the Photos library.

To save images in an image view and store them in the Photos library, follow these steps:

1.

2.

3.

340

Make sure the CameraApp project is loaded into Xcode.
Click the ViewController.swift file in the Navigator pane.

Modify the savePicture IBAction method as follows:

@IBAction func savePicture(_ sender: UIButton) {
let imageData = imageView.image!.pngData()
let compressedImage = UIImage(data: imageData!)

CHAPTER 13 USING THE CAMERA
UIImageWriteToSavedPhotosAlbum(compressedImage!, nil, nil, nil)

let alert = UIAlertController(title: "Saved", message: "Your
image has been saved", preferredStyle: .alert)

let okAction = UIAlertAction(title: "OK", style: .default,
handler: nil)

alert.addAction(okAction)

self.present(alert, animated: true, completion: nil)

}
The entire ViewController.swift file should look like this:
import UIKit

class ViewController: UIViewController,
UIImagePickerControllerDelegate, UINavigationControllerDelegate {

@IBOutlet var imageView: UIImageView!

override func viewDidlLoad() {
super.viewDidLoad()
if !UIImagePickerController.isSourceTypeAvailable(.camera){
let alertController = UIAlertController.init(title: nil,
message: "No camera available.", preferredStyle: .alert)

let okAction = UIAlertAction.init(title: "OK",
style: .default, handler: {(alert: UIAlertAction!) in

1)

alertController.addAction(okAction)
self.present(alertController, animated: true,
completion: nil)

}

func imagePickerController(_ picker: UIImagePickerController,
didFinishPickingMediaWithInfo info: [UIImagePickerController.
InfoKey : Any]) {
if let capturedImage = info[UIImagePickerController.
InfoKey.originalImage] as? UIImage {

341

CHAPTER 13 USING THE CAMERA

picker.dismiss(animated: true, completion: nil)
imageView.contentMode = .scaleToFill
imageView.image = capturedImage

}

func imagePickerControllerDidCancel(_ picker:
UIImagePickerController) {
picker.dismiss(animated: true, completion: nil)

}

@IBAction func takePicture(_ sender: UIButton) {

if (UIImagePickerController.isSourceTypeAvailable(UIImage

PickerController.SourceType.camera)){
let picker = UIImagePickerController()
picker.delegate = self
picker.sourceType = UIImagePickerController.
SourceType.camera
//picker.cameraDevice = UIImagePickerController.
CameraDevice. front
self.present(picker, animated: true, completion: nil)

}

@IBAction func savePicture(_ sender: UIButton) {
let imageData = imageView.image!.pngData()
let compressedImage = UIImage(data: imageData!)
UIImageWiriteToSavedPhotosAlbum(compressedImage!, nil, nil, nil)

let alert = UIAlertController(title: "Saved", message:
"Your image has been saved", preferredStyle: .alert)

let okAction = UIAlertAction(title: "OK", style: .default,
handler: nil)

alert.addAction(okAction)

self.present(alert, animated: true, completion: nil)

342

CHAPTER 13 USING THE CAMERA

4. Connect an iOS device to your Macintosh through a USB cable.

5. Click the Run button or choose Product » Run. The CameraApp’s
screen appears.

6. Tap the Take Picture button. The camera view appears displaying
a Cancel button, a round white button to take a picture, and
a camera icon that lets you switch between the rear and front

camera as shown in Figure 13-4.

Cancel

Figure 13-4. The camera view provides buttons for controlling the camera

7. Tap the round white button to capture an image. Your chosen
image now appears in the image view on the user interface.

8. Tap the Save Picture button. An alert appears, letting you know
that the image has been saved in your Photos library.

343

CHAPTER 13 USING THE CAMERA

9. Click the Stop button in Xcode.

10. Open the Photos app on your iOS device and you’ll see that your
image has been saved to the Photos library.

Summary

The camera has steadily improved over the years to the point where many professional
photographers even use the iPhone’s camera to take pictures instead of using a
dedicated camera. Because of the popularity of photography on the iPhone, all current
models of the iPad also include a camera. With cameras available in all the latest iOS
devices, it’s important to know how to access the camera in any iOS device.

Just keep in mind that if your app runs on older iOS devices such as early iPad
models or the first-generation iPod touch, there won’t be a camera available. Even
though most iOS devices will come with a camera, make sure your app doesn’t assume a
camera exists so check for the existence of a camera before trying to capture a picture.

After taking a picture, save it in the Photos library. By adding the ability to access an
iOS device’s camera, your app can take full advantage of the user’s iOS device.

344

CHAPTER 14

Using WebKit

If you ever used the Safari browser on a Macintosh, iPhone, or iPad, you've used an open
source framework called WebKit (webkit.org). To give your apps the power of a complete
browser, you can include the WebKit View. By using WebKit View, your apps can display
web pages from anywhere on the Internet or simply display web pages stored within
your app as HTML (HyperText Markup Language) files.

Note Xcode actually provides two objects that can display HTML web pages: Web
View and WebKit View. Web View is an older and less versatile object that Apple

no longer supports. As a result, always use WebKit View. If you ever modify older
projects, replace Web View with WebKit View instead.

Displaying Web Pages from the Internet

Because WebKit View represents a complete browser, adding WebKit View to your app
can give that app the ability to display any web pages available on the Internet.
To see how to display web pages from the Internet, follow these steps:

1. Create a new iOS Single View App project and name it WebKitApp.
2. Click the Main.storyboard file in the Navigator pane.

3. Click the Library icon and drag and drop a text field and two
buttons and a WebKit View onto the user interface. Resize the
text field and WebKit View so the text field appears at the top and
extends across the width and the WebKit View fills the rest of the
view as shown in Figure 14-1.

345
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_14

http://webkit.org

CHAPTER 14 USING WEBKIT

Text field

WebKit view

——

Figure 14-1. The user interface of the WebKitApp project

346

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints. Xcode adds constraints to the text field and WebKit
View.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard side by side with the
ViewController.swift file.

Move the mouse pointer over the text field, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

CHAPTER 14 USING WEBKIT

Click in the Name text field, type myTextField, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

Move the mouse pointer over the WebKit View, hold down the
Control key, and Ctrl-drag under the class ViewController line in
the ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type webView, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet vaxr webView: WKWebView!

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode
window.

Click the ViewController.swift file in the Navigator pane.

Add the following underneath the import UIKit line:

import WebKit

Edit the class ViewController line as follows:
class ViewController: UIViewController, UITextFieldDelegate {

This adds the UlTextField Delegate to allow the text field to detect
when editing has been completed by detecting when the user
presses the Return or Enter key.

Add the following below the IBOutlets:

var myView = WKWebView()

347

CHAPTER 14 USING WEBKIT
17. Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()
myTextField.delegate = self
myTextField.clearButtonMode = .always
lookupWebPage (address: "https://www.yahoo.com")

}

This defines the text field’s delegate as the ViewController.swift
file and displays a clear button at the far right of the text field so
users can clear the text in the text field easily. Finally, it calls a
function called lookupWebPage and sends it the web address of
https://www.yahoo.com.

Note WebKit View only allows secure connections defined by https:// and
requires the complete spelling of the web site address such as www. yahoo. com
instead of yahoo.com.

18. Add the following function below the viewDidLoad method:

func lookupWebPage(address: String) {
let url = URL(string: address)
let request = URLRequest(url: url!)
webView.load(request)

}

This function accepts a string (a web site address) and stores it as
a URL data type. Then it sends this URL address as a URLRequest,
which is then passed to the load method. Assuming the web site
address is valid, the web page will then appear inside the webView
(WebKit View).

348

https://www.yahoo.com
http://www.yahoo.com
http://yahoo.com

CHAPTER 14 USING WEBKIT

19. Add the following two functions to remove the virtual keyboard (if
it's visible) when the user presses Return or Enter and sends the
text stored in the text field as a web site address to retrieve:

func textFieldDidEndEditing(_ textField: UITextField) {
if let webAddress = myTextField.text {
lookupWebPage (address: webAddress)

}

func textFieldShouldReturn(_ textField: UITextField) -> Bool {
textField.resignFirstResponder ()
return true

}

The textFieldDidEndEditing function will take whatever the user
typed into the text field and use that as a valid web site address.
Of course, this will only work if the text is a valid web site address
formatted like https://www.website.com.

The textFieldShouldReturn function runs the
resignFirstResponder, which hides the virtual keyboard if it’s
visible. Then it returns true, which means that the text field will
end editing when the user presses the Enter or Return key.

The entire ViewController.swift file should look like this:

import UIKit
import WebKit

class ViewController: UIViewController, UITextFieldDelegate {

@IBOutlet var webView: WKWebView!
@IBOutlet var myTextField: UITextField!
var myView = WKWebView()

override func viewDidlLoad() {
super.viewDidLoad()
myTextField.delegate = self

349

https://www.website.com

CHAPTER 14 USING WEBKIT

myTextField.clearButtonMode = .always
lookupWebPage (address: "https://www.yahoo.com")

}

func lookupWebPage(address: String) {
let url = URL(string: address)
let request = URLRequest(url: url!)
webView.load(request)

}

func textFieldDidEndEditing(_ textField: UITextField) {
if let webAddress = myTextField.text {
lookupWebPage (address: webAddress)

}

func textFieldShouldReturn(_ textField: UITextField) -> Bool {
textField.resignFirstResponder()
return true

20. Click the Run button or choose Product » Run. The Simulator
screen appears. As long as your Macintosh has an Internet
connection, the WebKitApp displays the Yahoo web site as shown
in Figure 14-2.

350

CHAPTER 14 USING WEBKIT

Kids leapfinto arms of
police officers

Kay E: To everyone asking about the mom,
she's ok too!! An article from a local Des Main...

Kevin Durant meets
random dad in elevator,
then shows up to guy's ...

7 Outrageous Cards For
Those With Excellent Credit

Meet the Woman Who
Spent $30,000 on Plastic

§ Surgery to Look Like ...

=

Harvard University sued
over allegedly profiting

Figure 14-2. The Yahoo web site displayed in the Simulator

21.

22.

Displaying HTML Files

Click in the text field at the top of the screen and type a web site
address (including https://) such as https://www.apple.com and
press Enter. The Simulator screen now shows Apple’s web site.

Choose Simulator » Quit Simulator to return back to Xcode.

While the WebKit View can display web pages off the Internet, it can also display HTML

files stored in the app itself. Since WebKit View is essentially a complete browser, it can

display fairly sophisticated HTML files to create interested visual effects within an app.

351

https://www.apple.com

CHAPTER 14 USING WEBKIT

You can create an HTML file using a separate editor (such as Adobe Dreamweaver)
or you can create an HTML directly in Xcode. Dedicated HTML editors often let you
create web pages visually, while creating HTML files in Xcode requires typing HTML
commands.

To see how to create an HTML file in Xcode, follow these steps:
1. Create a new iOS Single View App project and name it HTMLApp.
2. Choose File » New » File. A template dialog appears.

3. Scroll down to the Other category and click the Empty icon as
shown in Figure 14-3.

Choose a template for your new file:

B vowchos wos macos
Resource
Sticker Catalog Strings File Stringsdict File
Other
S [S L
Assembly File Build Phase CLIPS File Configuration

File List Settings File
Markdown File PCH File Shell Script

Playground

Cancel]
Figure 14-3. Choosing an Empty file to add in an Xcode project

4. Click the Next button. Another dialog appears, asking for

a file name.

5. Type readme.html and then click the Create button. Xcode adds
the readme.html file in the Navigator pane.

6. Click the readme.html file in the Navigator pane. The middle pane
of Xcode displays the Empty file along with line numbers.

352

7.

10.

11.

12.

13.

14.

CHAPTER 14 USING WEBKIT

Type the following:

<!DOCTYPE html>
<html»
<body>

<p>This text is bold</bs</p»
<p><isThis text is italic</is</p»
<p>This is what<sub» subscript</sub» and
<sup>superscript<¢/sup» look like</p>

</body>
</html»

Click the Main.storyboard file in the Navigator pane.

Add the following underneath the import UIKit line:
import WebKit

Click the Library icon and drag and drop a WebKit View onto the
user interface. You may want to resize the WebKit View so it takes
up more space.

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints. Xcode adds constraints to the WebKit View.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard side by side with the
ViewController.swift file.

Move the mouse pointer over the WebKit View, hold down the
Control key, and Ctrl-drag under the class ViewController line in
the ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

353

CHAPTER 14 USING WEBKIT

354

15.

16.

17.

18.

19.

20.

21.

Click in the Name text field, type webView, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet vaxr webView: WKWebView!
Add the following underneath the IBOutlet:
var myView = WKWebView()

Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()

if let url = Bundle.main.url(forResource: "readme",
withExtension: "html") {
webView.loadFileURL(url, allowingReadAccessTo: url)

}

This code first tries to load the readme.html file. Only if it can find
areadme.html file does it load it in the WebKit View.

Click the Run button or choose Product » Run. The Simulator
screen appears and displays the contents of your readme.html
page on the screen.

Choose Simulator » Quit Simulator to return back to Xcode.
Click the readme.html file in the Navigator pane.

Edit the readme.html file as follows to make the text larger and
add a button that allows the user to click it:

<!DOCTYPE html»
<htmly
<body>

<font size = "7"»

<p>This text is bold</by»</p>
<p><i>This text is italic</is</p»

22.

23.

CHAPTER 14 USING WEBKIT

<p>This is what<sub» subscript</sub» and
<supysuperscript</sup» look like</p»

<h1>JavaScript example</h1»

<button type="button"
onclick="document.getElementById('data").innerHTML =
Date()"
style="font-size : 36px; width: 100%; height: 100px;"»
Click to display the current date and time.</buttony

<p id="data"»</p>

</body>
</html»

Click the Run button or choose Product » Run. The Simulator
screen appears. Notice that the text now appears much larger.

Click the button to display the current date and time. The current
date and time appears as shown in Figure 14-4.

355

CHAPTER 14 USING WEBKIT

This text is bold
This text is italic

This is what sbscript and P> Jook like

JavaScript example

Click to display the current date and time.

Thu Mar 21 2019 11:53:05 GMT-0700 (PDT)

Figure 14-4. Displaying JavaScript in a WebKit View

24. Choose Simulator » Quit Simulator to return back to Xcode.

If you're comfortable with HTML code, edit the readme.html file with more
sophisticated HTML code such as displaying tables and images.

Summary

Adding a WebKit View to an app allows displaying HTML files whether stored locally
in an app or retrieved off the Internet. By displaying HTML files, a WebKit View can
create interesting visual effects and user interfaces that may not be easily created using
standard user interface objects. Best of all, experienced HTML developers can use their
HTML skills to create a sophisticated app with little extra coding.

When loading HTML files, always check to make sure the file exists and can load
inside a WebKit View. Displaying web pages or HTML files inside an app just gives you
one more way to create interesting user interfaces for your apps.

356

CHAPTER 15

Displaying Animation

Most user interfaces are static, which is fine as long as the user can easily find commands
and control the app. However to make a user interface visually interesting, consider
adding animation to your apps. Animation can be as simple as moving an item on the
screen or as sophisticated as displaying several seconds of multiple objects moving,
spinning, and changing color on the screen.

Animation can involve one or more of the following:

e Moving an item from one location to another
¢ Resizing an item

o Changing transparency

o Rotating an item

To create basic animation, we need to use this code:

UIView.animate(withDuration: 2.0) {
// animation code here

}

User interface objects such as buttons and labels are based on the UIControl class,
which is based on UIView. So ultimately any user interface object can be animated as a
UlView. The numeric value defines how long to make the animation run measured in
seconds such as 2.0 seconds. The code inside the curly brackets then provides the actual
animation.

357
© Wallace Wang 2019

W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_15

CHAPTER 15 DISPLAYING ANIMATION

Moving Items with Animation

To move an item, you need to define its starting and ending location. You can define
the ending location of an item by visually placing it on the user interface. Then you can
define the starting location through Swift code. Once you know where an item starts and
ends up, you can define how long you want the movement animation to last.

For this example, we want to animate items as soon as the user interface loads.
That means we need to define the initial location before the user interface loads. To do
this, we’ll need to specify the initial location in the viewWillAppear method, which runs
right before the user interface appears on the screen.

To see how to move items with animation, follow these steps:

1. Create a new iOS Single View App project and name it
AnimationMoveApp.

2. Click the Main.storyboard file in the Navigator pane.

3. Click the Library icon and drag and drop a label, a text field, and
an image view onto the user interface. Resize the text field and
label.

4. Double-click the label, type This is a label, and press Enter. The
user interface should look similar to Figure 15-1.

This is a label

Figure 15-1. The user interface of the AnimationMoveApp project

5. Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints. Xcode adds constraints to the label, text field, and
image view.

358

10.

11.

12.

13.

14.

15.

CHAPTER 15 DISPLAYING ANIMATION

Click the image view and choose View » Inspectors » Show
Attributes Inspector, or click the Attributes Inspector icon in the
upper right corner of the Xcode window.

Click the Background popup menu and choose a color such as
orange. This will make the image view easy to see when it moves.

Click View in the Document Outline, choose View » Inspectors »
Show Attributes Inspector, or click the Attributes Inspector icon in
the upper right corner of the Xcode window.

Click the Background popup menu and choose a color such
as yellow. This will make it easier to see the label and text field
against a colored background.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard side by side with the
ViewController.swift file.

Move the mouse pointer over the label, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup

window appears.

Click in the Name text field, type myLabel, and click the Connect
button. Xcode creates the following IBOutlet:

@IBOutlet var mylabel: UILabel!

Move the mouse pointer over the text field, hold down the Control
key, and Ctrl-drag under the class ViewController line in the
ViewController.swift file.

Release the Control key and the left mouse button. A popup

window appears.

359

CHAPTER 15

360

16.

17.

18.

19.

20.

21.

22.

DISPLAYING ANIMATION

Click in the Name text field, type myTextField, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

Move the mouse pointer over the image view, hold down the
Control key, and Ctrl-drag under the class ViewController line in
the ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type myImageView, and click the
Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myImageView: UIImageView!

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode
window.

Click the ViewController.swift file in the Navigator pane.

Add the following viewWillAppear method:

override func viewWillAppear(_ animated: Bool) {
mylLabel.center.x -= view.bounds.width
myTextField.center.x -= view.bounds.width
myImageView.center.x -= view.bounds.width

}

Right before the view appears on the screen, this code moves the
label, text field, and image view to the left the exact width of the
entire view. This essentially hides the label, text field, and image
view from sight.

23.

CHAPTER 15 DISPLAYING ANIMATION

If you wanted to move the label, text field, and image view to the
right side of the screen, you would simply add the view width to
the center of each item such as

override func viewWillAppear(_ animated: Bool) {
mylLabel.center.x += view.bounds.width
myTextField.center.x += view.bounds.width
myImageView.center.x += view.bounds.width

If you wanted to move the label, text field, and image view to the
top of the screen, you would simply subtract the view height to the
center of each item such as

override func viewWillAppear(_ animated: Bool) {
mylLabel.center.x -= view.bounds.height
myTextField.center.x -= view.bounds.height
myImageView.center.x -= view.bounds.height

Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()

UIView.animate(withDuration: 2.0) {
self.mylLabel.center.x += self.view.bounds.width
self.myTextField.center.x += self.view.bounds.width
self.myImageView.center.x += self.view.bounds.width

The viewWillAppear method moved the label, text field, and
image view off to the left by the width of the view (which will
change depending on the iOS device the app runs on). The
viewDidLoad method now uses the UIView.animate method to
move the label, text field, and image view to the right by the width
of the view. This animation takes 2.0 seconds.

361

CHAPTER 15 DISPLAYING ANIMATION
The entire ViewController.swift file should look like this:
import UIKit
class ViewController: UIViewController {

@IBOutlet var mylLabel: UILabel!
@IBOutlet var myTextField: UITextField!
@IBOutlet var myImageView: UIImageView!

override func viewWillAppear(_ animated: Bool) {
mylLabel.center.x -= view.bounds.width
myTextField.center.x -= view.bounds.width
myImageView.center.x -= view.bounds.width

}
override func viewDidlLoad() {

super.viewDidLoad()

UIView.animate(withDuration: 2.0) {
self.mylLabel.center.x += self.view.bounds.width
self.myTextField.center.x += self.view.bounds.width
self.myImageView.center.x += self.view.bounds.width

}

}

24. Click the Run button or choose Product » Run. The Simulator
screen appears, and the label, text field, and image view slide out
from the left and onto the user interface as shown in Figure 15-2.

362

CHAPTER 15 DISPLAYING ANIMATION

This is a label This is a label

Figure 15-2. The label, text field, and image view slide onto the user interface from
the left

25. Choose Simulator » Quit Simulator to return back to Xcode.

Customizing Animation with Delays and Options

Rather than have multiple items move at the same time, you may want them to move
individually. To do this, you need to introduce a delay for one or more animations, so
rather than starting immediately, an animation may wait a fixed amount of time (such
as 0.25 or 2.8 seconds) before running. By delaying animation, you can let one item
animate before another starts, or stagger animation among multiple items so they start
and finish animating at different times.

363

CHAPTER 15 DISPLAYING ANIMATION

Normally animation runs just once and then stops. However, you can define two
additional options that cause the animation to repeat indefinitely or to run forward and
backward while repeating indefinitely. This can be useful to display animation to attract
the user’s attention.

The modified UIView.animate command to include delays and options looks like this:

UIView.animate(withDuration: 3.4, delay: 2.3, options: [.repeat,
.autoreverse], animations: {

// animate code here
}, completion: nil)

The withDuration defines how long the animation takes. Higher values take longer
while shorter values take less time. The delay defines how long to wait before running
the code inside the UIView.animate command.

The options can be listed individually (such as .repeat) or grouped in an array (such
as [.repeat, .autoreverse]). The animations area is where you type Swift code to animate
an item. The completion handler allows for a closure to run after the animation finishes.
If you don’t want any closure to run, then just set completion to nil.

To see how to add delays and options to animation, follow these steps:

1. Create a new iOS Single View App project and name it
AnimationDelayApp.

2. Create the same user interface as the AnimationMoveApp project
(or just modify that project).

3. Create three IBOutlets for the label, text field, and image view as
follows:

@IBOutlet var mylLabel: UILabel!
@IBOutlet var myTextField: UITextField!
@IBOutlet var myImageView: UIImageView!

4. Change the background color for both the view and the image
view to make them easier to see.

364

CHAPTER 15 DISPLAYING ANIMATION
Add the following viewWillAppear method:

override func viewWillAppear(_ animated: Bool) {
mylLabel.center.x -= view.bounds.width
myTextField.center.x -= view.bounds.width
myImageView.center.x -= view.bounds.width

}

Add the following in the viewDidLoad method:

UIView.animate(withDuration: 2.0) {
self.mylLabel.center.x += self.view.bounds.width

}

This animates the label exactly like the AnimateMoveApp project
to make it easier to see how the next two animations differ.

Add the following in the viewDidLoad method to delay animation
and repeat and autoreverse animation continually:

UIView.animate(withDuration: 3.4, delay: 2.3, options: [.repeat,
.autoreverse], animations: {

self.myTextField.center.x += self.view.bounds.width
}, completion: nil)

Add the following in the viewDidLoad method to delay animation
and only repeat the animation:

UIView.animate(withDuration: 1.4, delay: 3.5, options: .repeat,
animations: {
self.myImageView.center.x += self.view.bounds.width
}, completion: nil)
The entire ViewController.swift file should look like this:
import UIKit

class ViewController: UIViewController {

@IBOutlet var mylLabel: UILabel!
@IBOutlet var myTextField: UITextField!

365

CHAPTER 15 DISPLAYING ANIMATION
@IBOutlet var myImageView: UIImageView!

override func viewWillAppear(_ animated: Bool) {
myLabel.center.x -= view.bounds.width
myTextField.center.x -= view.bounds.width
myImageView.center.x -= view.bounds.width

}
override func viewDidlLoad() {
super.viewDidLoad()
UIView.animate(withDuration: 2.0) {
self.mylLabel.center.x += self.view.bounds.width
}
UIView.animate(withDuration: 3.4, delay: 2.3, options:
[.repeat, .autoreverse], animations: {
self.myTextField.center.x += self.view.bounds.width
}, completion: nil)
UIView.animate(withDuration: 1.4, delay: 3.5, options:
.repeat, animations: {
self.myImageView.center.x += self.view.bounds.width
}, completion: nil)
}

}

9. Click the Run button or choose Product » Run. The Simulator
screen appears. Notice how the three different items appear
animated. The label slides into place and stops. The text field
slides right and then left. The image view slides right, disappears
from view, and repeats over and over again.

10. Choose Simulator » Quit Simulator to return back to Xcode.

366

CHAPTER 15 DISPLAYING ANIMATION

Customizing Animation with Damping and Velocity

Another way to modify the movement of animated objects is to define a velocity and
a damping ratio. The velocity defines how fast an object moves, measured in seconds.
Higher values create faster movement, while lower values create slower movement.
The damping ratio creates a “spring” effect that makes a moving object appear
to oscillate. A value of 1.0 creates no oscillation, while values closer to 0 create much
greater oscillation.
The modified UIView.animate command to include velocity and damping looks
like this:

UIView.animate(withDuration: 2.0, delay: 0.5,
usingSpringWithDamping: 0.1, initialSpringVelocity: 0.5, options:
[.repeat, .autoreverse], animations: {

// animate code here
}, completion: nil)

To see how to add delays and options to animation, follow these steps:

1. Create anew iOS Single View App project and name it
AnimationDampingApp.

2. Create the same user interface as the AnimationMoveApp project
(or just modify that project).

3. Create three IBOutlets for the label, text field, and image view as follows:
@IBOutlet var mylabel: UILabel!

@IBOutlet var myTextField: UITextField!
@IBOutlet var myImageView: UIImageView!

4. Change the background color for both the view and the image
view to make them easier to see.

5. Add the following in the viewDidLoad method to create ordinary
animation without velocity or damping to make it easy to see the
difference:

UIView.animate(withDuration: 4.5) {
self.mylLabel.center.x += self.view.bounds.width

367

CHAPTER 15 DISPLAYING ANIMATION

6. Add the following in the viewDidLoad method to add damping
and velocity:

UIView.animate(withDuration: 2.0, delay: 0.5,
usingSpringWithDamping: 0.75, initialSpringVelocity: 0.2, options:
[.repeat, .autoreverse], animations: {

self.myTextField.center.x += self.view.bounds.width
}, completion: nil)

7. Add the following in the viewDidLoad method to see how
different damping and velocity values affect the animation:

UIView.animate(withDuration: 2.0, delay: 0.5,
usingSpringWithDamping: 0.1, initialSpringVelocity: 0.5, options:
[.repeat, .autoreverse], animations: {

self.myImageView.center.x += self.view.bounds.width
}, completion: nil)

The entire ViewController.swift file should look like this:
import UIKit
class ViewController: UIViewController {

@IBOutlet var mylLabel: UILabel!
@IBOutlet var myTextField: UITextField!
@IBOutlet var myImageView: UIImageView!

override func viewDidlLoad() {
super.viewDidLoad()

UIView.animate(withDuration: 4.5) {
self.mylLabel.center.x += self.view.bounds.width

}

UIView.animate(withDuration: 2.0, delay: 0.5,
usingSpringWithDamping: 0.75, initialSpringVelocity: 0.2,
options: [.repeat, .autoreverse], animations: {

self.myTextField.center.x += self.view.bounds.width
}, completion: nil)

368

CHAPTER 15 DISPLAYING ANIMATION

UIView.animate(withDuration: 2.0, delay: 0.5,
usingSpringWithDamping: 0.1, initialSpringVelocity: 0.5,
options: [.repeat, .autoreverse], animations: {

self.myImageView.center.x += self.view.bounds.width
}, completion: nil)

}

8. Click the Run button or choose Product » Run. The Simulator
screen appears. Notice how the three different items appear
animated. The label slides into place and stops. The text field
slides right and then left. The image view slides right and then left
with greater oscillation than the text field.

9. Choose Simulator » Quit Simulator to return back to Xcode.

Resizing Items with Animation

Besides moving an item from one location to another, you can also resize an item by
changing its width, height, or both its width and height. To change a user interface
object’s width or height, you need to specify the IBOutlet name of the object you want to
resize and then specify a width or height value change such as

IBOutletName.frame.size.width += value
IBOutletName.frame.size.height += value

To see how to resize user interface objects, follow these steps:

1. Create a new iOS Single View App project and name it
AnimationResizeApp.

2. Create the same user interface as the AnimationMoveApp project
(or just modify that project).

3. Hold down the Command key and click the label, text field, and
image view to select them all.

4. Click the Align icon to display a popup window.

369

CHAPTER 15 DISPLAYING ANIMATION

5. Select the Horizontally in Container check box and click the Add 3
Constraints button as shown in Figure 15-3.

Add New Alignment Constraints
|CI

1]

Leading Edges

I

8l Trailing Edges 0 v
05 Top Edges 0 -
0o Bottom Edges 0 -
& Horizontal Centers 0 v
fi8 Vertical Centers 0 v
0 First Baselines 0 =
[#] Horizontally in Container 0 =
8] vertically in Container 0 -

Add 3 Constraints

B & o] taf

Figure 15-3. Adding horizontal constraints on the label, text field, and image view

6. Choose Editor » Resolve Auto Layout Issues » Add Missing
Constraints in the bottom half of the submenu. Xcode adds
additional constraints to the label, text field, and image view.

7. Create three IBOutlets for the label, text field, and image view as
follows:

@IBOutlet var mylabel: UILabel!
@IBOutlet var myTextField: UITextField!
@IBOutlet var myImageView: UIImageView!

8. Change the background color for both the view and the image
view to make them easier to see.

370

CHAPTER 15 DISPLAYING ANIMATION
9. Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()

myLabel.text = "This is a label displaying text on a user interface.”

UIView.animate(withDuration: 2.0, delay: 0.0, options:

[.repeat, .autoreverse], animations: {
self.mylLabel.frame.size.width += 25
self.mylLabel.frame.size.height += 25

}, completion: nil)

UIView.animate(withDuration: 3.5, delay: 0.45, options:

[.repeat, .autoreverse], animations: {
self.myTextField.frame.size.width += 50

}, completion: nil)

UIView.animate(withDuration: 2.5, delay: 1.5, options:

[.repeat, .autoreverse], animations: {
self.myImageView.frame.size.height += 20
self.myImageView.frame.size.width += 20

}, completion: nil)

}

The entire ViewController.swift file should look like this:
import UIKit

class ViewController: UIViewController {

@IBOutlet var mylabel: UILabel!
@IBOutlet var myTextField: UITextField!
@IBOutlet var myImageView: UIImageView!

override func viewDidlLoad() {
super.viewDidLoad()

myLabel.text = "This is a label displaying text on a user
interface.”

371

CHAPTER 15 DISPLAYING ANIMATION

UIView.animate(withDuration: 2.0, delay: 0.0, options:

[.repeat, .autoreverse], animations: {
self.mylLabel.frame.size.width += 25
self.mylLabel.frame.size.height += 25

}, completion: nil)

UIView.animate(withDuration: 3.5, delay: 0.45, options:

[.repeat, .autoreverse], animations: {
self.myTextField.frame.size.width += 50

}, completion: nil)

UIView.animate(withDuration: 2.5, delay: 1.5, options:

[.repeat, .autoreverse], animations: {
self.myImageView.frame.size.height += 20
self.myImageView.frame.size.width += 20

}, completion: nil)

10. Click the Run button or choose Product » Run. The Simulator
screen appears. Notice the label, text field, and image view appear
to grow and shrink over and over again.

11. Choose Simulator » Quit Simulator to return back to Xcode.

Rotating Items with Animation

Rotating an item involves defining a rotation angle using the transform property and the
CGAffineTransform command as follows:

IBOutletName.transform = CGAffineTransform(rotationAngle: value)

The CGAffineTransform command rotates items by radians, so if you're more
comfortable specifying angles in degrees, we need to convert degrees into radians using
a command from the GLKit framework like this:

import GLKit

372

CHAPTER 15 DISPLAYING ANIMATION

Once the GLKit framework is imported into a project, we can access the
GLKMathRadiansToDegrees function that accepts degrees and converts them to radians
like this:

GLKMathDegreesToRadians (45)

To see how to rotate user interface objects, follow these steps:

1. Create a new iOS Single View App project and name it
AnimationResizeApp.

2. Create the same user interface as the AnimationMoveApp project
(or just modify that project).

3. Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints in the bottom half of the submenu. Xcode adds
additional constraints to the label, text field, and image view.

4. Create three IBOutlets for the label, text field, and image view as
follows:

@IBOutlet var mylabel: UILabel!
@IBOutlet var myTextField: UITextField!
@IBOutlet var myImageView: UIImageView!

5. Change the background color for both the view and the image
view to make them easier to see.

6. Add the following under the import UIKit line:
import GLKit
7. Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()

let rotateMe = GLKMathDegreesToRadians(45)

UIView.animate(withDuration: 2.0, delay: 0.0, options:

[.repeat, .autoreverse], animations: {
self.mylLabel.transform = CGAffineTransform(rotationAngle:
CGFloat(rotateMe))

373

CHAPTER 15

374

DISPLAYING ANIMATION
}, completion: nil)

UIView.animate(withDuration: 3.5, delay: 0.45, options:

[.repeat, .autoreverse], animations: {
self.myTextField.transform = CGAffineTransform(rotation
Angle: CGFloat(-rotateMe))

}, completion: nil)

UIView.animate(withDuration: 2.5, delay: 1.5, options:

[.repeat, .autoreverse], animations: {
self.myImageView.transform = CGAffineTransform(rotation
Angle: CGFloat(rotateMe))

}, completion: nil)

The entire ViewController.swift file should look like this:

import UIKit
import GLKit

class ViewController: UIViewController {

@IBOutlet var mylLabel: UILabel!
@IBOutlet var myTextField: UITextField!
@IBOutlet var myImageView: UIImageView!

override func viewDidlLoad() {
super.viewDidLoad()

let rotateMe = GLKMathDegreesToRadians(45)

UIView.animate(withDuration: 2.0, delay: 0.0, options:

[.repeat, .autoreverse], animations: {
self.mylLabel.transform = CGAffineTransform(rotation
Angle: CGFloat(rotateMe))

}, completion: nil)

UIView.animate(withDuration: 3.5, delay: 0.45, options:
[.repeat, .autoreverse], animations: {

CHAPTER 15 DISPLAYING ANIMATION

self.myTextField.transform = CGAffineTransform(rotation
Angle: CGFloat(-rotateMe))
}, completion: nil)

UIView.animate(withDuration: 2.5, delay: 1.5, options:

[.repeat, .autoreverse], animations: {
self.myImageView.transform = CGAffineTransform(rotation
Angle: CGFloat(rotateMe))

}, completion: nil)

8. Click the Run button or choose Product » Run. The Simulator
screen appears, and the animation begins on all three user
interface objects as shown in Figure 15-4.

375

CHAPTER 15 DISPLAYING ANIMATION

Figure 15-4. Rotating a label, text field, and image view

9. Choose Simulator » Quit Simulator to return back to Xcode.

Changing Transparency with Animation

Rather than move or rotate an item, you might want to change its appearance instead.
One way to do this is to change the transparency of an object. This can make an object
gradually disappear and reappear again.

To see how to change the transparency of a user interface objects, follow these steps:

1. Create anew iOS Single View App project and name it
AnimationColorApp.

376

CHAPTER 15 DISPLAYING ANIMATION

Create the same user interface as the AnimationMoveApp project
(or just modify that project).

Create three IBOutlets for the label, text field, and image view as
follows:

@IBOutlet var mylabel: UILabel!
@IBOutlet var myTextField: UITextField!
@IBOutlet var myImageView: UIImageView!

Change the background color for both the view and the image
view to make them easier to see.

Edit the viewDidLoad method as follows:

override func viewDidlLoad() {
super.viewDidLoad()

UIView.animate(withDuration: 2.0, delay: 0.0, options:
[.repeat, .autoreverse], animations: {
self.mylLabel.alpha = 0.0
self.mylLabel.backgroundColor = UIColor.lightGray
}, completion: nil)

UIView.animate(withDuration: 3.5, delay: 0.45, options:

[.repeat, .autoreverse], animations: {
self.myTextField.alpha = 0.0
self.myTextField.backgroundColor = UIColor.green

}, completion: nil)

UIView.animate(withDuration: 2.5, delay: 1.5, options:

[.repeat, .autoreverse], animations: {
self.myImageView.alpha = 0.0

}, completion: nil)

377

CHAPTER 15 DISPLAYING ANIMATION
The entire ViewController.swift file should look like this:
import UIKit
class ViewController: UIViewController {

@IBOutlet var mylLabel: UILabel!
@IBOutlet var myTextField: UITextField!
@IBOutlet var myImageView: UIImageView!

override func viewDidlLoad() {
super.viewDidlLoad()

UIView.animate(withDuration: 2.0, delay: 0.0, options:
[.repeat, .autoreverse], animations: {
self.mylLabel.alpha = 0.0
self.mylLabel.backgroundColor = UIColor.lightGray
}, completion: nil)

UIView.animate(withDuration: 3.5, delay: 0.45, options:

[.repeat, .autoreverse], animations: {
self.myTextField.alpha = 0.0
self.myTextField.backgroundColor = UIColor.green

}, completion: nil)

UIView.animate(withDuration: 2.5, delay: 1.5, options:

[.repeat, .autoreverse], animations: {
self.myImageView.alpha = 0.0

}, completion: nil)

}

6. Click the Run button or choose Product » Run. The Simulator
screen appears, and the animation begins on all three user
interface objects as they appear and disappear.

7. Choose Simulator » Quit Simulator.

378

CHAPTER 15 DISPLAYING ANIMATION

Animating Transitions Between View Controllers

When an app has multiple views, it needs a way to switch from one view controller to

another. By using a navigation or tab bar controller, you can get a simple animation that

slides one view controller over the other, but you can also create your own animation for

transitions between view controllers.

To see how to create custom animation transitions between view controllers, follow

these steps:

1.

10.

Create a new iOS Single View App project and name it
AnimationTransitionApp.

Click the Main.storyboard file in the Navigator pane.

Click the Library icon and drag and drop a button anywhere on
the user interface.

Double-click this button, type Show, and press Enter.

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints. Xcode adds constraints to the button.

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard side by side with the
ViewController.swift file.

Move the mouse pointer over the button, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
ViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type openView, click the Type popup
menu and choose UIButton, and click the Connect button. Xcode
creates an openView IBAction method.

Click the Library icon and drag and drop a View Controller in the
storyboard.

379

CHAPTER 15 DISPLAYING ANIMATION

11. Move the mouse pointer over the yellow circle at the top of the
first view controller, hold down the Control key, and Ctrl-drag
anywhere over the second view controller as shown in Figure 15-5.

n . At
./_- =\ o4 -

D — 4 D - i —

Figure 15-5. Ctrl-dragging from the first view controller to the second view controller

12. Release the Control key and the left mouse button. A popup
window appears as shown in Figure 15-6.

Manual Segue
Show
Show Detail
Present Modally

Present As Popover
Custom

Non-Adaptive Manual Segue
Push (deprecated)
Modal (deprecated)

Figure 15-6. Choosing a Custom segue
380

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

CHAPTER 15 DISPLAYING ANIMATION

Choose Custom. Xcode draws a segue connecting the two view
controllers.

Click View under the second view controller in the Document
Outline.

Choose View » Inspectors » Show Attributes Inspector, or click
the Attributes Inspector icon in the upper right corner of the
Xcode window.

Click the Background popup menu and choose a color such as
orange. This will make the second view controller easy to see
when it appears.

Click the Library icon and drag and drop a button on the second
view controller.

Double-click this button, type Hide, and press Enter.

Choose Editor » Resolve Auto Layout Issues » Reset to Suggested
Constraints. Xcode adds constraints to the button.

Choose File » New » File. A template dialog appears.

Choose Cocoa Touch Class under the iOS category and click the
Next button.

Click in the Class text field and type SecondViewController.

Click the Subclass of popup menu and choose UIViewController.
Then click the Next and Create button. Xcode adds the
SecondViewController.swift file to the Navigator pane.

Click the Main.storyboard file in the Navigator pane.

Click the yellow circle at the top of the second view controller to
select it.

Choose View » Inspectors » Show Identity Inspector, or click
the Identity Inspector icon in the upper right corner of the Xcode
window.

Click the Class popup menu and choose SecondViewController.

381

CHAPTER 15

382

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

DISPLAYING ANIMATION

Choose View » Assistant Editor » Show Assistant Editor, or click
the Assistant Editor icon in the upper right corner of the Xcode
window. Xcode shows the Main.storyboard side by side with the
SecondViewController.swift file.

Move the mouse pointer over the button, hold down the Control
key, and Ctrl-drag above the last curly bracket at the bottom of the
SecondViewController.swift file.

Release the Control key and the left mouse button. A popup
window appears.

Click in the Name text field, type dismissButton, click the Type
popup menu and choose UIButton, and click the Connect button.
Xcode creates an dismissButton IBAction method.

Edit the dismissButton IBAction method as follows:

@IBAction func dismissButton(_ sender: UIButton) {
dismiss(animated: true, completion: nil)

}

Choose View » Standard Editor » Show Standard Editor, or click
the Standard Editor icon in the upper right corner of the Xcode

window.
Click File » New » File. A template dialog appears.

Choose Cocoa Touch Class under the iOS category and click the
Next button.

Click in the Class text field and type CustomSegue as shown in
Figure 15-7.

Click the Subclass of popup menu and choose UlStoryboardSegue
as shown in Figure 15-7.

CHAPTER 15 DISPLAYING ANIMATION

Choose options for your new file:

Class: CustomSegue

Subclass of: | UISto ryboardSegue !
Language: Swift
Cancel Previous m

Figure 15-7. Creating a UlStoryboardSegue .swift class file

38.

39.

40.

41.

42.

43.

Click the Next and Create button. Xcode adds the
SecondViewController.swift file to the Navigator pane.

Click the Main.storyboard file in the Navigator pane.

Click Custom segue to “View Controller” in the Document
Outline.

Choose View » Inspectors » Show Attributes Inspector, or click
the Attributes Inspector icon in the upper right corner of the
Xcode window.

Click in the Identifier text field and type custom. (This can be any
arbitrary text.)

Click the Class popup menu and choose CustomSegue as shown
in Figure 15-8.

383

CHAPTER 15 DISPLAYING ANIMATION

O ® O 0 ©
Storyboard Segue

Identifler custom

Class CustomSegue o n

Module o

Inherit Module From Target
Kind Custom B

Animates

Figure 15-8. Adding an Identifier and Class to the segue

44. Click the ViewController.swift file in the Navigator pane.

45. Edit the openView IBAction method as follows:

@IBAction func openView(_ sender: UIButton) {
self.performSegue(withIdentifier: "custom", sender: self)

}

The entire ViewController.swift file should look like this:
import UIKit

class ViewController: UIViewController {

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.

}

@IBAction func openView(_ sender: UIButton) {
self.performSegue(withIdentifier: "custom", sender: self)

384

CHAPTER 15 DISPLAYING ANIMATION

The entire SecondViewController.swift file should look like this:
import UIKit
class SecondViewController: UIViewController {

override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view.

}

@IBAction func dismissButton(_ sender: UIButton) {
dismiss(animated: true, completion: nil)

}

At this point, we've created the basic structure for defining an animated transition
between the two view controllers. The final step involves defining this animation in the
CustomSegue.swift file.

Creating a custom transition involves creating a segue between two view controllers
and giving it a name. Then that segue needs its own .swift file that defines the actual
animation between the two view controllers. This segue .swift file defines the starting
and ending point of the animation. Some different ways to transition between view
controllers include

e Sliding the second view controller over the first from different angles

o Scaling the second view controller so it appears to grow and cover the
first view controller

o Rotating the second view controller into place over the first view

controller

When sliding the second view controller over the first, you need to define an x and
y starting and ending point for the upper left corner of the second view controller. The
origin (0,0) is defined by the upper left corner of the screen as shown in Figure 15-9.

385

CHAPTER 15 DISPLAYING ANIMATION

4 AM -

(0,0)

Figure 15-9. The origin (0,0) appears in the upper left corner of the screen

The starting point of the second view controller defines the upper left corner, which
should place it off the screen. If you wanted the second view controller to slide into place
from the bottom right corner, you would need to define its starting point at the bottom
right corner like this:

secondVC.view.transform = CGAffineTransform(translationX: firstVC.view.
bounds.width, y: firstVC.view.bounds.height)

Then the ending point of the second view controller needs to be the origin (0,0)
like this:

secondVC.view.transform = CGAffineTransform(translationX: 0.0, y: 0.0)

No matter what starting point you define for the second view controller, its ending
point will always be the origin (0,0). By defining different values for the x and y starting
point, you can make the second view controller slide into place from different angles as
shown in Figure 15-10.

386

CHAPTER 15 DISPLAYING ANIMATION

Ending point
(0,0)

Starting point

\;/

Figure 15-10. The ending point is always (0,0), but the starting point defines the
upper left corner position

Scaling involves changing the width (x) and height (y) of the second view controller.
A scaling value of 0 means the size of the second view controller is also zero, making the
second view controller invisible. A scaling value of 1 means the size of the second view
controller is its normal size. So animation involves defining a scaling value of 0 and an

ending value of 1 like this:

CGAffineTransform(scaleX: 0.0, y: 0.0)
CGAffineTransform(scaleX: 1.0, y: 1.0)

secondVC.view.transform
secondVC.view.transform

Rotating means defining the starting rotation angle. The ending rotation angle is
always 0. Since the rotation angle is measured in radians, we can use degrees and then
convert those degrees into radians. That involves importing the GLKit framework and
using the GLKMathDegreesToRadians function like this:

GLKMathDegreesToRadians(45)
The starting rotation angle can be any value you wish such as

let angle = GLKMathDegreesToRadians(125)
secondVC.view.transform = CGAffineTransform(rotationAngle:
CGFloat(angle))

387

CHAPTER 15 DISPLAYING ANIMATION
Then the ending rotation angle is always 0 like this:
secondVC.view.transform = CGAffineTransform(rotationAngle: 0.0)

To define animation for the transition between two view controllers,
follow these steps:

1. Click the CustomSegue.swift file in the Navigator pane.
2. Add the following under the import UIKit line:

import GLKit
3. Add the following function:

override func perform() {

}

4. Add these three lines inside the perform() function:

override func perform() {
let firstVC = self.source
let secondVC = self.destination

firstVC.view.addSubview(secondVC.view)

The source is the first view controller, while the destination is

the second view controller that will transition onto the first view
controller. The third line adds the second view controller onto the
first view controller, making it visible.

5. Add the next lines in the perform() function:

//secondVC.view.transform = CGAffineTransform(translationX:
firstVC.view.bounds.width, y: firstVC.view.bounds.height)

//secondVC.view.transform = CGAffineTransform(scaleX: 0.0, y: 0.0)

let angle = GLKMathDegreesToRadians(125)
secondVC.view.transform = CGAffineTransform(rotationAngle:
CGFloat(angle))

//secondVC.view.alpha = 0

388

CHAPTER 15 DISPLAYING ANIMATION

These lines define the starting point for the second view
controller. The first commented line is used to slide the second
view controller into position and places the second view
controller’s upper left corner at the bottom right corner of the first
view controller.

The second commented line is used to scale the second view
controller and defines its scale as 0, which makes the second view
controller so small that it’s invisible.

The two uncommented lines first convert 125 degrees into radians
and then define the starting rotation of the second view controller
at 125 degrees.

The last uncommented line defines a transparency of 0, which
makes the second view controller invisible.

Add the following animation code in the perform() function:

UIView.animate(withDuration: 0.8, animations: {
//secondVC.view. transform = CGAffineTransform(translationX:
0.0, y: 0.0)
//secondVC.view.transform = CGAffineTransform(scaleX: 1.0, y: 1.0)
secondVC.view.transform = CGAffineTransform(rotationAngle: 0.0)
//secondVC.view.alpha = 1

}) { (finished) in
firstVC.present(secondVC, animated: false, completion: nil)

}

This UlView.animate command defines how long the animation
lasts (0.8 seconds) and includes code to define the ending point
for all transitions.

The first commented line moves the upper left corner of the
second view controller at (0,0), which is the upper left corner of
the screen.

The second commented line scales the second view controller
with a value of 1, which makes the second view controller appear
full size on the screen.

389

CHAPTER 15 DISPLAYING ANIMATION

The uncommented line defines the ending rotation angle as 0, which
makes the second view controller appear correctly on the screen.

The last commented line defines the second view controller’s
transparency as 1, which makes it fully visible.

A