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   Introduction 

     Overview 
 The syntax of SQL is quite easy to learn. A few basic ideas and a handful of keywords allow you to tackle a 
huge range of queries. However, many users often find themselves completely stumped when faced with a 
particular problem. It isn’t really a great deal of help for someone to say “this is how I would do it.” What you 
need is a variety of ways to get started on a tricky problem. Once you have made a start on a query, you need 
to be able to check, amend, and refine your solution until you have what you need. 

   Two-Pronged Approach 
 Throughout the book I have approached different types of queries from two directions. The two approaches 
have their roots in the formal relational algebra and calculus. In the body of the book I have kept the 
descriptions non-mathematical, however, Appendix 2 provides an introduction to the formal notation for 
those keen to understand the underlying theory. The first approach, which I’ve called the  process approach , 
looks at  how  tables need to be manipulated in order to retrieve the subset of data required. You will find 
explanations of the different types of operations that can be performed on tables; e.g., joins, intersections, 
selections. Explanations are provided to help you decide which of these might be useful in particular 
situations. Once you understand what operations are needed, translating them into SQL is relatively 
straightforward. 

 The second approach is what I use when I just can’t figure out what operations will give me the required 
results. This approach, which I’ve called the  outcome approach , lets you describe what an expected row in 
your result might be like  —  i.e., what conditions it must obey. By looking at the data, it is surprisingly easy to 
develop a semi-formal description of what a “correct” retrieved row would be like (and by implication, how 
you would recognize an “incorrect” row). Translating this semi-formal description into a working query is 
straightforward. 

 I am always surprised at which approach my students take when confronting a new problem. Some will 
instantly see the operations that are needed, and others will find the outcome approach more intuitive. The 
choice of approach changes from query to query, from person to person, and (I suspect) from day to day. 
Having more than one way to get started means you are less likely to get completely baffled by a new problem.  
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   Who Is This Book For? 
 This book is for anyone who has a well-designed relational database and needs to extract information 
from it. You might have noticed in the previous sentence that the database must be “well designed.” I can’t 
overemphasize this point. If your database is badly designed, then it will not be able to store accurate and 
consistent data, and so the information your queries retrieve will always be prone to inaccuracies. If you are 
looking to design a database from scratch, you should read my first book  Beginning Database Design .” 1  The 
final chapter in this book will outline a few common design problems you are likely to come across and give 
some advice about how to mitigate the impact or correct the problem.  

   Objective of This Book 
 In this book you will be introduced to all the main techniques and keywords needed to create SQL queries. 
You will learn about joins, intersections, unions, differences, selection of rows, and projection of columns. 
You will see how to implement these ideas in different ways using simple and nested queries, and you will 
be introduced to a variety of techniques for aggregating and summarizing data, including the use of window 
functions. You will also learn how you can investigate and improve the efficiency of your queries. 

 Most important of all, you will learn different ways to get started on a troublesome problem. There are 
almost always several different ways to express a query, and my objective is that for any particular situation 
I will provide you with a method of attack that matches your psyche and mood (just kidding).  

   New in the Second Edition 
 I have added a chapter on window functions describing the functionality these recently introduced 
concepts give to aggregating and summarizing data. 

 An appendix that provides an easily understood introduction to formal relational concepts and notation 
is also included.    

  1  Clare Churcher,  Beginning Database Design: From Novice to Professional  (New York: Apress, 2012). 



1© Clare Churcher 2016 
C. Churcher, Beginning SQL Queries, DOI 10.1007/978-1-4842-1955-3_1

    CHAPTER 1   

 Relational Database Overview                          

 SQL (Structured Query Language) enables us to create tables, apply constraints, and manipulate data in a 
database. In this book we will concentrate on queries that allow us to extract information from a database 
by describing the subset of data we need. That data might be a  single number  , such as a product price, a list 
of the names of members with overdue subscriptions, or a calculation, such as the total dollar amount of 
products sold in the past 12 months. In this book we will be looking at different ways to approach a query so 
that it can be expressed correctly in SQL. 

 Before getting into the nuts and bolts of how to specify queries, we will review some of the ideas and 
terminology associated with relational databases. We will also look at data models, which are a succinct 
way of depicting how a particular database is put together, that is, what data is being kept where and how 
everything is interrelated. 

 It is imperative that the underlying database has been designed to accurately represent the situation 
it is dealing with. This means not only that suitable tables have been created, but also that appropriate 
constraints have been applied so that the data is consistent and stays consistent as the database evolves. 
Even with all the fanciest SQL in the world, you are unlikely to get accurate responses to queries if the 
underlying database design is faulty. If you are setting up a new database, you should refer to a design book 1  
before embarking on the project. 

     Introducing Database Tables 
 In simple terms, a relational database is a set of  tables . 2  Each table in a well-designed database keeps 
information about aspects of one thing, such as customers, sales, teams, or tournaments. Throughout the 
book we will base the majority of the examples on a database for a golf club. The tables will be introduced 
as we progress, and an overview is provided in Appendix 1. 

   1  For example, you can refer to my other Apress book,  Beginning Database Design: From Novice to Professional  
(New York: Apress, 2012).  
   2  More correctly, it’s a set of relations. In the body of the book common words such as  table  and  row  are used. In 
Appendix 2 we introduce the more formal vocabulary and notation.  

Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-1955-3_1    ) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-1955-3_1


CHAPTER 1 ■ RELATIONAL DATABASE OVERVIEW

2

     Attributes 
 When a table is created we need to specify what information it will hold. For example, a   Member  table      might 
contain information about names, addresses, and contact details. We need to decide what the individual 
pieces of data will be. For example, we might choose to separate the name information into a title, a first 
name, a family name, initials, and a preferred name. This type of separation allows us more flexibility in how 
the data is used. For example, we can address correspondence to Mr. J. A. Stevens and start the message with 
 Dear Jim . Each of these separate pieces of information is an  attribute  of the table. 

 To define an attribute we need to provide a name (e.g.,  FamilyName ,  Handicap,  or  DateOfBirth ) and a domain 
or type. A   domain       is a set of allowed values and might be something very general or something quite specific. 
For example, the domain for columns storing dates might be any valid date (so that  February 29  is allowed only 
in leap years), whereas for columns keeping quantities the domain might be integer values greater than 0. We 
might initially think that the domain for a  FamilyName  attribute could be any string of characters, but on reflection 
we will need to consider whether some punctuation is allowed (probably yes), if numbers are permitted (hard 
to say), and if there should be a minimum or maximum length. All database systems have built-in domains or 
 types  such as text, integer, or date that can be chosen for each of the fields in a table. More sophisticated products 
allow the user to define their own types, which can be used across tables. For example, we might define a type 
called  CarRegistration  that has a predetermined template of letters and digits. Even if it is not possible to define 
your own types, all good database systems allow the designer to specify constraints on a particular attribute in a 
table. For example, in a particular table we might specify that a birthdate is a date in the past or that a handicap is 
between 0 and 40. Some attributes might be allowed to be empty, while others may be required to have a value. 

   When we view the table, the names of the attributes are the column headers, and the domain or type 
provides the set of allowed values. Once we have defined the table we add data by providing a row for each 
instance. For example, if we have a   Member  table     , as in Figure  1-1 , each row represents one member.    

  Figure 1-1.    The Member table       
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3

     The Primary Key 
 One of the most important features of a relational database table is that each of its rows should be unique. 
No two rows in a table should have identical values for every attribute. If we consider our member data, it is 
clear why this uniqueness constraint is so important. If, in the table in Figure  1-1 , we had two identical rows 
(say, for Brenda Nolan), we would have no way to differentiate them. We might associate a team with one 
row and a subscription payment with the other, thereby generating all sorts of confusion.  

 The way that a relational database maintains the uniqueness of rows in a table is by specifying a 
 primary key     . A  primary key  is an attribute, or set of attributes, that is guaranteed to be different in every 
row of a given table. For data such as the member data in this example, we cannot guarantee that all our 
members will have different names or addresses (a father and son may share a name and address and both 
belong to the club). It is important that there are sufficient attributes to be able to distinguish the rows in 
a table. Adding a birthdate would resolve the problem mentioned above. Dealing with large numbers of 
attributes as a primary key can become cumbersome, so to help distinguish different members, we have 
included an ID number as one of the attributes in the table in Figure  1-1 . We can now uniquely identify a 
member by specifying their ID. This has the added advantage that we can also keep track of members if 
they change their names. Adding an identifying number (sometimes referred to as a   surrogate key   ) is very 
common in database tables. If  MemberID  is defined as the primary key for the  Member  table, then the database 
system will ensure that in every row the value of  MemberID  is different. The system will also ensure that the 
primary key field always has a value. That is, we can never add a row that has an empty  MemberID  field. These 
two requirements for a primary key field (uniqueness and not being empty) ensure that given a value for 
 MemberID , we can always find a single row that represents that member. We will see that this is also important 
when we start looking at relationships between tables later in this chapter. 

 The code that follows shows the SQL code for creating the  Member  table shown in Figure  1-1 . Each 
attribute has a name and type specified. In SQL, the keyword  INT  means an integer or non-fractional 
number, and  CHAR(n)  means a string of characters  n  long. The code also specifies that  MemberID  will be the 
primary key. Every table in a well-designed database should have a primary key clause. 

   CREATE TABLE Member ( 
 MemberID INT PRIMARY KEY, 
 LastName CHAR(20), 
 FirstName CHAR(20), 
 Handicap INT, 
 JoinDate DATETIME, 
 Gender CHAR(1)); 

        Inserting and Updating  Rows      in a Table 
   The emphasis of this book is on getting accurate information out of a database, but the data first has to get 
in somehow. Most database application developers will provide user-friendly interfaces for inserting data 
into the various tables. Often a form is presented to the user for entering data that may end up in several 
tables. Figure  1-2  shows a simple Microsoft ©  Access form that allows a user to enter and amend data in the 
 Member  table.  
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 It is possible to construct web forms or use mechanical readers, such as bar-code readers, that can 
collect data and insert it into a database. Data can also be added with bulk updates from files or be imported 
from other applications. Behind all the different mechanisms for updating data, SQL update queries are 
generated. We will see three types of queries for inserting or changing data just to get an idea of what they 
look like. 

 The code that follows shows the SQL to enter one complete row in our  Member  table. The data items are 
in the same order as specified when the table was created. Note that the date and string values need to be 
enclosed in single quotes. 

   INSERT INTO Member 
 VALUES (118, 'McKenzie', 'Melissa', '963270', 30, '05/10/1999', 'F') 

   If many of the data items are empty, we can specify which attributes will have values. If we had only the 
ID and last name of a member, we could insert just those two values as shown here: 

   INSERT INTO Member (MemberID, LastName) 
 VALUES (258, 'Olson') 

   When adding a new row as just seen, we always have to provide a value for the primary key. 
 We can also alter records that are already in the database with an update query. The following query 

will find the row for the member with ID 118 and then will update the phone number: 

   UPDATE Member 
 SET Phone = '875077' 
 WHERE MemberID = 118 

   This query specifies which rows are to be changed (the  WHERE  clause) and also specifies the field to be 
updated (the  SET  clause).    

  Figure 1-2.    A form allowing entry and updating of data in the Member table       
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      Designing      Appropriate Tables 
   Even a quite modest database system will have hundreds of attributes: names, dates, addresses, quantities, 
prices, descriptions, ID numbers, and so on. These all have to find their way into tables, and getting them in 
the right tables is critical to the overall accuracy and usefulness of the database. Many problems can arise 
from having attributes in the “wrong” tables. As a simple illustration of what can go wrong, I’ll briefly show 
the problems associated with having redundant information. 

 Say we want to add teams and practice nights to the information we are keeping about members of our 
golf club. We could add these two fields to the  Member  table, as in Figure  1-3 .  

  Figure 1-3.    Possible Member table       

 Immediately, we can see there has been a problem with the data entry because Brenda Nolan has 
a practice night that is different from the rest of her team members. The piece of information about the 
practice night for each team is being stored several times, so inevitably inconsistencies will arise. If we 
formulated a query to find the practice night for TeamB, what would we expect for an answer? Should it be 
Monday, Tuesday, or both? 

 The problem here is that (in database parlance) the table is not properly  normalized .  Normalization   is a 
formal way of checking whether attributes are in the correct table. It is outside the scope of this book to delve 
into normalization, but I’ll just briefly show you how to avoid the problem in this particular case. 

 The problem is that we are trying to keep information about two different things in our  Member  table: 
information about each member (IDs, names, and so on) and information about teams (the practice nights). 
The  PracticeNight  attribute is in the wrong table. Figure  1-4  shows a better solution with two tables: one for 
information about members and one for information about teams.  
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 This separation of information into two tables prevents the inconsistent data we had previously. The 
practice night for each team is stored only once. If we need to find out what night Brenda Nolan should be at 
practice, we now need to consult two tables: the  Member  table to find her team and then the  Team  table to find 
the practice night for that team. The bulk of this book is about how to do just that sort of data retrieval.     

     Introducing Data Models 
 Even the simplest databases are likely to have several tables. A  data model  is a conceptual model of the 
underlying data and how it is interrelated. We will use the class diagram notation from the Unified Modeling 
Language ( UML     ) 3  to represent our data models. There are many other ways to represent data structure 
(for example, Entity Relationship Diagrams) that, for the purposes of this book, would also be suitable. 
We choose to use UML as it has a large suite of diagramming tools for developing software applications 
that encompasses not only the structure of data but also its behavior. In this section, we will look at how to 
interpret a class diagram and how to translate it into tables and constraints in a relational database. 

 A  class  is like a template for something we want to keep data about (events, people, places, etc.) For example, 
we might want to keep names and other details about the members of our golf club. Figure  1-5  shows the UML 
notation for a  Member   class  . The name of the class is in the top panel, and the next panel shows the  attributes . 
Class diagrams can also have another panel to show methods associated with the behavior of the class.  

  Figure 1-4.    Member and Team tables       

   3  If you want more information about UML, then refer to Grady Booch, James Rumbaugh, and Ivar Jacobsen,  The Unified 
Modeling Language User Guide  (Boston, MA: Addison Wesley, 2005). The current standards can be found at 
   http://www.uml.org/     .  
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 In a relational database, each class is represented as a table, the attributes are the columns, and each 
instance (in this case an individual club member) will be a row in the table. 

 The data model can also depict the way the different classes depend on each other. Figure  1-6  shows 
two classes,  Member  and  Team , and how they are related.  

  Figure 1-5.    UML representation of a Member class       

  Figure 1-6.    A relationship between two classes       

 The pair of numbers at each end of the  plays for  line in Figure  1-6  indicates how many members play 
for one particular team, and vice versa. The first number of each pair is the minimum number. This is often 
0 or 1 and is therefore sometimes known as the   optionality    (that is, it indicates whether a member  must  have 
an associated team, or vice versa). The second number (known as the   cardinality   ) is the greatest number of 
related objects. It is usually 1 or many (denoted by  n  or  * ), although other numbers are possible. 

 Relationships can be interpreted in both directions. The label on the relationship in Figure  1-6  implies 
that we are reading from left to right and we will need to think of the appropriate verb for interpreting the 
diagram in the other direction. “Team  has  members” will do. Reading Figure  1-6  from left to right, we see 
that one particular member doesn’t have to  play for  a team and can  play for  at most one team (the numbers 
0 and 1 at the end of the line nearest the  Team  class). Reading from right to left, we can say that one particular 
team doesn’t need to  have  any members but can  have  many (the numbers 0 and n nearest the  Member  class). 
A relationship like the one in Figure  1-6  is called a 1 – Many relationship (a member can belong to just one 
team, and a team can have many members). 

 You might think there should be exactly four members for a team (say, for an interclub team). Although 
this might be true when the team plays a round of golf, our database might record different numbers of 
members associated with the team as we add and remove players throughout the year. A data model usually 
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   4  Alistair Cockburn,  Writing Effective Use Cases  (Boston, MA: Addison Wesley, 2001).  

  Figure 1-7.     Member table   with a foreign key column Team       

uses 0, 1, and many to model the relationships between tables. Other constraints (such as the maximum 
number on a team) are more usually expressed with business rules or with  UML   use cases. 4  

 We can represent a 1-Many relationship in our database by looking at the primary key at the 1 end of the 
relationship and adding a column of the same type to the table at the Many end. For the model in Figure  1-6  
we would add a  Team  column to the  Member  table as shown in Figure  1-7 .  

 The  Team   column   is called a  foreign key . Any non-empty value in this column in the  Member  table must 
be a value that already exists in the primary key column of the  Team  table. The concept of a foreign key 
provides us with a constraint on the  Member  table so that we cannot assign members to non-existent teams. 
This constraint is called   referential integrity      . 

 The SQL to create a table with a foreign key is shown here: 

   CREATE TABLE Member( 
 MemberID INT PRIMARY KEY, 
 LastName CHAR(20), 
 FirstName CHAR(20), 
 Phone CHAR(20), 
 Handicap INT, 
 JoinDate DATETIME, 
 Gender CHAR(1), 
 Team CHAR(20) FOREIGN KEY REFERENCES Team); 

   Because we need to compare the value in the foreign key column of the  Member  table with the primary 
key column of the  Team  table, these two columns must have the same domain or datatype. 

 Most database products have a  graphical interface   for setting up and displaying foreign key constraints. 
Figure  1-8  shows the interfaces for Microsoft ©  SQL Server and Microsoft ©  Access. These diagrams, which 
are essentially implementations of the data model, are invaluable for understanding the structure of the 
database so we know how to extract the information we require.  
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   5  For more information about database design, refer to my other Apress book,  Beginning Database Design: From Novice 
to Professional  (New York: Apress, 2012).  

 The tables in Figures  1-4  and  1-7  have essentially the same design. For Figure  1-4  we arrived at the 
design by removing the  PracticeNight  column from the  Member  table and creating a new   Team  table   (a 
 normalization   process). For Figure  1-7  we first considered a data model and added the  Team  column to the 
 Member  table as a way of representing the relationship between  Member  and  Team . The outcome is the same 
whichever way you approach the issue. 

 At the risk of repeating myself, I do want to caution about the necessity of ensuring that the database 
is properly designed. The simple model in Figure  1-6  is almost certainly quite unsuitable even for the tiny 
amount of data it contains. A real club will probably want to keep track of how the membership of teams 
evolves over the years. This will involve including information about seasons or years along with the team 
membership information. Some members might play for more than one team during a year if they are called 
in as a  substitute  . That information may or may not be necessary to retain. Designing a useful database is a 
tricky job and outside the scope of this book. 5   

     Retrieving Information from a Database 
 Now that we have a well-designed database consisting of interrelated normalized tables, we can start to 
look at how to extract information by way of queries. When  I refer to extracting or retrieving information I 
don’t mean that we are removing any data. Think of a query as providing a window onto a small part of the 
database. Many database systems will have a diagrammatic interface that can be useful for simple queries. 
Figure  1-9  shows the  Microsoft ©  Access interface   for retrieving the names of senior members from the 
 Member  table. The checkmarks denote which columns we want to retrieve, and the  Criteria  row enables us 
to specify conditions on the rows that are returned.   

  Figure 1-8.    Diagrams for implementing 1 – Many relationships using foreign keys       
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 The application will take the information from the graphical interface and construct an SQL query. 
Most applications will show you the SQL that is generated, and you can amend it or write it from scratch 
yourself. The SQL equivalent to the query depicted in Figure  1-9  is: 

   SELECT FirstName, LastName 
 FROM Member 
 WHERE MemberType = 'Senior'; 

   This  SQL query   contains three clauses:  SELECT  specifies which columns to return,  FROM  specifies the 
table(s) where the information is kept, and  WHERE  specifies the conditions the returned rows must satisfy. 
We’ll look at the structure of SQL statements in more detail later, but for now the intention of the query is 
pretty clear. 

 As we need to include more and more tables connected in a variety of ways, the diagrammatic 
interfaces rapidly become unwieldy, and often we need to write the SQL commands directly. Often, it is 
easier to think about a query in a more abstract way. With a clear abstract understanding of what is required, 
it then becomes more straightforward to turn the idea into an appropriate SQL statement. There are two 
different ways to approach queries on a relational database. 

       Process Approach 
 One way to approach a query is to think in terms of the operations we need to carry out on the tables. Let’s 
think about how we might to get a list of names for members who practice on a Monday. We might imagine 
first retrieving just the rows from the  Team  table that have Monday in the  PracticeNight  column. We 
might then join those rows with the  Member  table (more about joins later) and then extract the names from 
the result. We will call this the   process approach      , as it is a series of steps carried out in a particular order. 
Figure  1-10  depicts the steps just described.     

  Figure 1-9.    Access interface for a simple query on the Member table       
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        Outcome Approach      
 An alternative way to think about the query in the previous section is to examine all the rows in the  Member  
table and just return those that satisfy the criteria that the member is on a team that has Monday as a 
practice night. Figure  1-11  depicts this train of thought. The row  m  that we are considering in the  Member  table 
satisfies the condition about the team’s practice night, so we should retrieve the names from that row.  

  Figure 1-10.    The process approach: thinking of a query as a sequence of operations       
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 We will call this type of thinking about a query the  outcome approach  because we describe what we 
want rather than how to get it.    

     Why We Consider Two Approaches 
 Relational database theory has its origins in set theory. If we think of our tables as sets of rows, then a query 
is a question that requires us to manipulate those sets to retrieve a subset containing the information we 
require. The relational theory has two formal ways of specifying the criteria for extracting subsets of rows: 
 relational algebra   and  relational calculus  . 

 We do not need these abstract ideas for simple queries. However, if all queries were simple, you would 
not be reading this book. In the first instance, queries are expressed in everyday language that is often 
ambiguous. Try this simple expression: “Find me all students who are younger than 20 or live at home and 
get an allowance.” This can mean different things depending on where you insert commas. For example 
a comma after “20” leads to the interpretation that everyone under 20 is included, while a comma after 
“home” suggests that they must also get an allowance. Even after we have sorted out what the natural-
language expression means, we then have to think about the query in terms of the actual tables in the 
database. This means having to be quite specific in how we express the query. Both  relational algebra   and 
 relational calculus   give us a powerful way of being accurate and specific. 

 Why not skip all this abstract stuff and go right ahead and learn SQL? Well, the SQL language consists of 
elements of both calculus and algebra. Older versions of SQL were purely based on relational calculus in that 
you described  what  you wanted to retrieve rather than  how . Modern implementations of SQL allow you to 
explicitly specify algebraic operations such as joins, unions, and intersections on the tables as well. 

 There are often several equivalent ways of expressing an SQL statement. Some ways are very much 
based on calculus, some are based on algebra, and some are a bit of both. During my time as a university 
lecturer I often asked the class whether they found the calculus or algebra expressions more intuitive for 
a particular query. The class was usually equally divided. Personally, I find that some queries just feel 
obvious in terms of relational algebra, whereas others feel much more simple when expressed in relational 
calculus. Once I have the idea pinned down with one or other, the translation into SQL (or some other query 
language) is usually straightforward. 

  Figure 1-11.    Considering if the row m satisfies the criteria for the query.       

 



CHAPTER 1 ■ RELATIONAL DATABASE OVERVIEW

13

 We can make use of the ideas of relational algebra and relational calculus without delving into the 
mathematics. In the body of the book I refer to the   process approach       (algebra) and the   outcome approach       
(calculus). The more tools you have at your disposal, the more likely it is that you will be able to express 
complex queries accurately. In Appendix 2 there is an introduction to the formal notation for relational 
algebra and relational calculus for those of you who would like to add that to your armory.   

     Summary 
 This chapter has presented an overview of relational databases. We have seen that a relational database 
consists of a set of tables that represent the different aspects of our data (for example, a table for members 
and a table for teams). The attributes needed to describe the members or teams become the columns of the 
tables, and each column has a set of allowed values (a domain). Each table should have a primary key, which 
is an attribute or set of attributes guaranteed to have a different value for every row. 

 It is possible to set up constraints between tables with foreign keys. A foreign key is a value for a 
column(s) in one table that has to already exist as a value in the primary key column(s) of another table. 
For example, the value of  Team  in the  Member  table must be one of the values in the primary key field of the 
 Team  table. 

 It is often helpful to think about queries in an abstract way, and there are two ways to do this. The 
process approach requires us to think about the operations that can be applied to tables in a database. It is a 
way of describing  how  we need to manipulate the tables to extract the information we require. The outcome 
approach requires us to think about  what  criteria our required information must satisfy. Different people 
will find that one or the other of these approaches feels more natural for different queries. SQL is a language 
for specifying queries on a database. There are usually many equivalent ways to specify a query in SQL. 
Some reflect the process approach and some reflect the outcome approach  — a nd some are a bit of both.       
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    CHAPTER 2   

 Simple Queries on One Table                          

 If a database has been designed correctly, the data will be located in several different tables. For example, 
our golf database has separate tables for information about members, teams, and tournaments, as well 
as tables that connect these values; for example, which members play on which teams, enter which 
tournaments, and so on. To make the best use of our data, we will need to inspect values from different 
tables to retrieve the information we require. 

 In this chapter, we will look at retrieving information from a single table. The table may be one of the 
permanent tables in the database, or it may be a virtual table that has been temporarily put together as part 
of a more complicated query. 

 I’ve been talking in a rather imprecise manner about “retrieving” rows and “returning” information. 
What happens to the rows that result from a query? In reality, we are not removing data from tables and 
putting it somewhere. A query is like a window onto the database through which we can see just the 
information we require. If the data in the underlying database changes, then the results of our query will 
change too. It doesn’t hurt to think about the information that results from a query as being “retrieved” into 
a “virtual” table as long as you realize it is just temporary. 

     Subsets of Rows and Columns 
 Selecting subsets of rows and/or columns is one of the most common operations we will carry out in a 
query. In the following sections, we will look at selecting rows and columns from one of the original tables 
in the database. 1  The same ideas apply to retrieving information from virtual tables that result from other 
manipulations of the data. 

 To determine which rows to retrieve from a table, it is necessary to specify a  condition , which is a 
statement that is either true or false. We apply the  condition   to each row in the table independently, 
retaining those rows for which the condition is true and discarding the others. Say we want to find all 
the seniors in the golf club. We want just that subset of rows from the  Member  table where the value in the 
 MemberType  field is “Senior,” as shown in Figure  2-1 .  

   1  In the formal terms of relational algebra, retrieving a subset of rows (tuples) from a table (relation) is known 
as the  select  operation and retrieving a subset of attributes (columns) is known as the  project  operation. See Appendix 2 
for more information.  
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 The SQL for the query to retrieve Senior members is as follows: 

   SELECT * 
 FROM Member 
 WHERE MemberType = 'Senior' 

   This query has three parts, or  clauses : The   SELECT  clause   says what columns to retrieve. In this case, 
 *  means retrieve all the columns. The   FROM  clause   says which table(s) the query involves, and the   WHERE  
clause   describes the condition for deciding whether a particular row should be included in the result. The 
condition says to check the value in the field  MemberType . In SQL, when we specify an actual value for a 
character or text field, we need to enclose the value in single quotes, as in  'Senior' . 

 Now let’s look at how we can specify that we want to see only some of the columns in our result. I will 
generally refer to   selecting    a subset of rows and   projecting    a subset of columns. Often the projection of a 
subset of columns is the last step in a series of operations. We can think of gathering all the data we require 
and then at the end asking for just the attributes or columns we need. We will see in Chapter   7     that we 
sometimes also need to project similar columns from original or virtual tables before applying some of the 
set operations, such as union and intersection. 

 If we want a phone list of all the members we don’t need extra information such as handicaps or join 
dates. Figure  2-2  show a subset of the name and phone number columns from the  Member  table.  

  Figure 2-1.    Retrieving the subset of rows for  Senior members  .       
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 The SQL to retrieve the name and phone columns from the  Member  table is: 

   SELECT LastName, FirstName, Phone 
 FROM Member 

   Because we want to see these column values for  every  row, this query doesn’t have a   WHERE  clause  . 
 It is a simple matter to combine the retrieval of subsets of rows and columns. We might do this if we 

wanted a phone list for just the senior members, as in Figure  2-3 .  

  Figure 2-2.    Projecting a subset of columns to provide a phone list       
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 The SQL for the query depicted in Figure  2-3  is: 

   SELECT LastName, FirstName, Phone 
 FROM Member 
 WHERE MemberType = 'Senior' 

         Using  Aliases   
 As our queries get more complicated they will incorporate a number of different tables. Some of the tables 
may have the same column names, and we might need to distinguish them from each other. In SQL we can 
preface each of the attributes in our query with the name of the table that it comes from, as shown here: 

   SELECT Member.LastName, Member.FirstName, Member.Phone 
 FROM Member 
 WHERE Member.MemberType = 'Senior' 

   Because typing the whole table name can become tiresome, and also because in some queries we might 
need to compare data from more than one row of a table, SQL has the notion of an  alias . Have a look at the 
following query: 

   SELECT m.LastName, m.FirstName, m.Phone 
 FROM Member m 
 WHERE m.MemberType = 'Senior' 

  Figure 2-3.    Retrieving a subset of rows and columns to produce a phone list of  Senior members         
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   In the  FROM  clause, we have declared an alias or alternative name for the  Member  table, in this case  m . We 
can give our alias any name or letter we like; shorter is better. Then, in the rest of the query we can use the 
alias whenever we want to specify an attribute from that table. It is a good idea to get into the habit of using a 
table alias for each table contributing to the query.   

     Saving Queries 
 It is possible to keep the result of a query in a new permanent table (sometimes called a  snapshot ), but we 
usually don’t want to do that because it will become out of date if the underlying data changes. What we 
usually want to do is save the  query   instructions so that we can ask the same question another day. Consider 
our phone list query. Every so often after the membership of the club has been updated, we will produce a 
new phone list. Rather than having to construct the query each time, we can save the instructions in what is 
known as a   view   . The code below shows how to create a view that we can use to provide up-to-date phone 
lists. We have to give the view a name, which can be anything we want ( PhoneList  seems sensible), and then 
we supply the SQL statement for retrieving the appropriate data: 

   CREATE VIEW PhoneList AS 
 SELECT m.LastName, m.FirstName, m.Phone 
 FROM Member m 

   You can think of  PhoneList  as the instructions to create a “virtual” table that we can use in other queries 
in the same way that we use real tables. We just need to remember that the  virtual   table is created on the fly 
by running the query on the permanent  Member  table and it is then gone. To get our phone list now, we can 
simply use the  PhoneList  view: 

   SELECT * FROM PhoneList 

        Specifying Conditions for Selecting Rows 
 In the queries we looked at in the previous sections, we used very simple conditions or criteria for 
determining whether to include a row in the result of a query. In the following section, we will look more 
closely at the different ways you can specify more complicated conditions. 

       Comparison Operators   
 A  condition  is a statement or expression that is either true or false, such as  MemberType = 'Senior' . These 
types of expressions are called  Boolean expressions  after the 19th-century English mathematician, George 
Boole, who investigated their properties. The conditions we use to select rows from a table usually involve 
comparing the values of an attribute to some constant value or another attribute. For example, we can ask 
whether the value of an attribute is the same, different, or greater than some value. Table  2-1  shows some 
comparison operators we can use in our queries. 
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    Table 2-1.    Comparison Operators   

  Operator    Meaning    Examples of True Statement  

  =   Equals   5=5 ,  'Junior' = 'Junior'  

  <   Less than   4<5 ,  'Ann' < 'Zebedee'  

  <=   Less than or equal to   4<=5 ,  5<=5  

  >   Greater than   5>4 ,  'Zebedee' > 'Ann'  

  >=   Greater than or equal to   5>=4 ,  5>=5  

  <>   Not equal   5<>4 ,  'Junior' <> 'Senior'  

 Just a quick note of caution: in Table  2-1 , some of our examples compare numbers, and some 
compare characters. Recall from Chapter   1     that when we create a table, we specify the type of each field; 
for example,  MemberID  was declared to be an  INT  (integer or whole number), and  LastName  a  CHAR(20)  
(a 20-character field). With fields like integer, comparisons are numerical. With text or character fields, 
comparisons are alphabetical, and with date and time fields, comparisons are chronological (earlier dates 
come first). 

 When we compare character attributes, the comparison is based on the ASCII 2  or Unicode value of the 
characters. As we might expect “A” (ASCII value 65) comes before “Z” (ASCII 90), so “A” < “Z”. With a string of 
characters, if the first letter is the same then the order is decided by the second, and so on. So “ANNABEL” < 
“ANNE”. However, the lowercase characters have higher ASCII codes than the uppercase ones. This means 
that “a” (ASCII 97) > “Z” (ASCII 90). If you order a list of names alphabetically then, by default, a name 
starting with a lowercase letter will appear after those starting with uppercase letters. For example “van 
Dyke” will appear after “Zebedee.” 

 If we put numbers in a character field, they will also sort alphabetically. This means you will have 
comparisons such as “400” < “5”, because the first character, “4” (ASCII 34), in the left-hand text is less 
than the first character, “5” (ASCII 35), on the right-hand side. So, make sure if a column is going to 
contain numbers that you want to compare and order numerically, that it is declared as a numeric type, 
or you will get some rather surprising results from your queries. Similarly, dates need to be in a column 
declared with one of the date types or the comparisons and ordering may not be what you expect. 

 With comparison operators, we can create many different queries. Table  2-2  shows some examples of 
Boolean expressions that we can use as conditions in the  WHERE  clause of an SQL statement for selecting 
rows from the  Member  table. 

   Table 2-2.    Examples of Boolean Expressions on the Member Table   

  Expression    Retrieved Rows  

  MemberType = 'Junior'   All junior members 

  Handicap <= 12   All members with a handicap of 12 or less 

  JoinDate >= '01/01/2008'   Everyone who has joined after the beginning of 2008 

  Gender = 'F'   All the women 

   2    http://www.asciitable.com/      

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
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 Some implementations of SQL are case sensitive when comparing text, and others are not. Being case 
sensitive means that uppercase letters are treated as being different from their lowercase counterpart; in 
other words, “Junior” is different from “junior,” which is different from “JUNIOR.” I usually check out any 
new database system I use to see what it does. If you do not care about the case of the attribute you are 
considering (that is, you are happy to retrieve rows where  MemberType  is “Junior” or “jUnIoR” or whatever), 
you can make use of the SQL function  UPPER . This will turn the value of each text attribute into uppercase 
before you do the comparison. You can then compare that with the uppercase literal value, as shown here: 

   SELECT * 
 FROM Member m 
 WHERE UPPER(m.MemberType) = 'JUNIOR' 

           Logical Operators   
 We can combine Boolean expressions to create more interesting conditions. For example, we can specify 
that two expressions must both be true before we retrieve a particular row. 

 Let’s assume we want to find all the junior girls. This requires two conditions to be true: they must be 
female, and they must be juniors. We can easily express each of these conditions independently. After that, 
we can use the logical operator  AND  to require that  both  conditions be true: 

   SELECT * 
 FROM Member m 
 WHERE m.MemberType = 'Junior' AND m.Gender = 'F' 

   We will look at three logical operators:  AND ,  OR , and  NOT . We have already seen how  AND  works. If we 
use  OR  between two expressions, then only one of the expressions need be true (but if they are both true, 
that is OK as well).  NOT  is used before an expression. For example, for our  Member  table, we might ask for 
rows obeying the condition  NOT (MemberType = 'Social') . This means check each row, and if the value of 
 MemberType  is “Social,” then we do  not  want that row. Table  2-3  gives some more examples of using logical 
operators in conditions. 

    Table 2-3.    Examples of Logical Operators   

  Expression    Description of Data  

  MemberType = 'Senior' AND Handicap < 12   Seniors with a handicap under 12 

  MemberType = 'Senior' OR Handicap < 12   All the senior members as well as anyone else with a 
good handicap (those less than 12) 

  NOT(MemberType = 'Social')   All the members except the social ones (for the current 
data, that would be just the seniors and juniors) 

 Figure  2-4  shows a diagrammatic representation of the queries in Table  2-3 . Each circle represents a set 
of rows (that is, those for social members or those for members with handicaps under 12). The shaded area 
represents the result of the operation.  
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  Figure 2-5.    Truth tables for logical operators (T = true, F = false)       
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Senior <12Senior
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MemberType = 'Senior' MemberType = 'Senior' OR NOT MemberType = 'Social'

  Figure 2-4.    Diagrammatic representation of the logical operators.       

 The truth tables in Figure  2-5  can be helpful in understanding how the logical operators work. You read 
them like this: in Figures  2-5a  and  2-5b , we have two expressions, one along the top and one down the left. 
Each expression can have one of two values: True (T) or False (F). If we combine them with the Boolean 
expression AND, then Figure  2-5a  shows that the overall statement is true only if both the contributing 
statements are true (the square in the top left). If we combine them with an OR statement, then the overall 
statement is false only if both contributing statements are false (bottom right of Figure  2-5b ). The table in 
Figure  2-5c  says that if our original statement is true and we put  NOT  in front, then the result is false (left 
column), and vice versa.  

 Sometimes it can be a bit tricky turning natural-language descriptions into Boolean expressions. If you 
were asked for a list that included  all the women and all the juniors  (don’t ask why!), you might translate this 
literally and write the condition  MemberType = 'Junior' AND Gender = 'F' . However, the  AND  means  both  
conditions must be true, so this would give us junior women. What our natural-language statement really 
means is “I want the row for any member if they are either a woman  or  a junior (or both).” Be careful.    
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      Dealing with  Nulls   
 The example data in the  Member  table shown earlier in Figure  2-1  is all accurate and complete. Every row has 
a value for each attribute, except for  Handicap , which doesn’t apply to some members. Real data is usually 
not so clean and tidy. Let’s consider some different data, as in Figure  2-6 .  

  Figure 2-6.    Table with  missing data         

 When there is no value in a cell in a table, it is said to be  null . Nulls in a database can cause a few 
headaches. Consider carrying out the following two  queries  : one to produce a list of male members and the 
other a list of females. Given that golfers need to identity as either male or female for competition purposes, 
we might assume that all the members of the club would appear on one list or the other. However, for the 
data in Figure  2-6 , we would leave out Kim Spence. You could argue that the data shouldn’t be like that, but 
we are talking about real people and real clubs with less than accurate and complete data. Maybe Kim forgot 
(or refused) to fill in the gender part of the application form. We can protect against this by insisting that 
nulls are not allowed in a particular field when we create a table. The following SQL statement shows how 
we could make  Gender  a field that always requires a value: 

    CREATE TABLE Member ( 
 MemberID INT PRIMARY KEY, 
 ..... 
 Gender CHAR(1) NOT NULL, 

   ....) 

    It is worth bearing in mind that making fields  NOT NULL  can create more headaches than it cures. If Kim 
Spence did not complete all the boxes on his/her membership application but had organized payment for 
the subscription, then we want to record him/her as a member and worry about the full details later. If we 
make  Gender  a required field, then we can’t enter a record for him/her in the table — or we have to guess what 
his/her gender is. Neither of these options is a good strategy, so it is best to be sparing when making fields 
required. Remember that our  primary key fields   (by definition) always need a value. 
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 Not all values of null mean there is a problem with the data. In our  Member  table, a field might be null 
because it does not apply to a particular member. Helen and Sarah’s handicap may be genuinely null 
because they do not have handicaps. However, it is fair to assume that every member should have a value for 
 MemberType  and  JoinDate , so the nulls in these columns are because we do not know the value. In the real 
world, expect that your tables will have missing data. 

      Finding   Nulls 
 Given that in our tables we may have nulls that might cause us problems, it is useful to be able to find them. 
After we have entered a batch of new members into the database, we can check for problems. We might want 
to get a list of all the members who don’t have a value for  Gender , say. To do this we can use the SQL phrase 
 IS NULL : 

   SELECT * 
 FROM Member m 
 WHERE m.Gender IS NULL 

   Alternatively, we might want to retrieve only those members who  do  have a value in a cell. If we want 
the names and handicaps of only those members who have a value for  Handicap , we could use the  NOT  
operator to create the following query: 

   SELECT * 
 FROM Member m 
 WHERE NOT (m.Handicap IS NULL) 

          Comparisons   Involving Null Values 
 Given that we are going to have unexpected nulls in our tables, it is important to know how to deal with 
them. What rows will match the two conditions shown here? 

   Gender = 'F' 
 NOT (Gender = 'F') 

   You might think that if we carry out two queries, one to get all the rows that match a condition and 
another for all the rows that don’t match, then we will get the whole table. But, in fact, we don’t. Kim will not 
be included with the first condition, because clearly the value of  Gender  does not equal  'F' . But when we ask 
whether the value is  NOT 'F'  we can’t say, because we don’t know what the value is. It might be  'F'  if it had 
a value. In SQL when we compare null values with something, we don’t get either  True  or  False  because we 
simply don’t know. This probably makes more sense if we think about handicaps. If we ask for everyone with 
 Handicap > 12 , and also for those members who satisfy either  NOT (Handicap > 12)  or  Handicap <=12 , 
then Sarah’s row will never be retrieved. The question doesn’t apply to her  —  she doesn’t have a handicap. 

 Once we take nulls into consideration, our expressions for conditions might actually have one of three 
values: True, False, or “Don’t know.” That is pretty much how the world works, if you think about it. Only 
rows that are  True  for a condition are retrieved in a query. If the condition is  False  or if we don’t know, then 
the row is not retrieved. 

 If we include “Don’t know” in the truth tables they will look like those in Figure  2-7 . For an  AND  
operation, if one expression is  False , then it doesn’t matter about the others  —  the result will be  False . For an 
 OR  operation, if one expression is  True , then it doesn’t matter about the others, so the result will be  True .      
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   3  Formally, in terms of relational algebra, the result of every operation will generate another relation or set of unique rows. 
See Appendix 2 for more information.  
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  Figure 2-7.    Truth tables with three-valued logic (T = True, F = False, ? = Don’t know)       

      Managing  Duplicates   
 If our tables have been designed well, they will have a primary key. This ensures that every row is unique. 
However, as soon as we retrieve a subset of data from the tables the result may not have unique rows. 3  Let’s 
look at an example. 

 Consider retrieving just the  FirstName  column from the  Member  table. Figure  2-8  shows two possible 
results.  
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  Figure 2-8.    Projecting the FirstName column from the Member table       

 It is useful to think about why we might carry out a query retrieving just names. Perhaps the query is 
to help prepare a set of nametags for a club party. If that is the case, then two Thomases and a William are 
going to feel left out if we use the unique output. 

 You might think, what’s all the fuss? Of course we want to keep all the rows. However, consider 
retrieving just the column with the membership types. Figure  2-9  shows the outputs with duplicates 
included and removed.  

 



CHAPTER 2 ■ SIMPLE QUERIES ON ONE TABLE

27

 It’s pretty difficult to think of a situation where you want the duplicated rows in Figure  2-9a . The two 
operations we have considered sound similar in natural language. “Give me a list of first names” and 
“Give me a list of membership types” sound like the same sort of question, but they mean quite different 
things. The first means “Give me a name for each member,” and the other means “Give me a list of unique 
membership types.” 

 What does SQL do? If we say  SELECT MemberType FROM Member , we will get the output in Figure  2-9a  
with all the duplicates included. If we do not want the duplicates, then we can use the keyword  DISTINCT : 

   SELECT DISTINCT m.MemberType 
 FROM Member m 

   Whether or not you keep the duplicates depends very much on the information you require, so you 
need to give it careful thought. If you were expecting the set of rows in Figure  2-9b  and got Figure  2-9a , you 
would most likely notice. With the two sets of rows in Figure  2-8 , it is much more difficult to spot that you 
have perhaps made a mistake. Get into the habit of thinking about duplicates for all your queries.   

  Figure 2-9.    Projecting the MemberType column from the Member table       
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       Ordering Output   
 Every now and then I refer to a “set of rows” rather than a table or a virtual table. The word  set  has two 
implications. One is that there are no duplicates (and we have discussed that a lot!). The other implication 
is that there is no particular order to the rows in our set. In theory, we don’t have a first row or a last row or 
a next row. If we run a query to retrieve all the rows, or just some of the rows, from a table, then we have no 
guarantee in what order they will be returned. However, sometimes we might like to display the results in a 
particular order. We can do this with the key phrase  ORDER BY . The following shows how to retrieve member 
information ordered alphabetically by  LastName : 

   SELECT * 
 FROM Member m 
 ORDER BY m.LastName 

   We can order by two or more values. For example, if we want to order Senior members with the same 
 LastName  by the value of their  FirstName , we can include those two attributes (in that order) in the 
 ORDER BY  clause: 

   SELECT * 
 FROM Member m 
 WHERE m.MemberType = 'Senior' 
 ORDER BY m.LastName, m.FirstName 

   The type of a field determines how the values will be ordered. By default, text fields will be ordered 
alphabetically, number fields will be ordered numerically (smallest first), and date and time fields 
chronologically (earlier dates and times first). We can also specify that the order be reversed with the 
keyword  DESC  (for descending). There is an equivalent keyword  ASC  (for ascending), which is the default if 
neither is specified. The following will return member names and handicaps ordered in descending order; 
i.e., with the highest value of handicap first: 

   SELECT m.Lastname, m.FirstName, m.Handicap 
 FROM Member m 
 ORDER BY m.Handicap DESC 

   The way nulls are ordered in any output depends on the application; you will need to check. For example, 
in SQL Server and Microsoft Access, nulls will appear at the top of an ascending list and the bottom of a 
descending list. Oracle provides keywords such as  NULLS FIRST  and  NULLS LAST  so you can choose where 
the null values go. A little trick to get your nulls at the bottom of an ascending list in SQL Server is to use a 
case statement: 

   SELECT m.LastName, m.FirstName, m.Handicap 
 FROM Member m 
 ORDER BY (CASE 
              WHEN m.Handicap IS NULL THEN 1 
              ELSE 0 
           END), m.Handicap 

   The preceding query has two attributes in the  ORDER BY  clause. It orders firstly by the  case  statement in 
the parentheses. You can think of the case statement as creating a virtual column giving the value 0 to those 
rows with a handicap and 1 to those which have no handicap value. When we order by this first attribute in 
the  ORDER BY  clause, the rows with a value for a handicap will be before the nulls. Within these groups the 
rows will then be ordered by the value of the handicap in ascending order.   

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 2 ■ SIMPLE QUERIES ON ONE TABLE

29

     Performing Simple Counts 
 As well as retrieving a subset of rows and columns from a table, we can also use SQL queries to provide some 
statistics. There are SQL functions that allow us to count records, total or average values, find maximum and 
minimum values, and so on. In this section, we will look at some simple queries for counting records. We 
will return to this topic in Chapter   8    . 

 We can use the   COUNT  function   to return the number of records in the  Member  table. In the following 
query,  *  means count each record: 

   SELECT COUNT(*) FROM Member 

   We can also count a subset of rows by adding a  WHERE  clause to specify those rows we want to include. 
For example, we can use the following query to count the number of senior members: 

   SELECT COUNT(*) FROM Member m 
 WHERE m.MemberType = 'Senior' 

   Because we have just been talking about nulls and duplicate values, it is worth briefly mentioning here 
how these will affect our counts. Rather than use  *  as a parameter to the  COUNT  function so that it counts all 
the rows, we can put an attribute such as  Handicap  in the parentheses. If we do this only those rows with a 
value in the  Handicap  field will be included in the count. 

   SELECT COUNT(Handicap) FROM Member 

   We can also specify that we want to count the number of unique values for an attribute. If we want to 
know how many different values of  MemberType  appear in the  Member  table then we can use the following 
query: 

   SELECT COUNT(DISTINCT MemberType) FROM Member 

   It is worth reiterating that different database software will support different parts of the SQL standard 
syntax. For example, Microsoft Access currently does not support  COUNT(DISTINCT MemberType) , seen in the 
previous query. There is usually a way to work around these differences to find an equivalent query, and we 
will look at how to rephrase the preceding query and other issues related to aggregates and summaries in 
Chapter   8    .  

     Avoiding Common Mistakes 
 Retrieving a subset of rows and columns from a single table is the most simple of SQL queries. However, you 
have seen that you still need to be careful. It is important to remember that there will be null values in your 
tables and to think carefully about how your selection conditions will treat them. You also need to remember 
that if you do not retain the primary key fields from your tables, there is the potential to have duplicate rows, 
and you must deal with them appropriately. 

 There are a couple of other mistakes that are commonly made when selecting a subset of rows. They 
don’t become apparent with a table like  Member , so I’ll introduce some more of the tables in the golf club 
database. Figure  2-10  shows part of the  Member  table and two other tables:   Entry  and  Tournament   . The 
first row in the  Entry  table records that person 118 (Melissa McKenzie) entered tournament 24 (Leeston) 
in 2014.  

http://dx.doi.org/10.1007/978-1-4842-1955-3_8
http://dx.doi.org/10.1007/978-1-4842-1955-3_8
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 We can use some of the SQL operations we have already seen on the  Entry  table to answer questions 
such as which tournaments (just the  TourID  number) person 258 has entered, who (just the  MemberID  
number) has ever entered tournament 24, or who entered tournament 36 in 2015. The following is the SQL 
for the last query: 

   SELECT e.MemberID 
 FROM Entry e 
 WHERE e.TourID = 36 AND e.Year = 2015 

        Incorrectly Using a  WHERE Clause   to Answer Questions with the 
Word “both” 
 In the previous section we used the logical operator  AND  to find rows in the  Entry  table where both  TourID = 
36  and  Year = 2015  were true. 

  Figure 2-10.    Introducing the Tournament and Entry tables       
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 Say we wanted to find the members who have entered  both  tournaments 36 and 38. There is a 
temptation to again use the  AND  operator and write the query as follows: 

   SELECT e.MemberID 
 FROM Entry e 
 WHERE e.TourID = 36 AND e.TourID= 38 

   Can you work out what this query will return? This is where it is helpful to think in terms of the row 
variable  e  investigating each row in table  Entry  as in Figure  2-11 .  

  Figure 2-11.    The row variable e investigates each row independently.       

 Imagine our finger is pointing at the row shown in the diagram. Does this row (415, 36, 2015) satisfy 
the condition  e.TourID = 36 AND e.TourID= 38 ? It satisfies the first part, but the  AND  operator requires 
the row to satisfy both conditions. No single row in our table will have  both  36 and 38 in the tournament 
column because each row is for just one entry. The SQL query we suggested will never find any rows; it 
will always return an empty table. If we change the Boolean operator to  OR , we will get the row indicated 
in Figure  2-10  returned; however, we will also then get anyone who has entered either 36 or 38 but not 
necessarily both. 

 This particular query cannot be solved with a simple  WHERE  clause. By definition, the condition in the 
 WHERE  applies to  each row independently . To answer the question about who has entered  both  competitions, 
we need to look at more than one row of the  Entry  table at the same time (that is, two fingers). If we have 
two fingers, one pointing at the row shown in Figure  2-10  and another pointing at the following row, then 
we can deduce that 415 has entered both tournaments. We’ll look at how to do this in Chapter   5    .  

 

http://dx.doi.org/10.1007/978-1-4842-1955-3_5
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     Incorrectly Using a WHERE Clause to Answer Questions with the 
Word “not” 
 Now let’s consider another common error. It is easy to find the people who have entered tournament 38 with 
the condition  e.TourID = 38 . It is tempting to try to retrieve the people who have  not  entered tournament 
38 by changing the condition slightly. Can you figure out what rows the following SQL query will retrieve? 

   SELECT e.MemberID 
 FROM Entry e 
 WHERE e.TourID <> 38 

   What about the row that the finger is pointing to in Figure  2-11 ? Does this satisfy  e.TourID <> 38 ? It 
certainly does. But this doesn’t mean 415 hasn’t entered tournament 38 (the following row says he did). The 
query, in fact, returns all the people who have entered some tournament that isn’t tournament 38 (which is 
unlikely to be a question you’ll ever want to ask!). 

 This is another type of question that can’t be answered with a simple  WHERE  clause that looks at 
independent rows in a table. In fact, we can’t even answer this question with a query that involves only the 
 Entry  table. Member 138, Michael Stone, has not entered tournament 38, but he doesn’t even get a mention 
in the  Entry  table because he has never entered any tournaments at all. We’ll see how to deal with questions 
like this in Chapter   7    .    

     Summary 
 In this chapter, we have looked at queries on a single table. Some of the main points covered are:

•    We can return a subset of rows that satisfy a given condition by using a  WHERE  clause. 
The condition is a Boolean expression, which is a statement that is either true or not 
true. The condition is applied to each row of the table independently.  

•   The  SELECT  clause allows us to specify a subset of columns.  

•   Because the result of a query is a set of rows, we cannot guarantee the order in which 
the rows will be returned. If we want to display the result in a particular order, we can 
use the  ORDER BY  clause.  

•   It is possible to create a view, which essentially stores an SQL command so that you 
can run it over and over again as the data in the base tables change.  

•   Tables are likely to have null values (both on purpose and by mistake). Always check 
how your conditions will apply to null values.  

•   When you project a subset of columns using an SQL command, the default is to 
retain duplicate rows in the result. Always think about how you need to deal with the 
duplicates, and use the keyword  DISTINCT  if you want unique rows.  

•   The  WHERE  clause considers only one row at a time. Don’t use it for queries that 
require you to look at several rows at once, as in who entered  both  tournaments or 
who did  not  enter this tournament.         

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
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    CHAPTER 3   

 A First Look at Joins                          

 In the previous chapter, we looked at how to retrieve subsets of rows and/or columns from a single table. 
We saw in Chapter   1     that to keep data accurately in a database, different aspects of the information need 
to be separated into normalized tables. Most queries will require information from two or more tables. We 
can combine data from two tables in several different ways depending on the nature of the information 
we are trying to extract. The most often encountered two-table operation is the join. In Chapter   1     we also 
introduced two different ways to approach a query: the  process approach  and the  outcome approach . The 
first describes how we will combine the tables to achieve the required data, while the second describes 
what criteria the retrieved data must satisfy. 

     The Process Approach to Joins 
 A join enables us to combine related data from two tables. The example we will start with uses the  Member  
and  Type  tables in order to find the membership fees for each member of the golf club. The first step in 
carrying out a join is an operation called a Cartesian product. 

        Cartesian Product      
 A  Cartesian product  is the most versatile operation between two tables because it can be applied to any two 
tables of any shape. Having said that, it rarely produces particularly useful information on its own, so its 
main claim to fame is as the first step of a join. 

 A Cartesian product is a bit like putting two tables side by side. Let’s have a look at the two tables in 
Figure  3-1 : an abbreviated  Member  table and the  Type  table.  

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://dx.doi.org/10.1007/978-1-4842-1955-3_1
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 The virtual table resulting from the Cartesian product will have a column for each column in the two 
contributing tables. The rows in the resulting table consist of every combination of rows from the original 
tables. Figure  3-2  shows the first few rows of the Cartesian product.  

  Figure 3-1.    Two permanent tables in the database       

  Figure 3-2.    First few rows of the Cartesian product between Member and Type tables       
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 We have the four columns from the  Member  table and the two columns from the  Type  table, which gives 
us six columns total. Each row from the  Member  table appears in the resulting table alongside each row from 
the  Type  table. We have Melissa McKenzie appearing on four rows  —  once with each of the four rows in the 
 Type  table (Associate, Junior, Senior, Social). The total number of rows will be the number of rows in each 
table multiplied together; in other words, for this cut-down  Member  table, we have 10 rows times 4 rows (from 
 Type ), giving a total of 40 rows. Cartesian products can produce very, very large result tables, which is why 
they don’t give us much useful information on their own. 

 A Cartesian product operation is represented in SQL by  CROSS JOIN . The SQL to retrieve the data shown 
in Figure  3-2  is: 

   SELECT * 
 FROM Member m CROSS JOIN Type t; 

   Not all versions of SQL support the same keywords and phrases (e.g., Microsoft Access 2013 does not 
support the  CROSS JOIN  key phrase). In 1992, keywords representing some relational algebra operations 
(such as  CROSS JOIN ) were added to the SQL standard, 1  and there have been a number of updates since 
then. However, not all vendors incorporate all parts of the standard, and other vendors provide additional 
functionality. Later in the chapter we will look at the outcome approach to provide equivalent ways of 
expressing queries that will work when the relational algebra operation keywords are not available.    

        Inner Join      
 If you look at the table in Figure  3-2 , you can see that most of the rows are quite meaningless. For example, 
the first, third, and fourth rows have the junior member Melissa McKenzie alongside information about 
the associate, senior, and social membership types. It is difficult to see how these rows will ever be useful. 
However, the second row, where the member types from each table match, is useful because it allows us 
to see what fee Melissa pays. If we take just the subset of rows where the value in the  MemberType  column 
matches the value in the  Type  column, then we have useful information about the fees for each of our 
members. Figure  3-3  shows the rows we would like to retain.  

   1  International Organization for Standardization.  Information technology — Database languages — SQL . ISO, Geneva, 
Switzerland, 1992. ISO/IEC 9075:1992.  
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  Figure 3-3.    Cartesian product followed by selecting a subset of rows       

 The operation shown in Figure  3-3  (a Cartesian product followed by selecting a subset of rows) is 
known as an  inner join  (often just called a  join ). The condition we use to select the rows is known as the  join 
condition . The SQL for the inner join in Figure  3-3  is: 

   SELECT * 
 FROM Member m INNER JOIN Type t ON m.MemberType = t.Type; 

   The keyword  INNER JOIN  is used, and we can see the condition for selecting the rows after the keyword 
 ON . Once again, you may find that some versions of SQL do not support the phrase  INNER JOIN ; however, we 
will see other ways to express the query later in this chapter. 

 The two columns that we are comparing ( MemberType  and  Type ) must be  join compatible . Formally, 
this means they must both come from the same  domain  or set of possible values. In practical terms, join 
compatibility usually means that the columns in each of the tables have the same data type. For example, 
both columns will be integers or both dates. Different database products may interpret join compatibility 
differently. Some might let you join on a float (number with a decimal point) in one table and an integer 
in another. Some may be fussy about whether text fields are the same length (for example  CHAR(10)  or 
 CHAR(15) ), and others may not. I recommend you don’t try to join on fields with different types unless you 
are very clear what your particular product does. The best strategy, as always, is to think carefully when you 
design your tables. Those attributes that are likely to be joined should have the same types.     

       Outcome Approach to Joins 
 Let’s take a look at joins with the  outcome approach     . Rather than look at how we will combine the tables, we 
will look at what criteria the retrieved rows must meet. 
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 Let’s start with the Cartesian product: we want a set of rows made up of combinations of rows from each 
of the contributing tables. Figure  3-4  shows how we can envisage this. We are looking at two tables, so we 
need two fingers to keep track of the rows. Finger  m  looks at each row of the  Member  table in turn. Currently it 
is pointing at row 3. For each row in the  Member  table, finger  t  will point to each row in the  Type  table. For the 
Cartesian product we retain every combination of the rows. In terms of Figure  3-4  the Cartesian product can 
be expressed in natural language as:

   I’ll write out all the attributes from row  m  and all the attributes from row  t  so long as  m  
comes from the  Member  table and  t  comes from the  Type  table.     

  Figure 3-4.    Row variables m and t point to each row in the Member and Types tables, respectively       

 The SQL for the query represented in Figure  3-4  and that results in the output shown in Figure  3-2  is: 

   SELECT * 
 FROM Member m, Type t; 

   The preceding statement will return the same rows as the expression we had previously used that used 
the  CROSS JOIN  phrase. 

 For a join we have the extra condition that we want to retrieve only those combinations of rows where 
the membership type from each table is the same. We can express this in natural language as:

   I’ll write out all the attributes from row  m  and all the attributes from row  t  so long as  m  
comes from the  Member  table and t comes from the Type table and  m.MemberType = t.Type  .   

 The pair of rows depicted in Figure  3-5  satisfies that condition and so will be retrieved. If  m  stays where it 
is and  t  moves down a row, then the condition will no longer be satisfied and the new combination will not 
be included.  

 



CHAPTER 3 ■ A FIRST LOOK AT JOINS

38

 We can translate the query depicted in Figure  3-5  into SQL as follows: 

   SELECT * 
 FROM Member m, Type t 
 WHERE m.MemberType = t.Type; 

   If we look carefully at the preceding statement we can see that the first two lines represent the Cartesian 
product, and the  WHERE  clause in last line is selecting a subset of the rows where the membership types 
are the same. This was how we defined an inner join in the previous section. The preceding statement will 
produce the same rows as our previous statement for an inner join, seen again here: 

   SELECT * 
 FROM Member m INNER JOIN Type t ON m.MemberType = t.Type; 

   The first statement says what the rows to be retrieved are like (outcome approach) and the second 
expresses what operation we should use to retrieve those rows (process approach). Which one you use does 
not matter — it just depends on how you find yourself thinking about the query. Sometimes there is a possibility 
that the way you express the query may affect the performance, and we will talk about this more in Chapter   9    . 
Actually, most database products are pretty smart at optimizing, or finding the quickest way to perform a 
query, regardless of how you express it. For example, in SQL Server the two expressions for the join shown 
are carried out in the same way. In fact, in SQL Server 2013, if you type the code in the first statement into the 
default interface for creating a view, it will be replaced by the code using the  INNER JOIN  phrase.    

     Extending Join Queries 
 Now that we have added joins to our arsenal of operations, we can perform numerous types of queries. 
Because the result of a join (as with any operation) is another table, we can then join that result to a third 
table (and then another) and then select and project rows and columns to achieve the required result. 

 Let’s look at an example using the tables in Figure  3-6 . The   Entry  table   uses two foreign keys ( MemberID  
and  TourID ) to maintain information about which members have entered the different tournaments. The 
first line in the  Entry  table says that member 118 entered tournament 24 in 2014. If we require any additional 
information (say, the name of a member or name of a tournament), we need to use the foreign keys to find 
the appropriate rows in the  Member  and   Tournament  tables  , respectively.  

  Figure 3-5.    Rows will be retrieved where m.MemberType = t.Type       
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  Figure 3-6.    Permanent tables in the club database       

 Let’s find the names of everyone who entered the Leeston tournament in 2014. I’ll describe two 
different approaches, and you will probably find that one appeals to you more than the other. 

     A    Process Approach      
 We are starting with three tables, so we need some operation that combines data from more than one table. 
We can join the  Member  table to the  Entry  table and the result to the  Tournament  table, as shown in Figure  3-7 .  
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 The join condition for the first join between the  Member  and  Entry  tables is that  m.MemberID = e.MemberID  
as shown by the rectangular boxes in Figure  3-7 . For the second join between the result of the first join and 
the  Tournament  table, the condition is that  e.TourID = t.TourID  as shown by the circles. It will not make any 
difference if we choose to do the join between  Entry  and  Tournament  first and then join the result to  Member . 

 The SQL to carry out the two joins is: 

   SELECT * 
 FROM (Member m INNER JOIN Entry e ON m.MemberID = e.MemberID) 
       INNER JOIN Tournament t ON e.TourID = t.TourID; 

  Figure 3-7.    Joining the Member, Entry, and Tournament tables       
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   The virtual table resulting from the two joins in this query has all the information we require to answer 
our question. We just need to select the rows satisfying the conditions about the year and tournament name 
by adding a  WHERE  clause, and then project the name attributes by specifying them in the  SELECT  clause. The 
complete SQL query to return the names of everyone who entered the Leeston tournament in 2014 is: 

   SELECT LastName, FirstName 
 FROM (Member m INNER JOIN Entry e ON m.MemberID = e.MemberID) 
       INNER JOIN Tournament t ON e.TourID = t.TourID 
 WHERE TourName = 'Leeston' 
 AND Year = 2014; 

            Order   of Operations 
 In the description in the previous section, we joined all the tables first and then selected the appropriate 
rows and columns. The result of the join is an intermediate table (as in Figure  3-7 ) that is potentially 
extremely large if there are lots of members and tournaments. We could have done the operations in a 
different order. We could have first selected just the Leeston tournament from the  Tournament  table and the 
2014 tournaments from the  Entry  tables, as shown in Figure  3-8 . Joining these two smaller tables with each 
other and then joining that result with  Member  would result in a much smaller intermediate table.  

  Figure 3-8.    Selecting rows from the Entry and Tournament tables before joining them       

 So, should we worry about the order of the operations? The answer is “yes”  —  the order of operations 
makes a huge difference  —  but if you are using SQL, then it is not your problem to worry about. The 
SQL statement is always going to be the same, but with the tables possibly in a different order. The 
SQL statement is sent to the engine of whatever database program you are using, and the query will be 
 optimized.  This means the database program figures out the best order to do things. Some products do this 
extremely well, others not so well. Many products have analyzer tools that will let you see in what order 
things are being done. For many queries, writing your SQL differently doesn’t make much difference, but 
you can make things more efficient by providing indexes for your tables. We will look at these issues more 
closely in Chapter   9    .   
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       An  Outcome Approach      
 The reason that the way we write our SQL statements often doesn’t affect the efficiency of a query is that SQL 
is fundamentally based on relational calculus, which describes the criteria the retrieved rows must meet. The 
original SQL standards did not even have keywords like  INNER JOIN . SQL statements without these keywords 
describe  what  the retrieved rows should be like, so they do not have anything to say about  how.  Let’s look at 
an outcome approach to finding the names of members who entered Leeston tournaments in 2014. 

 We want to retrieve just some names from the  Member  table. Forget joins, and think about how you 
would know whether a particular name should be retrieved if you were shown the three tables and knew 
nothing about databases or foreign keys or joins or anything. Imagine a finger  m  tracing down the table, as 
in Figure  3-9 .  

  Figure 3-9.    Using row variables to describe the rows that satisfy the query conditions       
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 Do we want to write out Barbara Olson, the name to which  m  is currently pointing? How would we 
know? Well, first we have to find a row with her ID (235) in the  Entry  table for the year 2014 such as the one 
where finger  e  is pointing. Then we have to find a row with that tournament ID (24) in the  Tournament  table 
and check it is a Leeston tournament. Looking at Figure  3-9 , we see that the rows where the three fingers are 
pointing give us enough information to know that Barbara Olson did indeed enter a Leeston tournament in 
2014. This set of conditions describes  what  a row in the result table should be like. 

 Now let’s write that last paragraph a bit more succinctly. Read the following sentence with reference to 
the rows denoted in Figure  3-9 :

   I’ll write out the names from row  m , where m comes from the  Member  table, if there is a row 
e in the Entry table where  m.MemberID  is the same as  e.MemberID  and  e.Year  is 2014 and 
there also exists a row t in the  Tournament  table where  e.TourID  is the same as  t.TourId  and 
 t.TourName  has the value “Leeston.”    

 The SQL reflects the preceding paragraph. Look carefully at the following statement with reference 
to Figure  3-9 : 

   SELECT m.LastName, m.FirstName 
 FROM Member m, Entry e, Tournament t 
 WHERE m.MemberID = e.MemberID 
       AND e.TourID = t.TourID 
       AND t.TourName = 'Leeston' AND e.Year = 2014; 

   You can see how the SQL statement describes  what  a retrieved row should be like. If you look carefully 
at the statement, you can also spot the operations. The second line (the  FROM  clause) is a big Cartesian 
product, the next two lines are the join conditions (which would result in a table like the one in Figure  3-7 ), 
the final line selects the rows with the appropriate year and tournament name, and the  SELECT  clause line 
tells us to project just the names. 

 The SQL preceding statement is equivalent to the one using the  INNER JOIN  keywords. They will both 
return the same set of rows: one reflects the underlying process of  how , and the other reflects the underlying 
outcome of  what.     

      Expressing Joins Through  Diagrammatic Interfaces   
 This book is about queries in SQL, but most database products also provide a diagrammatic interface to 
express queries. Just for completeness, I’ll show you what a typical diagrammatic interface looks like for 
retrieving the names of members who entered the Leeston tournament in 2014. 

 Figure  3-10  shows the Microsoft Access interface, but most products have something very similar. The 
tables are represented by the rectangles in the top section with the lines showing the joins between them. 
The columns to be retrieved have a checkmark (√) in the row marked  Show , and the conditions for selecting a 
particular row are shown for the relevant fields in the row marked  Criteria .     
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     Other Types of Joins 
 The joins we have been looking at in this chapter are  equi-joins . An  equi-join   is one where the join condition 
has an equals operator, as in  m.MemberID = e.MemberID . This is the most common type of condition, but 
you can have different operators. A join is just a Cartesian product followed by selecting a subset of rows, and 
the select condition can consist of different comparison operators (for example, <> or > ) and also logical 
operators (for example,  AND  or  NOT ). These sorts of joins don’t turn up all that often. 

 You might also come across a   natural join   . A natural join assumes that you will be joining on columns 
that have the same name in both tables. The join condition is that the values in the two columns with the 
same name are equal, and one of those columns will be removed from the result. For example: 

   SELECT * FROM 
 Member NATURAL JOIN Entry; 

   This would produce almost the same output as: 

   SELECT * FROM 
 Member m INNER JOIN Entry m ON m.MemberID = e.MemberID; 

   In the natural join statement, the join condition is implicitly assumed to be equality between the two attributes 
with the same name,  MemberID . The only difference between the two queries is that for the natural join only one 
of the  MemberID  columns will be returned. Oracle supports natural joins but SQL Server and Access do not. 

  Figure 3-10.    Microsoft Access digrammatic interface for the query to find names of members entering the 
Leeston tournament in 2014       
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     Outer Joins 
 One type of join that you will use a great deal and that is important to understand is the  outer join . The best 
way to understand an outer join is to see where they are useful. Have a look at the (modified)  Member  and 
 Type  tables in Figure  3-11 .  

  Figure 3-11.     Member and Type tables         

 You might want to produce different lists from the  Member  table, such as numbers and names, names 
and membership types, and so on. In these lists you expect to see all the members (for the table in Figure  3-11 , 
that would be nine rows). Then you might think that as well as seeing the numbers and names in your 
member list, you will also include the membership fee. You join the two tables (with the condition 
 MemberType = Type ) and find that you “lose” one of your members  —  Sarah Beck (see Figure  3-12 ).  

  Figure 3-12.     Inner join   between Member and Type, and we “lose” Sarah Beck       

 The reason is that Sarah has no value for  MemberType  in the  Member  table. Let’s look at the Cartesian 
product, which is the first step for doing a join. Figure  3-13  shows those rows of the Cartesian product that 
include Sarah.  
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  Figure 3-13.    Part of the  Cartesian product   between the Member and Type tables       

 Having done the Cartesian product, we now need to do the final part of our join operation, which is to 
apply the condition ( MemberType = Type ). As you can see in Figure  3-13 , there is no row for Sarah Beck that 
satisfies this condition because she has a null or empty value in  MemberType . 

 Consider the following two natural-language questions: “Get me the fees for members” and “Get me all 
member information including fees.” The first one has an implication of “Just get me the members who have 
fees,” while the second has more of a feel of “Get me all the members and include the fees for those who have 
them.” One of the biggest difficulties in writing queries is trying to decide exactly what it is you want. It is 
even more difficult if you are trying to understand what someone else is asking for! 

 Let’s say that what we actually want is a list of all our members, and where we can find the fee 
information, we’d like to include that. In this case, we want to see Sarah Beck included in the result, but with 
no fee displayed. That is what an outer join does. Outer joins can come in three types: left,  right  , and  full      
outer joins. A left outer join retrieves all the rows from the left table including those with a null value in the 
join field, as shown in Figure  3-14 . We see that as well as all the rows from the inner join (Figure  3-12 ), we 
also have a row from the  Member  table for Sarah, who had a null for the join field  MemberType . The fields in 
that row that would have come from the right-hand table ( Type  and  Fee ) have null values.  
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 The SQL for the outer join depicted in Figure  3-14  is similar to an inner join, but the key phrase  INNER 
JOIN  is replaced with  LEFT OUTER JOIN  (or in some applications simply  LEFT JOIN ): 

   SELECT * 
 FROM Member m LEFT OUTER JOIN Type t ON m.MemberType = t.Type; 

   You might quite reasonably say that we wouldn’t have needed an outer join if all the members had a 
value for the  MemberType  field (as they probably should). That may be true for this case  —  but remember my 
cautions in Chapter   2     about assuming that fields that  should  have data  will  have data. In other situations, 
the data in the join field may be quite legitimately empty. We will see in later chapters queries like “List all 
members and the names of their coaches  —  if they have one.” “Losing” rows because you have used an inner 
join when you should have used an outer join is a very common problem and is sometimes quite hard to spot. 

 What about right and full outer joins? Left and right outer joins are the same and just depend on which 
order you put the tables in the join statement. The following SQL statement will return the same information 
as displayed in Figure  3-14 , although the columns may be presented in a different order: 

   SELECT * 
 FROM Type t RIGHT OUTER JOIN Member m ON m.MemberType = t.Type; 

   We have simply swapped the order of the tables in the join statement. Any rows with a null in the join 
field of the right table ( Member ) will be included. 

 A  full   outer join will retain rows with a null in the join field in either table. The SQL for the full outer join 
is shown here and will result in the table seen in Figure  3-15 :  

   SELECT * 
 FROM Member m FULL OUTER JOIN Type t ON m.MemberType = t.Type; 

  Figure 3-14.    Result of left outer join between Member and Type tables       
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   We have a row for Sarah Beck padded with mull values for the missing columns from the  Type  table. We 
also have the first row, which shows us the information about the Associate membership type even though 
there are no rows in the  Member  table with Associate as a member type. In this row, each missing value from 
the  Member  table is replaced with a null. 

 Not all implementations of SQL have a full outer join implemented explicitly. Access 2013 doesn’t. 
However, there are always alternative ways in SQL to retrieve the information you require. In Chapter   7     I’ll 
show you how to get the equivalent of a full outer join by using a union operator between a left and right 
outer join (which is what I had to do to get the screen shot in Figure  3-15 !).   

     Summary 
 A Cartesian product combines two tables. The resulting table has a column for each column in the two 
tables, and there is a row for every combination of rows from the contributing tables. The SQL for a Cartesian 
product reflecting the process approach is: 

   SELECT * 
 FROM <table1> CROSS JOIN <table2>; 

   The SQL for an inner join reflecting the outcome approach is: 

   SELECT * 
 FROM <table1>,<table2>; 

   An inner join starts with a Cartesian product, and then a join condition determines which combinations 
of rows from the two contributing tables will be retained. 

 The SQL for an inner join reflecting the process approach is: 

   SELECT * 
 FROM <table1> INNER JOIN <table2> 
 ON <join condition>; 

  Figure 3-15.    Result of a  full   outer join between Member and Type tables       
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   The SQL for an inner join reflecting the outcome approach is: 

   SELECT *... 
 FROM <table1>, <table2> 
 WHERE <join condition>; 

   If one (or both) of the tables has rows with a null in the field involved in the join condition, then that row 
will not appear in the result for an inner join. If that row is required, you can use outer joins. 

 The SQL for an outer join, which will retain all the rows in the left-hand table including those with a null 
in the join field, is: 

   SELECT * 
 FROM  <table1> LEFT OUTER JOIN <table2> 
 ON <join condition>; 

   Similar expressions exist for right outer joins and full outer joins.      
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    CHAPTER 4   

 Subqueries                          

 In the previous chapters, we looked at retrieving a subset of rows and columns from a single table, and we 
also looked at how Cartesian products and joins can be used to retrieve data from two or more tables. In 
many of the examples it was possible to construct quite different SQL queries to produce the same result. 
Depending on the context or the problem you will probably find that one approach will feel more natural. 

 As queries become more complicated, we might find that we can think of SQL expressions for small 
parts of a query but not for the whole lot in one go. It is possible to return data from a query and then refer 
to that data with another query  —  all in the one SQL statement. This idea of a query within a query is very 
powerful. You will hear the concept referred to as a query and subquery or inner and outer queries or 
nested queries. 

 In this chapter, we will look at subqueries and two new SQL keywords,  EXISTS  and  IN . We will see how 
to use subqueries as an alternative way to approach some of the queries we have already done and also how 
nesting will open up other possibilities. 

     IN Keyword 
 The   IN  keyword   allows us to select rows from a table, where the condition allows an attribute to have one of 
several values. For example, if we wanted to retrieve the member IDs from the rows in our  Entry  table for 
tournaments with ID 36, 38, or 40, we could do this with a Boolean  OR  operator as in the following query: 

   SELECT e.MemberID 
 FROM Entry e 
 WHERE e.TourID = 36 OR e.TourID = 38 OR e.TourID = 40; 

   Clearly, statements of this type will start to become unwieldy as the number of possible options 
grows. Using the  IN  keyword, we can construct a more compact statement where the set of possible values 
are enclosed in parentheses and separated by commas. In the following query, each row of  Entry  is 
investigated, and if  TourID  is one of the values in the parentheses, then the  WHERE  condition is true, and that 
row will be returned: 

   SELECT e.MemberID 
 FROM Entry e 
 WHERE e.TourID IN (36, 38, 40); 
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   It is possible to combine  IN  with the logical operator  NOT . However, you need to be very careful. Consider 
the following query: 

   SELECT e.MemberID 
 FROM Entry e 
 WHERE e.TourID NOT IN (36, 38, 40); 

   The preceding query will return the IDs of members who have entered any tournament that is not in the 
list. Be aware though that those members may have entered one of the tournaments in the list as well. We 
will look at how to accurately answer questions such as “who has not entered these tournaments” later in 
this chapter.  

     Using IN with Subqueries 
 The real usefulness of the  IN  keyword is that we can use another SQL statement to generate the set of values. 
For example, the reason that someone may have been interested in tournaments 36, 38, and 40 might have 
been because they are the current Open tournaments. Rather than list the Open tournaments individually, 
we can use another SQL query to generate the set of values we require. The list will be reconstructed each 
time the query is run so that the set of Open tournaments will remain current as the data changes. 

 Let’s look at a specific example of using a query to generate the set of values for the  IN  clause. I’ve 
reproduced a few of the columns of the  Member  table along with the  Entry  and  Tournament  tables in Figure  4-1 .  

  Figure 4-1.    Member, Entry, and  Tournament tables         
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 The query to generate the set of IDs for the Open tournaments is: 

   SELECT t.TourID 
 FROM Tournament t 
 WHERE t.TourType = 'Open'; 

   Now we can replace the list of explicit values (36, 38, 40) in the previous queries with the preceding SQL 
statement: 

   SELECT e.MemberID 
 FROM Entry e 
 WHERE e.TourID IN ( 
      SELECT t.TourID 
      FROM Tournament t 
      WHERE t.TourType = 'Open'); 

   The  SELECT  statement inside the parentheses is sometimes referred to as a  subquery . To work correctly 
with the  IN  keyword, the inner part of the query must return a list of single values. I have indented it only 
to make it easier to read (SQL will ignore the added whitespace). You can understand a nested query by 
reading it from the “inside out.” The inside  SELECT  statement retrieves the set of required tournament IDs 
from the  Tournament  table, and then the outside  SELECT  finds us all the entries from the  Entry  table for 
tournaments  IN  that set. 

 To aid in understanding, it is possible to  add comments   to SQL statements. In the statement that follows 
the line beginning with -- is a comment and will be ignored. It is also possible to use /* and */ around a block 
of more than one line of code. 

   SELECT e.MemberID 
 FROM Entry e 
 WHERE e.TourID IN ( 
      -- Subquery returns IDs of Open tournaments 
      SELECT t.TourID 
      FROM Tournament t 
      WHERE t.TourType = 'Open'); 

   Have another look at the tables in Figure  4-1 . How else might we have retrieved entries for Open 
tournaments? We carried out similar queries in the previous chapter using a join. We can join the two 
tables,  Entry  and  Tournament,  on their common fields  TourID , select just those rows that are for Open 
tournaments, and then project the  MemberID  column. See the following: 

   SELECT e.MemberID 
 FROM Entry e INNER JOIN Tournament t ON e.TourID = t.TourID 
 WHERE t.TourType = 'Open'; 

   The SQL statements with and without the subquery retrieve the same information. As I’ve said a 
number of times, there are often several different ways to write a query in SQL. The more methods you are 
familiar with, the more likely you will be able to find a way to express a complicated query.  
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     Being Careful with NOT and <> 
 As well as asking a question such as “What are the IDs of members who have entered an Open tournament?” 
it is just as likely that we might want to know “What are the IDs of members who have  not  entered an Open 
tournament?” They sound very similar, but once we start using negatives in our questions, we have to be 
very careful about what we really mean. In Chapter   7    , we will investigate constructing queries using set 
operations, but to keep this chapter complete, I’ll talk about how negatives impact the use of subqueries in 
particular. 

 In the previous section we constructed two SQL statements for retrieving member IDs for members 
who have entered an Open tournament. One used a subquery and one a join. To find who has not entered an 
Open tournament, one might attempt changing  IN  to  NOT    IN    in the subquery example, as follows:    

   SELECT e.MemberID 
 FROM Entry e 
 WHERE e.TourID NOT IN 
      (SELECT t.TourID 
      FROM Tournament t 
      WHERE t.TourType = 'Open'); 

   In the join example there is a temptation to amend  t.TourType = 'Open'  to  t.TourType <> 'Open' : 

   SELECT e.MemberID 
 FROM Entry e INNER JOIN Tournament t ON e.TourID = t.TourID 
 WHERE t.TourType <>'Open'; 

   Carefully think about which rows will be returned by these two queries. They in fact both return the 
same set of rows, but those rows may include members who have entered an Open tournament as well as 
those who have not. 

 The table in Figure  4-2  shows the result of the inner join between  Entry  and  Tournament . The bottom 
set of rows are all for Open tournaments, and these will be retrieved by a query that has the condition  WHERE 
t.TourType = 'Open' . The top set of entries is for tournaments other than Open and will be retrieved by the 
query which has the condition  WHERE t.TourType <> 'Open' .  

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
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  Figure 4-2.    TourType = ‘Open’ versus TourType <> ‘ Open’         

 We can see that some members (indicated by circles) appear in both sets. Figure  4-3  is another 
representation of the information in the table in Figure  4-2  but shows two sets of members rather than 
entries: the top circle represents those who have entered an Open tournament and the bottom circle those 
who have entered a tournament that is not an Open tournament. Four members are in both sets.  

 



CHAPTER 4 ■ SUBQUERIES

56

 Now let’s return to the original question. Which members have not entered an Open tournament? We 
have to be careful to differentiate the two sets depicted in Figure  4-4 .  

Open Tournaments

Other Tournaments

235

228 258

415 239

118 286

  Figure 4-3.    Members who have entered Open tournaments, other tournaments, or both          
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Other Tournaments

235

228 258

415 239

118 286

b. Shaded area is people who
    entered a tournament that
    is not an Open tournament

  Figure 4-4.    It is important to be careful to distinguish the SQL for these two situations       
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 Figure  4-4a  shows the set of people who have not entered any Open tournament. Figure  4-4b  shows 
those members who have entered something other than an Open tournament (but not excluding those 
who may have entered an Open tournament as well). For example, member 118 has never entered an Open 
tournament, whereas member 228 has entered Open tournaments as well as other types of tournaments. 

 The two queries at the beginning of this section will both retrieve the set of members depicted in 
Figure  4-4b . Member 228 (who has entered an Open tournament) will be returned (because he has entered a 
tournament that is not an Open tournament). This is not what we want and is a very common mistake. 

 To decide whether someone has entered an Open competition, we need to find just  one  matching entry. 
To decide whether someone has  not  entered an Open competition, we need to check  all  the Open entries to 
make sure that member does not appear. 

 In terms of our joined tables in Figure  4-2 , finding those people who have entered an Open tournament 
requires a simple  WHERE  clause:  WHERE t.TourType = 'Open' . Remember that each row is inspected 
independently to decide whether it meets the criteria in a   WHERE  clause  . However, to find people who have 
 not  entered an Open tournament, we need to investigate  every  row in the table to ensure that there is not 
an entry for a particular member. This is a much more complex task. In fact, we also need to consider the 
members who have never entered any tournaments. These members’ IDs will not appear in the  Entry  table 
at all, so we also have to investigate the  Member  table to find the complete list. 

 Finding members who have not entered an Open tournament can be achieved with a process approach 
using the set operations found in Chapter   7    . However, we can also use the outcome approach to construct an 
accurate query. To do that, we need to first introduce the  EXISTS  keyword.  

       EXISTS Keyword 
 Let’s start with a simple  question     . For example, “What are the names of all members who have ever entered 
any tournament?” We can start by thinking in terms of which rows of the  Member  table would satisfy our 
question. Consider the following sentence and Figure  4-5  together:

   I’ll write out the names from row m, where m comes from the  Member  table, if there exists a 
row e in the  Entry  table where  m.MemberID = e.MemberID  .    

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
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 We can translate the statement

   I’ll write out the names from row  m , where  m  comes from the  Member  table, if there exists a 
row  e  in the  Entry  table where  m.MemberID = e.MemberID  .   

 almost directly into SQL with the use of the keyword  EXISTS : 

   SELECT m.LastName, m.FirstName 
 FROM Member m 
 WHERE EXISTS 
      (SELECT * FROM Entry e WHERE e.MemberID = m.MemberID); 

   This is another example of a nested query where we have two SQL  SELECT  statements, one inside 
the other. This one is a little different from the simpler example we saw earlier in the chapter. The  WHERE  
condition in the inner query refers to part of the row being considered in the outer query; that is,  e.MemberID 
= m.MemberID . I find the easiest way to interpret these nested queries is with reference to a diagram like 
Figure  4-5 . Variable  m  is checking each row in the  Member  table. The inner query is looking for a row in the 
 Entry  table with the same value for  MemberID  as the row under consideration in the  Member  table. If such a 
row (or several such rows)  EXIST , then we are in business. 

  Figure 4-5.    William Cooper has entered a tournament because a matching row exists in the Entry table       
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 For those of you who are thinking that this seems like a complicated way to get a simple result, you are 
right (partly). The query using the  EXISTS  clause retrieves the same members as an inner join (on  MemberID ) 
between  Member  and  Entry does . 

 However, what if we want those members who have  not  entered a tournament? This requires only a tiny 
change to our new SQL query. Instead of looking for members where a matching row in  Entry  exists, we now 
want those where a matching row does  not  exist. Adding the word  NOT  to the previous SQL statements gives 
us what we require: 

   SELECT m.Lastname, m.FirstName 
 FROM Member m 
 WHERE  NOT  EXISTS 
      (SELECT * FROM Entry e WHERE e.MemberID = m.MemberID); 

   The  NOT EXISTS  construction will look through every row  e  in the  Entry  table, checking whether there 
is a row matching the  MemberID  of the current row in the  Member  table. The name of the member will be 
retrieved only if  no  matching row is found. 

 Now we have enough ammunition to tackle the query about members who have not entered an Open 
tournament. Check out Figure  4-6  to decide if William Cooper should be included in the result.  

  Figure 4-6.    There does exist an entry for an Open tournament for William Cooper       
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 The rows indicated in Figure  4-6  show that there does exist an entry for William Cooper, so we will not 
include him our result. 

 Now, look at this natural language statement that describes Figure  4-6 :

   I’ll write out the names from row  m , where m comes from the  Member  table, so long as there 
does not exist (a row  e  in the  Entry  table where  m.MemberID = e.MemberID  along with a row 
 t  in the Tournament table where  e.TourID = t.TourID and t.TourType = 'Open')     

 The SQL reflecting the preceding statement is: 

   SELECT m.Lastname, m.FirstName 
 FROM Member m 
 WHERE  NOT  EXISTS 
      (SELECT * FROM Entry e, Tournament t 
      WHERE m.MemberID = e.MemberID 
      AND e.TourID = t.TourID AND t.TourType = 'Open'); 

   We will look at the process approach to queries like this one when we cover set operations in Chapter   7    .    

     Different Types of Subqueries 
 We saw different types of subqueries in the previous sections. It is useful to review some of the options here. 
The inner part of the nested query can return a single value (e.g, Barbara’s handicap), a set of values (e.g., 
the IDs of Open tournaments), or a set of rows (e.g., entries in Open tournaments). Also, the inner and outer 
queries can be independent to some extent, or they can be correlated. 

     Inner Queries Returning a Single Value 
  Inner queries   that return a single value are often useful in the situation where you are simply retrieving a 
subset of rows. Let’s consider the handicaps of our members, as shown in Figure  4-7 .  

  Figure 4-7.    Part of the Member table showing names and handicaps       
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 If we want to find those members with a handicap of less than 16, then this can be done simply with the 
following SQL: 

   SELECT * 
 FROM Member m 
 WHERE m.Handicap < 16; 

   What should we do if we want to find all the members with a handicap less than Barbara Olson’s? The 
preceding query will do that for us, but only if Barbara’s handicap of 16 doesn’t change. For the query to 
work for whatever Barbara’s current handicap is, we can replace the single value 16 with the result of an 
inner query: 

   SELECT * 
 FROM Member m 
 WHERE Handicap <   
      (SELECT Handicap 
      FROM Member 
      WHERE LastName = 'Olson' AND FirstName = 'Barbara'); 

   We need to compare  Handicap  with a single value. If in a situation like this our inner query returns more 
than one value (for example, if there were more than one Barbara Olson in the club), then we would get an 
error when trying to run the query. 

 An inner query returning a single value is also useful if we want to compare values with an aggregate of 
some sort. For example, we might want to find all the members who have a handicap less than the average. 
In this case, we can use the inner query to return the average value: 

   SELECT * 
 FROM Member m 
 WHERE m.Handicap <   
      (SELECT AVG(Handicap) 
      FROM Member); 

   If you take it nice and slow, you can gradually build up quite complicated queries. Say we want to see 
whether any junior members have a lower handicap than the average for seniors. The inner query has 
to return the average value handicap for a senior member, and then we want to select all juniors with a 
handicap less than that. In the SQL statement that follows, both the inner and outer queries have an extra 
 SELECT  condition (the inner retrieves just seniors, and the outer retrieves just juniors): 

   SELECT * 
 FROM Member m 
 WHERE m.MemberType = 'Junior' AND Handicap < ( 
      SELECT AVG(Handicap) 
      FROM Member 
      WHERE MemberType = 'Senior'); 
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        Inner Queries Returning a Set of Values 
 This is where we started this chapter. When we use the  IN  keyword, SQL will expect to find a set of single 
values. For example, we might ask for rows from the  Entry  table for members with IDs  IN  a set of  values  . In 
the following statement, the inner query selects the IDs of all senior members, and the outer query returns 
the entries for those members: 

   SELECT * 
 FROM Entry e 
 WHERE e.MemberID IN   
      (SELECT m.MemberID 
      FROM Member m 
      WHERE m.MemberType = 'Senior'); 

   The inner section in this type of query must return just a single column.  IN  is expecting a list of single 
values (in this case, a list of  MemberID ). If the inner section returns more than one column (for example, 
 SELECT * FROM Member ), then we will get an error. 

 Many nested queries such as this can be written in other ways — often by using an inner join as we 
discussed earlier in the chapter. Some queries will feel more natural to you one way or the other.  

     Inner Queries Checking for Existence 
 Another type of inner query is the one we saw working with the  EXISTS  keyword. A statement  using  EXISTS    
just looks to see whether any rows at all are returned by the inner query. The actual values or numbers of 
rows returned are not important. The query that follows returns any rows from the  Member  table where we 
can find a corresponding row in the  Entry  table for that member: 

   SELECT m.Lastname, m.FirstName 
 FROM Member m 
 WHERE EXISTS 
      (SELECT * FROM Entry e 
      WHERE e.MemberID = m.MemberID); 

   Because the actual values retrieved by the inner query are not important, the inner query often has the 
form  SELECT * FROM . 

 Another feature of this type of query is that the inner and outer sections are usually correlated. By this we 
mean that the  WHERE  clause in the inner section refers to values in the table in the outer section. In this case the 
inner query is checking if the current row in the  Entry  table has the same  MemberID  as the member currently 
under consideration in the outer query. I find the easiest way to visualize this is as illustrated in Figure  4-5 . 

 It is difficult to think of a sensible  EXISTS  query that doesn’t correlate values in the inner and outer 
sections. Consider what the following query will return: 

   SELECT m.Lastname, m.FirstName 
 FROM Member m 
 WHERE EXISTS 
      (SELECT * FROM Entry e); 

   The query above doesn’t really make any sense. It says to write out each member’s names if there is a 
row in the  Entry  table (any row!). If the  Entry  table is empty, we will get nothing returned; otherwise, we will 
get all the names of all the members. I can’t think why you’d ever want to do that.  EXISTS  queries are useful 
when we are looking for matching values somewhere else, and that is why the  SELECT  condition needs to 
compare values from both the inner and outer sections. 
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 It is interesting to compare the following two queries. They both return the names of members who 
have entered a tournament, but the results are slightly different. The first uses an  EXISTS  clause: 

   SELECT m.Lastname 
 FROM Member m 
 WHERE EXISTS 
      (SELECT * FROM Entry e 
      WHERE e.MemberID = m.MemberID); 

   The second uses an  INNER JOIN : 

   SELECT m.LastName 
 FROM Member m INNER JOIN Entry e ON  e.MemberID = m.MemberID; 

   The difference between the two queries is the number of rows that are returned. 
 The first query inspects each row in the  Member  table just once and returns the last name if there 

exists at least one entry for that member in the  Entry  table. The last name for any member will be written 
out only once. 

 The second query forms a join between the two tables that will consist of every combination of rows in 
 Member  and  Entry  with the same  MemberID . The name for a particular member will be written out as many 
times as the number of tournaments he or she entered. 

 It’s a subtle difference, but an important one  —  especially if you are wanting to count the returned 
rows. Adding  DISTINCT  in the  SELECT  clause of the second example will make the results of the two 
queries the same.   

     Using Subqueries for Updating 
 This book is mainly about queries for retrieving data, but many of the same ideas can be used for  updating 
data   and adding or deleting records. In Chapter   1     we looked at simple queries such as updating the phone 
number of a particular member, as shown here: 

   UPDATE Member m 
 SET m.Phone = '875076' 
 WHERE m.MemberID = 118; 

   We also looked at inserting and deleting  rows      from a table. To insert a row we list the columns we are 
providing values for and then the values, as in the following: 

   INSERT INTO Entry (MemberID, TourID, Year) 
 VALUES (153, 25, 2016); 

   Now, let’s consider a situation where we want to add an entry for tournament 25 in 2016 for each of the 
juniors in the club. We want to add a set of rows to the  Entry  table, as shown in Figure  4-8 , where the left 
column has the member IDs for each of the juniors and the next two columns are the specific tournament 
(25) and year (2016) for each entry.  
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 We can write an SQL query to return a set of rows like those in Figure  4-8 : 

   SELECT m.MemberID, 25, 2016 
 FROM Member m 
 WHERE m.MemberType = 'Junior'; 

   This query is a little different from others we have looked at because it has constants in the  SELECT  
clause. It will construct a row for each junior member with the member’s ID and the two constants 25 (for 
the tournament) and 2016 (for the year). 

 We can now use the preceding query as a subquery in our  INSERT  query. Rather than provide just one 
value with the  VALUES  keyword, we can provide a set of values resulting from the subquery. In the following 
query, the inner  SELECT  will produce the set of rows seen in Figure  4-8 , and the outer  INSERT  will put them in 
the  Entry  table: 

   INSERT INTO Entry (MemberID, TourID, Year) 
      -- create an entry in tournament 25, 2016 for each Junior 
      SELECT MemberID, 25, 2016 
      FROM Member 
      WHERE MemberType = 'Junior'; 

   The same potential for using subqueries applies to other updating issues. Say, for the purposes of 
finding an example, that after entering data in the  Entry  table for the 2016 social tournament at Kaiapoi 
(tournament 25) you realize that only players with handicaps of 20 or more were allowed to enter. You could 
use a subquery to delete entries for members with handicaps less than 20: 

   DELETE FROM Entry 
 WHERE TourID = 25 AND Year = 2016 AND 
 MemberID IN 
       (SELECT MemberID FROM Member WHERE Handicap < 20); 

        Summary 
 We can use subqueries along with the keywords  IN  and  EXISTS  in many situations. Here is a summary of the 
situations we have looked at in this chapter. 

  Figure 4-8.    Rows to be added to Entry table       
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     Examples of Different Types of Subqueries 
 Many nested queries can be written in alternative ways. In Chapter   9    , we will look at performance issues 
relating to different ways of expressing queries, but in general you should use the way that feels most 
natural to you when designing a query. Here are some examples of nested queries and alternate ways of 
expressing them. 

   A subquery returning a single value 
 Find the tournaments that member Cooper has entered: 

   SELECT e.TourID, e.Year FROM Entry e WHERE e.MemberID = 
      (SELECT m.MemberID FROM Member m 
      WHERE m.LastName = 'Cooper'); 

   An alternative way to write the preceding query is to use a join: 

   SELECT e.TourID, e.Year 
 FROM Entry e INNER JOIN Member m ON e.MemberID = m.MemberID 
 WHERE m.LastName = 'Cooper'; 

      A subquery returning a set of single values 
 Find all the entries for an Open tournament: 

   SELECT * 
 FROM Entry e 
 WHERE e.TourID IN 
      (SELECT t.TourID FROM Tournament t 
      WHERE t.TourType = 'Open'); 

   The preceding query can be replaced with: 

   SELECT e.MemberID, e.TourID, e.Year 
 FROM Entry e INNER JOIN Tournament t ON e.TourID = t.TourID 
 WHERE t.TourType = 'Open'; 

      A subquery checking for existence 
 Find the names of members that have entered any tournament: 

   SELECT m.LastName, m.FirstName 
 FROM Member m 
 WHERE EXISTS 
      (SELECT * FROM Entry e 
      WHERE e.MemberID = m.MemberID); 

http://dx.doi.org/10.1007/978-1-4842-1955-3_9
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   This can be replaced with: 

   SELECT DISTINCT m.LastName, m.FirstName 
 FROM Member m INNER JOIN Entry e ON e.MemberID = m.MemberID; 

         Examples of Different Uses for Subqueries 
 Subqueries can be used in many situations, including the following: 

   Constructing queries with negatives 
 Find the names of members who have not entered a tournament: 

   SELECT * FROM Member m 
 WHERE NOT EXISTS 
      (SELECT * FROM Entry e 
      WHERE e.MemberID = m.MemberID); 

      Comparing values with the results of aggregates 
 Find the names of members with handicaps less than the average: 

   SELECT m.LastName, m.FirstName FROM Member m WHERE m.Handicap < 
      (SELECT AVG(Handicap) FROM Member); 

      Update data 
 Add a row in the  Entry  table for every junior for tournament 25 in 2016: 

   INSERT INTO Entry (MemberID, TourID, Year) 
      SELECT MemberID, 25, 2016 
      FROM Member WHERE MemberType = 'Junior';         
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    CHAPTER 5   

 Self Joins                          

 When we select a subset of rows based on a condition in a  WHERE  clause, the condition is evaluated for each 
row independently. An example might be a query to find all the members who have entered tournament 36. 
The condition  TourID = 36  can be evaluated for each row in the  Entry  table to achieve the required result. 
However, if we want to find members who have entered both tournaments 36 and 24, we cannot do this by 
inspecting just one row of the  Entry  table. We need to find two rows (or entries) for the same member — one 
for each of the specified tournaments. A simple  WHERE  clause cannot achieve this. 

 In this chapter we will look at self joins. With a join between two tables, we first make a Cartesian 
product that gives us a combination of rows from each table. In a self join, we do the same thing but with two 
copies of the same table. This provides us with every combination of pairs of rows from the original table. 
This is one way to write a query that needs information from more than one row in a table to satisfy some 
condition. It will enable us to answer questions involving the word  both ; for example, “Which members 
entered  both  these tournaments?” Self joins will also allow us to carry out queries on tables involved in self 
relationships. We’ll look at self relationships first. 

     Self Relationships 
 Let’s add some more information to our  Member  table. Suppose some members have coaches assigned to 
them. How do we represent that in the class diagrams we talked about in Chapter   1    ? We could take the 
approach shown in Figure  5-1 , with two classes:  Member  and  Coach . Recall what the lines and numbers mean. 
From left to right, a coach might have several members to train (the 0..n nearest the  Member  class). From right 
to left, a particular member might have a single coach or no coach (the 0..1 nearest the  Coach  class).  

  Figure 5-1.    Data model for coaches and members (not recommended!)       
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 The problem with the model in Figure  5-1  is that coaches, in all probability, are members of the 
club. When we implement this model with a  Coach  table and a  Member  table, some people will have a row 
recording their details in each table. For example, Brenda Nolan has a row in the  Member  table. When she 
takes up a role as coach, we also would need a row about her in the  Coach  table. Now if Brenda gets a new 
phone number, someone has to remember to change it in both tables. In all likelihood this won’t happen, 
and we will end up with the old number in one of the tables. 

 In this example we don’t actually have two separate classes of members and coaches. We have just one 
class of members, some of whom coach other members. This self relationship is shown in Figure  5-2 .  

  Figure 5-2.    Data model for members coaching other members       

 The relationship line in Figure  5-2  can be read in a clockwise direction to say that a particular member 
might coach several other members or none (0..n). In the other direction, we can read that a particular 
member might have one coach or none (0..1). 

 In Chapter   1     we showed how to represent a 1 – Many relationship by adding a column to the table at 
the 1 end of the relationship, which will have values from the primary key of the table at the other end. The 
model in Figure  5-2  is exactly the same type of 1 – Many relationship, except that we have the same table at 
each end, hence a  self relationship . To represent the relationship we can add a column,  Coach , in the  Member  
table, as shown in Figure  5-3 . The values in the  Coach  field must also exist in the key field  MemberID .  
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 The first row in the table in Figure  5-3  tells us that Melissa is coached by member 153, and we can 
see from the third line of the table that member 153 is Brenda. We need the value in the  Coach  field to be 
constrained to being one of our existing members so that we cannot accidentally add an invalid member 
number in the  Coach  column. We can do this by making the  Coach  field a foreign key. Recall from Chapter 
  1     that a foreign key is a field where any non-empty values in the field must already exist as a primary key in 
another table. For the table in Figure  5-3 ,  MemberType  is a foreign key referring to the  Type  table, meaning 
that any value in the  MemberType  column must already exist in the  Type  table. For the  Coach  column, the 
“other” table is the  Member  table itself. The following SQL statement shows how we would use the  ALTER  
command to add the new foreign key column  Coach :    

   ALTER TABLE Member 
 ADD Coach INT FOREIGN KEY REFERENCES Member; 

   With the modified  Member  table, we now can answer several different types of questions. For example:

•    What are the names of the coaches?  

•   What is the name of Jane Gilmore’s coach?  

•   Is anyone being coached by someone with a higher handicap?  

•   Are any women being coached by men?    

 None of these questions can be answered by inspecting a single row in the table. What we require is a 
 self join  on the  Member  table. The easiest way to understand a self join is to see how we make one. 

  Figure 5-3.     Column Coach added to the Member    table          
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     Creating a Self Join 
 Recall from Chapter   3     the definition of a join between two tables: a Cartesian product (every combination 
of rows from each table) followed by selecting a subset of those rows that satisfy some join condition. For 
a self join, we think of two copies of the same table. In Figure  5-4 , we see part of the Cartesian product 
between two copies of the  Member  table. To distinguish the different elements of the product, I’ve given the 
first copy an alias,  m , and the second a different alias,  c  (you’ll see why in a minute). In the small section of 
the Cartesian product visible in Figure  5-4 , we see the first row (Melissa) from copy  m  paired with each of the 
rows from copy  c . Some of the headings of the columns are truncated, as it was getting rather wide.  

  Figure 5-4.     Cartesian product between two copies of the Member    table          

 For queries about coaching, the interesting rows from the Cartesian product are those where the 
value of  Coach  from  m  is the same as  MemberID  from  c . In Figure  5-4 , you can see that the third line contains 
information about Melissa (from the  m  copy of  Member ) and information about her coach (from the  c  copy of 
 Member ). Now the choice of aliases becomes clear:  m  for columns about a member;  c  for the columns about 
that member’s coach. Choosing helpful aliases can make understanding self joins much easier. The rows we 
would like to select from the Cartesian product are those satisfying  m.Coach = c.MemberID.  This is the join 
condition required to find information about members and their coaches. The SQL for the self join is: 

   SELECT * 
 FROM Member m INNER JOIN Member c ON m.Coach = c.MemberID; 
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   The table resulting from the self join is shown in Figure  5-5 .  

  Figure 5-5.     Self join on Member table to retrieve information about members and their    coaches          

 Now that we have the results of the self join, we can answer the questions posed in the previous section 
about coaching. The trickiest part of all this was recognizing that maintaining information about members 
and coaches is a self relationship and designing the  Member  table appropriately in the first place.  

     Queries Involving a Self Join 
 With the joined table in Figure  5-5  as our base, we can answer all sorts of questions by simply selecting 
subsets of rows and projecting the appropriate columns. Whenever I need to do  queries involving   self joins, 
I usually perform the join first, retaining all the rows and columns as in Figure  5-5 . With the joined table (or 
a quick sketch of the columns) in front of me, the way forward is usually relatively simple. Let’s see how this 
works with a few questions. 

   What Are the Names of the Coaches? 
 Looking at Figure  5-5 , we can see that the names of the  coaches      are in the columns coming from the c part of 
the join. We just want a list of the names in the columns  c.LastName  and  c.FirstName  so those columns can 
be included in the  SELECT  clause. We don’t want the names repeated, so we use the keyword  DISTINCT . The 
following SQL statement will return the names of the two coaches, Brenda Nolan and William Cooper. 

   SELECT DISTINCT c.FirstName, c.LastName 
 FROM Member m INNER JOIN Member c ON m.Coach = c.MemberID; 
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      Who Is Being Coached by Someone with a Higher Handicap? 
 To find out who is being coached by someone with a higher handicap, we need to compare the handicap of 
the member ( m.Handicap ) with the handicap of that member’s coach ( c.Handicap ). What is required is a 
 WHERE  clause after the join clause to find where the member’s handicap is less than the  coach’s handicap:   

   SELECT * 
 FROM Member m INNER JOIN Member c ON m.Coach = c.MemberID 
 WHERE m.Handicap < c.Handicap; 

   For the data in Figure  5-5 , this will retrieve the data in the last four rows. (You don’t have to be a great 
golfer to be a good coach!) Having done the join and selected the appropriate rows, we can then choose 
which columns we want to appear in the final result and list them in the  SELECT  clause.  

   List the Names of All Members and the Names of Their Coaches 
 Listing the names of members and their coaches sounds pretty trivial, but if we are not careful, we can get 
it wrong. A first thought might be to project just the four columns containing the names of member and 
coach from the joined table in Figure  5-5 . However, there are only 10 rows in the joined table, whereas there 
are 20 members in the  Member  table. The issue here is that not all the members have coaches. We looked at 
situations like this in the section on outer joins in Chapter   3    . 

 To recap, let’s go back to the Cartesian product of two copies of the  Member  table, but look at some rows 
involving a member with no coach, as shown in Figure  5-6 .  

  Figure 5-6.     Part of the Cartesian product between two copies of the    Member table          
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 The join condition ( m.Coach = c.MemberID ) is never satisfied for a member with a null in the 
 Coach  column, so all those members will be missing from our joined table. We just need to be careful to 
understand what we really want. Do we want a list of all the members with coaches (10 rows), or a list of all 
the members along with their coach’s name if they have one (20 rows)? If it’s the latter, we need an outer join. 
We need to see the name of each member (from the  m  copy of the  Member  table), along with the name of his 
coach, if any (from the  c  copy). The SQL for this  outer join is:   

   SELECT m.LastName AS MemberLast, m.FirstName AS MemberFirst, 
        c.LastName AS CoachLast, c.FirstName AS CoachFirst 
 FROM Member m LEFT OUTER JOIN Member c ON m.Coach = c.MemberID; 

   In the preceding query we have given each output attribute a  column alias . A column alias temporarily 
renames a column in order to improve the readability of the output. In this case it helps the reader 
distinguish which name belongs to whom, as shown in Figure  5-7 . Without the aliases, the attributes would 
be labelled as  m.LastName  and  c.LastName  and so on, which are not quite so easy to understand. Recall from 
Chapter   3     that for a left outer join, where there is no matching row from the right-hand table, those columns 
will be filled with nulls. Figure  5-7  shows the output of the left outer join.   

  Figure 5-7.     Left outer join to list all members and    coaches          
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   Who Coaches the Coaches, or Who Is My Grandmother? 
 The self join between two copies of the  Member  table shows us one level of members and coaches. If we 
look at the rows in Figure  5-7 , we can see that Thomas Sexton is coached by William Cooper, who is in turn 
coached by Brenda Nolan, who doesn’t have a coach. The hierarchy isn’t all that interesting for this problem, 
but there are several analogous situations where the hierarchy is of considerable interest. Genealogy is one. 
Consider the data model and part of the  Person  table in Figure  5-8 . For the sake of keeping things really 
simple, we will consider only a tiny bit of information about just women and birth mothers.  

  Figure 5-8.     Data model for women and their birth    mothers          

 The relationship in Figure  5-8  can be read clockwise as “a person can be the mother of several other 
people” and in the other direction as “a person has at most one mother and might have none.” Now. in real 
life, that last statement doesn’t sound right — surely everyone has a mother. However, as with all databases, 
this database is only an approximation of the complexities of real life, and it can only keep data that is 
available. Unless we trace everyone back to the primeval slime, there will be some people in our table whose 
mother we do not know. Brenda is one. The table and model in Figure  5-8  have exactly the same structure 
as our member and coach example, but a question like “Who is Sue’s grandmother?” seems a bit more likely 
than “Who coaches my coach?” 

 So, how do we get information about people along with information about their mothers? Just as in the 
previous section, we need to join the  Person  table to itself. (Don’t forget to make the join an outer join so you 
don’t lose Brenda.) The SQL is: 

   SELECT * 
 FROM Person p LEFT OUTER JOIN Person m on p.Mother = m.ID; 

   The Access diagrammatic interface for the join is shown in Figure  5-9 , along with the resulting table. I’ve 
given the first copy of the table the alias  p  for  person  and the second copy the alias  m  for  mother .  
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 Now, what about going back to the previous generation? For that we need to perform another left outer 
join between the result table in Figure  5-9  and another copy of the  People  (with the alias  g  for  grandmother ). 
The SQL for the two left outer joins is: 

   SELECT * 
 FROM (Person p LEFT JOIN Person m ON p.Mother = m.ID) 
      LEFT JOIN Person g ON m.Mother = g.ID; 

   The resulting table is shown in Figure  5-10 .  

  Figure 5-9.     Finding people and their mothers: Access diagram for the left outer join and the resulting    table           
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 Clearly, we can keep making more and more self joins until we run out of generations. These sorts 
of hierarchical queries are likely to turn up whenever we have self relationships. One small catch is that 
we must specify the number of joins in each query. Standard SQL doesn’t have the notion of a query 
that automatically keeps doing the self joins until it runs out of generations, such as “Find all my female 
ancestors”; however, some implementations do support this. 1    

     An Outcome Approach to Self Joins 
 The questions in the previous sections were all quite easy to answer once we realized we needed self joins. 
This was an example of the process approach  —  what operations do we need to perform? Sometimes, 
however, these realizations don’t always come when you need them. Whenever my mind goes blank when 
faced with a query, I resort to an outcome approach. 

 Let’s look at our  Member  table again and ask a simple question: Who is Melissa’s coach? Don’t think 
about relationships or joins, just look at the data from a layman’s perspective. In Figure  5-11 , you can see 
how to figure out the answer, even if you have never heard of a self join (most people haven’t).  

  Figure 5-10.     Finding three generations: Access diagram for the left outer joins and the    resulting table          

   1  Some implementations of SQL do support recursive queries that can track through self relationships. Check your 
documentation for key phrases like  WITH  or  CONNECT BY .  
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 To find Melissa’s coach, we first find the row for Melissa ( m  in Figure  5-11 ) and then note that her coach 
is member 153. Then we find another row ( c  for coach) that has the  MemberID  value of 153; we can see 
that Melissa’s coach is Brenda. You don’t need to know anything about self relationships or foreign keys or 
joins to figure that out. But once you have that logic clearly in your mind, you can write it down in natural 
language, and then the translation to SQL is pretty straightforward. 

 Let’s write a description of Figure  5-11 :

   I need to look at two rows ( m  and  c ) in the  Member  table, and I want to write out  c.FirstName  
where  c.MemberID  has the same value as  m.Coach  and  m.FirstName  is ‘Melissa’    

 And here is the corresponding SQL: 

   SELECT c.FirstName 
 FROM Member m, Member c 
 WHERE c.MemberID = m.Coach AND m.FirstName = 'Melissa'; 

   So, how does this output approach correspond to the process approach we considered earlier? As you 
might expect, the preceding SQL is just an alternative way of stating the same query as the one where we 
used the self join. In the preceding SQL statement, the middle line is the Cartesian product between two 
copies of the  Member  table, and the first part of the  WHERE  clause is the join condition. The statement  FROM 
Member m, Member c WHERE c.MemberID = m.Coach  is just another way of expressing the self join we used 
in the previous sections. 

 Let’s try one of the other queries using an outcome approach: Who is being coached by someone with a 
higher handicap? The picture I would need in my head to answer this question is shown in Figure  5-12 .  

  Figure 5-11.     Finding    Melissa’s coach          

 



CHAPTER 5 ■ SELF JOINS

78

  Figure 5-12.     Finding members who are coached by someone with a    higher handicap          

 We can see that Deborah, whose handicap is 12, is being coached by member 235. Member 235, 
William, has a handicap of 14, so Deborah satisfies our criteria. Here is the more general statement 
representing the logic depicted in Figure  5-12 :

   I’m going to look at every row ( m ) in the  Member  table and will write out  m.FirstName  and  
 m.LastName  if there exists some other row ( c ) in the  Member  table where  c.MemberID  is the 
same as  m.Coach  and  m.Handicap  is less than  c.Handicap     

 The SQL follows in a straightforward manner: 

   SELECT m.FirstName, m.LastName 
 FROM Member m, Member c 
 WHERE c.MemberID = m.Coach AND m.Handicap < c.Handicap; 

   Once again, you can see the equivalent of the self join in the preceding query ( FROM Member m, Member 
c WHERE c.MemberID = m.Coach) . The usefulness of this outcome approach is that you don’t need to 
understand what a self join is, nor must you make the mental leap that you need one. By thinking in terms of 
virtual fingers and which rows are involved in helping you with your decision, you can sketch a statement of 
the criteria. The SQL usually follows quite easily from that.   
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     Questions Involving “Both” 
 In the “Avoiding Common Mistakes” section of Chapter   2    , we looked at a questions such as, “Which members 
have entered  both  tournaments 24 and 36?” To recap, I’ve reproduced the  Entry  table in Figure  5-13 .  

  Figure 5-13.     Entry table        
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 A common first attempt at an SQL statement to find entries in both tournaments is the following: 

   -- Will not produce the desired result 
 SELECT e.MemberID 
 FROM Entry e 
 WHERE e.TourID = 24 AND e.TourID = 36; 

   Remember that a  WHERE  condition is applied to each row of the table individually. The condition ( e.
TourID = 24 AND e.TourID = 36 ) is never true for any individual row, as each row has only a single value 
for  TourID . The preceding query will never return any rows because the value in  TourID  cannot be two 
different things (24 and 36) simultaneously. Such a query can be quite dangerous, because the user may 
interpret the empty result as meaning that no members have entered both tournaments, whereas the query 
statement is actually incorrect. 

 To answer the question, we need to look at more than one row in the  Entry  table. I find an outcome 
approach to be the most natural for dealing with questions involving “both.” 

     An Outcome Approach to Questions Involving “Both” 
 The picture I need in my head to answer “Which members have entered both tournaments 24 and 36?” is 
shown in Figure  5-14 .  

  Figure 5-14.     Which members have entered both tournaments 24 and 36?        

 Looking at Figure  5-14 , it is pretty clear that member 228 has entered both the tournaments. We are to 
looking for two rows (two fingers,  e1  and  e2 ) with matching  MemberID  values and where the rows have the 
required two TourID values. 

 A more general expression of the logic displayed in Figure  5-14  is:

   I’m going to look at every row ( e1 ) in the  Entry  table. I’ll write out that row’s member ID 
if   TourID  has the value 24 and I can also find another row (  e2 ) in the  Entry  table with the 
same value for  MemberID  and that has 36 as the value for  TourID .    
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 The SQL follows from here. If you have trouble with it, refer to Figure  5-14 . 

   SELECT e1.MemberID 
 FROM Entry e1, Entry e2 
 WHERE e1.MemberID = e2.MemberID 
      AND e1.TourID = 24 AND e2.TourID = 36; 

        A Process Approach to Questions Involving “Both” 
 As always, we have several ways to think about a query. Take a look at the middle two lines of the last query. 
 FROM Entry e1, Entry e2  is a Cartesian product (which will give us every combination of pairs of rows), 
followed by selecting a subset of rows satisfying ( WHERE e1.MemberID = e2.MemberID ). This is a join. In fact, 
it is a self join between two copies of the  Entry  table. Part of the join between two copies of the  Entry  table is 
shown in Figure  5-15 .  

  Figure 5-15.     Part of the self join between two copies of the Entry    table          
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 The self join in Figure  5-15  shows those combinations of rows from the  Entry  table for the same 
member. For example, we can see every combination of rows involving member 228. We can use this self 
join to answer the question about members who have entered both tournaments 24 and 36. We just need to 
find a row that has 24 from the first copy and 36 from the second copy (or vice versa)  —  that is,  e1.TourID = 
24 AND e2.TourID = 36 . 

 The SQL for this self join followed by the  WHERE  clause to select the rows with the appropriate values of 
 TourID  is shown here: 

   SELECT e1.MemberID 
 FROM Entry e1 INNER JOIN Entry e2 ON e1.MemberID = e2.MemberID 
 WHERE e1.TourID = 24 AND e2.TourID = 36; 

   If you compare the two queries for finding the entries in both tournaments 24 and 26, you will see how 
similar they are. They will both produce exactly the same result. You will probably find one or the other to be 
more intuitive.   

     Summary 
 Many queries require us to obtain information from two rows of a table. This turns up in a number of 
situations. The main ones are where we have self relationships or where there are questions involving the 
word “both.” We have looked at both process approaches and outcome approaches to these queries. Both 
resulted in very similar-looking SQL statements that return the same output. Having the two different 
approaches is helpful for those occasions when the query statement is not immediately obvious. 

     Self Relationships 
 We have a self relationship when different instances of a class are related to each other. In the example in this 
chapter, we had that some members are coaches of other members. 

 From a process perspective, queries about coaches or coaching relationships require self joins, which 
take two copies of the table and join them. In the following example, the copy of the  Member  table with the 
information about the member has the alias  m , and the copy with information about the coach has the alias  c : 

   SELECT m.LastName, m.FirstName, c.LastName, c.FirstName 
 FROM Member m INNER JOIN Member c ON m.Coach = c.MemberID 

   Alternatively, from an output approach we might come up with this equivalent query: 

   SELECT m.FirstName, m.LastName, c.LastName, c.FirstName 
 FROM Member m, Member c 
 WHERE c.MemberID = m.Coach 

   Both these queries can form the basis of queries to answer a number of questions about coaching.  

     Questions Involving the Word “Both” 
 Questions with the word “both” often mean we need to look at two rows in a table. In our example, we 
wanted to find the  MemberID  of members who have entered both tournaments 24 and 36. 
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 From an outcome approach we needed to find two rows in the  Entry  table (e1 and e2) for the same 
member. One of the rows needed to be for tournament 24 and the other for tournament 36. The following 
shows the outcome-based SQL query: 

   SELECT e1.MemberID 
 FROM Entry e1, Entry e2 
 WHERE e1.MemberID = e2.MemberID AND e1.TourID = 24 AND e2.TourID = 36; 

   Alternatively, from a process approach we might recognize the need for a self join between two copies 
of the  Entry  table, which is done using the join condition  e1.MemberID = e2.MemberID . This would need to 
be followed by a  WHERE  clause to return the rows with the appropriate  TourID  values. 

 The self join query equivalent to the preceding query is: 

   SELECT e1.MemberID 
 FROM Entry e1 INNER JOIN Entry e2 ON e1.MemberID = e2.MemberID 
 WHERE e1.TourID = 24 AND e2.TourID = 36;         
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    CHAPTER 6   

 Multiple Relationships 
Between Tables                          

 We have looked at simple 1 – Many relationships between tables (e.g., each member is associated with one 
member type), and we have also looked at self relationships (e.g., members may coach other members). Another 
situation that occurs frequently is where there is more than one relationship between the same two tables. 

     Two Relationships Between the Same Tables 
 Let’s consider how we might introduce the idea of teams into the golf club database. We can start off by 
thinking about what basic information we need to keep about a team. Figure  6-1  shows a class representing a 
simple team along with some rows in a table that represents the class.  

  Figure 6-1.    The Team class and some rows in a Team table       

 Now we need to think about relationships between the new   Team  class   and our other classes. The 
most obvious relationship is that members will play for teams. Figure  6-2  shows a possible class diagram 
representing this situation.  

  Figure 6-2.    A member can belong to one team       
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 Interpreting the class diagram in Figure  6-2  from left to right, we have that a particular member might 
play on one team (the 1 nearest the  Team  class), but a member does not need to play for any teams at all (the 
0 nearest the  Team  class). Reading from right to left, we have that a team could have many  members   playing 
for it (the n nearest the  Member  class) but might not have any (the 0 nearest the  Member  class). That last 
statement might seem a bit odd, but when we add new teams, or want to start afresh in a new season, a team 
might not have any members straight away. 

 To represent a 1 – Many relationship, recall from Chapter   1     that we take the primary key from the table at 
the 1 end of the relationship and add it as a foreign key to the table at the Many end. Figure  6-3  shows a new 
foreign key field,  Team , which refers to the  Team  table.  

  Figure 6-3.     Foreign key field Team in the Member    table          

 Another relationship that is likely to occur between  Member  and  Team  is that a member might manage a 
team. Figure  6-4  shows this additional relationship in the class diagram.  
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 The top line in Figure  6-4  can be interpreted, from left to right, as stating that a particular member might 
manage (at most) one team; and from right to left, as that each team has exactly one manager. 

 This new relationship is a 1 – 1 relationship. For 1 – Many relationships we have always taken the primary 
key from the one end of the relationship and put it in the table at the other end. This time both ends have 
a cardinality of 1. We could put a  Team_I_Manage  column in the  Member  table or a  Manager  column in the 
 Team  table. The latter is more sensible, as the compulsory  Manager  attribute is a more important piece of 
information about teams than the optional  Team_I_Manage  is for members. Generally, in a 1 – 1 relationship 
we take the primary key from the compulsory end (1:1 on the diagram in Figure  6-4 ) and put that as a foreign 
key in the other end. 

 The  Team  table, with its new  Manager  foreign key column, is shown along with the  Member  table 
in Figure  6-5 .  

  Figure 6-4.     Two relationships between the Member and Team    classes          
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 From the  Member  table, we can see that four people play for TeamB (Brenda Nolan, William Cooper, Robert 
Pollard, and Betty Young), and from the  Team  table, we can see that member 153 (Brenda Nolan) is the manager 
of TeamB. You will notice that there is nothing in the data model that says whether or not a manager must be 
a member of the team. TeamB’s manager is a member of TeamB, whereas TeamA’s manager, 239 (Thomas 
Spence), is not a member of TeamA. The only constraints implied by the foreign keys are that the manager of a 
team must be in the  Member  table and a member can belong only to a team that exists in the  Team  table. 

 Some of you may have also realized that making  Manager  a foreign key does not prevent the same 
person from managing more than one team. The foreign key constraint does not prevent us from putting 
member 239 as the manager for both TeamA and TeamB. We have effectively set up a 1 – Many relationship 
between  Team  and  Member  for the  Manages  relationship. If you want to prevent a single member from 
managing more than one team, you can put a  UNIQUE  constraint on the  Manager  column of the  Team  table. 
This type of situation is discussed in more depth in my database design book. 1  The following SQL would 
create a  Team  table where  Manager  is a foreign key referring to the  Member  table and a particular member can 
only appear once in the  Manger  column in the table:    

   CREATE TABLE Team ( 
 TeamName CHAR(10) PRIMARY KEY, 
 PracticeNight CHAR(20), 
 Manager INT FOREIGN KEY REFERENCES Member UNIQUE); 

  Figure 6-5.     Foreign keys Team in Member table and Manager in Team table to represent the relationships in Figure    6-4            

   1  Clare Churcher,  Beginning Database Design: From Novice to Professional  (New York: Apress, 2012).  
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        Extracting Information from Multiple Relationships 
 Now that we have the  Team  and  Member  tables and their two relationships ( Plays for  and  Manages ), we can 
start extracting information. If we just consider one relationship at a time, it is relatively straightforward to 
construct queries. If we want a list of the members who play for a team along with the basic information 
about their teams from the  Team  table, we can simply join the  Member  and  Team  tables on  Team = TeamName  as 
in the SQL query here: 

   SELECT m.MemberID, m.LastName, m.FirstName, m.Team, 
        t.TeamName, t.PracticeNight, t.Manager 
 FROM Member m INNER JOIN Team t ON m.Team = t.TeamName; 

   A graphical representation and the output of the preceding query is shown in Figure  6-6 .  

  Figure 6-6.    Joining Member and Team to get additional information about a member’s  team         
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 Similarly, if we want to retrieve information about teams, including the name of the manager, we can 
join  Member  and  Team  on  Manager = MemberID :    

   SELECT t.TeamName, t.PracticeNight, t.Manager, 
        m.MemberID, m.LastName, m.FirstName 
 FROM Team t INNER JOIN Member m ON t.Manager = m.MemberID; 

   A graphical representation and the output of the preceding query is shown in Figure  6-7 .  

  Figure 6-7.    Joining Member and Team to get additional information about a team’s  manager         

 Now we will look at how to retrieve information involving both relationship types. 

     Process Approach 
 The information from the join shown in Figure  6-6  is not particularly helpful. We have the managers’ IDs, 
but it would be more useful to have their names as well. We need another join. First, we’ll have a look at what 
Access will do by default if you add both the  Member  and  Team  tables onto the query design interface. This is 
shown in Figure  6-8 .  
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 A look at the SQL for the query in Figure  6-8  reveals it is joining the tables like this: 

   SELECT * 
 FROM Member m  INNER JOIN Team t 
 ON t.TeamName = m.Team AND m.MemberID = t.Manager; 

   Can you figure out what question this query is answering? The output is shown in Figure  6-9 .  

  Figure 6-8.    Default joins in Access if Member and Team are added to diagrammatic  query interface         

  Figure 6-9.    Output for the default Access join in Figure  6-8           

 To understand what is happening with the preceding join it is useful to consider the Cartesian product 
of  Member  and  Team . The Cartesian product gives us every combination of rows from each table. The join 
condition says show only rows where the  MemberID  is the same as the  Manager  and where  Team  and  TeamName  
are the same. In everyday language, this amounts to “Show me the members who manage the team they are 
in.” For our data, that is just the single row for Brenda Nolan we see in Figure  6-9 . 

 So, how do we construct a query that will show us member names, their teams, and the names of the 
teams’ managers? The query that follows will provide the information about the members, their teams, and 
the managers’ IDs ( t.Manager ); however, it does not provide the managers’ names: 

   SELECT m.MemberID, m.LastName, m.FirstName, t.TeamName, t.Manager 
 FROM Member m INNER JOIN Team t ON m.Team = t.TeamName; 

   What we need to do is to take the result of the preceding join and join that to a  second  copy of the 
 Member  table ( m2 ) to retrieve the names of the managers. We want the join condition to be that  t.Manager = 
m2.MemberID  so we get the names of the manager. Figure  6-10  shows a diagrammatic representation and the 
output of the two joins.  
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 The first join gives us the member information from the first copy of the  Member  table and the 
information from the  Team  table for that member; the second join gives us the name of the team manager 
from the second copy of the  Member  table. The SQL for the two joins is: 

   SELECT * 
 FROM (Member m INNER JOIN Team t ON m.Team = t.TeamName) 
      INNER JOIN Member m2 ON t.Manager = m2.MemberID; 

   You might find it instructive to compare this latest query and output with the query involving a single 
join between the  Member  and  Team  tables shown in Figures  6-8  and  6-9 . 

 We are now in position to generate a variety of reports about teams and their members. Figure  6-11  
shows a report based on the preceding query and its output, shown in Figure  6-10 .  

  Figure 6-10.    Two joins and two copies of Member table to include names of team  managers         
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 The report has been grouped by team, with the team and manager information (from the  Team  table and 
 m2  copy of the  Member  table) in a group header. The members of the team (from the first copy  m  of the  Member  
table) are in the detail part of the report.  

     Outcome Approach 
 We will now look at an alternative way to construct a query to retrieve all the information about a team 
(members’ names, team name, and manager’s name) for a report like the one in Figure  6-11 . I find the idea 
of two joins quite intuitive, but other people prefer a different approach. 

 I have reproduced the two tables in Figure  6-12 . Now, without thinking about joins, let’s see how we can 
pick a member and find out what team he or she is on and who the manager is for that team.  

  Figure 6-11.     A report based on the query shown in Figure    6-10            

  Figure 6-12.     Finding a team member (William Cooper), his team’s name, and the name of the team’s    manager          
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 Without needing to think about joins, we can find the information we require. We need information from 
three rows. Let’s look at one specific case. One row ( m ) from the  Member  table will give us the name of a member 
(William Cooper in Figure  6-12 ). We need to find the row ( t ) in the  Team  table for his team ( m.Team = t.TeamName ). 
Then we need another row in the  Member  table ( m2 ) for the manager of the team ( t.Manager = m2.MemberID ). 

 With help from Figure  6-12  we can construct the following SQL: 

   SELECT m.LastName, m.FirstName, m.Team, m2.LastName, m2.FirstName 
 FROM Member m, Team t, Member m2 
 WHERE m.Team = t.TeamName AND t.Manager = m2.MemberID 

   We could replace  m.Team  with  t.TeamName  in the  SELECT  clause of the preceding query if we wish. 
 The preceding query is equivalent to the query with the two joins. The  FROM  clause is the Cartesian 

product of the three tables. The  WHERE  clause provides the join condition for the join between  Member  ( m ) 
and  Team  ( t ) on  m.Team = t.TeamName  and the join condition for the join between  Team  and another copy of 
 Member  ( m2 ) on  t.Manager = m2.MemberID .   

      Business Rules 
 The data model from Figure  6-4  is  redisplayed   below as Figure  6-13 .  

  Figure 6-13.    Two relationships between the Member and Team classes       

 Members can belong to teams, and members can manage teams. When we implement these relationships 
with foreign keys, the constraints that are placed on the data are quite simple. A member can only be on a team 
that exists in the  Team  table, and a team can be managed only by someone in the  Member  table. 

 Other constraints are likely to apply in various situations. For example, we might have the additional 
constraints that a team can have no more than four members or that the manager must be a member of 
the team (or not). These types of constraints are commonly referred to as  business rules . The data model in 
Figure  6-13  might underpin a database for two different golf clubs. While the basic integrity rules will apply 
for both clubs (e.g., a member cannot be on a team that doesn’t exist), each club might have different rules 
about sizes of teams and who can manage them. The foreign key constraints are not sufficient to enforce 
such business rules. 
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 Relational database products will usually provide some way to enforce business rules. Large systems 
such as SQL Server and Oracle provide  triggers . Triggers are actions that take place when a specified event 
occurs (for example, when inserting or updating a record). The trigger will reject any changes that do 
not obey the rules. In Access and other products, it is not possible to apply such constraints to the tables 
themselves. However, you can attach macros to input forms. These macros will check the data on the form 
before it is committed to the database. The issue with this approach is that there is no such checking if a user 
bypasses the form and enters data directly into a table with (for example) an SQL update command. 

 We won’t look in detail at how business rules are implemented in different products, but we will look at 
how queries can help find any instances where the constraints are not satisfied. Although this is finding the 
problem after it has occurred, variations of these queries would form a basis for any trigger or macro that 
you would need to write to enforce the constraints. 

 Let’s look at finding teams whose managers are not members of the team. My mind often goes blank 
when faced with a query like this, and in that case, I always take an outcome approach. This means picturing 
the tables involved and imagining the type of instance I am seeking. Have a look at Figure  6-14 .  

  Figure 6-14.    Finding teams whose managers are not members of the team       

 In Figure  6-14 , we see in the  Team  table that TeamA’s manager is 239, and we can see in the  Member  table 
that member 239 is not a member of any team. If we had a constraint that managers must belong to the 
team, TeamA would not obey it. 

 To find all teams like this, we would say:

   Find the team names from all the rows ( t ) in the  Team  table where the matching row ( m ) in 
the  Member  table for the team manager (i.e.,  t.Manager = m.MemberID ) has a team ( m.team ) 
that is either empty or different from the team in the  Team  table ( m.Team <> t.TeamName ).    
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 The equivalent SQL is shown here: 

   SELECT t.teamname 
 FROM Member m, Team t 
 WHERE m.MemberID = t.Manager 
 AND (m.Team <> t.Teamname OR m.Team IS NULL) 

   The middle two lines are equivalent to a join between the two tables on  m.MemberID = t.Manager , and 
the final line finds those managers who are on a different team or not on a team at all. The following query 
will produce an equivalent output but uses the inner join notation: 

   SELECT t.teamname 
 FROM Member m INNER JOIN Team t ON m.MemberID = t.Manager 
 WHERE m.Team <> t.Teamname OR m.Team IS NULL 

   Just a note about why we have included the  IS NULL  condition in the two queries: You might remember 
from Chapter   2     that if we make a comparison with a null value, the result is neither true nor false. If we 
want to find managers who aren’t in a team, we need to specifically include that possibility in our query. 
Had the requirement been just that a manager must not belong to a different team, we could have left 
out the checking of null values, because a manager with no team would have been OK. As always, clearly 
understanding what you are actually trying to find is the most important part of specifying a query. 

 The two preceding queries will find teams with incorrect managers, but only after they have been added 
to the database. How do we prevent them from being added in the first place? The solution depends on 
the database implementation. Before changes to data are finally committed to a database, they are usually 
recorded in a buffer of some sort. For example, in SQL Server, the records being updated or added are kept 
in a temporary table called  inserted . If we add or update some records to the  Team  table, a temporary table 
( inserted ) that has the same structure as the  Team  table is created to hold the new or updated records 
temporarily. We want to perform a query to check if any new records about to be added to the Team table 
have managers that don’t obey the constraint. However, instead of looking at the  Team  table, we want to look 
at the records in the temporary  inserted  table and count how many of those are invalid. 

 The following SQL query, which is very similar to the previous two queries, will count how many of 
the rows in the  inserted  buffer for the  Team  table have managers that do not obey the business rule about 
managers belonging to the team they manage: 

   SELECT COUNT(*) 
 FROM Member m INNER JOIN inserted i ON m.MemberID = i.Manager 
 WHERE m.Team <> i.Teamname OR m.Team IS NULL 

   If this count is not zero then there are rows that are about to be inserted that do not obey the rules. In 
that case we want to  rollback  the insertion so the rows do not get committed to the  Team  table. The following 
SQL statement would be included in a trigger in SQL. The trigger would need to be assigned to run on 
updating or inserting rows in the  Team  table. 

   IF 
    (SELECT COUNT(*) 
     FROM Member m INNER JOIN inserted i ON m.MemberID = i.Manager 
     WHERE m.Team <> i.Teamname OR m.Team IS NULL) 
     <> 0) 
 BEGIN 
     Rollback Tran 
 END 

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
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   This is a bit of a crude approach, because if any of the new records are incorrect, the whole lot gets 
rejected. You will need to consult the documentation for your database product to see how to develop 
triggers that work efficiently, but the idea of using a query to check the validity of new records is a common 
one. 

 In Access, the checking is done at the interface level, usually on a form. Instead of checking the 
 inserted  table as in the previous query, we would create a macro with a similar query to investigate the 
values of fields on the form before committing them to the database.   

     Summary 
 There can be more than one relationship between tables. For example, “a member may belong to a team” 
is one relationship. “A team has a club member who is the manager” is another relationship. Finding 
information about a member’s team (including the manager’s ID) requires a join between  Member  and  Team . 
If we want to also find the name of the manager, we need to join that result to a second copy of the  Member  
table, like this: 

   SELECT * FROM 
 (Member m INNER JOIN Team t ON m.Team = t.TeamName) 
 INNER JOIN Member m2 ON t.Manager = m2.MemberID 

   There can be quite complex business rules or constraints involving the relationships between tables. 
For example, we might require that the manager be a member of the team he or she manages, or that a 
manager should not be a member of any team, or that a team must have fewer than six members. These 
often require the use of triggers. The types of queries discussed in this chapter will be helpful in formulating 
the code required in triggers.      
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    CHAPTER 7   

 Set Operations                          

 One of the great strengths of relational database theory is that the tables (or, more formally, the relations) 
are made up of  distinct  rows and so can be considered a  set . We can then use set operations to help with 
combining and extracting specific information. The types of questions that set operations help with are 
those such as “which people are in both these sets?” or “which people are in this set but not that one?” 

 In Appendix 2 you can find some formal notation that is helpful with managing set operations. In 
this chapter we will keep formalities to a minimum, but the symbols for the set operations are a useful 
shorthand. Table  7-1  shows the four set operations we will look at along with their common symbols and the 
associated SQL keyword (for those that have them). 

    Table 7-1.     Four    Set Operations     and Their Symbols    

 Operation  Symbol  SQL Keyword 

 Union  ∪   UNION  

 Intersection  ∩   INTERSECT  

 Difference  −   EXCEPT  

 Division  ÷ 

 Not all implementations of SQL support all the keywords in Table  7-1 , so we will look at alternative ways 
to achieve the same result when the keywords are not available. 

     Overview of Basic Set Operations 
 We will look at each of the set operations in turn, but so that you know where we are heading, I’ll just give a 
very quick overview of the three most common operations: union, intersection, and difference. Imagine we 
have membership tables from two golf clubs. We might want to do the following:

•    Determine who is in both clubs.  

•   Form a large list that combines all the members.  

•   Find out who is in one club but not the other.    

 The basic set operations allow us to carry out all these tasks. 
 Let’s assume that the each club keeps the names of its members in a table. The two tables have exactly 

the same columns (more about this in the next section) and are shown in Figure  7-1 . (OK, they are very 
small clubs!)  
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 The basic set operations on these two tables are summarized in Figure  7-2 . The images of two club 
tables have been overlaid so that the members in common are superimposed.  ClubA  is the top table in each 
picture. For each section of Figure  7-2 , the box shows the result of the set operation.  

  Figure 7-1.    Two tables of member  names         
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 The  union operator   (top left in Figure  7-2 ) shows all the names from each table (with duplicates 
removed). The  intersect operator   (top right) returns the two rows that appear in both tables. The difference 
operators (bottom) return those rows that are found in one club but not the other.  

     Union-Compatible Tables 
 The set operations union, intersection, and difference operate between two sets of rows. It does not make 
any sense to try to compare rows in tables that have very different structures, such as those in Figure  7-3 .  

  Figure 7-2.    The basic set operations on the two tables ClubA (top) and ClubB (bottom)       
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 So what determines whether two sets of rows can be compared using the set operations union, 
intersection, and difference? Formally, the two sets must have the same number of columns, and each 
column must have the same domain. Strictly speaking, a  domain  is a set of possible values. However, 
in practice, the requirement for set operations is that the corresponding columns (i.e., in order from 
left to right) in each set of rows have the same types  —  both character, both integer, and so on. 1  The 
names of the columns do not need to be the same. Tables that meet these requirements are referred to 
as being  union compatible , although the requirement is necessary for the intersection and difference 
operations as well. 

 Figure  7-4  shows a pair of tables that are union compatible. Even though the names of the 
columns are different, they have the same number of columns, and the corresponding columns have 
the same types.  

  Figure 7-3.    It makes no sense to try to compare rows from tables with different structures          

   1  In formal relational theory, the attributes of a relation have no order but rather are referenced by their names. The 
ordering of columns in tables is how implementations of SQL determine union compatibility.  
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 Figure  7-5  has two tables with the same column names, but they are not union compatible because the 
order of the columns is such that the fourth column has a number type in the top table and a character type 
in the bottom, and vice versa for the last column.  

  Figure 7-4.    Union-compatible tables, even though column names are  different         
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 Different implementations of SQL may interpret the strictness of this requirement for the “sameness” of 
domains or types differently. Strictly speaking, two fields defined as  CHAR(10)  and  CHAR(12)  have different 
domains, but many implementations of SQL will allow these to be regarded as the same for the purposes of 
set operations. Some implementations will also convert numbers into characters to enable set operations to 
be carried out. I find this particularly scary and don’t recommend you let your application make these sorts 
of decisions for you. The following sections demonstrate how you can use SQL to make your tables union 
compatible. 

     Ensuring Union Compatibility 
 When tables are not union compatible, you can often remedy the incompatibility in the   SELECT  clauses.    

 For the pair of tables in Figure  7-5 , if we just select the columns as follows the order of the columns will 
prevent the returned rows from being union compatible: 

   SELECT * FROM ClubC; 
 SELECT * FROM ClubD; 

  Figure 7-5.    Tables that are not union compatible       
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   However, we can specify the order of the columns in the  SELECT  clause: 

   SELECT MemberID, LastName, FirstName, Handicap, MemberType FROM ClubC; 
 SELECT MemberID, LastName, FirstName, Handicap, MemberType FROM ClubD; 

   The two sets of rows returned from these queries are now union compatible. 
 Another incompatibility problem occurs when the types of the columns have been declared as 

different types in the original design of the tables. For example, the  ClubC  table may have the  Handicap  field 
declared as an  INT , whereas the  ClubD  table may have (unwisely) stored the  Handicap  values in a  CHAR  field. 
(Recall from Chapter   2     that if we store values in a character or text field then they will order alphabetically, 
and we will not be able to perform functions such as average on them.) As mentioned earlier, different 
implementations of SQL will treat these different types in a variety of ways. Many will try to convert the 
numbers to text or vice versa. You can take control of these conversions yourself (which is probably a good 
idea) by using type-conversion functions. 

 For example, in SQL Server, the expression  Convert(INT, Handicap)  would take a text value in the 
 Handicap  field (“14”) and convert it to an integer value (14). (If the value in the  Handicap  field wasn’t able to 
be converted to an integer then an error would occur.) If the  Handicap  field in the  ClubD  table were a  CHAR  
type then we could use the conversion function in the  SELECT  clause. The two sets of rows returned by the 
following queries will now be  union compatible:    

   SELECT MemberID, LastName, FirstName, Handicap FROM ClubC; 
 SELECT MemberID, LastName, FirstName, Convert(INT, Handicap) FROM ClubD; 

         Union 
 Union allows us to produce output consisting of all the unique rows from two union-compatible sets of rows. 
To carry out a union in SQL, we need to first retrieve two sets of rows using two  SELECT  clauses and then 
combine the two sets with the  UNION  keyword. The following SQL shows the union of all the rows from the 
two union-compatible tables ( ClubA  and  ClubB ) shown in Figure  7-4 . 

   SELECT * FROM ClubA 
 UNION 
 SELECT * FROM ClubB; 

   The resulting table will include all the rows from both tables with no duplicates, so you will see only one 
row each for Barbara Olson, Robert Pollard, and Thomas Sexton, as shown in Figure  7-6 . If you wish to retain 
the duplicates for some reason, you can use the key phrase  UNION ALL .  

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
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 As union-compatible tables do not need to have the same column names, the names of the columns 
in the resulting virtual table will usually be from one of the tables. In the example in Figure  7-6 , the column 
names are the same as the first table mentioned in the union query. 

 It does not matter for the union operator in which order the two tables are specified. The query that 
follows will return the same rows as the previous query did. The rows may appear in a different order, and 
the displayed names of the columns may change, but the data will be the same. 

   SELECT * FROM ClubB 
 UNION 
 SELECT * FROM ClubA; 

       Selecting the Appropriate Columns 
 When using the union operator you need to think carefully about what it is you actually want. The examples 
with the clubs are rather contrived (as you have no doubt noticed). It is very unlikely that two clubs would 
have members with the same ID numbers and identical membership types. A more likely scenario is that if 
Barbara Olson did belong to two clubs, she would have different data in each club table. In the  ClubA  table, 
she might be a Senior with a value of 258 for  MemberID . In the  ClubB  table, she might be an Associate with a 
value of 4573 for  RegNum . If we do the union shown in Figure  7-6 , where we select all the columns from each 
table, the two rows for Barbara will be different, and so both will appear in the result, as in Figure  7-7 .  

  Figure 7-6.    Union of ClubA and ClubB with no duplicate  rows         
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 We need to consider what we really want from such a union. If we need a list of names for a joint 
Christmas party for the two clubs, then we don’t want everyone listed twice. The way to avoid duplicates is to 
project just the names from each table before carrying out the union: 

   SELECT FamilyName, Name FROM ClubA 
 UNION 
 SELECT LastName, FirstName FROM ClubB; 

   With this query the two rows for Barbara will be the same and will only appear in the union once, as 
in Figure  7-8 .  

  Figure 7-8.    Only one row appears for Barbara Olson if only the name columns are in the union       

  Figure 7-7.    Two records appear for Barbara Olson in the union because the rows are different       

 There is, of course, a serious issue with this last query. There may be two Barbara Olsons, one in 
each club, and now only one nametag will be printed for the pair of them. Sadly, real data is fraught 
with these sorts of problems. With any luck there will be some universal national golf association 
number that might sort this out, but if not you just need to be alert. The intersection operation, 
discussed in the next section, would produce the names that appear in both club lists, and a manual 
sanity check could be carried out.  
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      Uses of Union 
 The main use for union is combining  data   from two or more tables, as we have been doing in the previous 
sections. For example, if the tournament entry data for different months had been stored in separate tables 
(not a great design decision!), we could use several union operations to combine the data for the whole year. 

 It is also possible to combine two sets of rows from the one table. Say we wanted to know how many 
people have entered either tournament 24 or tournament 36 from the  Entry  table in Figure  7-9 .  

  Figure 7-9.    Entry table       

 We could try selecting the rows for members entering tournament 24 and the rows for members 
entering tournament 36, and take the union. How many rows will we get if we perform the following query? 

   SELECT * FROM Entry WHERE TourID = 24 
 UNION 
 SELECT * FROM Entry WHERE TourID = 36; 

   We will get ten rows from this query, one for every row with a 24 or a 36. Because we have retained the 
 TourID  and  Year  columns, the rows we have selected are all different and so will all appear in the result of 
the union. The query is actually returning all the distinct  entries  into tournaments 24 and 36 rather than all 
the distinct  members  who have entered the two tournaments. The flowing query takes the union of just the 
IDs for the two tournaments: 

   SELECT MemberID FROM Entry WHERE TourID = 24 
 UNION 
 SELECT MemberID FROM Entry WHERE TourID = 36; 
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   Now we will get the five IDs (118, 228, 258, 286, 415) that are the unique IDs for those entering one or 
the other of the tournaments. 

 There is a much simpler way of retrieving those who have entered either tournament 24 or 36. We can 
simply include an  OR  in the  WHERE  clause: 

   SELECT MemberID FROM Tournament 
 WHERE TourID = 24 OR TourID = 36; 

   How many rows will the preceding query return? Again, it will return ten rows — each of the rows with 
a 24 or a 36 in the  TourID  column. To get the five unique IDs, we need to add the  DISTINCT  keyword in the 
 SELECT  clause.   

      Union and Full Outer Joins 
 In Chapter   3     we looked at different  join operations  : inner joins, left and right outer joins, and full outer joins. 
Some products (e.g., Microsoft Access 2013) do not support the  FULL OUTER JOIN  keyword; however, we can 
perform an equivalent query using the  UNION  keyword. 

 To recap, let’s review the different types of join we can carry out between the  Member  table (just a very 
little one!) and the  Type  table shown in Figure  7-10 .  

  Figure 7-11.    The inner join between Member and Type on MemberType = Type       

  Figure 7-10.    The (small) Member and Type tables       

 Figure  7-11  shows the inner join between the two tables, with join condition  MemberType = Type . We 
do not get a row for Helen Branch because she has no value in  MemberType  and so the join condition will 
never be true for her. This may be a problem if someone looking at the table in Figure  7-11  assumes it is 
showing all members.  

 

 

http://dx.doi.org/10.1007/978-1-4842-1955-3_3
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 Now we will look at the outer joins. The left outer join ensures that we see all the rows from the left-hand 
table ( Member ); the right outer join gives us all rows from the right-hand table ( Type ); and the full outer join 
gives us all rows from both tables. These outer joins, all with join condition  MemberType = Type,  are shown 
in Figure  7-12 .  

  Figure 7-12.    Three outer joins between Member and Type on MemberType = Type       

 Figure  7-12  shows that, in this case, the full outer join consists of the unique rows from each of the other 
two outer joins; that is, a union. If your SQL implementation does not explicitly support a full outer join, you 
can always achieve the same result with the following query: 

   SELECT * FROM Member LEFT JOIN Type ON MemberType = Type 
 UNION 
 SELECT * FROM Member RIGHT JOIN Type ON MemberType = Type; 
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          Intersection 
 If you take the intersection of two union-compatible tables, you will retrieve those rows that are found in 
both tables. Figure  7-13  reproduces the two tables,  ClubA  and  ClubB , from Figure  7-4 . We can see that there 
are four rows that are identical in both tables.  

  Figure 7-13.    The rows in the intersection between the ClubA and ClubB tables       

 The keyword for the intersection operator in SQL is  INTERSECT . The expression to retrieve the four rows 
common to both tables (i.e., for members Spence, Olson, Pollard, and Sexton) is as follows: 

   SELECT * FROM ClubA 
 INTERSECT 
 SELECT * FROM ClubB; 
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   As with the union operator, the two sets of rows must be union compatible; that is, they must have the 
same number of columns, and the corresponding columns must have the same domains. This may mean 
projecting the appropriate columns from the base tables in the same way as described in the “Selecting the 
Appropriate Columns” section earlier in this chapter. It makes no difference which of the tables we mention 
first in the query, as the rows returned by the intersection will be the same regardless of the order of the 
tables. 

      Uses of Intersection 
 A common use of the  intersection operation   is the one shown in Figure  7-13 : finding common rows in two 
tables with similar information. Another very common use of intersection is answering questions that 
include the word  both . A typical example is “Which members have entered  both  tournaments 36 and 38?” 
The  Entry  table is reproduced in Figure  7-14 .  

  Figure 7-14.    The Entry table       
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 What will be returned if we retrieve the rows for each tournament and take the intersection as in the 
following query? 

   SELECT * FROM Entry WHERE TourID = 36 
 INTERSECT 
 SELECT * FROM Entry WHERE TourID = 38; 

   There will be no rows returned. Figure  7-15  will help you understand why.  

  Figure 7-15.    Two queries have no rows in common, so no rows result from intersection       

 The two queries will never have any rows in common because one will always have 36 in the  TourID  
column while the other will always have 38. Essentially, the query we were trying to carry out was to find 
all the entries for tournament 36 that are also entries for tournament 38. The result, given the way we are 
managing entries, is none. 

 To retrieve the members who are in common in the two sets of rows in Figure  7-15 , we must retrieve just 
the  MemberID  column before carrying out the intersection, as in the query here: 

   SELECT MemberID FROM Entry WHERE Tourid = 36 
 INTERSECT 
 SELECT MemberID FROM Entry WHERE Tourid = 38; 

   This query is illustrated in Figure  7-16 . As with a union, the result of the intersection operation returns 
unique rows.  

  Figure 7-16.    Using intersection to find members entered in both tournaments 36 and 38       
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 Suppose we now want to find the names of the members. From a process point of view, we can take the 
result of the intersection and join it with the  Member  table to get the names, as shown in Figure  7-17 .  

 So what does the SQL look like to first do the intersection and then join with the  Member  table? The 
following is a good first attempt, but unfortunately will not work: 

   --Will not work 
 SELECT LastName, FirstName 
 FROM Member m INNER JOIN 
      (SELECT e1.MemberID FROM Entry e1 WHERE e1.TourID = 36 
       INTERSECT 
       SELECT e2.MemberID FROM Entry e2 WHERE e2.TourID = 38) 
 ON m.MemberID = e1.MemberID; 

   The tables that only appear inside the inner query (the part in parentheses) are not able to be referenced 
by the outer query (the join). This is easily resolved by giving the nested part of the query an alias. In the same 
way we have given the  Member  table an alias by putting an  m  after  Member  in the  FROM  clause, we can give the 
whole inner query an alias of  NewTable  (as an example) by putting  NewTable  after the final parenthesis of the 
inner query. We can now refer to that alias in the join condition as shown in the query here: 

   SELECT LastName, FirstName 
 FROM Member m INNER JOIN 
      (SELECT e1.MemberID FROM Entry e1 WHERE e1.TourID = 36 

  Figure 7-17.    Joining the intersection with the Member table to find the names       
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       INTERSECT 
       SELECT e2.MemberID FROM Entry e2 WHERE e2.TourID = 36) NewTable 
 ON m.MemberID = NewTable.MemberID; 

   Another way to retrieve the names is to use a nested query. Here, the inner query retrieves the IDs that 
are in the intersection, and the outer query finds the corresponding names from the  Member  table. 

   SELECT LastName, FirstName 
 FROM Member 
 WHERE MemberID IN 
     (SELECT MemberID FROM Entry WHERE TourID = 36 
      INTERSECT 
      SELECT MemberID FROM Entry WHERE TourID = 38);  

        The Importance of Projecting Appropriate Columns 
 It is important to think very carefully about which columns are included in the tables involved in an 
intersection operation. We saw in the previous section how the following query will return no rows: 

   SELECT * FROM Entry WHERE TourID = 36 
 INTERSECT 
 SELECT * FROM Entry WHERE TourID = 38; 

   The rows from the first query will always have 36 as the value of  TourID  and the rows from the second 
query will have 38. There will never be any rows in common. Retrieving just the  MemberID  in each of the 
queries solves this problem. 

 More interesting is that correctly projecting different columns can provide answers to quite different 
questions. How would you describe the rows returned by the following query? 

   SELECT MemberID, Year FROM Entry WHERE TourID = 25 
 INTERSECT 
 SELECT MemberID, Year FROM Entry WHERE TourID = 36; 

   The query is illustrated in Figure  7-18 .  

  Figure 7-18.    What does the intersection mean?       
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 In Figure  7-18 , we are finding all the members who entered tournaments 25 and 36 in the  same year . 
This is why there is no entry for member 415 in the intersection: he entered tournament 25 in 2013 and 
tournament 36 in 2014 and 2015. Although his member ID appears in the two contributing tables, the 
corresponding rows are for different years. There is no row for member 415 that is the same in both tables. 

 As you can see, the choice of columns that are projected for the contributing tables is fundamental to 
what will appear in the intersection. It means there are many different questions that can be answered very 
elegantly, but it also means that you can easily get incorrect answers if you don’t think the query through 
carefully.  

     Managing Without the INTERSECT Keyword 
 Not all implementations of SQL support intersection explicitly. However, we have other ways to perform 
the queries involving “both.” Intersection is a process approach  —  we are saying what operations we need 
to carry out on the tables involved in the query. If we don’t succeed with this approach then we can try 
the outcome approach. This involves figuring out some possible answers by inspecting the tables and not 
worrying about operations such as intersections and joins. In Figure  7-19  we imagine two fingers traversing 
the rows of the Entry table. We need to find two rows in the  Entry  table with the same  MemberID : one with 
 TourID  = 36 and one with  TourID  = 38.  

  Figure 7-19.    Finding members who have entered both tournaments 36 and  38         

 The situation that Figure  7-19  is depicting can be described as:

   Return me the  MemberID  from a row  e1  in the  Entry  table where  TourID=36  if there is 
another row  e2  in the  Entry  table that has the same  MemberID  and  TourID=38  .    

 The SQL expression equivalent to this description and Figure  7-19  is: 

   SELECT DISTINCT e1.MemberID 
 FROM Entry e1, Entry e2 
 WHERE e1.MemberID = e2.MemberID 
 AND e1.TourID = 36 AND e2.TourID = 38; 
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   What about the query to find the rows that appear in both the  ClubA  and  ClubB  tables? The club tables 
are redisplayed in Figure  7-20 . To find the rows that are the same in both tables we need to check each of the 
values in the corresponding columns to ensure they are the same.  

  Figure 7-20.    Finding the intersection between ClubA and  ClubB         

 The situation depicted in Figure  7-20  can be described as:

   I will return row  a  from table  ClubA  if there is a row  b  in  ClubB  that has identical 
values in all the fields (i.e.,  a.RegNum = b.MemberID, a.FamilyName = b.LastName , and 
 a.Name = b.FirstName ).    

 The SQL for the intersection shown in Figure  7-20  is: 

   SELECT a.RegNum, a.FamilyName, a.Name 
 FROM ClubA a, ClubB b 
 WHERE a.RegNum = b.MemberID 
 AND a.FamilyName = b.LastName 
 AND a.Name = b.FirstName; 
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         Difference 
 Taking the difference between two tables finds those rows that are in the first table but not the second and 
vice versa. For our two tiny clubs, I have reproduced the results of the difference operator in Figure  7-21 .  

  Figure 7-21.    The difference operator finds rows in one table that do not appear in the other.          

 The keyword in standard SQL for the difference operator is  EXCEPT . Oracle differs from the ISO SQL 
standard, and from most other database systems, in its use of the keyword  MINUS  rather than  EXCEPT . 

 As with the union and intersection operators, the tables involved in a difference operation must be 
union compatible. Unlike with the union and intersection operators, the order of the tables is important for 
the difference operator; the results for  ClubA - ClubB  are different from those for  ClubB - ClubA  (as shown 
in Figure  7-21 ). 

 The SQL for finding the names of people in the  ClubA  table that do not appear in the  ClubB  table is: 

   SELECT LastName, FirstName FROM ClubA 
 EXCEPT 
 SELECT LastName, FirstName FROM ClubB; 

       Uses of Difference 
  Whenever you have a  query   that has the word “not,” you should consider the possibility that the difference 
operator will be useful. For example, how do we find members who have not entered tournament 25? 
Recall from Chapter   5     why the following query does not return those members who have not entered 
tournament 25: 

   SELECT MemberID FROM Entry 
 WHERE TourID <> 25; 

 

http://dx.doi.org/10.1007/978-1-4842-1955-3_5
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   The query above selects all the rows in the  Entry  table that are not for tournament 25. Essentially it finds 
a member who has entered any tournament other than 25 (although they could have entered 25 as well). 
Looking at Figure  7-15 , we see that the query would return the row marked  e1  for member 415 entering 
tournament 36 ( TourID <> 25 ). However, two rows above, we see that member 415 has also entered 
tournament 25. It is difficult to think of a reason that you might ever want to use this query. 

 A process approach to this type of query is to use difference. We need to retrieve a set of the IDs of all 
members and another set of IDs for all the members who have entered tournament 25. We then want the 
difference; i.e., those IDs that are in the former set but not the latter. 

 Finding the set of all members who have entered tournament 25 is simple: 

   SELECT MemberID FROM Entry WHERE TourID = 25; 

   We might think a similar query will find us all the member IDs as well: 

   SELECT MemberID FROM Entry; 

   However, the preceding query only finds us a set of the members who have entered tournaments. To get 
a set of all member IDs, we need to query the  Member  table. 

 Figure  7-22  is an illustration of how the difference operator can be used to find the member IDs we require.  

  Figure 7-22.    Members who have not entered tournament 25       
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 The SQL expression to retrieve the IDs of members who have not entered tournament 25 is as follows: 

   SELECT MemberID FROM Member 
 EXCEPT 
 SELECT MemberID FROM Entry WHERE TourID = 25; 

   As with intersection and union operations, it is important that we project the appropriate columns 
before we use the difference operator. In Figure  7-22 , we have retrieved the IDs from the  Member  and  Entry  
tables. If we want to include the names of the members, we can use one of the methods explained in the 
“Uses of Intersection” section earlier in this chapter. 

 However, in this difference example, we already had the names of the members in the  Member  table 
before we removed them to get the set of rows on the left side of Figure  7-22 . It seems a bit perverse to 
remove the names and then put them back later. What is important is that the two sets of rows involved in 
the difference are union compatible; that is, the corresponding columns must have the same domains. Either 
both sets have just IDs or both sets have IDs and names. In the operation on the left side of Figure  7-22 , we 
took the first option and removed the names from  Member . We could have left the names in the  Member  table 
and added the names to the rows in the middle of Figure  7-22  by joining the  Entry  and  Member  tables, as 
shown in Figure  7-23 . We could then take the difference between these two sets of rows.  

  Figure 7-23.    Including names of members in both sets of rows before taking the difference       
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 The SQL equivalent of the operations shown in Figure  7-23  is as follows: 

   SELECT MemberID, LastName, FirstName FROM Member 
 EXCEPT 
 SELECT m.MemberID, m.LastName, m.FirstName 
 FROM Entry e inner join Member m on e.MemberID = m.MemberID 
 WHERE TourID = 25; 

         Managing Without the EXCEPT Keyword 
 Not all versions of SQL support the  EXCEPT  (or  MINUS )  keyword  . As always, there is usually another way 
to formulate a query. In Chapter   4    , we looked at an outcome approach to answering questions involving 
the word  not . Figure  7-24  reviews the thought processes used to find the names of members who have not 
entered tournament 25.  

  Figure 7-24.    Deciding that member 258 has not entered tournament 25       

http://dx.doi.org/10.1007/978-1-4842-1955-3_4
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 The thought process behind Figure  7-24  is:

   Write out the names from row  m  of the  Member  table if there does not exist a row  e  in the 
 Entry  table for that member (i.e.,  m.MemberID = e.MemberID ) where  TourID=25 .    

 The SQL reflecting Figure  7-24  is: 

   SELECT m.LastName, m.FirstName 
 FROM Member m 
 WHERE NOT EXISTS 
     (SELECT * FROM Entry e 
      WHERE e.MemberID = m.MemberID 
      AND e.TourID = 25); 

   Which type of query should you use for questions involving the word  not ? The one using the process 
approach and the keyword  EXCEPT  or the one using the outcome approach with the keywords  NOT EXISTS  
or  NOT IN ? Usually, I’d say it doesn’t really matter, as your database engine will probably be smart enough 
to recognize them as being the same. However, the version of SQL Server I am using at the moment (2013) 
performs the query using  NOT EXISTS  more efficiently than the corresponding query using  EXCEPT . You have 
to ask yourself whether you care! Queries on small databases are usually so quick that it really doesn’t matter 
if they run a bit more slowly. However, if you have a lot of data, then everything changes. The efficiency of 
queries can become extremely important, and in that case, you will need to also consider other aspects of 
your database design, such as indexes. I’ll talk a little more about this in Chapter   9    .   

     Division 
 The last set operator we will look at in this chapter is division. Division is useful for queries that involve the 
word  all  or  every . An example is “Which members have entered  every  tournament?” Standard SQL doesn’t 
have a keyword for the divide operation, and it can be a little awkward to figure out the SQL for queries 
involving division. 

 In Appendix 2 you will find the formal algebraic notation for carrying out division and how to represent 
it using other operators if you need to. In the section “Universal Quantifier and SQL” in Appendix 2, you 
will also find an alternative way to carry out division-type queries using calculus (or outcome) expressions. 
Both these methods help you to construct SQL statements that are analogous to the division operator. In 
Chapter   8    , we’ll look at aggregates and see what I think is the simplest way of writing an SQL equivalent of 
the division operator. 

 For now we will look at what the division operator does and how to use it to answer different types of 
questions involving  every  and  all . 

 The easiest way to understand the division operation is with an example. If we want to know which 
members have entered every tournament, we need two bits of information. First, we need information about 
the members and the tournaments they have entered, which we can get from the  Entry  table. We also need 
a list of all the tournaments, which needs to come from the  Tournament  table, as not all tournaments may be 
represented in the  Entry  table. 

 Figure  7-25  illustrates how division works. I’ve projected just the  MemberID  and  TourID  columns from 
the  Entry  table, and the  TourID  column from the  Tournament  table. It is important which columns you 
project, and I’ll come back to that in a moment.  

http://dx.doi.org/10.1007/978-1-4842-1955-3_9
http://dx.doi.org/10.1007/978-1-4842-1955-3_8
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 Looking at Figure  7-25 , we have in the middle a table with all the  TourID  values (I’ve labelled that 
 Check ). The division operation checks the left-hand table to find the values of  MemberID  that have a row for 
every  TourID . The  Answer  (on the right of the figure) contains the  MemberID  values for members who have 
entered every tournament. Member 415 can be found paired with each of the five tournaments in the  Entry  
table, and so appears in the result of the division. Member 228 does not appear in the result because there 
are no rows in the  Entry  table with 228 paired with 38 or 40. 

 It is important to get the correct columns in the two tables involved in the division. I like to think of 
setting up the division operation like this:

•    Decide which attribute I want to find out about. Let’s call this  Answer . In this case, I 
want to find values of  MemberID , so our  Answer  attribute is  MemberID .  

•   On the right-hand side of the division operator, the attribute(s) in the table should be 
the thing I want to check against. Let’s call this attribute(s)  Check . In this case, the  Check  
attribute is  TourID . We can get all the values for  TourID  from the  Tournament  table.  

  Figure 7-25.    Using division to find members who have entered all  tournaments         
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•   On the left-hand side of the division, I want a table containing the just the two sets of 
attributes  Answer  and  Check , as shown in Figure  7-25 . We need  MemberID  and  TourID  
(in this case, which members have entered which tournament, and these come from 
the  Entry  table). It is important that these are the only two columns in the left-hand 
table. If extra columns are added, then we will be asking different questions, as 
explained in the next section.    

 As a small aside, many people wonder why this operation is called  division , as it doesn’t seem to relate 
particularly well to something like 4 divided by 2. Division is the inverse (or undoing) of multiplication in 
normal arithmetic. For set operations, division is like the inverse of the Cartesian product. If you think of 
taking the Cartesian product of the two tables in the middle and far right of Figure  7-25 , you will get a table 
with the same columns (but not rows) as on the far left of Figure  7-25 . 

 We can answer a number of questions by changing what is on the right-hand side of the division 
operator. For example, if we wanted to know who had entered all the Open tournaments, we would replace 
the table in the middle of Figure  7-25  with just the rows for Open tournaments: 

   SELECT TourID 
 FROM Tour 
 WHERE TourType = 'Open'; 

       Projecting Appropriate Columns 
 As with intersection and difference operations, projecting different columns in division operations will give you 
answers to different questions. Once again, an example is the easiest way to understand this. In Figure  7-26 , an 
extra column has been retrieved from the  Entry  table. Can you understand what this query is finding?  
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 The division is looking for a set of  Answer  attributes in the left-hand table that are paired with every 
attribute from the  Check  table. In this case, the operation looks for a pair  MemberID  and  Year  in the left-hand 
table that appears with each of the tournaments. This division example is finding those members who have 
entered all tournaments in the same year.  

     SQL for Division 
 Using an output approach, the query we want can be expressed something like this:

   Write out the value of   m.LastName, m.FirstName  from rows  m  in the  Member  table where for 
every row  t  in the  Tournament  table there exists a row  e  in the  Entry  table with  e.MemberID = 
m.MemberID  and  e.TourID = t.TourID .    

  Figure 7-26.    What is the  division operation finding?         
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 We have an  SQL keyword   for  exists  but not for  every . We can get rid of the  every  word in the preceding 
statement by using the following slightly mind-bending logic. The phrase

   for   every row   t  in the  Tournament  table  there exists a row   e  in the  Entry  table…   

 is equivalent to saying

   there is no row   t  in the  Tournament  table  where there does not exist a row   e  in the  Entry  
table…   

 Appendix 2 provides a more formal explanation of how to derive these expressions, but for now we 
will just rewrite the original description of how to retrieve the names of members who have entered all the 
tournaments by using the equivalence just discussed.

  Write out the value of  m.LastName, m.FirstName  from rows  m  in the  Member  table where for 
every row  there is no row   t  in the  Tournament  table there exists a row  where there does not 
exist a row   e  in the  Entry  table with  e.MemberID = m.MemberID  and  e.TourID = t.TourID .   

 The corresponding SQL is: 

   SELECT m.LastName, m.FirstName FROM Member m 
 WHERE NOT EXISTS 
      ( 
       SELECT * FROM Tournament t 
       WHERE NOT EXISTS 
             ( 
              SELECT * FROM Entry e 
              WHERE e.MemberID = m.MemberID AND e.TourID = t.TourID 
             ) 
       ); 

   The double negatives can be a bit daunting, but as I said at the beginning of the chapter, I promise a 
conceptually easier method to find members who have entered every tournament in the next chapter.   

     Summary 
 Because tables in a relational database have unique rows (if they are properly keyed!), they can be treated 
like mathematical sets. This allows us to use the set operations union, intersection, difference, and division. 

 Union, intersection, and difference are operations that act between union-compatible tables. This 
means the table on each side of the operator must have the same number of columns, and the columns must 
have the same domains (commonly interpreted as the same types). You can get union-compatible tables by 
sensibly projecting columns. 

 SQL has keywords to represent union, intersection, and difference, although not every implementation 
supports the keywords for all of these operations. If your SQL product does not support keywords for 
intersection or difference, you can find other ways to express the query. You should formulate your queries 
in the way you find most natural. Where you have very large amounts of data and speed is important, you 
may need to investigate the efficiencies of the different ways of formulating some queries. 
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 Here is a summary of the set operations and alternative ways to represent them with SQL.  A  and  B  are 
two union-compatible tables with (for simplicity) just one column called  attribute . 

     Union 
 A union operation returns all the unique rows that are in either table  A  or table  B:  

   SELECT attribute FROM A 
 UNION 
 SELECT attribute FROM B; 

        Intersection 
 An intersection operation returns all rows that are in both table  A  and table  B:  

   SELECT attribute FROM A 
 INTERSECT 
 SELECT attribute FROM B; 

   An alternative way to represent intersection is: 

   SELECT A.attribute 
 FROM A 
 WHERE EXISTS 
     (SELECT B.attribute FROM B 
      WHERE A.attribute = B.attribute); 

        Difference 
 Difference returns all rows that are in the first table ( A ) that are not in the second table ( B ). Some 
implementations use the keyword  MINUS  instead of  EXCEPT : 

   SELECT attribute FROM A 
 EXCEPT 
 SELECT attribute FROM B; 

   An alternative way to represent difference is: 

   SELECT A.attribute 
 FROM A 
 WHERE NOT EXISTS 
    (SELECT B.attribute FROM B 
    WHERE A.attribute = B.attribute); 
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        Division 
 The division operation helps with queries with the words  every  or  all . Current versions of SQL do not support 
division directly. Refer to the sections “Division” and “Universal Quantifier and SQL” in Appendix 2 for 
details of how to express queries involving division. 

 For completeness, we repeat the following query, which returns the  MemberID  values for those members 
who have entered every tournament: 

   SELECT m.LastName, m.FirstName FROM Member m 
 WHERE NOT EXISTS 
      ( 
       SELECT * FROM Tournament t 
       WHERE NOT EXISTS 
             ( 
              SELECT * FROM Entry e 
              WHERE e.MemberID = m.MemberID AND e.TourID = t.TourID 
             ) 
       ); 
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    CHAPTER 8   

 Aggregate Operations                          

 SQL has a number of functions for counting, summing, averaging, and otherwise performing aggregate 
operations on a table. These functions enable us to perform a variety of queries. For example, we can count 
the number of members in the club or find the average handicap. We can group the data in different ways to 
find aggregates. For example, we might want to count the number of tournament entries in each individual 
year, or we might want to find the number of entries in each particular tournament. 

 In this chapter we will look at simple aggregates and how to make the most of the SQL grouping 
capabilities. In the next chapter we will look at window functions, which provide elegant solutions in 
situations that can be difficult to address with just the basic aggregate functionality. 

     Simple Aggregate Functions 
 Simple aggregates include averages, totals, and counts. These are straightforward ideas, but, as always, you 
need to be sure you understand how they work when nulls and duplicates are involved. 

     The COUNT() Function 
 The   COUNT() function   calculates the number of rows being returned from a query. The simplest example is to 
count all the rows returned by a query, which we can do by adding an asterisk between the parentheses. The 
following query will return the number of rows in the  Member  table: 

   SELECT COUNT(*) 
 FROM Member; 

   A single aggregate function such as  COUNT()  in the preceding query will return a table with one column 
and one row, as shown in Figure  8-1 .  

  Figure 8-1.    Result of COUNT() function       
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 The output in Figure  8-1  was produced in Access, and, as you can see, the column is labelled with a 
default name. We can provide a better name by giving the column an alias. In the following query we have 
added a  WHERE  clause to count the subset of rows satisfying the condition  Gender = 'F'  and used an  AS  
clause so the column has a more informative heading: 

   SELECT COUNT(*) AS NumberWomen 
 FROM Member 
 WHERE Gender = 'F'; 

   The output of this query is shown in Figure  8-2 .  

  Figure 8-2.    Result of COUNT() function with an alias       

 Providing the columns returned by aggregates with an alias is a good idea so that the reader has some 
idea of what the numbers mean. 

    Managing Nulls 
 The previous query returns a count of the  number   of members with a gender of  'F' . Now consider the 
query here: 

   SELECT COUNT(*) 
 FROM Member 
 WHERE Gender <> 'F'; 

   At first glance we might think that the two counts from the previous two queries should add up to the 
total number of members. But we need to be careful. In Chapter   2    , we looked at how  WHERE  conditions 
operate when we make comparisons with a null (or empty) value. If there is no value for the attribute then 
we cannot say whether it does or does not satisfy a condition. We don’t know! In SQL, if the value we are 
comparing is a null, then the result of the comparison will always be false. Rows in the table with a null in the 
 Gender  column will not be included in either of the two previous queries. 

 We could argue that the attribute should have been declared as  NOT NULL  in the design of the table. In 
Chapter   2     we discussed why this might not be a good idea. If we are trying to enter details for a new member 
who has not provided their gender then we either will be prevented from saving the details we do know or 
will have to guess the gender. Neither option is satisfactory. It’s better to save the details and follow up on the 
missing data later. 

 We can explicitly find how many of the rows do not have a value for  Gender  with the query: 

   SELECT COUNT(*) 
 FROM Member 
 WHERE Gender IS NULL; 

   The numbers for the three previous queries with conditions  Gender = 'F' ,  Gender <> 'F' , and  Gender 
IS NULL  will now add up to the total number of members in the club. Queries like the preceding one can be 
very useful for checking if there are null values in columns where we would ideally expect to have values. 

 The  COUNT()  function can also return the number of values in a particular column of a table or query. 
Let’s look at a few of the columns in the  Member  table, as shown in Figure  8-3 .  

 

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
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 Say we want to find the number of members who have a coach. We have two options. One way is to 
formulate a query to return just those members who have a non-null value for  Coach  and count those: 

   SELECT COUNT(*) 
 FROM Member 
 WHERE Coach IS NOT NULL; 

   The other option is to ask the  COUNT()  function to specifically count the number of not-null values in 
the  Coach  column using  COUNT(Coach) : 

   SELECT COUNT(Coach) 
 FROM Member; 

   To recap: if we just want to find the number of rows returned from a query (or a whole table), we use 
 SELECT COUNT(*) . If we want to find the number of rows that have a value in a particular column, use  SELECT 
COUNT(<  Column_Name  >) . The  COUNT(*)  and  COUNT(<  Column_Name>  )  options allow us to be specific about how 
we want null values to be treated.   

  Figure 8-3.    Some columns of the Member table       
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   Managing Duplicates 
  The values in the  Coach  column  of   the  Member  table (Figure  8-3 ) are duplicated. There are only two distinct 
values (153 and 235). We therefore have two quite different questions that can be answered by counting the 
values in the  Coach  column: “How many people have a coach?” and “How many coaches are there?” The 
answer to the first question requires us to include all the values. The answer to the second question requires 
us just to count the distinct values. This can be done by including the  DISTINCT  keyword as in the query here: 

   --Won’t work in Access (2016) 
 SELECT COUNT(DISTINCT Coach) 
 FROM Member; 

   While I am trying not to become product-specific in this book, I feel obliged (given how many copies 
of Access are in the world) to point out that Access does not currently support  COUNT(DISTINCT) . However, 
you can get the equivalent result in Access with the nested query that follows. (Note that SQL Server does not 
allow a subquery in the  FROM  clause for an aggregate.) 

   --Won’t work in SQL Server (2012) 
 SELECT COUNT(*) 
 FROM (SELECT DISTINCT Coach FROM Member WHERE Coach IS NOT NULL); 

   You can also use the keyword  ALL . This just reinforces that you want to count all values, rather than just 
distinct values. If you do not include either  DISTINCT  or  ALL  then all values are included by default. 

 Similar sorts of queries can be applied to the other tables in the golf club database. For example, 
we might want to know how many tournaments members entered in 2015 (11) or how many different 
tournaments members entered in 2015 (5). The two queries that follow will provide the answers to the 
respective questions: 

    -- How many tournaments were entered 
 SELECT COUNT(TourID) 
 FROM Entry 
 WHERE Year = 2015; 

   -- How many different tournaments were entered 
 SELECT COUNT(DISTINCT TourID) 
 FROM Entry 
 WHERE Year = 2015; 

           The AVG() Function 
 To find averages, we use the function  AVG()    . The parameter that goes in the parentheses (. . .), is the 
expression we want to average. The expression has to be a numeric value. If you try to average a text field 
such as  LastName  you will get an error. 

 As an example, we can find the average handicap for members of our club by including the  Handicap  
column as the parameter for the  AVG()  function: 

   SELECT AVG(Handicap) 
 FROM Member; 
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   The expression could be just the name of one of the numeric-valued columns as in the preceding query 
or it could be the result of a calculation. Say in another database we have an  Order  table that includes the 
columns  Price  and  Quantity  for each item ordered. The net value of each order can be found by multiplying 
the  Price  and  Quantity . If we want to find the average net value for all our orders, we can put the expression 
 Price * Quantity  in the parentheses as seen here: 

   SELECT AVG(Price * Quantity) 
 FROM Order; 

     Managing Nulls 
 As with the  COUNT()  function, the   AVG()  function   does not include rows where the value of the expression 
is null. In the  Member  table we have 20 members in total, and 17 members with handicaps. If we sum all 
the handicaps, we get 287. The  AVG()  function will take the total of the handicaps (287) and divide by the 
number of rows that have a non-null value in the  Handicap  column (17). This is what we want. If we included 
the members without handicaps (by dividing by the total number of rows, 20), we would essentially be 
saying that these members have a handicap of 0 by default. This would seriously skew the results. 

 It is not always so obvious whether you want the null values considered. For example, say we have 
another database with a table called  Student  and a column called  TestScore . If we enter test scores for 
students, and some of the students do not take the test, then we will have a null in the  TestScore  column 
for those students. What do we really want for the average? We could take the average over all the students 
(divide the total score by the count of all students), which means the students who missed the test are 
effectively being counted as having scored 0. On the other hand, we might take the average of just those who 
participated in the test (divide by the number who took the test).  AVG(TestScore)  will always give us just the 
average for those who took the test. It is by no means trivial to determine which of the two options you need. 
There is a constant debate in schools as to whether the pass rates (on which funding may depend) should 
include students who have dropped out along the way. 

 If we want the average over all the students, including those with a null mark (counted as 0), we can 
calculate that in the query by totaling the marks (using the  SUM()  function) and dividing by the total number 
of students as seen here: 

   SELECT SUM(TestMark)/COUNT(*) 
 FROM Student; 

   We could have entered a mark of 0 for those students who did not take the test, saving us this 
complication. However, if we do that then we can no longer distinguish students who took the test and got 
0 from students who missed the test. Regardless of whether that is an issue or not, it is always useful to be 
aware of the implications.  

   Managing Duplicates 
 As with the  COUNT()  function, the  AVG()  function can also incorporate the keywords  ALL  and  DISTINCT . Just 
be aware that  ALL  (which is the default) means all the not-null values including  duplicates  , as opposed to 
only the distinct not-null values. It doesn’t mean take an average over all the rows (including those that are 
null), as in our discussion in the previous section. I find it quite difficult to come up with examples of when 
you would want to average over just the distinct values — certainly none that apply to our club database.  
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   Managing Types and Output 
 The  AVG()  function will accept only numeric expressions as a parameter. We cannot successfully average 
 FirstName  or  JoinDate  (although we could use functions to average the length of members’ first names or 
the number of days since their join date). 

 What result do we expect to get when we average the handicaps of our members? The total of the 
handicaps is 287, and the number of people with handicaps is 17. The result for the  AVG(Handicap)  function 
in SQL Server 2012 is 16. The result in Access 2016 is 16.8823529411765. Why? 

 In SQL Server (and some other implementations of SQL), the average function returns the same  type   
as the numbers being averaged. In this case, the  Handicap  column is an integer type, and so  AVG(Handicap)  
in SQL Server returns an integer. It also does an integer division (which means the result is truncated to 16 
rather than rounded up to 17). In Access the average is returning a floating-point number (i.e., one with a 
fractional part). 

 We can control how the result is calculated. If we want a result with a fractional part for the average, we 
can convert the  Handicap  value to a floating-point number before we do the average. To do this we can use 
the  CONVERT()  function that we mentioned in Chapter   7    : 1  

   SELECT AVG(CONVERT(FLOAT,Handicap)) 
 FROM Member; 

   Another way to do this is just to multiply the handicap by 1.0, which effectively converts it to a 
floating-point: 

   SELECT AVG(Handicap * 1.0) 
 FROM Member; 

         The ROUND() Function 
 While not strictly speaking an aggregate function, it is worthwhile to take a moment to look at how to 
perform rounding. Because averaging involves a division by the number of items involved, the  AVG()  
function will often return a result with many decimal places. We use a rounding function to specify the 
number of decimal places we would like included in the output of  AVG()  and other expressions that result 
in floating-point numbers. We provide the   ROUND()  function   with two parameters: the expression to be 
rounded and the number of decimal places to return. The following statement returns the average handicap 
rounded to two decimal places: 

   SELECT ROUND(AVG(Handicap * 1.0), 2) 
 FROM Member; 

   Rounding can behave differently in different implementations of SQL. In Access the previous query will 
return 16.88, whereas in SQL Server it will return 16.880000. While it is possible to remove the trailing zeroes 
in SQL Server, it is often better to leave that sort of formatting to front-end tools such as report writers. 

 There are many different ways to carry out rounding, so it is a good idea to consult the documentation 
to understand how your implementation of SQL goes about it. The traditional method of everything ending 
in a 5 or greater to be rounded up (e.g., 4.5 rounds up to 5) causes a bias to higher numbers. To remove this 
bias some implementations of rounding functions round to the nearest  even  number. For example, 3.5 and 
4.5 would both round to 4. This evens things out, but it can come as a surprise if you are not expecting it. SQL 
Server’s  ROUND()  function rounds all the 5s up, while Access rounds the 5s to the nearest even number.  

   1  Different versions of SQL will have different functions to do this. In Oracle, you might consider using the 
CAST function.  

http://dx.doi.org/10.1007/978-1-4842-1955-3_7


CHAPTER 8 ■ AGGREGATE OPERATIONS

135

     Other Aggregate Functions 
 SQL also provides other common aggregate functions such as  SUM()    ,  MAX()    , and  MIN()    , which are very 
straightforward to use. Similar to the  AVG()  function, the arguments to the  SUM()  function must be a 
numeric expression (either a numeric attribute or some expression with a numeric result, such as  Price * 
Quantity ). The arguments to  MAX()  and  MIN()  can be numeric, text, or date types. For text types, the order is 
alphabetical. For dates, the order is chronological. For example,  MIN(LastName)  would return the first value 
of  LastName  alphabetically, while  MAX(JoinDate)  would return the most recent value of  JoinDate . 

 It is possible to combine several aggregate functions in one query. The following query returns the 
maximum, minimum, and average values for  Handicap . 

   SELECT MAX(Handicap) AS maximum, MIN(Handicap) AS minimum, 
      ROUND(AVG(Handicap * 1.0),2) AS average 
 FROM Member; 

   Providing an alias for the result of each column with an  AS  clause helps make the result easier to 
understand. Figure  8-4  shows some typical output.    

  Figure 8-4.    Typical output from a query with several aggregate functions       

     Grouping 
 If we want to know how many times a particular member has entered tournaments we can query the  Entry  
table. For example, if we would like to find how many times member 235 has entered tournaments, we could 
select all the rows in the  Entry  table for that member and count them as in the following query: 

   SELECT COUNT(*) AS NumEntries 
 FROM Entry 
 WHERE MemberID = 235; 

   If we want to find the number of entries for a different member, we would need to rewrite the query with 
a different  WHERE  clause. If we want to find the counts for all members, that would get very tedious. 

 Grouping allows us to find the counts for all members using one SQL statement. The key phrase  GROUP 
BY  is used to do this. Have a look at the following query: 

   SELECT COUNT(*) AS NumEntries 
 FROM Entry 
 GROUP BY MemberID; 

   The extra  GROUP BY  clause says, “Rather than just count all the rows in the  Entry  table, count all the 
subsets or groups with the same  MemberID .” Figure  8-5  illustrates how we can visualize what is happening.  
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   The output of this query is shown in Figure  8-6 .  

  Figure 8-5.    Counting the rows in the Entry table grouped by  MemberID         

 We can also include the fields we are grouping by in the  SELECT  clause so we can see which counts 
belong to which entries, as in the query here: 

   SELECT MemberID, COUNT(*) AS NumEntries 
 FROM Entry 
 GROUP BY MemberID; 
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 We might prefer to see the names of the members in the output in Figure  8-6 . In this case, we need to 
join the  Entry  table with the  Member  table first, and then group and count. 

   SELECT m.MemberID, m.LastName, m.FirstName, COUNT(*) AS NumEntries 
 FROM Entry e INNER JOIN Member m ON m.MemberID = e.MemberID 
 GROUP BY m.MemberID, m.LastName, m.FirstName; 

   The output is shown in Figure  8-7 .  

  Figure 8-6.    Including the MemberID in the  output         

  Figure 8-7.    Joining the Entry and Member tables and grouping by the IDs and  names         

 You might wonder why we have included  LastName  and  FirstName  in the  GROUP BY  clause in the 
preceding query. When you are using  GROUP BY , the  SELECT  clause can only include the fields you are 
grouping by or the aggregates. If we want to see the names in the output, we need to include them in the fields 
we are grouping by. This guards against cases where there might be different names for one  MemberID  (clearly 
impossible in this case, as  MemberID  is the primary key of the  Member  table). Putting this aside for now, if there 
were two rows with a  MemberID  of 118 with two different names, then if we group just by  MemberID , it would 
not be possible to determine which name to associate with the count in the output in Figure  8-7 . 

 We can get a range of different information from our data using  GROUP BY  if we include  WHERE  clauses 
and different attributes in the  GROUP BY  clause. Let’s take another look at the  Entry  table. If we want find the 
number of entries for each tournament, we imagine grouping all the rows with the same  TourID  together 
and then counting the rows in each set, as in the query here: 

   SELECT TourID, COUNT(*) AS NumEntries 
 FROM Entry 
 GROUP BY TourID; 
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   The output is shown in Figure  8-8 .  

  Figure 8-8.    Counting the number of entries in each  tournament         

 We do not always need to count all the rows in the table. We might like to select a subset of the rows first. 
For example, we might just want to gather the statistics in Figure  8-8  just for the year 2014. The following 
query shows the SQL to do this. Note that the  WHERE  clause (which finds the subset of the rows we want to 
consider) must come before the  GROUP BY  clause: 

   SELECT TourID, COUNT(*) AS NumEntries 
 FROM Entry 
 WHERE Year = 2014 
 GROUP BY TourID; 

   By adding more fields in the  GROUP BY  clause, we can get more detailed information. If we want to 
repeat this query for each tournament for each year, we can remove the  WHERE  clause and group by both  Year  
and  TourID:  

   SELECT TourID, Year, COUNT(*) AS NumEntries 
 FROM Entry 
 GROUP BY TourID, Year; 

   Figure  8-9  shows how the grouping on both fields works.  
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 We can use grouping with aggregate functions other than  COUNT() . For example, if we want to see the 
maximum, minimum, and average handicap for women and men, we could use a query like the one here: 

   SELECT Gender, MIN(Handicap)as Minimum, Max(Handicap)as Maximum, 
        ROUND(AVG(Handicap),1) AS Average 
 FROM Member 
 GROUP BY Gender; 

  Figure 8-9.    Grouping by  TourID and Year         
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     Filtering the Result of an Aggregate Query 
 Once we have calculated some aggregates for groups of rows, we may want to ask some questions about the 
results. For example, in Figure  8-9 , we have the number of entries in each tournament in each year. A likely 
question is “Which tournaments had three or more entries?” Looking at the result table in Figure  8-9 , we 
want to select just those rows in the aggregated output with a count greater than or equal to 3. We can do this 
with the   HAVING  keyword  . Take a look at the following query: 

   SELECT TourID, Year, COUNT(*) AS NumEntries 
 FROM Entry 
 GROUP BY TourID, Year 
 HAVING COUNT(*) >= 3; 

   The  HAVING  clause always comes after a  GROUP BY  clause. The aggregate and the grouping is carried 
out first, and the output rows matching some condition (in this case,  COUNT(*) >= 3 ) are selected. It is like 
having a  WHERE  clause that acts on the aggregated numbers. As a little aside, we must use  COUNT(*)  in the 
 HAVING  clause; we can’t use the alias  NumEntries  from the first line of the statement. This alias is just used at 
the end of the query to label the output column. 

 Let’s look at another example. Say we want to find those members who have entered four or more 
tournaments. First, construct a set of rows with the members and the counts of the tournaments they have 
entered, as in the first three lines of the query that follows. We then use the  HAVING  clause to select just those 
rows from the result with  COUNT(*) >= 4 : 

   SELECT MemberID, COUNT(*) AS NumEntries 
 FROM Entry 
 GROUP BY MemberID 
 HAVING COUNT(*) >= 4; 

   We have two opportunities to select a subset of rows in queries involving aggregates. If we take the 
subset  before  we do the aggregation, we use a  WHERE  clause. When we want to select just some rows  after  
the aggregation, we use a  HAVING  clause. For example, let’s change the previous query to find out which 
members have entered more than four Open tournaments. To find the Open tournaments, we need to do the 
following:

    1.    Join the  Entry  table with the  Tournament  table.  

    2.    Take just the subset of entries for Open tournaments (with a  WHERE  clause).  

    3.    Group the entries for each member and count them.  

    4.    Take the resulting aggregate table and retrieve just those rows with a count 
greater than 4 (with a  HAVING  clause).     

  Figure 8-10.    Grouping aggregates for Handicap by Gender       

   The output from this query is shown in Figure  8-10 .  
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 The process is illustrated in Figure  8-11 .  

  Figure 8-11.    Finding members who have entered more than four Open tournaments       

 The query for the process in Figure  8-8  is: 

   SELECT MemberID, COUNT(*) AS NumEntries 
 FROM Entry e INNER JOIN Tournament t ON e.TourID = t.TourID 
 WHERE t.TourType = 'Open' 
 GROUP BY MemberID 
 HAVING COUNT(*) > 4; 

   In Chapter   2     we looked at ordering the output of a query. We can also order the output by the aggregate. 
If we would like to see results of the previous query in descending order of the number of tournaments 
entered, we could add an  ORDER BY COUNT(*) DESC  clause at the end of the query.  

 

http://dx.doi.org/10.1007/978-1-4842-1955-3_2


CHAPTER 8 ■ AGGREGATE OPERATIONS

142

     Using Aggregates to Perform Division Operations 
 In Chapter   7    , we looked at the algebra operation division. To recap, division allows us to answer many 
questions containing the words  all  or  every . For example, say we want to find those members who have 
entered  every  tournament. Figure  8-12  reviews how we can use division to do this. The attribute we want 
returned in our  Answer  is  MemberID . On the right side of the division operator, we have the set of things to 
 Check  against (in this case, a list of all the  TourID  values projected from the  Tournament  table). On the left 
side of the division operator is a table that has both the attributes from  Answer  and  Check  (in this case, the 
columns  MemberID  and  TourID  from the  Entry  table). The result of the division is a list of the  MemberID  values 
that appear with every tournament (in this case, just the one member with ID 415).  

 This figure is the same as Figure   7-25    . 

  Figure 8-12.    Using division to find the members who have entered every  tournament         

 Currently, standard implementations of SQL do not have a keyword for the division operation, so 
we need to find other ways to express a query like that depicted in Figure  8-12 . We looked at one way in 
Chapter   7     and some others in Appendix 2. Here, we will look at a method that uses aggregates. 

 The  Tournament  table lists five different tournaments. If we can find a member who has entered 
five  different  tournaments, then he or she must have entered all of them. We now have the ability to use 
aggregates and grouping to construct the equivalent of a division operation. 

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://dx.doi.org/10.1007/978-1-4842-1955-3_7#Fig25
http://dx.doi.org/10.1007/978-1-4842-1955-3_7
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 We have already seen queries to count how many tournaments each member has entered. However, 
now we want to count only the  different  tournaments entered by each member. Adding the   DISTINCT  
keyword   in the  COUNT()  function will achieve this: 

   SELECT MemberID, COUNT(DISTINCT TourID) AS NumTours 
 FROM Entry e 
 GROUP BY MemberID; 

   The result of this query is shown in Figure  8-13 .  

  Figure 8-13.    Finding the number of distinct tournaments entered by each member       

 From the resulting table in Figure  8-13 , we now want just those rows where the  NumTours  is equal to the 
number of distinct tournaments, which is 5 in this case. We can use the  HAVING  clause to find those members 
who have entered five different tournaments: 

   SELECT MemberID 
 FROM Entry e 
 GROUP BY MemberID 
 HAVING COUNT(DISTINCT TourID) = 5; 

   We can make this query more general by replacing 5 with an expression to calculate the number of 
distinct tournaments on the fly: 

   SELECT MemberID 
 FROM Entry e 
 GROUP BY MemberID 
 HAVING COUNT(DISTINCT TourID) = 
      (SELECT COUNT(DISTINCT TourID) FROM Tournament); 

   This query is equivalent to the algebra division operation as depicted in Figure  8-12 . It returns the IDs of 
members who have entered every tournament. To summarize, we count the number of distinct tournaments 
each member has entered, and then, using the  HAVING  clause, retain just those whose count equals the 
number of possible tournaments (a distinct count from the  Tournament  table). I find this method of doing 
a division conceptually more straightforward than the ones in Chapter   7     and Appendix 2. However, all 
methods accomplish the same goal.   

 

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
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       Nested Queries and Aggregates 
 We have already lightly covered  nested queries      and aggregates in Chapter   4    . It is useful to revisit this idea 
here. In this chapter, we’ve looked at how to find averages, totals, counts, and so on. Now we can use these 
aggregate results in other queries. For example, we might want to find everyone with a handicap greater than 
the average handicap. Consider the following query: 

   SELECT * FROM Member 
 WHERE Handicap > 
       (SELECT AVG (Handicap) 
        FROM Member); 

   The inner part of the query returns the average handicap, and the outer part of the query compares the 
handicap of each member with that average. 

 Let’s try something else. What about finding members who have entered more than three tournaments? 
If your mind goes blank, you can revert to the outcome approach of picturing the tables and figuring out 
what the rows you want returned will look like. Figure  8-14  shows how you can visualize the query.  

  Figure 8-14.    Which members have more than three entries in tournaments?       

 We can describe the members we want returned like this:

   Find all the rows  m  from the  Member  table where if we count the number of rows  e  from the 
 Entry  table for that member ( m.MemberID = e.MemberID ) the count is > 3.    

 This turns into SQL in a straightforward way, as shown here: 

   SELECT * FROM Member m 
 WHERE 
        (SELECT COUNT (*) 
        FROM Entry e 
        WHERE e.MemberID = m.MemberID) > 3; 

 

http://dx.doi.org/10.1007/978-1-4842-1955-3_4
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   What about something a bit more complex? How do we find the average number of tournaments 
entered by members? We will need the  AVG()  function, but what are we trying to average? We want to count 
the number of tournaments for each member and then average those counts. 

 We can use grouping, as described in the previous section, to find the number of tournaments entered 
by each member: 

   SELECT MemberID, COUNT (*) AS CountEntries FROM Entry 
 GROUP BY MemberID 

   The result of the preceding query is shown in Figure  8-15 .  

  Figure 8-15.    Number of entries for each member       

 Now we want to find the average of the column  CountEntries . As a first try, it seems reasonable to use 
our previous query as the inner part of a nested query, and then attempt to find the average: 

   --Won’t work in some implementations 
 SELECT AVG (CountEntries) FROM 
        (SELECT MemberID, COUNT (*) AS CountEntries FROM Entry 
         GROUP BY MemberID); 

   However, many versions of SQL do not support a nested query in a  FROM  clause. The preceding query 
works fine in Access 2013 but not in some other implementations of SQL. 

 We encountered a similar problem in the previous chapter when we wanted to join a table with the 
result of a union. We simply give the result of the inner query an alias (e.g.,  NewTable ). This creates a 
temporary virtual table (often referred to as a  derived  table). We can then access the attributes of the new 
virtual table as here: 

   SELECT AVG (NewTable.CountEntries) FROM 
        (SELECT MemberID, COUNT (*) AS CountEntries FROM Entry 
         GROUP BY MemberID)AS NewTable; 
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          Summary 
 Aggregate functions provide us with the means to answer a huge range of questions about our data. Here is a 
summary of some of the main points in this chapter. 

 Most versions of SQL will offer the simple aggregate functions  MIN() ,  MAX() ,  COUNT() ,  SUM() , and  AVG() .

•    For  COUNT() , you often just want to count rows returned by a query. This can be done 
by including an asterisk in the parentheses:  COUNT(*) . If you include a column name 
in the parentheses (e.g.,  COUNT(Handicap) ) then only the non-null values in that 
column will be included in the count.  

•   For the other common aggregates, you need to include a field name. For  AVG()  and 
 SUM()  this needs to be a numeric expression, such as  AVG(Handicap) .    

 Nulls and duplicates:

•    Null values are not included when calculating aggregates. For example, 
 AVG(Handicap)  is the sum of the handicaps divided by the number of rows that have 
a non-null value for  Handicap .  

•   By default, all non-null values are included in the aggregates. You can include the 
keyword  DISTINCT  to remove duplicates. For example,  COUNT(DISTINCT Handicap)  
will count the number of different values appearing in the  Handicap  column.    

 Grouping:

•    The  GROUP BY  clause can be used to collect rows with the same value of some 
expression together and then apply the aggregates to those groups. For example, 
we can find the number of tournaments each member has entered by grouping 
together all the rows in the  Entry  table with the same value of  MemberID  (e.g.,  SELECT 
MemberID, COUNT(*) FROM Entry GROUP BY MemberID ).  

•   After you have grouped and performed an aggregate, you can select rows from the 
resulting table using the keyword  HAVING . For example, we can find members who 
have entered three or more tournaments by adding the clause  HAVING COUNT(*) >= 
3  to the expression in the previous item.  

•   Use  WHERE  to select a subset of rows  before  the grouping and aggregating. Use  HAVING  
to select a subset of rows  after  the grouping and aggregating.    

 More complex aggregates:

•    Use derived tables where you want to nest aggregates, such as to find the average of 
counts. Simply give the inner query an alias.  

•   Compare counts of rows to do the equivalent of relational division.         
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    CHAPTER 9   

 Window Functions                          

 Window functions were added to standard SQL in 2003 and provide considerable extra capability for 
dealing with aggregation. Window functions allow us to perform aggregates on a “window” of data based 
upon the current row. This provides an elegant way to specify queries to perform actions such as ranking, 
running totals, and rolling averages. Window functions also provide considerable flexibility when it comes 
to grouping data for aggregation as they allow a single query to have several different groups or partitions. 
It is also possible to reference the data contributing to the aggregate from within the query. This allows the 
underlying data to be compared to the aggregate. 

 Oracle and Postgres have supported window functions for many years, while SQL Server just introduced 
them in 2012. Access and MySQL do not currently support these functions. This chapter outlines how to use 
a few of the most common window functions. 

     Simple Aggregates 
   To get started with window functions we will use them to write alternate queries for some of the  simple 
aggregates      we encountered in Chapter   8    . Let’s reconsider a simple aggregate query to count and average 
members’ handicaps: 

   SELECT COUNT(Handicap) AS Count, AVG(Handicap * 1.0)as Average 
 FROM Member; 

   The output for the query is shown in Figure  9-1 .  

  Figure 9-1.    Output for simple count and average of handicaps       

 With simple aggregates the only attributes allowed in the  SELECT  clause are the aggregate and those 
attributes included in a  GROUP BY  clause. This means we no longer have access to the individual handicaps 
contributing to the results. 

 Window functions allow us to retrieve the underlying data along with the aggregates. The keyword for 
window functions is  OVER() ; they are also sometimes referred to as  over functions . 

 Here is a query similar to the preceding one using the   OVER()  function  : 

   SELECT MemberID, LastName, FirstName, Handicap, 
      COUNT(Handicap) OVER() AS Count, 
      AVG(Handicap * 1.0) OVER() as Average 
 FROM Member; 

 

http://dx.doi.org/10.1007/978-1-4842-1955-3_8
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   Unlike the simple  COUNT()  function, with the  OVER()  function we are able to include additional fields 
in the  SELECT  clause. In the preceding query we have included four fields of detailed data about each 
member along with the two aggregates (which are indented on new lines to make them easier to read). 
The aggregates are just the same as the simple aggregates but include the  OVER()  function. 

 Part of the output of the preceding query is shown in Figure  9-2 . The count and average of the 
handicaps appear with the detailed data for each member.  

  Figure 9-2.    Output when using OVER() to count and average handicaps       

  Figure 9-3.    Window functions allow us to compare aggregates with detail values       

 While it doesn’t seem particularly useful in the example in Figure  9-2  to have the aggregates returned 
for every row, it opens the door to some new queries. We are now able to easily compare each individual’s 
handicap with the average, something that was not at all simple without window functions. On the third 
line of the following query we subtract the average of the handicap from the handicap for each member and 
include that in the  SELECT  clause: 

   SELECT MemberID, LastName, FirstName, Handicap, 
      AVG(Handicap * 1.0) OVER() AS Average, 
      Handicap - AVG(Handicap *1.0) OVER() AS Difference 
 FROM Member; 

   The result is displayed in Figure  9-3 .     

 

 



CHAPTER 9 ■ WINDOW FUNCTIONS

149

     Partitions 
 The  OVER()  function can also be used to produce queries that are similar to the  GROUP BY  queries we looked at 
in the previous chapter. The key phrase we need here is  PARTITION BY . Let’s try some different counts on rows 
in the  Entry  table. If we use just the function  OVER()  with our  COUNT(*)  function, we will count  all  the rows, 
whereas if we use  OVER(PARTITION BY TourID) it  will count the rows for each different value of  TourID . 

 The real power of partitioning is that, unlike the   GROUP BY  clause   for simple aggregates, it is possible to 
have several different partitions in a single query. This is best explained by an example. The following query 
includes three different counts: 

   SELECT MemberID, TourID, Year, 
 COUNT(*) OVER() as CountAll, 
 COUNT(*) OVER(PARTITION BY TourID) AS CountTour, 
 COUNT(*) OVER(PARTITION BY TourID, Year) AS CountTourYear 
 FROM Entry; 

   The output is shown in Figure  9-4 .  

  Figure 9-4.    Using different partitions in a single query       
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 In Figure  9-4  the column  CountAll  displays the result of  COUNT(*) OVER() , which counts every row in 
the  Entry  table (24). 

 The  column  CountTour    is the result of  COUNT(*) OVER(TourID) , which partitions (or groups) the rows 
with the same value of  TourID  and then counts them. The top three sets of solid boxes in Figure  9-4  show the 
rows contributing to  CountTour  for  TourID  of 24, 25, and 36. 

 The  column  CountTourYear    is the result of  COUNT(*) OVER(TourID, Year)  and partitions all the rows 
with the same values for  TourID  and  Year . The set of dashed boxes toward the bottom of Figure  9-4  shows 
examples of how these counts are evaluated.  

     Order By Clause 
 The  OVER()  function can include an   ORDER BY  clause  . This specifies an order for the rows to be visited when 
the aggregates are evaluated. Having an order for the rows provides a mechanism for carrying out running 
totals and ranking operations. 

     Cumulative Aggregates 
 If an  ORDER BY  clause is included in the  OVER()  function then, by default, the aggregate is carried out from 
the beginning of the partition to the current row (but see below for a more precise definition). 

 Have a look at the following query: 

   SELECT MemberID, TourID, Year, 
 COUNT(*) OVER(ORDER BY Year) AS Cumulative 
 FROM Entry; 

   In the  Entry  table we have several rows with the same value of  Year  (as you can see in Figure  9-5 ). As 
far as the ordering goes, these rows are equivalent, so if one of them is included in a count then we should 
include them all. I’ll now correct the definition of what rows are included in the aggregate.  

 If an  ORDER BY  clause is included in the  OVER()  function then, by default, the aggregate is carried out 
from the beginning of the partition to the current row, and includes any following rows with the same value 
of the ordering expression. 

 The output in Figure  9-5  illustrates what this means. 
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 In Figure  9-5  the rows are ordered by  Year . Let’s see how this cumulative counting works for the first few 
rows. For the first row, if we count from the beginning of the table we have 1 row. However, the next five rows 
have the same value for our ordering expression  Year , so we include them in the count, giving us a total of 6. 

 Now let’s move down to the first row for member 258. Counting from the beginning of the table we have 
10 rows, but the next 3 rows have the same value of  Year . This makes a total of 13. 

 Essentially, we have a  cumulative count   of entries for each year. We have 6 entries in the first year 
(solid boxes), and for the second year we have an additional 7 entries to make 13 total (dashed boxes). 

 The  SUM()  function works in much the same way if there is an  ORDER BY  clause in the  OVER()  function to 
give us running totals. 

 Let’s say the club collects data on income from fundraising and tournaments in a table called  Income . 
Figure  9-6  shows income for the first six months.  

  Figure 9-5.    Using ORDER BY to produce a cumulative count for each year       
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 We can find a running total of the income by performing a  SUM(Income)  with an  ORDER BY Month  clause 
in the  OVER()  function, as in the following query: 

   SELECT Month, Income, 
 SUM(Income) OVER(ORDER BY Month) AS RunningTotal 
 FROM Income; 

   The income is summed from the beginning of the table to the current row (when ordered by the value 
of  Month ), as shown in Figure  9-7 .   

  Figure 9-7.    Running totals for monthly income ordered  by month         

  Figure 9-6.     Income table         

     Ranking 
 Yet another use for the  ORDER BY  clause is with the   RANK()  function  . As an example we will rank the 
members of the club by their handicap. Have a look at the following query: 

   SELECT MemberID, Handicap, 
 RANK() OVER (ORDER BY Handicap) AS Rank 
 FROM Member 
 WHERE Handicap IS NOT NULL; 
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   The  ORDER BY  clause in the  OVER()  function specifies the order of the rows when determining the 
rank — in this case the value of  Handicap . Each time the value of  Handicap  changes, the rank becomes the 
row number in the partition (in this case the entire table ordered by  Handicap ).The rank then stays the 
same until the value of  Handicap  changes, as shown in Figure  9-8 . (Some of the handicaps have been 
changed to illustrate the process more clearly. Rows with the same value of  Handicap  and therefore rank 
have been delineated.)  

  Figure 9-8.    Result of the RANK() function ordered by handicap. Rows with the same value handicap have 
the same rank          

 The first row in Figure  9-8  has rank 1 (it is the first row!). The second row has the same value of the order 
expression ( Handicap ) as the previous row so it also has rank 1. In the next row the value of  Handicap  has 
changed so the rank becomes the row number (3). 

 Null values will be included in the ranking, which is why they have been explicitly excluded in the 
previous query. Without the  WHERE  clause the null values would have been included at the top of the ranking 
(or at the bottom if the order had been  DESC ).  

     Combining Ordering with Partitions 
 In the previous sections on ordering I didn’t include any partitions in the queries. Now that we (hopefully) 
understand the concept we can look at some more examples. 

 Let’s consider a more detailed  Income  table that has monthly amounts for each of three areas where the 
golf club carries out fundraising. The data for the first five months of the year is shown in Figure  9-9 .  
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 We will build up some queries slowly. 
 First, we will just calculate the total income for the table. We could use a simple  SUM()  aggregate, but we 

will include an  OVER()  function so we can keep the detail in the output: 

   SELECT Month, Area, Income, 
    SUM(Income) OVER() AS Total 
 FROM Income; 

   This will produce a table the same as in Figure  9-9  but with an additional column,  Total , which will 
have the overall total for every row. 

 Now let’s change this to a running total. We do this by including an  ORDER BY  clause in the  OVER()  
function. By default this calculates the total for the values from the beginning of the table to the current row 
and the next rows with the same value of  Month . The query is: 

   SELECT Month, Area, Income, 
    SUM(Income) OVER(ORDER BY MONTH) AS RunningTotal 
 FROM Income; 

   The incomes are summed from the top of the table to the current row including the following rows 
with the same value of  Month  (the attribute we are ordering by). Essentially, the output sums all the values 
for each month and then accumulates the totals month by month. The output is shown in Figure  9-10 . The 
different months have been delineated.  

  Figure 9-9.    Income table including areas       
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 Now let’s look at the areas independently. This requires a  PARTITION BY  clause. Consider this query: 

   SELECT Month, Area, Income, 
    SUM(Income) OVER( 
       PARTITION By Area 
       ORDER BY MONTH) AS AreaRunningTotal 
 FROM Income; 

   The  PARTITION BY  clause needs to come before the  ORDER BY  clause, which reflects what is happening. 
We first partition the data and then order within the partitions. The aggregate is calculated for rows from 
the beginning of the current partition to the current row. Figure  9-11  shows the output for just the first five 
months of the year. The three partitions have been delineated so it is easier to see what is happening.    

  Figure 9-10.    Running total when ordering by  month         
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     Framing 
   The last feature of the window functions we will look at is the ability to further specify which rows are 
included in an aggregate. This is how the name  window functions  came about. They provide a  window  
or   frame       onto the section of data we are interested in. The general form of the  OVER()  function has three 
clauses, as shown here: 

   OVER( 
      [ <PARTITION BY clause> ] 
      [ <ORDER BY clause> ] 
      [ <ROWS clause> ] 
      ); 

   We have already looked at two of these clauses: The  PARTITION BY  clause allows us to group the data 
by some expression before aggregating. The  ORDER BY  clause allows us to determine the order in which the 
aggregate function traverses the rows within a partition and allows us to perform ranking and running totals. 
A  ROWS  clause allows us to narrow down the set of rows, relative to the current row, that are to be included in 
the aggregate. 

 By default, a query with an  OVER(ORDER BY)  clause calculates the aggregate of the values from the 
beginning of the current partition up to and including the current row. Let’s recap with a query that 
calculates a running average for each area: 

   SELECT Month, Area, Income, 
 AVG(Income) OVER ( 
      PARTITION BY AREA 
      ORDER BY Month) AS AreaRunningAverage 
 FROM Income; 

  Figure 9-11.    Running totals for income partitioned by area and ordered by  month         
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   The output in Figure  9-12  is for just the Halswell area. The solid boxes show which rows are included 
in the average for the third row from the top. The dashed boxes show the rows contributing to the average 
for the third row from the bottom of the image. If there is no  ROWS  clause after an  ORDER BY  clause, then 
this is the default behaviour.  

  Figure 9-12.    Running average for Income table       

 The syntax for the  ROWS  clause is: 

    ROWS BETWEEN <start of frame> AND <end of frame> 

   Table  9-1  shows some expressions for specifying  <start of frame>  and/or  <end of frame> . 
Remember that we always have to have an  ORDER BY  clause if we are using the  ROWS  clause. 

   Table 9-1.    Specifying Rows of a Window   

 Expression  Meaning 

  UNBOUNDED PRECEDING   Start at the beginning of the current partition 

  <n> PRECEDING   Start n rows before the current row 

  CURRENT ROW   Can be used for either the start or end of frame 

  <m> FOLLOWING   End m rows after the current row 

  UNBOUNDED FOLLOWING   End at the end of the current partition 

 Here is the previous query with the (default) window of required rows spelled out: 

   SELECT Month, Area, Income, 
     AVG(Income) OVER( 
        PARTITION BY AREA 
        ORDER BY Month 
        ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 
     ) AS AreaRunningAverage 
 FROM Income; 
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   The  ROWS  clause in the preceding query is the default if no  ROWS  clause is specified after an  ORDER BY  
clause. 

 Now we can change which rows are to be included in the average. Say we would like to see rolling three-
month averages. This means that for each month we take an average that includes the current month, the 
one preceding, and the one following. The following query shows how we can add another  ROWS  clause to 
the preceding query to see both the running average and the rolling three-month average: 

   SELECT Month, Area, Income, 
     AVG(Income) OVER( 
        PARTITION BY AREA 
        ORDER BY Month 
        ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW 
     ) AS AreaRunningAverage, 
     AVG(Income) OVER( 
        PARTITION BY AREA 
        ORDER BY Month 
        ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING 
     ) AS Area3MonthAverage 
 FROM Income; 

   Figure  9-13  shows the output of this query. The boxes show which values are contributing to the 
averages on the rows for month 4 (solid boxes) and month 9 (dashed boxes).  

  Figure 9-13.    Running averages and rolling three-month averages       

 The  RunningAverage  in the row for month 4 includes all the values from the beginning to month 4, and 
similarly the  RunningAverage  in the row for month 9 includes all the incomes up to and including month 9. 
The  Rolling3MonthAverage  in row 4 includes months 3 to 5 (one month preceding and one month following 
the current row). In row 9 the  Rolling3MonthAverage  averages months 8 to 10 (i.e., one month each side of 
month 9). 
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 The different averages provide different information about the how the business is doing. The running 
average provides the average income to date for the year. The rolling three-month average gives a better idea 
of how the income is tracking at the moment. The later values in the rolling average column are higher than 
their running average counterparts because they are not including the lower values in the first few months.    

     Summary 
 Window functions provide an elegant way to carry out partitioning, running, and rolling aggregates and 
allowing both the detail and the aggregate to be available in the same query. 

 Here is a brief summary of the functionality covered in this chapter. I have used the word  table  in the 
descriptions but the functionality equally applies to the result of a query. 

     OVER() 
 Use the  OVER()  function with no clauses in the parentheses to calculate the aggregate for the whole table. 
Unlike simple aggregates it is possible to include other attributes in the  SELECT  clause, thereby retaining 
access to the detail as well as the aggregated value.  

     OVER(PARTITION BY <…>) 
 If  PARTITION BY  is included in the  OVER()  function then the rows are separated into groups that have the 
same value for the partitioning expression. The aggregates are carried out for each partition. This is similar 
to  GROUP BY  for a simple aggregate but has the advantage that several different partitions can be included in 
a single query.  

     OVER(ORDER BY <…>) 
 When  ORDER BY  is included in the  OVER()  function then the table is (virtually) ordered by the order by 
expression. The aggregate is then evaluated for the rows from the beginning of the table to the current 
row (and any following rows with the same value for the ordering expression). This is used for running 
aggregates.  

     OVER(PARTITION BY <…> ORDER BY <…>) 
 The table is first partitioned into different groups with the same value for the partitioning expression, and 
the rows are then ordered by the ordering expression within those groups. The aggregate is then evaluated 
for the rows from the beginning of the table to the current row (and any following rows with the same value 
for the ordering expression).  

     OVER(ROWS BETWEEN <…> AND <…>) 
 A  ROWS BETWEEN  clause can be added to an  OVER()  function with an  ORDER BY  clause. This restricts the 
aggregate to a set or rows relative to the current row, typically a number of rows preceding and or following 
the current row. It is useful for calculating rolling aggregates.      
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    CHAPTER 10   

 Efficiency Considerations                          

 You may not need to read this chapter! Database management systems (DBMS) are very efficient, and if 
you have a modest amount of data, most of your queries will probably be carried out in the blink of an eye. 
Complicating your life in an attempt to make your queries a little faster does not make a great deal of sense. 
However, if you have (or might have) vast amounts of data and speed is absolutely critical, you will need 
more skill and experience than you are likely to get from reading one chapter in a beginners’ book. Having 
said that, you are likely to have people tell you that it matters how you express your queries or that you 
should be indexing your tables, so it is handy to have some idea about what is going on behind the scenes 
and understand some of the terminology. 

 Throughout this book, I have emphasized that there are often alternative ways to phrase a query in 
SQL. The implementation of SQL you are using may not support some constructions, so your choices 
may be limited. Even then, you usually have alternatives for most queries. Does it matter which one you 
use? One consideration is the transportability of your queries. If you are unsure where your query may be 
used, you might choose to avoid keywords and operations that are not widely supported (yet). However, 
typically you will be writing queries for a database with a specific implementation of SQL. In that case, your 
main questions are “How will the different constructions of a query affect the performance?” and “Is there 
anything I can do to improve performance?” 

     What Happens to a Query 
 Up to this point we have been concentrating on taking a question we need answered and constructing a 
query that will return appropriate and accurate information from the database. Conceptually the query 
writer thinks of the database as being a collection of tables. An SQL statement is an expression describing 
which data should be retrieved from those tables and what constraints that data must obey (the outcome 
approach). 1  

 We have also seen that a query can be specified by describing set operations, such as joins and 
intersections, which would result in the appropriate data being returned (the process approach). Using set 
operations makes forming a query very elegant, but the operations are purely conceptual. While we might 
specify the query in terms of, say, a join followed by an intersection, this will be interpreted by the DBMS as a 
 description  of the data to be returned not as a  method  for retrieving the data. 

 The ideas of tables and data models is a useful way for us to understand how the pieces of data are 
logically related. We leave it to the DBMS to take care of how the data is physically stored and retrieved. 
Figure  10-1  is a simplified schematic of the different levels of abstraction that can help us understand a 
database.  

   1  SQL is based on relational calculus, which provides a description of the data to be retrieved. See Appendix 2 for more 
information.  
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 At the top of the diagram in Figure  10-1  we have the user level. This is where we have the different 
applications and devices that form the interface between the humans and the data. It is here that a user (or 
application) will construct an SQL statement (top left of the diagram). 

 The middle layer is a conceptual view of the database. We can think of the data as being in tables with 
various key and validation constraints. It is also where we can form models of how the database should deal 
with concurrent users and the rules for allowing access to different data. The SQL statements we construct 
are in terms of all these concepts. 

 The  actual data   is stored in the physical level, shown at the bottom of Figure  10-1 . What we think of as a 
table may be segments of data stored on possibly different servers maybe in different countries. At this level 
there will be indexes that allow rapid access to different records; we will talk about those in later sections of 
this chapter. 

 How the relevant pieces of information are located and assembled to produce the result of the query is a 
job for the   query optimizer   . The SQL statement constructed by the user is passed to the optimizer, which has 
access to information about the number of rows in a (conceptual) table, the amount of data in each row, the 
attributes on which indexes have been created, and so on. It uses all this information to create an  execution 
plan . The execution plan is an efficient sequence of steps to find, compare, and assemble the data into the 
result specified by the query. The data is retrieved from physical storage and assembled in accordance with 
the execution plan, and the result is returned to the user  —  usually in the form of a table. 

  Figure 10-1.    Levels of a  database management system         
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 Most commercial database software provides tools for displaying proposed execution plans and the 
estimated times for each step to be carried out. This provides insight into how a query is being executed and 
where the time is being spent. A good database administrator will be able to use this type of information to 
tune the database; for example, by adding new indexes. 

 In the following sections, we will take a brief look at how records are stored, how indexes can improve 
efficiency, and some of the things that go on behind the scenes when a query is carried out.  

     Finding a Record 
 Most of the queries on a database will, at some point, involve finding records that match a particular 
condition. For example we may want to find records in a single table (e.g.,  WHERE LastName = 'Smith' ), find 
records from two tables that match a join condition (e.g.,  WHERE m.MemberID = e.MemberID ), or look for the 
existence or otherwise of values (e.g.,  WHERE NOT EXISTS...  ). 

 Searching for and  finding data   all seems pretty easy these days when everything is stored electronically. 
If we want to find a topic in an online book we just open a search box and type in some keywords. With a 
physical book it is a very different story. We either have to scan through every page or hope there is a useful 
index or table of contents. Those who remember physical telephone books will recall that it was easy to find 
Jim Smith but impossible to find who lives at 16 Murray Place. 

 Behind the scenes in a database the issues are the same as for physical books. The data can only be 
stored in one order, but we might want to search it in a variety of ways. It is useful to know what is actually 
going on so that we have an understanding of what affects the performance of locating a specific record. 

 One way to find records matching a condition is to simply look sequentially through every row in the 
table. This is the slowest and costliest way to find what you are looking for. Having said that, it may not be a 
problem. It would not take long to scan the golf club  Type  table to find the membership fee for seniors. On 
the other hand, it would be a bigger job to scan every row in (a realistic)  Entry  table to find members who 
had entered tournament 38 over the last forty years. 

     Storing Records in Order 
 If we consider relational theory, then the rows in a table 2  have no order. This allows us to consider a table as 
a set and apply all the set operations. This is useful from a conceptual point of view, but in practice how the 
records are stored is going to make a difference in how quickly we can find what we are looking for. 

 If the records of a table are stored in a random order (perhaps the order they were created) then this is 
referred to as a  heap table . The only way to find a record in a heap table is to scan the entire table. Generally the 
records will be stored ordered by some attribute(s)  —  often the primary key. There are all sorts of algorithms for 
finding a particular record quickly in an ordered table, but most will be built on the idea of a  binary search . 

 When we try to find a name in a telephone book or a word in a dictionary we employ a type of binary 
search. In the simplest scenario we inspect a page in the middle of the book and decide if the target word is 
before or after the words on that page. We then start again and inspect a page halfway through the portion 
that is of interest. Very quickly we zero in on the page required. If the records in a table are ordered by a 
particular field, then searches on that field will be more efficient than searches on fields with no index. 

 When we talk about records in a table being stored in order, we don’t mean they are physically one 
after the other on a disc. If this were the case then if we wanted to insert a new record near the beginning 
we would have to move all the others along. The records can be thought of as being in a tree-like structure. 
One common type of tree is a  B-Tree . Figure  10-2  shows a very simple representation of a B-Tree structure for 
storing letters of the alphabet.   

   2  More formally the tuples in a relation have no order.  
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 If you are searching for a letter in the tree in Figure  10-2  you would start at the top node, or box. In the 
top node you either find what you are looking for or you follow the appropriate path. For example, if you 
are looking for H you would follow the path between G and O. The structure allows records to be added and 
deleted with the minimum of disruption. We can easily add R to the box containing P and Q without altering 
any of the other letters. Maintaining a B-Tree is not trivial. As data is added and removed the tree will need 
to be rearranged to keep it balanced and to add and remove nodes and levels. Fortunately, all this goes on 
under the hood. 

 Having said all that, when we are thinking about records being in order it is usually easiest to imagine 
them all in a single line. That is what I will do for the rest of this chapter.  

     Clustered Index 
 If the records are physically stored in some order then this is referred to as a  clustered index . If we thought it 
a good idea to store our member records in order of names, we could specifically create a  clustered index   so 
that the records are stored in order of the value of  LastName . We can create an index with an SQL statement. 
We need to provide a name for the index (e.g.,  Clustered_Name ) and specify the field(s) on which to order 
the index, as in the query here: 

   CREATE CLUSTERED INDEX Clustered_Name ON Member (LastName); 

   By default, the order for a clustered index is usually the value of the primary key. While it is possible to 
specify a different order for the clustered index, you need to have a good reason to do so. 

 With a clustered index in place, there are now two ways to locate a record. Consider running the 
following query on the  Member  table with the clustered index on  LastName : 

   SELECT * 
 FROM MEMBER 
WHERE LastName = 'Smith'; 

   Because the table is in order of  LastName  we can quickly navigate to the correct record by doing a binary 
search. This is known as a  table seek . 

 Now consider the following query: 

   SELECT * 
 FROM MEMBER 
 WHERE Phone = '03-567-123'; 

   We have no option now but to check every record in the table. We cannot even stop when we get to a 
matching record, as there may be several records with the same phone number. This is known as a  table scan .  

  Figure 10-2.    Representation of data in a B-Tree       
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     Non-Clustered Indexes 
 The records in a table can only be stored in one physical order, so there can only ever be one clustered 
index, which is usually on the primary key. If the clustered index for the  Member  table is on the primary key 
field  MemberID , we can seek a particular value of  MemberID  and find the complete row with all the details for 
that member. If we want to find a row with a particular last name we would have to scan the whole table. 
Fortunately, we are able to set up  additional   non-clustered indexes on the table. I’ll refer to these non-
clustered indexes as simply indexes from now on. Here is the SQL to create an index on  LastName  for the 
 Member  table: 

   CREATE INDEX idx_Name ON Member (LastName); 

   What this does is create a list of all the values of  LastName  in order. Each entry will include a reference to 
the clustered index so that the full row with the rest of the information can be found. Figure  10-3  illustrates 
how the first few entries in the  LastName  index refer to the clustered index.  

  Figure 10-3.    Index on LastName has references to clustered index for full information       
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 Because the index is ordered by last name it is possible to do an  index seek  to find the entry we require 
and then use the reference to  look up  the associated row in the clustered index to retrieve the rest of the 
information. 

 In practice, whether the query optimizer uses a particular index depends on many factors: the number 
of rows in the table, the size of each row in the index and the table, whether the records have been accessed 
recently and have been cached, and so on.  

     Clustered Index on a Compound Key 
 Let’s consider the  Entry  table. Recall that the  Entry  table has three fields:   MemberID   ,   TourID    and   Year   . Two 
questions we might ask about the data in this table are:

•    Which tournament has a particular member entered (say, member 235)?  

•   Who has entered a particular tournament (say, tournament 40)?    

 It would seem sensible to have two indexes: one on  TourID  and one on  MemberID . However, each of 
these would refer to the clustered index. What order will that be for the  Entry  table? 

 By default, the table will be clustered on the primary key, which for the  Entry  table is a combination of 
all three fields. The order of the records will depend on how we specified the primary key. Let’s say the  Entry  
table was created with the following SQL statement: 

   CREATE Table Entry ( 
 MemberID INT, 
 TourID INT, 
 Year INT, 
 PRIMARY KEY (MemberID, TourID, Year); 

   The order of rows in the clustered index will be as in Figure  10-4 . First, they are ordered by the first field 
specified in the  PRIMARY KEY  clause ( MemberID ). Those rows with the same value of  MemberID  will be ordered 
by the second field ( TourID ) and so on.  

  Figure 10-4.    Order of data in the default clustered index for the  Entry table         
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 The system can easily find the tournaments which member 235 has entered because the entries are in 
order of  MemberID  and a table seek can be carried out. We do not necessarily need an additional index on 
 MemberID . On the other hand, finding who has entered tournament 40 would require a scan to investigate 
every row. In this situation an index on  TourID  would be an improvement. 

 The order in which we specify the fields of the primary key can therefore affect how queries are carried 
out and can influence what other indexes might be useful. Had the order of the primary key fields been 
specified with  PRIMARY KEY (TourID, MemberID, Year)  then the clustered index would be in order of 
 TourID . In that case, an index on  MemberID  should be considered if we regularly need to find rows for a 
particular member. 

 I was careful to say for the situation in Figure  10-4  that we might not  necessarily  need an index on 
 MemberID . The optimizer will take into account many things. One that is important is the size or number of 
bytes of a typical entry in the index. Each entry in an index made up of two text fields such as  LastName  and 
 FirstName  will be larger than an index on a single text field, which will in turn be larger than an index on a 
numeric field. Each time an entry in an index is visited it has to be retrieved, so there is an IO (input/output) 
cost that will depend on the size of the entry. 

 If the clustered index in Figure  10-3  had significantly more data in each row (e.g., some descriptive text 
fields) then the cost of retrieving a row would be higher than for retrieving just the three numeric fields. 
In that case having an index on  MemberID  would be worth considering. It would not alter how many index 
entries needed to be investigated, but it would have a smaller IO cost as each entry is smaller. The downside 
is that once the correct  MemberID  is located by an index seek the system will need to look up the clustered 
index to find the rest of the information. Depending on all the information it can access, the optimizer will 
determine whether it is more efficient to use the index on  MemberID  and look up the rest of the information, 
or just to scan all the records in the clustered index.  

     Updating Indexes 
  Indexes   are clearly wonderfully useful. Why do we not just index everything we are ever likely to search on? 
This is certainly possible. The downside is that the indexes have to be maintained. Every time we add or 
delete a record in a table every index on that table will need to be updated also. We therefore have a tradeoff. 
Lots of indexes will mean fast retrieval but slower updating. Fewer indexes will mean faster updating but 
possibly slower retrieval. 

 Managing these tradeoffs is work for an experienced database administrator with excellent knowledge 
of the domain. There are many tools available that will monitor the database and provide statistics on the 
use of indexes and other information about the data. If the data is relatively stable with few updates then 
having several indexes will make retrieval faster. If the data is constantly being updated then indexes may be 
counterproductive. 

 In situations where there are a lot of updates it may be practical to do bulk updates of data. With a bulk 
update you can remove the indexes. The following query shows how to remove the index we created on the 
 Member  table earlier in the chapter: 

   Drop idx_Name on Member; 

   All the additions, deletions, and modifications to the table can then be carried out without the overhead 
of updating the indexes. At the end of the updates on the table, the indexes can be recreated. This may or 
may not be more efficient than updating each index for every change.  
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     Covering Indexes 
 Adding more fields to some indexes can also be effective. Consider the following query: 

   SELECT FirstName 
 FROM Member 
 WHERE LastName = 'Smith' 

   If the  Member  table has an index on  LastName , then the preceding query would require an index seek to 
find Smith and then a lookup of the clustered index to find the first name. If the index was on the compound 
index ( LastName, FirstName ) then all the information required for the query is contained in the index and 
no lookup is required. This is known as a   covering index .   Again, there is the tradeoff of having a larger IO cost 
for the bigger rows in the index versus the cost of the lookup.  

     Selectivity of Indexes 
 Indexes are most useful when the number of rows returned by an index search is small compared to the 
number of rows in the table. 

 For example, let’s consider finding information about a member with a particular last name. An index 
on  LastName  in the  Member  table is likely to return only a small percentage of its elements if we search for 
a specific name. The system can then look up the clustered index for each of those returned elements to 
retrieve the rest of the information about the members. 

 By contrast, what happens if we want to find information about women. An index on  Gender  will return 
around half its entries if we search for  'F'  in the golf club’s  Member  table. The DBMS would then have to look 
up the corresponding records in the clustered index. In this situation it is probably more efficient to just scan 
the clustered index, which contains all the information we require, and not bother with the index at all. 

 Sometimes the selectivity of an  index   is not obvious. For example, an index on a field  City  will not be 
useful if most of the records in the table have the same value for city and most of the queries are for that city. 

 Database software often provides tools that can help us. The tools might provide statistics on the current 
spread of data in fields in a table  —  for example, what percentage of the table has the same values in a field, 
such as  City . This will help determine if an index might be useful. Often statistics can be collected about 
how often an index is used. If the optimizer makes little use of an index then it might as well be removed 
rather than be constantly updated.   

     Join Techniques 
 If we consider the  Entry  table in Figure  10-4 , most queries will require a join on the  Member  table to find the 
names of the entrants and/or a join on the  Tournament  table to find the names and other information about 
the tournaments. Each of these joins compares a foreign key in the  Entry  table with the primary key of the 
 Member  or  Tournament  table. Refer to Chapter   1     to review what we mean by a foreign key. This joining of a 
foreign key with a primary key is such a common scenario that it is worth understanding how joins can be 
carried out. We will use the  Member  and  Entry  tables as an example, but the ideas have wide application. 

 There are a number of different approaches that can be taken when carrying out a join. Which 
approach will be the most efficient will depend on many things, including the relative sizes of the tables, the 
indexes that have been created, whether the query also includes projecting specific columns or selecting 
rows, whether an output order has been specified, and so on. You don’t have to worry about the choice of 
approach, as that will be decided by the optimizer. However, creating particular indexes can influence the 
approach taken. 

http://dx.doi.org/10.1007/978-1-4842-1955-3_1


CHAPTER 10 ■ EFFICIENCY CONSIDERATIONS

169

     Nested Loops 
 One approach to joining tables is called   nested loops   . This means that the system scans one table, and for each 
row in that table looks through all the rows in the other table to find matches for the join condition. The nested-
loop approach is illustrated in Figure  10-5  for the join condition  Entry.MemberID = Member.MemberID .  

  Figure 10-5.    Nested-loops approach to finding rows with matching  MemberIDs         

 In Figure  10-5  the outside loop is on the  Entry  table. For each row in the  Entry  table, the system will 
need to find the matching rows in the  Member  (inner) table. The tables shown in Figure  10-5  are not ordered, 
which means that every row of the  Member  table will need to be visited for each row in the  Entry  table to find 
the matching records (a table scan). 
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 If there is an index on the matching field in the inner loop ( MemberID  in the  Member  table, in this case) 
then finding the matching field will be more efficient. The index can be used to quickly find the matching 
records without having to visit every row. In practice, the  Member  table will probably have a clustered index 
on its primary key  MemberID . If the tables are nested with the  Entry  table on the inside, then the internal 
loop will be more effective if there is an index on the  MemberID  of the  Entry  table. The optimizer will take this 
information into account to decide if the nested-loops option is efficient for carrying out the join and which 
tables should be the inner and outer tables. 

 Most commercial database systems will provide tools to view the execution plan for a query. Figure  10-6  
shows a screenshot from SQL Server showing the execution plan for the join on the  Member  and  Entry  tables 
in the following query:  

   SELECT * 
 FROM Member m INNER JOIN Entry e on m.MemberID = e.MemberID; 

  Figure 10-6.    Execution plan showing  nested loops         

   In Figure  10-6  we see on the top right a table scan of the  Entry  table. This is the outside loop of the 
nested loop (as depicted in Figure  10-5 ). The icon on the bottom right shows that for each row in the  Entry  
table, a seek on the clustered index of the  Member  table will be carried out to find the row with a matching 
 MemberID . 

 Does it matter in which order we specify the tables in a join query? If we put the  Entry  table first in the 
SQL expression, will that make a difference? Once upon a time it may have. These days almost certainly not. 
Expressing the query with the table in a different order results in the same execution plan in SQL Server 
as the plan in Figure  10-6 . However, if we change which fields are being selected, or add other indexes, or 
choose to sort the output, then the execution plan will very probably change.  

     Merge Join 
 Another approach to doing a join is to first sort both tables by the join field. It is then very easy to find 
matching rows. This is called a   merge join    and is shown in Figure  10-7 .  
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 Sorting tables is an expensive operation. However, if the tables have indexes on the join fields then the 
rows can be accessed in order by an index scan, making the merge join an option. 

 Both the merge join and the nested-loops join will be more effective if one or both of the fields in the 
join condition have indexes.  

     Different SQL Expressions for Joins 
 In the previous section I briefly touched on whether the order of the tables in a join would affect the 
execution. The answer was no for the query in Figure  10-6 . However, we have other ways of expressing joins. 
The two queries that follow have exactly the same execution plans in  SQL Server:   

    SELECT LastName FROM Member m, Entry e WHERE m.MemberID = e.MemberID; 

   SELECT LastName FROM Entry e INNER JOIN Member m ON m.MemberID = e.MemberID; 

    The following two SQL statements specify the join in terms of nested queries. They have different 
execution plans from the preceding queries but they are the same as each other: 

    SELECT LastName FROM Member m WHERE m.memberID IN 
    (SELECT MemberID FROM Entry); 

   SELECT LastName from Member m WHERE EXISTS 
   (SELECT * FROM Entry e WHERE m.MemberID = e.MemberID); 

    So, should we use or avoid nested queries? The answer, as always, is “it depends.” 

  Figure 10-7.    Merge join requires each table to be sorted by the field being compared       
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 Before we compare the preceding two pairs of SQL statements we need to be aware that the output 
from them is different. The first pair will produce duplicate names (repeating a member’s name for every 
tournament they have entered). The second pair of queries will produce unique names. To be fair in the 
comparison we will compare the following two queries, which have  identical output:   

    SELECT DISTINCT LastName 
 FROM Entry e INNER JOIN Member m ON m.MemberID = e.MemberID; 

   SELECT LastName FROM Member m WHERE m.MemberID IN 
    (SELECT MemberID FROM Entry); 

    You can see the two plans in Figure  10-8 .  

  Figure 10-8.    The same output but very different execution plans and  costs         

 Figure  10-8  shows the plan for the query using the  INNER JOIN  keyword at the top and the plan for the 
nested query underneath. The percentages are saying that if both these queries were executed in one batch 
then the top one would account for 74 percent of the time and the bottom one 26 percent. That is, the  INNER 
JOIN  query takes three times as long as the nested query. 

 The addition of the  DISTINCT  keyword in the top query accounts for much of the time. The optimizer 
has chosen to sort the records in order to prepare to remove the duplicate names. This sorting operation 
accounts for over half the total cost of the first query. Seeing this plan, you might consider adding an index 
on  LastName  so that the records for the  Member  table could be accessed in  LastName  order, thus eliminating 
the need for the time-consuming sort. 

 Unless you have real insider knowledge, it is just about impossible to second guess what the optimizer 
will come up with. In the long run it probably doesn’t matter unless the tables have huge numbers of rows 
or a query is particularly time critical. The important thing to remember is that if you suspect that a critical 
query is causing a bottleneck, there are tools that can help you understand what is going on. You can then 
experiment with indexes or the ways the query is expressed to see if that can speed things up.   
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     Summary 
 Indexes can make a considerable difference in the performance of many queries. However, there is the 
downside that they have to be maintained. With any tuning of a database it is important to know what the 
important processes are. There is no point going to any lengths to improve a query that is rarely carried 
out, and it is counterproductive to improve retrieval performance if most of the time-critical work in your 
database is the updating of records. 

 The tools provided by many database systems can provide valuable information. Execution plans can 
give insight into where the time is being spent in a query. Statistics can be collected about the use of indexes 
or the distribution of data in a field. All this information is useful when deciding whether the addition of a 
new index might be worth investigating. 

 Here are some general rules of thumb for creating indexes. 

     Primary Key 
 You need a very good reason not to have an index on the primary key field(s) of a table. Generally a clustered 
index will be placed on the primary key by default.  

     Foreign Keys 
 Joins where the join condition is between a foreign key and a primary key are very common. For this reason 
an index on foreign keys is usually worth considering.  

     WHERE Conditions 
 If you have queries that frequently use particular fields in a  WHERE  condition, then it is useful to index on 
those fields. This enables an index seek rather than having to do a table scan to find the relevant rows. 
This is most useful when the  WHERE  condition is selective, meaning that it will retrieve only a small subset 
of the rows.  

     ORDER BY, GROUP BY, and DISTINCT 
 Sorting can be a very expensive operation if there are no indexes on the fields involved in the sorting 
condition. Clearly  ORDER BY  requires rows to be sorted. Queries that contains  DISTINCT  or  GROUP BY  often 
sort the records to remove duplicates or to aggregate the data. With appropriate indexes, an index scan can 
be used to retrieve the rows in order, thus eliminating the need for an expensive sorting operation.  

     Use the Tools 
 Query optimizers are very sophisticated. They maintain statistics about your tables (number of rows, size 
of columns, distribution of data, etc.) and use these to help determine an efficient execution plan for a 
query. If you have a critical query that you want to be as efficient as possible, check the execution plans to 
see where the time is being spent. You can then experiment with the effects of restating the query or adding 
additional indexes.       
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    CHAPTER 11   

 How to Tackle a Query                          

 In the previous chapters, we saw different ways to express a query. We looked at the  process approach , which 
describes how tables and data could be manipulated to produce the required result. These queries are 
expressed using keywords describing operations such as  INNER JOIN  and  INTERSECTION . We also looked at 
how to express queries in terms of the  outcome approach , which describes the criteria that the resulting data 
must satisfy rather than the process for retrieving the result. 

 However, sometimes when I am presented with a complicated natural language description of a query, 
it is not uncommon to find that my mind goes blank. I have a lot of ammunition at hand, but for a moment 
or two, have no idea which weapons to choose. 

 Usually, it is just a matter of being confident and relaxed. Large, complicated queries can always be 
broken down into a series of smaller, simpler queries that can be combined later. This chapter describes how 
to do just that. 

     Understanding the Data 
 It may sound like stating the obvious, but you can’t retrieve information from a database without 
understanding where all the different elements of data are stored and how the relevant tables are 
interrelated. Most of the time you will be querying a database designed by someone else, and probably 
maintained and altered over time by various people. As well as understanding the tables and relationships 
that have been implemented, it is also necessary to have a feel for the underlying real-world scenario. You 
also must be alert to the unfortunate reality that the database may have been badly designed. This might 
mean that you are not able to retrieve the required information accurately. We will consider this problem of 
working against bad design a bit more in Chapter   12    . 

     Determine the Relationships Between Tables 
 The best way to get an overview of the implementation of a database is to look at a schematic of the 
relationships between the tables. Most database management software provides a way of viewing the fields 
in the tables and the foreign key relationships between the tables. Figures  11-1  and  11-2  show the foreign key 
relationship diagrams for our club database as depicted by SQL Server and Microsoft Access.   

http://dx.doi.org/10.1007/978-1-4842-1955-3_12
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  Figure 11-1.    A database diagram from SQL  Server         
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  Figure 11-2.    A relationship diagram from Microsoft  Access         

 On the surface, the diagrams in Figures  11-1  and  11-2  look a bit different, but they represent exactly 
the same database. The Access schematic in Figure  11-2  displays an additional copy of the  Member  and 
 Team  tables. The two copies of the  Member  table arise from the self relationship between members (that 
is, a member can coach other members). The additional copy of the  Team  table is because of the two 
relationships between  Member  and  Team : a member can be the  manager  of a team, and a member can  belong  
to a team. These relationships are depicted in the SQL Server diagram in Figure  11-1  by showing two lines 
between the tables so that the tables are not shown twice. The different diagrammatic representations are 
just a quirk of the different management systems. Both schematics represent the same set of tables and 
relationships. 
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 The lines in the two diagrams in Figures  11-1  and  11-2  represent the foreign keys that were set up when 
the tables were created. For example, the statement for creating the  Member  table contains two  foreign key 
constraints:   

   CREATE TABLE Member( 
 MemberID Int PRIMARY KEY, 
 LastName CHAR(20), 
 FirstName CHAR (20), 
 MemberType CHAR (20) FOREIGN KEY REFERENCES Type, 
 Phone CHAR (20), 
 Handicap INT, 
 JoinDate DATETIME, 
 Coach INT FOREIGN KEY REFERENCES Member, 
 Team CHAR (20), 
 Gender CHAR (1)); 

   Recall from Chapter   1     that this line of code: 

   MemberType CHAR (20) FOREIGN KEY REFERENCES Type 

   means that if there is a value in the   MemberType  field   then that value must exist in the primary key field in the 
 Type  table. A line representing this foreign key relationship between the  Member  table and the  Type  table can 
be seen in Figures  11-1  and  11-2 . 

 This line of code: 

   Coach INT FOREIGN KEY REFERENCES Member 

   means that the values in the  Coach  field must already exist in the primary key field in the  Member  table; that 
is, there is a self relationship on the  Member  table. This relationship is expressed in Figure  11-1  with the loop 
connecting the  Member  table to itself. In Figure  11-2  the relationship is depicted by displaying a second copy 
of the  Member  table.  

     Real World Versus Implementation 
 The database diagrams in the previous section represent how the  database   has been  implemented  and in 
particular which foreign keys have been set up. When the database is first set up, the design will be based on 
a  conceptual  data model that describes how the tables for a particular problem are interrelated. A number of 
methods exist for representing a data model, such as entity-relationship (ER) diagrams and the UML class 
diagrams we have been using in this book. Figure  11-3  shows the class diagram for the golf club. Refer back 
to Chapter   1     if you need a refresher on how to interpret the lines and numbers.  

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
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 The class diagram in Figure  11-3  does not display foreign key fields in the classes. You can see this 
by comparing the  Entry  table in Figure  11-3  with those in the two earlier database diagrams. The foreign 
keys  MemberID  and  TourID  are missing as attributes in the class diagram. Foreign keys are simply a way of 
representing the relationship between classes if we choose to implement the data model in a relational database. 
If we decide to implement it in an object-oriented database we might not need foreign key fields at all. 

 A  class diagram   with well-labelled relationships gives us a much greater understanding of the 
real-world situation than do the implementation diagrams in Figures  11-1  and  11-2 . Have a look at the 
relationships between  Member  and  Team  to see what I mean. 

 The database diagrams presented by relational database software show you the foreign keys that have 
actually been set up. These may not tell the whole story. The developer may not have implemented the 
relationship for coaching (for example) with a foreign key constraint on the  Coach  field. He or she may 
have overlooked the requirement or may have decided to enforce the constraint that a coach must be an 
existing member some other way (with a trigger or via the interface). However, even if there is no foreign 
key constraint on the  Coach  field in the  Member  table, we still need to understand that members coach other 
members if we want to design reliable queries about coaching. 

 In some cases, the implemented database may not have much in common with an accurate data model. 
For example, if the golf club database contained separate tables for members, coaches, and managers or one 
of the relationships between the  Member  and  Team  tables was not implemented, then the database diagram 
and the data model would look quite different. The likelihood of getting reliable information would be low. 
Chapter   12     looks at problems like this, although short of a major redesign there is sometimes not much you 
can do.  

  Figure 11-3.    Class diagram representing the conceptual  model         
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     What Tables Are Involved? 
 Once we have an understanding of the tables in the database and how they are related (conceptually as 
well as by the existence of foreign keys), we can look at which tables you will need in order to extract the 
subset of data required. Consider a query like “Find all the men who have entered a Leeston tournament.” 
This sentence contains a few key words. Nouns are often a clue to what tables or fields we are going to need. 
Verbs often help us find relationships. Let’s look at the nouns. “Tournament” is a big clue, and we have a 
 Tournament  table, so that is a start. The word “men” is another noun in the query description. We don’t have 
a  Men  table, but we do have a  Member  table with a  Gender  field. 

 It is fairly clear then that the  Member  and   Tournament  tables   are going to play a part in our query. Now we 
need to get a feel for how these two tables are related. Figure  11-4  shows the part of the SQL Server database 
diagram containing these two tables. We see that that they are not directly related, but rather are connected 
via the  Entry  table. That makes sense, because the verb “enter” is in our query description.  

  Figure 11-4.    Part of the database diagram showing the Member and Tournament tables       

 So, it looks like at least three tables will be involved in our query:  Member ,  Tournament , and  Entry . We 
then use our understanding of the relational operators to determine how these tables could be combined. 
Do we need a join or a union, or some combination of these and other relational operators? We’ll look at 
ways to help decide on the appropriate operations in later sections in this chapter.  

     Look at Some Data Values 
 Requests for information from a database are usually couched in rather informal and imprecise natural 
language. Even a simple request, such as “Find all the men who have entered a Leeston tournament,” has a 
few things we need to clarify. Having a look at the actual data in the tables can sometimes help. 

 Our query does not actually “find” the men, but rather returns some information about them. Looking 
at the  data values   in the table will help us decide what information might be helpful. Presumably, the 
questioner would like to see the names of the men. Do we need the IDs as well? We will need IDs if we want 
to distinguish two members with the same name. 
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 It may not always be clear what some of the words in the question refer to. What is a “Leeston” 
tournament? Is Leeston the name of a tournament, a type of tournament, or a location? Looking at a few 
rows of the  Tournament  table can help us. We see that the  TourName  field has the value “Leeston” here and 
there. Sometimes it might not be so easy to determine what imprecise words in the query description refer 
to. It may be necessary to talk to the developer or users to get a better understanding of what information 
they are trying to retrieve. 

 How do we determine which members are men? Fortunately, the  Member  table has a  Gender  column, 
and it looks like we want values of  M . Is selecting rows with values of  M  going to be enough? Might there be 
some rows that have  m  or  Male  as the values? We’ll look at how to deal with issues of inconsistent data in the 
next chapter. For now, let’s assume that men are denoted by  M . 

 For the simple query in this example, we now have a more precise description. It is something like 
“Retrieve the  MemberID ,  LastName,  and  FirstName  of the men ( Gender = 'M' ) who have entered the 
tournament where  TourName = 'Leeston' .” 

 You might think of some other particulars that need clearing up. It is often a good idea to ask  why  this 
information is required. Do we just want to find which men have ever been to Leeston (because we want 
to ask one of them some questions about the golf course), or do we want to know how many times our 
male club members have entered Leeston tournaments (because we are interested in how popular the 
tournament is with the members of the club)? These questions can have different answers, as you will see in 
the “Retain the Appropriate Columns” section coming up soon.   

     Big Picture Method 
 My first attempt at a query is seldom elegant or complete. For a query such as “Find all the men who have 
entered a Leeston tournament,” there are two ways I might tackle it, depending how my muses are working. 
One way is the big picture. I do this if I have a bit of an idea of how to combine the tables. I will cover another 
tactic in the section “No Idea Where to Start?”, which I use when I have no idea where to start! 

 In the big picture method, I like to combine all the tables I’ll need and retain all the columns, so I can 
see what is happening. I usually find it easiest to have an SQL window of some sort open so I can try small 
queries to see if the intermediate results look promising for answering the overall question. 

 Let’s look at the big picture approach to the query “Find all the men who have entered the Leeston 
tournament.” We decided we needed three tables:  Member ,  Entry , and  Tournament . These tables are all 
connected by foreign keys, and this often suggests that joins will be useful. If it isn’t clear to you that a join 
is what is required for the query, then resort to the methods in the “No Idea Where to Start?” section later in 
this chapter. 

     Combine the Tables 
 Let’s assume that we think  joining tables   looks like a promising approach for the query about men entering 
the Leeston tournament. You don’t have to do everything at once. Start slowly with some small queries to see 
how things shape up. 

 To carry out a join, we need to find the fields on which to join. Review Chapter   3     if you need to refresh 
your understanding of join-compatible fields. The  Entry  table is critical to this query, as it connects the 
 Member  and  Tournament  tables. The  Entry  table has a foreign key field labeled  TourID , which we can join 
with the primary key of the  Tournament  table. Do that much first. 

   SELECT * FROM 
 Tournament t INNER JOIN Entry e ON t.TourID = e.TourID; 

   Figure  11-5  shows a few rows of the resulting virtual table.  

http://dx.doi.org/10.1007/978-1-4842-1955-3_3
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 The result shown in Figure  11-5  is certainly helpful. We can see the entries and the names of the 
corresponding tournaments. We can see from the first two rows that members 118 and 228 have entered 
a Leeston tournament. Now we need to find out whether 118, 228, and other members entering the 
tournament are men and find their names. We can get this additional information by joining the virtual table 
in Figure  11-5  to the  Member  table on the  MemberID  fields: 

   SELECT * FROM 
 (Tournament t INNER JOIN Entry e ON t.TourID=e.TourID) 
 INNER JOIN Member m ON m.MemberID = e.MemberID; 

   Figure  11-6  shows the result. I haven’t included all the columns in Figure  11-6  because there are a lot of 
them. You will see shortly why I like to leave all the columns in as long as possible.  

  Figure 11-5.    Part of the result of joining the Tournament and Entry  tables         

  Figure 11-6.    Part of the result of joining the Tournament, Entry, and Member tables (just some columns)       
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 The virtual table shown in Figure  11-6  has all the information we need to find the required data. The 
first two rows show that members 118 and 228 are women. The row for member 286 (with the circles) looks 
more promising. How do we amend the query to find the appropriate subset of rows and columns?  

     Find the Subset of Rows 
 From Figure  11-6  we can see that the rows that we want to retain from the result of the join are where the 
 Gender  field has the value  M  and the  TourName  field has the value  Leeston . We can select these rows by 
adding an appropriate  WHERE  clause to the previous query: 

   SELECT * FROM 
 (Entry e INNER JOIN Tournament t ON t.TourID=e.TourID) 
 INNER JOIN Member m ON m.MemberID = e.MemberID 
 WHERE m.Gender = 'M' AND t.TourName = 'Leeston'; 

   Figure  11-7  shows just some of the columns from the result of the query above. It has four rows: three 
for Robert Pollard and one for William Taylor.   

  Figure 11-7.    Men who have entered Leeston tournaments (just some columns)          

 Why do we have three rows for Robert Pollard? The rows are identical except for the value of the  Year  
field. Robert has entered the Leeston tournament in three different years. We can see this quite clearly from 
Figure  11-6  because we have left the  Year  column in the output. Had we retained only the name columns, 
we might initially be a bit puzzled at having Robert Pollard repeated three times. What we do about the 
repetition of Robert Pollard depends on understanding the initial question a bit more clearly, as you will see 
in the next section.  

     Retain the Appropriate Columns 
 We have the appropriate subset of rows from our large join. Now we need to retain just the columns we 
require by amending the  SELECT  clause, which is currently returning all the columns ( SELECT * ). This is not 
always as simple as it might sound. The three rows for Robert Pollard give us a bit of a clue that things may 
not be as straightforward. We have two possibilities. 

 If we only want to know who has entered the tournament in any year, then we want just the distinct 
names Robert Pollard and William Taylor and perhaps their ID numbers. Amending the   SELECT  clause   as in 
the following query will provide that outcome: 

   SELECT DISTINCT m.MemberID, m.LastName, m.FirstName 
 FROM ... 
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   If the objective of the question is to find out how often men enter Leeston tournaments, then we want to 
retain all the entries. In that case, it might be useful to retain the year as well to distinguish the rows as in the 
following: 

   SELECT m.MemberID, m.LastName, m.FirstName, e.Year 
 FROM ... 

        Consider an Intermediate View 
 The SQL for the joining the  Entry ,  Member,  and  Tournament  tables is likely to be the basis of many queries 
about entries in tournaments. For example, the following questions will all require a join of the  Member , 
 Entry , and  Tournament  tables:

•    Do junior members enter open tournaments?  

•   Which tournaments did William Taylor enter in 2015?  

•   What is the average number of Social tournaments that members entered in 2013?    

 As we are likely to use this large join many times, it can be convenient to make a  view . A view is an 
instruction for how to create a  temporary table   that we can use in other queries. The following is a first 
attempt at the SQL for creating a view that retains all the fields from the joins: 

   --First Attempt (unsuccessful) 
 CREATE VIEW AllTournamentInfo AS 
 SELECT * FROM 
 (Entry e INNER JOIN Tournament t ON t.TourID=e.TourID) 
 INNER JOIN Member m ON m.MemberID = e.MemberID; 

   As it stands, this query will not run in most versions of SQL. This is because the view would have fields 
with the same name; for example, there will be two fields called   MemberID   : one from the  Entry  table and one 
from the  Member  table. 

 When you create a view, all the field names must be distinct. The view will not use the aliases to 
differentiate the columns in the resulting table. The  *  in the  SELECT  clause needs to be altered to list all the 
field names. We need to either include just one of the fields with duplicated names ( MemberID  and  TourID ) or 
rename those that are duplicated (e.g.,  SELECT m.MemberID AS MMember ,  e.MemberID AS EMember ). This is a 
bit tedious, but if you are creating a view that you are likely to use many times, it is worth the effort. 

 Once we have the view  AllTournamentInfo , it can be used in the same way as any other table in our 
queries. To find the names of men who have entered a Leeston tournament, we can use the view as shown here: 

   SELECT DISTINCT LastName, FirstName 
 FROM AllTournamentInfo 
 WHERE Gender = 'M' AND TourName = 'Leeston'; 

         Spotting Keywords in Questions 
 The big picture approach assumes that we have decided how to combine the tables that will contribute to 
the query. Sometimes, it will be obvious that, for example, certain tables need to be joined. Other times, it 
may not be at all clear initially. In this section, we will look at some keywords that often appear in questions 
and that can provide a clue about which relational operations are needed. If none of these help, remember 
that we still have the “No Idea Where to Start?” section coming up! 



CHAPTER 11 ■ HOW TO TACKLE A QUERY

185

     And, Both, Also 
  And  and  also  are words that can be misleading when it comes to interpreting queries, and we will consider 
this further in the next chapter. In this section, we will look at queries that have the idea of two conditions 
needing to be met simultaneously. Queries that require two conditions to be met fall into two categories: 
those that can be carried out with a simple  WHERE  clause containing a Boolean   AND  operator  , and those that 
require an intersection or self join. 

 To decide if a query really needs two conditions to be met, I usually look at a natural language statement 
and see if I can reword it with the word  both  connecting the conditions. Consider these examples:

•    Find the junior boys. ( Both  a male and a junior? Yes.)  

•   Find those members who entered tournaments 24  and  38. ( Both  tournaments? Yes.)  

•   Find the women  and  children. ( Both  a female and a child? No.)    

 The last query is the one that can sometimes trip people up. Although it contains the word  and , the 
common interpretation of “women and children” doesn’t mean someone who is  both  a female and a 
child (that is a girl). Rather, the phrase means anyone who is  either  a female  or  a child (especially when 
populating lifeboats). 

 The diagram in Figure  11-8  is a useful way to visualize whether the natural language word  both  really 
means both or either. The circles represent the two sets: woman and children. Figure  11-8a  shows the union 
(only one condition must be satisfied) and Figure  11-8b  the intersection (both conditions must be satisfied).  

Women

a) b)Either a Woman or a child

(“Women and Children”) (“Girls”)

Both a Woman and a Child
Women INTERSECTION ChildrenWomen UNION Children

Children Women Children

  Figure 11-8.    Visualizing whether a union or an  intersection is needed         

 When two conditions must be met, we are looking at the intersection of two groups of data, as in 
Figure  11-8b . This doesn’t necessarily mean we must use the  INTERSECT  keyword. I find the following 
question helpful in deciding what to do next:

   Do I need to look at more than one row to decide if both conditions are satisfied?    

 Consider the query to find junior boys. This is going to need the  Member  table. Can we look at a single 
row and determine if the member is  both  a junior and a boy? We can see in Figure  11-9  that both pieces of 
information are available in a single row.  
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 In this situation, we can use a simple  SELECT  operation with the Boolean  AND  to check for both 
conditions, as discussed in Chapter   2    : 

   SELECT * FROM Member m 
 WHERE m.Gender = 'M' AND m.MemberType = 'Junior'; 

   Now consider a different type of query. What about finding the members who have entered  both  
tournaments 24 and 36? To do this, we need to look at the  Entry  table (probably joined with the  Member  table 
if we want the names). As we can see in Figure  11-10 , we cannot check that a member, e.g., member 228, has 
entered both tournaments by looking at a single row.  

  Figure 11-9.    Information about membership type and gender are available in a single row          

  Figure 11-10.    We need to investigate more than one row to check both tournaments       
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 Where we need to satisfy both of two conditions  and  we need to look at more than one row in the table, 
we can either use a self join (discussed in Chapter   5    ) or an intersection (discussed in Chapter   7    ). 

 If we use the self join then the query is: 

   SELECT DISTINCT e1.MemberID 
 FROM Entry e1 INNER JOIN Entry e2 ON e1.MemberID = e2.MemberID 
 WHERE e1.TourID = 24 AND e2.TourID = 36; 

   A query producing the same output but using the  INTERSECT  keyword is: 

   SELECT MemberID FROM Entry WHERE TourID = 24 
 INTERSECT 
 SELECT MemberID FROM Entry WHERE TourID = 36; 

         Not, Never 
 Here are some examples of queries involving the words  not  or  never :

•    Find the members who are  not  seniors.  

•   Find members who are  not  in a team.  

•   Find members who have  never  entered a tournament.    

 Often when people see  not  in a description of a query, they immediately think of using a Boolean   NOT    
or a  <>  operator in a  WHERE  clause. This is fine for some queries, but will fail for others. As in the previous 
section, I find the following test helpful to understand the category of the query.

   Do I need to look at more than one row to decide if a condition is  not  true?    

 For the first two queries in the preceding bulleted list, we can look at a single row in the  Member  table 
and decide whether that member satisfies the condition. In the first query, the condition in the  WHERE  clause 
would be  NOT MemberType = 'Senior'  or  MemberType <> 'Senior' . To find members who are not in a 
team, we want the  Team  field to be empty, so a clause like  WHERE Team IS NULL  would do the trick. 

 To find the members who have never entered a tournament, what tables do we need? We are certainly 
going to need the  Entry  table. We can decide if a member has entered a tournament by finding just one row 
with his or her value of  MemberID . To see if he or she has  not  entered a tournament, we need to look at every 
row in the  Entry  table. We also must look at the  Member  table, because those members who have not entered 
a tournament will not appear in the  Entry  table at all. 

 In situations like this, it can be helpful to think in terms of sets as in Figure  11-11 .  
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 In Chapter   7     we looked at how to represent the difference between two sets by using the process 
approach and the keyword  EXCEPT . The following query will return the IDs of members who have not 
entered a tournament: 

   SELECT MemberID FROM Member 
 EXCEPT 
 SELECT MemberID FROM Entry; 

   If we think in terms of the outcome approach we can describe the criteria for returning a particular 
 MemberID . The following query is an example of using  NOT IN  to find the IDs of members who have never 
entered a tournament: 

   SELECT m.MemberID FROM Member m 
 WHERE m.MemberID NOT IN 
     (SELECT e.MemberID FROM Entry e); 

   Chapter   7     has many examples of how to use nested queries such as this one.   

     All, Every 
 Wherever you see the words  all  or every in a description of a query you should immediately think of the 
 division operator  . Here are some examples of such queries:

•    Find members who have entered  every  open tournament.  

•   Has anyone coached  all  the juniors?    

 Examples of the SQL to carry out these types of query are explained in detail in Chapter   7    .   

  Figure 11-11.    Finding members who have not entered tournaments by considering sets       
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  Figure 11-12.    How do we tell if a team has a coach as a manager?       

     No Idea Where to Start? 
 Now let’s look at the case where we have a good understanding of the intention of the natural language 
query and have an idea of which tables are involved. We’ve checked for some key words, but still feel 
confused. Now what? This is not uncommon (it happens to me regularly), so just relax. 

 When I have no idea where to start, I forget all about set operations and SQL. I stop thinking about 
tables, foreign keys, joins, and so on. Instead, I open the tables I think will be needed to answer the question 
and look at some of the data. I try to find examples that should be retrieved by the query. Then I try to write 
down the conditions that make that particular data acceptable. 

 This is the outcome approach describing  what  conditions the rows returned by the query should obey. 
It is a great way to proceed if you are having trouble deciding on the operations that could be involved in 
manipulating the tables (the process approach). 

 Let’s try a query that stumped me a bit when I first thought of it: “Which teams have a coach as their 
manager?” The steps described here can really help. 

     Find Some Helpful Tables 
 Let’s look at the key words in the query “Which teams have a coach as a manager?” We have the nouns 
“team,” “coach,” and “manager.” We have a table called   Team   , and  Coach  and  Manager  are fields in the  Member  
and  Team  tables, respectively. So the  Team  and  Member  tables look like a good place to start.  

     Try to Answer the Question by Hand 
 Next, take a look at the data in the tables and see how you would decide if a team had a coach as a manager. 
Figure  11-12  shows some relevant columns of the two tables. Can you find a team that satisfies the condition?  

 We can find the IDs of the two team  managers   easily enough. They are the values in the  Manager  column 
of the  Team  table (239 and 153). Now, how do we check if these members are coaches? Looking at the  Member  
table, we see that the coaches are in the  Coach  column. We need to check if either of our two managers appears 
in the  Coach  column. Member 153 does appear in the  Coach  column, so (TeamB) is managed by a coach.  
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     Write Down a Description of the Retrieved Result 
 Figure  11-12  illustrates how we determined that TeamB has a coach as its manager. We now need to write 
a description of the logic that leads to that conclusion. This is where I like to use my fingers to point to the 
relevant rows to make it easier to describe the query, as in Figure  11-13 .  

  Figure 11-13.    Naming the rows to help describe the required  data          

 We are going to check every team to decide if it should be retrieved. In Figure  11-13  this is represented 
by the finger labeled  t , which will visit each row in turn. We can describe whether the current row meets the 
criteria as follows:

   I’ll write out the   TeamName   from row   t   in the   Team   table, if there exists a row   m   in the Member 
table where the value of coach   m.Coach   is the same as the manager of the team   t.Manager  .    

 We can now translate this almost directly into SQL using a nested query (discussed in Chapter   4    ). One 
possible query would be: 

   SELECT t.TeamName FROM Team t 
 WHERE EXISTS 
    (SELECT * FROM Member m WHERE m.Coach = t.Manager); 

        Are There Alternatives? 
 First attempts at queries aren’t necessarily the most elegant. After all, we are following this route because we 
were stumped in the first place. This may not be a problem for the execution of the query, as the optimizer 
will likely find an efficient process. However, an inelegant SQL statement might be difficult for you and 
others to understand at a later time. Following the technique of solving the query by hand and describing 
the conditions often helps you understand what you are trying to do. That often makes the query seem much 
easier than you first thought. 
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 Having made a first attempt at the query described in the previous section, we might realize that we 
could have thought of it this way: “The manager just has to be in the set of coaches.” We can easily find the 
IDs of coaches with the query: 

   SELECT m.Coach FROM Member m; 

   We can then use that in a nested query, as shown here: 

   SELECT t.TeamName FROM Team t 
 WHERE t.Manager IN 
    (SELECT m.Coach FROM Member m); 

   For me, the preceding query is simpler and easier to understand than the earlier one even though they 
have equivalent results. 

 We could have phrased the condition illustrated in Figure  11-13  like this:

   If I have rows   t   in the   Team   table and   m   in the Member table then I’ll write out the   TeamName  
 from row   t   in the   Team   table, if   t.Manager = m.Coach    

 Here is the preceding sentence translated into SQL: 

   SELECT t.TeamName FROM Team t, Member m 
 WHERE t.Manager = m.Coach; 

   The preceding query can be restated as a join: 

   SELECT t.TeamName 
 FROM Team t INNER JOIN Member m ON t.Manager = m.Coach; 

   Personally, I don’t find the join particularly intuitive for this query. I doubt if someone else looking at 
the query would quickly understand its purpose. 

 Given there are several options for phrasing this query, it can be useful to check their relative 
efficiencies (as discussed in Chapter   10    ) if you think that might be important (unlikely in this case). If we add 
a  DISTINCT  phrase in the  SELECT  clause for the join queries then all four alternatives will produce the same 
result. For SQL Server 2012, each of the queries had the same execution plan, so they were all carried out in 
exactly the same way under the hood.   

     Checking Queries 
 We’ve written a query, run it, and retrieved some results. Is all well and good? Not necessarily. Just as first 
attempts at a query may not be elegant, neither may they be correct. Mistakes might arise from simple 
errors in the query syntax. These are usually easy to spot and correct. However, errors that result from subtle 
misunderstandings of the question or of the data can be more difficult to find. 

 I can’t offer a foolproof way of checking that your query is correct, but I can give you some ideas for 
catching potential errors. Basically, they boil down to checking that you do not have extra, incorrect rows in 
your result and checking that you aren’t missing any rows. In this section, we will look at ways to spot that 
your query might have a problem. In the next chapter, we will look at some of the common mistakes that 
might be behind the errors. 
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     Check a Row That Should Be Returned 
 It is a good idea to have a rough idea of how many  rows   should be returned by your query: none, one, a few, 
or lots. If you get a surprising number then that can be a clue that something could be wrong. Next, take a 
look at your data and determine one record or row that should be returned by the query. In our example 
about teams with managers as coaches, we can check through the tables and find a team that satisfies the 
query. In Figure  11-13 , we see that TeamB satisfies the conditions, so check that this team is in the output. 

 Remember that some queries may quite legitimately have no output. For example, it’s perfectly 
reasonable that, with the data we have at any particular time, no teams are managed by a coach. However, 
your query must work in all situations. If it is at all possible, make a copy of the tables, alter the data so that a 
row meets the condition, and check that it is returned correctly.  

     Check a Row That Should Not Be Returned 
 Similar to checking for a row that should be returned, look through the data and find a team that  doesn’t  
have a coach as a manger. TeamA’s manager (member 239) does not appear as a coach in the  Member  table, 
so make sure that team is  not  included in your output. Once again, it is a good idea to use some  dummy data   
to check this if the real data does not cover all eventualities.  

     Check Boundary Conditions 
 If a query has any sort of  numeric comparison  , then as well as checking for example data that should be 
returned and that which shouldn’t, we should also check the edge cases. Consider a query where we want to 
find people who have been members of our club for more than ten years. To be certain of the correctness, we 
need to check three possibilities:

•    Make sure no record is returned for someone with less than 10 years of membership 
(for example, 8 years of membership).  

•   Make sure that someone who has belonged to the club for 12 years does get his 
record retrieved.  

•   Check for someone who has been a member for exactly 10 years.    

 The last boundary condition is always tricky. It comes down to an interpretation of the natural language 
question. Does “more than ten years” include people who joined in the season exactly ten years ago? Well, 
it probably does, given that a single season covers a whole year. With numerical comparisons of this sort the 
decision is whether we use  >  or  >=  in the select condition. It is important to check with users if there is any 
doubt about the intention of the query. 

 Finding data in the tables that are exactly on the boundaries is not always easy. However, it is usually 
possible to change the numeric value in your query to match the data. Find a particular member and change 
the value you are checking against in the query to match their years of membership. If Harry joined 16 years 
ago, change the query to compare with the value 16 and see if Harry is included (or not) as you expect. 

 Another important boundary condition, especially for aggregates and counts (covered in Chapter   8    ), 
is the value 0. Consider a query such as “Find members who have entered fewer than six tournaments.” 
Doing a grouped by count on the  Entry  table will return some rows for sure, and we can check for those who 
have less than, more than, or exactly six entries. However, what about members who have never entered a 
tournament? They won’t appear in the  Entry  table at all and will be missing from the results. So, whenever 
aggregates are involved, always check for what happens for a count of 0. For example, does your query return 
members who have entered  no  tournaments?  
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     Check Null Values 
 Be aware that some of the  values   you are checking against may be nulls (discussed in Chapter   2    ). How does 
your query about team managers cope with the situation where the  Manager  field is null? Try it out on some 
dummy data and see. What do we expect (or want) to happen if there is a null in the  JoinDate  field when we 
run the query about length of membership?   

     Summary 
 The first rule about starting a query is to not panic. The next rule is to take small steps and look at the 
intermediate output to see if what you have done so far is helping you. Retain as many columns as possible 
in the initial queries so you can check that you understand what is happening. 

 Figure  11-14  gives a summary of some of the steps you can take when first starting out on a query. The 
diagram doesn’t cover the whole process, but you should be able to make a reasonable start with these steps. 
Refer to the relevant chapters for more help.      

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
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Find the tables you need.
Look at example data

Determine how the tables
are related from the data
model

Do you think
joins will be OK?

Yes

Yes Yes

Not?

(Both)

Self Join
(Chapter 5)

Intersection
(Chapter 7)

(Chapter 7)
Difference

(Not)

Every?

Still no
idea?

Both?

Do you need to
look at 2 rows?

Look for keywords

keywords
no help

No

No

Join the tables
(Chapter 3)

Select required rows
(Chapter 2)

Division
(Chapter 7)

Project required columns
(Chapter 2)

Check for data that should be returned
Check for data that should not be returned

Check what happens with nulls
Check boundary conditions and 0 for numerical comparisons

Try the outcome approach.
See this chapter for clues.

Check

  Figure 11-14.    Some steps to help you get started on a tricky query       
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    CHAPTER 12   

 Common Problems                          

 In this book, we’ve looked at different ways to tackle a variety of categories of queries. However, even if 
a query retrieves some valid-looking rows, all may not be well. In the previous chapter, we looked at the 
importance of checking the output to confirm that (at least some of) the expected rows are retrieved, as well 
as checking to make sure that (at least some) incorrect (or irrelevant) rows are  not  being returned. 

 The problems that can befall queries are not just a matter of having the wrong syntax in SQL statements, 
although that can certainly happen. Problems with the design of the tables or with data values can also affect 
the accuracy of queries. In this chapter, we will look at some common design and data problems, and also at 
some of the most common syntactic mistakes. 

     Poor Database Design 
 Good database design is absolutely essential to being able to extract accurate information. Unfortunately, 
you will sometimes be faced with databases that are poorly designed and maintained. Often there is not a 
great deal you can do. Sometimes you can extract something that looks like the required information, but it 
should be presented with a caution that the underlying data was probably inconsistent. In this section we 
look at some common problems and how they might be mitigated. 

     Data That Is Not Normalized 
  One of the most common data  design   mistakes is to have tables that are not normalized. We looked at an 
example of this in Chapter   1    . Rather than having two tables, one for members and one for membership 
information such as fees, all this data was stored in a single table. As can be seen in Figure  12-1 , this has the 
effect of storing the fee information several times.  
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 What happens now if we are asked to find the fee for senior members? The query here will result in two 
values: 300 and 250. 

   SELECT DISTINCT Fee 
 FROM Member 
 WHERE MemberType = 'Senior' 

   Although the two values retrieved by the query may be surprising, nothing is wrong with the query 
or the result. The value for Brenda Nolan, which is inconsistent with the other senior members, gives us 
the additional fee result. That value may be a typographical error, or it may indicate some sort of discount 
for Brenda, or it may be an instance of last year’s fee that has not been updated. In either case, there is a 
problem with the design. The design should allow for regular fees for each grade to be recorded consistently 
and, if necessary, allow for storage of additional discounting regimes. At this point, other than redesigning 
the tables, there is nothing we can do but return the list of fees that have been recorded against the senior 
members. It is just worth understanding the underlying issues. 

 Another problem you may encounter is a single table that stores multivalued data. The versions of the 
club tables that we have been using allow a member to belong to just one team. The club may evolve to have 
several different types of teams (interclub teams, social teams, pairs, foursomes, and so on) that members 
can belong to at the same time. When the requirement for a second team to be recorded against a member 
arises, a common short-term fix is to add another  Team  column to the existing table. Figure  12-2  shows how 
the Member table might have evolved to allow members to be associated with up to three teams.  

  Figure 12-1.    A non-normalized Member table containing fee information       

  Figure 12-2.    Poor table design to store more than one team for a member       
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 Now, suppose we are asked to find those members in TeamB. Brenda has TeamB in the  Team1  column, 
Helen has TeamB in the  Team2  column, and Thomas has TeamB in the  Team3  column. We need to check 
every team column for the existence of TeamA. This isn’t difficult, as the query here shows: 

   SELECT * FROM Member 
 WHERE Team1 = 'TeamB' OR Team2 = 'TeamB' OR Team3 = 'TeamB'; 

   While we can extract the information we require from the table in Figure  12-2 , the design is going to 
cause problems. We will have trouble if we have queries like “Find members who are in both TeamA and 
TeamB” or “Find members who are in more than two teams.” You could probably devise queries that would 
answer these questions, but they would be ungainly. I would ask for the database to be redesigned properly 
before trying to fulfill such requests. If you meet resistance you can ask them what they will do if a member 
belongs to four teams or maybe twenty teams. 

 If members can belong to several teams we have a Many – Many relationship, which should be represented 
in a relational database with an intermediate  Membership  table 1   —  something like the one in Figure  12-3 .  

  Figure 12-3.    A Membership table that records the relationship between members and teams       

   1  Refer to my book  Beginning Database Design  (New York: Apress, 20xx) for more information.  

 The  Membership  table in Figure  12-3  records relationships between members and teams and is very 
similar to the  Entry  table, which records relationships between members and tournaments. The  Membership  
table will need to be joined with the  Member  table to find the associated names, but if that is done we will 
have the same information as the one in Figure  12-2 . With the new  Membership  table, we can now use all the 
relational operations, as described in previous chapters, to easily answer questions like “Who is in TeamA 
and TeamB?” and “Who is in three or more teams?” 

 We can create a  Membership  table with the following SQL code. The table includes only two foreign keys, 
to the existing  Member  and  Team  tables, and those fields also form a concatenated primary key. 

   CREATE TABLE Membership( 
 MemberID INT FOREIGN KEY REFERENCES Member, 
 Team CHAR(20) FOREIGN KEY REFERENCES Team, 
 PRIMARY KEY (MemberID, Team) ); 
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   If you don’t mind a bit of manual fiddling about, you can populate the new  Membership  table with 
repeated update queries like the one here: 

   INSERT INTO Membership (MemberID, Team) 
 SELECT MemberID, 'TeamA' 
 FROM Member 
 WHERE Team1 = 'TeamA' OR Team2 = 'TeamA' OR Team3 = 'TeamA' 

   The query finds each member who is in TeamA and creates an appropriate row in the  Membership  table. 
If there are not too many teams, you can manually alter the second and last lines of the query for each team 
(TeamA, TeamB, and so on) and populate the new  Membership  table quite quickly. You then need to delete 
the  Team  columns from the  Member  table in Figure  12-2 , and the database will be greatly improved.   

     Tables with No Primary Key 
 The previous section gave an example of the problems you can run into if the underlying database has 
inappropriate tables. You will sometimes find that the database has the correct tables, but they do not 
have suitable primary or foreign key constraints. In these cases, the underlying data values are likely to be 
inconsistent. While your queries may be correctly formed, the results will be unreliable. In this section, you 
will see how you can use queries to find some inconsistencies that may be present in your data. 

 Suppose that the  Membership  table in Figure  12-3  had been created without a primary key. This would 
allow the table to have duplicate rows. For example, we might have two identical rows for member 153 being 
on TeamB. 2  A query to count the number of members on TeamB will produce an incorrect result. 

 If you try to add a  primary key   when duplicates already exist, you will get an error. This is one way to 
find where problems are! Before you can add a primary key you will need to find the duplicated rows and 
investigate how to resolve the issue. One convenient way to find duplicated values is to do a  GROUP BY  query 
(see Chapter   7    ) on the fields that should be unique and use a  HAVING  clause to find those with two or more 
entries. The following query will return duplicated values for our potential primary key fields  MemberID  and 
 Team : 

   SELECT MemberID, Team, Count(*) 
 FROM Membership 
 GROUP BY MemberID, Team 
 HAVING Count(*) > 1; 

   If the table has fields other than the primary key fields, you need to manually inspect the values in those 
columns to decide which row should be deleted. The  Membership  table, which has only primary key fields, 
causes a different problem. How do we delete just one copy of the row for member 153 in TeamB? Because 
the entire rows are the same, we can’t differentiate them, and so any query that deletes one row will delete 
both. You software might have a tabular-like interface that will allow you to delete just one of the rows, but if 
not you may have to delete both rows and manually add one back. If there are a lot of duplicate values, then 
another way to resolve the situation is to create a new table and then insert just the distinct values from the 
original table. The following query shows how to populate the new table  NewMembership : 

   INSERT INTO NewMembership 
 SELECT DISTINCT MemberID, Team 
 FROM Membership; 

   2  This is the difference between a relation that is defined as having unique tuples and a table that can have duplicate rows. 
See Appendix 2 for further information.  
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   You will then need to remove all the foreign key constraints referencing the old table, delete that table, 
rename the new table, and recreate the foreign keys. It’s easier to make sure every table has a primary key 
from the start!  

     Tables with Missing Foreign Keys 
 Another problem is having a  Membership  table (as in Figure  12-3 ) with no  foreign key constraints  . We can 
then find ourselves with the problem of having a row for member 1118 being in TeamA when no member 
1118 is listed in the  Member  table. We will not be able to add a foreign key constraint if the data has this sort of 
problem. 

 There are several ways to find such values of  MemberID  in the  Membership  table that do not have a 
matching entry in the  Member  table. One way is to use a nested query (discussed in Chapter   4    ), as shown here: 

   SELECT ms.MemberID FROM Membership ms 
 WHERE ms.MemberID NOT IN 
      (SELECT m.MemberID FROM Member m); 

   Having found the unmatched values for  MemberID , we will then have to decide if it is a typographical 
error or if we are missing a member from the  Member  table. 

 When the data is in a consistent state it will be possible to add a foreign key constraint to the 
 Membership  table to make sure it stays that way. The following query will add the constraint to the  MemberID  
field: 

   ALTER TABLE Membership 
 ADD FOREIGN KEY (MemberID) 
 REFERENCES Member; 

        Similar Data in Two Tables 
 Sometimes a database might have extra tables that are not required and will cause problems. An example for 
our club database might be having a separate table for coaches or managers, as shown in Figure  12-4 . The 
rationale might have been that the extra table would make it easier to create lists of coaches and their phone 
numbers (which would otherwise require a self join or nested query).  
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  Figure 12-4.    An additional table for coaches can lead to  inconsistent data         

 The additional table will inevitably cause problems. In Figure  12-4 , we already see inconsistent data for 
William Cooper’s phone number. The only real cure is to get rid of the extra table. 

 If the purpose of an additional table like the one in Figure  12-4  is unclear, we can use set operations to 
investigate which members appear in each of the tables. The intersection operator will find rows for people 
who are in both tables, and the difference operator will find those people who are in one and not the other. 
This may help with understanding what the tables represent. 

 Once the design is correct, creating a view that shows the coach information would be helpful for users 
who don’t want to be creating self joins every time they want information just about coaches. The following 
query does the trick: 

   CREATE VIEW CoachInfo AS 
 SELECT * FROM Member 
 WHERE MemberID IN 
     (SELECT Coach FROM Member); 

        Inappropriate Types 
 Having the fields in a table created with inappropriate types is another problem that can make queries look 
as though they are not behaving. I’ve seen whole databases where every field is a default text field. 

 Having the wrong field type means the data misses a great deal of validity checking. For example, if our 
 Member  table had all text fields, we could end up with values like “16a” or “1o” in the  Handicap  column, which 
should only have integer numbers, or text like “Brenda” in the  Coach  column, which should only contain IDs 
of members. 
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 Incorrectly entered values aside, inappropriate types give rise to other problems. Each type has its 
own rules for ordering values. Text types order alphabetically, numbers order numerically, and dates order 
chronologically. Different orderings clearly will be an issue if we add an  ORDER BY  clause to a query. A text 
field containing numbers will order alphabetically, giving an order like “1,” “15,” “109,” “20,” “245,” and “33,” 
as described in Chapter   2    . 

 Incorrect types also cause problems when making comparisons. If we ask for values to be compared, 
the comparison used will depend on how the particular field type involved is ordered. For numbers entered 
in a text field, we will get comparisons such as “109” < “15” or “33” > “245” as per the ordering described 
in the previous paragraph. This will cause some odd output if we ask for people with handicaps less than 
5, for example. It can be difficult to sort out what is going wrong, because the query syntax is fine and the 
data appears to be OK. Going behind the scenes to check out the data type might not be something that is 
immediately obvious. 

 It is possible to change the type of a column in an existing table, but I find it a bit scary. For example, 
if you change from text to numeric values, “10” will probably be fine but “1o” will cause an error. I prefer a 
more conservative approach: I make a new table with the appropriate types, and then insert the old values 
with the aid of a conversion function. The query that follows shows how we could populate a new table 
 NewMember  with IDs and names and with the old text values for the  Handicap  column converted to  numeric 
values:   

   INSERT INTO NewMember (MemberID, LastName, FirstName, Handicap) 
 SELECT MemberID, LastName, FirstName, CONVERT(INT Handicap) 
 FROM Member; 

   This way, we still have the original data if the conversions result in something unexpected.   

     Problems with Data Values 
 Even with a well-designed database, we still have the issue of the accuracy of the data that has been entered. 
As the query designer, you can’t be held responsible for some accuracy problems. If a person’s address has 
been entered incorrectly, there is not much anyone can do to find or fix the problem (apart from waiting for 
the mail to be returned to sender). However, you can be aware of a number of things, and even if you can’t fix 
the problems, you can at least raise some alarms. In addition, it is sometimes possible to fix some problem 
data with careful use of update queries. 

     Unexpected Nulls 
 Nulls can cause all sorts of grief in databases. The real problem (as discussed in Chapter   2    ) is that a null can 
mean either that the value is unknown or that the value doesn’t apply for a particular record. If a member in 
our club has a null value for his  Team  field, it could mean he isn’t on a team or it could mean that he is on a 
team but we haven’t recorded which one. As with other data problems, there is not much we can do about 
this. However, with something like the  Gender  field, we know that for the golf club, all members need to 
identify as either male or female. The nulls mean that for some members the gender has not been recorded. 
The same applies to fields like date of birth. 

 If, for example, you are asked for a list of the men in the club, it is often a good idea to also run another 
query for those rows where  Gender IS Null . You can then say to your client, “Here are the men, and here 
are the members I’m not sure about.” Such an approach can help avoid letters from aggrieved gentlemen 
who don’t appear on the list. 

 Be aware of the differences between queries with the following two counts:   COUNT(*)    and 
  COUNT(Gender)   . The first will count all the rows in the database; the second will count all the rows with a 
non-null value for gender. In the ideal golf club, these would be the same. In practice, they may not be.  
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     Incorrect or Inconsistent Spelling 
 Any database will have spelling mistakes in the data at some point. Mr. Philips may appear as Phillips, 
Philipps, or Philps for various reasons, ranging from illegible handwriting on the application form to a 
simple data-entry mistake. If you are trying to find information about Mr. Philips and you suspect there 
might be a problem, you can use functions or wildcards to find similar data. Different products have different 
ways of doing this. 

 We can use the keyword  LIKE  to find similar spellings. The wildcard symbol  %  ( *  in Access) stands for 
any group of characters. Our several versions of spelling for Philips would all be retrieved by the following 
query: 

   SELECT * FROM Member 
 WHERE LastName LIKE 'Phil%'; 

   Another problem involving incorrect or  inconsistent spelling   arises when you might be expecting a 
particular set of values or categories in a field. For example, in our  Member  table, we might be expecting 
values  M  or  F  in the  Gender  column, but there may be the odd  male  or  m  value. In the  MemberType  column, 
we expect  Junior ,  Senior , or  Associate , but in practice may find  jnior  or  senor . If the tables have been 
designed with appropriate check constraints or foreign keys, this won’t be a problem. However, often these 
constraints are not present, so it is useful to check for problematic entries with a query such as the one here: 

   SELECT * FROM Member 
 WHERE MemberType NOT IN ('Senior', 'Junior', 'Associate'); 

   Having found the rows that do not conform to expectations it may be possible to amend the data and 
then apply a check constraint so that it remains consistent. For example, the following query will apply a 
constraint on the  MemberType  field so that only the valid values can be entered: 

   ALTER TABLE Member 
 ADD CONSTRAINT Chk_type CHECK(MemberType IN 
    ('Senior', 'Junior', 'Associate')); 

        Extraneous Characters in Text Fields 
 A common problem when trying to retrieve data that matches a text value is leading or trailing spaces and 
other nonprintable characters that have found their way into the data. 

 If we have a field like  FirstName  in our database, for example, we may find that there are some spaces 
before or after the name. Sometimes, if a character field is specified as being a particular length, trailing 
spaces may be added. If a row has a name has been stored as  '  Dan  '  then a  WHERE  clause with the 
condition  FirstName = 'Dan'  may not retrieve that row. Most database software will have several functions 
for dealing with text. There are likely to be forms of  trim  functions, which remove spaces from the start and 
end of text values. Check out your documentation to see what your implementation has. 

 The   RTRIM()  function   in the SQL statement that follows will strip any spaces from the right end of the 
 FirstName  value before making the comparison: 

   SELECT * FROM Member 
 WHERE RTRIM(FirstName) = 'Dan'; 
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   The preceding query does not strip the spaces from the field permanently.  The RTRIM()  function just 
returns a value without the spaces in order to make the comparison. However, you can use update queries 
to permanently remedy some of these data inconsistencies. The query that follows shows how to ensure no 
values in the  FirstName  column of the  Member  table have any leading ( LTRIM() ) or trailing ( RTRIM() ) spaces. 
It essentially replaces all the values with trimmed values: 

   UPDATE Member 
 SET FirstName = RTRIM(LTRIM(FirstName)); 

   A more disturbing problem is characters that look like spaces but are actually some other white space 
characters. This sometimes occurs when data is cut and pasted or otherwise moved between various 
products and different implementations. This can take some tracking down. 

 Two other data-entry gotchas are the numbers 0 (zero) and 1 (one) being entered instead of the letters 
o (oh) and l (el). You can spend hours trying to debug a query that is looking for “John” or “Bill,” but if the 
underlying data has been mistakenly entered as “J0hn” or “Bi11” you will search in vain. 

 The moral is that weird things can happen with data values, so when the troubleshooting of your query 
syntax fails, check the underlying data.  

     Inconsistent Case in Text Fields 
 If your  SQL implementation   is case sensitive, you need to be aware that some data values may not have 
the expected case. Dan may have had his first name incorrectly entered into the  Member  table as “dan.” In 
case-sensitive implementations, a query with the clause  WHERE FirstName = 'Dan'  will not retrieve his 
information. As mentioned in Chapter   2    , using a function that converts strings of characters to uppercase 
will help find the right rows. In the query that follows we convert  FirstName  (temporarily) to uppercase, and 
then compare that with the uppercase rendition of what we are seeking: 

   SELECT * FROM Member 
 WHERE UPPER(FirstName) = 'DAN'; 

   It is quite difficult to find problems with case in names because not all names conform to being 
lowercase with an uppercase first letter; for example, de Vere and McLennan. But, for fields like  Gender  (M 
or F) or  MemberType  (Junior, Senior, or Associate), we know what we expect the values to be. The best way to 
ensure that they are consistent is to put a check constraint on the field as discussed earlier in this chapter.   

     Diagnosing Problems 
 In the previous sections, we saw problems that can arise with poor database design and inconsistent or 
incorrect data. Much of the time, however, if the result of your query is not looking quite right, it is probably 
because you have the wrong SQL statement. The statement may be retrieving rows that are different from 
what was expected. In Chapter   10     there is a section on some ways that you can check to see if the result of a 
query is what is expected. 

 In the previous chapter, I suggested a way to approach queries that lets you build the query up slowly so 
you can check that each step is returning appropriate rows. However, if you are presented with a full-blown, 
complex query that is not delivering as expected, you need to pare it down until you find where the problem 
lies. If you have noticed a problem, then you have a good place to start. You have either noticed an expected 
row is missing or that a row not satisfying the requirements has been retrieved. Concentrate on finding 
where in the query that problem is. The following sections offer some suggestions. 

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://dx.doi.org/10.1007/978-1-4842-1955-3_10
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     Check Parts of Nested Queries Independently 
 Where you have one query nested inside another, the first thing to check is that the  nested   part is behaving 
itself. Take a look at this query: 

   SELECT * 
 FROM Member m 
 WHERE m.MemberType = 'Junior' AND Handicap < 
       (SELECT AVG(Handicap) 
       FROM Member); 

   If you are having trouble with a query like this, cut and paste the inner query and run it independently. 
Check to see if it is returning the correct result. If this is OK, you can try doing the outer query on its own. To 
do this, just put some value in place of the inner query (such as  Handicap < 10)  and see if that returns the 
correct results. If you can narrow down the problem to one part of the query, you have made a good start. 

 This approach doesn’t work if the inner and outer parts of the query are related (see Chapter   4    ), but 
some of the following techniques might help with that situation.  

     Understand How the Tables Are Being Combined 
 Many queries involve  combining tables   with relational operations (join, union, and so on). Make sure you 
understand how the tables are being combined and whether that is appropriate. Consider a query such as 
the following: 

   SELECT m.LastName, m.FirstName 
 FROM Member m, Entry e, Tournament t 
 WHERE m.MemberID = e.MemberID 
 AND e.TourID = t.TourID AND t.TourType = 'Open' AND e.Year = 2014; 

   Three tables are involved in this query. It might take a moment to figure out that they are being joined. 
Make sure that is appropriate for the question being asked. Chapter   10     has examples of keywords in 
questions and the appropriate ways to combine tables.  

     Remove Extra WHERE Clauses 
 After combining tables, usually only some of the resulting rows are required. In the query in the previous 
section, only part of the   WHERE  clause   is needed for the join operations. After the join, only the rows satisfying 
 t.TourType = 'Open' AND e.Year = 2014  are retained. If you have rows missing from your result, it is often 
useful to remove the parts of the  WHERE  clause that are selecting a final subset of the rows after the join. If the 
rows are still missing, then you know that (for this example) the problem is occurring in the join.  

     Retain All the Columns 
 I’m a big fan of always saying  SELECT *  in the early stages of developing queries that involve joins. If we suspect 
a problem with the joins, then by leaving all the columns visible, we can see if the join conditions are behaving 
as expected. Once we are happy with the rows being retrieved, we can retain just the columns required. 

 However, if we are combining tables with set operations, this approach will be counterproductive, as 
projecting the right columns is critical (see the “Do You Have Correct Columns in Set Operations” section 
later in this chapter).  

http://dx.doi.org/10.1007/978-1-4842-1955-3_4
http://dx.doi.org/10.1007/978-1-4842-1955-3_10
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     Check Underlying Queries in Aggregates 
 If you have a problem with a query involving an aggregate (for example,  SELECT AVG(Handicap) FROM ... 
WHERE ... ) check that you have retrieved the correct rows before the aggregate function is applied. Change 
the query to  SELECT * FROM ... WHERE ... , and confirm that this returns the rows for which you want to 
find the average. In fact, I recommend always doing this with an aggregate, because it is difficult to otherwise 
check if the numbers being returned are correct.   

     Common Symptoms 
 Having tried some of the steps in the previous chapter, you will have simplified your query to isolate where 
the problem is. In this section, we will look at some specific symptoms and some likely causes. 

     No Rows Are Returned 
 It is usually easy to spot a problem with your query when no rows are returned and you know that some 
should be. Questions that involve “and” or “both” can often have this problem. For example, consider a 
question such as “Which members have entered tournaments 24 and 36?” A common first attempt (and I 
still catch myself doing this sometimes) is a query statement such as: 

   SELECT * FROM Entry 
 WHERE TourID = 24 AND TourID = 36; 

   The preceding query asks for a row from the  Entry  table where  TourID  simultaneously has two different 
values. This never happens, and so no rows are retrieved. The cure is to use a self join (covered in Chapter   5    ) 
or an  intersection operation   (covered in Chapter   7    ). 

 Getting no rows returned from a query may also be an extreme example of one of the problems in the 
next section.  

     Rows Are Missing 
 It can be difficult to spot if some rows are being  missed   by your query, especially when the set of retrieved 
rows is large. If you get 1,000 rows returned, you might not notice that one is missing. Careful testing is 
required, and some ideas for how to do this were discussed in Chapter   10    . It is often worthwhile to run 
through the following list of common errors to see if any might apply. 

   Should You Have an Outer Join? 
 Using an inner join when an  outer join   is required is a very common problem. Suppose that we are trying 
to get a list of member information that includes names and fees. For this, we need the  Member  table (for the 
names) and the  Type  table (for the fees). A first attempt at a query might be as follows: 

   SELECT m.LastName, m.FirstName, t.Fee 
 FROM Member m, Type t 
 WHERE m.MemberType = t.Type; 

http://dx.doi.org/10.1007/978-1-4842-1955-3_5
http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://dx.doi.org/10.1007/978-1-4842-1955-3_10
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   We know there are, say, 135 members, but we are getting only 133 rows from the query. The issue here 
is that we are performing an inner join (see Chapter   3    ), so any members with a null value for member type 
will not appear in the result. Of course, this may be the result you want (those members who have a type and 
fee), but it is not the correct output if you want a list of all members and the fees for those who have them. 

 An outer join (also discussed in Chapter   3    ) that includes all the rows of the  Member  table will solve this 
problem. Whenever you have a join, it is worth thinking about the join fields and considering what you want 
to happen where a row has a null value in that field.  

   Have Selection Conditions Dealt with Nulls Appropriately? 
 Nulls can cause quite a few headaches if you forget to consider their effect on your queries. The previous 
section looked at nulls in a joining field. You also need to remember to check for comparisons involving 
fields that may contain nulls. We looked at this in Chapter   2     and also earlier in this chapter. 

 Consider two queries on the  Member  table with selection conditions  Gender = 'M'  and  Gender <> 'M' . 
It is reasonable to think that all rows in the  Member  table should be returned by one of these queries. 
However, rows with a null in the   Gender  field   will return  false  for both these conditions (any comparison 
with a null returns  false ), and the row will not appear in either result. 

 Say we want to get a list of members of our club who are not particularly good players (to offer them 
coaching, perhaps). Someone may suggest a query like the following to find members who do not have a low 
handicap: 

   SELECT * 
 FROM Member m 
 WHERE m.Handicap > 10; 

   The problem is that the preceding query will miss all the members with no handicap. Altering the  WHERE  
condition to  m.Handicap > 10 OR m.Handicap IS Null  will help in this situation.  

   Are You Looking for a Match with a Text Value? 
 It is very disturbing to be trying to find  rows   for Jim, to be able to see Jim in the table, and to have your query 
return nothing. This may be caused by one of the problems we looked at in the “Problems with Data Values” 
section earlier in this chapter. 

 One quick way to eliminate the possibility of dodgy text values is to use  LIKE  for comparisons. For 
example, where you have  = 'Jim' , replace it with  LIKE '%Jim%' . If the query then finds the row you were 
expecting (possibly along with some others), you know the problem is with the data. As noted earlier, putting 
the wildcard  %  (or  *  in Access) at the beginning and end of the string will find leading or trailing spaces and 
other nonprintable characters.  

   Have You Used AND Instead of OR? 
 We discussed the problem of queries involving the words  and  or  or  in the previous chapter (in the “Spotting 
Key Words in Questions” section). I’ll recap briefly. The word  and  can be used in natural English to describe 
both a union and an intersection. When we say “women  and  children,” we usually mean the  union  of the set 
of females and the set of young people. When we say “cars that are small  and  red,” we mean the  intersection  
of the set of small cars and the set of red cars. 

http://dx.doi.org/10.1007/978-1-4842-1955-3_3
http://dx.doi.org/10.1007/978-1-4842-1955-3_3
http://dx.doi.org/10.1007/978-1-4842-1955-3_2
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 If we are looking for “women and children” and use the selection condition  Gender = 'F' AND age < 12 , 
we are actually retrieving the intersection of women and children (or girls). We need the condition to be 
 Gender = 'F' OR age < 12 . 

 It is very easy to unwittingly translate the  and  in the English question to an  AND  in the query 
inappropriately, which can result in missing rows. If in doubt, try drawing the Venn diagrams described in 
the previous chapter.  

   Do You Have Correct Columns in Set Operations? 
 If your query involves intersection or difference operations, the result may have fewer rows than expected 
because you have projected the wrong columns initially. We looked at this in Chapter   7    . Here is a brief 
example for intersection; the same issue applies to difference  operations   as well. 

 We want to find out who has entered both tournaments 25 and 36. We realize that we need an 
intersection and try the following query: 

   SELECT * FROM Entry 
 WHERE TourID = 25 
 INTERSECT 
 SELECT * FROM Entry 
 WHERE TourID = 36; 

   No rows will be returned from this query, regardless of the underlying data. The intersection finds rows 
that are exactly the same in each set. However, all the rows in the first set will have 25 as the value for  TourID  
25, and all the rows in the second set will have the value 36. There can never be a row that is in both sets. 
What we are looking for is the member IDs that are in both sets, so the  SELECT  clauses in each part of the 
query should be  SELECT MemberID FROM Entry . 

 The preceding query is an extreme example of retaining the wrong columns, resulting in no rows 
being returned. The discussion around Figure   7-14     in Chapter   7     shows how retaining different columns 
in intersection and difference queries can result in very different results. You need to ensure that you are 
retaining the columns that are appropriate for the question being asked.   

     More Rows Than There Should Be 
 It is often easier to spot extra rows than it is to notice that rows are missing from your query result. You only 
need to see one record that you weren’t expecting, and you can concentrate on the different parts of your 
query to see where it failed to be excluded. Here are a couple of causes of extra rows. 

   Did You Use NOT Instead of Difference? 
 With questions containing the words  not  or  never , a sure way to get extra rows is to use a condition in a  WHERE  
clause when you really need a difference operator. We looked at this issue in Chapter   4    . To recap, consider a 
question like “Which members have never entered tournament 25?” A common first attempt using a select 
condition is: 

   SELECT * FROM Entry 
 WHERE TourID <> 25; 

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://dx.doi.org/10.1007/978-1-4842-1955-3_7#Fig14
http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://dx.doi.org/10.1007/978-1-4842-1955-3_4


CHAPTER 12 ■ COMMON PROBLEMS

208

   The condition in the  WHERE  clause checks rows one at a time to see if they should be included in the 
result. If there is a row for member 415 entering tournament 36, then that row will be retrieved, regardless 
of the possibility that another row shows member 415 entered tournament 25. For example, if member 
415 has entered tournament 25 and four other tournaments, we will retrieve four rows when we were 
expecting none. 

 The correct procedure for this type of question is to use a nested query (see Chapter   4    ) or the   EXCEPT  
difference operator   (see Chapter   7    ). We need to find the set of all members (from the  Member  table) and 
remove the set of members who have entered tournament 25 (from the  Entry  table). 

 If we employ the process approach we might come up with the following query, which looks for the 
difference between the two sets: 

   SELECT MemberID FROM Member 
 EXCEPT 
 SELECT MemberID FROM Entry 
 WHERE TourID = 25; 

   If we started with an outcome approach we might have arrived at a nested query, as here: 

   SELECT MemberID FROM Member 
 WHERE MemberID NOT IN 
      (SELECT MemberID FROM Entry 
       WHERE TourID = 25); 

      Have You Dealt with Duplicates Appropriately? 
 It sometimes takes a little thought to decide what needs to be done with  duplicate records   retrieved from a 
query. By default, SQL will retain all duplicates. The following two requests sound similar:

•    Give me a list of the names of my customers.  

•   Give me a list of the cities my customers live in.    

 In the first, we probably expect as many rows as we have customers; if we have several Johns, we 
expect them all to be retained. In the second, we expect one row per city. If we have 500 customers living in 
Christchurch, we don’t expect all 500 rows to be returned. 

 In the query to find the cities, we want only the distinct values, so we should use the  DISTINCT  keyword: 

   SELECT DISTINCT (City) FROM Customer; 

         Incorrect Statistics or Aggregates 
 If we are using aggregates such as counting, grouping, or averaging and the underlying query misses rows 
or returns extra rows, then clearly the statistics will be affected. A couple of other things to consider are how 
nulls and duplicates are being handled. 

 SQL will not include any null fields in its  statistics  . For example,  COUNT(Handicap)  or  AVG(Handicap)  
will ignore any rows with nulls in the  Handicap  field. It is also important to consider what you want done 
with duplicates, especially for counting functions.  COUNT(Handicap)  will return the number of members who 
have a value in the  Handicap  column.  COUNT(DISTINCT Handicap)  will return the number of different values 
in the  Handicap  column; if all the members have a handicap of 20, it will return a count of 1.  

http://dx.doi.org/10.1007/978-1-4842-1955-3_4
http://dx.doi.org/10.1007/978-1-4842-1955-3_7
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     The Order Is Wrong 
 If you have used an   ORDER BY  clause   in your query and you are having problems with the order in which the 
rows are being presented, there is often a problem with the underlying data. Review the “Problems with Data 
Values” section earlier in this chapter. Check that the field types are appropriate (for example, numeric values 
aren’t being stored in text fields) and that text values have consistent case and no extraneous characters.   

     Common Typos and Syntax Problems 
 Sometimes a query doesn’t run because of some simple problem with the syntax  —  that is, the way the 
query is worded. Syntax problems involve things like missing parentheses or incorrect spellings of fields or 
keywords. Hopefully the database software will alert you if there is a problem with the syntax, but, as some 
editors are quite basic, that may or may not be helpful in finding and correcting the problem. Here are a few 
things to check:

•     Quotation marks : Most versions of SQL require single quotation marks around text 
values, such as  'Smith'  or  'Junior' , although some use double quotation marks 
in some circumstances. If you are cutting and pasting queries, be sure the correct 
quotation marks have been transferred. When I cut and paste the queries in this 
book from Word to Access, the quotation marks look OK, but I need to re-enter them. 
Also check that all the quotation marks are paired correctly. Don’t use quotes around 
numeric values. Something like  Handicap < '12'  will cause problems if  Handicap  is 
a numeric field.  

•    Parentheses:  These are required in nested queries and also can be used to help 
readability in many queries (such as those with several joins). Check that all the 
brackets are paired correctly.  

•    Names of tables and fields : It seems obvious that you need to get the names of tables 
and fields correct. However, sometimes a simple misspelling of a table name or field 
can cause an unintelligible error message. Check carefully.  

•    Use of aliases : If you use an alias for table names (for example,  Member m ), check that 
you have associated the correct alias with each field name.  

•    Spelling of keywords : Some software for constructing SQL queries will highlight 
keywords, so it is very apparent if you have spelled them incorrectly. If your version 
doesn’t show this, then check keyword spelling, too. I often type  FORM  instead of  FROM  
or  AVERAGE()  instead of  AVG() .  

•    IS Null   versus   = Null : Some versions of SQL treat these quite differently.  IS Null  
always works if you are trying to find fields with a null value.     
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     Summary 
 Before you can correct a query, you need to notice that it is wrong in the first place. It is preferable that we 
find potential problems before our users find them for us. Always check the rows returned from a query, as 
described in the previous chapter. When you do discover errors, the following are some ideas for tracking 
down the cause of the problem:

•    Check that the underlying tables are combined appropriately (join, intersection, and 
so on).  

•   Simplify the query by removing selection conditions and aggregates to ensure the 
underlying rows are correct.  

•   Retain all the columns in a query with joins until you are sure that the tables have 
been combined appropriately.  

•   Check each part of nested queries or queries involving set operations independently.  

•   Check queries for questions with the words  and  or  not  to ensure you have not used 
selection conditions when you need a set operation or nested query.  

•   Check that the columns retained in queries with set operations are appropriate.  

•   Check that nulls and duplicates have been dealt with properly.  

•   Check that underlying data types are correct and that data values are consistent.         
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         APPENDIX   1    

   Example Database 

 Most of the examples in this book use the golf club database. Visit the catalog page for this book on the 
Apress website, look under the Source Code/Downloads tab, and you will find an Access version of this 
database and also the SQL scripts for creating and populating the tables. Figure  A1-1  shows how the tables in 
the database are related, and Figure  A1-2  shows the data in the tables.          

  Figure A1-1.    The data model for the golf club database       
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  Figure A1-2.    The tables and data for the  golf club database         
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APPENDIX 2

Relational Notation

Relational database theory is based on set theory.1 When we query a database we are essentially formulating 
a question to retrieve a subset containing the information we require. There are two approaches for 
retrieving a subset of data. Relational algebra is a description of the operations to perform on the data  
(in the body of the book we called this the process approach). Relational calculus describes conditions that 
the retrieved data must satisfy (we referred to this as the outcome approach). In this appendix we introduce 
the formal notation to formulate queries using relational algebra and calculus. This will allow you to think 
about queries from a different perspective. If you are interested in following up on the formal mathematics, 
There are more theoretical publications available.2 No new concepts are presented here that have not been 
discussed previously—it is just the notation that is different. The more formal notation allows queries to 
be expressed very concisely, and the underlying mathematics can be useful when dealing with complex 
situations. We will use the database described in Appendix 1 for the examples.

Introduction
As an example of how thinking of data as sets can help us, let’s consider a set that contains information 
about all the people on Earth. We can define a subset that contains all the men, another that contains all the 
golfers, another that contains people over 40, and another that contains Italians. These sets can all overlap, 
as shown in the diagram in Figure A2-1. This type of diagram is called a Venn diagram.

1The relational theory was first introduced by the mathematician E. F. Codd in June 1970 in his article “A Relational 
Model of Data for Large Shared Data Banks” in Communications of the ACM: 13, pp. 377–387.
2For example: Databases in Depth: Relational Theory for Practitioners by C.J. Date (City, state: O’Reilly, 2005).
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Figure A2-1 helps us visualize the sets that satisfy criteria such as Italian men over 40 who play golf (the 
area where all the circles overlap) or people who don’t play golf (everywhere in the large rectangle except 
the Golfers circle). These two areas are easy to describe; however, it is not always simple to define the subset 
we require. The area containing Italian golfers who are 40 or under takes a bit more effort to find, and it is 
difficult to describe without the diagram to help.

A database is only useful if you can accurately extract the appropriate subset of data when you need it. 
As the criteria become more complex and the number of tables increases, it can become difficult to keep 
everything in your head and correctly describe what you are trying to find. It is in these more complex 
situations that having a more formal and succinct notation can be very helpful.

Relations, Tuples, and Attributes
It is common to think of a database as a number of tables. A table (e.g., Person) will have a several columns. 
Each row in the table represents an individual person with the appropriate values for that person appearing 
in each column. More formally, a database is referred to as a set of relations, and each relation is a set of 
tuples. A tuple is a set of attribute values; for example, {Ali, Brown, 2/8/1967}.

A relation consists of a heading and a body. The heading is a description of the data that is contained in 
the relation. Part of that description is a set of attribute names; for example, {FirstName, LastName, Date_of_
Birth}. In addition, each attribute has a domain, or set of allowed values. For example, Date_of_Birth must 
be a valid date. A domain can be a primitive type (e.g., integer, string) or a user-defined type (e.g., WeekDays 
= {Mon, Tue, Wed, Thu, Fri, Sat, Sun}). A database schema is the set of headings for all the relations plus any 
constraints that have been defined.

Figure A2-1. Venn diagram showing subsets of people
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The body of the relation contains the data values. It consists of tuples containing values for each of the 
attributes.

Table A2-1 shows analogous terms for the two ways of describing a database.

Figure A2-2. A relation is a set of tuples.

Table A2-1. Comparative Terms

Relational Term Database Term

Database (set of relations) Database

Relation (set of tuples) Table

Tuple (set of attribute values) Row

Attribute name Column Name

Domain Column datatype (primitive or user defined)

The main differences between an (unkeyed) table and a relation or set of tuples are that there is no 
order to the tuples and each tuple must be unique.

Figure A2-2 shows how we can visualize a relation as a set of tuples.

The traditional way of representing a set in a Venn diagram, as in Figure A2-1, reinforces the concept 
that there is no order to elements in a set. There is no first or next or previous element. The usual format 
for a table can imply that the rows have some sort of intrinsic order. When you query a database then, 
theoretically, the tuples returned have no guaranteed order unless you specify an order as part of the query. 
In practice, a simple query is likely to return rows in the same order each time it is repeated because under 
the hood the same operations will be carried out. However, with large tables, as the number of tuples 
changes the number and order of the operations may change to improve efficiency, or data that has been 
previously cached may be accessed first. These may affect the order in which tuples are returned.
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As discussed in Chapter 1, having unique tuples in a relation is essential if we are going to be able to 
identify our data correctly. If, in the relation in Figure A2-2, we found we had another person called John 
Smith born on 2/6/1988 we would be in trouble, because we would not be able to distinguish the tuples for 
the two people. We need enough information stored about people so that they can be differentiated. The 
concept of a primary key (a set of attributes that must be unique for every tuple) ensures uniqueness.

Once we think of our data as sets of tuples then all the power of set operations is at our disposal.

SQL, Algebra, and Calculus
SQL is a language that is mostly based on relational calculus. Relational calculus describes the conditions 
the retrieved tuples must obey. In the following SQL query, the WHERE clause describes the resulting tuples:

SELECT LastName, FirstName, Handicap, PracticeNight
FROM Member, Team
WHERE TeamName = Team AND Handicap < 15;

Although SQL is a calculus-based language, more and more keywords suggesting set operations from 
relational algebra have been included in the syntax over the years. In many cases this makes the queries 
easier to understand. The preceding query can also be written using the syntax associated with the relational 
algebra inner join operation, as follows:

SELECT LastName, FirstName, Handicap, PracticeNight
FROM Member INNER JOIN Team ON TeamName = Team
WHERE Handicap < 15;

The preceding SQL appears to suggest that the join is carried out first and then those tuples with 
Handicap < 15 are retrieved. This is not the case in practice. SQL is simply a description of the resulting 
tuples and does not imply how the query will be carried out. The database’s query optimizer will determine 
how the tuples are retrieved, and a good optimizer would carry out the two queries in the same (most 
efficient) way.

In the remainder of this appendix we will look at a more formal notation for relational algebra and 
calculus. I will often provide an equivalent SQL expression and will choose one that is similar to the algebra 
or calculus depending on the section. The important thing to remember is that all SQL expressions are 
descriptions of the query output, and the way they are expressed does not necessarily determine the 
operations involved in retrieving the resulting data.

Relational Algebra: Specifying the Operations
With relational algebra, we describe queries by considering a sequence of operations or manipulations 
on the relations in the database. Some operations act on one relation (unary operations), while others 
are different ways of combining data from two relations (binary operations). Every time we perform an 
operation on one or more relations the result is another relation. This is a very powerful concept and means 
we can build up complicated queries in small steps by taking the result of one operation and applying 
another operation to it.

The relational algebra operations and the symbols commonly used to represent them are shown in 
Table A2-2.

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
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The operations are not completely independent. For example, later we will see that an inner join is 
defined as a Cartesian product followed by a select and a project. The first five operators in Table A2-2 can 
be used to define the final three, which is why SQL does not need to provide keywords representing division 
and intersection. However, it is convenient to be able to specify the equivalent SQL for an operation such as 
inner join because it occurs so frequently in database queries. We will now introduce a more formal notation 
for each of the operations and show how it can be used to specify queries.

Select
The select operation returns just those tuples from a relation that satisfy a particular condition involving 
the attributes. An example of using a select operation would be to retrieve all the senior members from our 
Member relation. The Greek letter sigma (σ) stands for the select operation, and the condition, MemberType = 
'Senior', is specified in a subscript. The following expression shows the notation for using select to return 
senior members:

σMemberType Senior Member= ( )′ ′

Each tuple in the relation Member is investigated, and if the tuple meets the condition it is included in 
the resulting relation. In table terms, the select operator retrieves a subset of the rows of the table. All of the 
attributes or columns are returned.

In SQL the WHERE clause contains the condition for the select operator and controls the tuples or rows 
that are returned. The SQL equivalent of the select operation σMemberType Senior Member= ( )′ ′  is:

SELECT *
FROM Member m
WHERE m.MemberType = 'Senior';

Note that the SELECT keyword in SQL has nothing directly to do with the relational algebra select 
operation. More about that in the next section.

Table A2-2. Relational Operators and Their Symbols

Operation Symbol

select σ

project π

Cartesian product ×

union ∪
difference -

inner join ⋈
intersection ∩

division ÷
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Project
The project operation returns a relation where the attributes are a subset of the attributes of a relation. The 
project operator is denoted by π (pi), and the attributes are listed in a subscript. In table terms, project 
returns a subset of the columns of a table. The following statement would return the FirstName and 
LastName attributes from every tuple in the relation Member:

πFirstName LastName Member
, ( )

How many tuples or rows would you expect to be returned from the Member relation as a result of the 
operation π

FirstName
(Member)? The tuples consist of the single attribute FirstName. The Member relation 

has 20 tuples, but that includes two occurrences of William, two of Robert, and three of Thomas. Earlier I 
mentioned that the result of every operation results in another relation. The result of π

FirstName
(Member) must 

be a set of unique tuples. The duplicates will all be removed, leaving us with 16 unique names.
Think of the project operation as returning all the unique combinations of values for the specified 

attributes.
In SQL the attributes to be returned by the project operator are specified in the SELECT clause. I know 

this seems perverse, but remember that SQL syntax is based on relational calculus, not on algebra. The SQL 
equivalent of the project operation π

FirstName, LastName
(Member) is:

SELECT DISTINCT FirstName, LastName
FROM Member;

Combining Select and Project
Because the result of an algebra operation on a relation always results in another relation, we can apply the 
operations successively. The following expression first uses the select operation to find all the tuples for 
senior members (the inner parentheses) and then applies the project operation to return just the names:

π σFirstName LastName MemberType Senior Member, = ( )( )′ ′

Does the order of the operations make a difference? Consider the following expression where the order 
of the select and project operations is reversed:

σ πMemberType Senior FirstName LastName Member= ( )( )′ ′ ,

The tuples resulting from the initial project operation (inner parentheses) have just the two attributes 
FirstName and LastName. The MemberType attribute is no longer in the tuples, so we cannot use it in the 
select condition. The algebra expression is not valid.

The SQL statement equivalent to our combined select and project operations is:

SELECT FirstName, LastName FROM Member
WHERE MemberType = 'Senior';

Because SQL is based on relational calculus rather than algebra, there is no concept of operations or 
order in the preceding statement. It is just a description of the tuples to be retrieved.
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For more complex queries it is sometimes helpful to introduce intermediate relations so we can break 
up the query into smaller steps. For example, we might call the relation resulting from the select operation 
SenMemb, as in the following:

SenMemb← ( )=σMemberType Senior Member′ ′

Now we can use the project operation on the newly named relation SenMemb to return the names:

πFirstName LastName SenMemb, ( )

In SQL we can use views to break down queries into simpler steps. A view can be thought of as 
instructions for creating a new temporary relation:

CREATE VIEW SenMemb AS
SELECT * FROM Member
WHERE MemberType = 'Senior';

The view can then be used in other queries:

SELECT LastName, FirstName
FROM SenMemb;

Cartesian Product
The select and project operations are both unary operations, which means they act on a single relation. 
We will now look at binary operations, which act on two relations. The result of both unary and binary 
operations is a single relation.

A Cartesian product is the most versatile binary operation because it can be applied to any two 
relations. The notation for a Cartesian product between two relations Member and Team is:

Member Team×

Each tuple in a Cartesian product will have a value for each attribute from the two contributing 
relations. The tuples in the resulting relation consist of every combination of tuples from the original 
relations. If one relation has N tuples and the other M, then the resulting relations will have N x M tuples. 
In table terms, the Cartesian product takes two tables of any shape and produces a table with a column for 
each column in the original tables and a row for every combination of the original rows. Figure A2-3 shows 
abbreviated Member and Team tables and their Cartesian product.
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The SQL for a Cartesian product use the keyword CROSS JOIN, as in the following statement:

SELECT * FROM Member CROSS JOIN Team;

Inner Join
In relational algebra an inner join is defined as a Cartesian product followed by a select operation that 
compares the values of attributes from the two original relations. The attributes being compared must have 
the same domains.

Referring to the tables in Figure A2-3, we can specify a Cartesian product followed by a select that will 
return only those tuples where the value of Team is the same as the value of TeamName:

σTeam TeamName Member Team= ×( )

We can use the join operation to produce an equivalent expression. The join symbol ⋈ is used, and the 
select, or join, condition is expressed in a subscript as shown in the following expression:

Member⋈ Team TeamNameTeam=

The preceding expressions are equijoins where the select condition uses equality. This is the most 
common type of join. The more general case is a θ-join (theta-join) where the expression can include 
comparisons such as > and <. A natural join is one where the two relations each have one or more attributes 
with the same name. By default, the join condition will be equality on the values of the attribute with the same 
name, and one of those duplicate attributes will be removed from the final result with a project operation.

When we have expressions involving several operations we often have a choice as to the order in which 
the operations are applied. For example, if we want to retrieve the practice night for Mr. Pollard, we can 
either select Pollard from the Member relation before the join or afterward from the result of the join. These 
two options are shown here:

π σPracticeNight LastName Pollard Me ber= =′ ′ m 
Team TeamName Team(( )( )

( ) =π σPracticeNight LastName= Pollard Member′ ′ 
Team TeamNaame Team( )

Figure A2-3. The Cartesian product of Member and Team
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The tuples resulting from the preceding two expressions are the same; however, the method for 
obtaining them is quite different. The first will involve first creating a large relation that is the Cartesian 
product of Member and Team. In the second expression, we reduce the number of tuples in the Member relation 
to just those for Pollard and then construct a much smaller Cartesian product. Clearly the second expression 
will be more efficient.

SQL being based on calculus rather than algebra does not imply any ordering of operations. While the 
SQL statement that follows might suggest that the join is carried out first, it is just a statement describing the 
tuples to be retrieved:

SELECT *
FROM Member INNER JOIN TEAM ON Team = TeamName
WHERE LastName = 'Pollard';

The query optimizer in a database system will determine an effective method for carrying out the query.

Union, Difference, and Intersection
Because a relation is defined as a set of tuples, the three binary set operations union (∪), difference (−), 
and intersection (∩) can be used for retrieving information. For relational algebra there is the additional 
constraint that the two relations involved in these operations must be union compatible. This means that the 
two relations must have the same number of attributes, and the corresponding attributes in each relation 
must be defined on the same domains.

For example, consider two relations with the following attributes:

Staff:{FamilyName, FirstName, Salary}
Students:{LastName, Name, Address, Course}

The set operations will help us to retrieve the names of all the people (union), the names of those 
people who are both students and staff members (intersection), and those who are students but not staff and 
vice versa (difference). (This, of course, makes naïve assumptions about the uniqueness of names!)

We cannot compare tuples in the relations as they stand because they have different attributes. Staff 
and Student are not union compatible. One has a Salary while the other has an Address and a Course. 
However, the names can be compared, as they have the same domains (text) in each relation. We can 
retrieve just the names by applying a project operation to each of the original relations as follows:

πFamilyName FirstName Staff, ( )

πLastName Name Student, ( )

Strictly speaking, for union compatibility the attributes should be identical (same name and domain). 
However, in practice just the domains need to be the same, and the order of the attributes determines what 
is compared. We can now apply any of the three set operations to the new union-compatible relations. For 
example:

π πFamilyName FirstName LastName NameStaff Student, ,( ) ( )
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The SQL expression is:

SELECT FamilyName, FirstName FROM Staff
UNION
SELECT LastName, Name FROM Student;

We can continue applying operations to the results of our expressions. If taken slowly it is quite 
straightforward. For example, if we want to find the names and salaries of those staff who are also students 
we can build up a series of relational algebra operations starting with the initial relations. See the following:

 1. Project out the names to get union-compatible relations.

 2. Use the intersection operation to find those staff who are also students.

 3. Join the result with the Staff relation so we have access to the Salary attribute.

 4. Project the Names and Salary attributes.

You can see each of these operations in the following expression—just read the brackets from the inside 
to the outside:

π πFamilyName FirstName Salary FamilyName FirstName Staff, , , ( )( ((  

πLastName Name Student, ( ))⋈ FamilyName LastName AND FirstName Name= = ( ))Staff

Union, difference, and intersection are not independent. An intersection can be expressed in terms of 
two difference operations. Assuming StaffNames and StudentNames are two union-compatible relations, we 
have that:

StaffNames StudentNames StaffNames StaffNames StudentNames = − −(( )

Draw yourself a sequence of pictures to convince yourself of this.
Some versions of the SQL language do not implement the INTERSECT keyword because the query can 

be restated, as just seen, using EXCEPT (the SQL syntax for difference). The following SQL query uses the 
INTERSECT keyword:

SELECT * FROM StaffNames
INTERSECT
SELECT * FROM StudentNames;

An equivalent query can be constructed using the EXCEPT keyword:

SELECT * FROM StaffNames
EXCEPT
(
    SELECT * FROM StaffNames
    EXCEPT
    SELECT * FROM StudentNames
);
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Division
Division is the last of the relational algebra operations we will consider. The easiest way to understand the 
division operation is with an example.

If we want to know which members of our club have entered every tournament, we need two pieces 
of information. We need information about the members and the tournaments they have entered, which 
we can get from the Entry table, and we also need a list of all the tournaments, which comes from the 
Tournament table.

In Figure A2-4, you can see how division works. It shows the MemberID and TourID attributes from the 
Entry relation, and the TourID attribute from the Tournament relation. The result of the division is the set of 
MemberID values that have a tuple in the Entry relation for every value TourID.

Figure A2-4. Using the division operator to find members who have entered all tournaments
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The relational algebra expression for the division operation in Figure A2-4 is as follows:

π πMemberID TourID TourID, Entry Tournament( ) ÷ ( )

There is no SQL keyword for the division operator. However, it is possible to express division in terms of 
other algebraic operations. It can be a bit daunting if presented in one step, so we will take it slowly.

First, find all the members who have entered a tournament and, by way of a Cartesian product, create 
tuples for each of those members paired with every tournament. We’ll call the resulting relation AllPairs:

AllPairs MemberID TourID= ( )× ( )π πEntry Tournament

Now we will remove from AllPairs the pairings that are in the Entry table by using a difference 
operation. If we project out the MemberID from the result we will have the IDs for members who are not 
associated with every tournament.

Unmatched MemberID MemberID TourID= − ( )( )π πAllpairs Entry,

By removing these unmatched MemberIDs from the MemberIDs in the Entry relation we will arrive at the 
result we require:

ResultDivision UnmatchedMemberID= ( ) −π Entry

We can use SQL views to express these same steps in a manageable way. First, create a view with all the 
pairs of members and tournaments:

CREATE VIEW AllPairs AS
SELECT M.MemberID, T.TourID FROM
(SELECT MemberID FROM Entry)M
CROSS JOIN
(SELECT TourID FROM Tournament)T;

Now create a view to find the unmatched pairs:

CREATE VIEW Unmatched AS
SELECT * FROM AllPairs
EXCEPT
SELECT MemberID,TourID
FROM Entry;

Now use these two views to find the result of the division; i.e., the MemberID of members who have 
entered every tournament:

SELECT MemberID FROM Entry
EXCEPT
SELECT MemberID FROM Unmatched;

If you are brave you could try to combine all these steps into one SQL query; however, we will look 
at a more manageable way to express the equivalent query using relational calculus in the section on the 
universal quantifier later in this Appendix.
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Relational Calculus: Specifying the Outcome
Relational algebra lets us specify a sequence of operations that eventually results in a set of tuples with 
the required information. Rather than specifying how to do the query, relational calculus describes what 
conditions the resulting data should satisfy. This section provides a very brief introduction to the notation 
for describing calculus queries without delving into the mathematics.

Simple Calculus Expressions
In informal language, a relational calculus description of a query has the following form:

I want the tuples that obey the following conditions....

More formally we can express the above as:

{ m | condition(m) }

The part on the left of the bar | specifies the attributes in the tuples we want returned, while the part on 
the right (often referred to as the predicate) describes the criteria they must satisfy. m is called a tuple variable 
and condition(m) is a function that must be true for each of the tuples m returned. Strictly speaking, the 
preceding notation is called tuple calculus. Another equivalent notation, which we will not pursue here, is 
domain calculus.

The following expression means that each returned tuple m must be from the Member relation and must 
have ‘Senior’ as the value of the attribute MemberType:

{m | Member(m) AND m.MemberType = 'Senior'}

We can further refine the expression to specify which attributes of the tuple m should be included in the 
result:

{m.LastName, m.FirstName | Member(m) AND m.MemberType = 'Senior'}

Because SQL is based on relational calculus, the equivalent SQL statement is an almost direct 
translation of the calculus expression, as we see here:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE m.MemberType = 'Senior';

The part on the left of the bar | in the calculus expression becomes the SELECT clause, Member(m) 
becomes the FROM clause, and the rest of the expression makes up the WHERE clause. In SQL the m is can be 
referred to as a table alias, but it is useful to think of it as tuple variable as well.

Free and Bound Variables
The following calculus expression retrieves members’ names and the fee associated with their membership 
type. It is essentially an inner join between the Member and Type relations.

{m.LastName, m.FirstName, t.Fee | Member(m) Type(t) AND m.MemberType = t.Type}



APPENDIX 2 ■ RElAtIoNAl NotAtIoN

226

The tuple variables m and t are referred to as free variables. The conditions on the right of the expression 
cannot be evaluated until we give m and t values. It is usual to refer to the free variables as ranging over every 
tuple in their respective relations and then evaluating the conditions for each combination to see if it should 
be included in the result. In the body of the book I suggested thinking of the variables as being attached 
to fingers that move through their respective relations so we can determine if the condition (in this case 
m.MemberType = t.Type) evaluates to true. Free variables denote the tuples being returned and should 
always appear on the left of the bar.

Suppose we want to find the names of those members who have entered any tournament. In order to 
include a member in the result there has to be a tuple for that member in the Entry relation. The symbol ∃, 
meaning “there exists,” is used in the following calculus expression to return the names of those members 
where a tuple exists in the Entry relation with their MemberID:

{m.LastName, m.FirstName | Member(m) AND
∃(e)(
    Entry(e) AND m.MemberID = e.MemberID
    )
}

I’ve spread the expression out on different lines so that the conditions on the variable e are clear. The 
variable e is referred to as a bound variable. It does not appear on the left of the equation and is only used to 
determine whether the condition on the right side of the expression is true. The free variables (which always 
appear on the left side of the expression) are the ones for which we consider every possibility. In the preceding 
expression our free variable m is given the value of every tuple in the Member relation in turn. For each value of m 
we use the bound variable e to help determine if there is an appropriate tuple in the Entry relation.

Bound variables need to have what is called a quantifier, which explains how the variable will be used 
in calculating the condition statement. In this case we use the existential quantifier (∃), which requires us to 
find a single tuple in the associated relation that satisfies the condition. There is also a universal quantifier 
(∀) that requires every tuple in the associated relation to satisfy the condition. We will now look at examples 
of using these quantifiers and the equivalent SQL statements.

Existential Quantifier and SQL
An expression such as ∃(e)(Entry(e) AND (condition(e)) is true, if we can find a tuple e in the relation 
Entry that satisfies the specified condition. Let’s look at how this query can be represented in SQL:

{m.LastName, m.FirstName | Member(m) AND
∃(e)(
    Entry(e) AND e.MemberID = m.MemberID
    )
}

First, we’ll consider an SQL expression that follows the calculus as closely as possible by using an 
EXISTS clause:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE EXISTS (
    Select * FROM Entry e WHERE e.MemberID = m.MemberID
);



APPENDIX 2 ■ RElAtIoNAl NotAtIoN

227

As you can see, the SQL is almost a direct translation of the calculus statement. Equivalently, we can 
represent the existence requirement with a nested query and IN clause:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE m.MemberID IN (
    SELECT MemberID FROM Entry e
);

Each of preceding SQL statements returns the correct result, but I’m sure you are thinking that they are 
a complicated way of getting there. The query to find members who have entered a tournament can be more 
simply expressed as a join between the two relations:

SELECT m.LastName, m.FirstName
FROM Member m, Entry e
WHERE e.MemberID = m.MemberID;

The preceding SQL statement is not strictly equivalent to the first two. The latter one will return 
duplicate names, one for each of the tournaments the member has entered. If we look at the first two SQL 
queries, we see that they are checking each tuple in the Member table (just the once) and looking for a 
corresponding tuple in the Entry table. The final query considers all combinations of the tuples in Member 
and Entry and returns any that satisfy the condition (thereby returning the duplicates).

Even though we can remove the duplicates from the final SQL query by adding a DISTINCT keyword, it 
is considering a different set of tuples for inclusion in the result, and so is responding to a subtly different 
question than are the two earlier SQL statements. The relational calculus query is very precise, and it is that 
precision that can be helpful in some situations.

To find members who have not entered a tournament we simply replace ∃ with NOT ∃ (or ∄) in the query 
to find members who have entered a tournament:

{m.LastName, m.FirstName | Member(m) AND
NOT ∃(e)(
    Entry(e) AND m.MemberID = e.MemberID
    )
}

The equivalent SQL statement simply requires the addition of the keyword NOT, as in the example here:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE NOT EXISTS (
    SELECT * FROM Entry e
    WHERE e.MemberID = m.MemberID
);
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Universal Quantifier and SQL
The universal quantifier ∀ allows us to check that a condition holds for all tuples in some set. This is what 
we require in order for a query to find the names of members who have entered all tournaments. We have 
looked at this query many times! The relational calculus statement that follows is a straightforward way to 
express the query:

{m.LastName, m.FirstName | Member(m) AND
∀(t)(
    Tournament(t)
    ∃(e)(
        Entry(e) AND
        e.MemberID = m.MemberID
        AND e.TourID = t.TourID
        )
    )
}

The calculus statement should be interpreted as “Retrieve the LastName and FirstName for a particular 
tuple m in Member if for every tuple t in Tournament there exists a tuple e in Entry for the member m and the 
tournament t.”

You will recognize the outcome of this query as the equivalent of the relational algebra division 
operator. You will also remember that SQL does not have a keyword for division. Sadly, it doesn’t have a 
keyword for the universal quantifier either. Relational calculus can help us out here with the use of the 
following identity:

∀(t)(condition (t)) ≡ NOT ∃(t)(NOT condition(t))

This statement means that if we say “for every tuple t a condition holds” then that is the same as saying 
“there is no tuple t for which the condition does not hold.” We can use this identity to recast our original 
calculus expression to the following:

{m.LastName, m.FirstName | Member(m) AND
NOT ∃(t)(
    Tournament(t)(
    NOT ∃(e)(
        Entry(e) AND e.MemberID = m.MemberID
        AND e.TourID = t.TourID
        )
    )
}

Essentially, this says that there is no tuple t in Tournament for which there is not a corresponding tuple e 
in Entry. This translates quite easily to the SQL statement seen here:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE NOT EXISTS (
    SELECT * FROM Tournament t
    WHERE NOT EXISTS (
        SELECT * FROM Entry e
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        WHERE e.MemberID = m.MemberID
        AND e.TourID = t.TourID
    )
);

An Example
Let’s look at the algebra and calculus for a query that could be a little tricky. We want to find the names of the 
women who have never played in the Leeston tournament.

Algebra
First, we need to retrieve all entries for the Leeston tournament by joining the Tournament and Entry tables 
and then using a select operation:

LeestonEntries EntryTourName = Leeston←σ ′ ′( ⋈ TourID TourID Tournament= )

The words “have never” suggests we need a difference operator. So, we need to find the set of all women 
by using a select operation on the Member table, and then we need to remove the set of people who have 
played at Leeston. In order to use our difference operator we need to have union-compatible relations, so we 
will project just the MemberID from the two sets just described. The following expression will return the IDs of 
the women who have not entered the Leeston tournament:

NonLeestonLadies Member LMemberID Gender= F MemberID← ( )( ) −π σ π′ ′ eeestonEntries( )

Now we need to join NonLeestonLadies to the Member table so we have access to their names. We can 
retrieve the final set of names with:

Result MemberFirstName LastName← (π ,  
⋈

 MemberID MemberID NonLeestonLadies= )

We can now construct an SQL statement that reflects the algebra expression. In the following SQL the 
most indented rows represent the LeestonEntries, the next indentation represents the NonLeestonLadies 
(and has been given that alias), and the outer rows represent the final join and project:

SELECT m2.LastName, m2.FirstName FROM
    (SELECT m.MemberID FROM Member m
    WHERE m.Gender = 'F'
    EXCEPT
        SELECT e.MemberID
        FROM entry e INNER JOIN tournament t ON e.tourID = t.tourID
        WHERE t.TourName = 'Leeston'
    )NonLeestonLadies
INNER JOIN Member m2 ON m2.MemberID  = NonLeestonLadies.MemberID;
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Calculus
Let’s approach the same query (the names of the women who have never played in the Leeston tournament) 
using calculus. I always need to visualize the tuple variables as fingers to get myself started. Figure A2-5 
shows the relations that we will need for the query.

Figure A2-5. Tuple variables required for the query

We want to retrieve the names of women from the Member table, so we need to consider each tuple in 
turn. That means m will be our free variable. For each tuple m we need to check that the value of Gender is F 
and that there is no tuple e in the Entry table that has the same MemberID as m and also has TourID = 24  
(the Leeston tournament). Figure A2-5 shows us that although Barbara Olson is a female, we will not include 
her as she has an entry for the Leeston tournament.

The following calculus expression will retrieve the names of members satisfying the conditions we have 
just described:

{m.LastName, m.FirstName | Member(m) AND m.Gender = 'F'
NOT ∃(e)(
    Entry(e)(
    e.MemberID = m.MemberID
    AND ∃(t)(
        t.TourID = e.TourID
        AND t.Tourname = 'Leeston'
    )
}
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The calculus expression translates directly to the following SQL statement:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE m.Gender = 'F'
AND NOT EXISTS (
    SELECT *
    FROM Entry e
    WHERE e.MemberID = m.MemberID
    AND EXISTS (
        Select * FROM Tournament t
        WHERE
        t.TourID = e.TourID
        AND t.Tourname = 'Leeston'
    )
);

Conclusion
Having applied a calculus and algebra approach to our query to find women who have not entered a Leeston 
tournament, we have arrived at two equivalent but quite different-looking SQL queries. There are, no 
doubt, several other equivalent SQL statements. Testing these in SQL Server 2012 shows that the optimizer 
produces slightly different execution plans, with the calculus query coming out slightly faster — although 
adding some indexes could completely change that.

The message from this book is that there are two equivalent but quite different methods of approaching 
any query. This appendix adds concise notations to help you represent those approaches.
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