
ant

•Majorconsiderationsinbuildingabigdatasolution
•Bigdataapplicationarchitecturesproblemsforspecificindustries
•Whatarethecomponentsoneneedstobuildandend-to-endbigdatasolution?
•Doesonereallyneedareal-timebigdatasolutionoranoff-lineanalyticsbatch

•Whataretheoperationsandsupportarchitecturesforabigdatasolution?
•Whatarethescalabilityconsiderations,andoptionsforaHadoopinstallation?

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

About the Authors .. xix

About the Technical Reviewer ... xxi

Acknowledgments ... xxiii

Introduction .. xxv

Chapter 1: Big Data Introduction ■ ...1

Chapter 2: Big Data Application Architecture ■ ..9

Chapter 3: Big Data Ingestion and Streaming Patterns ■ ..29

Chapter 4: Big Data Storage Patterns ■ ..43

Chapter 5: Big Data Access Patterns ■ ...57

Chapter 6: Data Discovery and Analysis Patterns ■ ...69

Chapter 7: Big Data Visualization Patterns ■ ..79

Chapter 8: Big Data Deployment Patterns ■ ...91

Chapter 9: Big Data NFRs ■ ..101

Chapter 10: Big Data Case Studies ■ ..113

Chapter 11: Resources, References, and Tools ■ ..127

Appendix A: References and Bibliography ■ ..137

Index ...139

www.allitebooks.com

http://www.allitebooks.org

xxv

Introduction

Big data is opening up new opportunities for enterprises to extract insight from huge volumes of data in real time and
across multiple relational and nonrelational data types. he architectures for realizing these opportunities are based
on relatively less expensive and heterogeneous infrastructures than the traditional monolithic and hugely expensive
options that exist currently.

he architectures for realizing big data solutions are composed of heterogeneous infrastructures, databases,
and visualization and analytics tools. Selecting the right architecture is the key to harnessing the power of big data.
However, heterogeneity brings with it multiple options for solving the same problem, as well as the need to evaluate
trade-ofs and validate the “itness-for-purpose” of the solution.

here are myriad open source frameworks, databases, Hadoop distributions, and visualization and analytics tools
available on the market, each one of them promising to be the best solution. How do you select the best end-to-end
architecture to solve your big data problem?

Most other big data books on the market focus on providing design patterns in the map reduce •
or Hadoop area only.

his book covers the end-to-end application architecture required to realize a big data •
solution covering not only Hadoop, but also analytics and visualization issues.

Everybody knows the use cases for big data and the stories of Walmart and EBay, but nobody •
describes the architecture required to realize those use cases.

If you have a problem statement, you can use the book as a reference catalog to search the •
corresponding closest big data pattern and quickly use it to start building the application.

CxOs are being approached by multiple vendors with promises of implementing the perfect •
big data solution. his book provides a catalog of application architectures used by peers in
their industry.

he current published content about big data architectures is meant for the scientist or the •
geek. his book attempts to provide a more industry-aligned view for architects.

his book will provide software architects and solution designers with a ready catalog of •
big data application architecture patterns that have been distilled from real-life, big data
applications in diferent industries like retail, telecommunication, banking, and insurance.
he patterns in this book will provide the architecture foundation required to launch your next
big data application.

www.allitebooks.com

http://www.allitebooks.org

1

CHAPTER 1

Big Data Introduction

Why Big Data
As you will see, this entire book is in problem-solution format. This chapter discusses topics in big data in a general
sense, so it is not as technical as other chapters. The idea is to make sure you have a basic foundation for learning
about big data. Other chapters will provide depth of coverage that we hope you will find useful no matter what your
background. So let’s get started.

Problem
What is the need for big data technology when we have robust, high-performing, relational database management
systems (RDBMS)?

Solution
Since the theory of relational databases was postulated in 1980 by Dr. E. F. Codd (known as “Codd’s 12 rules”) most
data has been stored in a structured format, with primary keys, rows, columns, tuples, and foreign keys. Initially, it
was just transactional data, but as more and more data accumulated, organizations started analyzing the data in an
offline mode using data warehouses and data marts. Data analytics and business intelligence (BI) became the primary
drivers for CxOs to make forecasts, define budgets, and determine new market drivers of growth.

This analysis was initially conducted on data within the enterprise. However, as the Internet connected the entire
world, data existing outside an organization became a substantial part of daily transactions. Even though things were
heating up, organizations were still in control even though the data was getting voluminous with normal querying of
transactional data. That data was more or less structured or relational.

Things really started getting complex in terms of the variety and velocity of data with the advent of social networking
sites and search engines like Google. Online commerce via sites like Amazon.com also added to this explosion of data.
Traditional analysis methods as well as storage of data in central servers were proving inefficient and expensive.
Organizations like Google, Facebook, and Amazon built their own custom methods to store, process, and analyze this
data by leveraging concepts like map reduce, Hadoop distributed file systems, and NoSQL databases.

The advent of mobile devices and cloud computing has added to the amount and pace of data creation in the
world, so much so that 90 percent of the world’s total data has been created in the last two years and 70 percent of it
by individuals, not enterprises or organizations. By the end of 2013, IDC predicts that just under 4 trillion gigabytes
of data will exist on earth. Organizations need to collect this data from social media feeds, images, streaming video,
text files, documents, meter data, and so on to innovate, respond immediately to customer needs, and make quick
decisions to avoid being annihilated by competition.

However, as I mentioned, the problem of big data is not just about volume. The unstructured nature of the data
(variety) and the speed at which it is created by you and me (velocity) is the real challenge of big data.

www.allitebooks.com

http://Amazon.com
http://www.allitebooks.org

CHAPTER 1 ■ BIG DATA INTRODUCTION

2

Aspects of Big Data
Problem
What are the key aspects of a big data system?

Solution
A big data solution must address the three Vs of big data: data velocity, variety, and complexity, in addition to volume.

Velocity of the data is used to define the speed with which different types of data enter the enterprise and are then
analyzed.

Variety addresses the unstructured nature of the data in contrast to structured data in weblogs, radio frequency
ID (RFID), meter data, stock-ticker data, tweets, images, and video files on the Internet.

For a data solution to be considered as big data, the volume has to be at least in the range of 30–50 terabytes (TBs).
However, large volume alone is not an indicator of a big data problem. A small amount of data could have multiple

sources of different types, both structured and unstructured, that would also be classified as a big data problem.

How Big Data Differs from Traditional BI
Problem
Can we use traditional business intelligence (BI) solutions to process big data?

Solution
Traditional BI methodology works on the principle of assembling all the enterprise data in a central server. The data
is generally analyzed in an offline mode. The online transaction processing (OLTP) transactional data is transferred to
a denormalized environment called as a data warehouse. The data is usually structured in an RDBMS with very little
unstructured data.

A big data solution, however, is different in all aspects from a traditional BI solution:

Data is retained in a distributed file system instead of on a central server.•

The processing functions are taken to the data rather than data being taking to the functions.•

Data is of different formats, both structured as well as unstructured.•

Data is both real-time data as well as offline data.•

Technology relies on massively parallel processing (MPP) concepts.•

How Big Is the Opportunity?
Problem
What is the potential big data opportunity?

Solution
The amount of data is growing all around us every day, coming from various channels (see Figure 1-1).
As 70 percent of all data is created by individuals who are customers of some enterprise or the other, organizations
cannot ignore this important source of feedback from the customer as well as insight into customer behavior.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BIG DATA INTRODUCTION

3

Big data drove an estimated $28 billion in IT spending last year, according to market researcher Gartner, Inc.
That figure will rise to $34 billion in 2013 and $232 billion in IT spending through 2016, Gartner estimates.

The main reason for this growth is the potential Chief Information Officers (CIOs) see in the greater insights
and intelligence contained in the huge unstructured data they have been receiving from outside the enterprise.
Unstructured data analysis requires new systems of record—for example, NoSQL databases—so that organizations
can forecast better and align their strategic plans and initiatives.

Deriving Insight from Data
Problem
What are the different insights and inferences that big data analysis provides in different industries?

Solution
Companies are deriving significant insights by analyzing big data that gives a combined view of both structured and
unstructured customer data. They are seeing increased customer satisfaction, loyalty, and revenue. For example:

Energy companies monitor and combine usage data recorded from smart meters in real time •
to provide better service to their consumers and improved uptime.

Web sites and television channels are able to customize their advertisement strategies based •
on viewer household demographics and program viewing patterns.

Fraud-detection systems are analyzing behaviors and correlating activities across multiple •
data sets from social media analysis.

High-tech companies are using big data infrastructure to analyze application logs to •
improve troubleshooting, decrease security violations, and perform predictive application
maintenance.

Social media content analysis is being used to assess customer sentiment and improve •
products, services, and customer interaction.

These are just some of the insights that different enterprises are gaining from their big data applications.

Figure 1-1. Information explosion

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BIG DATA INTRODUCTION

4

Cloud Enabled Big Data
Problem
How is big data affected by cloud-based virtualized environments?

Solution
The inexpensive option of storage that big data and Hadoop deliver is very well aligned to the “everything as a service”
option that cloud-computing offers.

Infrastructure as a Service (IaaS) allows the CIO a “pay as you go” option to handle big data analysis. This virtualized
option provides the efficiency needed to process and manage large volumes of structured and unstructured data in a
cluster of expensive virtual machines. This distributed environment gives enterprises access to very flexible and elastic
resources to analyze structured and unstructured data.

Map reduce works well in a virtualized environment with respect to storage and computing. Also, an enterprise
might not have the finances to procure the array of inexpensive machines for its first pilot. Virtualization enables
companies to tackle larger problems that have not yet been scoped without a huge upfront investment. It allows
companies to scale up as well as scale down to support the variety of big data configurations required for a particular
architecture.

Amazon Elastic MapReduce (EMR) is a public cloud option that provides better scaling functionality and
performance for MapReduce. Each one of the Map and Reduce tasks needs to be executed discreetly, where the
tasks are parallelized and configured to run in a virtual environment. EMR encapsulates the MapReduce engine in a
virtual container so that you can split your tasks across a host of virtual machine (VM) instances.

As you can see, cloud computing and virtualization have brought the power of big data to both small and large
enterprises.

Structured vs. Unstructured Data
Problem
What are the various data types both within and outside the enterprise that can be analyzed in a big data solution?

Solution
Structured data will continue to be analyzed in an enterprise using structured access methods like Structured Query
Language (SQL). However, the big data systems provide tools and structures for analyzing unstructured data.

New sources of data that contribute to the unstructured data are sensors, web logs, human-generated interaction
data like click streams, tweets, Facebook chats, mobile text messages, e-mails, and so forth.

RDBMS systems will continue to exist with a predefined schema and table structure. Unstructured data is data
stored in different structures and formats, unlike in a a relational database where the data is stored in a fixed
row-column like structure. The presence of this hybrid mix of data makes big data analysis complex, as decisions need
to be made regarding whether all this data should be first merged and then analyzed or whether only an aggregated
view from different sources has to be compared.

We will see different methods in this book for making these decisions based on various functional and
nonfunctional priorities.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BIG DATA INTRODUCTION

5

Analytics in the Big Data World
Problem
How do I analyze unstructured data, now that I do not have SQL-based tools?

Solution
Analyzing unstructured data involves identifying patterns in text, video, images, and other such content. This is
different from a conventional search, which brings up the relevant document based on the search string. Text
analytics is about searching for repetitive patterns within documents, e-mails, conversations and other data to draw
inferences and insights.

Unstructured data is analyzed using methods like natural language processing (NLP), data mining, master data
management (MDM), and statistics. Text analytics use NoSQL databases to standardize the structure of the data so
that it can be analyzed using query languages like PIG, Hive, and others. The analysis and extraction processes take
advantage of techniques that originated in linguistics, statistics, and numerical analysis.

Big Data Challenges
Problem
What are the key big data challenges?

Solution
There are multiple challenges that this great opportunity has thrown at us.

One of the very basic challenges is to understand and prioritize the data from the garbage that is coming into the
enterprise. Ninety percent of all the data is noise, and it is a daunting task to classify and filter the knowledge from
the noise.

In the search for inexpensive methods of analysis, organizations have to compromise and balance against the
confidentiality requirements of the data. The use of cloud computing and virtualization further complicates the decision
to host big data solutions outside the enterprise. But using those technologies is a trade-off against the cost of ownership
that every organization has to deal with.

Data is piling up so rapidly that it is becoming costlier to archive it. Organizations struggle to determine how long
this data has to be retained. This is a tricky question, as some data is useful for making long-term decisions, while
other data is not relevant even a few hours after it has been generated and analyzed and insight has been obtained.

With the advent of new technologies and tools required to build big data solutions, availability of skills is a big
challenge for CIOs. A higher level of proficiency in the data sciences is required to implement big data solutions
today because the tools are not user-friendly yet. They still require computer science graduates to configure and
operationalize a big data system.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BIG DATA INTRODUCTION

6

Defining a Reference Architecture
Problem
Is there a high-level conceptual reference architecture for a big data landscape that’s similar to cloud-computing
architectures?

Solution
Analogous to the cloud architectures, the big data landscape can be divided into four layers shown vertically
in Figure 1-2:

• Infrastructure as a Service (IaaS): This includes the storage, servers, and network as the
base, inexpensive commodities of the big data stack. This stack can be bare metal or virtual
(cloud). The distributed file systems are part of this layer.

• Platform as a Service (PaaS): The NoSQL data stores and distributed caches that can be
logically queried using query languages form the platform layer of big data. This layer provides
the logical model for the raw, unstructured data stored in the files.

• Data as a Service (DaaS): The entire array of tools available for integrating with the PaaS
layer using search engines, integration adapters, batch programs, and so on is housed in
this layer. The APIs available at this layer can be consumed by all endpoint systems in an
elastic-computing mode.

• Big Data Business Functions as a Service (BFaaS): Specific industries—like health, retail,
ecommerce, energy, and banking—can build packaged applications that serve a specific
business need and leverage the DaaS layer for cross-cutting data functions.

Big Data Storage &

Infrastructure Layer

NoSQL and Relational

Databases

Big Data Analysis &

Visualization Tools

Industry Business

Functions

P

a

a

S

I

a

a

S

D

a

a

S

B

F

a

a

S

Figure 1-2. Big data architecture layers

You will see a detailed big data application architecture in the next chapter that essentially is based on this
four-layer reference architecture.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ BIG DATA INTRODUCTION

7

Need for Architecture Patterns
Problem
Why do we need big data architecture patterns?

Solution
Though big data offers many benefits, it is still a complex technology. It faces the challenges of both service-oriented
architecture (SOA) and cloud computing combined with infrastructure and network complexities. SOA challenges,
like distributed systems design, along with cloud challenges, like hybrid-system synchronization, have to be taken
care of in big data solutions.

A big data implementation also has to take care of the “ilities” or nonfunctional requirements like availability,
security, scalability, performance, and so forth. Combining all these challenges with the business objectives that have
to be achieved, requires an end-to-end application architecture view that defines best practices and guidelines to
cope with these issues.

Patterns are not perfect solutions, but in a given context they can be used to create guidelines based on
experiences where a particular solution or pattern has worked. Patterns describe both the problem and solution that
can be applied repeatedly to similar scenarios.

Summary
You saw how the big data revolution is changing the traditional BI world and the way organizations run their analytics
initiatives. The cloud and SOA revolution are the bedrock of this phenomenon, which means that big data faces the
same challenges that were faced earlier, along with some new challenges in terms of architecture, skills, and tools.
A robust, end-to-end application architecture is required for enterprises to succeed in implementing a big data
system. In this journey, if we can help you by showing you some guidelines and best practices we have encountered to
solve some common issues, it will make your journey faster and relatively easier. Let’s dive deep into the architecture
and patterns.

9

CHAPTER 2

Big Data Application Architecture

Enterprises and their customers have become very diverse and complex with the digitalization of business. Managing
the information captured from these customers and markets to gain a competitive advantage has become a very
expensive proposition when using the traditional data analytics methods, which are based on structured relational
databases. This dilemma applies not only to businesses, but to research organizations, governments, and educational
institutions that need less expensive computing and storage power to analyze complex scenarios and models
involving images, video, and other data, as well as textual data.

There are also new sources of data generated external to the enterprise that CXOs want their data scientists to
analyze to find that proverbial “needle in a haystack.” New information sources include social media data, click-stream
data from web sites, mobile devices, sensors, and other machine-generated data. All these disparate sources of data
need to be managed in a consolidated and integrated manner for organizations to get valuable inferences and insights.
The data management, storage, and analysis methods have to change to manage this big data and bring value to
organizations.

Architecting the Right Big Data Solution
Problem
What are the essential architecture components of a big data solution?

Solution
Prior to jumping on the big data bandwagon you should ensure that all essential architecture components required to
analyze all aspects of the big data set are in place. Without this proper setup, you’ll find it difficult to garner valuable
insights and make correct inferences. If any of these components are missing, you will not be able to realize an
adequate return on your investment in the architecture.

A big data management architecture should be able to consume myriad data sources in a fast and inexpensive
manner. Figure 2-1 outlines the architecture components that should be part of your big data tech stack. You can
choose either open source frameworks or packaged licensed products to take full advantage of the functionality of the
various components in the stack.

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

10

Data Sources
Multiple internal and external data feeds are available to enterprises from various sources. It is very important that
before you feed this data into your big data tech stack, you separate the noise from the relevant information. The
signal-to-noise ratio is generally 10:90. This wide variety of data, coming in at a high velocity and in huge volumes,
has to be seamlessly merged and consolidated later in the big data stack so that the analytics engines as well as the
visualization tools can operate on it as one single big data set.

Problem
What are the various types of data sources inside and outside the enterprise that need to be analyzed in a big data
solution? Can you illustrate with an industry example?

Solution
The real problem with defining big data begins in the data sources layer, where data sources of different volumes,
velocity, and variety vie with each other to be included in the final big data set to be analyzed. These big data sets,
also called data lakes, are pools of data that are tagged for inquiry or searched for patterns after they are stored in the
Hadoop framework. Figure 2-2 illustrates the various types of data sources.

HDFS

Hadoop

Storage Layer NoSQL Database

Hadoop Platform Management Layer
Z

o
o
k

e
e
p

e
r

Pig Hive Sqoop

MapReduce

Visualization Layer

Data Analyst IDE / SDK
Visualization

Tools
Hadoop Administration

D
a
ta

S
o

u
rce

s

U
n

stru
c
tu

re
d

 D
a
ta

V
id

e
o

S
tre

a
m

s

R
e
la

tio
n

a
l D

B

Im
a

g
e
s

S
e
n

so
rs

Statistical

Analytics

Text Analytics

Search EngineIn
g

e
stio

n
 L

a
yer

Hadoop

Infrastructure Layer

Virtualized Cloud Services

Data Warehouses

Analytics Engines

Security Layer

Monitoring Layer

Real Time Engine

Analytics Appliances

Bare Metal Clustered Workstations Rack

Node

Disk

CPU

Rack

Node

Disk

CPU

Rack

Node

Disk

CPU

Figure 2-1. The big data architecture

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

11

Industry Data

Traditionally, different industries designed their data-management architecture around the legacy data sources listed
in Figure 2-3. The technologies, adapters, databases, and analytics tools were selected to serve these legacy protocols
and standards.

Meesages

(TIBCO,

MQ-Series)

Internet

(HTML, WML,

JavaScript)

Private Networkss

(news feeds,

Intranets)

Streaming
Legacy Data

(DB2,ISAM,

VSAM, IMS)

Applications

(ERP, CRM,

Help Desk)

RDBMS

(JDBC, ODBC,

SQLNet, DW

Portals

(WebSphere,

WebLogic)

eMail Systems

(M’Soft CMS,

Documentum, Notes,

Exchange)

Unstructured Files

(e.g. Word, Excel,

pdf, images, mp3)

XML

Multimedia

(images,

sounds, video)

Figure 2-2. The variety of data sources

Legacy Data Sources

HTTP/HTTPS web services

RDBMS

FTP

JMS/MQ based services

Text / flat file /csv logs

XML data sources

IM Protocol requests

Figure 2-3. Legacy data sources

In the past decade, every industry has seen an explosion in the amount of incoming data due to increases in
subscriptions, audio data, mobile data, contentual details, social networking, meter data, weather data, mining data,
devices data, and data usages. Some of the “new age” data sources that have seen an increase in volume, velocity, or
variety are illustrated in Figure 2-4.

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

12

All the data sources shown in Figure 2-4 have to be funneled into the enterprise after proper validation and
cleansing. It is the job of the ingestion layer (described in the next section) to provide the functionality to be rapidly
scalable for the huge inflow of data.

Ingestion Layer
The ingestion layer (Figure 2-5) is the new data sentinel of the enterprise. It is the responsibility of this layer to
separate the noise from the relevant information. The ingestion layer should be able to handle the huge volume, high
velocity, or variety of the data. It should have the capability to validate, cleanse, transform, reduce, and integrate the
data into the big data tech stack for further processing. This is the new edgeware that needs to be scalable, resilient,
responsive, and regulatory in the big data architecture. If the detailed architecture of this layer is not properly planned,
the entire tech stack will be brittle and unstable as you introduce more and more capabilities onto your big data
analytics framework.

New Age Data Sources

High Volume Sources

1. Switching devices data

2. Access point data messages

3. Call data record due to exponential growth in user base

4. Feeds from social networking sites

Variety of Sources

1. Image and video feeds from social Networking sites

2. Transaction data

3. GPS data

4. Call center voice feeds

5. E-mail

6. SMS

High Velocity Sources

1. Call data records

2. Social networking site conversations

3. GPS data

4. Call center - voice-to-text feeds

Figure 2-4. New age data sources—telecom industry

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

13

Problem
What are the essential architecture components of the ingestion layer?

Solution
The ingestion layer loads the final relevant information, sans the noise, to the distributed Hadoop storage layer based
on multiple commodity servers. It should have the capability to validate, cleanse, transform, reduce, and integrate the
data into the big data tech stack for further processing.

The building blocks of the ingestion layer should include components for the following:

• Identification of the various known data formats or assignment of default formats to
unstructured data.

• Filtration of inbound information relevant to the enterprise, based on the Enterprise MDM
repository.

• Validation and analysis of data continuously against new MDM metadata.

• Noise Reduction involves cleansing data by removing the noise and minimizing distrurbances.

• Transformation can involve splitting, converging, denormalizing or summarizing data.

• Compression involves reducing the size of the data but not losing the relevance of the data in
the process. It should not affect the analysis results after compression.

• Integration involves integrating the final massaged data set into the Hadoop storage
layer— that is, Hadoop distributed file system (HDFS) and NoSQL databases.

There are multiple ingestion patterns (data source-to-ingestion layer communication) that can be implemented
based on the performance, scalability, and availability requirements. Ingestion patterns are described in more detail
in Chapter 3.

Identification

Filtration

Validation

Noise

Reduction

Transformation

Compresssion

Integration

D
ata

S
ou

rces

Hadoop Storage Layer

NoSQL Database

HDFS

Figure 2-5. Data ingestion layer

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

14

Distributed (Hadoop) Storage Layer
Using massively distributed storage and processing is a fundamental change in the way an enterprise handles big
data. A distributed storage system promises fault-tolerance, and parallelization enables high-speed distributed
processing algorithms to execute over large-scale data. The Hadoop distributed file system (HDFS) is the cornerstone
of the big data storage layer.

Hadoop is an open source framework that allows us to store huge volumes of data in a distributed fashion across
low cost machines. It provides de-coupling between the distributed computing software engineering and the actual
application logic that you want to execute. Hadoop enables you to interact with a logical cluster of processing and
storage nodes instead of interacting with the bare-metal operating system (OS) and CPU. Two major components of
Hadoop exist: a massively scalable distributed file system (HDFS) that can support petabytes of data and a massively
scalable map reduce engine that computes results in batch.

HDFS is a file system designed to store a very large volume of information (terabytes or petabytes) across a large
number of machines in a cluster. It stores data reliably, runs on commodity hardware, uses blocks to store a file or
parts of a file, and supports a write-once-read-many model of data access.

HDFS requires complex file read/write programs to be written by skilled developers. It is not accessible as a
logical data structure for easy data manipulation. To facilitate that, you need to use new distributed, nonrelational
data stores that are prevalent in the big data world, including key-value pair, document, graph, columnar, and
geospatial databases. Collectively, these are referred to as NoSQL, or not only SQL, databases (Figure 2-6).

Figure 2-6. NoSQL databases

Problem
What are the different types of NoSQL databases, and what business problems are they suitable for?

Solution
Different NoSQL solutions are well suited for different business applications. Distributed NoSQL data-store solutions
must relax guarantees around consistency, availability, and partition tolerance (the CAP Theorem), resulting
in systems optimized for different combinations of these properties. The combination of relational and NoSQL
databases ensures the right data is available when you need it. You also need data architectures that support complex
unstructured content. Both relational databases and nonrelational databases have to be included in the approach to
solve your big data problems.

Different NoSQL databases are well suited for different business applications as shown in Figure 2-7.

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

15

The storage layer is usually loaded with data using a batch process. The integration component of the ingestion
layer invokes various mechanisms—like Sqoop, MapReduce jobs, ETL jobs, and others—to upload data to the
distributed Hadoop storage layer (DHSL). The storage layer provides storage patterns (communication from ingestion
layer to storage layer) that can be implemented based on the performance, scalability, and availability requirements.
Storage patterns are described in more detail in Chapter 4.

Hadoop Infrastructure Layer
The layer supporting the strorage layer—that is, the physical infrastructure—is fundamental to the operation and
scalability of big data architecture. In fact, the availability of a robust and inexpensive physical infrastructure has
triggered the emergence of big data as such an important trend. To support unanticipated or unpredictable volume,
velocity, or variety of data, a physical infrastructure for big data has to be different than that for traditional data.

The Hadoop physical infrastructure layer (HPIL) is based on a distributed computing model. This means that
data can be physically stored in many different locations and linked together through networks and a distributed file
system. It is a “share-nothing” architecture, where the data and the functions required to manipulate it reside together
on a single node. Like in the traditional client server model, the data no longer needs to be transferred to a monolithic
server where the SQL functions are applied to crunch it. Redundancy is built into this infrastructure because you are
dealing with so much data from so many different sources.

NoSQL

Key Value Pair
Shopping Carts

Web User Data

Analysis

(Amazon, LinkedIn)

Column-Oriented

Analyze Huge Web

User Actions

Sensor Feeds

(Facebook, Twitter)

Document-Based
Real-Time Analytics

Logging

Document Archive

Management

Graph-Based
Network Modeling

Locality

Recommendation

Figure 2-7. NoSQL database typical business scenarios

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

16

Problem
What are the main components of a Hadoop infrastructure?

Solution
Traditional enterprise applications are built based on vertically scaling hardware and software. Traditional enterprise
architectures are designed to provide strong transactional guarantees, but they trade away scalability and are
expensive. Vertical-scaling enterprise architectures are too expensive to economically support dense computations
over large scale data. Auto-provisioned, virtualized data center resources enable horizontal scaling of data platforms
at significantly reduced prices. Hadoop and HDFS can manage the infrastructure layer in a virtualized cloud
environment (on-premises as well as in a public cloud) or a distributed grid of commodity servers over a fast gigabit
network.

A simple big data hardware configuration using commodity servers is illustrated in Figure 2-8.

Disks Disks Disks Disks Disks Disks

1 Gigabit1 Gigabit

8 Gigabit8 Gigabit

Figure 2-8. Typical big data hardware topology

The configuration pictured includes the following components: N commodity servers (8-core, 24 GBs RAM,
4 to 12 TBs, gig-E); 2-level network, 20 to 40 nodes per rack.

Hadoop Platform Management Layer
This is the layer that provides the tools and query languages to access the NoSQL databases using the HDFS storage
file system sitting on top of the Hadoop physical infrastructure layer.

With the evolution of computing technology, it is now possible to manage immense volumes of data that
previously could have been handled only by supercomputers at great expense. Prices of systems (CPU, RAM, and
DISK) have dropped. As a result, new techniques for distributed computing have become mainstream.

Problem
What is the recommended data-access pattern for the Hadoop platform components to access the data in the Hadoop
physical infrastructure layer?

Solution
Figure 2-9 shows how the platform layer of the big data tech stack communicates with the layers below it.

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

17

Hadoop and MapReduce are the new technologies that allow enterprises to store, access, and analyze huge
amounts of data in near real-time so that they can monetize the benefits of owning huge amounts of data. These
technologies address one of the most fundamental problems—the capability to process massive amounts of data
efficiently, cost-effectively, and in a timely fashion.

The Hadoop platform management layer accesses data, runs queries, and manages the lower layers using
scripting languages like Pig and Hive. Various data-access patterns (communication from the platform layer to the
storage layer) suitable for different application scenarios are implemented based on the performance, scalability, and
availability requirements. Data-access patterns are described in more detail in Chapter 5.

Problem
What are the key building blocks of the Hadoop platform management layer?

Solution
MapReduce

MapReduce was adopted by Google for efficiently executing a set of functions against a large amount of data in
batch mode. The map component distributes the problem or tasks across a large number of systems and handles the
placement of the tasks in a way that distributes the load and manages recovery from failures. After the distributed
computation is completed, another function called reduce combines all the elements back together to provide a
result. An example of MapReduce usage is to determine the number of times big data has been used on all pages of
this book. MapReduce simplifies the creation of processes that analyze large amounts of unstructured and structured
data in parallel. Underlying hardware failures are handled transparently for user applications, providing a reliable and
fault-tolerant capability.

Hadoop Infrastructure Layer

Disks Disks Disks Disks Disks Disks

Metadata

Cache Cache Cache

Metadata Metadata

High-Speed Network

… N nodes, Petabytes of Data

Solid State Disks Local Disks SAN

Hadoop Storage Layer (HDFS, HBASE)

Hadoop Platform Layer (MapReduce, Hive, Pig)

Figure 2-9. Big data platform architecture

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

18

Here are the key facts associated with the scenario in Figure 2-10.

Client

Program

submits

MapReduce

job

TaskTracker

DataNode

TaskTracker

DataNode

TaskTracker

DataNode

JobTracker

NameNode

Figure 2-10. MapReduce tasks

Each Hadoop node is part of an distributed cluster of machines cluster.•

Input data is stored in the HDFS distributed file system, spread across multiple machines and •
is copied to make the system redundant against failure of any one of the machines.

The client program submits a batch job to the • job tracker.

The job tracker functions as the • master that does the following:

Splits input data•

Schedules and monitors various map and reduce tasks•

The task tracker processes are slaves that execute map and reduce tasks.•

• Hive is a data-warehouse system for Hadoop that provides the capability to aggregate
large volumes of data. This SQL-like interface increases the compression of stored data for
improved storage-resource utilization without affecting access speed.

• Pig is a scripting language that allows us to manipulate the data in the HDFS in parallel.
Its intuitive syntax simplifies the development of MapReduce jobs, providing an alternative
programming language to Java. The development cycle for MapReduce jobs can be very long.
To combat this, more sophisticated scripting languages have been created for exploring large
datasets, such as Pig, and to process large datasets with minimal lines of code. Pig is designed
for batch processing of data. It is not well suited to perform queries on only a small portion of
the dataset because it is designed to scan the entire dataset.

• HBase is the column-oriented database that provides fast access to big data. The most
common file system used with HBase is HDFS. It has no real indexes, supports automatic
partitioning, scales linearly and automatically with new nodes. It is Hadoop compliant, fault
tolerant, and suitable for batch processing.

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

19

• Sqoop is a command-line tool that enables importing individual tables, specific columns,
or entire database files straight to the distributed file system or data warehouse (Figure 2-11).
Results of analysis within MapReduce can then be exported to a relational database for
consumption by other tools. Because many organizations continue to store valuable data in
a relational database system, it will be crucial for these new NoSQL systems to integrate with
relational database management systems (RDBMS) for effective analysis. Using extraction
tools, such as Sqoop, relevant data can be pulled from the relational database and then
processed using MapReduce or Hive, combining multiple datasets to get powerful results.

Figure 2-11. Sqoop import process

• ZooKeeper (Figure 2-12) is a coordinator for keeping the various Hadoop instances and nodes
in sync and protected from the failure of any of the nodes. Coordination is crucial to handling
partial failures in a distributed system. Coordinators, such as Zookeeper, use various tools to
safely handle failure, including ordering, notifications, distributed queues, distributed locks,
leader election among peers, as well as a repository of common coordination patterns. Reads
are satisfied by followers, while writes are committed by the leader.

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

20

Zookeeper guarantees the following qualities with regards to data consistency:

Sequential consistency•

Atomicity•

Durability•

Single system image•

Timeliness•

Security Layer
As big data analysis becomes a mainstream functionality for companies, security of that data becomes a prime
concern. Customer shopping habits, patient medical histories, utility-bill trends, and demographic findings for
genetic diseases—all these and many more types and uses of data need to be protected, both to meet compliance
requirements and to protect the individual’s privacy. Proper authorization and authentication methods have to be
applied to the analytics. These security requirements have to be part of the big data fabric from the beginning and not
an afterthought.

Problem
What are the basic security tenets that a big data architecture should follow?

Figure 2-12. Zookeeper topology

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

21

Solution
An untrusted mapper or named node job tracker can return unwanted results that will generate incorrect reducer
aggregate results. With large data sets, such security violations might go unnoticed and cause significant damage to
the inferences and computations.

NoSQL injection is still in its infancy and an easy target for hackers. With large clusters utilized randomly for
strings and archiving big data sets, it is very easy to lose track of where the data is stored or forget to erase data that’s
not required. Such data can fall into the wrong hands and pose a security threat to the enterprise.

Big data projects are inherently subject to security issues because of the distributed architecture, use of a simple
programming model, and the open framework of services. However, security has to be implemented in a way that
does not harm performance, scalability, or functionality, and it should be relatively simple to manage and maintain.

To implement a security baseline foundation, you should design a big data tech stack so that, at a minimum,
it does the following:

Authenticates nodes using protocols like • Kerberos

Enables file-layer encryption•

Subscribes to a key management service for trusted keys and certificates•

Uses tools like • Chef or Puppet for validation during deployment of data sets or when applying
patches on virtual nodes

Logs the communication between nodes, and uses distributed logging mechanisms to trace •
any anomalies across layers

Ensures all communication between nodes is secure—for example, by using Secure Sockets •
Layer (SSL), TLS, and so forth.

Monitoring Layer
Problem
With the distributed Hadoop grid architecture at its core, are there any tools that help to monitor all these
moving parts?

Solution
With so many distributed data storage clusters and multiple data source ingestion points, it is important to get a
complete picture of the big data tech stack so that the availability SLAs are met with minimum downtime.

Monitoring systems have to be aware of large distributed clusters that are deployed in a federated mode.
The monitoring system has to be aware of different operating systems and hardware . . . hence the machines have to
communicate to the monitoring tool via high level protocols like XML instead of binary formats that are machine
dependent. The system should also provide tools for data storage and visualization. Performance is a key parameter
to monitor so that there is very low overhead and high parallelism.

Open source tools like Ganglia and Nagios are widely used for monitoring big data tech stacks.

Analytics Engine
Co-Existence with Traditional BI
Enterprises need to adopt different approaches to solve different problems using big data; some analysis will use a
traditional data warehouse, while other analysis will use both big data as well as traditional business intelligence methods.

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

22

The analytics can happen on both the data warehouse in the traditional way or on big data stores (using distributed
MapReduce processing). Data warehouses will continue to manage RDBMS-based transactional data in a centralized
environment. Hadoop-based tools will manage physically distributed unstructured data from various sources.

The mediation happens when data flows between the data warehouse and big data stores (for example, through
Hive/Hbase) in either direction, as needed, using tools like Sqoop.

Real-time analysis can leverage low-latency NoSQL stores (for example, Cassandra, Vertica, and others) to
analyze data produced by web-facing apps. Open source analytics software like R and Madlib have made this world of
complex statistical algorithms easily accessible to developers and data scientists in all spheres of life.

Search Engines
Problem
Are the traditional search engines sufficient to search the huge volume and variety of data for finding the proverbial
“needle in a haystack” in a big data environment?

Solution
For huge volumes of data to be analyzed, you need blazing-fast search engines with iterative and cognitive data-
discovery mechanisms. The data loaded from various enterprise applications into the big data tech stack has to be
indexed and searched for big data analytics processing. Typical searches won’t be done only on database (HBase)
rows (key), so using additional fields needs to be considered. Different types of data are generated in various
industries, as seen in Figure 2-13.

Figure 2-13. Search data types in various industries

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

23

Real-Time Engines
Memory has become so inexpensive that pervasive visibility and real-time applications are more commonly used
in cases where data changes frequently. It does not always make sense to store state to disk, using memory only to
improve performance. The data is so humongous that it makes no sense to analyze it after a few weeks, as the data
might be stale or the business advantage might have already been lost.

Problem
How do I analyze my data in real time for agile business intelligence capabilities in a big data environment?

Solution
To take advantage of the insights as early as possible, real-time options (where the most up-to-date data is found in
memory, while the data on disk eventually catches up) are achievable using real-time engines and NoSQL data stores.
Real-time analysis of web traffic also generates a large amount of data that is available only for a short period of time.
This often produces data sets in which the schema is unknown in advance.

Big Data Storage Layer
Structured

Unstructured

Real Time

Search Engine
Indexing

Crawling

Search Functions

User Management

Result Display

Query Processing

V
is

u
al

iz
at

io
n

La
ye

r
S

ea
rc

h
 S

er
vi

ce

Spelling Stemming Faceting Highlighting

Tagging Parsing Semantics Pertinence

D
at

a
S

ou
rc

es

Data Warehouse

Figure 2-14. Search engine conceptual architecture

Use of open source search engines like Lucene-based Solr give improved search capabilities that could serve as a
set of secondary indices. While you’re designing the architecture, you need to give serious consideration to this topic,
which might require you to pick vendor-implemented search products (for example, DataStax). Search engine results
can be presented in various forms using “new age” visualization tools and methods.

Figure 2-14 shows the conceptual architecture of the search layer and how it interacts with the various layers of a
big data tech stack. We will look at distributed search patterns that meet the performance, scalability, and availability
requirements of a big data stack in more detail in Chapter 3.

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

24

It’s ideal for caching data to memory that is repeatedly accessed.•

Data is not replicated or persisted across servers.•

It harnesses the aggregate memory of many distributed machines by using a hashing •
algorithm.

To give you an example, Facebook uses 800 servers to supply over 28 TBs of memory for Memcached—for
example, Terracota, EHCache.

In-Memory Database•

Data is deployed in the application tier as an embeddable database—for example, Derby •
(Figure 2-16).

Database

Memory

Cache

Server

Client

Figure 2-15. In-memory caching

In-Memory

DB

In-Memory

DB

Transactions

Disk-based DBMSIMDB

Client Reporting

Application

T

Enterprise

Application

Layer

Figure 2-16. In-memory database

Document-based systems can send messages based on the incoming traffic and quickly move on to the next
function. It is not necessary to wait for a response, as most of the messages are simple counter increments. The scale
and speed of a NoSQL store will allow calculations to be made as the data is available. Two primary in-memory modes
are possible for real-time processing:

In-Memory Caching•

Data is deployed between the application and the database to alleviate database load •
(Figure 2-15).

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

25

Reading and writing data is as fast as accessing RAM. For example, with a 1.8-GHz •
processor, a read transaction can take less than 5 microseconds, with an insert transaction
taking less than 15 microseconds.

The database fits entirely in physical memory.•

The data is managed in memory with optimized access algorithms.•

Transaction logs and database checkpoint files are stored to disk.•

Visualization Layer
Problem
Are the traditional analytical tools capable of interpreting and visualizing big data?

Solution
A huge volume of big data can lead to information overload. However, if visualization is incorporated early-on as
an integral part of the big data tech stack, it will be useful for data analysts and scientists to gain insights faster and
increase their ability to look at different aspects of the data in various visual modes.

Once the big data Hadoop processing aggregated output is scooped into the traditional ODS, data warehouse,
and data marts for further analysis along with the transaction data, the visualization layers can work on top of this
consolidated aggregated data. Additionally, if real-time insight is required, the real-time engines powered by complex
event processing (CEP) engines and event-driven architectures (EDAs) can be utilized. Refer to Figure 2-17 for the
interactions between different layers of the big data stack that allow you to harnesses the power of visualization tools.

Operational

Data Stores

Data Warehouses

Big Data Storage Layer

Unstructured

Relational Databases NoSQL Databases

Traditional BI Tools

Data Lakes

Big Data Analysis Tools

Visualization Tools

Structured Data

Data Scoop

Figure 2-17. Visualization conceptual architecture

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

26

The business intelligence layer is now equipped with advanced big data analytics tools, in-database statistical
analysis, and advanced visualization tools like Tableau, Clickview, Spotfire, MapR, revolution R, and others. These
tools work on top of the traditional components such as reports, dashboards, and queries.

With this architecture, the business users see the traditional transaction data and big data in a consolidated
single view. We will look at visualization patterns that provide agile and flexible insights into big data stacks in more
detail in Chapter 6.

Big Data Applications
Problem
What is the minimum set of software tools I will need to implement, from end to end, the big data tech stack explained
earlier?

Solution
You have a wide choice of tools and products you can use to build your application architecture end to end. We will
look at many of them in later chapters as we discuss applying multiple-pattern scenarios to specific business scenarios.
Products usually selected by many enterprises to begin their big data journey are shown in Table 2-1. The products
listed are predominantly open source based, except for situations where an organization already has an IT investment in
products from IBM, Oracle, SAP, EMC, and other companies and would like to leverage the existing licensing agreements
to build big data environments at a reasonable price, as well as get continued support from the vendors.

Table 2-1. Big data typical software stack

Purpose Products/tools

Ingestion Layer Apache Flume, Storm

Hadoop Storage HDFS

NoSQL Databases Hbase, Cassandra

Rules Engines MapReduce jobs

NoSQL Data Warehouse Hive

Platform Management
Query Tools

MapReduce, Pig, Hive

Search Engine Solr

Platform Management
Co-ordination Tools

ZooKeeper, Oozie

Analytics Engines R, Pentaho

Visualization Tools Tableau, Clickview, Spotfire

Big Data Analytics Appliances EMC Greenplum, IBM Netezza, IBM Pure Systems, Oracle Exalytics

Monitoring Ganglia, Nagios

Data Analyst IDE Talend, Pentaho

Hadoop Administration Cloudera, DataStax, Hortonworks, IBM Big Insights

Public Cloud-Based Virtual Infrastructure Amazon AWS & S3, Rackspace

CHAPTER 2 ■ BIG DATA APPLICATION ARCHITECTURE

27

Problem
How do I transfer and load huge data into public, cloud-based Hadoop virtual clusters?

Solution
As much as enterprises would like to use the public cloud environments for their big data analytics, that desire is
limited by the constraints in moving terabytes of data in and out of the cloud. Here are the traditional means of
moving large data:

Physically ship hard disk drives to a cloud provider. The risk is that they might get delayed or •
damaged in transit.

The other digital means is to use • TCP-based transfer methods such as FTP or HTTP.

Both options are woefully slow and insecure for fulfilling big data needs. To become a viable option for big
data management, processing, and distribution, cloud services need a high-speed, non-TCP transport mechanism
that addresses the bottlenecks of networks, such as the degradation in transfer speeds that occurs over distance
using traditional transfer protocols and the last-mile loss of speed inside the cloud datacenter caused by the HTTP
interfaces to the underlying object-based cloud storage.

There are products that offer better file-transfer speeds and larger file-size capabilities, like those offered by
Aspera, Signiant, File catalyst, Telestream, and others. These products use a combination of UDP protocol and
parallel TCP validation. UDP transfers are less dependable, and they verify by hash or just the file size, after the
transfer is done.

Problem
Is Hadoop available only on Unix/Linux-based operating systems? What about Windows?

Solution
Hadoop is about commodity servers. More than 70 percent of the commodity servers in the world are Windows based.
Hortonworks data platform (HDP) for Windows, a fully supported, open source Hadoop distribution that runs on
Windows Server, was released in May 2013.

HDP for Windows is not the only way that Hadoop is coming to Windows. Microsoft has released its own
distribution of Hadoop, which it calls HDInsight. This is available as a service running in an organization’s Windows
Azure cloud, or as a product that’s intended to be used as the basis of an on-premises, private-cloud Hadoop
installation.

Data analysts will be able to use tools like Microsoft Excel on HDP or HDInsight without the working through the
learning curve that comes with implementing new visualization tools like Tableau and Clickview.

Summary
To venture into the big data analytics world, you need a robust architecture that takes care of visualization and
real-time and offline analytics and is supported by a strong Hadoop-based platform. This is essential for the success
of your program. You have multiple options when looking for products, frameworks, and tools that can be used to
implement these logical components of the big data reference architecture. Having a holistic knowledge of these
major components ensures there are no gaps in the planning phase of the architecture that get identified when you
are halfway through your big data journey.

This chapter serves as the foundation for the rest of the book. Next we’ll delve into the various interaction
patterns across the different layers of the big data architecture.

www.allitebooks.com

http://www.allitebooks.org

29

CHAPTER 3

Big Data Ingestion and Streaming
Patterns

Traditional business intelligence (BI) and data warehouse (DW) solutions use structured data extensively.
Database platforms such as Oracle, Informatica, and others had limited capabilities to handle and manage
unstructured data such as text, media, video, and so forth, although they had a data type called CLOB and BLOB;
which were used to store large amounts of text, and accessing data from these platforms was a problem. With the
advent of multistructured (a.k.a. unstructured) data in the form of social media and audio/video, there has to be
a change in the way data is ingested, preprocessed, validated, and/or cleansed and integrated or co-related with
nontextual formats. This chapter deals with the following topics:

How multistructured data is temporarily stored•

How the data integrity of large volumes can be maintained•

The physical taxonomy required to ensure fault-tolerant, streaming data ingestion•

Use of high-performance deployment patterns to ensure large volumes of data are ingested •
without any data loss

Understanding Data Ingestion
In typical ingestion scenarios, you have multiple data sources to process. As the number of data sources increases,
the processing starts to become complicated. Also, in the case of big data, many times the source data structure itself
is not known; hence, following the traditional data integration approaches creates difficulty in integrating data.

Common challenges encountered while ingesting several data sources include the following:

Prioritizing each data source load •

Tagging and indexing ingested data •

Validating and cleansing the ingested data•

Transforming and compressing before ingestion •

CHAPTER 3 ■ BIG DATA INGESTION AND STREAMING PATTERNS

30

Problem
What are the typical data ingestion patterns?

Solution
Unstructured data, if stored in a relational database management system (RDBMS) will create performance and
scalability concerns. Hence, in the big data world, data is loaded using multiple solutions and multiple target
destinations to solve the specific types of problems encountered during ingestion.

Ingestion patterns describe solutions to commonly encountered problems in data source to ingestion layer
communications. These solutions can be chosen based on the performance, scalability, and availability requirements.
We’ll look at these patterns (which are shown in Figure 3-1) in the subsequent sections. We will cover the following
common data-ingestion and streaming patterns in this chapter:

• Multisource Extractor Pattern: This pattern is an approach to ingest multiple data source
types in an efficient manner.

• Protocol Converter Pattern:–This pattern employs a protocol mediator to provide abstraction
for the incoming data from the different protocol layers.

• Multidestination Pattern: This pattern is used in a scenario where the ingestion layer has
to transport the data to multiple storage components like Hadoop Distributed File System
(HDFS), data marts, or real-time analytics engines.

• Just-in-Time Transformation Pattern: Large quantities of unstructured data can be uploaded
in a batch mode using traditional ETL (extract, transfer and load) tools and methods. However,
the data is transformed only when required to save compute time.

• Real-Time Streaming patterns: Certain business problems require an instant analysis of data
coming into the enterprise. In these circumstances, real-time ingestion and analysis of the
in-streaming data is required.

CHAPTER 3 ■ BIG DATA INGESTION AND STREAMING PATTERNS

31

Multisource Extractor Pattern
Problem
How will you ingest data from multiple sources and different formats in an efficient manner?

Solution
The multisource extractor pattern (shown in Figure 3-2) is applicable in scenarios where enterprises that have
large collections of unstructured data need to investigate these disparate datasets and nonrelational databases
(for example, NoSQL, Cassandra, and so forth); typical industry examples are claims and underwriting, financial
trading, telecommunications, e-commerce, fraud detection, social media, gaming, and wagering. Feeds from energy
exploration and video-surveillance equipment where application workloads are CPU and I/O-intensive are also ideal
candidates for the multisource extractor pattern.

Hadoop Storage Layer

Identification

Filtration

Validation

Noise

Reduction

Transformation

Compresssion

Integration

D
ata

S
ou

rces NoSQL Database

HDFS

Multi-Destination

Pattern

Real Time

Search & Analytics Engine

Data Mart / Data

Warehouse

Multi-Source Extractor

Pattern

Real Time Streaming

Pattern

Just-in-Time

Transformation

Batch Engine

Protocol Converter

Pattern

Figure 3-1. Data ingestion layer and associated patterns

CHAPTER 3 ■ BIG DATA INGESTION AND STREAMING PATTERNS

32

Multisource extractor taxonomy ensures that the ingestion tool/framework is highly available and distributed.
It also ensures that huge volumes of data get segregated into multiple batches across different nodes. For a very small
implementation involving a handful of clients and/or only a small volume of data, even a single-node implementation
will work. But, for a continuous stream of data influx from multiple clients and a huge volume, it makes sense to have
clustered implementation with batches partitioned into small volumes.

Generally, in large ingestion systems, big data operators employ enrichers to do initial data aggregation and
cleansing. (See Figure 3-2.) An enricher reliably transfers files, validates them, reduces noise, compresses and
transforms from a native format to an easily interpreted representation. Initial data cleansing (for example, removing
duplication) is also commonly performed in the enricher tier.

Once the files are processed by enrichers, they are transferred to a cluster of intermediate collectors for final
processing and loading to destination systems.

Because the ingestion layer has to be fault-tolerant, it always makes sense to have multiple nodes. The number
of disks and disk size per node have to be based on each client’s volume. Multiple nodes will be able to write to more
drives in parallel and provide greater throughput.

However, the multisource extractor pattern has a number of significant disadvantages that make it unusable for
real-time ingestion. The major shortcomings are as follows:

• Not Real Time: Data-ingestion latency might vary between 30 minutes and a few hours.

• Redundant Data: Multiple copies of data need to be kept in different tiers of enrichers and
collection agents. This makes already large data volumes even larger.

• High Costs: High availability is usually a requirement for this pattern. As the systems grow in
capacity, costs of maintaining high availability increases.

• Complex Configuration: This batch-oriented pattern is difficult to configure and maintain.

Table 3-1 outlines a sample textual data ingestion using a single-node taxonomy against a multinode taxonomy.

Table 3-1. Distributed and Clustered Flume Taxonomy

Time to Ingest 2 TB Disk size/ Node No. of disks / Node RAM

Single Node Collector 3.5 Hours 1 GB/disk 4 4GB

2- Node Collector 1 Hour 1 GB/disk 4 4 GB

Single-Node Collector 3.5 hours 1 GB/disk 4 4 GBs

2-Node Collector 1 hour 1 GB/Disk 4 4 GBs

Data

Source 1 Node

Intermediate

Collection

Agent 1

Node

Intermediate

Collection

Agent 2

HDFS

Enricher 1Data

Source 2

Data

Source 3

Data

Source 4

Enricher 2

Figure 3-2. Multisource extractor pattern

CHAPTER 3 ■ BIG DATA INGESTION AND STREAMING PATTERNS

33

Protocol Converter Pattern
Problem
How will you ingest data from multiple sources and different formats/protocols in an efficient manner?

Solution
The protocol converter pattern (shown in Figure 3-3) is applicable in scenarios where enterprises have a wide variety
of unstructured data from data sources that have different data protocols and formats. In this pattern, the ingestion
layer does the following:

 1. Identifies multiple channels of incoming event.

 2. Identifies polydata structures.

 3. Provides services to mediate multiple protocols into suitable sinks.

 4. Provides services to interface binding of external system containing several sets of
messaging patterns into a common platform.

 5. Provides services to handle various request types.

 6. Provides services to abstract incoming data from various protocol layers.

 7. Provides a unifying platform for the next layer to process the incoming data.

Files

Message

Exchanger

Message

Exchanger

Web

Services

Byte

Streams

RFID

Streams

File Handler

Web

Services

Handler

Stream

Handler

Serializer

Async

Message

Handler

Router

Data Mart / Data

Warehouse

Hadoop Storage Layer

NoSQL Database

HDFS
P

S

Figure 3-3. Protocol converter pattern

CHAPTER 3 ■ BIG DATA INGESTION AND STREAMING PATTERNS

34

Protocol conversion is required when the source of data follows various different protocols. The variation in the
protocol is either in the headers or the actual message. It could be either the number of bits in the headers, the length
of the various fields and the corresponding logic required to decipher the data content, the message could be fixed
length or variable length with separators.

This pattern is required to standardize the structure of the various different messages so that it is possible to
analyze the information together using an analytics tool . The converter fits the different messages into a standard
canonical message format that is usually mapped to a NoSQL data structure.

This concept is important when a system needs to be designed to address multiple protocols having multiple
structures for incoming data.

In this pattern, the ingestion layer provides the following services:

• Message Exchanger: The messages could be synchronous or asynchronous depending on the
protocol used for transport. A typical example is a web application information exchange over
HTPP and the JMS-like message oriented communication that is usually asynchronous.

• Stream Handler: This component recognizes and transforms data being sent as byte streams
or object streams—for example, bytes of image data, PDFs, and so forth.

• File handler: This component recognizes and loads data being sent as files—for example, FTP.

• Web Services Handler: This component defines the manner of data population and parsing
and translation of the incoming data into the agreed-upon format—for example, REST WS,
SOAP-based WS, and so forth.

• Async Handler: This component defines the system used to handle asynchronous events—for
example, MQ, Async HTTP, and so forth.

• Serializer: The serializer handles incoming data as Objects or complex types over RMI
(remote method invocation)—for example, EJB components. The object state is stored in
databases or flat files.

Multidestination Pattern
Problem
Should all the raw data be ingested only in HDFS? In what scenario should it be ingested in multiple destinations?

Solution
Many organizations have traditional RDBMS systems as well as analytics platforms like SAS or Informatica. However,
the ever-growing amount of data from an increasing number of data streams causes storage overflow problems. Also,
the cost of licenses required to process this huge data slowly starts to become prohibitive. Increasing volume also
causes data errors (a.k.a., data regret), and the time required to process the data increases exponentially. Because
the RDBMS and analytics platforms are physically separate, a huge amount of data needs to be transferred over the
network on a daily basis.

To overcome these challenges, an organization can start ingesting data into multiple data stores, both RDBMS as
well as NoSQL data stores. The data transformation can be performed in the HDFS storage. Hive or Pig can be used to
analyze the data at a lower cost. This also reduces the load on the existing SAS/Informatica analytics engines.

The Hadoop layer uses map reduce jobs to prepare the data for effective querying by Hive and Pig. This also
ensures that large amounts of data need not be transferred over the network, thus avoiding huge costs.

CHAPTER 3 ■ BIG DATA INGESTION AND STREAMING PATTERNS

35

The multidestination pattern (Figure 3-4) is very similar to the multisource ingestion pattern until it is ready to
integrate with multiple destinations. A router publishes the “enriched” data and then broadcasts it to the subscriber
destinations. The destinations have to register with the publishing agent on the router. Enrichers can be used as
required by the publishers as well as the subscribers. The router can be deployed in a cluster, depending on the
volume of data and number of subscribing destinations.

This pattern solves some of the problems of ingesting and storing huge volumes of data:

Splits the cost of storage by dividing stored data among traditional storage systems and HDFS.•

Provides the ability to partition the data for flexible access and processing in a decentralized •
fashion.

Due to replication on the HDFS nodes, there is no “data regret.”•

Because each node is self-sufficient, it’s easy to add more nodes and storage without delays.•

Decentralized computation at the data nodes without extraction of data to other tools.•

Allows use of simple query languages like Hive and Pig alongside the giants of traditional •
analytics.

Just-in-Time Transformation Pattern
Problem
Should preprocessing of data—for example, cleansing/validation—always be done before ingesting data in HDFS?

Solution
For a huge volume of data and a huge number of analytical computations, it makes sense to ingest all the raw data
into HDFS and then run dependent preprocessing batch jobs based on the business case to be implemented to
cleanse, validate, co-relate, and transform the data. This transformed data, then, can again be stored in HDFS itself
or transferred to data marts, warehouses, or real-time analytics engines. In short, raw data and transformed data can
co-exist in HDFS and running all preprocessing transformations before ingestion might not be always ideal.

Data

Source 1 Node

Intermediate

Collection

Agent 1

Node

Intermediate

Collection

Agent 2

Router

Enricher 1Data

Source 2

Data

Source 3

Data

Source 4

Enricher 2

NoSQL Database

HDFS

S

P

S

Hadoop Storage Layer

Search & Analytics Engine

Data Mart / Data

Warehouse

Figure 3-4. Multidestination pattern

CHAPTER 3 ■ BIG DATA INGESTION AND STREAMING PATTERNS

36

But basic validations can be performed as part of preprocessing on data being ingested.
This section introduces you to the just-in-time transformation pattern, where data is loaded and then

transformed when required by the business. Notice the absence of the enricher layer in Figure 3-5. Multiple batch jobs
run in parallel to transform data as required in the HDFS storage.

Real-Time Streaming Pattern
Problem
How do we develop big data applications for processing continuous, real-time and unstructured inflow of data into
the enterprise?

Solution
The key characteristics of a real-time streaming ingestion system (Figure 3-6) are as follows:

It should be self-sufficient and use local memory in each processing node to minimize latency.•

It should have a share-nothing architecture—that is, all nodes should have atomic •
responsibilities and should not be dependent on each other. .

It should provide a simple API for parsing the real time information quickly. •

The atomicity of each of the components should be such that the system can scale across •
clusters using commodity hardware.

There should be no centralized master node. All nodes should be deployable with a uniform script.•

HDFS

Raw Data

Transformed Data 1

Transformed Data 2

1

1.1

1.2

Transformed Data 3 1.3

Data

Source 1

Node

Intermediate

Collection

Agent 1

Node

Intermediate

Collection

Agent 2

Data

Source 2

Data

Source 3

Data

Source 4

Figure 3-5. Raw data as well as transformed data co-existing in HDFS

CHAPTER 3 ■ BIG DATA INGESTION AND STREAMING PATTERNS

37

Event processing nodes (EPs) consume the different inputs from various data sources. EPs create events that
are captured by the event listeners of the event processing engines. Event listeners are the logical hosts to EPs. Event
processing engines have a very large in-memory capacity (big memory). EPs get triggered by events as they are based
on an event driven architecture. As soon as a event occurs the EP is triggered to execute a specific operation and
then forward it to the alerter. The alerter publishes the results of the in-memory big data analytics to the enterprise
BPM (business process management) engines. The BPM processes can redirect the results of the analysis to various
channels like mobile, CIO dashboards, BAM systems and so forth.

Problem
What are the essential tools/frameworks required in your big data ingestion layer to handle files in batch-processing mode?

Solution
There are many product options to facilitate batch-processing-based ingestion. Here are some of the major
frameworks available in the market:

• Apache Sqoop is a is used to transfer large volumes of data between Hadoop big data nodes and
relational databases.. It offers two-way replication with both snapshots and incremental updates.

• Chukwa is a Hadoop subproject that is designed for efficient log processing. It provides
a scalable distributed system for monitoring and analysis of log-based data. It supports
appending to existing files and can be configured to monitor and process logs that are
generated incrementally across many machines.

No SQL

Data

Sources
Event Listener

Event Listener

Alerter

Business

Process

Engine
P

Event

Processing

Node

Event

Processing

Node

Event

Processing

Engine

Event

Processing

Engine

Click

Stream

Data

Log

Streams

RFID

Streams

Coordinator

Figure 3-6. Real-time streaming pattern

CHAPTER 3 ■ BIG DATA INGESTION AND STREAMING PATTERNS

38

• Apache Kafka is a broadcast messaging system where the information is being listened
to by multiple subscribers and picked up based on relevance to each subscriber. The
publisher can be configured to retain the messages until the confirmation is received from
all the subscribers. If any subscriber does not receive the information, the publisher will
send it again. Its features include the use of compression to optimize IO performance and
mirroring to improve availability, improve scalability, to optimize performance in
multiple-cluster scenarios. It can be used as the framework between the router and Hadoop
in the multidestination pattern implementation.

Problem
What are the essential tools/frameworks required in your big data ingestion layer to handle real-time streaming data?

Solution
There are many product options to facilitate real-time streaming ingestion. Here are some of the major frameworks
available in the market:

• Flume is a distributed system for collecting log data from many sources, aggregating it, and
writing it to HDFS. It is based on streaming data flows. Flume provides extensibility for
online analytic applications. However, Flume requires a fair amount of configuration that can
become very complex for very large systems.

• Storm supports event-stream processing and can respond to individual events within a
reasonable time frame. Storm is a general-purpose, event-processing system that uses a
cluster of services for scalability and reliability. In Storm terminology, you create a topology
that runs continuously over a stream of incoming data. The data sources for the topology
are called spouts, and each processing node is called a bolt. Bolts can perform sophisticated
computations on the data, including output to data stores and other services. It is common for
organizations to run a combination of Hadoop and Storm services to gain the best features of
both platforms.

• InfoSphere Streams is able to perform complex analytics of heterogeneous data types.
Infosphere Streams can support all data types. It can perform real-time and look-ahead
analysis of regularly generated data, using digital filtering, pattern/correlation analysis, and
decomposition as well as geospatial analysis. Apache S4 is a Yahoo invented platform for
handling continuous real time ingestion of data. It provides simple APIs for manipulating the
unstructured streams of data, searches and distributes the processing across multiple nodes
automatically without complicated programming. Client programs that send and receive
events can be written in any programming language. S4 is designed as a highly distributed
system. Throughput can be increased linearly by adding nodes into a cluster. The S4 design is
best suited for large-scale applications for data mining and machine learning in a production
environment.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ BIG DATA INGESTION AND STREAMING PATTERNS

39

ETL Tools for Big Data
Problem
Can traditional ETL tools be used to ingest data into HDFS?

Solution
Traditional ETL tools like the open source Talend, Pentahho DI, or well-known products like Informatica can also be
leveraged for data ingestion. Some of the traditional ETL tools can read and write multiple files in parallel from and
to HDFS.

ETL tools help to get data from one data environment and put it into another data environment. ETL is generally
used with batch processing in data warehouse environments. Data warehouses provide business users with a way to
consolidate information across disparate sources to analyze and report on insights relevant to their specific business
focus. ETL tools are used to transform the data into the format required by the data warehouse. The transformation is
actually done in an intermediate location before the data is loaded into the data warehouse.

In the big data world, ETL tools like Informatica have been used to enable a fast and flexible ingestion solution
(greater than 150 GBs/day) that can support ad hoc capability for data and insight discovery. Informatica can be used
in place of Sqoop and Flume solutions. Informatica PowerCenter can be utilized as a primary raw data ingestion engine.

Figure 3-7 depicts a scenario in which a traditional ETL tool has been used to ingest data into HDFS.

NoSQL

Data

Sources

Informatica

Staging Server

P

S

Enricher 1

Enricher 2

Node

Intermediate

Collection

Agent 1

Node

Intermediate

Collection

Agent 2

Router

Hadoop Storage Layer

Data Mart / Data

Warehouse

NoSQL Database

HDFS

Figure 3-7. Ingestion using traditional ETL tools

Problem
Are there message-transformation best practices in the ingestion layers that facilitate faster ingestion?

CHAPTER 3 ■ BIG DATA INGESTION AND STREAMING PATTERNS

40

Solution
For the transformation of messages and location of the transformation process, these guidelines can be followed:

Perform the transformation as a part of the extraction process.•

This allows selecting only the record of interest for loading and, ideally, that should be the data that has changed
since the last extraction. Simple transformation, such as decoding an attribute and uppercase/lowercase conversions,
can be performed in the source system.

Perform the transformation as a separate layer.•

Transformation can be performed in the staging area prior to loading in the HDFS system. When there
are multiple data sources, the data needs to be consolidated and mapped to a different data structure. Such an
intermediate data store is called staging. We can use Hadoop ETL tools like Hive and Pig in this area to do the
transformation.

Perform the transformation as a part of the loading process. •

Some simple transformation can be done during the loading process itself.

Perform the transformation in memory.•

Transformation of data in memory is considered to be a better option for large and complex transformations with no
latency between the extraction and loading processes. But this involves large amounts of memory. This is useful for near
real-time system analytics (for example, SAP HANA), where transformation and loading is done with very low latency.

Problem
Are there any hardware appliances available in the market to ingest big data workloads?

Solution
Many vendors like IBM, Oracle, EMC, and others have come out with hardware appliances that promise end-to-end
systems that optimize the big data ingestion, processing, and storage functions. The next section gives you a brief idea
about the capabilities of such appliances.

Oracle has a big data appliance that handles data to the tune of 600 TBs. It utilizes Apache CDH for big data
management. It also has an inherent 10 GbE high speed network between the nodes for rapid real time ingestion and
replication.

EMC comes with a similar appliance called Greenplum with similar features to facilitate high speed low cost data
processing using Hadoop.

Problem
How do I ingest data onto third-party public cloud options like Google BigQuery?

Solution
BigQuery is Google’s cloud-based big data analytics service. You can upload your big data set to BigQuery for analysis.
However, depending on your data’s structure, you might need to prepare the data before loading it into BigQuery. For
example, you might need to export your data into a different format or transform the data. BigQuery supports two data
formats: CSV and JSON.

CHAPTER 3 ■ BIG DATA INGESTION AND STREAMING PATTERNS

41

BigQuery can load uncompressed files significantly faster than compressed files due to parallel load operations,
but because uncompressed files are larger in size, using them can lead to bandwidth limitations and higher Google
Cloud Storage costs. For example, uncompressed files that live on third-party services can consume considerable
bandwidth and time if uploaded to Google Cloud Storage for loading.

With BigQuery, processing is faster if you denormalize the data structure to enable super-fast querying.
Large datasets are often represented using XML. BigQuery doesn’t support directly loading XML files, but XML files

can be easily converted to an equivalent JSON format or flat CSV structure and then uploaded to continue processing.

Summary
With the huge volume of data coming into enterprises from various data sources, different challenges are encountered
that can be solved using the patterns mentioned in this chapter. These patterns provide topologies to address multiple
types of data formats and protocols, as well provide guidance about how much time it takes to process the data, the
location of the transformation and so forth. A judicious use of these patterns will help the big data architect sift the
noise from the true information before it enters the enterprise for further analysis in the Hadoop storage area.

43

CHAPTER 4

Big Data Storage Patterns

There are various storage infrastructure options available in the market, and big data appliances have added a new
dimension to infrastructure options. Enterprises can leverage their existing infrastructure and storage licenses in
addition to these new solutions for big data. In this chapter, we will cover the various storage mechanisms available,
as well as patterns that amalgamate existing application storage frameworks with new big data implementations.

Understanding Big Data Storage
Since data is now more than just plain text, it can exist in various persistence-storage mechanisms, with Hadoop
distributed file system (HDFS) being one of them. The way data is ingested or the sources from which data is ingested
affects the way data is stored. On the other hand, how the data is pushed further into the downstream systems or
accessed by the data access layer decides how the data is to be stored.

The need to store huge volumes of data has forced databases to follow new rules of data relationships and
integrity that are different from those of relational database management systems (RDBMS).

RDBMS follow the ACID rules of atomicity, consistency, isolation and durability. These rules make the database
reliable to any user of the database. However, searching huge volumes of big data and retrieving data from them
would take large amounts of time if all the ACID rules were enforced.

A typical scenario is when we search for a certain topic using Google. The search returns innumerable pages of
data; however, only one page is visible or basically available (BA). The rest of the data is in a soft state (S) and is still
being assembled by Google, though the user is not aware of it. By the time the user looks at the data on the first page,
the rest of the data becomes eventually consistent (E). This phenomenon—basically available soft state and eventually
consistent—is the rule followed by the big data databases, which are generally NoSQL databases following BASE
properties.

Database theory suggests that any distributed NoSQL big database can satisfy only two properties predominantly
and will have to relax standards on the third. The three properties are consistency, availability, and partition tolerance
(CAP). This is the CAP theorem.

The aforementioned paradigms of ACID, BASE, and CAP give rise to new big data storage patterns (Figure 4-1)
like the following:

• Façade pattern: HDFS serves as the intermittent façade for the traditional DW systems.

• Lean pattern: HBase is indexed using only one column-family and only one column and
unique row-key.

• NoSQL pattern: Traditional RDBMS systems are replaced by NoSQL alternatives to facilitate
faster access and querying of big data.

• Polyglot pattern: Multiple types of storage mechanisms—like RDBMS, file storage, CMS,
OODBMS, NoSQL and HDFS—co-exist in an enterprise to solve the big data problem.

CHAPTER 4 ■ BIG DATA STORAGE PATTERNS

44

Façade Pattern
Problem
Does big data replace existing data warehouse (DW) implementations?

Solution
Hadoop is not necessarily a replacement for a data warehouse (DW). It can also act as façade for a DW (Figure 4-2 and
Figure 4-3). Data from different sources can be aggregated into an HDFS before being transformed and loaded to the
traditional DW and business intelligence (BI) tools.

HDFS

Hadoop

Storage Layer NoSQL Database

Hadoop Platform Management Layer

Z
o

o
k

e
e
p

e
r

Pig Hive Sqoop

MapReduce

Visualization Layer

Data Analyst IDE / SDK
Visualization

Tools
Hadoop Administration

D
a

ta

S
o

u
rc

e
s

U
n

stru
c
tu

re
d

 D
a
ta

V
id

e
o

S

tre
a

m
s

R
e
la

tio
n

a
l D

B

Im
a

g
e
s

S
e
n

so
rs

Statistical

Analytics

Text Analytics

Search EngineIn
g

e
stio

n
 L

a
ye

r

Hadoop

Infrastructure Layer

Virtualized Cloud Services

Data Warehouses

Analytics Engines

Security Layer

Monitoring Layer

Real Time Engine

Analytics Appliances

CPU

Disk

Node

Rack

CPU

Disk

Node

Rack

CPU

Disk

Node

RackBare Metal Clustered Workstations

NoSQL Pattern

Lean Pattern

Facade

Pattern

Polyglot

Pattern

Figure 4-1. Big data storage patterns

HDFS

Data

Node

Data

Node

Data

Node

Data Source 1 I

N

G

E

S

T

I

O

N

Existing DW

Implementation

Data Source 2

Data Source 3

Data Source 4

Sqoop

Figure 4-2. The Hadoop Façade pattern

CHAPTER 4 ■ BIG DATA STORAGE PATTERNS

45

This helps in retaining the investment in the existing DW framework, as well as the data usage in the downstream
systems. This also helps re-use the existng infrastructure and add an abstraction of the DW. Hence, if new data
sources are added to the ingestion system, it is still abstracted from the DW framework. This pattern solves the variety
challenge among the three Vs (velocity, variety, and volume) of big data as shown in the example in Figures 4-3 to 4-6.

TeraData Warehouse

HDFS

External Data Sources Internal Data Sources Social Media Data

Figure 4-3. Hadoop as a façade for TeraData

HDFS

Data

Node

Data

Node

Data

Node

HIVE

Data

Sources

Figure 4-4. Typical big data storage and access

CHAPTER 4 ■ BIG DATA STORAGE PATTERNS

46

HDFS

Data

Node

Data

Node

Data

Node

RDBMS/NoSQL

Database/Appliance

Data

Sources

Figure 4-5. Abstraction of RDBMS above HDFS

Data

Sources

HDFS

Data

Node

Data

Node

Data

Node

In-Memory

Cache

Figure 4-6. Abstraction of in-memory cache above HDFS

Data can be stored as “structured” data after being ingested into HDFS in the form of storage in an RDBMS
(Figure 4-5) or in the form of applicances like IBM Netezza/EMC Greenplum, NoSQL Databases like Cassandra/HO
Vertica/Oracle Exadata, or simply in an in-memory cache (Figure 4-6).

This ensures that only necessary data resides in the “structured” storage, thereby reducing the data size as well as
latency (while accessing the data).

CHAPTER 4 ■ BIG DATA STORAGE PATTERNS

47

Data Appliances
The types of big data appliances claiming to offer high performance and low latency have mushroomed in the market.
We need to be aware how they really affect the existing infrastructure and the benefits that these appliances bring to
the table.

Problem
What are the benefits of using an integrated big data appliance?

Solution
HP Vertica, IBM Netezza, Oracle Exadata, and EMC Greenplum are packaged, commercial off-the-shelf COTS
appliances available in the market. The advantage of such appliances is that they bring together the infrastructure,
the Hadoop firmware, and management tools (for managing the Hadoop nodes). These appliances also ensure that
instead of aligning with multiple vendors for software, storage and tools, only a tie-up with a single vendor is needed.
This reduces considerable legwork for the client, ensuring the client deals with a single vendor for all issues.

HP Vertica (Figure 4-7) is an example of an all-in-one appliance.

Entity Vendor tie-ups

Hadoop Software Distribution Cloudera, Hortonworks or MAPR distribution

Storage HP Vertica – RAID compliant columnar database

Infrastructure HP Proliant servers

Analytics/Visualization SAS

Machine Learning R

Figure 4-7. Vendors with multiple tie-ups

Vendor What the vendor brings to the table

EMC

Oracle Exadata + Sun SPARC servers + Exalytics

IBM Big Insights + Netezza + PureData + PureSystems

Greenplum appliance + EMC Storage HW + Pivotal HD (Hadoop

Distribution) + TeraData

Figure 4-8. List of big data vendors with multiple tie-ups

As you can see from the preceding example, the HP big data implementation brings with it back-to-back
collaboration with other vendors. Other examples are shown in Figure 4-8.

CHAPTER 4 ■ BIG DATA STORAGE PATTERNS

48

For one financial firm, a shift from a relational database to an appliance saw a 270 times faster query run. So the
difference can be quite substantial.

The points to consider before implementing an appliance are these:

Vendor lock-in•

Time to bring appliance implementation into production (porting data from legacy •
applications to appliance)

Skills and expertise availability•

License cost•

Annual maintenance cost•

Total cost of ownership (TCO)•

Return on investment (ROI)•

Business case or the need for performance improvements over the existing Hadoop •
implementation

Security (encryption and authentication)•

Integration with existing tools and hardware•

Storage Disks
SAN, NAS, and SSD are some well-known storage formats. Big data has been tested on SAN disks, but there is not
much performance data available regarding SSD.

Problem
Should big data be stored on RAID-configured disks?

Solution
RAID configuration is not necessary if the default storage is HDFS, because it already has a replication mechanism.
Some appliances, including some of those discussed earlier, abstract the data that needs to be analyzed into a
“structured” format that might have to be RAID-configured.

Data Archive/Purge
Problem
Is there a time-to-live for data to reside in HDFS?

Solution
Yes, as in any storage solution, data needs to be persisted only as long as the business demands it. Beyond this period,
the data can be archived to products like EMC Isilon (http://www.emc.com/archiving/archive-big-data.htm).
A data purge also has to be business driven.

http://www.emc.com/archiving/archive-big-data.htm

CHAPTER 4 ■ BIG DATA STORAGE PATTERNS

49

Data Partitioning/Indexing and the Lean Pattern
Problem
HDFS is a distributed file system and inherently splits a file into chunks and replicates them. Does it still need further
partitioning and indexing?

Solution
As a best practice, data partitioning is recommended for HDFS-based NoSQL databases. Because HDFS is a folder
structure, data can be distributed/partitioned in multiple folders that are created on the basis of time-stamp,
geography, or any other parameters that drive the business. This ensures that data access is capable of very high
performance.

Problem
Is data indexing possible in HDFS (the Lean pattern)?

Solution
Data indexing as known in the RDBMS world is not applicable to HDFS but is applicable to NoSQL databases, like
HBase, that are HDFS aware and compliant.

HBase works on the concept of column-family apart from columns, which can be leveraged to aggregate similar
data together (Figures 4-9 and 4-10).

Column Family

Column1 Column2 Column3 Column4

Figure 4-9. HBase implementation with only one column-family and multiple columns

Column Family 1 Column Family 2

Column1 Column2 Column3 Column11 Column12 Column13

Figure 4-10. HBase implementation with multiple column-families and multiple columns

As you can see in the preceding illustrations, there are three ways a dataset can be uniquely identified. A unique
combination of column-family name and a column can be used to uniquely identify a dataset. This can be achieved
by having a combination of one-column or multiple-column families. A third way is to create a unique row-key, while
having only a one column-family and one column. This implementation is called a Lean pattern implementation
(Figure 4-11). The row-key name should end with a suffix of a time-stamp.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ BIG DATA STORAGE PATTERNS

50

This not only helps create a unique row-key but also helps in filtering or sorting data because the suffix is
numeric in the form of a time-stamp.

Since maintenance can be difficult if the Lean pattern is implemented, it should be chosen over the other two
only if the right skills and expertise exist in the big data team.

HDFS Alternatives
Problem
Are there other publicly available big data storage mechanisms?

Solution
Amazon Web Services (AWS) has its own storage mechanism in the form of S3. Data can be stored in S3 in the form
of buckets. Whether all the data resides in a single bucket or in multiple buckets, again, should be driven by business
needs and/or the skills available in the organization.

Other vendors, like IBM (GPFS) and EMC (Figure 4-12), have also been marketing their own file systems, but not
many industry credentials are present to make them serious contenders to HDFS.

Column Family

Row-Key Column

Figure 4-11. Lean pattern—HBase implementation with only one column-family and only one column and unique
row-key

Vendor Alternative

Amazon S3

IBM GPFS

EMC Isilon OneFS

MapR MapR file system

Figure 4-12. HDFS alternatives

MapR claims to have a file system two times faster than HDFS. (See http://www.slideshare.net/mcsrivas/
design-scale-and-performance-of-maprs-distribution-for-hadoop.) However, clients would be reluctant to
have a vendor lock-in at the file level. Migrating from a MapR Hadoop distribution to a Cloudera or a Hortonworks
distribution will surely result in different performance statistics.

NoSQL Pattern
Problem
What role do NoSQL databases play in the Hadoop implementation?

http://www.slideshare.net/mcsrivas/design-scale-and-performance-of-maprs-distribution-for-hadoop
http://www.slideshare.net/mcsrivas/design-scale-and-performance-of-maprs-distribution-for-hadoop

CHAPTER 4 ■ BIG DATA STORAGE PATTERNS

51

Solution
NoSQL databases can store data on local NFS disks as well as HDFS. NoSQL databases are HDFS-aware; hence, data
can be distributed across Hadoop data nodes and, at the same time, data can be easily accessed because it is stored in a
nonrelational, columnar fashion. As we have discussed there are four types of NoSQL databases. Figure 4-13 lists their
major big data use cases. Vendor implementations of NoSQL subsequently became open source implementations as
seen in Figure 4-14.

NoSQL DB to Use Scenario

Graph Database

Key-Value Pair

Database
Needle-in-a-haystack applications.

Document Database

Columnar Database

Applications that provide evaluations of “like” or note that “user that bought this

item also bought,” like a recommendation engine.

Google search type of applications,where an entire related columnar family

needs to be retrieved based on a string.

Applications that evaluate churn management on the basis of non-enterprise

and social media data.

Figure 4-13. NoSQL use cases

Product OSS Equivalent

Amazon

DynamoDB M/DB, LinkedIn, Mozilla

Facebook Cassandra Cassandra NetFlix, Twitter

Google BigTable HBase Adobe Photoshop

Most widely

Used by

Company

Figure 4-14. NoSQL vendors

CHAPTER 4 ■ BIG DATA STORAGE PATTERNS

52

Scenarios for NoSQL:

“N+1 Selects” problem for a large dataset•

Writing a huge amount of data•

Semi structured data•

You should investigate NoSQL technologies to determine which offerings best fit your needs.
As mentioned, NoSQL databases allow faster searching on huge unstructured data.
Key-value pair databases store data as simple key-value pairs. The keys are unique and do not have any foreign

keys or constraints. They are suitable for parallel lookups because the data sources have no relationships among each
other. As you can imagine, such a structure is good for high read access. Due to a lack of referential integrity, the data
integrity has to be managed by the front-end applications.

Column-oriented databases have a huge number of columns for each tuple. Each column also has a column key.
Related columns have a column-family qualifier so that they can be retrieved together during a search. Because each
column also has a column key, these databases are suitable for fast writes.

Document databases store text, media, and JSON or XML data. The value in a row is a blob of the aforementioned
data and can be retrieved using a key. If you want to search through multiple documents for a specific string, a
document database should be used.

Graph databases store data entities and connections between them as nodes and edges. They are similar to a
network database and can be used to calculate shortest paths, social network analysis, and other parameters.

Figure 4-15 depicts a NoSQL application pattern, where HBASE (which is a columnar data store) is used to
store log-file data and then accessed by the front-end application to search for patterns or specific occurrences of
certain strings.

Figure 4-15. NoSQL pattern—HBase

CHAPTER 4 ■ BIG DATA STORAGE PATTERNS

53

Polyglot Pattern
Problem
Can multiple storage mechanisms like RDBMS, Hadoop, and big data appliances co-exist in a solution—a scenario
known as “Polyglot Persistence”?

Solution
Certainly. Because the type of data to be stored by an application has changed from being text to other unstructured
formats, data can be persisted in multiple sources, like RDBMS, Content Management Systems (CMS), and Hadoop.
As seen in Figure 4-16, for a single application and for various use cases, the storage mechanism changes from
traditional RDBMS to a key-value store to a NoSQL database to a CMS system. This contrasts with the traditional view
of storing all application data in one single storage mechanism.

RDBMS

Big Data Appliance

In-Memory Caching

HDFS

Downstream Systems

Content

Management

System

Digital Images Transactional Data

Application

Figure 4-16. Polyglot pattern

CHAPTER 4 ■ BIG DATA STORAGE PATTERNS

54

Big Data Storage Infrastructure
Problem
What role do infrastructure vendors play in the Hadoop implementation?

Solution
As per the IDC (http://www.idc.com/getdoc.jsp?containerId=IDC_P25990), the following are the major vendors:

• Storage vendors (incumbents): Dell, EMC, HP, IBM, NetApp, and Oracle

• Storage vendors (upcoming): Amplidata, Cleversafe, Compuverde, Coraid, DDN, Nexsan,
Nimble, Nimbus, and Violin Memory

Because Hadoop is about distributed storage and analysis, infrastructure vendors play a major role. Vendors like
Oracle, EMC and IBM have started packaging infrstructure apart from their big data appliance as part of their Hadoop
solutions. The only advantage of such solutions is that the client has to be concerned about only a single vendor. But,
again, there is a concern of a being locked to a single vendor and that migrating or decoupling individual entities
of a Hadoop ecosystem might become too costly for the client. Due diligence and a total cost of ownership (TCO)
assessment needs to be thoroughly done before opting for such a packaged solution.

Typical Data-Node Configuration
Multiple vendors have varying configurations for a data node.

Problem
What is a typical data-node configuration?

Solution
Per information from Intel (www.intel.com/bigdata), Figure 4-17 shows the configuration of the data node.

Entity Configuration of Data Node

CPU

Memory 48 GBs (6X8 GBs 1.35v 1333 MHz DIMMs) or 96 GBs

(6x16 GBs 1.35v 1333 MHz DIMMs)

Disk 10-12, 1-3 TB SATA drives

Network 1x dual port 10 GbE NIC, or 1x quad port 1 GbE NIC

Two CPU sockets with six or eight cores, Intel Xeon

processor E5-2600 series @ 2.9 GHz

Figure 4-17. Intel—Data-node configuration

http://www.idc.com/getdoc.jsp?containerId=IDC_P25990
http://www.intel.com/bigdata

CHAPTER 4 ■ BIG DATA STORAGE PATTERNS

55

Entity Configuration of Data Node

CPU Dual Intel Xeon E5-2407 4C/8T 2.2 GHz

Memory 6x8 GBs DDR3 1333 MHz (48 GBs total)

Disk Sixty 2 TBs 7200 rpm NL- SAS 3.5 disks

DCS3700 with dual-active Intelligent controllers

Network Two GbE (1 Gbps) integrated ports

One 10 GbE 2-port NIC

Figure 4-18. IBM—Data-node configuration

Figure 4-18 shows the same information for the IBM Big Data Networked Storage Solution for Hadoop
(http://www.redbooks.ibm.com/redpapers/pdfs/redp5010.pdf).

Summary
Since multi-structured formats are here to stay, various mechanisms of storage have evolved and are changing the way
data storage architecture is designed. As visualization tools take the center stage in the big data world, they will drive
how data has to be stored or restructured and necessitate that data be stored in newer formats. But the basic premise
of infrastructure capacity planning will still prevail—the only difference being horizontal scaling taking precedence
over vertical scaling. Subsequent chapters on data access and data visualization will provide more insight into how
the data needs to be stored.

http://www.redbooks.ibm.com/redpapers/pdfs/redp5010.pdf

57

CHAPTER 5

Big Data Access Patterns

Traditionally, data was in text format and generally accessed using JDBC adapters from an RDBMS. Unstructured
data like documents were accessed from document management systems (DMS) using simple HTTP calls. For
performance, improvement concepts like caching were implemented. In the big data world, because the volume of
data is too huge (terabytes and upwards), traditional methods can take too long to fetch data. This chapter discusses
various patterns that can be used to access data efficiently, improve performance, reduce the development lifecycle,
and ensure low-maintenance post-production.

 Problem
What are the typical access patterns for the Hadoop platform components to manipulate the data in the Hadoop
storage layer?

Solution
Figure 5-1 shows how the platform layer of the big data tech stack communicates with the layers below.

CHAPTER 5 ■ BIG DATA ACCESS PATTERNS

58

The Hadoop platform management layer accesses data, runs queries, and manages the lower layers using
scripting languages like Pig and Hive. Various data access patterns (platform layer to storage layer communication)
suitable for different application scenarios are implemented based on the performance, scalability, and availability
requirements.

Data access patterns describe solutions to commonly encountered problems when accessing data via the storage
layer that can be chosen based on performance, scalability, and availability requirements. In the big data world, data
that needs to be accessed can be classified as

Incremental data•

Selective/filtered data•

Near real-time data with low latency•

The raw big data does not provide intelligent information about the content and its operation. It is expected that
the intended users of the data should be able to apply enough domain knowledge to get any meaningful insight from
the raw data.

Data can be accessed from the big data resources in two primary forms:

• End-to-End User Driven API: These APIs permit users to write simple queries to produce
clipped or aggregated output and throw on a visual display. Google Search is an example
where the query results are abstracted from the user and the results are fetched using BASE
(basically available soft state consistent eventually) principles. Google gives users the
opportunity to enter a query according to a set of Google-specified query rules, and it provides
an output without exposing the internal mechanism of the query processing.

• Developer API: Individual developers can interact with the data and analytics service. These
services might be available in SaaS (software as a service) formats. Amazon Web Services
(AWS) is an example of an API. The API enables querying of the data or the summary of the
analytics transactions.

Hadoop Infrastructure Layer

DisksDisks

Metadata

Cache

DisksDisks

Metadata

DisksDisks

Metadata

High Speed Network

… N nodes, Petabytes of Data

Solid State Disks Local Disks SAN

Hadoop Storage Layer (HDFS, HBASE)

Hadoop Platform Layer (MapReduce, Hive, Pig)

Cache Cache

Figure 5-1. Big data platform architecture

CHAPTER 5 ■ BIG DATA ACCESS PATTERNS

59

ETL
Data

Visualization
Reports Reports Search

Big Data Appliance

1 Bridge

2 Ring network

1 Master.34

9 Process

1 Master.35

Symbol Count Description

Column Family

NoSQL Database

HDFS

Cache Cache

Near Real-Time

 Pattern

Connector

Pattern

Stage

Transform

Pattern

HTTP

Lightweight

Stateless

Pattern

Data Service 1

(e.g., Facebook)

Data Service 2

(e.g., Twitter)

Service Catalog

D ataS ource 1

+

D ataS ource 1

+

D ataS ource 2

D ataS ource 1

+

D ataS ource 2

+

D ata S ource 3

Service

Locator

Pattern

Figure 5-2. Big data access patterns

Some of the patterns mentioned in this chapter can be used in conjunction with “data storage patterns.”
We will cover the following common data access patterns in this chapter, as shown in Figure 5-2:

• Stage Transform Pattern: This pattern uses the end-to-end user API approach and presents
only the aggregated or clipped information in the NoSQL layer (Stage) after transforming the
raw data.

• Connector Pattern: This pattern uses the developer API approach of using APIs for accessing
data services provided by appliances.

• Lightweight Stateless Pattern: This pattern uses lightweight protocols like REST, HTTP, and
others to do stateless queries of data from the big data storage layer.

• Service Locator Pattern: A scenario where the different sources of unstructured data are
registered on a service catalog and dynamically invoked when required.

• Near Real-Time Pattern: This is an access pattern that works well in conjunction with (and is
complementary to) the data ingestion pattern “just-in-time transformation.”

Understanding Big Data Access
The different big data access patterns are shown in Figure 5-2 and are described in detail in this chapter.

CHAPTER 5 ■ BIG DATA ACCESS PATTERNS

60

As seen in the discussion of NoSQL in earlier chapters, the way data is stored and structured in a NoSQL database
is typically governed by the use cases to be implemented. Along similar lines, patterns for data access are also
governed by the application functionality.

As you can see in Table 5-1, data should be abstracted in a layer above the Hadoop distributed file system (HDFS)
to ensure low latency and business-specific data storage in a structured format.

Table 5-1. Use Cases to Access Patterns

Sr. No Use Cases Access Pattern

1 Bulk data Connector

2 Search Near Real-Time, Stage Transform

3 Data Visualization Stage Transform plus Connector

4 Reports Stage Transform

5 Data Discovery Lightweight Stateless

6 Enterprise-Wide Dashboard Service Locator

Different patterns are suitable for different types of use cases:

The Connector pattern is typically used to process bulk data in XML form. Usually, the •
connector APIs are provided by appliances or by the business intelligence (BI) systems that
are big-data compliant.

The Stage Transform pattern is useful for rapidly searching data that has been abstracted from •
HDFS data storage into the NoSQL layer.

If the data needs to be visualized in different perspectives, the Stage Transform and Connector •
patterns can be used in conjunction to present the data in different views.

Standard enterprise reports can be derived from the NoSQL databases instead of HBASE •
directly using the Stage Transform pattern.

Data discovery from multiple data sources can be facilitated using RESTful services provided •
by those sources using the Lightweight Stateless pattern.

An enterprise-wide dashboard collates data from applications across the organization using •
the catalog of services available from the API management software. This dashboard can
dynamically present the data using the Service Locator pattern.

Stage Transform Pattern
Problem
HDFS does not provide the ease of data access that an RDBMS does. Also, there is too much data that is not relevant
for all business cases. Is there a way to reduce a huge data scan?

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ BIG DATA ACCESS PATTERNS

61

Solution
HDFS is good for two purposes:

Data storage•

Data analytics•

As mentioned earlier, NoSQL does not need to host all the data. HDFS can hold all the raw data and only
business-specific data can be abstracted in a NoSQL database, with HBase being the most well-known. There are
other NoSQL databases—like MongoDB, Riak, Vertica, neo4j, CouchDB, and Redis—that provide application-oriented
structures, thereby making it easier to access data in the required format.

For example, for implementing data discovery for a retail application that depends on social media data,
enterprise data, historical data and recommendation engine analysis, or abstracting data for a retail user or users,
a NoSQL database makes the implementation of a recommendation engine much easier.

The stage transform pattern in Figure 5-3 can be merged with the NoSQL pattern, which was discussed in
Chapter 4 of. The NoSQL pattern can be used to extract user data and store it in a NoSQL database. This extracted
data, which will be used by the recommendation engine, significantly reduces the overall amount of data to be
scanned. The performance benefit recognized will invariably improve the customer experience.

Figure 5-3. Stage Transform pattern

As you can see in Figure 5-3, the two “stages” of HDFS and NoSQL storage are used appropriately to reduce
access times. Frequently accessed information is aggregated or contextualized in the NoSQL layer. The HDFS layer
data can be scanned by long-running batch processes to derive inferences across long periods of time.

This virtualization of data from HDFS to a NoSQL database is implemented very widely and, at times, is
integrated with a big data appliance to accelerate data access or transfer to other systems, as can be seen in the section
that follows.

CHAPTER 5 ■ BIG DATA ACCESS PATTERNS

62

Connector Pattern
Problem
Just as there are XML accelerator appliances (like IBM DataPower), are there appliances that can accelerate data
access/transfer and enable the use of the developer API approach?

Solution
EMC Greenplum, IBM PureData (Big Insights + Netezza), HP Vertica, and Oracle Exadata are some of the appliances
that bring significant performance benefits. Though the data is stored in HDFS, some of these appliances abstract data
in NoSQL databases. Some vendors have their own implementation of a file system (such as GreenPlum’s OneFS) to
improve data access.

The advantage of such appliances is that they provide developer-usable APIs and SQL-like query languages to
access data. This dramatically reduces the development time and does away with the need for identifying resources
with niche skills.

Figure 5-4 shows the components of a typical big data appliance. It houses a complete big data ecosystem.
Appliances support virtualization. Thus, each node/disk is a virtual machine (VM) on top of a distributed database
like HDFS. The appliance supports redundancy and replication using protocols like RAID. Some appliances also host
a NoSQL database.

NoSQL Database

RAID-Aware Data Virtualization

DISK DISK DISK

HDFS

Figure 5-4. Big data appliance typical configuration

Examples are shown in Table 5-2.

CHAPTER 5 ■ BIG DATA ACCESS PATTERNS

63

Appliances might induce dependency on vendors. Some appliances, as seen in an earlier chapter, come
packaged as hardware, software, or a NoSQL database. For example, Vertica comes bundled with built-in “R” and
“SAS” based engines and algorithms. Vertica can support any Hadoop distribution, such as Hortonworks, Cloudera,
and MapR.

Near Real-Time Access Pattern
When we talk about “near real-time” access, we should keep in mind two things:

Extremely low latency in capturing and processing the data. This means that as events •
happen, you act on the data; otherwise, that data becomes meaningless in the next minute.

Analyzing the data in real time. This means you will need to have sophisticated analysis •
patterns to quickly look at the data, spot anomalies, relate the anomalies to meaningful
business events, visualize the data, and provide alerts or guidance to the users. All this needs
to happen at that very moment.

While the Hadoop ecosystem provides you the platform to access and process the data, fundamentally it still
remains a batch-oriented architecture.

In this context, we encounter technologies used by Storm, in-memory appliances like Terracota, heavily indexed
search patterns through Lucene and Solr.

Problem
Can we access data in near real-time from HDFS?

Solution
Near real-time data access can be achieved when ingestion, storage, and data access are considered seamlessly as one
single “pipe.” The right tools need to be used to ingest, and at the same time data should be filtered/sorted in multiple
storage destinations (as you saw in the multidestination pattern in an earlier chapter). In this scenario, one of the
destinations could be a cache, which is then segregated based upon the business case. That cache can be in the form
of a NoSQL database, or it can be in the form of memcache or any other implementation.

Table 5-2. Big Data Appliance Products

Vendor Remarks

Aster Teradata 35% faster CPU, 5 times more memory, 20 times faster throughput, 60%
smaller datacenter footprint compared to other vendors

EMC Isilon OneFS Multiple Isilon appliances serve different purposes:

IOPS-intensive application appliance•

High-concurrency and throughput-driven •
workflows appliance

Near-primary accessibility, with near-tape value •
appliance

Performance Accelerator appliance•

Backup Accelerator appliance•

CHAPTER 5 ■ BIG DATA ACCESS PATTERNS

64

A typical example is searching application logs where data for the last hour is needed.
As you can see in Figure 5-5, the moment the data is ingested and filtered, it is transferred to a cache. This is

where 90% of the noise is separated from 10% of the really relevant information. The relevant information is then
stored in a rapidly accessible cache, which is usually in-memory. To quickly analyze this information before it
becomes stale, search engines like Solr are used to complete this “Near Real-Time Access pattern” scenario.

Solr Search

Engine
Metadata

I

N

G

E

S

T

I

O

N

Filter
Cache

HDFS

Figure 5-5. Near Real-Time Access pattern using multicache

Lightweight Stateless Pattern
Problem
NAS (Network Access Storage) provides single file access. Can HDFS provide something similar using a lightweight
protocol?

Solution
Files in HDFS can be accessed over RESTful HTTP calls using WebHDFS. Since it is a web service, the implementation
is not limited to Java or any particular language. For a cloud provider or an application wanting to expose its data to
other systems, this is the simplest pattern.

The Lightweight Stateless pattern shown in Figure 5-6 is based on the HTTP REST protocol. HDFS systems
expose RESTful web services to the consumers who want to analyze the big data. More and more of these services are
hosted in a public cloud environment. This is also the beginning of the Integration Platform as a Service (iPaaS). This
pattern reduces the cost of ownership for the enterprise by promising a pay-as-you-go model of big data analysis.

CHAPTER 5 ■ BIG DATA ACCESS PATTERNS

65

CLOUD

HDFS
HTTP Service Interface for HDFS

Figure 5-6. Lightweight Stateless pattern for HDFS

Service Locator Pattern
Problem
If there are multiple data storage sites (for example, Polyglot persistence) in the enterprise, how do I select a specific
storage type?

Solution
For a storage landscape with different storage types, a data analyst needs the flexibility to manipulate , filter, select,
and co-relate different data formats. Different data adapters should also be available at the click of a button through
a common catalog of services. The Service Locator (SL) pattern resolves this problem where data storage access is
available in a SaaS model.

Figure 5-7 depicts the Service Locator pattern. Different data sources are exposed as services on a service catalog
that is available to data analysts based on their authorization. The services could be within the enterprise or outside of
it. Different visualization tools can mix and match these services dynamically to show enterprise data alongside social
media data.

CHAPTER 5 ■ BIG DATA ACCESS PATTERNS

66

DataSource 1

DataSource 2

DataSource 3

H

D

F

S

VISUALIZATION 2

SERVICE FACILITATOR

Social Media

ENTERPRISE

INTERNET

Service Catalog

+

+

VISUALIZATION 1

DataSource 1

+
DataSource 1

DataSource 2

+
DataSource 1

DataSource 2

DataSource 3

Figure 5-7. Service Locator pattern for HDFS

Rapid Data Analysis
Problem
Is MapReduce the only option for faster data processing and access?

Solution
No. There are alternatives like Spark and Nokia’s DISCO.

Spark is an open source, cluster-computing framework that can outperform Hadoop by 30 times. Spark can work
with files stored in HDFS. MapReduce relies on disk storage while Spark relies on in-memory data across machines.

Figure 5-8 shows a comparison of the performance of a Spark vs. MapReduce.

CHAPTER 5 ■ BIG DATA ACCESS PATTERNS

67

Secure Data Access
Problem
What security measures can be included to ensure data is not compromised during the interlayer communication?

Solution
Typical security measures that need to be looked into include the following:

Confidentiality: Data should be encrypted so that it is not sniffed during transport between •
the layers.

Authentication: Only authenticated users should be given access.•

Authorization: Users should have access to data according to their profiles and access rights only.•

Other security measures are the traditional data center security measures like these:

Network Intrusion Detection Systems (NIDS)•

Providing access only to requests coming from a particular IP•

Running nodes on ports other than default ports•

Host-based intrusion-prevention systems•

Figure 5-8. Comparison between Spark and MapReduce

CHAPTER 5 ■ BIG DATA ACCESS PATTERNS

68

Problem
Are there any large datasets available in the public domain that can be accessed by a layperson to analyze and use for
big data experimentation?

Solution
Yes, there are many sites and services in the public domain for accessing data, such as:
http://www.visualisingdata.com/index.php/2013/07/a-big-collection-of-sites-and-services-for-
accessing-data/.

This collection presents the key sites that provide data, either through curated collections that offer access under
the open data movement or through software/data-as-a-Service platforms.

Problem
Are there products from industry leaders in the traditional BI landscape that offer big data integration features?

Solution
Yes, vendors like Pentaho, Talend, Teradata, and others have product offerings that require less learning time for BI
developers to harness the power of big data.

Example: Pentaho’s big data analytics integrates with Hadoop, NoSQL, and other big data appliances. It’s a
visually easy tool that can be used by business analysts.

Summary
Big data access presents a unique set of issues that can be addressed using the set of patterns described in this
chapter. As big data access becomes more secure and frameworks like MapReduce evolve (for example, YARN), newer
data storage and access patterns will emerge. The need to access data in real time requires the usage of techniques
like memcache, indexing, and others. This area is evolving, and many new research projects are underway that will
lead to new patterns of usage. The key takeaway for big data architect is to note that the access patterns have to be
used in conjunction with the right data-storage pattern to ensure the best performance and lowest latency.

http://www.visualisingdata.com/index.php/2013/07/a-big-collection-of-sites-and-services-for-accessing-data/
http://www.visualisingdata.com/index.php/2013/07/a-big-collection-of-sites-and-services-for-accessing-data/
http://www.visualisingdata.com/index.php/2013/07/a-big-collection-of-sites-and-services-for-accessing-data/

69

CHAPTER 6

Data Discovery and Analysis Patterns

Big data analysis is different from traditional analysis as it involves a lot of unstructured, non RDBMS types of data.
This type of analysis is usually related to text analytics, natural language processing. Areas like video and image
analytics are still evolving. Big data analysis attempts to interpret and find insightful patterns in the customer
behavior that perhaps the sales force already had some idea about, but did not have the data to support it. Big data
analysis methods are used to analyze social media interactions, bank transactions for fraud patterns, customer
sentiments for online product purchases, etc. Let’s look at some patterns that may help discover and analyze this
unstructured data.

 Problem
What are the different types of unstructured data sources that are analyzed in a big data environment?

Solution
There are different types of unstructured data hidden in multiple data sources that are available as large datasets:-

Documents contain textual patterns, repetitions of certain words, etc. that can be analyzed •
and interpreted.

Application logs contain a wealth of information about upcoming down time, applications •
that are coming up for maintenance and upgrade, etc.

E-mail has become the defacto means of communication both in corporate as well as •
informal channels.

Social media forums like Yammer, Twitter, and Facebook generate a lot of text and symbols •
may that determine customer behavior.

Machine generated data like RFID feeds, weather data, etc. also provide a large data set for •
automated analysis.

Problem
What are different statistical and numerical methods available for analyzing the different unstructured
data sources?

CHAPTER 6 ■ DATA DISCOVERY AND ANALYSIS PATTERNS

70

Solution
Various methods that have their origins in computer science computational methods exist for analyzing big
data sources:-

Natural language processing•

Text mining•

Linguistic computation•

Machine learning•

Search and sort algorithms•

Syntax and lexical analysis•

Using these methods, the output of the analysis of the results is combined with the structured data to arrive at
meaningful insights.

Problem
What are the typical analysis patterns used for analyzing big unstructured data?

Solution
We will cover the following analysis patterns (shown in Figure 6-1) in this chapter:-

Data Queuing Pattern:• This pattern is used to handle spikes in the data being analyzed.
A lightweight process or workflow is required to queue the additional chunks of data and then
route them to available nodes.

• Index-based Insight Pattern: This is a data discovery pattern in which a series of indexes are
defined based on inputs from users who interact with customers. These indexes are tuned
iteratively as more and more data determines the range of the indices.

• Constellation Search Pattern: This pattern utilizes master data management (MDM)
concepts where a constellation of metadata is used to confirm the repetitive occurrence
of a set of variables. This constellation is refined and the added back to the MDM system.

• Machine Learning Pattern: Statistical and numerical analysis algorithms are applied using
programming tools to identify patterns in machine generated data from energy meters,
weather related devices, RFID feeds, etc.

• Converger Pattern: Analyzing unstructured data and then merging it with structured data
is required to get the enterprise wide perspective to make decisions.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 ■ DATA DISCOVERY AND ANALYSIS PATTERNS

71

Data Queuing Pattern

Problem
Unlike traditional structured data where the volume of data is known and predefined, unstructured data comes
in spurts. The big data analysis tools may be analyzing different volumes of data. How do I manage the changing
volume spikes?

Solution
Events like professional football or rock concerts trigger a lot of activity in different forums and email groups. It is also
the right time to roll out offers and promotions.

To handle such spikes in data we can use cloud infrastructure as a service (IaaS) solutions.
A simple lightweight workflow to queue the additional data chunks and orchestrate the assignment of analysis

to the nodes that are free is required in the architecture. There is also a need for spining new virtual machines, on
demand, to address the new capacity requirements dynamically.

The data queuer (shown in Figure 6-2) that sits above the HDFS layer allows us to provision and orchestrate the
analysis payload so that it does not interrupt the analysis tools and provides a seamless interface.

Documents
RDBMS/

noSQL

Social Media

Logs

Analysis Tools

(Attensity, Radian, Solr etc)

VisualizationTool

Email

RFID Meter Data

Data Queuing Pattern

Constellation Search

Pattern

Machine Learning

Recommendation

Pattern

Converger Pattern

HDFS

Index Based Insight

Pattern

Figure 6-1. Analysis Patterns

CHAPTER 6 ■ DATA DISCOVERY AND ANALYSIS PATTERNS

72

Index based Insight Pattern

Problem
I need to estimate the number of different types of parameters that I am monitoring, e.g., all parents who buy toys, all
children above 13 in a neighborhood, etc. This is a count that needs to be averaged out to reach a stable count. How
do I setup an analysis pattern that helps me to index such variables and provide insight?

Solution
The above problem requires an efficient key / index lookup that provides rapid scanning and also helps to keep
related column families together. This is a pattern used by many analysis tools to build indexes and enable rapid
search. Indexes can be used along with zones and/or partitions to improve performance of ‘read’ requests.

As data grows and read requests vary, more indexes need to be incorporated based on the most frequently ‘read’
data attributes.

Node1

Analysis Tools

(Attensity, Radian, Solr etc)

Visualization Tool

Node..n

HDFS

Figure 6-2. Data Queuing Pattern

CHAPTER 6 ■ DATA DISCOVERY AND ANALYSIS PATTERNS

73

In fact, this pattern has been extended further by graph databases where the attributes and relationships among
‘Nodes’ is dynamically added as queries grow more complex.

Figure 6-3. Columnar index based Insight Pattern

Figure 6-4. Attributes based Insight Pattern

Constellation Search Pattern
Problem
How do I spot groups of related data and define metadata when the database is not designed for this type of analysis
upfront before the data is loaded as in a traditional RDBMS?

CHAPTER 6 ■ DATA DISCOVERY AND ANALYSIS PATTERNS

74

Solution
Some of the common big data social media analytics use cases help in identifying groups of people with the proper
attributes who can then be targeted in a focussed manner.

The criteria for grouping together data is the new method of identifying master data. Master data is data
that is generally from a single source or a group of sources that is persistent, typically non-transactional and that
is important in analyzing aspects of the business. Big data is driving a new approach to distributed master data
management (D-MDM). Master data is used by analysts to create constellations of data around a variable. There can
be constellations at various levels of abstraction to give different views from different “levels”.

Constellation

R

DataSource 1

DataSource 2

DataSource 3

H

D

F

S

Algo 1 Algo 2

Algo 3 Algo 4

V

I

S

U

A

L

I

Z

A

T

I

O

N

H

D

F

S

A

D

A

P

T

E

R

Social Media

ENTERPRISE

INTERNET

Data Scientist

Figure 6-5. Constellation Search pattern

As seen in Figure 6-6, the data, typically stored in a Hadoop cluster is a combination of data from social media
as well as the data in the enterprise. The information from the social media data can be analyzed to extend the
metadata stored in D-MDM. This extended meta-data, along with the social-media analytics, can be used to create a
constellation of information that can be used to arrive at newer insights.

CHAPTER 6 ■ DATA DISCOVERY AND ANALYSIS PATTERNS

75

For example, Facebook’s ‘Needle in a haystack’ architecture uses a combination of in-memory indexes and
metadata to search photos and ‘photos related to a photo’. The index stores the minimal metadata required to locate
a particular needle in the haystack. This efficient usage of index and metadata combinations not only helps reduce
search latency but also provides a constellation of relationship meta-data around an image. This constellation can
then be used for performing further anlaysis and arriving at meaningful and hitherto unknown insights.

Machine Learning Recommendation Pattern
Problem
What analysis pattern should be used for meter data, RFID feeds, etc?

Solution
Machine learning is about turning data into information using automated statistical methods without direct human
intervention. With the deluge of data spewed out by various devices it is not humanly possible to define analysis
patterns. We have to rely on statistical methods and algorithms to do this task for us.

The various machine learning algorithms usually used to analyze big data are:-

kNN Classification algorithm to identify your neighbors•

Time decision trees•

Bayesian decision theory•

Regression coefficients•

Apriori algorithms for finding frequently occurring data items•

Operational

Data Stores

Data Warehouses

Big Data Storage Layer

Unstructured

Relational Databases NoSQL Databases

Traditional BI Tools

Result Dataset

Big Data Analysis Tools

Visualization Tools

Structured Data

Converge

Figure 6-6. Coverger Pattern

CHAPTER 6 ■ DATA DISCOVERY AND ANALYSIS PATTERNS

76

Converger Pattern
Problem
How do I analyze both traditional and external data together?

Solution
Social media (Facebook, LinkedIn, Twitter, Google+ and others) carries views and opinions which can be merged
with the analysis done using organizational data to bring more insight into ‘sentiment’ regarding an organization or a
product. This combined analysis can help with insights that the data present within the enterprise system cannot. To
achieve this, the architecture should support combining the external analysis with the in-house analysis results.

As seen earlier in the question on the ‘Constellation Search’ pattern, the data from social media and the data
within the enterprise needs to be co-related using D-MDM to arrive at meaningful insights. For this to happen,
the format of the data from external sources needs to be converted and married with the enterprise data. This
convergence can be arrived at by using data from providers like InfoChimps, Kaggle and other vendors. The
convergence involves typical ETL steps like, transformation, cleansing, enrichment et al.

The convergence has to happen before the enterprise data is analyzed. This pattern can be used in consonance
with the ‘Facade Data storage’ pattern discussed in an earlier chapter.

The constellation arrived at using machine learning patterns on social-media data can be used to look at impact
on revenues, brand image, churn rates, etc.

Challenges in Big Data Analysis
Problem
What are the most prevalent challenges in big data analysis?

Solution
Big data analysis has new challenges due to its huge volume, velocity, and variety. The main among them are:-

• Disparate and insufficient data: Plain text in any language is different from person to
person communications. In the case of big data, traditional analytics algorithms fail due to
the heterogeneity of the data. A very effective data cleansing process is required to tackle this
challenge before it is fit for analysis.

• Changing volumes: Technologies like Hadoop allow us to manage the large volumes at
relatively low cost, however the frequency of these change in volumes can impact the
performance of analysis. Use of the cloud infrastructure combined with the data queuing
pattern can help manage this challenge.

• Confidentiality: The confidentiality of the data being analyzed which belongs most often to
individual users and customers make the handling of big data a very debatable issue. Laws are
being framed to protect the privacy rights of while their data is being analyzed. The analysis
methods have to ensure that there is no human intervention and inspection of the data.
Machine learning becomes very important in this context.

Performance:• With options like data analysis as a service (DaaS) available for outsourcing
your big data analysis, performance and latency become a big challenge. Ingenious ways of
streaming data have to be available for fast transfer of data to overcome this challenge.

Frameworks like AppFabric and Open Chorus help solve some of the above challenges.

CHAPTER 6 ■ DATA DISCOVERY AND ANALYSIS PATTERNS

77

Log File Analysis
Problem
Log files are the most unstructured type of data. They are defined differently by each product as well as by individual.
Is there a high level approach to tackle this problem?

Solution
Log files are generated by all applications and servers and are defined by users, developers, and system
administrators.

Operating systems and application servers generate huge amounts of data into log files. Big data analysis
tools have to cleanse, decipher, analyze, and mine relevant information from these strings of raw data. Analyzing
this information will give information pertaining to the health of these systems. Organizations can create a service
catalogue of private cloud offerings based on the usage statistics of servers and infrastructure.

Most application and web servers allow developers and administrators to define some sort of loose format for the
logs, generally using a separator symbol between attributes. The first step to start analyzing these files is to understand
these formats and create a data model for example, map each block of a string to attributes like Http 404 codes or
events that have a purchase action, etc.

Tools like Splunk provide a methodical approach to analyzing log information. The typical steps in analyzing log
information are:-

 1. Identify attributes being logged in the log

 2. Make note of exceptions

 3. Create a data mapping of attributes

 4. Scan the raw data repeatedly to detect frequency of events and exceptions

 5. Select the time period that you want to select the data asset for

 6. Find categories for repetitive events and correlate

 7. Fine tune the categories with every search

 8. Run analytics on the set of attributes and categories that have been stabilized after a few
iterations.

Sentiment Analysis
Problem
Organizations are making instant decisions based on the sentiments, opinions and views of their customers. These
opinions are present in tweets, blogs and forums. How do I analyze this information?

Solution
Sentiment analysis involves analyzing social media text for people’s opinions. As you can imagine it involves
understanding language idiosyncrasies as well. Lexical analysis can be applied to formal and structured documents
as they are usually grammatically correct. However blogs and tweets use slang, that is difficult to analyze and
ambiguous. The outcome of a sentimental analysis is usually a percentage or strength range that is determined based
on the frequency of occurrence of words, parts of speech used, use of negation syntax and position of the words in a
sentence. Techniques like Bayes’ theorem, entropy and vector analysis are used to infer from textual data. Tools like
Splunk are used to facilitate sentiment analysis.

CHAPTER 6 ■ DATA DISCOVERY AND ANALYSIS PATTERNS

78

Data Analysis as a Service (DaaS)
Problem
Can I outsource my big data analysis to a third party vendor?

Solution
Yes. APIs provided by many vendors like the Google Prediction API provide the ability to analyze your data without
having to invest in a large capital expense to build your big data analysis platform. The APIs are usually Restful and
involve just invocation of the service over HTTP. The data interchange is also lightweight and loosely structured using
JSON objects or some other data format.

Summary
Analysis tools have been upgraded to analyze big data residing on Hadoop clusters, in-memory or in social media
networks. Patterns are required to obtain the same performance, confidentiality and context from the traditional
analytics tools using statistical analysis, cloud services and sentiment analysis to map to the traditional reporting means
like dashboards and reports.

With these patterns you have seen how the data scientist can be augmented by the architect’s solutions, to
supplement his data mining repertoire of algorithms and methods.

79

CHAPTER 7

Big Data Visualization Patterns

Pie charts and bar charts have been the most common and often-used analytical charts. Data interpretation, per
se, has now moved from a representation of sample data to a full-fledged analysis of all the data residing within the
enterprise and also the “sentiments” that the data from social media analytics churns out. This chapter introduces
commercial visualization tools in the big data domain, the use-cases that utilize the power of the Internet to derive
meaningful insights, the marriage of machine-learning and visualization, and observations about how it is changing
the landscape for business analysts and data scientists.

Introduction to Big Visualization
Problem
How is big data analysis different from the traditional business intelligence (BI) reporting?

Solution
Analysis of data has not always necessarily been conducted on all the data residing within the enterprise. (See Table 7-1.)
It is sometimes sample data culled for a limited time period, or it is the volume of data that the reporting tools could
handle to create a time-bound time report.

Table 7-1. Traditional BI vs. Big Data

Traditional BI Reporting Big Data Analysis

Reporting tool like Cognos Visualization tool like QlikView or Tableau

Sample data Huge volume of data

Data from the enterprise Data from external sources like social media apart from enterprise data

Based on statistics Based on statistics and social sentiment analysis or other data sources

Data warehouse and data mart OLTP, real-time as well as offline data

CHAPTER 7 ■ BIG DATA VISUALIZATION PATTERNS

80

There was a need to break the mold of restricting reports to pie and bar charts and also to run reports on the
full volume of data at the disposal of the enterprise. And that had to be done within the boundaries of time limits or
maintenance windows. This necessitated the following:

Storage for large volumes of data•

Business-specific visualization•

Faster processing of large volumes of data•

Ease of tool usage for data scientists and business analysts•

As depicted in Figure 7-1, traditional reporting follows a sequential process of transferring OLTP data to a data
warehouse, running statistical and analytical algorithms on the de-normalized data, and churning out reports in
patterns like bar graphs, and pie charts, and others.

DataSource 1

DataSource 2

DataSource 3

Data Storage

Algo 1 Algo 2

R

R

E

P

O

R

T
Algo 3 Algo 4

Figure 7-1. Traditional visualization

Big Data Analysis Patterns
Problem
What are the new big data analysis and visualization patterns that enable you to gain more insight from the huge
volume of data?

Solution
Traditional analysis and visualization techniques need to be modified to provide that “helicopter” view of a large
volume of data. The patterns will not be visible if the data is viewed in very granular detail. Visualization tools and
graphics have to follow a more “planetary” view, where the data scientist is like an astronomer trying to find a new star
or black hole in a huge distant galaxy.

CHAPTER 7 ■ BIG DATA VISUALIZATION PATTERNS

81

Some of the analysis patterns mentioned in this chapter can be used in conjunction with “data access patterns.”
We will cover the following common data-analysis patterns in this chapter as shown in Figure 7-2:

• Mashup View Pattern: This pattern is used to maximize the performance of the queries by
storing an aggregated mashup view in the HIVE layer that functions as a data warehouse. The
MapReduce jobs are run in batches to update the warehouse offline.

• Compression Pattern: This pattern compresses, transforms, and formats data in a form that is
more rapidly accessible.

• Zoning Pattern: Data can be split and indexed based on various attributes in different zones
for faster access.

• First Glimpse Pattern: A scenario where the visualization is minimalist and provides a First
Glimpse of the most relevant insights. A user can pull more information if required, which can
be fetched in the interim while he is viewing the First Glimpse.

• Exploder Pattern: An extension of the First Glimpse pattern that allows you to visualize data
from different sources in different visual perspectives.

• Portal Pattern: An organization that has an existing enterprise portal can follow this pattern
to re-use the portal for visualization of big data.

• Service Facilitator Pattern: A pay-as-you go approach to big data analysis projects.

R

DataSource 1

DataSource 2

DataSource 3

H

D

F

S

Algo 1 Algo 2

Algo 3 Algo 4

V
I
S
U
A
L
I
Z
A
T
I
O
N

H

D

F

S

A

D

A

P

T

E

R

Social Media

ENTERPRISE

INTERNET

Exploder

Pattern

First Glimpse

Pattern Data Scientist

Mashup View

Pattern

Compression

Pattern

Zoning

Pattern

Portal

Pattern

Figure 7-2. Big data analysis and visualization patterns

CHAPTER 7 ■ BIG DATA VISUALIZATION PATTERNS

82

Problem
How do you overcome the limitations of existing reporting tools?

Solution
Commercial tools have emerged in the market that promise higher throughput over a large volume of data and
provide business-specific visualizations. Here are some of the commercially known tools:

QlikView•

TIBCO Spotfire•

SAS RA•

Tableau•

These tools, along with market-known machine-learning tools (based on the R language) like “Revolution R”
from Revolution Analytics, can be a good combination to ensure meaningful data discovery and visualization.

Mashup View Pattern
Problem
It takes a very long time to analyze data using MapReduce jobs. Is there a way to improve the performance?

Solution
HIVEover Hadoop, though good at storage and at running MapReduce jobs, is unable to do a good job when running
complex queries consisting of JOINs and AGGREGATE functions.

Though most visualization and analytical tools can talk to Hadoop via HIVE queries, as in traditional methods,
it makes sense to create an aggregated mashup view either within Hadoop or in abstracted storage like RDBMS/
NoSQLl/Cache as shown in Figure 7-3. The Mashup View pattern reduces analysis time by aggregating the results of
the MapReduce queries in the HIVE data warehouse layer.

HDFS

Visualization Tool

Data Node 1

File 1

Data Node 2

File 2

Data Node 3

File 3

AGGREGATED VIEW

Mashup

File 1

File 2

File 3

RDBMS/NoSQL/Cache

Figure 7-3. Mashup View pattern with data abstracted from Hadoop

CHAPTER 7 ■ BIG DATA VISUALIZATION PATTERNS

83

As shown in Figure 7-4, the mashup can be achieved within the Hadoop layer also, instead of the HIVE layer, to
save expensive storage dollars.

Visualization Tool

Data Node 1

File 1

Data Node 2

File 2

Data Node 3

Data Node 4

HDFS

Aggregate of All files

File 3

Figure 7-4. Mashup View pattern with data abstracted within Hadoop

This strategy is endorsed by many vendors and is provided by the following products in the market:

IBM Netezza•

Cassandra•

HP Vertica•

Cloudera Impala•

EMC HAWQ•

Hortonworks Stinger•

These products provide performance/latency benefits because they access the storage via aggregated views
stored in HIVE or in the Hadoop layers, which play the role of a data warehouse.

Compression Pattern
Problem
Is there a faster way to access data without aggregating or mashing up?

Solution
Analysis tools like R support different compression formats—for example, .xdf (eXtended Data Format)—as shown
in Figure 7-5. Instead of data being fetched from data storage, it can be converted to formats that R understands. This
transformation not only provides performance benefits, but also ensures that data is valid and can be checked for
correctness and consistency.

CHAPTER 7 ■ BIG DATA VISUALIZATION PATTERNS

84

Zoning Pattern
Problem
Can I divide and rule the data in a fashion that is characterized by the attributes and hence is easier to locate?

Solution
As shown in Figure 7-6 data can be partitioned into zones at each layer (Hadoop, abstracted storage, cache,
visualization cluster) to ensure that only the necessary data is scanned. The data can be divided (or partitioned) based
on multiple attributes related to the business scenario in question.

HDFS RDBMS/NoSQL
Social Media

CACHE

Compression Formatter

Custom Format of Visualization Tool

Visualization Tool

Figure 7-5. Compression pattern

CHAPTER 7 ■ BIG DATA VISUALIZATION PATTERNS

85

First Glimpse Pattern
Problem
Do I need to see all the results always in a single view?

Solution
Since the volume of data is too huge, it makes sense to fetch only the amount of data that is absolutely essential and
provide only the “first glimpse.” The First Glimpse (FG) pattern shown in Figure 7-7 recommends what is popularly
known as “lazy-loading.” Let the end user decide how deep he/she wants to drill-down into details. Drill-down data
should be fetched only if the user navigates into the subsequent layers of detail.

HDFS Partitioned File System

Data Zoned in RDBMS/NoSQL

Data Clustering and Zoning in Visualization/Analytical Tool

Figure 7-6. Zoning pattern

CHAPTER 7 ■ BIG DATA VISUALIZATION PATTERNS

86

Exploder Pattern
Problem
Do I need to see all the results always in a single view and be restricted to a similar visual pattern for the
entire data?

Solution
This is an extension of the First Glimpse pattern. As shown in Figure 7-8, the difference is that the data may be fetched
from a different source or might explode into an altogether different indexed data set. Also, the drill down on a click
may produce a different chart type or visualization pattern.

1..n ROWS

(n+1)..(n+100) ROWS

(n+101)..(n+200) ROWS

(n+X)..(n+X+100) ROWS

Visualization Tool

1..n ROWS

(n+1)..(n+100) ROWS

(n+101)..(n+200) ROWS

(n+X)..(n+X+100) ROWS

Visualization Tool

Only On Event or Click, fetch

the next set of data

S how the next row

Figure 7-7. First Glimpse pattern

CHAPTER 7 ■ BIG DATA VISUALIZATION PATTERNS

87

This pattern allows the user to look at different data sets, co-relate them, and also look at them from different
perspectives visually.

Portal Pattern
Problem
I have already invested in an enterprise portal. Do I still need a new visualization tool?

Solution
If an organization is already using a web-based reporting solution and wants to continue without introducing new
tools, the same existing portal can be enhanced to have a new frame with scripting frameworks like D3.js to enhance
the legacy visualization. As shown in Figure 7-9, this ensures that the enterprise does not have to spend money on a
new visualization tool.

Figure 7-8. Exploder pattern

CHAPTER 7 ■ BIG DATA VISUALIZATION PATTERNS

88

Service Facilitator Pattern
Problem
I do not want to invest in the software and hardware to do my first pilot projects. Is big data analysis service available
on a pay-as-you-go basis?

Solution
Big data analysis capabilities are available in an “as-a-Service mode” using cloud-enabled services—for example,

Analytics as a Service•

Big Data Platform as a Service•

Data Set Providers•

Organizations can look upon these providers as an alternative to circumvent infrastructure and/or skill
constraints. Table 7-2 shows a list of “as-a-service” services available and providers.

PORTAL

1..n ROWS

(n+1)..(n+100) ROWS

(n+101)..(n+200) ROWS

(n+X)..(n+X+100) ROWS

8/4/2013 12/2/2013

9/1/2013 10/1/2013 11/1/2013 12/1/2013

Company Name

9/6/2013

Object Injection

using D3.js

Figure 7-9. Portal pattern

CHAPTER 7 ■ BIG DATA VISUALIZATION PATTERNS

89

These services can be searched on a service catalog and then used on a pay-as-you-go basis.
As shown in the Figure 7-10 dataset, providers provide large datasets that can complement an organization’s

existing business cases. The data can be from a government organization, an NGO, or an educational institute, which
can be leveraged to complement the analytical data coming from implementations of Google Analytics or Omniture.

Figure 7-10. Service Facilitator pattern

Table 7-2. Providers for Various “as-a-service” Services

Service Service Provider

Cloud Provider Amazon Web Services, Infochimps, Rackspace

Platform Provider Amazon Web Services, IBM

Data Set Provider UNICEF, WHO, World Bank, Amazon Web Services

Social Media Data Provider Infochimps, Radian 6

Summary
Traditional reporting tools have been replaced by analytical and visualization tools that can read data from a Hadoop
cluster, analyze data in-memory, and display it in a format that the business understands and in a more visually
appealing form compared to traditional pie and bar charts. The business intelligence layer is now equipped with
advanced big data analytics tools, in-database statistical analysis, and advanced visualization tools, in addition to the
traditional components such as reports, dashboards, and queries.

With this architecture, business users see the traditional transaction data and big data in a consolidated single
view. Business analysts and data scientists can now look beyond Excel sheets and reporting tools to create visually
alluring graphs that can cater to huge volumes of data.

91

CHAPTER 8

Big Data Deployment Patterns

Big data deployment involves distributed computing, multiple clusters, networks, and firewalls. The infrastructure
involves complicated horizontal scaling, and the inclusion of the cloud in some scenarios makes it more complex.
This chapter illustrates deployment patterns you can use to deal with this complexity up front and align with the other
patterns across various layers.

Big Data Infrastructure: Hybrid Architecture Patterns
Infrastructure for a big data implementation includes storage, network, and processing power units. In addition to
Hadoop clusters, security infrastructure for data traffic from multiple data centers and infrastructure for uploading
data to downstream systems and/or a data center might be needed. Appliances or NoSQL data storage layers might
require additional infrastructure for storage of data and metadata.

A variety of products and/or services can be used to implement a hybrid infrastructure. Various hybrid
architecture patterns are discussed in the next sections. Each pattern is presented as a problem in the form of a
question, followed by an answer in the form of a diagram.

Traditional Tree Network Pattern
Problem
Ingesting data into a Hadoop platform sequentially would take a huge amount of time. What infrastructure pattern
can help you ingest data as fast as possible into as many data nodes as possible?

Solution
Implement a traditional tree network pattern (Figure 8-1).

CHAPTER 8 ■ BIG DATA DEPLOYMENT PATTERNS

92

Uploading or transferring bulk data into the Hadoop layer is the first requirement encountered in finalizing the
Hadoop infrastructure. As discussed in Chapter 3, Flume or SFTP can be used as the ingestion tool or framework,
but until the data is uploaded, typically in terabyte-scale volumes, into the Hadoop ecosystem, no processing can
start. Sequential ingestion would consume hours or days. To reduce the ingestion time significantly, simultaneous
ingestion can be effected by implementing the traditional tree network pattern. This pattern entails using Flume or
some alternative framework to channelize multiple agents in multiple nodes (trunks) that run in parallel and feed into
Hadoop ecosystem branches.

Resource Negotiator Pattern for Security and Data Integrity
Problem
When data is being distributed across multiple nodes, how do you deploy and store client data securely?

Solution
Implement a resource negotiator pattern (Figure 8-2).

Ingestion

Ingestion

Ingestion

Data Source 1

Data Source 2

Data Source 3

Data Source 3

Tree Trunk

Data Node Data Node Data Node

Data Node Data Node Data Node

Data Node Data Node Data Node

Branch n

Branch 2

Branch 1

Figure 8-1. Traditional tree network pattern

CHAPTER 8 ■ BIG DATA DEPLOYMENT PATTERNS

93

Clients might be wary of transferring data to the Hadoop ecosystem if it is not secure or if the channel through
which the data is uploaded is not secure. For its part, the data center in which the Hadoop ecosytem resides might not
want to expose the Hadoop cluster directly, preferring to interpose a proxy to intercept the data and then ingest it in
the Hadoop ecosystem.

Proxy interposition is effected by implementing a resource negotiator pattern (Figure 8-2). Data from the client
source is securely ingested into negotiator nodes, which sit in a different network ring-fenced by firewalls. Discrete
batch job flows ingest data from these negotiator nodes into the Hadoop ecosystem. This double separation ensures
security for both the source data center and the target Hadoop data center.

The high processing, storage, and server costs entailed by negotiator nodes might urge you to replace them
with an intermediate Hadoop storage ecosystem, as depicted in Figure 8-3. This latter solution, which is particularly
appropriate for configurations in which data is being ingested from multiple data centers, gives rise to spine fabric and
federation patterns.

Figure 8-2. Resource negotiator pattern

CHAPTER 8 ■ BIG DATA DEPLOYMENT PATTERNS

94

Spine Fabric Pattern
Problem
How do you handle data coming in from multiple data sources with varying degrees of security implementation?

Solution
Implement a spine fabric pattern (Figure 8-4).

Ingestion

Ingestion

Ingestion

Data Node Data Node Data Node

S
E
C
U
R
E

A
C
C
E
S
S

O
V
E
R

V
P
N

DMZ

Ingestion

Ingestion

Ingestion

Data Node Data Node Data Node

Data Source

1

Data Source

1

S
E
C
U
R
E

A
C
C
E
S
S

O
V
E
R

V
P
N

Ingestion Negotiator

Ingestion Negotiator

DMZ

Ingestion

Ingestion

Ingestion

Data Node Data Node Data Node

Hadoop Ecosystem as Ingestion

Negotiator

Data Source

2

Data Source

2

Data Source

3

Data Source

3

Data Source

3

Data Source

3

Figure 8-3. Hadoop storage replacing resource negotiator

CHAPTER 8 ■ BIG DATA DEPLOYMENT PATTERNS

95

Data from multiple data centers, whether structured logs and reports or unstructured data, can be moved to
a spine Hadoop ecosystem, which redirects the data to a target Hadoop ecosystem within the data center or in an
external data center. The advantage of the spine fabric pattern is that the end data center is abstracted from the source
data centers and new sources can be easily ingested without making any changes to the deployment pattern of the
target or spine Hadoop ecosystems.

Federation Pattern
Problem
Can data from multiple sources be zoned and then processed?

Solution
Implement a federation pattern (Figure 8-5).

Figure 8-4. Spine fabric pattern

CHAPTER 8 ■ BIG DATA DEPLOYMENT PATTERNS

96

In a federation pattern, the Hadoop ecosystem in the data center where the big data is processed splits and
redirects the processed data to other Hadoop clusters within the same data center or in external data centers.

Lean DevOps Pattern
Problem
How can you automate infrastructure and cluster creation as virtual machine (VM) instances?

Solution
Implement a Lean DevOps pattern (Figure 8-6).

Data Centre 6

Data Centre2
Data Centre1

Data Centre3

Re
di

re
ct

Federation Pattern

Ingestion

Ingestion

Ingestion

Data Node Data Node Data Node

Data Source

1

Redirect to other

Data Centre

Data Centre4

Redirect

Data Source

2

Data Source

3

Data Source

3

Figure 8-5. Federation pattern

CHAPTER 8 ■ BIG DATA DEPLOYMENT PATTERNS

97

Agile Infrastructure-as-a-Code (IaaC) scripts (exemplified by such products as Chef and Puppet) can be used
to create templates of environment configurations and to re-create the whole virtual machine (VM) cluster and/or
infrastructure as needed. Infrastructure teams and application teams might need to collaborate in the creation of
instance and server templates to configure the applications and batch jobs properly.

Because every entity—whether it is a Hadoop component (such as a data node or hive metastore) or an
application component (such as a visualization or analytics tool) has to be converted into a template and configured.
Licenses for each component have to be manually configured. To be on the safe side, have the product vendor provide
you with a virtual licensing policy that can facilitate your creation of templates. If the infrastructure is hardened in
conformity with organizational policies, the vendor product might have to be reconfigured to ensure that it installs
and runs successfully.

IBM’s SmartCloud Orchestrator and OpsCode Chef are examples of popular DevOps implementation products.
The Lean DevOps pattern has been successfully implemented by Netflix on Amazon Web Services Cloud.

Big Data on the Cloud and Hybrid Architecture
Problem
Can you avoid operational overheads by utilizing services available on the cloud?

Solution
Data residing in a data center can utilize the processing power of the cloud (Figure 8-7).

Hardware

Virtualization

Templates DevOps Scripts

Template Catalogues

Self-Service Portals

Figure 8-6. Lean DevOps pattern

CHAPTER 8 ■ BIG DATA DEPLOYMENT PATTERNS

98

There are several cloud options available for big data. AWS provides infrastructure as well as Amazon Elastic
MapReduce (EMR). SAP provides the packaged software solution SAP OnDemand. IBM and Oracle provide the
DevOps-based cloud implementations PureFlex/Maximo and Oracle Exalytics, which are offered in the form of

self-service portals affording access to whole clusters along with the necessary software libraries. Such systems
combine servers, storage, networking, virtualization, and management into a single infrastructure system.

Big Data Operations
Problem
Hadoop distributions provide dashboards to monitor the health of various nodes. Should a data center have an
additional monitoring mechanism?

Solution
Hadoop distributions such as Cloudera Manager have been found to suffer occasional limitations in fully representing
the health of various nodes because of failure by its agents. It is therefore advisable to supplement your Hadoop
monitoring tools with end-to-end IT operations tools, such as Nagios or ZenOS.

CLOUD

Ingestion

Ingestion

Ingestion

Data Node Data Node Data Node

Data Source 1

Data Source 3

Data Source 2

Data Source 3

S
E
C
U
R
E

A
C
C
E
S
S

O
V
E
R

V
P
N

Figure 8-7. Hybrid architecture

CHAPTER 8 ■ BIG DATA DEPLOYMENT PATTERNS

99

Summary
Big data infrastructure presents a unique set of issues that can be addressed using the set of patterns discussed in
this chapter. As big data infrastructure becomes more secure and newer packaged big data appliances and products
emerge, new infrastructure and deployment patterns are continually emerging. Cloud-based solutions are becoming
increasingly common, and clients increasingly elect hybrid architectures that cater to their pay-as-you-go needs.

101

CHAPTER 9

Big Data NFRs

Non-Functional requirements (NFRs) like security, performance, scalability, and others are of prime concern in
big data architectures. Apart from traditional data security and privacy concerns, virtualized environments add the
challenges of a hybrid environment. Big data also introduces challenges of NoSQL databases, new distributed file
systems, evolving ingestion mechanisms, and minimal authorization security provided by the Hadoop-like platforms.
Let’s look at the different scenarios where NFRs can be fine-tuned by extending the patterns discussed in earlier
chapters as well as new patterns.

 “ilities”
Problem
What are the common “ilities” that we should be cognizant of while architecting big data systems?

Solution
Due to the distributed ecosystem, there are multiple “ilities” that a big data architect should consider while
designing a system:

• Reliability: Reliability is the ability of the system to be predictable and give the desired results
on time and every time. It is related to the integrity of the system to give consistent results to
every user of the system.

• Scalability: The ability of the system to increase processing power within the same machine
instance (vertical scaling) or to add more machine instances in parallel (horizontal scaling)
is called scalability.

• Operability: Once in production, how amenable the system is for monitoring every aspect
that could affect the smooth operations determines its operability.

• Maintainability: A system is highly maintainable if defects, change requests, and extended
features can be quickly incorporated into the running system without affecting existing
functionality.

• Availability: Metrics like 99.999 and 24*7 are used to define the availability of the system for
the users so that there is no downtime or very little downtime.

• Security: Distributed nodes, shared data, access ownership, internode communication, and
client communication are all prime candidates for security vulnerabilities that can be exploited
in a big data system.

CHAPTER 9 ■ BIG DATA NFRS

102

A big data architect has to provide support for all the aforementioned “ilities” and trade-off some of them against
each other based on the application priorities.

Security
Traditional RDBMS systems have evolved over the years to incorporate extensive security controls like secure user
and configuration management, distributed authentication and access controls, data classification, data encryption,
distributed logging, audit reports, and others.

On the other hand, big data and Hadoop-based systems are still undergoing modifications to remove security
vulnerabilities and risks. As during its inception, the primary job of Hadoop was to manage large amounts data;
confidentiality and authentication were ignored.. Because security was not thought about in the beginning as part of
the Hadoop stack, additional security products now are being offered by big data vendors. Because of these security
concerns, in 2009 Kerberos was proposed as the authentication mechanism for Hadoop.

Cloudera Sentry, DataStax Enterprise, DataGuise for Hadoop, provide secure versions of Hadoop distributions.
Apache Accumulo is another project that allows for additional security when using Hadoop.

The latest Hadoop versions have the following support for security features:

Authentication for HTTP web clients•

Authentication with Kerberos RPC (SASL/GSSAPI) on RPC connections•

Access control lists for HDFS file permissions•

Delegation tokens for subsequent authentication checks after the initial authentication •
on Kerberos

Job tokens for task authorization•

Network encryption•

You have seen how to use ingestion patterns, data access patterns, and storage patterns to solve commonly
encountered use-cases in big data architectures. In this chapter, you will see how some of these patterns can be
further optimized to provide better capabilities with regard to performance, scalability, latency, security, and
other factors.

Parallel Exhaust Pattern
Problem
How do I increase the rate of ingestion into disparate destination systems inside the enterprise?

Solution
The data ingested from outside the enterprise can be stored in many destinations, like data warehouses, RDBS
systems, NoSQL databases, content management systems,and file systems. However, the speed of the incoming
data passing through a single funnel or router could cause congestion and data regret. The data integrity also gets
compromised due to leakage of data, which is very common in huge volumes of data. This data also hogs network
bandwidth that can impede all other business-as-usual (BAU) transactions in the enterprise.

To overcome these challenges, an organization can adopt the Parallel Exhaust pattern (Figure 9-1). Each
destination system has a separate router to start ingesting data into the multiple data stores. Each router, instead of
publishing data to all sources, has a one-to-one communication with the destinations, unlike the “multi-destination”
ingestion pattern seen in an earlier chapter. The routers can be scaled horizontally by adding more virtual instances in
a cloud environment, depending on the volume of data and number of destinations.

CHAPTER 9 ■ BIG DATA NFRS

103

Variety Abstraction Pattern
Problem
What is polyglot persistence?

Solution
One size does not fit all. With unstructured and structured data, for a business case, storage mechanisms can be a
combination of storage mechanisms, like an RDBMS, a NoSQL database, and other forms of storage. For example,
a web site can have transactional data in an RDBMS, session data stored in a key-value NoSQL database, relationships
between users or products stored in a graph database, and so forth. Thus, the landscape database in an enterprise is
moving toward a heterogeneous combination of different types of databases for different purposes.

Problem
With polyglot persistence (multiple data storage systems) becoming the norm in an enterprise, how do we make sure
that we do not become tightly coupled to a specific big data framework or platform? Also, if we have to change from
one product to another, how do we make sure that there is maximum interoperability?

Solution
With multiple analytics platforms storing disparate data, we need to build an abstraction of application program
interfaces (APIs) so that data can be interchangeably transferred across different storage systems.

This helps in retaining legacy DW frameworks. This pattern (Figure 9-2) helps simplify the variety problem of
big data. Data can be stored in, imported to, or exported to HDFS, in the form of storage in an RDBMS or in the form
of appliances like IBM Netezza/EMC Greenplum, NoSQL databases like Cassandra/HO Vertica/Oracle Exadata, or
simply in an in-memory cache.

Data

Source 1

Data

Source 2

Data

Source 3

Node

Intermediate

Collection

Agent 1

Node

Intermediate

Collection

Agent 2 Data

Source 4

Enricher 1

Enricher 2

Search & Analytics Engine

Data Mart/Data

Warehouse

Hadoop Storage Layer

NoSQL Database

HDFS

Exhaust

Exhaust

Exhaust

Figure 9-1. Parallel Exhaust pattern

CHAPTER 9 ■ BIG DATA NFRS

104

Real-Time Streaming Using the Appliance Pattern
Hadoop and MapReduce were created with off-line batch jobs in mind. But with the demand for real-time or
near-real-time reports, abstraction of the data in a layer above the Hadoop layer that is also highly responsive requires
a real-time streaming capability, which is being addressed by some big data appliances.

The other use-cases that require real-time monitoring of data are smartgrids, real-time monitoring of application
and network logs, and the real-time monitoring of climatic changes in a war or natural-calamity zone.

Problem
I want a single-vendor strategy to implement my big data strategy. Which pattern do I go for?

Solution
The virtualization of data from HDFS to NoSQL databases is implemented very widely and, at times, is integrated with
a big data appliance to accelerate data access or transfer to other systems. Also, for real-time streaming analysis of big
data, appliances are a must (Figure 9-3).

Data

Source 1

Data

Source 2

Data

Source 3

Node

Intermediate

Collection

Agent 1

Node

Intermediate

Collection

Agent 2
Data

Source 4

Enricher 1

Enricher 2

Content Management

Systems

Data Mart/Data

Warehouse

Hadoop Storage Layer

NoSQL Database

HDFS

Data

Integration

API

Figure 9-2. Variety Abstraction pattern

Big Data

Appliance with

Hadoop and

NoSQL

Event Listener

Event Listener

Alerter

Business

Process

Engine
P

Event

Processing

Node

Event

Processing

Node

Event

Processing

Engine

Event

Processing

Engine

Figure 9-3. Real-time streaming using an Appliance pattern

CHAPTER 9 ■ BIG DATA NFRS

105

EMC Greenplum, IBM PureData (Big Insights + Netezza), HP Vertica, and Oracle Exadata are some of the
appliances that bring significant performance benefits. Though the data is stored in HDFS, some of these appliances
abstract data in NoSQL databases. Some vendors have their own implementation of a file system (GreenPlum’s
OneFS) to improve data access.

Real-time big data analytics products like SAP HANA come integrated with appliances that are fine-tuned for
maximum performance.

Distributed Search Optimization Access Pattern
Problem
How can I search rapidly across the different nodes in a Hadoop stack?

Solution
With the data being distributed and a mix of structured as well as unstructured, searching for patterns and insights
is very time consuming. To expedite these searches, string search engines like Solr are preferred because they can do
quick scans in data sources like log files, social blog streams, and so forth.

However, these search engines also need a “near shore” cache of indexes and metadata to locate the required
strings rapidly. Figure 9-4 shows the pattern.

Solr Search

Engine
Metadata

I

N

G

E

S

T

I

O

N

Cache

HDFS

Figure 9-4. Distributed search optimization Access pattern

CHAPTER 9 ■ BIG DATA NFRS

106

Anything as an API Pattern
Problem
If there are multiple data storages—that is, “polyglot persistence”—in the enterprise, how do I select a specific
storage type?

Solution
For a storage landscape with different storage types, data analysts need the flexibility to manipulate, filter, select,
and co-relate different data formats. Different data adapters should also be available at the click of a button through
a common catalog of services. The Service Locator pattern, where data-storage access is available in a SaaS model,
resolves this problem. However, this pattern, which simplifies interoperability and scalability concerns for the user, is
possible only if the underlying platform is API enabled and abstracts all the technical complexities from the service
consumer (Figure 9-5).

DataSource 1

DataSource 2

DataSource 3

H

D

F

S

VISUALIZATION 2

SERVICE FACILITATOR

Social Media

ENTERPRISE

INTERNET

Service Catalog

DataSource 1
+

DataSource 1
+

DataSource 2

DataSource 1
+

DataSource 2
+

DataSource 3

VISUALIZATION 1

API

Manager

A P I

A P I

A P I

A P I

Figure 9-5. Anything as an API pattern

Security Challenges
Problem
What are the key security challenges in big data clusters?

CHAPTER 9 ■ BIG DATA NFRS

107

Solution
Here are the key security challenges you’ll face with big data clusters:

The distributed nature of the data and the autonomy that each node needs to have to process, •
manage, and compute data creates a multi-armed Hydra that is difficult to secure against
unauthorized or unauthenticated access.

Since the big data cluster is a redundant architecture, with data split and replicated across •
multiple servers, after a period of time managing the multiple copies of data becomes a very
complex governance problem.

Since each node is independent and a peer to others, the access ownership is mostly at •
schema level. Also, since NoSQL databases do not have referential integrity and validations
at the database level, the user applications have to build the validations in the UI or business
layer.

Due to the use of multiple nodes, there are frequent handoffs between nodes. These •
handoff points become prime candidates for man-in-the-middle attacks because most
communication between nodes is via RPC.

Since all nodes are peers, it is difficult to define a “gateway” where a DMZ or firewall can be •
set up.

Node coordinating and access control are managed by frameworks like • Zookeeper or YARN,
whose main concern is to detect failure of nodes and switch to live nodes. They are not
designed with enterprise security in mind.

Operability
Problem
What are the key operational challenges for big data administrators?

Solution
Following are the most important operational challenges for big data administrators:

Big data administrators need the right tools to manage the mammoth clusters.•

Replication should be authorized properly using Kerberos; otherwise, any rogue client can •
create their own copy of the data on any of the nodes.

Data has to be encrypted, but at the same time, it should not lead to a lag in decryption, •
as a very small lag can multiply exponentially across multiple nodes.

Since the big data environment is essentially a megacluster that could be spread across •
multiple physical locations, it needs multiple administrators with different access rights and
a clear separation of responsibilities.

Since it is possible for different nodes to have different releases of OS, VM, and so forth, •
a governance tool is needed that manages these configurations and patches.

We know Kerberos is used to authenticate Hadoop users. However, if a Kerberos ticket is stolen •
by a man-in-the-middle attack, a client can be duplicated and a rogue clone can be added to
the cluster.

CHAPTER 9 ■ BIG DATA NFRS

108

Distributed logging is a must to track the train errors across the cluster landscape. Open •
source tools like scribe and logstash provide good log management in big data environments.

As more and more big data services become API driven, strong API management tools are required •
that can keep track of REST-based APIs and provide life-cycle management for these APIs.

Big Data System Security Audit
Problem
As a big data compliance and security auditor, what are the basic questions that I should ask the concerned
stakeholders of the company?

Solution
The following set of questions is a good starting point to begin a big data related audit:

What are the various technology frameworks being used in the big data ecosystem for •
computation, data access, pattern recognition, task, and job management and monitoring?

Who are the primary user-groups running big data queries? What functions are they trying to •
perform using these queries?

Are these big data queries made by authorized users in real time or in batch mode using map •
reduce jobs?

Are there any new applications built specifically to leverage the big data functions? Have those •
applications been audited?

What is the amount of replication of data across nodes, and is there a complete dependency •
chart that is updated in real time for all these nodes?

What tools and processes are being used for statistical analysis, text search, data serialization, •
process coordination, and workflow and job orchestration?

What is the process for replication and recovery across node clusters?•

What are the different distributed file systems in the big data environment? Are they all •
storing structured data or unstructured?

What are the backup, archiving, and recovery processes for all the above applications and •
storage systems?

Are there any caching systems both persistent and in-memory? What is the level of •
confidentiality of the data stored in the caches? Are they purged regularly, and is there
protection from other unauthorized access during run-time?

Are there any performance criteria established as baselines, and what is the process to detect •
noncompliance and solve noncompliance issues? Typical reasons for noncompliance could
be large input records, resource contention (CPU, network, and storage), race conditions
between competing jobs, and so forth.

How are different versions of Hadoop, OS, VMs, and so forth tracked and managed?•

CHAPTER 9 ■ BIG DATA NFRS

109

Big Data Security Products
Problem
If I want to harden my big data architecture, are there any open source, common off the shelf (COTS) products
I can buy?

Solution
Cloudera’s Sentry is an open source, enterprise-grade, big data security and access-control software that provides
authorization for data in Apache Hadoop. It can integrate with Apache Hive.

Problem
Is there a big data API management tool I can use with minimum loss in performance?

Solution
Intel Expressway API Manager (Intel EAM) is a security-gateway enforcement point for all REST Hadoop APIs. Using
this manager, all Hadoop API callers access data and services through this gateway.

It supports the authentication of REST calls, manages message-level security and tokenization, and protects
against denial of service. There are other products also in the market that can do this.

Problem
I want to maintain the confidentiality of my data and only expose data relevant to a user’s access levels.
What should I use?

Solution
InfoSphere Optim data masking (InfoSphere Optim DM) is a product that ensures data privacy, enables compliance,
and helps manage risk. Flexible masking services allow you to create customized masking routines for specific data
types or leverage out-of-the-box support.

InfoSphere Optim data masking on demand is one of the many masking services available for Hadoop-based
systems. You can decide when and where to mask based on your application needs.

Problem
For efficient operability, I need good monitoring tools for big data systems. Are there any COTS products
I can buy?

Solution
Products like Infosphere Guardium monitor and audit high-performance, big data analytics systems. InfoSphere
Guardium provides built-in audit reporting to help you demonstrate compliance to auditors quickly.

IBM Tivoli Key Lifecycle Manager (TKLM) is another product that enhances data security and compliance
management with a simple and robust solution for key storage, key serving, and key lifecycle management for IBM
self-encrypting storage devices and non-IBM devices. TKLM offers an additional layer of data protection by providing
encryption lifecycle key management for self-encrypting storage devices above and beyond the Guardium and Optim
security capabilities.

CHAPTER 9 ■ BIG DATA NFRS

110

Problem
What are the future plans of the Hadoop movement to enhance data protection of the Hadoop ecosystem?

Solution
Project Rhino is an open source Hadoop project that’s trying to address security and compliance challenges.

Project Rhino is targeted to achieve the following objectives:

Framework support for encryption and key management•

A common authorization framework for the Hadoop ecosystem•

Token-based authentication and single sign-on•

Extend HBase support for ACLs to the cell level•

Improve audit logging•

Problem
What are some of the well-known, global-regulatory compliance rules that big data environments spread over
different geographies and over public and private clouds have to comply with?

Solution
Table 9-1 shows some of the significant compliance rules that affect big data environments, showing what the
constraint is along with the jurisdiction.

Table 9-1. Big Data Compliance Issues

Compliance Rule Data Constraints Geography

EU Model Clauses for data
transfers outside the EU

Allows clients with EU data to lawfully use
U.S. data centers.

This is a basic requirement for
any client with consumer or
employee data of EU origin.

A HIPAA “Business Associate
Agreement”

Allows clients with HIPAA-regulated data
to lawfully use the data center.

U.S. insurers, healthcare providers,
and employee health benefit
plans (often relevant for HR work)

Model Gramm-Leach-Bliley
insurance regulations

Enables U.S. insurers and other financial
institutions1 to use the data center to host
consumer data.

U.S. insurers and other financial
institutions, relative to consumer
data.2

Massachusetts Data Security
Regulations

Allows personal data from Massachusetts to
be hosted by the data center consistent with
MA requirements, which are currently the
strictest state-level standards in the U.S.

Companies with personal data of
Massachusetts origin.

The UK Data Protection Act Allows data from UK to be hosted by the data
center consistent with local UK requirements.

Companies with personal data of
UK origin.

(continued)

CHAPTER 9 ■ BIG DATA NFRS

111

Summary
Big data architectures have to consider many non-functional requirements at each layer of the ecosystem. There are
a host of tools to support administrators, developers, and designers in meeting these service level agreements (SLAs).
Various design patterns can be used to improve the “ilities” without affecting the functionality of the use-case. The
horizontal cross-cutting concerns can be addressed by the appropriate mix of design patterns, tools, and processes.

1

2

Compliance Rule Data Constraints Geography

Spanish Royal Decree on
information security

Allows data from Spain to be hosted by the
data center consistent with local Spanish
requirements.

Companies with personal data of
Spanish origin.

Canadian federal PIPEDA and
provincial PIPA acts.

Allows clients with personal data of Canadian
origin to use the data center.

Companies with personal data of
Canadian origin.

Canadian provincial statutes
focused on health data

Allows for data center hosting of health-related
data from relevant Canadian provinces.

Entities with health-related data
of Canadian origin.

Table 9-1. (continued)

113

CHAPTER 10

Big Data Case Studies

This chapter examines how the various patterns discussed in previous chapters can be applied to business problems
in different industries. To arrive at the solution of a given business problem, architects apply combinations of patterns
across different layers of the entire application architecture as appropriate to the unique business requirements and
priorities of the problem at hand. The following case studies exemplify how architects combine patterns to solve
particular business problems.

Case Study: Mainframe to Hadoop-Based NoSQL Database
Problem
A financial organization’s current data warehouse solution is based on a legacy mainframe platform. This solution
is becoming very expensive as more and more data gets generated every day. Moreover, because the databases
supported are legacy formats (such as line IMS and IDMS), it is not easy to transform and merge this data with the
other data sources in the enterprise for joint analytical processing. The CIO is looking for a less expensive and more
current platform.

Solution
The CIO concluded that migrating the legacy data to a NoSQL-based platform (such as HP Vertica) would provide the
following benefits:

A higher level of data compression, providing lower storage costs and improved performance•

A native data load option, avoiding the need to use a third-party ELT tool•

Easier integration•

Better co-analysis of data from multiple data sources in the organization•

Figure 10-1 shows the patterns implemented in migrating to a NoSQL platform.

CHAPTER 10 ■ BIG DATA CASE STUDIES

114

Examples of technologies used include the following:

HP Vertica•

VSQL (for Native ELT: Extract, Load, Transform)•

AutoSys (for scheduling)•

Unix Shell/Perl scripting•

HDFS

Data

Visualization
Reports Analytics Search

1 Bridge

2 Ring network

1 Master.34

9 Process

1 Master.35

Symbol Count Description

Column Family

NoSQL Database

Mainframe

Stage Transform

Pattern Compression

Pattern

Just-In-Time

Transformation

Pattern

NoSQL Pattern

Figure 10-1. NoSQL migration architecture

Table 10-1. Patterns implemented in the Mainframe to Hadoop case study

Pattern Type Pattern Name

Big data storage pattern NoSQL Pattern

Ingestion and streaming pattern Just-In-Time Transformation Pattern

Analysis and visualization pattern Compression Pattern

Big data access pattern Stage Transform Pattern

CHAPTER 10 ■ BIG DATA CASE STUDIES

115

Case Study: Geo-Redundancy and Near-Real-Time Data Ingestion
Problem
A high-tech organization has multiple applications spread geographically across multiple data centers. All application
usage logs have to be synchronized with every data center for near-real-time analysis. The current implementation of
the RDBMS is capable of providing replication across data centers, but it is very expensive and the cost is increasing
as more data accumulates every day. What cost-efficient solution would enable active-active geo-redundant ingestion
across data centers to address failover and provide more near-real-time access to data?

Solution
The big data architects choose an open-source (hence low-cost) NoSQL-based platform (such as Cassandra) that can
be configured for fast data synchronization and replication across data centers, high availability, and a high level of
data compression for lower storage costs and improved performance. This solution provides very high, terabyte-scale
ingestion rates across data centers.

Figure 10-2 shows the patterns implemented in changing to a geo-redundant NoSQL-based platform.

Data Center 2

Data Center 1

1 Bridge

2 Ring network

1 Master.34

9 Process

1 Master.35

Symbol Count Description

Column Family

NoSQL Database

Ingestion

Real Time

Streaming

Pattern

NoSQL Pattern

1 Bridge

2 Ring network

1 Master.34

Symbol Count Description

Column Family

NoSQL Database

NoSQL Pattern

Figure 10-2. Geo-redundancy architecture

CHAPTER 10 ■ BIG DATA CASE STUDIES

116

Case Study: Recommendation Engine
Problem
An organization has an existing recommendation engine, but it is looking for a high-performing recommendation
engine and reporting tool that can handle its increasing volumes of data. The existing implementation is based
on a subset of the total data and hence is failing to generate optimal recommendations. What high-performing
recommendation engine could look at the current volume data in its totality and scale up to accommodate load
increases going forward?

Solution
The organization’s combinatory solution is to move to a Hadoop-based storage mechanism (providing increased
capacity), a NoSQL-based Cassandra database for real-time log-processing (providing higher-speed data access), and
an R-based solution for machine-oriented learning.

Figure 10-3 shows the patterns implemented to enable real-time streaming for machine learning.

Hadoop Storage Layer

Identification

Filtration

Validation

Noise

Reduction

Transformation

Compresssion

Integration

D
ata

S
ou

rces NoSQL Database

HDFS

Real Time

Search & Analytics Engine

Real Time Streaming

Pattern

Batch Engine

Figure 10-3. Real-time streaming for machine-learning architecture

Table 10-2. Patterns implemented in the Geo-Redundancy case study

Pattern Type Pattern Name

Big data storage NoSQL Pattern

Ingestion and streaming pattern Real-Time Streaming Pattern

CHAPTER 10 ■ BIG DATA CASE STUDIES

117

Examples of technologies used include the following:

Cassandra•

HDFS, Hive, HBase, Pig, Hive•

Map-R•

Case Study: Video-Streaming Analytics
Problem
A telecommunication organization needs a solution for analyzing customer behavior and viewing patterns in advance
of a rollout of video-over-IP (VOIP) offerings. The logs have to be compared to region-specific, feature-specific existing
system data spread across multiple applications. Because the volume of data is already huge and the VOIP logs data
will add many terabytes, the organization is looking for a robust solution to apply across all devices and systems.

Solution
The CTO chooses a Hadoop-based big data implementation capable of storing and analyzing the huge volume of
raw system data and scaling up to accommodate the VOIP metadata: namely, a consolidated log-access, log-parse,
and analysis platform that is able to transform data using Pig, to store data in HDFS and NoSQL MongoDB, and to
incorporate machine-learning tools for analytics.

Figure 10-4 shows the patterns implemented to enable video-streaming analytics.

Table 10-3. Pattern implemented for the Recommendation Engine case study

Pattern Type Pattern Name

Ingestion and streaming pattern Real-Time Streaming Pattern

CHAPTER 10 ■ BIG DATA CASE STUDIES

118

Examples of technologies used include the following:

Hadoop•

Python•

Memcache•

Jetty, Apache•

Web/Mobile Dashboards/Analytics•

Amazon EMR•

Case Study: Sentiment Analysis and Log Processing
Problem
An existing ecommerce organization experienced system failures and data inconsistencies during the holiday season.
Major issues included penalties tied to performance-based service-level agreements (SLAs)s. The organization is
looking for a new platform that could take the holiday season load, help them avoid penalties, and ensure customer
satisfaction.

Hadoop Storage Layer

Identification

Filtration

Validation

Noise

Reduction

Transformation

Compresssion

Integration

D
ata

S
ou

rces NoSQL Database

HDFS

Real Time

Search & Analytics Engine

Real Time Streaming

Pattern

Batch Engine

Figure 10-4. Video analytics architecture

Table 10-4. Pattern implemented for the Video Analytics case study

Pattern Type Pattern Name

Ingestion and streaming pattern Real-Time Streaming Pattern

CHAPTER 10 ■ BIG DATA CASE STUDIES

119

Solution
The company decided to set up a big data platform with Hadoop and Hive to enable web and application server
historic and real-time log analysis: namely, a NoSQL-based solution (such as MongoDB) for analyzing the application
logs and an R-based machine-learning engine and visualization tool (such as Tableau) for better viewing of requests,
faster resolution of defects, reduced down time, and better customer satisfaction.

Figure 10-5 shows the patterns implemented to enable scalable sentiment analysis and log processing.

Operational

Data Stores

Data Warehouses

Big Data Storage Layer

Unstructured

Relational Databases NoSQL Databases

Traditional BI Tools

Data Lakes

Big Data Analysis Tools

Visualization Tools

Structured Data

Data Sqoop

Real Time Streaming

Pattern

NoSQL Pattern

Stage

Transform

Pattern

Compression

Pattern
Zoning

Pattern

Figure 10-5. Sentiment-analysis and log-processing architecture

CHAPTER 10 ■ BIG DATA CASE STUDIES

120

Examples of technologies used include the following:

HDFS, Hive, HBase•

NoSQL - MongoDB.•

R•

Log Data Processing•

MapReduce•

Compuware DynaTrace•

Data Analytics – Tableau•

Case Study: Real-Time Traffic Monitoring
Problem
An organization wants to create a real-time traffic analysis and prediction application that can be used to control
traffic congestion and streamline traffic flow. The application must be targeted to provide cost optimization in
commuting and help reduce waiting time and pollution levels.

Data has to be captured from existing government-provided datasets that include sources such as traffic-camera,
traffic-sensor, GPS, and weather-prediction systems. The government data needs to be coupled with social media to
assist in predicting traffic speed and volume on roads.

The analysis scenarios include the following:
Analysis of historical data to gain insights and understand patterns of behavior of traffic and road incidents
Prediction of traffic speed and volume well ahead of time, based on analysis of real-time and historical

traffic data
Prediction of alternate cost-effective commute paths by analyzing situational traffic conditions across the entire

transportation network
The application needs to provide a catalog of services based on social media, governmental data, and different

dataset options.

Table 10-5. Patterns implemented for the Sentiment Analysis case study

Pattern Type Pattern Name

Ingestion and streaming pattern Real-Time Streaming Pattern

Big data analysis and visualization pattern Zoning Pattern
Compression Pattern

Big data access pattern Stage Transform Pattern

Big data storage NoSQL Pattern

CHAPTER 10 ■ BIG DATA CASE STUDIES

121

Solution
The organization decided to set up a big data platform using Hadoop, an abstracted layer of data above HDFS in the
form of HP Vertica, and a visualization tool. The organization opted to use the cloud-based Amazon Web Service for
storage and analytics.

Multiple patterns are applied at various layers of the architecture, as depicted in Figure 10-6. The patterns shown
in that figure were used to enable monitoring of traffic in real time.

DataSource 1

H

D

F

S

SERVICE FACILITATOR

Social Media

ENTERPRISE

INTERNET

Service Catalogue

DataSource 1
+ +

+

+

VISUALIZATION 1

VISUALIZATION 2
DataSource 2

DataSource 3

DataSource 1

DataSource 1

DataSource 2

DataSource 3

DataSource 2

Figure 10-6. Traffic-monitoring architecture

Table 10-6. Patterns implemented for Traffic Monitoring

Pattern Type Pattern Name

Ingestion and streaming pattern Real-Time Streaming Pattern

Big data analysis and visualization pattern Zoning Pattern
Compression Pattern

Big data access pattern Service Locator Pattern

Big data storage pattern NoSQL Pattern

NFR patterns Distributed Search Optimization Access Pattern

CHAPTER 10 ■ BIG DATA CASE STUDIES

122

Examples of technologies used include the following:

Hadoop•

HP Vertica•

Web/Mobile Dashboards/Analytics•

Amazon Web Services•

Case Study: Data Exploration for Suspicious Behavior on a Stock
Exchange
Problem
A financial organization processes millions of order entries per day. Whenever online statistical surveillance models
identify suspicious behavior, the organization wants to have enhanced capability to gather data pertinent to the
suspicious behavior as quickly and cheaply as possible.

The solution needs to be able to do the following:

Integrate social media data with historical orders and trades•

Gather information from other sources within the organization•

Present this information in an integrated fashion•

Solution
The lead architect applied the patterns mentioned in Figure 10-7. The solution is based on Hadoop, Storm, Flume,
and IBM Netezza. DataStax Cassandra acted as the NoSQL database to enable real-time analysis.

Figure 10-7 shows the patterns implemented to enable data forensics on a stock exchange.

CHAPTER 10 ■ BIG DATA CASE STUDIES

123

Examples of technologies used include the following:

Hadoop•

IBM Netezza•

DataStaX Cassandra•

Tableau•

R•

Table 10-7. Patterns implemented for the Data Forensics case study

Pattern Type Pattern Name

Ingestion and streaming pattern Real-Time Streaming Pattern

Big data analysis and visualization pattern Zoning Pattern
Compression Pattern

Big data access pattern Service Locator Pattern

Big data storage NoSQL Pattern

R

Algo 1

V
I
S
U
A
L
I
Z
A
T
I
O
N

Exploder

Pattern

First Glimpse

Pattern Data Scientist

Mashup View

Pattern

Compression

Pattern

Zoning

Pattern

Portal

Pattern

ENTERPRISE

INTERNET
Social Media

DataSource 1

DataSource 2

DataSource 3

H

D

F

S

H

D

F

S

A

D

A

P

T

E

R

Algo 2

Algo 3 Algo 4

Figure 10-7. Data forensics on a stock exchange

CHAPTER 10 ■ BIG DATA CASE STUDIES

124

Case Study: Environment Change Detection
Problem
An institute wants to build an application that detects environmental changes to water resources in real time. The
application has to source data from multiple data sources (such as sensor and meteorological sources) hosted in
various environmental institutes and government departments. The data has to be presented to scientists and energy
analysts for real-time monitoring of the water resources and environmental data.

Solution
The CTO chooses an all-IBM big data platform with IBM BigInsights, IBM InfoSphere Streams, and IBM Vivisimo as
the technologies applied against the patterns shown next.

Figure 10-8 shows the patterns implemented to enable environment change detection.

R

Algo 1

V
I
S
U
A
L
I
Z
A
T
I
O
N

Exploder

Pattern

First Glimpse

Pattern Data Scientist

Mashup View

Pattern

Compression

Pattern

Zoning

Pattern

Portal

Pattern

ENTERPRISE

INTERNET
Social Media

DataSource 1

DataSource 2

DataSource 3

H

D

F

S

H

D

F

S

A

D

A

P

T

E

R

Algo 2

Algo 3 Algo 4

Figure 10-8. Environment change prediction

CHAPTER 10 ■ BIG DATA CASE STUDIES

125

Table 10-8. Patterns implemented in Environment Change Prediction

Pattern Type Pattern Name

Ingestion and streaming pattern Real-Time Streaming Pattern

Ingestion and streaming pattern Just-In-Time Transformation Pattern

Analysis and visualization patterns Compression Pattern

Big data access pattern Stage Transform Pattern

Examples of technologies used include the following:

IBM Vivisimo•

IBM BigInsights•

IBM Cognos•

Summary
A multitude of practical business, academic, financial, and scientific problems are susceptible to solution using big
data architectures. The patterns described in this book can be applied to all the layers of your big data architecture.
The rapid pace of technological advances in tools and products ensures the continual emergence of new patterns,
new variants of existing patterns, and new combinations of patterns in increasingly industrialized out-of-the box
solutions.

127

CHAPTER 11

Resources, References, and Tools

There is a plethora of big data products available from large and small vendors. Some of these products cater to niche
areas like social media analytics and NoSQL databases, while some have a Hadoop ecosystem with a combination of
infrastructure, visualization, and analytical capabilities. This chapter gives a broad overview of many of the products
you will need to implement the architecture and patterns described in this book.

Big Data Product Catalog
Problem
List the main big data product areas and the associated vendors of those products.

Solution
Table 11-1 lists tools you can use as a solution, as well as the vendors providing those tools.

Table 11-1. Distributed and Clustered Flume Taxonomy

Tools Vendors

Hadoop Distributions Cloudera
Hortonworks
MapR
IBM BigInsights
Pivotal HD
Microsoft Windows Azure cloud platform, HDInsight

In-Memory Hadoop Intel

Hadoop Alternatives HPCC Systems from LexisNexis

Hadoop SQL Interfaces Apache Hive
Cloudera Impala
EMC HAWQ
Hortonworks Stinger

(continued)

CHAPTER 11 ■ RESOURCES, REFERENCES, AND TOOLS

128

Table 11-1. (continued)

Tools Vendors

Ingestion Tools Flume
Storm
S4
Sqoop

Map Reduce Alternatives Spark
Nokia Disco

Cloud Options AWS EMR
Microsoft Azure
Google BigQuery

NoSQL Databases IBM Netezza
HP Vertica
Aster Teradata
Google BigTable
EMC Greenplum

In-Memory Database
Management Systems

SAP HANA
Oracle Exalytics

Visualization Tableau
QLikView
Tibco Spotfire
MicroStrategy
SAS VA

Search Solr

Analytics SAS
Revolution Analytics
Pega

Integration Tools Talend
Informatica

Operational Intelligence Tools Splunk

Graph Databases Neo4J
OpenLink

Document Store Database
Management Systems

MongoDB
Cloudant
MarkLogic
Couchbase

Datasets InfoChimps

Social Media Integrator Clarabridge
radian6
SAS
Informatica PowerExchange

Archive Infrastructure EMC Ipsilon

(continued)

CHAPTER 11 ■ RESOURCES, REFERENCES, AND TOOLS

129

Tools Vendors

Data Discovery IBM Vivisimo
Oracle Endeca
MarkLogic

Table-Style Database
Management Services

Cassandra
HP Vertica
DataStax
Teradata

Table 11-1. (continued)

Hadoop Distributions
Problem
Apache Hadoop does not come integrated with all the components required for an enterprise-scale big data system.
Do I have any better options to save the time and effort to configure multiple frameworks?

Solution
Because the Hadoop ecosystem is made up of multiple entities (Hive, Pig, HDFS, Ambari, and others), with each
entity maturing individually and coming up with newer versions, there are chances of version incompatibility,
security, and performance-tuning issues. Vendors like Cloudera, MapR and Hortonworks do a good job to package
it all together into one distribution and manage the incompatibility, performance, and security issues within the
packaged distribution. This greatly helps because the maintenance support for these open source entities is only
through forums.

These vendors are coming up with their own SQL interfaces and monitoring dashboards and contributing back
to the Apache Hadoop community, thereby enriching the open source community. Here are some examples:

MapR stands out as a unique file system. Unlike the HDFS file systems in Apache Hadoop, •
MapR allows you to mount the cluster as an NFS volume. “HDFS” is replaced by “Direct
Access NFS.” Further details can be found at http://www.mapr.com/Download-document/4-
MapR-M3-Datasheet.

Hortonworks stands out for its offering on Windows operating systems• . Hortonworks is the
only vendor providing Hadoop on Windows OS.

Intel provides Hadoop storage that is • in-memory.

A typical packaged distribution covers all of the open source Hadoop entities.

In-memory Hadoop
Intel provides optimization for solid state disks and cache acceleration. See www.intel.com/bigdata for information
on Intel’s big data resources in general.

Over and above the core open source Hadoop entities, vendors provide additional services such as those shown
in Table 11-2.

http://www.mapr.com/Download-document/4-MapR-M3-Datasheet
http://www.mapr.com/Download-document/4-MapR-M3-Datasheet
http://www.intel.com/bigdata

CHAPTER 11 ■ RESOURCES, REFERENCES, AND TOOLS

130

Hadoop Alternatives
Problem
Is Apache Hadoop the only option to implement big data, map reduce, and a distributed file system?

Solution
The nearest open source alternative to Hadoop is the HPCC system. Refer to http://hpccsystems.com/Why-HPCC/
How-it-works.

Unlike Hadoop, HPCC provides massively parallel processing and a shared nothing architecture not based on
any type of key-value NoSQL databases. See http://hpccsystems.com/Why-HPCC/case-studies/lexisnexis for a
case study of HPCC implementation in LexisNexis document management.

Hadoop SQL Interfaces
Problem
How can I improve the performance of my Hive queries?

Solution
Apache Hive is the most widely used open source SQL interface. Apache Hive can run over HDFS or over the NoSQL
HBase columnar database. Apache Hive was developed to make a SQL developer’s life easier. Instead of forcing
developers to learn a new language or learning new CLI commands to run MapReduce code, Apache Hive provides a
SQL-like language to trigger map reduce jobs.

Cloudera Impala, EMC HAWQ, and Hortonworks Stinger are some of the products available that can overcome
the performance issues encountered while using Apache Hive. Hortonworks Stinger is relatively new to the market.
New aggregate functions, optimized query, and optimized Hive runtime are some of the features added in these
products.

There are many resources you can consult to find comparisons of EMC HAWQ with Cloudera Impala and other
such products. One that you may find useful is at: https://www.informationweek.com/software/information-
management/cloudera-impala-brings-sql-querying-to-h/240153861. You find more information going to
http://www.cloudera.com/content/cloudera/en/products/cdh/impala.html and http://hortonworks.com/blog/
100x-faster-hive.

Table 11-2. Vendor-Specific Hadoop Services

Cloudera Hortonworks MapR EMC

Operations Cloudera Manager

Security - Knox Gateway

Massively Parallel Processing (MPP)
query engine

Impala Stinger Drill HAWQ

http://hpccsystems.com/Why-HPCC/How-it-works
http://hpccsystems.com/Why-HPCC/How-it-works
http://hpccsystems.com/Why-HPCC/case-studies/lexisnexis
https://www.informationweek.com/software/information-management/cloudera-impala-brings-sql-querying-to-h/240153861.%20You
https://www.informationweek.com/software/information-management/cloudera-impala-brings-sql-querying-to-h/240153861.%20You
http://www.cloudera.com/content/cloudera/en/products/cdh/impala.html
http://hortonworks.com/blog/100x-faster-hive
http://hortonworks.com/blog/100x-faster-hive

CHAPTER 11 ■ RESOURCES, REFERENCES, AND TOOLS

131

Ingestion tools
Problem
What are the essential tools/frameworks required in your big data ingestion layer?

Solution
There are many product options to facilitate batch-processing-based ingestion. Here are some major frameworks
available:

• Apache Sqoop: A tool used for transferring bulk data from RDBMS to Apache Hadoop and
vice-versa. It offers two-way replication, with both snapshots and incremental updates.

• Chukwa: Chukwa is a Hadoop subproject that is designed for efficient log processing. It
provides a scalable distributed system for monitoring and analyzing log-based data. It
supports appending to existing files and can be configured to monitor and process logs that
are generated incrementally across many machines.

• Apache Kafka: A distributed publish-subscribe messaging system. It is designed to provide
high-throughput persistent messaging that’s scalable and allows for parallel data loads
into Hadoop. Its features include the use of compression to optimize I/O performance
and mirroring to improve availability and scalability and to optimize performance in
multiple-cluster scenarios. It can be used as the framework between the router and Hadoop
in the multi-destination pattern implementation.

• Flume: A distributed system for collecting log data from many sources, aggregating it, and
writing it to HDFS. It is based on streaming data flows. Flume provides extensibility for online
analytic applications. However, Flume requires a fair amount of configuration, which can
become complex for very large systems.

• Storm: Supports event-stream processing and can respond to individual events within a
reasonable time frame. Storm is a general-purpose, event-processing system that uses a
cluster of services for scalability and reliability. In Storm terminology, you create a topology
that runs continuously over a stream of incoming data. The data sources for the topology
are called spouts, and each processing node is called a bolt. Bolts can perform sophisticated
computations on the data, including output to data stores and other services. It is common for
organizations to run a combination of Hadoop and Storm services to gain the best features of
both platforms.

• InfoSphere Streams: Performs complex analytics of heterogeneous data types. InfoSphere
Streams can support all data types. It can perform real-time and look-ahead analysis
of regularly generated data, using digital filtering, pattern/correlation analysis, and
decomposition, as well as geospacial analysis.

• Apache S4: A real-time data ingestion tool used for processing continuous streams of data.
Client programs that send and receive events can be written in any programming language.
S4 is designed as a highly distributed system. Throughput can be increased linearly by adding
nodes into a cluster.

CHAPTER 11 ■ RESOURCES, REFERENCES, AND TOOLS

132

Map Reduce alternatives
Problem
For multinode parallel processing, is MapReduce the only algorithm option?

Solution
Spark and Nokia DISCO are some of the alternatives to MapReduce. A fair comparison can be found at
http://www.bytemining.com/2011/08/Hadoop-fatigue-alternatives-to-Hadoop/.

Because most vendor products and enhancements are focused on MapReduce jobs, it makes sense to stick to
MapReduce unless there is a pressing need to look for a massive parallel processing option.

Cloud Options
Problem
Buying inexpensive hardware for large big data implementations can still be a very large capital expense. Are
there any pay-as-you-go cloud options?

Solution
Amazon EMR is a public cloud based web service that provides huge data computing power. Amazon EMR uses
Amazon S3 for storage unlike the Hadoop HSFs storage. Amazon EMR data ingestion, analysis and import/export
concerns are different from a typical HDFS based Hadoop system.

Amazon EMR data ingestion, analysis, and import/export concerns are discussed at
http://media.amazonwebservices.com/AWS_Amazon_EMR_Best_Practices.pdf.

Table-Style Database Management Services
Problem
My existing database and analytics experts have RDBMS and SQL skills. How can I quickly make them big data
users?

Solution
Cassandra, HP Vertica, DataStax, Oracle Exadata, and Aster Teradata are some table-style, database-management
services that run over Hadoop and provide the abstraction needed to reduce latency and improve performance.

Compared to NoSQL DBMSs, table-style DBMSs bring vendor lock-in, hardware dependencies, and complicated
clustering. Table-style DBMSs also hog memory and network, and hence have consistency issues across clusters. Data
integrity and consistency suffer as performance improves.

Some table-style DBMSs come packaged as a combo of hardware, platform, and software. Hence, the eventual
cost and ROI need to be thoroughly investigated before opting for it.

You can find information concerning the total cost of ownership (TCO) for moving to Oracle Exadata at the
following web site: http://www.zdnet.com/reproducing-youtube-on-oracle-exadata-1339318266/.

http://www.bytemining.com/2011/08/Hadoop-fatigue-alternatives-to-Hadoop/
http://media.amazonwebservices.com/AWS_Amazon_EMR_Best_Practices.pdf
http://www.zdnet.com/reproducing-youtube-on-oracle-exadata-1339318266/

CHAPTER 11 ■ RESOURCES, REFERENCES, AND TOOLS

133

NoSQL Databases
Problem
Is there a “one solution fits all” NoSQL database?

Solution
NoSQL databases (Figure 11-1) are very use-case-centric, unlike RDBMS, which are generic and cater to multiple
system needs. Maintenance of data integrity and consistency can become a concern in the long run.

Figure 11-1. NoSQL databases

Also, there are multiple key-value pair, graph, and document databases that have very different implementations.
Moving from one to another might raise issues.

In-Memory Big Data Management Systems
Problem
Real-time big data analysis requires in-memory processing capabilities. Which are the leading products?

Solution
SAP HANA and Oracle Exalytics are some of the leading products for in-memory processing. Oracle and SAP HANA
provide their own set of adapters to connect to various other products, as well. Though different as far as hardware
and platform, both products provide comparable features. The only concern is vendor lock-in and the inability to
integrate with any other NoSQL database. Implementing these vendor products might require significant changes to a
customer’s existing high-availability and disaster-recovery processes.

CHAPTER 11 ■ RESOURCES, REFERENCES, AND TOOLS

134

DataSets
Problem
Are there any large data sets available in the public domain that I can use for my big data pilot projects?

Solution
Data.gov is an official US government web site. You can visit http://catalog.data.gov/dataset to see about 100,000
datasets belonging to different categories.

Data Discovery
Data discovery and search capabilities have gained more importance because of the new non-enterprise and
social-media data that has started feeding in to an organization’s decision-making systems. Discovering insights from
unstructured data (videos, call center audios, blogs, twitter feeds, Facebook posts) has been a challenge for existing
decision-making systems and has given birth to new products like IBM Vivisimo, Oracle Endeca, and others.

You can find more information at the following web sites: https://wikis.oracle.com/display/
endecainformationdiscovery/Home;jsessionid=7EF303D9FADB3215001F27A4F4DACFE5 and http://www.ndm.net/
datawarehouse/IBM/infosphere-dataexplorer-vivisimo.

Visualization
Problem
There are so many cool visualization tools coming up every day, how do I select the appropriate tool for my
enterprise?

Solution
High-volume, real-time analytics has brought in newer products in the market like the following ones:

Tableau•

QLikView•

Tibco Spotfire•

MicroStrategy•

SAS VA•

From a market presence perspective, QLikView has been around for a while. Comparatively, Tableau is a new
entrant into the market. SAS has also jumped into the fray with its SAS Visual Analytics offering. MicroStrategy and
Tibco Spotfire also have a substantial market presence.

Though these are in-memory visualization tools that are highly integrated with the Hadoop ecosystem, issues
such as the following exist with them:

Data is expected in a certain format for better performance.•

Integration with Apache Hive is at times not of very high performance.•

Apache Hive has to be modified to provide data in an aggregated manner to get high •
performance.

http://catalog.data.gov/dataset
https://wikis.oracle.com/display/endecainformationdiscovery/Home;jsessionid=7EF303D9FADB3215001F27A4F4DACFE5
https://wikis.oracle.com/display/endecainformationdiscovery/Home;jsessionid=7EF303D9FADB3215001F27A4F4DACFE5
http://www.ndm.net/datawarehouse/IBM/infosphere-dataexplorer-vivisimo
http://www.ndm.net/datawarehouse/IBM/infosphere-dataexplorer-vivisimo

CHAPTER 11 ■ RESOURCES, REFERENCES, AND TOOLS

135

Analytics Tools
Here are some of the available analytics tools:

Revolution R Analytics•

SAS•

Though Revolution R Analytics is a new entrant into the market, it has made an immense impact. Because SAS
is the old horse, it has an advantage over Revolution Analytics. However, it might be too costly an affair in the long run.

Data Integration Tools
Problem
I already invested in business intelligence (BI) tools like Talend, Informatica, and others. Can I use them for big
data integration?

Solution
Talend, Informatica, Pentaho, and IBM DataStage are some of the tools that can act as ETL tools, as well as
scheduling tools.

Some tools are still not mature and do not have all the adapters and accelerators needed to connect to all the
Hadoop ecosystem entities. There might be restrictions on which versions of the entities these might work with.

Not all the tools are compatible with different distributions of Hadoop (like Cloudera, Hortonworks, MapR, Intel,
and IBM BigInsights).

You can read about the Talend features at http://www.talend.com/products/big-data/matrix.
You can find additional information about Informatica PowerExchange at http://www.informatica.com/us/

products/enterprise-data-integration/powerexchange/.

Summary
Since the big data industry is still evolving, there might be more products that will emerge as leaders in the field. As
I am writing this, Oracle has launched Big Data X4-2 appliance, Pivotal has launched a Platform as a Service (PaaS)
called “Pivotal One,” and AWS has upgraded its Elastic MapReduce offering to Hadoop 2.2 with the YARN framework.
More updates and upgrades with better performance will follow. Architects should keep themselves abreast of the
latest developments so that they can recommend the right products to their customers.

http://www.talend.com/products/big-data/matrix
http://www.informatica.com/us/products/enterprise-data-integration/powerexchange/
http://www.informatica.com/us/products/enterprise-data-integration/powerexchange/

137

APPENDIX A

References and Bibliography

1. DataWarehouseBigDataAnalyticsKimball.pdf:
http://www.montage.co.nz/assets/Brochures/DataWarehouseBigDataAnalyticsKimball.pdf

2. Big Data Diversity Meets EDW Consistency for New Synergies in BI: Nancy McQuillen,
2 December 2011, www.gartner.com/id=1865415

3. http://blogs.informatica.com/perspectives/2010/11/17/understanding-data-
integration-patterns-simple-to-complex: David Linthicum, November 17, 2010

4. http://www.datasciencecentral.com/profiles/blogs/11-core-big-data-workload-design-
patterns: Derrick Jose, August 13, 2012

5. http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques:
Ilya Katsov, March 1, 2012

6. Big Data Analytics Using Splunk: Peter Zadrozny and Raghu Kodali (Apress 2013)

7. Securing Big Data: Security Recommendations for Hadoop and NoSQL Environments:
Securosis LLC

8. Big Data Analytics: What It Means to the Audit Community: Markus Hardy

9. Getting Started with Storm: Jonathan Leibiusky et al: O’Reilly Media

10. Hadoop Operations: Eric Sammer: O’Reilly Media

11. Hadoop the Definitive Guide: Tom White: O’Reilly Media

12. Hbase in Action: Nick Dimiduk: Manning

13. MapReduce Design Patterns: Donald Miner et al: O’Reilly Media

14. Hbase the Definitive Guide: Lars George: O’Reilly Media

15. Embedding a Database for High Performance Reporting and Analytics: Bloor Research

16. Big Data: Hadoop, Business Analytics and Beyond: Jeff Kelly, Nov 08, 2012:
http://wikibon.org/wiki/v/Big_Data:_Hadoop,_Business_Analytics_and_Beyond

17. CAP Twelve Years Later: How the “Rules” Have Changed: Eric Brewer, May 30, 2012:
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

18. Key Value Database: http://bigdatanerd.wordpress.com

19. www.practicalanalytics.wordpress.com

20. www.baselinemag.com

http://www.montage.co.nz/assets/Brochures/DataWarehouseBigDataAnalyticsKimball.pdf
http://www.gartner.com/id=1865415
http://blogs.informatica.com/perspectives/2010/11/17/understanding-data-integration-patterns-simple-to-complex
http://blogs.informatica.com/perspectives/2010/11/17/understanding-data-integration-patterns-simple-to-complex
http://www.datasciencecentral.com/profiles/blogs/11-core-big-data-workload-design-patterns
http://www.datasciencecentral.com/profiles/blogs/11-core-big-data-workload-design-patterns
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://wikibon.org/wiki/v/Big_Data:_Hadoop,_Business_Analytics_and_Beyond
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://bigdatanerd.wordpress.com/
http://www.practicalanalytics.wordpress.com/
http://www.baselinemag.com/

APPENDIX A ■ REFERENCES AND BIBLIOGRAPHY

138

21. A Perspective on Database: Where We Came From and Where We’re Going: The Bloor Group,
http://www.databaserevolution.com/research/

22. Big Data Analytics Architecture: By Neil Raden

23. http://media.smashingmagazine.com/wp-content/uploads/2011/10/Plane-newest.gif

24. http://www.submitinfographics.com/full-size-infographics/image-153.jpg

25. NoSQL Databases: www.newtech.about.com

26. Is Data Modeling Relevant in a NoSQL Environment?: Robinson Ryan

27. MapReduce Patterns, Algorithms, and Use Cases: Highly Scalable Blog:- Ilya Katsov,
February 1, 2012

28. Big Data: Hadoop, Business Analytics and Beyond: A Big Data Manifesto from the Wikibon
Community: Jeff Kelly

http://www.databaserevolution.com/research/
http://media.smashingmagazine.com/wp-content/uploads/2011/10/Plane-newest.gif
http://www.submitinfographics.com/full-size-infographics/image-153.jpg
http://www.newtech.about.com/

A���������
Amazon Web Services (AWS), 50, 58
Analytics engine, 21–22
Apache Kafka, 38, 131
Apache S4, 38, 131
Apache Sqoop, 37, 131
Appliance pattern, 104–105
Application architecture, big data

analytics engine, 21–22
components, 9–10
data sources, 10
distributed (Hadoop) storage layer, 14–15
Hadoop infrastructure layer, 15–16
Hadoop platform management layer, 16–17
industry data, 11–12
ingestion layer, 12–13
layers, 9–10
MapReduce (see MapReduce)
monitoring layer, 21
moving large data, 27
real-time engines, 23–25
search engines, 22–23
security layer, 20–21
software stack, 26
visualization layer, 25–26

Application program interfaces (APIs) pattern, 106
Async Handler, 34
Availability, “ilities”, 101–102
AWS. See Amazon Web Services (AWS)

B���������
BI. See Business intelligence (BI)
Big data. See also Application architecture, big data

analytics, 5
architecture patterns, 7
challenges, 5
cloud enabled (see Cloud enabled big data)

data exploration, suspicious behavior on stock
exchange, 122–123

environment change detection, 124–125
geo-redundancy and near-real-time data

ingestion, 115–116
Hadoop-based NoSQL database, 113–114
insights and inferences, 3
NoSQL migration architecture, 114
opportunity, 2–3
platform architecture, 17, 58
product catalog, 127–129
real-time traic monitoring, 120–122
recommendation engine, 116–117
reference architecture, 6
sentiment analysis and log processing, 118–120
structured vs. unstructured, 4
three vs., 2, 45
variety, 2
velocity, 2
video-streaming analytics, 117–118
volume, 2
vs. traditional BI, 2

Big data access patterns
appliance products, 63
cases, 60
classiication, 58
coniguration, 62
connector pattern, 59, 62–63
description, 59
developer API, 58
end-to-end user driven API, 58
forms, 58
Hadoop platform components, 57
lightweight stateless pattern

for HDFS, 65
NAS, 64
uses, 59

near real-time pattern, 59, 63–64
rapid data analysis

Index

139

data processing, 66
Spark and Map reduce comparison, 66–67

raw big data, 58
secure data access, 67–68
service locator pattern

for HDFS, 66
multiple data storage sites, 65
uses, 59

stage transform pattern, 59–61
Big data analysis

challenges, 76
constellation search pattern, 70, 73–75
converger pattern, 70, 76
DaaS, 78
data queuing pattern, 70–72
index-based insight pattern, 70, 72–73
log ile analysis, 77
machine learning pattern, 70, 75
sentiment analysis, 77
statistical and numerical methods, 69–70
unstructured data sources, 69
uses, 69

Big data visualization patterns
analytical charts, 79
business intelligence (BI) reporting, 79–80
compression, 81, 83–84
data interpretation, 79
exploder, 81, 86–87
First Glimpse, 81, 85–86
mashup view, 81–83
portal, 81, 87–88
reporting tools, 82
service facilitator, 81, 88–89
traditional visualization, 80
types, 81
zoning, 81, 84–85

Big Data Business Functions as a Service (BFaaS), 6
Big data deployment patterns

cloud and hybrid architecture, 97–98
hybrid architecture patterns (see Hybrid architecture

patterns, big data)
Big data storage

ACID rules, 43
data appliances, 47–48
data archive/purge, 48
data-node coniguration, 54–55
data partitioning/indexing and

lean pattern, 49–50
façade pattern

access, 45
business intelligence (BI) tools

implementations, 44
data warehouse (DW) implementations, 44
Hadoop, 44, 45

in-memory cache, abstraction, 46
RDBMS abstraction, 46

HDFS alternatives, 50
infrastructure, 54
NoSQL databases, 43
NoSQL pattern

cases, 51
databases, 52
HBase, 52
local NFS disks, 51
scenarios, 52
vendors, 51

patterns, 43
Polyglot pattern, 53
RDBMS, 43
storage disks, 48
vendors, 47

Business intelligence (BI)
and big data, 2
CxOs, 1
layer, 26

C���������
Chukwa, Hadoop subproject, 37, 131
Cloud enabled big data, 4
“Codd’s 12 rules”, 1
Column-oriented databases, 18, 52
Compression pattern, 83–84

D���������
DaaS. See Data Analysis as a

Service (DaaS)
Data Analysis as a Service (DaaS), 6, 76, 78
Data appliances, 47–48
Database platforms, 29
Data exploration, suspicious behavior on stock

exchange, 122–123
Data indexing. See Big data storage
Data ingestion

challenges, 29
integration approaches, 29
just-in-time transformation pattern

(see Just-in-time transformation pattern)
layer and associated patterns, 31
multidestination pattern (see Multidestination

pattern)
multisource extractor pattern (see Multisource

extractor pattern)
protocol converter pattern(see Protocol

converter pattern)
RDBMS, 30
real-time streaming patterns (see Real-time

streaming patterns)

■INDEX

140

Big data access patterns (cont.)

Data integration tools, 135
Data-node coniguration

IBM, 55
Intel, 54

Data partitioning/indexing and lean pattern, 49–50
Data scientists, 9, 22, 74, 80–81, 123, 124
Data warehouse (DW), 2, 29, 43–46, 103
Destination systems, 32, 102
Distributed and clustered lume taxonomy, 32, 127–129
Distributed master data management (D-MDM), 74
DMS. See Document management systems (DMS)
Document databases, 51, 52, 133
Document management systems (DMS), 57
DW. See Data warehouse (DW)

E���������
Elastic MapReduce (EMR), 4, 132
Environment change detection, 124–125
EPs. See Event processing nodes (EPs)
ETL tools

description, 39
“Google BigQuery”, 40
hardware appliances, 40
Informatica, 39
ingestion, traditional, 39
transformation process, 40

Event processing nodes (EPs), 37
Exploder pattern, 86–87

F���������
File handler, 34
First Glimpse (FG) pattern, 85–86

G���������
Geo-redundancy and near-real-time data

ingestion, 115–116
Graph databases, 52

H���������
Hadoop alternatives, 127, 130
Hadoop-based NoSQL database, 113–114
Hadoop distributed ile system (HDFS), 14, 18, 36, 46,

49, 50, 60, 65–66, 72, 104, 105, 130
Hadoop distributions

alternatives, 130
analytics tools, 135
cloud options, 132
data discovery, 134
data integration tools, 135
datasets, 134
entities, 129

examples, 129
ingestion tools, 131
in-memory big data management systems, 133
in-memory Hadoop, 129–130
MapReduce alternatives, 132
NoSQL databases, 133
SQL interfaces, 130
table-style database management services, 132
vendors, 129
visualization, 134

Hadoop ecosystem, 54, 63, 92–96, 110, 127, 129, 134–135
Hadoop physical infrastructure layer (HPIL), 15
Hadoop platform management layer, 10, 16–17, 44, 58
Hadoop SQL interfaces, 130
HBase, 18, 22, 43, 49, 50, 52, 61, 110, 117, 120, 130
HDFS. See Hadoop distributed ile system (HDFS)
Hive, 18, 34, 35, 45
Hybrid architecture patterns, big data

federation pattern, 95–96
Lean DevOps pattern, 96–97
resource negotiator pattern, 92–94
spine fabric pattern, 94–95
traditional tree network pattern, 91–92

I���������
InfoSphere Streams, 38
Infrastructure-as-a-Code (IaaC), 97
Infrastructure as a Service (IaaS), 4, 6, 71
Ingestion tools

Apache Kafka, 131
Apache S4, 131
Apache Sqoop, 131
Chukwa, 131
Flume, 131
InfoSphere Streams, 131
Storm, 131

In-memory big data management systems, 133
In-memory Hadoop, 129–130

J���������
Just-in-time transformation pattern

co-existing, HDFS, 36
HDFS, 35

K���������
Key-value pair databases, 52

L���������
Lean DevOps pattern, 96
Lean pattern. See Big data storage
Log ile analysis, 77

■INDEX

141

M���������
Maintainability, 101
MapReduce

description, 17
HBase, 18
Hive, 18
input data, 18
Pig, 18
Sqoop, 19
tasks, 18
task tracker process, 18
ZooKeeper, 19–20

MapReduce alternatives, 132
Mashup view pattern, 79, 82–83
Master data management (MDM)

concepts, 5, 13, 70
Message exchanger, 33, 34
Multidestination pattern

description, 30
Hadoop layer, 34
integration, multiple destinations, 35
problems, 35
RDBMS systems, 34

Multisource extractor pattern
collections, unstructured data, 31
description, 30
disadvantages, 32
distributed and clustered lume taxonomy, 32
energy exploration and video-surveillance

equipment, 31
enrichers, 32
taxonomy, 32

N���������
Non-Functional requirements (NFRs)

API pattern, 106
appliance pattern, 104
distributed search optimization access pattern, 105
“ilities”, 101
operability, 108
parallel exhaust pattern, 102
security, 102
security challenges, 107
security products, 109
variety abstraction pattern, 104

NoSQL database, 1, 3, 5, 10, 13–15, 33, 35, 39, 43, 44, 46,
49–53, 59–62, 75, 102–105, 113–114, 133

NoSQL pattern, 43, 50–52

O���������
Online transaction processing (OLTP) transactional

data, 2, 80
Operability

big data system security
audit, 108

designing system, 101
operational challenges, 107–108

P, Q���������
Parallel exhaust pattern, 102–103
Pig, 17, 18, 34, 35, 40
Platform as a Service (PaaS), 6, 125
Polyglot pattern, 43, 44, 53
Polyglot persistence, 53, 103, 106
Portal pattern, 81, 87–88
Protocol converter pattern

Async handler, 34
description, 30
ile handler, 34
ingestion layer, 33
message exchanger, 34
serializer, 34
stream handler, 34
unstructured data, data sources, 33
variations, 34
web services handler, 34

R���������
RAID-conigured disks, 48
RDBMS. See Relational database management

systems (RDBMS)
Real-time engines

in-memory caching, 24
in-memory database, 24
memory, 23

Real-time streaming, 30, 36–38, 104–105, 116
Real-time streaming patterns

characteristics, 36
description, 30
EPs, 37
frameworks

Apache Kafka, 38
Apache S4, 38
Apache Sqoop, 37
Chukwa, 37
Flume, 38

■INDEX

142

InfoSphere Streams, 38
Storm, 38

Real-time traic monitoring, 120–122
Recommendation engine, 61, 116–117
Relational database management

systems (RDBMS), 1–2, 4, 19, 22, 30,
34, 43, 46, 49, 53, 60, 73, 82, 84

Reliability, 101
Resource negotiator pattern, 92
Revolution analytics, 82, 135
Rhino Project, 110

S���������
Scalability, 101
Search engines, 1, 6, 22–23, 64, 95
Sentiment analysis, 77
Sentiment analysis and log processing, 118–120
Serializer, 33, 34
Service facilitator pattern, 81, 88–89
Service-level agreements (SLAs), 21, 118
Service locator (SL) pattern, 59, 65–66
SLAs. See Service-level agreements (SLAs)
SQL. See Structured Query Language (SQL)
Sqoop, 15, 19, 39
Stream handler, 33, 34
Structured Query Language (SQL), 4, 5, 14, 15, 18, 62

T, U���������
Table-style database management

services, 132
Tivoli Key Lifecycle Manager (TKLM), 109
TKLM. See Tivoli Key Lifecycle

Manager (TKLM)
Traditional business intelligence

(BI), 2, 21, 29, 79
Traditional tree network pattern, 91

V���������
Variety abstraction pattern, 103–104
Vendor-speciic Hadoop

services, 130
Video-over-IP (VOIP) oferings, 117
Video-streaming analytics, 117–118

W, X, Y���������
Web services handler, 33, 34

Z���������
Zoning pattern, 81, 84–85
ZooKeeper, 19, 20

■INDEX

143

Big Data Application
Architecture Q & A

A Problem-Solution Approach

Nitin Sawant

Himanshu Shah

Big Data Application Architecture Q & A

Copyright © 2013 by Nitin Sawant and Himanshu Shah

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6292-3

ISBN-13 (electronic): 978-1-4302-6293-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Saswata Mishra
Technical Reviewer: Soumendra Mohanty
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew
Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan
Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Roger LeBlanc
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science+Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com/9781430262923. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
http://www.apress.com
www.apress.com/bulk-sales
http://www.apress.com
www.apress.com/source-code/

v

Contents

About the Authors .. xix

About the Technical Reviewer ... xxi

Acknowledgments ... xxiii

Introduction .. xxv

Chapter 1: Big Data Introduction ■ ...1

Why Big Data ...1

Problem ... 1

Solution.. 1

Aspects of Big Data ...2

Problem ... 2

Solution.. 2

How Big Data Differs from Traditional BI ...2

Problem ... 2

Solution.. 2

How Big Is the Opportunity? ..2

Problem ... 2

Solution.. 2

Deriving Insight from Data ..3

Problem ... 3

Solution.. 3

Cloud Enabled Big Data ...4

Problem ... 4

Solution.. 4

■ CONTENTS

vi

Structured vs. Unstructured Data ..4

Problem ... 4

Solution.. 4

Analytics in the Big Data World ...5

Problem ... 5

Solution.. 5

Big Data Challenges ..5

Problem ... 5

Solution.. 5

Defining a Reference Architecture ..6

Problem ... 6

Solution.. 6

Need for Architecture Patterns ..7

Problem ... 7

Solution.. 7

Summary ...7

Chapter 2: Big Data Application Architecture ■ ..9

Architecting the Right Big Data Solution ...9

Problem ... 9

Solution.. 9

Data Sources ...10

Problem .. 10

Solution ... 10

Ingestion Layer ..12

Problem .. 13

Solution ... 13

Distributed (Hadoop) Storage Layer ..14

Problem .. 14

Solution.. 14

■ CONTENTS

vii

Hadoop Infrastructure Layer ..15

Problem .. 16

Solution.. 16

Hadoop Platform Management Layer ..16

Problem .. 16

Solution ... 16

Problem .. 17

Solution.. 17

Security Layer ...20

Problem .. 20

Solution ... 21

Monitoring Layer ...21

Problem .. 21

Solution ... 21

Analytics Engine ..21

Co-Existence with Traditional BI .. 21

Search Engines ...22

Problem .. 22

Solution ... 22

Real-Time Engines ..23

Problem .. 23

Solution ... 23

Visualization Layer ..25

Problem .. 25

Solution ... 25

Big Data Applications ..26

Problem .. 26

Solution ... 26

Problem .. 27

Solution.. 27

■ CONTENTS

viii

Problem .. 27

Solution ... 27

Summary ...27

Chapter 3: Big Data Ingestion and Streaming Patterns ■ ..29

Understanding Data Ingestion ...29

Problem .. 30

Solution.. 30

Multisource Extractor Pattern ...31

Problem .. 31

Solution ... 31

Protocol Converter Pattern ..33

Problem .. 33

Solution.. 33

Multidestination Pattern ..34

Problem ... 34

Solution.. 34

Just-in-Time Transformation Pattern ..35

Problem ... 35

Solution.. 35

Real-Time Streaming Pattern ..36

Problem ... 36

Solution ... 36

Problem .. 37

Solution ... 37

Problem .. 38

Solution ... 38

ETL Tools for Big Data..39

Problem .. 39

Solution ... 39

Problem .. 39

Solution ... 40

■ CONTENTS

ix

Problem .. 40

Solution ... 40

Problem .. 40

Solution ... 40

Summary ...41

Chapter 4: Big Data Storage Patterns ■ ..43

Understanding Big Data Storage ...43

Façade Pattern ..44

Problem ... 44

Solution.. 44

Data Appliances ...47

Problem ... 47

Solution.. 47

Storage Disks ..48

Problem ... 48

Solution.. 48

Data Archive/Purge ..48

Problem ... 48

Solution.. 48

Data Partitioning/Indexing and the Lean Pattern ..49

Problem ... 49

Solution.. 49

Problem ... 49

Solution.. 49

HDFS Alternatives ..50

Problem ... 50

Solution.. 50

NoSQL Pattern ...50

Problem ... 50

Solution.. 51

■ CONTENTS

x

Polyglot Pattern ...53

Problem ... 53

Solution.. 53

Big Data Storage Infrastructure ...54

Problem ... 54

Solution.. 54

Typical Data-Node Configuration ...54

Problem ... 54

Solution.. 54

Summary ...55

Chapter 5: Big Data Access Patterns ■ ...57

 Problem ... 57

Solution.. 57

Understanding Big Data Access ..59

Stage Transform Pattern ...60

Problem ... 60

Solution.. 61

Connector Pattern ...62

Problem ... 62

Solution.. 62

Near Real-Time Access Pattern ...63

Problem ... 63

Solution.. 63

Lightweight Stateless Pattern ...64

Problem ... 64

Solution.. 64

Service Locator Pattern ...65

Problem ... 65

Solution.. 65

■ CONTENTS

xi

Rapid Data Analysis ...66

Problem ... 66

Solution.. 66

Secure Data Access ...67

Problem ... 67

Solution.. 67

Problem ... 68

Solution.. 68

Problem ... 68

Solution.. 68

Summary ...68

Chapter 6: Data Discovery and Analysis Patterns ■ ...69

 Problem ... 69

Solution.. 69

Problem ... 69

Solution.. 70

Problem ... 70

Solution.. 70

Data Queuing Pattern ..71

Problem ... 71

Solution.. 71

Index based Insight Pattern ...72

Problem ... 72

Solution.. 72

Constellation Search Pattern ...73

Problem ... 73

Solution.. 74

Machine Learning Recommendation Pattern ..75

Problem ... 75

Solution.. 75

■ CONTENTS

xii

Converger Pattern ...76

Problem ... 76

Solution.. 76

Challenges in Big Data Analysis ..76

Problem ... 76

Solution.. 76

Log File Analysis ..77

Problem ... 77

Solution.. 77

Sentiment Analysis ..77

Problem ... 77

Solution.. 77

Data Analysis as a Service (DaaS) ...78

Problem ... 78

Solution.. 78

Summary ...78

Chapter 7: Big Data Visualization Patterns ■ ..79

Introduction to Big Visualization ..79

Problem ... 79

Solution.. 79

Big Data Analysis Patterns ..80

Problem ... 80

Solution.. 80

Problem ... 82

Solution.. 82

Mashup View Pattern ..82

Problem ... 82

Solution.. 82

■ CONTENTS

xiii

Compression Pattern ...83

Problem ... 83

Solution.. 83

Zoning Pattern ...84

Problem ... 84

Solution.. 84

First Glimpse Pattern ...85

Problem ... 85

Solution.. 85

Exploder Pattern ..86

Problem ... 86

Solution.. 86

Portal Pattern ..87

Problem ... 87

Solution.. 87

Service Facilitator Pattern ...88

Problem ... 88

Solution.. 88

Summary ...89

Chapter 8: Big Data Deployment Patterns ■ ...91

Big Data Infrastructure: Hybrid Architecture Patterns ...91

Traditional Tree Network Pattern ...91

Problem ... 91

Solution.. 91

Resource Negotiator Pattern for Security and Data Integrity ..92

Problem ... 92

Solution.. 92

Spine Fabric Pattern ..94

Problem ... 94

Solution.. 94

■ CONTENTS

xiv

Federation Pattern ...95

Problem ... 95

Solution.. 95

Lean DevOps Pattern ...96

Problem ... 96

Solution.. 96

Big Data on the Cloud and Hybrid Architecture ...97

Problem ... 97

Solution.. 97

Big Data Operations ..98

Problem ... 98

Solution.. 98

Summary ...99

Chapter 9: Big Data NFRs ■ ..101

 “ilities” ...101

Problem ... 101

Solution.. 101

Security ...102

Parallel Exhaust Pattern ..102

Problem ... 102

Solution.. 102

Variety Abstraction Pattern ..103

Problem ... 103

Solution.. 103

Problem ... 103

Solution.. 103

Real-Time Streaming Using the Appliance Pattern ...104

Problem ... 104

Solution.. 104

■ CONTENTS

xv

Distributed Search Optimization Access Pattern ...105

Problem ... 105

Solution.. 105

Anything as an API Pattern ..106

Problem ... 106

Solution.. 106

Security Challenges...106

Problem ... 106

Solution.. 107

Operability ...107

Problem ... 107

Solution.. 107

Big Data System Security Audit ...108

Problem ... 108

Solution.. 108

Big Data Security Products..109

Problem ... 109

Solution.. 109

Problem ... 109

Solution.. 109

Problem ... 109

Solution.. 109

Problem ... 109

Solution.. 109

Problem ... 110

Solution.. 110

Problem ... 110

Solution.. 110

Summary ...111

■ CONTENTS

xvi

Chapter 10: Big Data Case Studies ■ ..113

Case Study: Mainframe to Hadoop-Based NoSQL Database ...113

Problem ... 113

Solution.. 113

Case Study: Geo-Redundancy and Near-Real-Time Data Ingestion ..115

Problem ... 115

Solution.. 115

Case Study: Recommendation Engine ...116

Problem ... 116

Solution.. 116

Case Study: Video-Streaming Analytics ...117

Problem ... 117

Solution.. 117

Case Study: Sentiment Analysis and Log Processing ..118

Problem ... 118

Solution.. 119

Case Study: Real-Time Traffic Monitoring ...120

Problem ... 120

Solution.. 121

Case Study: Data Exploration for Suspicious Behavior on a Stock Exchange122

Problem ... 122

Solution.. 122

Case Study: Environment Change Detection ...124

Problem ... 124

Solution.. 124

Summary ...125

Chapter 11: Resources, References, and Tools ■ ..127

Big Data Product Catalog ..127

Problem ... 127

Solution.. 127

■ CONTENTS

xvii

Hadoop Distributions ...129

Problem ... 129

Solution.. 129

In-memory Hadoop ..129

Hadoop Alternatives ..130

Problem ... 130

Solution.. 130

Hadoop SQL Interfaces ..130

Problem ... 130

Solution.. 130

Ingestion tools ...131

Problem ... 131

Solution.. 131

Map Reduce alternatives ...132

Problem ... 132

Solution.. 132

Cloud Options ..132

Problem ... 132

Solution.. 132

Table-Style Database Management Services ..132

Problem ... 132

Solution.. 132

NoSQL Databases ...133

Problem ... 133

Solution.. 133

In-Memory Big Data Management Systems ..133

Problem ... 133

Solution.. 133

DataSets ..134

Problem ... 134

Solution.. 134

■ CONTENTS

xviii

Data Discovery ..134

Visualization ..134

Problem ..134

Solution...134

Analytics Tools ..135

Data Integration Tools ..135

Problem ..135

Solution...135

Summary ...135

Appendix A: References and Bibliography ■ .. 137

Index ... 139

xix

About the Authors

Nitin Sawant is managing director, technology, and is the practice lead for technology
architecture for BPM, SOA, and cloud at Accenture India. He is an Accenture certiied
master technology architect (CMTA), leading various initiatives in the emerging
technologies of cloud and big data. Nitin has over 17 years of technology experience
in developing, designing, and architecting complex enterprise-scale systems based on
Java, JEE, SOA, and BPM technologies. He received his master’s degree in technology
in software engineering from the Institute of System Science, National University of
Singapore. He graduated with a bachelor’s degree in electronics engineering from
Bombay University. He is a certiied CISSP, CEH, and IBM-certiied SOA solutions
architect. Nitin has iled three patents in the SOA-BPM space and is currently pursuing
his PHD in BPM security from BITS Pilani, India.

Himanshu Shah is an Accenture senior technology architect with 14 years of IT
experience and currently leads the Big Data (Hadoop) Capability in Accenture
India Delivery Centre. Himanshu has acted as an enterprise architect for projects
involving cloud computing, operations architecture and big data. Himanshu has
worked extensively in custom development of JEE based architecture for multiple
clients in various Industries including telecom, retail and the insurance domain.
Himanshu also has expertise in ITIL operations architecture. Himanshu has been
part of Java, Platform Cloud, and SOA Centre of Excellences within Accenture.

xxi

About the Technical Reviewer

Soumendra Mohanty has over 17 years of technology experience in developing,
designing, implementing and business transformation programs. Soumendra
is currently engaged with Mindtree in the role of their global lead for Data and
Analytics Services. Soumendra is an industry renowned expert in the BI, analytics
and big data arenas. He has been a proliic writer, has published several books and
papers and regularly presents in worldwide forums. He received his master’s degree
in Computers and Applications from College of Engineering and Technology, Orissa
University of Agriculture and Technology. Soumendra has iled three patents in the
data and analytics space and is currently pursuing his PHD in real time big data and
analytics from ITER, India.

xxiii

Acknowledgments

We wish to acknowledge the support received from our families while we burned the candle on both ends to meet
the publishing deadlines. A warm thanks to Soumendra, who is also the reviewer of this book or inspiring us to write
this book.

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem

	Solution
	Problem

	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Problem
	Solution
	Solution
	Problem
	Solution

