
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

Preface ... xiii

About the Authors .. xv

About the Technical Reviewer ... xvii

Acknowledgments .. xix

Introduction .. xxi

Chapter 1: “Big Data” in the Enterprise ■ .. 1

Chapter 2: The New Information Management Paradigm ■ 25

Chapter 3: Big Data Implications for Industry ■ 45

Chapter 4: Emerging Database Landscape ■ 73

 Chapter 5: Application Architectures for Big Data ■
and Analytics .. 107

 Chapter 6: Data Modeling Approaches for Big Data ■
and Analytics Solutions .. 155

Chapter 7: Big Data Analytics Methodology ■ 197

 Chapter 8: Extracting Value From Big Data: In-Memory Solutions, ■
Real Time Analytics, And Recommendation Systems 221

Chapter 9: Data Scientist ■ .. 251

Index .. 289

www.allitebooks.com

http://www.allitebooks.org

xxi

Introduction

 You may be wondering—is this book for me? If you are seeking a textbook on Hadoop,
then clearly the answer is no. his book does not attempt to fully explain the theory and
derivation of the various algorithms and techniques behind products such as Hadoop.
Some familiarity with Hadoop techniques and related concepts, like NoSQL, is useful in
reading this book, but not assumed.

If you are developing, implementing, or managing modern, intelligent applications,
then the answer is yes. his book provides a practical rather than a theoretical treatment
of big data concepts, along with complete examples and recipes for solutions. It develops
some insights gleaned by experienced practitioners in the course of demonstrating how
big data analytics can be deployed to solve problems.

If you are a researcher in big data, analytics, and related areas, then the answer is
yes. Chances are, your biggest obstacle is translating new concepts into practice. his
book provides a few methodologies, frameworks, and collections of patterns from a
practical implementation perspective. his book can serve as a reference explaining how
you can leverage traditional data warehousing and BI architectures along with big data
technologies like Hadoop to develop big data solutions.

If you are client-facing and always in search of bright ideas to help seize business
opportunities, then the answer is yes, this book is also for you. hrough real-world
examples, it will plant ideas about the many ways these techniques can be deployed.
It will also help your technical team jump directly to a cost-efective implementation
approach that can handle volumes of data previously only realistic for organizations with
large technology resources.

Roadmap
his book is broadly divided into three parts, covering concepts and industry-speciic use
cases, Hadoop and NoSQL technologies, and methodologies and new skills like those of
the data scientist.

Part 1 consists of chapters 1 to 3. Chapter 1 introduces big data and its role in the
enterprise. his chapter will get you set up for all of the chapters that follow. Chapter 2
covers the need for a new information management paradigm. It explains why the
traditional approaches can’t handle the big data scale and what you need to do about
this. Chapter 3 discusses several industry use cases, bringing to life several interesting
implementation scenarios.

Part 2 consists of chapters 4 to 6. Chapter 4 presents the technology evolution,
explains the reason for NoSQL data bases, etc. Given that background, Chapter 5 presents
application architectures for implementing big data and analytics solutions. Chapter 6 then
gives you a irst look at NoSQL data modeling techniques in a distributed environment.

www.allitebooks.com

http://www.allitebooks.org

■ INTRODUCTION

xxii

Part 3 of the book consists of chapters 7 to 9. Chapter 7 presents a methodology
for developing and implementing big data and analytics solutions. Chapter 8 discusses
several additional technologies like in-memory data grids and in-memory analytics.
Chapter 9 presents the need for a new breed of skills (a.k.a. “data scientist”), shows how
it is diferent from traditional data warehousing and BI skills, tells you what the key
characteristics are, and also covers the importance of data visualization techniques.

www.allitebooks.com

http://www.allitebooks.org

1

CHAPTER 1

“Big Data” in the Enterprise

Humans have been generating data for thousands of years. More recently we have seen
an amazing progression in the amount of data produced from the advent of mainframes
to client server to ERP and now everything digital. For years the overwhelming amount
of data produced was deemed useless. But data has always been an integral part of every
enterprise, big or small. As the importance and value of data to an enterprise became
evident, so did the proliferation of data silos within an enterprise. This data was primarily
of structured type, standardized and heavily governed (either through enterprise wide
programs or through business functions or IT), the typical volumes of data were in the
range of few terabytes and in some cases due to compliance and regulation requirements
the volumes expectedly went up several notches higher.

Big data is a combination of transactional data and interactive data. While
technologies have mastered the art of managing volumes of transaction data, it is the
interactive data that is adding variety and velocity characteristics to the ever-growing data
reservoir and subsequently poses significant challenges to enterprises.

Irrespective of how data is managed within an enterprise, if it is leveraged properly,
it can deliver immense business values. Figure 1-1 illustrates the value cycle of data,
from raw data to decision making. In the early 2000s, the acceptance of concepts like
Enterprise Data Warehouse (EDW), Business Intelligence (BI) and analytics, helped
enterprises to transform raw data collections into actionable wisdom. Analytics
applications such as customer analytics, financial analytics, risk analytics, product
analytics, health-care analytics became an integral part of the business applications
architecture of any enterprise. But all of these applications were dealing with only one
type of data: structured data.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

2

The ubiquity of the Internet has dramatically changed the way enterprises function.
Essentially most every business became a “digital” business. The result was a data explosion.
New application paradigms such as web 2.0, social media applications, cloud computing,
and software-as-a-service applications further contributed to the data explosion. These new
application paradigms added several new dimensions to the very definition of data. Data
sources for an enterprise were no longer confined to data stores within the corporate firewalls
but also to what is available outside the firewalls. Companies such as LinkedIn, Facebook,
Twitter, and Netflix took advantage of these newer data sources to launch innovative product
offerings to millions of end users; a new business paradigm of “consumerism” was born.

Data regardless of type, location, and source increasingly has become a core business
asset for an enterprise and is now categorized as belonging to two camps: internal data
(enterprise application data) and external data (e.g., web data). With that, a new term has
emerged: big data. So, what is the definition of this all-encompassing arena called “big data”?

To start with, the definition of big data veers into 3Vs (exploding data volumes, data
getting generated at high velocity and data now offering more variety); however, if you
scan the Internet for a definition of big data, you will find many more interpretations.
There are also other interesting observations around big data: it is not only the 3Vs
that need to be considered, rather when the scale of data poses real challenges to the
traditional data management principles, it can then be considered a big data problem.
The heterogeneous nature of big data across multiple platforms and business functions
makes it difficult to be managed by following the traditional data management principles,
and there is no single platform or solution that has answers to all the questions related to
big data. On the other hand, there is still a vast trove of data within the enterprise firewalls
that is unused (or underused) because it has historically been too voluminous and/or raw
(i.e., minimally structured) to be exploited by conventional information systems, or too
costly or complex to integrate and exploit.

Big data is more a concept than a precise term. Some categorize big data as a volume
issue, only to petabyte-scale data collections (> one million GB); some associate big data

Figure 1-1. Transforming raw data into action-guiding wisdom

Collecting

Organizing

Summarizing

Analyzing

Synthesizing

Decision Making

Actionable
Insight

Knowledge

Information

Data

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

3

with the variety of data types even if the volume is in terabytes. These interpretations have
made big data issues situational.

The pervasiveness of the Internet has pushed generation and usage of data to
unprecedented levels. This aspect of digitization has taken a new meaning. The term
“data” is now expanding to cover events captured and stored in the form of text, numbers,
graphics, video, images, sound, and signals.

Table 1-1 illustrates the measures of scale of data.

Table 1-1. Measuring Big Data

1000 Gigabytes (GB) = 1 Terabyte (TB)

1000 Terabytes = 1 Petabyte (PB)

1000 Petabytes = 1 Exabyte (EB)

1000 Exabytes = 1 Zettabyte (ZB)

1000 Zettabytes = 1 Yottabyte (YB)

Is big data a new problem for enterprises? Not necessarily.
Big data has been of concern in few selected industries and scenarios for some time:

physical sciences (meteorology, physics), life sciences (genomics, biomedical research),
financial institutions (banking, insurance, and capital markets) and government (defense,
treasury). For these industries, big data was primarily a data volume problem, and to solve
these data-volume-related issues they had heavily relied on a mash-up of custom-developed
technologies and a set of complex programs to collect and manage the data. But, when doing
so, these industries and vendor products generally made the total cost of ownership (TCO) of
the IT infrastructure rise exponentially every year.

CIOs and CTOs have always grappled with dilemmas like how to lower IT costs to
manage the ever-increasing volumes of data, how to build systems that are scalable,
how to address performance-related concerns to meet business requirements that are
becoming increasingly global in scope and reach, how to manage data security, and
privacy and data-quality-related concerns. The polystructured nature of big data has
made the concerns increase in manifold ways: how does an industry effectively utilize
the poly-structured nature of data (structured data like database content, semi-structured
data like log files or XML files and unstructured content like text documents or web pages
or graphics) in a cost effective manner?

We have come a long way from the first mainframe era. Over the last few years,
technologies have evolved, and now we have solutions that can address some or all
of these concerns. Indeed a second mainframe wave is upon us to capture, analyze,
classify, and utilize the massive amount of data that can now be collected. There are
many instances where organizations, embracing new methodologies and technologies,
effectively leverage these poly-structured data reservoirs to innovate. Some of these
innovations are described below:

Search at scale•

Multimedia content•

Sentiment analysis•

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

4

Enriching and contextualizing data•

Data discovery or exploratory analytics•

Operational analytics or embedded analytics•

In this chapter, we will briefly discuss these use cases; there are several more such
use cases, which will be discussed in later chapters.

Search at Scale
In the early days of the Internet, search was primarily used to page through simple lists of
results, matching the search objective or key words. Search as a technology has evolved
immensely since then. Concepts like iteratively refining a search request by selecting
(or excluding) clusters or categories of results, parametric search and guided navigation,
type-ahead query suggestions, auto-spelling correction and fuzzy matching (matching via
synonyms, phonetics, and approximate spelling) have revolutionized effective means of
searching and navigating large volumes of information.

Using natural language processing (NLP) technologies and semantic analysis,
it is possible to automatically classify and categorize even big-data-size collections of
unstructured content; web search engines like Google, Yahoo!, and Bing are exploiting
these advances in technologies today.

Multimedia Content
Multimedia content is fascinating, as it consists of user-generated content like photos,
audio files, and videos. From a user perspective this content contains a lot of information:
e.g., where was the photo taken, when it was taken, what was the occasion, etc. But from
a technology perspective all this metadata needs to be manually tagged with the content
to make some meaning out of it, which is a daunting task. Analyzing and categorizing
images is an area of intense research. Exploiting this type of content at big data scale is
a real challenge. Recent technologies like automatic speech-to-text transcription and
object-recognition processing (Content-Based Image Retrieval, or CBIR) are enabling
us to structure this content in an automated fashion. If these technologies are used in an
industrialized fashion, significant impacts could be made in areas like medicine, media,
publishing, environmental science, forensics, and digital asset management.

Sentiment Analysis
Sentiment analysis technology is used to automatically discover, extract, and summarize
the context behind unstructured content. It helps in discovering sentiments and opinions
and polarity analysis concerning everything from ideas and issues to people, products,
and companies. The most cited use case of sentiment analysis is brand or reputation
analysis. The task entails collecting data from select web sources (industry sites, the
media, blogs, forums, social networks, etc.), cross-referencing this content with target
entities represented in internal systems (services, products, people, programs, etc.), and
extracting and summarizing the sentiments expressed in this cross-referenced content.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

5

Companies have started leveraging sentiment analysis technology to understand the
voice of consumers and take timely actions such as the ones specified below:

Monitoring and managing public perceptions of an issue, brand, •
organization, etc. (called reputation monitoring)

Analyzing reception of a new or revamped service or product•

Anticipating and responding to potential quality, pricing, •
or compliance issues

Identifying nascent market growth opportunities and trends in •
customer demand

Enriching and Contextualizing Data
While it is a common understanding that there is a lot of noise in unstructured data, once
you are able to collect, analyze, and organize unstructured data, you can then potentially
use it to merge and cross-reference with your enterprise data to further enhance and
contextualize your existing structured data. There are already several examples of such
initiatives across companies where they have extracted information from high-volume
sources like chat, website logs, and social networks to enrich customer profiles in
a Customer Relationship Management (CRM) system. Using innovative approaches like
Facebook ID and Google ID, several companies have started to capture more details of
customers, thereby improving the quality of master data management.

Data Discovery or Exploratory Analytics
Data discovery or exploratory analytics is the process of analyzing data to discover something
that had not been previously noticed. It is a type of analytics that requires an open mind and
a healthy sense of curiosity to delve deep into data: the paths followed during analysis are in
no pre-determined patterns, and success is heavily dependent on the analyst’s curiosity as
they uncover one intriguing fact and then another, till they arrive at a final conclusion.

This process is in stark contrast to conventional analytics and Online Analytical
Processing (OLAP) analysis. In classic OLAP, the questions are pre-defined with additional
options to further drill down or drill across to get to the details of the data, but these activities
are still confined to finite sets of data and finite sets of questions. Since the activity is primarily
to confirm or refute hypotheses, classic OLAP is also sometimes referred to as Confirmatory
Data Analysis (CDA).

It is not uncommon for analysts cross-referencing individual and disconnected
collections of data sets during the exploratory analysis activity. For example, analysts at
Walmart cross-referenced big data collections of weather and sales data and discovered
that hurricane warnings trigger sales of not just flashlights and batteries (expected) but
also strawberry Pop Tarts breakfast pastries (not expected). And they also found that the
top-selling pre-hurricane item is beer (surprise again).

It is interesting to note that Walmart chanced upon this discovery not due to the
result of exploratory analytics (as is often reported), but due to conventional analytics.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

6

In 2004, with hurricane Frances approaching, Walmart analysts analyzed their sales data
from their data warehouse; they were looking for any tell-tale signs of sales that happened
due to the recently passed hurricane Charley. They found beer and pastries were the
most-purchased items in a pre-hurricane timeframe, and they took action to increase
supplies of these products stores in Frances’s path.

The fascinating aspect of Walmart’s example is imagining what could happen if we
leverage machine-learning algorithms to discover such correlations in an automated way.

Operational Analytics or Embedded Analytics
While exploratory analytics are for discovery and strategies, operational analytics are to
deliver actionable intelligence on meaningful operational metrics in real or near-real
time. The realm of operational analytics is in the machine-generated data and
machine-to-machine interaction data. Companies (particularly in sectors like
telecommunications, logistics, transport, retailing, and manufacturing) are producing
real-time operational reporting and analytics based on such data and significantly
improving agility, operational visibility, and day-to-day decision making as a result.

Dr. Carolyn McGregor of the University of Ontario is using big data and analytics
technology to collect and analyze real-time streams of data like respiration, heart rate,
and blood pressure readings captured by medical equipment (with electrocardiograms
alone generating 1,000 readings per second) for early detection of potentially fatal
infections in premature babies.

Another fascinating example is in the home appliances area. Fridges can be
embedded with analytics modules that sense data from the various items kept in the
fridge. These modules give readings on things like expiry dates and calories and provides
timely alerts either to discard or avoid consuming the items.

Realizing Opportunities from Big Data
Big data is now more than a marketing term. Across industries, organizations are
assessing ways and means to make better business decisions utilizing such untapped
and plentiful information. That means as the big-data technologies evolve and more and
more business use cases come into the fray, the need for groundbreaking new approaches
to computing, both in hardware and software, are needed.

As enterprises look to innovate at a faster pace, launching innovative products and
improve customer services, they need to find better ways of managing and utilizing data
both within the internal and external firewalls. Organizations are realizing the need for
and the importance of scaling up their existing data management practices and adopting
newer information management paradigms to combat the perceived risk of reduced
business insight (while the volume of data is increasing rapidly, it is also posing an
interesting problem). So an organization’s ability to analyze that data to find meaningful
insights is becoming increasingly complex.

This is why analyst group IDC defines the type of technology needed to tackle big
data as: “A new generation of technologies and architectures, designed to economically

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

7

extract value from very large volumes of a wide variety of data, by enabling high-velocity
capture, discovery, and/or analysis.”

Big data technology and capability adoption across different enterprises is varied,
ranging from web 2.0 companies such as Google, LinkedIn, and Facebook (their business
being wholly dependent on these technologies) to Fortune 500 companies embarking on
pilot projects to evaluate how big data capability can co-exist with existing traditional data
management infrastructures. Many of the current success stories with big data have come
about with companies enabling analytic innovation and creating data services, embedding
a culture of innovation to create and propagate new database solutions, enhancing
existing solutions for data mining, implementing predictive analytics, and machine
learning techniques, complemented by the creation of new skills and roles such as data
scientists, big data architects, data visualization specialists, and data engineers leveraging
NoSQL products, among others. These enterprises’ experiences in the big data landscape
are characterized by the following categories: innovation, acceleration, and collaboration.

Innovation
Innovation is characterized by the usage of commodity hardware and distributed
processing, scalability through cloud computing and virtualization, and the impetus
to deploy NoSQL technologies as an alternative to relational databases. Open-source
solution offerings from Apache such as the Hadoop ecosystem are getting into
mainstream data management, with solution offerings from established companies such
as IBM, Oracle, and EMC, as well as upcoming startups such as Cloudera, HortonWorks,
and MapR. The development of big data platforms is perhaps the logical evolution
of this trend, resulting in a comprehensive solution across the access, integration,
storage, processing, and computing layers. Enterprises will continue to establish big
data management capabilities to scale utilization of these innovative offerings, realizing
growth in a cost- effective manner.

Acceleration
Enterprises across all industry domains are beginning to embrace the potential of big data
impacting core business processes. Upstream oil and gas companies collect and process
sensor data to drive real-time production operations, maintenance, and reliability
programs. Electronic health records, home health monitoring, tele-health, and new
medical imaging devices are driving a data deluge in a connected health world. Emerging
location-based data, group purchasing, and online leads allow retailers to continuously
listen, engage, and act on customer intent across the purchasing cycle. Mobile usage data
for telecom service providers unlock new business models and revenue streams from
outdoor ad placements.

The imperative for these enterprises is to assess their current Enterprise Information
Management (EIM) capabilities, adopt and integrate big data initiatives and embark on
programs to enhance their business capabilities and increased competitiveness.

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

8

Collaboration
Collaboration is the new trend in the big data scenario, whereby data assets are
commoditized, shared, and offered as a product of data services. Data democratization is
a leading motivator for this trend. Large data sets from academia, government, and even
space research are now available for the public to view, consume, and utilize in creative
ways. Data.gov is an example of a public service initiative where public data is shared and
has sparked similar initiatives across the globe. Big data use cases are reported in climate
modeling, political campaign strategy, poll predictions, environment management,
genetic engineering, space science, and other areas.

Data aggregators, data exchanges and data markets such as those from InfoChimps,
Factual, Microsoft Azure market place, Axciom and others have come up with data service
offerings whereby “trusted” data sets are made available for free or on a subscription basis.
This is an example where data sets are assessed with an inherent value as data products.

Crowdsourcing is a rapidly growing trend where skilled and passionate people
collaborate to develop innovative approaches to develop insights and recommendation
schemes. Kaggle offers a big data platform for predictive modeling and analytic
competitions effectively making “data science a sport.” Visual.ly offers one of the largest
data visualization showcases in the world, effectively exemplifying the collective talent
and creativity of a large user base.

The possibilities for new ideas and offerings will be forthcoming at a tremendous
rate in the coming years. As big data technologies mature and become easier to deploy
and use, expect to see more solutions coming out especially merging with the other areas
of cloud, mobile, and social media.

There is widespread awareness of the revenue and growth potential from enterprise
data assets. Data management is no longer seen as a cost center. Enterprise information
management is now perceived to be a critical initiative that can potentially impact the
bottom line. Data-driven companies can offer services like data democratization and data
monetization to launch new business models.

Note ■ Data democratization, the sharing of data and making data available to anyone

that was once available only to a select few, is leading to creative usage of data such as

data mashups and enhanced data visualization. Data monetization (i.e., the business model

of offering data sets as a shareable commodity) has resulted in data service providers such

as data aggregators and data exchanges.

Big data analytics can thus enable new business opportunities from an operational
perspective. They provide effective utilization of data assets and rapid data insights into
business processes and enterprise applications and also enhanced analytical capabilities to
derive deeper meaningful insights in a rapid fashion, action on business strategies through
these enhanced insights into the business and exploitation of missed opportunities in areas
previously overlooked. These opportunities arise from the key premise in big data: all data
has potential value if it can be collected, analyzed, and used to generate actionable insight
and enhance operational business capabilities.

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

9

New Business Models
There is a growing awareness and realization that big data analytics platforms are enabling
new business models that were previously not possible or were difficult to realize.
Utilizing big data technologies and processes holds the promise for improving operational
efficiencies and generation of more revenues from new and/or enhanced sales channels.

Enterprises have already realized the benefits obtained by managing enterprise data
as an integral and core asset to manage their business and gain competitive advantage
from enhanced data utilization and insight.

Over the years, tremendous volumes of data have been generated. Many enterprises
have had the foresight not to discard these data and headed down the path to establish
enhanced analytical capabilities by leveraging large-scale transactional, interaction data
and lately social media data and machine-generated data. Even then, Forrester estimates
that only 1 to 1.5 percent of the available data is leveraged. Hence, there is the tantalizing
picture of all the business opportunities that can come about with increased utilization of
available data assets and newer ways of putting data to good use.

New Revenue Growth Opportunities
The big data age has enabled enterprises of all sizes ranging from startups to small business
and established large enterprises to utilize a new generation of processes and technologies.
In many instances the promise of overcoming the scalability and agility challenges of
traditional data management, coupled with the creative usage of data from multiple
sources, have enterprise stakeholders taking serious notice of their big data potential.

McKinsey’s analysis (summarized in Figure 1-2) indicates that big data has the
potential to add value across all industry segments. Companies likely to get the most out
of big data analytics include:

Financial services: Capital markets generate large quantities of •
stock market and banking transaction data that can help in fraud
detection, maximizing successful trades, etc.

Supply chain, logistics, and manufacturing: With RFID sensors, •
handheld scanners, and on-board GPS vehicle and shipment
tracking, logistics and manufacturing operations produce vast
quantities of information to aid in route optimization, cost
savings, and operational efficiency.

Online services and web analytics: Firms can greatly benefit from •
increasing their customer intelligence and using it for effective
cross-selling/up.

Energy and utilities: “Smart grids” and electronic sensors •
attached to machinery, oil pipelines and equipment generate
streams of incoming data that can be used for preventive means
to avoid disastrous failures.

Media and telecommunications: Streaming media, smartphones, •
tablets, browsing behavior and text messages aid in analyzing the
user interests and behavior and improve customer retention and
avoid churn.

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

10

When big data is distilled and analyzed in combination with traditional enterprise
data, enterprises can develop a more thorough and insightful understanding of their

Health care and life sciences: Analyzing electronic medical records •
systems in aiding optimum patient treatment options and analyzing
data for clinical studies can heavily influence both individual
patients’ care and public health management and policy.

Retail and consumer products: Retailers can analyze vast •
quantities of sales transaction data and understand the
buying behaviors, as well as make effective individual-focused
customized campaigns by analyzing social networking data.

Volume of

Data

Velocity of

Data

Variety

of Data

Under -Utilized

Data (‘Dark Data’)

Big Data Value

Potential

Banking and

Securities

High High Low Medium High

Communications

& Media

Services

High High High Medium High

Education Very Low Very Low Very Low High Medium

Government High Medium High High High

Healthcare

Providers

Medium High Medium Medium High

Insurance Medium Medium Medium Medium Medium

Manufacturing High High High High High

Chemicals &

Natural

Resources

High High High High Medium

Retail High High High Low High

Transportation Medium Medium Medium High Medium

Utilities Medium Medium Medium Medium Medium

Figure 1-2. Big data value across industries

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

11

business, which can lead to enhanced productivity, a stronger competitive position,
and greater innovation—all of which can have a significant impact on the bottom line.

For example, collecting sensor data through in-home health-care monitoring devices can
help analyze patients’ health and vital statistics proactively. This is especially critical in case
of elderly patients. Health-care companies and medical insurance companies can then make
time interventions to save lives or prevent expenses by reducing hospital admissions costs.

The proliferation of smart phones and other GPS devices offers advertisers an
opportunity to target consumers when they are in close proximity to a store, a coffee
shop, or a restaurant. This opens up new revenue for service providers and offers many
businesses a chance to target new customers.

Retailers usually know who buys their products. Use of social media networks and
web-log files from their e-commerce sites can help them understand who didn’t buy and
why they chose not to. This can enable much more effective micro customer segmentation
and targeted marketing campaigns, as well as improve supply chain efficiencies.

Companies can now use sophisticated metrics to better understand their
customers. To better manage and analyze customer information, companies can create
a single source for all customer interactions and transactions. Forrester believes that
organizations can maximize the value of social technologies by taking a 720-degree view
of their customers instead of the previous 360-degree view. In the telecom industry,
applying predictive models to manage customer churn has long been known as a
significant innovation; however, today the telecom companies are exploring new data
sources like customers’ social profiles to further understand customer behavior and
perform micro-segmentations of their customer base. Companies must manage and
analyze their customers’ profiles to better understand their interactions with their
networks of friends, family, peers, and partners. For example, using social relationships
the company can further analyze whether customer attrition from their customer base
is also influencing similar behavior from a host of other customers who have social
connections with the same customer. By doing this kind of linkage analysis companies
can better target their retention campaigns and increase their revenue and profit.

Note ■ What the “720-degree customer view” involves is compiling a more comprehensive

(some might say “intrusive”) portrait of the customers. In addition to the traditional 360-de-

gree view of the customer’s external behavior with the world (i.e., their buying, consuming,

influencing, churning, and other observable behaviors), you add an extra 360 degrees of

internal behavior (i.e, their experiences, propensities, sentiments, attitudes, etc.) culled from

behavioral data sources and/or inferred through sophisticated analytics. (Source: Targeted

Marketing: When Does Cool Cross Over to Creepy? James Kobielus October 30, 2012.)

Taming the “Big Data”
Big data promises to be transformative. With technology advances, companies now have
access to effectively deal with large amounts of data and data from various sources. If this
data is put to effective usage, companies can deliver substantial top- and bottom-line

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

12

benefits. Figure 1-3 provides an illustration of how the evolution of big data happened
over different timelines.

Another key aspect of leveraging big data is to also understand where it can be used,
when it can be used, and how it can be used. Figure 1-4 is an illustration of how the value
drivers of big data are aligned to an organization’s strategic objectives.

Figure 1-3. The evolution of big data

Figure 1-4. The value drivers of big data

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

13

In some industries big data has spurred entirely new business models. For example,
retail banking has started to exploit social media data to create tailored products and
offerings for customers in capital markets; due to the onset of algorithmic trading, massive
amounts of market data are getting captured, which in turn is helping the regulators to
spot market manipulation activities in real time. In the retail sector, big data is expediting
analysis of in-store purchasing behaviors, customer footprint analysis, inventory
optimization, store layout arrangement—all in near-real time.

While every industry uses different approaches and focuses on different aspects from
marketing to supply chain, almost all are immersed in a transformation that leverages
analytics and big data (see Figure 1-5).

Figure 1-5. Industry use cases for big data

Yet few organizations have fully grasped what big data is and what it can mean for
the future. At present most of the big data initiatives are at an experimental stage. While
we believe no organization should miss the opportunities that big data offers, the hardest
part is knowing how to get started. Before you embark on a big data initiative, you should
get answers to the following four questions to help you on your transformation journey:

Where will big data and analytics create advantages for •
the company?

How should you organize to capture the benefits of big data •
and analytics?

What technology investments can enable the analytics •
capabilities?

How do you get started on the big data journey?•

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

14

Where Will Big Data and Analytics Create Advantages
for the Company?
Understanding where big data can drive competitive advantage is essential to realizing
its value. There are quite a number of use cases, but some important ones are customer
intimacy, product innovation, and operations efficiency.

Big data puts the customer at the heart of corporate strategy. Information on
social-media platforms such as Facebook is particularly telling, with users sharing
nearly 30 billion pieces of content daily. Organizations are collecting customer data
from interactive websites, online communities, and government and third-party data
markets to enhance and enrich the customer profiles. Making use of advanced analytics
tools, organizations are creating data mash-ups by bringing together social-media feeds,
weather data, cultural events, and internal data such as customer contact information to
develop innovative marketing strategies.

Let’s look at few other real-world examples of how big data is helping on customer
intimacy. US retailer Macy’s is using big data to create customer-centric assortments.
Moving beyond the traditional data analysis scenarios involving sell-through rates,
out-of-stocks, or price promotions within the merchandising hierarchy, the retailer with
the help of big data capabilities is now able to analyze these data points at the product or
SKU level at a particular time and location and then generate thousands of scenarios to
gauge the probability of selling a particular product at a certain time and place: ultimately
optimizing assortments by location, time, and profitability.

Online businesses and e-commerce applications have revolutionized customized
offerings in real time. Amazon has been doing this for years by displaying products
in a “Customers who bought this item also bought these other items” kind of format.
Offline advertising like ad placement and determining the prime time slots and which
TV programs will deliver the biggest impact for different customer segments are fully
leveraging big data analytics.

Big data was even a factor in the 2012 US Presidential election. The campaign
management team collated data from various aspects like polling, fundraising,
volunteers, and social media into a central database. Then they were able to assess
individual voters’ online activities and ascertain whether campaign tactics were
producing results. Based on the data analysis, the campaign team developed targeted
messaging and communications at individual voter levels which prompted exceptionally
high turnout: this was considered one of the critical factors in Obama’s re-election.

Product Innovation. Not all big data is new data. There is a wealth of information
sitting unused within the corporate data repositories or at least not used effectively.
Crowdsourcing and other social product innovation techniques are made possible
because of big data. It is now possible to transform hundreds of millions of rich tweets,
which is a vast trove of unstructured data, into insights on products and services that
resonate with consumers. Data as a service is another innovation that has triggered
a number of data- driven companies. For example, compiling and analyzing transaction
data between retailers and their suppliers and retailers that own this data, can apply
sophisticated analytics to pinpoint process-related inefficiencies and use the insights to
improve operations, offer additional services to customers, and even replace third-party
organizations that currently provide these services, thus generating entirely new revenue
streams.

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

15

Some data, once captured, can enable long-established companies to generate
revenue and improve their products in new ways. GE is planning a new breed of
“connected equipment,” including its jet engines, CT scanners, and generators armed
with sensors that will send terabytes of data over the Internet back to GE product
engineers. The company plans to use that information to make its products more
efficient, saving its customers billions of dollars annually and creating a new slice of
business for GE.

Finally, imagine the potential big data brings to running experiments—taking
a business problem or hypothesis and working with large data sets to model, integrate,
analyze, and determine what works and what doesn’t, refine the process, and repeat.
This activity for online webpages is popularly referred to as A/B testing, Facebook runs
thousands of experiments daily with one set of users seeing different features than others;
Amazon offers different content and dynamic pricing to various customers and makes
adjustments as appropriate.

Operations efficiency: At an operational level, there are a lot of machine- generated
data that offer a variety of information-rich interactions, including physical product
movements captured through radio frequency identification (RFID) and micro-sensors.
Machine-generated data, if captured and analyzed during real time, can provide
significant process improvement opportunities across suppliers, manufacturing sites,
customers, and can lead to reduced inventory, improved productivity, and lower costs.

For example, in a retail chain scenario, it is quite common to have detailed SKU
inventory information to identify overstocks at one store that could be sold in another.
However, without a big data and analytics platform, the retail chain is constrained to only
identify the top 100 overstocked SKUs. By establishing a big data and analytics platform,
the detailed SKU level analysis can be done on the entire data set (several terabytes of
operational data) and create a comprehensive model of SKUs across thousands of stores.
The chain can then quickly move hundreds of millions of dollars in store overstocks to
various other stores, thereby reducing the inventory cost at some stores while increasing
sales at other stores and overall net gains for the retail chain.

How Should You Organize to Capture the Benefits
of Big Data and Analytics?
Big data platforms provide a scalable, robust, and low-cost option to process large and
diverse data sets; however, the key is not in organizing and managing large data sets but
to generate insights from the data. This is where specialists such as data scientists come
into the picture, interpreting and converting the data and relationships into insights.

Data scientists combine advanced statistical and mathematical knowledge along
with business knowledge to contextualize big data. They work closely with business
managers, process owners, and IT departments to derive insights that lead to more
strategic decisions.

Designing business models: “change management” as an organization process
always goes through various levels of maturity; in the case of big data analytics, it’s all
the more important to understand the current maturity level of the organization and
then through a gradual change management process enable the organization to achieve
the desired level of maturity. Figure 1-6 outlines three stages of maturity. “Initial Level”
provides a historic view of business performance: what happened, where it happened,

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

16

how many times it happened. In the initial level, most of the analysis is reactive in nature
and looks backward into historical data. The analysis performed at this level does not
have repeatability and in most cases is ad-hoc in nature; the data management platforms
and analyst teams are set up on an as-needed basis. The next level of maturity is
“Repeatable and Defined:” at this level, you start looking into unique drivers, root causes,
cause-effect analysis as well as performing simulation scenarios like “What-If.” At this
level, the data management platforms are in place and analysts’ teams have a pre-defined
role and objectives to support. The next level is “Optimized and Predictive”: at this level,
you are doing deeper data analysis, performing business modeling and simulations with
a goal to predict what will happen.

Figure 1-6. Analytics process maturity

While the analytics process maturity levels help organizations to identify where
they are at present and then gives them a road map to get to the desired higher levels of
maturity, another critical component in the transformational journey is the organization
model. You can have the best tools installed and the best people in your team, but if you
do not have a rightly aligned organizational model, your journey becomes tougher.

There are three types of organization models (“decentralized,” “shared services,” and
“independent”), and each one of these models has its pros and cons (see Figure 1-7).

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

17

In a “decentralized” model, each business or function will have its own analytics team:
for example, sales and marketing will have their own team, finance will have their own
team, etc. On the one hand, this enables rapid analysis and execution outcomes, but on
the other hand the insights generated are narrow and restrictive to that business function
only, and you will not reap the benefit of a broader, game-changing idea. In addition, the
focus and drive for analytics is not driven top down from the highest level of sponsorship;
as a result, most analytics activities happen in bursts with little to no strategic planning or
organizational commitments.

The “shared services” model addresses a few of the shortcomings of the
decentralized model by bringing the analytics groups into a centralized model. These
“services” were initially governed by bygone systems, existing functions or business units,
but with a clear goal to serve the entire organization. While these were standardized
processes, the ability to share best practices and organization-wide analytics culture
is what makes the shared services model superior to the decentralized model. Insight
generation and decision making could easily become a slow process: the reason is
that there was no clear owner of this group, and it is quite common to see conflicting
requirements, business cases, etc.

The “independent” model is similar to the “shared services” model but exists
outside organizational entities or functions. It has direct executive-level reporting and
elevates analytics to a vital core competency rather than an enabling capability. Due to
the highest level of sponsorship, this group can quickly streamline requirements, assign
prioritizations and continue on their insight generation goals.

Figure 1-7. Analytics organization models

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

18

A centralized analytics unit ensures a broader sweep of insight generation objectives
for the entire business. It also addresses another critical area: skills and infrastructure.
Many of the roles integral to big data and analytics already exist in most organizations;
however, developing a data-driven culture and retaining the rare skills of a data scientist,
for instance, are critical to the success of the transformation journey.

What Technology Investments Can Enable
the Analytics Capabilities?
Big data and analytics capabilities necessitate transformation of the IT architecture at
an appropriate cost. For the last decade or so, organizations have invested millions of
dollars in establishing their IT architectures, but for the reasons discussed earlier in this
chapter and further influenced by the very changing nature of the data, those investments
needs to be critically evaluated. This requires leveraging the old with the new. Unlike
the enterprise architecture standards, which are stable and time tested, the big data and
analytics architectures are new and still evolving, hence it is all the more important to
critically review all the options that exist to make the correct technology investments.

As the complexity of data changes from structured to unstructured, from “clean”
in-house data to “noise infected” external data, and from one-dimensional transactional
data flow to multi-dimensional interaction data flow, the architecture should be robust
and scalable enough to efficiently handle all of these challenges.

At a conceptual level, the big data and analytics technology architecture has five
layers, and each layer is specifically designed to handle clear objectives: presentation,
application, processing, storage, and integration (see Figure 1-8). The presentation
layer provides the functionality to interact with data through process workflow and
management. It also acts as a consumption layer through reporting and dashboards and
data-visualization tools. The application layer provides mechanisms to apply business
logics, transformations, modeling, and other data intensive operations as relevant for
business applications and analytics use cases. The processing and storage layers do the
heavy-duty process work and store large of volumes of structured and unstructured data
in real time or near real time. These layers define the data management and storage
criteria consisting of a mix of RDBMS and non-RDBMS technologies. The integration
layer acts as a pipe between various enterprise data sources and external data sources;
their main job is to help move the desired data and make it available in the storage and
processing layer in the big data architecture.

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

19

Each one of these layers are further grouped to reflect the market segments for new
big data and analytics products:

• Vertical applications, or product suites, consist of a single
vendor providing the entire stack offering. Examples are Hadoop
Ecosystem, IBM Big Data Insight, Oracle Exalytics, SAP BI and
HANA, among others.

• Decision support products specialize in traditional EDW and
BI suites.

• Reporting and visualization tools are new, and they specialize in
how to represent the complex big data and analytics results in an
easy-to-understand and intuitive manner.

• Analytics services specialize on sophisticated analytics modules,
some of them could be cross-functional like claims analytics or
customer churn, while some could be very deep in specific areas
like fraud detection, warranty analytics, among others.

• Parallel distributed processing and storage enable massively
parallel processing (MPP), in-memory analytics for more
structured data.

• Loosely structured storage captures and stores unstructured data.

• Highly structured storage captures and stores traditional
databases, including their parallel and distributed manifestations.

Figure 1-8. Conceptual big data analytics architecture

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

20

How Do You Get Started on the Big Data Journey?
For every successful big data implementation, there is an equally successful change
management program. To bring the point home, let’s discuss the case of a hypothetical
traditional big-box retailer. The company had not seen positive same-store sales for
years, and the market was getting more competitive. A member of the executive team
complained that “online retailers are eating our lunch.” Poor economic conditions,
changing consumer behaviors, new competitors, more channels, and more data were all
having an impact. There was a strong push to move aggressively into e-commerce and
online channels. The retailer had spent millions of dollars on one-off projects to fix the
problems, but nothing was working. Several factors were turning the company toward
competing on analytics: from competitors’ investments and a sharp rise in structured and
unstructured data to a need for more insightful data.

Transforming analytical capabilities and big data platform begins with a
well-thought-out, three-pronged approach (see Figure 1-9).

Figure 1-9. Big data journey roadmap

Identify where big data can be a game changer. For our big-box retailer, new
capabilities were needed if the business had any chance of pulling out of its current
malaise and gaining a competitive advantage—the kind that would last despite hits from
ever-changing, volatile markets and increased competition. The team engaged all areas of
the business, from merchandising, forecasting, and purchasing to distribution, allocation,
and transportation, to understand where analytics could improve results. Emphasis was
placed on predictive analytics rather than reactive data analysis. So instead of answering
why take-and-bake pizza sales are declining, the retailer focused on predicting sales
decline and volume shifts in the take-and-bake pizza category over time and across
geographic regions. The business also wanted to move from reacting to safety issues
to predicting them before they occur. The retailer planned to use social media data to
“listen” for problems, which would not only make the company more customer-centric

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

21

but also provide a shield to future crises. The company planned to set up an analytics
organization with four goals in mind:

Deliver information tailored to meet specific needs across the
organization.

Build the skills needed to answer the competition.

Create a collaborative analytical platform across the
organization.

Gain a consistent view of what is sold across channels and
geographies.

Build future-state capability scenarios. The retailer was eager to develop scenarios
for future capabilities, which were evaluated in terms of total costs, risks, and flexibility and
determined within the context of the corporate culture. For example, is the business data
driven? Or is the company comfortable with hypothesis-based thinking and experimentation?
Both are the essence of big data. The company critically reviewed their existing IT architecture
in the context of crucial business opportunities, such as leveraging leading-edge technologies
and providing a collaboration platform, integrating advanced analytics with existing and new
architecture, and building a scalable platform for multiple analytic types. The new technology
architecture was finalized to enable the following five key capabilities:

Predicting customers’ purchasing and buying behaviors.•

Developing tailored pricing, space, and assortment at stores.•

Identifying and leveraging elasticity, affinities, and propensities •
used in pricing.

Optimizing global data sourcing from multiple locations and •
business units.

Define benefits and road map. Armed with these capabilities, the next questions
revolve around cost-benefit analysis and risks to be mitigated. Does the company have
skills in-house or would it be more cost effective to have external resources provide
the big data analytics, at least initially? Would it make financial sense to outsource, or
should the company persist with internal resources? For each one, do the company and
the analytics team have a clear view of the data they need? All these mean significant
investment: is there a ROI plan prepared with clear milestones?

The analysts put together a data plan that clearly outlined data needs from
acquisition to storage and then to presentation using a self-serve environment across
both structured and unstructured data. The systems architecture roadmap was developed
consisting of a hybrid Hadoop-based architecture leveraging existing data warehouse
platforms. A business road map outlined a multi-million-dollar investment plan that
would deliver a positive payback in less than five years.

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

22

The company, in its transformation journey, is now positioned to realize four key
benefits from its big data and analytics strategy:

Delivers consistent information faster and more inexpensively.•

Summarizes and distributes information more effectively across •
the business to better understand performance and opportunities
to leverage the global organization.

Develops repeatable and defined BI and analytics instead of every •
group reinventing the wheel to answer similar questions.

Generates value-creating insights yet to be discovered through •
advanced analytics.

End Points
The massiveness of data and the complex algorithms it requires is an important issue;
but it isn’t the most important one. To manage big data you don’t have to set up a massive
scale of hardware infrastructures anymore; cloud services have given us the capability
to run very large server clusters at a low startup cost. Open-source projects from Google
and Yahoo have created big data platforms such as the Hadoop ecosystem, enabling
processing of massive amounts of data in a distributed data-processing paradigm.
These technology evolutions have accelerated a new class of data-driven startups, it has
reduced both marketing costs and the time it takes for these startups to flourish. And it
has allowed startups that were not necessarily data driven to become more analytical as
they evolved, such as Facebook, LinkedIn, Twitter, and many others.

Data issues can happen with even less than a terabyte of data. It is not uncommon to
see teams of database administrators employed to manage the scalability and performance
issues of EDW systems, which are not even on a big data scale as we discussed earlier. The
big issue is not that everyone will suddenly operate at petabyte scale; a lot of companies
do not have that much data. The more important topics are the specifics of the storage and
processing infrastructure and what approaches best suit each problem. How much data do
you have, and what are you trying to do with it? Do you need to do offline batch processing
of huge amounts of data to compute statistics? Do you need all your data available online to
serve queries from a web application or a service API? What is your enterprise information
management strategy and how does it co-exist with the big data realm?

References
Snapshot of data activities in an internet minute: Go-Globe.com
MAD Skills: New Analysis Practices for Big Data: VLDB ’09, August 24-28, 2009,

Lyon, France
The next frontier of innovation, competition and productivity: Mckinsey.com
Bringing Big Data to the Enterprise, IBM, 2012
A Comprehensive List of Big Data Statistics, Wikibon Blog, 1 August 2012
eBay Study: How to Build Trust and Improve the Shopping Experience, KnowIT

Information Systems, 8 May 2012

http://go-globe.com/
http://mckinsey.com/

CHAPTER 1 ■ “BIG DATA” IN THE ENTERPRISE

23

Big Data Meets Big Data Analytics, SAS, 2011
Big Data’ Facts and Statistics That Will Shock You, Fathom Digital Marketing, 8 May 2012
IT Innovation Spurs Renewed Growth at www.atkearney.com
Big Data Market Set to Explode This Year, But What is Big Data?, Smart Planet,

21 February 2012
Corporations Want Obama’s Winning Formula, Bloomberg Businessweek,

21 November 2012
Mapping and Sharing the Consumer Genome, The New York Times, 16 June 2012
GE Tries to Make Its Machines Cool and Connected, Bloomberg Businessweek,

6 December 2012
GE’s Billion-Dollar Bet on Big Data, Bloomberg Businessweek, 26 April 2012
The Science of Big Data at www.atkearney.com
Data Is Useless Without the Skills to Analyze It, Harvard Business Review,

13 September 2012
MapReduce and MPP: Two Sides of the Big Data Coin, ZDNet, 2 March 2012
Hadoop Could Save You Money Over a Traditional RDBMS, Computerworld UK,

10 January 2012
eBay Readies Next Generation Search Built with Hadoop and HBase, InfoQ,

13 November 2011

http://www.atkearney.com/
http://www.atkearney.com/

25

CHAPTER 2

The New Information
Management Paradigm

The ubiquitous nature of data and the promises it has shown for enterprises
necessitates a new approach to enterprise information management.

What Is Enterprise Information Management?
For an enterprise to carry out its functions, it needs an ecosystem of business
applications, data platforms to store and manage the data, and reporting solutions to
provide a view into how the enterprise is performing. Large enterprises with multiple
strategic business focus areas need many such applications, and as often seen, over
the years the enterprise landscape gets into a spaghetti-like situation where it becomes
incomprehensible to articulate which application and which data store does what!
Various reasons can be attributed to such a state: lack of enterprise-wide data standards,
minimal metadata management processes, inadequate data quality and data governance
measures, unclear data archival policies and processes, so on.

In order to overcome this problematic situation, enterprise information
management as an organization-wide discipline is needed. Enterprise Information
Management (EIM) is a set of data management initiatives to manage, monitor, protect,
and enhance the information needs of all the stakeholders in the enterprise. In other
words, EIM lays down foundational components and appropriate policies to deliver the
right data at the right place at the right time to the right users.

Figure 2-1 lists these foundational components and describes the roles they play in
the overall business and IT environment of any organization. The goal is management of
information, data, and content to meet the needs of the business.

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

26

B
U

S
IN

ES
S

 E
N

VI
R

O
N

M
EN

T

IT EN
VIR

O
N

M
EN

T

Business Model

Information Management & Usage

Enterprise
Technology

&
Architecture

Organization
& Culture

Business Applications

Transactional
Applications

Operational
Applications

Decision
Support

Applications
(EDW, BI,
Analytics)

Information Lifecycle Management

Enterprise Data Models & Data Stores

Governance

Regulation & Compliance

1

2

3 4 5

6

7

8

9
B

us
in

es
s

U
se

rs

B
us

in
es

s
Fu

nc
ti

on
s

IT O
perations

&
 S

upport
IT

Infrastructure

Figure 2-1. Enterprise information management framework

The entire framework of EIM has to exist in a collaborative business and IT
environment. EIM in a small company or in a startup may not require the same approach
and rigor as EIM in a large, highly matured and/or advanced enterprise. The interactions
between the components will vary from industry to industry and will be largely
governed by business priorities; following a one-size fits all kind of approach to EIM
implementation may amount to overkill in many situations. But in general, the following
are key components any data-driven enterprise must pay attention to.

1. Business Model: This component reflects how your organization
operates to accomplish its goals. Are you metrics driven? Are you
heavily outsourced, or do you do everything in-house? Do you
have a wider eco-system of partners/suppliers or do you transact
only with a few? Are your governance controls and accountability
measures centralized, decentralized, or federated? The
manner in which you get your business objectives successfully
implemented down to the lowest levels is your business model.

2. Information Management and Usage: A key expectation
from an EIM program is to make sure that data and content
are managed properly, efficiently, and benefit the business
without extra risk.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

27

EIM by definition covers all enterprise information,
including reports, forms, catalogs, web pages, databases, and
spreadsheets: in short, all enterprise- related structured and
unstructured data. All enterprise content may be valuable,
and all enterprise content can pose risk. Thus enterprise
information should be treated as an asset.

3. Enterprise Technology and Architecture: Every enterprise
has a defined set of technology and architectures upon
which business applications are developed and deployed.
Although technology and architecture are largely under the IT
department’s purview, business requirements and priorities
often dictate which technology and architecture to follow. For
example, if the company’s business is primarily through online
applications, then the enterprise technologies and architectures
will have a heavy footprint of web-centric technology and
architectures. If the company decides they would like to
interact with their customers through mobile channels, then
you need to make provisions for mobility as well. The choice of
technologies and architectures also reflects the type of industry
the business belongs to. For example, in the financial services
industry where data security and privacy is of utmost concern,
it is normal for companies to invest in only a few enterprise-
scale platforms, whereas for the retail industry such measures
may not be required. So, you will see a plethora of technologies
and architectures, including open source systems. The extent
to which organizations deploy various technologies and
architectures is also a component of EIM.

4. Organization and Culture: Who is responsible for managing
your data? Is it business or IT or both? If you want your
enterprise data to be treated as an asset, you need to define
an owner for it. You will need to implement positions and
accountabilities for the information being managed. You
cannot manage inventory without a manager, and you
cannot tackle information management without someone
accountable for accuracy and availability.

EIM helps in establishing a data-driven culture within the
enterprise. Roles like data stewards further facilitate the data-
driven culture, where right from the CxO levels to the lowest
level, people in your organization use data to make informed
decisions as opposed to gut-feel decisions.

5. Business Applications: How data is used is directly
proportional to the value of the data. If you are managing your
data as an asset, then the only way to know if that asset has
value is to understand how it is used, where it is used, and
what impact it is having on the business.

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

28

Your transactional applications, operational applications,
and decision support applications are all considered to be
business applications. You just don’t go on creating various
types of business applications blindly. The company’s
business priorities and road maps serve as a critical input to
define what kind of business applications need to be built
and when. These inputs are then fed into the EIM program to
determine what technology and architectures are required,
how they will be governed, who will use them, and so on.

6. Enterprise Data Model and Data Stores: Enterprise business
applications can’t run by themselves, so they will need data
models and data stores. It is not uncommon to find numerous
data models and data stores in an enterprise setup. Too many
data models and data stores can cause severe challenges to the
enterprise IT infrastructure and make it inefficient; but at the same
time, too few data models and data stores will put the company
at the risk of running its business optimally. A balance needs to
be achieved, and EIM helps in defining policies, standards, and
procedures to bring some sanity to the enterprise functioning.

7. Information Lifecycle Management: Data and content
have a lifecycle. It gets created through transactions and
interactions and is used for business-specific purposes; it also
gets changed and manipulated following business specific
rules, and it gets read and analyzed across the enterprise and
then finally reaches a stage where it must be archived for later
reference or purged, as it has attained a “use by” state.

EIM defines the data policies and procedures for data usage and thus
balances the conflict of retiring data versus the cost and risk of keeping data
forever.

Information lifecycle management, if properly defined, also helps in addressing the
following common questions:

What data is needed, and for how long?•

How can my business determine which data is most valuable? Are •
we sure about the quality of the data in the organization?

How long should we store this “important” data?•

What are the cost implications of collecting everything and •
storing it forever? Is it even legal to store data in perpetuity?

Who is going to go back multiple years and begin conducting new •
analysis on really old data?

I don’t understand the definitions of data elements, where will I •
find the metadata information?

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

29

There are several important considerations around data quality, metadata
management, and master data management that need to be taken into account under the
purview of information lifecycle management. A key component of EIM is to establish
data lineage (where data came from, who touched it, and where and how it is used) and
data traceability (how is it manipulated, who manipulated it, where it is stored, when it
should be archived and/or purged).

This function of EIM is extremely valuable for any enterprise. Its absence creates
data silos and unmanageable growth of data in the enterprise. In short, you need to know
full lineage, definitions, and rules that go with each type of data.

Lack of appropriate data hampering business decision making is an acceptable fact;
however, poor data quality leading to bad business decisions is not at all acceptable.
Therefore monitoring and controlling the quality of data across the enterprise is of utmost
importance. But how do we monitor the quality of data? Using metrics, of course. That
means we need a process for defining data quality metrics. Below is a high-level approach
to defining DQ metrics your EIM program should follow:

Define measurable characteristics for data quality. Examples •
are: state of completeness, validity, consistency, timeliness, and
accuracy that make data appropriate for a specific use.

Monitor the totality of features and characteristics of data that •
define their ability to satisfy a given purpose.

Review the processes and technologies involved in ensuring •
the conformance of data values to business requirements and
acceptance criteria.

The end result is a set of measurement processes that associate data quality scores
against each business critical data entity. These scores help in quantifying conformance
to data quality expectations. Scores that do not meet the specified acceptability
thresholds indicate non-conformance.

Closely associated with data quality is the concept of master data management
(MDM). MDM comprises a set of processes, governance, policies, standards, and tools
that consistently define and manage the master data (i.e. non-transactional data entities)
of an organization (which may include reference data).

MDM has the objective of providing processes for collecting, aggregating, matching,
consolidating, quality-assuring, persisting, and distributing such data throughout
an organization to ensure consistency and control in the ongoing maintenance and
application use of this information. A data element, used in various applications, is likely
to mean different things in each of them. For example, organizations find it difficult to
agree on the definition of very important entities like customer or supplier. At a basic
level, MDM seeks to ensure that an organization does not use multiple (potentially
inconsistent) versions of the same master data in different parts of its operations, which
can occur in large organizations. A common example of poor MDM is the scenario
of a bank at which a customer has taken out a mortgage and the bank begins to send
mortgage solicitations to that customer, ignoring the fact that the person already has
a mortgage account relationship with the bank. This happens because the customer
information used by the marketing section within the bank lacks integration with the
customer information used by the customer services section of the bank.

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

30

Data quality measures provide means to fix data related issues already
existing in the organization whereas MDM, if implemented properly,
prevents data-quality-related issues from happening in the organization.

Metadata management deals with the softer side of the data-related issues, but
it is one of the key enablers within the purview of information lifecycle management.
The simplest definition of metadata is “data about data.” In other words, metadata can
be thought of as a label that provides a definition, description, and context for data.
Common examples include relational table definitions and flat file layouts. More detailed
examples of metadata include conceptual and logical data models.

A famous quote, sometimes referred to as “Segal’s Law,” states that: “A man with
one watch knows what time it is. A man with two watches is never sure.” When it comes
to the metrics used to make (or explain) critical business decisions, it is not surprising
to witness the “we have too many watches” phenomenon as the primary cause of the
confusion surrounding the (often conflicting) answers to common business questions,
such as:

How many customers do we have?•

How many products did we sell?•

How much revenue did we generate?•

Therefore, another example of metadata is providing clear definitions of what the
terms “customers,” “products,” and “revenue” actually mean.

Metadata is one of the most overlooked aspects of data management, and yet it is the
most difficult initiative to implement. Metadata can potentially encompass many levels;
from a single data element on the database to a more complex entity, such as customer,
for example, which will be a composite of other elements and/or entities.

Note ■ The topic of information lifecycle management and especially data quality, master

data management and metadata management are itself separate chapters on their own.

Here we have given brief overviews about these important concepts as they relate to data

and its management.

8. Regulations and Compliance: Irrespective of which industry
your company belongs to, regulatory risk and compliance is of
utmost concern. In some industries like financial services and
health care, meeting regulatory requirements is of the highest
order; whereas other industries may not be exposed to such
strict compliance rules. EIM helps you address the regulatory
risk that goes with data.

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

31

9. Governance: Governance is primarily a means to ensure
the investments you are making in your business and IT are
sustainable. Governance ensures that data standards are
perpetuated; data models and data stores are not mushrooming
across the enterprise, roles like data stewards are effective, and
they resolve conflicts related to data arising within business silos.
Most importantly, governance, if enforced in the right spirit,
helps manage your data growth and cost impact optimally.

As you can see, there are many components in the EIM framework that must interact
with each other in a well-orchestrated manner. When we were discussing EIM, we had
mostly discussed data in a generic sense to include all possible types of data and all
possible types of data sources (internal data sources as well as external data sources).
EIM is at a framework level and does not necessarily anticipate what needs to be done
when you are dealing with different kinds of data, especially when we refer to big data
characteristics like volume, velocity, and variety.

There are several challenges (some new and some are old, but their impacts are
magnified) when we start looking at the finer details of big data and how they impact
the EIM framework. Does this mean we will need a radically different approach for the
enterprise information management framework?

New Approach to Enterprise Information
Management for Big Data
The current approach to EIM has some fundamental challenges when confronted
with the scale and characteristics of big data. Below, we will first discuss a few areas
related to the very nature of big data and how it is impacting the traditional information
management principles.

Type of Data: Traditional information management approaches have focused
primarily on structured data. Structured data is stored and managed in data repositories
such as relational databases, object databases, network databases, etc. However, today
a vast majority of the data being produced is unstructured. By some estimates, about
85 percent to 90 percent of the total data asset is unstructured. This vast amount of
unstructured data often goes underutilized because of the complexities involved in the
parsing, modeling, and interpretation of the data.

In the big data scenario, the EIM needs to manage all kinds of •
data, including traditional structured data, semi-structured,
unstructured and poly-structured data, and content such as
e-mails, web-page content, video, audio, etc.

Enterprise data modeling: For a long while, data modeling has been an integral
part of data management practices, and often you see complex data models developed to
store data and manage data in databases. Sometimes this complexity can be attributed
to data modeling principles (primarily third normal form design or de-normalized and
data-mart-centric design approaches) and sometimes to the inadequacies of the relational

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

32

database systems. While these data modeling approaches were suitable to managing data
at scale and that for structured data only, the big data realm has thrown in additional
challenges of variety exposing the shortcomings in the technology architecture and the
performance of relational databases.

The cost of scaling and managing infrastructure while delivering •
a satisfactory consumer experience for newer applications such
as web 2.0 and social media applications has proven to be quite
steep. This has led to the development of “NoSQL” databases
as an alternative technology with features and capabilities that
deliver the needs of the particular use case.

Data Integration: For years, traditional data warehousing and data management
approaches has been supported by data integration tools for data migration and
transportation using Extract-Transform-Load (ETL) approach. These tools run into
throughput issues while handling large volumes of data and are not very flexible in
handling semi-structured data.

To overcome these challenges in the big data scenario, there has •
been a push toward focusing on extract and load approaches
(often referred to as data ingestion) and applying versatile but
programmatically driven parallel transformation techniques such
as map-reduce.

Data integration as a process is highly cumbersome and iterative especially when
you want to add new data sources. This step often creates delays in incorporating new
data sources for analytics, resulting in the loss of value and relevance of the data before it
can be utilized. Current approaches to EDW follow the waterfall approach, wherein until
you finish one phase, you can’t move on to the next phase.

While this approach has its merits to ensure the right data sources •
are picked and the right data integration processes are developed
to sustain the usefulness of the EDW. In big data scenario, the
situation is completely different; one has to ingest a growing
number of new data sources, many of them are very loosely
defined and probably have no definitions at all, thereby posing
significant challenges to the traditional approach of the EDW
development lifecycle. In addition, there is a growing need from
the business to analyze and get quick insightful and actionable
results; they are not ready to wait!

Cost: The costs to manage the data infrastructure (storage, computing, and analysis)
have risen significantly due to vendor lock-ins and usage of proprietary technologies.
Most enterprises do not even have a clear picture of what kind of data assets they have,
where they are located and how much data they have. In many cases, companies do
not have a clear enough idea of this asset to predict and anticipate data growth. With all
these unknowns, there is a dire need for quicker and more agile approaches to the entire
software development lifecycle.

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

33

Now, there are several new technologies and architectures •
enabling companies with cost effective solutions. We will discuss
the SMAQ stack later in this chapter and how it solves the
big-data-related issues while at the same time providing a cost
effective viable alternative to IT infrastructure.

Note ■ We are not advising that you sunset all your enterprise IT platforms and adopt the

SMAQ stack; but there needs to be a pragmatic approach in developing a big data ecosystem

where enterprise platforms and SMAQ systems can co-exist to deliver cost effective solutions

for the enterprise. We will discuss these approaches at length in chapters 4, 5, and 6.

Data Quality: There is a debate as to whether data quality principles should be
applied to big data scenarios or not. Data quality does have some role to play in big data,
as it ensures that the data is well formed, accurate, and can be trusted. Approaching data
quality for big data following the traditional route of data profiling (i.e., data cleansing)
data monitoring will be extremely difficult; there is too much data to profile, and often
you are not so sure about the structure of the data. Moreover, the long time frames for
data quality lifecycle (i.e., the approach to remediate data quality issues and deliver
“clean” data) does not lend itself too much to agility, which is a key requirement for big
data analytics. Data quality issues are more pronounced with transactional data as they
are primarily produced due to inadequate checks and controls at the source systems and
not so much due to the volume of data.

Due to these considerations, it is recommended that ongoing data •
quality initiatives be focused on resolving data quality issues for
transactional and reference/master data either closer to the source
and/or downstream. For the big data scenarios, there is tremendous
value in applying data quality rules to the big data sets and getting an
idea of the conformance of such data sets to the applied rules.

MDM: MDM has the inherent goal of reconciling data silos across such categories as
customers, products, assets, etc., to produce a consistent, trusted source of critical core
business data entities. However, the volume and variety of data in the big data scenarios
pose serious challenges to implementing a MDM system for your enterprise.

The biggest advantage of big data sources (external to the •
corporate firewalls) is that they help in validating your master
entities and in many cases help in enriching them. For example,
using Google e-mail ID, Facebook IDs and LinkedIn IDs you can
further enrich you customer identification process and improve
your conversations with customers through multiple channels.

Metadata Management: Metadata management aims to provide consistent
representation and understanding of data definitions across the enterprise. However, due
to sheer variety and diversity of data types in big data sets, scaling metadata management
to cover big data scenarios becomes very difficult and not economical.

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

34

In many situations, when you are dealing with big data sources, •
you may not find well-documented definitions associated with
data attributes. This is precisely why you should attempt to create
a minimum set of documentation consisting of the source, how
you accessed it, what access methods (APIs or direct downloads)
you applied, what data cleansing methods you applied, what
security and privacy measures you applied on the data sets, where
you are storing the raw data sets, etc.

Skills: Big data analytics solutions are intended to solve different kinds of problems and
they require different kind of skills (data scientist) to accomplish the tasks. The skills like DBA,
data integration specialists, and reports development specialists usually are not expected to
be competent in collecting, merging, and analyzing data coming from a variety of sources; nor
are they expected to have the business acumen to understand the context of the data.

In big data scenarios, data scientists and data architects rather •
than database administrators will be in demand to effectively
implement the distributed nature of big data processing, ingesting
and aggregating data from multiple sources and managing storage,
compute, and network resources to handle large data sets.

Note ■ In Chapter 9, we will discuss in detail the skills needed to be successful in devel-

oping and implementing big data analytics solutions.

In the sections above we discussed what additional considerations need to be
put in place under the EIM framework to support big data analytics initiatives in your
organization. Big data analytics initiatives are very different in nature. Besides a robust
EIM framework, you will need to understand what capabilities need to be put in place to
optimally deliver big data analytics initiatives in your organization. What are those?

New capabilities needed for big data
Big data characteristics, especially the velocity and variety aspects of it warrants us to deal
with the data and associated events as they happen. We can’t afford latency because the
data will become useless if you don’t act at the time of events happening. In addition,
the type of analysis you will make on big data expects it to be much more iterative. The
complexity of big data sets also demands better data visualization techniques. Otherwise,
it will become tedious and incomprehensible if you follow traditional reporting and
dashboard development approaches. In order to move at the speed of business, and
maintain competitive advantage, enterprise agility is becoming vital. This means that
business requirements need to be developed rather quickly. The organization should have
the ability to quickly respond to changing business conditions, and more often than not
business will be asking a question, which means data sets are created quickly, analyzed and
presented back to business users with possible answers. This further highlights the need for,
and the importance of, adoption of agile methods for business intelligence and analytics.

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

35

Thus newer capabilities like data discovery, rapid data analysis, advanced data
visualization, etc., are needed to effectively handle the big data scenario. We will discuss a
few of these capabilities below.

• Data Discovery: consists of activities involving locating,
cataloging, and setting up access mechanisms for data sources.
Such an exercise greatly benefits the enterprise in agile data
integration, enriching the content and value of enterprise data
assets from both internal and external data sources.

• Rapid Data Insight: is the next generation of agile data analysis
wherein data from multiple sources can be quickly inspected,
cleansed, and transformed with the goal of getting a deeper
understanding of the data, spot apparent trends and patterns, and
getting an idea of the value of data assets in supporting decision
making and analytics. Data insight enables end users to make
better “sense” of data assets.

• Advanced Data Visualization: is the process whereby reliable
data from one or more sources are integrated or mashed up
together and visually communicated clearly and effectively
through advanced graphical means. This enables you to succinctly
present and convey the insight gleaned from large amounts
of information and enables better cognitive understanding
of such information insight especially to business end users.
Another aspect of advanced data visualization is the capability
to tell a “data story”: i.e., inferences and conclusions that can be
articulated using factual data and where a thesis can be developed.

• Advanced Analytics: involves the application of business rules,
domain knowledge and statistical models, often in-database closer
to the data sources themselves, that help in decision making and
help answer the questions of “What?” and “Now What?”.

• Data Virtualization: is a data integration technique that provides
complete, high-quality, and actionable information through virtual
integration of data across multiple, disparate internal and external
data sources. Instead of copying and moving existing source data
into physical, integrated data stores (e.g., data warehouses and data
marts), data virtualization creates a virtual or logical data store to
deliver the data to business users and applications.

• Data Services: is described as a modular, reusable, well-defined,
business-relevant service that leverages established technology
standards to enable the access, integration, and right-time
delivery of enterprise data throughout the enterprise and
across corporate firewalls. Data services technology provides an
abstraction layer between data sources and data consumers.

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

36

In a nutshell, adopting an EIM approach addressing all aspects of big data as a
platform will enable enterprises to build up their capability progressively and move
up in the maturity curve as shown below in Figure 2-2. The maturity model highlights
how we see these skills (both technical and business) mapping out in the context of the
organizations that have adopted business analytics over time with a view to how this
could evolve in the era of big data analytics.

Phase

Impact

Old World New Era

Pilot Departmental
Analytics

Enterprise Analytics Big Data Analytics

Skills (IT) Little or no expertise in
Analytics – basic knowledge
in BI tools

Data warehouse team
focused on performance,
availability and data
management

Advanced data modelers and
data architects key part of
the IT department

Analytics Center of
Excellence that includes
“data scientists”

Skills (Business) Functional knowledge of BI
tools

Few business analysts,
limited usage of advanced
analytics

Savvy analytical modelers,
data stewards and
statisticians utilized

Complex problem solving
integrated into Analytics
Center of Excellence, Deep
business analysis knowledge,
data exploration and analysis
capability

Technology & Tools Simple historical BI reporting
and dashboards

Data warehouse
implemented broad usage of
BI tools, limited analytics
data marts

Analyticsplatforms, Data
Visualization platforms,
limited usage of parallel
processing and analytical
appliances/sandboxes

Widespread adoption of
analytics sandboxes,
appliances for multiple
workloads, Architecture and
governance for emerging
technologies

Financial Impact No substantial financial
impact. No ROI models in
place.

Certain revenue generating
KPIs in place, ROIs clearly
understood

Significant revenue impacts
(measured and monitored
on a regular basis), initiatives
are business case driven

Business strategy and
competitive differentiation is
based on analytics

Data Governance Little to None Initial data warehouse model
and architectures

Data definitions and models
standardized, enterprise
wide metadata management
implementation

Clear master data
management strategies

Line of Business Little to None Visible Aligned including LOB
executives

Cross departmental with
CEO level visibility

CIO Engagement Hidden Limited Involved Transformative

Figure 2-2. Building up analytical capabilities for big data (Source: www.idc.com)

Leading practices of enterprise information management
for big data platforms
As a set of best practices, we have attempted to give a brief outline of leading practices
that will need to be in place to successfully leverage existing information management
investments along with implementation of big data platforms.

• Align big data with specific business goals: The key intent of
big data is to find value from high volumes and varieties of data.
It is important to prioritize investments for setting up big data
platforms and develop business use cases. Do not make the big
data initiative an IT-only fun project.

www.allitebooks.com

http://www.idc.com/
http://www.allitebooks.org

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

37

• Proactively plan for skill acquisition and development: One of
the biggest obstacles for effective big data management is thought
to be an anticipated skills shortage. You can’t expect to find
these skills in abundance; hence, careful planning and execution
needs to be done in effective training, talent management, and
information governance areas. Standardizing on an information
governance approach will allow enterprises to manage costs and
best leverage scarce resources.

• Optimize capability growth with a big data center of excellence:
A big data center of excellence is an excellent way to scale
big data management capability across the enterprise. A big
data center of excellence will bring in a collaborative culture
among several groups within the enterprise, effectively sharing
solution knowledge, enabling effective end user and stakeholder
engagement and standardizing on business use cases, governance,
communications management, and project management.
Irrespective of whether big data management is a new or expanding
investment, the soft and hard costs can be an investment shared
across the enterprise. Another benefit from this approach is that it
will help drive the overall information architecture maturity growth
in a more structured and systematic way.

• Align big data with existing enterprise data management
capabilities: Big data technology proof of concept can perhaps
be done on its own as separate pilot projects. However, big data
management should be seen as an integral extension of your
existing business intelligence and data warehousing platform. This
will enable enterprise knowledge workers to correlate different
types and sources of data, to make associations, and to make
meaningful discoveries. But all in all, big data management should
be aligned with existing data management capabilities so as to
leverage prior investments in infrastructure, platform, BI and DW.

Implications of Big Data to Enterprise IT?
Big data has many aspects that make it different from traditional data. Big data is
generated as a result of user transactions, user interactions, and users browsing
behavior. Many sources and channels of big data do not involve human interaction at
all; for example, sensor data and machine-generated data. Combined together these
types of data make big data poly-structured and hence it does not conform to an easily
understood data structure such as that found in transactional data and relational models.

If we just take the structured data in the enterprise, the standard practices to manage
enterprise data always had centered on the concept of an “Enterprise Data Warehouse”
(EDW). BI tools then work on the data contained in the EDW and produce reports and
interfaces that summarize data via multi-dimensional analysis functions (e.g., drill-downs,
drill-across, aggregations, time-series analysis, etc.) over various dimensions of data. The

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

38

design and evolution of an EDW requires a well-conceived data management strategy
to bring together relevant data sources from various parts of the enterprise. The multi-
dimensional data resides in a comprehensive analysis- oriented data model. Reporting
strategies are then developed to leverage the data and then a data governance strategy is
implemented to manage and maintain the EDW as a valuable enterprise data asset.

While this EDW approach remains a standard practice, there are several factors like
cost, scalability, performance, and ability to handle any type of data, which are beginning
to show up as serious shortcomings in the traditional solutions. To a certain extent,
the cost and scalability concerns can be addressed by effective usages of commodity
hardware and storage solutions, but what about the other data types?

So, what additional considerations in the IT stack should be put in place
to take into account the big data types?

Let's first discuss a few fundamental concepts. Across the industry there is a growing
opinion that it’s not just the volume aspects associated with data that make it difficult to
manage. Rather, it is the collection of different types of data, when put together, cannot
be processed using conventional methods. Then it becomes a big data situation. What
are those “conventional methods”? And why did they suddenly become inadequate? To
answer that, it is helpful to understand the type of problems we are trying to solve when
we take big data into account.

Right from the mainframe era to client server era, a major expectation from
enterprise IT was to ensure that transactional systems (e.g., online transaction
processing) ran efficiently, quickly, and consistently. These expectations influenced
many technologies and architectures to develop applications using proprietary
relational databases on proprietary monolithic servers with proprietary and monolithic
storage infrastructures.

Table 2-1. Various Representations of IT Stacks

Traditional IT Web-Scale

Applications

Big Data Analytics

Initiatives

Scope Mostly online
transactional
processing systems

E-commerce, web
sites, search engines

Web search, deep
analytics applications

Data
Characteristics

Relatively small
amount of highly
structured data of
high quality; small
number of users

Combination of
structured and
un-structured data;
millions of users

Massive amounts of
structured and un-
structured data which
is to be analyzed to
derive insights, spot
trends, etc. Accuracy
and insight rather than
precision is the key.

(continued)

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

39

The traditional IT stack (let’s define it as “database, storage, and computing”) that
worked quite well for a relatively small amount of highly valuable and highly structured data
began to show serious limitations when faced with a number of challenges. For example, the
emergence of web-enabled applications (and millions of user bases) needed cost-effective
and innovative approaches to enable distribution of computing and processing of data
across large numbers of commodity servers. Let’s define this as the LAMP stack (Linux,
Apache, MySQL, and PHP). Almost every business is now a “digital business,” thus the
explosive growth in unstructured data (e.g., text, video, audio, medical images, etc.) all around
us. This is why a new stack for IT called SMAQ (storage, map-reduce and query) has emerged.

Let’s discuss a few examples to fully understand the implications of the SMAQ
stack. Imagine, for example, that you are not only trying to store billions of interactions
happening in social chatter boxes but also trying to perform sophisticated analytics on
those interactions: such as sentiments expressed by people about a particular brand of
product, correlations analysis, and taking these sentiments and linking them to your
product sales across stores. Conventional databases can neither handle this kind of
scale nor do they have the ability to quickly provide answers to these kinds of questions.
Relational databases were designed to maintain transaction history (the ACID principles)
in a highly consistent manner and thus inherently they have limitations on scalability
and performance. The scale in our example necessitates that we follow a distributed data,
storage, and processing approach. The conventional storage and computing approaches
can’t handle this kind of scale and complexity.

Traditional IT Web-Scale

Applications

Big Data Analytics

Initiatives

Solution Stack Traditional
IT enterprise
platforms, mostly
ACID compliant.

Less proprietary,
open source centric,
commodity hardware
centric (LAMP
Stack – Linux,
Apache, MySQL,
PHP)

Highly open source
centric, scalability,
performance is the key,
consistency can be
compromised (SMAQ
Stack – Storage, Map-
Reduce, Query)

Database RDBMS platforms MySQL NoSQL

Compute Proprietary Distributed
processing, Linux
on large number of
commodity servers

Distributed processing,
data is node aware,
Linux on large number
of commodity servers
running map-reduce
jobs

Storage Expensive SANs Scale out commodity
NAS

Scale out commodity
NAS, Hadoop
compatible file systems

Table 2-1. (continued)

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

40

The entire data analysis process starting from data collection to transformations to
analysis needs to change to accommodate the distributed design approach. To manage
the scale of data, the data set itself needs to be highly distributed. Both the data and the
computing for big data scale needs to happen on large numbers of heterogeneous and
distributed storage devices. The computing process needs to move closer to the data to
reduce I/O cycle times and query results in round trips thus ensuring high performance.
In a distributed design approach, the input data is first processed on distributed devices
and transformed into intermediate data sets. Then these intermediate results are
reduced to aggregated data sets, which is the desired end result. These two phases of
transformation and aggregation are called “map” and “educe.”

In chapters 4, 5, and 6 we will discuss these design approaches at length.
Figure 2-3 provides a high-level view of various components that constitute a SMAQ

stack. The SMAQ stack came into existence largely through open-source projects and
centers around Hadoop-based architectures and NoSQL databases.

Query

Map-Reduce

Storage

Distributes computing across several servers
Mostly runs as a batch oriented process

Distributed storage, data is node aware
At a native level data is stored as a file thus enabling schema-less
characteristics to manage structured and un-structured data efficiently

Massively parallel processing of queries
Highly efficient for analytics type of workloads

Figure 2-3. SMAQ stack

Map-reduce
The biggest problem at big data scale was to fit large data sets into a single machine.
Traditional approaches like row-chaining and partitioning data were not efficient to
handle such large data sets. Map-reduce technology was created at Google to solve the
problem of web search indexes over billions of documents. Map-reduce takes a query
over a data set, divides it into parallel independent sets of tasks, and runs it in parallel
over many nodes. This distribution solves the issue of data too large to fit onto a single
machine. The “map” phase processes data item by item and transforms them into
intermediate data sets. The “reduce phase” then aggregates these intermediate results
into a summarized data set, producing the desired end result. In order to achieve a high
degree of parallelism, the only constraint the map-reduce jobs need to adhere to is that
the map and reduce tasks must not have any interdependency among the result sets.

In chapters 4 and 5 we will discuss several variations of map-reduce technology
at length.

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

41

Storage
For map-reduce to work, the data needs to be node aware. In other words, the data needs
to be available in a distributed fashion to serve each processing node where map and
reduce jobs are executed. The data expected by map-reduce is not stored as we normally
store relational data (the entire record at one place); instead relevant data is grouped
together and stored in chunks, which are then divided among nodes. Each such data set
is identified through key-value pairs.

The standard storage mechanism is a distributed file system having the following
characteristics:

• Fault tolerance: Since data is distributed across nodes, the
storage system should be highly fault tolerant.

• Extreme scalability: To accommodate big data scale
considerations, the storage system should be highly scalable.

• Write once and read many times: The workloads for big data
are less transaction oriented and more analysis oriented, hence
assuming data will remain unchanged after it is written, there
should be provision to achieve high data throughput.

• Locality of computation: Moving voluminous data around to do
computations introduces severe drags on performance. Instead,
moving computation (map-reduce) to data results in faster
performance. The file system should have features to facilitate this.

HDFS (the distributed file system in Hadoop-based architecture) provides all the
above-mentioned functionalities. Unlike a database, HDFS can store and retrieve data but
not index it. So, simple random access to data is not possible through the HDFS. HBase
is another component in the Hadoop-based architecture leveraging HDFS as a storage
system and provides a column-oriented database designed to store massive amounts of
data. Because it creates indexes, HBase offers fast, random access to its contents, though
with simple queries. For complex operations, HBase acts as both a source and a sink
(destination for computed data) for Hadoop map-reduce.

Hive is another component in the Hadoop-based architecture that provides a data
warehousing and analysis-like data store. Hive is built on top of Hadoop providing table-
based abstraction over HDFS, which makes it easy to load structured data.

NoSQL databases serve as important components within the SMAQ stack wherein
they have built-in map-reduce features that allow computation to be parallelized over
distributed data nodes. Hadoop-based systems are most often used for batch-oriented
data collection purposes, whereas the NoSQL stores are more aligned to provide faster
query response to live applications.

In chapters 5 and 6 we will discuss several of these NoSQL data stores and data
modeling approaches at length.

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

42

Query
Developing map-reduce jobs to execute your queries is not a trivial task and certainly not
as simplistic as writing SQL. To overcome this challenge, SMAQ systems incorporate a
higher-level query layer to simplify both the specification of the map-reduce operations
and the retrieval of the result.

Query layers typically offer features that handle not only the specification of
the computation but also the loading and saving of data and the orchestration of the
processing on the map-reduce cluster. Search technology is often used to implement the
final step in presenting the computed result back to the user.

In subsequent chapters of this book we will address the approach, strategy, architecture,
and technology and skills required for enterprises to build up enterprise information
management capability to leverage value from big data and analytics platforms.

End Points
Most enterprises typically have data “islands” often having the same kind of data stored
in many repositories. For example, there may be multiple customer-facing applications
generating and recording customer interactions and transactions. Multiple systems
generating log files may need to be consolidated, aggregated, and analyzed as a whole.
What this implies is that there may be data silos within the organization with similar
kinds of data at scale. Aggregation of data from these silos is needed to ensure data
de-duplication while ensuring that all available data is utilized for analysis. One way to
ensure data silo aggregation is through setting up of a big data center of excellence and
applying data virtualization techniques.

When big data is analyzed in combination with traditional enterprise data,
enterprises can develop a more thorough and insightful understanding of their business,
which can lead to enhanced productivity, a stronger competitive position and greater
innovation: all of which can have a significant impact on the bottom line.

At a high level, the drivers for an enhanced EIM program are as follows:

To manage and benefit from massive and growing amounts of data•

Handling uncertainty around data format variability and the •
velocity of data

Exploit big data in a timely and cost effective fashion•

Become more agile, despite the constraints of legacy systems•

Tap into huge unstructured data sources for data analysis and •
business intelligence

Provide high-performance analytics to support data mining and •
big data initiatives

To make the most of big data, enterprises must evolve their IT infrastructures to
handle the rapid rate of delivery of extreme volumes of data with varying data types,
which can then be integrated with an organization’s other enterprise data to be analyzed.

CHAPTER 2 ■ THE NEW INFORMATION MANAGEMENT PARADIGM

43

Thus, alternative technical solutions are required in order for us to better analyze and
utilize the large data sets in the big data scenario.

Big data is a relatively new area and there are quite a number of rapid innovations
happening in this space, both in business models as well as technology platforms.
Before we delve into the depth of technology and architectures, in the next chapter we
will discuss the implications of this new technology for businesses; not all big data and
technology architectures are suitable for all types of business use cases.

With increasing industry acceptance of SMAQ stack and big data analytics
applications, there are also debates around the usefulness of a “data warehouse” and a
strong sentiment to move toward a “data lake”. The difference between a data lake and
a data warehouse is that in a data warehouse, the data is pre-categorized at the point of
entry, which can dictate how it’s going to be analyzed. This is especially true in online
analytical processing, which stores the data in an optimal form to support specific types
of analysis. The problem is that, in the world of big data, we don’t really know what value
the data has when it’s initially accepted from the list of sources available to us. We might
know some questions we want to answer, but not to the extent that it makes sense to close
off the ability to answer questions that materialize later. Therefore, storing data in some
“optimal” form for later analysis doesn’t make any sense. Instead, we should be storing
the data in a massive, easily accessible repository based on the cheap storage that’s
available today. Then, when there are questions that need answers, that is the time to
organize and sift through the chunks of data that will provide those answers.

References
Big Data Analytics: Future Architectures, Skills and Roadmaps for the CIO:

www.idc.com
The next frontier of innovation, competition and productivity: Mckinsey.com
The SMAQ stack for Big Data: http://strata.oreilly.com/2010/09/

the-smaq-stack-for-big-data.html
The Big Data DMAQ Down: http://blogs.computerworld.com/18840/

big_data_smaq_down_storage_mapreduce_and_query

http://Mckinsey.com
http://strata.oreilly.com/2010/09/the-smaq-stack-for-big-data.html
http://strata.oreilly.com/2010/09/the-smaq-stack-for-big-data.html
http://blogs.computerworld.com/18840/big_data_smaq_down_storage_mapreduce_and_query
http://blogs.computerworld.com/18840/big_data_smaq_down_storage_mapreduce_and_query

45

CHAPTER 3

Big Data Implications
for Industry

Big Data is not only about the data within the corporate firewalls but also
about data outside the firewalls too. Hidden inside these vast reservoirs
of data are insights that are waiting to be exploited for favorable business
outcomes.

The Opportunity
The interesting aspect of big data is that it enables discoveries across a richer and broader
data set. Organizations that established big data analytics platforms and enabled their
business users and data analysts to effectively leverage it for decision making have realized
significant competitive advantages and opened up new business opportunities.

What exactly is this big data analytics platform? For sure, it isn’t as simple as putting
a system in place. A big data platform involves a set of technologies (most of it is open source
and evolving every day), utilizing programming-driven processes and a management
discipline (which is a stark contrast to the bundled in-vendor products for data warehousing
and BI solutions). These require different skills that combine business knowledge, deep
data analysis, statistical skills, and advanced data visualization skills (which is completely
different from the skills surrounding SQL, DBA, data integration and reports development).

It is also interesting to observe companies adopting new business models effectively
leveraging big data analytics platforms. Google and Amazon have shown the path.
It is not only the web scale companies that are exploiting data but also government
organizations that are trying to analyze data to find ingenious ways of collecting tax from
defaulters. Health-care companies are becoming proactive in tracking and monitoring
their customers’ health and design “stay well packages” to reduce health-care costs.
The hospitality and travel industry is trying to combine various sources of data including
social networking data and create personalized vacation packages for their customers.
New companies are developing data mashup technologies combining several aspects of
customer behaviors and advising them on what products to buy, when to buy them, and
where to buy them, in order to find attractive discount pricing.

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

46

Big data creates significant opportunities; but there also exists a significant gap
between available data and its effective utilization, and many enterprises are scrambling
to address this challenge as shown in Figure 3-1 below.

Figure 3-1. Increasing gap between data availability and its utilization

Businesses have begun to realize that data is a core asset that not only improves
business processes and creates competitive advantage but also enables monetization
opportunities. The concern that there is not enough data for analysis is now obviated.
The focus has shifted to leveraging data sets to create competitive advantages, and big
data analytics platforms are playing a larger role to realize the potential and promise of
visionary plans for businesses. With rapid and iterative data insight, business leaders are
now making fact-based business decisions. Figure 3-2 plots data sources for big data.

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

47

Big Data Use Cases by Industry Vertical
Big data and analytics opportunities are not like the traditional data warehousing and BI
opportunities where you have a clear road map spanning multiple years. In contrast, the
opportunities in the big data and analytics area are business hypothesis driven and often
revolve around exploratory activities. The key to exploiting big data analytics is to develop
a compelling business use case clearly outlining what e- business outcomes are to be
achieved.

The industry-wide use cases shown in Table 3-1, if looked at in isolation across
the big data characteristics of volume, velocity, and variety may give you the idea that
these problems can be solved using traditional architectures and technology solutions.
However, when you see the different aspects of the big data characteristics coming
together, you have no choice.

Figure 3-2. illustrates the various data sources that constitute big data

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

48

Table 3-1. illustrates use cases by industry vertical

Industry Use Case Big Data Characteristics

Volume Velocity Variety

Retail/
ecommerce

•	 Merchandizing	and	market	
basket	analysis

ü ü
•	 Campaign	management	and	
customer	loyalty	programs

ü ü
•	 Supply-chain	management	and	
analytics

ü ü
•	 Event-	and	behavior-based	
targeting

ü ü ü
•	 Market	and	consumer	
segmentations

ü ü
•	 Recommendation	engines—
increase	average	order	size	by	
recommending	complementary	
products	based	on	predictive	
analysis	for	cross-selling

ü ü ü

•	 Cross-channel	analytics ü ü ü
•	 Right	offer	at	the	right	time ü ü ü

Financial
Services

•	 Real	time	customer	insight ü ü ü
•	 Risk	analysis	and	management ü ü ü
•	 Fraud	detection	and	security	
analytics

ü ü ü
•	 CRM	and	customer	loyalty	
programs

ü ü ü
•	 Credit	risk,	scoring,	and	
analysis

ü ü ü
•	 High	speed	Arbitrage	trading ü ü ü
•	 Trade	surveillance,	abnormal	
trading	patterns,	market	
manipulation	and	fraud	
detection

ü ü ü

(continued)

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

49

Industry Use Case Big Data Characteristics

Volume Velocity Variety

Health & Life
Sciences

•	 Health-insurance	fraud	
detection

ü ü ü
•	 Campaign	and	sales	program	
optimization

ü ü ü
•	 Brand	and	reputation	
management

ü ü
•	 Patient	care	quality	and	
program	analysis

ü ü
•	 Drug	discovery	and		
development	analysis

ü ü
•	 Real-time	diagnostic	data	
analysis

ü ü ü
•	 Research	and	development ü ü

Communication,
Media and
Technology

•	 Revenue	assurance	and	
dynamic	pricing

ü ü ü
•	 Customer	churn	prevention ü ü ü
•	 Real-time	CDR	(Call	Detail	
Records)	and	IPDR	(Internet	
Protocol	Detail	Records)	
analysis	for	network

ü ü ü

•	 Campaign	management	and	
customer	loyalty

ü ü ü
•	 Network	performance	and	
optimization

ü ü ü
•	 Mobile	User	Location	analysis ü ü ü
•	 Sentiment	analysis,	social	
gaming,	online	dating,	
influence,	and	social	graph	
analysis

ü ü ü

Public Sector •	 Compliance	and	regulatory	
analysis

ü ü ü
•	 Fraud	detection,	threat	
detection,	cyber-security,	
intrusion	detection	analysis,	
surveillance	and	monitoring

ü ü ü

•	 Smart	cities,	e-governance ü ü ü
•	 Energy	consumption	and	
carbon	footprint	management

ü ü ü

Table 3-1. (continued)

(continued)

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

50

Industry Use Case Big Data Characteristics

Volume Velocity Variety

Resources •	 Smart	grid,	smart	meters ü ü ü
•	 Seismic	data	analysis ü ü ü

IT Operations •	 IT	log	analysis
•	 Data	ingestion	of		
heterogeneous	data		
(structured,	semi-structured,	
poly	structured)

•	 Massive	write	performance
•	 Fast	key-value	access
•	 Flexible	schema	and	flexible	
datatypes

•	 Data	mash-ups

ü ü ü

Table 3-1. (continued)

Data has stories to tell. If data could talk, we might just find out a thing
or two about how to run our businesses better. Can you see what your
data sees? Can you find out to what it knows? Can you articulate the
relationships, patterns, and trends hidden in the massive pile of data?

Some business problems are mathematically compute-intensive, others are more
data- analysis intensive, and some are a balance of both. Understanding the nature of the
problem is the key to picking the correct approach. The term “big data” is pervasive and
has been used to convey all sorts of concepts, including huge quantities of data, social
media analytics, next-generation data management capabilities, real-time data, and
much more. Whatever the label, organizations are beginning to understand and explore
how to process and analyze a vast array of information in new ways.

Many organizations are basing their business cases on the following benefits that can
be derived from big data and analytics:

• Smarter decisions. Collecting and analyzing new sources of data to
not only improve the quality of decision making but also to enable
the organization to think beyond the conventional decision-
making process.

• Faster decisions. Becoming agile and nimble and developing
capabilities for the organization to truly become a real-time
enterprise. In other words, the decision-making latency is
shortened.

• Impactful decisions. Delivering business outcomes and business
capabilities that are truly unique differentiators.

In the subsequent sections of this chapter, we will touch upon a few use cases by industry
and understand what business problems are solved by the big data analytics platform.

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

51

Big Data Analytics for Telecom
If there is any industry that has been truly in the thick of unprecedented data growth,
it is the telecommunication industry; innovations and offerings like smart phones, mobile
broadband services, peer-to-peer information sharing and video-based services have all
played significant roles in contributing to this data growth. In addition, the omnipresence of
mobility solutions in all aspects of a consumer’s life is redefining how products and services
are accepted or discarded by customers. Historically, the telecom operators had always had
data on their subscribers, their usage patterns, network performance, cell-site information,
device level data, as well as billing data and customer-service-related data. However, most
of this data resided in the siloed data repositories; they were not organized, and analyzed in
a collective way to provide greater insight into customers and their preferences.

The telecom business is also a capital-intensive business, especially in developing and
deploying the infrastructure to serve and support an ever-growing consumer base. Thus,
a top business priority for a telecom company is to keep delivering new revenue- generating
and customer-satisfying services but without overloading infrastructure capacity and
network performance and without costs running out of control. In essence, for telecom
operators to survive the competition and stay profitable, they need to get a micro-level
view of the services they provide, and they need smarter decisions in real time taking into
account all critical aspects of their business.

Figure 3-3 illustrates a typical telecom applications landscape overlaid with type of
data sources (structured or unstructured) and big data characteristics.

Figure 3-3. Telecom applications and systems

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

52

In order to get an enterprise-wide view of their business, the telecom operators
had relied on data-integration initiatives moving data from distributed applications to
a centralized data repository and then through reporting solutions on top of this data
repository. They had developed metrics to review their state of business to identify trends
and patterns. But all of this analysis was more or less done in an offline mode, partly due
to cost implications of using solutions that can do real-time analysis and secondly due to
technology challenges to manage the volume and variety of data. A big data and analytics
platform solves these challenges in a cost-effective manner, and below we will discuss
a specific use case around improving customer experience.

As a subscriber, the plan you signed up for pretty much defines the services you
would get; however, your experience with the services is very dynamic. The primary
reason for this is “network performance” and your “usage patterns.” Thus, it’s all the
more important to integrate network performance data with subscriber usage patterns
to understand what is happening in the complex intersection of network and services
(voice, data, and content). For example, while monitoring the network performance,
the telecom operator detects a spike on the load of the network; however, if you don’t
correlate the network performance issue in real time with the segment of customers
who will experience degraded quality of service, you can imagine the kind of a customer
service experience you’re delivering!

Figure 3-4 below illustrates how a big data analytics platform combines different
data types to deliver real-time analytics correlating streaming network data with
subscriber data.

Figure 3-4. Big data analytics platform to deliver a 360-degree view of the customer
at real-time

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

53

The hardest part of collecting and analyzing network data is that it’s all semi-structured
and streaming in nature. Largely, telecommunication companies have built systems to
detect critical outages and bottlenecks and raise alerts, but these systems were rarely
designed to analyze network performance over a long period. If you have the ability to
understand how and where service issues are trending and how that is affecting your
most profitable customers, then you can think of ways to improve.

By combining dropped calls data and latency for video-based services with
subscriber’s dynamic and static information, you can identify cell towers that are
performing poorly and impairing the service experience. This approach can enable
operators to analyze and get better insight to network performance and quality of service
from a customer’s perspective and help them to take proactive measures to answer
questions like the following:

Which regions in my network had the most dropped calls in the •
past hour, day, week, and which of my customers were most
affected? Are these customers profitable? Are they likely to churn?

Is this a one-off scenario, or it is actually a trend? How can •
I prioritize where I should invest new capacity in my network,
based on customer revenue and profitability?

Which of the outages were due to handset problems, wireless •
coverage problems, or switch problems?

Is my network performance breaching SLAs that have been •
agreed upon with certain customer segments? How can
I prioritize the traffic of those customers in order to avoid
SLA breach?

By combining call detail records (CDR) data, cell-site data, calling-circle data, and
social network data, you can identify communities and social leaders. This approach can
enable operators to quickly determine who are the leaders (“ARPU inducers”) and who
are the followers (“churn shielders”). These insights can be effectively utilized to develop
pricing at an individual level. In addition, the social network monitoring in real time can
help in managing “word of mouth” (negative and positive publicity) events based on early
detection of social chatters.

Big Data Analytics for Banking
Customer focus is increasingly becoming important for many financial organizations.
While customer analytics is not a new concept for banks, some of the best known
customer analytics use cases have come from the banking industry: fraud detection, risk
analytics, credit scoring, and anti-money laundering are prime examples. However, in the
Internet era, the growth of data is posing serious challenges to these customer analytics
applications. Banks need new technologies to handle the unprecedented volume, variety,
and velocity of information.

Figure 3-5 illustrates a typical banking applications landscape overlaid with the type
of data sources (structured or unstructured) and big data characteristics.

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

54

We will discuss several use cases below.
Next Best Action: “Next best action” is a recommendation engine that takes the

bank’s business priorities and the customer’s needs and comes up with a recommendation
to cross-sell, up-sell, or provide a better service to the customer. Next best action is not
a new concept for banks; traditionally, the banks have taken their customer transaction
data, applied basic segmentation techniques in an offline mode, and devised appropriate
offers delivered through marketing channels and customer service representatives. These
offers were mostly targeted for customer retention and product promotion campaigns.
This approach exposes several drawbacks when you take into account the various
channels through which today’s customers interact. It is not only the transaction data but
also the interaction data that defines the customer’s preferences and behavior. Hence, the
recommendation engine should take into account all the known information about the
customer, including interactions or events, geo-location, channel preference, etc., to arrive
at optimal set of recommendations. In addition, the recommendation engine should also
consider what the right mode of interaction with the customer is. Based on customer’s
preferences and historical interaction data, the recommendation engine should advise
optimal interaction medium: be it the branch, Web, contact center, ATM, or smart phone.

A big data and analytics platform enables the bank to collect and organize host of
additional data such as customer preferences, behavior, interaction history, events and
location-specific details, which banks have not previously leveraged, often because the
technology to manage volume and variety of data was prohibitively costly.

Figure 3-5. Banking applications and systems

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

55

With a big data analytics platform now you have the capabilities to collect and manage
all these data in a cost-efficient manner. Once you have all these data organized, you can
then run sophisticated analytics to determine the best set of actions to recommend to a
customer, such as a targeted promotion, a cross-sell/up-sell offer, a discounted product or
fee, or a retention offer. In addition the big data analytics platform can add value through
real-time insight generation and help in faster decision making. The speed of delivering the
actionable insights is critical: the faster the bank can take action at the point of interaction,
the better the business outcomes.

Predictive Analytics: Banks have been pioneers in predictive analytics, applying
statistical modeling techniques on historical data to predict what happens next. Notable
examples are: correlations, back-testing strategies, Monte-Carlo simulations. However, these
predictive models were always run on sampled data. In the current scenario, especially
in case of wealth management and capital market functions, these predictive models are
fast becoming obsolete and need to be calibrated quite often because the volume and
velocity of data are outrunning the usefulness of the predictive models. A big data analytics
platform enables the bank with a scalable data ingestion and data storage platform that
can keep pace with the volume and velocity of data. Traditionally, predictive analytics was
done by running sophisticated algorithms on top of data sets kept in EDWs or analytical
data marts. This approach inherently demanded large computing horsepower and also
heavy IO contentions. The big data analytics platforms enables new compute and analysis
paradigms such as effectively leveraging distributed processing techniques (Map-Reduce)
and in-memory computing: in essence, taking the compute workload closer to the data.
This approach enables the predictive models to run on the entire data sets, thus providing
more insights and at the same time reducing the cycle time to generate insights.

Risk Management: Better risk management is a critical function for banks, everything
a bank has to offer (products or services), all revolve around risk. Thus the ability to
accurately assess the risk profile of a potential customer or a loan is linked to bank’s overall
profitability. Credit worthiness assessment is also used to determine specific features to be
offered (e.g., credit limit in case of a credit card) at the time of sourcing. Credit worthiness is
a dynamic attribute about the customer and it keeps getting updated with new information
coming in during the relationship thereafter and remains a very important tool for the
credit risk management function of the bank. The ability to rapidly analyze risk scenarios
such as aggregation of counter-party exposure across portfolios and customer base fall
within the realm of big data analytics. In addition, new sources of data coming from social
media are helping in generating new insights about risk profiles of customers. A big data
analytics platform not only provides the capability to ingest a variety of data sources but
also to deliver data analysis across larger and wider data sets. Correlating data from multiple
and unconnected sources increases the potential to catch fraudulent activities earlier than
current methods. Consider for instance the potential of correlating point-of-sale data
(available to a credit card issuer) with web behavior analysis (either on the bank's site or
externally), and cross-examining it with other financial institutions or service providers
such as First Data or SWIFT. This would not only improve fraud detection but could also
decrease the number of false positives.

Retail Banking: Customer centricity is the key to the retail banking business. As retail
banking functions are exploring innovative ways to offer new and targeted services to
increase customer loyalty, it is increasingly becoming important to look at data sources and
analytics capabilities beyond the customer’s transactional data. Banks are now collecting
and analyzing customer interaction data, location data, and preferences data to develop

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

56

targeted service offerings with a greater level of sophistication and certainty. Additionally,
with the help of a big data analytics platform, banks are now developing complete profiles
of their customers, mapping customer life events such as a marriage, childbirth, or a
home purchase, which can help banks introduce opportunities for more targeted services
and offerings.

Banks have heavily leveraged customer segmentation analytic techniques to devise
innovative marketing and sales strategies. However, in the Internet age, the same customer
segmentation techniques are turning out to be inadequate. Simplistic segmentations by
annual income or funds on deposit are becoming outdated. Two households that exhibit a
lot of similarity relative to deposits may actually turn out to be totally different with respect
to home equity, credit cards, prepaid debit, etc. Thus, segmentations have to be done at
micro level to obtain a much more accurate prediction of needs, attitudes, and buying-
spending behaviors. In order to do the fine-grain segmentation, you will need to collect,
organize, and correlate a variety of data sources consisting of customer transaction data
and customer interaction data. You need to find the right balance between data derived
internally and externally. External data can be used to identify customers’ financial
triggers, pinpointing those who might be new to a geographic area or in the market for
a particular financial product. There are data markets that provide balances held at all
financial institutions down to the household level and across a variety of categories:
deposits, investable assets, investment balances, net assets, mortgage balances, etc. You
need leverage of these data sources to develop sophisticated segmentation models to
quantify the market share and target the right households to cross-sell.

Let’s discuss how the big data analytics platform shown in Figure 3-6 below can help
in optimizing operations and improving insights from data. As we move from batch to
real-time process integration in financial services, the requirement for real time analytics
and an enterprise-wide view of banks operations becomes more acute. Operations
managers need to know about the state of operations regardless of client, transaction
type, delivery channel, or (in the case of payments) settlement method. In addition
to reliable and timely transaction processing, the data produced from the transaction
can be more valuable and provide key business insights for operations, marketing, risk
management, etc. However, collectively if we look across the various business operations
a bank does, the data is very-large volume, often exists in business silos, is structured and
unstructured, and exists inside the bank and on the internet (as evident from the various
data sources shown in Figure 3-6.

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

57

To demonstrate the value of the big data analytics platform, let’s analyze the
use case.

Ann, a homeowner is shopping to refinance her home. She begins browsing the
Internet to shop for a refinance on her home to take advantage of the favorable interest
rates. She does an Internet search and finds options for mortgages and refinancing.
Ann selects a bank whose link is near the top of the search results (Her current bank
does not show up in the top five of the list at all!). Ann clicks the link to a banking site for
more information. When she lands on the banking site, she is presented with an asset
of re-finance, which is the topic she searched online for. While she could go directly to
this offer, she wants to explore the site and see if she can find more information before
applying for the offer. Ann spends a considerable amount of time on the mortgage
homepage, and she sees each product contains reviews as well as ratings and comments
from other consumers but is unable to make up her mind. Sensing that Ann could be
ready to abandon the purchase, an instant chat is offered to help her. Finally, Ann decides
on a refinance product and begins an online application process.

Throughout the scenario, you can see different data sources coming into play:
clickstream data, customer profile data, browsing behavior data, etc. The big data
analytics platform not only puts all of these data in context in one place but offers the
ability to correlate, analyze, and provide real-time recommendations. The transactions
generated by Ann’s refinance scenario are kept in the bank’s core systems, the systems
that hold these records are operated for high-availability, transactional integrity, data
security, and recoverability. The transactions from Ann’s branch activity create “events”
that initiate actions in near real-time to assess the transaction’s validity (for example,

Figure 3-6. The big data analytics platform delivers a 360-degree view of customer,
portfolios, risks, and exposure at real-time

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

58

anti-fraud measures), and the impact on risk exposure in the lending portfolio.
For marketing purposes internal data is combined with external “big-data” from social
feeds to monitor social sentiment related to the bank brand. In this case, Ann could be
going out there in her social network and talking about her experience with the bank in
a very favorable manner. Regardless of channel or different systems in-which data exists,
a bank representative can now view a 360-degree profile of Ann, the status of the loan
application, the risk profile, her social network profile and comments, etc.

Big Data Analytics for Insurance

Insurance companies have traditionally operated under silos by building their systems
and applications serving specific business functions like policy admin, claims, actuary,
underwriting, etc. As new processes, products, and technologies emerged, more silos
were created due to lack of integration among the existing applications landscape. The
traditional methods employed by insurance companies for risk, actuarial and product
analyses, reserving, market penetration, customer churn etc., are getting outdated, and
business is demanding more modern, accurate, penetrative, and conclusive methods
to drive business priorities. Insurers are now actively pursuing analytics in three key
areas (customer-centric, risk-centric, and finance-centric), combining internal customer
information with new and non-traditional external data sources to provide more granular
information of the perceptions and behavior of target audiences.

Figure 3-7 illustrates a typical insurance applications landscape overlaid with types
of data sources (structured or unstructured) and big data characteristics.

Figure 3-7. Insurance applications and systems

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

59

The emergence of real-time location data has created an entirely new set of
location-based services from navigation to pricing property and casualty insurance
based on where, and how, people drive their vehicles. Sensors in the vehicle can now
tell how the vehicle is being maintained as well? Insurers are increasingly casting wider
nets to collect data beyond the regular insurance data sources (ISO, ACORD, LexisNexis,
Marshall-Swift, D&B, Acxiom, comparative raters) to newer data types such as telematics
data, social networks, blogs, department of vehicle data, police reports, content streams,
geo-spatial and weather patterns. A big data analytics platform provides the capabilities
to capture and manage interactions happening through not only the regular distribution
channels (agents, brokers, clubs, etc) but also through other multi-channel interfaces like
mobile or web based solutions.

Analytics Domains in Insurance

Figure 3-8 shows three analytics domains attributed to the insurance business and
associated business opportunities.

Figure 3-8. Analytics domains and opportunities in insurance

Risk-centric Analytics: The insurance business is all about understanding risk
and becoming better at managing risk. Risk-centric analytics is nothing but assessing
the probability of the risk actually happening and expected costs of specific exposures,
illnesses, and death. Specialized units within the insurance functions have traditionally
developed complex analytical models for product design, pricing, underwriting, loss
reserving, and CAT modeling. These analytical models have historically sourced data
from the corporate data repositories within the firewalls. However, with the risks and
exposures taking new forms, new analytics capabilities are required for insurers to
strengthen the core of their business.

To illustrate the point, consider property insurance, where insurers are moving
away from coverage-specific risk analysis to more granular by-peril risk analysis. In order
to do so, they need to leverage a host of external data on individual perils such as hail,
wildfire, coastal storm surge, crime, and dozens of other factors. The time to build and
run analytical models to assess all the exposures for individual properties or groups of
properties in a portfolio is crucial. The competitive advantage will be lost if it takes weeks
or months to go through this process to arrive at a risk based pricing.

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

60

For personal auto and commercial auto/fleet, telematics data is becoming
a significant source to generate new insights. Data streaming in from telematics devices
installed in vehicles is providing a bewildering array of information. Miles driven,
location, speed, vehicle performance, driving behavior etc are collected at real time and
are used to improve risk assessment, and offer variable risk based pricing strategies.

Customer-centric Analytics: Insurers have always taken the approach of a
distributed customer-reach model through agencies, broker networks, self-serving
portals, etc. Due to this distributed model of their business, except the core functions like
policy admin and claims, all of their customer-centric data resides in multiple places.
Therefore, if they need to get a much deeper and more granular understanding of their
customer (both at an aggregate levels as well as at individual customer levels), they will
have to develop data platforms wherein they can bring in data from disparate sources
to create a 360-degree view of their customers. Besides the information available from
agents, brokers, and company employees, insurers also need to consider new sources
of information such as social media sites and external data on demographics and
location-based data. If we take the example of “customer retention” as a business measure,
to develop predictive models to identify such cases where a defection or non-renewal is
highly probable, you will not only need internal data from CRM, Billing, Policy Admin
and Claims systems, you will also need interaction data highlighting relationships and
customer behavior patterns.

A big data analytics platform can also increasingly enable insurers to make customer
decisions in real time at the time of customer interaction. The big data analytics platform
will provide capabilities to analyze web navigation patterns, social media channels of
interactions and preferences, and data entry patterns. Understanding these patterns will
further help to devise automated or human intervention to prospects/customers.

Finance-centric Analytics: Insurance is a business of risk, hence efficient capital
allocation and optimum investment returns are critical to an insurer’s financial
performance. Insurers frequently use custom-built approaches to develop capital asset
pricing models (CAPM) to value and manage assets for least risk and maximum return.
Compliance and Regulatory requirements like Solvency II mandates insurers to develop
sophisticated models to address areas such as asset/liability matching, investment
portfolio optimization, embedded value calculations, and econometric modeling. An
increasingly complex business and economic environment is pushing insurers to do
more with analytics so that they can dynamically manage the business. Consider the
value of being able to combine real-time insight from the operational side of the business
with extensive external information concerning macroeconomic attributes and then
being able to view risks across portfolios within hours or even minutes.

We end this section with Figure 3-9, showing the analytics architecture and some use
cases in the insurance field.

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

61

Big Data Analytics for Retail

Historically speaking, retail outlets and supermalls had always generated business by
attracting customers to their stores. They had heavily relied on advertisements in various
media about attractive pricing, discounts, promotions, etc. They had also invested heavily
in setting up physical stores with attractive interior designs, colors, lightning, etc., to provide
a wonderful experience to the customers. Customers visiting the brick-and-mortar stores
look around for specific products: if they like the pricing, they buy the product. If for some
reason they do not like the product or the product is faulty, they call the complaint lines
and ask for a refund or exchange.

These outlets and mega-malls built up massive databases by integrating sales
data, promotions and campaigns data, supplier data, and in-store inventory data.
With this they created customer profiles and started doing high-end analytics like
market-basket analytics, seasonal sales analytics, inventory optimization analytics, and
pricing optimization analytics. The analytics outcomes provided much valuable insight
to business owners regarding their customer behaviors and buying patterns. They
developed customer loyalty programs to keep the customer happy.

Figure 3-10 illustrates a typical retail applications landscape overlaid with type of
data sources (structured or unstructured) and big data characteristics.

Figure 3-9. Big data analytics conceptual architecture and use cases for insurance

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

62

Every retailer wants to find answers hidden within the massive piles of shopping,
spending, inventory, pricing, and clickstream promotion data they have. They want to
gain a holistic view of their customers in order to answer business questions such as:

Who are my customers by categories?•

What are the ways customers buy different product categories •
with me? How can I use that insight to manage my business in an
adaptable manner as my customers switch channels?

How do my customers behave across a growing number of •
channels? Should I track customers at the household, individual,
digital persona, or touch-point level?

What are the action-driven behavioral attributes of my customers •
that best cluster them into segments?

What is the propensity for my customers to respond across •
channels and product categories? How can I use that knowledge
to interact real-time?

Figure 3-10. Retail applications and systems

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

63

What is the effectiveness of my current marketing strategy? •
How can I optimize my investment approach?

Who is in the market at a given time, what are they looking for, •
how should I communicate with them, and what is the right
positioning strategy for them?

You can very well imagine the number of different types of data sources required
to develop a holistic data platform, which can provide answers to the above questions.
In addition, retailing is quickly moving from physical presence in store models to
multi-channel to multi-screen experiences. First the Internet and then the proliferation
of innovative mobile applications are posing significant challenges to the traditional
in-store retailing approaches. Simple questions like those above are now becoming
extraordinarily complex to answer in a high-velocity shopping environment. The “show
rooming” trend is another concern that is increasingly becoming a survival question for
the physical-store-based retailers. We will discuss the impact of this trend on retailers,
and how a big data analytics platform can help address these concerns.

When customers treat the physical stores as a means to test drive products and then
go online with their mobile devices to make transactions at a cheaper price elsewhere,
it is called “show-rooming.” Increasingly, now mobile and web channels are competing
with physical stores as viable alternative channels. A significant percentage of shoppers
with smart phones are using applications that can scan QR/barcode codes, get product
availability, and compare prices while in the store fully utilizing the concept of SoLoMoMe
(Social + Local + Mobile + Personalized).

This means retailers need to develop mechanisms to provide unified and integrated
customer-centric experiences across all channels of interactions. In other words, retailers
need solutions through which they will be able to intelligently interact with customers
across traditional and non-traditional channels: websites, physical stores, kiosks, direct
mail and catalogs, call centers, social media, mobile devices, gaming consoles, televisions,
advertising, home delivery, blogs, and more. This shift in consumer behavior means retailers
need to adopt rapid test-and-learn methodologies to deal with the new multi-channel
and SoLoMoMe (social + local + mobile data + personalization) reality. But this migration
to multi-channel is going to be very difficult for most retailers. The challenge is that
retailers have too many physical stores across locations, too little IT integration, and
unsustainable cost structures.

Customers generate clues every day as they search, browse, friend, like, tweet, blog,
shop, and buy online. But these are massive quantities of data getting generated at a
tremendous speed. The challenge for retailers is to develop solutions to capture, analyze,
and spot the trends hidden within these massive piles of digital clues before anyone else
discovers them. A big data analytics platform is an ideal choice.

Multi-channel analytics is about understanding customer behaviors and presenting
new offers via more sophisticated targeting. Figure 3-11 shows the analytics architecture
and use cases in the retail space and Figure 3-12 illustrates how market segmentation and
customer analytics work together in a big data setting.

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

64

Figure 3-11. Big data analytics, conceptual architecture, and use cases for retail

Figure 3-12. Illustration of micro-level segmentation and customer analytics enabled by
big data analytics platform

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

65

You should have the capabilities to ingest data from all possible channels of
interaction, analyze the data and through sophisticated analytics and data visualization
techniques derive valuable insights. Take for instance, e-mail targeting. The traditional
approach has been to scan through your customer base, develop a list of customers
to whom you can send appropriate messaging and then send out mass mailers to all.
However, today’s reality is personalization, by understanding consumers’ browsing
history you can get down to the point of e-mailing a shopper with a message like “We saw
you last night on the women’s shoes part of the website” and then send that shopper a
targeted shoe promotion. You can also leverage location data from mobile devices; if the
customer was in a store but didn’t make a transaction then you can mail them a coupon.
If the customer opts in, then you can send them a SMS or e-mail promotion code while
they are in the store.

By effectively leveraging the big data analytics platform, merchants and marketing
teams can gain unprecedented insight into customers’ needs and behavior using
integrated views around customer shopping and behavior from every touch point and
channel. The type of analytics can include: website traffic patterns, traffic by category,
traffic by SKU, user demographics, conversion and buying behavior, mobile device
patterns (in the case of mobile) and mobile application downloads.

Big Data Analytics for Health Care

Big data has many implications for patients, providers, researchers, payers, and other
health-care constituents. The health-care model is undergoing a massive change as the
confluence of regionalization, globalization, mobility, and social networking are coming
together to voice concerns around increasing cost of health care. From a health-care provider’s
perspective, the key to profitability was to keep patients in treatment: that is, more inpatient
days translating to more revenue. In contrast the new model, which is increasingly supported
by government agencies, is to incentivize and compensate health-care providers to keep
patients healthy.

In addition, today’s patients are demanding more information about their health-
care options so that they understand their choices and can participate in decisions about
their care. In a health-care scenario, traditionally the key data sources have been patient
demographics and medical history, diagnostic, clinical trials data and drug effectiveness
index. If these traditional data sources are combined with data provided by patients
themselves through social media channels and telematics, it can become a valuable
source of information for researchers and others who are constantly in search of options
to reduce costs, boost outcomes, and improve treatment.

Governments are increasingly focusing on financial incentives based upon
health outcomes. This puts the patient and the patient's care at the center of focus for
health-care ecosystem. Both payers and providers are getting incentivized to attain
improved outcomes while managing costs. This is a big change for providers who have
historically been compensated based upon activity (visits, tests, and treatments). Finally,
pharmaceutical companies, which are already paying into health-care reform through a
“drug tax,” are increasingly getting regulated on drug prices as there is increasing focus on
value-based outcomes and with a keen focus on costs.

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

66

If all three parties (payer, provider, pharmaceutical company) work collaboratively
and share data/insights, disease management programs will become cost-effective and
deliver improved patient outcomes at a scale that will further optimize overall health-care
cost structure.

Each party brings unique insight, data, and experiences to assist in the design
and execution of a health-care management program that could make a sustainable
difference.

Providers bring the deep insight to a patient's health, longitudinal •
view to the patient’s disease progression, and hopefully some
historical insight to a patient’s past behavior in managing their health.

Payers bring a comprehensive view to patient medical claims •
across providers, labs, pharmacies, etc. Additionally, they may
have collected one or more health histories to proactively manage
at-risk members.

Although pharmaceutical companies do not bring individual •
patient data, they do bring a deep understanding of clinical trial
data administered on patient populations from both primary and
secondary market research studies.

Currently, the health-care solutions do not integrate these different data sources at
one place; hence, they lack the ability to do correlations. A big data analytics platform can
effectively become the answer. To illustrate the point, let us look at some examples:

Patients with a chronic condition are identified in the outpatient •
office for “potential” inclusion in a comprehensive health-care
management program.

The treating health-care professional leverages a set of questions •
that were developed earlier by patient medical history and
geo-demographic data.

The answers to these questions are then combined with the •
analytic models to provide a recommendation to the treating
health-care professional as to which disease management
program level is appropriate for this patient.

When the patient leaves the outpatient office, depending upon •
which disease management program he/she was enrolled into,
he/she receives follow-up in-home visits, phone calls, letters,
email, text messages, and other patient support materials on a
continuing basis.

Additional data from payer, provider, and third party are utilized •
to initiate follow-ups if the patient does not complete lab tests,
attend follow-up appointments, refill their prescriptions,
and/or in-home technology that indicates the patient is not
being adherent.

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

67

Figure 3-13 illustrates a typical health-care applications landscape overlaid with type
of data sources (structured or unstructured) and big data characteristics.

Figure 3-13. Health-care applications and systems

This scenario illustrates that by leveraging multiple data sources, the health-care
companies can develop efficient and cost-optimized healthcare management programs
that are financially sustainable.

There are several other interesting health-care big data use cases that are emerging.
Use case - 1: Keyword mining of doctor’s/lab transcripts using text mining and

co-relations to patient outcomes.

As a patient interacts with the hospital through multiple diagnosis phases, a lot of
information regarding the patient’s conditions, diagnosis, and recommendations gets
generated. This information is not necessarily of structured data type: for example a CAT
scan report would have preliminary interpretation regarding the state of the nerves and
blood flow conditions of the brain. There is a host of other types of unstructured text
that gets generated as well, such as doctor’s remarks, diagnostic lab reports, or nurse’s
observations. Figure 3-14 illustrated correlations made through text mining with patient
outcomes. If these data are effectively leveraged and brought into a Clinical Disease
Repository (CDR), we can then apply text analytics to develop early warning signals
regarding correlation frequency of occurrence of specific words in the unstructured text
and the clinical outcome.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

68

Use case - 2: Location aware application analytics for enhancing customer

experience and optimizing nurse/doctor deployment.

Hospitals are deploying smart chips to patients, doctors, and nurses to keep track
of their whereabouts, the primary reason being so these personnel quickly respond in
case of emergencies as shown in Figure 3-15. While at present these smart chips are only
issuing location awareness alerts, if this location awareness data can become a new data
source it will have huge implications for effectively managing patients experience and
optimizing resources within a hospital. For example, we can create models to analyze the
strength of the relationships between patient satisfaction index and nurse/patient ratio.
We can then define optimal nurse/patient ratios for different sections of the hospital:
OPD/cardiology/pediatric wards, for example, may need higher nurse/patient ratios
than the dental department. We can define threshold levels to monitor and raise an alert
whenever the threshold level is breached to alleviate the risk of an under-serviced patient.
We can also use the location awareness data to decide how the various departments
must be co-located within the hospital to improve patient outcomes and optimize use of
expensive health care equipment.

Figure 3-14. Text mining and correlations to patient outcomes

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

69

The above use case can also be extended to telemedicine analytics. Telemedicine
platforms can be enabled for the patient when it’s difficult for the patient to come to the
hospital. A telemedicine platform can capture various vitals of the patient like temperature,
heart rate, blood pressure and ECG, which can then be streamed into a central repository in
real time. Once collated, a series of triggers can be placed on the data to sense and respond
to health conditions:

ALERT-1: If growth in the concentration of BP with statistical •
significance is found for males in the age group 30 to 45 in a
specific zip code, say 08837, then it would be a good idea to hold
awareness sessions to sensitize the inhabitants in that zip code
to follow healthy eating habits and recommend periodic health
checkups.

ALERT-2: If the number of patient segment migrations > 10 •
percent based on actual diagnosis events moves from cluster-2 to
cluster-5 then proactively import preventive medicine in bulk to
cater to growing needs.

Use case - 3: Apriori sequence analysis to define new clinical pathways

A priori algorithms can be used to unearth interesting sequences in data occurring
close to each other before a clinical outcome (Figure 3-16). These could be time ordered
sequences of events. This would help us create episode rules like “If ‘restlessness’ and
‘insomnia’ occurs in the transcripts there is a 60 percent chance that a coronary episode is
imminent.” These can trigger proactive interventions, which can help reduce the chances
of an adverse event or a hospital admission event.

Figure 3-15. Location aware analytics application for optimal health-care service

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

70

Big Data Analytics for IT/Operations

Since the days of mainframes, IT was always about year-on-year investments on
infrastructure, software, skilled people, and process standardizations. IT was primarily
responsible to provide a robust platform to support a seven-day per week 9AM to 9PM
business model. If the enterprise was running a global business with geographically
diverse operations, then the scale of IT operations increased multifold.

First the Internet and then online channels changed the way the IT operations
were managed. The business model suddenly shifted to 24 hour/seven days a week,
covering all possible time zones. The IT professionals started to use laptops, tablet PCs,
and smart devices to interact with enterprise systems wherever and whenever they want.
These additional access channels also put a lot of strain on IT standard access policies
and controls, and suddenly data privacy and security became a hot topic agenda in CIO
discussions.

Hardware and software vendors took advantage of these changing business models
and started doing rapid product innovations; it was not uncommon to see multiple
vendor products installed in the same enterprise across different lines of businesses. And
quite predictably year-on-year IT investment budget kept going up and up.

However, technology evolutions and process maturity started challenging the
conventional IT approaches: cloud models, software as a service models (SaaS), hosted
service offering models, etc., began to optimize the cost and at the same time provided lot
of flexibility on vendor products. It was no longer a single vendor lock-in scenario, rather
IT programs evolved to align to business optimization.

Figure 3-16. A priori analytics application for diagnosis and preventive actions

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

71

IT operations intelligence became a significant contributing factor to changing the
paradigm: e.g., running through massive system generated logs to understand potential
bottlenecks, alerting the system engineers of an impending system crash, automatically
fixing performance issues in the systems, score cards outlining every system’s health, and
most importantly security and threat detection management.

Underlying the IT transformation is big data and analytics. Analyzing massive
amounts of system-generated log data is not a trivial pursuit: these data are cryptic in
nature and get generated every nanosecond.

Figure 3-17 illustrates a conceptual architecture that takes in log data, which is
mostly voluminous and highly unstructured and delivers several analytics services
analyzing the logs and delivering real-time insights.

Figure 3-17. Big data analytics platform for log analysis

End Points
There’s a lot of hype around what a big data analytics platform can deliver, and there is
also a host of industry use cases emerging to prove the point. The hardest part of big data
analytics is finding an appropriate use case. While every industry is poised to leverage
the benefits of big data and analytics, at the same time one needs to understand the fact
that the real value from big data and analytics can be derived only if there is a well-
thought-out business-relevant scenario. There are many instances of over-enthusiastic
technology practitioners chasing elaborate big data technology solutions for a seemingly
less significant business outcome use case.

While big data platforms provide a powerful tool to companies as evident from the
use cases discussed earlier in this chapter, the process of implementing such a platform
and laying down the processes to govern the initiatives is not a trivial pursuit and can

CHAPTER 3 ■ BIG DATA IMPLICATIONS FOR INDUSTRY

72

very well become a multiyear process. Since the data management approach for big
data is different from traditional data management approaches new platforms and
methodologies needs to be in place to handle the big data characteristics.

In the next chapter we’ll look at the way IT architecture and infrastructure will
change examine relevant technology for storage and analysis, and discuss how big data
will be analyzed in real time. In addition, we’ll also examine the organizational and
change management issues that are likely to appear.

References
Big	Data	Analytics	Use	Cases:	www.practicalanalytics.wordpress.com
Big	Data	Unlocks	Business	Values:	www.baselinemag.com
http://blog.fluturasolutions.com/2012/12/5-disruptive-big-data-use-cases-in.html
http://blogs.sas.com/content/hls/2011/12/22/disease-management-programs-

%E2%80%93-receive-help-from-big-data-and-analytics/
http://www.toolsjournal.com/cloud-articles/item/500-what-are-big-data-use-cases?

Microsoft	Industry	Reference	Architecture	for	Banking	(MIRA-B)May	2012

http://www.toolsjournal.com/cloud-articles/item/500-what-are-big-data-use-cases
http://www.baselinemag.com/
http://blog.fluturasolutions.com/2012/12/5-disruptive-big-data-use-cases-in.html
http://blogs.sas.com/content/hls/2011/12/22/disease-management-programs-%E2%80%93-receive-help-from-big-data-and-analytics/
http://blogs.sas.com/content/hls/2011/12/22/disease-management-programs-%E2%80%93-receive-help-from-big-data-and-analytics/
http://www.toolsjournal.com/cloud-articles/item/500-what-are-big-data-use-cases

73

CHAPTER 4

Emerging Database
Landscape

Where do newer technologies such as columnar databases and NoSQL
come into play? How will you effectively address the impact of big data
on application performance, speed and reliability?

In the new data management paradigm and especially considering the influence
of big data, IT solutions and enterprise infrastructure landscapes may encompass many
technologies working together. Figuring out which of the several technologies are relevant
for you is not a trivial matter. In this chapter we will discuss several of these technologies
and share best practices: which data management approach is best for what kind of data
related challenges?

The ongoing explosion of data today challenges businesses. Organizations capture,
track, analyze and store everything from mass quantities of transactional, online, and
mobile data, to growing amounts of machine-generated data. In fact, machine-generated
data, including sources ranging from web, telecom network and call-detail records, to
data from online gaming, social networks, sensors, computer logs, satellites, financial
transaction feeds and more, represents the fastest-growing category of big data. High
volume websites can generate billions of data entries every month.

Extracting useful intelligence from current data volumes with mostly structured data
had been a challenge anyway; imagine the situation when you deal with big data scales!

In order to solve data-volume-related challenges, traditionally architects have
applied the below mentioned typical approaches, but each one of the approaches have
several implications:

Tuning or upgrading existing database resulting in significantly •
increased costs, either through admin costs or licensing fees

Upgrading hardware processing capabilities increasing overall •
total cost of ownership to the enterprise (TCO) in terms additional
hardware costs and subsequent annual maintenance fees

Increasing storage capacity, which sets off a recurring pattern: •
put more storage capacity in direct proportion to the growth of
data add incur additional costs

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

74

Implementing a data archiving policy wherein old data is •
periodically moved into lower cost storage solutions. While this
is a sensible approach, it also puts constraints on data usage and
analysis needs: less data is made available to your analysts and
business users for analysis at any one time. This may result in less
comprehensive analysis of user patterns and can greatly impact
analytic conclusions

Upgrading network infrastructure leads to both increased costs •
and, potentially, more complex network configurations.

From the above-mentioned arguments, it is clear that throwing money at your
database problem doesn’t really solve the issue. Are there any alternative approaches?
Before we dive deep into alternative solutions and architectural strategies, let us first
understand how databases have evolved over the past decade or so.

The Database Evolution
It is a widely acceptable fact that innovation in database technologies began with the
appearance of the relational database management system (RDBMS) and its associated
database access mechanism through structured query language (SQL). The RDBMS was
primarily designed to handle both online transaction processing (OLTP) workloads and
business intelligence (BI) workloads. In addition, a plethora of products and add-on
utilities got developed in quick time augmenting the RDBMS capabilities thus developing
a rich ecosystem of software products that depended upon its SQL interface and fulfilled
many business needs.

Database engineering was primarily built to access data held on spinning disks.
The data access operations utilized systems memory to cache data and were largely
dependent on the CPU power available. Over time, innovations in efficient usage of
memory and faster CPU cycle speeds significantly improved data access and usage
patterns. Databases also began to explore options around parallel processing of
workloads. During the early days, the typical RDBMS installation was a large symmetric
multiprocessing (SMP) server, later these individual servers were clustered with
interconnects between two or more servers, thus appearing as a single logical database
server. This cluster based architectures significantly improved parallelism, and provided
high performance and failover capabilities.

Improvements in the hardware components like memory capacity and network
speeds were gradual and continue to evolve. In particular, in-memory technology had
enabled possibilities of retaining small but frequently accessed datasets in memory.
Network speeds also improved to a great extent, making it feasible to assemble much
larger clusters of servers known as grid computing to further optimize and efficiently
distribute workloads. These improvements in the hardware components triggered
creation of another type of RDBMS offering known as column-store databases. Sybase,
now an SAP company, was the first to come out with an enterprise standard database
platform, Sybase IQ database.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

75

The column-store databases were designed to address performance issues around
query workloads that accessed large volumes of data or large analytical queries, as
opposed to row-based databases, which were primarily focused on making sure the
transactions, were recorded correctly and quickly in the databases. The biggest push for
adoption of column-store databases came from business intelligence applications and
analytics applications.

The Scale-Out Architecture
As the data volumes grew exponentially and increasingly there was a need to integrate
and leverage a vast array of data sources, a new generation of database products began
to emerge. These were labeled as Not Only SQL (NoSQL) products. These products were
designed to cater to the distributed architecture styles enabling high concurrency and
partition tolerance to manage data volumes up to the petabyte range.

Figure 4-1 illustrates scale-out database architecture. You can see the design
philosophy where data from several sources are acquired and then distributed across
multiple nodes. The full database is spread across multiple computers. In the earlier
versions of NoSQL databases there was a constraint that the data for a transaction or
query be limited to a single node.

Figure 4-1. Scale-out database architecture

The concept of a multi-node database with transactions or queries isolated to individual
nodes was a design consideration to support transactional workloads of large websites.
Due to this limitation, the back-end database infrastructure of these nodes required manual
partitioning of data in identical schemas across nodes. The local database running on each

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

76

node held a portion of the total data, a technique referred to as sharding, for breaking the
database up into shards. The queries are broken into sub-queries, which are then applied
to specific nodes in a server cluster. The results from each one of these sub-queries are then
aggregated to get the final answer. All resources are exploited to run in parallel. To improve
performance or cater to larger data volumes, more nodes are added to the cluster as and
when needed.

Most NoSQL databases have a scale-out architecture and can be distributed across
many server nodes. How they handle data distribution, data compression, and node
failure varies from product to product, but the general architecture is similar. They are
usually built in a shared-nothing manner so that no node has to know much about what’s
happening on other nodes.

The scale-out architecture brings to light two interesting features, and both of these
features focus on the ability to distribute data over a cluster of servers.

Replication: This is all about taking the same data and copying it over multiple
nodes. There are two types of replication strategies.

Master-Slave•

Peer-To-Peer•
In Master-Slave approach, you replicate data across multiple nodes. One node acts

as the designated master and the rest are slave nodes keeping copies of the entire data
sets, thereby providing resilience to node failures. The master node is the most updated
and accurate source for the data sets and is responsible for managing consistency.
Periodically, the slaves synchronize their content with the master.

Master-Slave replication is most helpful for scaling when you have a read-intensive
data set. You can scale horizontally to handle more read requests by adding more slave
nodes and ensuring all read requests are routed to the slaves. However, this approach will
have a major bottleneck when you have workloads that are read- and write-intensive, the
master will have to juggle around updates and pass on those updates to the slave nodes to
make the data consistent everywhere!

While the Master-Slave approach provides read scalability, it severely lacks in write
scalability. Peer-to-Peer replication approach addresses this issue by not having a master
node altogether. All replication nodes have equal weight, they all accept write requests,
and the loss of any of the nodes doesn’t prevent access to the data store because rest of
the nodes are accessible and have the copies of the same data, although it may not be the
most updated data.

In this approach, the concerning fact is about data consistency across all the nodes:
when you perform write operations on two different nodes on the same data set, you run
into the risk of two different users attempting to update the same record at the same time
thus introducing a write-write conflict. This sort of write-write conflicts are managed
through a concept called “serialization” wherein, you decide to apply the write operations
one after another. Serialization is applied either as pessimistic or optimistic mode.
Pessimistic works by preventing conflicts from occurring, in a sense, all write operations
are performed in a sequential manner, when all are done, and then only the data set is
made available. Optimistic works by letting conflicts occur but detects the instances of
conflict and later takes corrective actions to sort them out, making all the write operations
eventually consistent.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

77

Sharding: This is all about selectively organizing a particular set of data on different
nodes. Once you have data in your data store, different applications and data analysts access
different parts of the data set. In such situations, you can introduce horizontal scalability
by selectively putting different parts of the data set onto different servers. When the user
accesses specific data elements, their queries hit only the designated server. As a result,
they get rapid responses!

However, there is one drawback to this approach. If your query consists of data sets
distributed over several nodes, how do you aggregate these different data sets? This is a
design consideration you need to acknowledge while distributing data over several nodes.

You need to understand the query patterns first and then design the data distribution
in such a manner that, data that is commonly accessed together is kept on a single node.
This helps in improving query performance.

For example, if you know that most accesses of certain data sets are based on a physical
location, you can place that data close to the location where it’s being accessed. Or if you
see most of the query patterns are around customer’s surnames, then you might put all
customers with surnames starting from A to E on one node, F to J on another node, like so.

Sharding greatly improves the read and write performance; however, it does little
to improve resilience when used alone. Although the data is on different nodes, hence
a node failure makes that part of the data unavailable; thus only the users of the data on
that shard will have issues, and the rest of the users do not get impacted.

Combining Sharding with Replication: Replication and sharding are two orthogonal
techniques for data distribution, which means in your data design considerations; you can
use either approach or both the approaches. If you use both the approaches, essentially
you are taking the sharding approach but for each shard you are appointing a master node
(thus ensuring write consistency); the rest are all slaves with copies of the data items
(thus ensuring scalable read operations).

The Relational Database and the Non-Relational
Database
On a broad level, we can assume that there are two specific kinds of databases: the
relational database and the “non-relational” database. There are several definitions and
interpretations of what the characteristics of these two types of databases are.

Let’s first define what structured data is and what unstructured data is. These definitions
heavily weigh into the characteristics of RDBMS and non-RDBMS systems.

Structured Data: Structured data contains an explicit structure of the data elements.
In other words, there exists metadata for every data element and how it will be stored
and accessed through SQL-based commands or other programming constructs are
clearly defined.

Unstructured Data: Unstructured data constitutes all other data that fall outside the
definition of structured data. Its structure is not explicitly declared in a schema. In some
cases, as with natural language, the structure may need to be discovered.

The Relational Database (RDBMS): A relational database stores data in tables and
pre-dominantly uses SQL-based commands to access the data. Mostly, the data structures
and resulting data models take the third-normal form (3NF) structure. In practice, the
data model is a set of tables and relationships between them, which are expressed in terms

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

78

of keys and integrity constraints across related tables such as foreign keys. A row of any
table consists of columns of structured data, and the database as a whole contains only
structured data. The logical model of the data held in the database is based on tables and
relationships.

For example, for an Employee table we can define the columns as Employee_ID,
First_Name, Initial, Last_Name, Address_Line_1, Address_Line_2, City, State, Zip_Code,
Home_Tel_No, Cell_Tel_No. In the database schema, we further define the data types for
each one of these columns: integer, char, varchar, etc. These column names feature in
the SQL queries as data of interest for the user. We call this structured data because the
data held in the database is represented in a tabular fashion and is known in advance and
recorded in a schema.

The Non-Relational Database: Since RDBMS is confined to representing data as
related tables made up of rows and columns, it does not easily accommodate data that
have nested or hierarchical structures such as a bill of materials or a complex document.
Non-relational databases cater to a wider variety of data structures (older mainframe
data structures, object and object-relational data structures, document and XML data
structures, graph data structures, etc.) than just tables. What we have defined here is an
“everything else bucket” that includes all databases that are not purely relational.

OldSQL, NewSQL, and the Emerging NoSQL
The relational database was driven by the idea of database standardization around a
generally applicable structure of data to store the data, and a universally acceptable
interface like SQL to query the data. We will refer to the traditional RDBMS systems as
OldSQL databases. These technologies have proven to be excellent for most transactional
data and also for querying and analyzing broad collections of corporate data. These
databases are characterized by the use of SQL as the primary means of data access,
although they may have other data access features.

There is also a relatively new category of relational databases that although they
adhere to the traditional RDBMS philosophy they are designed differently, extending
the relational model. A key offering of these databases is new architectures to improve
performance, scalability, and most commonly scale-out. They include such products as
Infobright, SAP Sybase IQ, Greenplum, ParAccel, SAND Technologies, Teradata, Vertica,
Vectorwise, and others. We categorize these as NewSQL databases, since they employ SQL
as their primary means of access and fundamentally deal with structured data only.

There is also an emerging set of databases specifically designed to provide non-SQL
modes of data access. These are commonly categorized as NoSQL databases for their
definition of “not only SQL” or “noSQL at all.” These NoSQL databases exhibit a wide
range of characteristics and design philosophies.

Figure 4-2 illustrates the area of applicability of OldSQL, NewSQL, and NoSQL.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

79

The vertical axis in Figure 4.2 indicates complexity of data structure. A single table
is less complex than the star schema and the snowflake schema structures that one often
sees in data warehouses. These are simpler than a third normal form (TNF) relational
schema. Nested data, graph data, and other forms of complex data structures represent
an increasing complexity of data structures.

It is easy to place OldSQL and NewSQL databases on this diagram. Both cater to all
of the data structures up to the snowflake schema models. The distinction between the
two categories of product is simply in their ability to scale up to very high volumes of data.
The OldSQL databases, built for single server or clustered environments, have a limit to
their scalability. Most NewSQL databases, designed for queries over high data volumes,
provide little or no support for OLTP, but their scale-out architectures offer good support
for data volumes up to the Petabyte level.

As soon as we enter the diverse schema models, NoSQL databases come into the
picture. It includes products like key-value pair databases, graph databases, document
databases, etc. Such databases are built to support extremely large sparse tables and the
JOIN is superfluous to the intended workloads.

Figure 4-2. Applicability of OldSQL, NewSQL, and NoSQL

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

80

The Influence of Map-Reduce and Hadoop

Until recently there was no widely used framework for parallel programming. Parallel
programming was thus a fairly a specialized skill acquired by programmers to develop
custom applications. Scale-out hardware models offering parallelism capabilities came
onto the scene due to the search engine technology. The Web spans billions of web pages
and the number increases daily, yet when searching for a word or phrase you receive an
answer in a fraction of a second. This is achieved using parallel computing.

A much publicized use case is Google, each search query that users use, is spread
out across thousands of CPUs, each of which has a large amount of memory. A highly
compressed schema consisting of the entire web content is held in memory, and the
search query accesses that schema. The software framework Google used to address
this application is called Map-Reduce. Hadoop is another significant component of the
parallel computing framework. The Hadoop ecosystem consists of Hadoop distributed file
system (HDFS), which allows very large data files to be distributed across all the nodes of
a very large grid of servers in a way that supports recovery from the failure of any node.

Below is an introduction to map-reduce technology and associated Hadoop
ecosystem components. In Chapter 5, there will be more about map-reduce and Hadoop
ecosystem components.

The map-reduce mode of operation is to partition the workload across all the servers
in a grid and to apply first a mapping step (Map) and then a reduction step (Reduce).

• Map: The map step partitions the workload across all the nodes
for execution. This step may cycle, as each node can spawn a
further division of work and share it with other nodes. In any
event, an answer set is arrived at on each node.

• Reduce: The reduce step combines the answers from all the
nodes. This activity may also be distributed across the grid, if
needed, with data being passed as well.

In essence, Hadoop implements parallelism that works well on large volumes of data
distributed across many servers. The processing is kept local to each node (in the Map step),
and only sent across the network for arriving at an answer (in the Reduce step). It is easy
to see how you can implement an SQL-like query using this, since the Map step would do
the SELECT operations, getting the appropriate data from each node, then the Reduce step
would compile the answer, possibly implementing a JOIN or carrying out a SORT.

HDFS keeps three copies of all data by default, and this enables Hadoop to recover
from the failure of any of its nodes, as Hadoop also takes snapshots on each node to
enable recovery from any node failure. Hadoop is thus “fault tolerant” and the fault
tolerance is hardware independent, so it can be deployed on inexpensive commodity
hardware. Fault tolerance is important for a system that can be using hundreds of nodes
at once, because the probability of any node failing is multiplied by the number of nodes.

In its native form, Hadoop is not a database. HBase, another component of the Hadoop
ecosystem provides a column-oriented data store capability leveraging Hadoop and HDFS,
and it also provides indexing for HDFS. With HBase it is possible to have multiple large
tables or even just one large table distributed beneath Hadoop. Hive provides a formal query
capability turning Hadoop into a data warehouse-like system, allowing data summarization,
ad hoc queries, and the analysis of data stored in HBase or at a native level in HDFS. Hive

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

81

holds metadata describing the contents of files and allows queries in HiveQL, an SQL-like
language. It also allows Map-Reduce programmers to get around the limitations of HiveQL
by plugging in Map-Reduce routines. Pig, originally developed at Yahoo Research, is a
high-level language for building Map-Reduce programs for Hadoop, thus simplifying the
use of Map-Reduce. It is a data flow language that provides high-level commands.

In summary Hadoop and its ecosystem (HBase, Hive and Pig) offer a scale-out
database option. Many database companies are using Hadoop in different ways.
By leveraging Hadoop’s useful capabilities, Aster Data developed a proprietary Map-Reduce
environment to extend their relational database, which now complements Teradata’s
database, after being acquired by Teradata. In their model, a SQL statement can call a
Map-Reduce routine to carry out processing and return the results within the context of
an SQL statement. This allows existing SQL-compatible tools to make use of Map-Reduce,
something that would otherwise require a custom front end.

Other examples include RainStor, which uses its compression technology as a
Hadoop accelerator; Cassandra, which focuses on high volume real-time transaction
processing but has integrated Hadoop for batch-oriented analytics; and MongoDB, which
has a two-way connector that allows for the flow of data between itself and Hadoop.
MongoDB could be characterized as a highly scalable document store for web data and is
seeing much use by developers for building small custom applications.

Key Value Stores and Distributed Hash Tables

The new generation databases extensively leverage two design philosophies: Key Value
Stores and Distributed Hash Tables.

• Key Value Store: A key value store is a file that stores records by
key, the record consists of a key and attached with it is the data
value. The structure of the attached data is not explicitly defined
by a schema: in effect it is a blob of data. The primary benefit of
such a file is that it is relatively easy to scale in a shared-nothing
fashion: it delivers good performance for keyed reads, and
developers have more flexibility when storing complex data
structures.

• Distributed Hash Tables: A distributed hash table (DHT)
leverages the key value pair principle but implements a scale-out
key value store. Keys are hashed according to their value, so the
location of the node on which any given key value pair resides
is determined by the hashing process, which distributes the
records evenly. The hashing process is itself usually distributed
among participating nodes for the sake of failover. Depending
on the finer details of the implementation, the outcome is highly
scalable since the work of retrieving data can by spread across all
participating nodes.

Hadoop’s HDFS is a key value store. New generation databases that make use of
these techniques include BerkeleyDB, MongoDB, Riak, Cassandra, and many others.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

82

XML Defined Data

XML (the eXtensible Mark-up Language) provided an interesting functionality to define
metadata along with the data values making the data self-describing. We can refer to such
structured data as XML defined data. XML defines data at any level of granularity from a
single item through to a complex structure such as a web page.

At this point in time, the use of XML is not as widespread as the use of SQL. However,
many of the developer-oriented databases use the JavaScript object notation (JSON)
rather than XML for data manipulation and interchange.

Note ■ SQL schemas prove to be very useful at the logical level to provide a basis for

set-oriented data manipulation but do not define data at the physical level particularly well.

The physical definition of data is specific to the database product. XML is broader in some

ways as a logical definition of data but is cumbersome at the physical data storage level.

JSON, which is object oriented, is less cumbersome than XML at the physical level but lacks

logical information about data relationships.

Unstructured Data as Un-modeled Data

If we include XML-defined data in the family of structured data, that still leaves us with a
vast amount of data for which no structure has been explicitly declared. This can, in our
view, be best designated as “un-modeled data.”

This means that it is not possible for the data to be re-used easily by other programs.
We classify such data as un-modeled because no design effort has been expended on
modeling the data for use by other programs. It may be possible to access the data because
we know something about the structure of the data even though it has not been modeled.
For example, we may know that some of it is text, so we can search for specific words, and
we may even be able to carry out sophisticated searches of this un-modeled data.

It may even be the case that some data held in a typical RDBMS is un-modeled in
this way. For example, a specific item in a row may be known (by data type) to be text, but
nothing of the inner structure of the text is known. The text itself is not explicitly modeled.
Maybe it is just a string of written text or it might be a character stream that defined a web
page complete with HTML tags. The database schema does not indicate what it is. Most
RDBMSs allow the definition of a BLOB (large binary object) and nothing is explicitly
defined about the data within the BLOB.

Database Workloads
In the above sections, we discussed how databases have evolved. Given there are so
many options and many more to come, it is all the more important to understand which
databases are well suited for what kind of workload. This is not a simple criterion because
workloads have multiple facets, and there are different architectural approaches to
managing these workloads.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

83

Broadly speaking, workload scan be classified into three primary groups:

• Online Transaction Processing (OLTP): Transaction processing
is a mixed read-write workload that can be become very
write-intensive. OLTP requires low latency response, accesses
small amounts of data at one time, and has predictable access
patterns with few complex joins between different sets of data.

Streaming data processing and complex event processing
type of requirements are at the other extreme end of the OLTP
spectrum.

• Business intelligence (BI): Originally, this was viewed as a
combination of batch and on-demand reporting, later expanded
to include ad hoc query, dashboards, and visualization tools.
BI workloads are read-intensive, with writes usually done during
off-hours or in ways that don't compete with queries. While quick
response times are desired, they are not typically in the sub-second
range that OLTP requires. Data access patterns tend to be
unpredictable; they often involve reading a lot of data at one time,
and can have many complex joins.

Newer concepts like data discovery and exploratory analytics
are two other types of workloads where it not only becomes
read-intensive but also highly iterative.

• Analytics: Analytic workloads involve more extensive calculation
over data than BI. They are both compute-intensive and read-
intensive. They generally access entire data sets or a combination
of different data sets at one time prior to doing computations.
Most analytic workloads are done in a batch mode, with the
output used downstream via BI or other applications.

Relational databases have been the platform of choice for the above-defined three
workloads over the past two decades. As workloads grew larger and more varied, the
databases kept adding new features to improve performance. Over the last decade, data
volumes and complexity of data types have pushed the workloads past the capabilities of
almost all of these RDBMS.

Workload Characteristics
The workload characteristics we are going to discuss below apply more to general
database management principles; however, it is essential to understand these
characteristics in light of big data and analytics requirements.

What do we mean by workload? Table 4-1 outlines the characteristics of workload in
relation to constraints on database.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

84

Different workloads have different characteristics thus posing different challenges
when trying to support a mixed workload. Assuming the database is powerful enough to
support and is specialized for one particular type of workload is fine, but in the real world
there is always a mixed workload.

Read-Write Mix: Whenever we use a database, the workloads are a mix of reads and
writes. However, between OLTP, BI and analytics needs you will see these mix of read
and writes taking different forms. OLTP is a write-intensive workload whereas BI and
analytics are thought of as read-only. Most BI systems write data in bulk at one time and
multiple read operations afterward whereas OLTP reads and writes happen at the same
time. The intensity of reading and writing and the mix of the two are important aspects of
a workload. Business intelligence-specific databases designed to handle read-intensive
work are often designed to load data in bulk. While the bulk loads are happening, it is
advised not to initiate any other write operations or queries.

Operational BI and dashboards often require up-to-date information. Analytic
processing is done in real time as part of the work in OLTP systems. The workload for an
operational BI application can look very similar to an OLTP application.

In case of big data scenarios, where many of analytic workloads are based on log data
or interaction data, you can expect a high volume of data flowing in continuously, so it
must be written continuously. Continuous loading is the extreme end of the spectrum for
write intensity. Likewise, in large-scale analytics, particularly when building analytical
models, entire data sets are read one or more times, making them among the most
read-intensive workloads.

Data Latency: Data latency is the time lag between creation of data and usage of
data. Based on the business needs, applications can have different tolerances for latency.
For example, OLTP systems have short latencies, with the data available for usage as soon
as it has been inserted or updated; whereas data warehouses have long latencies, updated
once per day. Short latencies impose more restrictions on a system.

Longer latency requirements mean you have more flexibility in marshaling the
database resources. Respite from latency allows you to architect your data management
processes in a different way: incremental updates or bulk data processing in a batch
mode. The separation of data collection processes from data consumption processes
gives flexibility in designing data stores and puts fewer restrictions on a system.

Table 4-1. Workload Characteristics

Workload Characteristics Constraints on Database

Fewer More

Read-Write Mix Low High

Data Latency High Low

Consistency Eventual Immediate

Updatability None Constant

Data Types Simple Complex

Response Times High Low

Predictability High Low

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

85

Consistency: Consistency is a critical design consideration. Immediate consistency
means that as soon as data has been updated, any other query will see the updated value.
Eventual consistency means that changes to data will not be uniformly visible to all
queries for some period of time. Some queries may see the earlier value while others see
the new or updated value.

Consistency is important to most OLTP systems because inconsistent query results
could lead to serious problems. For example, if a bank account is emptied by one
withdrawal, it shouldn't be possible to withdraw more funds. If the banking withdrawal
application is designed for eventual consistency you can very well imagine the
consequences - it might be possible for two simultaneous withdrawals, each taking the
full balance out of the account, not a desirable state for the bank.

There are cases where immediate consistency is not critical and eventual consistency
is actually a desirable state, as it offers better performance and scalability characteristics,
particularly for large scale systems running in a distributed hardware environment like
the cloud. For example, in many consumer-facing web applications like e-commerce
applications, where the listing of products needs to be consistent with the actual inventory,
you can still go ahead with the transaction; later on, products listing can be made consistent
with products availability.

Updatability: Data may be changeable or it may be permanent. If an application
never updates or deletes data then it is possible to optimize the database design and
improve both performance and scalability.

Event streams, such as log data or web tracking activity are examples of data that
by its nature does not have updates. Events generate data, systems capture the data and
analyze the implications, and the data itself does not undergo any change at all. Outside
of event streams, the most common scenarios for write-once data are in BI and analytics
workloads, where data is usually loaded once and queried many times thereafter.

A number of BI and analytic databases assume that updates and deletes are rare and
use very simple mechanisms to control them. Putting a workload with a constant stream of
updates and deletes onto one of these databases will lead to query performance problems
because that workload is not part of their primary design. The same applies to some NoSQL
data stores that have been designed as append-only data stores to handle extremely high
rates of data loading. They can write large volumes of data quickly, but once written the
data can't be changed. Instead, it must be copied, modified, and written a second time.

Data Types: Relational databases operate on tables of data, but not all data is
tabular. Data structures can be hierarchies, networks, documents, or even nested inside
one another. If the data is hierarchical then it must be flattened into different tables before
it can be stored in a relational database. This isn't difficult, but it creates a challenge when
mapping between the database and a program that needs to retrieve the data.

Response Time: Response time is measured when you execute a query or
transaction and the time it takes to return the result of the operation. The challenge with
fast response time for queries is the volume of data that must be read, which is itself also
a function of the complexity of the query. Many solutions, like OLAP databases, focus on
pre-staging data so the query can simply read summarized or pre-calculated results.
If a query requires no joins it can be very fast, which is how some NoSQL databases satisfy
extremely low latency queries.

Response time for writes is similar, with the added mechanism of eventual
consistency. If a database is eventually consistent, it's possible to provide a higher degree

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

86

of parallelism to partition the workload, offering higher scalability. With proper design,
this translates into consistent and low response times.

Predictability: Some workloads have highly predictable data access patterns.
For example, OLTP access patterns are usually highly repetitive because there are
only a few types of transaction, making them easier to design for and tune for optimal
performance. Dashboards and batch reporting will issue the same queries day after
day. This repetitive nature allows flexibility in design or tuning of a database since the
workload can be anticipated.

When queries are unpredictable, as with ad hoc query or data exploration workloads,
the database must be more flexible. The query optimizer must be better so it can provide
reasonable performance given unknown queries. Performance management in such
scenarios is much more difficult because there is little that can be done in advance to
design or tune the workload.

After understanding the different characteristics of workloads, let’s examine how
they in conjunction with scale (big data characteristics) impose challenges on database
technologies. Figure 4-3 shows how the ends of the scale spectrum align with constraints
on a database for each characteristic. One or more items on the more restrictive end of
the scale can significantly limit the available choice of technologies.

Figure 4-3. Three axes of big data scale for database processing

The complexity of a workload and its implication on the database system is defined by
a combination of the workload characteristics and the big data scale.

Implication of Big Data Scale on Data Processing
The big data scale is usually represented by big data characteristics, users and
concurrency, and computation intensiveness; when combined with varying workloads
this can become a handful for evaluation databases.

Big Data Scale: Big data characteristics such as volume, velocity, and variety impart
significant implications on database processing (Table 4-2). The simple statistics of
database size in gigabytes or terabytes hides many of the important implications. While it
is easily understood that increasing volumes of data poses tough challenges to database

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

87

processing, other characteristics such as streaming data and different data types also add
to the complexity of database processing.

Table 4-2. Big Data Scale: Volume, Velocity, Variety Impact

Big Data Scale: Volume, Velocity and Variety Impact

Higher Impact Lower Impact

BI Workloads OLTP Workloads

Complex Data Structures (Variety) Simple Data Structures

Many Table Join Operations Fewer Table Join Operations

High Data Growth Rate Slow Data Growth Rate

Streaming Data Mostly Batch Oriented data

Data volume has the biggest impact on BI and analytic workloads as they read large
portions of data at one time and join large multiple tables together. In contrast, OLTP
workloads are less affected by data volume because the transactions and queries are
predictable and involve small amount of data whether recording transaction or fetching
records at a time.

There is also a growing demand from businesses to run queries faster, to run more
number of queries simultaneously, and to run queries against larger data sets.

To solve the volume-related issues, data management practitioners extensively use
compression techniques and indexing. However, there are design-related challenges,
as different attributes will have different values: it is therefore not possible to optimize the
compression beyond a certain point. Indexes are means to improve query performance
but they also introduce additional overheads. Typically, the indexes take up as much
space as the data itself, in effect doubling or more. When you add indexes as well as other
constructs such as materialized views, the data store size increases as much as eight
times the size of the raw data. On the other hand, if you start removing the indexes you
see degrading query performance. In effect, while designing the data store, you need to
balance the number of indexes.

The structure and complexity of the data can be as important as the raw data volumes.
Narrow and deep structures, like simple tables with a small number of columns but many
rows, are easier to manage than many tables of varying attributes and row counts. The
number of tables and relationships is as important as the amount of data stored. Large
numbers of schema objects imply more complex joins and more difficulty distributing
the data so that it can be joined efficiently. Variety of data imposes additional constraints
on the data store. If your data processing logic needs a combination of structured data
and unstructured data, you will now have to design queries to cater to different type of
outputs. The resulting data set needs to merge together to provide the expected output.
Unstructured data needs parsing, tagging, and filtering techniques to be applied to the raw
data; you have to write programs to do these kinds of jobs. The data store itself need to be
prepared to accept structured data and unstructured data. These aspects of big data scale
drive query complexity, which can result in poor optimizations and lots of data movement.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

88

If your requirement is to cater to streaming data, you will have to take additional
considerations while designing your data store. Streaming data need to be captured in
real time, and the volume growth aspects associated with streaming data is also critical.

The rate of data growth is important as well. A large initial volume with small
incremental growth is easier to manage than a rapidly and unpredictably growing volume
of data. Fast growth implies the need for an easily scalable platform, generally pushing
one toward databases that support a scale-out model.

There are few helpful rules of thumb for what size qualifies as small or large. In general,
when the total amount of data rises to the five-terabyte range, RDBMS databases running
on a single server begin to experience performance challenges. At this scale it takes more
expertise to tune and manage a system. It is at this boundary that most organizations begin
looking to alternatives like purpose-built appliances and parallel shared-nothing databases.

Users Concurrency and Query Concurrency: Concurrency can be defined as the
number of simultaneous queries and transactions happening at the same time. In addition,
the number of end users accessing the system is often a benchmark to evaluate as far as
concurrency is considered. User concurrency can be measured in two ways: passive and
active. Active users are those executing queries or transactions, while passive users are the
total number of users connected to the database but sitting idle.

With respect to web applications, user concurrency takes a different meaning
altogether. The web applications are designed to accommodate unlimited number of
users logged into the system at any point of time. Examples are Facebook, LinkedIn,
Gmail, and Yahoo, etc.

In BI workloads, dashboard and scorecard tools may auto-update periodically,
making concurrency much higher. In the past it was also reasonable to assume that one
user equated to one report and therefore one query. This assumption is no longer true.
A dashboard might issue half a dozen complex queries to populate the information on a
single screen.

Concurrency is also driven by systems that need to access data in order to execute
models, generate alerts, or otherwise monitor data. There are no firm rules for what
constitutes high concurrency. The number varies based on workload, since higher
workloads have greater impact (see Table 4-3). A dozen concurrent analytics users can
stress a database as much as a few thousand users of an OLTP application.

Table 4-3. Big Data Scale User Concurrency Impact

Big Data Scale: User Concurrency and Query Concurrency

Higher Impact Lower Impact

More distinct users Less distinct users

More active users and power users Less active users

Queries spanning across multiple tables of
large sizes

Queries spanning across fewer tables
of smaller sizes

More scheduled activities Less scheduled activities

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

89

Web applications are less query oriented but more user concurrency oriented.
Millions of users log into the system across all time zones. While the transactions they
generate may not be volume intensive, the frequency of their transactions is very high:
like Tweeting, Facebook status updates, photo uploads/downloads, music sharing,
etc. The sheer number of user concurrency and the frequency of transactions impose
significant challenges to database processing.

Computation Intensiveness: Computation intensiveness could mean two things:
the complexity of the algorithm, or the complexity of the dataset. Running complex
algorithms over moderately complex data sets can be a performance challenge. On
the other hand, simple algorithms running over large data sets can also cause severe
performance issues.

There is no hard and fast definition of what constitutes a complex computation.
However, we can say that they typically involve transaction-level data, usually consisting
of multiple business rules requiring multiple joins, unpredictable queries, often forced
to resort to full table scans. Perhaps a reasonable definition would be that a complex
computation always involves multiple set operations. That is, you make a selection and
then based on the result of that selection, you go on to make further selections. In other
words, complexity involves recursive set operations.

In non-technical terms, complex computations often involve a requirement to
analyze and compare different data sets. Some typical complex queries are as follows:

“To what extent has our new service cannibalized existing •
products?” – That is, which customers are using the new service
instead of the old ones, rather than as an addition.

“List the top 10 percent of customers most likely to respond to our •
new marketing campaign.”

“What aspects of a bill are most likely to lead to customer •
defection?”

“Are employees more likely to be sick when they are overdue for a •
holiday?”

“Which promotions shorten sales cycles the most?”•

Consider just the question about the top 10 percent of customers. In order to answer
this question we need to analyze previous marketing campaigns, understand which
customers responded (which is not easy in itself: it often means a time-lapsed comparison
between the campaign and subsequent purchases), and identify common characteristics
shared by those customers. We then need to search for recipients of the campaign that
share those characteristics and rank them (to do this correctly may require significant
input) according to the closeness of their match to the identified characteristics.

It is unlikely that anyone would question the premise that this is a complex
computation. You could answer it using a conventional relational database, but it would
be time consuming and slow. Now, extend the use case scenario to include all the
multi-channel users, and the web scale itself will throw millions of customers into the mix.

Another aspect of complexity is the predicate. These are selection criteria such
as those based on business rules applied to certain key attributes in a data set. The
predicates put considerable pressure on performance and the efficiency of the database.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

90

Unpredictable queries also constitute a large part of the computation issues.
Unpredictable queries (as used in exploratory analysis) are, by definition, those where
you do not know in advance what the user may want to find out. These impose a number
of problems, including:

You do not know whether the answer to a query will require •
aggregated data or access to transaction-level data. If the answer
can be satisfied by aggregated data then multi-dimensional cubes,
materialized views, and pre-defined time-series type of data
preparation may be appropriate.

Even where a query may be satisfied through use of pre-•
aggregated data, the nature of unpredictable queries is such that
you cannot always guarantee that the correct aggregations are
available. If they are not then the materialized views and cubes
will need to be regenerated or in many cases if the queries are
looking for attributes that are not in the materialized views and
cubes, then you will have to revert to creation of new
pre-aggregation mechanisms.

The other problem with unpredictable queries is that appropriate •
indexes may not be defined. While the database optimizer can
re-write badly constructed SQL, and determine the most efficient
joins and optimize the query path in general, it cannot do
anything for lack of indexes. In practice, if a column is not indexed
at all, then this will usually mean that the query has to perform
a full table scan, and if this is a large table then there will be a
substantial performance hit as a result.

Note ■ One possible option is to build indexes on every conceivable column. Unfortunately

this is not usually practical. Every index you build will help to improve the performance

of queries that use that index, but at the same time every index you add to the database

increases the size of the database.

Certain types of queries require that the whole of a table must be scanned. Some
of these arise when there are no available indexes, or from the sorts of complex queries
described above. However, very much simpler queries can also give rise to full table
scans. For example:

• “List the full name and email address for customers born in July:”
Given that one in 12 customers are born in July, a typical database
optimizer will not consider it worthwhile to use an index, and it
will conduct a full table scan. If you have 10 million customers for
each of whom you store 3,200 bytes, for instance, then this will
mean reading a total of 32,000,000,000 bytes.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

91

• “Count the married, employed customers who own their own
home:” If we assume the database as above, then conventional
approaches still mean reading 32,000,000,000 bytes. In this case,
however, column-based approaches can achieve improvements
measured in thousands of times.

Another type of data analysis called time-series query brings in significant
complexity to the computations. Often you will see workloads that are designed to study
people’s behavior and activities over time. For example: “Which customers bought smart
phones of a certain brand and model within 7 days of ordering a washing machine of the
same brand?” In order to answer this sort of query you need to search the database to
find out who bought smart phones and then scan for washing machine buying within the
required time period.

You cannot easily answer this sort of query using either conventional relational
databases or OLAP cubes. In the case of an OLAP solution, you would have to organize
your cube by the shortest time period you are ever going to measure against (days in this
case) and then you count cells for seven days. Unfortunately, this will mean very large
cubes (30 times typical sizes today, which are most commonly implemented by month),
and such queries would therefore be extremely inefficient. Moreover, the question posed
is based on transaction-level detail in any case, which will not be contained in a cube.

Taken together, the three (big data scale, concurrency, and computation
intensiveness) axes define (refer to Figure 4-2) the scale of a workload. Workload scale
may grow at different rates along any or all of the axes. The important point to understand
when looking at workload scale is that growth along different axes imposes different
requirements on a database. Scalability is not one-dimensional.

Database Technologies for Managing
the Workloads
Delivering and maintaining good performance isn't a challenge limited to those with
hundreds of terabytes of data or hundreds of thousands of users. Many organizations
have faced problems with less than a terabyte of data, which can be considered relatively
small these days. If good performance is a challenge with moderate data volumes, then
why not simply buy more hardware?

Buying more hardware sometimes does solve the problem. However, adding
hardware is often a temporary fix because the challenges are due to workloads that the
chosen database was not designed to handle. There are usually two ways to scale the
database platform: scale up and scale out. Traditional databases are designed to run
on a single server with a single operating system. If the server reaches its limit, then the
solution is to buy a larger server with more capacity. This is called “scaling up.” “Scaling
out” means more servers are added to form either a cluster or a grid, with each node
running a local database that supports a portion of the workload.

Most organizations approach the initial growth and capacity needs by scaling up
their database environment. The problem with this approach is that larger servers are
progressively more expensive, whereas the cost is lower for equivalent capacity with
several small servers. Eventually scaling up will reach the maximum size of a single server
and no more growth will be possible.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

92

Hardware Architectures and Databases
Scaling up at some point becomes unfeasible. The other option is go to for shared-disk
database architecture and adding another server running a separate copy of the database
software but sharing the same physical storage. This is a half-step toward scale-out
architecture because the computers have their own processors, memory, and disk but
share a single set of storage.

The challenge with scalability in a shared-disk database architecture is that
most databases have limited support for spreading the work of a single query across
computers. A shared-disk model will help when the scale problem is concurrency,
because more nodes expand the ability to handle growth across discrete tasks.

A shared-disk model will not help if the database limits a query's resource usage to
the capacity of a single node, as most shared-disk databases do. If the need is to speed up
a small number of large queries, a common need with analytics, then a single query must
be parallelizable across more than one node.

Another challenge with the shared-disk model is the shared storage. When all
the nodes in a cluster are accessing data, it is possible for the shared disk to become a
bottleneck. This is the same problem as running on a single SMP server. There is limited
I/O bandwidth between the cluster and the storage.

The I/O bandwidth limit can be partially resolved by increasing the speed and
number of storage connections, but these will reach a maximum. At this limit the storage
can’t deliver data fast enough to meet all the server requests, slowing down queries.

Shared-disk clusters (illustrated in Figure 4-4) improve response time and user
concurrency by providing more servers to run queries against the data. They're more
appropriate when the problem is the number of concurrent queries and not the need to
move large amounts of data for a single query, hence they are less likely to be a good fit
for scaling analytic workloads.

Figure 4-4. Different types of database architectures

An alternate solution taken by many of the newer vendors is to provide a database
that can run on a distributed grid of computers with no sharing of components, as shown
on the right in Figure 4-4. This architecture is usually called “shared nothing” or massively
parallel processing (MPP).

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

93

In the shared-nothing model each server contains a portion of the database, and
no server contains the entire database. It is designed to process as much data possible at
each node and share data between nodes only when necessary. Although the database
runs independently on multiple nodes, it appears as a single entity to any application.

This model resolves the core limitation of I/O bottlenecks facing single and clustered
servers. Adding a node to a shared-nothing database increases the processors and memory
available and, more importantly, the disk bandwidth as well. A group of small servers can
easily outstrip the total I/O throughput of a very large server or shared disk cluster.

Scaling in this way also lowers the overall hardware cost because commodity servers
can be used. A collection of small servers with the same total amount of processors,
memory, and storage is less expensive than a single large server. See Table 4-4. We’ve spent
a good deal of time discussing database evolution and various database technologies
suitable for different type of workloads. Below are a number of conclusions regarding
database architectures:

Table 4-4. Scale up and scale out considerations

Scaling up a Database Platform

Scale Up Scale Out

Vertical expansion/Upgrade to more
powerful server configuration

Horizontal expansion through
a grid or cluster of commodity servers

More expensive hardware Less expensive hardware

Eventually hits a limit Less likely to hit a limit

RDBMS databases based on the relational model still fit the need for •
most database implementations, but they have reached scalability
limits, making them either impractical or too expensive for
specialized workloads. New entrants to the market and alternative
approaches are often better suited to specific workloads.

The relational database is still the preferred choice for most •
applications today. Database preferences are changing,
particularly for new applications that have high scalability
requirements for data size or user concurrency. If you find
yourself working with a system that has specific needs, let the
workload be your primary guide.

When analyzing the workloads, be sure to consider all the •
components. For example, if you run a consumer-facing website
on the database but also want to analyze data using machine-
learning algorithms, you are dealing with two distinct workloads.
One requires real-time read-write activity, and the other requires
heavy read-intensive and computational activity. These are
generally incompatible within the same database without careful
design considerations.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

94

Columnar Databases
Organizing data in rows has been the standard approach for so long that practitioners
have understood that this is the only way to store and retrieve data. An address list, a
customer list, an inventory of products—you can just envision the neat row of fields and
data going from left to right on your screen. Databases such as Oracle, MS SQL Server,
DB2 and MySQL are the best-known row-based databases.

Row-based databases are ubiquitous because so many of our most important business
systems are transactional. Row-oriented databases are well suited for transactional
environments, such as a call center where a customer’s entire interaction history is required
when their profile is retrieved and/or when fields are frequently updated.

Where row-based databases run into trouble is when they are used to handle
analytic loads against large volumes of data, especially when user queries are dynamic
and ad-hoc in nature.

To understand why, let’s look at a database of sales transactions with 50 days of
data and 1 million rows per day (Figure 4-5). Each row has 30 columns of data. So, this
database has 30 columns and 50 million rows. You want to see how many toasters were
sold for the third week of this period. A row-based database would return 7 million rows
(1 million for each day of the third week) with 30 columns for each row—or 210 million
data elements. That’s a lot of data elements to crunch to find out how many toasters were
sold that week.

Figure 4-5. Column-based data structure

Column-oriented databases allow data to be stored column by column rather than
row by row. Column-oriented databases are better suited for analytics where, unlike
transactions, only portions of each record are required. By grouping the data together this
way, the database only needs to retrieve columns that are relevant to the query, greatly
reducing the overall I/O.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

95

Returning to the example discussed above, we see that a columnar database would
not only eliminate 43 days of data, it would also eliminate 28 columns of data. Returning
only the columns for toasters and units sold, the columnar database would fetch only
14 million data elements, or 93 percent less data. By returning so much less data, columnar
databases are much faster than row-based databases when analyzing large data sets.

Combination/Workload Challenges
The issue here is combining high performance for individual queries with similarly high
performance across multiple queries and query types, some of which may be very short
running queries and others of which may be long running, or anything in between.
Big data scale throws open the environment to address such a combination of workloads.
From our discussions around columnar databases, we can see there is a clear architectural
benefit to be gained if we use a column-based approach. This is because you don’t have
to worry about the performance of individual queries and can focus your design efforts
to ensure high performance across the potentially (tens of) thousands of queries that
may be running at any one time. This is not to say that this is impossible to resolve query
performance using the traditional row-based approach, but the challenge is much greater.

Unpredictable Queries: A column is equivalent to an index but without any of the
overhead incurred by having to define an index. It’s as if you had a conventional database
with an index on every column. Suffice it to say, therefore, that if you are undertaking
some exploratory analysis using unpredictable queries, then these should run just as
quickly as predictable ones when using a column-based approach. Moreover, all sorts of
queries (with the exception of row-based look-up queries) will run faster than when using
a traditional approach, all other things being equal, precisely because of the reduced I/O
overheads.

Complex Queries: Complex queries tend to be slow or, in some cases, simply not
achievable: not because of their complexity per se but because they combine elements
of unpredictable queries and time-based or quantitative/qualitative queries, and they
frequently require whole table scans. Column-based approaches make complex queries
feasible precisely because they optimize the capability of the data store in all of these areas.

Large Table Scans: It’s usually the case that queries are only interested in a limited
subset of the data in each row. However, when using a traditional approach it is necessary
to read each row in its entirety. This is wasteful in the extreme. Column-based approaches
simply read the relevant data from each column.

Let us take the example of the following query: List the full name and email address
for customers born in July. Then if the row consists of 3,200 bytes and there are ten
million rows then the total read requirement for a conventional relational database is
32,000,000,000 bytes. However, if we assume that the date-of-birth field consists of four
bytes, and the full name and email addresses both consist of 25 characters, then the total
amount of data that needs to be read from each row is just 54 bytes if you are using a
column-based approach. This makes a total read requirement of 540,000,000 bytes.

This represents a reduction of 59.26 times, and this is before we take other factors
into account. So it is hardly surprising then that column-based approaches provide
dramatically improved performance.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

96

Note ■ This advantage is not necessarily all one way. Each column you need to retrieve

needs to be accessed separately, whereas you can retrieve an entire row in a single read. So the

greater the amount of the information that you need from a row the less performance advantage

that a column-based approach offers. To take a simplistic example, if you want to read a single

row then that is one read. If that row has 15 columns then that is, in theory, 15 reads, so there

is a trade-off between the number of rows you want to read versus the number of columns,

together with the overhead of finding the rows/columns you need to read in the first place.

A further consideration is that there is a class of query that can be answered directly
from an index. These are known as “count queries.” Let’s take, for example, the question
posed previously: Count the married, employed customers who own a house. If you have
a row-based database, and you have appropriate indexes defined, then you can resolve
these queries without having to read the data at all. Of course, in the case of a column-based
database the data is the index (or vice versa) so you should always be able to answer
count queries in this way.

Note ■ In a big data environment, count types of queries are common.

Time-based Queries: The issue here is not so much of performance but more of whether
relevant queries are possible at all. This is because you not only need the extended SQL in
order to handle time-lapse queries but also the ability to store time-stamped transactions.
Neither of these is typically the case with traditional RDBMS data stores. Conversely, there are
a number of column-based data stores that provide exactly such an approach.

Note that there are a number of use cases that require such capabilities that go
beyond conventional databases. For example, in telecommunications it is mandated that
companies must retain call detail records, against which relevant queries can be run,
often on a time-lapsed basis. Similarly, you will want to be able to run time-based queries
against log information (from databases, system logs, web logs and so forth) as well as
e-mails and other corporate data that you may need for evidentiary reasons.

Requirements for the Next Generation
Data Warehouses
In order to provide the best possible performance to the largest number of users, data
warehouses are significantly pre-designed. While logically this may be a reflection of
the data model that underpins the data warehouse, in physical terms this means the
pre-building indexes, careful partitioning of data, parallel disk striping, developing of
pre-aggregated tables, etc.

However, from our discussions so far, we also understood that, the big data scale and
type of workloads play a significant role in database design considerations. On the basis

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

97

of these discussions we can further define some of the features of next generation data
warehouses and data platforms:

Flexibility is paramount: The need is to have a “ask anything” data •
warehouse.

It should be possible to store interim results: That is, you may •
want to perform a query and use the output from that query
as a part of the input to another.

It should be easy to administer, cost effective, and offer a return •
on investment in as short a timescale as is reasonable.

It should be efficient in terms of its resources: In particular, the •
business analyst pursuing a line-of-thought inquiry should be
able to pursue any kind of a workload without being constrained
by big data characteristics.

Performance is also fundamental: While different queries will •
obviously take different lengths of time, typical responses should
be in seconds, or minutes at most.

In modern-day enterprise data warehouses there is a growing •
requirement to support a much larger number of users/queries
than was previously the case and, at the same time, a much
broader range of query types.

Data Warehouses and BI systems were built around the notion - data flows from
transactional systems possibly through staging areas to ODS to a centralized enterprise
data warehouse, the data from the EDW in turn then gets fed into the data marts of
various types, which then might feed personal databases. While it was often the case
that a single relational database would fulfill many of these data flow needs, this was not
always the case, especially where the data of interest is unstructured in nature.

In case of big data, the importance of data design and data flow is all the more
critical, as it’s evident we’ll have to deal with a mix of database technologies and
distributed architectures. In addition, we should also do careful considerations around
the value of data, as big data by very nature is considered to be full of noises whereas data
contained in the EDW is considered to be high quality and important to the organization.
Figure 4-6 illustrates a conceptual view of data flow architecture for big data scenarios.

Figure 4-6. Big data flow

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

98

As the diagram suggests, we might use Hadoop or possibly some NoSQL or NewSQL
database to continually gather an ever-growing volume of data, which may be of
uncertain data quality. Such data can be characterized as low value, since it is not highly
cleansed or processed and may be composed of simple event stream data that requires
further processing to derive value.

This data store is analogous to a staging area in traditional data warehouse design
but in the big data realm is termed as a “data ingestion” process resulting in a data
“lake,” whose primary purpose is to support data extracts and transformations intended
to feed other data stores. A relatively high latency will usually be adequate for some of
this activity. Other uses may require continuous ingest of event streams and real-time
monitoring as the data is recorded.

Following this in the data flow is an EDW. Most likely it will serve analytic and
BI applications that require a better response time or higher level of concurrency than
the data lake could provide. We view this data store as containing more valuable data that
has been processed and further enriched and contextualized leveraging data from the
data lake.

Following this in the data flow is the analytics sandboxes, wherein you can expect
to have a relatively lower level of latency. In this data store, there will be sophisticated
analytics modules with very high data computation intensiveness.

Finally, higher value data extracted from the analytic data store flows to an in-memory
data store, which feeds applications that demand extremely low latency to satisfy business
needs. It may well be the case that the best solution for such a set of business needs is to use
different database products for each workload type.

Polyglot Persistence: The Next Generation
Database Architecture
Distributed databases and especially NoSQL did solve the scalability and
performance- related issues; however, they are just one part of the larger enterprise
database management ecosystem. Enterprise database management landscape is all
about catering to the mixed workload of OLAP and OLTP. SQL skills and tools are highly
prevalent in the enterprise database management ecosystem, and more importantly
people have an SQL mind-set. So, assuming a NoSQL-only database management system
for the enterprise is a harder fact to accept. The primary challenge with NoSQL is that it's
not SQL. Each NoSQL data store is unique and so requires careful design considerations.

SQL focuses on “what” (ability to query the data and use the data) and not “how”
(how is the data distributed). Business users and developers are well versed with the
“what,” now exposing them to also learn the “how” part is increasingly difficult. Hadoop
is a great example of this phenomenon. Even though Hadoop has seen widespread
adoption it's still limited to silos in organizations. You won't find a large number of
applications that are exclusively written for Hadoop. The developers first have to learn
how to structure and organize data that makes sense for Hadoop and then write an
extensive procedural logic to operate on that data set. The enterprise software is all about
SQL. Embracing, extending, and augmenting SQL is a smart thing to do.

But at the same time we can’t ignore the power of NoSQL databases, hence the use
of heterogeneous data stores within the enterprise is gradually becoming a common

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

99

practice in application development. Modern applications tend to rely on a polyglot
approach to persistence, where traditional RDBMS databases, columnar databases,
non-relational data stores, and scalable systems associated with emerging NewSQL and
NoSQL technologies, are getting used simultaneously.

So, what exactly is polyglot persistence?
As we have discussed earlier, different databases technologies are designed to

solve different workload problems. In addition, there are specialized databases to
handle different type of data. Instead of using single database management software
for all of the enterprise data requirements, it is wise to look for “horses for courses”
approach. This hybrid approach of mixing different database technologies and designing
database architectures to meet the specifics of business requirements is called “polyglot
persistence” (Figure 4-7).

Figure 4-7. Illustration of a polyglot persistence conceptual architecture

“Polyglot persistence” refers to the use of both an RDBMS and one or more NoSQL
databases as the database management layer for modern applications.

Below, we will discuss few use cases of “polyglot persistence.”

How Digg is Built Using Polyglot Persistence
Digg is a social news website. It allows users to discover, share, and recommend web
content. Members of the community can submit a webpage for general consideration.
Other members can vote that page up (“digg”) or down (“bury”). Although voting takes
place on digg.com, many websites add “digg” buttons to their pages, allowing users to
vote as they browse the Web. The end product is a series of wide-ranging, constantly
updated lists of popular and trending content from around the Internet, aggregated by a
social network.

http://digg.com/

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

100

The site has several features:

Facebook Connect: Users of Digg and Facebook can connect
their accounts. When a Facebook account is connected to a
Digg account, Digg articles can then be shared on the user's
Facebook page. Facebook Connect also allows Facebook users
to log into Digg with their Facebook account, bypassing the
need to create a Digg account.

Digg Dialog: Digg users can submit questions to a preselected
famous individual who agrees to participate in an interview
with a reporter chosen by Digg.

DiggBar: The DiggBar was a frame that gave users access to Digg
features without leaving their current webpage. A toolbar above
the page allowed users to access Digg comments and analytics.

Digg API: Digg opened their API to the public on April 19,
2007. This allowed software developers to write tools and
applications based on queries of Digg's public data, dating
back to 2004.

Digg App: Digg released free apps for iPhone and Android in
early 2010. The app allowed users to browse stories and digg
content. It featured close integration with other social media
platforms; users can connect using Facebook or Twitter and
share Digg content through them.

To effectively manage all these features, Digg turned to polyglot persistence
(see Figure 4-8 below) storing data in multiple database systems depending on the type
of data and the access patterns.

Figure 4-8. Digg’s polyglot persistence conceptual architecture

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

101

• Cassandra: Primary storage for access patterns for such things as
items (stories), users, Diggs, and the indexes that surround them.

• HDFS: Logs user activity from the site and API events. The data
source and destination for batch jobs run with Map-Reduce and
Hive in Hadoop.

• MySQL: Serves as the data store for the story promotion
algorithm and calculations, because it requires lots of JOIN heavy
operations, which are not a natural fit for the other data stores.

• Redis: Primary storage for the personalized news data because
it needs to be different for every user and quick to access and
update. Redis is used to provide the Digg Streaming API and also
for the real-time view and click counts, since it provides super low
latency as a memory-based data storage system.

• Scribe: This is the log-collecting service. Although this is a
primary store, the logs are rotated out of this system regularly and
summaries written to HDFS.

Use Case: E-commerce Retail Application
E-commerce stands for “electronic commerce,” which is in itself a broad term for selling
on the Internet through a website electronically. With the ability to process credit cards
electronically on the Internet, just about anything can be sold on the Web. More and more
people are enjoying the convenience and lower prices of buying online. Online stores are
often able to reduce prices because they are able to eliminate overhead such as employee
payrolls required to run a brick-and-mortar store.

E-commerce websites are built differently, but they all use the same basic functions.
The customer visits the welcome page and selects a product category. Then the customer
browses products within the selected category page and adds a product to his or her
shopping cart. The customer continues shopping and selects a different category, then
adds several products from this category to the shopping cart. Then the customer selects
the “view cart” option and updates quantities for cart products in the cart page. Then
the customer verifies the shopping cart’s contents and proceeds to checkout. On the
checkout page, the customer views the cost of the order and other information, fills in
personal data, then submits his or her details. The order is processed and customer is
taken to a confirmation page. The confirmation page provides a unique reference number
for tracking the customer order, as well as a summary of the order.

What will be our approach, if we apply polyglot persistence to develop the
e-commerce application?

It is quite evident that in the e-commerce application in Figure 4-9, we are dealing
with different types of data: session data, transaction data, shopping cart data, log level
data, product catalogs, customer profile data, etc. It is not necessary for the e-commerce
application to use a single data store for all of its needs, since different databases are built
for different purposes and not all problems can be elegantly solved by a single database.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

102

Let’s discuss each one of these data types and evaluate what kind of a data store will
serve the need.

• Session Data in Redis or Memcached: Session data requires
faster read and write but not durability. For better durability we
can always use write-through.

• Transactional Data in RDBMS: Order, payment and account in
an ACID compliant traditional RDBMS store. In addition to that,
HBase/Hive with Hadoop can be used to process transaction-
level data such as order history for market basket analysis.

• Shopping Cart Data in Riak or Cassandra: A high-availability
and fault-tolerance data store such as Riak or Cassandra is the
appropriate choice because it is a key/value store with excellent
query API with primary key operations such GET, PUT, DELETE,
UPDATE.

• Log Level Data in Cassandra: Audit and activity in a very high
write throughput data store such as Cassandra. This is also good for
analytic and real-time data mining such as product ranking, etc.

• Product Recommendations in Neo4j: To recommend products
to customers when they place products into their shopping
carts—for example, “your friends also bought these products”
or “your friends bought these accessories for this product”—then
introducing a graph data store in the mix becomes relevant.
Related products and similar products are in a graph database
such as Neo4j.

• Product Catalogue in MongoDB: A document-oriented data
store that will provide high-read throughput and the ability to
handle frequent data change (stock-level information).

• Customer Profile Data in MongoDB: A document-oriented data
store to manage purchase history, shipping and billing address, etc.

Figure 4-9. Illustration of process flow for e-commerce application

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

103

Note ■ While there are many advantages with the polyglot persistence approach shown

in Figure 4-10, it also introduces complexity in managing such an environment. Each data

storage mechanism introduces a new interface to be managed. Furthermore data storage

is usually a performance bottleneck, so you have to understand a lot about how the technology

works to get decent speed. Using the right persistence technology will make this easier,

but the challenge won't go away. Many of these NoSQL options involve running on large

clusters. This introduces not just a different data model but a whole range of new questions

about consistency and availability.

Figure 4-10. Illustration of a polyglot persistence conceptual architecture

End Points
Throughout this chapter we have discussed how understanding the workloads is the key
to design applications that requires distributed database management functionality.
We also discussed that between OldSQL, NewSQL, and NoSQL there are many databases
that need evaluation before one embarks on the application development activities.
In addition, polyglot persistence is the next new thing. So, what are the best practices
and rules that an architect should follow?

The rules that are presented below are in no particular order. A number of these
are essentially the same as would apply in a transaction-processing environment,
though they may have additional considerations because of the analytic nature of the
environment. On the other hand, some of the rules are specific to analytic databases.

Rule 1: Fire and Forget: Application users are only interested in the application
they are interfacing with. They do not know about (nor want to know about) the
databases that underpin that application. It is thus essential that the characteristics of
the databases are invisible to the user, and it should remain that way. This is as true
for transactional environments as it is for analytic applications. However, there is an
additional consideration when it comes to analytics. In order to get good performance for
query-intensive applications you need to focus on performance considerations: index,
materialized views, and other such techniques in order to achieve the performance lift.

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

104

However, these performance improvement considerations are not feasible to be applied
to all possible scenarios. Different workloads demand different kinds of performance
improvement considerations; at the time of design, you can’t possibly articulate all
possible data access scenarios.

For all of these reasons, just choosing a relational database will not be sufficient
enough. You will have to look at a combination of databases to solve the business
problem.

Rule 2: Ease of Implementation: There are two aspects to this, the first being that
the database should be easy to install and, secondly, the resulting application with its
underlying database, is easy to deploy. In particular, there should be no requirement
for the end user to go through the painful process of understanding the technology
architecture components to configure any of the database elements during the
implementation process.

Rule 3: High Performance: Everybody expects top-notch performance from
their applications; it is all the more important for analytic implementations than for
transactional ones. For analytics workloads, it is not easy to predict which particular
analysis or complex queries the users are going to run at any particular time. In a
transactional environment, on the other hand, you know (roughly) the type of queries
that are run and the expected throughput performance that has to be catered to. However,
when it comes to analytics there are not only ever-increasing amounts of data available to
analyze but also new types of data that might be appropriate to include in queries. Thus,
resolving scalability issues is of paramount importance.

Rule 4: High Availability: High availability is always a potential requirement
whenever an application is deemed to be “mission critical.” The question, of course,
is whether analytic applications are regarded as mission critical, and the answer is
that it depends on the application and the user. For example, if you have a real-time
requirement for security event monitoring, or fraud detection, then high availability is
likely to be essential. On the other hand, if you are using analytics to support some sort of
customer intelligence application used on a periodic basis, then high availability may not
be a critical requirement. The conclusion therefore must be that in some environments it
is a must have while in others it is a nice to have. But high availability comes at the cost of
other considerations like consistency of data and partition tolerance.

Rule 5: Low Cost: The requirement for low costs is increasingly becoming a hot
topic on CIO’s agenda. This is not just to the license cost to the software provider but also
about the hardware requirements. If you are dealing with big data scales and you need
scalability and high availability options, it will be clearly advantageous if the database is
highly distributed and runs on low-cost commodity hardware.

Rule 6: Ease of Migration: This won’t apply in every case because sometimes new
analytic applications are being built rather than existing solutions being ported to a new
platform. However, where this does apply, the ease and speed with which the migration
can be implemented will be a major factor. There are a number of vendors that support
specific capabilities to port from one or other of these environments and ensure the
existing applications should run without change and that database schemas can be
directly imported into the new environment.

Rule 7: Flexibility: Do you want to offer an environment in which the users can only
query what you have pre-prepared for them, or do you want to allow them to make ad hoc
or train-of-thought inquiries that go beyond any pre-defined path? While it is always good
to provide a comprehensive set of out-of-the-box analytic functions as possible, nobody

CHAPTER 4 ■ EMERGING DATABASE LANDSCAPE

105

can predict and design for all possible user data access scenarios. Therefore design for as
much flexibility as possible but beware you can’t design for all possible scenarios. That’s
the reason why polyglot persistence is going to become increasingly important.

Rule 8: Loading: There are two circumstances in which the loading capability of the
database will be relevant: either because you have large amounts of data to be loaded
or because you need to load data in real-time or near real-time. In some circumstances
you may have to design for both the scenarios. You will have to evaluate a product that
supports a high ingestion rate and (near) real-time capabilities or both. In terms of
raw loading capacity this is simply a question of the size of the pipe into the database,
bearing in mind any parallelism that is provided. Real-time loading requires support for
the ability to micro-batch data (say, batches of one minute) or explicit trickle feeding
mechanisms such as change data capture or streaming capability.

Rule 9: Complex Analytics: By “complex analytics” we do not always mean that the
questions customers want to ask are complex; but even simple queries (i.e., full table
scans, large table joins, etc.) can bring the database to a grinding halt. While there is no
formal definition of what constitutes a complex query, they typically involve such things
as multi-way and multi-table joins, whole table scans, correlated sub-queries, and other
functions that are either computer intensive, I/O intensive or both. Your solution has
to be able to perform such queries in a timely manner, and you’ll therefore require a
database product that can cope with such a workload, also bearing in mind that these
queries may be ad hoc and must perform to expectations.

Rule 10: Scalability: If there’s one thing you need to be worried about it is increasing
volumes of data. Whatever solution you choose needs to be able to easily scale as data
volumes grow. It is not just a question of being able to store larger amounts of data; it is
also about how quickly you can ingest data from multiple sources. Moreover, it is likely
that more queries will be run by more users, as the value of your analytic application or
platform becomes apparent to the users, hence the database will also need to be scalable
in terms of the user concurrency.

References
THE DATABASE REVOLUTION: A Perspective On Database: Where We Came From and

Where We’re Going: The Bloor Group
10 Rules: Embedding a Database for High Performance Reporting and Analytics: Bloor

Research
martinfowler.com/articles/nosql-intro.pdf
NoSQL Distilled – A Brief Guide to the Emerging World of Polyglot Persistence: Pramod J Sadalage,

Martin Fowler

http://martinfowler.com/articles/nosql-intro.pdf

107

CHAPTER 5

Application Architectures
for Big Data and Analytics

Big data’s bigness is hardly the interesting characteristic. The real fun lies
in how we think about data, where they reside in the data ecosystem and
how do we generate value from them.

Data-driven platforms are powering business innovations. Generally speaking,
transactional data created and stored by enterprise systems such as customer data
in CRM applications, operational data in ERP systems, financial data in accounting
databases, and sales and marketing data in sales and marketing applications constituted
the majority of business relevant data. This data was brought into enterprise data
warehouse (EDW) systems and BI applications for a consolidated enterprise-wide
view and business performance reporting. These system capabilities were gradually
challenged due to the scalability and performance considerations purely owing to
changing nature of data (volume, velocity, and variety).

Figure 5-1 illustrates the data spectrum along with the big data characteristics.
In the earlier chapters we have discussed the need for a radically different approach
to data processing and analytics to solve the challenges thrown by big data. In
the subsequent sections in this chapter we will discuss what different application
architectures we need to consider to implement big data and analytics solutions.

108

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

B
ig

 D
at

a
S

en
so

rs
/R

FI
D

/D
ev

ic
es

M
ob

ile
 W

eb

U
se

r
C

lic
k

S
tr

ea
m

S
en

ti
m

en
t

U
se

r
G

en
er

at
ed

 C
on

te
nt

S
oc

ia
l I

nt
er

ac
ti

on
s

&
 F

ee
ds

S
pa

ti
al

 &
 G

P
S

 C
oo

rd
in

at
es

Ex
te

rn
al

 D
em

og
ra

ph
ic

s

B
us

in
es

s
D

at
a

Fe
ed

s

H
D

 V
id

eo
, A

ud
io

, I
m

ag
es

S
pe

ec
h

to
 T

ex
t

P
ro

du
ct

/S
er

vi
ce

 L
og

s

S
M

S
/M

M
S

W
eb

 L
og

s

O
ff

er
 H

is
to

ry

A
/B

 T
es

ti
ng

D
yn

am
ic

 P
ri

ci
ng

A
ff

ili
at

e
N

et
w

or
ks

S
ea

rc
h

M
ar

ke
ti

ng

B
eh

av
io

ra
l T

ar
ge

ti
ng

D
yn

am
ic

 C
ha

nn
el

s

S
eg

m
en

ta
ti

on

O
ff

er
 D

et
ai

ls

C
us

to
m

er
 In

te
ra

ct
io

ns

S
up

po
rt

 C
on

ta
ct

s

W
EB

ER
P

P
ur

ch
as

e
D

et
ai

l
P

ur
ch

as
e

R
ec

or
d

P
ay

m
en

t
R

ec
or

d

M
eg

a
b

yt
es

G
ig

a
b

yt
es

C
R

M

Te
ra

b
yt

es

P
et

a
b

yt
es

In
cr

ea
si

ng
 D

at
a

Va
ri

et
y

an
d

C
om

pl
ex

it
y

F
ig

u
re

 5
-1

.
D

a
ta

 L
a

n
d

sc
a

p
e

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

109

The influence of the Web, mobile devices, and other technology evolutions
challenged this traditional approach and processes primarily due to the changing nature
of data. Data is no longer centralized and limited to the enterprise systems only; data has
become highly distributed and poly-structured (in many cases loosely structured) and is
growing at exponential rates.

Over the last two decades or so, traditional enterprise data warehouses established
themselves as the enterprise data asset, but the implementation styles and technologies
adopted are very different than the big data scenarios. To leverage big data, most
organizations will have to develop an enterprise data platform ecosystem that utilizes
traditional EDW data and big data through carefully architected hybrid data warehouse
architectures. We call such an ecosystem big data warehouse (BDW).

Table 5-1 outlines a comparative view of the business expectations and design
principles of big data warehouse (BDW) and enterprise data warehouse (EDW).

Big Data Warehouse and Analytics
Traditionally, data management and analytics followed a well-governed process
(Figure 5-2). First, define business requirements (mostly metrics/KPIs, reports, data
sources), then develop data integration modules to integrate data from various
enterprise systems (CRM, ERP, finance, sales, marketing). Perform data profiling and
data quality analysis to certify the correctness and completeness of data, then develop
analysis oriented data models (EDW and data marts), then develop reporting and
analysis applications (reports, dashboards, multi-dimensional cubes) and finally
develop analytics modules (churn models, customer segmentation models, pricing
optimization models).

Figure 5-2. Traditional data processing life cycle

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

110

Table 5-1. Comparative View of BDW and EDW Design Principles

Big Data Warehouse Characteristics EDW Characteristics

Business Expectations:

Mostly focused on exploratory •
analysis, finding new insights, quick
and ready access to new data, etc. The
veracity of results may or may not be
questionable since the value of data
is not ascertained and not quality
controlled upfront.

Business Expectations:

Every data entity is strictly governed •
and quality controlled. Mostly fact
based, pre-designed to meet business
specific reporting requirements,
in many instances the EDW is
considered to be single source of truth
in the enterprise.

Design Methodology:

Highly agile and iterative approach to •
enable rapid insights by integrating as
many data sources as possible and run
as many sophisticated algorithms as
possible. Intent is to prove or validate
business hypotheses by combining
multiple data sources, including
internal and external sources, and
with or without clear definitions and
data models.

Design Methodology:

A combination of methodologies •
(iterative during requirement
gathering and reports prototypes
creation phases, waterfall during data
integration and data model creation
phases) are applied to business
specific requirements after careful
assessment of data needs covering
both data integration and data
usage aspects. Intent is to provide
a consistent, integrated, and single
source of truth standardized with data
definitions and usage control policies.

Data Architecture Considerations:

Should have the ability to integrate •
all possible data structures (both
inside the firewalls and external to the
corporate).

Should have the ability to scale at •
relatively low cost.

Should have the ability to analyze •
massive volumes of data without
resorting to sampling mechanisms.

Data Architecture Considerations:

Not all data is managed and •
maintained in the EDW, the data
sources are previously known,
and quality controlled and pre-
modeled meeting specific business
requirements only. Anything new
to be added has to go through a
rigorous requirements gathering and
validation process.

Has the ability to scale but at a •
potentially higher cost per byte.

MPP architectures are leveraged to •
provide performance lift.

Data is periodically archived to •
accommodate data growth and to
keep the cost low.

(continued)

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

111

Big Data Warehouse Characteristics EDW Characteristics

Data Integrity and Standards:

Data integration standards are •
loosely defined, mostly programmer
or application style driven, lack of
metadata management, business
rules and transformations an integral
part of the programs.

Data and data processing programs •
are highly distributed.

Data Integrity and Standards:

Driven by relational database •
management systems principles
and architecture approaches (ETL,
ELT), data consistency (referential
integrities and business rules) and
availability drives major development
activities.

Data is primarily centralized and data •
processing programs follow a well-
defined execution approach, in most
cases these programs are sequential.

Table 5-1. (continued)

Data Design Principles for Big Data Solutions
The distributed nature of big data implies that the data designs must focus on
partition-tolerance, secondly to solve the scale issue the data also needs to be distributed
across many clusters and nodes hence data designs should also explicitly account for
availability. There are two methods broadly applied to address the partition-tolerance
and availability requirements:

Vertical Scaling•

Horizontal Scaling•

Vertical Scaling. Vertical scaling simply involves moving the application to larger
computers. This approach is also known as “scale up.” This works quite well for data
but does have limitations such as outgrowing the capacity. It can also be expensive, as
you may have to buy newer, bigger, and better machines to cope and this could lead to a
vendor lock situation.

Horizontal Scaling. This approach offers more flexibility but is far more complex
to manage and design. Horizontal scaling is done by functional scaling, which involves
organizing similar data (either through their functional alignment or if some data entities
are always queried together) groups and spreading these groups across databases.
The second approach is sharding, which involves splitting the data within the areas of
functionality across multiple databases. This approach is also known as “scale out.”

Before we delve deep into data design principles for big data solutions, you should
first understand a few established theories governing data design approaches.

ACID. ACID stands for atomicity, consistency, isolation, and durability. Following
Boyce-Codd’s principles, relational database management systems adopted the ACID
approach for data design. In essence, the relational database systems ensured atomicity
(a transaction is all or nothing), consistency (only valid data is written to the database),
isolation (all transactions are happening serially and the data is correct) and durability
(what you write is what you get).

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

112

• Atomicity. Demands that each transaction is complete: i.e., if one
part of the transaction is not successful then the entire transaction
will be unsuccessful, and the database will be left unchanged.
Atomicity must be guaranteed in each and every circumstance,
including crashes, errors, and power failures

• Consistency. All parts of a transaction must be consistent in that
they must conform to all defined rules, including but not limited
to cascades, triggers, constraints, and any combination of these.

• Isolation. Ensures that the synchronized execution of
transactions results in a system state that can be obtained if
transactions are executed serially (i.e., one after another). Each
transaction must execute in total isolation (e.g., if transaction 1
and transaction 2 are being simultaneously executed, then each
of them should remain unaware of the presence of each other).

• Durability. Once committed, a transaction will remain
committed even in the event of crashes, errors, or loss. Once the
SQL statements within a transaction executed and committed
the results to the database, the transaction is stored permanently
(even if the database crashes immediately after committing).

ACID relational distributed databases have been a key data design principle for
some time; but in today’s world of Internet applications (which often needs to be highly
scalable due to the huge number of end users and huge data sizes to deal with), there
needs to be a different set of design principles, and this is where CAP and BASE theorems
came into existence.

CAP. CAP stands for consistency, availability, and partition-tolerance. CAP theory
came into existence because of several shortcomings that came to light when you extend
the ACID principles to large distributed data systems.

When you are trying to scale a database system across multiple nodes you run into
a few challenges: to make scalable systems that can handle lots of reads and writes you
need many more nodes. Now that you are acquiring more and more nodes, reliability
becomes a key concern and down time is not acceptable; you need to find a way to
handle machine failures. Once you try to scale ACID across many machines you run
into performance bottlenecks and network failures. The data processing programs and
algorithms run into performance issues in a distributed environment.

CAP theorem addressed these challenges by suggesting that any distributed
database system can have, at most, two of the three desirable states: consistency (your
data is correct all the time and what you write is what you read), availability (you can read
and write your data all the time), partition-tolerance (if one or more nodes fail the system
still works and becomes consistent when the system comes online). Typically, CAP is
used in relation to consistency in services for high reliability and associated with cache
data stores.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

113

• Consistency. Nodes at the same time see the same data.

• Availability. Guarantee that a response will be given for
every request and will show whether the request failed or was
successful.

• Partition Tolerance. The system will continue to operate despite
any failure in a part of the system or random loss of messages.

BASE. This is an alternative to ACID, rather than requiring consistency after every
transaction, it is acceptable for the database to eventually be in a consistent state: e.g.,
it’s ok to use stale data, ok to give approximate answers (an example of this is Amazon,
does it really matter if the number of books it tells you are available isn’t strictly true? The
simple answer is no, as even if you do order an item and it then isn’t available they refund
your money and credit the transaction). BASE is typically associated with NoSQL data
stores and it focuses on partition-tolerance and availability and literally puts consistency
to a lower priority in order to achieve better partitioning and availability.

In other words, you are designing scalable systems that are basically available
(system seems to work all the time), soft state (it doesn’t have to be consistent all the time)
and eventually consistent (becomes consistent at some later time).

Note ■ Properties like consistency and availability appear in ACID as well as CAP and

BASE theories; however, they differ in implementation approaches because choosing

availability as your design consideration for distributed database systems affects some of

the ACID principles.

If we reflect back to our earlier discussions around big data characteristics in earlier chapters,

it is quite evident that the data will be scattered across multiple nodes and clusters hence the

data management system for such scenarios has to be mostly partition-tolerant. Thus, the

decision to choose type of database largely depends on what design considerations are

important to meet the business use case. If you need a high consistence data model then

RDBMS is still the best answer, whereas if you have requirements for high availability and

partition-tolerance then NoSQL would be the right choice.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

114

Big Data Warehouse System Requirements
and Hybrid Architectures
The system requirements for big data solutions are completely different from traditional
data management and analytics solutions. Big data solutions will require a technology or
a combination of technologies capable of:

Managing scale and wide variety of data types covering both the •
scenarios “data at rest” and “data in motion”

Managing distributed data across thousands of processors; in •
many situations the data clusters and grids may be geographically
distributed

Integrating any data source whose structure is not previously •
known (being schema-read ready)

Ability to manage and execute workflows that can work across •
distributed hundreds and thousands of nodes

Ability to provide built-in semantics to handle and manage trade-•
offs between consistency, availability and high partition-tolerance
functionality

Ability to support extreme mixed workloads like depth queries as •
well as breadth queries ranging from ad hoc queries to strategic
analysis, and while loading data in batch and streaming fashion

If these are the requirements for big data solutions, do we have any such application
architecture that can address all of these requirements? Generally speaking there are two
types of application architecture approaches to implement big data solutions: extended
RDBMS Architectures extending traditional EDW architectures to manage volume of data
and hybrid architectures employing map-reduce/Hadoop architectures to provide a data
platform that can manage scale and variety of data types.

A current view of product enhancements of almost all of the major relational
database management system vendors outlines an interesting pattern, most of the
RDBMS products have significantly evolved adding features like massively parallel
processing (MPP) abilities, columnar storage, in-database analytics and ability to execute
hadoop map-reduce technologies in the database itself.

This raises a set of interesting questions. How will big data impact your EDW and
BI investments? Will it replace them? If not, then how would you combine these two
technologies within your current data management architectures?

The intent of these two technologies is different, and their strengths complement
each other providing a holistic data platform for enterprises to leverage. The BDW can be
used as a data ingestion platform to acquire any type of data of interest at reasonable cost,
with little upfront data processing, and less data modeling and data cleansing overheads.
The EDW can then utilize these data sources to further enrich the already existing facts
and dimensions to support reporting and analytics activities.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

115

The first approach is to have Hadoop as a data ingestion and data •
processing platform before the data flow reaches the RDBMS.

The second approach is to have Hadoop as data management •
platform in parallel to the RDBMS.

In application architecture approach A, Hadoop is used primarily as a data ingestion
mechanism and a staging area. In contrast to the normal file system or relational staging
area where we can only keep a certain amount of data, using Hadoop as a staging layer
we can now keep all the historical data. Apart from historical data, the main advantages
of using Hadoop for the staging area are the flexibility to ingest any type of data and
also to address scale issues. From the Hadoop staging area we can use specialized data
integration tools to move data into RDBMS.

In application architecture approach B, Hadoop is primarily used to store and
process data showing big data characteristics, whereas RDBMS is used to store and
process “small data.” However, both these data stores are used in conjunction to finally
make the information available to the consumers.

The whole point behind the bigness of big data making solutions complex is entirely
not true. Consider the scenario where even 50 GB of data can be said to be big data if the
structure is too complex for a normal RDBMS to handle. In that context, what would we
call small data? Small data are simple homogenous data structures, e.g. structured data,
strings, dates, times, and all the data we used to feed into the traditional data warehouses.

Theoretically speaking, a large collection of these small data can eventually become
big data.

In any enterprise data management scenario, we will see a combination of small
data and big data and there are two application architecture approaches that are widely
followed to implement BDW solutions depicted in Figure 5-3.

Figure 5-3. Architecture patterns involving Hadoop and RDBMS

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

116

Enterprise Data Platform Ecosystem – BDW
and EDW
A true enterprise data platform should leverage the synergy of the two technology stacks
(i.e., BDW and EDW). Together they can provide capabilities to exploit petabyte-scale
preprocessing of structured data and unstructured data such as free-form text (e.g.,
customer comments, user feedback, or product complaints) and semi-structured data
such as blogs and click streams. Using map-reduce technologies, the unstructured data
and semi-structured data can be transformed to structured results, which can be further
fed into the EDW analysis components as new attributes of significance, for example,
by first searching for relevant words and concepts and then quantifying the results with
counts or other statistics that reveal patterns. These new results can then be combined
with other existing facts or dimensions in the EDW to enrich analytic capabilities.

As discussed earlier in this chapter, the goal of BDW is to provide a platform that
helps in generating insights by following a discovery type of approach. The EDW data
elements (the dimension entities, aggregated facts, enterprise relevant KPIs, metadata
information) can significantly enhance this discovery process and shorten the time-
to-insight cycle. The conformed dimension tables in EDW reflect a standardized view
of business critical entities within the enterprise; they serve as a single source of truth
by linking records across several data warehouse fact tables or data marts, they are
validated by master data management processes and hence are usually de-duplicated
and cleansed. In addition to the dimensional data, other important categories of data
within the EDW are hierarchies, metadata, taxonomies, and business rules. These
EDW data components may provide a useful business glossary and cross-reference
data dictionary during the discovery processes in the BDW. The EDW is also a valuable
source of standardized facts, dimensions, and KPIs; these enterprise data elements can
be effectively leveraged during the discovery process in the BDW. For example, during
the discovery process in BDW you may notice few anomalies in data; but when you
reference the metrics in EDW you will realize some of those anomalies are valid business
conditions.

Figure 5-4 illustrates the enterprise data platform consisting of hybrid architecture
where both the data platforms contribute toward developing an enriched enterprise
data store.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

117

How does Traditional Data Warehouse processes
map to tools in Hadoop Environment?
What we have discussed thus far is a broad view of the enterprise data platform
ecosystem consisting of Hadoop and RDBMS components. But these technologies have
very distinct characteristics, as described in Table 5-2.

Figure 5-4. Enterprise data platform consisting of BDW and EDW

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

118

There are several components within the Hadoop environment performing data
management operations; below is a listing of their functionality and roles they play,
grouped under data management functions as relevant to a data warehouse scenario.

• Hadoop Distributed File System: HDFS, the storage layer of
Hadoop, is a distributed, scalable, Java-based file system adept at
storing large volumes of unstructured data.

• MapReduce: MapReduce is a software framework that serves
as the compute layer of Hadoop. MapReduce jobs are divided
into two parts. The map function divides a query into multiple
parts and processes data at the node level. The reduce function
aggregates the results of the map function to determine the
answer to the query.

• Hive: Hive is a Hadoop-based data warehouse developed by
Facebook. It allows users to write queries in SQL, which are then
converted to map-reduce. This allows SQL programmers with no
map-reduce experience to use the warehouse and makes it easier
to integrate with business intelligence and visualization tools
such as Micro Strategy, Tableau, Revolutions Analytics, etc.

Hive, initially a sub-project of Hadoop, evolved to provide a formal query capability.
In effect, Hive turns Hadoop into something like a data warehouse system, allowing data
summarization, ad hoc queries, and the analysis of data stored by Hadoop. Hive holds
metadata describing the contents of files and allows queries in HiveQL, an SQL-like
language. It also allows map-reduce programmers to get around the limitations of HiveQL
by plugging in map-reduce routines.

Table 5-2. RDBMS and Hadoop characteristics

Relational DBMSs Map-Reduce/Hadoop

Mostly proprietary Open Source

Expensive, Total Cost of Ownership
(TCO) grows exponentially

Less expensive, Total Cost of Ownership
(TCO) is linear

Data Structures are rigid and needs to be
modeled prior

Flexible data structure, less to no modeling
required

Great for speedy indexed lookups Great for massive full data scans

Rich relational semantics Indirect support for relational semantics,
ex: Hive

Indirect support for complex data
structures

Deep support for complex data structures

Indirect support for complex algorithms,
iterations and branching operations

Deep support for iterations, branching
operations and complex algorithms

Deep support for transaction processing Little to no support for transaction processing

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

119

• Pig: Pig Latin is a Hadoop-based language developed by Yahoo.
It is relatively easy to learn and is adept at very deep, very long
data pipelines (a limitation of SQL.) Pig, originally developed at
Yahoo research, is a high-level language for building map-reduce
programs for Hadoop, thus simplifying the use of map-reduce. It
is a data flow language that provides high-level commands.

• HBase: HBase is a non-relational database that allows for
low-latency, quick lookups in Hadoop. It adds transactional
capabilities to Hadoop, allowing users to conduct updates,
inserts, and deletes. E-Bay and Facebook use HBase heavily.

• Flume: Flume is a framework for populating Hadoop with
data. Agents are populated throughout ones’ IT infrastructure
(inside web servers, application servers, and mobile devices, for
example) to collect data and integrate it into Hadoop.

• Oozie: Oozie is a workflow processing system that lets users
define a series of jobs written in multiple languages (such as map-
reduce, Pig and Hive) then intelligently links them to one another.
Oozie allows users to specify, for example, that a particular query
is only to be initiated after specified previous jobs on which it
relies for data are completed.

• Whirr: Whirr is a set of libraries that allows users to easily spin-up
Hadoop clusters on top of Amazon EC2, Rackspace, or any virtual
infrastructure. It supports all major virtualized infrastructure
vendors on the market.

• Avro: Avro is a data serialization system that allows for encoding
the schema of Hadoop files. It is adept at parsing data and
performing removed procedure calls.

• Mahout: Mahout is a data-mining library. It takes the most
popular data-mining algorithms for performing clustering,
regression testing, and statistical modeling and implements them
using the map-reduce model.

• Sqoop: Sqoop is a connectivity tool for moving data from
non-Hadoop data stores such as relational databases and data
warehouses into Hadoop. It allows users to specify the target
location inside of Hadoop and instruct Sqoop to move data from
Oracle, Teradata, or other relational databases to the target.

• BigTop: BigTop is an effort to create a more formal process or
framework for packaging and interoperability testing of Hadoop’s
sub-projects and related components with the goal improving the
Hadoop platform as a whole.

Clearly, native Hadoop is not a database by any stretch of the imagination. However,
once it became popular, it was inevitable that Hadoop would soon evolve to adopt some
of the characteristics of a database. HBase, another open source project, stepped in to

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

120

partially fill the gap. It implements a column-oriented data store modeled on Google’s
BigTable on top of Hadoop and HDFS, and it also provides indexing for HDFS. With
HBase it is possible to have multiple large tables or even just one large table distributed
beneath Hadoop.

There are a few areas where Hadoop, in its current form, scores well. An obvious one
is as an extract, transform, load (ETL) staging system when an organization has a flood of
data and only a small proportion can be put to use. The data can be stored in Hadoop and
jobs run to extract useful data to put into a database for deeper analysis.

Hadoop was built as a parallel processing environment for large data volumes,
not as a database. For that reason, it can be very useful if you need to manipulate data
in sophisticated ways. For example, it has been used both to render 3D video and for
scientific programming.

It is a massively parallel platform that can be used in many ways. Database
capabilities have been added, but even with these it is still best to not think of it as a
database product. The open-source nature of Hadoop allowed developers to try it, and
this drove early popularity as discussed earlier in Chapter 4. Because it became popular,
many vendors began to exploit its capabilities, adding to it or linking it to their databases.
Hadoop has generated its own software ecosystem (Figure 5-5).

Figure 5-5. Hadoop conceptual framework

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

121

How Hadoop Works
A client program accesses unstructured and semi-structured data from sources
including log files, social media feeds, and internal data stores. It breaks the data up
into parts, which are then loaded into a file system made up of multiple nodes running
on commodity hardware. The default file store in Hadoop is the Hadoop Distributed
File System, or HDFS. File systems such as HDFS are adept at storing large volumes of
unstructured and semi-structured data, as they do not require data to be organized into
relational rows and columns.

Each part is replicated multiple times and loaded into the file system so that if a node
fails, another node has a copy of the data contained on the failed node. A Name Node
acts as facilitator, communicating back to the client information such as which nodes are
available, where in the cluster certain data resides, and which nodes have failed.

Once the data is loaded into the cluster, it is ready to be analyzed via the map-reduce
framework. The client program submits a map job, usually a query written in Java, to one
of the nodes in the cluster known as the Job Tracker. The Job Tracker refers to the Name
Node to determine which data it needs to access to complete the job and where in the
cluster that data is located. Once determined, the Job Tracker submits the query to the
relevant nodes.

Note ■ The design philosophy is based on the concept that rather than bringing all

the data back into a central location for processing, processing occurs at each node

simultaneously, or in parallel. This is an essential characteristic of Hadoop.

When each node has finished the processing task, it stores the results. The client
program then initiates a reduce job through the Job Tracker in which results of the map
phase stored locally on individual nodes are aggregated to determine the answer to
the original query, then loaded on to another node in the cluster. The client accesses
these results, which can then be loaded into one of number of analytic environments for
analysis. The map-reduce job has now been completed (Figure 5-6).

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

122

F
ig

u
re

 5
-6

.
M

a
p

-r
ed

u
ce

 jo
b

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

123

Eventually an answer is arrived at. The map stage is a filter/workload partition stage.
It simply distributes selection criteria across every node. Each node selects data from
HDFS files at its node, based on key values. HDFS stores data as a key with attached other
data that is undefined (in the sense of being in a schema). Hence it is a primitive key
value store, with the records consisting of a head (the key) and a tail (all other data).

The map phase reads data serially from the file and retains only keys that fit the
map. Java hooks are provided for any further processing at this stage. The map phase
then sends results to other nodes for reduction, so that records that fit the same criteria
end up on the same node for reduction. In effect, results are mapped to and sent to an
appropriate node for reduction.

The reduce phase processes this data. Usually it will be aggregating or averaging or
counting or some combination of such operations. Java hooks are provided for adding
sophistication to such processing. Then there is a result of some kind on each reduce node.

Further reduction passes may then be carried out to arrive at a final result. This may
involve further data passing in the form of mapping and reducing, making up the full
Hadoop job. In essence, this is simply a parallelization by workload partitioning scheme
with the added nuance of being fault tolerant.

Once the map-reduce phase is complete, the processed data is ready for further
analysis by data scientists and others with advanced data analytics skills. Data scientists
can manipulate and analyze the data using any of a number of tools for any number of
uses, including to search for hidden insights and patterns or to use as the foundation to
build user-facing analytic applications. The data can also be modeled and transferred
from Hadoop clusters into existing relational databases, data warehouses, and other
traditional IT systems for further analysis and/or to support transactional processing.

Hadoop Technical Components
A Hadoop “stack” is made up of a number of components. They include:

• Hadoop Distributed File System (HDFS): The default storage
layer in any given Hadoop cluster;

• Name Node: The node in a Hadoop cluster that provides the
client information on where in the cluster particular data is stored
and if any nodes fail.

• Secondary Node: A backup to the Name Node, it periodically
replicates and stores data from the Name Node should it fail.

• Job Tracker: The node in a Hadoop cluster that initiates and
coordinates map-reduce jobs, or the processing of the data.

• Slave Nodes: The grunts of any Hadoop cluster, slave nodes store
data and take direction to process it from the Job Tracker.

In addition to the above, the Hadoop ecosystem is made up of a number of
complimentary sub-components. NoSQL data stores like Cassandra and HBase are
also used to store the results of map-reduce jobs in Hadoop. In addition to Java, some
map-reduce jobs and other Hadoop functions are written in Pig, an open-source

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

124

language designed specifically for Hadoop. Hive is an open source data warehouse
originally developed by Facebook that allows for analytic modeling within Hadoop.

Hadoop: The Pros and Cons
The main benefit of Hadoop is that it allows enterprises to process and analyze large
volumes of unstructured and semi-structured data, heretofore inaccessible to them,
in a cost- and time-effective manner. Because Hadoop clusters can scale to petabytes
and even exabytes of data, enterprises no longer must rely on sample data sets but can
process and analyze all relevant data. Data scientists can apply an iterative approach to
analysis, continually refining and testing queries to uncover previously unknown insights.
It is also inexpensive to get started with Hadoop. Developers can download the Apache
Hadoop distribution for free and begin experimenting with Hadoop in less than a day.

The downside to Hadoop and its myriad components is that they are immature
and still developing. As with any young technology, implementing and managing
Hadoop clusters and performing advanced analytics on large volumes of unstructured
data requires significant expertise, skill, and training. Unfortunately, there is currently
a dearth of Hadoop developers and data scientists available, making it impractical for
many enterprises to maintain and take advantage of complex Hadoop clusters. Further,
as the community improves upon Hadoop’s myriad components and new components
are created, there is, as with any immature open source technology/approach, a risk of
forking. Finally, Hadoop is a batch-oriented framework, meaning it does not support
real-time data processing and analysis.

The Hadoop Suitability Test
Hadoop ecosystem plays an integral part in any big data implementation. Despite the
preference, not all enterprise use cases necessitate Hadoop as a must. How can we
objectively assess the suitability of Hadoop to a business problem?

Below we have outlined few guiding principles to help in assessing the
appropriateness of a Hadoop implementation with respect to the business problem.

• Data Volume Consideration: Historical as well Incremental in a
scale of GB, TB, PB, EB

• Data Type Consideration: structured, semi-structured,
unstructured

• Data Integration and Interaction Mode Consideration: batch,
near real-time, real-time

• Data Ingestion Pattern Consideration: streaming, non-event-driven

• Data Design Consideration: local, distributed, centralized

• Data Modeling Consideration: ER, normalized, de-normalized

• Data Access and Data Manipulation Consideration: SQL,
NoSQL

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

125

• Workloads Consideration: transactional, analytical

• Data Store Design Considerations: consistency, availability,
partition-tolerance

• Data Design Principle Consideration: ACID, CAP, BASE

• Contextualization/Association Consideration: inter-element
relationship, semantics

• Compression Consideration: ratio, performance overheads

• Serialization Consideration: Read Only, Write Only, Read/Write
balance

• Data Content/Analysis Type Consideration: Key-Value Pairs,
Document-Oriented, Graph-Centric

• Latency Consideration: low, medium, high

• Network Performance Consideration: memory, I/O, CPU,
network

• Security Consideration: regulatory, access control, compliance,
privacy

• Data Platform Hosting Consideration: physical, virtual,
private/public/hybrid cloud

• Data Quality Consideration: High Quality, Mostly low focus on
quality

• Organization Adoption Maturity Consideration: chasm, early
taker, entrenching, mainstream, laggard, obsoleting

• Big Data Product Support Consideration: commercial, vendor,
community, forum, broker, standards, practices

• Skill Set Consideration: competency, training, retooling,
constraints, resources, tools

The Hadoop suitability test will help you assess your business problem mapped to
all these parameters and a recommendation can be the drawn out of the test concerning
whether you should go for Hadoop or not.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

126

Additional Considerations for Big Data
Warehouse (BDW)
The enterprise data platform must absolutely stay relevant to the business. As the value
and the visibility of big data analytics grow, the enterprise data platform must encompass
the new culture, skills, techniques, and systems required for big data analytics.

Sandboxes
BDW provides interesting capabilities to do exploratory analysis and experimentation.
These capabilities usually consist of mashed up data sets, sophisticated algorithms,
and codebase and rich data visualization components. We call these capabilities
“sandboxes.” Data analysts analyze the mashed up data sets with a wide variety of tools
(mostly open-source tools to keep the cost low): data integration tools like the Hadoop
ecosystem, sophisticated statistical analysis tools like SAS, Matlab or R, and many forms
of ad hoc querying and rich data visualization tools like Qlikview, Tableau. Since BDW
is an exploratory ground and aids in the discovery process, the data analyst responsible
for a given sandbox has a complete freedom to do anything with the data (many times
the data sources are well beyond the corporate firewalls) using any tool (often times the
data analysts creates custom tools) to maximize productivity and enhance the discovery
process. The sandbox capability has enormous potential but at the same time it also
carries a significant risk of proliferation of isolated and incompatible stovepipes of data.

Exploratory sandboxes usually have lifetime association with a specific
discovery process and objective. For example, the data analyst may be developing
predictive models for a specific business hypothesis. Typically, if such an experiment
produces a successful result, the sandbox experiment has met its goal, and the entire
experimentation process along with data sets and algorithms are carefully evaluated to
become a standard production feature. The data analyst then moves on to solve another
problem.

Low latency
Many big data use cases are associated with real-time data processing, analysis, and
in-sight generation. Low latency data processing and analysis needs are arising from the
fact that data has a time dimension associated with it: if you do not process and analyze
at that very moment, the value of data erodes significantly. An ideal implementation of
low latency data processing and analysis would allow streaming data analysis to take
place while the data is being acquired and processed. The availability of extremely
frequent and extremely detailed event measurements can drive interactive intervention.
The use cases where this intervention is important spans many situations ranging from
online gaming to product offer suggestions to financial account fraud responses to the
stability of networks.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

127

Contextualizing the data
A key activity during discovery process is to build layers and layers of context associated
with data. As you add more and more types of data, the mashed up datasets form a
multi-layered interpretation engine for the original dataset. For example if a customer
browses a website extensively before making a purchase, a great deal of micro-context is
stored in all the webpage events prior to the purchase. When the purchase is made, some
of that micro-context suddenly becomes much more important. These micro-contexts are
pretty much meaningless before the purchase event, because there can be many activities
on the webpage that are irrelevant events and may be inconsequential for analysis.
However, once the purchase is made, if you have a long trail of all these micro-contexts
captured, you can then reconstruct the sequence of events leading to a successful
purchase. You can then apply this model to other ongoing web activities by customers
and determine likelihood of purchases or by clever interventions you can influence the
customer to make a purchase.

To Sample or Not to Sample
Exposing complete data sets (however big it may be) to a simple algorithm gives better
results than exposing a sample of the data sets to a sophisticated algorithm. Interesting
insights can be derived from very small populations within a larger data set that could be
missed by only sampling some of the data. The analytics community is divided in their
opinion about these two conflicting views.

Suppose you have a certain amount of data, and you look for events of a certain type
within that data. You can expect events of this type to occur, even if the data is completely
random, and the number of occurrences of these events will grow as the size of the data
grows. These occurrences are “bogus,” in the sense that they have no cause other than
that random data will always have some number of unusual features that look significant
but aren’t. A theorem of statistics, known as the Bonferroni principle gives a statistically
sound way to avoid most of these bogus positive responses to a search through the data.

Bonferroni’s principle helps us avoid treating random occurrences as if they were
real. Calculate the expected number of occurrences of the events you are looking for, on
the assumption that data is random. If this number is significantly larger than the number
of real instances you hope to find, then you must expect almost anything you find to
be bogus, i.e., a statistical artifact rather than evidence of what you are looking for.
This observation is the informal statement of Bonferroni’s principle.

Big Data and Master Data Management (MDM)
In big data world, the data itself belongs to four different forms: data at rest, data in
motion, data in many forms, and data in doubt. In addition, there are three styles of
data integration prevalent in any enterprise scenario: bulk data movement, real-time,
and federation.

Bulk data integration involves the extraction, transformation, and loading of data
from multiple sources to one or more target databases. One of the key capabilities of bulk
integration is extreme performance and parallel processing. Batch windows continue

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

128

to shrink and data volumes continue to grow putting more stress on batch integration
performance. Real-time integration involves low-latency integration and is often used
in conjunction with complex event processing to enable real-time reporting and analysis.
Federation is a completely different approach: it makes use of data through federated
queries.

These three styles of integration should not be independent from one another. They
should share a common foundation that establishes consistency in data. The process
should be governed by enterprise data management principles such as data profiling,
data quality assurance, improving the accuracy and completeness of data, tracking
its lineage, and exposing enterprise metadata to facilitate integration. By applying a
common approach to all three styles of integrations you can build a common
foundation for information trust with common rules for data quality, metadata,
lineage, and governance.

The data integration styles discussed above and the data characteristics go hand
in hand in any enterprise data management scenario. For example, supplying trusted
information to a data warehouse will require bulk data integration; but for specific
reporting needs it may also need real-time integration, and potentially even federation
to access other data sources. Building and managing a single view with MDM will again
require bulk integration to populate MDM, real-time integration both to and from the
MDM system, and federation to augment MDM’s business services to blend data stored
within MDM and data stored in other source systems.

While master data management approaches and implementation best practices
have been around for some time, implications of MDM on big data platforms is relatively
new. Big data is characterized by massive volumes, its high frequency, the variety of
less structured data sources such as e-mail, sensors, smart meters, social networks, and
weblogs, and the need to analyze vast amounts of data to determine value to improve
upon management decisions.

Is MDM ready for Big Data Platforms?
A pertinent question always comes up: is MDM ready for big data? This question needs to
be understood in the context of storage as well. In the traditional MDM implementations,
you will see a MDM repository storing the master entities and operating under the
defined MDM governance processes. In the traditional implementation approach,
MDM is meant to be an operational, structured repository of key enterprise data entities:
customers, households, products, locations, and many others.

However, in big data scenario, MDM isn’t meant to be a big data repository, as it
will never be able to store all social media data, transactional data, behavior data, etc.
In big data scenarios, it is already evident and there will be more and more use cases that
require MDM to integrate with variety of data sources that are not clearly defined.

Applying master data management to big data may be less about MDM and more
about a paradigm shift in how we think about and use MDM. Although there are different
ways to approach MDM, it’s often seen as a repository for master data. All the data is
dumped into MDM for sorting, cleansing, and achieving that mythical version of the truth.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

129

But with big data the traditional thoughts need to change, as big data is too big and
changes too fast. Historically, MDM was around the customer repository. That’s just
not feasible in the world of Facebook and Twitter. Information is federated, so the next
generation of MDM designers will need to think less about MDM as a repository and
more about MDM as a way to govern global information. MDM programs will ultimately
need to govern the relationships between internal data and big data from external
sources.

Obviously, MDM done well has always had governance as a key component, because
a good master data management program will cover who owns data and who has the
authority to alter it; otherwise, the data is fixed briefly and then becomes outdated or the
conflicts reappear. But big data puts even more demands on MDM as a governance tool,
because there’s so much data, the focus shifts from just adding it to filtering out what’s
usable and useful to the business.

The forthcoming generations of MDM tools need to have characteristics of a
service-level agreement infrastructure, with MDM offering a cross-reference of data and
control of the core that matters. MDM will need a data integration infrastructure to create
and share that whole view as needed. It is more about shifting the information when it’s
required and providing that identification and less concerned with the historical view of
effectively a digital landfill of data that everybody poured everything into.

Traditional approaches to master data have led us to think of it as a single data entity;
master data is all about the linked data elements for a single record, and no duplication
or variation should ever exist, thus ensuring consistency and uniqueness. Master data
in the current thinking represents a defined, named entity (customer, supplier, product,
etc.). This approach is tied to an application (customer resource management, enterprise
resource management) for a particular business unit (marketing, finance, product
management, etc.). It may have been the entry point for MDM initiatives, but it’s difficult
to expand that master data to other processes, analysis, and distribution points. Master
data as a static entity only takes you so far, regardless of whether big data is incorporated
into the discussion or not. This is a very static view of master data.

Data that matters have always been represented by what, why, and when. Big data
introduces another interesting and critical characteristic to equation: the “who.”
In essence, who represents and brings out the context associated with data elements.
Let’s take a look at customer master data. In this context, big data is interesting because
it provides an understanding of what drives behavior. In most cases, this means shifting
priority for data quality to transactional data and metadata over master data. Master data
thus is expanded to classify the behavior, time, and intent domains.

What this means is that you move from a two-dimensional model to a
multidimensional model of master data. Master data is all about the data model both
in terms of relationships and hierarchies and how data elements are combined. Master
data, metadata, and reference data converge under an MDM umbrella, allowing for
unlimited combinations determined by categories, definitions, and context. Because
data has moved beyond structured and relational database constraints due to big data
characteristics, MDM must account for the structure and enforce business policies for a
trusted holistic view. Thus, in a big data world, the approach to master data model must
go beyond and over the uniqueness of the data entity and should include other relevant
dimensions.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

130

In order for MDM to work with big data systems, there are several requirements:

MDM must also be able to store profiles for any big data source •
that needs to be linked to a master record. Examples include:
account IDs to link transactional big data to customer and
account records, mobile device IDs to link mobile device data,
and real-time location data to a customer record, among others.

The MDM system must also be able to store preferences for each •
big data source. Does a customer want you to analyze their tweets?
Or their Facebook profile? MDM must track the customer’s
preferences and consent for certain types of communication and
interaction.

MDM should relate many-to-many relationships between •
customers and profiles. For example, a household is related to a
single social media profile on a photo-sharing website (one social
media profile for many customers who belong to a household).
This enables MDM to effectively feed a big data application with
relevant master data and big data links.

MDM must also be able to store the output from big data •
analytics. Intent to purchase, next best action, customer churn
alert flags, negative customer sentiment: these are all attributes
that should be stored in MDM. Insights from big data should be
available to multiple operational channels (for example, if you
detect that a customer is dissatisfied with your company, then
you want all the interaction channels to know that fact, no matter
which channel the customer interacts with).

The MDM system should also have the capability to proactively •
detect events and send event notifications, triggering action in
business applications and enterprise processes as necessary.
MDM must be an active participant in big data analytics.

The big data system must be able to interact with MDM. Whether •
you’re working with transactional data, analyzing social media
data, or analyzing streaming call detail data off a network, the big
data system needs to understand the master view of customers
and products. There’s no point in the big data system re-inventing
the wheel and trying to determine unique records and identities.
This integration or information exchange aspect is important
from a discovery/experimentation type of workload point of view
as well, which is the most-cited big data system usage so far. In
essence, big data applications need to be MDM-aware. They
should obtain master data from MDM either in batch load or in
real-time if necessary.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

131

MDM systems must be capable of integration with big data •
systems via batch and possibly real-time SOA as required. There
should be a bi-directional relationship between MDM and big
data; big data technology can feed insights to MDM, and MDM
can feed master data definitions to big data. In some ways,
this is similar to the relationship between MDM and the data
warehouse: MDM will both receive and feed that system.

We have already seen a number of use cases of MDM and big data working together:
e.g., social media analytics to predict customer churn or intent to purchase, mobile
network analytics to make real-time location-specific product offers, and multi-channel
interaction analysis to predict and prevent customer churn. However, there are pitfalls too.

Consider the use case, “employ big data technology to mine social media and
understand intent which would unearth potential new customers.” But what if those
same prospects were already customers? And what if your CRM systems already knew,
or should have known, the prospects intentions? In order to make a targeted and
purposeful analysis of big data, you need a starting point, and that starting point should
be, understanding your existing customers through MDM.

This highlights the first aspect of the big data and MDM. MDM feeds big data.
MDM can provide master definitions of customer, household, relationship, and product
hierarchies to big data. When your requirement moves from aggregate analysis
(e.g., general market sentiment toward your company) to specific analysis (e.g., which
customers have an intent to purchase product X), that is when you require master data
to guide big data analysis.

Big data technology can process and analyze unstructured data sources (e.g.,
PDF documents) to determine unique identities and relationships among master data
entities. This technology can also analyze third-party data (unstructured PDF documents
on company financials and ownership) to help determine organization parties and
hierarchies. You could potentially accelerate your initial MDM implementations by
extracting master data from previously untapped big data sources. For example, you can
analyze SEC filing documents for risk exposure, to understand customers, their financial
health, and key individuals at those companies. The danger in big data projects lies in not
recognizing the requirement for MDM and treating data quality, matching, and storing
unique records as a one-off tactical task.

Alternatively, you can start doing a search index for big data. Start with already
defined enterprise master data entities and then analyze new sources of data for specific
master data records. Don’t analyze all customers, analyze the most valuable ones. Don’t
analyze all of your products, analyze the most profitable ones. This may initially be
expressed entirely as an analytics requirement from business owners. Consider the use
case, “analyze social media to understand potential online bets the customers might
make.” What does this mean? Who are these customers? What constitutes a “betting
event”? And how will the company respond in time to capture that opportunity?

At the most fundamental level the company needs to have the answer to the
question – who are their customers? There’s no point in analyzing all available social
media feeds and then determining who your customers are. There are 2 billion Internet
users globally. How many customers do you have? Less than 2 billion? Doesn’t it make
sense to start the other way around? Know what you’re looking for before you start
looking.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

132

MDM and Big Data Integration Scenarios
Are there any guidelines and best practices available? Below we will discuss a few
scenarios to give you a head start on how to integrate MDM and big data:

• You are searching and matching for the same entity types over
and over. If your big data project requires you to know whether
a social media blogger is a customer, and you will run this same
determination every time an interesting social media post is
detected, then you have a master data problem. You need to know
your customers.

• You are performing targeted analysis, not an aggregate
analysis. When you are looking for particular product feedback
to respond to isolated incidents versus general sentiment
toward your brand, or you are looking for a particular customer’s
multi-channel service experiences versus tracking the general
service levels, then you have a master data problem. You need to
know specific customers and products in order to guide your big
data analysis.

• You want to combine the analysis of multiple master data
domains from new big data sources. If your big data use
case involves matching multiple data domains and deriving
new insights from big data sources, you likely have an MDM
requirement. For example, telecommunications companies
are increasingly interested in mobility: i.e., understanding the
location of mobile devices and the potential opportunities
(selling new products, proactive service alerts, etc.). In order to
realize this use case, the company will need to understand unique
accounts, devices, customers, households, and locations. This is a
multi-domain MDM problem to start with.

MDM Hub as a Foundation for Big Data
Master data is really just a subset of big data. This subset tends to be already in structured
format, reasonably trustworthy, and shared and common across different lines of
business or departments.

When clients start discussing big data projects, they usually want to start making better
use of all their data beyond just the core master data elements. As organizations plan these
projects, it is crucial that they leverage their MDM hub as a foundation for big data.

The MDM hub is where you keep the most complete view of your customers,
products, accounts, and more. As you uncover more information about those same
entities, the MDM hub is the logical place to keep those new insights. The MDM hub can
keep a traditional “golden record” of trusted information side-by-side with a less-trusted
view of the same person or product based on what you find among your big data. These
two views can be combined to provide a more insightful complete view, but they can still
be kept separately in cases where your business can’t afford to base decisions on the

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

133

less-trusted view. The MDM hub can already tell you who your customers and prospects
are, so use that knowledge to more efficiently sift through the rest of your big data to find
more about those same customers and prospects.

Note ■ when you combine the traditional “golden record” with new information found

among your big data, the superset of information can power even better business insights

and business decisions that were not possible before.

Big data discussions have been gaining momentum and substance, but not much
distance has been covered when it comes to master data management with respect to
big data implications. The value proposition is to bring MDM into big data analytics
to further enrich the master entities. For example, the amount of comments that are
collected and collated by product-marketing teams is humongous. These comments can
be found across the Internet in discussion forums, personal blogs, and other places. All
this data, however, follows a typical big data pattern. It is large and builds up quickly; it is
semi-structured and comes in fast and furious, posing a challenge to extract, transform,
and load it to relational databases. In order for all this information to be useful,
free-form comments need to be tied in with product catalogs. There is potentially
important information in all this consumer feedback and the product forms the central
point of intersection of MDM and big data.

In summary, Figure 5-7 shows the various interactions that a multi-domain MDM
system should have with respect to big data use cases.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

134

F
ig

u
re

 5
-7

.
B

ig
 d

a
ta

: M
D

M
 i

n
te

ra
ct

io
n

s

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

135

Big data represents many things. For some, it’s the technology we use to store,
retrieve, and manage petabytes of data that we create each day. For many in enterprise
technology, big data means using sophisticated techniques to analyze the large and
growing volumes of transaction data in order to improve business decision making.

In big data and analytics scenarios, instead of being constrained to just intra-domain
customer hierarchy dimensions following traditional MDM implementation styles, we
will need a multi-domain MDM approach to view transactional data and external data
entities through different data domain relationships (as shown in Figure 5-8). Sales could
analyze data by customer, territory, and geography. Marketing could see the evolution of
the buying process by campaigns, social media interactions, and click- stream analysis;
finance can get a view across suppliers and sales, and marketing can also get an insight
into the brand reputation and sentiments by looking at external data.

Figure 5-8. Big data: MDM multi-domain interaction

Figure 5-9 illustrates a big data tool: MDM integration logical architecture.
The focus of this architecture is to illustrate the various components in an enterprise
data management landscape and how they interact or leverage MDM implementation
integrating with business systems across the enterprise including big data platforms.
The master data management services and information integration services are
fundamental to multiple master data domains such as product, customer, supplier,
account, and location.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

136

F
ig

u
re

 5
-9

.
B

ig
 d

a
ta

: M
D

M
 i

n
te

gr
a

ti
o

n
 lo

gi
ca

l a
rc

h
it

ec
tu

re

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

137

• External participants may access and update master data through
multiple interaction channels. Customers might access and
update master data through business systems that provide
self-service capabilities for shopping and online channels or
through the use of telephony systems to access and update
personal information. Supply-chain data from suppliers, trading
partners, and business partners participate in business-to-business
transactions that involve the exchange of core master data entities
such as customer and product data. Agents that conduct
business on behalf of a company may access and update master
data through a business system provided by that company or
through a business-to-business transaction. Business system
users update and query master data typically through the use of
their respective business systems.

Data from • external data providers such as as Dun and Bradstreet,
Acxiom, Lexis Nexis, Ac Neilson, Fair Issac, and Credit Bureaus
can be utilized for additional information about a person or
organization to enrich master data maintained in the MDM
System. Data from these sources may be used to support the
initial loading of master data into the MDM system or periodic
updates, or data may be used on a transactional basis based upon
business requirements. Government agencies also provide watch
lists required to support regulatory compliance.

The • connectivity and interoperability layer serves as an enterprise
information exchange backbone connecting business-to-business
interactions with partners, system-to-system interactions
within the enterprise, and interactions with the external data
providers. Instead of having many point-to-point interfaces
between systems, this layer creates one single interface using
application integration techniques such as enterprise application
integration hubs that support communications through the
use of messaging, or have adopted the use of an enterprise
service bus. This layer also facilitates communications between
MDM services, information management services and content
management services, and big data services. The connectivity
and interoperability layer represents the enterprise service bus
architectural construct, or it can simply be thought of as a layer
that provides choreography services and synchronous and
asynchronous integration capabilities such as message mediation
and routing, publish and subscribe, FTP, and service-oriented
integration through the use of web services.

The • master data management services component consists of a set
of services that are grouped into the following components:

• Interface Services support a consistent entry point to request
MDM services through techniques such as messaging,
method calls, web services, and batch processing. The same

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

138

MDM service should be invoked during batch processing,
which may be requested as part of a transaction in order to
maintain and apply consistent business logic.

• Lifecycle Management Services manage the lifecycle of
master data, provide CRUD (create, read, update, and
delete) support for master data managed by the MDM
system, and apply business logic based upon the context of
that data. Lifecycle management services call data quality
management services to enforce data quality rules and
perform data cleansing, standardization, and reconciliation.
Event management services are called to detect any actions
that should be triggered based upon business rules or data
governance policies.

• Hierarchy and Relationship Management Services manage
master data hierarchies, groupings, and relationships that
have been defined for master data. These services may also
request identity analytics services to discover relationships,
such as those between people that are not obvious, and then
store that information in the MDM system.

• Master Data Management Event Management Services are
used to make information actionable and trigger operations
based upon events detected within the data. Events can
be defined to support data governance policies, such as
managing changes to critical data, based upon business rules
or time and date scheduled.

• Authoring Services provide services to author, approve,
manage, customize, and extend the definition of master
data as well as the ability to add or modify instance master
data, such as product, vendor, and supplier. These services
support the MDM collaborative style of use and may be
invoked as part of a collaborative workflow to complete
the creation, updating, and approval of the information for
definition or instance master data.

• Data Quality Management Services validate and enforce data
quality rules, perform data standardization for both data
values and structures, and perform data reconciliation. Data
quality management services also include data profiling,
analysis, cleansing, data standardization, and matching
services. Data profiling and analysis services are critical for
understanding the quality of master data across enterprise
systems and for defining data validation, data cleansing,
matching, and standardization logic required to improve
master data quality and consistency.

The • Master Data Repository consists of master data and
metadata for the MDM system and history data that records

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

139

changes to master data. Master data management services
can also be used to maintain and control the distribution
of reference data that should be maintained at the central
level for an organization. As discussed in prior sections, the
MDM data repository can also include the various inferences
drawn during discovery and experimentation type of work
done in the big data platforms.

The • MDM services components also enable information
exchange between the content management services,
big data services, and information management services,
thereby providing a rich data services ecosystem that is
consistent and integrated across the enterprise.

• Information management services provide ETL services
primarily for batch and real-time integration of structured
data, and EII services for federated query access to structured
and unstructured data distributed over disparate data
sources. ETL services support the initial and incremental
extract, transform, and load of data from one or more source
systems to meet the needs of one or more targets, such as a
data warehouse and MDM system.

The • content management services and big data services provide
mechanisms to capture, aggregate, and manage unstructured
content in a variety of formats such as images, text documents,
web pages, spread sheets, presentations, graphics, e-mail,
video, and other multimedia. The Hadoop and map-reduce
technologies provide the ability to search, catalogue, secure,
manage, and store unstructured content and workflow services
to support the creation, revision, approval, and publishing
of content. In conjunction with the MDM data repository and
the metadata contained therein, now you can have the ability
to identify new categories of content and create taxonomies
for classifying enterprise content. Other aspects like records
management and storage management are part of the content
management and big data services. Records management
services include management of the retention, accessing
control and security, auditing and reporting, and ultimate
disposition of business records. Storage management
services provide for the policy-driven movement of content
throughout the storage lifecycle and the ability to map
content to the storage media type based on the overall value
of the content and context of the business content.

The discovery and experimentation type of workloads that uses a combination
of data platforms and associated services can effectively leverage the MDM services
components to discover non-obvious relationships between various data entities such
as those that are part of the same household but have different name and address
information and between people and organizations. The taxonomy hierarchy and

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

140

relationship information between data entities can be effectively leveraged by big data
platforms while analyzing data from external data sources along with data from within
the enterprise.

The MDM logical integration architecture is designed to support the multiple
MDM methods of use across multiple master data domains, to maintain cross-domain
relationships, and to provide the required functionality to have a collaborative environment
taking into account the hybrid architectures of relational and non-relational data
platforms. The architecture is structured to be scalable, highly available, and extensible,
and provides the flexibility to integrate technology from a variety of vendors and integrate
with future unknown systems.

Data Quality Implications for Big Data
There is a lot of literature about what is now possible given the opportunity of big data
and what organizations should be doing. But very little has been discussed in terms of
guidance and recommendations related to data quality and big data.

Data management and data quality principles for big data are the same as they have
been in the past for traditional data. But priorities may change, and certain data management
and data quality processes such as metadata, data integration, data standardization, and data
quality must be given increased emphasis. One major exception involves the time-tested
practice of clearly defining the problem. In the world of big data, where data may be used in
ways not originally intended, data elements need to be defined, organized, and created in a
way that maximizes potential use and does not hinder future utility.

Your data quality approach for big data should be designed with several factors
in mind: it doesn’t make sense to apply one data quality approach for all types of data.
You should consider where the data came from, how the data will be used, what are the
workload types, who will use the data, and perhaps most importantly, what decisions will
be made with the data.

What data do you trust? Increasingly, business stakeholders and data scientists
are beginning to draw conclusions based on big data sources. Yet, the fact is, these data
are mined and analyzed in a way that doesn’t adhere to the existing data governance
processes. There is a valid argument for doing it this way. If you need speed of insight and
support data discovery over repeatable reporting, then you can’t constrain the activities.

Traditional approaches to data quality heavily revolve around the notion of
persistence of cleansed data. For years data quality efforts have focused on finding and
correcting bad data. We use the word cleansing to represent the removal of what we don’t
want. Knowing what your data is, what it should look like, and how to transform it into
submission defined the data quality handbook. Whole practices were created to track
data quality issues, establish workflows and teams to clean the data, and then reports
were produced to show what was done. These practices were measured against metrics
such as identification of the number of duplicates, completeness of records, accuracy of
records, currency of records, and conformance to standards, to name a few. However,
when it comes to big data, how do we cleanse it?

The answer to the above question is, maybe you don’t. The nature of big data
doesn’t allow itself to traditional data quality practices. The volume may be too large
for processing. The volatility and velocity of data makes it difficult to keep track of.
The variety of data, both in scale and visibility, is ambiguous.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

141

Running faster won’t get you to the right place if you don’t know where you’re going.
By creating better, faster, and more robust means of accessing and analyzing large data
sets can lead to erroneous outcomes if your data management and data quality processes
don’t keep pace.

Traditionally, whenever data quality concerns were raised we always asked the
following questions:

What are the data quality benchmarks to ensure the data will be •
fit for its intended use?

What are the key data qualities attributes to be measured •
(for example, validity, accuracy, timeliness, reasonableness,
completeness)?

What approaches will we take to manage data quality? For •
example, should we fix issues at the source or have a cleansed and
quality assured environment downstream?

How do we capture the data lineage and traceability (for example, •
data flows from the underlying business processes) aspects?

Will these traditional methods be relevant for big data scenarios, or we will need new
principles and processes? What are the data management and data quality implications
of these technologies?

Let us discuss few of the critical aspects related to the data life cycle and big data
implications that heavily influence data quality.

Metadata. Metadata is important to any data management activity. Metadata and
metadata management become even more important when dealing with large, complex,
and often multi-sourced data sets. Metadata to be used across the enterprise must be
clear and easily interpreted and must apply at a very basic level.

Data Element Classification. For big data quality and management (big DQ and
DM), minimum metadata requirements need to be established and, ultimately, metadata
standards too. To foster cross-enterprise use of data, taxonomies (classification or
categorical structures) need to be defined, such as demographic data, financial data,
geographic/geospatial data, property characteristics, and personal identifiable information.

Data Acquisition. While acquiring data, it is critical for data to be organized to be
more readily assessable. Data exchange standards for big DQ and DM are key aspects
in the acquisition process. Use of the common vocabulary and definitions facilitates the
mapping of data across sources.

Data Ingestion and Integration. Integrating data across multiple sources is certainly
a large part of a big data effort. One school of thought is to create a “data lake” where you
dump data coming from various sources, and then later on as you start using the data, you
define standards, establish lineage, and create metadata definitions. While this approach
significantly reduces the process-related bottlenecks, it also creates concerns around
quality of data. Usage of tools and processes like MDM, entity resolution, and identity
management will surely help to address some of the data- quality-related concerns.

While data quality has traditionally been measured in relation to its intended use,
for big data projects, data quality may have to be assessed beyond its intended use
and one may have to address how data can be repurposed. To do so, data quality
attributes—validity, accuracy, timeliness, reasonableness, completeness, and so
forth—must be clearly defined, measured, recorded, and made available to end users.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

142

Artifacts relating to each data element, including business rules and value mappings,
must also be recorded. If data is mapped or cleansed, care must be taken not to lose the
original values. Data element profiles must be created. The profiles should record the
completeness of every record. Because data may migrate across systems, controls and
reconciliation criteria need to be created and recorded to ensure that data sets accurately
reflect the data at the point of acquisition and that no data was lost or duplicated in the
process.

Special care must be given to unstructured and semi-structured data because data
quality attributes and artifacts may not be easily or readily defined. If structured data is
created from unstructured and semi-structured data, the creation process must also be
documented and any of the previously noted data quality processes applied.

In a big data scenario, you must create data-quality metadata that includes data
quality attributes, measures, business rules, mappings, cleansing routines, data element
profiles, and controls.

High Availability versus High Data Quality
Typically, big data solutions are designed to ensure high availability. High availability
is based on the concept that it is more important to collect and store data transactions
than it is to determine the uniqueness or accuracy of the transaction. Some common
examples of big data/high availability solutions are Twitter and Facebook.

It is possible to configure a big data solution to validate uniqueness and accuracy.
However, in order to do so you need to sacrifice some of the aspects of high availability.
So, in some regard, big data and data quality are at odds.

This is because one of the fundamental aspects of high availability is to write
transactions to whichever node is available. In this model, consistency of transactional
data is sacrificed in the name of data capture. Most often, consistency is eventually
configured for queries or on data reads as opposed to data writes.

In other words, at some given point in time you do not have consistency in a big data
set. Even more troubling is the fact that most transactional conflicts are resolved based on
timestamps. This is to say that the most recently updated transaction is commonly regarded
as the most accurate. This approach is, obviously, an issue that requires further examination.

Why we don't see an inherent trade-off between the volume of a data set and the
quality of the data maintained within it?

We are under the mistaken impression that there’s an inherent trade-off between the
volume of a data set and the quality of the data maintained within it. In essence, big data
sets are big, and hence it is natural to deduce that there is a good amount of inconsistent,
inaccurate, redundant, out of date, or un-conformed junk data. This way of thinking may
have some merit; however, let’s understand the reality. When you talk about big data,
you’re usually talking about more volume, more velocity, and more variety. Of course, that
means you’re also likely to see more low-quality data records than in smaller data sets.

But that’s simply a matter of the greater scale of big data sets, rather than a higher
incidence of quality problems. While it is true that a 1 percent data quality issue is
numerically far worse at 1 billion records as opposed to 1 million, the overall percentage
remains the same, and its impact on the resulting analytics is consistent. Under such
circumstances, dealing with the data cleanup may require more effort—but as we noted
earlier, that’s exactly the sort of workload scaling where big data platforms excel.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

143

Big data isn’t the transactional source of most data problems. The cause of
data quality problems in most organizations is usually at the source transactional
systems—whether that’s your customer relationship management (CRM) system,
general ledger application, or something else. These systems are usually in the terabyte
range. Any situation where you fail to keep the system of record cleansed, current, and
consistent, you can expect the magnitude of data-quality-related issues. If you can’t fix
the issues at the source systems, you can take an alternative approach to fix the issues
downstream (through EDWs and MDM implementations) by aggregating, matching,
merging, and cleansing data in intermediary staging databases.

The quality problem has everything to do with inadequate controls at the data’s
transactional source, and very little to do with the sheer volume of it.

Big data is about aggregating new data sources that you haven’t historically
needed to cleanse. In data warehouse systems the issue of data quality is fairly well
understood: you are primarily concerned with maintaining the core systems of record
such as customers, finances, human resources, the supply chain, and so on. In contrast,
a lot of big data initiatives are for deep analysis of aggregated data sources such as
social marketing intelligence, real-time sensor data feeds, data pulled from external
resources, browser click-stream sessions, IT system logs, and the like. These sources have
historically not been linked to official reference data from transactional systems. From an
enterprise data management processes perspective, there was clearly no focus, and these
data sources needed to be cleaned because they were looked at in isolation by specialist
teams that often worked through issues offline and weren’t feeding their results into an
official system of record. However, cross-information-type analytics—which is common
in the big data space—have changed this dynamic.

Although individual data points can be of marginal value in isolation, they can
be quite useful when pieced into a larger puzzle. They help provide context for what
happened, or what is happening.

Unlike business reference data, these new sources do not provide the sort of data
that you would load directly into your enterprise data warehouse. Rather, you drill into it
to distill key patterns, trends, and root causes, and you would probably purge most of it
once it has served its core tactical purpose. This generally takes a fair amount of mining,
slicing, and dicing.

Data quality matters in two ways in this situation. First, you can’t lose the source,
inferences are drawn from the data, and actions are taken while distilling the data—and
these items need to be defined consistently with the rest of your data. Second, you can’t
lose the lineage of how you performed the analysis.

The, who, what, when, where, and how need to be discoverable and reproducible.
Keep in mind that often when we’re talking about big data we are talking about using

data that we haven’t been able to exploit well in the past—so we’re typically trying to solve
different problems. We’re not trying to figure out the profitability of each of our stores. We
should already be doing that using high-quality data from systems of record and doing
the things we do to standardize and reshape as we put it into a data warehouse. What
we’re trying to do here is find out what’s contributing to the profitability for the stores.

Big data allows you to find quality problems in the source data that were previously
invisible. If you’re aggregating data sets into your big data platform that have never coexisted
in the enterprise data ecosystem before, and if you’re trying to build a common view across
them, you may be in for a rude awakening. It’s not uncommon to find quality issues when
you start working with information sources that have historically been underutilized.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

144

When looking at underutilized data, quality issues can take you through nasty
discoveries, so it pays to expect the unexpected. For example, in many cases you may
find that the system data provided as a reference is highly variable and not as described
in the specifications. In cases like this, you either need to go back and deal with the core
system data generation process or work past the quality issues. This is a fairly common
occurrence since, by definition, when you are dealing with underutilized information
sources, this may be the first time they have been put to rigorous use.

This issue rises to a new level of complexity when you’re combining structured data
with unstructured sources that—it almost goes without saying—are rarely managed as
official systems of record. In fact, when dealing with unstructured information (which
is the most important new source of big data), expect the data to be fuzzy, inconsistent,
and noisy. A growing range of big data sources provide non-transactional data—event,
geo-spatial, behavioral, click stream, social, sensor, and so on—that is fuzzy and noisy by
its very nature. Establishing a corporate standard and shared method for processing this
data through a single system is a very good idea.

Interestingly, big data is ideally suited to resolve one of the data quality issues
that has long impacted the statistical analyses: the traditional need to build models
on training samples rather than on the entire population of data records. This idea is
important but under-appreciated. The scalability constraints of analytic data platforms
have historically forced modelers to give up granularity in the data set in order to speed
up model building, execution, and scoring. Not having the complete data population at
your disposal means that you may completely overlook outlier records and, as a result,
risk skewing your analysis only to the records that survived the cut.

This isn’t a data quality problem (the data in the source and in the sample may be
perfectly accurate and up to date) as much as a loss of data resolution downstream when
you knowingly filter out the sparse/outlier records. Let’s look at a specific example in the
messy social listening space. It’s easy to manage noisy or bad data when you are dealing
with general discussion about a topic. The volume of activity here usually takes care of
outliers, and you are—by definition—listening to customers. Data comes from many
sources so you can probably trust (but verify through sensitivity analysis) that missing
or bad data won’t cause a misinterpretation of what people mean. However, when you
examine what a particular customer is saying and then decide how you should respond to
that individual, missing or bad data becomes much more problematic. It may or may not
be terminal in that analytics run, but it inherently presents more of a challenge. You need
to know the impact of getting it wrong and design accordingly.

Your data quality efforts need to be defined more as profiling and standards versus
cleansing. This is better aligned to how big data is managed and processed. While on the
surface, big data processing is batch in nature, it would seem obvious to institute data quality
rules the way they have always been done. But the answer is to be more service-oriented,
invoking data quality rules that provide improved standardization and sourcing during
processing versus fundamentally changing the data. In addition, data quality rules are
invoked in a customized fashion based on customer service calls from big data processing.

Why this also makes sense is that when you do decide to persist sourced big data
into your internal infrastructure, you have pre-aligned the data to existing policies for
integration and business rules for improved mapping and cleansing that would need to
persist. In essence you treat big data as a reference source, not a primary source. So, think
about data quality in the context of supporting preprocessing with Hadoop and map-
reduce through profiling and standards, not cleansing.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

145

In many cases, big data involves some form of textual or unstructured data. Quality
issues that plague text from user-entered data largely applies to big data initiatives. The
following examples represent typical data quality challenges relating to text that should
be extended into big data environments:

Identifying misspelled words or managing synonym lists for •
grouping similar items like “lvm,” “left voice mail,” “left a message,”
etc., that may affect analysis.

Leveraging content categorization to ensure that the textual data •
is relevant. For example, filtering out noise in textual data relating
to a company name: differentiating SAS Institute, SAS shoes, SAS
the airline, etc.

Utilizing contextual intelligence to discern meaning. For example •
differentiation between the person and the name of a hotel, “Paris
Hilton walks into the Paris Hilton.” This should include the ability
to factor this into count or summary analysis where it is necessary
to delineate between the person and place.

There are several other considerations for data quality for big data scenarios listed below:
Consider the type of data: The data quality requirements for different forms of

data will vary and your approach should match the needs of the data. For example:

Big data projects that relate to traditional forms of data like •
transaction data related to key entities like customers, products,
etc., can leverage existing data quality processes as long as it
scales to meet the needs of massive volume.

Big data originating from machines or sensor data (e.g., RFID •
tags, manufacturing sensor data, telecom networks/switches,
utilities, etc.) will not be prone to errors as compared to data that
is entered by humans. As additional sensor data streams in you
need to ascertain the difference between signals and noise: for
example, a pigeon sitting on a sensor causing the data to throw up
random alarms.

Social media data such as Twitter, Facebook, etc., may look highly •
unstructured, but they still contain a structure around it: a meta-
data description defining type of tweet stream and then the text
string that contains the content of the tweet. From a data quality
perspective, this will involve a combination of entity matching,
monitoring to ensure that the tweet stream is not interrupted
along with the ability to analyze the text.

Not all analysis requires exactness: If you are attempting to identify a general
pattern and you have a lot of data, the volume of data is not likely to impact the overall
conclusion. For example, if you have a massive amount of click stream data and you
are looking for patterns (when people leave a site, which path is more likely to result in
purchase or conversion, etc.) the outliers will not impact the overall conclusion. In this
case, it’s more of an analytics process versus a data quality process. However, you will still
have to check the relevance aspects of data: for example, if someone accidentally ends

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

146

up on your website, they aren’t really part of the population that you are concerned with
(unless you are analyzing why they are there in the first place). Same with bots versus
actual users; bot traffic is not likely to be erroneous, but it is possible to extend your data
quality efforts to include relevance as a quality.

Don’t cleanse away analytical value: In the traditional analytics approach, data
cleansing is a critical task, and the argument was fairly straightforward: you do not want
to run your algorithms on data that is not cleansed, as it may negatively influence the
outcomes. However, this cleansing approach should not be applied to all analytics cases.
For example, if you are tracking risk outliers, unusual transactions should not be cleansed
away because they fall outside of the norm and may represent fraud.

Processes up front in the analytical lifecycle like data discovery, data exploration,
opportunity identification, data relationship identification, etc., are better performed
on the data prior to any cleansing taking place. For example, assessing the value of
the various attributes by analyzing access frequency, detecting outliers, or discovering
correlations between attributes may form the initial stages in understanding data
distribution. Then once it is clear about the questions you are driving toward, the type of
analytics that will be leveraged, etc., you can make the proper determination about data
quality, etc. You may even leverage a gradual cleansing process as part of your strategy.

Using analytics to assess quality: Use data quality processes to determine the
impact of missing attributes or purposely fabricated data on analytic algorithms. Data
quality or MDM processes can be effectively leveraged to correlate the big data source to
the transaction or enterprise data. This allows you to relate specific customer feedback
from social sources with internal customer data that is tied to product or service
purchases. With contextual data (social media, sentiment analysis, opinion mining),
these cross validations are valuable. For example, most of the social data is self-reported.
People self-report about their shopping experience, their likes/dislikes, etc., and chances
are this information is misrepresented by the user (they intentionally fabricate their
experiences and opinions to develop a story among their friends). In this case, traditional
data quality approaches will not be useful, but analytics can be used to provide some
level of value assessment. Same with sentiment data, considering transactional data
and sentiment data relating to purchase behavior: if sentiment is negative and purchase
behavior is positive, this could indicate a data quality problem, or it could relate to the
customer being locked in without additional choices. This approach can strengthen
marketing analysis efforts since the analytics is correlated at the individual customer level
versus correlating broad segments of transactional and interaction data. You can further
extend to entity match friends from the actual customer to determine if the customer
interaction drives business with the customer’s friends.

Putting it all Together – A Conceptual BDW
Architecture
In the sections above we discussed several architecture styles and implementation
approaches. An enterprise data platform ecosystem consisting of BDW, EDW, DQ,
MDM, and analytics can become mind-boggling. To help you understand the various
components of a big data solution, Figure 5-10 is an attempt to put together a conceptual
architectural view of a big data platform.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

147

F
ig

u
re

 5
-1

0
.

C
o

n
ce

p
tu

a
l B

D
W

 a
rc

h
it

ec
tu

re

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

148

• Big Data Sources. Big data types include web and social
media, machine-to-machine, big transaction data, biometrics,
and human-generated data. This data may be in structured,
unstructured, and semi-structured formats.

• Big Data Ingestion. Big data ingestion technologies fall into a few
different categories:

1. Bulk data movement. Bulk data movement includes
technologies such as ETL that extract data from one or
more data sources, transform the data, and load the data
into a target database.

2. Data replication. Replication technologies like change
data capture can capture big data, such as utility smart
meter readings, in near real time with minimal impact to
system performance.

3. Data virtualization. Data virtualization is also known as
data federation. Data virtualization allows an application
to issue SQL queries against a virtual view of data in
heterogeneous sources such as in relational databases,
XML documents, and on the mainframe.

• Hadoop Distributions. Hadoop distributions consist of a large
number of technologies with their own release schedules.
A number of vendors have created their own commercial
distributions of Apache Hadoop that have undergone release
testing and bundle product support and training. Most
enterprises that have deployed Hadoop for commercial use
have selected one of the Hadoop distributions: Cloudera, MapR,
Hortonworks.

• Databases. Enterprises have the ability to select from multiple
database approaches:

1. NoSQL (“not only SQL”) databases are a category of
database management systems that do not use SQL as
their primary query language. These databases may
not require fixed table schemas and do not support
join operations. These databases are optimized for
highly scalable read-write operations rather than for
consistency. NoSQL databases include a vast array of
offerings such as Apache HBase, Apache Cassandra,
MongoDB, Apache CouchDB, Couchbase, Riak, and
Amazon DynamoDB. DataStax offers an enterprise
edition that includes a Hadoop distribution, and replaces
HDFS with the CassandraFS.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

149

2. In-memory database management systems rely on
main memory for data storage. Compared to traditional
database management systems that store data to disk,
in-memory databases are optimized for speed.
In-memory databases will become increasingly important
as organizations seek to process and analyze massive
volumes of big data. SAP HANA, Oracle TimesTen
In-Memory Database, and IBM solidDB are all examples
of in-memory databases.

3. Apache Sqoop is a tool that allows bulk transfer of data
between Hadoop and relational databases. In addition,
software vendors are also upgrading their database
offerings to co-exist with Hadoop ecosystem: the Oracle
loader for Hadoop uses MapReduce jobs to create
data sets that are optimized for loading and analytics
within the Oracle relational databases. IBM InfoSphere
BigInsights includes a set of Java-based user-defined
functions (UDFs) that enable integration with IBM DB2
using SQL. Microsoft offers a bi-directional Hadoop
connector for SQL Server.

4. Legacy database management systems rely on
non-relational approaches to database management.
Vendors will increasingly re-tool these systems to support
big data. For example, the IBM DB2 Analytics Accelerator
for z/OS leverages the IBM Netezza appliance to speed
up queries issued against a mainframe-based data
warehouse running IBM DB2 for z/OS.

• Streaming Analytics. Hadoop is well suited to handle large
volumes of data at rest. However, big data also involves high
velocity data in motion. Streaming analytics, also known as
complex event processing (CEP), refers to a class of technologies
that leverage massively parallel processing capabilities to analyze
data in motion as opposed to landing large volumes of data to
disk. There are a number of open-source and vendor tools in this
space. For example, Apache Flume is an incubator effort that
uses streaming data flows to collect, aggregate, and move large
volumes of data into the Hadoop distributed file system (HDFS).

• Text Analytics. Text analytics is a method for extracting usable
knowledge from unstructured text data through the identification
of core concepts, sentiments, and trends, and then using this
knowledge to support decision making. Text analytics helps in
contextualizing the unstructured data.

• Big Data Discovery. Big data platforms enable experimentations
and discovery processes. The discovery process is a key function
that helps in determining patterns in the data.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

150

• Big Data Quality. Data quality management is a discipline that
includes the methods to measure and improve the quality and
integrity of an organization’s data. However, big data quality
will require radically different approaches from a technology
perspective. For example, organizations may need to consider the
following approaches:

1. Address data quality natively within Hadoop.

2. Leverage unstructured content to improve the quality of
sparse data.

3. Use CEP to improve data quality in real-time without
landing data to disk.

• Big Data Metadata. Metadata is information that describes the
characteristics of any data object, such as its name, location,
perceived importance, quality, or value to the enterprise, and
its relationships to other data objects that the enterprise deems
worth managing. Big data expands the volume, velocity, and
variety of information while adding new challenges in building
and maintaining a coherent metadata infrastructure. As
organizations store more of their data within Hadoop, they will
need to address data lineage and impact analysis within this
environment as well.

• Master Data Management. Organizations may want to enrich
their master data with additional insight from big data. For
example, they might want to link social media sentiment
analysis with master data to understand if a certain customer
demographic is more favorably disposed to the company’s
products. Organizations will also need well-governed, clean
reference data such as codes for gender, countries, states,
currencies, and diseases, to support their big data projects. All the
major MDM vendors also offer tools to manage reference data.

• Information Policy Management. Information governance is all
about managing information policies. Whether they recognize
it or not, organizations grapple with five important processes
relating to information policies:

1. Documenting policies relating to data quality, metadata,
privacy, and information lifecycle management. For
example, a big data policy might state that call center agents
should not record social security numbers in their notes.

2. Assigning roles and responsibilities such as data
stewards, data sponsors, and data custodians.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

151

3. Monitoring compliance with the data policy. In the
abovementioned example, the organization might use
text analytics tools to identify instances where call center
agents’ notes contain social security numbers.

4. Defining acceptable thresholds for data issues. In the
example, the information governance team might
determine that the acceptable threshold needs to be zero
instances because of the potential privacy implications of
having social security numbers in clear text.

5. Managing issues especially those that are long-lived and
affect multiple functions and lines of business. Taking the
example further, the information governance team might
create a number of trouble tickets so that the customer
service team can eliminate any mentions of social
security numbers within agents’ notes.

• Big Data Warehouses and Enterprise Data Warehouse. As
organizations adopt big data, they will increasingly follow a hybrid
approach to integrate Hadoop and other NoSQL technologies
with their traditional data warehousing environments.

• Big Data Analytics. Analytics models will increasingly
incorporate big data types. Besides development of sophisticated
algorithms for structured data that can work on large volumes of
data, you will need analytics capabilities for the unstructured data
types as well. Concepts like social listening specialized analytics
on streaming data are critical for the big data platforms.

• Big Data Reporting and Advanced Data Visualization.
Traditional reporting solutions will not work on the scale and
variety of data types as big data. You will need advanced data
visualization solutions to visualize and analyze big data.

• Big Data Lifecycle Management. Information lifecycle
management (ILM) is a process and methodology for managing
information through its lifecycle, from creation through
disposal, including compliance with legal, regulatory, and
privacy requirements. The components of a big data lifecycle
management platform are listed below:

1. Information archiving. As big data volumes grow,
organizations need solutions that enable efficient
and timely archiving of structured and unstructured
information while enabling its discovery for legal
requirements, and its timely disposition when no longer
needed by the business, legal, or records stakeholders.

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

152

2. Records and retention management. Every ILM program
must maintain a catalog of laws and regulations that apply
to information in the jurisdictions in which a business
operates. These laws, regulations, and business needs
drive the need for a retention schedule that determines
how long documents should be kept and when they
should be destroyed. Records management solutions
enforce a business process around document retention.

3. Legal Holds and Evidence Collection (eDiscovery).
Most corporations and entities are subject to litigation
and governmental investigations that require them to
preserve potential evidence. Large entities may have
hundreds or thousands of open legal matters with
varying obligations for data. Data sources include e-mail,
instant messages, Excel spreadsheets, PDF documents,
audio, video, and social media.

4. Test Data Management. The big data governance
program needs tools to streamline the creation and
management of test environments, subset and migrate
data to build realistic and right-sized test databases, mask
sensitive data, automate test result comparisons, and
eliminate the expense and effort of maintaining multiple
database clones.

• Big Data Security and Privacy. Since big data platforms provide
a wide array of possibilities to access any data types (internal
and external), the questions around ethical usage of data, data
security, and privacy become critical. A big data platform should
make positions to ensure security and privacy of data following
some of the methods outlined below:

1. Data Masking. These tools are critical to de-identify
sensitive information, such as birth dates, bank account
numbers, street addresses, and Social Security numbers.

2. Database Monitoring. These tools enforce separation of
duties and monitor access to sensitive big data by privileged
users. The database monitoring functionality must have a
minimal impact on database performance and should not
require any changes to databases or applications.

• Cloud. Organizations are also turning to the cloud because of
perceived flexibility, faster time-to-deployment, and reduced
capital expenditure requirements. A number of vendors offer big
data platforms in the cloud and we list a few examples below:

4

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

153

End Points
The big question for enterprises with growing big data analytics investments is whether
to choose an RDBMS-only solution, or a dual RDBMS and map-reduce/Hadoop solution.
Over time, the two architectures will not exist as separate islands but rather will have rich
data pipelines going in both directions. It is safe to say that both architectures will evolve
hugely over the next decade.

Sometimes when an exciting new technology arrives, there is a tendency to close the
door on older technologies as if they were going to go away. Traditional data warehousing
has built an enormous legacy of experience, best practices, supporting structures,
technical expertise, and credibility with the business world. This will be the foundation
for information management in the upcoming decade as data warehousing expands to
include big data analytics.

A next-generation data architecture is emerging that connects the classic systems
powering business transactions and interactions with Hadoop, a hybrid architecture
capable of storing, aggregating, and transforming multi-structured raw data sources into
usable formats that help fuel new insights for the business. The unprecedented growth
and availability of data across a diverse set of channels and the competitive advantage
that organizations gain from harnessing that data are the key driving factors for big
data adoption. Hadoop’s ability to run on commodity servers, store a broad range
of data types, process analytic queries via map-reduce and predictably scale with
increased data volumes are very attractive solution characteristics as it pertains to big
data analytics. RDBMS based EDW solutions such as Netezza and Greenplum appliances
enable low latency access to high volumes of data, provide data retrieval via SQL,
integrate with a wide variety of enterprise BI and ETL tools and are optimized for
price/performance across a diverse set of workloads. Organizations that architect their
big data platforms integrating the two technologies have the ability to take advantage of
the best of both worlds.

Big data analytics is a computational discipline and one would need to skillfully
architect multiple technologies to meet its broad objectives. It’s disruptive in nature and
would pose architectural challenges to IT organizations similar in scale as SOA in the
late 1990s and cloud computing over the last decade. Organizations that overcome those
challenges and use the right set of technologies for big data analytics will be successful.

References
Big Data: Hadoop, Business Analytics and Beyond: Jeff Kelly Nov 08, 2012:

http://wikibon.org/wiki/v/Big_Data:_Hadoop,_Business_Analytics_and_Beyond
CAP Twelve Years Later: How the "Rules" Have Changed: Eric Brewer on May 30, 2012 -

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
Key Value Database: bigdatanerd.wordpress.com
NoSQL Databases: www.newtech.about.com
DataWarehouseBigDataAnalyticsKimball.pdf:

http://www.montage.co.nz/assets/Brochures/
DataWarehouseBigDataAnalyticsKimball.pdf

Big Data Diversity Meets EDW Consistency for New Synergies in BI: Nancy McQuillen,

2 December 2011

http://wikibon.org/wiki/v/Big_Data:_Hadoop,_Business_Analytics_and_Beyond
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://bigdatanerd.wordpress.com
http://www.newtech.about.com/
http://www.montage.co.nz/assets/Brochures/DataWarehouseBigDataAnalyticsKimball.pdf
http://www.montage.co.nz/assets/Brochures/DataWarehouseBigDataAnalyticsKimball.pdf

CHAPTER 5 ■ APPLICATION ARCHITECTURES FOR BIG DATA AND ANALYTICS

154

Big Data: Data Quality’s Best Friend?:

http://ibmdatamag.com/2012/08/big-data-data-qualitys-best-friend
Does Big Data Need Bigger Data Quality and Data Management?: Source: http://www.verisk.

com/Verisk-Review/Articles/Does-Big-Data-Need-Bigger-Data-Quality-and-
Data-Management.html

Integrating Master Data Management with Big Data: http://www.tmcnet.com/topics/
articles/2012/07/10/298205-integrating-master-data-management-with-big-data.htm

How MDM Fits with Big Data, Mobile & Cloud: http://www.masteringdatamanagement.
com/index.php/2012/08/14/how-mdm-fits-with-big-data-mobile-cloud

Mastering the Big Data Explosion with MDM:

http://www.dataversity.net/mastering-the-big-data-explosion-with-mdm/
Master Data Management Grows Up, the Finale: Big Data: http://www.itbusinessedge.com/

blogs/integration/master-data-management-grows-up-the-finale-big-data.html
Big Data Quality: Persistence vs. Disposability: http://www.information-management.com/

blogs/big-data-quality-persistence-versus-disposable-10023136-1.html
MDM in a Big Data World:

http://www.information-management.com/blogs/mdm-in-a-big-data-
world-10023134-1.html

Master Data Management – A Foundation for Big Data Analysis:

https://blogs.oracle.com/mdm/entry/master_data_management_a_foundation
What is the Big Deal about MDM + Big Data?:

http://corrigandavid.wordpress.com/2012/04/25/what-is-the-big-deal-about-
mdm-big-data/

The emerging relationship between MDM and big data: http://corrigandavid.wordpress.
com/2012/04/03/the-emerging-relationship-between-mdm-and-big-data/

Is MDM Ready for Big Data:

http://corrigandavid.wordpress.com/2012/04/10/is-mdm-ready-for-big-data/

t

http://ibmdatamag.com/2012/08/big-data-data-qualitys-best-friend
http://www.verisk.com/Verisk-Review/Articles/Does-Big-Data-Need-Bigger-Data-Quality-and-Data-Management.html
http://www.verisk.com/Verisk-Review/Articles/Does-Big-Data-Need-Bigger-Data-Quality-and-Data-Management.html
http://www.verisk.com/Verisk-Review/Articles/Does-Big-Data-Need-Bigger-Data-Quality-and-Data-Management.html
http://www.tmcnet.com/topics/articles/2012/07/10/298205-integrating-master-data-management-with-big-data.htm
http://www.tmcnet.com/topics/articles/2012/07/10/298205-integrating-master-data-management-with-big-data.htm
http://www.masteringdatamanagement.com/index.php/2012/08/14/how-mdm-fits-with-big-data-mobile-cloud
http://www.masteringdatamanagement.com/index.php/2012/08/14/how-mdm-fits-with-big-data-mobile-cloud
http://www.dataversity.net/mastering-the-big-data-explosion-with-mdm/
http://www.itbusinessedge.com/blogs/integration/master-data-management-grows-up-the-finale-big-data.html
http://www.itbusinessedge.com/blogs/integration/master-data-management-grows-up-the-finale-big-data.html
http://www.information-management.com/blogs/big-data-quality-persistence-versus-disposable-10023136-1.html
http://www.information-management.com/blogs/big-data-quality-persistence-versus-disposable-10023136-1.html
http://www.information-management.com/blogs/mdm-in-a-big-data-world-10023134-1.html
http://www.information-management.com/blogs/mdm-in-a-big-data-world-10023134-1.html
https://blogs.oracle.com/mdm/entry/master_data_management_a_foundation
http://corrigandavid.wordpress.com/2012/04/25/what-is-the-big-deal-about-mdm-big-data/
http://corrigandavid.wordpress.com/2012/04/25/what-is-the-big-deal-about-mdm-big-data/
http://corrigandavid.wordpress.com/2012/04/03/the-emerging-relationship-between-mdm-and-big-data/
http://corrigandavid.wordpress.com/2012/04/03/the-emerging-relationship-between-mdm-and-big-data/
http://corrigandavid.wordpress.com/2012/04/10/is-mdm-ready-for-big-data/

155

CHAPTER 6

Data Modeling Approaches
for Big Data and Analytics
Solutions

One common theme you will hear again and again concerning big data
solutions: there is no schema to model! Does this mean we do not need to
do any data modeling activities while constructing a big data solution?

Data integration, in effect is theacquisition of data from diverse source systems
(like operational applications for ERP, CRM, supply chain, where most enterprise data
originates and a host of external sources of data like social networks, external third party
data sources, etc.) through multiple transformations of the data to get it ready for loading
into target systems (like data warehouses, customer data hubs, and product catalogs).
Heterogeneity is the norm for both data sources and targets, since there are various types
of applications, databases, file types, and so on. All these have different data models,
so the data must be transformed in the middle of the process, and the transformations
themselves vary widely. Then there are the interfaces that connect these pieces, which are
equally diverse. And the data doesn’t flow uninterrupted or in a straight line, so you need
data staging areas. Simply put, that’s a lot of complex and diverse activities that you must
perform to organize data to make it useful.

Eventually the data integration processes and approaches influence the data model
development as well. Let’s first understand the data integration patterns.

Understanding Data Integration Patterns
Data integration approaches can become highly complex especially when you are dealing with
big data types. Below is an attempt to outline the complexities of data integration processes.

• Level 0: Simple point to point data integration with little or no
transformation. This just means information is flowing from one
system to another.

• Level 1: Simple data integration processes, transforming one
schema to another, without applying any data manipulation
functions like “if,” “then,” “else,” etc.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

156

• Level 2: Simple data integration processes, transforming one
schema to another, with application of data manipulation
functions like “if,” “then,” “else,” etc.

• Level 3: Complex data integration patterns, transforming the
subject data dealing with complex schemas and semantic
management involving both structured and unstructured data. In
this scenario there could be one or more data sources (data could
be also at rest or in motion) and one or more schema targets.

These design patterns (and there could be many more depending on the
applications you are trying to develop and the nature of data sources) need to be aligned
with the right integration architectures and influence the resulting data model to a great
extent. We purposefully stayed away from discussing the granularity of data, state of data
changes, and governance processes around data: if you add those aspects to the data
integration patterns you can realize the complexity of the solution.

Big Data Workload Design Approaches
Big data use cases range from data ingestion to complex and real-time analytics. Each one of
these use cases applies a specific data processing technique and a data analysis technique
(Figure 6-1). In the center lies the data model (or lack of data model). Hence it is important
for us to understand these workload design patterns first before we deep dive into data
modeling techniques for big data scenarios. Once we are able to categorize where the big
data workloads fall with respect to a business use case it becomes easier to map the right
architectural constructs required to implement the workload – columnar, Hadoop, name
value, graph databases, complex event processing (CEP) and machine learning processes.

Big Data Workload Patterns

Synchronous Sense and Respond

High Velocity Insert only Ingestion

Very Large Graph Traversal

“Needle in a Haystack” workload

Event Stream mash-up pattern

Text Indexing workload pattern

Moving window event absence

Unstructured data ingestion

Sequence Analysis workload

Unpredictable chain of thought

Architectural Constructs

AprioriAlgorithms

Complex Event Processing

Very Large Graph Traversal

Columnar Database Architecture

Text Mining

Cassandra HbaseBigTable

Network Link Analysis

Multivariate testing

Name Value Pair

Document Database

Clustering

Graph Database

High Velocity Data Pipelines

Hadoop MapReduce

Figure 6-1. Big data workload patterns

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

157

• Data Workload-1: Streaming Analytics. This type of workload
essentially consists of processing streaming data with predefined
behavioral patterns at real time. Once a pattern is observed then
real time responsesare formulated.

• Data Workload-2: High Velocity Data Ingestion. There are
several subpatterns in this type of workload.

You can simply keep collecting the data without applying •	
any transformations; this data at a later point in time can be
analyzed. The intent is to not to lose the data streams as they
happen.

In other scenarios, you may have to collect the data, •	
transform and analyze all at the same time to contextualize
the data.

• Data Workload-3: Linkage Analysis. Primarily these types of
workloads are meant to establish relationships and linkages
between different states of data. This workload is computation
and read intensive as node statistics need to be computed and
children of a node need to be read dynamically.

• Data Workload 4: Rare-Event Detection. Looking for a specific
pattern from the vast data sets across multiple attributes is a very
dataanalysis workload.

• Data Workload 5: Data Mash-Ups. Usually in these types of
workloads you are developing a story line or creating a “data bag”
linking not only data attributes but also events that happened
in isolation and may not have significance. But taken together
as a string of events occurring in a timeline, their importance
amplifies especially across multiple event streams. Sequence
analysis linking pieces of events together are some of the common
examples of these types of workloads.

• Data Workload 6: Text Analytics. A very commonly observed
data workload in big data scenarios: sentiment analysis, opinion
mining, social network analysis etc., fall majorly in this category.

• Data Workload-7: Time Series Analysis. This type of work loads
deals with pattern detections and occurrence or non-occurrence
of specific events across moving time windows of data.

• Data Workload-8: Data Forensic. This workload is primarily
triggered by data scientists exploring large data sets with questions
previously not thought of. They cast a wide net and often come up
with few patterns. The query patterns in this type of data workload
are both “depth search” as well as “breadth search.”

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

158

Map-Reduce Patterns, Algorithms, and Use Cases
In this section we will discuss a number of map-reduce patterns and algorithms to give
a systematic view of the different techniques that can be found on the Web or scientific
articles. Several practical examples are also provided.

Map-Reduce Patterns by Example
Let’s take the example of customer and orders and draw an analogy to the map-reduce
way of doing queries to address a few business specific questions.

Figure 6-2 illustrates the customer-order relationship. In an e-commerce or
supermarket scenario you will encounter millions of orders, hence as a database design
consideration we have sharded the order data set over a large cluster of nodes. Our sales
analysis folks want to see a product and its total revenue for the last seven days. In this
case, to prepare the revenue at a product level, if we follow the traditional SQL approach,
we will have to query across many nodes. However, Let’s explore how to apply the
map-reduce pattern to solve this case.

Customer ID Customer
Name

Shipping
Address

Billing
Address

1 Soumendra … …

Order
ID

Customer
ID

Line Item
Name

Unit
Price

Quantity Total
Price

1 1 Nike
Shoes

400$ 1 400$

1 1 Shaving
Cream

12$ 1 12$

1 1 Men’s
Perfume
-X

28$ 2 56$

Figure 6-2. Customer: Order illustration

The first stage in a map-reduce job is the map stage. A map is a function whose input
is a single aggregate (read as group by) and whose output is a bunch of key-value pairs.
Taking our example into account, the input is an item and the output is the key-value
pairs (total price and quantity) corresponding to the line items.

Figure 6-3 illustrates our map function.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

159

In order to provide high parallelization, map functions operate on a single record
independent of all others. The reduce function (Figure 6-4) takes multiple map outputs
with the same key and combines their values to arrive at the final result.

Map Function

Total Price: 400$

Quantity: 1

Nike
Shoes

Total Price: 12$

Quantity: 1

Shaving
Cream

Total Price: 56$

Quantity: 2

Men’s
Perfume
-X

Figure 6-3. Map function applied to customer: Order illustration

Total Price: 280$

Quantity: 10

Total Price: 168$

Quantity: 6

Total Price: 56$

Quantity: 2

Men’s Perfume -X

Order ID: 1

Order ID: 2

Order ID: X

Total Price: 504$

Quantity: 18
Men’s Perfume -X

Reduce Function

Figure 6-4. Reduce function applied to customer: Order illustration

The map-reduce framework arranges for map tasks to be run on the correct nodes
to process all the data sets and for the data to be moved to the reduce function. In its
simplest form, you can think of the map-reduce job having a single reduce function, the
outputs from all the map tasks running on various nodes are then aggregated together
and sent to the reduce function.

What optimization options do we have for the map-reduce framework? Each reduce
function operates on the results of a single key, so this limits the performance; you can’t
do anything in the reduce function to make it operate across keys. On the other hand this
limitation is actually a good thing; it allows you to run multiple reducers in parallel.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

160

If we have to improve on parallelism, we will have to divide the results of the mapper
based on the key on each processing node (typically multiple keys are grouped together
into partitions), then we take data from all the nodes for one partition, combine it into
a single group for that partition and send it to the reducer. Multiple reducers can then
operate on the partitions in parallel to get to the final results merged together (Figure 6-5).
This approach sometimes is called “shuffling” and the partitions are referred to as
“buckets” or “regions.”

Men’s Perfume-X 280$

Men’s Perfume –X 168$

Shaving Cream 12$

Shaving Cream 48$

Men’s Perfume -X 56$

Nike Shoes 400$

Nike Shoes 286$

Men’s Perfume –X 28$

Shaving Cream 24$

Map Function Output (By Order) Men’s Perfume - X 280$

Men’s Perfume –X 168$

Men’s Perfume -X 56$

Men’s Perfume -X 28$

Shaving Cream 12$

Shaving Cream 48$

Shaving Cream 24$

Nike Shoes 400$

Nike Shoes 286$

Parallel Reduce Functions by Partitions

Figure 6-5. Parallel reduce functions applied to customer: Order illustration

While we optimized the map-reduce function through parallel reduce functions,
we still see data being moved from node to node between the map and reduce functions.
How can we optimize the process to minimize data movements?

If you notice, much of this data is repetitive, consisting of multiple key-value pairs
for the same key. We can introduce a combiner function to the map-reduce framework,
which will combine all the data for the same key into a single value.

Note■ A combiner function in essence is a reducer function.

Map-reduce framework imposes few limitations on the calculations you would
like to perform on the data. Within a map function you can only operate on a single
aggregate, and within a reduce function, you can only operate on a single key (Figure 6-6).
Thus, based on your requirement, you will have to design different map-reduce jobs. To
illustrate this aspect, let’s look at the requirement: “What is the average ordered quantity
for each product?”

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

161

An important property of averages is that they are not additive, meaning we can’t
take two groups of orders, find the average quantity for products in these orders and then
add all the averages for the products to get to our answer. The right way of doing this is to
take total quantity for a product from each order, add these figures up and then calculate
the average from the combined sum (Figure 6-7).

Men’s Perfume-X 280$

Men’s Perfume–X 168$

Shaving Cream 12$

Shaving Cream 48$

Men’s Perfume -X 56$

Nike Shoes 400$

Nike Shoes 286$

Men’s Perfume –X 28$

Shaving Cream 24$

Map Function Output (By Order)

Men’s Perfume-X 532$

Shaving Cream 84$

Nike Shoes 686$

Combine Function by Key

Reduce Function

Figure 6-6. Combiner function applied to customer: Order illustration

Men’s Perfume-X

Total Quantity 16

Total Orders 4

Mean Quantity 4.0

Combine Function by Product – Node 1

Men’s Perfume-X

Total Quantity 42

Total Orders 12

Mean Quantity 2.5

Combine Function by Product – Node 2

Men’s Perfume-X

Total Quantity 36

Total Orders 9

Mean Quantity 4.0

Combine Function by Product – Node X

Men’s Perfume-X

Total Quantity 94

Total Orders 25

Mean Quantity 3.07

Reduce Function by Product – All Nodes

Figure 6-7. Average orderd quantity for a product applied to customer: Order illustration

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

162

The examples we have discussed above are complete map-reduce computations,
where we start from raw input data and create a final output. Many map-reduce functions
take a while to perform, even with clustered nodes. As new data keeps coming in, you will
have to re-run the map-reduce computations to stay up to date.

The map stages of the map-reduce are easy to handle incrementally; you run your
mapper function only if the input data has changed, since map functions are isolated
from each other, handling incremental updates are straightforward. The more complex
case is the reduce step, since it pulls together all the outputs from many maps and any
changes in the map outputs necessitates a re-run of the reduce function. This issue can
be resolved depending upon how parallel the reduce step is. If we are partitioning data
for reduction, then any partition that remains unchanged and does not necessitate the
reduce function to re-run on that partition.

Basic Map-Reduce Patterns
Counting and Summing
Problem Statement: There are a number of documents where each document is a set
of terms. It is required to calculate a total number of occurrences of each term in all
documents. Alternatively, it can be an arbitrary function of the terms. For instance,
there is a log file where each record contains a response time and it is required to
calculate an average response time.

Applications:

Log Analysis, Data Querying

Collating
Problem Statement: There is a set of items and some function of one item. It is required
to save all items that have the same value of function into one file or perform some other
computation that requires all such items to be processed as a group. The most typical
example is building of inverted indexes.

Solution: The solution is straightforward. Mapper computes a given function for
each item and emits value of the function as a key and item itself as a value. Reducer
obtains all items grouped by function value and process or save them. In case of inverted
indexes, items are terms (words) and function is a document ID where the term was
found.

Applications:

Inverted Indexes, ETL

Filtering (“Grepping”), Parsing, and Validation
Problem Statement: There is a set of records, and it is required to collect all records
that meet some condition or transform each record (independently from other records)
into another representation. The latter case includes such tasks as text parsing and value
extraction, conversion from one format to another.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

163

Solution: Solution is absolutely straightforward: mapper takes records one by one
and emits accepted items or their transformed versions.

Applications:

Log Analysis, Data Querying, ETL, Data Validation

Distributed Task Execution
Problem Statement: There is a large computational problem that can be divided into
multiple parts and results from all parts can be combined together to obtain a final result.

Solution: Problem description is split into a set of specifications, and specifications
are stored as input data for mappers. Each mapper takes a specification, performs
corresponding computations, and emits results. Reducer combines all emitted parts into
the final result.

Applications:

Physical and Engineering Simulations, Numerical Analysis,
Performance Testing

Sorting
Problem Statement: There is a set of records, and it is required to sort these records by
some rule or process these records in a certain order.

Solution: Simple sorting is absolutely straightforward: mappers just emit all items
as values associated with the sorting keys that are assembled as function of items.
Nevertheless, in practice sorting is often used in a tricky way, that’s why it is said to be
the heart of map-reduce (and Hadoop). In particular, it is very common to use composite
keys to achieve secondary sorting and grouping. Sorting in map-reduce is originally
intended for sorting of the emitted key-value pairs by key, but there exist techniques that
leverage Hadoop implementation specifics to achieve sorting by values.

It is worth noting that if map-reduce is used for sorting of the original (not
intermediate) data, it is often a good idea to continuously maintain data in sorted state
using BigTable concepts. In other words, it can be more efficient to sort data once during
insertion than sort them for each map-reduce query.

Applications:

ETL, Data Analysis

Advanced Map-Reduce Patterns
Iterative Message Passing (Graph Processing)
Problem Statement: There is a network of entities and relationships between them. It is
required to calculate a state of each entity on the basis of properties of the other entities in
its neighborhood. This state can represent a distance to other nodes, indication that there is
a neighbor with the certain properties, characteristic of neighborhood density and so on.

Solution: A network is stored as a set of nodes, and each node contains a list of
adjacent node IDs. Conceptually, map-reduce jobs are performed in iterative way, and
at each iteration each node sends messages to its neighbors. Each neighbor updates its

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

164

state on the basis of the received messages. Iterations are terminated by some condition
like fixed maximal number of iterations (say, network diameter) or negligible changes
in states between two consecutive iterations. From the technical point of view, mapper
emits messages for each node using ID of the adjacent node as a key. As result, all
messages are grouped by the incoming node and reducer is able to re-compute state and
rewrite node with the new state.

Example: In an ecommerce application, there is a tree of categories that branches out
from large categories (like men, women, kids) to smaller ones (like men’s jeans or women’s
dresses), and eventually to small end-of-line categories (like men’s blue jeans). End-of-line
category is either available (contains products) or not. Some high level category is available
if there is at least one available end-of-line category in its sub tree. The goal is to calculate
availabilities for all categories if availabilities of end-of-line categories are known.

Example: PageRank and mapper-side data aggregation, this algorithm
was suggested by Google to calculate relevance of a web page as a function of
authoritativeness (PageRank) of pages that have links to this page. The real algorithm
is quite complex, but in its core it is just a propagation of weights between nodes where
each node calculates its weight as a mean of the incoming weights.

Applications:

Graph Analysis, Web Indexing

Distinct Values (Unique Items Counting)
Problem Statement: There is a set of records that contain fields F and G. Count the
total number of unique values of field F for each subset of records that have the same G
(grouped by G). The problem can be a little bit generalized and formulated in terms of
faceted search. There is a set of records. Each record has field F and arbitrary number of
category labels G = {G1, G2, …}. Count the total number of unique values of filed F for
each subset of records for each value of any label.

Applications:

Log Analysis, Unique Users Counting

Cross-Correlation
Problem Statement: There is a set of tuples of items. For each possible pair of items
calculate a number of tuples where these items co-occur. If the total number of items is
N then N*N values should be reported.

This problem appears in text analysis (say, items are words and tuples are
sentences), market analysis (customers who buy this tend to also buy that). If N*N is quite
small and such a matrix can fit in the memory of a single machine, then implementation
is straightforward.

The first approach is to emit all pairs and dummy counters from mappers and sum
these counters on reducer. The shortcomings are:

The benefit from combiners is limited, as it is likely that all pair are distinct•

There is no in-memory accumulations•

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

165

The second approach is to group data by the first item in pair and maintain an
associative array (“stripe”) where counters for all adjacent items are accumulated.
Reducer receives all stripes for leading item i, merges them, and emits the same result
as in the pairs approach.

Generates fewer intermediate keys. Hence the framework has less •
sorting to do.

Greatly benefits from combiners.•

Performs in-memory accumulation. This can lead to problems, •
if not properly implemented.

More complex implementation.•

In general, “stripes” is faster than “pairs”•

Applications:

Text Analysis, Market Analysis

NoSQL Data Modeling Techniques
SQL and the relational model in general were designed to store and manage data
originating from enterprise systems and the main focus was to stay ACID compliant.
While SQL and relational models ensured data integrity and consistency, they also
introduced abstractions modeling end user interactions. This user-oriented nature had
a few implications:

Mostly the end user wanted to see data at aggregated level for •
reporting and analysis purpose. Contextualizing the data and
linkages were not possible through standard SQL functions,
hence complex applications needed to be built to bring out the
semantic meaning of data.

Distributed nature of data management operations was never •
thought of, while SQL and RDBMS platforms provided excellent
features to manage concurrency, integrity, consistency, or data
type validity, they fail in providing consistency, availability and
fault-tolerance type of features, which was largely left to the
programmer community to custom develop.

To overcome these shortcomings and most importantly to develop solutions to
manage big data scale and variety of data types a new set of “No SQL” (read as Not Only
SQL) data models began to emerge: key-value storage, document databases, and graph
databases.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

166

Types of NoSQL Data Stores
The following section describes the different types of NoSQL datastores.

Key-Value stores

Examples: Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB
Typical applications: Content caching
Strengths: Fast lookups
Weaknesses: Stored data has no schema

Example application: The web application is an internal crowd-sourcing portal of
a company, where people share innovative ideas, and there are messages posted about
these ideas. In order to promote innovative thinking it is important to capture how
many ideas are getting posted, how many people are commenting to those ideas, etc.
The web page reads from a key that is based on the user's ID and retrieves a string of
JSON that represents all the relevant information. A background process recalculates the
information every 15 minutes and writes to the store, independently awarding points
against the maximum polled idea.

Document databases

Examples: CouchDB, MongoDB
Typical applications: Web applications
Strengths: Tolerant of incomplete data
Weaknesses: Query performance, no standard query syntax

Example application: A collaboration interface that takes into account several people
providing inputs across various phases of a design document. The details you need to
capture for each activity vary tremendously with design considerations and when new
requirements are shared by clients. The entire document is built up piecemeal, with each
and every input needing to be captured. Multiple people are collaborating who may or
may not have the big picture in front of them, so the completeness and accuracy of the
design can only be ascertained when all the sections of the document are complete. But
until then you have to treat the individual contributions skeptically.

Graph databases

Examples: Neo4J, InfoGrid, Infinite Graph
Typical applications: Social networking, recommendations
Strengths: Graph algorithms (e.g., shortest path, connectedness, n degree

relationships, etc.)
Weaknesses: Has to traverse the entire graph to achieve a definitive answer. Not easy

to cluster.

Example application: Any application that requires linkage analysis and relationship
analysis across a large cluster of people is best suited to a graph database.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

167

XML Databases

Examples: Exist, Oracle, MarkLogic
Typical applications: Publishing
Strengths: Mature search technologies, Schema validation
Weaknesses: No real binary solution, easier to re-write documents than update them

Example application: A logistics company that uses bespoke XML formats to
manage the invoices, customer order fulfillment directives, shipping commitments
associated with the orders and packaging and handling instructions for each order. The
company manager needs to quickly search either text or semantic sections of the markup
(e.g., orders whose summary contains fragile, where the shipping commitment is four
business days and customers belonging to a particular zip code area). This application
extensively uses text-based search techniques.

Distributed Peer Stores

Examples: Cassandra, HBase, Riak
Typical applications: Distributed file systems
Strengths: Fast lookups, good distributed storage of data
Weaknesses: Very low-level API

Example application: A plant maintenance application that takes into account
the plant machineries generating logs, where each machine’s log needs to be captured
separately. All these log files are processed in a batch mode every four hours to identify
any specific anomalies in machine’s readings, and a list of alerts gets generated for a
machine that has higher-than-normal thresholds. The plant’s machines are in remote
places and spread a wide area.

What Database System Should Your Application Use?
The key point is to determine what the objective of your application is. Table 6-1 shows
some of the basic guidelines in determining what use cases need what kind of database
solutions.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

168

Table 6-1. Use cases for No SQL databases

Use Case Scenario Use Case Requirements Recommended Database

Complex transactions Can’t afford to lose data

Example – Inventory
management system that needs
to be fully ACID compliant

Relational or Grid
database

Highly scalable Scale-out partitioning, live
addition and removal of nodes,
load balancing, automatic
sharding and rebalancing and
fault tolerance

No SQL and RDBMS

Always be able to write High availability and
eventual consistency

Bigtable clones

Small and continuous
reads and writes

Data may be volatile but needs
fast streaming type of processing
and in-memory accessing

Document or Key-value
type of No SQL databases

Social network operations Discover networks,
relationships, pattern matching
and correlations

Graph databases, Riak,
Redis

Wide variety of access
patterns across many
different data types

Breadth search and depth
search, patterns findings, long
running queries, deep analytic
type of usage

Document databases

Offline reporting with
large data sets

Mostly for data exploratory
analysis purpose

Hadoop/MapReduce

Distributed data
management

Spanning multiple data
centers to handle latency and
are partition tolerant

Bigtable Clones

CRUD applications Access complex data without
joins

Document databases

Search applications Content Analytics Riak

Operations on multiple
data structures

Lists, Sets, Queues, Publish-
Subscribe

Redis

Programmer friendliness Rapid Application
development and deployment

Document databases
and Key-value databases

Transactions oriented
with real-time processing

Data roll-ups, time windowing,
materialized views, real time
data feeds

Volt DB

(continued)

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

169

Use Case Scenario Use Case Requirements Recommended Database

Log processing Continuous streams of data
that may have no consistency

Bigtable clones

Dynamic relationship
building

Dynamically build
relationships between object
that have dynamic properties;
will not require a rigid schema
and models needs to be
developed programmatically

Graph databases

Large Media – BLOB types Support large media data types,
Caching of web pages or to
save complex objects that were
expensive to join in a relational
database, etc.

S3, Mongo DB

Bulk upload Bulk upload lots of data quickly
and efficiently

Mostly RDBMS solutions

Easier upgrade options Fluid schema system that
supports optional fields, adding
fields, deleting fields without
requiring to build an entire
schema migration framework

Document databases or
Key-value databases

Mobile platform For multichannel data
ingestion as well as data
consumption

Couch DB, Mobile
Couchbase

Table 6-1. (continued)

With the above information, let’s look at a simplistic product table consisting of fields
Product ID, Product Name, Product Categories and Product Packaging and then apply
data modeling techniques as suitable to both relational databases and non-relational
databases.

Let’s examine the relational database model first in Figure 6-8.

Product ID (PK)

Product Name

Category ID (FK)

Packaging ID (FK)

Category ID (PK)

Category Desc

Packaging ID (PK)

Packaging Desc

Product
Category

Packaging

Figure 6-8. Product RDBMS logical data model

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

170

In contrast, the NoSQL databases take a completely different approach and
implement interaction-based data structure solutions. In general, NoSQL data models
can be classified into four categories as described below:

Column-based store•

Document store•

Key-value store•

Graph data store•

Column Families or Wide-column Store

Examples: Cassandra, Hbase
Typical usages: Distributed data storage.
The column-based stores extend the typical Key-Value pair storage where each

column can be grouped with a key and corresponding set of values. These types of data
structures are preferred when the application requires extensive read/write operations.

By following this approach our product data model will look like Figure 6-9.

Product ID

1

Product Name

Kelogg Cereal

Category

Category ID

NT 1

Category Desc

Cereal

Packaging

Packaging ID

BX 1

Packaging Desc

Box-24inches-
Rectangular

Figure 6-9. Product column family logical data model

Later in this chapter we will discuss how to develop data models using Cassandra’s
column family data store.

Document Store

Examples: CouchDB, MongoDB
Typical usages: Web applications.
Mostly applicable when the data is in document format; highly unstructured in

nature, these documents are stored and retrieved following the XML, JSON, or BSON
architecture principles.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

171

By following this approach our product data model will look like below:

Product Id = “001”,ProductName=”Kelogg Cereal”,
Category=[{Category Id:"NT1",CategoryDesc:"Cereal"}],

Packaging=[{Packaging ID="BX1", Packaging Desc:”Box-24 inches-Rectangular”}]

Key-Value Store

Examples: Membase, Redis
Typical usages: Distributed hash table, caching
Key-Value store behaves like hash tables where the values are mapped to keys. The

simplicity of this model allows storage and processing of any type of information, thus
creating a schema-less storage. Whenever the business application needs excessive read
operations or search type of interactions with data, this model is recommended.

Graph Databases

Examples: Neo4J, InfoGrid
Typical usages: Social networking, recommendations
The Graph Data model is based on Graph theory where data is stored in nodes,

and the linkages to other data are reflected through the edges. This data model is
recommended when the business application does a lot of recursive analysis.

By following this approach our product data model will look like below:
Node: Product
Property: Product ID, Product name, category, and packaging
Relationship: Each product is mapped to a category, and each product has a

packaging specification.

Note ■ Relational data modeling is based on the design-themed question, “What answers

do I have from the available data?” This means you must develop applications and formulate

queries based on the data structures and available data. Whereas, No SQL data modeling is

based on the design-themed question: “What questions do I have?” This means, irrespective

of data structures, you design applications with specific questions in mind.

What is JSON
JSON (stands for JavaScript Object Notation) is a lightweight and highly portable
data-interchange format. JSON is intuitive to the Web as well as the browser.
Interoperability with any/all platforms in the current market can be easily achieved
using JSON message format.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

172

According to JSON.org (www.json.org), JSON is built on two structures:

A collection of name/value pairs. In various languages, this is •
realized as an object, record, dictionary, structure, keyed list, hash
table, or associative array.

An ordered list of values. In most languages, this is realized as an •
array, list, vector, or sequence.

A typical JSON syntax is as follows:

Data is represented in the form of name-value pairs. A name-•
value pair comprises a “member name” in double quotes,
followed by colon “:” and the value in double quotes

Each data member (name-value pair) is separated by comma•

Objects are held within curly (“{ }”) brackets.•

Arrays are held within square (“[]”) brackets.•

JSON is significantly like XML:

JSON is plain text data format•

JSON is human readable and self-describing•

JSON is categorized (contains values within values)•

JSON can be parsed by scripting languages like Java script•

JSON data is supported and transported using AJAX•

Though JSON and XML are both data formats, JSON has few advantages over XML
because of the following reasons:

JSON is lighter compared to XML (No unnecessary/additional •
tags in JSON)

JSON is easier to read and understand by humans.•

JSON is easier to parse and generate for machines.•

For AJAX related applications, JSON is faster than XML.•

Column Family Database: Columns, Column Family,
Super Column Family
Column family databases are probably most known because of Google’s BigTable
implementation. They are very similar to relational database, but they also have
differences in their approach to storing and accessing data. Some of the difference
is storing data by rows (relational) versus storing data by columns (column family
databases). But a lot of the difference is conceptual in nature. You can’t apply the same
sort of solutions that you used in a relational form to a column database.

http://www.json.org/

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

173

The following concepts are critical to understand how column databases work:

Column family•

Super columns•

Column•

You need to define the schema for tables in relational databases; however, the only
thing that you define in a column family is the name and the key sort options (there is
no schema).

Column families. A column family is how the data is stored on the •
disk. All the data in a single column family will sit in the same file
(actually, set of files, but that is close enough). A column family
can contain super columns or columns.

A super column is a dictionary; it is a column that contains other •
columns (but not other super columns).

A column is a tuple of name, value, and timestamp.•

It is important to understand that schema design in a column family database
(CFDB) is of great importance; if you don’t build your schema right, you literally can’t
get the data out. CFDB usually offers one of two forms of queries, either by key or by
key range. A CFDB is meant to be distributed, and the key determines where the actual
physical data would be located. Data is stored based on the sort order of the column
family, and you have no real way of changing the sorting (except choosing between
ascending or descending). The sort order, unlike in a relational database, isn’t affected by
the columns values but by the column names.

In order to clarify the concepts of column families and the type of problems they
help solve, let’s look at an example.

Imagine you have a database that contains census data. The person table
(Figure 6-10) has one row for each person who participated in and would probably be
keyed by a unique key. All singleton attributes such as date of birth, gender, address and
so forth would exist in this table. Some repeating attributes like work history wouldbe
normalized out into related tables. Depending upon the size of the sample, a census may
take in hundreds of millions of people, and would look something like Figure 6-10.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

174

The obvious problem is that analyzing this census data to answer a question
such as “How many men were born in each year?” also entails reading the name and
address of each person, together with whatever other data is present in each row.

Columnar databases were devised to solve this problem. These databases store
each column separately so that aggregate operations for one column of the entire table
are significantly quicker than the traditional row storage model. The problem with
this columnar approach is that getting all the data for a single person becomes very
expensive because the database must fetch data from numerous places on disk and
glue together all those columns to represent a single row.

In contrast, in a CFDB design, columns of related data are grouped together
within one table as shown in Figure 6-11. The person table has now been subdivided
so that all personal name and address data is grouped together, as is statistical
demographic data for each person. Any other columns in the table would be grouped
accordingly as well.

Person ID
1
2
3
…
…
…

5,00,000,000

Name
S Vohra

S Choubey
S Raj

M Iyer
R Menon

…
…
…

S Mohanty

BirthDate
01-01-1968
02-02-1971
03-03-1970
04-04-1963
05-05-1967

…
…
…

09-09-1972

Gender
M
M
F
F
…
…
…
M

Address
4th Cross, Bangalore
Central Square, Ranchi

H. City, Hyderabad
Chembur, Mumbai

…
…
…

New Town, Kolkata

…
…
…
…
…
…

Figure 6-10. Column family: Census data example

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

175

NoSQL databases that support column families, such as HBase and Cassandra, only
fetch the column families of those columns that are required by a query. This allows our
previous statistical query to group men by age without fetching the long text columns
that are present in each row. Note that the row key is not in a column family, but cuts a
horizontal slice across all columns and their families to unify all data for one row.

Furthermore, NoSQL databases group all the columns in a column family together
on the disk. This means they can fetch multiple rows of one column family in a single
read operation. Grouping the columns like this to speed up the reading of data is called
“data locality.”

Now that we understand the concept of column families, let’s look at a few other
interesting concepts. A normal RDBMS column has a static name and a single value per
row. In a CFDB design, however, a family can also be used as a container for columns
where the column name itself contains data. Take a look at Figure 6-12.

Person ID
1
2
3
…
…
…

5,00,000,000

Name
S Vohra

S Choubey
S Raj

M Iyer
R Menon

…
…
…

S Mohanty

BirthDate
01-01-1968
02-02-1971
03-03-1970
04-04-1963
05-05-1967

…
…
…

09-09-1972

Gender
M
M
F
F
…
…
…
M

Address
4th Cross, Bangalore
Central Square, Ranchi

H. City, Hyderabad
Chembur, Mumbai

…
…
…

New Town, Kolkata

…
…
…
…
…
…

Row Key Personal Data Demographic Data …

Figure 6-11. Column family: Census data example

Name BirthDateAddress
Honda
1990

Row Key Personal Data Cars Owned

Name

Name

Address

Address

BirthDate

BirthDate

Hyundai
2003

Tata
2000

Chevy
2011

Hyundai
2006

Toyota
2009

Toyota
2010

Honda
2013

Figure 6-12. Column family: Data column names example

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

176

In this example, a column family in our person table is a list of cars the person has
owned, and the year of manufacture for each car. This would mean a sub-table in a
relational data model; but a CFDB column family can accommodate this because it can
contain many name/value pairs, where the name is the column name and the value is the
value of that column for that row. It is important to realize that the names of the columns
in a single family can vary arbitrarily for each row.

The column families thus can be divided into static and dynamic families. Static
families like personal data and demographic data in our examples above have mostly
the same column names on every row. Dynamic families like cars owned contain mostly
different column names for each row.

Note ■ A CFDB design seems to have few design considerations that are fundamental to

data access: no joins, no real querying capability (except by primary key), nothing like the

richness that we get from a relational database. Why is it so limited?

A CFDB is designed to run on a large number of machines and to store a huge
amount of information. You literally cannot store that amount of data in a relational
database, and even multi-machine relational databases, such as Oracle RAC, will struggle
to handle the size of data and queries that are typical for CFDB.

The reason that a CFDB design doesn’t provide joins is that joins require you to
be able to scan the entire data set. That requires either someplace that has a view of
the whole database (resulting in a bottleneck and a single point of failure) or actually
executing a query over all machines in the cluster. Since that number can be pretty high,
you would want to avoid such situations.

CFDB designs don’t provide a way to query by column or value because that would
necessitate either an index of the entire data set (or just in a single column family), which
again is not practical, or running the query on all machines, which is not possible. By
limiting queries to just those done by key, a CFDB design ensures that it knows exactly
what node a query can run on. It means that each query is running on a small set of data,
making them much cheaper and faster.

Model Column Families Around Query Patterns
As discussed earlier, No SQL data modeling is always based on query patterns; however,
it is also important to understand the business context behind the objects of interest:
hence, start your design with entities and relationships, if you can. Unlike in relational
databases, it’s not easy to tune or introduce new query patterns in by simply creating
secondary indexes or building complex SQLs (using joins, order by, group by) because
of its high-scale distributed nature. So think about query patterns up front, and design
column families accordingly.

Entities and their relationships still matter (unless the use case is special, perhaps
storing logs or other time series data). What if you are given query patterns to create a
data model for an e-commerce website, but you were not told anything about the entities
and relationships? You might try to figure out entities and relationships, knowingly or

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

177

unknowingly, from the query patterns or from your prior understanding of the domain
(because entities and relationships are how we perceive the real world). It’s important
to understand and start with entities and relationships, then continue modeling around
query patterns by de-normalizing and duplicating.

It also helps to identify the most frequent query patterns and isolate the less
frequent. Some queries might be executed only a few thousand times, while others will be
executed a billion times. Also consider which queries are sensitive to latency and which
are not. Make sure your model first satisfies the most frequent and critical queries.

De-normalize and Duplicate for Read Performance
In the relational world, the pros of normalization are well understood: less data
duplication, fewer data modification anomalies, conceptually cleaner, easier to maintain,
and so on. The cons are also understood: queries might perform slowly if many tables are
joined, etc. The same holds true in column family databases, but the cons are magnified
since it’s a distributed database and of course there are no joins (since it’s high-scale
distributed). So with a fully normalized schema, reads may perform much worse.

Example: “Like” relationship between user and item
This example concerns the functionality of an e-commerce application where users

can like one or more items. One user can like multiple items, and one item can be liked by
multiple users, leading to a many-to-many relationship as shown in the relational model
in Figure 6-13.

User ID Name Email

123 ABC ABC@123.com

456 XYZ XYZ@456.com

ID User ID Item ID Timestamp

1 123 111 1234567890

2 123 222 1234560987

3 456 111 4567098123

4 456 333 7890654321

Item ID Title Desc

111 iPhone Apple iPhone

222 Tipping Point Book – Malcom Gladwell

333 Kindle eReader

Figure 6-13. Logical data model in RDBMS

For this example, let’s say we would like to query data as follows:

Get user by user id•

Get item by item id•

Get all the items that a particular user likes•

Get all the users who like a particular item•

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

178

Below are some options for modeling the data in CFDB, in order of the lowest to the
highest de-normalization. The best option depends on the query patterns, as you’ll soon see.

Option 1: Relational model

This model, Figure 6-14, supports querying user data by user ID and item data by item ID.
But there is no easy way to query all the items that a particular user likes or all the users
who like a particular item.

User ID Name Email

123 ABC ABC@123.com

Item ID Title Desc

111 iPhone Apple iPhone

User Item Like User ID Item ID

1 123 111

Figure 6-14. Option 1: Logical data model in RDBMS)

Option 2: Normalized entities with custom indexes

This model, in Figure 6-15, has fairly normalized entities, except that user ID and item ID
mapping is stored twice, first by item ID and second by user ID.

User ID Name Email

123 ABC ABC@123.com

Item ID Title Desc

111 iPhone Apple iPhone

User by Item User ID User ID

111 123 456

Item by User Item ID Item ID

123 111 222

Figure 6-15. Option 2: Logical NoSQL data model

Here, we can easily query all the items that a particular user likes using “Item
byUser,” and all the users who like a particular item using “User byItem”. We refer to these
column families as custom secondary indexes, but they’re just other column families.

Let’s say we always want to get the item title in addition to the item ID when we
query items liked by a particular user. In the current model, we first need to query “Item
byUser” to get all the item IDs that a given user likes; and then for each item ID, we
need to query the item to get the title. Similarly, let’s say we always want to get all the
usernames in addition to user IDs when we query users who like a particular item. With
the current model, we first need to query “User byItem” to get the IDs for all users who
like a given item; and then for each user ID, we need to query “User” to get the username.
It’s possible that one item is liked by a couple hundred users, or an active user has liked
many items: this will cause many additional queries when we look up usernames who
like a given item and vice versa. So, it’s better to optimize by de-normalizing the item title
in “ItembyUser” and username in “UserbyItem” as shown in option 3 (Figure 6-16).

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

179

Option 3: Normalized entities with de-normalization into
custom indexes

In this model, title, and username are de-normalized in “User byItem” and “Item byUser”
respectively. This allows us to efficiently query all the item titles liked by
a given user and all the user names who like a given item. This is a fair amount of
de-normalization for this use case.

What if you want to get all the information (title, description, price, etc.) about the items
liked by a given user? First you need to ask yourself whether you really need this query,
particularly for this use case. You can show all the item titles that a user likes and pull
additional information only when the user asks for it (by clicking on a title). So, it’s better not to
do extreme de-normalization for this use case. Let’s consider the following two query patterns:

For a given “Item Id”, get all of the item data (title, description, etc.) •
along with the names of the users who liked that item.

For a given “User Id”, get all of the user data along with the item •
titles liked by that user.

These are reasonable queries for item detail and user detail pages in an application.
Both will perform well with this model. Both will cause two lookups, one to query item
data (or user data) and another to query user names (or item titles). As the user becomes
more active (starts liking thousands of items, for example) or the item becomes hotter
(liked by a few million users, for example), the number of lookups will not grow; it will
remain constant at two. That’s not bad, and de-normalization may not yield much benefit
like we had when moving from option 2 to option 3. However, you will learn how to
optimize further in option 4 (Figure 6-17).

User ID Name Email

123 ABC ABC@123.com

Item ID Title Desc

111 iPhone Apple iPhone

User by Item User ID User ID

111 123 456

ABC XYZ

Item by User Item ID Item ID

123 111 222

iPhone Tipping Point

Figure 6-16. Option 3: Logical NoSQL data model

User ID User Info Likes

123 Name Email 111 222

ABC ABC@123.com iPhone Tipping Point

Item ID Item Info Liked By

111 Title Desc 123 456

iPhone Apple iPhone ABC XYZ

Figure 6-17. Option 4: Logical NoSQL data model

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

180

Option 4: Partially de-normalized entities

We’ve used the term “partially de-normalized” here because we’re not de-normalizing all
item data into the User entity or all user data into the Item entity.

We’ve left out timestamp, but let’s include it in the final model, shown in Figure 6-18.
Note that “time-uuid” and “userid” together form a composite column key in “User
byItem” and “Item byUser” column families.

User ID Name Email

123 ABC ABC@123.com

Item ID Title Desc

111 iPhone Apple iPhone

User by Item 1234567890|123 4567098123|456

111 ABC XYZ

Item by User 1234567890|111 1234560987|222

123 iPhone Tipping Point

timeuuid|userid
timeuuid|itemid

Figure 6-18. Timestamp-enabled NoSQL data model

Recall that column keys are physically stored sorted. Here our column keys are
stored sorted by time-uuid in both “User by Item” and “Item by User”, which makes range
queries on time slots very efficient. With this model, we can efficiently query (via range
scans) the most recent users who like a given item and the most recent items liked by a
given user, without reading all the columns of a row.

We’ve covered a few fundamental practices and walked through a detailed example
to help you get started with CFDB data model design. Here are the key takeaways:

Don’t think of a relational table, but think of a nested sorted map •
data structure while designing column families.

Model column families around query patterns. But start your •
design with entities and relationships if you can.

De-normalize and duplicate for read performance. But don’t de-•
normalize if you don’t need to.

Remember that there are many ways to model. The best way •
depends on your use case and query patterns.

What we have not mentioned here are special-yet-common use cases such as
logging, monitoring, real-time analytics (rollups, counters), or other time series
data. However, the practices we discussed here do apply there. In addition, there are
known common techniques or patterns used to model these time series data in a
CFDB design.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

181

Storing Values in Column Names
It’s a common practice with a CFDB design to store a value (actual data) in the column
name (a.k.a. column key), and even to leave the column value field empty if there is
nothing else to store. One motivation for this practice is that column names are stored
physically sorted, but column values are not.

Notes

The maximum column key (and row key) size is 64KB. However, •
don’t store something like “item description” as the column key!

Don’t use timestamp alone as a column key. You might get •
colliding timestamps from two or more app servers writing to
CFDB. Prefer time-uuid instead.

The maximum column value size is 2 GB. But because there is no •
streaming and the whole value is fetched in heap memory when
requested, limit the size to only a few MBs.

Leverage Wide Rows for Ordering, Grouping,
and Filtering
This goes along with the above practice. When actual data is stored in column names,
we end up with wide rows.

Benefits of wide rows

Since column names are stored physically sorted, wide rows •
enable ordering of data and hence efficient filtering (range scans).
You’ll still be able to efficiently look up an individual column
within a wide row, if needed.

If data is queried together, you can group that data up in a single •
wide row that can be read back efficiently, as part of a single
query. As an example, for tracking or monitoring some time series
data, we can group data by hour/date/machines/event types
(depending on the requirements) in a single wide row, with each
column containing granular data or roll-ups.

Wide row column families are heavily used (with composite •
columns) to build custom indexes in CFDB.

As a side benefit, you can de-normalize a one-to-many •
relationship as a wide row without data duplication.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

182

Example

Let’s say we want to store some event log data and retrieve that data hourly. As shown in
Figure 6-19, the row key is the hour of the day, the column name holds the time when the
event occurred, and the column value contains payload. Note that the row is wide and the
events are ordered by time because column names are stored sorted. Granularity of the
wide row (for this example, per hour rather than every few minutes) depends on the use
case, frequency of events, and data size, etc.

It’s hard to say exactly how wide a wide row should be, partly because it’s dependent
upon the use case. But here’s some advice:

Traffic: All of the traffic related to one row is handled by only one node/shard
(by a single set of replicas, to be more precise). Rows that are too “fat” could cause hot
spots in the cluster: usually when the number of rows is smaller than the size of the cluster,
or when wide rows are mixed with skinny ones, or some rows become hotter than others.
However, cluster load balancing ultimately depends on the row key selection; conversely,
the row key also defines how wide a row will be. So load balancing is something to keep in
mind during design.

Size: As a row is not split across nodes, data for a single row must fit on disk within a
single node in the cluster. However, rows can be large enough so that they don’t have to fit
in memory entirely. Best practice is to model data in such a way that you never hit more
than a few million columns or a few megabytes in one row. (In such cases where the rows
are really wide, you can change the row key granularity, or you can split into multiple rows.)
However, these caveats don’t mean you should not use wide rows; just don’t go extra wide.

Choose the Proper Row Key – It’s Your “Shard Key”
Let’s consider again the above example of storing time series event logs and retrieving
them hourly (Figure 6-20). We picked the hour of the day as the row key to keep one
hour of data together in a row. But there is an issue: All of the writes will go only to the
node holding the row for the current hour, causing a hot spot in the cluster. Reducing
granularity from hour to minutes won’t help much, because only one node will be
responsible for handling writes for whatever duration you pick. As time moves, the hot
spot might also move, but it won’t go away!

ddmmyyhh Timeuuid1 Timeuuid2

Event Data 1 Event Data 2

… …

Figure 6-19. Event log logical data model

ddmmyyhh|EventType Timeuuid1 Timeuuid2

Event Data 1 Event Data 2

… …

Figure 6-20. Event type integrated logical NoSQL data model

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

183

One way to alleviate this problem is to add something else to the row key: an event
type, machine ID, or similar value that’s appropriate to your use case.

Note that now we don’t have global time ordering of events, across all event types, in
the column family. However, this may still be a manageable approach if the data is viewed
(grouped) by event type later. If the use case also demands retrieving all of the events
(irrespective of type) in time sequence, we need to do a multi-get for all event types for a
given time period, and honor the time order when merging the data in the application.

If you can’t add anything to the row key or if you absolutely need “time period” as
a row key, another option is to shard a row into multiple (physical) rows by manually
splitting row keys: “ddmmyyhh | 1”, “ddmmyyhh | 2”,… “ddmmyyhh | n”, where n is the
number of nodes in the cluster. For an hour window, each shard will now evenly handle
the writes; you need to round-robin among them. But reading data for an hour will
require multi-gets from all of the splits (from the multiple physical nodes) and merging
them in the application.

Keep Read-Heavy Data Separate from Write-Heavy Data
Irrespective of caching and even outside the NoSQL world, it’s always a good practice to
keep read-heavy and write-heavy data separate because they scale differently.

Notes

A row cache is useful for skinny rows, but harmful for wide rows •
today because it pulls the entire row into memory.

Even if you have lots of data (more than available memory) in a •
column family but you also have particularly “hot” rows, enabling
a row cache might be useful.

Make Sure Column Key and Row Key are Unique
In many column family databases, there is no unique constraint •
enforcement for row key or column key.

Also, there is no separate update operation (no in-place updates!). •
It’s always an upsert (insert-update). If you accidentally insert
data with an existing row key and column key, the previous
column value will be silently overwritten without any error (the
change won’t be versioned; the data will be gone).

Use the Proper Comparator and Validator
In column family databases, the data type for a column value (or row key) is called
a validator. The data type for a column name is called a comparator. Although the
database does not require you to define both, you must at least specify the comparator

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

184

unless your column family is static (that is, you’re not storing actual data as part of the
column name), or unless you really don’t care about the sort order.

An improper comparator will sort column names inappropriately •
on the disk. It will be difficult (or impossible) to do range scans on
column names later.

Once defined, you can’t change a comparator without rewriting •
all data. However, the validator can be changed later.

Design the Data Model Such that Operations
are Idempotent
In an eventually consistent and fully distributed system, idempotent operations can help
a lot. Idempotent operations allow partial failures in the system, as the operations can be
retried safely without changing the final state of the system. In addition, idempotency can
sometimes alleviate the need for strong consistency and allow you to work with eventual
consistency without causing data duplication or other anomalies.

Because column family databases are fully distributed (and multi-master) in nature,
write failure does not guarantee that data is not written, unlike the behavior of relational
databases. In other words, even if you receive a failure for a write operation, data might
be written to one of the replicas, which will eventually get propagated to all replicas. No
rollback or cleanup is performed on partially written data. Thus, a perceived write failure
can result in a successful write eventually. So, retries on write failure can yield unexpected
results if your model isn’t update idempotent.

Notes

“Update idempotent” here means a model where operations •
are idempotent. An operation is called “idempotent” if it can be
applied one time or multiple times with the same result.

In most cases, idempotency won’t be a concern, as writes into •
regular column families are always update idempotent. The
exception is with the counter column family, as shown in the
example below. However, sometimes your use case can model
data such that write operations are not update idempotent from
the use case perspective. For instance, in our earlier example,
“UserbyItem” and “ItembyUser” in the final model are not
update idempotent if the use case operation “user likes item”
gets executed multiple times, as the timestamp might differ for
each like. However, note that a specific instance of the use case
operation “user likes item” is still idempotent, and so can be
retried multiple times in case of failures.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

185

Example

Suppose that we want to count the number of users who like a particular item. One way
is to use the counter column family to keep count of users per item. Since the counter
increment (or decrement) is not update idempotent, retry on failure could yield an
over-count if the previous increment was successful on at least one node. One way
to make the model update idempotent is to maintain a list of user ids instead of
incrementing a count, as shown below. Whenever a user likes an item, we write that
user’s ID against the item; if the write fails, we can safely retry. To determine the count
of all users who like an item, we read all user ids for the item and count manually.

In Figure 6-21, the update idempotent model, getting the counter value requires
reading all user ids, which will not perform well (there could be millions). If reads
are heavy on the counter and you can live with an approximate count, the counter
column will be efficient for this use case. If needed, the counter value can be corrected
periodically by counting the user IDs from the update idempotent column family.

Item Id1 “User Counter”

100

Item Id 1 User ID 1 User ID 2

User Name 1 User Name 2

Like Count

Like Count

Not Update Idempotent

Update Idempotent

Figure 6-21. Counter logical NoSQL data model

Don’t Use the Counter Column Family to Generate
Surrogate Keys
The counter column family holds distributed counters meant for distributed counting.
Don’t try to use this to generate sequence numbers for surrogate keys, like Oracle
sequences or auto-increment columns. You will receive duplicate sequence numbers!
Most of the time you really don’t need globally sequential numbers. Use “time-uuid” as
surrogate keys. If you truly need a globally sequential number generator, there are a few
possible mechanisms; but all will require centralized coordination and thus can impact
the overall system’s scalability and availability.

Favor Composite Columns over Super Columns
A super column can be used to group column keys, or to model a two-layer hierarchy.
However, super columns have the following implementation issues and are therefore
becoming less favorable.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

186

Issues

Sub-columns of a super column are not indexed. Reading one •
sub-column de-serializes all sub-columns.

Built-in secondary indexing does not work with sub-columns.•

Super columns cannot encode more than two layers of hierarchy.•

Similar functionality can be achieved by the use of the composite column. It’s a
regular column with sub-columns encoded in it. Hence, all of the benefits of regular
columns, such as sorting and range scans, are available; and you can encode more than
two layers of hierarchy.

For example, a composite column key like “<state|city>” will be stored ordered first
by state and then by city, rather than first by city and then by state. In other words, all the
cities within a state are located (grouped) on disk together.

Understanding Cassandra Data Model
The Cassandra data model is prebuilt for highly distributed and large-scale data.
It trades off the traditional database guidelines (ACID compliant) to leverage operational
manageability, performance, and availability.

An illustration of how a Cassandra data model would like Figure 6-22.

Figure 6-22. Counter logical NoSQL data model

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

187

The basic elements of the Cassandra data model are as follows:

Column•

Super Column•

Column Family•

Keyspace•

Cluster•

Column: A column is the basic unit of Cassandra data model. A column comprises
name, value and a time stamp (by default). An example of column in JSON format is as
follows:

{ // Example of Column
"name": "EmployeeID",
"value": "10029277",
"timestamp": 123456789
}

Super Column: A super column is a dictionary of boundless number of columns,
identified by the column name. An example of a super column in JSON format is as
follows:

{ // Example of Super Column
"name": "Specialization",
"value": {
"role" : {
"name": "role", "value": "Master Technology Architect", "timestamp":
123456789
},
"designation" : {
"name": "designation", "value": "Managing Director", "timestamp": 123456789
}
}

The major differences between a column and a super column are:

Column’s value is a string but the super column’s value is a record •
of columns.

A super column doesn’t include any time stamp (only term’s •
name and value).

Note ■ Cassandra does not index sub-columns, so when a super column is loaded into

memory, all of its columns are loaded as well.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

188

Column Family (CF): A column family resembles an RDBMS table closely and is an
ordered collection of rows, which in turn are ordered collections of columns.

A column family can be a “standard” or a “super” column family. A row in a standard
column family contains collections of name/value pairs whereas the row in a super
column family holds collections of super columns (group of sub-columns).

An example for a column family is described below (in JSON):

Employee = { // Employee Column Family
"10029277" : { // Row key for Employee ID - 10029277
// Collection of name value pairs
"EmpName" :"SM",
"mail" :"SM@xyz.com",
"phone" : "9999900000"
//There can be N number of columns
 },
"10099999" : { // Row key for Employee ID - 10099999
// Collection of name value pairs
"EmpName" :"MJ",
"mail" :"MJ@xyz.com",
"phone" : "9090909090"
 },
"10199999" : { // Row key for Employee ID - 10199999
// Collection of name value pairs
"EmpName" :"HS",
"mail" :"HS@xyz.com",
"phone" : "9099909990"
 }
}

Note ■ Each column would contain “time stamp” by default. For easier narration, time

stamp is not included here.

The address of a value in a regular column family is a row key pointing to a column
name pointing to a value, while the address of a value in a column family of type “super”
is a row key pointing to a column name pointing to a sub-column name pointing to a
value. An example for a super column in JSON format is as follows:

Specialization = { // Super column family
"10029277" : { // Row key for Employee ID - 10029277
//Specialization skills by the employee with ID - 10029277
 "Skill1" : {"skillcode" : "skill1", "value": "BI",},
 "Skill2" : {"skillcode" : "skill2", "value": "DW",},
 "Skill3" : {"skillcode" : "skill3", "value": "CRM",},
 "Skill4" : {"skillcode" : "skill4", "value": "Analytics",},
 "Skill5" : {"skillcode" : "skill5", "value": "Big Data",}
 }

http://SM@xyz.com
http://SM@xyz.com
http://MJ@xyz.com
http://MJ@xyz.com
http://HS@xyz.com
http://HS@xyz.com

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

189

"10099999" : { // Row key for Employee ID - 10099999
//Specialization skills by the employee with ID - 10099999
 "Skill1" : {"skillcode" : "skill1", "value": "Pre-Sales",},
 "Skill2" : {"skillcode" : "skill2", "value": "BI",},
 "Skill3" : {"skillcode" : "skill3", "value": "DW",},
 "Skill4" : {"skillcode" : "skill4", "value": "Analytics",},
 "Skill5" : {"skillcode" : "skill5", "value": "Big Data",}
 }
"10199999" : { // Row key for Employee ID - 10199999
//Specialization skills by the employee with ID - 10199999
 "Skill1" : {"skillcode" : "skill1", "value": "Architect",},
 "Skill2" : {"skillcode" : "skill2", "value": "Data Management",},
 "Skill3" : {"skillcode" : "skill3", "value": "BI",},
 "Skill4" : {"skillcode" : "skill4", "value": "Analytics",},
 "Skill5" : {"skillcode" : "skill5", "value": "Big Data",}
 }
 }

Columns are always organized as per the column’s name within their rows. The data
would be sorted as soon as it is inserted into the data model.

Keyspace: A keyspace is the outmost grouping for data in Cassandra, closely
resembling an RDBMS database. Similar to the relational database, a keyspace has title
and properties that describe the keyspace behavior. The keyspace is a container for a list
of one or more column families (without any enforced association between them).

Cluster: Cluster is the outermost structure in Cassandra (also called as ring).
The Cassandra database is specially designed to be spread across several machines
functioning together that act as a single occurrence to the end user. Cassandra allocates
data to nodes in the cluster by arranging them in a ring.

Table 6-2 compares the relational model with the Cassandra data model. Unlike the
traditional RDBMS, Cassandra doesn’t support:

Query language like SQL (T-SQL, PL/SQL, etc.). Cassandra •
provides an API called “thrift” through which the data
could be accessed.

Referential Integrity (operations like cascading deletes are not •
available)

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

190

Designing Cassandra Data Structures
1. Entities and Point of Interest: The best way to model a

Cassandra data structure is to identify the entities that would
be subjected to most queries and creating the entire structure
around the entity. The activities performed (generally the
use cases) by the user applications, how the data is retrieved
and displayed would be the areas of interest for designing the
Cassandra column families.

2. De-normalization: Normalization is the set of rules
established to aid in the design of tables and their
relationships in any RDBMS. The benefits of normalization
would be:

Avoiding repetitive entries•

Reduction of storage space•

Prevention of schema restructuring for future needs.•

Improved speed and flexibility of SQL queries, joins, sorts, •
and search results.

Achieving similar kind of performance for big data scale is a challenge in traditional
relational data models. Therefore, in most of the big appl data ications de-normalization
approaches are adopted to achieve performance. Cassandra does not support foreign
key relationships like a relational database, and the better way is to de-normalize the
data model. The important fact is that instead of modeling the data first and framing the
queries, with Cassandra the queries would be modeled first and then the data be framed
around them.

Table 6-2. Relational Data Model vs. Cassandra Data Model

Relational Data Model Cassandra Data Model

(Standard)

Cassandra Data Model

(Super)

Server based Cluster based

Database Key Space

Table Column Family

Primary Key Key

Column Name Column Name Super Column Name

Column Value Column Value

Column Value

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

191

 3. Planning for Concurrent Writes: In Cassandra, every row
within a column family is identified by the unique row key
(generally a string of unlimited length). Unlike the traditional
RDBMS primary key (which enforces uniqueness), Cassandra
doesn’t impose uniqueness (duplicate row key insertion
might disturb the existing column structure). So care must be
taken to create the rows with unique row keys. Some of the
ways for creating unique row keys are as follows:

Surrogate/ UUID type of row keys•

Natural row keys•

Schema Migration Approach (Using ETL)
There are various ways of migrating data from relational data structures to Cassandra
structures, but if there are complex transformations and business rules involved it is
always advisable to leverage a data processing layer comprising ETL utilities (Figure 6-23).

Figure 6-23. Schema migration using ETL tools

By using in-built data loaders the processed data can be extracted to flat files (in
JSON format) and then uploaded to the Cassandra data structure’s using these loaders.
Custom loaders could be fabricated in case of additional dispensation rules, which could
either deal the data from the processed store or the JSON files.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

192

The overall migration approach would be as follows:

 1. Data preparation as per the JSON file format.

 2. Data extractions into flat files as per the JSON file format or
extraction of data from the processed data store using custom
data loaders.

 3. Data loading using in-built or custom loaders into Cassandra
data structure(s).

 4. The various activities for all the different stages in migration
are further discussed in detail in below sections.

Data Preparation and Extraction: ETL is the standard process for data extraction,
transformation and loading (Figure 6-24). At the end of the ETL process, reconciliation
forms an important function. This includes validation of data with the business
processes. The ETL process also involves the validation and enrichment of the data
before loading into staging tables.

Figure 6-24. Schema migration data preparation and data extraction process

The following activities are executed during data preparation:

 1. Creation of database objects: Necessary staging tables are
to be created as per the requirements based on which will
resemble standard open interface / base table structure.

 2. Validate and transform data before load from the given source
(dumps/flat files).

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

193

 3. Data Cleansing:

Filter incorrect data as per the JSON file layout specifications.•

Filter redundant data as per the JSON file layout specifications.•

Eliminate obsolete data as per the JSON file layout specifications.•

 4. Load data into staging area

 5. Data Enrichment:

Default incomplete data•

Derive missing data based on mapping or lookups•

Differently structured data (1 record in as-is = multiple •
records in to-be)

The following activities are executed during data extraction into JSON file formats:

 1. Data selection as per the JSON file layout

 2. Creation of SQL programs based on the JSON file layout

 3. Scripts or PLSQL programs are created based on the data
mapping requirements and the ETL processes. These
programs serve various purposes, including the loading of
data into staging tables and standard open interface tables.

 4. Data transformation before extract as per the JSON files layout
specification and mapping documents.

 5. Flat files in form of JSON format for data loading

Data Loading: Cassandra data structures can be accessed using different
programming languages like .net, Java, Python, Ruby, etc. Data can be directly loaded
from the relational databases (like Access, SQL Server, Oracle, MySQL, IBM DB2, etc.)
using these programing languages. Custom loaders could be used to load data into
Cassandra data structure(s) based on the enactment rules, customization level, and the
kind of data processing.

End Points
The traditional well-understood design approach of a data warehouse is a central
(for Enterprise Data Warehouse) or departmental (for Data Marts) repository of data.
ETL routines pull data from a variety of data sources, cleanse, and transform them; then
they are loaded into a data warehouse. Broadly speaking, this data is organized in a
dimensional data model that caters to two use-cases:

• Canned Reports. A set of BI queries is run with regular frequency
to monitor the state of the business. Business users look at the
reports to review a predefined set of business KPIs and make
informed decisions.

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

194

• Ad-hoc Queries and What-If Simulations. Data analysts run a set of
queries to analyze and find answers to specific business questions,
as these questions are above and beyond the standard set of KPIs.
During the course of these ad-hoc analyses the data analysts also
perform several what-if scenarios while planning analysis.

The ad-hoc tasks have a defined life cycle. Once the data analysts are able to find
answers to new business questions, the queries are incorporated into a report so that
business users can monitor it as an ongoing practice. In a typical data warehouse, the
bulk of tasks (80 percent) are from reports. The remaining 20 percent is from ad-hoc.

Since reports are frequent and generate known queries, the design of the data
warehouse is done to cater to reporting. This includes data models, indexes, materialized
views or derived tables (and other optimizations) to make the known reporting queries
perform optimally.

Since ad-hoc tasks are infrequent and generate unknown queries, the design of the
data warehouse is unable to cater to them upfront. This means that ad-hoc tasks generate
queries that are harder to satisfy (since they are constrained by the data modeling
decisions made for reporting) and therefore impose more load on the data warehouse.

The net result is that reports run fast while ad-hoc queries are slow. In fact, ad-hoc
queries consume so much resource that reporting applications run slower, and that is
not good: reports are distributed widely and reach a wide variety of business users. They
are unhappy and put pressure on the data warehousing team to “get the reports in time.”
At the same time, the ad-hoc users are unhappy because they can’t get to the data fast
enough to benefit the business.

Historically, the answer to this deadlock situation was to prioritize via workload
management and constrain ad-hoc usage to devote resources to reporting. If workload
management didn’t work, the answer was to define rules such as: “reports will not be
refreshed when data is loading”; ad-hoc queries should not be run when reports are being
generated.”

Let’s call this design pattern of data warehouse a reporting data warehouse.
The priority objective of a reporting data warehouse is to ensure reports are accurate and
that they perform optimally. The ad-hoc tasks are not treated with priority: they don’t get
dedicated data models or large chunks of resources; their tasks were heavily monitored,
and often they are asked to curtail their requirements (use samples, use rolled up
aggregates that were built to make reports faster, use smaller timeframes of history that
were retained to just satisfy reporting requirements, phrase queries that are simpler even
though they may be compromises on the pattern sought, so on and so forth).

However, with big data platforms all these constraints on ad-hoc tasks become
meaningless. And with current technology advances we have the ability to address the
constraints and issues discussed above.

This motivates the definition of a different design pattern of a data warehouse:
a big data and analytics data warehouse. The priority objective of a big data analytics
data warehouse is to provide capabilities for ad-hoc analytics, and the primary users of
the big data and analytics data warehouse are data analysts. The platform would support
schema-less data ingestion architecture that will allow the data analysts to integrate any
data source into the system, the data models are built to support their ad-hoc usage:
fine-granularity data is retained, rich dimension tables are frequently imported, derived
views and tables are created promptly, interfaces are opened up to express their patterns

CHAPTER 6 ■ DATA MODELING APPROACHES FOR BIG DATA AND ANALYTICS SOLUTIONS

195

in a computationally simple and natural manner, scale-out is used to create resources
for the tasks to finish interactively, and enough storage is allocated for several exports
to proceed simultaneously.

In summary, the design methodology of a big data and analytical data warehouse
is substantially different from a reporting data warehouse. Understanding the primary
customer of a data warehouse can often help simplify operations of the data warehouse
and help lower the operating point costs substantially by making priorities clearer.

References
 http://blogs.informatica.com/perspectives/2010/11/17/understanding-data-

integration-patterns-simple-to-complex: David Linthicum, November 17, 2010

 http://www.datasciencecentral.com/profiles/blogs/11-core-big-data-workload-
design-patterns: Derrick Jose, August 13, 2012

 http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques:

IlyaKatsov, March 1, 2012

 Is Data Modeling Relevant in a NoSQL environment? Robinson Ryan

 MapReduce Patterns, Algorithms, and Use Cases: Highly Scalable Blog- IlyaKatsov, February 1, 2012

 http://www.codeproject.com/Articles/279947/Migration-of-Relational-Data-
structure-to-Cassandra

http://blogs.informatica.com/perspectives/2010/11/17/understanding-data-integration-patterns-simple-to-complex
http://blogs.informatica.com/perspectives/2010/11/17/understanding-data-integration-patterns-simple-to-complex
http://www.datasciencecentral.com/profiles/blogs/11-core-big-data-workload-design-patterns
http://www.datasciencecentral.com/profiles/blogs/11-core-big-data-workload-design-patterns
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques
http://www.codeproject.com/Articles/279947/Migration-of-Relational-Data-structure-to-Cassandra
http://www.codeproject.com/Articles/279947/Migration-of-Relational-Data-structure-to-Cassandra

197

CHAPTER 7

Big Data Analytics
Methodology

Big data is baffling, and analytics are complex. Together, big data
analytics make a difficult and complex undertaking largely because
technology architectures and methodologies are immature.

Big data analytics uncovers patterns in a wide variety of data and associates the
patterns with business outcomes. Analysts use analytical techniques and tools to detect
unusual, interesting, previously unknown, or new patterns in data. Big data is a result
of interaction of four dimensions of scale (increasing data volumes, high velocity of
data creation, increasing complexity of data types, and extreme time sensitivity of data
diminishing its value if not treated at that moment) thereby posing different challenges
to manage, not to mention applying analytics techniques to find new insights.

Big data does not behave the same as other data. The challenges associated with
analytics on big data require a different approach from traditional data analytics
processes. For example, content analysis of streaming media requires high-speed
processing, storage, and fast analytics techniques. This was one of the original target
applications for Google's map-reduce algorithm.

Challenges in Big Data Analysis
Heterogeneity and Incompleteness: The nuance and richness of natural language is
incomprehensible. However, this is true especially in the case of big data scale where
data variety is farfetched and analysis algorithms expect homogeneous data and cannot
fully understand nuances. Consequently, data must be carefully structured as a first step
in (or prior to) data analysis. Consider an electronic health record database design that
has fields for birth date, occupation, and blood type for each patient. What do you do if a
patient cannot provide one or more of these pieces of information? Obviously, the health
record is still placed in the database but with the corresponding attribute values being set
to “null”. A data analysis that looks to classify patients by occupation, for example, must
take into account patients whose occupations are not known. Worse, these patients with
unknown occupations can be ignored in the analysis only if we have reason to believe
that they are otherwise statistically similar to the patients with known occupation for the
analysis performed.

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

198

Even after data cleaning and error correction, some incompleteness and errors in
data are likely to remain. This incompleteness and these errors must be managed during
data analysis. Doing this correctly is a challenge.

Scale: Managing large and rapidly increasing volumes of data has been a challenging
issue for many decades. With the advent of technologies like Hadoop distributions
and cloud computing, we have the ability to store massive amounts of data at relatively
low cost. These innovative platforms now aggregate multiple disparate workloads with
varying performance goals (e.g., interactive services demand that the data processing
engine return back an answer within a fixed response time cap) into very large clusters.
This level of sharing of resources on expensive and large clusters requires new ways of
determining how to run and execute data processing jobs so that we can meet the goals
of each workload cost-effectively, and to deal with system failures, which occur more
frequently as we operate on larger and larger clusters (that are required to deal with
the rapid growth in data volumes). This places a premium on declarative approaches
to expressing programs: even those programs doing complex machine learning tasks,
since global optimization across multiple users’ programs is necessary for good overall
performance. Reliance on user-driven program optimizations is likely to lead to poor
cluster utilization, since users are unaware of other users’ programs. System-driven
holistic optimization requires programs to be sufficiently transparent, e.g., as in relational
database systems, where declarative query languages are designed with this in mind.

Timeliness: The flip side of size is speed. The larger the data set to be processed, the
longer it will take to analyze. The design of a system that effectively deals with size is likely
also to result in a system that can process a given size of data set faster. However, it is not
just this speed that is usually meant when one speaks of velocity in the context of big data.

There are many situations in which the result of the analysis is required immediately.
For example, if a fraudulent credit card transaction is suspected, it should ideally be
flagged before the transaction is completed, potentially preventing the transaction from
taking place at all. Obviously, a full analysis of a user’s purchase history is not likely to
be feasible in real time. Rather, we need to develop partial results in advance so that a
small amount of incremental computation with new data can be used to arrive at a quick
determination.

Given a large data set, it is often necessary to find elements in it that meet a specified
criterion. In the course of data analysis, this sort of search is likely to occur repeatedly.
Scanning the entire data set to find suitable elements is obviously impractical. Rather,
index structures are created in advance to permit finding qualifying elements quickly.
The problem is that each index structure is designed to support only some classes
of criteria. With new analyses desired using big data, there are new types of criteria
specified, and a need to devise new index structures to support such criteria. For
example, consider a traffic management system with information regarding thousands
of vehicles and local hot spots on roadways. The system may need to predict potential
congestion points along a route chosen by a user and then suggest alternatives. Doing
so requires evaluating multiple spatial proximity queries working with the trajectories
of moving objects. New index structures are required to support such queries. Designing
such structures becomes particularly challenging when the data volume is growing
rapidly and the queries have tight response time limits.

Privacy: The privacy of data is another huge concern, and one that increases in
the context of big data. There are numerous debates regarding the inappropriate use
of personal data, particularly through linking of data from multiple sources. Managing

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

199

privacy is effectively both a technical and a sociological problem, which must be
addressed jointly from both perspectives to realize the promise of big data.

Consider, for example, data gleaned from location-based services. These new
architectures require a user to share his/her location with the service provider, resulting
in obvious privacy concerns. Note that hiding the user’s identity alone without hiding
person’s location would not properly address these privacy concerns. An attacker or a
(potentially malicious) location-based server can infer the identity of the query source
from its (subsequent) location information. For example, a user’s location information
can be tracked through several stationary connection points (e.g., cell towers). After a
while, the user leaves “a trail of packet crumbs” which could be associated to a certain
residence or office location and thereby used to determine the user’s identity. Several
other types of surprisingly private information such as health issues (e.g., presence in a
cancer treatment center) or religious preferences (e.g., presence in a church) can also be
revealed by just observing anonymous users’ movement and usage pattern over time. In
general, hiding a user location is much more challenging than hiding his/her identity.
This is because with location-based services, the location of the user is needed for a
successful data access or data collection, while the identity of the user is not necessary.

Human Collaboration: Despite the tremendous advances made in computational
analysis, there remain many patterns that humans can easily detect but that computer
algorithms have a hard time finding. Ideally, analytics for big data will not be all
computational; rather these will be designed explicitly to have a human in the loop.
The new sub-field of visual analytics is attempting to do this, at least with respect to the
modeling and analysis phase in the pipeline. There is similar value to human input at all
stages of the analysis pipeline.

In today’s complex world, it often takes multiple experts from different domains to
really understand what is going on. A big data analysis system must support input from
multiple human experts, and shared exploration of results. These multiple experts may be
separated in space and time when it is too expensive to assemble an entire team together
in one room. The data system has to accept this distributed expert input and support their
collaboration.

System Architecture: Business data is analyzed for many purposes: a company may
perform system log analytics and social media analytics for risk assessment, customer
retention, brand management, and so on. Typically, such varied tasks have been
handled by separate systems, even if each system includes common steps of information
extraction, data cleaning, relational-like processing (joins, group-by, aggregation),
statistical and predictive modeling, and appropriate exploration and visualization tools
as discussed in the methodology in this chapter.

With big data, the use of separate systems in this fashion becomes prohibitively
expensive given the large size of the data sets. The expense is due not only to the cost
of the systems themselves but also to the time to load the data into multiple systems.
Consequently, big data has made it necessary to run heterogeneous workloads on a single
infrastructure that is sufficiently flexible to handle all these workloads. The challenge here
is not to build a system that is ideally suited for all processing tasks. Instead, the need is
for the underlying system architecture to be flexible enough that the components built on
top of it for expressing the various kinds of processing tasks can tune it to efficiently run
these different workloads.

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

200

If users are to compose and build complex analytical solutions over big data, it is
essential that they have appropriate high-level primitives to specify their needs in such
flexible systems. The map-reduce framework has been tremendously valuable, but is only
a first step. Even declarative languages that exploit it, such as Pig Latin, are at a rather
low level when it comes to complex analysis tasks. At present big data analytics solutions
employ a host of tools/processes to develop an end-to-end production-ready system.
Each operation within the system (cleaning, extraction, modeling, etc.) potentially runs
on a very large data set. Furthermore, each operation itself is sufficiently complex that
there are many choices and optimizations possible in how it is implemented.

The very fact that big data analysis typically involves multiple phases highlights
a challenge that arises routinely in practice: production systems must run complex
analytic pipelines, or workflows, at routine intervals, e.g., hourly or daily. New data must
be incrementally accounted for, taking into account the results of prior analysis and
preexisting data. And of course, provenance must be preserved, and must include the
phases in the analytic pipeline. Current systems offer little to no support for such big data
pipelines, and this is in itself a challenging objective.

In the sections below we will discuss a methodology that outlines an approach for
developing big data analytics solutions.

Big Data Analytics Methodology
The big data analytics methodology is a combination of sequential execution of tasks in
certain phases and highly iterative execution steps in certain phases. Because of the scale
issue associated with big data system, designers must adhere to a pragmatic approach of
modifying and expanding their processes gradually across several activities as opposed to
designing a system once and all keeping the end state in mind.

Figure 7-1 provides a high-level view of the big data analytics methodology, and
big data analytics designers (i.e., architects, statisticians, analysts, etc.) are advised to
iterate through the steps outlined in Figure 7-1. The designer should plan to complete
several cycles of design and experimentation during steps 2 through 5. Each cycle should
include additional and larger data samples and apply different analytics techniques as
appropriate for data and relevant for solving the business problem. Designers should
revisit the entire framework periodically after the system starts running in production
(steps 1 through 7; see Figure 7-1).

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

201

Analyze and Evaluate Business Use Case

• Frame the problem

• Gather samplistic data

• Perform Data Discovery and Analysis
Develop Business Hypotheses

• Assemble illustrative use cases

• PerformFit-GapAnalysis

Develop Analytics Approach

• Evaluate illustrative use cases

• PerformFit-GapAnalysis
• Identify appropriate analytics

algorithms/models

Build and PrepareData sets

• Acquire data and
understand data
characteristics

• Data at rest – determine
appropriate data
sampling techniques

• Data in motion –
determine appropriate
data processing
techniques

Select and Build the Analytical

Models

• Build Analytical Models

• Test and validate with data

• Apply data visualization
techniques

• Review results

Build the production ready

system (Scale and Performance)

• Architect and Develop the
end state solution

• Design and implement
appropriate business
processes

Measure and Monitor

• Measure effectiveness of
the Big Data Analytics
Solution

• Calibrate the Analytics
Models

• Monitor the solution for
it’s effective benefits

• Establish feedback loops
for further learning and
improvements

Iterative Cycle

Increaseamountandtypeof
data (Volume and Variety)
Explore different analytical
modeling and data
visualization techniques with
each iteration

1

2

3

4

5

6
7

Figure 7-1. Big data analytics methodology

You might sense a certain amount of similarity of this methodology with other data
analytics implementation and BI methodologies; however, the above methodology differs
from others by the number of times the designer should execute the steps to solve design
problems associated with processing at full scale. Knowledge gained during each pass
through of the various steps should be reflected in the system design.

Analyze and Evaluate Business Use Case
The first step in the methodology is to analyze and evaluate the business use case.
In many instances the analyze and evaluate step is also considered as a proof of concept
(POC) exercise. It is not uncommon to notice the first few cycles in this step will likely
produce some unexpected results, for example:

The data samples do not include enough descriptive information •
to find the desired correlations.

The data discovery and analysis activities do not scale due to the •
extreme number of early patterns observed in the sample data.

The POC infrastructure is not good enough to handle the variety •
of data and the types of algorithms applied exhibit a good number
of shortcomings.

The most important outcome of the analyze and evaluate step is the development of
a detailed description of the business hypotheses inclusive of appropriate infrastructure,

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

202

software and data needs. It requires a business analyst to take the business's requirements
and create a comprehensive document. The document must be detailed enough for
a business user to understand the business and technical criteria that the project will
succeed or fail under. During this first step, you will usually have a fuzzy notion of the
requirements. The architect must accept this as a limitation and devise methods to
further refine the requirements till a certain acceptable level of clarity is obtained.

A properly framed requirement consists of a description of the issue the business
wants to analyze, the issue’s importance to the organization, collection of a set of reasons
supporting the issue’s creation, and analysis of any constraints such as time, place, or
condition.

Consider two examples of a properly framed requirement: the loan repayment
delinquency problem and the product mix optimization problem.

The Loan Repayment Delinquency Problem: The credits and loans processing
department of a bank requests that an analytics team investigate a delinquency problem
where increasingly a large base of their customers are turning delinquent. The business
sponsor wants the analytics team to help them find the answer to the question: “Why are
they seeing a disturbing trend of their customer base turning delinquent?”

After a detailed workshop with the business users, the analysts started developing
the business use case:

• Problem: What is causing customers to turn delinquent?

• Behavior: Who are these customers? Are they long-time,
profitable customers suddenly turning delinquent? Or are they
newly acquired customers?

• Complications: What conditions constitute delinquency?
Missing payment dates consecutively for last 3 months, missing
payment dates for last 2 months but paying back the money with
interest fees over the subsequent months, not paying over the
previous 6 months and not reachable?

Impact to business:• Reducing profitability per customer, revenue
loss, and increased expenses chasing the delinquent customers.

• Background: The bank recently launched multi-channel
interactions with customers in order to acquire more customers.
While the customer base increased, and a large chunk of the
customers came through the online channels, there was a need
to expedite the loans and credit approval processes so that the
customer does not go away to other banks that had also launched
similar products and interaction channels.

• Conditions: The first few symptoms of missing payments happen
after the first 3 months of becoming a customer. There are also
observations across the older customer base of older customers
who are turning delinquent (although not frequently).

The delinquency problem meets the requirement for a big data problem due to
volume, complexity, and variety. The bank acquires millions of customers annually.
Business users believe the delinquency trend is not new and may be due to several

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

203

factors: poor economy, competition luring potential customers away with the assurance
that their loans from the bank will have a reduced interest fee, bank’s sales agents signing
up all these customers to meet their targets and earn commissions without doing a
proper investigation, etc.

Product Mix Optimization Problem: The marketing department of a major
consumer packaged goods company asks an analytics team to help them understand
the following: Which types of product mix will yield high sales by region but also help
replenish the inventory by bundling in least selling products in the mix? And how do
customers feel about these product mix strategies?

• Problem: Which product mix bundles are most effective in each
region? What are the unique constituents of these bundles (how
many are big sellers and how many are marginal sellers)? What
comments, if any, appear in social media, and do these comments
have a positive or negative effect on sales?

• Behavior: Consumer goods customers buy the bundled products
from outlets and write about the products in social media.

• Complications: The company does many promotions and
advertisements through various channels; these promotional
activities are not tracked to purchases. What behaviors constitute
an effective product mix strategy? Does the product mix bundle
lead to repeat sales? How do consumers feel about the product
mix and the value?

• Impact: Increased revenue from sales of product mix; increased
sell of previously least selling products.

• Background: The marketing department started advertising
through different media channels and different regions. The
company used weekend newspaper advertisements in their
eastern and southern regions, a push mail mechanism was used
with a select set of customers in the western region, web ads in all
regions, outbound call center conversations targeting northern
regions. The vice president of sales noted receipt of “dozens of
comments” on his Facebook page.

• Conditions: Product sales seem to increase following the various
product mix bundles that the company used to do, but the
conditions to support such a hypothesis are unknown. Marketing
does not know if the social media information has any effect on
sales or not.

The product mix optimization problem qualifies as a big data problem across
the four dimensions of big data. The consumer products company pays heavy fees to
subscribe to point of sale (POS) data from its outlets. POS data is highly complicated and
is ridden with a multiplicity of codes for each of the company’s numerous products.

The outlets do not have a standardized data structure and often use a large number
of rules; plus, much of it is unstructured and not documented properly. Day of the
week and seasonality may also be among the conditions precedent to successful and

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

204

unsuccessful sales. Finally, social media data varies greatly by source, interaction among
groups, and the semantics that express sentiments concerning the promotion and the
product mix.

Develop Business Hypotheses
Should it be the availability and richness of data that decide the scope of business
requirements and expectations, or should it be the other way around? How to
proceed then?

As we discussed above, the two examples require the analyst to not only understand
the business problem but also several factors influencing the behaviors (e.g., either
customers turning delinquent or product mix bundles sales); but the outcome of the
analysis cannot be known until the system is built. Often, the designer must make a best
guess as to the outcome of an analysis, perform data exploratory analysis by looking into
all possible data sources as relevant for solving the business problem, and then perform
analytics. With preliminary results in hand, business users then can respond with
more certainty as to the sufficiency and usefulness of the results. It is recommended to
continue the iterations until business users and designers agree upon the business and
technical requirements.

Examples of Business Hypotheses
We will use the two analytics problems cited above to illustrate the second step of the
methodology—develop the business hypotheses.

Loan Repayment Delinquency Problem: A customer profile inclusive of
transactions can run into thousands of attributes. To properly understand which
attributes are key to solving the problem, the analyst will have to define the limits. The
analyst further explores and discovers that fewer than a hundred delinquencies per type
of customer account carry insufficient value to be of interest to the company. Therefore,
the analyst sets a rule equal to or greater than 100 incidents against those types of
accounts, thereby excluding inconsequential results. The business users then explain to
the analysts that they expect the delinquency behaviors are observed after a sequence of
transactions in certain age groups that were not observed in earlier delinquent behaviors,
and these behaviors are recent. Based on these additional inputs from business users,
the analysts now can start creating different sample sizes—a random selection of records
from the customer base.

Product Mix Optimization Problem: The marketing department staff provides the
analysts with its best guess for the product mix bundling. They form product mix bundles
by understanding customer buying behavior patterns, seasonality, and special occasions
such as outlet’s anniversary, etc. Moreover, these product mix bundles are independent of
the channel through which the customers receive the promotion. The analyst prepares a
data set that shows the product mix bundle across several categories of products. Against
each of these product mix bundles, there is a sell value, highest applicable discount
percentage, the effective dates, listing of best-selling products in the bundle, and a
listing of the lowest-selling products in the bundle, and a brief description of the
product mix bundle.

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

205

Develop the Analytics Approach
The analytics approach defines the analytical techniques the analyst will use to solve
business problem. The solution to a particular problem requires the application of the
correct analytical method and data.

The loan delinquency problem requires the analysts to explore several data points to
determine if a particular pattern or sequence of events is the root cause of the observed
pattern. The analyst considers the data collected across different segments of the
customer base. For instance, it was observed that, in general, customers classified as high
net individuals do not exhibit delinquency, but recently classified customers as high net
individuals who also opened demat (internet-based) accounts less than 6 months ago
are exhibiting delinquency in their credit card payments schedules. In this manner, the
analyst can keep on exploring the relationship that exists between several components;
however, this would become cumbersome because of the combinatorial complexity of
the analysis.

The product mix optimization appeal problem requires marketing to track sales by
region, product mix type, and influence by social media comments, if any. The analyst
decides to explore through several data points to arrive at increased sales patterns.

Note ■ However, there is a broader question that also needs to be addressed.

Is the problem a simulation or a dynamic modeling issue?

For example:

Does the organization require an econometric model to •
determine whether a certain combination of products in the
product mix bundle and the resulting price appeals to a specific
type of customer demographics? These and similar problems
require knowledge of statistical analysis and data architectures
to design the information models that the solution will require.

Does the problem require an optimization program such as •
finding the most appealing price to put on a product mix bundle
that will ensure the profit margin per product mix bundle
does not drop below 10 percent? Such problems require
linear-programming models that employ optimization methods
such as the Simplex method.

Does the problem require the simulation of a customer behavior •
right from the day they are acquired, how they were acquired,
what transactions they are performing and when, across several
dimensions of time and business events? Such problems require
knowledge of business processes and graph theory.

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

206

Finally, does the problem relate to a random process? For •
example, business users might want to determine which channels
are bringing in profitable customers. The business users might
also want to put in alert based controls in the system to detect
delinquency behaviors as early as possible. These situations
require the application of statistical analysis and statistical
process modeling.

Choose the Correct Analytical Method
The analyst then decides on the types of analytics techniques to solve the business
problem:

• Validation and comparison: In many cases just by validating
and comparing behaviors across similar entities (similar type of
product mix bundles, similar type of customer accounts) over a
large set of records throws up interesting patterns.

• Aggregation and summarization: Often times the data sets
may contain extreme values, null values, etc. Applying summary
statistics and aggregations such as averages, standard deviations,
ranges, maximums, and minimums helps in discarding data that is
not appropriate for analytics and may distort the final outcomes.

• Maximization and minimization: The expected outcome of the
business problem often falls under these two categories, either
to minimize loss (loan delinquency problem) or maximize profit
(product mix optimization problem).

• Rare-event detection and unusual patterns detection: If you
are trying to find the needle in the haystack, looking for rare
events that are a small fraction of the overall larger data or looking
for unusual patterns across a series of seemingly valid events,
then the work becomes increasingly tough. No single analytical
technique or sophisticated algorithm will provide a silver bullet
answer. In such cases, it is recommend applying analytics-
pipeline approach and running through random data samples till
you observe any meaningful patterns.

Analysis Outcomes
The real users of the analytics outcomes are business users but these users often do not
understand the complex mathematical formulae, statistical analysis models, etc. Hence
it is extremely important to equip the business users with easy-to-understand and highly
intuitive tools through which they will understand what actions are to be performed.

• Reports: The business may want the analytics results to be
delivered through a set of reports and dashboards highlighting
the root causes and recommendations.

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

207

• Alerts: Oftentimes the business ask is to become predictive and
apply alerts to events that exhibit fraudulent behavior, early
warning for a negatively impacting outcome, highlighting a
profitable business opportunity during early stages, etc.

• Process optimization: If you are analyzing business processes to
improvise that can produce increasing business opportunities or
minimize losses, the analytics outcome needs to be embedded
into those process chains appropriately.

• Model: In cases where you are extensively doing simulations and
what-if scenarios, the analytics outcome is actually a model or an
application that the business users will use regularly.

Build and Prepare Data Sets
Analytics is all about developing data sets that capture not only transactional data but
also interaction data depicting the inter-relationships between data due to the business
events and associated context. Heterogeneity, scale, timeliness, complexity, and privacy
problems with big data impede progress at all phases that can create value from data.

The problems start right away during data acquisition: you have to decide what
data to keep and what to discard and how to store what you keep reliably with the right
metadata. Much data today is not originally in structured format; for example,
tweets and blogs are weakly structured pieces of text, while images and videos
are structured for storage and display (but not for semantic content and search).
Transforming such content into a structured format for later analysis is a major challenge.
The value of data increases exponentially when it can be linked with other data, thus data
integration is a major creator of value. Since most data is directly generated in digital
format today, we have the opportunity and the challenge both to influence the creation to
facilitate later linkage and to automatically link previously created data.

The most critical activity during this phase is to ascertain the completeness and
richness of data. The patterns represented by the data must be random, reliable, and
consistent. Randomness assures that data samples represent the statistical characteristics
of the complete data set. Reliable means that analyses are sufficiently accurate for their
intended business purposes. Consistent means that the same analyses of a different
random sample of data from the same data source will yield the same analytical results
within an acceptable error margin.

Big data does not arise out of a vacuum; it is recorded from some data-generating
source. For example, consider our ability to sense and observe the world around us: from
the heart rate of an elderly citizen and the presence of toxins in the air, to the planned
square kilometer array telescope, which will produce up to 1 million terabytes of raw data
per day. Similarly, scientific experiments and simulations can easily produce petabytes of
data today.

Much of this data is of no interest, and it can be filtered and compressed by orders of
magnitude. One challenge is to define these filters in such a way that they do not discard
useful information. For example, suppose one sensor reading differs substantially from
the rest: it is likely to be due to the sensor being faulty, but how can we be sure that it is
not an artifact that deserves attention? In addition, the data collected by these sensors

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

208

most often are spatially and temporally correlated (e.g., traffic sensors on the same
road segment). We need research in the science of data reduction that can intelligently
process this raw data to a size that its users can handle while not missing the needle in the
haystack. Furthermore, we require “on-line” analysis techniques that can process such
streaming data on the fly, since we cannot afford to store first and reduce afterward.

The second big challenge is to automatically generate the right metadata to
describe what data is recorded and how it is recorded and measured. For example, in
scientific experiments, considerable detail regarding specific experimental conditions
and procedures may be required to be able to interpret the results correctly, and it is
important that such metadata be recorded with observational data. Metadata acquisition
systems can minimize the human burden in recording metadata. Another important
issue here is data provenance. Recording information about the data at its birth is not
useful unless this information can be interpreted and carried along through the data
analysis pipeline. For example, a processing error at one step can render subsequent
analysis useless; with suitable provenance, we can easily identify all subsequent
processing that dependent on this step. Thus we need research both into generating
suitable metadata and into data systems that carry the provenance of data and its
metadata through data analysis pipelines.

Frequently, the information collected will not be in a format ready for analysis. For
example, consider the collection of electronic health records in a hospital, comprising
transcribed dictations from several physicians, structured data from sensors and
measurements (possibly with some associated uncertainty), and image data such as
X-rays. We cannot leave the data in this form and still effectively analyze it. Rather,
we require an information extraction process that pulls out the required information from
the underlying sources and expresses it in a structured form suitable for analysis. Doing
this correctly and completely is a continuing technical challenge. Note that this data
also includes images and will in the future include video; such extraction is often highly
application dependent (e.g., what you want to pull out of an MRI is very different from
what you would pull out of a picture of the stars or a surveillance photo). In addition, due
to the ubiquity of surveillance cameras and popularity of GPS-enabled mobile phones,
cameras, and other portable devices, rich and high-fidelity location and trajectory
(i.e., movement in space) data can also be extracted.

We are used to thinking of big data as always telling us the truth, but this is actually
far from reality. For example, patients may choose to hide risky behavior, and caregivers
may sometimes misdiagnose a condition; patients may also inaccurately recall the
name of a drug or even forget that they ever took it, leading to missing information in
(the history portion of) their medical record. Existing work on data cleaning assumes
well-recognized constraints on valid data or well-understood error models. For many
emerging big data domains these do not exist.

Given the heterogeneity of the data, it is not enough merely to record it and throw it
into a repository. Consider, for example, data from a range of scientific experiments. If we
just have a bunch of data sets in a repository, it is unlikely anyone will ever be able to find,
let alone reuse, any of this data. With adequate metadata, there is some hope; but even
so, challenges will remain due to differences in experimental details and in data record
structure.

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

209

Data for the Loan Repayment Delinquency Problem: The analyst scouts the
various data systems in the bank for correct and relevant data:

Customer accounts data that includes when it was created, how it •
was created, and who created it

Customer transactions data to understand the transaction •
behaviors of entire population

Customer interaction channels data to understand what is •
influencing inflow of customers and how reliable/profitable those
channels are

Bank customer agents’ performance data to detect any correlation •
between customer delinquency and the agents involved in
creating the accounts

External data such as credit bureau data for credit scores of •
customers

External data such as customer life style data and what influence •
it has on delinquency

Data for the Production Mix Optimization Problem: The analyst provisions data as
discussed below:

Sales data that includes product bundles, product bundle •
constituents, store, location, and seasonality information

Customer information from the sales system enhanced with •
demographic data to better understand those customers

Time and date information with definitions of seasons•

Product cost information to calculate profitability•

After designing the data architecture and developing the data sets, the analyst is now
ready to run appropriate analytics models on these data sets. The goal of this step in the
methodology is to arrive at root causes or detect patterns.

Select and Build the Analytical Models
Analytics models can become quite complex; hence, considerations should be made
to infuse flexibility, as determining appropriate data samples and selecting appropriate
algorithms are key to moving ahead. Especially in the case of big data scenarios, it is
always seen a prototype developed with a selective set of analytics algorithms that uses
small but meaningful data samples. The results of experiments using a prototype helps
the analyst to further refine the algorithms or choose a different algorithm as well as
enrich the current data sets or add new data sets till the desired outcome is achieved.
All of the above steps are performed in a heavily iterative fashion, with every iteration
constantly improving on analysis results and often seeking additional data to enrich the
analysis process (see Figure 7-2).

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

210

D
ev

el
op

 B
us

in
es

s
H

yp
ot

he
se

s
D

ev
el

op
 A

na
ly

ti
cs

A

pp
ro

ac
h

D
ev

el
op

 D
at

as
et

s

D
ev

el
op

 t
he

P

ro
du

ct
io

n
R

ea
dy

B

D
A

 s
ys

te
m

D
ev

el
op

 P
ro

to
ty

pe

A
na

ly
ti

ca
l S

ol
ut

io
n

Ec
on

om
et

ri
c

M
od

el
in

g
O

pt
im

iz
at

io
n

Te
ch

ni
qu

es
S

im
ul

at
io

n
Te

ch
ni

qu
es

S
to

ch
as

ti
c

A
na

ly
si

s
Va

lid
at

io
n

an
d

C
om

pa
ri

so
n

A
gg

re
ga

ti
on

 a
nd

S

um
m

ar
iz

at
io

n
R

ar
e

Ev
en

t
M

od
el

in
g

C
ho

os
e

ap
pr

op
ri

at
e

A
na

ly
ti

ca
l

te
ch

ni
qu

es

D
at

a
at

 R
es

t

D
at

a
in

 M
ot

io
n

D
at

a
Vo

lu
m

e

D
at

a
Va

ri
et

y

D
at

a
Va

ri
ab

ili
ty

D
at

a
Va

lu
e

P
ro

vi
si

on
 A

pp
ro

pr
ia

te

B
D

A
 S

an
db

ox

C
re

at
e

as
 m

an
y

da
ta

 s
et

s
as

 a
pp

lic
ab

le
 t

o
co

ve
r

al
l f

ac
et

s
of

 t
he

 b
us

in
es

s
pr

ob
le

m

It
er

at
e

ti
ll

th
e

re
su

lt
s

ar
e

sa
ti

sf
ac

to
ry

 t
o

bu
si

ne
ss

F
ig

u
re

 7
-2

.
B

ig
 d

a
ta

 a
n

a
ly

ti
cs

 t
a

sk
s

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

211

Often, a data analysts use industry accepted analytics products like SAS, R, SPSS, SQL
Server Analytics Services, Oracle Data Miner, Microsoft Excel, or other analytics tools.

Design for Big Data Scale
Once the prototype results are evaluated, found to be of high quality, and meet the
business expectations, the next step is to build an analytics system that will handle
the scale of big data challenges with desired performance levels. Not every analytical
method that works with small amounts of data will scale to big data problems. Therefore,
the analyst must choose a method that will scale to big data production size. There are
several considerations in designing an analytics system for production readiness:

• Complexity: How complex are the data sets, and how complex
are the analytics algorithms? Do they require special provisioning
and skills to manage?

• Efficiency: How efficient is the analytical model? Does it require
specialized s/w and h/w configurations?

• Performance: How capable is the analytics algorithm of
running across big data dimensions? Does it require in-database
processing? Does it require in-memory processing? Does it have
the ability to run massively parallel processing across huge data
sets and grid architectures?

• Reliability and Accuracy: How calibrated is the analytics output?
What are the confidence intervals and error measures? Does it
throw false positives and false negatives within an acceptable
range?

• Coverage and Reach: Does the system have the ability to cover
all data types and to do depth-search as well as breadth-search
across several data dimensions?

• Flexibility: How flexible is the analytics system in adopting new
algorithms?

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

212

Build the Production Ready System
Usually there is a combination of two approaches, data exploratory or analytical-pipeline
processing, that are applied when building production-ready analytics systems.

Analysts are often not sure what to look for. In essence it is a highly exploratory
approach they take to look at all possible data sources and relate these to a particular
business problem. In such scenarios, instead of taking the entire dump of those data
sources, they revert to data-sampling techniques; this approach reduces the scale
of the big data along one or more of its dimensions while still faithfully representing
the characteristics of the original data: i.e., the data itself, the information content
represented by the data, or the information content and the data taken together. However,
data samples are valid for analysis if and only if patterns in the data remain stable during
the entire phase of analysis.

Analytical-pipeline is a highly automated processing architecture pattern in
which sets of homogenous data are exposed to one or more analytical algorithms and
techniques (refer to analytical techniques in Figure 7-2). The main objective of the
analytical pipeline processing approach is to process each data set through a series of
steps, preferably only once: once the data set is processed the results are then analyzed
for their possible relevance to the business problem (see Figure 7-3).

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

213

A
cq

ui
re

 D
at

a
Fo

rm
at

 D
at

a
Va

lid
at

e
D

at
a

En
ri

ch
 D

at
a

R
un

 S
um

m
ar

y
S

ta
ti

st
ic

s

B
u

ild

C
or

re
la

ti
on

M

ap
s

R
u

n
 A

lg
or

it
h

m
s

S
ta

ti
st

ic
al

 M
od

el
s

M
ea

su
re

 E
rr

or

B
ou

nd
s

C
on

fi
de

nc
e

In
te

rv
al

s

Ev
al

ua
te

R

es
ul

ts

D
ev

el
op

 D
at

a
Vi

su
al

iz
at

io
n

Te
ch

ni
qu

es

to
 S

ha
re

 R
es

ul
ts

P
re

pa
re

 A
na

ly
ti

ca
l

R
ec

or
d

S
et

s

F
ig

u
re

 7
-3

.
B

ig
 d

a
ta

 a
n

a
ly

ti
cs

 p
ro

d
u

ct
io

n
 d

ep
lo

ym
en

t

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

214

Analytical-pipeline processing architecture is essential for big data scenarios when
we’re dealing with large-scale volume of data or velocity dimensions of data. Analytical
techniques that explore correlations among variety of data also benefit from this
approach.

Certain big data analytics use cases call for a combination of data exploration and
analytical pipeline processing. For such cases, the data exploration process must be done
first, and then the finalized data sets are fed into the analytical pipeline processing steps.

Note ■ The data exploration approach is recommended for analyzing big data when the

business problem is exploratory in nature, and patterns in the big data are not high- velocity

driven:

Understand several data sources before it is finalized•

The business problem falls under rare-event analysis or anomaly detection•

Follow data patterns and behaviors exhibited to establish audit trails for

regulatory compliance

Analytical pipeline processing is recommended for analyzing big data when

the business problem is to look for definitive outcome, and patterns in the

big data are at scale covering both data at rest and data in motion:

Large-scale dimensions of big data are involved such as volume, variety, •
and velocity.

The business problem falls under maximization or minimization scenarios.•

Setting up the Big Data Analytics System
One of the most challenging tasks when getting started with a big data analytics system
(Hybrid architectures consisting of Hadoop ecosystem, RDBMS, data visualization tools,
analytics tools, and data management processes) is figuring out how to take the tools
you have and put them together. The Hadoop ecosystem encompasses about a dozen
different open-source projects. How do we pick the right tools for the job?

In most of the data-processing and analysis types of projects you will find three
components that help in establishing an end-to-end data pipeline (from raw data to
insight generation). These components are data ingestion, data store, and data analysis.
A data ingestion system is the connection between the source systems and the data store
where the acquired data will reside. A data analysis system is used to process the data and
produce actionable insights.

Let’s work through an example application and use Flume, HDFS, Oozie, and Hive to
design an end-to-end data pipeline that will enable us to analyze Twitter data.

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

215

Example Application: Measuring Influence

Social media (especially Twitter) has truly become a rich data source for marketing
teams. Twitter provides a powerful interaction platform to engage users. Among other
things they can share with each other, users also provide word-of-mouth views on various
topics. Marketing teams have always struggled to find the key influencers in a group that
if targeted, can actually lead to a potentially larger audience, and the twitter platform
provides enough clues to solve this problem.

Let’s first understand the mechanics of Twitter. In Twitter parlance, a user (let’s call
him “HS”) follows a set of people and has a set of followers. When HS sends an update,
that update is seen by all of his followers. HS can also re-tweet other users’ updates. A
re-tweet is a repost of an update, much like you might forward a message or an e-mail.
If MJ sees a tweet from HS, and re-tweets it, all of MJ’s followers see HS’s tweet, even if
they don’t follow HS. Through re-tweets, messages get passed much farther than just the
followers of the person who sent the original tweet.

Thus, from a target base perspective, it is critical to know and engage with users
whose updates tend to generate lots of re-tweets. Since Twitter tracks re-tweet counts for
all tweets, we can find the users who are the leaders and who are the followers.

Now we know the question we want to ask: Which Twitter users get the most
re-tweets? Who is influential within the network?

How do you answer these questions?

Your task is to find out which users are responsible for the most re-tweets. Twitter
streaming API outputs tweets in a JSON format, which can be very complex. Storing
this data in a traditional RDBMS will be difficult, and certainly querying this data
from RDBMS system will be highly cumbersome. In the Hadoop ecosystem, the Hive
component acts as a data warehouse environment for HDFS, it also provides a query
interface that can be used to query data that resides in HDFS. The query language looks
very similar to SQL.

So, how do you get twitter data into Hive?
Figure 7-4 shows a data flow view of how we can get data from twitter into the

Hadoop ecosystem.

Figure 7-4. Big data analytics system for processing tweeter data

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

216

Gathering Data with Apache Flume
The twitter streaming API provides a constant stream of tweets. To gather the feeds, one
option would be to use a simple utility like curl to access the API and then periodically
load the files. However, this would require us to write code to control where the data goes
in HDFS. The second option will be to use specialized components like Flume within the
Hadoop ecosystem to automatically move the files from the API to HDFS, without manual
intervention.

Flume is a data ingestion utility that is configured by defining endpoints in a data
flow called “sources and sinks”. In Flume, each individual piece of data (tweets, in our
case) is called an event; sources produce events and send the events through a channel,
which connects the source to the sink. The sink then writes the events out to a predefined
location. For our use case, we’ll need to design a custom source that accesses the twitter-
streaming API and sends the tweets through a channel to a sink that writes to HDFS files.
Additionally, we can use the custom source to filter the tweets on a set of keywords to
help identify relevant tweets.

Partition Management with Apache Oozie

Once we have the twitter data loaded into HDFS, we can stage it for querying by creating
an external table in Hive. Using an external table will allow us to query the table without
moving the data from the location where it ends up in HDFS. To ensure scalability, as we
add more and more data, we’ll need to also partition the table. A partitioned table allows
us to prune the files that we read when querying, which results in better performance
when dealing with large data sets. However, the Twitter API will continue to stream
tweets, and Flume will perpetually create new files. We can automate the periodic process
of adding partitions to our table as the new data comes in.

Apache Oozie is a workflow coordination system that can be used to solve this
problem. Oozie is an extremely flexible system for designing job workflows and can be
scheduled to run based on a set of criteria. We can configure the workflow to run an
ALTER TABLE command that adds a partition containing the last hour’s worth of data
into Hive, and we can instruct the workflow to occur every hour. This will ensure that
we’re always looking at up-to-date data.

Querying Complex Data with Hive

Before we can query the data, we need to ensure that the Hive table can properly interpret
the JSON data. By default, Hive expects that input files use a delimited row format, but
our Twitter data is in a JSON format, which will not work with the default settings. This
is actually one of Hive’s biggest strengths. Hive allows us to flexibly define and redefine
how the data is represented on disk. The schema is only really enforced when we read
the data, and we can use the Hive SerDe interface to specify how to interpret what we’ve
loaded.

i

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

217

SerDe stands for “serializer” and “deserializer”, which are interfaces that
tell Hive how it should translate the data into something that Hive can
process. In particular, the deserializer interface is used when we read
data from disk, and converts the data into objects that Hive knows how
to manipulate. We can write a custom SerDe that reads the JSON data in
and translates the objects for Hive.

The SerDe will take a tweet in JSON form, and translate the JSON entities into columns:

SELECT created_at, entities, text, user
FROM tweets
WHERE user.screen_name='HS'
 AND re-tweeted_status.user.screen_name='MJ';

See results in Table 7-1.

Table 7-1. Results of the SerDe Function on the JSON Entity

Created At Entities Text User

Mon Apr 29
13:58:23 +0000
2013

{ “urls”: [], “user_
mentions”: [{“screen
name”: “HS”, “name”:
“Harsha Srivatsa”}],
“hashtags”: [{“text”:
“BigDataAnalytics”}]}

RT@HS:
#BigDataAnalytics – It
is not bigness of big
data that is interesting,
it is the value that you
can derive from all
these data that can
make huge business
impacts ……

{“screen name”:
“MJ”, “name”:
“Madhu Jagadeesh”,
“friends_count”: 176,
“followers_count”:
231, “statuses_count”:
2458, “verified”: “false”,
“utc_offset”: null,
“time_zone”: null}

We’ve now managed to put together an end-to-end system, which gathers data from
the twitter-streaming API, sends the tweets to files on HDFS through Flume, and uses
Oozie to periodically load the files into Hive, where we can query the raw JSON data,
through the use of a Hive SerDe.

The tweeter data has some structure, but certain fields may or may not exist. The
re-tweeted_status field, for example, will only be present if the tweet was a re-tweet.
Additionally, some of the fields may be arbitrarily complex. The hashtags field is an array
of all the hashtags present in the tweets, but most RDBMSs do not support arrays as a
column type. This semi-structured quality of the data makes the data very difficult to
query in a traditional RDBMS. Hive can handle this data much more gracefully.

The query below will find usernames, and the number of re-tweets they have
generated across all the tweets that we have data for:

SELECT
t.re-tweeted_screen_name,
sum(re-tweets) AS total_re-tweets,
count(*) AS tweet_count

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

218

FROM (SELECT
re-tweeted_status.user.screen_name as re-tweeted_screen_name,
re-tweeted_status.text,
max(re-tweet_count) as re-tweets
 FROM tweets
 GROUP BY re-tweeted_status.user.screen_name,
re-tweeted_status.text) t
GROUP BY t.re-tweeted_screen_name
ORDER BY total_re-tweets DESC
LIMIT 10;

The result of this query could be similar to Table 7-2.

Table 7-2. Results of tweets count

Re-tweeted_screen_name Total_re-tweets Tweet_count

MJ 421 5

SS 324 7

SK 213 12

SM 199 23

JM 287 21

AB 263 15

KA 195 18

DW 86 4

AR 67 6

SP 372 29

From these results, we can see whose tweets are getting seen by the widest audience
and also determine whether these people are communicating on a regular basis or not.
We can use this information to carefully target our messaging.

Measure and Monitor
Having the ability to analyze big data is of limited value if users cannot understand
the analysis. Ultimately, a decision maker, provided with the result of analysis, has
to interpret these results. This interpretation cannot happen in a vacuum. Usually, it
involves examining all the assumptions made and retracing the analysis. Furthermore,
there are many possible sources of error: computer systems can have bugs, models
almost always have assumptions, and results can be based on erroneous data. For all of
these reasons, no responsible user will cede authority to the computer system. Rather the
analyst will try to understand, and verify, the results produced by the computer.

r

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

219

This is particularly a challenge with big data due to its complexity. There are often crucial
assumptions behind the data recorded. Analytical pipelines can often involve multiple
steps, again with assumptions built in.

In short, it is rarely enough to provide just the results. Rather, one must provide
supplementary information that explains how each result was derived and based upon
precisely what inputs. Such supplementary information is called the “provenance”
of the (result) data. By studying how best to capture, store, and query provenance, in
conjunction with techniques to capture adequate metadata, the analytics system should
have tools to provide users with the ability both to interpret analytical results obtained
and to repeat the analysis with different assumptions, parameters, or data sets.

Tools with a rich palette of visualizations become important in conveying to
the users the results of the queries in a way that is best understood in the particular
domain. Whereas early business intelligence systems’ users were content with tabular
presentations, today’s analysts need to pack and present results in powerful visualizations
that assist interpretation and support user collaboration.

Furthermore, with a few clicks the user should be able to drill down into each
piece of data that they see and understand its provenance, which is a key feature to
understanding the data. That is, users need to be able to see not just the results but to
also understand why they are seeing those results. However, raw provenance, particularly
regarding the phases in the analytics pipeline, is likely to be too technical for many users
to grasp completely. One alternative is to enable the users to “play” with the steps in
the analysis and make small changes to the pipeline, for example, or modify values for
some parameters. The users can then view the results of these incremental changes. By
these means, users can develop an intuitive feeling for the analysis and also verify that
it performs as expected in borderline cases. Accomplishing this requires the system to
provide convenient facilities for the user to not only measure but also monitor and
review results.

Establish a Support Team
Before putting the analytics models in production systems, the analytics project lead
should form a specialized task force to support the business users. The team should
consist of the following roles:

A combination of business users and technical personnel who •
can manage and monitor the analytics models performance.

Develop a communication plan and escalation path to resolve •
conflicts as they arise, as issues can happen due to quality of
data, relevance of data sources, performance of the algorithms,
calibration of results as more and new data are exposed to the
analytics models, etc.

It is not uncommon to see analytics modules producing many more patterns than
a business can use. Therefore, the analysts and the business users should evaluate the
results, pursue the outcomes that show significant benefits, and discard the ones that
do not.

CHAPTER 7 ■ BIG DATA ANALYTICS METHODOLOGY

220

During the measure and monitor phase of the methodology, analysts should
document the process outcomes and analytical results toimprove the current system
and to assist with future endeavors.

End Points
We have entered an era of big data. Through better analysis of the large volumes of data
that are becoming available, there is the potential for making faster advances in many
scientific disciplines and improving the profitability and success of many enterprises.
However, many technical challenges described earlier in this chapter must be addressed
before this potential can be fully realized. The challenges include not just the obvious
issues of scale but also heterogeneity, lack of structure, error handling, privacy,
timeliness, provenance, and visualization—at all stages of the methodology from data
acquisition to result interpretation. These technical challenges are common across a large
variety of application domains, and therefore they are not cost effective to address in the
context of one domain alone.

Big data has to be managed in context, which may be noisy, heterogeneous, and
might not include an upfront model. Doing so raises the need to track provenance and to
handle uncertainty and error: topics that are crucial to success, and yet rarely mentioned
in the same breath as big data. Similarly, as far as considering the questions related to
the appropriate business problem definition, choosing the right analytics approach will
typically not be laid out in advance. You may need to figure out good questions based on
the data.

Fortunately, existing computational techniques can be applied, either as is or with
some extensions, to at least some aspects of the big data problem. For example, relational
databases rely on the notion of logical data independence: users can think about what
they want to compute, while the system (with skilled engineers designing those systems)
determines how to compute it efficiently. Similarly, the SQL standard and the relational
data model provide a powerful uniform language to express many query needs and, in
principle, allow customers to choose between vendors, thereby increasing competition.
The challenge ahead is to combine these healthy features of prior systems and devise
novel solutions to the many new challenges of big data.

References
BDBA: A Framework for Big Data Behavioral Analytics: Gartner
Big Data: Hadoop, Business Analytics and Beyond: A Big Data Manifesto from the Wikibon

Community – Jeff Kelly
http://www.infoq.com/articles/BigDataBlueprint

http://www.infoq.com/articles/BigDataBlueprint

221

CHAPTER 8

Extracting Value From Big
Data: In-Memory Solutions,
Real Time Analytics, And
Recommendation Systems

Data is everywhere, but few organizations are deriving the full value
from their data. How do you keep up with the velocity and variety of
data streaming in and get actionable insights from it, all in real time?

The main driver for many of the innovations around big data analytics is “time to
action.” Today, every business is transforming itself into a digital business. The resulting
effect is proliferation of online applications, social-mobile applications, and SaaS
applications. This changing nature of business has brought the demand for real-time
analytics to mainstream business approaches. There are several examples of innovative
applications and usage of real-time analytics:

A financial lending application reviewing incoming credit •
applications and apportioning funds across these requests to
continuously minimize overall credit risk.

An e-commerce application scanning shopping carts to detect •
popular product categories and optimize offers on the website in
real time.

A fraud detection system, for credit card fraud transactions, •
analyzing a flow of transactions to detect potential fraud and
quickly allocating resources to the highest threats.

A logistics system or real-time control system (such as a smart •
grid) watching changes to assets within the system and alerting
when potentially dangerous conditions are detected.

An asset management system, continuously polling machine •
generated data emitted through sensors, analyzing them in real-time
and raising alerts if pre-defined levels of controls are violated.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

222

In the earlier chapters we discussed how newer infrastructures and technologies
like Hadoop, NoSQL, and parallel processing platforms are solving the challenges
of processing massive amounts of data in a shorter time and with lower cost. Now,
Hadoop has almost become the de facto standard for many of the batch processing
analytics applications. While Hadoop and map-reduce in general do a pretty good job
in processing massive amounts of data through parallel batch processing, they weren’t
designed to serve the real-time part of the business.

Before we deep dive into architectural constructs and discuss solutions, let’s
understand few key concepts.

In-Memory Database Grids. In-memory data grids were originally designed to
complement traditional databases by allowing critical pieces of fast-changing data and
application logic to operate at the memory layer with much higher throughput and
lower latency. An in-memory database grid stores data as objects in memory, avoiding
expensive disk round trips. The data model is usually object-oriented (serialized) and
non-relational, organized as collections of logically related objects that can be rapidly
created, updated, read, and removed. A common implementation scenario of in-memory
data grid is as a “distributed cache” for one or more databases. The in-memory data grids
are built on Java, allowing the grid to run embedded inside the application server cluster
eliminating the traffic to the database servers.

It is not a new attempt to use main memory as a storage area instead of a disk. There
are numerous examples of effectively using main memory databases, as they perform
much faster than disk-based databases. When you SMS or call someone, most mobile
service providers use main memory database to get the information about your contact
as soon as possible. The software on your cell phone also uses main memory database
effectively to show the caller details including the picture.

There are many in-memory data grid products, both commercial and open source.
Some of the most commonly used products are Oracle Coherence, IBM Websphere
eXtreme Scale, Hazelcast, JBoss Infinispan, GridGain, DataGrid, VMware Gemfire, Oracle
Coherence, Gigaspaces XAP, Terracotta Ehcache and BigMemory.

Distributed caching products like Memcached provide a simple, high performance,
in-memory key-value store. Its “scalability” is addressed through making servers completely
independent of each other. The client (configured with a list of all servers) ties all the data in
the servers together. A hash function maps the keys to servers on each client, thus ensuring
consistency of data even in the case where all clients to have identical server lists. Data
consistency becomes a concern when different clients have different server lists or different
hash functions. Distributed caching do not have built-in support for replication and no
native support for high availability, so any network partition or server crash leads to a loss of
availability.

In contrast, in-memory data grids are fully clustered and are always aware of each
other. They use a variety of algorithms to establish distributed consensus and ensure
higher levels of consistency guarantees. In addition in-memory data grids provide
support for distributed transactions, scatter-gather parallel query processing, tiered
caching, publish-subscribe event processing, a framework to integrate data with existing
databases, replication over wide area networks, etc.

In-memory data grids also enable new computing paradigms for cloud, complex
event processing and data analysis. Cloud deployments promise dynamic scalability
irrespective of the spikes in capacity. When spikes occur, the automatic detection and

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

223

provisioning of resources (h/w capacity) is handled using virtualization. In-memory data
grid, in such cases can elastically expand or contracts without any operator intervention.
In-memory data grids offer complex event processing through a feature called
“continuous querying.” A common scenario would be, for frequently accessed data sets or
event status in operational systems, the in-memory data grid can schedule the queries to
be running continuously, as and when the query result set is impacted due to updates the
in-memory data grid can asynchronously push “change events” to receiving applications.
This feature of in-memory data grid is influencing creation of a new breed of real-time,
push-oriented applications where events can be pushed all the way to thousands of
devices running applications.

In-Memory Analytics. In-memory analytics is an approach to querying data when
it resides in a computer’s random access memory (RAM), as opposed to querying data
stored on physical disks. This results in vastly shortened query response times, allowing
BI and analytic applications to support faster business decisions.

As the cost of RAM declines, in-memory analytics is becoming feasible for many
businesses. BI and analytic applications have long supported caching data in RAM, but
older 32-bit operating systems provided only 4 GB of addressable memory. Newer 64-bit
operating systems, with up to one terabyte (TB) addressable memory (and perhaps more
in the future), have made it possible to cache large volumes of data potentially an entire
data warehouse or data mart in a computer’s RAM.

In-Memory Computing Technology: Guidelines
Are there any rules, best practices, or guidelines regarding “analytical problems,
specialized use cases, or architecture related scenarios better suited for in-memory
technologies”? There are a few factors, which can let you know when to go for in-memory
technologies:

There are types of workloads that need repetitive access to the •
entire data set and subsequent processing of the data set. You may
want to keep drilling down on the result set to your original query.
In addition, you may want to keep trying new visualizations of
substantially the same data set. In such scenarios you shouldn’t
be going to the disk each time.

Some algorithms rely on fairly random access to the data. Tin this •
case, it’s best to keep the whole data set in memory. In particular,
approaches to relationship analysis, graph processing, depth and
width based searches, and experimentation or discovery type
tasks tend to be fundamentally in-memory. In addition, some
workloads like complex event processing need such low latency
that there’s no time to write the data to disk before analyzing it.

There are some products (especially ERP, SCM, and CRM •
packaged applications), where the in-memory data stores and
processing technologies are packaged together providing better
options to store, manage, and process data faster.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

224

Key question is: what kind of workload, in principle, should be done
in memory?

Let’s start by looking at some scenarios where in-memory is not only preferred but
also necessary:

• Your database is too slow for interactive analytics. Not all
databases are as fast as we would like them to be. This is especially
true for online transaction processing (OLTP) databases that are
meant to store transactional data. If you are working with a slow
database, then you may want to move your data in-memory,
so you can perform interactive, speed-of-thought analysis without
being constantly slowed down waiting for queries to return result
sets from disks.

• You need to take load off a transactional database. Regardless
of the speed of your database, when its primary purpose is storing
and processing transactional data, you don’t want to put additional
load on it. Analytical queries can put tremendous pressure on
transactional database and slow it down, negatively impacting
mission critical business operations. Bringing in a set of data to
an in-memory space increases the speed of analytics without
compromising the speed of critical operational business systems.

• You require always-on analytics. You may need your analytic
application to be always available. Examples include logistics,
supply chain, fraud detection, and financial services applications.
Full-time availability for a single database can be risky, especially
if it doesn’t have native failover capabilities. Instead of letting a
database become the single point of failure, a distributed data
cache provides a more reliable alternative. In this environment
when one node goes down, others immediately take over without
any interruption in service.

• You need analysis of big data. For big data analysis, you may not
want to analyze the entire data set where it is stored. One example is
analyzing data stored in Hadoop, which while extremely powerful,
is subject to high-query latency, making it less-than-ideal for
real-time analytics. Instead you want to load a slice of your big data
set into memory for speed of thought analysis and visualization.
Discover patterns using data cached in memory, then, connect
directly to Hadoop for scheduled detail reports and dashboards.

Would You Still Need A Database?
As much as caching data in memory helps with many analytical scenarios, only having
in-memory architecture is limiting. You will still need your database.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

225

Here are three reasons why:

• Big data memory requirements are costly. Some analytics
solutions require you to load all of your data into memory,
forcing you to invest in very expensive hardware, or more likely
subjecting your analytics solution to scalability constraints.
The ideal solution allows you to choose the optimal trade-off
between storing data in memory or in a database and allows
you to accelerate performance by adding more memory to the
system without being subject to the memory size constraints of
traditional proprietary solutions.

• Databases are more powerful when it comes to complex
calculations. With an in-memory only solution, complex
calculations on large data sets can easily result in a “out of memory”
error. To resolve this you are either forced to get a larger memory
capacity, slim down your data sets, or modify your calculations
(and as a result spend hours remodeling your data sets).

• For up-to-the-minute information, you still need your data
closest to its source. If things are changing so fast that you need
to see them in real time, you need a live connection to your data.
For example, some operational analysis applications like those
used by financial services organizations need competitive,
real-time, or near-real-time data. Your operational dashboards
can be hooked up directly to live data so you know when you
are facing peak demand or under-utilization. An all in-memory
solution would not provide the latest, freshest data.

Real-time Analytics and the CAP Theorem
Big data refers to the volume, velocity, and variety of highly structured, semi-structured
and loosely structured data that is in motion (streaming) and at rest (stored). Most
approaches to big data analytics are focused on batch processing of data, in essence big
data at rest. This means that analytic results such as trends and patterns only consider
what has happened in the past and not what is happening in the present.

What about big data in motion?

If you recall our discussion regarding the CAP theorem in Chapter 5, it stipulates
that it is impossible for any distributed computing system to simultaneously address
consistency, availability, and partition tolerance; you can at best achieve two out of three.
A system with high partition tolerance and availability (like Cassandra) will sacrifice some
consistency in order to do it. Similarly, for real-time analytics solutions, there is a variant
of the CAP theorem, called SCV (Figure 8-1).

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

226

Speed: This is all about fast response times and how quickly you can return an
appropriate analytic result from the time it was first observed. In essence, a real-time
system will have an updated analytic result within a relatively short time of an observed
event, whereas a non-real-time system might take hours or even days to process all of the
observations into an analytic result.

Consistency: This is all about confidence level on the accuracy of the response, how
accurate or precise (two different things) the analytic outcome is. A totally consistent
result accounts for 100 percent of observed data accounted for with complete accuracy
and some degree of precision. A less consistent system might use statistical sampling or
approximations to produce a reasonably precise but less accurate result.

Data Volume. This is all about the coverage or reach of the analytical result;
in other words, this refers to the total amount of observed events and data that need to
be analyzed. The problem starts at the point when data starts to exceed the bounds of
what can fit into memory. Massive or rapidly growing data sets have to be analyzed by
distributed systems.

If your working data set is never going to grow beyond 40 to 50 GB over the course of
its lifetime, then you can use an RDBMS or a specialized analytic appliance solutions and
have 100 percent consistent analytic results delivered to you in real-time, because your
entire working data set can fit into memory on a single machine and doesn’t need to be
distributed.

However, if you’re building an application with a rapidly growing data set and
unpredictable burst loads, you’re going to need a system that sacrifices some speed or
consistency in order to be distributed so it can handle the large volume of raw data.

Figure 8-1. SCV for real-time analytics systems

-

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

227

Batch-oriented analysis is important for certain type of business needs; where you
want to do detailed analysis of data, it’s more important for the data to be comprehensive
(large) and accounted consistently. Whereas in case of real-time analytics you need split
second responses, consistency could be compromised with an (+/-) error percentage or
confidence percentage.

The one property you should not intentionally sacrifice is data volume, as data is
a business asset. Data has inherent value. You want to design your analytic systems to
consume and retain as much of it as possible.

Think about this trade-off carefully before you go about building a
real-time analytics system.

How Does Real-Time Analytics Work?
Typically when we are talking about real-time or near real-time systems, what we mean
are architectures that allow you to respond to data as it’s received, without necessarily
persisting it to a database first (Figure 8-2).

Figure 8-2. Real-time analytics system processes

In other words, real-time denotes the ability to process data as it arrives, rather
than storing the data and retrieving it at some point in the future. That is the primary
significance of the term: “real time” means that you are processing data in the present,
not in the future.

Collect real-time data: Big data in motion includes data from sensors, smart
grid meters, RSS feeds, computer networks, and social media sites. Real-time data or
streaming data can be conceived as a continuous and changing sequence of data that
continuously arrive at a system to store or process. The data make up a massive volume
(e.g., terabytes), temporally ordered, fast changing, and potentially infinite. For streaming
to work, you should have the ability to capture and process streams of data in real time.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

228

Process streaming data: The key to real-time analytics is that we cannot wait
until later to do things to our data; we must analyze it instantly. Stream processing (also
known as streaming data processing) is the term used for analyzing data instantly as
it’s collected. Actions that you can perform in real-time include splitting data, merging
it, doing calculations, connecting it with outside data sources, forking data to multiple
destinations, and more.

Explore, analyze, and visualize data: Now that data has been processed, it is
reliably delivered to the databases that power your reports, dashboards, and ad-hoc
queries. There are specialized streaming data algorithms and advanced data visualization
techniques that you can employ to generate insights.

In real-time systems, scoring is an extremely important activity, and it is triggered by
actions (by consumers at a website or by an operational system through an API), and the
resulting action or messages are brokered through the consumption channels. During the
scoring activity, some real-time systems will use the same hardware that’s used for data
ingestion, but they will not use the same data. At this phase of the process, the scoring
rules are kept separate from the ingested data. Note also that at this phase, the limitations
of Hadoop become apparent. Hadoop today is not particularly well suited for real-time
scoring, although it can be used for “near real-time” applications such as populating large
tables or pre-computing scores.

Data is always changing, so there is a need to refresh the data and refresh the model
built on the original data. The existing scripts or programs used to run the data and build
the models can be re-used to refresh the models. Simple exploratory data analysis is also
recommended, along with periodic (weekly, daily, or hourly) model refreshes.

Refreshing the model based on re-ingesting the data and re-running the scripts will
only work for a limited time, since the underlying data and even the underlying structure
of the data will eventually change so much that the model will no longer be valid.
Important variables can become non-significant, non-significant variables can become
important, and new data sources are continuously emerging. If the model accuracy
measure begins drifting, you have to go back and reexamine the data. If necessary, go
back and rebuild the model from scratch.

Actions: Once you start spotting patterns and anomalies in the streaming data,
you need to channel these insights to appropriate consumption channels. This is the
layer that most people see. It’s the layer at which business analysts, c-suite executives,
and customers interact with the real-time big data analytics system.

Real-time big data analytics is an iterative process involving multiple
tools and systems.

The Hadoop and NoSQL Conundrum
In earlier chapters we have discussed at length how Hadoop framework helps in analyzing
massive sets of data by distributing the computation load across many processes and
machines. Hadoop embraces a map-reduce framework, which means analytics are performed
as batch processes. Depending on the quantity of data and the complexity of the computation,
running a set of Hadoop jobs could take anywhere from a few minutes to many days. Batch
processing tool sets like Hadoop are great for doing one-off reports, a recurring schedule of

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

229

periodic runs, or setting up dedicated data exploration environments. However, waiting hours
for the analysis you need means you aren’t able to get real-time answers from your data.

Hadoop analysis ends up being a rearview mirror instead of a pulse on
the moment.

NoSQL databases are good at enabling fast queries against many terabytes of data, but
they have limitations to do SQL-like joins: the ability to combine data from one database table
with data from another table. The work around is to de-normalize your datasets. For example,
if you are asking a question such as “Find all Twitter posts that contain the phrase “IPL” from
all authors based in London, England.” In a traditional relational database like SQL, a table of
“posts” would join against a table of “authors” using a shared key like an author’s ID number.
In NoSQL databases, you will de-normalize the data set by inserting a copy of the author into
each row of their posts. Rather than joining the posts table with the authors table during the
query, all the authors’ data is already contained within the posts table before the query.

The question then becomes when should the de-normalization of your
NoSQL database occur?

One option is to use Hadoop to append other data sets to the de-normalized data from
normalized tables before running these kinds of queries. This approach is fine for batch
processing; you still cannot perform complex queries of real-time data. What if we could
write de-normalized data on the fly: taking our example of Twitter posts into consideration,
write each incoming Twitter post into a row in the posts table, and augment that row with
information about the author in real time. This would keep all data de-normalized at all times,
always ready for downstream applications to run complex queries and generate the rich,
real-time business insights. Real-time analytics and stream processing make this possible.

In the sections below, we will discuss several approaches to process real-time insights.

Using an In-Memory Data Grid for Near Real-Time
Data Analysis
Over the last several years, in-memory data grids have proven their value in storing
fast-changing application data and scaling application performance. More recently,
in-memory data grids have integrated map-reduce analytics into the grid to achieve
powerful, easy-to-use analysis and to enable near-real-time decision making.

Data motion to and from a distributed file system increases both access latency
and I/O overhead, significantly lengthening the execution time for analysis. In contrast,
in-memory data grids perform analytics in place on memory-based data, avoiding data
motion and driving down the time required to complete a map-reduce analysis. This
enables in-memory data grids to analyze data significantly faster than Hadoop or other
file-based analytics platforms, thereby delivering results with minimum latency.

Let’s consider the stock trading application example in financial services. The stock
trading application receives a market feed of stock price changes occurring during the
trading day. This application then applies various analyses to develop a trading strategy
to place new trades based on history of price changes for individual stocks and changing

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

230

risk profiles. In order to develop a recommendation, the stock trading application needs
to store a large set of stock histories. Every few seconds the application needs to perform
map-reduce analytics across either all or a selected set of stock symbols (such as a market
sector), comparing potential returns, evaluating risk profiles, and optimizing the overall
trading strategy. This ability to scan a large, fast-changing data set in real time gives the
trading analyst an important new tool for detecting changing market conditions and
optimizing the selection of trades to place.

Now let’s discuss how an in-memory data grid actually works. First of all, it is important
to understand that an in-memory data grid is not the same as an in-memory database.
Typical examples of in-memory databases are Oracle TimesTen, SAS® In-Database and SAP®
HANA. In-memory databases are full database products that simply reside in memory.
As a result of being a full-blown database, they also carry the weight and overhead of
database management features. In-memory data grid is different: no tables, indexes,
triggers, stored procedures, process managers etc., just plain storage.

The data model used in the in-memory data grid is key-value pairs. Unlike traditional
systems where keys and values are often limited to byte arrays or strings, with in-memory
data grids you can use any domain object as either value or key. Most in-memory data
grids are written in Java, thus they have the ability to support a wide variety of data types
ranging from simple data types such as a string or number, to complex objects. In-memory
data grid has the ability to interface with the distributed data store as with a simple hash
map. Being able to work with domain objects directly is one of the main differences
between in-memory data grids and in-memory databases. With the in-memory databases,
users still need to perform object-to-relational mapping, which typically adds significant
performance overhead.

Data consistency is one of the main differences between in-memory data grids and
NoSQL databases. NoSQL databases are usually designed on top of the eventual consistency
approach where data is allowed to be inconsistent for a period of time as long as it will
become consistent eventually. In-memory data grids are positioned as complementary with
distributed caching and can be effectively leveraged to support following core patterns:

• Transactional “write through.” Changes are synchronously
updated in databases. The update to the in-memory data grid is
successful if and only if the update is also in the database.

• Asynchronous “write behind.” Queue the updates across the
in-memory data grid cluster and transfer the changes in batches
to the backend repository. The queuing can be configured to be
in-memory replicated for high availability.

Figure 8-3 shows an in-memory data grid with a key set of {k1, k2, k3} where each key
belongs to a different node.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

231

Figure 8-3. In-memory data grid

Map Reduce and Real-Time Processing
Hadoop’s map-reduce model is very good in processing large amount of data in parallel
(Figure 8-4). It provides a general partitioning mechanism (based on the key of the data)
to distribute aggregation workload across different machines. Basically, map-reduce
algorithm design is all about how to select the right key for the record at different stages of
processing.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

232

F
ig

u
re

 8
-4

.
M

a
p

-r
ed

u
ce

 p
ro

ce
ss

in
g

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

233

However, “time dimension” has a very different characteristic compared to other
dimensional attributes of data, especially when real-time data processing is concerned.
It presents a different set of challenges to the batch oriented, map-reduce model.

Real-time processing demands a very low latency of response, •
which means there isn’t too much data accumulated at the “time”
dimension for processing.

Data collected from multiple sources may not have all arrived at •
the point of aggregation.

In the standard model of map-reduce, the reduce phase cannot •
start until the map phase is completed. And all the intermediate
data persists in the disk before download to the reducer. All these
added to significant latency of the processing.

Although Hadoop map-reduce is designed for batch-oriented work load, certain
applications, such as fraud detection, ad display, network monitoring requires real-time
response for processing large amount of data, application designers have started to
looked at various way of tweaking Hadoop to fit in the more real-time processing
environment. We will discussfew techniques to perform low-latency parallel processing
based on the map-reduce model.

There is another aspect of low latency - How current the analyzed data is; in the case
of HDFS it is as current as the last snapshot copied into it. The need for snapshotting
comes from the fact that most businesses are still running on traditional RDBMS systems
(with NoSQL gaining momentum recently), and data has to be at some point migrated
into HDFS in order to be processed. Such snapshotting is currently part of most Hadoop
deployments and it usually happens once or twice a day.

By putting an in-memory data grid in front of HDFS we can store recent or more relevant
data in memory, which allows for instant access and fast queries on it (Figure 8-5). When
the data is properly partitioned, you can treat your whole in-memory data grid as one huge
memory space: you can literally cache terabytes of data in memory. But even in this case,
the memory space is still limited and when the data becomes less relevant, or simply old, it
should still be offloaded onto RDBMS, HDFS, or any other storage. With this architecture,
businesses can now do processing of both, current and historic data.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

234

F
ig

u
re

 8
-5

.
In

-m
em

o
ry

 d
a

ta
 g

ri
d

 a
n

d
 H

a
d

o
o

p
 e

co
sy

st
em

 c
o

n
ce

p
tu

a
l a

rc
h

it
ec

tu
re

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

235

If we do not want to use in-memory data grid and still achieve real-time analysis,
there is an alternative approach as well. In a typical Hadoop implementation, you will
notice map-reduce jobs are executed in a scheduled manner to run against the data
stored in HDFS. HFlame enhances Hadoop core with real-time streaming analysis
capability. In traditional Hadoop, a map-reduce job processes only the current snapshot
of available data and ends right after it finished processing the snapshot. Processing
of any new contents requires scheduling of another map-reduce job. With HFlame
enhanced Hadoop, map-reduce jobs can optionally be configured to run in continuous
mode. Which essentially means that map-reduce job doesn’t end even if there are no
more new contents available. As soon as new data is pushed in HDFS, continuously
running map-reduce jobs are notified, which immediately passes the new contents
through map-reduce process and extract insights.

HFlame supports following behavior:

1. HFlame runs on top of customer’s Hadoop installation.
HFlame is an incremental add on to existing Hadoop clusters.

2. No new API. Completely driven by configuration.

3. HFlame’s real time map-reduce jobs are completely fault
tolerant. In the event of any failure, failed components are
automatically scheduled on other available Hadoop nodes.

4. HFlame guarantees no data loss. If any component of
map-reduce job or Hadoop infrastructure fails in the middle,
automatic job/component’s recovery procedure will take of
care starting the data processing from exactly the same place
where it failed.

5. Allows building a complex mesh of real time map-reduce
jobs to support data analysis requirements that cannot be
described in single map-reduce process.

6. Supports data analysis frameworks like PIG, HIVE.

7. Real time map-reduce jobs can optionally be run in batch
mode, i.e., reduce tasks, accumulate data for a certain amount
of time, and then produce the aggregated results.

Figure 8-6 explains the flow of real-time map-reduce job.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

236

F
ig

u
re

 8
-6

.
R

ea
l-

ti
m

e
m

a
p

-r
ed

u
ce

 jo
b

 fl
o

w

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

237

The HFlame compelling argument is the common data analysis framework for both
offline and real-time massively parallel data analysis, which essentially means no new
storage, no new data processing semantics, and leveraging existing high-level abstraction
languages like Pig and Hive. For Hadoop users, real-time streaming analysis with HFlame
requires absolutely zero investment into new infrastructure and no new API/tools to learn.

Use Case: Real-Time Analysis of Machine Generated Data
(Log Processing)
Machine data (or data exhaust) is produced all the time by nearly every software
application and electronic device. The applications, servers, network devices, sensors,
browsers, desktop and laptop computers, mobile devices, and various other systems
deployed to support operations are continuously generating information relating to their
status and activities.

Machine data is generated by both machine-to-machine (M2M) as well as
human-to-machine (H2M) interactions. Machine data in is generated in a multitude
of formats and structures, as each software application or hardware device records and
creates machine data associated with their specific use. Machine data also varies among
vendors and even within the same vendor across product types, families, and models.
The figure below illustrates the type of machine data created and the business and IT
insights that can be derived when a single web visitor makes a purchase in a typical
e-commerce environment shown in Figure 8-7.

Figure 8-7. Machine-generated data and business impacts

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

238

Figure 8-7 is an example of the type and amount of valuable information generated
by a single website visitor that is recorded. A typical e-commerce site serving thousands
of users a day will generate gigabytes of machine data that can be used to provide
significant insights into the IT infrastructure and business operations.

How do we process machine-generated data?

Let’s consider the scenario of a retailer. The retailer is using around forty applications
hosted on a multitude of servers (200+) in different data centers to manage their business
processes. A single business process involves several business applications, workflows,
and associated data. Each application creates log messages that are stored as text files
in the local file system. There are multiple web applications where customers browse
products and offerings and select their preferences. Once an order is placed, the request
is sent to a central order-processing application. This application performs the following
steps in order: checks for availability in the inventory management application, performs
the payment in the credit-card-processing application and initiate the shipment. Each of
the involved applications runs on different servers and produces log files.

The log messages usually consist of some fixed fields, like for example a timestamp,
a logging level, or the name of the logging component or application in addition to key
information in unformatted plain text. There are different possibilities for storing these
messages. In a relational database, you might just record the whole of the message in
a CLOB field, or you might try to store the message into a pre-defined schema. While
CLOB will be an easy way to store the data, retrieving information from CLOB has
additional challenges, as you will have to develop a full text search index to be able to
find a message in the CLOB field. The approach with the pre-defined schema also has
several disadvantages, leading to problems when adding a new application that creates
log messages with a different format. Messages might also be truncated when they do not
fit into the schema.

Figure 8-8 shows an example of a log message. Each message consists of a couple
of fields like timestamp, class, method, and log level, followed by the log message itself
consisting of unstructured text. Different applications can have different sets of logging
fields.

Figure 8-8. Log message example

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

239

Log data is generated continuously, and so they need to be captured the moment
they are generated; modifications of log data might happen but are very rare. In an
environment where hundreds or thousands of log messages are stored every second
this task can be difficult to accomplish. It will quickly become necessary to partition
the database schema to distribute the load across multiple hard disks or even servers.
Partitioning log data does not work well with a time-based partitioning scheme, because
most of the data is inserted in the partition that contains data for the current date. To
distribute the load, it is necessary to use another schema, for example by partitioning via
the applications. But here we have to deal with the problem that different applications
produce different amounts of log data. Finding a balanced partitioning scheme is a
challenge and partitioning schemes may change over time.

To develop a real-time log management system, our first task is to find a file format
that allows fast and direct access to a single log message while storing hundreds of
thousands log message in a single file. Hadoop/HDFS could be the solution we are
looking for (Figure 8-9).

Figure 8-9. Log processing, Hadoop, and search conceptual architecture

Hadoop provides two file formats for grouping multiple entries in a single file:

• SequenceFile: A flat file which stores binary key-value pairs. The
output of map-reduce tasks is usually written into a SequenceFile.

• MapFile: Consists of two SequenceFiles. The data file is identical
to the SequenceFile and contains the data stored as binary
key-value pairs. The second file is an index file, which contains a
key-value map with seek positions inside the data file to quickly
access the data.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

240

The SequenceFile format seems to be well suited for storing log messages and
processing them with map-reduce jobs; but the direct access to specific log messages
is very slow. The API to-read data from a SequenceFile is iterator based, so that it is
necessary to jump from entry to entry until the target entry is reached. One of the most
important use cases is searching for log messages in real time, as slow random access
performance is a showstopper.

In contrast to SequenceFiles, MapFiles uses two files; the index file stores seek
positions for every n-th key in the datafile. The data file stores data as binary key-value
pairs. However, using MapFiles comes with a disadvantage, which is that any instance of
a random access needs to read from two separate files. This process seems to be slow, but
the indexes that store the seek positions for log entries are small enough to be cached in
memory (Figure 8-10). Once the seek position is identified; only relevant portions of the
data file are read.

Figure 8-10. Index and data mapping

Since MapFiles and SequenceFiles use binary key-value pairs we need a data
format to store log messages in these files. In order to be able to search efficiently for
log messages, you need to store data fields as separate entities. Google protocol buffers
provide excellent functionalities to transfer and store log messages. Protocol buffers are
encoded structured data.

Below listed are few most important reasons for choosing the Google protocol buffer
format:

• Speed: Deserialization speed is one of the most important factors
when evaluating file formats. Especially map-reduce jobs that
crunch through the whole data set stored in the HDFS rely on fast
object deserialization. Protocol buffers make up one of the fastest
frameworks. Object deserialization with Protocol buffers is sixteen
times faster than with pure Java serialization.

• Size: Ability to store billions of serialized objects is another key
factor. Protocol buffers produce serialized objects that are around
four times smaller than those produced by the standard Java
serialization.

• Migrations: One unique feature of protocol buffers is the ability to
change the file format without losing backward compatibility. It is
possible to add or remove fields from an object without breaking
working implementations. This is a very important feature when
serializing objects for long-time storage.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

241

• Platform- and Language-independent: Protocol buffer objects
may be accessed from multiple languages on any operating
system. This feature allows us to use protocol buffers as the sole
data format throughout the whole log processing chain.

Log messages consist of textual data which can be compressed very efficiently.
MapFiles and SequenceFiles both offer a transparent compression mechanism, it is
possible to compress each log entry individually or use a block-level compression where
multiple entries are compressed together. Let us assume our log messages have an
average size of 500 characters. Using block compression, it is possible to drop the size
down to around 20 percent of the original message size. Hadoop’s default setting uses
a block size of 1 MB uncompressed data, which in our case means around 2,000 log
messages are compressed together in a single block.

Note■ There is a downside to using block compression. With block compression each

block has to be read completely and decompressed before a single entry may be accessed.

This is not really a problem on its own, but combined with the seek positions stored in the

index file it starts to be a problem.

Index files store the seek position of each n-th entry in the datafile. This means that
in order to save memory for example, only each 16th entry will be written in the index file.
The seek position is the position where the data may be found in the compressed data
file. If we have 2,000 log entries stored in a single block and the position of each 16th entry
is written to the index file, we have 125 entries with identical seek positions (all 2,000
log entries start at the same block and have identical seek positions), which is a waste of
memory. This is known as the “seek position grouping” issue.

On the other hand when 2,000 entries are found at the same seek position, we need
to iterate over the entries stored in a block until we reach our requested entry. This
seriously impacts random access performance.

Note■ It is absolutely necessary to tweak the block compression size and the skip rate in

the index file to find the optimal compromise between compression factor and the number

of entries per block. The skip rate should be chosen so that each block has only one entry in

the index file.

How to perform near real-time searches on up to 36.6 billion log
messages?

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

242

A typical search requirement is that 95 percent of all search queries should display the
results in less than 10 seconds. These requirements are difficult to implement with a pure
Hadoop solution. In Hadoop we can use map-reduce jobs to retrieve data. A map-reduce
job that has to read all the data may run for about hours. The only way to be able to search
in real time is to build a search index on the stored data. Lucene, a specialized search
framework seems to be a very good partner for Hadoop. It is implemented in Java, which
means a very good integration with Java-based application. Lucene is also highly scalable
and has a powerful query syntax.

Now let’s look at how our solution works!

Lucene is able to distinguish multiple indexed fields in a single document. Log data
can be split up in distinct fields like the timestamp of the message, the log level, the message
itself, etc. A Lucene index consists of documents. Each document has a number of fields.
The contents of a field can consist of one or more terms. The number of unique terms is
on criteria for the memory requirements of an index.

Each document needs to have a primary key field, which specifies how the document
can be retrieved. The primary key field contains the full path inside the HDFS to the
MapFile, which contains the log message, followed by the index of the log message inside
this MapFile (Figure 8-11). This enables us to directly access the referenced log message.

Figure 8-11. Document indexing example

Lucene can build up a full text index of rather large files. However, one must pay
attention to the memory requirements. The memory requirements depend heavily on the
number of indexed fields, the type of the indexed fields, and whether the contents of a
field have to be stored in Lucene or not.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

243

By analyzing typical search queries you can identify fields that need to be indexed in
order to run 95 percent of all search queries in real time. At a broad level you only need
six fields in the Lucene index:

timestamp of the log message•

numeric ID of the application that created this log message•

numeric log level•

name of application server the application is running on•

host name of the server the application is running on•

path in the Hadoop file system where the complete log message •
can be read

The next step is to optimize the memory requirements for each field. The timestamp
field can become a bit tricky to manage especially if you are capturing to the level of
milliseconds. This will lead to a huge number of unique values inside the timestamp
field and will impact memory requirements. On the other hand, in the search queries
timestamps are only specified up to an accuracy of minutes. You need the higher
accuracy to sort the search results.

A solution could be to split the timestamp field into two separate fields in the Lucene
index. One field stores the timestamp rounded up to minutes and is indexed. The other
field stores the timestamp with full accuracy and is only stored in Lucene, not indexed.
With this solution you can reduce the number of unique terms that Lucene needs to
handle and therefore greatly reduce the impact on memory requirements. Another
benefit of this approach is increased performance when searching for date ranges. The
downside is that you need to sort the result set yourself using the detailed timestamp field
after getting the search results from Lucene.

In order to have high availability, we can split up the Lucene index into smaller parts
which can be served on each datanode. We can further allocate 6 GB of heap memory on
each data node to Lucene so that each data node is able to run the index for up to 1 billion
documents. Solr is a search platform based on Lucene. It provides a web-based interface
to access the index. This means we can use a simple HTTP/REST request to index
documents, perform queries, and even move an index from one data node to another.
Each data node is running a single Solr server that can host multiple Lucene indexes. New
log messages are indexed into different shards, so that each index has approximately the
same number of documents. This approach balances the load on each shard and enables
scalability. When a new data node is integrated into the cluster, the index shard on this
data node will be primarily used for indexing new documents.

For performance reasons, the index data files are stored on the local file system of
each data node (Figure 8-12). Each time an index has been modified, it will be backed up
into the Hadoop file system. Now we are able to quickly redeploy this index onto another
data node, in case the data node which originally hosted this index has failed.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

244

An incoming search query is analyzed for the queried fields. If all fields are indexed,
parallel search queries will be sent to all index shards. The responses will be collected,
sorted, and then returned to the user. If the search fields are not indexed, a new map-reduce
search job will be created and submitted to the Hadoop job tracker.

When performing a query, all index shards are queried in parallel. This ensures
fast response times. When a user formulates a query, it is first analyzed if this query can
be run against the Lucene indexes. This is not the case if the user specifies search fields
which are not indexed. In that case the query will be run as a map-reduce job. If the query
can be run against the Lucene indexes, it will be forwarded to all data nodes in parallel.
The results of these subqueries are collected and sorted. Then the log messages are read
from the HDFS using the primary keys inside the Lucene index results.

If a query to a single shard fails, the search results may be incomplete, but the queries
to the other shards are not affected. This greatly enhances the availability of the system.

Building a Recommendation System
With the number of options available to the users is ever increasing, the attention
span of customers is getting lower and lower. Customers are used to seeing their best
choices right in front of them. In such a scenario, we see recommendations powering
more and more features of the products and driving user interaction. Hence companies
are looking for more ways to minutely target customers at the right time. Some of the
examples of recommendation systems include product recommendations, merchant
recommendations, content recommendations, social recommendations, query
recommendation, display and search ads (Figure 8-13).

Figure 8-12. Index sharding example

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

245

This brings big data into the picture. Succeeding with data and building
new markets, or changing the existing markets is the game being played in many
high-stakes scenarios. Some companies have found a way to build their big data
recommendation/machine-learning platform, giving them the edge in bringing better
and better products even faster to the market. The more data we give to our algorithms,
the better-targeted results we get. A recommendation platform using Hadoop would have
the following components: ETL, feature generation, feature selection, recommendation
algorithms, A/B testing, serving, tracking, and reporting.

In the sections below, we go over use cases and details of solving them in the
Hadoop ecosystem. We will also specifically cover a set of machine-learning algorithms
for solving the various recommendation use cases. While Mahout fits well with Hadoop
map-reduce framework, there are also elegant ways of plugging in other non-distributed
systems/algorithms into Hadoop.

Let's first review some basic concepts related to recommendation system.

In a classical model of recommendation system, there are “users” and “items.”
A “user” has associated metadata (or content) such as age, gender, race, and other
demographic information. “Items” also has its metadata, such as text description, price,
weight, etc.

On top of that, there are interactions (or transactions) between the user and items,
such as user A downloading/purchasing item X or user A giving a rating 5 to a product Y.
In a real-world scenario, you will find many-to-many relationships between users and
products.

Figure 8-13. Recommendation system conceptual architecture

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

246

Now given all the metadata of user and item, as well as their interaction over time,
can we answer the following questions?

What is the probability that user X will purchase item Y?•

What rating will user X give to item Y?•

What is the top • k unseen items that should be recommended to
user X?

Content-based Approach: In this approach, we make use of the metadata to
categorize user and item and then match them at the category level. One example is to
recommend jobs to candidates; we can do an IR/text search to match the user’s resume
with the job descriptions. Another example is to recommend an item that is “similar”
to the one that the user has purchased. Similarity is measured according to the item’s
metadata, and so various distance functions can be used. The goal is to find k nearest
neighbors of the item we know the user likes.

Collaborative Filtering Approach: In this approach, we look solely at the
interactions between user and item and use that information to perform our
recommendation. The interaction data can be represented as a matrix.

Notice that each in Table 8-1, the cells represent the interaction between the user
and the item. For example, the cell can contain the rating that the user gives to the item
(in that case, the cell is a numeric value), or the cell can be just a binary value indicating
whether the intersection between a user and an item has happened. (e.g., a “1” if user X
has purchased item Y, and “0” otherwise.)

Table 8-1. User-Item Matrix

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

User 1 1 1 0 0 0 1

User 2 0 0 1 0 1 1

User 3 1 0 1 1 1 0

User 4 0 0 1 1 1 1

The matrix is also extremely sparse, meaning that most of the cells are unfilled.
We need to be careful about how we treat these unfilled cells. There are two common
ways of treating them:

Treat these unknown cells as “0”. Make them equivalent to a •
user giving a rating of “0”. This may or may not be a good idea
depending on your application scenarios.

Guess what the missing value should be. For example, to guess what •
user X will rate item A, given we know his rating on item B, we can
look at all users (or those who are in the same age group of user X)
who have rated both item A and item B then compute an average
rating from them. Use the average rating of item A and item B to
interpolate user X’s rating on item A given his rating on item B.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

247

User-based Collaboration Filter: In this model, we do the following:

1. Find a group of users that is “similar” to user X

2. Find all movies liked by this group that hasn’t been seen
by user X

3. Rank these movies and recommend to user X

This introduces the concept of user-to-user similarity, which is basically the
similarity between two row vectors of the user/item matrix. To compute the k nearest
neighbor of a particular user, a naive implementation is to compute the “similarity” for all
other users and pick the top k.

Different similarity functions can be used. The Jaccard distance function is defined
as the number of intersections of movies that both users has seen, divided by the number
of unions of movies they have both seen. Pearson similarity first normalizes the user’s
rating and then computes the cosine distance.

Item-based Collaboration Filter: If we transpose the user/item matrix and do
the same thing, we can compute the item to item similarity. In this model, we do the
following:

1. Find the set of movies that user X likes (from interaction data)

2. Find a group of movies that are similar to the set of movies
that we know user X likes

3. Rank these movies and recommend them to user X

It turns out that computing the item-based collaboration filter has more benefit than
computing user-to-user similarity for the following reasons:

The number of items is typically smaller than the number of users•

User’s tastes will change over time, and so the similarity matrix •
needs to be updated more frequently. Item-to-item similarity
tends to be more stable and requires fewer updates.

Singular Value Decomposition: If we look back at the matrix shown in Table 8-1,
we can see the matrix can be viewed as multiplications of items from the item space with
users from the user space. In other words, if we view each of the existing items as an axis
in the user space, then multiplying a new item within the matrix results in a vector similar
to user. We can then compute a dot product with a new item with the same set from the
user space to determine its similarity. If we keep the item space in the matrix the same
and map a new user to the item space, we follow the same approach to compute a dot
product that will result in a vector similar to item space.

Association Rule Based: In this model, we use the market/basket association rule
algorithm to discover rules like … {item1, item2} => {item3, item4, item5}.We represent
each user as a basket and each viewing as an item (notice that we ignore the rating and
use a binary value). After that, we use the association rule mining algorithm to determine
what the frequently occurring items in the overall data set are and what association rules
can be defined for these frequently occurring items. Then for each user, we match the
user’s previous items viewed to the set of rules to determine what other movies we should
recommend.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

248

Referring to Figure 8-2, the recommender retrieves items and users from the data
model. The data model provides methods that count the total number of users, total
number of items, number of users that prefer a certain item, etc. Similarity functions use
these numbers to compute a similarity value for pairs of items or users. We discussed
several algorithms you can choose from to build a recommender. However, the Mahout
Tanimoto Coefficient Similarity, is a relatively straightforward similarity algorithm that
is widely used in recommendation systems for discovering similarities. Let’s illustrate
the algorithm in the context of a webshop. Suppose there are three customers, A, B,
and C, and five products, numbered one up to five. Say each customer has bought a few
products. For this algorithm it does not matter how many products are purchased, only
which products are purchased by which customer.

Table 8-2. Customer-Product Matrix

Customer A Customer B Customer C

Product 1 ü ü

Product 2 ü ü

Product 3 ü

Product 4 ü

Product 5 ü ü ü

Intuitively you may see that the similarity between two products can be expressed
by some ratio of purchases of customers. Simply put, the Tanimoto coefficient uses the
ratio of the intersecting set to the union set as the measure of similarity. Represented as a
mathematical equation:

() =
+ −

, c

a b c

N
T a b

N N N

where
Nc = Number of customers that purchased p1 and p2,
Na = Number of customers that purchased p1, and
Nb = Number of customers that purchased p2

This means that if many customers have bought both the products, the numerator
will be higher and so will be the similarity value. Alternatively, if many people have
bought p1 and many have bought p2, but very few people bought both, then p1 and p2
are probably dissimilar. Table 8-3 shows the calculated Tanimoto coefficients for each
product pair.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

249

Figure 8-14 is a very high-level view of the architecture diagram.

Table 8-3. Tanimoto Coefficients for Each Product Pair

Product 1 Product 2 Product 3 Product 4 Product 5

Product 1 1 1/3 0 ½ 2/3

Product 2 1/3 1 1/2 ½ 2/3

Product 3 0 1/2 1 0 1/3

Product 4 1/2 1/2 0 1 1/3

Product 5 2/3 2/3 1/3 1/3 1

Figure 8-14. Conceptual architecture for real-time log processing and
recommendation system

Mahout has quite an extensive set of algorithms that can be run on Hadoop. These
include clustering, collaborative filtering, and classification. Hadoop provides the ideal
platform for the training and testing of the models. Automating this process with Hadoop
brings huge savings in development and operational costs. Tracking and reporting of the
performance of the various models significantly helps in knowing how well the system is
operating.

End Points
This chapter discussed several application scenarios of big data analytics platforms:
in-memory solutions, real-time analytics solutions, and recommendation systems.
We discussed a few new technology components like in-memory data grid, Flume,
Mahout, Lucene, Solr, etc., which are complimentary to Hadoop/map-reduce.

CHAPTER 8 ■ EXTRACTING VALUE FROM BIG DATA

250

Big data analytics as an area are fast evolving; in the future, there will be many more
technologies that can co-exist and compliment the Hadoop/map-reduce framework.
The key is to understand the use case you require. The requirements of use case will dictate
what kind of technology components you would like to explore and how effective they are.

References
When Should Analytics be in memory?: www.dbms2.com
The coming in-memory database tipping point: SQL Server Blog – David Campbell
In-memory Analytical Systems: Perspective, Trade-offs and Implementation: TibcoSpotfire

Whitepaper
In-Memory Analytics Strategies for Real-Time CRM: Whitepaper by Booz & Company
In-Memory or Not In-Memory - What Should You Expect from Your Business Analytics

Application? www.pentaho.com
Plattner, H. and A. Zeier. 2011. In-Memory Data Management: An Inflection Point for Enterprise

Applications. Heidelberg, Dordrecht, London, New York: Springer.
http://vipuljain99.wordpress.com/2012/10/30/hadoop-analytics-is-not-real-

time-a-reality-or-myth-3/
http://vipuljainblogs.blogspot.in/2012/11/storm-s4-or-hflame-real-time-

streaming.html
http://blog.mgm-tp.com/2010/06/hadoop-log-management/
http://java.dzone.com/articles/recommendation-engine-models

http://www.dbms2.com/
http://www.pentaho.com/
http://vipuljain99.wordpress.com/2012/10/30/hadoop-analytics-is-not-real-time-a-reality-or-myth-3/
http://vipuljain99.wordpress.com/2012/10/30/hadoop-analytics-is-not-real-time-a-reality-or-myth-3/
http://vipuljainblogs.blogspot.in/2012/11/storm-s4-or-hflame-real-time-streaming.html
http://vipuljainblogs.blogspot.in/2012/11/storm-s4-or-hflame-real-time-streaming.html
http://blog.mgm-tp.com/2010/06/hadoop-log-management/
http://java.dzone.com/articles/recommendation-engine-models

251

CHAPTER 9

Data Scientist

The realm of big data analytics is vastly different from transaction
processing applications and BI applications; here, one discovers and
answers questions in area where we don’t know what we don’t know.
The skills required to do these kinds of activities are unique and certainly
multi-faceted.

On a general level we can define data as having three important characteristics:
composition, context, and condition. Composition refers to the structure of the data:
what is the source, what is the granularity, what are the data types, what is the nature
of the data (mostly static data or real time streaming data), etc. Context refers to how it
was generated, what events are associated with the data, how sensitive the data is, etc.
Condition refers to the state of the data and whether it can be used as-is for analysis or it
needs further cleansing and enrichment.

Let’s apply these characteristics to small data and big data. Small data consists of
mostly known data sources that are not expected to undergo changes in composition and
context over a given period of time. Since there is a fair amount of certainty regarding
small data, we use it solve specific problems through straightforward applications
(transaction processing applications, BI reporting, etc.). In essence, small data is limited
to answering questions about what we know we don’t know. Big data, on the other hand,
represents multiple and unknown data sets. These data sets continuously exhibit changes
in composition, context, and condition. Thus big data signifies the complexity: we don’t
know what we don’t know!

The biggest problem on hand is how to derive value from big data and
finding a way to measure the amount of knowledge contained in data.

A measure of the amount of knowledge contained in data can possibly
be defined as the number of insights one can generate by exploiting all the
possible range of values (combination and/or permutations) contained
within the attributes of the data set. The relative knowledge contained
within two variables (A and B), for example, can be assessed by looking
at A alone, then B alone, and then A and B, for a total of three scenarios.
Three variables (A, B, and C) gives use a knowledge state space of seven.
Four subjects results in 15. And so on.

CHAPTER 9 ■ DATA SCIENTIST

252

Data analysis is not a new skill. For decades, quantitative research drove the analytics
continuum. This was the realm of mathematicians, statisticians, and pure quantitative
scientists. The development and enhancement of sophisticated algorithms to solve real-
world problems was mostly the purview of academia and research institutions. These
were the people with advanced academic degrees who spent years in doing research
to further enhance earlier established algorithms like Hidden Markov Support Vector
Machines, Linear Dynamical Systems, Spectral Clustering, Machine Learning algorithms
or come up with newer models. Once these developments came out of the labs,
commercial organizations and product vendors adopt them to make it usable
for enterprises.

However, the richness and vastness of big data posed several challenges, namely
too many unknowns about the data itself; hence, instead of predefined ways of analyzing
data, discovery types of analysis were needed, thus giving rise to a new occupation called
“data scientist.”

Data scientists are the practitioners of the analytics models solving business
problems. They incorporate advanced analytical approaches using sophisticated
analytics and data visualization tools to discover patterns in data. In many cases, these
practitioners work with well-established analytics techniques such as logistic regression
methods, clustering methods, and classification methods to draw insights from data.
These practitioners have deep understanding of the business domain and apply that
effectively to analyze data and deliver the outcomes in a business understandable
intuitive manner through advanced data visualization tools.

A big data scientist understands how to integrate multiple systems and data sets.
They need to be able to link and mash up distinctive data sets to discover new insights.
This often requires connecting different types of data sets in different forms, as well as
being able to work with potentially incomplete data sources and cleaning data sets to be
able to use them.

The big data scientist needs to be able to program, preferably in different
programming languages such as Python, R, Java, Ruby, Clojure, Matlab, Pig or SQL. They
need to have an understanding of Hadoop, Hive and/or Map-Reduce. In addition they
need to be familiar with disciplines such as:

Natural Language Processing: the interactions between •
computers and humans

Machine learning: using computers to improve as well as develop •
algorithms

Conceptual modeling: to be able to share and articulate modeling•

Statistical analysis: to understand and work around possible •
limitations in models

Predictive modeling: most of the big data problems are about •
being able to predict future outcomes

Hypothesis testing: being able to develop hypotheses and test •
them with careful experiments

CHAPTER 9 ■ DATA SCIENTIST

253

The exact background of a big data scientist is of less importance. Great big data
scientists can have different backgrounds such as econometrics, physics, biostatistics,
computer science, applied mathematics, or engineering. However, to be successful, big
data scientists should have at least some of the following capabilities:

Strong written and verbal communication skills•

Be able to work in a fast-paced multidisciplinary environment, •
because in a competitive landscape new data keeps flowing in
rapidly and the world is constantly changing;

Have the ability to query databases and perform statistical analysis•

Be able to advise senior management in clear language about the •
implications of their work for the organization

Have at least a basic understanding of how business strategy works•

Be able to create examples, prototypes, and demonstrations to •
help management better understand the work

Have a good understanding of design and architecture principles;•

In short, the big data scientist needs to have an understanding of almost everything.
Depending on the industry the big data scientist wants to work in, the need to specialize
will be even more important; for example, a capital markets big data specialist requires a
different set of skills than a big data scientist working in the retail chain area.

The perfect big data scientist who has all of the above-described skills and
capabilities is extremely rare. Perhaps only a handful of big data scientists have all
the skills as mentioned above. Therefore, organizations should choose and pick from
this list what they deem most important in a big data scientist and what the particular
requirements are for the job.

The New Skill: Data Scientist
There are several definitions of a data scientist. We will adopt the following definition:
“A data scientist is a person who takes raw materials (in this case data) and uses skill,
knowledge, and vision to craft it into something of unique value.”

Contextualizing data is at the core of the set activities the data scientist performs.
The data scientist creates data and analysis workflows that provide the foundation for
discovery, whether delivering an answer to a specific question or creating a new application
for business users. They not only understand their organization’s business drivers and
problems but also know where to find the relevant data (internal and external).

We discussed earlier that the data scientists require a combination of technical
and business skills. Because the skill set is so diverse, expecting to find these skills in
abundance is futile.

CHAPTER 9 ■ DATA SCIENTIST

254

Data Management. At the heart of analytics is data, and so robust data sets are needed
for deep analytic efforts. Data can be in disparate locations (internal and external), large
in volume, or streaming. Data scientists need to employ several approaches to develop the
relevant data sets for analysis. In many cases, data needs to be massaged and prepared to
reflect relationships and contexts; these things will not be present in raw transactional data,
hence the data scientists need to be good at data integration, data manipulation, and data
preparation skills. In one of the earlier chapters we discussed the importance of data quality
in preparing data sets for analysis, and so the data scientist needs to have skills to perform
profiling, data validations, and cleansing of data.

Analytics Techniques. In the previous chapter we discussed several analytics
techniques. Depending on the business problem you are trying to solve and type of data
available for you, a broader or narrower set of analytics techniques or algorithms and
models will have to be developed. The data scientist needs to be skilled in the various
analytics techniques and processes.

Business Analysis. Business context behind the data is the most critical skill a data
scientist can possess, because if you do not understand the business attributes of the data,
you will not be able to leverage the value of data. In big data scenarios it is easy to get lost in
the discovery process when you are dealing with a vast volume or variety of data. The data
scientist must have the ability to distinguish “cool facts/analysis” from insights that will
matter to the business and to communicate those insights to business executives.

Beyond these three core skills, a data scientist should also possess several other soft
skills: storytelling, collaboration, creativity, and leadership.

Data scientists have a difficult job of formulating the right data sets; this means
they need to obtain access to the data, work with business users to contextualize the
data associating the business meanings behind the data and then explain the findings of
their analysis to business stakeholder in a language they understand. In short, the data

Data Management

Data Integration, Data
Manipulation, Data Preparation

Analytics Techniques

Algorithms, Models,
Discovery

Business Analysis

Contextualize, Business
Hypothesis, Data Visualization

Data
Scientist

Other Skills

Story
Telling
Collaboration
Creativity
Leadership

Figure 9-1. Data scientist skills

CHAPTER 9 ■ DATA SCIENTIST

255

scientist must have the ability to bring the scenarios to life by using data and visualization
techniques: this is nothing but storytelling. They also need to effectively collaborate
across several stakeholders within an enterprise (business and technology). Somebody
within the enterprise may be holding a vast knowledge of business context behind the
data patterns, but the data scientists need to transcend the statistics and mathematics
realm and effectively collaborate with these persons.

To solve complex problems, find patterns within volumes of data, and develop
intuitive and easily understandable data visualization, the data scientist must be
innovative in his/her thinking. The creativity element is very critical; think outside the
box, otherwise you end up looking at the data with the same pair of eyes and same
thoughts without realizing that the data is actually revealing some interesting aspects.
The data scientist should also have enough leadership qualities to emphatically position
the findings in front of senior management within the enterprise. Often the data scientist
needs to put together a team of data management resources and business analysts to
solve a complex problem. In such situations one must have the ability to lead a team
and manage the efforts of teams of statisticians, data administrators and integration
professionals, and data visualization, reporting, and application integration developers.

The Big Data Workflow
A big data platform can provide a rich data ecosystem by combining data from traditional
data warehouses. As far as unstructured data, machine-generated data, and free-form text are
concerned, finding answers from this enriched and vast data platform is not a trivial pursuit.

In general, data analysis has many constituent parts. Data must be acquired from
myriad sources and cleansed. It must be sorted and joined so that queries can be made
against it. It needs to be stored in persistent repositories. Analysts and programmers must
then work together in a statistical environment such as R, SAS, or SPSS to query the data.

Then the data must be visualized in some format—a static report, or perhaps in a
2D or 3D visualization tool. The problem is that all of this work with data is not done by
a business analyst alone. It is in large measure done by a team of specialists behind the
scenes in IT, and every step in this process requires getting someone else involved, who
already has a substantial backlog of work.

To the above process, when we add big-data-related unstructured data sources and
streaming data, etc., the complexity of managing the activities increases multifold and
involves a number of handoffs, resulting in delays based on high demand for specialized
data and analytic skills. The person closest to the business user, the data analyst or
business analyst, can’t do most of the work, and so the time from question to insight
involves numerous delays. In fact, it is often the case that decisions are made based on
limited information long before the answers come back from the data analysis workflow.

Figure 9-2 is a representation of current practices adopted in a data analysis
workflow which can be contrasted with the workflow in a big data setting as shown in
Figure 9-3.

CHAPTER 9 ■ DATA SCIENTIST

256

Business Question:
“How do I achieve
marketing success across
digital channels?”

Identify Data Sources:
Hadoop, CRM, Excel, Data
Warehouse

Business Decision:
“Establish channel-specific
customer segment
targetting”

Present and Adjust:
Build application or report

Analysis:
Explore output and iterate

Unify and
assemble data:
Access and
combine multiple
sources

Cleanse and
enhance:
ETL, Data
Cleansing, Data
Enrichment, etc

Append and
Contextualize:
Location,
demographics,
segmentation, etc

Build Analytics
Workflows:
Create Sandbox,
Model, Analyze
data, Predict

D
at

a
M

a
n

a
g

em
en

t
IT

 E
xp

er
t

B
u

si
n

es
s

A
n

al
ys

t
+

D
at

a
A

n
al

ys
t

B
u

si
n

es
s

U
se

r

Figure 9-2. Traditional data analysis workflow

Business Question:
“How do I achieve
marketing success across
digital channels?”

Identify Data Sources:
Hadoop, CRM, Excel, Data
Warehouse

Business Decision:
“Establish channel-specific
customer segment
targetting”

Present and Adjust:
Adv. Data Visualization,
Build application or report

Analysis:
Explore output and
iterate

Unify and assemble data:
Access and combine multiple
sources

Cleanse and enhance:
ETL, Data Cleansing, Data
Enrichment

Append and Contextualize:
Location, demographics, segmentation

Build Analytics Workflows:
Create Sandbox, Model,
Analyze data, Predict

D
at

a
S

ci
en

ti
st

B
u

si
n

es
s

U
se

r

Model Data

Apply
Visualization

Ingest Data

Figure 9-3. Big data analytics workflow

CHAPTER 9 ■ DATA SCIENTIST

257

Design Principles for Contextualizing Big Data
Contextualizing big data involves several key design principles when it comes to creating
solutions that deliver real insight:

• Ingest and integrate data from anywhere: Companies are
expanding their quest for data into data sources that were
previously never considered, and they are going beyond the
“system of records” to “system of engagements.” The objective
should be to develop rich data sets by combining the qualitative
structured data with the important context provided by
unstructured data.

System of record denotes to data contained within the corporate
firewalls, which are of high quality, cleansed and have well defined
structure associated with it.

Systems of engagement denotes to data sources and applications
that are very much a part of the business eco-system but stay outside
the corporate firewalls. The associated data is often unstructured, not
well defined and not quality controlled.

• Discover and seek patterns. Big data analysis use cases do
not follow a predefined path of analysis; they are always led
by a train of thought finally leading to the insight generation.
While doing this kind of analysis, one does not look for accuracy
and precision. If you are able to show newer patterns in the
data within a reasonable range of error percentage, you have
achieved your task.

• Provide actionable insights. Insight generation is critical for
innovation. However, just generating insights is not enough;
you should strive to provide means to make the insights
actionable.

• Collaboration and reusability. While solving a particular
problem, a data scientist may be following a different set of
processes, tools, and approaches. The data sets you use, the
models you develop, and the visualizations you create, all
need to be documented so that others can understand what
you did and how you did it. The goal is to get the capabilities
into the hands of analysts in business units, allowing them
to create analytic reusable workflows following the path you
have taken.

CHAPTER 9 ■ DATA SCIENTIST

258

A Day in the Life of a Data Scientist
Data science is a multi-disciplinary set of skills bringing together scientific methods,
data and software engineering approaches, statistics, and visualization techniques. This
section is not an elaborate discussion of these disciplines but meant to bring all of these
different skills together to describe various activities a data scientist needs to perform
during the course of a day.

Data science, as practiced today, requires proficiency in parallel business domain
knowledge, advanced statistics, machine learning, and intensive programming skills
like map-reduce computing, petabyte-sized No SQL databases, etc. In addition data
science is also about having a mind-set that lends itself to experimentations and to
the ability to construct a story line around data. In Figure 9-4 is a schematic diagram
outlining the activities a data scientist performs during the course of solving a business
problem.

CHAPTER 9 ■ DATA SCIENTIST

259

0.
 B

us
in

es
s

H
yp

ot
he

se
s

4.
 A

cq
ui

re
 D

at
a

S
ou

rc
es

(In

te
rn

al
/E

xt
er

na
l)

1.
 P

re
pa

re

A
na

ly
ti

cs
 S

an
db

ox

7.
 A

pp
ly

 A
na

ly
ti

cs

Te
ch

ni
qu

es

10
. B

ui
ld

 M
od

el
s

(D
at

a
M

od
el

,
A

na
ly

ti
ca

l M
od

el
s)

13
. E

va
lu

at
e

R
es

ul
ts

16
. P

re
se

nt
at

io
n

2.
 C

ho
os

e
A

pp
ro

pr
ia

te

D
at

a
S

ou
rc

es
5.

 E
nr

ic
h

&
 S

to
re

D

at
a

S
et

s
8.

 C
ho

os
e

A
pp

ro
pr

ia
te

A

na
ly

ti
cs

Te

ch
ni

qu
es

11
.

B
ui

ld
 M

od
el

s
14

.
Te

ll
S

to
ry

3.
 S

ea
rc

h
fo

r
In

fo
rm

at
io

n
(W

ho
 a

nd

W
ha

t?
)

6.
 S

ea
rc

h
fo

r
R

el
at

io
ns

(H
ow

 a
re

 t
he

y
re

la
te

d?
)

9.
 E

st
ab

lis
h

R
el

ev
an

ce
(R

el
ev

an
ce

 t
o

th
e

B
us

in
es

s
H

yp
ot

he
se

s?
)

12
. S

ea
rc

h
fo

r
Ev

id
en

ce
(H

ow
 s

ur
e

w
e

ar
e?

)

15
. E

va
lu

at
e

fo
r

C
ov

er
ag

e
(Is

 it

ap
pl

ic
ab

le
 f

or
 U

ni
ve

rs
e

or
 o

nl
y

fo
r

a
sp

ec
if

ic

in
st

an
ce

?)

In
ge

st
io

n
&

Fo

ra
gi

ng
 L

oo
p

Ex
pe

ri
m

en
ta

ti
on

&

 D
is

co
ve

ry
 L

oo
p

S
en

se
 M

ak
in

g
Lo

op

F
ig

u
re

 9
-4

.
D

a
ta

 s
ci

en
ti

st
 a

ct
iv

it
ie

s

CHAPTER 9 ■ DATA SCIENTIST

260

Thinking about the Problem
Let’s start with an example:

The telecom industry, and in particular the communication service providers
(CSPs), must have a more in-depth, personalized, or contextual understanding of a
subscriber’s behaviors and preferences in order to stay competitive.

Some of the business challenges could be:

Customer churn rates are high, and there is a downward trend in •
market share capture.

Predicting bandwidth demands and assuring constant supply is •
becoming difficult.

Competitive pressures demanding improved product quality and •
assurance.

Developer ecosystems and third-party data providers cannot be •
ignored.

Translating these business problems to a data scientist set of problem statements
would look like the following:

Predict demand by examining past customer behavior usage and •
device logs and correlate it with external data sources such as
social events.

Identify churn patterns from support logs, device error logs, and •
transactional data for proactive customer relationship management.

Identify and segment customers based on device usage and •
mobile current logs for better success in promoting new offers,
up-selling and cross-selling.

Gather sensor data from access points and routers to stay ahead •
of bandwidth fluctuations.

Analyze social media buzz around events and news and •
determine its impact on device usage.

Predict which devices will need to be repaired or replaced by •
analyzing mobile phone and device logs.

Run analysis on device error logs for issues such as dropped calls •
and bad quality of reception.

Data Ingestion and Foraging
Traditionally CSPs have operated with complex disparate silos of data, making data
analysis across all the business portfolios extremely challenging. Secondly, as you can
see from the problem statements above, you will need a vast range of data and also
different types of data to perform your analysis. You will have to pull data from enterprise

CHAPTER 9 ■ DATA SCIENTIST

261

systems such as billing, customer care, call detail records, and network data to develop
a subscriber’s behavioral model and to understand a customer’s habits such as what
delivery format subscriber prefers or their call frequency to off-net users. You will also
need external data originating from social networks to determine subscriber’s influence
within their social circle. You can potentially use the social network data to develop
targeted marketing campaigns as well as initiate real time actions toward customers while
at the same time notifying network services and IT systems.

Increasing revenue per user is always a CSP’s priority, by developing a
comprehensive data platform consisting of both internal data and external data, you
can develop advanced offer management solutions to help create more innovative and
targeted offering and campaigns for up-selling, cross-selling, new customer acquisition,
and viral marketing. Effective usage of location-based data can also play a significant role
in increasing revenue for mobile services, location-based data enables location based
advertisement, which provides new revenue opportunities for wireless carriers.

Profitability, customer churn reduction, and increase in wallet share solely depend
on obtaining data that is coherent and current across CSP’s entire business portfolios.
Making sense of structured and unstructured data to understand the behavior and
transaction patterns of customers in real time is critical, as is social network and
sentiment analysis. Effective usage of the variety of data sources will help operators take
preventive actions so that they can avoid churn or customer dissatisfaction by providing
targeted promotions or preemptive service assurance at the moment and in a way that is
most relevant to the customer.

Use of traditional metrics, such as Average Revenue Per User (ARPU), Minutes of Use
(MOU), Count of Customers, and Churn (i.e., adds, disconnects, transfers, migrations) are
useful to analyze the current state of business; however, there is a greater need to analyze
data to understand customer experience across fixed, mobile, broadband, and media
entertainment services. There is a general understanding that next-generation services
encompass seamless communication and media consumption experience for the customer
through leveraging high-speed broadband networks, smart devices, and media rich content
irrespective of whether the communication network is fixed, wireless, or mobile.

As a consequence of the changes in customer behavior, customers are more likely
to churn. CSPs can, however, retain and grow their customer base by investing in next
generation technologies and rich media content partnerships. CSPs can also provide
seamless customer experience across fixed and mobile networks by means of analytics on
customer behavior to provide relevant content and services that are perceived as valuable
to them.

To improve service qualities, you will need real-time feeds from network and back
office systems. These data will enable you to analyze network performance, service
catalogs, and service fulfillment around advanced network functions like real time
network planning to improve service performance by correlating subscriber information
with network performance.

Experimentation and Discovery
Now that you have an idea about the type of data sources you need to acquire, now it’s
time to understand what kind of experimentation and discovery you can do with this
acquired data. Table 9-1 outlines a high-level view of activities.

CHAPTER 9 ■ DATA SCIENTIST

262

Table 9-1. Use Cases and Data Discovery Activities for a CSP

Use Case Description

Up-selling Identifying optimal targets for a new 4G service launch and
triggering usage stimulation through an appealing top-up offer

Cross-selling Identifying subscribers who seem to travel often and offering
them their own personal Wi-Fi device or bundlers with data
roaming option, a product that they may not currently have

New customer
acquisition

Properly identifying influencers who seem to have many off-net
contacts and making them offers that they may spread through
word-of-mouth or virally to their off-net family and friends

Multi-SIM prediction Preventing customers from buying SIM cards from other CSPs
by offering them more appealing rates or product bundles

Rotational churn
identification

Identifying and preventing mobile subscribers from abusing
new handset offerings

Churn location Identifying and sending more appealing offers or even
contacting subscribers located in areas that have a higher churn
rate

Dynamic profiling Analyze incoming data sources like customer care, product/
service/device portfolios, cost and billing and network service
quality to segment customers by:

•	 Usage	–	voice,	data,	SMS	usage,	times	of	day

•	 Interests	–	gaming,	music,	video,	time	spent	on	social	
media portals

•	 Location	based	needs/services

•	 Socioeconomic	class	–	prefers	the	newest	high-	end	
devices

•	 Influence	in	their	network	–	what	type	of	influence	they	
are having within their cluster such as their family,
business community, peers

•	 Propensity	to	churn

•	 Relationship	with	off-net	users	(making	frequent	calls	to	
those using a different provider)

CHAPTER 9 ■ DATA SCIENTIST

263

The discovery and experimentation set of activities acts as a major enabler, as it
helps navigate through the vast array of data sources to get more in-depth contextual
profile of subscribers to understand factors such as customer preferences, usage patterns
and predict their future behavior patterns. By applying advanced analytics techniques to
this vast array of data you will be able to discover patterns of significance across the data
sets and perhaps also provide root cause, predictive and outcome analysis, complex event
analysis, and multivariate business activity monitoring intervention opportunities.

As a result of the attractiveness of the content provided by the ISPs and enabled by the
freedom of the Internet, customer behavior is expected to transcend a network controlled
by the CSP (i.e., Managed Network) to the “unmanaged” Internet (also known as over-the-top).
Such a customer behavior can be described by the concepts of time shifting (Prime Time
vs. My Time), place shifting (“I decide where I want to watch”), and media mobility or
device shifting (“I decide how I want to move and share media between different devices.”).
Figure 9-5 illustrates a typical customer usage reflecting the points discussed here.

Name: Customer XYZ
Account No.: 10029277
Billing Period: 1-Nov-2012 to 30-Nov-2012

Date Time
(HH:MM:SS)

Event Description Charge
Amount

1-Nov-2012 10:22:30 Data Usage: 4.21 Mb sent; 1.8 Mb received $9.89

3-Nov-2012 15:13:03 Weather Report: Location – Srinagar $1.50

4-Nov-2012 8:25:12 Friends and Family Voice Chat (1Hr 15 Mins) $3.75

6-Nov-2012 9:30:30 MMS Photo Messages $7.36

8-Nov-2012 18:10:30 GPSNavigation: Location – Kolkata Metro $5.99

10-Nov-2012 20:30:05 Data Usage: 12.21 Mb sent; 14.8 Mb received $19.89

11-Nov-2012 21:10:00 Music Album Download: 20.18 Mb $15.00

Figure 9-5. Illustrative customer usage of CSP services

From the above illustrative data sample, it is evident that critical information, such
as presence (“Is the user I want to reach currently on the network?”), identification (“Is
the user who he says she/he is?”), and location (“Where is the user?”), can be derived and
value-added services can be delivered to the consumer. In addition you can dwell upon
additional set of relevant questions:

How do I charge for a person-to-person, multi-media message?•

How do I determine the characteristics of receiving device and/or •
network such that I can alter delivery mode and price scheme
according to device/network capabilities?

CHAPTER 9 ■ DATA SCIENTIST

264

In a market where calling-party-pays is the norm; who pays for •
the value-added push services initiated by the service provider’s
push initiator application?

How can the growing segment of teenage and student users •
participate in device-initiated m-Commerce services if they don’t
have credit or debit card accounts?”

Figure 9-6 illustrates set of activities that a data scientist would perform during the
discovery and experimentation phases.

Data Scientist Toolkit

1. Choose appropriate data
sources

2. Search for Information
3. Search for relations
4. Enrich & store datasets
5. Choose analytics

techniques
6. Establish relevance
7. Build models
8. Search for evidence
9. Evaluate for coverage
10. Develop visualizations &

presentations

Information from routers and
other network elements

Information from multiple
OSS/BSS systems

Information from application
services, social media, devices

Contextual
• Lifestyle
• Purchase Criteria
• Time
• UsagePattern
• Location, etc

Predictive
• Probabilityofcustomerchurn
• Appropriate product, service or service

success rate
• Fraud and revenue leakage
• Prepayment percentage, etc
• Cost to launch a service
• Cost to service certain customer

segments and launch services in certain
zip codes

Operational
• Pre-emptive service assurance
• Correlation of real time events
• Service impact analysis
• Real time decision making in an

automated manner based on the analytics

CollectDataFrom
Various Sources

1

FollowDataScientist
Methodology

2

Deliver Outputs

3

Figure 9-6. Illustrative data scientist activities for a CSP

Turning your focus to social network data, you can analyze customer sentiments
and identify trends in several areas. Do your customers like you? Do they prefer your
competition? Are your marketing messages resonating? If so, why? If not, what are their
issues? Sentiment analysis helps organizations understand what customers think about
their brand and products. The ability to track customer sentiment gives device and
service providers the insight they need to determine where and how to prioritize change.

Knowing whether customers feel positively or negatively about their brand,
products, or services gives telecom companies a high-level view into their market
acceptance and consumer perception. But what are the issues driving that sentiment?
These are the key details service providers and device manufacturers need to know to
make needed changes and drive their business forward. Today customers often turn to
the Internet when they encounter a problem with a product or service. By tracking issues
over time, providers can get a sense of both emerging issues and issues that have gone
from a “normal” level of complaint to a serious level. With this insight, the manufacturer
or provider can take action to prevent a minor issue from spiraling into a customer
service or public relations problem.

CHAPTER 9 ■ DATA SCIENTIST

265

The data scientist can use advanced analytics techniques to identify specific product
quality issues. For example, the report in Figure 9-7 shows a summary of the top issues
identified by customers in social media regarding hand- set quality issues. First shown are
the overall general negative issues discussed about the hand-set. Second to these general
complaints are issues with the battery life, button keys, the camera not working and
issues with the screen display, etc.

Neg Deisgn – Too
Big

Neg Quality –
Audio Phone

Neg Quality –
Phone Freezes

Neg Quality –
Scratches Easily

Neg Hardware –
Screen Display

Neg Multimedia –
Camera

Neg Hardware –
Small Buttons

Neg Quality –
Broken/Defective

Neg Hardware –
Battery Life

Neg Prod – Phone

0 20 40 60 80 100 120 140 160 180 200 220 240

Figure 9-7. Sentiment analysis related to the quality of the product

In some cases, the data scientist might even identify issues that could pose a safety
threat. The analysis in Figure 9-8 shows the progression of a potentially dangerous issue
around a new device that “gets hot” during use. The data scientist has created a time
series chart that tracks the issue and the frequency with which the issue was mentioned
over time.

CHAPTER 9 ■ DATA SCIENTIST

266

The most challenging part of getting to insight in large volumes of customer
conversation data is the great variances in the way people say things. The data scientist
can use advanced text analytics solutions and automatically aggregate mentions of churn
indicators that are articulated in different ways into a single category. In Table 9-2, churn
articulation includes comments such as:

“I am going to switch.”
“I am going to move carriers.”
“I am going to jump carriers.”

Table 9-2. Sentiment analysis of churn related messages and
associated conversation counts

Message Count

{Unspecified}:Switch to: Carrier X 100

I:Switch to: Carrier X 250

We:Switch to:Carrier X 220

{Unspecified}:Switch to: Carrier Y 80

I:Move to:Carrier Y 73

I:Switch back to:Carrier Y 287

I:Jump to:Carrier X 83

My Family:Switch to: Carrier Y 34

Ja
n

20
09

Fe
b

20
09

M
ar

 2
00

9

A
pr

 2
00

9

M
ay

 2
00

9

Ju
n

20
09

Ju
l 2

00
9

A
ug

 2
00

9

S
ep

 2
00

9

O
ct

 2
00

9

N
ov

 2
00

9

D
ec

 2
00

9

Ja
n

20
10

Fe
b

20
10

M
ar

 2
01

0

A
pr

 2
01

0

M
ay

 2
01

0

Ju
n

20
10

Ju
l 2

01
0

10

20

30

40

50

60

70

80

Phone Gets Hot

Figure 9-8. Sentiment analysis: Phone gets hot

CHAPTER 9 ■ DATA SCIENTIST

267

Evaluation of Results
Deciding which algorithm to apply on the set of data depends on the type of data (interval
or categorical, paired vs. unpaired) being analyzed and whether or not the data is
normally distributed. Interpretation of the results of the analysis relies on an appreciation
and consideration of the null hypothesis, P-values, and the concept of statistical
significance.

By constructing a histogram or frequency curve you will be able to understand
whether the data follows a normal distribution or not. You can also do box plots to
determine if there are outliers in the data sets. Conducting tests like principal component
analysis will also help you determine which attribute or set of attributes are influencing
the spread of the data and why.

Following are few high-level tips for you to consider:

Identify the dependent variable. What are you trying to predict?•

Identify the independent variables, or the predictors of the •
dependent variable.

Find the statistically significant relationships between independent •
variables and the dependent variable. The usual standard for
statistical significance is less than a 5 percent chance that a
relationship this strong would be observed by coincidence, where no
real relationship existed. Look for one of the following indicators:
p (should be .05 or less), Z score, significance level, or the use of
asterisks (**) to indicate significance at the .05 level or less. In each
case, lower numbers are better, since the number is the probability of
this relationship being generated by random coincidence.

Now that you know the statistically significant independent •
variables, check the direction of the relationship. You are looking
for a number that will be called a coefficient, or beta, or b.

If you see numbers in parentheses, ignore them. These are •
usually standard errors, which are used to calculate p. Since
you already have p, you don’t need them. Look for the
number without parentheses: that is the coefficient you want.

In most analyses, if this number is positive, then the •
relationship between the independent variable and
dependent variable is direct. Increases in the independent
variable increase the value of the dependent variable. If
the number is negative, then the relationship is inverse.
Increasing the independent variable decreases the value of
the dependent variable.

In analysis of duration (how long a campaign runs, how long •
before you see churn indications, how long a product stays
as number one in most selling list, etc.), the coefficient often
describes an effect on the hazard rate. The hazard rate is the
likelihood that some process stops (i.e., product drops from

CHAPTER 9 ■ DATA SCIENTIST

268

biggest-selling items). In this case, a hazard rate above one
means a shorter duration. Similarly, a hazard rate below
1 means a longer duration. The analysis will nearly always tell
you whether the coefficients represent effects on the dependent
variable or hazard ratios, but you might have to glance at the
variable descriptions to see which approach is used.

Now you know which variables matter and whether each one •
increases or decreases the significance of dependent variable.
Next you need to determine the importance of the variables.

How well does the model perform? There is usually some •
indication of whether knowing all of the independent
variables actually helps one predict the value of the
dependent variables. There are two main types of
information you might see:

The chi-square (• c2) statistic: If this is “big enough” it
means the overall model performs better than chance.
In the output, look for a significance level printed next to
the chi-square statistic. This is just like the significance
for the independent variables but applies to the entire
combination of independent variables included in the
analysis. Remember, this only tells you how likely it
is for random chance to have produced these results.
It doesn’t tell you how much better the model is than
flipping a coin.

The R-Square (R• 2) or Pseudo-R2 statistic: This is a better
measure of how well the statistical model performs. It
indicates how much error in guesses about the value
of the dependent variable is eliminated when you
actually know the values of the independent variables,
as opposed to just guessing the average. Example: The
average (modal) top-ranking students always get highly
paid jobs. Suppose I predict that every top-ranking
student gets a high-paying job. I will be right two-thirds
of the time. If I use independent variables to predict the
dependent variable getting a high-paying job, then an
R2 of .5 would mean I was right about five-sixths of the
time (I reduced the number of mistakes by half, or 0.5).
Higher numbers are better.

Which independent variables are most important? Just •
because a variable is statistically significant doesn’t mean
that it has a significant effect on the dependent variable. In
order to find out which variables have the most significant
effect on the dependent variable, there are two choices:

Hope the data scientist included a table with the •
substantive effect of each variable

CHAPTER 9 ■ DATA SCIENTIST

269

If and only if two variables are measured using the exact •
same scale (i.e., both are measured in dollars, or both are
measured in number of people, etc.) then you can compare
their coefficients. The bigger coefficient has a larger effect.

Repeat the above-mentioned steps for each model summarizing •
the effects of four or five different combinations of independent
variables on the dependent variable. There are usually good
reasons for this approach, but it makes it a bit harder to
interpret the data. When you see multiple models, look for any
independent variables that have significant coefficients (of the
same sign, i.e., positive or negative) across all.

All statistical tests start with the premise of the null hypothesis. •
This is then tested by calculating the probability that the

differences observed between the sample groups are due to

chance (the P-value). It is almost always appropriate to conduct

statistical analysis of data using two-tailed tests. A one-tailed

test is usually inappropriate. It answers a question similar to

that of the two-tailed test, but crucially it specifies in advance

that we are only interested if the sample mean of one group

is greater than the other. If analysis of the data reveals a result

opposite to that expected, the difference between the sample

means must be attributed to chance, even if this difference is

substantial. For example, say you are analyzing the effect of a

campaign on product sales; you will collect data before and after

the campaign. The data is then analyzed using a paired t-test

(as the data are matched pairs of pre- and post-campaign for

the products). The data scientist decides to use a one-tailed test,

as he is certain that product sales figures must improve after

the campaign and discounts the possibility that product sales

performance won’t score as well after it. Somewhat surprisingly,

after the data are analyzed, the mean scores post-campaign are

worse than pre-campaign with a P-value of 0.01. The correct

statistical interpretation of this result is to attribute the observed

difference to random chance. However, it may be indeed be

true that the product sales performance went down after the

campaign. Perhaps the right target community was not picked up,

the messaging in the campaign was confusing, or a competitor’s

product also got launched at the same time, etc. The data scientist

will get wrong inferences if he uses a one-tailed test in this

situation—a two-tailed test would have been appropriate.

CHAPTER 9 ■ DATA SCIENTIST

270

Presenting the Results
To start with, it is good to adopt the following best practices when you are beginning to
develop visualizations to present your findings:

• Clarity and Context: This is all about how quickly the user
can understand what data the visual is displaying, and how
it is displaying it. The visualizations should serve as a means
to effectively interpret and explain the underlying data. The
visualizations should also be able to establish the context behind
the data and highlight the messages you wanted to come forward,
such as effectively showing the trends that are connecting the
events and explaining the relationships in the data elements

• Completeness and Connected: You have prepared your big data
set by mashing up data from several sources. Your visualization
should seamlessly connect all these different data sources; it
should not come across as incoherent. Special care needs to be
taken to bring out a complete story, otherwise the insight you
have generated will come across as several different observations
stitched together to provide a make-believe observation.

• Focus and Concentration: In our pursuit to develop glossy and
eye-catching visualizations oftentimes we get carried away and
put in too many bells and whistles that act as a distraction. The
important aspect of visualization is how well the visualization
brings certain (sets of) data points to the forefront and helps the
viewer focus on them. You should display objects that are vital to
the accurate interpretation and contextual understanding of the
underlying data: avoid all design aspects that are unconnected
to the task of analytic communication. Moving features are good
and bad, as they get the attention of users, but too many of these
distract the user from other important information.

Conceptualizing an Effective Data Visualization
Conceptualizing data visualization is a complex process. It requires in-depth
knowledge of the business context behind the data, lots of creativity, and deep technical
knowledge of how to go about implementing it. But another aspect that is often
overlooked is user experience: an understanding of how the end user will interact with
the visualization. A poor understanding of user experience leads to poorly designed
visualizations, which slows down decision making and defeats the very purpose of the
visualization. In subsequent sections below, you will understand basic understanding
of how end users interact with data visualization and how you can conceptualize your
data visualizations better.

CHAPTER 9 ■ DATA SCIENTIST

271

What is Business Data Visualization?
A business data visualization is a multi-layered data representation that allows users
to understand, interpret, monitor, analyze, and manage their business processes more
effectively. Data drawn from various business-related events are represented in a lucid
and simple way often bringing in insights from disparate sources and collectively then
rendering on highly visually appealing environment.

Components of a Business Data Visualization
Business data visualizations ideally should allow visualization of data at three levels:
summarized view, multi-dimensional view, and detailed view (Figure 9-9).

Summarized Graphical View

Multi-Dimensional View

Detailed Reporting View

Figure 9-9. Hierarchical view of data

It is important to understand that users don’t want to see all the data at one place,
hence the hierarchical view of the data is always preferred.

The summarized graphical view of the visualization allows a user to get a high-level
view of the business process or business event of interest. In case there is a specific view
highlighted (usually represented through colors such as red, amber, and green), the user
then drills down to the next level of detail, which is the multi-dimensional layer. The
multi-dimensional layer brings in several connected areas of data and provides a more
detailed view of the event of interest, thereby allowing the user to get a better perspective.
Many times, there is still a need to go to past the granular level of data to the transactional
level: the user drills farther down to the detailed view layer. The detailed view layer
provides individual transactions from where the user can easily articulate root causes.

While building data visualization, data scientists should establish well-defined levels
of abstraction with respect to data. This not only makes the visualization user-friendly but
also makes it deployable at all levels of organizational hierarchy.

The data design specifications of each data presentation layer are:

Summarized View: This is the topmost layer of the
visualization, and it should display essential KPIs graphically
(i.e., using graphs or gauges). The layer must also have an
in-built control mechanism that triggers an alert when a KPI
exceeds or drops below the normal value range.

CHAPTER 9 ■ DATA SCIENTIST

272

Multi-dimensional View: This layer should supplement
the metrics displayed in the top layer with additional data.
Analytical tools must be built into this layer in order to allow
users to perform computational analysis on data.

Detailed View: This layer should facilitate users to view reports
pertaining to individual transactions (e.g., invoices, shipments, etc.).

Over the past several years, infographics have caught the fancy of business
users. Infographics are visual representations of information, implying
that sets of data are displayed in a unique way that can be seen, rather
than read. These visualizations should not be left up to interpretation; it
should instead be designed in a way that provides a universal conclusion
for all viewers.

Here are some useful data visualization approaches you should follow when you
start designing your data visualizations.

Line Graphs

A line graph shows the relationship between two variables. They are most often used
to show changes or trends over time. Line graphs, if shown as stacking lines, display
comparison of multiple items over the same time period. Figure 9-10 displays several
aspects of growth associated with an IT company over a continuous span of time.

Figure 9-10. Line graph showing growth trend in an IT company

CHAPTER 9 ■ DATA SCIENTIST

273

Figure 9-11 provides a trend of one variable compared to a moving average (upper
bound and lower bound), in this case the salary paid to employees are tracked against an
industry average over a continuous time frame.

Figure 9-11. Line graph depicting comparison of salaries paid to the employees against
the industry standard over the years

Note ■ You should be using line graphs when the change in a variable or variables clearly

needs to be displayed and/or when trending or rate-of-change information is something

you would like to highlight to the users.

Bar Graphs

Bar graphs are most commonly used visualization technique. These are used for
comparing the values of different categories. Values of a category are represented using
the bars with the length or height of each bar representing the quantity.

Bar graphs are very effective when the values are distinct enough and the differences
in the bars can be easily detected. When the values (bars) are very close together or there
are large numbers of values (bars) that need to be displayed, bar graphs become clumsy
and it becomes difficult to compare the bars to each other.

Figure 9-12 provides a trend of anomalies in salary given by an IT company over the
years, interesting to note the positive and negative variances compared to an industry
average.

CHAPTER 9 ■ DATA SCIENTIST

274

Another form of a bar graph is called the “progressive bar chart,” or “waterfall chart.”
A waterfall chart shows how the initial value of a variable increases or decreases during a series
of operations or transactions. The first bar begins at the initial value, and each subsequent bar
begins where the previous bar ends. The length and direction of a bar indicates the impact
(positive or negative, for example) of the operation or transaction. The resulting graph is a
waterfall that shows how the transactions or operations lead to the final value of the variable.

Figure 9-13 shows the impact of several contributing factors to the cash flow and
final balance of an IT company.

Figure 9-12. Bar graph depicting negative and positive variances of salary over the years

Figure 9-13. Waterfall graph depicting the cash flow of a company

CHAPTER 9 ■ DATA SCIENTIST

275

Scatter Plots

A scatter plot is useful for examining the relationship or correlations between X and
Y variables. Variables are said to be correlated if they have a dependency on or are
somehow influenced by each other. For example, for an IT company, the project team
size is often related to team proficiency index: the relationship that exists might be that as
project team size increases the team proficiency index decreases (a negative correlation).
A scatter plot is a good way to visualize these relationships in data.

Once you have plotted all of the data points using a scatter plot, you will be able to
visually determine whether data points are related. Scatter plots can help you gain a sense
of how spread out the data might be or how closely related the data points are, as well as
quickly identify patterns present in the distribution of the data.

Figure 9-14 shows a scatter plot taking into account two variables, “project team size”
and “team proficiency index.” It also shows the impact of these two variables with respect
to the “client satisfaction score.” You can see that the smaller the “project team size” the
higher the “team proficiency index” leading to higher “client satisfaction score.”

Figure 9-14. Scatter plot graph depicting the relationships between various groups of
data points

Figure 9-15 shows a correlation matrix taking several variables into account. You can
draw many interesting inferences from the graph; for example, proficiency ratings of an
individual are associated with the number of SME reviews and white papers published,
less time on the bench (idle time). Similarly, the performance rating of an individual is
associated with the number of SME reviews, white papers published, and less time on
the bench. Another interesting observation: people who’ve published white papers and
who’ve contributed to assets creation and SME reviews get excellence awards.

CHAPTER 9 ■ DATA SCIENTIST

276

Box Plots

Box plots are another example of how the volume of data can affect how a visual is shown.
A box plot is a graphical display of five statistics (the minimum, lower quartile, median,
upper quartile, and maximum) that summarizes the distribution of a set of data.

The lower quartile (25th percentile) is represented by the lower edge of the box,
and the upper quartile (75th percentile) is represented by the upper edge of the box.
The median (50th percentile) is represented by a central line that divides the box into
sections.

Often, box plots are used to understand the outliers in the data. Generally speaking,
the number of outliers in the data can be represented by 1 to 5 percent of the data. With
traditionally sized data sets, viewing 1 to 5 percent of the data is not necessarily hard to
do. However, when you are working with massive amounts of data, viewing 1 to 5 percent
of the data is rather challenging.

Figure 9-16 shows a box plot that while most of the data points related to “team
proficiency index” and “project team size” are consistent, there is an outlier: a project team
size of more than forty resources showing the highest level of team proficiency index.

Figure 9-15. Correlation matrix plotting several contribution factors for SME
(Subject Matter Experts) in an IT company

CHAPTER 9 ■ DATA SCIENTIST

277

Figure 9-17 shows another interesting scenario where most of the data points related
to “team proficiency index” and “client satisfaction” score are consistent, but there are
two instances where even if project teams have high “team proficiency index” the client
satisfaction index is not at the expected level.

Figure 9-16. Box plot graph depicting the outlier in data distribution: Project team size vs.
team proficiency index

Figure 9-17. Box plot graph depicting the outlier in data distribution: Client satisfaction
score vs. team proficiency index

CHAPTER 9 ■ DATA SCIENTIST

278

Dealing with a Variety of Data
(Semi-structured and Unstructured)

The semi-structured and unstructured data do not necessarily have a well-defined
structure; thus, analyzing these types of data requires new visualization techniques. A
word cloud visual (where the size of the word represents its frequency within a body of
text) is an effective visualization technique that can be used on unstructured data as a
way to display the concentration of words of interest (high- or low-frequency words).

Figure 9-18 shows a word cloud depicting most used packages in R library.

Figure 9-18. Word cloud depicting the most used packages in R

Another visualization technique that can be used for semi-structured or
unstructured data is the network diagram (Figure 9-19), which can, for example, show the
relationship between several groups of subjects. The most common example is to analyze
‘leaders and followers’ involved in a particular topic in the tweeter social network.

CHAPTER 9 ■ DATA SCIENTIST

279

Visualization Velocity

Velocity is all about the speed at which data is coming into the organization. The ability
to access and process varying velocities of data quickly is critical. A correlation matrix
combines big data and fast response times to quickly identify which variables are related.
It also shows how strong the relationships are between variables.

A correlation matrix combines big data and fast response times to quickly identify
which variables among the millions or billions are related. It also shows how strong the
relationship is between the variables.

Tell a Story
All good stories have a beginning, middle, and end. Data visualizations deserve the
same treatment. At the beginning of the visualization, introduce the problem or business
hypothesis. From there, back it up with data. Finally, end the visualization with a conclusion.

Visualize the Hook
Every good visualization has a hook or primary take away that establishes the theme.
As a designer, you should make this hook the focal point of the design if possible. Placing
the hook at either the center or very end of the visualization is usually best, since this will
get more attention. Give the most important information the most visual weight so that
viewers know what to take away.

Figure 9-19. Network graph plotting mentors and followers relationship in an IT company

CHAPTER 9 ■ DATA SCIENTIST

280

With all of the data that goes into the visualization, make sure that the viewer’s eye
easily flows down the visual; the wrong color palette can be a big barrier to this. Choose a
palette that doesn’t attack the senses. And consider doing this before you start designing,
because it will help you determine how to visualize the various elements.

If picking a color palette is hard for you, stick to the rule of three. Choose three
primary colors. Of the three, one should be the background color (usually the lightest
of the three), and the other two should break up the sections. If you need to add other
colors, use shades of the three main colors. This will keep the palette cohesive and
calming rather than jarring.

While these standards are important to consider for most visualization designs,
sometimes a new creative idea comes along that breaks all of these rules and still
succeeds. Use these rules to guide you into the data visualization realm, but create your
own techniques and standards after you’ve gained some experience.

Here is another example of how to construct a story line using several sources of
disparate data.

Tracking Hurricane Sandy!

Hurricane Sandy was a major hurricane that hit the East coast of USA recently and caused
extensive damage to the eastern sea board communities. Figure 9-20 shows the path of
the hurricane, where it finally headed to landfall and the extent of the impact from the
hurricane.

CHAPTER 9 ■ DATA SCIENTIST

281

The visualization was developed taking real-time time meteorological data to track
the path of the hurricane in real-time.

From the visualization above, you can see Atlantic City and Philadelphia were
directly in the path. Using further meteorological data, analysis of the local weather
conditions during the passage of Hurricane Sandy is shown in Figure 9-21. Atlantic city
experienced a faster and larger drop in barometric pressure during the same time period
as compared to Philadelphia adding to the obvious ocean front sea wall effects and
causing a greater scale of destruction in Atlantic City compared to Philadelphia (refer to
Figure 9-22 for a comparison of wind speeds over the same period).

Figure 9-20. Tracking hurricane Sandy

CHAPTER 9 ■ DATA SCIENTIST

282

Source for Figure 9-22: Analysis of a Philadelphia Weather Station Data during
Hurricane Sandy. http://rpubs.com/JoFrhwld/sandy

Figure 9-21. Barometric pressure across two cities on the path of hurricane Sandy

Figure 9-22. Wind speeds and gusts across two cities

http://rpubs.com/JoFrhwld/sandy

CHAPTER 9 ■ DATA SCIENTIST

283

End Points
As discussed above, data scientists use a combination of skills to investigate big data
looking for ways to solve business hypotheses and also to create possible new business
opportunities. The BI user and data scientist are at the two opposite ends of the
spectrum: a BI user analyzes existing business situations and operations, whereas a data
scientist investigates and looks for new possibilities.

Data scientists use the discovery type of approach, bringing in various types of data
into an investigative data store for experimentation. Depending on the enterprise data
platform architectures, this data store could be a separate sandbox; or it could be an
integrated environment with the EDW and other enterprise data repositories. Figure 9-23
illustrates the data discovery platform for a data scientist.

Figure 9-23. Data discovery platform for a data scientist

Enterprise
Data Sources

EDW

Analytic Applications

BI Applications

Big Data

Structured Data

Data Discovery
Platform

M
od

el
ed

 D
at

a

A
nalytics R

esults

ETL

Statistical Analysis
Patterns, Clusters, Social
Network Analysis, Graph
Analysis, Text Analytics

BI Reports, Dashboards,
KPIs, Ad-Hoc analysis,

What-If scenarios

Most of the concepts behind data scientist’s activity are not new; for example,
statisticians and analytics resources have been building predictive models for many
years for risk analysis, fraud detection, and so forth. What is new about data science is
that the use of big data and associated data analysis technologies enables a broader set of
business solutions to be addressed.

It is evident that the data scientist should possess capabilities to juggle around three
specific areas:

The BUSINESS context behind the data•

The ANALYTICS capabilities to apply on the data•

The DATA itself•

CHAPTER 9 ■ DATA SCIENTIST

284

Most of the time it’s easy to assess the depth of the data scientists analytics/ algorithmic
knowledge and the depth of his/her understanding on handling high- velocity data and
unstructured data elements. But one area of weakness is the business dimension.

So how do you decide whether a data scientist the desired level of
business acumen? Below are few best practices that will help you assess
and decode the business domain knowledge of a data scientist.

Test-1: “Resonant Story Telling” Test:
Can the data scientist narrate a compelling and resonant story from the
data patterns?

We human beings are naturally wired to listen to stories than to read numbers.
Hence it is extremely important for the data scientist to craft a story from the data. Let’s
look at an example: you are analyzing mobile app funnel drop for an online travel agency
and found out that the mobile user who was getting dropped was a twenty-something,
last-minute booker traveling between metros and trying to complete the transaction from
a Samsung mobile using Android OS and the friction point was the payment gateway.

Can the data scientist translate numbers into stories? This is a very important tool to
connect to businesses with. Otherwise, a data scientist runs the risk of getting stuck in the
world of math and unable to make the connection!

Test-2: The “String of Pearls” Test:
Can the data scientist connect the dots and form a “necklace” from the
pearls of insights discovered from seemingly unconnected data?

It’s very important for a data scientist to triangulate from key insights. For example,
say you are working on a telecom security use case, and you were able to spot a
correlation between multiple failed login attempts and a successful patch download
event and a surge in network traffic, which was a result of the security hole in the patch
that was downloaded. Can the data scientist connect these seemingly unconnected
events and form a “necklace” from the pearls of insights discovered from cryptic log file
data points?

Test-3: “Needle Movement” Test:
Which are the best “impact zones” for use cases which are “ripe” for big data?

One of the biggest risks in a big data project is using data and multiple analysis
paths to solve the right problem. There are many use cases a data scientist can curate.
How do you identify the use cases that are worthwhile from the use cases which have
marginal impact?

Big data use cases can be segmented into two categories: those that move the needle
incrementally versus those that disrupt. It is very important to keep this distinction in

CHAPTER 9 ■ DATA SCIENTIST

285

mind. For example, say you are working with an e-commerce company and your area
of analysis is how to decrease the percentage of shopping cart abandonment. You have
several approaches available: you can decide to provide more discounts for returning
customers, establish a price comparison interface for the same products across a few
well- known e-commerce sites, etc. However, let’s say that while analyzing the data,
you realized that a large percentage of the shopping carts are abandoned at the final
stages due to issues in the payment gateway; armed with this insight you recommended
enhancement of the payment processing application, and the resulting effect was huge
upswing in revenues!

Can the data scientist uncover business themes where a use case can unlock
disproportionate revenue-making potential for the organization? How would a data
scientist go about finding the business themes to move the needle? Which are the best
“impact zones” in a business process which are “ripe” for big data?

Test-4: “Sniff The Domain Out” Test:
Can the data scientist “sniff the domain out” by examining analytical
outputs and getting the business to put the numbers in context?

Data-driven domain knowledge can reduce the learning curve required to
understand domain and is deeper than theoretical knowledge. A data scientist can glean
far more knowledge about the nuances of a business by getting his/her hands dirty on
exploratory data analysis (EDA), and eyeballing univariate and bivariate results.

Can the data scientist “sniff the domain out” by examining EDA outputs and getting
the business to put the numbers in context?

Test-5: “Actionability” Test:
Is data scientist only generating insights or he/she is also crafting a
solution to put the insights into action?

Insights are important, but actionable insights are far more important. You can
develop a list of insights, prepare suave-looking presentations with lots of graphs and
numbers supporting your findings, and the result could be a feel-good effect; but if you
are not able to deliver what actions businesses need, your work is useless! For example,
say you are working on a use case to spot the high-value customers who are vulnerable to
churn. During your analysis, you were able to find out the factors for churning, you were
able to also develop predictive models to identify who is going to churn and when. These
are valuable insights, but if you are not delivering a solution to prevent the churn, then all
your hard work is wasted.

Besides the insight generation, you also proposed a solution where high-value
customers who are vulnerable to churn away are redirected in real time to high touch
contact center agents who would call them instantly and offer an instant rebate to woo
them back.

As a data scientist, you have a larger role to play in operational actions.

CHAPTER 9 ■ DATA SCIENTIST

286

Test-6: “Use Case Curation” Test:
Can you give a raw data set to the data scientist, and can the data scientist
curate an interesting possibility from the raw data set?

Carving out new use cases and possibilities from new data pool is both an art and a
science. For example, say you were able to use search logs that were typically discarded
to decode the travel intent of an online booker: is it a price-sensitive traveler or a value-
conscious traveler? Is the traveler an early bird or a last-minute booker? This use case to
create behavioral tags from search logs resulted in more intelligent outbound actions.

Give a raw data set to the data scientist and ask him/her to curate an interesting
possibility from the raw data set. Where would he/she start? How would he/she formulate
the right “catchment” of use cases? What approaches he/she would take?

Test-7: The “North Pole” Test:
Can the data scientist work with business to articulate the “as is” state
and the expected “to be” state of the decision-making process after the
analytical solution is implemented?

Every big data voyage requires a north pole in terms of measuring success for the
engagement. A data scientist must be clear about what constitutes success for the business
stakeholders, be it a sandbox setup or a full-fledged production setup of a Hadoop cluster.

Can the data scientist work with business to articulate the “as is” state and the
expected “to be” state of the decision-making process after the analytical solution is
implemented?

Test-8: The “What do You See” Test:
Can the data scientist convey an easily business understandable set of
statements from the complex clustering outputs, keyword frequencies,
box plots, and other analytical outputs?

This test is all about interpreting the analytics outputs and presenting this info into
an easily understandable format.

The sample analytical model’s outputs can be:

Key word frequencies from text mining•

Scatter plots and box plots measuring behavioral volatility of •
customer balances

Bivariate cross tab outputs•

Clusters from a segmentation output•

Confidence scores and lift scores•

CHAPTER 9 ■ DATA SCIENTIST

287

These are outputs are very well understood by analytics professionals but very
difficult to comprehend for a business user.

Can the data scientist construct three to four meaningful English statements from
the above sample analytical outputs? Can he/she cross the big chasm from math to a
business pattern that can be well understood by businesses?

In summary, these tests are by no way collectively exhaustive or perfect. But the tests
serve as a reasonable starting point to identify data-scientist-type resources.

References
Big Data Analytics Architecture: By Neil Raden
http://media.smashingmagazine.com/wp-content/uploads/2011/10/Plane-newest.gif
http://www.submitinfographics.com/full-size-infographics/image-153.jpg
http://viralms.com/images/happy-birthday-twitter.png
http://blog.fluturasolutions.com/2012/12/8-tests-to-decode-business-accumen-of.html
http://datascientits.com/2012/12/19/field-note-what-makes-big-data-big-some-

mathematics-behind-its-quantification/

http://media.smashingmagazine.com/wp-content/uploads/2011/10/Plane-newest.gif
http://www.submitinfographics.com/full-size-infographics/image-153.jpg
http://viralms.com/images/happy-birthday-twitter.png
http://blog.fluturasolutions.com/2012/12/8-tests-to-decode-business-accumen-of.html
http://datascientistinsights.com/2012/12/19/field-note-what-makes-big-data-big-some-mathematics-behind-its-quantification/
http://datascientistinsights.com/2012/12/19/field-note-what-makes-big-data-big-some-mathematics-behind-its-quantification/

A���������
Advanced data visualization, 35
Apache Oozie, 216
Atomicity, consistency, isolation,

and durability (ACID), 111
Average revenue per user (ARPU), 261

B���������
Banking industry

applications and systems, 54
insurance

analytics domains and
opportunities, 59

applications and systems, 58
customer-centric analytics, 60
inance-centric analytics, 60
risk-centric analytics, 59

“Next best action,” concepts of, 54
predictive analytics, 55
retail banking, 55
risk management, 55

Big data
Amazon, 14
analysis

heterogeneity and
incompleteness, 197

human collaboration, 199
privacy, 198
scale, 198
system architecture, 199
timeliness, 198

analytics organization models, 17
analytics process maturity, 16
application paradigms, 2
business models, 9
corporate irewalls, 2

cost-beneit analysis, 21
customer information, 11
customer intimacy, 14
data democratization, 8
data discovery/exploratory analytics, 5
data management, 8
data stores, 2
decentralized model, 17
deinition, 2–3
designing business models, 15
e-commerce applications, 14
election campaign, 14
energy and utilities, 9
enriching and contextualizing data, 5
enterprises, 7
evolution of, 12
external data, 2
inancial services, 9
future capabilities, 21
health care and life sciences, 10
independent model, 17
industrial values, 10
industry (see Industry)
innovation, 7
internal data, 2
media and telecommunications, 9
multimedia content, 4
online businesses, 14
online services and web analytics, 9
operational analytics/embedded

analytics, 6
operations eiciency, 15
polystructured nature of, 3
retail and consumer products, 10
retailers, 11
scale measures, 3
search objectives, 4
sentiment analysis, 4

Index

289

■INDEX

290

shared services model, 17
social-media platforms, 14
technology investments, 18
telecom companies, 11
total cost of ownership, 3
transform raw data, 1
value drivers, 12
web 2.0 companies, 7

Big data analytics methodology
analytical method selection, 206
analytical models, 210
analytics approach

deinition, 205
loan delinquency problem, 205
product mix optimization, 205

analytics outcomes, 206
business hypotheses

loan repayment delinquency
problem, 204

product mix optimization
problem, 204

business use case
loan repayment delinquency

problem, 202
product mix optimization

problem, 203
data sets

automatic right metadata
generation, 208

data acquisition, 207
heterogeneity, 208
loan repayment delinquency

problem, 209
production mix optimization

problem, 209
designing big data scale, 211
gathering data

partition management with
Apache Oozie, 216

querying complex data
with Hive, 216

SerDe function, 217
tweeter data, 217

high-level view, 200
measuring and monitoring results, 218
production ready system, 212
setting up big data analytics system, 214
support team, 219

Big data management
advanced analytics, 35

advanced data visualization, 35
cost, 32
data discovery, 35
data integration, 32
data quality, 33
data services, 35
data types, 31
data virtualization, 35
enterprise data

warehouse (EDW), 37
IT stack, 38
leading practices, 36
map-reduce technology, 40
MDM, 33
metadata management, 33
query, 42
rapid data insight, 35
skill, 34
SMAQ stack, 39
storage mechanism, 41

Big data scale, 86
Big data warehouse (BDW)

analytics community, 127
architecture

analytics models, 151
big data discovery, 149
big data ingestion, 148
big data quality, 150
big data sources, 148
cloud, 152
conceptual view, 146–147
database, 148
enterprise data platform

ecosystem, 146
Hadoop distributions, 148
ILM, 151
information policy

management, 150
master data management, 150
metadata, 150
reporting and advanced data

visualization, 151
security and privacy, 152
streaming analytics, 149
text analytics, 149

Bonferroni principle, 127
data context, 127
data processing life cycle, 109
data proiling/quality analysis, 109
data quality (see Data quality

management)

Big data (cont.)

■INDEX

291

design principle
ACID, 112
BASE, 113
CAP, 113
scale out approach, 111
scale up approach, 111

vs. EDW, 109
enterprise data platform

ecosystem, 109
enterprise data platform system

EDW analysis, 116
goal of, 116
hybrid architecture, 116

Hadoop
Avro, 119
components, 118
cost and time-efective

manner, 124
ilter/workload partition

stage, 123
Flume, 119
framework, 120
HDFS, 118
Hive, 118
Mahout, 119
map-reduce function, 118, 121
map-reduce job, 121
map-reduce phase, 123
myriad components, 124
node, 121
Oozie, 119
Pig Latin, 119
Sqoop, 119
suitability test, 125
technical components, 123
unstructured/semi-structured, 121
Whirr, 119

low latency, 126
MDM

bulk data integration, 127
connectivity and interoperability

layer, 137
data integration, 132
data model, 129
data repository, 128
enterprise data management

principles, 128
external data, 137
external participants, 137
governance processes, 128
implementation, 128

interaction system, 134
logical architecture, 136
logical integration architecture, 140
MDM hub, 132
multi-domain interaction, 135
paradigm, 128
real-time integration, 128
requirements, 131
SEC iling documents, 131
service component, 139
tools, 129
traditional approaches, 129

sandboxes, 126
system requirement/hybrid

architecture, 115
Bonferroni principle, 127
Business hypotheses

loan repayment delinquency
problem, 204

product mix optimization
problem, 204

Business intelligence (BI), 74, 83
Business use case

loan repayment delinquency
problem, 202

product mix optimization
problem, 203

C���������
Cassandra, 169
Cassandra data model, 187

cluster, 190
column, 188
column family, 188
counter logic, 186
data structure design, 191

concurrent writes, 193
de-normalization, 192
entities, 191

JSON, super column, 189
keyspace, 190
vs. relational data model, 190
super column, 188

Clinical Disease Repository (CDR), 67
Conirmatory Data Analysis (CDA), 5
Consistency, availability, and

partition-tolerance (CAP), 112
CouchDB, 166
Customer relationship management

(CRM) system, 5, 143

■INDEX

292

D������
Database

columnar database
column-based data structure, 94
complex queries, 95
large table scans, 95
time-based queries, 96
unpredictable queries, 95

column-store databases, 75
complex analytics, 105
CPU, 74
distributed hash table, 81
E-commerce retail application, 101
lexibility, 104
high availability, 104
implementation process, 104
implications, 73
in-memory technology, 74
key value store, 81
loading capability, 105
low-cost commodity hardware, 104
migration, 104
next generation data warehouses

big data low, 97
deinition, 97
polyglot persistence approach, 98

scalability, 105
scale-out database architecture

non-relational database, 78
relational database

(see Relational database)
replication strategies, 76–77
sharding approaches, 77
structured data, 77
unstructured data, 77

Sybase, 74
top-notch performance, 104
workloads (see Workloads)
XML, 82

Data discovery, 35
Data integration, 32
Data modeling, 155

data marts
ad-hoc queries, 195
canned reports, 194

integration patterns, 155
data mash ups, 157
forensic, data, 158
high velocity integration, 157
levels of, 155

linkage analysis, 157
rare event detection, 157
streaming analytics, 157
text analytics, 157
time series analysis, 157
workload design, 156

map-reduce
algorithms, 158
collate, 162
combiner function, 161
count and sum (pattern), 162
cross correlation, 165
distinct values, 164
iltering (grepping), 163
framework, 160
function of, 159
iterative message passing

(graph processing), 164
order illustration, pattern, 158
parallel reduction, 160
parsing, 163
patterns, 158, 161
reduce function, 159
shuling approach, 160
sorting, 163
task execution, distributed, 163
use cases, 158
validation, 163

NoSQL techniques, 165
Cassandra model

(see Cassandra data model)
census data, column family, 174
CFDB design, 175–176
column family, 170–171, 173
column family database, 173
comparator and validator, 184
composite columns vs. super

columns, 187
counter logic, 185
database uses

(application), 170
data store types, 166
de-normalize and duplicate, 178
de-normalized entities, 179
document databases, 166
document store, 171
event logic model, 182
graph databases, 167, 171
idempotent operations, 184
JSON techniques, 172
key value store, 171

■INDEX

293

model column families,
query patterns, 177

normalized entities, 178
partially de-normalized

entities, 179
peer store, 169
query patterns, 180
RDBMS logical

data model, 169, 177
read and write (heavy data), 184
relational model, 178
shard key, 183
surrogate keys, 186
syntax, JSON, 172
timestamp, 180
unique key selection, 184
use cases, 168–169
user oriented, 165
value storage, 181
wide column store, 171
wide rows (order, group and

ilter), 182
XML databases, 167
XML, JSON, 172

NoSQL technologies
activities, data extraction, 194
activities, data preparation, 193
data preparation

and extraction, 193
migration approach, 193
schema migration (ETL), 193

Data quality, 33
Data quality management

approach, 140
cleansing data, 140
data acquisition, 141
data element classiication, 141
vs. high availability

analytical value, 146
analytic data platform, 144
core system, 143
CRM system, 143
data quality matters, 143
eforts, 144
fundamental aspects of, 142
proitability, 143
quality assess, 146
sparse/outlier records, 144
standard and shared method, 144
textual/unstructured data, 145
trade-of, 142

type of, 145
uniqueness/accuracy, 142
workload scaling, 142

ingestion and integration data, 141
metadata, 141
principles, 140
volatility and velocity, 140

Data scientist
actionability test, 285
activity, 259
algorithms, 252
analytics techniques, 252
big data, 251
business challenges, 260
business data visualization

bar graphs, 274
box plots, 277
detailed view, 272
graphical view, 271
hierarchical data, 271
line graphs, 273
multi-dimensional view, 272
scatter plots, 276
semi-structured and

unstructured data, 279
summarized view, 271
visualization velocity, 279

characteristics, 251
conceptualizing data

visualization, 270
conceptual modeling, 252
CSP

analytics techniques, 263
churn articulation, 266
customer usage, 263
data discovery activities, 262, 264
“gets hot” device, 265–266
sentiment analysis, 265

data analysis worklow, 256
data discovery platform, 283
data ingestion/foraging, 261
deinition, 252
design principles

collaboration and reusability, 257
discover/seek patterns, 257
ingest and integrate data, 257
insight generation, 257

evaluation of
chi-square (c2) statistic, 268
coeicient, 267
histogram/frequency curve, 267

■INDEX

294

independent vs. dependent
variable, 267

one-tailed test, 269
R-Square (R2)/Pseudo-R2

statistic, 268
two-tailed test, 269

Hook visualization
barometric pressure, 282
Hurricane Sandy, 280–281
wind speeds, 282

hypothesis testing, 252
machine learning, 252
natural language processing, 252
needle movement test, 285
north pole test, 286
predictive modeling, 252
resonant story telling test, 284
result presentation, 270
skills, 255
small data, 251
snif the domain out, 285
statistical analysis, 252
story, 279
string of pearls test, 284
telecom industry, 260
use case curation test, 286
variables, 251

Data services, 35
Data virtualization, 35
Distributed hash table (DHT), 81

E���������
E-commerce, 101
Enterprise. See Big data
Enterprise data modeling, 31
Enterprise data warehouse (EDW), 37
Enterprise information

management (EIM)
big data (see Big data management)
business applications, 27
business model, 26
capabilities, 7
deinition, 25
enterprise data model

and data stores, 28
enterprise technology

and architecture, 27
governance, 31
information lifecycle management, 28

information management
and usage, 26

organization and culture, 27
regulations and compliance, 30

Exist, 167
Extract, transform, load (ETL)

staging system, 120

F, G���������
Facebook, 14

H���������
Hadoop distributed ile

system (HDFS), 118
HBase, 169
Health care

applications and systems, 67
diagnosis and preventive actions, 70
drug tax, 65
location aware analytics

application, 69
patient’s care, 65
telemedicine analytics, 69
text mining and correlations,

patient outcomes, 68
HFlame enhancement, 235
Hive, 216
Horizontal scaling, 111
Human-to-machine (H2M)

interaction, 237

I, J, K, L���������
Industry

banking (see Banking)
beneits, 50
communication, media

and technology, 49
data availability and utilization, 46
inancial services, 48
Google and Amazon, 45
health and life sciences, 49
health-care companies

(see also Health care)
hospitality and travel industry, 45
IT/operations

hardware and software vendors, 70
log analysis, 71

public sector, 49

Data scientist (cont.)

■INDEX

295

resources, 50
telecommunication

applications and systems, 51
deliver real-time analytics, 52
network performance, 52–53
service quality, 53
video-based services, 53

uses, 13
Ininite Graph, 167
InfoGrid, 167
Information lifecycle

management (ILM), 28, 151
In-memory solutions

database, 225
in-memory analytics, 223
in-memory data grids, 222
in-memory technologies, 223

IT stack, 38

M���������
Machine-to-machine

(M2M) interaction, 237
Map-reduce technology, 40
MarkLogic, 167
Massively parallel processing (MPP), 92
Master data management (MDM), 29, 33

bulk data integration, 127
connectivity and interoperability

layer, 137
data integration, 132
data model, 129
data repository, 128
enterprise data management

principle, 128
external data, 137
external participants, 137
governance processes, 128
implementation, 128
interaction system, 134
logical architecture, 136
logical integration architecture, 140
MDM hub, 132
multi-domain interaction, 135
paradigm, 128
real-time integration, 128
requirements, 131
SEC iling documents, 131
service component, 139
tools, 129
traditional approaches, 129

Master-slave replication, 76
Maturity model, 36
Metadata management, 30, 33
MongoDB, 166
Multimedia content, 4

N���������
Natural language processing

(NLP) technologies, 4
Neo4J, 167

O���������
Online Analytical Processing

(OLAP) analysis, 5
Online transaction processing

(OLTP), 74, 83
Oracle, 167

P, Q���������
Polyglot persistence application

Cassandra, 101
Digg API, 100
Digg App, 100
DiggBar, 100
Digg Dialog, 100
HDFS, 101
MySQL, 101
Redis, 101

R���������
Real time analytics

CAP theorem, 225
collect real-time data, 227
explore, analyze,

and visualize data, 228
Hadoop and NoSQL Conundrum, 228
Hadoop’s map-reduce model, 231
index and data mapping,

machine generated data, 240
in-memory data grid, 229
log processing

block compression, 241
CLOB ield, 238
document indexing sample, 242
e-commerce site, 238
Google protocol bufer, 240
Hadoop solutions, 242

■INDEX

296

human-to-machine
interaction, 237

index iles, 241
index sharding, 244
Lucene index, 242
machine-to-machine

interaction, 237
MapFiles, 240
message ields, 238
primary key ield, 242
SequenceFile format, 240
textual data, 241

process streaming data, 228
Recommendation system

association rule based model, 247
classical model, 245
collaborative iltering approach, 246
content-based approach, 246
item-based collaboration ilter, 247
singular value decomposition, 247
user-based collaboration ilter

approach, 247
Relational database

map-reduction and Hadoop
ecosystem, 80

OldSQL, NewSQL, and NoSQL
applicability, 78–79

un-modeled data, 82
Relational database management

system (RDBMS), 74
Retails

applications and systems, 62
consumer behavior, 63
e-mail, 65
show rooming trend, 63
traditional and non-traditional

channels, 63
Riak, 169

S���������
Segal’s Law, 30
Semantic analysis, 4
Sensor data, 11
Sentiment analysis, 4
SerDe function, 217
SMAQ stack, 39
SoLoMoMe, 63
Structured query

language (SQL), 74

T, U���������
Total cost of ownership (TCO), 3
Tracking hurricane sandy, 282

V���������
Vertical scaling, 111

W, X, Y, Z���������
Workloads

analytics, 83
big data scale, 86
business intelligence, 83
characteristics, 83
computation intensiveness, 89
consistency, 85
data latency, 84
data types, 85
hardware architectures, 92
online transaction processing, 83
predictability, 86
reads and writes, 84
response time, 85
updatability, 85
users and query concurrency, 88

Real time analytics (cont.)

Big Data Imperatives

Enterprise Big Data Warehouse,

BI Implementations and Analytics

Soumendra Mohanty
Madhu Jagadeesh
Harsha Srivatsa

Big Data Analytics

Copyright © 2013 by Soumendra Mohanty, Madhu Jagadeesh, and Harsha Srivatsa

his work is subject to copyright. All rights are reserved by the publisher, whether the whole or part
of the material is concerned, speciically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied speciically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4872-9

ISBN-13 (electronic): 978-1-4302-4873-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the beneit of the trademark owner, with no intention of
infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identiied as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. he publisher makes no warranty, express or implied,
with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Saswata Mishra
Technical Reviewer: Nitin Sawant
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Morgan Ertel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Steve Weiss, Tom Welsh

Coordinating Editor: Anamika Panchoo
Copy Editor: Michael Sandlin
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance
Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available
to readers at www.apress.com/9781430248729. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com/9781430248729
http://www.apress.com/source-code

v

Contents

Preface ... xiii

About the Authors .. xv

About the Technical Reviewer ... xvii

Acknowledgments .. xix

Introduction .. xxi

Chapter 1: “Big Data” in the Enterprise ■ .. 1

Search at Scale ... 4

Multimedia Content .. 4

Sentiment Analysis .. 4

Enriching and Contextualizing Data .. 5

Data Discovery or Exploratory Analytics ... 5

Operational Analytics or Embedded Analytics ... 6

Realizing Opportunities from Big Data .. 6

Innovation ... 7

Acceleration .. 7

Collaboration... 8

New Business Models .. 9

New Revenue Growth Opportunities ... 9

Taming the “Big Data” ... 11

Where Will Big Data and Analytics Create Advantages for the Company? 14

How Should You Organize to Capture the Benefits of Big Data and Analytics? 15

■ CONTENTS

vi

What Technology Investments Can Enable the Analytics Capabilities? 18

How Do You Get Started on the Big Data Journey? .. 20

End Points ... 22

References .. 22

Chapter 2: The New Information Management Paradigm ■ 25

What Is Enterprise Information Management? 25

New Approach to Enterprise Information Management for Big Data 31

New capabilities needed for big data ... 34

Leading practices of enterprise information management for big data platforms 36

Implications of Big Data to Enterprise IT? ... 37

Map-reduce .. 40

Storage ... 41

Query .. 42

End Points ... 42

References .. 43

Chapter 3: Big Data Implications for Industry ■ 45

The Opportunity ... 45

Big Data Use Cases by Industry Vertical .. 47

Big Data Analytics for Telecom ... 51

Big Data Analytics for Banking ... 53

End Points ... 71

References .. 72

Chapter 4: Emerging Database Landscape ■ 73

The Database Evolution ... 74

The Scale-Out Architecture ... 75

The Relational Database and the Non-Relational Database 77

OldSQL, NewSQL, and the Emerging NoSQL ... 78

■CONTENTS

vii

Database Workloads .. 82

Workload Characteristics .. 83

Implication of Big Data Scale on Data Processing .. 86

Database Technologies for Managing the Workloads 91

Hardware Architectures and Databases ... 92

Columnar Databases ... 94

Combination/Workload Challenges ... 95

Requirements for the Next Generation Data Warehouses 96

Polyglot Persistence: The Next Generation Database Architecture 98

How Digg is Built Using Polyglot Persistence ... 99

Use Case: E-commerce Retail Application .. 101

End Points ... 103

References .. 105

 Chapter 5: Application Architectures for Big Data ■
and Analytics .. 107

Big Data Warehouse and Analytics .. 109

Data Design Principles for Big Data Solutions .. 111

Big Data Warehouse System Requirements and Hybrid Architectures114

Enterprise Data Platform Ecosystem – BDW and EDW 116

How does Traditional Data Warehouse processes map to tools
in Hadoop Environment? ... 117

How Hadoop Works ... 121

Hadoop Technical Components ... 123

Hadoop: The Pros and Cons .. 124

The Hadoop Suitability Test ... 124

Additional Considerations for Big Data Warehouse (BDW) 126

Sandboxes .. 126

Low latency .. 126

■ CONTENTS

viii

Contextualizing the data ... 127

To Sample or Not to Sample ... 127

Big Data and Master Data Management (MDM) 127

Is MDM ready for Big Data Platforms? ... 128

MDM and Big Data Integration Scenarios ... 132

MDM Hub as a Foundation for Big Data.. 132

Data Quality Implications for Big Data ... 140

High Availability versus High Data Quality .. 142

Putting it all Together – A Conceptual BDW Architecture 146

End Points ... 153

References .. 153

 Chapter 6: Data Modeling Approaches for Big Data ■
and Analytics Solutions .. 155

Understanding Data Integration Patterns .. 155

Big Data Workload Design Approaches ... 156

Map-Reduce Patterns, Algorithms, and Use Cases 158

Map-Reduce Patterns by Example ... 158

Basic Map-Reduce Patterns Counting and Summing ... 162

Collating .. 162

Filtering (“Grepping”), Parsing, and Validation ... 163

Distributed Task Execution ... 163

Sorting .. 163

Advanced Map-Reduce Patterns .. 164

Iterative Message Passing (Graph Processing) .. 164

Distinct Values (Unique Items Counting) ... 164

Cross-Correlation .. 165

■CONTENTS

ix

NoSQL Data Modeling Techniques ... 165

Types of NoSQL Data Stores ... 166

What Database System Should Your Application Use? ... 170

What is JSON ... 172

Column Family Database: Columns, Column Family, Super Column Family 173

Model Column Families Around Query Patterns ... 177

De-normalize and Duplicate for Read Performance ... 178

Storing Values in Column Names .. 181

Leverage Wide Rows for Ordering, Grouping, and Filtering 182

Choose the Proper Row Key – It’s Your “Shard Key” .. 183

Keep Read-Heavy Data Separate from Write-Heavy Data 184

Make Sure Column Key and Row Key are Unique .. 184

Use the Proper Comparator and Validator .. 184

Design the Data Model Such that Operations are Idempotent 184

Don’t Use the Counter Column Family to Generate Surrogate Keys 186

Favor Composite Columns over Super Columns ... 187

Understanding Cassandra Data Model ... 187

Designing Cassandra Data Structures .. 191

Schema Migration Approach (Using ETL).. 193

End Points ... 194

References .. 196

Chapter 7: Big Data Analytics Methodology ■ 197

Challenges in Big Data Analysis .. 197

Big Data Analytics Methodology .. 200

Analyze and Evaluate Business Use Case ... 201

Develop Business Hypotheses .. 204

Examples of Business Hypotheses ... 204

Develop the Analytics Approach ... 205

■ CONTENTS

x

Choose the Correct Analytical Method .. 206

Analysis Outcomes ... 206

Build and Prepare Data Sets ... 207

Select and Build the Analytical Models .. 209

Design for Big Data Scale ... 211

Build the Production Ready System ... 212

Setting up the Big Data Analytics System .. 214

Gathering Data with Apache Flume .. 216

Measure and Monitor ... 218

Establish a Support Team ... 219

End Points ... 220

References .. 220

 Chapter 8: Extracting Value From Big Data: In-Memory Solutions, ■
Real Time Analytics, And Recommendation Systems 221

In-Memory Computing Technology: Guidelines .. 223

Would You Still Need A Database? .. 224

Real-time Analytics and the CAP Theorem ... 225

How Does Real-Time Analytics Work? .. 227

The Hadoop and NoSQL Conundrum .. 228

Using an In-Memory Data Grid for Near Real-Time Data Analysis 229

Map Reduce and Real-Time Processing .. 231

Use Case: Real-Time Analysis of Machine Generated Data (Log Processing) 237

Building a Recommendation System .. 244

End Points ... 249

References .. 250

Chapter 9: Data Scientist ■ .. 251

The New Skill: Data Scientist .. 253

The Big Data Workflow .. 255

■CONTENTS

xi

Design Principles for Contextualizing Big Data 257

A Day in the Life of a Data Scientist .. 258

Thinking about the Problem ... 260

Data Ingestion and Foraging ... 260

Experimentation and Discovery .. 261

Evaluation of Results .. 267

Presenting the Results .. 270

Conceptualizing an Effective Data Visualization ... 270

What is Business Data Visualization? ... 271

Components of a Business Data Visualization .. 271

Tell a Story .. 279

Visualize the Hook .. 279

End Points ... 283

Test-1: “Resonant Story Telling” Test: ... 284

Test-2: The “String of Pearls” Test: .. 284

Test-3: “Needle Movement” Test: .. 284

Test-4: “Sniff The Domain Out” Test: ... 285

Test-5: “Actionability” Test: .. 285

Test-6: “Use Case Curation” Test: .. 286

Test-7: The “North Pole” Test: .. 286

Test-8: The “What do You See” Test: .. 286

References .. 287

Index .. 289

xiii

Preface

he path to here, for us, began in 2011. Data warehouses and BI solutions had become
run of the mill; big data was gaining momentum. Sajid Usman (our boss) asked us a very
simple but thought-provoking question: “What do you think about big data?” hat got
us thinking about big data. he deinitions are plentiful and situational interpretations
are plentiful as well. But a broader set of questions was lurking in our mind. What is
the future of traditional data warehousing and BI applications? Are big data solutions a
natural evolution of traditional BI applications? Should they co-exist? In our spare time,
we started researching this topic, reading published papers, blogs, and other articles. By
the end of 2011, a small but unmistakable set of thoughts and ideas began to materialize.
It was further enriched by conversations with other practitioners and clients.

his book project began in late 2011. We ind ourselves surprised and pleased to
still be rolling along with this growing snowball of diferent thoughts. I (Soumendra) met
with Harsha in San Jose during breakfast in a hotel (Marriott San Jose Downtown), we
discussed the project and he jumped in to become a co-author. Madhu has been working
in the data and analytics area for quite a long time and had always had an inclination to
publish; she also agreed to join the group. So, we are only here by accident.

While we are all IT professionals, nobody would mistake us for expert researchers in
this area. We are more like museum curators than painters—collecting, organizing, and
packaging for wider use the great ideas of an emerging technology area. It turns out that’s
useful work as well.

After reading a draft, someone recently described the book as certainly a nice
collection of thoughts. It was meant as a compliment, and we couldn’t agree more. Big
data is all about what we don’t know we don’t know, though many of the publications on
the subject can look arcane to anyone but the specialist and certainly seem far removed
from the reality of applying the techniques. his area is emerging, evolving rapidly,
littered with 40+ signiicant vendor tools and technologies, and most of the technology
advancement is coming from open source groups. People like us who make a living
by implementing enterprise scale solutions are at a loss and certainly uncomfortable
adopting these technologies. But big data is real and is here to stay.

Big Data Imperatives aims to be accessible, to bring forward the interesting nuggets
of insight for the enthusiast, and to save the practitioner time in getting work done.
We hope it provides you more “a-ha!” moments than “wha . . . ?” moments.

Soumendra Mohanty,
Madhu Jagadeesh, Harsha Srivatsa

xv

About the Authors

Soumendra Mohanty. My interest in big data analytics
started during the early part of 2011. At that time, I was
struggling to accept the notion that data warehouses
and BI solutions were soon to become obsolete. I was
more concerned about the fate of thousands of BI
practitioners. What should they do? How will they learn
this new skill that has all sorts of madness written all
over it? Do they need to learn programming skills like
Java, Python, NoSQL, etc.? Somewhere along the path,
I began to realize the notion of a big data warehouse,
hybrid data architectures, and industry use cases that
not only need big data solutions but also traditional
data warehouses and BI solutions, including analytics.
he next thing I knew, I was contributing to articles,
whitepapers, and presentations in this space, sharing
my thoughts with clients and practitioners.

I am really fortunate to be part of a wonderful and
growing community of practitioners and enthusiasts of

big data analytics. As more and more companies start adopting big data solutions, I am
sure there will be many more interesting aspects of big data that will come to light. I really
hope you enjoy reading this book.

Madhu Jagadeesh. I was always passionate about
analytics and the various industry analytical applications
that we experience in our everyday lives. With the power
of big data solutions, analytics has become all the more
exciting and path-breaking. his deinitely challenged
me as a traditional BI and analytics practitioner: to get up
to speed on the new advances of technologies and also
the ones that are diminishing in this area. While we are
learning to work together forming teams of varied niche
skills to make big data and analytics implementations,
the objective remains the same: achieving business
outcomes and working cohesively as a team to achieve
these business goals. I feel all industries will plunge into
this area; but the pace of adoption would deinitely difer

■ ABOUT THE AUTHORS

xvi

based on their current level of maturity and their appetite for taking risks to experiment
with new technologies and techniques. To keep our industries competitive it will be a
challenge for all of us as practitioners to excel and master this area soon and accelerate
our learning and experience to keep pace with the next wave that will hit us! Hope you
enjoy reading this book. Happy reading!

Harsha Srivatsa. I consider my work on this book
to be a journey of learning, self-discovery, and the
realization of a life-long ambition to put my thoughts
in print. My career path, which has spanned software
engineering, product management, information
management consulting, research, and innovation has
aforded me the opportunity to work on this project.
I have been involved in a number of research and
innovation projects involving big data. In addition to
having lots of experience with data-related project
implementations, I’ve written extensively on technical
subjects. hroughout it all, I’ve remained fascinated by
data and how it speaks to us.

What’s fascinating about big data solutions is that they are entirely based on
open-source projects and crowd sourcing. A major part of my work comes from developing
prototypes using emerging technologies to solve real-world problems; often it is tedious
work, as you do not have any other reference points, not even documentation. For this
reason, Big Data Imperatives not only provides useful explanations of concepts but also
guidance regarding the implementation scenarios. I hope this book not only helps the
data warehousing and BI practitioners to understand the big data world but also serves
as a reference point for all those new to the data and analytics area as well.

xvii

About the Technical
Reviewer

As Managing Director, Technology, Nitin Sawant is
the practice lead for technology architecture, BPM,
SOA, and cloud at Accenture India. He is an Accenture
certiied master technology architect (CMTA), leading
various initiatives in the emerging technologies of
cloud and big data. Nitin has over 17 years of technology
experience in developing, designing, and architecting
complex enterprise scale systems based on Java,
JEE, SOA, and BPM technologies. He received his
master’s degree in technology in software engineering
from the Institute of System Science, National University
of Singapore. He graduated with a bachelor’s degree
in electronics engineering from Bombay University.
He is a certiied CISSP, CEH, and IBM-certiied SOA
solutions architect. Nitin has iled three patents in

the SOA BPM space and is currently pursuing his PHD in BPM security from BITS
Pilani, India.

xix

Acknowledgments

his book wouldn’t exist without the eforts of many people. Since this area is emerging
and rapidly evolving, no one can claim that they have mastery of the subject; certainly
many thoughts in this book are ideas from discussions, publications, blogs, etc. At the
end of each chapter we have listed the reference materials we used. he authors gratefully
acknowledge some of the many references here, in no particular order.

he publications in the ield of big data, referenced at the end of •
each chapter.

he clients and practitioners who have shared their thoughts, •
problems, and interesting solution ideas with authors.

Apress, which has invested considerable time and efort in •
bringing this book to market—particularly Jefrey Pepper, Saswata
Mishra, and Mark Powers have been closely involved in creating
these inalized pages.

he reviewers, who provided valuable feedback during the writing •
process; and especially we would like to highlight Nitin Sawant’s
eforts to make the book more relevant to practitioners.

Everybody who asked questions about big data and the skills of the •
future needed to succeed, also friends, critics, and well-wishers
who supported us through the many hours of writing!

Soumendra

I must convey my sincere gratitude to my loving family (Snigdha, Pratik, and Pratyush) for
allowing me to spend hours to write the chapters.

Harsha

I would like to dedicate my work on this book to three important women in my life: my
grandmother Indira Ramadurai (1912–1993) who gave me the start and standing in my
life; my wife Raji Subramanian for being my pillar of strength and support, and to Illa
Dholakia, family friend extraordinaire and purveyor of ine sweetmeats.

I would also like to thank Soumendra and Madhu for the opportunity to collaborate
on this book and my Accenture colleagues Umesh Hari, Radhai Sivaraman, Uttama
Mukherjee, and Mark Kobe for being most excellent work colleagues.

■ ACKNOWLEDGMENTS

xx

Madhu

he unconditional support provided by my family made it possible for me to collaborate
on this exciting book project. My sincere gratitude goes out to my dear parents, my cute
daughter Anusha, and my husband Jagadeesh.

I would like to express my special gratitude and thanks to Soumendra and Harsha for
providing me this opportunity to work on this exciting project. It was truly an enriching
experience.

My thanks and appreciations also go to my colleagues and friends for their best
wishes.

	Big Data Imperatives
	Contents at a Glance
	Contents
	Preface
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: “Big Data” in the Enterprise
	Chapter 2: The New Information Management Paradigm
	Chapter 3: Big Data Implications for Industry
	Chapter 4: Emerging Database Landscapeimages
	The Influence of Map-Reduce and Hadoop
	Key Value Stores and Distributed Hash Tables
	XML Defined Data
	Unstructured Data as Un-modeled Data
	Chapter 5: Application Architectures for Big Data and Analytics
	Chapter 6: Data Modeling Approaches for Big Data and Analytics Solutions
	Key-Value stores
	Document databases
	Graph databases
	XML Databases
	Distributed Peer Stores
	Column Families or Wide-column Store

	Document Store
	Key-Value Store
	Graph Databases
	Option 1: Relational model
	Option 2: Normalized entities with custom indexes
	Option 3: Normalized entities with de-normalization into custom indexes
	Option 4: Partially de-normalized entities
	Notes
	Benefits of wide rows
	Example
	Notes

	Notes
	Example
	Issues
	Chapter 7: Big Data Analytics Methodology
	Example Application: Measuring Influence
	How do you answer these questions?
	Partition Management with Apache Oozie
	Querying Complex Data with Hive
	Chapter 8: Extracting Value From Big Data: In-Memory Solutions, Real Time Analytics, And Recommendation Systems
	Chapter 9: Data Scientist
	Index

