
Advanced
Object-Oriented
Programming in R

Statistical Programming for Data Science,
Analysis and Finance
—
Thomas Mailund

www.allitebooks.com

http://www.allitebooks.org

Advanced
Object-Oriented

Programming in R
Statistical Programming for Data
Science, Analysis and Finance

Thomas Mailund

www.allitebooks.com

http://www.allitebooks.org

Advanced Object-Oriented Programming in R: Statistical Programming for Data
Science, Analysis and Finance

Thomas Mailund
Aarhus N, Denmark

ISBN-13 (pbk): 978-1-4842-2918-7 ISBN-13 (electronic): 978-1-4842-2919-4
DOI 10.1007/978-1-4842-2919-4

Library of Congress Control Number: 2017945396

Copyright © 2017 by Thomas Mailund

This work is subject to copyright. All rights are reserved by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we
use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Karthik Ramasubramanian
Coordinating Editor: Mark Powers
Copy Editor: Larissa Shmailo

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.
Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author
in this book is available to readers on GitHub via the book’s product page, located at
www.apress.com/9781484229187. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/9781484229187
http://www.apress.com/9781484229187
http://www.apress.com/source-code
http://www.apress.com/source-code
http://www.allitebooks.org

iii

Contents at a Glance

About the Author �� ix

About the Technical Reviewer �� xi

Introduction �� xiii

 ■Chapter 1: Classes and Generic Functions ������������������������������������� 1

 ■Chapter 2: Class Hierarchies �� 21

 ■Chapter 3: Implementation Reuse �� 35

 ■Chapter 4: Statistical Models ��� 43

 ■Chapter 5: Operator Overloading �� 61

 ■Chapter 6: S4 Classes ��� 73

 ■Chapter 7: R6 Classes ��� 91

 ■Chapter 8: Conclusions ��� 107

Index �� 109

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author �� ix

About the Technical Reviewer �� xi

Introduction �� xiii

 ■Chapter 1: Classes and Generic Functions ������������������������������������� 1

Generic Functions ��� 1

Classes �� 3

Polymorphism in Action ��� 5

Designing Interfaces ��� 9

The Usefulness of Polymorphism �� 12

Polymorphism and Algorithmic Programming ��������������������������������������� 13

Sorting Lists �� 14

General Comments on Flexible Implementations of Algorithms ����������������������������� 18

More on UseMethod �� 19

 ■Chapter 2: Class Hierarchies �� 21

Interfaces and Implementations �� 21

Polymorphism and Interfaces ��� 22

Abstract and Concrete Classes ��� 23

Implementing Abstract and Concrete Classes in R ��� 24

Another Example: Graphical Objects �� 25

Class Hierarchies As Interfaces with Refinements �������������������������������� 30

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

vi

 ■Chapter 3: Implementation Reuse �� 35

Method Lookup in Class Hierarchies ��� 36

Getting the Hierarchy Correct in the Constructors �������������������������������� 38

NextMethod ��� 39

 ■Chapter 4: Statistical Models ��� 43

Bayesian Linear Regression �� 43

Model Matrices �� 47

Constructing Fitted Model Objects �� 52

Coefficients and Confidence Intervals ��� 53

Predicting Response Variables �� 54

 ■Chapter 5: Operator Overloading �� 61

Functions and Operators ��� 62

Defining Single Operators ��� 63

Group Operators ��� 64

Units Example ��� 66

 ■Chapter 6: S4 Classes ��� 73

Defining S4 Classes ��� 73

Generic Functions ��� 75

Slot Prototypes ��� 76

Object Validity ��� 77

Generic Functions and Class Hierarchies �� 78

Requiring Methods ��� 82

Constructors �� 83

Dispatching on Type-Signatures �� 84

Operator Overloading �� 86

Combining S3 and S4 Classes ��� 88

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

vii

 ■Chapter 7: R6 Classes ��� 91

Defining Classes �� 91

Object Initialization ��� 94

Private and Public Attributes �� 95

Active Bindings ��� 97

Inheritance �� 98

References to Objects and Object Sharing �� 99

Interaction with S3 and Operator Overloading ������������������������������������ 103

 ■Chapter 8: Conclusions ��� 107

Index �� 109

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Thomas Mailund is an associate professor in bioinformatics at Aarhus
University, Denmark. He has a background in math and computer science. For
the last decade, his main focus has been on genetics and evolutionary studies,
particularly comparative genomics, speciation, and gene flow between emerging
species. He has published Beginning Data Science in R, Functional Programming
in R and Metaprogramming in R with Apress, as well as other books out there.

www.allitebooks.com

http://www.allitebooks.org

xi

About the Technical
Reviewer

Karthik Ramasubramanian works for one of the
largest and fastest-growing technology unicorns
in India, Hike Messenger. He brings the best of
business analytics and data science experience to
his role at Hike Messenger. In his seven years of
research and industry experience, he has worked
on cross-industry data science problems in retail,
e-commerce, and technology, developing and
prototyping data-driven solutions. In his previous
role at Snapdeal, one of the largest e-commerce
retailers in India, he was leading core statistical

modeling initiatives for customer growth and pricing analytics. Prior to
Snapdeal, he was part of a central database team, managing the data warehouses
for global business applications of Reckitt Benckiser (RB). He has vast
experience working with scalable machine learning solutions for industry,
including sophisticated graph network and self-learning neural networks. He
has a Master’s in theoretical computer science from PSG College of Technology,
Anna University, and is a certified big data professional. He is passionate about
teaching and mentoring future data scientists through different online and
public forums. He enjoys writing poems in his leisure time and is an avid
traveler.

www.allitebooks.com

http://www.allitebooks.org

xiii

Introduction

Welcome to Object-oriented Programming in R. I wrote this book to have
teaching material beyond the typical introductory level of most textbooks on
R. This book is intended to introduce objects and classes in R and how object-
oriented programming is done in R. Object-oriented programming is based on
the concept of objects and on designing programs in terms of operations that one
can do with objects and how objects communicate with other objects.

This is often thought of in terms of objects with states, where operations on
objects change the object state. Think of an object such as a bank account. Its
state would be the amount on it, and inserting or withdrawing money from it
would change its state. Operations we do on objects are often called “methods”
in the literature, but in some programming languages the conceptual model
is that objects are communicating and sending each other messages, and the
operations you do on an object are how it responds to messages it receives.

In R, data is immutable, so you don’t write code where you change an
object’s state. Rather, you work with objects as values, and operations on objects
create new objects when you need new “state”. Objects and classes in R are more
like abstract data structures. You have values and associated operations you can
do on these values. Such abstract data structures are implemented differently in
different programming languages. Most object-oriented languages implement
them using classes and class hierarchies while many functional languages define
them using some kind of type specifications that define which functions can be
applied to objects.

Types determine what you can do with objects. You can, for example, add
numbers, and you can concatenate strings, but you can’t really add strings or
concatenate numbers. In some programming languages, so-called statically
typed languages, you associate types with variables, which restrict which objects
the variables can refer to and enables some consistency check of code before
you run it. In such languages, you can specify new types by defining which
operations you can do on them, and you then need to add type specifications to
variables referring to them. Other programming languages, called dynamically
typed languages, do not associate types with variables but let them refer to any
kind of objects. R is dynamically typed, so you do not specify abstract data types
through a type specification. The operations you can do on objects are simply
determined by which functions you can call on the objects. You can still think
of these as specifications of abstract data structures; however, they are just
implicitly defined.

www.allitebooks.com

http://www.allitebooks.org

 ■ IntroduCtIon

xiv

Abstract data structures can be implemented in different ways, which is
what makes them abstract, and the way to separate implementation from an
interface is through polymorphic or generic functions, a construction founded
on object-oriented programming. Generic functions are implemented through
a class mechanism, also derived from object-oriented programming. The
functions implemented by a class determine the interface of objects in the class,
and by constructing hierarchies of classes, you can share the implementation of
common functions between classes.

Abstract data structures are often used in algorithmic programming to
achieve efficient code, but such programming is frequently not the objective of
R programs. There, we are more interested in fitting data to models and such,
which frequently does not require algorithmic data structures. Fitted models,
however, are also examples of abstract data structures in the sense that I use the
term in this book. Models have an abstract interface that allows us to plot fitted
models, predict new response variables for new data, and so forth, and we can
use the same generic functions for such operations. Different models implement
their own versions of these generic functions, so you can write generic code that
will work on linear models, decision trees, or neural networks, for example.

Object-oriented programming was not built into the R language initially
but was added later, and unfortunately, more than one object-oriented system
was added. There are actually three different ways to implement object-oriented
constructions in R, each with different pros and cons, and these three systems
do not operate well together. I will cover all three in this book (S3, S4, and R6)
but put most emphasis on the S3 system which is the basis of the so-called “tidy
verse”, the packages such as tidyr, dplyr, ggplot2, etc., which form the basis of
most data analysis pipelines these days.

When developing your own software, I will strongly recommend that you
stick to one object-oriented system instead of mixing them, but which one you
choose is a matter of taste and which other packages your code is intended to
work with.

Most books I have read on object-oriented programming, and the classes I
have taken on object-oriented programming, have centered on object-oriented
modeling and software design. There, the focus is on how object-orientation
can be used to structure how you think about your software and how the
software can reflect physical or conceptual aspects of the world that you try to
model in your software. If, for instance, you implement software for dealing
with accounting, you would model accounts as objects with operations for
inserting and withdrawing money. You would try to, as much as possible, map
concepts from the problem domain to software as directly as possible. This is
a powerful approach to designing your software, but there are always aspects
of software that do not readily fit into such modeling, especially when it comes
to algorithmic programming and design of data structures. Search trees and
sorting algorithms, for instance, are usually not reflecting anything concrete in a
problem domain.

 ■ IntroduCtIon

xv

Object-oriented programming, however, is also a very powerful tool to
use when designing algorithms and data structures. The way I was taught
programming, algorithms and data structures were covered in separate classes
from those in which I was taught object-orientation. Combining object-
orientation and algorithmic programming were something I had to teach myself
by writing software. I think this was a pity since the two really fit together well.

In this book, I will try to cover object-orientation both as a modeling
technique for designing software but also as a tool for developing reusable
algorithmic software. Polymorphism, a cornerstone of object-oriented
programming, lends itself readily to developing flexible algorithms and to
combining different concrete implementations of abstract data types to tailor
abstract algorithms to concrete problems. A main use of R is machine learning
and data science where efficient and flexible algorithms are more important
than modeling a problem domain, so much of the book will focus on those
aspects of object-oriented programming.

To read this book, you need to know the fundamentals of R programming:
how to manipulate data and how to write functions. We will not see particularly
complex R programming, so you do not need a fundamental knowledge of how
to do functional programming in R, but should you want to learn how, I suggest
reading the first book in this series which is about exactly that. You should be
able to follow the book without having read it, though.

1© Thomas Mailund 2017
T. Mailund, Advanced Object-Oriented Programming in R, DOI 10.1007/978-1-4842-2919-4_1

CHAPTER 1

Classes and Generic
Functions

R’s approach to object-oriented programming is through generic functions
and classes. As mentioned in the introduction, R actually has three systems for
implementing this, called S3, S4, and R6. In this chapter, I will only describe the
S3 system, which is the simplest of the three, but I will return to the other two
systems in later chapters.

Generic Functions
The term generic functions refers to functions that can be used on more than
one data type. Since R is dynamically typed, which means that there is no check
of type consistency before you run your programs, type checking is really only a
question of whether you can manipulate data in the way your functions attempt
to. This is also called “duck typing” from the phrase “if it walks like a duck…”. If
you can do the operations you want to do on a data object, then it has the right
type. Where generic functions come into play is when you want to do the same
semantic operation on objects of different types, but where the implementation
of how that operation is done depends on the concrete types. Generic functions
are functions that work differently on different types of objects. They are
therefore also known as polymorphic functions.

To take this down from the abstract discussion to something more concrete,
let us consider an abstract data type, say a stack. A stack is defined by the
operations we can do on it, such as the following:

•	 Get the top element

•	 Pop the first element off a stack

•	 Push a new element to the top of the stack

Chapter 1 ■ Classes and GeneriC FunCtions

2

To have a base case for stacks we typically also want a way to

•	 Create an empty stack

•	 Check if a stack is empty

These five operations define what a stack is, but we can implement a stack
in many different ways. Defining a stack by the operations that we can do on
stacks makes it an abstract data type. To implement a stack, we need a concrete
implementation.

In a statically typed programming language, we would define the type of
a stack by these operations. How this would be done depends on the type of
programming language and the concrete language, but generally in statically
typed functional languages you would define a signature for a stack—the
functions and their type for the five operations—while in an object-oriented
language you would define an abstract superclass.

In R, the types are implicitly defined, but for a stack, we would also define
the five functions. These functions would be generic and not actually have
any implementation in them; the implementation goes into the concrete
implementation of stacks.

Of the five functions defining a stack, one is special. Creating an empty
stack does not work as a generic function. When we create a stack, we always
need a concrete implementation. But the other four can be defined as generic
functions. Defining a generic function is done using the UseMethod function, and
the four functions can be defined as thus:

top <- function(stack) UseMethod("top")
pop <- function(stack) UseMethod("pop")
push <- function(stack, element) UseMethod("push")
is_empty <- function(stack) UseMethod("is_empty")

What UseMethod does here is dispatch to different concrete implementations
of functions in the S3 object-oriented programming system. When it is called, it
will look for an implementation of a function and call it with the parameters that
the generic function was called with. We will see how this lookup works shortly.

When defining generic functions, you can specify “default” functions as well.
These are called when UseMethod cannot find a concrete implementation. These
are mostly useful when it is possible to actually have some default behavior that
works in most cases, so not all concrete classes need to implement them. But it is a
good idea to always implement them, even if all they do is inform you that an actual
implementation wasn’t found. For example:

top.default <- function(stack) .NotYetImplemented()
pop.default <- function(stack) .NotYetImplemented()
push.default <- function(stack, element) .NotYetImplemented()
is_empty.default <- function(stack) .NotYetImplemented()

Chapter 1 ■ Classes and GeneriC FunCtions

3

Classes
To make concrete implementations of abstract data types we need to use classes.
In the S3 system, you create a class, and assign a class to an object, just by setting
an attribute on the object. The name of the class is all that defines it, so there is no
real type checking involved. Any object can have an attribute called “class” and
any string can be the name of a class.

We can make a concrete implementation of a stack using a vector. To define
the class we just need to pick a name for it. We can use vector_stack. We create
such a stack using a function for creating an empty stack, and in this function,
we set the attribute “class” using the class<- modification function.

empty_vector_stack <- function() {
 stack <- vector("numeric")
 class(stack) <- "vector_stack"
 stack
}

stack <- empty_vector_stack()
stack
numeric(0)
attr(,"class")
[1] "vector_stack"
attributes(stack)
$class
[1] "vector_stack"
class(stack)
[1] "vector_stack"

The empty stack is a numeric vector, just because we need some type to give the
empty vector, but pushing other values onto it will just force a type conversion, so
we can also put other basic types into it. It is limited to basic data types since vectors
cannot contain complex data; for that, we would need a list. If we need complex
data, we could easily change the implementation to use a list instead of a vector.

We will push elements by putting them at the front of the vector, pop
elements by getting everything except the first element of the vector, and
of course get the top of a vector by just indexing the first element. Such an
implementation can look like this:

top.vector_stack <- function(stack) stack[1]
pop.vector_stack <- function(stack) {
 new_stack <- stack[-1]
 class(new_stack) <- "vector_stack"
 new_stack
}

Chapter 1 ■ Classes and GeneriC FunCtions

4

push.vector_stack <- function(element, stack) {
 new_stack <- c(element, stack)
 class(new_stack) <- "vector_stack"
 new_stack
}
is_empty.vector_stack <- function(stack) length(stack) == 0

You will notice that the names of the functions are composed of two
parts. Before the “ . ” (period) you have the names of the generic functions that
define a stack, and after the period you have the class name. This name format
has semantic meaning; it is how generic functions figure out which concrete
functions should be called based on the data provided to them.

When the generic functions call UseMethod, this function will check if the first
value with which the generic function was called has an associated class. If so, it
will get the name of that class and see if it can find a function with the name of
the generic function (the name parameter given to UseMethod, not necessarily the
name of the function that calls UseMethod) before a period and the name of the
class after the period. If so, it will call that function. If not, it will look for a .default
suffix instead and call that function if it exists.

This lookup mechanism gives semantic meaning to function names,
and you really shouldn’t use periods in function names unless you want R to
interpret the names in this way. The built-in functions in R are not careful about
this—R has a long history and is not terribly consistent in how functions are
named—but if you don’t want to accidentally implement a function that works
as a concrete implementation of a generic function, you shouldn’t do it.

If we call push on a vector stack, it will, therefore, be push.vector_stack
that will be called instead of push.default.

stack <- push(stack, 1)
stack <- push(stack, 2)
stack <- push(stack, 3)
stack
[1] 1 2 3
attr(,"class")
[1] "vector_stack"

In the push.vector_stack we explicitly set the class of the concatenated
new vector. If we didn’t do this, we would just be creating a vector—the
stack-ness of the second argument to c does not carry on to the concatenated
vector—and we wouldn’t return a stack. By setting the class of the new vector,
we make sure that we return a stack.

The class isn’t preserved when we remove the first element of the vector
either, which is why we also have to set the class in the pop.vector_stack
function explicitly. Otherwise, we would only have a stack the first time we pop

Chapter 1 ■ Classes and GeneriC FunCtions

5

an element, and after that, it would just be a plain vector. By explicitly setting
the class we make sure that the function returns a stack that we can use with the
generic functions again.

while (!is_empty(stack)) {
 stack <- pop(stack)
}

The remaining two functions, top and is_empty, do not return a stack
object, and they are not supposed to, so we don’t set the class attribute there.

We can avoid having to set the class attribute explicitly whenever we update
it—that is, whenever we return a new value; we never actually modify an object
here—by wrapping the class creation code in another function. Such a version
could look like this:

make_vector_stack <- function(elements) {
 structure(elements, class = "vector_stack")
}
empty_vector_stack <- function() {
 make_vector_stack(vector("numeric"))
}
top.vector_stack <- function(stack) stack[1]
pop.vector_stack <- function(stack) {
 make_vector_stack(stack[-1])
}
push.vector_stack <- function(stack, element) {
 make_vector_stack(c(element, stack))
}
is_empty.vector_stack <- function(stack) length(stack) == 0

We are of course still setting the class attribute when we create an updated
stack, we are just doing so implicitly by translating a vector into a stack using
make_vector_stack. That function uses the structure function to set the class
attribute, but otherwise just represent the stack as a vector just like before.

Polymorphism in Action
The point of having generic functions is, of course, that we can have different
implementations of the abstract operations. For the stack, we can try a different
representation. The vector version has the drawback that each time we return
a modified stack we need to create a new vector, which means copying all the

Chapter 1 ■ Classes and GeneriC FunCtions

6

elements in the new vector from the old. This makes the operations linear
time in the vector size. Using a linked list, we can make them constant time
operations. Such an implementation can look like this:

make_list_node <- function(head, tail) {
 list(head = head, tail = tail)
}
make_list_stack <- function(elements) {
 structure(list(elements = elements), class = "list_stack")
}
empty_list_stack <- function() make_list_stack(NULL)
top.list_stack <- function(stack) stack$elements$head
pop.list_stack <- function(stack) make_list_
stack(stack$elements$tail)
push.list_stack <- function(stack, element) {
 make_list_stack(make_list_node(element, stack$elements))
}
is_empty.list_stack <- function(stack) is.null(stack$elements)

stack <- empty_list_stack()
stack <- push(stack, 1)
stack <- push(stack, 2)
stack <- push(stack, 3)
stack
$elements
$elements$head
[1] 3
##
$elements$tail
$elements$tail$head
[1] 2
##
$elements$tail$tail
$elements$tail$tail$head
[1] 1

$elements$tail$tail$tail
NULL
##
##
##
##
attr(,"class")
[1] "list_stack"

Chapter 1 ■ Classes and GeneriC FunCtions

7

Generally, when working with lists, we would use NULL as the base case to
terminate a list. We cannot just wrap a list and use NULL this way when we need
to associate a class with the element. You cannot set the class to NULL. So instead
we wrap the actual list inside another list where we set the class attribute. The
real data is in the elements of this list, but except for having to use this list
element of the object, we just work with the list representation as we normally
would with linked lists.

We now have two different implementations of the stack interface, but—and
this is the whole point of having generic functions—code that uses a stack does
not need to know which implementation it is operating on, as long as it only
accesses stacks through the generic interface.

We can see this in action in the small function below that reverses a
sequence of elements by first pushing them all onto a stack and then popping
them off again.

stack_reverse <- function(empty, elements) {
 stack <- empty
 for (element in elements) {
 stack <- push(stack, element)
 }
 result <- vector(class(top(stack)), length(elements))
 for (i in seq_along(result)) {
 result[i] <- top(stack)
 stack <- pop(stack)
 }
 result
}

stack_reverse(empty_vector_stack(), 1:5)
[1] 5 4 3 2 1
stack_reverse(empty_list_stack(), 1:5)
[1] 5 4 3 2 1

Since the stack_reverse function only refers to the concrete stacks through
the abstract interface, we can give it either a vector stack or a list stack, and it
can do the same operations on both. As long as the concrete data structures all
implement the abstract interface correctly then code that only uses the generic
functions will be able to work on any implementation.

One single concrete implementation is rarely superior in all cases, so it makes
sense that we are able to combine algorithms working on abstract data types with
concrete implementations, depending on the particular problem we need to
solve. For the two stack implementations they generally work equally well, but as
discussed above, the stack implementation has a worst-case quadratic running
time while the list implementation has a linear running time. For large stacks,

Chapter 1 ■ Classes and GeneriC FunCtions

8

we would thus expect the list implementation to be the best choice, but for small
stacks, there is more overhead in manipulating the list implementation the way
we do—having to do with looking up variable names and linking lists and such—
so for short stacks, the vector implementation is faster.

library(microbenchmark)
microbenchmark(stack_reverse(empty_vector_stack(), 1:10),
 stack_reverse(empty_list_stack(), 1:10))
Unit: microseconds
expr
stack_reverse(empty_vector_stack(), 1:10)
stack_reverse(empty_list_stack(), 1:10)
min lq mean median uq
195.787 217.2255 245.5698 229.8335 252.4785
235.270 257.0180 283.9289 271.5655 289.5300
max neval cld
965.714 100 a
1174.888 100 b
microbenchmark(stack_reverse(empty_vector_stack(), 1:1000),
 stack_reverse(empty_list_stack(), 1:1000))
Unit: milliseconds
expr
stack_reverse(empty_vector_stack(), 1:1000)
stack_reverse(empty_list_stack(), 1:1000)
min lq mean median uq
28.22786 32.30359 37.77813 34.25044 36.49355
23.38964 24.40046 26.14922 25.47550 26.65488
max neval cld
124.57810 100 b
61.01179 100 a

Plotting the time usage for various length of stacks makes it even more
evident that, as the stacks get longer, the list implementation gets relatively faster
than the vector implementation.

Chapter 1 ■ Classes and GeneriC FunCtions

9

Only for very short stacks would the vector implementation be preferable—
the quadratic versus linear running time kicks in for very small n—but in general,
different implementations will be preferred for different usages. By writing code
that is polymorphic, we make sure that we can change the implementation of a
data structure without having to modify the algorithms using it.

Designing Interfaces
It’s not just generic functions that are polymorphic. Any function that manipulates
data only through generic functions is also polymorphic. The reversal function
we implemented using a stack takes the empty stack as an argument, and this
empty stack determines which actual stack implementation we use. Nowhere in
the function do we refer to any details of a real implementation. If we had, instead,
created an empty stack inside this function then, despite otherwise only accessing
the implementation through the interface of the generic functions, the function
would be bound to a single implementation.

To get the most out of polymorphism, you will want to design your functions
to be as polymorphic as possible. This requires two things:

 1. Don’t refer to concrete implementations unless you
really have to.

 2. Any time you do have to refer to implementation details
of a concrete type, do so through a generic function.

The reversal function is polymorphic because it doesn’t refer to any concrete
implementation. The choice of which concrete stack to use is determined by a
parameter, and the operations it performs on the specific stack implementation
all go through generic functions.

Figure 1-1. Time usage of reversal with two different stacks

Chapter 1 ■ Classes and GeneriC FunCtions

10

It can be very tempting to break these rules in the heat of programming.
Using a parameter to determine data structures in an algorithm isn’t that
difficult to do, but if you are writing an algorithm that uses several different
data structures, you might not want to have all the different concrete
implementations as parameters. You really ought to do it, though. Just write a
function that wraps the algorithm and provides implementations if you don’t
want to remember all the concrete data structures where the algorithm is
needed. That way you get the best of both worlds.

More often, you will want to access the details of a concrete implementation.
Imagine, for example, that you want to pop elements until you see a specific one,
but only if that element is on the stack. If we are used to working with the vector
implementation of the stack, then it would be natural to write a function like this:

pop_until <- function(stack, element) {
 if (element %in% stack) {
 while (top(stack) != element) stack <- pop(stack)
 }
 stack
}

library(magrittr)
vector_stack <- empty_vector_stack() %>%
 push(1) %>%
 push(2) %>%
 push(3) %T>% print
[1] 3 2 1
attr(,"class")
[1] "vector_stack"
pop_until(vector_stack, 1)
[1] 1
attr(,"class")
[1] "vector_stack"
pop_until(vector_stack, 5)
[1] 3 2 1
attr(,"class")
[1] "vector_stack"

Here we use the %in% function to test if the element is on the stack (and we
use the magrittr pipe operator to create a stack for our test). This works fine, as
long as the stack is a vector stack, but it will not work if the stack is implemented
as a list. You won’t get an error message; the %in% test will just always return
FALSE, so if you replace the stack implementation you have incorrect code that
doesn’t even inform you that it isn’t working.

Chapter 1 ■ Classes and GeneriC FunCtions

11

Relying on implementation details is the worst thing you can do to break
the interface of polymorphic objects. Not only do you tie yourself to a single
implementation, but you also tie yourself to exactly how that concrete data
is implemented. If that implementation changes, your algorithm using it will
break. So now you either can’t change the implementation, or you will have to
change the algorithm that it uses when it does. If you are lucky, you might get an
error message if you break the interface, but as in the case we just saw (and you
can try it yourself if you don’t believe me), you won’t even get that. The function
will just always return the original stack, even when the element you want to pop
to is on it.

list_stack <- empty_list_stack() %>%
 push(1) %>%
 push(2) %>%
 push(3)
pop_until(list_stack, 1)

If you write an algorithm that operates on a polymorphic object, stick to
the interface it has, if at all possible. For the pop_until function we can easily
implement it using just the stack interface.

pop_until <- function(stack, element) {
 s <- stack
 while (!is_empty(s) && top(s) != element) s <- pop(s)
 if (is_empty(s)) stack else s
}

If you cannot achieve what you need using the interface, you should instead
extend it. You can always write new generic functions that work on a class.

contains <- function(stack, element) {
 UseMethod("contains")
}
contains.default <- function(stack, element) {
 .NotYetImplemented()
}
contains.vector_stack <- function(stack, element) {
 element %in% stack
}

You do not need to implement concrete functions for all implementations
of an abstract data type to add a generic function. If you have a default
implementation that gives you an error—and you have proper unit tests for
any code you use—you will get an error if your algorithm attempts to use the
function if it isn’t implemented yet, and you can add it at that point.

Chapter 1 ■ Classes and GeneriC FunCtions

12

Adding new generic functions is not as ideal as using the original interface
in the first place if the abstract data type is from another package. If the
implementation in that package changes at a later point, your new generic
function might break—and might break silently. Still, combined with proper
unit tests, it is a much better solution than simply accessing the detailed
implementation in your other functions.

Designing interfaces is a bit of an art. When you create your own abstract
types, you want to think carefully about which operations the type should have.
You don’t want to have too many operations. That would make it harder for
people implementing other versions of the type; they would need to implement
all the operations, and depending on what those operations are, this could
involve a lot of work. On the other hand, you can’t have too few operations,
because then algorithms using the type will often have to break the interface
to get to implementation details, which will break the polymorphism of those
algorithms.

The abstract data types you learn about in an algorithms class are good
examples of minimal yet powerful interfaces. They define the minimum number
of operations necessary to get useful work done, yet still make implementations
of concrete stacks, queues, dictionaries, etc. possible with minimal work.

When designing your own types, try to achieve the same kind of minimal
interfaces.

The Usefulness of Polymorphism
Polymorphism isn’t only useful for what we would traditionally call abstract
data structures. Polymorphism gives you the means to implement abstract data
structures, so algorithms work on the abstract interface and never need to know
which concrete implementation they are operating on, but generic functions are
useful for many cases that we do not traditionally think of as data structures.

In R, you often fit statistical models to data. Such models are not really
data structures, but there is an abstract interface to them. You fit a concrete
model, for example, a linear model, but once you have a fitted model, there
are many common operations that are useful for all models. You might want to
predict response variables for new data, or you might want to get the residuals
of your fitted values. These operations are the same for all models—although
how different models implement the operations will be different—and so they
can benefit from being generic. Indeed, they are. The functions predict and
residuals, which implement those two operations, are generic functions, and
each model can implement its own version of them.

There is an extensive list of standard functions that are frequently used on
fitted models, and all of these are implemented as generics. If you write analysis
code that operates on fitted models using only those generic functions, you can
change the model at any time and reuse all the code without modifying it.

Chapter 1 ■ Classes and GeneriC FunCtions

13

The same goes for printing and plotting functions. Both print and plot
are generic functions, and they have concrete implementations for different
data types (and usually also for different fitted models). It is not something we
think much about from day to day, but if we didn’t have generic functions like
these, we would need to use different functions for displaying vectors and for
displaying matrices, for example.

Converting between different data types is also a frequent operation, and
again polymorphism is highly useful (and frequently used in R). To translate a
data structure into a vector, you use the as.vector function—an unfortunate
name since it looks like a generic function as with a specialization for vector,
but actually is a generic function named as.vector. To translate a factor into a
vector, it is the concrete implementation as.vector.factor that gets called.

An algorithm that needs to translate some input data into a vector can use
the as.vector function and then doesn’t have to worry about what the actual
data is implemented as, as long as the data type has an implementation of the
as.vector function.

Polymorphism and Algorithmic Programming
Polymorphism as a component of designing algorithms, and especially
implementing algorithms, is not often covered in classes and textbooks but can
be an important aspect of writing reusable software. You might not think of R
as a language where you implement algorithms, but whenever you write a data
analysis pipeline, whenever you manipulate data frames, and whenever you fit a
model, you can think of that as implementing or using an algorithm. We want our
data analysis to be efficient, so we want our algorithms to be efficient, but we also
want to write code that can be used more than once so we don’t have to repeat
ourselves. This means that we need to write code that can be used with different
data and in many instances this involves hiding concrete data behind generic
interfaces.

Take something as simple as a sorting function. For many sorting
algorithms, all you need to be able to do to sort elements is determine whether
one element is smaller than another. If you hardwire in an implementation of
such an algorithm where the comparison used is interfering or floating point
comparison, then you can only sort objects of these types. In general, if you
hardwire comparisons, you need a different implementation for each type of
elements you want to sort.

Because of this, most languages provide you with a generic sorting function as
part of their runtime library where you can provide the comparison functionality it
should use, typically either as a function provided to the function or by allowing you
to specify a comparison function for new types. Unfortunately, the sort function in
R is not of this kind—it does allow you to define sorting for new types, but it wants

Chapter 1 ■ Classes and GeneriC FunCtions

14

its input to be in atomic form, so you cannot give it sequences of complex data
types—anything beyond simple numerical, boolean, or string types. Usually, you
can change your data to a matrix or something similar and sort it this way, but if you
actually have a list of complex data, you cannot use it.

We can easily implement our own function for doing this, however, and we
can call it sort_list—not to be confused with the built-in function sort.list
that actually does something other than sort lists…

Sorting Lists
A straightforward implementation of merge sort could look like this:

merge_lists <- function(x, y) {
 if (length(x) == 0) return(y)
 if (length(y) == 0) return(x)

 if (x[[1]] < y[[1]]) {
 c(x[1], merge_lists(x[-1], y))
 } else {
 c(y[1], merge_lists(x, y[-1]))
 }
}

sort_list <- function(x) {
 if (length(x) <= 1) return(x)

 start <- 1
 end <- length(x)
 middle <- end %/% 2

 merge_lists(sort_list(x[start:middle]),
 sort_list(x[(middle+1):end]))
}

It gets the job done, but the merge function is quadratic in running
time since it copies lists when it subscripts like x[-1] and y[-1] and when
it combines the results in the recursive calls. We can make a slightly more
complicated function that does the merging in linear time using an iterative
approach rather than a recursive:

merge_lists <- function(x, y) {
 if (length(x) == 0) return(y)
 if (length(y) == 0) return(x)

Chapter 1 ■ Classes and GeneriC FunCtions

15

 i <- j <- k <- 1
 n <- length(x) + length(y)
 result <- vector("list", length = n)

 while (i <= length(x) && j <= length(y)) {
 if (x[[i]] < y[[j]]) {
 result[[k]] <- x[[i]]
 i <- i + 1
 } else {
 result[[k]] <- y[[j]]
 j <- j + 1
 }
 k <- k + 1
 }

 if (i > length(x)) {
 result[k:n] <- y[j:length(y)]
 } else {
 result[k:n] <- x[i:length(x)]
 }

 result
}

We are still copying in the recursive calls of the sorting function, but we are
not copying more than we will merge later, so the asymptotic running time is
okay, at least.

With this function, we can sort lists of elements where "<" can be used
to determine if one element is less than another. The built-in "<" function,
however, doesn’t necessarily work on your own classes.

make_tuple <- function(x, y) {
 result <- c(x,y)
 class(result) <- "tuple"
 result
}

x <- list(make_tuple(1,2),
 make_tuple(1,1),
 make_tuple(2,0))
sort_list(x)
Warning in if (x[[i]] < y[[j]]) {: the condition
has length > 1 and only the first element will be
used

Chapter 1 ■ Classes and GeneriC FunCtions

16

Warning in if (x[[i]] < y[[j]]) {: the condition
has length > 1 and only the first element will be
used

Warning in if (x[[i]] < y[[j]]) {: the condition
has length > 1 and only the first element will be
used
[[1]]
[1] 1 1
attr(,"class")
[1] "tuple"
##
[[2]]
[1] 1 2
attr(,"class")
[1] "tuple"
##
[[3]]
[1] 2 0
attr(,"class")
[1] "tuple"

There are several ways we can fix this. One option is to define a generic
function for comparison: we could call it less, and then use that in the merge
function.

merge_lists <- function(x, y) {
 if (length(x) == 0) return(y)
 if (length(y) == 0) return(x)

 i <- j <- k <- 1
 n <- length(x) + length(y)
 result <- vector("list", length = n)

 while (i <= length(x) && j <= length(y)) {
 if (less(x[[i]], y[[j]])) {
 result[[k]] <- x[[i]]
 i <- i + 1
 } else {
 result[[k]] <- y[[j]]
 j <- j + 1
 }
 k <- k + 1
 }

Chapter 1 ■ Classes and GeneriC FunCtions

17

 if (i > length(x)) {
 result[k:n] <- y[j:length(y)]
 } else {
 result[k:n] <- x[i:length(x)]
 }

 result
}

less <- function(x, y) UseMethod("less")
less.numeric <- function(x, y) x < y
less.tuple <- function(x, y) x[1] < y[1] || x[2] < y[2]

sort_list(x)
[[1]]
[1] 1 1
attr(,"class")
[1] "tuple"
##
[[2]]
[1] 1 2
attr(,"class")
[1] "tuple"
##
[[3]]
[1] 2 0
attr(,"class")
[1] "tuple"

We would need to define concrete implementations of less for all types
we wish to sort, though. Alternatively, we can tell R how to handle "<" for our
own types, and we will see how in a later chapter. With that approach, we will
get sorting functionality for all objects that can be compared this way. A third
possibility is to make less a parameter of the sorting function:

merge_lists <- function(x, y, less) {
 # Same function body as before
}
sort_list <- function(x, less = `<`) {

 if (length(x) <= 1) return(x)

 result <- vector("list", length = length(x))

Chapter 1 ■ Classes and GeneriC FunCtions

18

 start <- 1
 end <- length(x)
 middle <- end %/% 2

 merge_lists(sort_list(x[start:middle], less),
 sort_list(x[(middle+1):end], less),
 less)
}

unlist(sort_list(as.list(sample(1:5))))
[1] 1 2 3 4 5
tuple_less <- function(x, y) x[1] < y[1] || x[2] < y[2]
sort_list(x, tuple_less)
[[1]]
[1] 1 1
attr(,"class")
[1] "tuple"

[[2]]
[1] 1 2
attr(,"class")
[1] "tuple"
##
[[3]]
[1] 2 0
attr(,"class")
[1] "tuple"

We make the default less function "<" but can provide another for types
where this comparison function doesn’t work.

General Comments on Flexible Implementations of
Algorithms
As a general rule, you want to make your algorithm implementations adaptable
by providing handles for polymorphism, either by providing options for certain
functions (like we did with less above) or by using generic functions for abstract
data types.

You might be able to experiment with optimal data structures and
implementation of operations when you implement an algorithm for a given
use, but by providing handles for modifying your function you make the code
more reusable. Even in cases where the algorithm will perform correctly for
different applications, you might still want to provide flexibility; the performance

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Classes and GeneriC FunCtions

19

of algorithms often depends on the usage. In an asymptotic analysis we generally
prefer implementations that have theoretical better running times, but in
practice, we want the fastest code, and that is not necessarily the asymptotically
fastest algorithms. We hide away constants when we use “big-O” analysis, but
those constants matter, so you want users of your implementations to be able to
replace data structures and operations used in your algorithm implementations.

Figuring out how to best provide this flexibility in your implementations often
requires some experimentation. For abstract data structures, generic functions
are usually the best approach. For something like comparison in the sorting
example above, all three solutions (generic functions, operator overloading, or
providing a function with a good default) are probably equally good. But just as
experimentation and some thinking are involved in designing good software
interfaces, the same is needed in algorithmic programming.

More on UseMethod
The UseMethod function is what we use to define a generic function, and it takes
care of finding the appropriate concrete implementation using the name lookup
we saw earlier. There are some details about UseMethod I left out before, though.

First of all, it doesn’t actually work as a function normally does. It looks like a
function, and to a large degree it is a function, but if you treat it just as any other
function you might get effects you didn’t expect.

Second of all, you can pass local variables along to concrete implementations
if you assign them before you call UseMethod. Let’s consider a simple case.

foo <- function(object) UseMethod("foo")
foo.numeric <- function(object) object
foo(4)
[1] 4
bar <- function(object) {
 x <- 2
 UseMethod("bar")
}
bar.numeric <- function(object) x + object
bar(4)
[1] 6

Here the foo function uses the pattern we saw earlier. It just calls UseMethod.
We then define a concrete function to be called if foo is invoked on a number.
Numbers have classes, and that class is numeric. (Technically, there is more
to numbers than this class, but for now, we don’t need to worry about that.)
Nothing strange is going on with foo.

Chapter 1 ■ Classes and GeneriC FunCtions

20

With bar, however, we assign a local variable before we invoke UseMethod.
This variable, x, is visible when bar.numeric is called. With a normal function
call, you have to take steps to get access to the calling scope, so here UseMethod
does not behave like a normal function.

In the call to UseMethod, it doesn’t behave like a normal function either. You
cannot use UseMethod as part of an expression.

baz <- function(object) UseMethod("baz") + 2
baz.numeric <- function(object) object
baz(4)
[1] 4

When UseMethod is invoked, the concrete function takes over completely,
and the call to UseMethod never returns. In this way, it is similar to the return
function. Any expression you put UseMethod in is not evaluated because of this,
and any code you might put after the UseMethod call is never evaluated.

The UseMethod function takes a second argument, besides the name of
the generic function. This is the object that is used to dispatch the generic
function on—the object whose type determines the concrete function that will
be called—and this argument can be used if you do not want to dispatch based
on the first argument of the function that calls UseMethod. Since dispatching on
the type of the first function argument is such a common pattern, using another
object in the call to UseMethod can cause confusion, and I recommend that you
do not do this unless you have very good reasons for it.

21© Thomas Mailund 2017
T. Mailund, Advanced Object-Oriented Programming in R, DOI 10.1007/978-1-4842-2919-4_2

CHAPTER 2

Class Hierarchies

There is more to polymorphism than merely abstract data types that can have
different concrete implementations. A fundamental concept found in most object-
oriented programming languages is classes and class hierarchies. Class hierarchies
serve two conceptually different purposes: refinement of object interfaces and
code reuse. Neither concept, strictly speaking, requires class hierarchies in R,
since R is dynamically typed, unlike programming languages such as C++ or Java
where class hierarchies and the static type system are intertwined. Nevertheless,
class hierarchies provide a framework for thinking about software design that is
immensely useful, not least in dynamically typed languages.

We will go into details of the two concepts in the two following sections, but
in short, interfaces describe which (generic) functions objects of a given class
must implement, and hierarchies chain together interfaces in “more-abstract/
more-refined” relationships based on these functions. Code-reuse, in this
context, refers simply to writing functions that can operate on more than one
class of objects—essentially just the type of polymorphic functions we saw in the
previous chapter—and fitting such functions into class hierarchies as generic
functions themselves.

Interfaces and Implementations
We can think of the interface of a class as the kinds of operations, or methods,
which we can apply to objects of the class. In R, this means which functions we
can call with such objects as arguments in a meaningful way.

If we think in terms of abstract data structures, such as the stack from the last
chapter, these are defined by which operations they support. You can push and pop
from a stack, check if it is empty, and you can get the top element; those functions,
together with a way of creating a stack, define what “stack-ness” is. At least, as long
as those four functions also have the semantics we associate with a stack.

Chapter 2 ■ Class hierarChies

22

At an abstract level, we can describe the interface of a function by its formal
arguments and its semantics. We can, for example, associate with a function push
its two formal parameters, a stack and an element, and the semantics that it should
return the stack but with the element added to the top. If we associate the push
operation with these two attributes, the formal parameters and the semantics,
we have what we could call an abstract function. As we saw, we can implement
such abstract functions in different concrete ways, but a caller of these concrete
functions need only worry about the abstract description to ensure correctness
of functionality (although performance can of course also be a concern and not
something we associated with the interface of an abstract function here).

With this definition of abstract functions, we can say that an abstract
data type is defined by a set of abstract functions. If we call a set of abstract
functions an interface, then an abstract data type is defined by an interface.
We can implement an abstract data structure by writing an implementation
of all the abstract functions in the interface. This we might call a (concrete)
implementation of the interface or something along those lines. We can reason
about algorithms and design software just from knowing the interface of an
abstract data type, and if we have different implementations of the interface to
choose from, then any of them could, in theory, be used.

Concepts such as interfaces and implementations are not just useful
when it comes to abstract data structures. For any type of data you want to
manipulate in a program, you could think up a set of meaningful operations you
could do on that data, thus creating an interface for the type of data, and you
could write functions for those operations in different ways to create different
implementations.

Polymorphism and Interfaces
If we go back to thinking about interfaces, we can say that a class implements
an interface if it implements all the abstract functions that make up the
interface. This simply means that, if we take objects of this class, we have
concrete functions we can call for each of the abstract functions in the interface.
Without generic/polymorphic functions, however, we would need to know
which concrete function maps to which abstract function for each class that
implements a given interface. Exchanging one implementation of an interface
with another would require a rewrite of the code that uses the implementation.
So naturally, we would also require that the names of the concrete functions
match the names of the abstract functions.

This obviously maps directly to generic functions. If, whenever we think
abstract function, we map that to a generic function—one that simply calls
UseMethod—and whenever we think concrete function we think implementation
of a generic function—a function with a period in its name—then we
have an almost automatic way of mapping the concepts of interfaces and
implementations into code.

Chapter 2 ■ Class hierarChies

23

Since R doesn’t do any static type checking, there is very little you can do to
guarantee that a class you write this way actually implements a given interface.
There is nothing in generic functions that explicitly binds them together as
an interface, so for any class you decide to implement, you can implement an
arbitrary subset of generic functions. Interfaces and implementations are design
concepts, and you can map the design into R code very easily, but R does not
enforce that your code matches your design.

Abstract and Concrete Classes
We often unify interfaces and implementations as just classes, at least when
designing software. The object-oriented way to think about software is this:
every piece of data you manipulate is an object and all objects have a class that
determines their behavior. By “behavior,” we just mean which functions we can
call on an object. This way of thinking makes a little more sense in languages
where you can modify data and where objects thus have a state. Regardless, you
can think of all data as objects with associated classes that determine what you
can do with them.

A class thus encapsulates both what you can do with objects—the interface
you have for them—but also how it is done—how the interface is implemented.

Objects have classes, and classes determine what you can do with objects,
but classes live in hierarchies of more abstract or more derived classes. A vector-
based implementation of a stack is a stack. It is a special kind of stack, sure, but it
is still a stack. The general concept of what a stack is is more general than vector-
based implementations, so the vector implementation can be thought of as a
specialisation of a stack—that is, one that is implemented using a vector.

We generally think about class hierarchies as part of “is-a” relationships. A
vector implementation of a stack “is-a” stack. So is a list-based implementation.
If you have an object of a more specialised class you should also be able to treat
it as an object of a more abstract class. If you have a vector stack, you can treat it
as a stack because its class is a vector stack class and that is a special case of the
stack class.

The closest we get to interfaces and implementations is abstract classes and
concrete classes. An abstract class is essentially exactly an interface. It is nothing
more than a description of what you can do with objects of this class; there is no
implementation associated with it. Concrete classes, on the other hand, have
implementations for all the functions you can call on objects of the given class.
Quite often, though, classes implement some but not all the functions their
interface describes, so the distinction is not that clean in practise.

We often show classes and their relationships in diagrams as that shown in
Figure 2-1. Here Stack is shown in italics to indicate that it is an abstract class. Below
the class name is listed the methods you can call on the class, and errors from one
class to another indicate that one class is derived from another. Here we see that
vector and list stacks, here called VectorStack and ListStack are derived from Stack.

Chapter 2 ■ Class hierarChies

24

The two concrete classes only implement the methods also listed in the
abstract class, and because of this, we won’t always list the methods again in the
derived classes. It is to be understood that any method implemented in a more
abstract class will also be implemented in more derived classes.

Implementing Abstract and Concrete Classes in R
We already saw, in the previous chapter, how the attribute class is used to
determine which version of a generic function is called for a given object. This
approach for dispatching generic functions is the S3 system’s way of implementing
classes, but in some sense only handles concrete implementations of abstract
functions. Having a generic method foo

foo <- function(object) UseMethod("foo")

that we implement for a class bar

foo.bar <- function(object) ...

only tells R how class bar implements the foo function. If foo is part of an
interface that consists of several functions, it is not explicitly stated in the R code.

If we think of interfaces as a set of abstract functions, then considering these
as part of a whole is something we only do informally in R. Since abstract classes
are nothing more than interfaces, we can do the same for abstract classes. When
we implemented the vector-based stack in the previous chapter, we did so by
setting the class attribute of the objects we returned from the constructor
function empty_vector_stack to vector_stack and by implementing the four

Figure 2-1. Class hierarchy for stacks

Chapter 2 ■ Class hierarChies

25

functions we considered part of the stack interface: push, pop, top, and is_
empty. At no point did we specify that there existed some abstract stack class and
that vector_stack is a specialization of it.

Since the class mechanism implemented this way is essentially working on
a per-function level—we have generic functions and implementations of these
that are dispatched based on their name—classes and their relationships can be
a very messy affair in R. You can alleviate this by thinking about your software
design in a more structured way than the language requires. Design your software
with classes in mind, implement abstract classes by defining a set of generic
functions—you can use comments to group them together and to document that
these constitute an interface. Make sure that when you define a concrete class
implementing an interface that you don’t forget about any of the functions in the
interface. You might not implement them all; sometimes there are good reasons
to, and sometimes you are just being pragmatic and not implementing something
that might be difficult to achieve, but that you don’t need yet. Make sure that this
is a conscious choice, though, and that you haven’t simply forgotten a function.

You can use the function methods to get a list of all the methods implemented
by a class

methods(class = "vector_stack")
[1] is_empty pop push top
see '?methods' for accessing help and source code

and check if you have everything implemented. You can also use this function to
get a list of all classes that implement a given generic function.

methods("top")
[1] top.default top.list_stack
[3] top.vector_stack
see '?methods' for accessing help and source code

Another Example: Graphical Objects
The “is-a” relationship underlying a class hierarchy is more flexible than just
having abstract classes and implementations of these. It provides us with both a
way of modeling that some objects really are of different but related classes, and
it provides us with a mechanism for thinking about interfaces as specializations
of other interfaces.

Let us consider, for example, an application where we operate on some
graphical object—perhaps as part of a new visualization package. The most
basic class of this application is the GraphicalObject whose objects you can draw.
Being able to draw objects is the most basic operation we need for graphical
objects. Graphical objects also have a “bounding box”—a rectangle that tells us
how large the shape is, something we might need when drawing objects.

Chapter 2 ■ Class hierarChies

26

This class is abstract, not just because we are defining an interface so we
can have different implementations, like with did with the stack, but because
it doesn’t really make sense to have a graphical interface at this abstract level.
A concrete class that it does make sense to have objects of is Point, which is a
graphical object representing a single point. Other classes could be Circle and
Rectangle.

For dealing with more than one graphical object, in an interface which
makes that easy, we also have a class, Composite, that captures a collection of
graphical objects.

Figure 2-2. Class hierarchy for graphical objects. The arrow from Composite to
GraphicalObject, with a diamond starting point and an arrow endpoint, indicates
that a Composite consists of a collection of GraphicalObjects.

Treating a collection of objects as an object of the same class as its
components is a so-called design pattern and it makes it easier to deal with
complex figures in this application. We can group together graphical objects in
a hierarchy—similar to how you would group objects in a drawing tool—and
we would not need to explicitly check in our code if we are working on a single
object or a collection of objects. A collection of objects is also a graphical object,
and we can just treat it as such.

Implementing this class hierarchy is fairly straightforward. The abstract class
GraphicalObject is not explicitly represented, but we need its methods as generic
functions.

draw <- function(object) UseMethod("draw")
bounding_box <- function(object) UseMethod("bounding_box")

Chapter 2 ■ Class hierarChies

27

When constructing graphical objects, we need to set their class, and these
could be the constructors for the concrete classes:

point <- function(x, y) {
 object <- c(x, y)
 class(object) <- "point"
 names(object) <- c("x", "y")
 object
}

rectangle <- function(x1, y1, x2, y2) {
 object <- c(x1, y1, x2, y2)
 class(object) <- "rectangle"
 names(object) <- c("x1", "y1", "x2", "y2")
 object
}

circle <- function(x, y, r) {
 object <- c(x, y, r)
 class(object) <- "circle"
 names(object) <- c("x", "y", "r")
 object
}

composite <- function(...) {
 object <- list(...)
 class(object) <- "composite"
 object
}

We just implement the graphical objects as vectors, except for the composite
that we represent as a list so it can contain different types of other graphical
objects. The points are just vectors of coordinates, the rectangles are represented
by two coordinates, the rectangle’s lower left and upper right corners, and circles
are represented by a center point and a radius.

For the draw methods, we can just use basic graphics functions:

draw.point <- function(object) {
 points(object["x"], object["y"])
}

draw.rectangle <- function(object) {
 rect(object["x1"], object["y1"], object["x2"], object["y2"])
}

Chapter 2 ■ Class hierarChies

28

draw.circle <- function(object) {
 plotrix::draw.circle(object["x"], object["y"], object["r"])
}

draw.composite <- function(object) {
 invisible(Map(draw, object))
}

We can use basic graphics functions except for the circles, where we use the
draw.circle function from the plotrix package for convenience. For the
collection class, we just call draw on all of the collection’s components. We
wrap the call to Map in invisible because we don’t want to print a list of objects
every time we call the function on the command prompt, but otherwise the
implementation is straightforward.

With these functions, we can construct plots of graphical elements, see
Figure 2-3.

plot(c(0, 10), c(0, 10),
 type = 'n', axes = FALSE, xlab = '', ylab = '')
draw(point(5,5))
draw(rectangle(2.5, 2.5, 7.5, 7.5))
draw(circle(5, 5, 4))

corners <- composite(point(2.5, 2.5), point(2.5, 7.5),
 point(7.5, 2.5), point(7.5, 7.5))
draw(corners)

Figure 2-3. Plot of graphical elements

Here we have to set the size of the plot so it actually contains the elements
we want to display. We have the bounding_box function for calculating what that
area is, and we can implement the different methods like this:

bounding_box.point <- function(object) {
 c(object["x"], object["y"], object["x"], object["y"])
}

Chapter 2 ■ Class hierarChies

29

bounding_box.rectangle <- function(object) {
 c(object["x1"], object["y1"], object["x2"], object["y2"])
}

bounding_box.circle <- function(object) {
 c(object["x"] - object["r"], object["y"] - object["r"],
 object["x"] + object["r"], object["y"] + object["r"])
}

bounding_box.composite <- function(object) {
 if (length(object) == 0) return(c(NA, NA, NA, NA))

 bb <- bounding_box(object[[1]])
 x1 <- bb[1]
 y1 <- bb[2]
 x2 <- bb[3]
 y2 <- bb[4]

 for (element in object) {
 bb <- bounding_box(element)
 x1 <- min(x1, bb[1])
 y1 <- min(y1, bb[2])
 x2 <- max(x2, bb[3])
 y2 <- max(y2, bb[4])
 }

 c(x1, y1, x2, y2)
}

With that, we can collect all the graphical elements we wish to plot in a
composite object and calculate the bounding box before we plot.

all <- composite(
 point(5,5),
 rectangle(2.5, 2.5, 7.5, 7.5),
 circle(5, 5, 4),
 composite(point(2.5, 2.5), point(2.5, 7.5),
 point(7.5, 2.5), point(7.5, 7.5))
)
bb <- bounding_box(all)
plot(c(bb[1], bb[3]), c(bb[2], bb[4]),
 type = 'n', axes = FALSE, xlab = '', ylab = '')
draw(all)

The result is, of course, just the same as seen in Figure 2-3.

Chapter 2 ■ Class hierarChies

30

Class Hierarchies As Interfaces with Refinements
In the examples so far, we have had an abstract class defining an interface
and then different concrete classes implementing it. In the case of the stack,
the different implementations gave us different time-complexity tradeoffs,
but the different implementations were conceptually all just stacks. In the
case of the graphical objects, the various concrete classes were conceptually
different objects, just objects that can all be treated as graphical objects and
thus manipulated through the general interface. These are common patterns in
software design, but when sub-classes (such as the different types of graphical
objects) represent different conceptual classes, they can often also extend the
interface.

Take, for instance, statistical models. These are usually implemented as classes
that implement some generic functions, such as predict or coef, that give us
a uniform interface to models and make it possible to switch between different
models in analysis without major rewrites of our analysis code. The generic
functions implemented by all models give us an interface for the most abstract kind
of models. All models must implement predict and coef, for example, for us to be
able to use them as drop-in replacements in our analysis code, but different types
of models might add additional functionality to this interface that is not relevant
for all models. We could, for example, imagine that decision trees add functionality
for pruning trees, e.g. a function prune. If all decision tree implementations have a
prune function, we can replace the implementation of decision trees and still reuse
our code, but because prune is not implemented for all models, we can only replace
one implementation of a decision tree with another decision tree, not any kind of
model. We would say that decision trees are specializations of models. All decision
trees are models, but not all models are decision trees. In term of classes, we would
have a super-class for models and a sub-class for decision trees that adds to the
interface of models functions such as prune. If we have different implementations
of decision trees, the decision tree class would typically also be abstract, and
different implementations would inherit from this class rather than the more
general model class (see Figure 2-4).

Chapter 2 ■ Class hierarChies

31

As another example, we can consider a bibliography, which is essentially
a list of publications. There are different kinds of publications, but all have at
least a name and one or more authors, so the most abstract way of representing
publications would just have those two attributes. One thing we might want to
do with a list of publications is to calculate bibliometrics, such as how many
citations a publication has. If each publication has a list of other works it cites,
then we could calculate this from a database of all relevant publications. If we
have a list of all publications a given author has created, we could also calculate
how many citations this particular author has received or derive statistics such
as the h-index.

There are different types of publications, so we can create sub-classes for
books and articles, for example. A book will have an associated publisher and
an ISBN while journal articles will have an associated journal and (typically) the
page-numbers in the journal where the article can be found. If we, for simplicity,
only allow those two types of publications, we can represent it as the class
hierarchy shown in Figure 2-5.

Figure 2-4. Hierarchy of models where decision trees are specializations of the
Model class that adds the prune function and gives us an additional abstract class
that instances of decision trees must implement

Chapter 2 ■ Class hierarChies

32

In this hierarchy, all the functions simply access attributes of objects; that is,
they just extract data that is stored in these. Accessing attributes via functions, as
opposed to accessing lists or vectors that are part of an object’s representation,
is generally a good idea. It allows you to change how you represent data without
having to change any code besides the accessor function. If your code only
accesses your objects through functions, then you have encapsulated the
implementation details, and updating your code later will be much simpler than
it would otherwise be.

Notice also that none of the accessor functions needs to differ between
the two concrete types of publications. The abstract Publication class accesses
name and authors and the additional attributes provided in the other classes
are disjunct. Because of this, there is no need to have generic functions for
implementing this class hierarchy. We can do it using just plain old functions.

publication interface
publication <- function(name, authors, citations) {
 structure(list(name = name, authors = authors,
 citations = citations),
 class = "publication")
}
name <- function(pub) pub$name
authors <- function(pub) pub$authors

articles
article <- function(name, authors, citations, journal, pages) {
 structure(list(name = name, authors = authors,
 citations = citations,
 journal = journal, pages = pages),
 class = c("article", "publication"))
}

Figure 2-5. Hierarchy of bibliography objects. The generic Publication class gives
each publication a name and a list of authors and a list of other publications
cited. Two concrete types of publications, Article and Book, add extra attributes.

Chapter 2 ■ Class hierarChies

33

journal <- function(pub) pub$journal
pages <- function(pub) pub$pages

book
book <- function(name, authors, citations, publisher, ISBN) {
 structure(list(name = name, authors = authors,
 citations = citations,
 publisher = publisher, ISBN = ISBN),
 class = c("book", "publication"))
}
publisher <- function(pub) pub$publisher
ISBN <- function(pub) pub$ISBN

Generic functions are perfect for getting different behavior in different
classes for the same conceptual operation, but when we can get the action we
desire using plain old functions there is no reason to invoke generic functions.

The implementation of publications is straightforward except when it comes to
the class attributes set in the constructor functions. Here we set the classes to lists
of class names instead of just the class names. This is how we specify that a "book"
object or an "article" object is also a "publication" object. The design we have
in mind requires that books and articles are publications, but since S3 classes are
just names represented as strings, we cannot make this explicit in R. Instead we
represent the class hierarchy by having the class attributes be lists of class names,
going up the hierarchy from the most specialized to the most abstract object.
How R interprets such a list of class names, and how it uses it to find the right
implementations of generic functions, is the topic of the next chapter.

It is not uncommon to have a class hierarchy similar to the one we made
here for publications, but there are some slight problems with it. To access
book-specific attributes, you need to know that the object you are working on is
a book; treating publications in aggregates without having to write specialized
code for dealing with books or articles is the purpose of using object-orientation
and having the publication hierarchy to begin with. There is nothing wrong
with having a class hierarchy where sub-classes add functions to the interface
of their superclass, but if you find yourself writing such a hierarchy, you should
think carefully about how objects from the hierarchy should be accessed and
manipulated.

It is generally best to put functions as high up in the hierarchy as it makes
sense to do, thus ensuring that as many classes from the hierarchy as possible will
support them. With generic functions, the different subclasses can implement the
methods very differently, but all objects you manipulate will at least implement
the methods you call them on. With the publication class hierarchy we have
designed here, the only things we can really do if we want to write reusable
code are to access names and authors and construct graphs of citations. The
special attributes for books and articles are only available in a type-safe way if we
explicitly check that we are accessing books and articles, respectively.

Chapter 2 ■ Class hierarChies

34

We would probably like code to format publications for making publication
lists and such. Here we would need the information stored in books and articles,
but since accessing these directly requires that we first test the class of the
objects, the code would be a bit cumbersome and likely also error-prone. Worse,
if we added another publication type to the hierarchy (for example, conference
contributions), we would need to update all code that does this class checking and
handles the different classes in different ways to handle this type as well. It is exactly
to avoid this that we need generic functions, so the right design would be to have a
generic function for formatting citations and specialize it for the sub-classes.

format <- function(publ) UseMethod("format")

format.article <- function(publ) {
 paste(name(publ), authors(publ),
 journal(publ), pages(publ), sep = ", ")
}

format.book <- function(publ) {
 paste(name(publ), authors(publ),
 publisher(publ), ISBN(publ), sep = ", ")
}

We could then use this format function in another generic function, print,
for displaying publications:

print.publication <- function(x, ...) print(format(x))

When we subclass to extend an interface, we add functions that only a subset
of objects will support. Sometimes this is necessary when there are operations
that truly only make sense for some objects—like pruning decision trees, where
pruning something like a linear model is not meaningful—but as a general rule,
I would suggest that you keep specialization like this to a minimum. It might feel
like a good design to have a large hierarchy of more or less specialized classes,
but when you have to work with objects from the hierarchy you want them to be
as similar as you can get them. You want to be able to treat all of them using the
same (generic) functions, so, in general, you want to stick to the most abstract
interface in any case. You might as well design your code with that in mind.

Being able to treat objects uniformly is also the reason we made a collection
of graphical objects be a graphical object in itself. If we had not, then we would
need to explicitly deal with collections of objects and write recursive functions
to traverse them. By making the collection a class of graphical objects, we could
hide this complexity in the generic functions. This is a very common trick and is
called the composite design pattern.

35© Thomas Mailund 2017
T. Mailund, Advanced Object-Oriented Programming in R, DOI 10.1007/978-1-4842-2919-4_3

CHAPTER 3

Implementation Reuse

The easiest code to write is the code that is already written. If you can reuse
existing code, it is always better than writing new code. You don’t have to spend
time writing the code, and if the existing code has been around for a while there
is a good chance that it is well tested and thus more likely to be correct than the
new code you introduce. So your aim as a programmer should be to write as
little new code as possible, paradoxical as it sounds.

The way to reuse code, however, is not to copy chunks of existing code from
one place in your program and paste it into another. You will be reusing the code
this way, true, but you will end up with two copies of the same code. If you find, at
some point in the future, that you have to modify this code, perhaps because there
was a bug hidden in it despite the tests, you will have to remember to change it
both places. It is hard to remember when you have such duplicated code and if the
two copies start drifting apart, it is a nightmare trying to maintain it.

The way to reuse code is to write functions that can be used in many
different contexts. Write functions to deal with a single problem, and deal with
it well, while assuming little about the context in which they will be called.
Constructing a program out of small, reusable building blocks makes your
code easier to maintain and simpler to extend.

In object-oriented programming, we often add another aspect to code
reuse, however. When a class defines generic functions, all implementations
of the class and its subclasses must implement these generic functions. If
each class implements all of the generic functions in unique ways, there is
little opportunity for reuse, but it is rarely the case that everything is unique.
Often there are good default solutions to a given problem that will work for
most classes, while only a few classes need to implement special functions. In
object-oriented programming, you want to implement functions at the highest
level in the class hierarchy where it is possible and let subclasses reuse these
implementations when possible by calling general functions instead of providing
their own specialized functions. Any class in the hierarchy might have to
specialize a subset of the generic functions, and any subclass of should use the
most specialized function in the hierarchy above it, but in general it should only
define its own version of generic functions if they are different from the ones

Chapter 3 ■ ImplementatIon reuse

36

defined in its superclasses. The remaining functions it should just reuse. We say
that it inherits such functions from its superclass and the look-up mechanism for
generic functions automates this to a high degree.

Deep class hierarchies are rarely used in day-to-day R programming, and
rather than making up an artificial example that wouldn’t be realistic for actual
code—and rather than presenting examples where much of the code would
not be relevant for the presentation of class hierarchies—I will use abstract
examples. If you are more interested in realistic use of object-orientated
programming in R, I give a realistic example in Chapter 4, although one that is
only a single class deep.

Method Lookup in Class Hierarchies
As we saw earlier, for a generic function f calling f(x) will make R look for a
function with a name derived from class(x). If class(x) is a single string, say
"A", it will look for f.A. If R finds such a function it will call it, and if it doesn’t,
it will look for f.default and call that. Otherwise, it will give up and give you
an error if there is no f.default. This is how R behaves if the class of an object
is a single string. If it is a sequence of class names, it instead goes through this
sequence and attempts to find functions for each of the classes in the sequence
in turn.

Consider the three classes A, B, and C, defined below.

A <- function() {
 structure(list(), class = "A")
}

B <- function() {
 structure(list(), class = c("B", "A"))
}

C <- function() {
 structure(list(), class = c("C", "B", "A"))
}

Since classes are just represented by strings, we are not really explicitly
defining them; we just have three functions that create objects with the class
attribute set. Functions that create objects are known as constructors and for the
S3 system, this is really the only way of defining classes.

We can create instances of these and check their classes.

x <- A()
y <- B()
z <- C()

http://dx.doi.org/10.1007/978-1-4842-2919-4_4

Chapter 3 ■ ImplementatIon reuse

37

class(x)
[1] "A"
class(y)
[1] "B" "A"
class(z)
[1] "C" "B" "A"

If we define a generic function that only has a default implementation

f <- function(x) UseMethod("f")
f.default <- function(x) print("f.default")

calling it on all three objects will just give us the default behavior.

f(x)
[1] "f.default"
f(y)
[1] "f.default"
f(z)
[1] "f.default"

If, on the other hand, we define a generic function that has a default
implementation and an implementation for the class A, calling it on the three
objects all results in the A function being called.

g <- function(x) UseMethod("g")
g.default <- function(x) print("g.default")
g.A <- function(x) print("g.A")

g(x)
[1] "g.A"
g(y)
[1] "g.A"
g(z)
[1] "g.A"

For x we know why this happens. R looks for g.A and finds it. For y, on the
other hand, R looks for g.B and doesn’t find it. If the class of y was just "B" that
would be the end of the search and R would call g.default. But the class of y is
both "B" and "A", so when R doesn’t find g.B it instead searches for g.A, which
does exist, and invokes that. Similarly, when we call g(z), R first searches for g.C,
doesn’t find it, and so it then searches for g.B, which it also doesn’t find. It then
finally finds that g.A exists and it calls that. So all three calls are to the same g.A
function. Classes B and C inherited the implementation of g from class A.

We can now try adding a generic function with implementations for both class
A and B.

Chapter 3 ■ ImplementatIon reuse

38

h <- function(x) UseMethod("h")
h.default <- function(x) print("h.default")
h.A <- function(x) print("h.A")
h.B <- function(x) print("h.B")

h(x)
[1] "h.A"
h(y)
[1] "h.B"
h(z)
[1] "h.B"

In this case, calling h(x) invokes h.A—naturally, the only class for x is A and
h.A is implemented—while calling h(y) and h(z) both invokes h.B. In both
cases, class B is found before class A in the class sequence, and since h.B exists it
is invoked, and the search for matching functions stops. The h.A function exists,
but we stop searching after the first match, so we never get to it.

For completeness, if we add a function that has implementations for all the
three classes, the most specialized function will be called for each.

i <- function(x) UseMethod("i")
i.default <- function(x) print("i.default")
i.A <- function(x) print("i.A")
i.B <- function(x) print("i.B")
i.C <- function(x) print("i.C")

i(x)
[1] "i.A"
i(y)
[1] "i.B"
i(z)
[1] "i.C"

Getting the Hierarchy Correct in the Constructors
When we created the three classes A, B, and C above we explicitly created the
class list representing the class hierarchy in each constructor. This is fine for a
small hierarchy like the one we have here, where we define all three classes close
together and know that they are supposed to work together, but it does introduce
a potential source of errors if the code grows into something more complex. For
example, we might at some point want to put another class into the hierarchy
between A and B. We might remember to update the class list for B, but will
we also remember to update it for C? If C is in a different file, perhaps, and we
haven’t modified it in years?

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ ImplementatIon reuse

39

Since the class hierarchy is entirely represented in these class lists—there
is no explicit hierarchy, but only these implicit lists—we must be extra careful
to ensure that our code always matches our design. We should avoid explicitly
representing the hierarchy in every constructor.

One way to ensure this is to always invoke the immediate superclass
constructor when you define a new class. R doesn’t know anything about class
hierarchies, and it doesn’t know which superclass you have until after you have
created the class list. Consequently, there is no automatic way of doing this; you
must manually call the constructor of the superclass, obtain an object this way,
and then prepend the new class name to its class list.

A <- function() {
 structure(list(), class = "A")
}

B <- function() {
 this <- A()
 class(this) <- c("B", class(this))
 this
}

C <- function() {
 this <- B()
 class(this) <- c("C", class(this))
 this
}

Using this programming idiom also saves you from another potential
error source. The constructor of a class often creates an object with attributes
that it expects to be in a consistent state in its functions. If you do not call the
constructor, but set up these attributes in the constructor of a subclass, you
might violate invariants the superclass depends upon. You will probably be
careful not to do that when you write the subclass constructor, but the superclass
implementation could be changed in the future. When that happens, the subclass
implementation could be broken. It is hell to try to debug an error that shows up
because the code has changed in an entirely different location in the code.

You are generally better off if you always call the constructor of the superclass
and then modify the resulting object before you return the object of the subclass.

NextMethod
When we specialize generic functions, we do not always need to implement
everything from scratch either. Sometimes we can reuse implementations from
more abstract classes; we just need to tweak the results of them a little. We can
always call the function of a superclass explicitly using the full name of the

Chapter 3 ■ ImplementatIon reuse

40

function, but this will only work if the class actually implements its own version.
It will not work if it just inherits it, and you have to be careful every time you
modify the class hierarchy that you are not breaking assumptions underlying
such direct calls.

A better solution is to use the NextMethod function. This function lets you call
inherited functions in a way that resembles UseMethod, and that uses the class
sequence. The NextMethod function is magical in a similar way to UseMethod.
It knows which generic function you are implementing—although, as with
UseMethod you can override this—and it will search through the class sequence
of the first object of your function. Again, you can override this, but it is such a
common idiom that you probably shouldn’t. Unlike UseMethod, though, it doesn’t
terminate the function you call it from, and you can use the value it returns.

As an example, we can consider the bibliography objects we discussed at the
end of the previous chapter. Here we had the superclass "publication" and the
two subclasses "article" and "book", and we had a generic method, format,
for formatting citations. We can write a format function for the publication
class that formats the name and the authors’ list, and in the specializations of
the method, we can call NextMethod to obtain this string and extend it with
information available in the sub-classes.

format.publication <- function(publ) {
 paste(name(publ), authors(publ), sep = ", ")
}

format.article <- function(publ) {
 paste(NextMethod(), journal(publ), pages(publ), sep = ", ")
}

format.book <- function(publ) {
 paste(NextMethod(), publisher(publ), ISBN(publ), sep = ", ")
}

When we call NextMethod, R will search through the class sequence—
starting where it left off last time it did the search—for a class that implements
the generic function we are currently evaluating.

We can use the A, B, and C classes to see this in action. If we define functions
that all call NextMethod and evaluate it for objects of each of the three classes, we
will see that the A object, x, will evaluate the A method and the default function;
the B object, y will evaluate the B function and then continue with the A function
before the default version; and the C object, z, will evaluate all the functions.

f <- function(x) UseMethod("f")
f.default <- function(x) print("f.default")
f.A <- function(x) {

Chapter 3 ■ ImplementatIon reuse

41

 print("f.A")
 NextMethod()
}
f.B <- function(x) {
 print("f.B")
 NextMethod()
}
f.C <- function(x) {
 print("f.C")
 NextMethod()
}

f(x)
[1] "f.A"
[1] "f.default"
f(y)
[1] "f.B"
[1] "f.A"
[1] "f.default"
f(z)
[1] "f.C"
[1] "f.B"
[1] "f.A"
[1] "f.default"

If we implement another function, where we only implement version for
classes A and C but not for B, we will see the C objects evaluating the C version
and then the A version; since there is no B version, the search when we call
NextMethod will not find it and will thus continue to the A version.

j <- function(x) UseMethod("j")
j.default <- function(x) print("j.default")
j.A <- function(x) {
 print("j.A")
 NextMethod()
}
j.C <- function(x) {
 print("j.C")
 NextMethod()
}

j(x)
[1] "j.A"
[1] "j.default"

Chapter 3 ■ ImplementatIon reuse

42

j(y)
[1] "j.A"
[1] "j.default"
j(z)
[1] "j.C"
[1] "j.A"
[1] "j.default"

All the method dispatching—the technical term for this looking up of
implementations of generic functions—is entirely based on the list of classes in
the class attribute. Class hierarchies are not explicitly represented and it is your
own responsibility that the class lists reflect the design of class hierarchies you
have in mind. If we reverse the order of the class list, R is just as happy to work
with this.

f(z)
[1] "f.C"
[1] "f.B"
[1] "f.A"
[1] "f.default"
class(z) <- rev(class(z))
f(z)
[1] "f.A"
[1] "f.B"
[1] "f.C"
[1] "f.default"

If we reverse the order of the classes, the search for the first function in
UseMethod just starts at the most abstract class and works its way down the
list until it finds an implementation. In this case, it finds it right away, and the
calls to NextMethod just continue searching from where UseMethod or previous
NextMethod calls ended, exactly like before. The default function is always last
here because once you get through the list, the default is invoked. If the A class
is an abstract class that C specializes, this will, of course, give you incorrect
behavior. You would invoke the abstract and not the specialized function. But
the mechanism for resolving generic functions into concrete classes does not
know about class hierarchies, so it will just search through the list.

This also means that you can write different classes that consider the
hierarchy of other classes to be completely different. If one class list is c("A",
"B", "C") and another is c("B", "C", "A"), the first considers C the most
abstract and A the most derived class, while the second considers A the most
abstract and B the most derived. The mechanism for how R finds the function to
call is simple enough, but if you begin writing code where your class hierarchy
depends on which object you are looking at, you are on the road to madness.

43© Thomas Mailund 2017
T. Mailund, Advanced Object-Oriented Programming in R, DOI 10.1007/978-1-4842-2919-4_4

CHAPTER 4

Statistical Models

Truth be told, you won’t be using object-oriented programming in most day-
to-day R programming. Most analyses you do in R involve the transformation of
data, typically implemented as some sort of data flow, which is best captured by
functional programming. When you write such pipelines, you will probably be
using polymorphic functions, but you rarely need to create your own classes. If
you need to implement a new statistical model, however, you usually do want to
create a new class.

A lot of data analysis requires that you infer parameters of interest or you build
a model to predict properties of your data, but in many of those cases, you don’t
necessarily need to know exactly how we constructed the model, how it infers
parameters, or how it predicts new values. You can use the coefficients function
to get inferred parameters from a fitted model, or you can use the predict
function to predict new values, and you can use those two functions with almost
any statistical model. That is because most models are implemented as classes
with implementations for the generic functions coefficients and predict.

As an example of object-oriented programming in action, we can implement
our own model in this chapter. We will keep it simple, so we can focus on
the programming aspects and not the statistical theory, but still implement
something that isn’t already built into R. We will implement a version of
Bayesian linear regression.

Bayesian Linear Regression
The simplest form of linear regression fits a line to data points. Imagine we have
vectors x and y, and we wish to produce coefficients w[1] and w[2] such that
y[i] = w[1] + w[2] x[i] + e[i] where the e is a vector of errors that we want
to make as small as possible. We typically assume that the errors are identically
normally distributed when we consider it a statistical problem, and so we want to
have the minimal variance of the errors. When fitting linear models with the lm
function, you get the maximum likelihood values for the weights w[1] and w[2],
but if you wish to do Bayesian statistics you should instead consider this weight
vector w as a random variable, and fit it to the data in x, while y means updating it
from its prior distribution to its posterior distribution.

Chapter 4 ■ StatiStiCal ModelS

44

A typical distribution for linear regression weights is the normal
distribution. If we consider the weights’ multivariate normal distributed as their
prior distribution, then their posterior distribution given the data will also be
normally distributed, which makes the mathematics very convenient.

We will assume that the prior distribution of w is a normal distribution with
mean zero and independent components, so a diagonal covariance matrix. This
means that, on average, we believe the line we are fitting to be flat and going
through the plane origin, but how strongly we believe this depend on values in
the covariance matrix. This we will parameterize with a so-called hyperparameter,
a, that is the precision—one over the variance—of the weight components. The
covariance matrix will have 1/a on its diagonal and zeros off-diagonal.

We can represent a distribution over weights as the mean and covariance
matrix of a multinomial normal distribution and construct the prior distribution
from the precision like this:

weight_distribution <- function(mu, S) {
 structure(list(mu = mu, S = S), class = "wdist")
}

prior_distribution <- function(a) {
 mu = c(0, 0)
 S = diag(1/a, nrow = 2, ncol = 2)
 weight_distribution(mu, S)
}

We give the weights distribution a class, just to distinguish them from plain
lists, but otherwise, there is nothing special to see here.

If we wish to sample from this distribution, we can use the mvrnorm function
from the MASS package.

sample_weights <- function(n, distribution) {
 MASS::mvrnorm(n = n,
 mu = distribution$mu,
 Sigma = distribution$S)
}

We can try to sample some lines from the prior distribution and plot them.
We can, of course, plot the sample w vectors as points in the plane, but since they
represent lines, we will display them as such (see Figure 4-1).

Chapter 4 ■ StatiStiCal ModelS

45

prior <- prior_distribution(1)
(w <- sample_weights(5, prior))
[,1] [,2]
[1,] 0.6029080 -0.84085548
[2,] 0.4721664 1.38435934
[3,] 0.6353713 -1.25549186
[4,] 0.2857736 0.07014277
[5,] -0.1381082 1.71144087
plot(c(-1, 1), c(-1, 1), type = 'n',
 xlab = '', ylab = '')
plot_lines <- function(w) {
 for (i in 1:nrow(w)) {
 abline(a = w[i, 1], b = w[i, 2])
 }
}
plot_lines(w)

Figure 4-1. Samples from the prior of lines

When we observe data in the form of matching X and y values, we must
update the w vector to reflect this, which means updating the distribution of the
weights. I won’t derive the math (this is not a math textbook, after all), but if mu0 is
the prior mean and S0 the prior covariance matrix, then the posterior mean and
covariance matrix are computed thus:

S <- solve(S0 + b * t(X) %*% X)
mu <- S %*% (solve(S0) %*% mu0 + b * t(X) %*% y)

Chapter 4 ■ StatiStiCal ModelS

46

You cannot execute the code as it is right here—it depends on variables
we haven’t defined—but it is the body of the function we define shortly. It is a
little bit of linear algebra that involves the prior distribution and the observed
values. The parameters we haven’t seen before in these expressions are b and
X. The former is the precision of the error terms—which we assume to know
and represent as this hyperparameter—and the latter captures the x values. We
cannot use x alone because we want to use two weights to represent lines. When
we write w[1] + w[2] * x[i] for the estimate of y[i], we can think of it as the
vector product of w and c(0,x[i]), which is exactly what we do. We represent all
x[i] as rows c(0,x[i]) in the matrix X. So we estimate y[i] = w[1] *
X[i, 1] + w[2] * X[I, 2] in this notation, or y = X %*% w.

As a fitting function, we can write it as this:

fit_posterior <- function(x, y, b, prior) {
 mu0 <- prior$mu
 S0 <- prior$S

 X <- matrix(c(rep(1, length(x)), x), ncol = 2)

 S <- solve(S0 + b * t(X) %*% X)
 mu <- S %*% (solve(S0) %*% mu0 + b * t(X) %*% y)

 weight_distribution(mu = mu, S = S)
}

We can try to plot some points, fit the model to these, and then plot lines
sampled from the posterior. These should fall around the points now, unlike the
lines sampled from the prior. The more points we use to fit the model, the tighter
that lines sampled from the posterior will fall around the points (see Figure 4-2).

x <- rnorm(20)
y <- 0.2 + 1.3 * x + rnorm(20)
plot(x, y)

posterior <- fit_posterior(x, y, 1, prior)
w <- sample_weights(5, posterior)
plot_lines(w)

Chapter 4 ■ StatiStiCal ModelS

47

The way we update the distribution of weights here from the prior
distribution to the posterior doesn’t require that the prior distribution is the
exact one we created using the variable a. Any distribution can be used as the
prior, and in Bayesian statistics, it would not be unusual to update a posterior
distribution as more and more data is added. We can start with the prior we just
created and fit it to some data to get a posterior. Then if we get more data, we can
use the first posterior as a prior for fitting more data and getting a new posterior
that captures the knowledge we have gained from seeing all the data. If we have
all the data from the get-go, there is no particular benefit to doing this, but in an
application where data comes streaming, we can exploit this to quickly update
our knowledge each time new data is available.

Since this book is not about Bayesian statistics, and since we only use
Bayesian linear regression as an example of writing a new statistical model, we
will not explore this further here.

Model Matrices
The X matrix we used when fitting the posterior is an example of a so-called model
matrix or design matrix. Using a matrix this way, fitting a response variable, y,
to some expression, here 1 + x (in a sense, we used the rows c(1, x[i])), is a
general approach to fitting data. Linear models are called linear not because we
fit data with a line, but because the weights, the w vector we fit, are used linearly,
in the mathematical sense, in the fitted model. If we have fitted the weights to the
vector w, the line we have fitted is given by X %*% w. That is, our line is the matrix
product of the model matrix and the weight vector. The result is a line because X
has the form we gave it, but it doesn’t have to represent a line for the model to be
a linear model. We can transform the input data (here our vector x) in any way we
want to before we fit the model. You might have used log-transformations before,
or fitted data to a polynomial, and those would also be examples of linear models.

Figure 4-2. Samples of posterior lines

Chapter 4 ■ StatiStiCal ModelS

48

You can fit various kinds of transformed data using the function we wrote
above if you just construct the X matrix in different ways. As long as each data
point you have becomes a row in X, it doesn’t matter what you do. The same
mathematics work. To fit a quadratic equation to the data instead of a line, you
just have to make the ith row of X be c(1, x[i], x[i]**2), for example.

In R, you have a very powerful mechanism for constructing model matrices
from formulae. Whenever you have used a formula such as y ~ x + y to fit y to
two variables, x and z, you have used this feature. The formula is translated into
a model matrix, and once you have the matrix, the code that does the model
fitting doesn’t need to know anything else about your data.

The function you use to translate a formula into a model matrix is called
model.matrix. Even though it has a period in its name, it isn’t a generic function. It
just has an unfortunate name for historical reasons.

The function will take a formula as input and produce a model matrix. It will
find the values for the variables in the formula by looking in its scope, and we
can use it like this:

x <- rnorm(5)
y <- 1.2 + 2 * x + rnorm(5)
model.matrix(y ~ x)
(Intercept) x
1 1 -1.1365828
2 1 0.8548304
3 1 -0.5783704
4 1 0.4963615
5 1 -0.7600579
attr(,"assign")
[1] 0 1

Relying on global variables like this is risky coding, though, so we often put
our data in a data frame instead.

d <- data.frame(x, y)

If we do this, we can provide a data frame to the model.matrix function and
it will get the variables from there.

model.matrix(y ~ x, data = d)
(Intercept) x
1 1 -1.1365828
2 1 0.8548304
3 1 -0.5783704
4 1 0.4963615
5 1 -0.7600579
attr(,"assign")
[1] 0 1

Chapter 4 ■ StatiStiCal ModelS

49

If the formula uses variables that are not found in the data frame, the
model.matrix will still find the missing variables in the calling scope, but this
is really risky coding, so you should avoid this.

The formula determines how the model matrix is constructed. The formula
y ~ x gives us the model matrix we used above, where we have 1 to capture the
intercept in the first column, and we have the x values in the second column to
capture the incline of the line. We can remove the intercept using the formula
y ~ x - 1:

model.matrix(y ~ x - 1, data = d)
x
1 -1.1365828
2 0.8548304
3 -0.5783704
4 0.4963615
5 -0.7600579
attr(,"assign")
[1] 1

We can also add terms; for example, we can fit a quadratic formula to the
data by constructing this model matrix:

model.matrix(y ~ x + I(x**2), data = d)
(Intercept) x I(x^2)
1 1 -1.1365828 1.2918205
2 1 0.8548304 0.7307351
3 1 -0.5783704 0.3345123
4 1 0.4963615 0.2463748
5 1 -0.7600579 0.5776881
attr(,"assign")
[1] 0 1 2

Here, we need to wrap the squared x in the function I to get R to use the
actually squared values of x. Inside formulae, products are interpreted as
interaction, but by wrapping x**2 in I, we make it the square of the x values
explicitly.

The model matrix doesn’t include the response variable, y, so we cannot get
that from it. Instead, we can use a related function, model.frame, that also gives
us a column for the response.

Chapter 4 ■ StatiStiCal ModelS

50

model.frame(y ~ x + I(x**2), data = d)
y x I(x^2)
1 -1.4145519 -1.1365828 1.291820....
2 0.8073317 0.8548304 0.730735....
3 -0.2584431 -0.5783704 0.334512....
4 0.9203396 0.4963615 0.246374....
5 -0.5997820 -0.7600579 0.577688....

You can then extract the response variable using the function model.response,
like this:

model.response(model.frame(y ~ x + I(x**2), data = d))
1 2 3 4
-1.4145519 0.8073317 -0.2584431 0.9203396
5
-0.5997820

With that machinery in place, we can generalize our distributions and model
fitting to work with general formulae. We can write the prior function like this:

prior_distribution <- function(formula, a, data) {
 n <- ncol(model.matrix(formula, data = data))
 mu <- rep(0, n)
 S <- diag(1/a, nrow = n, ncol = n)
 weight_distribution(mu, S)
}

Ideally, a prior shouldn’t depend on any data, but the form of a model
matrix does depend on the type of the data we use. Numerical data will be
represented as a single column in the model matrix, but factors are handled as
a binary vector for each level in a formula, so we do need to know what kind of
data we are going to need. We could have added n as a parameter here and made
the function independent of any data, but I chose to include a data frame as
another solution. We don’t use the actual data, though; we just use it to get the
number of columns in the model frame.

The function for fitting the data changes less, though. It just uses the
model.matrix function to construct the model matrix instead of the explicit
construction we did earlier.

fit_posterior <- function(formula, b, prior, data) {
 mu0 <- prior$mu
 S0 <- prior$S

 X <- model.matrix(formula, data = data)

Chapter 4 ■ StatiStiCal ModelS

51

 S <- solve(S0 + b * t(X) %*% X)
 mu <- S %*% (solve(S0) %*% mu0 + b * t(X) %*% y)

 weight_distribution(mu = mu, S = S)
}

With that in place, we can fit a line as before, but now using a formula.

d <- {
 x <- rnorm(5)
 y <- 1.2 + 2 * x + rnorm(5)
 data.frame(x = x, y = y)
}

prior <- prior_distribution(y ~ x, 1, d)
posterior <- fit_posterior(y ~ x, 1, prior, d)
posterior
$mu
[,1]
(Intercept) 1.1979166
x 0.2875647
##
$S
(Intercept) x
(Intercept) 0.16935519 -0.04441203
x -0.04441203 0.73364645
##
attr(,"class")
[1] "wdist"

If we, instead, want to fit a quadratic function, we do not need to change any
of the functions, we can just provide a different formula.

prior <- prior_distribution(y ~ x + I(x**2), 1, d)
posterior <- fit_posterior(y ~ x + I(x**2), 1, prior, d)
posterior
$mu
[,1]
(Intercept) 1.1906733
x 0.2815418
I(x^2) 0.1185518
##
$S

Chapter 4 ■ StatiStiCal ModelS

52

(Intercept) x I(x^2)
(Intercept) 0.17301554 -0.04136841 -0.05990922
x -0.04136841 0.73617725 -0.04981521
I(x^2) -0.05990922 -0.04981521 0.98053972
##
attr(,"class")
[1] "wdist"

Constructing Fitted Model Objects
Now, we want to wrap fitted models in a class so we can write a constructor for
them. For fitted models, it is traditional to include the formula, the data, and the
function call together with the fitted model, so we will put those as attributes in
the objects. The constructor could look like this:

blm <- function(formula, b, data, prior = NULL, a = NULL) {

 if (is.null(prior)) {
 if (is.null(a)) stop("Without a prior you must provide a.")
 prior <- prior_distribution(formula, a, data)

 } else {
 if (inherits(prior, "blm")) {
 prior <- prior$prior
 }
 }
 if (!inherits(prior, "wdist")) {
 stop("The provided prior does not have the expected type.")
 }

 posterior <- fit_posterior(formula, b, prior, data)

 structure(
 list(formula = formula,
 data = model.frame(formula, data),
 dist = posterior,
 call = match.call()),
 class = "blm"
)
}

The tests at the beginning of the constructor allow us to specify the prior
as either a normal distribution or a previously fitted blm object. If we get a prior
distribution, we probably should also check that this prior is compatible with the
actual formula, but I will let you write such a check yourself to try that out.

Chapter 4 ■ StatiStiCal ModelS

53

If we print objects fitted using the blm function, they will just be printed as a
list, but we can provide our own print function by specializing the print generic
function. Here, it is tradition to provide the function call used to specify the model,
so that is all I will do for now.

print.blm <- function(x, ...) {
 print(x$call)
}

We have to match the parameters of the generic function, which is why the
arguments are x and…. All we do, however, is print the call attribute of the object.

Now, we can fit data and get a blm object like this:

(model <- blm(y ~ x + I(x**2), a = 1, b = 1, data = d))
blm(formula = y ~ x + I(x^2), b = 1, data = d, a = 1)

Coefficients and Confidence Intervals
Once we have a fitted model, we might want to get the fitted values. This is
traditionally done using the generic function coef, which should simply return
those. For the Bayesian linear regression model, the fitted values are whole
distributions, but we can take the mean values as point estimates and return those,
and so implement the coef function like this:

coef.blm <- function(object, ...) {
 t(object$dist$mu)
}
coef(model)
(Intercept) x I(x^2)
[1,] 1.190673 0.2815418 0.1185518

Here, I transform the mean matrix to get the coefficients in a form similar to
what you would get with a traditional linear model, as fitted with the function lm,
but other than that, the function just returns the means.

For classical frequentist models, we often also want the confidence intervals
for the parameters, and the traditional way to get those is using the confint
function. This function has the signature:

confint(object, parm, level = 0.95, ...)

The object parameter is the fitted model, and the parm contains the
parameters we want the confidence intervals for. If it is missing we should return
all the model parameters, and the level parameter specifies at which confidence
levels we want the intervals.

Chapter 4 ■ StatiStiCal ModelS

54

Again, for a Bayesian model, we have whole distributions and not just
confidence intervals, but we can get something similar for our model by
getting the quantiles from the marginal distributions for each parameter. The
parameters are normally distributed, and we can get the means and standard
deviations from the means and covariance matrix, respectively. After that, we
can get the quantiles using the qnorm function and construct intervals like this:

confint.blm <- function(object, parm, level = 0.95, ...) {
 if (missing(parm)) {
 parm <- rownames(object$dist$mu)
 }

 means <- object$dist$mu[parm,]
 sds <- sqrt(diag(object$dist$S)[parm])

 lower_q <- qnorm(p = (1-level)/2,
 mean = means,
 sd = sds)
 upper_q <- qnorm(p = 1 - (1-level)/2,
 mean = means,
 sd = sds)

 quantiles <- cbind(lower_q, upper_q)
 quantile_names <- paste(
 100 * c((1-level)/2, 1 - (1 -level)/2),
 "%",
 sep = ""
)
 colnames(quantiles) <- quantile_names

 quantiles
}

confint(model)
2.5% 97.5%
(Intercept) 0.3754236 2.005923
x -1.4001225 1.963206
I(x^2) -1.8222478 2.059351

Predicting Response Variables
When it comes to predicting response variables for new data, there is a little
more work to be done for the model matrix. If we don’t have the response
variable when we create a model matrix, we will get an error, even though the

Chapter 4 ■ StatiStiCal ModelS

55

model matrix doesn’t actually contain a column with it. We can see this if we
remove the x and y variables we used when creating the data frame earlier.

rm(x) ; rm(y)

We are fine if we build a model matrix from the data frame that has both x
and y.

model.matrix(y ~ x + I(x**2), data = d)
(Intercept) x I(x^2)
1 1 -0.20409732 0.041655716
2 1 -0.22561419 0.050901761
3 1 0.34702845 0.120428747
4 1 0.03236784 0.001047677
5 1 0.41353129 0.171008128
attr(,"assign")
[1] 0 1 2

If we create a data frame that only has x values, though, we get an error.

dd <- data.frame(x = rnorm(5))
model.matrix(y ~ x + I(x**2), data = dd)
Error in eval(expr, envir, enclos): object 'y' not found

This, of course, is a problem since we are interested in predicting response
variables exactly when we do not have them. This is ironic, considering that the
model matrix never actually contains the response variable; nevertheless, this is
how R works.

To remove the response variable from a formula, before we construct a
model matrix, we need to use the function delete.response. Unfortunately, this
function does not work directly on formulae, but on so-called “terms” objects.
We can translate a formula into its terms using the terms function. So to remove
the terms from a formula, we need the following construction:

delete.response(terms(y ~ x))

The result is a terms object, but since the terms class is a specialization
of the formula class, we can use it directly with the model.matrix function to
construct the model matrix.

Chapter 4 ■ StatiStiCal ModelS

56

model.matrix(delete.response(terms(y ~ x)), data = dd)
(Intercept) x
1 1 0.49841617
2 1 -1.74230249
3 1 0.97552910
4 1 -0.02408287
5 1 0.67568448
attr(,"assign")
[1] 0 1

Now, for actually predicting data, we traditionally use the predict generic
function. This function has the following signature:

function(object, ...)

Which, quite frankly, isn’t that useful. We can add to it, though, as the lm
class does, so we can add a parameter newdata to it. From newdata we will
construct a model matrix and make predictions for the data in this. If we just
want point estimates for the new data, we can simply take the inner product of
the mean weights and each row in the model matrix so we can implement the
predict function like this:

predict.blm <- function(object, newdata, ...) {
 updated_terms <- delete.response(terms(object$formula))
 X <- model.matrix(updated_terms, data = newdata)

 predictions <- vector("numeric", length = nrow(X))
 for (i in seq_along(predictions)) {
 predictions[i] <- t(object$dist$mu) %*% X[i,]
 }
 predictions
}

predict(model, d)
[1] 1.138150 1.133188 1.302653 1.199910 1.327373

To check the model, we can plot the predicted values against the true
response values. With the data we have used up till now, though, with only five
data points, we don’t expect the predictions to be particularly good, and we
don’t expect such a plot to show much, but we can try with a few more data
points (see Figure 4-3).

Chapter 4 ■ StatiStiCal ModelS

57

d <- {
 x <- rnorm(50)
 y <- 0.2 + 1.4 * x + rnorm(50)
 data.frame(x = x, y = y)
}
model <- blm(y ~ x, d, a = 1, b = 1)
plot(d$y, predict(model, d),
 xlab = "True responses",
 ylab = "Predicted responses")

Figure 4-3. True versus predicted values

Predicting values for the original data is so common that there is another
generic function for doing this, called fitted. We can implement it like this:

fitted.blm <- function(object, ...) {
 predict(object, newdata = object$data, ...)
}

With this function, we could then create the plot as follows:

plot(d$y, fitted(model),
 xlab = "True responses",
 ylab = "Predicted responses")

We can, of course, do more than simply predict point estimates. We have
a distribution of weights, which means that the slope and intercept of a line
aren’t fixed. They are, conceptually at least, drawn from a distribution. Slight
changes in the slope won’t have much of an impact on how certain we are in
the predictions near the main mass of the data, but data points further towards
the edges of the data will have a larger uncertainty because of this. We can take

Chapter 4 ■ StatiStiCal ModelS

58

the distribution into account when we make predictions to get error bars for
the predictions. If X is the model matrix and S the covariance matrix for the
posterior, then the variance for the ith prediction is given by:

1/b + t(X[i,]) %*% S %*% X[i,]

We don’t have the precision parameter, b, stored in the fitted model object,
so if we want to get error bars, we need to keep that around. So update your blm
function to return this structure:

structure(
 list(formula = formula,
 data = model.frame(formula, data),
 dist = posterior,
 precision = b,
 call = match.call()),
 class = "blm"
)

Now, we can extend our predict function with an option that, if TRUE,
returns intervals as well:

predict.blm <- function(object, newdata,
 intervals = FALSE,
 level = 0.95,
 ...) {

 updated_terms <- delete.response(terms(object$formula))
 X <- model.matrix(updated_terms, data = newdata)

 predictions <- vector("numeric", length = nrow(X))
 for (i in seq_along(predictions)) {
 predictions[i] <- t(object$dist$mu) %*% X[i,]
 }

 if (!intervals) return(predictions)

 S <- model$dist$S
 b <- model$precision
 sds <- vector("numeric", length = nrow(X))
 for (i in seq_along(predictions)) {
 sds[i] <- sqrt(1/b + t(X[i,]) %*% S %*% X[i,])
 }

Chapter 4 ■ StatiStiCal ModelS

59

 lower_q <- qnorm(p = (1-level)/2,
 mean = predictions,
 sd = sds)
 upper_q <- qnorm(p = 1 - (1-level)/2,
 mean = predictions,
 sd = sds)

 intervals <- cbind(lower_q, predictions, upper_q)
 colnames(intervals) <- c("lower", "mean", "upper")
 as.data.frame(intervals)
}

model <- blm(y ~ x, d, a = 1, b = 1)

With this predict function, we can plot error bars around our predictions
as well, see Figure 4-4. In the figure, I also plot the x = y line. If we make accurate
predictions, the point should lie on this line. Since there is some stochasticity in
the data, we don’t expect to be exactly on it, but we do expect to overlap the line
95% of the time.

require(ggplot2)
predictions <- fitted(model, intervals = TRUE)
ggplot(cbind(data.frame(y = d$y), predictions),
 aes(x = y, y = mean)) +
 geom_point() +
 geom_errorbar(aes(ymin = lower, ymax = upper)) +
 geom_abline(slope = 1) +
 xlab("True responses") +
 ylab("Predictions") +
 theme_minimal()

Chapter 4 ■ StatiStiCal ModelS

60

Figure 4-4. Predictions versus true values with confidence intervals

There is, of course, much more we can do with a statistical model, and more
generic functions we could add to it to provide a uniform interface to a class of
models, but I hope this example has at least given you an impression of how
representing a model as a class can be useful.

61© Thomas Mailund 2017
T. Mailund, Advanced Object-Oriented Programming in R, DOI 10.1007/978-1-4842-2919-4_5

CHAPTER 5

Operator Overloading

Overloading operators, that is, giving operators such as + or - new or additional
functionality, is not inherently object-oriented, but since it can be thought of as
adding polymorphism to functions it fits in naturally here after we have gone
through polymorphism through generic functions.

Opinions vary on whether overloading operators is good or bad practice.
Some languages allow it; others do not. Some languages allow you to make your
own infix operators but not change existing ones, and some languages are just
inconsistent in allowing some operator overloading for built-in objects but not
for user-defined. One argument against overloading is the expected behavior of
operators. It is so ingrained in us to expect + to mean addition that we cannot
handle if it also means string concatenation. This argument, of course, ignores
that we have no problem with using + for both integer and floating point
addition. Another argument, and in my opinion a more valid one, is that it is
harder to remember what an operator does than what a function does since
the function name at least gives us some hint as to the function’s purpose. The
truth is that infix operators, when carefully used, can provide us with a more
convenient syntax than simple function calls. You probably find 2 * x + 5
easier to read than plus(times(2, x), 5), and most programming languages,
with Lisp dialects being a noticeable exception, prefer the former to the latter.
The same goes for user-defined or user-overloaded operators. Using magrittr’s
pipe operator, %>%, makes analysis workflows much easier to read, and ggplot2’s
overloading of + makes plotting code much easier to read.

Since, in R, you can both overload existing operators and create your own,
you have to choose which is most appropriate for any given situation. My rule
of thumb is to prefer new infix operators unless it feels natural to use an existing
one. That is, of course, a terribly subjective evaluation, but some operations
just seem like “addition”—I would say combining operations in ggplot2 can be
justified as such—while others don’t, like pipeline operations in magritte. It is
a judgment call, and you can always experiment with your code to see what you
feel is most natural.

In this chapter, we will see how we can overload operators. I will not cover
how you create infix operators. If you are interested, I describe those in my
Functional Programming in R book.

Chapter 5 ■ OperatOr OverlOading

62

Functions and Operators
Every operation in R involves a function call. Control structures, subscripting,
even parenthesis involve functions, and, naturally, operators involve function
calls as well. This means that operators can be overridden. You can replace one
implementation of + with another just by defining a new version of +. But you
really shouldn’t. Replacing the built-in operators with user-defined ones will
affect all your code, slow it down, and is very likely to introduce hard-to-find
bugs. You don’t have to do this to define operators for your own classes, though.
The operators are generic, and you can define specialized versions of them,
implementing how any operator should handle new classes you define.

To illustrate how this is done, we define a class for arithmetic modulus some
number n. Here I assume that value is some numeric type—in production code,
we would write tests for this, but in the example, we just implicitly assume
this—and we use an attribute to store the number n. We then compute the value
modulus n, set the class, and return the result.

modulus <- function(value, n) {
 result <- value %% n
 attr(result, "modulus") <- n
 class(result) <- c("modulus", class(value))
 result
}

To pretty-print values of the class, we define the print method. We want
to print values, x, using the underlying type but with a line above giving us n.
If we just call print(x) we would recurse back to print.modulus since that is
the type of x, but we can use the function unclass to get rid of the type of x. It
doesn’t completely get rid of the type, though. If x is a numeric type, unclass just
reduces x to that. When we print primitive values with attributes the attributes
are printed as well, so we get rid of all attributes before we print the reduced x.
Here we could directly call print(x) but NextMethod() works as well, so that is
what I have used here.

print.modulus <- function(x, ...) {
 cat("Modulus", attr(x, "modulus"), "values:\n")
 # remove attributes to get plain numeric printing
 x <- unclass(x)
 attributes(x) <- NULL
 NextMethod()
}

(x <- modulus(1:6, 3))
Modulus 3 values:
[1] 1 2 0 1 2 0

Chapter 5 ■ OperatOr OverlOading

63

Defining Single Operators
We can define what addition means for this type by defining the function

`+.modulus`:

`+.modulus` <- function(x, y) {
 n <- attr(x, "modulus")
 x <- unclass(x)
 y <- unclass(y)
 modulus(x + y, n)
}

We first get n from x. Then we remove the class information from the two
operands so we can call the primitive + to calculate their sum. If we didn’t do this,
we would again recurse when we tried to add x to y, and we would then simply
calculate the result and use the modulus constructor to return it with the right type.

Dispatching of such operator-functions works a little different from the
generic functions we have seen earlier. There, the dispatch is based on the
type of the first argument, at least unless you explicitly state otherwise, but for
operators, the dispatch is based on the type of both operands. If both have a
class that implements an operator, they must have the same class. If only one of
them have a class, and here primitive classes such as "numeric" or "integer"
do not count, then the dispatch is based on that. So if x is of type "modulus" then
both x + 1:6 and 1:6 + x will call `+.modulus`.

x + 1:6
Modulus 3 values:
[1] 2 1 0 2 1 0
1:6 + x
Modulus values:
numeric(0)

The first expression does what we expect, but the second does not. This
is not because the dispatch is not working but because we got n from the first
operand only. Since we are only guaranteed that one of the two operands have
type "modulus" we need to check both. We can do this simply by checking if the
attribute "modulus" is NULL or not:

`+.modulus` <- function(x, y) {
 n <- ifelse(!is.null(attr(x, "modulus")),
 attr(x, "modulus"), attr(y, "modulus"))
 x <- unclass(x)
 y <- unclass(y)
 modulus(x + y, n)
}

Chapter 5 ■ OperatOr OverlOading

64

x + 1:6
Modulus 3 values:
[1] 2 1 0 2 1 0
1:6 + x
Modulus 3 values:
[1] 2 1 0 2 1 0

Depending on which semantic we want addition of these types to have, we
might not want to allow addition of types with different n. If we add such types
now, the n is taken from the first operand.

y <- modulus(1:6, 2)
x + y
Modulus 3 values:
[1] 2 2 1 1 0 0

With a little more check we ensure that the two operands are compatible:

`+.modulus` <- function(x, y) {
 nx <- attr(x, "modulus")
 ny <- attr(y, "modulus")
 if (!is.null(nx) && !is.null(ny) && nx != ny)
 stop("Incompatible types")
 n <- ifelse(!is.null(nx), nx, ny)

 x <- unclass(x)
 y <- unclass(y)
 modulus(x + y, n)
}

x + y
Error in `+.modulus`(x, y): Incompatible types
y <- modulus(rev(1:6), 3)
x + y
Modulus 3 values:
[1] 1 1 1 1 1 1

Group Operators
Using generic functions, we can define all relevant operators for a user-defined
type, but it is also possible to handle all operators in a single function, Ops.
This function is called a “group generic method” because it handles a group of
generic functions; other group methods are Math, Complex, and Summary, which
we will not cover here.

Chapter 5 ■ OperatOr OverlOading

65

If we define the function Ops.modulus, it will be called for all operators of
modulus objects where the operator function is not defined. That is, if we have
defined `+.modulus` as above, that function will be preferred over Ops.modulus,
but otherwise, if one or both of the operands are of type modulus, then Ops.
modulus will be called.

We can define it like this:

Ops.modulus <- function(e1, e2) {
 nx <- attr(e1, "modulus")
 ny <- attr(e2, "modulus")
 if (!is.null(nx) && !is.null(ny) && nx != ny)
 stop("Incompatible types")
 n <- ifelse(!is.null(nx), nx, ny)

 result <- unclass(NextMethod()) %% n
 modulus(result, n)
}

The testing of input values at the beginning of the function is the same as for
`+.modulus`. After the testing, we use NextMethod to call the operation using the
underlying type. This strips the modulus class from the operands and evaluates
whatever operation we are currently handling. We unclass the result, necessary
because the result will inherit the attributes of the operands of Ops, so if we don’t
the result will have class modulus, and we then compute modulus n. If we didn’t
unclass, this would be a recursive call, but since we do remove the class we just do
modulus in the underlying type. We finally create a modulus object of the result.

With this function defined we get all binary operators in one go.

y <- modulus(rev(1:6), 3)
x - y
Modulus 3 values:
[1] 1 0 2 1 0 2
x * y
Modulus 3 values:
[1] 0 1 0 0 1 0

This includes comparison operators as well:

x == y
Modulus 3 values:
[1] 0 1 0 0 1 0
x == x
Modulus 3 values:
[1] 1 1 1 1 1 1

Chapter 5 ■ OperatOr OverlOading

66

x != y
Modulus 3 values:
[1] 1 0 1 1 0 1
x != x
Modulus 3 values:
[1] 0 0 0 0 0 0

It even includes unary operators. If we use a unary minus, however, the
argument e2 will be missing in the function call, which we do not handle
correctly right now.

- x
Error in Ops.modulus(x): argument "e2" is missing, with no default

We can easily fix this, however, by checking if e2 is missing. Otherwise, the
function will work as it is.

Ops.modulus <- function(e1, e2) {
 nx <- attr(e1, "modulus")
 ny <- if (!missing(e2)) attr(e2, "modulus") else NULL
 if (!is.null(nx) && !is.null(ny) && nx != ny)
 stop("Incompatible types")
 n <- ifelse(!is.null(nx), nx, ny)

 result <- unclass(NextMethod()) %% n
 modulus(result, n)
}

- x
Modulus 3 values:
[1] 2 1 0 2 1 0

Units Example
For a slightly more involved example, we define a class for associating physical
units with values. This will allow us to check that units we manipulate are
compatible—so we do not subtract meters from seconds and such—and will
do unit analysis as part of arithmetic operations. The example is a simplified
version of the package units. The units package also handles unit conversion
and unit simplification. Here we just implement a simple arithmetic of symbolic
units and a simple equality check of them.

Chapter 5 ■ OperatOr OverlOading

67

The idea is to have a representation of physical units and then associate
these to numeric values. Physical units, here, refers to units like square
kilometres, metres per second, etc. In general, these will be symbolic
expressions, but we will only consider the slightly simpler situation where the
units are a fraction of physical constants. In that case, we can represent these
as a list of terms in the nominator and a list of terms in the denominator. If we
always keep these lists sorted, we have a canonical representation of them, and
we can check equality of two units by checking equality of the nominator and
denominator lists. We can implement the constructor like this:

symbolic_unit <- function(nominator, denominator = "") {
 non_empty <- function(x) x != ""
 nominator <- sort(Filter(non_empty, nominator))
 denominator <- sort(Filter(non_empty, denominator))
 structure(list(nominator = nominator,
 denominator = denominator),
 class = "symbolic_unit")
}

We can translate these units into a string representation of the fraction for
pretty-printing.

as.character.symbolic_unit <- function(x, ...) {
 format_terms <- function(terms, op) {
 if (length(terms) == 0) return("1")
 paste0(terms, collapse = op)
 }
 nominator <- format_terms(x$nominator, "*")
 denominator <- format_terms(x$denominator, "/")
 paste(nominator, "/", denominator)
}

print.symbolic_unit <- function(x, ...) {
 cat(as.character(x, ...), "\n")
}

(x <- symbolic_unit("m"))
m / 1
(y <- symbolic_unit("m", "s"))
m / s

Comparing two symbolic units involves checking that the nominator and
denominator are equal.

Chapter 5 ■ OperatOr OverlOading

68

`==.symbolic_unit` <- function(x, y) {
 if (!(inherits(x, "symbolic_unit") &&
 inherits(y, "symbolic_unit")))
 stop("Incompatible types")
 return(identical(x$nominator, y$nominator) &&
 identical(x$denominator, y$denominator))
}

`!=.symbolic_unit` <- function(x, y) !(x == y)

x == y
[1] FALSE
x != y
[1] TRUE

Adding and subtracting physical quantities is only possible if they have the
same units, but it is always possible to multiply and divide units. The resulting
unit is then obtained by doing the same operation on the (symbolic) units as
you do on the quantities. To be able to handle this, we define multiplication and
division on symbolic units.

`*.symbolic_unit` <- function(x, y) {
 symbolic_unit(c(x$nominator, y$nominator),
 c(x$denominator, y$denominator))
}

`/.symbolic_unit` <- function(x, y) {
 symbolic_unit(c(x$nominator, y$denominator),
 c(x$denominator, y$nominator))
}

x * y
m*m / s
x / y
m*s / m

We now have everything in place to represent units. We just need to define
the class for associating units with quantities. This class is very similar to the
modulus class we wrote earlier. We take a (numeric) value, associate a symbolic
unit in an attribute, and set the class.

Chapter 5 ■ OperatOr OverlOading

69

units <- function(value, nominator, denominator = "") {
 attr(value, "units") <- symbolic_unit(nominator, denominator)
 class(value) <- c("units", class(value))
 value
}

Pretty-printing follows the pattern we saw with modulus. We need to strip
the class and attributes to use the underlying print method, called through
NextMethod, but that is all there is to it.

print.units <- function(x, ...) {
 cat("Units: ", as.character(attr(x, "units")), "\n")
 # remove attributes to get plain numeric printing
 x <- unclass(x)
 attributes(x) <- NULL
 NextMethod()
}

(x <- units(1:6, "m"))
Units: m / 1
[1] 1 2 3 4 5 6

Handling operators for units is only slightly more involved than it was for
modulus. We need to distinguish between operators where we require that the
units match and those where we need to construct new units. The former of
those are addition, subtraction, and comparisons, assuming we only want to
consider numbers equal if they agree in both quantity and associated units;
the latter are multiplication and division where the resulting units must be
computed from the operands. It is not obvious how to handle logical operators
on physical quantities, if that is something that even makes sense, so for
operators that do not fall into these two categories, we should just default to
what the underlying type does.

We implement the operators using the Ops group function. Inside this
function, we can get hold of the actual operator being evaluated using the
variable .Generic. This is not a parameter of the function, but it will be set to
the operator being evaluated when the function is called, and we can check the
operator and handle it appropriately by switching on it.

Chapter 5 ■ OperatOr OverlOading

70

Ops.units <- function(e1, e2) {
 su1 <- attr(e1, "units")
 su2 <- if (!missing(e2)) attr(e2, "units") else NULL

 if (.Generic %in% c("+", "-", "==", "!=",
 "<", "<=", ">=", ">")) {
 if (!is.null(su1) && !is.null(su2) && su1 != su2)
 stop("Incompatible units")
 su <- ifelse(!is.null(su1), su1, su2)
 return(NextMethod())
 }

 if (.Generic == "*" || .Generic == "/") {
 if (is.null(su1))
 su1 <- symbolic_unit("")
 if (is.null(su2))
 su2 <- symbolic_unit("")
 su <- switch(.Generic, "*" = su1 * su2, "/" = su1 / su2)
 result <- NextMethod()
 attr(result, "units") <- su
 return(result)
 }

 # For the remaining operators we don't really have a good
 # way of treating the units so we strip that info and go
 # back to numeric values
 e1 <- unclass(e1)
 e2 <- unclass(e2)
 attributes(e1) <- attributes(e2) <- NULL
 NextMethod()
}

With this definition of the units operators we can combine units with
scalars:

2 * x
Units: m / 1
[1] 2 4 6 8 10 12
x + 2
Units: m / 1
[1] 3 4 5 6 7 8
x - 2
Units: m / 1
[1] -1 0 1 2 3 4

Chapter 5 ■ OperatOr OverlOading

71

If we attempt to add two quantities with incompatible types we will be
warned that this is incorrect.

(y <- units(1:6, "m", "s"))
Units: m / s
[1] 1 2 3 4 5 6
x + y
Error in Ops.units(x, y): Incompatible units

When the units are compatible, though, we can add and subtract.

(z <- units(1:6, "m"))
Units: m / 1
[1] 1 2 3 4 5 6
x + z
Units: m / 1
[1] 2 4 6 8 10 12
x - z
Units: m / 1
[1] 0 0 0 0 0 0

Multiplication and division are always permissible and the resulting units
are derived from the operands.

2 * x
Units: m / 1
[1] 2 4 6 8 10 12
x * y
Units: m*m / s
[1] 1 4 9 16 25 36
x / y
Units: m*s / m
[1] 1 1 1 1 1 1

73© Thomas Mailund 2017
T. Mailund, Advanced Object-Oriented Programming in R, DOI 10.1007/978-1-4842-2919-4_6

CHAPTER 6

S4 Classes

The S3 class system is the wild west of object-oriented programming. Class
hierarchies only exist implicitly through the class attributes, and generic
methods can be implemented or not by any class whatsoever, with no check that
interfaces and class hierarchy designs are implemented correctly. Everything
depends on conventions and it is entirely up to the programmer to ensure
anything resembling consistency.

The S3 system is popular because it is very easy to use and to write new
classes. In most cases, we would prefer simplicity over elaborate design, and in
those cases, S3 is perfect for our needs. When we implement a new statistical
model, we rarely need a complex class hierarchy. Most abstract data structures
have only a few associated operations, and we have no problem remembering
to implement them all when we write concrete versions of them. Once software
reaches a certain level of complexity, however, more structure is needed. Rather
than having the design exist only implicitly in programming conventions we
want it explicitly stated in the code.

The S4 system provides a more structured object-oriented system. Here
classes and class hierarchies are explicitly created; they are not merely strings in
a class attribute. To obtain the added structure that S4 allows, a little more code
is needed when creating classes and methods, but overall the system works very
similar to S3. If you are comfortable with S3, then, learning S4 should not pose a
problem.

Defining S4 Classes
In S4, classes are explicitly created. To create a new class, we use the function
setClass from the methods package. This function takes arguments that specify
which attributes the objects of the class should hold, what default values the
attributes should have, how the class fits into a class hierarchy, and many other
properties of the created class. All these properties have default values so we can
create a new class just by specifying its name.

Chapter 6 ■ S4 ClaSSeS

74

As an example, we consider the stack data structure we implemented in S3
earlier. To make an abstract stack class we can write:

library(methods)
Stack <- setClass("Stack")

This creates a new class called "Stack". We have not specified any attributes
of the class, so S4 will assume that it is an abstract class that is not supposed to
be instantiated and we will get an error if we try.

We can create the vector-based stack class like this:

VectorStack <- setClass("VectorStack",
 slots = c(
 elements = "vector"
),
 contains = "Stack")

Here we use two arguments to setClass: slots and contains. The slots
argument is a list of attributes that objects of the class should have. Here specify
that it should contain a vector called elements. The contains argument specifies
which superclasses the new class should have. We make VectorStack a subclass
of Stack.

Since VectorStack has slots, it is not considered an abstract class (we can
explicitly make it so by adding "VIRTUAL" to the contains argument, but we do
want to be able to instantiate it). We can create objects of the class by calling
VectorStack.

(vs <- VectorStack())
An object of class "VectorStack"
Slot "elements":
logical(0)

We can specify the elements as a named argument to VectorStack.

(vs <- VectorStack(elements = 1:4))
An object of class "VectorStack"
Slot "elements":
[1] 1 2 3 4

Positional arguments will not work here; it has to be a named argument.
Once we have an object of class VectorStack we can access the elements

with this notation:

vs@elements
[1] 1 2 3 4

Chapter 6 ■ S4 ClaSSeS

75

In general, @ is used to access slots of S4 objects.
Capturing the result of setClass and using it as a function to construct

objects is my preferred way of creating S4 constructors, but strictly speaking, it
isn’t necessary. Once a class is built with setClass you can create objects just
using the name of the class, using the function new.

new("VectorStack", elements = 1:4)
An object of class "VectorStack"
Slot "elements":
[1] 1 2 3 4

Generic Functions
In the S3 system, we create generic functions just as normal functions that
call UseMethod. In S4 we have to define generic functions explicitly using the
setGeneric function. The first argument of setGeneric is the name of the
generic function. If you have an existing function that you want to make generic,
calling setGeneric with its name will create a generic function with the existing
function as the default implementation. Typically, though, we use setGeneric
to create a brand new generic function, and in that case, we need to provide a
definition of the function as well. This we do through the parameter def. This
function plays the role that the function definition in S3 has: it should simply call
the function standardGeneric, which is S4’s analogue to UseMethod.

We can define the interface of the stack abstract data structure like this:

setGeneric("top",
 def = function(stack) standardGeneric("top"))
setGeneric("pop",
 def = function(stack) standardGeneric("pop"))
setGeneric("push",
 def = function(stack, element) standardGeneric("push"))
setGeneric("is_empty",
 def = function(stack) standardGeneric("is_empty"))

To provide implementations of generic functions we use the function
setMethod. We need to provide the name of the generic function, the signature
of the method (which is the type(s) used for dispatching the method), and the
definition of the function.

When a generic function is called, the concrete implementation is chosen based
on the type of the arguments to the function. This is what we call dynamic dispatch,
and in S3 it is based on a single argument—typically the first—but in S4 we can
dispatch based on more complex type information. To get behavior similar to S3
we just provide a signature that is a class name. This, then, makes S4 choose a given
implementation based on the class of the first argument to the generic function.

Chapter 6 ■ S4 ClaSSeS

76

We can implement the vector stack thus:

setMethod("top", signature = "VectorStack",
 definition = function(stack) stack@elements[1])
setMethod("pop", signature = "VectorStack",
 definition = function(stack) {
 VectorStack(elements = stack@elements[-1])
 })
setMethod("push", signature = "VectorStack",
 definition = function(stack, element) {
 VectorStack(elements = c(element, stack@elements))
 })
setMethod("is_empty", signature = "VectorStack",
 definition = function(stack) length(stack@elements) == 0)

The implementations are just variations of the functions we defined in the
S3 implementation, and we can use the class just as before.

stack <- VectorStack()
stack <- push(stack, 1)
stack <- push(stack, 2)
stack <- push(stack, 3)
stack
An object of class "VectorStack"
Slot "elements":
[1] 3 2 1
while (!is_empty(stack)) {
 stack <- pop(stack)
}
stack
An object of class "VectorStack"
Slot "elements":
numeric(0)

Slot Prototypes
When you create an object, and you don’t provide values for the slots, you will get
default values, which are often empty vectors or empty lists. For example, if we
create a class for representing natural numbers, we can write the class like this:

NaturalNumber <- setClass("NaturalNumber",
 slots = c(
 n = "integer"
))

Chapter 6 ■ S4 ClaSSeS

77

If we instantiate it without arguments the object will contain an empty
vector for the natural number it is supposed to represent.

(n <- NaturalNumber())
An object of class "NaturalNumber"
Slot "n":
integer(0)

If, instead, we want other default values, we can use the prototype argument
to setClass. For example, we can state that the default natural number is zero.

NaturalNumber <- setClass("NaturalNumber",
 slots = c(
 n = "integer"
),
 prototype = list(
 n = as.integer(0)
))

Now, when we create an object, it will get the default value from the prototype.

(n <- NaturalNumber())
An object of class "NaturalNumber"
Slot "n":
[1] 0

This, of course, doesn’t prevent us from specifying other values as
arguments when we create an object.

(n <- NaturalNumber(n = as.integer(1)))
An object of class "NaturalNumber"
Slot "n":
[1] 1

Object Validity
The type we give slots when we specify them puts type constraints on objects.
When we declared that the n slot in NaturalNumber should be an integer, we
constrained the values we can assign to that slot. If we try to assign a numeric
instead, we will get an error.

For natural numbers, we do not want negative integers to be included, but
since negative integers are still integers, there is no constraint to assigning such
a value.

n@n <- as.integer(-1)

Chapter 6 ■ S4 ClaSSeS

78

We can put further constraints on objects via the validity argument to
setClass. This argument should be a function that tests if an object is valid. If it
is, it should return TRUE. Otherwise, it should return FALSE.

NaturalNumber <- setClass("NaturalNumber",
 slots = c(
 n = "integer"
),
 prototype = list(
 n = as.integer(0)
),
 validity = function(object) {
 object@n >= 0
 })

With this validity checking, attempting to write the following will result in
an error:

n <- NaturalNumber(n = as.integer(-1))

The validity test is only done when creating objects, though. We can modify
objects and put them in an invalid state.

n@n <- as.integer(-1)

This behavior is necessary since, when modifying an object, it is likely to
be in an invalid state until we are done modifying it. At any point when you are
done modifying an object, though, you can call the validObject function to
check the validity again, using the following:

validObject(n)

This would fail in this case, of course, since we just left n in an invalid state.

Generic Functions and Class Hierarchies
To see how S4 handles class hierarchies and generic functions, we return to the
A, B, C example from earlier. We can construct the classes and the three objects
thus:

A <- setClass("A", contains = "NULL")
B <- setClass("B", contains = "A")
C <- setClass("C", contains = "B")

Chapter 6 ■ S4 ClaSSeS

79

x <- A()
y <- B()
z <- C()

Here I let A inherit from the pseudo-class "NULL" to make it non-abstract so
that I can instantiate it even though it doesn’t have any slots.

We can define a generic function f and only implement it for class A, like so:

setGeneric("f", def = function(x) standardGeneric("f"))
setMethod("f", signature = "A",
 definition = function(x) print("A::f"))

If we do, then this version will be called when we call it on all three objects.

f(x)
[1] "A::f"
f(y)
[1] "A::f"
f(z)
[1] "A::f"

If we define another function, g, that we implement for both A and B, then
calling it on x will call the A version. Calling it on y and z will invoke the B version
since this is the most specialized form of the function for those two classes.

setGeneric("g", def = function(x) standardGeneric("g"))
setMethod("g", signature = "A",
 definition = function(x) print("A::g"))
setMethod("g", signature = "B",
 definition = function(x) print("B::g"))
g(x)
[1] "A::g"
g(y)
[1] "B::g"
g(z)
[1] "B::g"

If we define a function that we implement for all three classes, then calling it
on x, y, and z will invoke the most specialized version in all three cases.

setGeneric("h", def = function(x) standardGeneric("h"))
setMethod("h", signature = "A",
 definition = function(x) print("A::h"))
setMethod("h", signature = "B",
 definition = function(x) print("B::h"))

Chapter 6 ■ S4 ClaSSeS

80

setMethod("h", signature = "C",
 definition = function(x) print("C::h"))
h(x)
[1] "A::h"
h(y)
[1] "B::h"
h(z)
[1] "C::h"

The analogue of NextMethod in S4 is called callNextMethod and it works very
similarly.

setMethod("h", signature = "A",
 definition = function(x) {
 print("A::h")
 })
setMethod("h", signature = "B",
 definition = function(x) {
 print("B::h")
 callNextMethod()
 })
setMethod("h", signature = "C",
 definition = function(x) {
 print("C::h")
 callNextMethod()
 })
h(x)
[1] "A::h"
h(y)
[1] "B::h"
[1] "A::h"
h(z)
[1] "C::h"
[1] "B::h"
[1] "A::h"

There is no .default version of methods as such, but we can use the
setGeneric function to create one. If we define a plain old function and call
setGeneric just with its name, that function will become the default function
called when we do not have a more specialized version.

Chapter 6 ■ S4 ClaSSeS

81

d <- function(x) print("default::d")
setGeneric("d")
d(x)
[1] "default::d"
d(y)
[1] "default::d"
d(z)
[1] "default::d"

This, of course, also works when we specialize and use callNextMethod.

setMethod("d", signature = "A",
 definition = function(x) {
 print("A::d")
 callNextMethod()
 })
setMethod("d", signature = "B",
 definition = function(x) {
 print("B::d")
 callNextMethod()
 })
setMethod("d", signature = "C",
 definition = function(x) {
 print("C::d")
 callNextMethod()
 })
d(x)
[1] "A::d"
[1] "default::d"
d(y)
[1] "B::d"
[1] "A::d"
[1] "default::d"
d(z)
[1] "C::d"
[1] "B::d"
[1] "A::d"
[1] "default::d"

Chapter 6 ■ S4 ClaSSeS

82

Requiring Methods
The abstract class Stack we defined earlier didn’t serve any purpose. It is an
abstract class with no associated data or functions. All functions in the stack
interface were implemented in VectorStack, and we didn’t gain anything from
inheriting from Stack. In S4, however, we can formalize interfaces such as stacks
and ensure that implementations of an interface actually implement all the
functions in the interface.

It’s not much. There is very little type checking in R, and you won’t get
much assistance from S4 either, but there is a way of at least making the error
messages more informative when you invoke a generic function that hasn’t been
implemented.

Let’s implement a non-functioning stack. We can make this class for the
list-based stack. It inherits from Stack, but it doesn’t add any slots or any
functionality.

ListStack <- setClass("ListStack", contains = "Stack")

Even without an implementation, we can create an object of type
ListStack. The Stack class is abstract because we didn’t add any slots to it, but
the ListStack is not interpreted as abstract, even though it doesn’t add any slots
either because it contains a superclass. If we were to call pop on a ListStack,
however, we would get an error, and rightly so. We would expect to get an error
here, and in this case it probably isn’t hard to figure out, from the error message,
what is wrong. The error would tell us that R was unable to find an inherited
method for the function. But if either Stack implemented a version of pop, or we
had set a default function, we would instead be calling that, which would be an
error but might not invoke an error message.

We can specify that all sub-classes of Stack must implement the stack
interface using the function requireMethods:

requireMethods(functions = c("top", "pop", "push", "is_empty"),
 signature = "Stack")

By doing this we ensure that calling any of these methods on ListStack will
give us an error message.

pop(stack)
An object of class "VectorStack"
Slot "elements":
numeric(0)

It is not much of a safety check for the correct implementation of an
interface, and I usually don’t see much use for it, but it is there if you want it.

Chapter 6 ■ S4 ClaSSeS

83

Constructors
You can provide values for slots when you create objects by providing them as
named arguments, but you can also get more control over object initialization
through the method initialize. This method works as a constructor, except
that it doesn’t create an object; it is just responsible for setting attributes to
leave it in a consistent state. If you define this function, it replaces the default
constructor, and you are in charge of which arguments the constructor should
take, how it should set slots, and whether it should call the constructor of its
superclass.

A very simple example, where we have one superclass and one subclass, is
shown below:

A <- setClass("A", slots = list(x = "numeric", y = "numeric"))
B <- setClass("B", contains = "A", slots = list(z = "numeric"))

setMethod("initialize", signature = "A",
 definition = function(.Object, x, y) {
 print("A initialize")
 .Object@x <- x
 .Object@y <- y
 .Object
 })
[1] "initialize"
setMethod("initialize", signature = "B",
 definition = function(.Object, z) {
 .Object <- callNextMethod(.Object, x = z, y = z)
 .Object@z <- z
 .Object
 })
[1] "initialize"
(a <- A(x = 1:3, y = 4:6))
[1] "A initialize"
An object of class "A"
Slot "x":
[1] 1 2 3
##
Slot "y":
[1] 4 5 6
(b <- B(z = 6:9))
[1] "A initialize"
An object of class "B"
Slot "z":
[1] 6 7 8 9

Chapter 6 ■ S4 ClaSSeS

84

##
Slot "x":
[1] 6 7 8 9
##
Slot "y":
[1] 6 7 8 9

Dispatching on Type-Signatures
The signatures we have used so far when defining specialized methods consisted
of just a class name. If we use them this way, S4 methods work just as S3 generic
functions, but the dispatch mechanism for S4 methods is more general than this
and it is possible to dispatch based on the type of all a function’s arguments.

For example, we can define a function f of two arguments and refine it in
different ways based on the type of the two arguments. We could have, say, one
version when the arguments are numeric and another when they are logical.

setGeneric("f", def = function(x, y) standardGeneric("f"))
setMethod("f", signature = c("numeric", "numeric"),
 definition = function(x, y) x + y)
setMethod("f", signature = c("logical", "logical"),
 definition = function(x, y) x & y)

When calling f, the appropriate function is then selected based on the type
of the arguments.

f(2, 3)
[1] 5
f(TRUE, FALSE)
[1] FALSE

The type matching goes from most specific to most abstract, following class
hierarchies for classes, and would match integer over numeric over complex for
numerical values. So, if we define a version of f that matches integers for the first
value, it will call that one when we give it an integer and the version defined above
when we call it with numeric values.

setMethod("f", signature = c("integer", "complex"),
 definition = function(x, y) x - y)
f(2, 2)
[1] 4
f(as.integer(2), 2)
[1] 4

Chapter 6 ■ S4 ClaSSeS

85

Here, the second argument would catch any complex number, but we can
specialize it to match integers and numeric instead:

setMethod("f", signature = c("integer", "numeric"),
 definition = function(x, y) 2*x + y)
f(as.integer(2), 2)
[1] 6

If we just give the signature a single string, as we did in the cases with classes
earlier, it just dispatches on the type of the first argument.

setMethod("f", signature = "character",
 definition = function(x, y) x)
f("foo", "bar")
[1] "foo"

In general, the signature list just matches types for a prefix of parameters if
you do not provide types for all of them.

setGeneric("g", def = function(x, y, z) standardGeneric("g"))
setMethod("g", signature = "character",
 definition = function(x, y, z) "g(character)")
setMethod("g", signature = c("numeric", "character"),
 definition = function(x, y, z) "g(numeric, character)")
g("foo", NA, NA)
[1] "g(character)"
g(12, "bar", NA)
[1] "g(numeric, character)"

If you want to match any type whatsoever, you can use the type "ANY".

setMethod("f", signature = "ANY",
 definition = function(x, y) "any")
f(list(), NULL)
[1] "any"

This can be used to define a catch-all default implementation for when no
more specific implementation matches the arguments.

You can even match for cases when some arguments are not provided, using
the type "missing".

Chapter 6 ■ S4 ClaSSeS

86

setMethod("f", signature = c("ANY", "missing"),
 definition = function(x, y) "missing")
f(list(), NULL)
[1] "any"
f(list())
[1] "missing"

Here, the first call matches the version that takes any arguments because the
second argument is not missing, it is just NULL, while the other matches the more
specific signature where the second argument is missing.

Operator Overloading
S4 also supports operator overloading and in much the same way as S3 does, just
using the method mechanism for generic methods. We can try implementing
the modulus class as an S4 class like this:

modulus <- setClass("modulus",
 slots = c(
 value = "numeric",
 n = "numeric"
))

setMethod("show", signature = "modulus",
 definition = function(object) {
 cat("Modulus", object@n, "values:\n")
 print(object@value)
 })
(x <- modulus(value = 1:6, n = 3))
Modulus 3 values:
[1] 1 2 3 4 5 6

The show method we implemented here is the S4 equivalent of print and we
use it to pretty-print modulus objects.

If we then want to implement a single operator, we can specialize the
method for it, just as we did with generic functions for S3. But we can use the
signature type matching to capture different combinations of arguments, instead
of writing type-checking code at the beginning of the generic function as we had
to for S3.

Below we handle the three cases we want for modulus arithmetic: the case
where both operands are modulus objects and the two cases where one of them
is a modulus object and the other is numeric.

Chapter 6 ■ S4 ClaSSeS

87

setMethod("+", signature = c("modulus", "modulus"),
 definition = function(e1, e2) {
 if (e1@n != e2@n) stop("Incompatible modulus")
 modulus(value = e1@value + e2@value,
 n = e1@n)
 })
setMethod("+", signature = c("modulus", "numeric"),
 definition = function(e1, e2) {
 modulus(value = e1@value + e2,
 n = e1@n)
 })
setMethod("+", signature = c("numeric", "modulus"),
 definition = function(e1, e2) {
 modulus(value = e1 + e2@value,
 n = e2@n)
 })

Now we can combine numeric and modulus in addition, and we didn’t have
to explicitly check the type in the functions since the type dispatch handled that
for us.

x + 1:6
Modulus 3 values:
[1] 2 4 6 8 10 12
1:6 + x
Modulus 3 values:
[1] 2 4 6 8 10 12

We also handle the case with two modulus objects and check that their n slots
are equal.

y <- modulus(value = 1:6, n = 2)
x + y
Error in x + y: Incompatible modulus
y <- modulus(value = 1:6, n = 3)
x + y
Modulus 3 values:
[1] 2 4 6 8 10 12

We also have function group solutions in S4, and for defining arithmetic
operations, we need the group Arith. This works much as the Ops generic
function in S3 except that we, again, can use type matching instead of explicitly
checking the type of the arguments inside the function(s).

Chapter 6 ■ S4 ClaSSeS

88

setMethod("Arith",
 signature = c("modulus", "modulus"),
 definition = function(e1, e2) {
 if (e1@n != e2@n) stop("Incompatible modulus")
 modulus(value = callGeneric(e1@value, e2@value),
 n = e1@n)
 })
setMethod("Arith",
 signature = c("modulus", "numeric"),
 definition = function(e1, e2) {
 modulus(value = callGeneric(e1@value, e2),
 n = e1@n)
 })
setMethod("Arith",
 signature = c("numeric", "modulus"),
 definition = function(e1, e2) {
 modulus(value = callGeneric(e1, e2@value),
 n = e2@n)
 })
x * y
Modulus 3 values:
[1] 1 4 9 16 25 36
2 * x
Modulus 3 values:
[1] 2 4 6 8 10 12

Combining S3 and S4 Classes
You can, to a limited degree, combine S3 and S4. The two systems are different
and trying to write software that connects S3 and S4 class-hierarchies intimately
is not something I will recommend. It only leads to weeping and gnashing of
teeth. But if you have existing S3 code and you want to write an extension in S4
you can do this.

Let’s say we have an S3 class, X, with generic functions foo and bar.

X <- function(x) {
 structure(list(x = x), class = "X")
}

foo <- function(x) UseMethod("foo")
bar <- function(x) UseMethod("bar")
foo.X <- function(x) "foo"
bar.X <- function(x) x$x

Chapter 6 ■ S4 ClaSSeS

89

x <- X(5)
foo(x)
[1] "foo"
bar(x)
[1] 5

If we want to write a subclass of X, let’s call it Y, and we want to write Y in S4,
we cannot use X in the contains option to setClass. Well, you can, but if you
try to instantiate objects of the class you will get an error. The S4 system doesn’t
know about any class called X so we first have to make it aware of it. We can do
that using the function setOldClass.

setOldClass("X")

This does two things: it lets S4 know about the class so we can inherit from
it, and it makes any generic function defined for the class into functions we can
specialize with setMethod. So after calling setOldClass we can make a sub-class
of A as an S4 class.

Y <- setClass("Y", contains = "X")

Calling foo or bar on an object of type Y will also work with the dynamic
dispatch system and will invoke foo.Y since there is no better matching foo.Y.

y <- Y()
foo(y)
[1] "foo"

If we want to, we could make a specialized version of foo for Y objects by
implementing foo.Y.

foo.Y <- function(x) "Y::foo"
foo(y)
[1] "Y::foo"

Of course, this would be the S3 of refining generic functions, and since we
are working with an S4 class now it is better to use setMethod.

Similar to foo, calling bar invokes bar.X. In this case it results in an error
because, even though S4 knows about the X class, it doesn’t know about the
constructor function or the representation of X objects it creates.

bar(y)
Error in x$x: $ operator not defined for this S4 class

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ S4 ClaSSeS

90

There is no formal definition of constructors or object representations in S3,
only informal coding conventions, so no way for S4 to know about what the bar
function expects to be able to get out of an X object. There is a limit to how well
we can integrate S3 and S4 automatically, and some coding is needed to get the
functionality of the S3 version to also match the S4 class.

Y <- setClass("Y", contains = "X", slots = c(x = "ANY"))
setMethod("bar", signature = "Y",
 definition = function(x) x@x)
y <- Y(x = 13)
bar(y)
[1] 13

I don’t recommend mixing S3 and S4. If you have code written using the S3
system you are probably better off sticking with S3 rather than trying to combine
the two systems, but if you are writing code using S4 and need to include a little
functionality from S3 classes, this is the way to do it.

91© Thomas Mailund 2017
T. Mailund, Advanced Object-Oriented Programming in R, DOI 10.1007/978-1-4842-2919-4_7

CHAPTER 7

R6 Classes

The last object system we will look at is the R6 system. This system is very unlike
S3 and S4, and unusual for R in general, since it introduces mutable data. Data
is usually immutable in R, and anything resembling object modification is really
implemented by copying data and constructing new objects. The only things
you can modify in R are environments; you cannot modify data. The R6 system,
however, uses environments to give us objects we can modify. It’s unusual in R,
but the semantics are then similar to how object-orientation is implemented in
most other languages, where methods modify objects rather than create new
objects. If you come to R from a different programming language, the R6 system
might be more familiar to you, but since it introduces side effects to R, it might
surprise you if you are more familiar with R. If you have two references to an
R6 object and modify it through one variable, it will also change the state of the
object the other variable is referring to. This does not happen for the other two
class systems.

The R6 system is a better implementation of this semantics than the built-in
reference class (RC) system, also known as R5. R5 is the natural name for the next
object system implemented in R, after the object systems S3 and S4, which are
originally from the S language. Because R6 has the same semantics as R5 and is
considered a better implementation of it, I will not cover R5 further.

Defining Classes
Classes are defined using the R6Class function from the package R6. Similar
to setClass from S4, we need to give the class a name, and we have a number
of optional arguments for defining how objects of the class should look and
behave. Unlike S4, we need to capture the result from the call to R6Class in order
to create objects of the class. In S4 this is a convention, but we can create objects
as long as we know the name of a class. In R6, the name is mainly used to set the
class attribute so the objects can interact with S3 polymorphism. It is the return
value of R6Class we use to create objects.

Chapter 7 ■ r6 Classes

92

As an example, once again we implement a stack. This time I will not bother
with an abstract super class but just implement a VectorStack directly. One
implementation can look like this:

library(R6)

VectorStack <- R6Class("VectorStack",
 private = list(elements = NULL),
 public = list(
 top = function() {
 private$elements[1]
 },
 pop = function() {
 private$elements <-
 private$elements[-1]
 invisible(self)
 },
 push = function(e) {
 private$elements <-
 c(e, private$elements)
 invisible(self)
 },
 is_empty = function() {
 length(private$elements) == 0
 }
))

Here, besides the class name, we use two arguments to R6Class: private
and public. These are used to define attributes of the class, either values stored
in objects or methods we can call on the objects. For both, the arguments are
lists. The names used for the list elements become the names of the attributes
and the values—naturally, the attribute values.

The difference between the two arguments is that attributes in the
public list can be accessed anywhere while attributes in the private list can
only be accessed in methods you define for the class. In methods, you can
access elements in the public list using the variable self, and you can access
attributes in the private list using the variable private. In this VectorStack
implementation, we have made the vector used for storing the stack private, and
we have implemented the stack interface as public methods. Inside the methods
we access the elements as private$elements, and in push and pop we return the
object itself using the variable self. We return this object wrapped in invisible,
so it isn’t automatically printed when we call these methods, but we didn’t have
to. We didn’t have to return an object at all for these methods, but doing so allows
us to chain together method calls, as we will see below, so it is good practice.

Chapter 7 ■ r6 Classes

93

Notice that the self and private objects are not arguments to the methods.
They just exist in the namespace of the functions as part of the magic R6 uses to
implement its mutable object semantics.

The VectorStack object we create this way is not a constructor function
itself, as it was for S4. It is a so-called object generator. To create an object we use
the attribute new of this generator thus:

(stack <- VectorStack$new())
<VectorStack>
Public:
clone: function (deep = FALSE)
is_empty: function ()
pop: function ()
push: function (e)
top: function ()
Private:
elements: NULL

Printing this object is rather verbose, but if we define the method print for
the class we can modify how it is displayed.

VectorStack <- R6Class("VectorStack",
 private = list(elements = NULL),
 public = list(
 # ... rest of the methods
 print = function() {
 cat("Stack elements:\n")
 print(private$elements)
 }
))

This doesn’t modify the existing object.

stack
<VectorStack>
Public:
clone: function (deep = FALSE)
is_empty: function ()
pop: function ()
push: function (e)
top: function ()
Private:
elements: NULL

Chapter 7 ■ r6 Classes

94

It has an effect if we create a new one, however.

(stack <- VectorStack$new())
Stack elements:
NULL

We can access the (public) attributes of the stack object, and call methods if
the attributes are functions, using $ indexing:

stack$push(1)$push(2)$push(3)
stack
Stack elements:
[1] 3 2 1
while (!stack$is_empty()) stack$pop()
stack
Stack elements:
numeric(0)

The chained call to push here is possible because the push method returns
the object itself. Unlike the previous implementations where push returns a
new object, for the R6 object, the existing object is modified. We do not need
to assign the result of the three push calls back to stack, and we do not need to
assign the calls to pop back to stack either. Returning the object itself in these
functions allows us to chain method calls, but that is all this does. The R6 object
is not immutable.

Object Initialization
If we want to set attributes of objects when constructing them, we need to
do a little more work than in S4. We cannot just use named arguments in the
constructor; this call would give us an error:

stack <- VectorStack$new(elements = 1:4)

To be able to initialize objects this way, we need to explicitly write a function
for it. This function must be a public method called initialize. If you want the
constructor to take arguments, you must specify the arguments in this function.
You cannot make this function private; it is an error to put a function named
initialize in the private list.

Chapter 7 ■ r6 Classes

95

To initialize VectorStack objects with a sequence of elements we can
implement its initialize function like this:

VectorStack <- R6Class("VectorStack",
 private = list(elements = NULL),
 public = list(
 initialize = function(elements = NULL) {
 private$elements <- elements
 },
 # ... rest of the methods
))

With this initialization function we can now construct objects with elements
initialized.

(stack <- VectorStack$new(elements = 1:4))
Stack elements:
[1] 1 2 3 4

Private and Public Attributes
The elements in the stack are private, so we cannot access them the same way
we can the public methods. You might hope that stack$elements would then
give you an error, but unfortunately not.

stack$elements
NULL

This is because accessing a list with a key it doesn’t contain gives you NULL
and it is this behavior you are getting.

list()$elements
NULL

We can see the difference between private and public attributes with this little
example:

A <- R6Class("A", public = list(x = 5), private = list(y = 13))

With this definition of class A, we should be able to access object’s x
attributes, and we can.

Chapter 7 ■ r6 Classes

96

a <- A$new()
a$x
[1] 5
a$x <- 7
a$x
[1] 7

We can also get y, but it has the behavior we saw above for stacks, and we are
not allowed to modify it since it isn’t really an attribute of the object.

a$y
NULL
a$y <- 12
Error in a$y <- 12: cannot add bindings to a locked environment
a$y
NULL

In general, you cannot create new attributes to R6 objects just by assigning
to $ indexed values, as you can in S3. Attributes must be defined in the class
definition. If you tried something like this, you would get an error:

a$z <- "foo"

You can modify public data attributes, as we saw above for x, but don’t try to
be clever and modify methods. It is really bad practice to change methods for a
single object to begin with, but luckily it is also “verboten” in R6, and you would
get you an error if you tried.

In general, it is considered good practice to keep data private and methods
that are part of a class interface public. There are several reasons for this: if
data is only modified through a class’s methods then you have more control
over the state of objects and can ensure that an object is always in a valid state
before and after all method calls, but (perhaps more importantly) keeping the
representation of objects hidden away limits the dependency between a class
and code that uses the class. If any code can access the inner workings of objects,
there is a good chance that eventually a lot of code will. This means that you
will have to modify all the uses of a class if you change how objects of the class
are represented. If on the other hand, the code only accesses objects through a
public interface, then you can modify all the private attributes as much as you
want as long as you keep the public interface unchanged. You will, of course,
have to modify some of the class’s methods, but changes will be limited to that.

In the R6 system, private attributes can be accessed only by methods you
define for the class or in methods defined in sub-classes. If you are used to
languages such as C++ or Java, this might surprise you, but the private attributes
in R6 are similar to the protected attributes in those languages and not the
private attributes.

Chapter 7 ■ r6 Classes

97

Active Bindings
There is a way of getting the syntax of accessing data attributes without actually
doing so. If you have code that already uses a public attribute and you want to
change that into a function to hide or modify implementation details, you can use
this. You can also use it if you just like the syntax for data better than method calls.

This is achieved through the active argument to R6Class. Here you can
provide a list of attributes, as for private and public, but these attributes should
be functions, and they will define a value-like syntax for calling the functions.

As an example, we can take the elements in the vector stack. We want to
be able to write stack$elements, but we do not want to make the elements
public. So we write a function for elements and add it to active. We cannot
have the same name used both in private and active (or in public for that
matter), so we have to change the name for the private data attribute first, and of
course update all the existing methods. After doing that, we can add the active
function like this:

VectorStack <- R6Class("VectorStack",
 private = list(elements_ = NULL),
 public = list(
 # ... methods
),
 active = list(
 elements = function(value) {
 if (!missing(value))
 stop("elements are read-only")
 private$elements_
 }
))

Functions in the active list should take one argument, value. This value will
be missing when we read the attribute, and it will contain data when we assign
to the attribute. In this implementation, we consider assigning to the elements
an error and we return the private elements_ when we read the attribute.

This will give us the elements:

stack <- VectorStack$new(elements = 1:4)
stack$elements
[1] 1 2 3 4

Meanwhile this will raise an error:

stack$elements <- rev(1:3)
Error in (function (value) : elements are read-only

Chapter 7 ■ r6 Classes

98

You can use these active functions to modify values you assign, whether
to ensure object consistency, or to fake an attribute that isn’t directly stored but
exists implicitly by being computable from other data. It all depends on how you
choose to use them.

Inheritance
The way we specify class hierarchies, and the way method calls are dispatched to
the most specialized implementation of a method, is relatively straightforward.
We can take the example of three classes we have seen two times earlier and
implement it in R6. To specify that one class inherits from another, we use
the inherit argument to R6Class, and to write a more specialized version of
a method, we simply add the method to the public or private lists. Overall,
writing methods and class hierarchies is done with much simpler code in R6
than in both S3 and S4.

A <- R6Class("A",
 public = list(
 f = function() print("A::f"),
 g = function() print("A::g"),
 h = function() print("A::h")
))
B <- R6Class("B", inherit = A,
 public = list(
 g = function() print("B::g"),
 h = function() print("B::h")
))
C <- R6Class("C", inherit = B,
 public = list(
 h = function() print("C::h")
))

There are no surprises in how we instantiate objects of the classes; we have
to use the new method in the object generators.

x <- A$new()
y <- B$new()
z <- C$new()

For method f we only have an implementation for class A, so calling f on
all three objects will call that version. Except that the method call has a different
syntax from the implementations for S3 and S4, there are no surprises here.

Chapter 7 ■ r6 Classes

99

x$f()
[1] "A::f"
y$f()
[1] "A::f"
z$f()
[1] "A::f"

For g, we have implementations in both A and B, and the C object will call the
B implementation since this is the most specialized for that class.

x$g()
[1] "A::g"
y$g()
[1] "B::g"
z$g()
[1] "B::g"

Finally, for h we have implementations in all three classes, so we call
different methods for the three objects.

x$h()
[1] "A::h"
y$h()
[1] "B::h"
z$h()
[1] "C::h"

There should not be any surprises in how inheritance and method
dispatching works in R6.

References to Objects and Object Sharing
One important thing is different from R6 objects and all other R objects: the R6
objects have a state that can be modified. If you are used to other object-oriented
programming languages, this might not sound like much of a deal, but in general,
we can assume that calling functions do not have side effects in R, except for
changing values that variables point to. When objects can suddenly change state,
we need to worry about when two references are to the same object or merely
references to two objects that represent the same values.

Chapter 7 ■ r6 Classes

100

The first thing you need to know is that values set in the definition of
private and public lists are shared between objects of a class. To see this in
action we can define these two classes:

A <- R6Class("A", public = list(x = 1:5))
B <- R6Class("B",
 public = list(
 x = 1:5,
 a = A$new()
))

Here, I am breaking the rule about not having public data to simplify the
example. In any case, what we have is one class, A, that contains a vector, and
another, B, that contains another vector and a reference to an A object. Let’s
create two objects of class B.

x <- B$new()
y <- B$new()

We can first check the behavior of the vector in the objects. It is initialed to
the first five natural numbers, so that is what both objects contain initially.

x$x
[1] 1 2 3 4 5
y$x
[1] 1 2 3 4 5

If we then modify the vector in x we see that this vector changes but the
vector in y does not. This is how vectors behave in R and generally what we
would expect.

x$x <- 1:3
x$x
[1] 1 2 3
y$x
[1] 1 2 3 4 5

If we modify the vector in the nested A object, however, we get a different
behavior. Here, changing the value through x also changes the value in y.

xax
[1] 1 2 3 4 5
yax
[1] 1 2 3 4 5

Chapter 7 ■ r6 Classes

101

xax <- 1:3
xax
[1] 1 2 3
yax
[1] 1 2 3

Even creating a new object from the class will give us an object that contains
the modified value.

z <- B$new()
zax
[1] 1 2 3

All three objects are referring to the same A object and modifications to
this object are reflected in all of them. This is generally how R6 classes behave.
The copy-on-modification semantics of other R objects are not how R6 objects
behave. When you have two references to the same object then modifying one of
them will also modify the other.

Modifying x$x didn’t change y$x because x and y are different objects, but if
we make another reference to the object pointed to by x then changes to x will be
reflected in the other.

w <- x
w$x
[1] 1 2 3
x$x <- 1:5
w$x
[1] 1 2 3 4 5

If you want each object of a class to contain distinct objects of an R6 class,
then you can create the objects in the initialize function instead of in the
public or private lists. This function is called whenever you create a new object
and objects that are created in the initialization function will be distinct and thus
not shared.

We can modify B like this:

B <- R6Class("B",
 public = list(
 x = 1:5,
 a = NULL,
 initialize = function() {
 self$a <- A$new()
 }))

Chapter 7 ■ r6 Classes

102

We need to re-create x and y to have them refer to this new class:

x <- B$new()
y <- B$new()

Now we can modify one without modifying the other.

xax
[1] 1 2 3 4 5
xax <- 1:3
xax
[1] 1 2 3
yax
[1] 1 2 3 4 5

Since assigning from one variable to another just create another reference to
the same object, we need another way of creating an effective copy. This is done
with the clone method that all R6 objects automatically implement.

If we clone object x we get a new copy of the object, which contains the
same state as x does at the time of cloning, but which can be modified without
changing x.

z <- x$clone()
z$x
[1] 1 2 3 4 5
z$x <- 1:2
x$x
[1] 1 2 3 4 5

The default cloning is shallow, however. It makes a copy of the object, but
if the object contains a reference to an R6 class, then the clone will contain a
reference to the same object. If we modify the a attribute of z, we will also modify
the a attribute of x.

xax
[1] 1 2 3
zax <- 1:5
xax
[1] 1 2 3 4 5

If we call clone with the option deep = TRUE we will instead get a deep copy;
here we get a transitive closure of cloned references, so here we can modify the
a attribute safe in the knowledge that they are distinct between an object and its
clone.

Chapter 7 ■ r6 Classes

103

y <- x$clone(deep = TRUE)

xax
[1] 1 2 3 4 5
yax <- NULL
xax
[1] 1 2 3 4 5

Interaction with S3 and Operator Overloading
We don’t have a mechanism for defining new operators for R6 objects, but we
can use the S3 system for this. Objects create from R6 object generators are
assigned a class attribute, a list of the name we give the class when creating the
generator and "R6", so we can define generic function specializations for them.

We can implement the modulus class in R6 like this:

modulus <- R6Class("modulus",
 private = list(
 value_ = c(),
 n_ = c()
),
 public = list(
 initialize = function(value, n) {
 private$value_ <- value
 private$n_ <- n
 },
 print = function() {
 cat("Modulus", private$n_, "values:\n")
 print(private$value_)
 }
),
 active = list(
 value = function(value) {
 if (missing(value)) private$value_
 else private$value_ <- value %% private$n_
 },
 n = function(value) {
 if (!missing(value)) stop("Cannot change n")
 private$n_
 }
))

Chapter 7 ■ r6 Classes

104

(x <- modulus$new(value = 1:6, n = 3))
Modulus 3 values:
[1] 1 2 3 4 5 6

There are a few things going on in this class definition. We define the
attributes for holding the data in the private list, define an initialization
function and a print function, and then we define two action attributes for
accessing the data. We allow users of the class to modify values but not n (for no
good reason other than it gives us an example of two different behaviors), and
for the values attribute we make sure that we modify the data before we store it
in the private values_ variable.

The class attribute of objects of this class contains this:

class(x)
[1] "modulus" "R6"

This means that we can define arithmetic operations on the class using the
S3 system like this:

Ops.modulus <- function(e1, e2) {
 nx <- ny <- NULL
 if (inherits(e1, "modulus")) nx <- e1$n
 if (inherits(e2, "modulus")) ny <- e2$n
 if (!is.null(nx) && !is.null(ny) && nx != ny)
 stop("Incompatible types")
 n <- ifelse(!is.null(nx), nx, ny)

 v1 <- e1
 v2 <- e2
 if (inherits(e1, "modulus")) v1 <- e1$value
 if (inherits(e2, "modulus")) v2 <- e2$value

 e1 <- v1 ; e2 <- v2
 result <- NextMethod() %% n
 modulus$new(result, n)
}

The implementation is slightly different from the S3 version, because the
data in the objects are represented differently, but the general control flow is the
same, and with this definition we have modulus arithmetic.

x + 1:6
Modulus 3 values:
[1] 2 1 0 2 1 0

Chapter 7 ■ r6 Classes

105

1:6 + x
Modulus 3 values:
[1] 2 1 0 2 1 0
2 * x
Modulus 3 values:
[1] 2 1 0 2 1 0

If you make subclasses of an R6 class like modulus, you will get a class
attribute that also reflects this, so the S3 dispatch mechanism will also work for
sub-classes in the R6 system.

modulus2 <- R6Class("modulus2", inherit = modulus)
y <- modulus2$new(value = 1:2, n = 3)
class(y)
[1] "modulus2" "modulus" "R6"
x + y
Modulus 3 values:
[1] 2 1 1 0 0 2

That being said, don’t go crazy with combining R6 and S3 either; it will
only confuse the maintainers of your code (which are likely to include yourself
sometime in the future).

107© Thomas Mailund 2017
T. Mailund, Advanced Object-Oriented Programming in R, DOI 10.1007/978-1-4842-2919-4_8

CHAPTER 8

Conclusions

This concludes this book on object-oriented programming in R. You now know
the three different systems for object-oriented programming in R and how to use
them to define class hierarchies and polymorphic functions.

Object-oriented programming in R, at least for the S3 and S4 system,
differs from most other object-oriented programming languages. Most
languages consider objects mutable, and most object-oriented software
designs involve wiring up objects with references to each other such that their
behavior depends on the changing states of other objects. The R6 system is
closer to this type of language design. Still, the S3 and S4 systems combine two
powerful programming language paradigms: functional programming and
object-oriented programming. The combination of dynamic function dispatch
based on the argument types and high-level functional programming lets you
construct flexible and extensible software.

It can be confusing with three very different systems for object-oriented
programming in the same language, and I would recommend that you stick to
one for any single project. Knowing all three, however, and knowing the pros
and cons of using them lets you pick the right tool for any particular job. The S3
system is the simplest of the three and useful for getting a small model up and
running in short time. The more formal classes of S4 makes it easier to structure
more complex frameworks, and the reference semantics of R6 make it simpler to
implement traditional mutable data structures than you can otherwise easily do
in R.

Getting familiar with these systems, of course, requires practice and you will
not be an expert object-oriented programming just from reading this book. You
know enough now, though, to get started.

109© Thomas Mailund 2017
T. Mailund, Advanced Object-Oriented Programming in R, DOI 10.1007/978-1-4842-2919-4

��������� A
Algorithms, implementations, 18–19

��������� B
Bayesian linear regression, 43–47

��������� C, D, E
Classes, 3–5
Class hierarchies

abstract and concrete classes, 23–25
bibliography objects, 31–33
generic functions, 30
GraphicalObject, 25–29
implementation, 22
interface, 21–22
polymorphism, 22
prune function, 30, 31

Composite design pattern, 34
Constructors, 83–84

��������� F
Fitted model objects, 52–54

��������� G, H
Generic functions

stack, 1
UseMethod, 2

GraphicalObject, 25–29

��������� I, J, K, L
Interfaces, 9–12

��������� M
Model matrices, 47–51

��������� N
NextMethod, 39–42

��������� O
Operator overloading, 103–105

arithmetic modulus, 62
group operators, 64–66
S4 class, 86–88
single operators, 63–64
units, 67–71

��������� P, Q
Polymorphic functions, 1
Polymorphism, 5–9, 22

algorithmic
programming, 13

sorting lists, 14–18
use case, 12–13

Predicting response
variables, 54–60

Prune function, 30, 31

Index

■ INDEX

110

��������� R
R6 system

active bindings, 97
inheritance, 98–99
object initialization, 94–95
objects and object

sharing, 99–102
private and public attributes,

95–96
S3 and operator overloading,

103–105
VectorStack, 92–94

Reuse code
class hierarchies, 36–38
constructors, 38–39
generic functions, 35–36
NextMethod, 39–42

��������� S
S3 class, 103–105

defining, 73–74
generic functions, 75–76

hierarchies and generic functions
callNextMethod, 80–81
defining function, 79
objects, 78
requireMethods, 82
stack, 82

object validity, 77–78
and s4, 88–90
slot prototypes, 76–77

Statistical models
Bayesian linear regression, 43–47
coefficients and predict, 43
fitted model objects, 52–54
model matrices, 47–51
predicting response variables, 54–60

��������� T
Type-signatures, 84–86

��������� U, V, W, X, Y, Z
Units, 67–71
UseMethod function, 19–20

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Classes and Generic Functions
	Generic Functions
	Classes
	Polymorphism in Action
	Designing Interfaces
	The Usefulness of Polymorphism
	Polymorphism and Algorithmic Programming
	Sorting Lists
	General Comments on Flexible Implementations of Algorithms

	More on UseMethod

	Chapter 2: Class Hierarchies
	Interfaces and Implementations
	Polymorphism and Interfaces
	Abstract and Concrete Classes
	Implementing Abstract and Concrete Classes in R
	Another Example: Graphical Objects

	Class Hierarchies As Interfaces with Refinements

	Chapter 3: Implementation Reuse
	Method Lookup in Class Hierarchies
	Getting the Hierarchy Correct in the Constructors
	NextMethod

	Chapter 4: Statistical Models
	Bayesian Linear Regression
	Model Matrices
	Constructing Fitted Model Objects
	Coefficients and Confidence Intervals
	Predicting Response Variables

	Chapter 5: Operator Overloading
	Functions and Operators
	Defining Single Operators
	Group Operators

	Units Example

	Chapter 6: S4 Classes
	Defining S4 Classes
	Generic Functions
	Slot Prototypes
	Object Validity

	Generic Functions and Class Hierarchies
	Requiring Methods

	Constructors
	Dispatching on Type-Signatures
	Operator Overloading
	Combining S3 and S4 Classes

	Chapter 7: R6 Classes
	Defining Classes
	Object Initialization
	Private and Public Attributes
	Active Bindings

	Inheritance
	References to Objects and Object Sharing
	Interaction with S3 and Operator Overloading

	Chapter 8: Conclusions
	Index

