
Karl G. Kowalski
RSA, The Security Division of EMC

Learn to:
• Download and work with the JDE

• Take advantage of developer tools,
including device and service simulators

• Create your own BlackBerry apps

• Submit your apps to BlackBerry App
World and get them accepted

BlackBerry®

Application Development

Making Everything Easier!™

Visit the companion Web site at www.dummies.com/

go/blackberryappdev to find source code files for the

code listings in the book.

 Open the book and find:

• The tools you need to start
programming apps

• How to decide which JDE version
to download and use

• Pointers for creating menus and
screens

• Hints for using threads

• How to use different types of
storage in your app

• How to use simulators and real
devices to test your app

• Tips to get your app accepted to
BlackBerry App World

• How to submit multiple versions
of your app and upgrade it

Karl G. Kowalski writes application software for mobile platforms including

BlackBerry, iPhone, and J2ME devices. He has developed software for several

versions of the RSA SecurID® product, BlackBerry devices, and the first version

of RSA SecurID for iPhone devices.

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-46711-4

Programming/Application Development

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Be a part of the BlackBerry boom
and learn to program for one of
the hottest handhelds around

With more than 50 million BlackBerry users, it’s no wonder
the BlackBerry developer community is growing. Now you
can join the ranks. With this practical, hands-on guide, you’ll
develop an application from concept to completion. From
coding your app to uploading it to BlackBerry App World
and selling it, adding more juice to your BlackBerry apps has
never been easier!

• Discover the world of app development — register as a developer
and begin coding your first app

• Dive into code — create and display screens, accept and store
data, and use threads to multitask

• Create apps for the corporate enterprise — understand how the
BES can affect your app’s ability to run properly and connect to
networks

• Put the finishing touches on your app — debug your application
both on a simulator and on a real device

• Sell your app — deploy your app to BlackBerry App World and
upgrade it down the road

B
lackB

erry
® A

pplication
D

evelo
p

m
en

t

Kowalski

Spine: .816”

www.allitebooks.com

http://www.allitebooks.org

Spine: .816”

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/blackberryapplicationdevelopment Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

www.allitebooks.com

http://www.allitebooks.org

by Karl G. Kowalski
Software developer for RSA Security

BlackBerry®
Application Development

FOR

DUMmIES
‰

01_467114-ffirs.indd i01_467114-ffirs.indd i 8/30/10 1:03 PM8/30/10 1:03 PM

www.allitebooks.com

http://www.allitebooks.org

BlackBerry® Application Development For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission.
BlackBerry is a trademark or registered trademark of Research In Motion Limited. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2010935568

ISBN: 978-0-470-46711-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_467114-ffirs.indd ii01_467114-ffirs.indd ii 8/30/10 1:03 PM8/30/10 1:03 PM

www.allitebooks.com

http://www.allitebooks.org

About the Author
Karl Kowalski has traveled the world of software development for far longer
than he really wants to remember. He has written code for everything from
airplanes, to voice recognition, to robot submarines, to games, and even
particle accelerators, and he has developed software on everything from
mainframes to cellphones. He lives near Boston and works for RSA, the
Security Division of EMC, where his tasks include developing security
solutions for mobile platforms, most especially the BlackBerry smartphone.
In his spare time, he develops software for smartphones such as BlackBerry,
iPhone, and Android as part of his startup, BlazingApps LLC (www.blazing
apps.com).

Dedication
To my parents, Stanley and Constance Kowalski, who are always there for
me, and who at every step helped me to become who I am today. Thanks,
Dad, for introducing me to programming computers, back before I could do
algebra. To my siblings — Lee Anne, Rosemarie, and Joseph — who always
kept me honest about taking time off from writing. Special thanks to Lee Anne
who helped me get started when I fi rst mentioned the idea. To my friend
Pauline, who saw me through some of the hard parts of becoming a writer.
Finally, to the members of the RSA Credentials Everywhere team: I couldn’t
have done this without your encouragement and support.

Author’s Acknowledgments
Many thanks go to Carole Jelen, agent extraordinaire, who never gave up on
me nor let me give up on myself. Acquisitions Editor Katie Mohr helped me
greatly through my learning to write For Dummies experience and also with
ideas and motivation for moving ahead. Project Editor Jean Nelson deserves
enormous thanks for putting up with a wet-behind-the-ears writer as I worked
to stay on target and stick to the schedule. Senior Copy Editor Teresa Artman
was very helpful in her efforts to take my typing and turn it into something
readable. Special thanks also to Leah Cameron for her feedback as I learned
to write For Dummies. Thanks to Christopher Parsons for his technical review.
Thanks to Robert Philpott at EMC for his work to ensure that I maintained a
distinct separation between my EMC efforts and my writing efforts.

01_467114-ffirs.indd iii01_467114-ffirs.indd iii 8/30/10 1:03 PM8/30/10 1:03 PM

www.allitebooks.com

http://www.allitebooks.org

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com. For
other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media

Development

Project Editor: Jean Nelson

Senior Acquisitions Editor: Katie Mohr

Senior Copy Editor: Teresa Artman

Technical Editor: Christopher Parsons (Bla1ze)

Editorial Manager: Kevin Kirschner

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project

Manager: Jenny Swisher

Media Development Associate Producers:
Josh Frank, Marilyn Hummel,
Douglas Kuhn, Shawn Patrick

Editorial Assistant: Amanda Graham

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services

Project Coordinators: Katherine Crocker,
Kristie Rees

Layout and Graphics: Samantha K. Cherolis,
Joyce Haughey, Christin Swinford

Proofreaders: Melissa D. Buddendeck,
Dwight Ramsey

Indexer: BIM Indexing & Proofreading Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Debbie Stailey, Director of Composition Services

01_467114-ffirs.indd iv01_467114-ffirs.indd iv 8/30/10 1:03 PM8/30/10 1:03 PM

Contents at a Glance
Introduction .. 1

Part I: Getting Started on BlackBerry Apps 7
Chapter 1: Gathering What You Need to Develop BlackBerry Apps 9
Chapter 2: Registering and Downloading ... 33
Chapter 3: Coding with the BlackBerry Java Development Environment 59

Part II: BlackBerry Application Development............... 77
Chapter 4: Designing and Organizing Your BlackBerry App 79
Chapter 5: Setting Up Screens and User Interfaces ... 109
Chapter 6: Storing Your Users’ Data ... 137
Chapter 7: Getting Tied Up in Threads ... 163

Part III: Developing Enterprise-Class BlackBerry Apps 197
Chapter 8: Writing Apps for the Enterprise .. 199
Chapter 9: Networking Your BlackBerry App .. 215

Part IV: Finishing and Debugging Your App 241
Chapter 10: Running Your Code on a Real Device ... 243
Chapter 11: Debugging Your Application ... 257
Chapter 12: Submitting to the BlackBerry App World .. 275

Part V: Securing and Supporting Your App 297
Chapter 13: Best Practices for Application Development .. 299
Chapter 14: Application Deployment and Upgrades ... 321

Part VI: The Part of Tens .. 337
Chapter 15: Ten Most Useful Sample BlackBerry Apps .. 339
Chapter 16: Ten BlackBerry Development Tips ... 343

Part VII: Appendixes .. 349
Appendix A: Device and Service Simulators .. 351
Appendix B: Real Devices and Services .. 365

Index .. 379

02_467114-ftoc.indd v02_467114-ftoc.indd v 8/30/10 1:03 PM8/30/10 1:03 PM

02_467114-ftoc.indd vi02_467114-ftoc.indd vi 8/30/10 1:03 PM8/30/10 1:03 PM

Table of Contents
Introduction ... 1

About This Book .. 1
Conventions Used in This Book ... 2
Foolish Assumptions ... 3
How This Book Is Organized .. 4
Icons Used in This Book ... 5
Where to Go from Here ... 6

Part I: Getting Started on BlackBerry Apps 7

Chapter 1: Gathering What You Need to Develop BlackBerry Apps. . . . 9

Why Develop BlackBerry Apps? .. 9
Discovering Apps, BlackBerry Style .. 11

Getting familiar with standard apps .. 11
Understanding how users navigate and use

their BlackBerry smartphones ... 12
Filling Your Toolbox .. 18

Downloading the software you need ... 18
Gathering BlackBerry simulators... 19
Building or buying a development computer 20
Choosing a BlackBerry device.. 22

Using Your Programming Skills ... 23
Java programming for BlackBerry ... 24
Debugging ... 25
Using software patterns .. 25

Understanding BlackBerry Application Development Challenges 27
Choosing an OS version .. 27
Programming defensively ... 29

Entering a Brave, New BlackBerry App World ... 30
Deciding what kind of app to create.. 31
Brainstorming, alone or in groups ... 31
Becoming a BlackBerry developer and App World vendor............ 32

Chapter 2: Registering and Downloading .33

Registering with RIM ... 33
Signing Up to Be a Citizen of the App World .. 37
Getting the JDE ... 42

Which JDE version is right for you? .. 44
Playing it safe ... 46

02_467114-ftoc.indd vii02_467114-ftoc.indd vii 8/30/10 1:03 PM8/30/10 1:03 PM

BlackBerry Application Development For Dummies viii
Downloading and Installing a JDE ... 47
Downloading and Using Alternate Device Simulators 50
Tapping Helpful Resources .. 54

Perusing the API documentation ... 54
Digging into online developer documentation 55
Exercising your Google-fu ... 57
Asking for help on the developer forums ... 57

Chapter 3: Coding with the BlackBerry Java Development
Environment. .59

Getting Familiar with the JDE ... 59
Creating a BlackBerry Application with the JDE 60

What does the JDE actually do? ... 61
The JDE display .. 63

Building and Running Your First BlackBerry App 64
Creating your fi rst app .. 65
Creating the display class ... 69
Building your application ... 72

Adding an Alternate Entry Point .. 74
Creating and confi guring an AEP Project .. 74
Adding AEP code to your app’s main() routine 76

Part II: BlackBerry Application Development 77

Chapter 4: Designing and Organizing Your BlackBerry App 79

Getting Creative and Keeping a Record .. 79
Planning What Your App Will Do ... 81
The Fundamentals of BlackBerry Applications ... 82

Parts of every BlackBerry app ... 83
The phases of a BlackBerry application ... 83

Handling Screens and Callbacks .. 92
Screen management .. 93
Callbacks: The Java version of phoning home 101

Chapter 5: Setting Up Screens and User Interfaces 109

The Screen .. 110
Choosing a screen type ... 110
Creating a screen ... 111
Extending a screen’s basic functionality .. 114

User Interface Elements .. 115
User interface callbacks .. 117
Creating a custom user interface element 118

Menus .. 119
Understanding the MenuItem class ... 120
Creating a menu in a BlackBerry application 121

Responding to User Interaction ... 123

02_467114-ftoc.indd viii02_467114-ftoc.indd viii 8/30/10 1:03 PM8/30/10 1:03 PM

ix Table of Contents

Laying Out the User Interface .. 124
Controlling the layout of the user interface 124
Creating a screen with a custom layout manager 126

Threaded Operation .. 129
Understanding when to use threads ... 130
Using a thread to update the display from the background 131

The Screen Stack ... 135

Chapter 6: Storing Your Users’ Data .137

Understanding BlackBerry Storage Models ... 138
Persistent Storage ... 138

Persistent storage methods.. 139
Kinds of information to store in persistent storage 142
How persistent is persistent storage? ... 142

Runtime Storage .. 143
Runtime storage methods... 144
Kinds of information to store in runtime storage 145

File Storage ... 146
File storage methods ... 147
Kinds of information to store in fi le system storage 147

Database Storage ... 147
Database storage methods ... 148
Kinds of information to store in database storage 148

BlackBerry Programming with Storage Models 148

Chapter 7: Getting Tied Up in Threads .163

Understanding Basic Threads .. 163
Knowing when to use a thread ... 165
Thread things to worry about .. 167

Using Threads to Schedule Events .. 174
Setting up and executing a TimerTask .. 175
Scheduling events by using the layout manager 178
Implementing threads ... 183
Using a Timer for repeated operations ... 186

Using a Thread to Notify the User of Something Important 187
Creating the application class to display a notice......................... 189
Using the Screen subclass to get the delay value from the user 191
Delivering the NotifyAndReplyThread class 193

Part III: Developing Enterprise-Class BlackBerry Apps 197

Chapter 8: Writing Apps for the Enterprise .199

Activating for the Enterprise .. 200
Understanding what the BES does .. 201
Enterprise activation ... 202

02_467114-ftoc.indd ix02_467114-ftoc.indd ix 8/30/10 1:03 PM8/30/10 1:03 PM

BlackBerry Application Development For Dummies x
Interacting with E-Mail .. 203

Handling attachments ... 204
Writing an e-mail attachment handler... 207

Standard BES IT Policies ... 210
Reading Application IT Policies ... 212
Dealing with BES Security ... 213

Chapter 9: Networking Your BlackBerry App.215

Using a Well-Connected BlackBerry .. 216
Checking for service .. 217
Choosing what service to use .. 218

Communicating with Services on the Internet .. 219
Structuring your data .. 220
Behaving like a well-mannered application 222
Coding to send data to a network service 224

Setting Up a Push Listener ... 234

Part IV: Finishing and Debugging Your App 241

Chapter 10: Running Your Code on a Real Device 243

Moving from Simulator to Device .. 244
Signing up to do signing .. 244
Signing apps on multiple machines ... 246

The Build Process, Revisited ... 247
Signing Your Application .. 247

Understanding what the signing process does 250
Finding out if your signing succeeded or failed 251

Deploying Your Application onto a Real Device
Using Desktop Manager .. 252

Running Your Application .. 256

Chapter 11: Debugging Your Application. .257

Understanding Where Errors Occur ... 257
Using the JDE Debugger .. 259

Setting, deleting, and disabling breakpoints 262
Executing your application with the JDE Debugger 263

Using the BlackBerry Event Logger ... 264
Setting up your application to use the Event Logger 265
Viewing and extracting the event log .. 266

Keeping Track of Bugs .. 270
Getting serious about tracking bugs ... 271
Using a bug-tracking program .. 272

02_467114-ftoc.indd x02_467114-ftoc.indd x 8/30/10 1:03 PM8/30/10 1:03 PM

xi Table of Contents

Chapter 12: Submitting to the BlackBerry App World.275

Getting Ready to Submit Your App ... 276
Deciding on a price for your app ... 280
Paying for the submission .. 281

Understanding What RIM Looks for in Your App 281
Submitting Your App to the BlackBerry App World 283

Part V: Securing and Supporting Your App 297

Chapter 13: Best Practices for Application Development 299

Coding with Style ... 300
Naming classes and variables .. 300
Keeping method and class sizes small .. 302
Assigning protection ... 305
Avoid using magic numbers ... 308
Using Singleton patterns ... 309
Commenting code .. 310

Plugging the Leaks ... 310
Don’t depend on the garbage collector to take care of leaks 312
Operating in the background ... 312

Streamlining Your App .. 315
Don’t reinvent the wheel ... 315
Group source fi les using the package hierarchy 316
Keep method sizes small .. 316
Each class should accomplish just one purpose 317
Reduce the public methods in your

classes to the bare minimum .. 317
Backing Up and Organizing Your Code ... 317

Backing up your precious data .. 317
Keeping your code organized with

a source code control system .. 319

Chapter 14: Application Deployment and Upgrades 321

Delivery from a Desktop PC ... 322
Delivery through a BES ... 324
Delivery via the Web ... 325
Upgrading Your App ... 327

Insistent persistence ... 329
Handling multiple versions of your app.. 334

02_467114-ftoc.indd xi02_467114-ftoc.indd xi 8/30/10 1:03 PM8/30/10 1:03 PM

BlackBerry Application Development For Dummies xii
Part VI: The Part of Tens ... 337

Chapter 15: Ten Most Useful Sample BlackBerry Apps 339

contactsdemo .. 339
custombuttonsdemo ... 340
httpdemo .. 340
gpsdemo ... 340
localizationdemo ... 340
memorydemo ... 341
notifi cationsdemo .. 341
phoneapidemo ... 341
smsdemo ... 342
tictactoedemo .. 342
xmldemo ... 342

Chapter 16: Ten BlackBerry Development Tips 343

Keep Your Constant Strings in One Place .. 343
Manage All Screens ... 343
Don’t Lose Your Memory .. 344
Keep Your Constants All Together .. 344
Keep the Order Straight .. 345
Harmonize with RIM .. 346
Initialize at the Right Moment .. 346
Catch Those Exceptional Moments ... 347
Remember the User ... 347
Don’t Take It All Too Seriously .. 348

Part VII: Appendixes ... 349

Appendix A: Device and Service Simulators .351

Using BlackBerry JDE Device Simulators ... 352
Using the MDS Simulator .. 356
Using the Email Service Simulator (ESS) .. 358

Appendix B: Real Devices and Services .365

Picking Out a BlackBerry Device ... 365
BlackBerry Internet Service (BIS) .. 368
BlackBerry Enterprise Server (BES) .. 369

Index ... 379

02_467114-ftoc.indd xii02_467114-ftoc.indd xii 8/30/10 1:03 PM8/30/10 1:03 PM

Introduction

The advent and growing popularity of BlackBerry smartphones has
changed how corporate users communicate whenever away from their

offices. No longer tied to their landline phones, no longer glued to their
desktop PCs, corporate users could stay in touch via voice and e-mail as
long as cellphone reception was available. Then, Research In Motion (RIM)
upped the ante: Independent software developers were allowed to create
software to run on BlackBerry smartphones. Developers familiar with Java
(the BlackBerry uses the Java programming language) could leverage that
knowledge to create BlackBerry apps. This opened the BlackBerry smartphone
to the creative power of developers all across the world.

In April 2009, RIM went one step further: The BlackBerry App World was
introduced, offering developers a place to market, advertise, and sell their
applications to all BlackBerry users.

BlackBerry Application Development For Dummies shows you how to develop
an application from concept to completion, from coding to uploading it to the
BlackBerry App World to sell it to BlackBerry users.

About This Book
BlackBerry Application Development For Dummies is a guide to developing
BlackBerry smartphone applications. No BlackBerry development experience
is required, but familiarity with the Java programming language is assumed.
After all, Java is the language you use to develop applications for BlackBerry
smartphones, and all the API documentation follows the Java documentation
guidelines as well as providing coding examples in Java.

The BlackBerry platform enables and encourages you to create minimalist
applications that can do some pretty powerful and useful things. You can
start small, making simple apps that do a few really important things for your
users, and then over time, improve and increase the features and functionality
that your apps deliver.

03_467114-intro.indd 103_467114-intro.indd 1 8/30/10 1:03 PM8/30/10 1:03 PM

2 BlackBerry Application Development For Dummies

This book helps you sift through the resources of BlackBerry development
to reveal only what’s absolutely necessary to get you started developing real
applications to make the smartphone do real, useful work. You’re taken on a
path through many areas of the BlackBerry application framework to gain a
well-grounded basis for how BlackBerry applications work. And you discover
how to go beyond what the book shows when RIM releases new smartphones
with updated functionality.

Conventions Used in This Book
Code examples in this book appear in a monospace font so they stand out
from the surrounding text. Code blocks look like this:

import net.rim.device.api.ui.container.MainScreen;
public class FirstBlackBerryScreen extends MainScreen
{
 public FirstBlackBerryScreen()
 {
 this.setTitle(“First BlackBerry Screen”);
 }
}

Examples don’t tell you how or why
My preferred style of learning is to see lots of
examples. Give me good examples, and I can
figure out just about everything I need to know
regarding programming a BlackBerry. The Java
Development Environment (JDE) comes with
plenty of examples, and the RIM developer
Web site and Knowledge Base provide even
more examples.

The challenge I faced when I started coding
for the BlackBerry was that I had nothing
to show me the all-important how and why.
The application programming interface (API)
documentation would tell me what each object
did, but gave no instruction for how to coordinate
the actions and interactions of the scores of

objects that make up a BlackBerry application.
The sample applications were ready to go but
provided no reasons for why a particular coding
choice was made. Those apps are useful to see
how a particular feature can be implemented,
but there is no “guiding philosophy” shining
over the entire set.

All through my early BlackBerry development,
I searched for a book that would show me the
whys and hows to get my applications working
right. I didn’t find anything. Eventually, I decided
it was time to write the book I had been searching
for — BlackBerry Application Development For
Dummies.

03_467114-intro.indd 203_467114-intro.indd 2 8/30/10 1:03 PM8/30/10 1:03 PM

3 Introduction

 Java code is case sensitive, so when you use code that appears in this book,
type it exactly as it appears. (You can find code samples for this book at www.
dummies.com/go/blackberryappdev — download the code samples, and
you won’t have to type long code blocks!)

All the URLs referenced in this book also appear in a monospace font as well;
for example, www.blackberry.com.

And when I define something, it appears in italic. And for code/text you enter,
it appears in bold (unless it’s a snippet or block of code).

Foolish Assumptions
In writing this book, I have to make some assumptions about you, the reader.
I assume you have the following hardware:

 ✓ A PC

 ✓ A BlackBerry smartphone

I assume that you’re familiar with BlackBerry smartphones in general. A
lot of smartphones are available; I’ve had my hands on 20 or so distinct
BlackBerry smartphone models. Although it’s impractical to try to work with
all BlackBerry models, you should at least be familiar with how BlackBerry
smartphones operate and how users use them. In addition, you should play
around with the standard applications that come with a BlackBerry so you
can get a good feel for how users expect applications to behave. You might
want to download a few of the free (or inexpensive) apps from the BlackBerry
App World to get a sense of what’s available.

Further, I assume you have or will obtain the following software:

 ✓ 32-bit Windows XP, Vista, or 7: As of this writing, only 32-bit versions of
Windows support the BlackBerry development tools.

 ✓ The Sun Java Software Development Kit (JDK), version 1.5 or higher:
The BlackBerry development tools are themselves Java applications and
need JDK 1.5 or later to run.

 ✓ The BlackBerry Java Development Environment (JDE): You can get the
JDE for free, but you must become a registered BlackBerry developer
first. Registration is also free. Registering with RIM and downloading the
JDE are covered in detail in Chapter 2.

03_467114-intro.indd 303_467114-intro.indd 3 8/30/10 1:03 PM8/30/10 1:03 PM

4 BlackBerry Application Development For Dummies

And finally, I assume you have some programming knowledge and that you
have at least a basic understanding of object-oriented programming (OOP),
specifically in Java. If you’re not up to speed with Java, consider Java For
Dummies, 4th Edition, by Barry Burd, or Java All-In-One Desk Reference
For Dummies, 2nd Edition, by Doug Lowe and Barry Burd (all from Wiley
Publishing). Sun’s online tutorials are helpful as well.

How This Book Is Organized
The chapters in BlackBerry Application Development For Dummies are divided
into seven parts.

Part I: Getting Started
on BlackBerry Apps
Part I takes you into the world of BlackBerry application development. You
find out about BlackBerry applications in general, and you discover some of
the challenges that your app might encounter on a BlackBerry smartphone.
You also discover how to become a registered BlackBerry developer and all
the steps you need to take so you’re ready to deliver to the BlackBerry App
World.

Part II: BlackBerry Application
Development
In Part II, you dive right into code. Not the deep end, but not exactly shallow,
either. You start with structure and then touch all the pieces of code to make
an application do everything it needs to do to communicate with the user
and behave like a proper BlackBerry app.

Part III: Developing Enterprise-Class
BlackBerry Apps
In Part III, I expose you to the use of BlackBerry devices in the world of a
corporate enterprise, which is where many BlackBerry users live. You discover
the advantages of a BlackBerry that is tied directly to a corporate network —
and I show you the constraints this can place on your application. You also
discover the benefits and the challenges for your app to communicate over a
network to reach from the corner office to the limits of the Internet.

03_467114-intro.indd 403_467114-intro.indd 4 8/30/10 1:03 PM8/30/10 1:03 PM

5 Introduction

Part IV: Finishing and
Debugging Your App
Part IV provides you with the information you need to put the finishing
touches on your application. Here’s where you find out how to debug your
application on both a simulator and on a real device. I also show you how to
submit and upload your app to the BlackBerry App World.

Part V: Securing and Supporting Your App
In Part V, I introduce you to some of the better disciplines I’ve found to
develop solid code. The chapters in this part give you information regarding
some of the different tools you can use to keep track of the different pieces
of information for the applications you develop. The information found here
helps you look to the future of when you’ll be writing and releasing multiple
applications, and trying to keep track of every piece of all of them.

Part VI: The Part of Tens
Part VI contains some of the “Wish I’d thought of that before I started” kinds
of tips that help you get your code prepared to do its job better and make it
easier for your app to evolve smoothly. I also point you to some of the many
sample applications that can give you ideas or help you overcome challenges
with examples.

Part VII: Appendixes
The first of the appendixes informs you about the simulators — including
simulated devices and simulated services — that you use to assist in
developing your application. The second appendix gives you information
about real devices and how to use them to test your application. Some of the
real services are a bit beyond the beginner level for setting up, but Appendix
B provides you with the information you need to be aware of when your
application encounters them in the real world.

Icons Used in This Book
Like all For Dummies books, this book makes frequent use of icons to help
identify important, helpful, or technical information. Take heed when you see
one of the following icons.

03_467114-intro.indd 503_467114-intro.indd 5 8/30/10 1:03 PM8/30/10 1:03 PM

6 BlackBerry Application Development For Dummies

 This icon indicates a useful pointer that you shouldn’t skip. Tips make your
coding life easier by showing a shortcut or letting you know the information
next to it shows you the easiest approach to a coding problem.

 This icon represents a friendly reminder. It describes a vital point that you
should keep in mind while proceeding through a particular section of the
chapter.

 This icon signifies that the accompanying explanation might be informative,
maybe even interesting, but is technical and isn’t required for your goal of
understanding BlackBerry application development. Feel free to jump over
these little pieces.

 This icon alerts you to potential challenges you may encounter on the way.
Read and obey these commentaries to avoid problems down the road.

Where to Go from Here
You’re ready to begin the BlackBerry adventure. You can, of course, turn the
page and continue reading at Chapter 1. If you haven’t registered with RIM
to become a BlackBerry application developer and downloaded the JDE, I
recommend you hop right to Chapter 2. If you have a particular question or
problem, check the Index or Table of Contents to find the information you
need.

If you have questions or comments about the book or BlackBerry development
in general, contact me at kgkfordummies@gmail.com. You can also find
additional information about my BlackBerry application, The Word Locker,
at www.thewordlocker.com. You can find sample code for this book at
www.dummies.com/go/blackberryappdev.

Good luck, and happy coding!

03_467114-intro.indd 603_467114-intro.indd 6 8/30/10 1:03 PM8/30/10 1:03 PM

Part I

Getting Started on
BlackBerry Apps

04_467114-pp01.indd 704_467114-pp01.indd 7 8/30/10 1:03 PM8/30/10 1:03 PM

In this part . . .
Your goal is to develop an application that runs on

one of the most widely known and well respected
smartphones in the world today — the BlackBerry. You
have a great idea, and you know all the pieces needed to
satisfy your customers. So now what?

You start here. This part shows you how to start
developing BlackBerry applications, including what tools
you need, where to get them, and how to use them. This
part shows you how to become a registered BlackBerry
developer, which will get you access to all the free
programs that Research In Motion (RIM) provides to help
you develop, debug, and produce your app. From there,
you become a card-carrying BlackBerry App World
Vendor, which allows you to deliver your application to
RIM for review as a submission to the BlackBerry App
World.

Also in this part, you get a chance to see what’s already in
the App World, which presents an opportunity to improve
and refine your app idea. Finally, you get your feet wet by
producing a simple application that will run on a simulator
or a real device.

04_467114-pp01.indd 804_467114-pp01.indd 8 8/30/10 1:03 PM8/30/10 1:03 PM

Chapter 1

Gathering What You Need to
Develop BlackBerry Apps

In This Chapter
▶ Discovering BlackBerry apps and why to develop them

▶ Collecting the right tools

▶ Sharpening the right skills

▶ Meeting the challenges of BlackBerry development

A BlackBerry application is meant to be small, fast, and responsive to
its users. BlackBerry smartphones are small, fast, and function as

mini-communications centers: a phone, text-messaging system, e-mail client,
and Web browser. Your app should give the user the same kind of experience
as the standard apps that come with the BlackBerry, providing information
quickly and easily with a minimal amount of input.

In this chapter, I show you what tools, skills, and ideas you need to gather
and discover to start developing BlackBerry apps.

Why Develop BlackBerry Apps?
The BlackBerry App World from Research In Motion (RIM) provides a mar-
ketplace devoted to BlackBerry users, and a great many apps of all different
kinds have yet to be built. BlackBerry devices have been around a while,
mostly as mobile corporate e-mail connections, but the individual consumer
is now getting into BlackBerry devices as well, increasing the number of
places your app can be running. Figure 1-1 shows the Home Screen of my
BlackBerry Curve, with the BlackBerry Browser Application highlighted.
Figure 1-2 shows the Browser while running.

05_467114-ch01.indd 905_467114-ch01.indd 9 8/30/10 1:05 PM8/30/10 1:05 PM

10 Part I: Getting Started on BlackBerry Apps

Figure 1-1:

 The
BlackBerry

Curve Home
Screen with
the Browser

application
selected.

Figure 1-2:
The

Browser
application

in action.

Here are a few other reasons why I see the BlackBerry as a great development
opportunity:

 ✓ BlackBerry applications tend to be small. This makes them easy to
develop and maintain, and they don’t require a large development team:
You need fewer people to debate the pros and cons of different ways to
do the same thing.

 ✓ BlackBerry apps narrowly focus on delivering what the user wants,
and no more. The apps are simple and direct, providing the user with
only the information they want — and the tools to get it.

 ✓ BlackBerry apps use Java. You can leverage any desktop PC Java
programming experience you have.

 ✓ The tools and simulators are all free. You can do all your development
on a Windows PC. The simulators all execute the same code as the

05_467114-ch01.indd 1005_467114-ch01.indd 10 8/30/10 1:05 PM8/30/10 1:05 PM

11 Chapter 1: Gathering What You Need to Develop BlackBerry Apps

actual devices, so you can be sure that if your app works on a simulator,
it will work on a real device.

 ✓ The BlackBerry is widely used in corporate enterprises. From CEOs to
administrative assistants and everyone in between, you have a market
for business-specific apps that could link everyone in the enterprise.

 ✓ RIM provides the BlackBerry App World for you to showcase and sell
your app. This venue removes the responsibility of credit card handling,
hosting, downloading, and notifying users of updates. The App World
comes with a variety of pricing tiers, including free and Try & Buy. RIM
keeps 20 percent of your application price to cover some of its costs.
Submitting your app to the App World incurs a $20 fee per submission,
which you can buy in blocks of ten for $200.

Discovering Apps, BlackBerry Style
BlackBerry users are on-the-go, fast-paced, living in the moment, and your
app will need to behave accordingly. BlackBerry users are interested in getting
their information now; they can’t wait more than a few seconds after launching
your app to get to the stuff they expect your app to deliver. Your application
must accommodate your users and provide them with a means of getting
to the value your app adds to their mobile existence. Whether it provides a
world traveler with a list of restaurants open around the clock for the city
they just arrived in, or merely provides a few moments of entertainment
while they’re waiting to board their next flight, your app must be easy to use,
simple to learn — and, as much as possible, fun.

Getting familiar with standard apps
The best way to find out more about BlackBerry applications is, well, to use
them. Look at the apps that run on a BlackBerry out of the box. You can use
a real device or use the BlackBerry simulator that comes with the JDE. Every
BlackBerry comes with the following standard apps:

 ✓ Browser

 ✓ Messages (Email and SMS)

 ✓ Contact Manager

 ✓ Calendar/Address Book

 ✓ Memo Pad

 ✓ Tasks

05_467114-ch01.indd 1105_467114-ch01.indd 11 8/30/10 1:05 PM8/30/10 1:05 PM

12 Part I: Getting Started on BlackBerry Apps

 ✓ Calculator

 ✓ Alarm Clock

Each one of these applications, written by RIM, contains the basic interactions
that BlackBerry users expect to see in your application. BlackBerry users will
be using the standard applications often, and so you should become familiar
with how users get things done with them. Figure 1-3 shows the BlackBerry
Email application as I check my mail account.

Figure 1-3:
The

BlackBerry
Email app.

BlackBerry
Email

lets you
connect to
any e-mail

service
provider,
such as

Gmail.

Understanding how users navigate and
use their BlackBerry smartphones
Most users get most of what they need from a BlackBerry application by
using just one hand, and often, just by using their thumbs on the trackpad (or
trackwheel/trackball for older devices).

The primary input mechanism for a BlackBerry is the pointing device, which
can take one of several forms, depending on which model BlackBerry your
user has.

 ✓ Trackwheel: Users move the wheel on the side of the BlackBerry
to make the selection highlight move back and forth; users select a
highlighted item by pressing in the trackwheel. Figure 1-4 shows a
BlackBerry 8700 and its trackwheel.

05_467114-ch01.indd 1205_467114-ch01.indd 12 8/30/10 1:05 PM8/30/10 1:05 PM

13 Chapter 1: Gathering What You Need to Develop BlackBerry Apps

Figure 1-4:
The

BlackBerry
8700

smartphone
provides a

trackwheel.

Trackwheel

05_467114-ch01.indd 1305_467114-ch01.indd 13 8/30/10 1:05 PM8/30/10 1:05 PM

14 Part I: Getting Started on BlackBerry Apps

 ✓ Trackball: Users can move across the pointer around the two-dimensional
BlackBerry screen; to select a highlighted item, the user clicks the
trackball itself. Figure 1-5 shows a BlackBerry 8830 with its trackball.

Figure 1-5:
The

BlackBerry
8830

smartphone
sports a

trackball for
input.

 Trackball

05_467114-ch01.indd 1405_467114-ch01.indd 14 8/30/10 1:05 PM8/30/10 1:05 PM

15 Chapter 1: Gathering What You Need to Develop BlackBerry Apps

 ✓ Trackpad: Users touch the pad lightly to move the selection highlight,
and press down to click. You can see the trackpad of the BlackBerry
Bold (9700) in Figure 1-6.

Figure 1-6:
RIM’s latest
offering: the
BlackBerry
Bold (9700)

and its
trackpad.

Trackpad

 ✓ Touchscreen: Users touch the screen lightly to move the selection
highlight, and press down slightly to click the item selected. Figure 1-7
shows you what a BlackBerry Storm looks like, with its touchscreen.

 Each input mechanism comes with its own advantages and disadvantages, and
this is important when developing your app. You might discover that your app
is easy to use on a touchscreen device, yet difficult to use on a device with a

05_467114-ch01.indd 1505_467114-ch01.indd 15 8/30/10 1:05 PM8/30/10 1:05 PM

16 Part I: Getting Started on BlackBerry Apps

trackwheel. If so, you might decide to create two versions of your app: one
optimized for use on a BlackBerry Storm, and one for all the other devices.
Keep in mind that you might have to adjust your app based on what type of
pointing device the user’s BlackBerry supports.

Figure 1-7:
The

BlackBerry
Storm with

its touch-
screen.

Touchscreen

 Although all BlackBerry devices have a keyboard for users to enter text data,
ideally your app should require very little text input. Typing text into a small
BlackBerry keyboard is slower than typing on a full-size laptop or desktop
keyboard. Investigate whether there is another way for users to provide
information.

05_467114-ch01.indd 1605_467114-ch01.indd 16 8/30/10 1:05 PM8/30/10 1:05 PM

17 Chapter 1: Gathering What You Need to Develop BlackBerry Apps

As long as I’m talking about keyboards, there’s one more thing you need to
know. BlackBerry smartphones offer two different types of keyboards for
users:

 ✓ SureType: You find this keyboard on the BlackBerry Pearl and Pearl
Flip smartphones, as well as a BlackBerry Storm when in portrait mode.
Figure 1-8 shows an image of a Pearl with its keyboard. Because the
keyboard has fewer keys than a normal keyboard, SureType provides
two letters for each key, and the keyboard is laid out like a regular
QWERTY keyboard. SureType attempts to predict what a user is typing
to speed up the entry of data. Some BlackBerry models with SureType
offer a mode called Multitap, where the first tap of a key enters the first
letter for that key, and a quick double-tap enters the second letter for
that key.

Figure 1-8:
The

BlackBerry
Pearl and its

SureType
keyboard,

with its
guesses for

the word I
type.

05_467114-ch01.indd 1705_467114-ch01.indd 17 8/30/10 1:05 PM8/30/10 1:05 PM

18 Part I: Getting Started on BlackBerry Apps

 ✓ Full: You find a regular QWERTY keyboard on every other BlackBerry
model, as well as on the BlackBerry Storm when in landscape mode.
This is the keyboard I prefer to use because all the keys represent one
character and I don’t have to press a key twice. Figure 1-9 shows the
BlackBerry Storm in landscape mode with its full QWERTY keyboard on
display.

Figure 1-9:
BlackBerry

Storm
rotated

clockwise
to show

the full
keyboard

on a touch-
screen.

Filling Your Toolbox
You are the most important tool in your software development toolkit. Even
when you’re working as part of a team, your expertise is more important
than the other tools you use to create the code. Your skills in using those
tools are what make the tools useful. However, you can’t develop BlackBerry
apps without the right set of software and hardware tools. The following sec-
tions describe the software and hardware you need to gather to start creating
BlackBerry apps.

Downloading the software you need
The following are the major software tools you use to create BlackBerry
applications:

 ✓ The BlackBerry Java Development Environment (JDE): This integrated
development environment is available from RIM. The JDE includes the
editor, debugger, device simulator, and memory viewer. (See Chapter 2
for the details of choosing a JDE version and downloading it to your PC.)

05_467114-ch01.indd 1805_467114-ch01.indd 18 8/30/10 1:05 PM8/30/10 1:05 PM

19 Chapter 1: Gathering What You Need to Develop BlackBerry Apps

 ✓ The RAPC compiler: This is the compiler and linker used by the JDE to
produce BlackBerry application files. It makes use of the Sun Java
compiler (see the following bullet) to compile your BlackBerry Java
code, and then packages it into a form that can be installed onto a
BlackBerry device. (The acronym RAPC stands for RIM APplication
Compiler, and you don’t need to download it — the RAPC compiler
comes with the BlackBerry JDE.)

 ✓ The Sun Java compiler: This is the Sun Microsystems Java Standard
Edition (JSE), which must be version 1.5 or later. You can download the
Sun Java compiler from

http://java.sun.com/javase/downloads/index.jsp

 I have run into some difficulty using the JDE on 64-bit Windows machines,
including Windows Vista and Windows 7. As of this writing, the RIM JDE
requires a 32-bit operating system (OS), with a 32-bit version of Sun’s Java, in
order to run at all. In addition, there is no Macintosh OSX tool for BlackBerry
development, unless you use a virtualization application (an application that
allows you to run other operating systems within it).

 RIM offers a plug-in for the Eclipse development environment. Eclipse is an
open source (free) Java development environment you can download from
www.eclipse.org. This book concentrates on development using the RIM
JDE, but if you’re comfortable using Eclipse, you should definitely investigate
RIM’s plug-in. As of this writing, the current version of BlackBerry Java
Plug-in for Eclipse is 1.1, and makes use of the BlackBerry OS 5.0 APIs.
Information about the RIM Eclipse plugin can be found at

http://na.blackberry.com/eng/developers/devbetasoftware/javaplugin.jsp

Gathering BlackBerry simulators
The BlackBerry JDE comes with several supporting applications to assist you
in developing a quality BlackBerry application. You use smartphone simulators
to execute your app just as if it were running on a real BlackBerry device.
You use the service simulators to represent the real-world services for the
BlackBerry to access the Internet (through your PC) or to simulate sending
and receiving e-mail. You use simulators in your development process to test
your apps before you run them on an actual BlackBerry smartphone. You can
download the smartphone simulators from RIM at the following URL:

http://na.blackberry.com/eng/developers/resources/simulators.jsp

Appendix A contains more information regarding smartphone and service
simulators.

05_467114-ch01.indd 1905_467114-ch01.indd 19 8/30/10 1:05 PM8/30/10 1:05 PM

20 Part I: Getting Started on BlackBerry Apps

Basically, here are the four types of simulator applications you want to use:

 ✓ JDE device simulators: These come with the JDE, and you launch them
with your application already installed. Each JDE comes with its own
set of simulated devices, and the newer JDEs have the newest device
types simulated. Read more about the device types per JDE version in
Appendix A.

 The smartphone simulators that each JDE includes in its set simulates
a version of the smartphone OS for that particular version of the JDE.
For instance, the BlackBerry JDE 4.5.0 comes with a simulator for a
BlackBerry smartphone 8320, and this smartphone shows that it is
running smartphone OS 4.5.0.44.

 ✓ Downloaded device simulators: RIM provides new simulators on its
Web site on a regular basis. You can download and install these simulators
for free. RIM updates its JDEs less frequently than it releases new
devices, so check for new simulator downloads, even while you’re in the
middle of developing your app. Figure 1-10 shows my application, The
Word Locker, running on a simulated BlackBerry Curve (8900).

 ✓ The Mobile Data Service (MDS) simulator: This comes with the JDE.
A BlackBerry device can talk to the Internet only with the help of an
MDS. A real BlackBerry will be associated with either the RIM-hosted
BlackBerry Internet Service (BIS) or a corporate BlackBerry Enterprise
Server (BES). Each of these associations provides MDS services, allow-
ing the device to connect to the Internet. A simulated device can’t con-
nect to a real MDS service, and so the MDS simulator provides Internet
access for device simulators. If your application needs to communicate
using the Internet, you will have to use the MDS simulator while using a
device simulator.

 ✓ The Email Service Simulator (ESS): This comes with the JDE. BlackBerry
users love their e-mail, and RIM has created an e-mail simulator that can
act as a gateway to a real e-mail server for a BlackBerry device simulator.

The best thing about all these simulators: They’re free!

Building or buying a development
computer
When you’re creating apps for the BlackBerry, your choice of computers
is limited to a PC running Windows — Windows XP, Windows Vista, and
Windows 7 all work with the BlackBerry development tools, but only as long
as they are 32-bit versions (not 64-bit versions). Your choice of programming
languages is limited to Java, version 1.5 or later, again using the 32-bit
version. This pretty much spells out what you need computer-wise to do
BlackBerry development. I’ve worked on several different computers to

05_467114-ch01.indd 2005_467114-ch01.indd 20 8/30/10 1:05 PM8/30/10 1:05 PM

21 Chapter 1: Gathering What You Need to Develop BlackBerry Apps

do BlackBerry development. In general, it’s better to have a fast machine with
lots of RAM, though you certainly don’t need to buy the most expensive new
computer on the market.

Figure 1-10:
A

BlackBerry
smartphone

simulator
running the
application

WordLocker.

Your development machine will need to handle the following tasks when
you’re developing BlackBerry software:

 ✓ Editing code: Any computer running Windows XP can support the
requirements of the JDE or any other text editor you prefer. Any machine
that can run Windows Vista or Windows 7 is also an appropriate choice.

 Because Microsoft is no longer supporting Windows XP, you might want
to use a newer version of Windows. While Windows XP still works well
for developing BlackBerry apps, you should consider the advantages of
using a newer Windows OS such as Windows 7 because keeping XP
running will get more and more difficult as time goes on.

05_467114-ch01.indd 2105_467114-ch01.indd 21 8/30/10 1:05 PM8/30/10 1:05 PM

22 Part I: Getting Started on BlackBerry Apps

 ✓ Compiling the code into an application: This is one of the most power-
hungry operations you will be performing again and again. Compiling
Java code is very CPU- and memory-intensive, so you want a machine
that has good processor speed, and as much memory as you can give it.

 As mentioned previously, only 32-bit versions of Java and the Windows
operating system can be used for BlackBerry development with RIM’s
tools.

 ✓ Executing and debugging the application using a simulator: The
device simulators are Windows applications that completely mimic
the operations of a real BlackBerry device. The service simulators
provide functionality that you use to enable your simulated BlackBerry
to access the Internet and send or receive e-mail messages. This
requires a machine that has good processor speed and a lot of memory.

A good midrange computer with a large amount of memory, as much as it
can use, will support your needs for BlackBerry application development.
Table 1-1 shows the requirements for a bare-bones development PC and for a
development PC with power to spare.

Table 1-1 Requirements for a Development PC

Equipment Minimum Requirements Optimum Requirements

Processor 2.0 GHz processor 3.0 GHz multi-code CPU

RAM 2GB 4GB

Operating system Windows XP (Service Pack 3) Windows 7/32-bit

Java version Java 1.5.0 Java 1.6.0

Network connection DSL Cable

Choosing a BlackBerry device
The BlackBerry models available as of this writing are

 ✓ Bold (9000, 9650, and 9700)

 ✓ Curve (83xx, 85xx, and 89xx)

 ✓ Pearl and Pearl Flip (81xx and 82xx)

 ✓ Storm and Storm2 (95xx)

 ✓ Tour (9630)

 ✓ 8800 series

05_467114-ch01.indd 2205_467114-ch01.indd 22 8/30/10 1:05 PM8/30/10 1:05 PM

23 Chapter 1: Gathering What You Need to Develop BlackBerry Apps

These models are available through the major wireless carriers. A particular
model may be exclusive to a particular carrier — for instance, the Storm
and Storm2 devices are currently Verizon-only, whereas the Bold and Curve
devices were originally AT&T-only. AT&T and Verizon strike deals with RIM
to be the sole providers of a particular model, but usually the exclusivity is
time limited. For instance, Verizon and Sprint have been selling models of the
Curve for a couple of years now, after AT&T’s contract with RIM to be the
only provider selling the Curve ended.

There are pretty much just two ways to acquire a BlackBerry:

 ✓ Purchase one, new or refurbished, from a wireless service provider.
This requires a service contract with the wireless service provider,
which might not fit into your budget.

 ✓ Buy one used. This way is usually less expensive than buying from a
wireless service provider but comes with its own set of advantages and
disadvantages.

See Appendix B for more information on buying new or used smartphones.

Using Your Programming Skills
You will need some general skills to develop BlackBerry applications:

 ✓ Java programming: The Java programming language is the development
language for BlackBerry applications. Your source modules must
represent Java classes, which get compiled into Java class files and then
packaged for the BlackBerry device OS to execute.

 ✓ Debugging: After you code your app, there’s a statistical likelihood that
it won’t be perfect. If you’re lucky, the imperfections will show up rather
quickly and obviously. As you develop more applications, you’ll find that
the obvious and quickly fixed problems happen less often, which leaves
the subtle and more-challenging bugs. Your skills at debugging — looking
at code as it runs, keeping track of what is going right and what is going
wrong, and so on — will play an important part in completing your apps.

 ✓ Software design patterns: Like with most modern computing platforms,
your app will benefit from using software patterns where appropriate.
You can certainly create a functional and usable BlackBerry application
without relying on any of the canonical design patterns, but applications
that are to have a long-duration existence will require a solid structure
for operation that the use of software patterns will support. The most
obvious is the Model-View-Controller (MVC) pattern, which enforces
the separation of your app into pieces that are easy to manage. (See
Chapter 4 for more information about MVC.)

05_467114-ch01.indd 2305_467114-ch01.indd 23 8/30/10 1:05 PM8/30/10 1:05 PM

24 Part I: Getting Started on BlackBerry Apps

Java programming for BlackBerry
For BlackBerry development, you should be familiar with Java programming
in general, and you should know the basics of Java syntax. BlackBerry Java
development is somewhat different from desktop PC Java development. The
major difference is BlackBerry Java has a somewhat smaller set of classes
that you can use to develop applications. Several of the basic Java packages
are available:

 ✓ java.io.*: This package contains the input/output classes you can use
to manage retrieving data from and delivering data to various locations,
such as Web services and data files.

 ✓ java.lang.*: You will find the familiar Java base classes such as
String in this package.

 ✓ java.util.*: Some of the classes available in the desktop version of
Java are available here, such as Vector.

 Not all the classes available in the JSE version of these packages are available
in the BlackBerry version. For instance, the BlackBerry java.util.* package
consists of only a dozen or so classes and interfaces, whereas the JSE java.
util.* package comes with almost ten times as many.

RIM removed many classes because of size and performance constraints. For
instance, one of the major changes to the Java language was the addition of
generics in version 1.5, for use with collection classes such as Vector (java.
util.Vector). RIM has not implemented generics for use with BlackBerry
development in part because this feature requires a great deal of overhead
(such as OS functionality) that doesn’t provide a dramatic improvement in
the end result in terms of performance.

In addition to these standard Java packages, several of the javax and org
packages are also available:

 ✓ javax.microedition.*: The Java Micro Edition (JME) packages are
all available for you to use. If you’ve developed a JME application, you
can run it without modification on a BlackBerry.

 ✓ javax.bluetooth.*: Your application can access the Bluetooth
hardware on a BlackBerry, if it’s available.

 ✓ javax.xml.*, org.w3c.dom.*, org.xml.*: These packages provide
classes your app can use to read and write blocks of XML data.

RIM provides a fairly rich framework of classes and interfaces that you can
use to make your application do just about anything you need. The RIM
classes fall into the following three categories:

05_467114-ch01.indd 2405_467114-ch01.indd 24 8/30/10 1:05 PM8/30/10 1:05 PM

25 Chapter 1: Gathering What You Need to Develop BlackBerry Apps

 ✓ Device interactions: Your applications use the classes in this category’s
packages (net.rim.device.*) to perform operations that make use
of the various parts of the BlackBerry device, such as using the smart-
phone’s GPS or communicating with Bluetooth devices. In addition, the
classes you use to create every visual user interface object can be found
in this category.

 ✓ BlackBerry application interactions: You can use the classes in this
category (net.rim.blackberry.*) to interact with the standard
BlackBerry applications. For instance, your app can create an e-mail
message and send it, all without the user having to launch the BlackBerry
Mail application.

 ✓ Plazmic Media Engine: This category (net.rim.plazmic.*) contains
classes your app can use to deliver audio and video content to your users.

Debugging
The BlackBerry development tools come with a source-level debugger.
However, your own skills in debugging Java software are what matter most.

I assume that in your software application development experience, your
apps didn’t always work perfectly. I’m guessing that you’ve presumably spent
time analyzing code to find where the problems were hiding, and ruthlessly
eliminated them. In general, debugging is still something of an art. Sure, tools
can assist with finding the place where code goes wrong, but you still need
creativity and imagination to know where to start looking. Small applications
are usually easy to debug, but when your app has several dozen classes and
interfaces, bugs find more places to hide.

You can find resources online and in print regarding debugging, as well as
techniques and habits that you can use to make your code easier to debug.
I’ve worked on only a few applications where debugging of some sort was
not necessary, and that includes the sample applications I show you in the
chapters that follow. All of them had quirks and gotchas that required
analysis and imagination to overcome.

Using software patterns
The world of software has been around long enough that a lot of the ways to
solve problems have become standardized. You’ll find that using software
patterns can greatly simplify your code. This leads to code that’s easier to
maintain. Patterns tend to be simple and effective, focusing on delivering a
limited set of functionality within your app. A class in your application that
represents a particular software pattern for achieving a particular objective
is straightforward and easy to test.

05_467114-ch01.indd 2505_467114-ch01.indd 25 8/30/10 1:05 PM8/30/10 1:05 PM

26 Part I: Getting Started on BlackBerry Apps

The simplest example of a software pattern that you might use is one I
employ in a great many of my applications: the Singleton pattern. Only one
instance of a singleton class will exist in an application. Most singleton
classes have the general appearance shown in Listing 1-1.

Listing 1-1: The Smallest Form of a Singleton Pattern, Implemented in Java
public class SingletonClass
{
 private static SingletonClass m_instance;

 public static SingletonClass getInstance()
 {
 if (null == m_instance)
 {
 m_instance = new SingletonClass();
 }
 return (m_instance);
}

 private SingletonClass()
 {
 // initialization code
 }

 //
 // the remainder of the methods
 //
}

Any code that makes use of this SingletonClass will execute Singleton
Class.getInstance(). This method will instantiate (create) and initialize
the solitary instance of this class available for the application the first time
the method is called, and return that instance that time and every subsequent
time the method is called.

Your application can make use of the Singleton pattern when you want to
restrict access to one specific location for information. This pattern comes in
useful for a large number of different parts of an application, such as

 ✓ User settings: You will normally have only one user of your application,
and so storing that user’s preferences for your application in a
singleton class makes perfect sense.

 ✓ Resource connections: Access to resources such as a database should
be funneled through one object because opening a connection to a
resource usually requires substantial code execution. Opening the
connection once and maintaining it through your application’s lifetime
incurs less overhead than multiple openings and closings. You can use a
singleton class to ensure that a connection is opened only once.

05_467114-ch01.indd 2605_467114-ch01.indd 26 8/30/10 1:05 PM8/30/10 1:05 PM

27 Chapter 1: Gathering What You Need to Develop BlackBerry Apps

Understanding BlackBerry Application
Development Challenges

If BlackBerry programming were easy, you wouldn’t need this book. So you
need to be prepared for the inevitable difficulties that will appear. Sometimes
these challenges are caused by the BlackBerry device or its OS, and you will
have to “code around” these types of problems. Sometimes you will discover
you have coded yourself into a corner: for example, a particular decision of
how to code something at an earlier moment has forced responsibilities upon
your code further down the development path.

The following sections describe the challenges that you’ll face in writing
BlackBerry applications.

Choosing an OS version
You have to decide what version of the BlackBerry OS your application will
execute on. This is the most significant decision you must make because it
will influence and constrain your application’s capabilities.

RIM produces new BlackBerry devices — and, therefore, new BlackBerry OS
versions — several times per year. In 2009 alone, the following new devices
were released:

 ✓ Storm2

 ✓ Bold 9700

 ✓ Curve 8900

 ✓ Tour

Each of these devices came with its own new version of the BlackBerry OS.
OS versions are usually represented by four numbers separated with dots,
such as 4.7.0.113. The first two numbers are usually the most important;
they are the major and minor version numbers. The difference in behavior
between OS 4.6.0.49 and OS 4.6.0.75 is likely to be minor although I have
come across times when such a version upgrade has fixed a bug that my
code encountered.

 It’s true! Sometimes you will discover that your perfectly debugged and
packaged code comes across a bug in the OS!

The differences between minor OS versions — say, OS 4.6 versus OS 4.7 —
will likely be significant. Of the two just mentioned, OS 4.7 is interesting
because it’s the only OS that runs on the BlackBerry Storm and Storm2
devices. What’s interesting about these devices? Two things:

05_467114-ch01.indd 2705_467114-ch01.indd 27 8/30/10 1:05 PM8/30/10 1:05 PM

28 Part I: Getting Started on BlackBerry Apps

 ✓ Storm and Storm2 use the touchscreen as their primary input mechanism.
This permits your app to make use of users sliding their fingers around
the screen, enabling your app to perform some actions more fluidly.

 ✓ Storm and Storm2 have accelerometers to indicate the orientation of
the display. Your app can take advantage of knowing whether the user
has switched the device’s orientation from portrait (taller than wide) to
landscape (wider than tall). You can see the Storm showing its landscape
mode in Figure 1-9.

 Each JDE has a version number as well, and this version number corresponds
to the version number of the OS that you can code for. I can’t stress this fact
enough:

The version of the JDE you choose will limit which devices your app can run on.

For more information about choosing a JDE version, see Chapter 2.

The JDE version is the minimum device OS version that your app will execute
on. Your application’s code will usually be forward compatible: That is, newer
device OS versions will usually execute code created using an earlier JDE
version. This isn’t always true, but it’s a safe bet for the next several subsequent
versions of the OS. This also depends on what BlackBerry classes your app
uses to do its job. A bare-bones minimalist application that does something
simple such as take user text input and store it in memory isn’t likely to run
afoul of changes in the device OS for several versions to come.

RIM releases a device OS about once every year that runs on all of a set of
the currently available devices. As of this writing, a version of OS 5.0 can run
on all the devices that were released in 2009, plus several others that came
out in 2008. Currently, the OS version that runs on the greatest number of
smartphones is OS 4.5.0.

Using version 5.0 of the JDE, you can develop applications that will run on
every device using OS 5.0. This will mean your app can use classes that take
advantage of the features listed above for the Storm series of devices but
still run (without any ill effects) on non-Storm devices. However, because a
non-Storm phone (such as a BlackBerry Pearl Flip) has neither a touchscreen
nor an accelerometer, code written to take advantage of these features won’t
install on the device because the OS won’t know what to do when it comes
across those specific features in your app. However, a Pearl Flip running OS
5.0 will allow code implemented to use those specific features to execute,
although that part of the code will simply do nothing.

 The BlackBerry App World, RIM’s online marketplace for BlackBerry applications,
allows you to deploy separate apps that differ only based on which device each
one is intended to run on. RIM recognizes that you want your application to run
on as many different devices as can access the App World, but that you also
want your application to take advantage of the features each device provides,
instead of just coding to one common-denominator, lower-level device OS.

05_467114-ch01.indd 2805_467114-ch01.indd 28 8/30/10 1:05 PM8/30/10 1:05 PM

29 Chapter 1: Gathering What You Need to Develop BlackBerry Apps

Thus, your application can exist in the App World in multiple forms. For
example, if you intend for your app to be used only by those users who have
accelerometers in their BlackBerry devices, you can restrict your app to an
OS 4.7-only zone, and no other device will be able to install it. Note: If you
want your app to run on all devices but also take advantage of accelerometers
when running on a Storm, you have to develop two versions of your app: one
for Storm devices and then one for all the rest.

 The key point is that these two different applications only constitute one
app submission to the App World, so you’re only paying for one submission
instead of two. Chapter 12 goes over the details you need to know about the
App World, and your app’s life there.

Programming defensively
Your application hopefully will be used by tens of thousands of people
worldwide. When that happens, each user becomes a stress test for your
app. These users will inadvertently discover ways of breaking your
application — causing unforeseen consequences to occur — that you never
thought of. Your users will be your next major challenge.

Users follow a bell curve in terms of their use of your app. Most will behave
exactly as you expect, following a “happy path” of operation where they
never encounter shortcomings in your app and never try to make the app
do something incorrect. But a small faction of users either intentionally or
unintentionally drives your app into a situation it’s not prepared to handle. If
you’re working for a large organization with a Quality Assurance department,
a great many of these situations can be discovered and resolved before your
code hits the outside world. If you’re a solo entrepreneur, the burden falls on
your shoulders.

 Most abnormal situations are a result of invalid user input. This specific cause
can be eliminated through the use of fixed-input entry fields: UI elements that
restrict user input to particular data types or specific values. In addition, your
app should “sanitize” the data that users can provide as input, to make sure
that nothing bad gets inside your app to wreak havoc.

For instance, your app may want users to enter a date value, perhaps for a
birthday reminder. You could use a simple text-editing component, such as
an EditField, for users to select and start typing in a date. But you would
then have to make sure that what they enter is actually a real date — this
could be any of the following:

 ✓ 09/01/10

 ✓ September 1, 2010

 ✓ 2010-09-01

05_467114-ch01.indd 2905_467114-ch01.indd 29 8/30/10 1:05 PM8/30/10 1:05 PM

30 Part I: Getting Started on BlackBerry Apps

As you can see, letting users enter arbitrary text data forces you to implement
the appropriate conversion method for turning their entries into a form more
suitable for your app to make comparisons and calculations with. However,
a basic text-entry field also allows your users to enter text such as Karl’s
Birthday just as easily.

This text will pretty much crash your application if it tries to add or subtract
days, months, or years to or from it. A better way to ensure that only valid
date values, easily converted to a usable form, are entered is to use UI
components that limit what a user is permitted to enter. In this case, using a
component such as a DateField would be much more appropriate. Unless
you want to give your users more flexibility — which forces you to convert
every possible input to an appropriate, usable form within your app.

 Another potential cause of problems is users who download a version of your
app that is not valid for their smartphone OS. Luckily, the BlackBerry App
World gives you the ability to provide multiple versions of your application
customized to the different smartphones that RIM supports. You discover all
this in Chapter 12.

Entering a Brave, New
BlackBerry App World

With the success of the Apple App Store for delivering software to iPhone
devices, major smartphone manufacturers and even some wireless service
providers are designing and deploying their own storefronts to sell applications
designed for their platforms. As mentioned earlier, RIM hosts the BlackBerry
App World, which is an online marketplace for all kinds of BlackBerry
applications. The App World provides many categories of applications for
BlackBerry users to download, such as Business, Education, Games, News,
Shopping, and Utilities. (For the complete list, see Chapter 12).

Each category is further subdivided, allowing prospective buyers to drill
down through the store and find the app that’s right for them. You, as a
developer, should become familiar with the user’s experience of searching
and finding apps in the BlackBerry App World, to place your app in the right
category and to make sure your app shows off its best face. You find out
about all the App World categories and their subcategories in Chapter 12.

Deciding what kind of app to create
If you already have an idea for an app, great! You’ve passed one of the most
difficult steps on your way to BlackBerry App World riches! Figuring out what

05_467114-ch01.indd 3005_467114-ch01.indd 30 8/30/10 1:05 PM8/30/10 1:05 PM

31 Chapter 1: Gathering What You Need to Develop BlackBerry Apps

How one idea leads to another
For instance, in a project on another
smartphone device, I once had a need to d
isplay text in a variety of the available fonts to
demonstrate to the user experience specialist
what the device’s different fonts would look
like. Several apps were available at this
platform’s marketplace to do this, and even
writing my own was fairly straightforward.

But it got me thinking: The fundamental problem
I was trying to solve was an inability on the part
of the development team to quickly and clearly
see what the results of our choices for user
interface elements would actually end up looking
like. There was no way for the user experience
specialist to “play around” with different
settings and get an instant reaction to the
settings on a real device.

Unless. . . . What if I created an app that allowed
a user of the smartphone to mix and match
fonts and buttons and labels and menus and all
the other user interface objects on the phone
itself? In essence, this would be an “interface
creator” application, running on the actual
device, so that anyone with a device could “try
out” different combinations of user interface
items. Developing such an application would
be helpful to anyone in an organization who
wants to prototype user interface development,
without actually having to write code.

This is the kind of imagination-behind-the-
scenes that can lead to applications that your
users will want to use. I haven’t gone out to
build this particular app, yet, but you have my
permission to make the attempt.

you want to develop can be challenging, so I recommend that you review the
apps available in the App World in a variety of different categories. Think of
this exercise as window shopping. Your imagination will be working in the
background while you look at what’s for sale already, and all it takes is one
example to trigger something wonderful.

Brainstorming, alone or in groups
I am a co-founder of a small startup, BlazingApps. The other co-founders and
I sit down irregularly for a brainstorming session. We go around the table
and contribute an idea or many about different apps we’ve thought about
since the previous meeting. I enjoy this kind of imaginative collaboration and
highly recommend it. Granted, you might find it difficult to brainstorm all
by yourself, so for the solo entrepreneur, I highly recommend writing down
any thoughts or ideas somewhere so that you can easily find them again.
You should write down everything, no matter how small or unimportant you
might think it is. This way, you’ll have a collection of thoughts and imaginings
that you can use to spark more of the same. Or else, some combination of
your thoughts and imaginings across a spectrum of your recorded notes will
group together and prove to be an app worth creating.

05_467114-ch01.indd 3105_467114-ch01.indd 31 8/30/10 1:05 PM8/30/10 1:05 PM

32 Part I: Getting Started on BlackBerry Apps

Even if you’re a solo entrepreneur, talking with other developers or even
just acquaintances can generate ideas. You can scan the BlackBerry online
forums to pick up what issues users are running into and develop ideas based
on problems they are encountering and — obviously — want a solution for.

Becoming a BlackBerry developer and
App World vendor
Your first step toward BlackBerry app development is to register with RIM as
a BlackBerry developer. You then gain access to a treasure trove of all things
BlackBerry, including

 ✓ All BlackBerry JDE downloads

 ✓ All BlackBerry simulator downloads

 ✓ Articles pertaining to BlackBerry development (the Knowledge Base)

 ✓ The official BlackBerry online development forums

 ✓ All developer documentation

The developer registration process is pretty straightforward. I go over the
steps involved in Chapter 2.

Becoming a BlackBerry App World vendor is a little more complicated, with
more steps to follow because (you guessed it) money is involved. You need a
PayPal account. I go over these details as well in Chapter 2.

05_467114-ch01.indd 3205_467114-ch01.indd 32 8/30/10 1:05 PM8/30/10 1:05 PM

Chapter 2

Registering and Downloading
In This Chapter
▶ Using the right hardware

▶ Registering as a developer with Research In Motion

▶ Starting down the path to the BlackBerry App World

▶ Looking for and finding Help

Before you can create and sell your killer BlackBerry app, start off by
arming yourself with the right hardware.

When you’re ready to start creating apps, you need to join the ranks of
BlackBerry developers by first registering with Research In Motion. After you
confirm your registration, you’ll have access to all the resources you need
to download the Java Development Environment (JDE) as well as device and
service simulators from RIM.

At your disposal, too, is a plethora of BlackBerry technical documentation —
and you can even communicate with other developers on the forums. You
can find an overwhelming amount of information and tools available at the
BlackBerry Web site, and in this chapter, I give you assistance to navigate
that Web site and the resources you find there.

Registering with RIM
With your development hardware and software ready at your end, it’s time to
get connected to Research In Motion. The process is pretty straightforward
and easy to get through:

 1. Point your browser to www.blackberry.com.

 This is the entry point for all things BlackBerry.

 2. Select your country from the drop-down list and then click Go.

 If you’re in the United States, Canada, the UK, or Germany, click the
appropriate link beside the Go button.

06_467114-ch02.indd 3306_467114-ch02.indd 33 8/30/10 1:06 PM8/30/10 1:06 PM

34 Part I: Getting Started on BlackBerry Apps

 3. Click the Developers link at the top of the page.

 Now you’re getting to Developer Central. You see the page shown in
Figure 2-1.

 4. Click the Register For Free button.

 5. On the registration page shown in Figure 2-2, fill in the text boxes so
RIM has information about who you are. Then click Next.

 You need to enter information into all the fields marked Required.
Otherwise, the Web site will throw a tantrum and hold its breath until it
turns blue.

Figure 2-1:
The

BlackBerry
Developer

Zone for
preregis-

trants.

06_467114-ch02.indd 3406_467114-ch02.indd 34 8/30/10 1:06 PM8/30/10 1:06 PM

35 Chapter 2: Registering and Downloading

Figure 2-2:
The first

registration
page, to be

filled with
your basic

“Who
am I?”

information.

 6. On the second registration page shown in Figure 2-3, fill in more
information about yourself, and then click Next.

 • Again, you have to provide information in the fields marked
Required.

 • RIM wants to know what your role as a developer is, so you
select that from the Developer Role drop-down list. I chose the
Commercial Consumer Developer item because that’s the type of
app I intend to release.

 • Under Technology, select the check box(es) for the items you
intend to program. For example, I selected the Java, BlackBerry
Enterprise Server, and BlackBerry Internet Service check boxes.

06_467114-ch02.indd 3506_467114-ch02.indd 35 8/30/10 1:06 PM8/30/10 1:06 PM

36 Part I: Getting Started on BlackBerry Apps

 • RIM also wants to know your technical level, so you need to select
that from the Technical Level – Mobile drop-down list. Select a
level you feel comfortable with. Don’t worry, there’s no wrong
answer here.

 • Your choice from the list of check boxes in the Specialization section
gives RIM an idea of the type of applications you’re planning to
develop. You can select some, none, or all of these check boxes.

 • RIM also wants to know which developer forum you want to
subscribe to. As of this writing, you can select only one (which
doesn’t make a lot of sense to me), but you can access all the
forum topics. Lastly, RIM has thoughtfully provided you with two
check boxes already selected, enabling RIM and RIM’s authorized
partners to send you messages about BlackBerry products and
services, as well as the Blackberry Developer Newsletter. If you
don’t want extra messages in your inbox, clear these two check
boxes.

Figure 2-3:
The second

part of
registration,

looking for
what kind of

developer
you are.

06_467114-ch02.indd 3606_467114-ch02.indd 36 8/30/10 1:06 PM8/30/10 1:06 PM

37 Chapter 2: Registering and Downloading

 7. Finally, you arrive at the BlackBerry Developer Zone Agreement page.
Select the I Agree radio button, and then click the Next button.

 You must agree to the license agreement to become a registered
BlackBerry developer. You see one more page to confirm all the contact
information you’ve just given, and after you submit that, RIM sends
you an e-mail containing a link. Click that link to enable your developer
account. Then you can log in and access the resources available to
developers at the BlackBerry site.

That’s it! You are now a fully registered BlackBerry developer. You have
access to all the tools and resources available for BlackBerry developers
from RIM. The next step: becoming a part of the BlackBerry App World.
Onward and upward!

Signing Up to Be a Citizen
of the App World

You will find the tools and resources you need for developing your
BlackBerry application ready for download from RIM when you complete
the developer registration process (described in the previous section). In
Chapter 10, I go over the steps necessary for you to purchase signing keys
from RIM to allow you to deploy your application onto a real BlackBerry
device so you can see it running there — that will mark the completion of
your development needs. To sell your app through the BlackBerry App
World, one more registration will be required, though: PayPal.

 You need a PayPal account before you can be part of the BlackBerry App
World. If you don’t have a PayPal account, go to www.paypal.com to register.
If you need help setting up your account, check out

www.dummies.com/how-to/content/setting-up-your-paypal-account-and-profile.html

BlackBerry App World hired Digital River to manage the behind-the-scenes
transaction processing, and payments are made through PayPal for both
ends of the transaction. Users who buy your app can use PayPal or a credit
card to purchase it, but you receive your share of the proceeds as a payment
made to your PayPal account.

 Your PayPal account is also how you will pay RIM to become a vendor in the
BlackBerry App World, coming up in Step 10 in the following list.

The following steps assume you already have a PayPal account. Follow these
steps to link your PayPal account to BlackBerry App World so you can start
banking your profits:

06_467114-ch02.indd 3706_467114-ch02.indd 37 8/30/10 1:06 PM8/30/10 1:06 PM

38 Part I: Getting Started on BlackBerry Apps

 1. Point your browser to

http://na.blackberry.com/eng/developers/appworld

 If you’re already logged in as a registered BlackBerry developer, click
the BlackBerry App World Vendor Support link in the upper left of the
BlackBerry Developer Zone page (refer to Figure 2-1). You see the page
shown in Figure 2-4.

 2. Click the Submit an Application or Theme to BlackBerry App World or
Learn How to Register link.

 I’m not altogether positive why this link is not more prominent; as a
BlackBerry developer looking to sell apps through the App World but
not knowing where to start, I expected something more obvious.
Figure 2-5 shows the results of clicking this link.

 3. Click the Get Started button.

Figure 2-4:
The gate-

way to the
BlackBerry
App World

for
developers.

Click this link.

06_467114-ch02.indd 3806_467114-ch02.indd 38 8/30/10 1:06 PM8/30/10 1:06 PM

39 Chapter 2: Registering and Downloading

Figure 2-5:
The Web

page where
you will
begin to

enroll as an
App World

citizen.

 4. On the Vendor Registration page that appears, scroll to the bottom of
the list box and select the I Have Reviewed the Agreement and Am
Prepared and Authorized to Accept the Terms and Conditions Set Out
in the Agreement check box.

 Undoubtedly for legal reasons, RIM requires that you read (or, more
accurately, scroll) to the bottom of the agreement before allowing the
check box to be accessible.

 Do review the agreement, especially if you’re doing corporate development
and your company’s legal team is required to review it before you
accept the agreement. If you’re like me, as an individual entrepreneur,
agreeing to this agreement is pretty much a no-brainer: Agree and
continue, or refuse to agree and be denied access to the App World.

 5. Select the Yes radio button if you want to sell your applications using
the payment facilities of BlackBerry App World.

 If you don’t plan to sell your app — that is, you want to provide it for
free — select the No radio button.

 If you select Yes, the Digital River terms and conditions appear, with yet
another agreement you have to commit to.

06_467114-ch02.indd 3906_467114-ch02.indd 39 8/30/10 1:06 PM8/30/10 1:06 PM

40 Part I: Getting Started on BlackBerry Apps

 6. Scroll to the bottom of the list box, and then select the Do You Agree
to the Digital River Terms and Conditions? check box to agree to
Digital River’s terms and conditions.

 Digital River handles the payment transactions between the App World
and PayPal.

 7. You need to agree to the Bango terms and conditions, so scroll to the
bottom of the next list box, and then select the Do You Agree to the
Bango Terms and Conditions? check box.

 Bango is the service that supports selling applications through the
wireless carrier’s network. This is the last of the agreements for you to
agree to.

 8. Click Next.

 9. Enter your e-mail address, first and last names, phone number, and
password in the appropriate text boxes. (See Figure 2-6.) Click Next.

 10. Enter your vendor information: company name, address, phone
number, homepage URL, e-mail, support e-mail, and fax number in the
appropriate text boxes. (See Figure 2-7.) Click Next.

 The Homepage URL and Fax Number text boxes are optional; you must
fill out all the other text boxes.

Figure 2-6:
Fill in the

form to
register as a

vendor.

06_467114-ch02.indd 4006_467114-ch02.indd 40 8/30/10 1:06 PM8/30/10 1:06 PM

41 Chapter 2: Registering and Downloading

Figure 2-7:
More text

boxes to
fill in.

 11. On the next page, click the Checkout with PayPal button.

 RIM requires you to pay a $200 service fee to complete your registration
and to submit your apps. You go through the standard PayPal payment
process to pay the fee. After you complete the payment, you return to
the BlackBerry App World Vendor Registration page.

 12. Click Next, and on the final page, click the Done button.

 Whew! You’re finally done.

 Make sure your PayPal account is set up with a valid credit card before
you start the App World registration process. I set up the PayPal
account with a credit card while in the middle of registering, and the
App World registration Web page timed out before I was through. This
meant I was forced to go through the process from the beginning.

06_467114-ch02.indd 4106_467114-ch02.indd 41 8/30/10 1:06 PM8/30/10 1:06 PM

42 Part I: Getting Started on BlackBerry Apps

Getting the JDE
RIM has designed and built a great many BlackBerry smartphones to support
the myriad needs, likes, and dislikes of business users and consumers. This
wealth of devices presents you with a large marketplace in which to sell your
app. The flip side is that because there are so many models, each smartphone
comes with a different version of the BlackBerry OS to support the unique
features of that particular device. Here are just a few of those features:

 ✓ GPS: Some BlackBerry devices can determine a physical location via
Global Positioning System (GPS). Your app can take advantage of the
user’s physical location on BlackBerry smartphones that include this
feature.

 ✓ Storage card: Most BlackBerry devices come with an option for a
removable storage card, but some models do not. Your application can
use a storage card to preserve large amounts of information; 2GB and
larger storage cards are pretty affordable.

 ✓ Touchscreen: The BlackBerry Storm and Storm2 smartphones incorporate
a touchscreen for user input. Your app can accommodate the user of
a touchscreen in a manner different from the other BlackBerry input
mechanisms (such as the trackball or the trackpad).

 ✓ Accelerometer: The BlackBerry Storm and Storm2 smartphones also
incorporate accelerometers, which are small electronic components that
provide information regarding how the device is being moved and held.
You might incorporate acceleration data in an application to track a
user’s movements through time, such as to move a ball through a maze
game.

The challenge comes when deciding what JDE you want to use. The normal
approach in the world of desktop PC development is to select the Java
development system that contains the best selection of classes that your
application wants to use to implement features and functionality for your
users. You would then ship your desktop application with a notice that indicates
what Java Runtime Environment (JRE) is required to execute your app.

You use a similar approach when developing BlackBerry applications, but
here are a couple of points to keep in mind while deciding what version of
the JDE you should use to develop your app:

 ✓ 1, 2, 3: BlackBerry JDE version numbers are related to the first three
numbers of the BlackBerry device OS version. Thus, the BlackBerry
JDE version 4.5.0 contains code libraries that support devices running
OS version 4.5.0 and higher.

 ✓ Old to new, good: A BlackBerry application developed with an older OS
version most likely runs on a BlackBerry device using a newer OS version.
For example, if you create an application using version 4.5.0 of the JDE,

06_467114-ch02.indd 4206_467114-ch02.indd 42 8/30/10 1:06 PM8/30/10 1:06 PM

43 Chapter 2: Registering and Downloading

it almost always executes equivalently on a BlackBerry smartphone that
has OS version 4.6 installed. I am being intentionally non–fully committal
here, though, because sometimes things don’t always work out this way.

 ✓ New to old, bad: A BlackBerry application developed with a newer OS
version will most likely not run on an older OS version. You encounter
this restriction with every platform for which you develop apps for:
Namely, the executable you develop for a current OS generally won’t run
on a prior version of the OS. This is true for BlackBerry OSes just like
for any PC OS. And even if you find that the app you developed using
BlackBerry JDE 4.5.0 does run on a device using OS 4.2.1, you can never
be sure whether some big crash is waiting just around the next corner of
code.

As of this writing, the following JDE versions are available for download from
RIM, starting with the latest and greatest first:

5.0 4.7.0 4.6.1 4.6.0
4.5.0 4.3.0 4.2.1 4.2.0
4.1.0 4.0.2 4.0.1 4.0.0

 I avoid any development environment — BlackBerry or otherwise — in beta.
This doesn’t mean that JDE 5.0 (as of this writing) is untrustworthy, but that’s
not something I’d like to find out after shipping an application built using it,
especially an application that I expect users to buy. Your mileage may vary.

To find the version number of a BlackBerry device or a simulator, follow
these steps:

 1. Turn on the BlackBerry smartphone or open the simulator.

 Simulators are covered in Appendix A.

 2. Press the Menu button and click the Options icon.

 You might have to click Settings first to get to the Options icon.
Figure 2-8 shows the Options menu.

 3. Select About.

 Figure 2-9 shows the top of the About screen on my BlackBerry 8900.

 The version number of the OS that your device is running appears near
the top of the screen. My BlackBerry 8900 has version 4.6.1.315 of the
OS installed — the fourth number (315) is the platform number, and for
comparing with the JDE version, this number can be safely ignored. This
version numbering means that

 • Applications built using JDE versions 4.6.1 and lower operate on
this BlackBerry.

 • Applications built using JDE version 4.7.0 or 5.0.0 (as of this writing,
the two highest versions) do not operate on this BlackBerry.

06_467114-ch02.indd 4306_467114-ch02.indd 43 8/30/10 1:06 PM8/30/10 1:06 PM

44 Part I: Getting Started on BlackBerry Apps

Figure 2-8:
Start from

the Options
menu to find
your version

number.

Figure 2-9:
Find your

version
number

here.

Which JDE version is right for you?
You want to pick the JDE that best suits your application. Keep one thing in
mind, though, to make that decision easier. Periodically, RIM releases a “One
OS for All” — a version of the BlackBerry device OS that’s available for an
entire set of devices. This means that no matter which previous OS version a
device has, it can be upgraded to this “universal” OS. You would then write
applications using the equivalent JDE version, and your applications would
then be able to run on any device that upgrades to this OS.

Each OS version differs from the versions around it in ways that are either
small or large, depending on the features RIM has added or changed. While
accelerometer information and touch events required major changes to OS
4.7 (with respect to OS 4.6.1, the previous version), other minor improvements
in terms of new classes and methods were also included. And this leads to
one of the most beautiful things about the universal versions: Any BlackBerry
device running a universal OS executes code developed for previous OS

06_467114-ch02.indd 4406_467114-ch02.indd 44 8/30/10 1:06 PM8/30/10 1:06 PM

45 Chapter 2: Registering and Downloading

versions. This might not sound very “beautiful” as I promised, but think of
it this way: If you wrote an application using JDE 4.7 to take advantage of
the accelerometer on a Storm device, that same application executes on
any device running OS 5.0, even if the device does not have an accelerometer.
Now, your accelerometer-using application might not work correctly on a
BlackBerry Curve that’s upgraded to 5.0, but most of the functionality
implemented for your app still works correctly. Normally, your app wouldn’t
install onto a device that doesn’t have the accelerometers your app has been
implemented to make use of.

At the time of this writing, device OS version 4.5 is the universal OS. If you
use JDE version 4.5.0 to create your apps, you can run your apps on any of
the devices that have that OS version or higher. Version 5.0 of the OS is the
next universal OS, and devices are now becoming available using that version.
Watch out for the following, though, when developing code for such a
universal version:

 ✓ Some devices can be excluded from the universal version. For
instance, the 4.5.0 OS excludes the 71xx series of devices.

 ✓ Users aren’t required to upgrade to the new version. Sad, but true;
some users (myself included) find the prospect of upgrading to a new
version of an OS to be a scary prospect. Yeah, I know I can always get
back to the prior version of the OS, but I’m always fearful of losing all
my contacts, e-mails, calendar appointments, and so on. And sure, I can
back up all that information. Still, upgrading a BlackBerry to a new OS
is the equivalent of erasing your desktop PC’s hard drive and then
reinstalling everything. There’s always a chance that something won’t
work right.

 ✓ New OS versions come out frequently, usually with every new device.
RIM releases a new BlackBerry several times per year and always adds
capabilities to new devices, which means a new library of code with
each new device. Your app can be coded to use the previous set of
features but would be unable to take advantage of any new stuff on the
new device.

 ✓ Your application can use features available only in the universal
version. Your app can’t use newer features available on devices
released after the universal version arrives.

 As of this writing, the most important decision for you to make, regarding which
version of the BlackBerry JDE to use, is this: Do you want to take advantage
of the touchscreen and accelerometer features of the BlackBerry Storm and
Storm2 devices? This is a most important consideration because your choice
confines your choice of JDE to 4.7.0 or later. Your application is blissfully
unaware of the accelerometer and touchscreen code available on the Storm
and Storm2 devices if you choose to use any JDE with a lower version number
than this. Any application you write using JDE 4.5 can execute on a smartphone
running OS 4.7, but the application won’t be able to read any accelerometers
or detect “touch” events while doing so.

06_467114-ch02.indd 4506_467114-ch02.indd 45 8/30/10 1:06 PM8/30/10 1:06 PM

46 Part I: Getting Started on BlackBerry Apps

By the time you read this book, the latest-and-greatest BlackBerry OS version
5.0 will be available and in general use by BlackBerry aficionados across the
world. OS 5.0 includes the following improvements, aside from it being a
universal OS:

 ✓ SQLite database support: You can store your application’s data in a
real SQL-standard database, and make use of SQL queries to access and
manipulate data. SQLite is a self-contained SQL database that gives you
the capability to manage your BlackBerry app’s data as if using an SQL
database.

 ✓ New UI fields: A variety of new fields has been added to enhance your
application’s capability to interact with your users.

 ✓ New UI layout manager: Your application can lay out its UI elements in
a grid style. I’ve worked with a variety of different layout managers on
different platforms, and I prefer grid layouts because they seem easier
to use and the code to implement the layout of the UI elements seems to
track the resulting display of those elements more closely.

 ✓ New screen transition management: Your application can provide a
variety of transitions when the user moves from one screen to another.

 ✓ Improved network connection management: Network connections are
created by using a Connection-Factory class that provides you the
connection that your application requests. In addition, you can fine-tune
the connection attempt by setting values for the instance of the factory
class.

Playing it safe
The safest, most consistent OS version number is 4.5, so that’s the JDE version
I use through the rest of this book. True, using this version prevents my app
from making use of the 4.7 features for the touchscreen and accelerometer
BlackBerry devices (read about this earlier in the chapter), but using JDE 4.5.0
allows me to ship my app to the widest possible set of BlackBerry devices
available. Because I want to make some money with a shipping application, the
more devices that can run my app, the more money I can make.

I do pay close attention to how my application behaves on touchscreen
devices, though. For example, Storm and Storm2 users can rotate the
device’s visual orientation, switching from portrait (taller than wide) to
landscape (wider than tall). With that knowledge, I can be wary enough to
know how my application behaves when the user does something that I can’t
anticipate or react to in my code.

So that’s my advice: JDE 4.5.0 is the current best choice for development of
BlackBerry applications for wide use.

06_467114-ch02.indd 4606_467114-ch02.indd 46 8/30/10 1:06 PM8/30/10 1:06 PM

47 Chapter 2: Registering and Downloading

Downloading and Installing a JDE
The BlackBerry JDEs are available at one place: www.blackberry.com. To
download a JDE, follow these steps:

 1. Point your favorite browser to http://na.blackberry.com/eng/
developers.

 This displays the main developer Web page for the site, and you need to
navigate deeper.

 2. Click the Java Application Development link from the list on the left-
hand side of the page.

 The left-hand list is redisplayed, this time with more items under Java
Application Development.

 3. Click the Java Application Development Tools & Downloads link from
the expanded list.

 4. Click the Learn More About and Download the BlackBerry JDE link.

 5. Scroll down the page until you can see the BlackBerry JDE Downloads
section.

 This contains links to all available JDE versions, as you can see in
Figure 2-10. The Get Help link on the right side leads to a small article
that advises, “When building applications, you should use a BlackBerry
JDE version that matches the lowest version of the BlackBerry Device
Software you want to support.”

Figure 2-10:
The links

leading
to the

available
BlackBerry

JDE
versions.

06_467114-ch02.indd 4706_467114-ch02.indd 47 8/30/10 1:06 PM8/30/10 1:06 PM

48 Part I: Getting Started on BlackBerry Apps

 6. Select the JDE version that fits your application’s needs best.

 As I mention previously, I’m going with JDE version 4.5.0.

 7. Fill out the form on the page that’s displayed and then click Next.

 Most of this form is already filled out for you, assuming that your
browser keeps track of the same form you filled out to register with the
RIM developer network, as described earlier in this chapter. Some of the
information might be missing. And honestly, I haven’t spent enough time
figuring out the pattern of when this happens. I only know that if I don’t
review it carefully, the Web page admonishes me to Please Fill Out All
The Required Fields.

 8. Fill in the text boxes on the Eligibility Requirements page that
appears, and then click Next.

 You see yet another Do You Agree? page with a lot of licensing agreement
statements in rather small type. If you’re a solitary entrepreneur, it’s
a go/no-go kind of decision. But because you purchased this book, my
assumption is that you select whatever choices get you to the end result
you’re looking for, which in this instance is downloading the JDE. If
you’re doing any other kind of development, be sure to get permission
as necessary to complete these steps.

 9. Agree to the licensing statements by selecting the Agree radio button
and then clicking the Next button.

 Finally, this delivers you to the BlackBerry JDE 4.5.0 download page
displayed in Figure 2-11.

Figure 2-11:
At last! The
BlackBerry

JDE 4.5.0
download

page.

06_467114-ch02.indd 4806_467114-ch02.indd 48 8/30/10 1:06 PM8/30/10 1:06 PM

49 Chapter 2: Registering and Downloading

 10. Click the Download button.

 Follow the standard procedures for downloading executable files from
the Internet, making sure to check for viruses and so on. The file I
downloaded is BlackBerry_JDE_4.5.0.exe.

Congratulations! You’ve taken the first step to developing BlackBerry
applications. The preceding steps take you through downloading the 4.5.0
version of the BlackBerry JDE, but this same process works for all JDE
versions available.

Installing the JDE is easy:

 1. Navigate the Windows file system to the location of the executable
you downloaded.

 My browser requires me to tell it where to download stuff, so I know
where to find it. Your downloads may arrive in the Downloads folder of
Windows Vista or Windows 7, or the My Downloads folder of Windows XP.

 2. Double-click the JDE installer.

 This will be the BlackBerry_JDE_4.5.0.exe application.

 3. Follow the instructions on the installer screens.

 I haven’t yet found a need to modify the default values found in the
installation screens, so I just click on the appropriate “continue until
installation succeeds” buttons.

Now I congratulate you on the successful completion of the second step to
developing BlackBerry applications. Choose Start➪All Programs➪Research
In Motion (as shown in Figure 2-12) to see your installed version of the JDE
and the following menu items:

Figure 2-12:
The

BlackBerry
JDE 4.5.0

successful
installation.

 ✓ BlackBerry JDE API Reference: When you select this menu item, your
browser launches and loads a page providing the Javadoc API (application
programming interface) documentation for the version of the JDE you
just installed. This is an invaluable resource. I typically bookmark it
within my browser. It’s available from the Start menu, too.

06_467114-ch02.indd 4906_467114-ch02.indd 49 8/30/10 1:06 PM8/30/10 1:06 PM

50 Part I: Getting Started on BlackBerry Apps

 ✓ Device Simulator: This menu item launches the default BlackBerry
smartphone simulator for this JDE. Note: This might not be the same
simulator that’s set to be launched from within the JDE as the JDE has a
drop-down list you can use to launch any of the simulators that installed
with it.

 ✓ ESS: Your JDE installation comes with an Email Services Simulator (ESS).
This simulator can be used to demonstrate an e-mail service that interacts
with a BlackBerry device simulator so that you can create and test
applications that work with e-mail messages. Appendix A reveals details
regarding the ESS.

 ✓ JDE: This is the workhorse: the application you use the most to create
your application.

 ✓ JDWP: You can debug a BlackBerry application using a simulator,
or you can debug it running on an actual device. The Java Debug
Wire Protocol (JDWP) tool allows the JDE debugger to connect to a
BlackBerry device across its USB cable. I prefer not to use this approach
because it adds an extra layer of processes between the debugger and
the executing code, but sometimes it’s the only way to see what’s
happening on a real device.

 ✓ MDS-CS: The JDE installation also provides a Mobile Data System- (MDS)
Connection Service (CS) simulator, which allows a BlackBerry device
simulator to connect to the network through the desktop PC’s network
connection. The MDS simulator must be executing when your application
is running on a simulator if you intend your app to communicate to
network-based resources. I go over details of the MDS simulator in
Appendix A as well.

 ✓ Uninstall BlackBerry JDE: Last but not least, the installation of your
JDE includes an “undo everything you installed” menu item. You may
choose to use this when you’re ready to use a newer version of the JDE,
although you can install all the currently available ones together with no
problems.

That’s it! You’ve downloaded and installed the BlackBerry JDE to develop
your BlackBerry applications.

Downloading and Using Alternate
Device Simulators

I expect to see something new from RIM every three months or so. Sometimes
it’s a revamped model of an older device; sometimes it’s something completely
new. RIM also updates the operating systems on its devices. All these changes
mean that you have to keep up to date on what RIM has delivered to the
marketplace to make sure that your app doesn’t run afoul of either a new

06_467114-ch02.indd 5006_467114-ch02.indd 50 8/30/10 1:06 PM8/30/10 1:06 PM

51 Chapter 2: Registering and Downloading

device or a new OS. If you have a large amount of money to devote to purchasing
a new device every time RIM makes one, you can just order a new one from the
carrier’s Web site, and you’re all set. Or, if you’re more like me, you periodically
check the BlackBerry Web site for new versions of simulators.

Each new JDE comes with a set of simulators matched with the JDE’s version
of the BlackBerry OS. However, because RIM introduces more new devices
and more new OSes faster than it introduces new JDEs, you’ll discover that
you need to download the new device simulators as RIM provides them.
These simulators exist separately from the JDE and are installed apart from it.

You download new device simulators to your PC from the RIM Web site by
following these steps:

 1. Point your browser to

http://na.blackberry.com/eng/developers/resources/simulators.jsp

 This brings you to a page similar to the one shown in Figure 2-13.

 2. Select a device simulator from the Select a Smartphone drop-down list.

 The simulators in this list represent almost all the BlackBerry devices
that your app is likely to be running on. However, you can find even more
simulators by clicking the View All BlackBerry Smartphone Simulator
Downloads link. For this example, I’m going with the BlackBerry 9700.

Figure 2-13:
The device

simulator
downloads

the Web
page.

06_467114-ch02.indd 5106_467114-ch02.indd 51 8/30/10 1:06 PM8/30/10 1:06 PM

52 Part I: Getting Started on BlackBerry Apps

 3. Choose a wireless provider from the Select a Carrier drop-down list.

 I’m a card-carrying AT&T customer, so I’ll choose that carrier. You can
also choose the OS for the device instead, if you prefer. Selecting AT&T
reveals one or more links for the device simulator and its OS version.
As of this writing, there are two links for the two different OS versions:
5.0.0.296 and 5.0.0.405.

 4. Click the link for the device simulator and OS version you want to
download.

 I selected the BlackBerry Smartphone Simulator v5.0.0.405. This will take
you to a registration page, similar to the one you saw when you registered
as a BlackBerry developer (described earlier in this chapter).

 5. Fill out the required text boxes, and click Next.

 This takes you to an Eligibility page, where you are required to affirm
that you’re eligible to download the simulator and that your promise to
do only good things with it.

 6. Select Agree and then click Next.

 This takes you to the Software Download for Device Simulators page,
which shows you the details of the simulator you’re about to download.

 7. Click the Download button.

 You see a standard Windows dialog box from which you choose where
to put your simulator installer file.

 8. After the simulator installer file downloads successfully, navigate
through Windows Explorer to the file and double-click the file to
launch the installer.

 The file I downloaded is named

BlackBerry_Simulators_5.0.0.405_9700-ATT.exe

 9. Follow the installation instructions to install the simulator.

To use the new simulator you just installed, here’s all you do:

 1. Choose Start➪All Programs➪Research In Motion➪BlackBerry
Smartphone Simulators X.Y.Z➪your device simulator.

 For example, I choose Start➪All Programs➪Research In
Motion➪BlackBerry Smartphone Simulators 5.0.0➪5.0.0.405➪9700-ATT,
which is a simulator of the AT&T BlackBerry 9700.

 My selection of the BlackBerry 9700 shows a simulator as in Figure 2-14.

 2. Choose File➪Load Java Program and load your app.

06_467114-ch02.indd 5206_467114-ch02.indd 52 8/30/10 1:06 PM8/30/10 1:06 PM

53 Chapter 2: Registering and Downloading

Figure 2-14:
The

BlackBerry
9700

simulator.

You can now see what your app looks like and how well it behaves on
simulators of devices (so you don’t have to purchase those devices!). Oh, by
the way: You are welcome to send me half the money you just saved.

06_467114-ch02.indd 5306_467114-ch02.indd 53 8/30/10 1:06 PM8/30/10 1:06 PM

54 Part I: Getting Started on BlackBerry Apps

Tapping Helpful Resources
Sooner or later, you are going to need help. The problem will seem
insurmountable: The network communication that your app needs works on
some devices, but not the specific one you want it to. Your e-mail attachment
handling worked perfectly yesterday, but today, nothing is going right. The
larger your project, the greater the chance that at some point, you’re going
to run into a dead end. You could remove that one feature that’s causing the
trouble, thereby avoiding the problem, but eventually, you’re going to have
to turn to some form of outside assistance. And that’s where online help
becomes necessary.

Three principal resources can help you find solutions to the challenges
that arise in the course of developing your apps. These resources overlap
somewhat, and each has its own benefits and caveats, as I describe in the
following sections.

Perusing the API documentation
The BlackBerry JDE installs with a set of HTML files that contain the API
documentation in Javadoc format. This is the place to start when you want to
know what a particular class in the BlackBerry OS can or should do. I place a
bookmark in my favorite browser to the main page installed by the JDE. For
the default installation, that location is

C:\Program Files\Research In Motion\BlackBerry JDE x.y.z/docs/api/index.html

x.y.z is the version number of the JDE that you installed (see Chapter 3).

This resource is great if you already have a class you know you want to
investigate, such as net.rim.device.api.ui.UiApplication, which is
the standard application class used to build applications that provide a user
interface. The API documentation provides descriptive information about
many different aspects of a class, such as

 ✓ The class inheritance tree: For example, the UiApplication class
descends from net.rim.api.system.Application. This is useful for
figuring out whether a particular class can pose as another.

 ✓ Highlights of the class: Most of the classes you work directly with are
pretty specialized. They embody certain patterns of behavior, and the
API documentation provides you with the unique traits of the classes
you use. In addition, you find suggestions for making use of various
aspects of each class.

06_467114-ch02.indd 5406_467114-ch02.indd 54 8/30/10 1:06 PM8/30/10 1:06 PM

55 Chapter 2: Registering and Downloading

 ✓ Descriptions of the class methods: You find the answers to many of
your questions within the method descriptions, so you can determine
which methods you should override in your own further specialized
version of the class.

 ✓ Example code: Some of the class descriptions in the API documentation
contain sample code that shows you the proper ways to use the class
to achieve certain goals. For instance, the Connector class (javax.
microedition.io.Connector) comes with sample code showing how
to open various types of network communications channels.

 The API documentation is great: that is, when you know what class you’re
going to use to achieve something. (Kind of like looking in a dictionary for
how to spell something.) But you’ll find that the API documentation doesn’t
easily allow you to search for something based on keywords. It’s just simple
Javadoc, which can’t tell you what class to use to determine the screen
dimensions. (Hint: It’s not net.rim.device.api.ui.Graphics.) In addition,
the API documentation can’t provide you with a BlackBerry application
“world-view.” The Javadoc can deliver mountains of details about any one
particular class, but it doesn’t come with information about how to put one
class together with another. To solve this information problem, you need to
go to the developer documentation at the BlackBerry Web site itself.

Digging into online developer
documentation
Your next stop is the support sections on the BlackBerry Web site. The
online developer support is available at

http://na.blackberry.com/eng/developers/resources

Figure 2-15 shows the developer resources page.

The links on the right side of the page are extremely useful if you run into
problems in your quest to create a BlackBerry application. Here’s what they
are, and what they contain:

 ✓ Documentation: This link gives you access to all the developer
documentation, which includes the API documentation you get with the
JDE. You can see the API documentation for all the different versions of
the BlackBerry OS, which can help you resolve why some things work
on one version of the OS and not on another. The documentation here is
available in HTML and PDF form. In addition, detailed programming
documentation is also available via this link, including development
guides on specific device features and functionality.

06_467114-ch02.indd 5506_467114-ch02.indd 55 8/30/10 1:06 PM8/30/10 1:06 PM

56 Part I: Getting Started on BlackBerry Apps

Figure 2-15:
The entry
point for

BlackBerry
development
documenta-

tion.

 ✓ Online Forums: Your developer registration allows you to become
involved in the community of online BlackBerry developers available
through the BlackBerry development forums. I explain more about the
forums in the next section.

 ✓ Knowledge Base: The BlackBerry Developer Knowledge Base contains
information not available in either the API documentation or the
development guides. Occasionally, you find that your application
development halted because of something the API documentation
claimed to be true, but isn’t. The Knowledge Base is set up to provide
information about known issues, and is fully searchable. Articles in the
Knowledge Base point out problems in the OS, and sometimes provide
code samples to enable you to work around the problem. For instance,
one of my recent challenges involved changing the application icon
at runtime, based on the type of device on which my application was

06_467114-ch02.indd 5606_467114-ch02.indd 56 8/30/10 1:06 PM8/30/10 1:06 PM

57 Chapter 2: Registering and Downloading

executing. A class in the BlackBerry OS allows this; however, using this
class and its methods to change the application icon caused the program
to crash. The Knowledge Base explained what was going wrong and also
provided example code to get my application around the problem.

 ✓ Developer Tutorials: Tutorials are always welcome additions to your
learning process when you’re trying to get familiar with something new.
The BlackBerry development tutorials are available in PDF format.

 ✓ Video Library: RIM recently added some video tutorials in addition to
its PDF tutorials.

 ✓ Developer Labs: This resource provides you with some hands-on
walkthroughs of BlackBerry development. Each lab comes with source
code and a set of instructions for building a BlackBerry application to
demonstrate different parts of development.

I have made the most use out of the developer documentation, and I continue
to do so today. I still check the PDF files available for download, and when
I’m looking for example code to do something new, that’s the first place I
start. So I rank the online programming guides and developer documentation
slightly higher in value than the API documentation in its usefulness for helping
solve problems. But I consider the online developer forums the best of all.

Exercising your Google-fu
If you’re having trouble tracking down the solution to a problem in the API
documentation and the online developer documentation, it’s time to open up
a search engine. If the information you seek is on the Web, Google can find it.
The big difficulty is searching the results. The more you use Google, the more
you discover that you must uniquely identify the problem with the most
appropriate words to narrow the cascade of results.

If your Google-fu fails you, it’s time to ask for help on the developer forums.

Asking for help on the developer forums
Online forums have existed for BlackBerry users pretty much since the first
BlackBerry was produced. A forum is a great way to interact with other
BlackBerry users and developers, and you can discover new things and new
hints and rumors about upcoming changes and devices and operating systems.

I recommend frequenting two forums; when I’m doing BlackBerry development, I
make use of them both.

06_467114-ch02.indd 5706_467114-ch02.indd 57 8/30/10 1:06 PM8/30/10 1:06 PM

58 Part I: Getting Started on BlackBerry Apps

 ✓ RIM BlackBerry Developer Forum

http://supportforums.blackberry.com/rim/?category.id=BlackBerryDevelopment

 The RIM Developer Forum is new to the scene. There is one nice thing
about using this forum hosted by RIM: Developers at RIM are paying
attention. Your question may go unanswered because you stumped the
expert developers in the field. At that point, maybe someone at RIM will
add to your thread, and provide you either with the answer, or make
suggestions for work-arounds. For some reason, I find this aspect of
using the Developer Forum quite seductive, knowing that some developer
at RIM might be looking at my problem and might know how I can fix it.

 ✓ CrackBerry.com developer forum

http://forums.crackberry.com
http://forums.crackberry.com/f9

 CrackBerry.com hosts forums on wide variety of BlackBerry topics
beyond application development. Because these forums aren’t supported
by RIM, you find a lot more commentary (some of it less than pleasant!)
about the BlackBerry and other platforms as well. In addition, you see
rumors and wild guesses from the community about unreleased devices,
operating systems, and changes in general.

Both forums are great places to visit when you run into issues doing
BlackBerry development. Sometimes you find your question answered
almost immediately. Sometimes all you find is a group of other developers
also interested in finding a solution to the same problem.

I think the forums are the best place for finding answers because of the
large number of BlackBerry developers who are there trying to find answers
themselves. Your question just has to reach the right eyes, and it only takes
one pair to find you a solution. But there is a catch: You must ask the question
correctly. Check out this Web page to see some of the rules for posing
questions on the Internet: www.catb.org/~esr/faqs/smart-questions.
html. You should review this Web page before posting a question to any of
the forums. The suggestions in this Web page apply well to posting forum
questions. Bottom line: You want to appear as though you made a serious
attempt to solve the problem on your own before asking someone to help
you solve it.

06_467114-ch02.indd 5806_467114-ch02.indd 58 8/30/10 1:06 PM8/30/10 1:06 PM

Chapter 3

Coding with the BlackBerry Java
Development Environment

In This Chapter
▶ Introducing the RIM Java Development Environment (JDE)

▶ Choosing the right JDE version

▶ Downloading and installing the JDE

▶ Creating a BlackBerry application with the JDE

▶ Building and running your first app

▶ Using an Alternate Entry Point (AEP) for your app

Your main tool, friend, actor, assistant, and crash-test dummy for creating
BlackBerry applications is the BlackBerry Java Development Environment,

also known as the JDE. You use the JDE for almost every task you must
complete to turn your idea into a fully functional application that will win the
hearts of millions of BlackBerry users.

In this chapter, I show you how to find and install the best version of the JDE
for your development needs. I also demonstrate the construction of a simple
application, from start to finish, so that you can see the basic approach to
follow when you create your own apps.

Getting Familiar with the JDE
The BlackBerry JDE is a graphical user interface (GUI) application, both
written in Java and used to write Java code for BlackBerry applications. You
use the following components of the JDE for most of the work developing and
testing your application:

07_467114-ch03.indd 5907_467114-ch03.indd 59 8/30/10 1:06 PM8/30/10 1:06 PM

60 Part I: Getting Started on BlackBerry Apps

 ✓ Source code editor: You use the JDE editor to create and edit Java
source modules for your BlackBerry application. You can use your own
editor if you prefer (such as Windows Notepad or WordPad), but the
BlackBerry JDE editor incorporates some context-sensitive help that can
assist your development tasks, and a third-party editor might not provide
such assistance.

 ✓ BlackBerry build tools: The JDE comes with its own command-line
compiler, rapc.exe, for interpreting your Java code and creating a
BlackBerry application. During this multistep process, several intermediate
products are also produced when you tell the JDE to build your project.
I go over these details later in this chapter.

 ✓ Source-level debugger: You’ll find it convenient to run your application
in a simulator after you make changes or additions to your application’s
source code. (I cover BlackBerry smartphone simulators in Appendix A.)
When something goes awry, you use the source-level debugger to perform
standard debugging tasks.

 ✓ BlackBerry simulator: The JDE installs with one or more simulators that
are equivalent to actual BlackBerry devices. The source-level debugger
I mention earlier in this list launches one of the simulators when you
debug your application. Each simulator contains the actual code of the
BlackBerry device it represents, so you can be assured that your app is
running as it would really run on an actual device.

The BlackBerry JDE is available for free from RIM, and it runs only on 32-bit
versions of Microsoft Windows XP, Windows Vista, and Windows 7.
Chapter 1 contains more information about the baseline hardware and software
requirements for BlackBerry app development.

 You might run into some difficulty getting the JDE to execute on 64-bit versions
of Windows (Windows 7 and Windows Vista). I believe the problem is
related to the JDE being unable to correctly find the installed version of Java.
Unfortunately, at the time of this writing, this issue has not yet been resolved.

Creating a BlackBerry Application
with the JDE

You are now on the path to creating a BlackBerry application, using the
JDE you selected to manage, edit, and build your code. The download and
installation were both pretty straightforward, but now things get interesting.
The rest of this chapter describes the following tasks:

07_467114-ch03.indd 6007_467114-ch03.indd 60 8/30/10 1:06 PM8/30/10 1:06 PM

61 Chapter 3: Coding with the BlackBerry Java Development Environment

 ✓ Finding out what files are needed by the JDE to produce your application

 ✓ Discovering what files are produced by the JDE for your application

 ✓ Building the sample applications that were installed with the JDE

 ✓ Creating and building a very basic application using the JDE

What does the JDE actually do?
You use the JDE to achieve your goal of creating a BlackBerry application. That
goal sounds pretty simple, but the JDE creates many subtle, smaller products
when you issue the Build My Application command. In addition, there are a lot
of pieces to keep together before you can tell the JDE to perform a build. Here
are the files you need to create for the JDE to make your application:

 ✓ JDE workspace file: All BlackBerry development takes place within
the context of a workspace, which has .jdw as its file extension. A
BlackBerry workspace is a text-based file that contains information
regarding the set of projects displayed when the JDE opens the workspace.
A workspace can contain multiple projects.

 ✓ JDE project files: An individual BlackBerry application is based in a
project file, which has .jdp as its file extension. One application equals
one project. The JDP file is a text-based file containing information
regarding how the JDE is to build the application.

 ✓ Source code files: These files represent your code; you create your
application using them. This is where your Java source code resides, so
these files have .java as their extension.

 ✓ Image files: You can add image files to your application to use in a variety
of ways. One of the most important is to provide an application icon, also
known as a home screen icon, to be displayed as the icon your users see
to select your app from all the others on a BlackBerry screen. The following
image file types can be added to your application: GIF, JPG, and PNG.

 ✓ Language resource files: You can add files to use for localizing your
BlackBerry application, following standard “resource bundle” rules. The
JDE assists you in creating and maintaining the file types used for letting
your application speak languages other than American English.

Here are files that the JDE produces when you build your application:

 ✓ Application COD file: This is the primary output file: your application to
be installed on a BlackBerry device. All the files and data you contributed
to the project housing your application are mixed and folded and put
together into this one file. Your application is represented by this file,
named your_app.cod.

07_467114-ch03.indd 6107_467114-ch03.indd 61 8/30/10 1:06 PM8/30/10 1:06 PM

62 Part I: Getting Started on BlackBerry Apps

 ✓ Application JAD file: The Java Application Descriptor (JAD) file is used
to allow Web-based over-the-air downloads of your application. If you
were to host your application on a Web server to allow users to download
and install your application from their BlackBerry connected to the
Internet, this file is required. Your users enter the URL path to the JAD
file, which provides enough information to the browser for it to attempt
to download the application (assuming that the user okays the attempt).
The JAD file references your application COD file.

 In certain instances, I have determined that the JAD file doesn’t
necessarily get updated when I make a change in the application’s code.
There is some information within the JAD file related to the time of the
build, as well as the size of the COD file. I make it a point to delete the
JAD file by hand before a new build occurs, especially if I’m running an
automated build — then I’m always rewarded with a new JAD file that
I’m certain represents the current build.

 ✓ Application JAR file: You might not find a lot of use for this file, but I
include it here for completeness. The JAR file is a standard Java ARchive
file, and it contains the full hierarchy of classes from your source modules
as well as all the other files incorporated into the project. I sometimes
check the JAR files produced by the JDE to make sure that the hierarchy
of resources and classes is what I expect.

When you tell the JDE to build your application, it does the following things:

 1. The JDE compiles each source module using its compiler (rapc.exe).

 The compiled code for each module is used to create a Java Class file
in memory, which is placed into its appropriate place in the JAR file
hierarchy.

 2. The JDE creates the COD file from the JAR file.

 3. The JDE creates the JAD file containing descriptive information needed
by the BlackBerry browser for downloading and installing the application
COD file.

 Depending on the resulting size of the COD file, the JDE might split the COD
file into separate, smaller COD files. These COD files are then packaged
together using the ZIP archiving utility, and the resulting file is also given the
COD file extension. This can make things a little confusing, but don’t worry:
The BlackBerry device OS knows how to make use of the entire file, regardless
of the actual contents. This is a historical feature that has to do with limitations
(long since removed) on how much memory could be allocated to store data
coming in from a network connection.

07_467114-ch03.indd 6207_467114-ch03.indd 62 8/30/10 1:06 PM8/30/10 1:06 PM

63 Chapter 3: Coding with the BlackBerry Java Development Environment

The JDE display
The JDE display has a great many elements, but you mostly work with only
a small subset. Figure 3-1 shows the display you encounter when you launch
the JDE for the first time.

When you first launch the JDE, you see the workspace as well as a group of
preloaded projects. This is the “samples” workspace, which I talk about in
the next section. For now, the major items in Figure 3-1 are

 ✓ Menus: The standard menus are here (File, Edit, Window, and Help)
along with menus for dealing with different aspects of the JDE and the
build process.

 ✓ Toolbar: Right below the menus is the toolbar, which holds some buttons
for performing some of the tasks available through the menus. The
most interesting part of the toolbar is the Default Simulator drop-down
list, which shows a list of the simulated BlackBerry devices that were
installed with the JDE.

Figure 3-1:
The JDE

main
display at

first launch.

Files and projects Editor

Status zone

07_467114-ch03.indd 6307_467114-ch03.indd 63 8/30/10 1:06 PM8/30/10 1:06 PM

64 Part I: Getting Started on BlackBerry Apps

 ✓ Files and projects: This is your workspace navigation zone. Your
workspace file and its contents are displayed in a hierarchical fashion.
The workspace contains projects, and the projects contain files for
building the project’s application. The hierarchy corresponds to the file
system hierarchy into which the Samples workspace was deployed.
For instance, the samples.jdw workspace file references a project
named ActiveTextFieldsDemo, which is located in a folder named
activetextfieldsdemo, which itself is at the path com\rim\
samples\device, relative to the location of the workspace file. You
spend much of your time moving through this section of the display
selecting files to edit.

 ✓ Editor: You spend most of your time in this section of the JDE display.
When you double-click a source code module from the files and projects
pane, the source code shows up in the JDE’s text editor.

 ✓ Status zone: This portion of the JDE main display shows messages that
the JDE delivers to you from a variety of sources, which I explain later.

Building and Running Your First
BlackBerry App

When you first launch the JDE, it’s already set to open with a workspace and
about 40 projects. You can build and play with the sample applications, but
for now, I’m going to walk you through the creation and implementation of
a very simple BlackBerry application so you can get used to the process.
You use the same procedure every time you start a new BlackBerry app,
so becoming familiar with this process now prepares you for the rest of
the code projects in this book. I go over some of the sample applications in
Chapter 15.

The first thing to do now is to clear the JDE of the sample apps by choosing
File➪Close Workspace. With a clean workspace, you’re ready to create a
working BlackBerry application. The general sequence to create an app
follows these steps:

 1. Create a workspace.

 2. Create a project within the workspace.

 3. Create the main Java source module within the project.

 This source module is your application’s main class, which is a subclass
of a BlackBerry application class.

 4. Implement the main routine code in the Java source module.

07_467114-ch03.indd 6407_467114-ch03.indd 64 8/30/10 1:06 PM8/30/10 1:06 PM

65 Chapter 3: Coding with the BlackBerry Java Development Environment

 The BlackBerry OS looks for a public static main() method in
the main application class, which is just like the main() method of a
desktop PC Java application.

 5. Implement the application’s main class.

 6. Create a Java source module to implement the display screen for the
application.

 7. Implement the display screen class.

 8. Build the application.

 9. Launch the application in the default simulator.

Whew! It sounds like a lot to do, but you’ll soon breeze through it. Just follow
the steps I provide in the rest of this chapter, and you’ll create a simple but
complete app!

Creating your first app
To get started creating your first app, follow these steps:

 1. Choose File➪New Workspace.

 The Create Workspace dialog box appears, as shown in Figure 3-2.

 2. Enter the name and location for your workspace in the Workspace
Name field and the Create in This Directory text boxes, respectively,
and then click OK.

 For this example, I enter the workspace name FirstBlackBerryApp
(the JDE adds the .jdw file extension text for you) and the directory
C:\Business\Authorship\Development\Chapter03.

 This creates the JDW (Workspace) file, and loads it into the JDE main
display. In addition, if the path you selected for the Create in This
Directory text box has any missing elements, the JDE asks whether
you want it to create them for you. When the JDE is set, you see the No
Workspace entry at the top of the files and projects pane replaced with
the name of your workspace.

Figure 3-2:
Create a

workspace.

07_467114-ch03.indd 6507_467114-ch03.indd 65 8/30/10 1:06 PM8/30/10 1:06 PM

66 Part I: Getting Started on BlackBerry Apps

 3. Right-click the workspace name and choose Create New Project in
YourWorkspaceName.

 You see another small dialog box, like the one used to create the
workspace, but this time asking you to create a named project, as
shown in Figure 3-3.

Figure 3-3:
Create a
project.

 4. Enter the project name and location in the Project Name and the Create
Project in This Directory fields, respectively, and then click OK.

 I use FirstBlackBerryApp as the project name, and also leave the setting
for it to be created in the same directory as the workspace (again, the
JDE adds the .jdp file extension for you).

 This creates a JDP (Project) file in the same folder as the workspace on
your file system, and it also adds the project as a child node of the
workspace in the JDE.

 5. Choose File➪Save All, or click the Save All button on the toolbar.

 Save early; save often.

 6. Right-click the project name and choose Create New File in Project.

 Once more, you see another small dialog box like the first two.

 7. Enter the source file name and location in the Source File Name and
the Create Source File in This Directory fields, respectively, and then
click OK.

 Figure 3-4 shows my modification to the empty dialog box: I’m telling
the JDE to create a Java source file (extension .java), and I add
com\karlgkowalski\firstblackberryapp at the end of the path to create
a series of subfolders from the folder containing the workspace and the
project. Figure 3-5 shows the message window that appears when the
JDE discovers the path you entered does not exist.

Figure 3-4:
Create the

Java source
module.

07_467114-ch03.indd 6607_467114-ch03.indd 66 8/30/10 1:06 PM8/30/10 1:06 PM

67 Chapter 3: Coding with the BlackBerry Java Development Environment

Figure 3-5:
Create

folders.

 When writing a Java application, the compiled code that represents each class
is placed into a hierarchy of folders, called a package. Most commercial Java
applications, including BlackBerry Java applications, create their package
hierarchy using the reverse order of their Internet domain names. So the
classes I create in my applications all start in a folder tree, the base of which
is named com, which contains a folder named karlgkowalski, and below
that are the folders grouping all my classes in some order. You can make the
names of these folders anything you’d like; however, as you make more apps
and earn more money selling them, you will want to ensure that your code
contains something that identifies it as belonging to you (or your company).
While using the reverse-domain name does not guarantee no one will steal
your code, it is recognized as a means of some copyright protection.

You can avoid query by clicking the Browse button (in Figure 3-4) and creating
the folders yourself, but I find it easier to type the names and have the
machine do the work for me.

The JDE does several things at this point. It creates the path of folders leading
to where you directed it to place the Java source file. It also creates the
source file, adds it as a child to the project, and then opens the file and
displays its contents in the editor. Figure 3-6 shows what this looks like.

Pay attention to the basic text already added to the source module. Here’s
what you see in my example FirstBlackBerryApp.java source module:

 ✓ A copyright statement at the top: You’ll want to change <your
company here> and the copyright date, just to stay legal.

 ✓ The package directive: The JDE presumes that your selection of
folders for where to place this source file is intended to represent a Java
package hierarchy, so it adds the appropriate packaging directive.

 ✓ The class directive: Every Java source module requires that a class
named the same as the module’s filename (without the .java extension)
be implemented within the module. The JDE creates a text file containing
a bare minimum of code, consisting of the class directive and an empty
constructor for the class.

You need to modify the source module to implement the class as needed
for it to be a BlackBerry application class. So, for this running example,
edit FirstBlackBerryApp.java to include the main() method so that it
matches the code shown in Listing 3-1.

07_467114-ch03.indd 6707_467114-ch03.indd 67 8/30/10 1:06 PM8/30/10 1:06 PM

68 Part I: Getting Started on BlackBerry Apps

Figure 3-6:
The first
project

containing
the Java

source file,
ready to

edit.

The main() method is the starting point for all Java applications, and you
must do the typing to add one to your BlackBerry app. This is the first code
that the BlackBerry smartphone OS will execute when a user launches your
app.

In Listing 3-1, you can see the line that starts with import. This is a command
that informs the Java compiler about where to find a particular BlackBerry
OS class, the UiApplication class. This class is used as the basis for the
FirstBlackBerryApp class that this file implements, and the compiler
needs to know where to find it in the BlackBerry OS libraries. The line that starts
with public class is the declaration of the class named FirstBlackBerry
App, which extends the UiApplication class — the FirstBlackBerryApp
class will inherit all the functionality in UiApplication, and will operate as
one.

Listing 3-1: Including the main() Method
/*
 * FirstBlackBerryApp.java
 *
 * © Karl G. Kowalski, 2011
* Confidential and proprietary.
 */

package com.karlgkowalski.firstblackberryapp;

import net.rim.device.api.ui.UiApplication;

07_467114-ch03.indd 6807_467114-ch03.indd 68 8/30/10 1:06 PM8/30/10 1:06 PM

69 Chapter 3: Coding with the BlackBerry Java Development Environment

public class FirstBlackBerryApp extends UiApplication
{
 public static void main(String[] inArgs)
 {
 FirstBlackBerryApp bbApp = new FirstBlackBerryApp();
 bbApp.enterEventDispatcher();
 }

 public FirstBlackBerryApp()
 {
 }

 public void activate()
 {
 }
}

The code so far looks pretty simple. Nothing really exciting is happening, and
the main() method simply creates an object of type FirstBlackBerryApp
and then executes enterEventDispatcher().This is the only interesting part:
the entry point into the BlackBerry OS event mechanism. Every BlackBerry
application depends upon a queue of events delivered by the OS to the applica-
tion. Each time the OS gives your app an event, your app executes code to handle
it — sometimes using default code provided by the OS, sometimes using code
you implement yourself. For instance, an event is generated and delivered to
your app when the user clicks a button on a screen your app creates.

 You can download sample code for this book from www.dummies.com/go/
blackberryappdev.

Creating the display class
The FirstBlackBerryApp constructor is empty because it doesn’t need
to do anything. But the activate() method is also empty, and that’s
something you change soon. Right now, it’s time to create the application’s
one and only display class.

 1. Right-click the FirstBlackBerryApp.java item in the files and
projects pane and choose Create New File in YourAppName.

 2. Enter a source filename in the Source File Name text box; you can
accept the default location in the Create Source File in This Directory
text box. Click OK.

 The default location is wherever you placed FirstBlackBerryApp.
java. The JDE assumed that because you clicked that file in the
hierarchy, you probably want to place the file you’re creating right
at the same place. You can adjust this location by right-clicking a

07_467114-ch03.indd 6907_467114-ch03.indd 69 8/30/10 1:06 PM8/30/10 1:06 PM

70 Part I: Getting Started on BlackBerry Apps

different item in the files and projects pane and choosing Create
New File in YourAppName, but for now, this works fine. Figure 3-7
shows the dialog box I filled in with the name of the new source file,
FirstBlackBerryScreen.java.

Figure 3-7:
Create the

screen
source

module.

 The JDE again creates a new Java source module in the file system, adds
it to the project, and opens it in the editor. You can see the result in
Figure 3-8.

Figure 3-8:
The JDE
with the

new module
added and

ready to
edit.

Once again, you created a BlackBerry Java source module that has almost
nothing in it. You have to change that. This is meant to be a display class,
which means it will inherit all of the features and functionality of a BlackBerry
OS class that is used to show information to your users on their BlackBerry
smartphone’s screen.

07_467114-ch03.indd 7007_467114-ch03.indd 70 8/30/10 1:06 PM8/30/10 1:06 PM

71 Chapter 3: Coding with the BlackBerry Java Development Environment

Edit FirstBlackBerryScreen.java so that it matches the code in Listing
3-2. This listing contains a small amount of code, really just the least needed
to show something to the user when they launch the app. The code contains
a constructor, and the one method that the constructor calls, initialize().
I have declared this method to be private because no other code should
execute it, only the code found within FirstBlackBerryScreen.

Listing 3-2: Your First BlackBerry Display Class
/*
 * FirstBlackBerryScreen.java
 *
 * © Karl G. Kowalski, 2011
 * Confidential and proprietary.
 */

package com.karlgkowalski.firstblackberryapp;

import net.rim.device.api.ui.container.MainScreen;

/**
 *
 */
public class FirstBlackBerryScreen extends MainScreen
{
 public FirstBlackBerryScreen()
 {
 super();
 this.initialize();
 }

 private void initialize()
 {
 this.setTitle(“First BlackBerry App!”);
 }
}

This is now a little more interesting than FirstBlackBerryApp.java
although not really much.

 ✓ The class extends MainScreen (net.rim.device.api.ui.container.
MainScreen). As you can probably guess, this is a display class. For
BlackBerry applications, this class provides basic display features, including
supplying a Close menu item. This is achieved by the call to super() in
the constructor.

 ✓ Any object of this class initializes its title with the text found in the call
to setTitle in the class’ initialize() method. I generally add an
initialize() method to all my display classes because it provides a

07_467114-ch03.indd 7107_467114-ch03.indd 71 8/30/10 1:06 PM8/30/10 1:06 PM

72 Part I: Getting Started on BlackBerry Apps

consistent location to perform any setup for the class before the user
can interact with the display, so you’ll see this often in later chapters.

Now you link this display class to the main application class. Edit
FirstBlackBerryApp.java to modify the activate() method as
follows.

 public void activate()
 {
 this.pushScreen(new FirstBlackBerryScreen());
 }

Building your application
The activate() method now does something useful: It creates a
FirstBlackBerryScreen object and passes it as a parameter to
pushScreen(). Assuming that you typed the source code properly,
you’re now ready to build your first BlackBerry application.

 1. Choose Build➪Build or press F7.

 This runs the JDE build process, which compiles and links your
application. You see text appear in the status zone of the JDE display,
indicating the operations that are proceeding. If everything went
smoothly, the screen shown in Figure 3-9 should be visible.

 Of course, building the application is never enough. Now you have to
run it in the simulator.

 2. Choose Debug➪Go to launch the simulator.

 The default BlackBerry simulator launches in a separate window.
(Nearly all BlackBerry simulators take a long time to start.) Figure 3-10
shows what takes place in the JDE Debug pane in the status zone when
the BlackBerry simulator is ready to go.

The BlackBerry simulator is now launched and operational. However, for
some reason, the JDE doesn’t automatically launch the application that you
just created. You now have to use the simulated BlackBerry to navigate to
your application and launch it yourself. Figure 3-11 shows what the display
on my default BlackBerry simulator looks like when I navigated to the
FirstBlackBerryApp, sitting among all the other simulated applications. To
launch the app on the simulator after you’ve highlighted it with the selection
cursor, simply click the simulated trackball.

Assuming that everything went according to plan, you’re now looking at the
main screen displayed by the FirstBlackBerryApp. You’re now a BlackBerry
programmer! You can create applications, and you can make your applications
put screens on a BlackBerry display.

07_467114-ch03.indd 7207_467114-ch03.indd 72 8/30/10 1:06 PM8/30/10 1:06 PM

73 Chapter 3: Coding with the BlackBerry Java Development Environment

Figure 3-9:
The results
of building

the
FirstBlack
BerryApp.

Figure 3-10:
The

BlackBerry
simulator

sends
messages to

the Debug
pane.

07_467114-ch03.indd 7307_467114-ch03.indd 73 8/30/10 1:06 PM8/30/10 1:06 PM

74 Part I: Getting Started on BlackBerry Apps

Figure 3-11:
The

FirstBlack
BerryApp

running on
a simulated
BlackBerry.

Adding an Alternate Entry Point
Most UI applications you write are a standard form: a Project file and all the
Java code files to make the app do what it does, with a few image files added
as well. And that’s all you need to create a quality BlackBerry app. However,
there are a couple of reasons why this standard form might not be enough:

 ✓ Your app must perform an operation before the user first launches
your app. You might want to do this if your app needs to provide an
object to the smartphone OS to pay attention to certain user actions
that take place outside your app, such as receiving or sending messages.

 ✓ You want your app to launch into the background of the OS when
the device is first turned on. Your app might need to initialize lots of
data or initiate a connection to a remote server to make sure that
everything’s ready when the user launches your app later.

Neither of these two features is possible if you use the standard form of
BlackBerry application development. To provide these features, you need to
create an Alternate Entry Point (AEP).

You create an AEP by doing two things:

 ✓ You add and configure a new Project to your Workspace in the JDE.

 ✓ You add some code to your application’s main() routine.

Creating and configuring an AEP Project
I assume that you’ve already got the FirstBlackBerryApp already put together
from the previous section, “Building and Running Your First BlackBerry App.”
Follow these instructions to add an AEP Project to your app:

07_467114-ch03.indd 7407_467114-ch03.indd 74 8/30/10 1:06 PM8/30/10 1:06 PM

75 Chapter 3: Coding with the BlackBerry Java Development Environment

 1. Right-click the Workspace name and choose Create New Project in
FirstBlackBerryApp.

 2. Enter the AEP project name in the Project Name field, and Click OK.

 Because this is an AEP project, I recommend entering
FirstBlackBerryApp_AEP to indicate that fact.

 3. Right-click the AEP Project you just added and choose Properties.

 This displays the project’s Properties dialog box.

 4. Click the Application tab in the Properties dialog box, as shown in
Figure 3-12.

Figure 3-12:
The Project
Properties
dialog box

for the
Alternate

Entry Point
Project.

 5. Select Alternate CLDC Application Entry Point from the Project type
drop-down list.

 6. Select FirstBlackBerryApp from the Alternate Entry Point For drop-down
list.

 This will happen automatically if it’s the only other project in the
workspace.

 7. Enter aepInit in the Argument Passed to “static public void
main(String args[])” text box.

 8. Select the Auto-Run on Startup check box.

 9. Click OK.

07_467114-ch03.indd 7507_467114-ch03.indd 75 8/30/10 1:06 PM8/30/10 1:06 PM

76 Part I: Getting Started on BlackBerry Apps

Your FirstBlackBerryApp workspace now contains two projects: the FirstBlack
BerryApp project, and the FirstBlackBerryApp_AEP project. The AEP project is
set to be an Alternate Entry Point into the FirstBlackBerryApp project, and it will
automatically launch when the BlackBerry smartphone is turned on.

That was pretty simple, and didn’t take any coding — you’ve really just provided
configuration information that the BlackBerry OS will interpret when your
application is installed. In order to use the AEP, you now have to add some code.

Adding AEP code to your app’s
main() routine
The AEP project you just added puts some information into your application’s
COD file when the JDE builds it. This information is delivered into your app
as text in one of the String objects passed into the main() routine of
your application. The text you entered in Step 7 in the previous section is
aepInit. This is the text that the code in your main() routine will check for,
and will operate one way when it finds this text, and another way if it does not.

The code in Listing 3-3 shows you how this is done. First the number of elements
in the inArgs parameter is checked to see if there is one, and if so, its value is
checked against the text it expects to see from the AEP configuration. The OS
will launch the AEP project at startup because you checked the Auto-Run on
Startup check box, and the OS will provide the aepInit text to your app when it
launches the AEP project. The FirstBlackBerryApp project will run when the user
launches your app from the BlackBerry ribbon, and will not pass any String
data into main() when it’s launched. So if there are no String objects passed
into main(), the FirstBlackBerryApp functions as normal.

Listing 3-3: Updated FirstBlackBerryApp.java to Watch for AEP Input
public static void main(String[] inArgs)
{
 if (inArgs.length > 0 && true == inArgs[0].equals(“aepInit”))
 {
 // perform AEP initialization here
 }
 else
 {
 FirstBlackBerryApp bbApp = new FirstBlackBerryApp();
 bbApp.enterEventDispatcher();
 }
}

That’s all there is to an Alternate Entry Point project.

07_467114-ch03.indd 7607_467114-ch03.indd 76 8/30/10 1:06 PM8/30/10 1:06 PM

Part II

BlackBerry Application
Development

08_467114-pp02.indd 7708_467114-pp02.indd 77 8/30/10 1:06 PM8/30/10 1:06 PM

In this part . . .

After you have the tools you need to develop
BlackBerry apps, it’s time to get deeper into the life

of a BlackBerry application. This part first shows you
the importance of creating your app with a plan so that
you provide a structure for your app while you implement
the different parts. Then you proceed to the surface
layer of the app itself: the screens, buttons, menus, and
everything else that your users interact with.

You also see how to maintain information for your users,
sometimes just temporarily (and why that can be important)
and sometimes permanently (and why you might not
always want a permanent record). In the last chapter of
this part, you delve into application threads and how to
make them work for you, like the brooms of the Sorcerer’s
Apprentice.

08_467114-pp02.indd 7808_467114-pp02.indd 78 8/30/10 1:06 PM8/30/10 1:06 PM

Chapter 4

Designing and Organizing
Your BlackBerry App

In This Chapter
▶ Brainstorming and recording ideas for new apps

▶ Planning what your app will do

▶ Embracing BlackBerry application fundamentals

▶ Using screen management and callbacks

Your BlackBerry application could be downloaded by potentially millions
of users. Those users have expectations about how your app should

run and behave, and they will compare your application against other apps
built for the BlackBerry. You know this, of course, but sometimes while
writing your app, it’s easy to get focused on the little details and forget about
the actual end users and their experiences. I’ve done that more often than I
can remember, and it’s sometimes a shock to pull myself out of the code and
try to see the bigger picture.

In this chapter, I go over how to design your code to make it easier for you to
add the features and functionality your users want, and also to make it easier
to understand why things go wrong. You will find BlackBerry development
easier if you start from a plan, rather than starting by writing code and then
trying to plan around what you wrote. Essentially, you will become an architect,
making the plan for your app, and then building the app from your plan.

Getting Creative and Keeping a Record
One of the most fun things I’ve done is brainstorming — sitting with friends
and co-workers and dreaming up all kinds of crazy ideas. The sessions of
brainstorming have been some of the most creative moments I’ve experienced.
Some thread of those sessions lingers on inside, and I find myself tripping
over new ideas on a regular basis, even out of simple conversations that are
totally unrelated to BlackBerry apps or even software development.

09_467114-ch04.indd 7909_467114-ch04.indd 79 8/30/10 1:06 PM8/30/10 1:06 PM

80 Part II: BlackBerry Application Development

But these sources of ideas are only useful if the ideas get recorded, somewhere,
somehow. It’s fun to dream, but it’s more helpful to keep a record of these
dreams for future reference: not necessarily to relive the fun, but to make
something profitable from it. You likely have some means of keeping track
of your multi-million dollar ideas already. Certainly, the least-expensive is to
use Notepad or its equivalent on your computer, but that’s really just a
computerized version of sticky notes or writing things down on random
pieces of paper on your desk (both approaches I’ve used in the past). I’ve
come to believe in the power of a computer to maintain this information
better than I can by myself — and, more importantly, to link pieces of
information from one topic to another.

For that, a wiki is a fabulous tool you can use to keep track of just about any
kind of data you would write down. A wiki uses a simplified version of HTML
to display text on Web pages produced by the wiki application. Like bug-tracking
software (see Chapter 11), a wiki requires a Web server and a database
server to operate. This makes it more complicated than Notepad to set up,
but after you configured it, the wiki pretty much just works.

 I use a free wiki package called MediaWiki to support my creative recordings.
You can find it at www.mediawiki.org. If you’ve already installed bug-tracking
software that uses a database server, you can use the same database server
to support wiki applications such as MediaWiki. And backing up all the
information stored in both the bug tracker and the wiki is as simple as
performing a normal database backup.

A wiki is great for keeping your creative impulses organized. That might
sound contradictory: sort of like keeping your inspirations on a leash. But I
think you’ll discover that each of your creative moments is over much too
quickly, and without a record to look back at, the flashes of insight and
imagination will be lost. If you could capture those moments, as close as
possible to the moment they occur, you will be creating a repository of all
your creative results. I find that reviewing what I’ve recorded in my wiki
brings me back to the feelings of creative power I experienced during the
actual event of dreaming up my ideas. And having all the ideas together
generates more possibilities simply due to the power of combining an old
idea with a new one.

Regardless of what tool you choose to record the products of your imagination
and creativity, having such a record is a productive step toward coming up
with the next Killer App.

09_467114-ch04.indd 8009_467114-ch04.indd 80 8/30/10 1:06 PM8/30/10 1:06 PM

81 Chapter 4: Designing and Organizing Your BlackBerry App

Planning What Your App Will Do
When you’ve narrowed down your ideas to The One App, it’s time to start
thinking about all the different ways your app will make your users’ lives
easier. Long before you start typing code into the JDE, before creating your
very first UiApplication class, you will find the development of your app
will go along much more smoothly if you have planned what your app will
do ahead of time. One of the best ways I’ve found for starting off is to create
a one-sentence description of what your app is going to do. For my app, The
Word Locker, that description was this:

The Word Locker is a password-protected memo pad.

I find it helpful to have this statement written down nearby, usually in a text
file where I store the workspace and project files. Knowing that the statement
is recorded somewhere close reminds me of what the app’s purpose is, and
keeps me focused on developing code to accomplish it. Even if you never
look at your app’s statement once you’ve put it down in writing, you will
remember where it is and what it says.

After you’ve made the app’s purpose clear, you’ll want to start planning how
to achieve that purpose. Because your customers are going to use your app,
a storyboard or a flowchart is a good way to move forward. A storyboard
is a series of images displayed in sequence in order to help in visualizing a
set of interactions, such as the interaction of a user using your app on their
BlackBerry smartphone. Don’t be frightened: You don’t need an art degree
to create a storyboard. A flowchart is a block diagram showing the general
movement of a user through the application — a less artistic form of the
storyboard. Either graphic provides a visual representation of what the user
will see when she tries to use your app. Figure 4-1 shows a simple flowchart I
wrote for creating The Word Locker.

 Your first flowchart or storyboard is just a beginning. You might find yourself
returning to it and adding new places for your user to go to within your app.
Or, you might find yourself completely rewriting it. I have found that the most
difficult part is creating the very first one, but getting it done was very helpful
and made my development much easier as I could see what I meant for the
app to do.

09_467114-ch04.indd 8109_467114-ch04.indd 81 8/30/10 1:06 PM8/30/10 1:06 PM

82 Part II: BlackBerry Application Development

Figure 4-1:
The Word

Locker as a
flowchart.

Show categories list.

User enters password.

Password correct?

Show words for category.

Add or edit word.

User launches The Word Locker. Create new password.

Incorrect password
warning

Future
launch

First
launch

Correct
password

Incorrect
password

The Fundamentals of BlackBerry
Applications

I confess: I have committed the crime of implementing before architecting.
It’s very easy to sit down and get code running. Architecting — that is, sitting
down and thinking about coding — is much more difficult. The best place to
start convincing you to do this is by going over the fundamental aspects of
BlackBerry applications. This is a halfway point between showing you how to
implement BlackBerry code, and showing you how to plan the code of your
application. I present the information in this chapter using my app, The Word
Locker.

09_467114-ch04.indd 8209_467114-ch04.indd 82 8/30/10 1:06 PM8/30/10 1:06 PM

83 Chapter 4: Designing and Organizing Your BlackBerry App

Parts of every BlackBerry app
The fundamental pieces of BlackBerry applications include the following:

 ✓ Every application has a “main” function in its application class. The
BlackBerry OS finds the class in your app that extends UiApplication
and looks for the main() function that must be there. It then executes
that function as the first part of your application to be run when the user
launches your app.

 ✓ Applications with a user interface (UI apps) display screens to the
user. This book discusses only applications that provide some display
for your users.

 ✓ Users interact with UI apps through user interface components
displayed on their screens. Chapter 5 discusses the care and feeding of
UI components, but I discuss them in broad strokes in this chapter.

 ✓ UI apps usually have multiple screens for displaying information to
and retrieving information from users. At the very least, an About this
Application screen will be a second screen for your app, so I show you
how to manage simple situations of multiple screens and then advance
into more complex scenarios.

 ✓ The BlackBerry OS receives input from the user and delivers that
input to your application. Your users want to make your app do
something, so you rely on the OS to intercept what your users want to
do, and interpret the commands the OS delivers to your app.

 ✓ The BlackBerry OS receives input from other sources, such as the
network, and delivers that input to your application. The OS sends
information to your application — usually because you request it,
sometimes even if you don’t — and so your app has to prepare to
receive the information and make use of or ignore it.

The phases of a BlackBerry application
Table 4-1 is a list of the major events, in order, that your application will
move through.

09_467114-ch04.indd 8309_467114-ch04.indd 83 8/30/10 1:06 PM8/30/10 1:06 PM

84 Part II: BlackBerry Application Development

Table 4-1 An App’s Life from Start to Exit

Event Object Method

User launches app. UiApplication main(String[] args)

OS tells app to begin. UiApplication activate()

Screen is pushed onto
stack.

MainScreen onDisplay()

Screen about to be drawn. MainScreen onUiEngineAttached()

Menu or dialog is removed. MainScreen onExposed()

Screen is closed. MainScreen close()

OS puts app in background. UiApplication deactivate()

These events can be lumped into three main phases in a BlackBerry
application’s runtime life:

 ✓ Startup: Your app starts this phase as a result of the user selecting your
app from the BlackBerry Home screen and launching it.

 ✓ Running: This phase covers everything between the user launching
your app and the user exiting your app.

 ✓ Exiting: Finally, your app has an opportunity to tighten things up (for
instance, storing information your user has added in the persistent
storage) when the user exits your app.

Each phase contains different parts that make up the pathway of operations
your application will execute from start to finish. Most of the time, your app
is waiting for the user to do something. The average user operates much
more slowly than your application does, so your app’s operations in the
running phase are somewhat intermittent.

Startup
Listing 4-1 demonstrates code that implements the following steps. Here are
the general operations that happen during the startup phase (see Figure 4-2):

 1. The user selects your app on the BlackBerry Home screen or ribbon and
launches it.

 2. The BlackBerry OS determines the class of your application that extends
the RIM class UiApplication and looks for a method called main()
inside that class.

 For my app this would be WordLocker.

 3. The BlackBerry OS executes the main() method of your UiApplication
subclass.

09_467114-ch04.indd 8409_467114-ch04.indd 84 8/30/10 1:06 PM8/30/10 1:06 PM

85 Chapter 4: Designing and Organizing Your BlackBerry App

 4. Your application creates an object from your UiApplication subclass
UiApplication within the body of the main() method.

 5. Your UiApplication object’s enterEventDispatcher() method is
executed.

 6. The BlackBerry OS sets up the Event Dispatcher for your application.

 7. The BlackBerry Event Dispatcher executes your application’s activate()
method.

 8. Your UiApplication object’s activate() method begins.

 9. Your activate() method creates the first screen-based object and
places it on the screen stack.

 10. Your application’s first screen is displayed for the user.

Figure 4-2:
General

operations
during the

startup
phase.

User selects The Word Locker
on BlackBerry Home Screen.

OS finds UiApplication class:
WordLocker.

OS executes main() in
WordLocker class.

main() creates
WordLocker object.

main() executes
enterEventDispatcher() of

WordLocker object.

OS sets up Event Dispatcher
for WordLocker.

Event Dispatcher executes
WordLocker activate().

WordLocker activate()
creates first screen.

OS displays
First WordLocker screen.

09_467114-ch04.indd 8509_467114-ch04.indd 85 8/30/10 1:06 PM8/30/10 1:06 PM

86 Part II: BlackBerry Application Development

Listing 4-1: A Code Implementation of the Startup Phase
public class WordLocker extends UiApplication
{
 // steps 2&3 start here
 public static void main(String[] inArgs)
 {
 // step 4
 WordLocker wlApp = new WordLocker();
 // step 5
 wlApp.enterEventDispatcher();
 // step 6 & 7 - the OS takes over now
 }

 public WordLocker()
 {
 // creating the wlApp object above
 // will execute code in here
 // you can take care of any initialization
 // for your app before the OS takes over
 }

 public void activate()
 {
 // step 8 - the OS returns control to your app
 // step 9
 this.pushScreen(new WordLockerMainScreen());
 // step 10 - the OS takes over now
 }
}

Running
When the user can interact with your application, the app is in the running
phase. Its general flow is like this (see Figure 4-3, and see Listing 4-2 for the
code):

 1. Your application’s Screen subclass object is created and placed on the
screen stack.

 2. The OS calls the onUiEngineAttached() method of the Screen object.

 3. The Screen object draws itself and its components on the BlackBerry
screen.

 4. The user performs some operation: clicks a button, enters text, selects a
menu item, and so on.

 5. Your screen object accepts the user’s action, and reacts accordingly.

 6. If the action affects the contents of the current screen, your application
updates the screen and continues at Step 4.

 7. If the action requires a new screen to be displayed, your application
creates a new Screen subclass object and continues at Step 1.

09_467114-ch04.indd 8609_467114-ch04.indd 86 8/30/10 1:06 PM8/30/10 1:06 PM

87 Chapter 4: Designing and Organizing Your BlackBerry App

Figure 4-3:
The running

phase.

WordLocker screen is
pushed onto screen stack.

OS calls screen method
onUiEngineAttached().

WordLocker screen
draws its components on

smartphone display.

User modifies text
in edit field.

User chooses to show
a different screen.

Listing 4-2: The Running Phase in Code
// step 1 as executed from within
// a different class, such as the activate()
// method in WordLocker
public void activate()
{
 // step 1
 this.pushScreen(new WordLockerMainScreen());
}

// the remaining steps happen within the screen
// class
public class WordLockerMainScreen extends MainScreen
 implements FieldChangeListener
{
 private EditField m_editText;
 private ButtonField m_showHelpScreen;

 public WordLockerMainScreen()
 {
 // the creation part of step 1
 this.initialize();
 }

 private void initialize()
 {
 // create UI elements and
 // add them to the screen

(continued)

09_467114-ch04.indd 8709_467114-ch04.indd 87 8/30/10 1:06 PM8/30/10 1:06 PM

88 Part II: BlackBerry Application Development

Listing 4-2 (continued)

 m_editText = new EditField(“”, “”);
 this.add(m_editText);
 m_showHelpScreen = new ButtonField(“Show Help”);
 this.add(m_showHelpScreen);
 }

 public void onUiEngineAttached()
 {
 // step 2
 // this sets up the screen to
 // handle the user clicking
 // the button for steps 4&5
 m_showHelpScreen.setChangeListener(this);
 // after this, the OS executes
 // step 3 behind the scenes

 }

 public void fieldChanged(Field inField, int inContext)
 {
 if (inField == m_showHelpScreen)
 {
 // step 7, which performs like step 1
 UiApplication.getUiApplication().pushScreen(
 new HelpScreen());
 }
 this.setDirty(false);
 }
}

Your application’s screens constantly accept user input and update themselves
or display new screens, all throughout this phase of the application’s
operation. There are two ways out of the running phase:

 ✓ The user exits the application. This can occur as a result of the user
selecting the Close menu item (if the default functionality is present) or
pressing the Escape button.

 ✓ The user selects the Switch Application menu item or presses the End
Call button. This does not exit the application, but instead places it
into the background in a holding pattern. Your users might choose to
do this, for instance, if a different application on their BlackBerry can
provide them some information for use in your application or vice versa.
For instance, your application might require a login ID or a temporary
password that has been e-mailed to your user’s BlackBerry Mail program:
The user will launch your app, switch to Mail, copy the required data
from the e-mail message, and then switch back to your app to paste the
data as directed.

09_467114-ch04.indd 8809_467114-ch04.indd 88 8/30/10 1:06 PM8/30/10 1:06 PM

89 Chapter 4: Designing and Organizing Your BlackBerry App

Exiting
Lastly, the exiting phase of your BlackBerry application operates as follows
(see Figure 4-4, and Listing 4-3):

 1. Your user selects Close from the menu.

 2. The OS executes the close() method of your Screen subclass.

 This is where your app has its last chance to perform any needed
cleanup such as storing user input. The screen object then calls its
parent class’s close() method. Your app can also shut itself down by
executing the System.exit(0) method.

 3. The BlackBerry OS terminates your application.

 The OS does this by executing System.exit(0) on your application’s
behalf.

Switching applications
The Switch Application menu item deserves a
little more detail. When a user selects Switch
Application from your application’s menu, the
BlackBerry device OS executes a method in
your application class called deactivate().
The Application superclass’ implementation of
this method does nothing. However, your app
can override this method and execute any
operations that you prefer to support when the
user leaves your app running while switching
to a different app. When the user selects
your now-backgrounded app to switch back
to, the OS again executes the activate()
method. This can lead to a memory leak if your
Application subclass simply creates a
new Screen subclass and pushes it onto
the screen stack, as if your app were starting

up from scratch. So, in your activate()
method, it’s a good idea to check whether any
Screen objects are currently on the screen
stack. Your application should be a subclass
of UiApplication (net.rim.device.
api.ui.UiApplication), which provides
a method that you can use to determine how
many screens are currently on the stack:

public int getScreenCount();

If there’s a screen already there when your
activate() method is executed, your
application has not been newly launched,
and you can simply call a different
UiApplication method to refresh the
screen:

public void updateDisplay();

09_467114-ch04.indd 8909_467114-ch04.indd 89 8/30/10 1:06 PM8/30/10 1:06 PM

90 Part II: BlackBerry Application Development

Figure 4-4:
The exiting

phase.

User selects Close
from the Screen menu.

OS executes close() method
of screen object.

If no more screens on stack,
OS exits the application.

Screen object performs any
last-minute cleanup and calls

super.close().

Listing 4-3: The Exit Phase Implemented in Code
public class InfoScreen extends Screen
{
 public InfoScreen()
 {
 }

 public void close()
 {
 // the OS executes this method as a result
 // of step 1
 // step 2
 // perform any last-minute cleanup here
 this.storeUserInput();
 // and call the MainScreen.close() method
 // step 3
 super.close();
 }
}

 The most interesting thing about the exiting phase is that the OS will terminate
your application if the last Screen object on the screen stack is removed.
When there are no more screens to be displayed, the OS kills your application,
and does not give your app any opportunity to do anything before it goes away.
This is just the way the OS behaves, and you must be careful when you code
your app to remove screens from the screen stack because you might find
your app exiting when you didn’t intend it to. Listing 4-4 shows a screen
class that causes an application exit without any warning, while Listing 4-5
demonstrates a screen class that provides an opportunity for your app to
handle its responsibilities smoothly.

09_467114-ch04.indd 9009_467114-ch04.indd 90 8/30/10 1:06 PM8/30/10 1:06 PM

91 Chapter 4: Designing and Organizing Your BlackBerry App

Listing 4-4: This Screen Terminates Your App When Closed
public class TerminatorScreen extends MainScreen
{
 public TerminatorScreen()
 {
 }

 public void close()
 {
 // if no other screens are on the stack
 // the OS will terminate the app
 super.close();
 // this statement will never execute
 UiApplication.getUiApplication().pushScreen(new FollowUpScreen());
 }
}

Listing 4-5: Avoiding Termination while Closing a Screen
public class StayingAliveScreen extends MainScreen
{
 public StayingAliveScreen()
 {
 }

 public void close()
 {
 // push the follow-up screen first
 UiApplication.getUiApplication().pushScreen(new FollowUpScreen());
 // then close this screen
 super.close();
 }
}

 Sometimes, you might want your app to do some cleanup just before your
application is terminated. This will become a challenge because the OS
doesn’t call back into your application to give it a chance to do something
before it closes. This means you will have to override each Screen subclass’
close() method to take care of any application cleanup before your app
terminates. Listing 4-6 shows a close() method that takes care of storing any
changes the user made while the screen was visible.

09_467114-ch04.indd 9109_467114-ch04.indd 91 8/30/10 1:06 PM8/30/10 1:06 PM

92 Part II: BlackBerry Application Development

Listing 4-6: Cleaning Up Just Prior to Exit
public class SettingsScreen extends MainScreen
{
 private EditField m_textField;

 public SettingsScreen()
 {
 super(); // make sure parent class is initialized
 String storedText = this.getTextFromStorage();
 m_textField = new EditField(“Stored Text: “, storedText);
 this.add(m_textField);
 }

 private String getTextFromStorage()
 {
 // return a string from the persistent store
 return (aString);
 }

 private void storeTextInStorage(String inText)
 {
 // store string in persistent store
 }

 public void close()
 {
 // get the original text
 String storedString = this.getTextFromStorage();
 // check the edit field for whether
 // the user has entered new text
 String editText = m_textField.getText();
 if (false == editText.equals(storedString))
 {
 // text is different, so save it
 this.storeTextInStorage(editText);
 }
 super.close();
 }
}

Handling Screens and Callbacks
From the fundamental behaviors of startup, running, and exiting, you might
be able to sense two abstract features that your app is going to have to
support:

09_467114-ch04.indd 9209_467114-ch04.indd 92 8/30/10 1:06 PM8/30/10 1:06 PM

93 Chapter 4: Designing and Organizing Your BlackBerry App

 ✓ Managing screens: Your app is going to create and display multiple
screens. Consequently, you need to find some way to manage them.

 ✓ Handling callbacks: Everything that happens in your application occurs
as a result of the OS executing a callback method. So you need to know
how to set up and manage callbacks in just about every class needed by
your application — at least those classes that do interesting things.

The following sections describe the Model-View-Controller method of screen
management and how to handle callbacks.

Screen management
Your application creates screens as the primary means of communicating
with the user. Your users see the information your app provides to them on a
screen. Your app provides components that allow users to deliver information
to your app, and these components are shown onscreen as UI elements such
as buttons, menus, and so on.

What this amounts to is your app has to manage the screens it generates
and displays to your users. Screen management is a process by which your
application keeps track of which screen is on display, and what happens
when the user performs an action that requires a new screen to appear.

You can find a variety of ways to manage the screens in your apps. Some
approaches work well when your app has a small number of screens. In The
Word Locker, there are only four or five screens in total, and each screen
keeps track of what screen (if any) should be displayed when the user selects
a particular menu item. This approach works well because the number of
screens is small, and there are only a limited number of choices the user
has on each screen. However, one disadvantage appears when new screens
get added or old ones are removed as the app evolves. The remaining old
screens have to be recoded to make use of the new screens and to stop using
the removed screens.

Another approach might be to remove the decision of what screen is displayed
next from the code within the currently displayed screen and place that
decision-making process within a separate screen-controller class. Your
screens would no longer be required to know what screen comes next;
instead, each of your screens would send a message to the screen-controller
class indicating that some event had occurred — for instance, that the user
had selected the Close menu item — and letting the screen-controller class
decide what to do next.

09_467114-ch04.indd 9309_467114-ch04.indd 93 8/30/10 1:06 PM8/30/10 1:06 PM

94 Part II: BlackBerry Application Development

Although you aren’t obliged to follow any particular approach to managing
your app’s screens, here are a few good reasons for providing some form of
screen management:

 ✓ Consistent operation: Your users are going to expect that when looking at
a screen they’ve seen before, the same action on their part will produce
the same response your app performed the previous time. This might
sound obvious, but as applications start to provide more features and
functionality — always adding more screens in the process — a lack of
screen management will lead to code that at some point misbehaves.

 ✓ Flow control: When your app’s user commands your app to perform a
specific task, your application is going to obey by executing a sequence
of programmed steps and delivering the result of those actions back to
the user. For instance, a doctor using your app to retrieve a patient’s
medical history might enter the patient’s identifying data into your app
and then wait for your app to display the patient’s temperature readings for
the past 24 hours. Your application will have to perform a set of steps in
order, and consequently, display multiple screens in their proper order.
When you implement a screen manager, you will find it much easier to
control the flow of your application, especially when a future version of
your app (or even one going through the standard development
process!) requires a modification to the flow in order to enhance an old
feature or add a new one.

 The BlackBerry class libraries don’t provide a ready-made set of classes for
managing screen objects: You get to make your own. I go over some of the
important issues to consider, and give you some reasons why I prefer the
Model-View-Controller method.

The way of MVC: Model-View-Controller
The Model-View-Controller (MVC) pattern is an approach to designing software
that accomplishes a solution to the problem of mixing business logic (how
data is manipulated by the app) with interface logic (how the app presents
data to the user) and interaction logic (what actions the user can take). When
you implement code that combines all three types of logic, you will find it
difficult to separate the code that displays a button from the code that reacts
when that button is clicked and the code that changes the data as a result
of the button click. These three separate types of code should be logically
separated from each other: This is what applying the MVC pattern accomplishes.
The MVC pattern is made of three components, as shown in Figure 4-5:

 ✓ The model: The model portion of MVC represents those parts of the
code that handle the data associated with the software application.
This code includes what’s commonly called business logic, which your
app uses to make decisions about what data to deliver to the view and
controller portions of the code.

09_467114-ch04.indd 9409_467114-ch04.indd 94 8/30/10 1:06 PM8/30/10 1:06 PM

95 Chapter 4: Designing and Organizing Your BlackBerry App

 ✓ The view: The view portion of MVC takes care of the display of information
to the user. This is the simplest part of the MVC paradigm because its
job is to display information and UI elements to the user. On a mobile
device, the view and the controller can be merged together (see the next
bullet).

 ✓ The controller: Finally, the controller part of MVC is the code that
handles input from the user or other parts of the operating system. On
a mobile device, the controller and the view are often merged together
because the user interacts with components of the view, and the
controller picks up these interactions to pass along to the model.

Figure 4-5:
The MVC

methodology.

Controller

Model

Controller tells
Model when

user acts.

Controller tells
View to
update.

Controller
accepts

input from
View.

Model
updated View

indirectly.

View delivers
changed data

to Model.

View

As an approach to managing screens, the MVC pattern divides the responsibility
for screen management (in the View & Controller objects) from the code
needed to supply the screens with information to display. So MVC will assist
your app in managing screens, but also provides more capability to perform
general application management beyond taking care of your screens.

How MVC controls the flow of an app
Here’s a simplified description of the flow of control in an MVC application
(see Figure 4-6):

 1. The user presses the BlackBerry’s trackball on a button displayed on a
screen in your application.

 2. The controller receives the input event, usually as a result of registering
a callback.

 Read about callbacks in the upcoming section, “Callbacks: The Java
version of phoning home.”

09_467114-ch04.indd 9509_467114-ch04.indd 95 8/30/10 1:06 PM8/30/10 1:06 PM

96 Part II: BlackBerry Application Development

 3. The controller informs the model that the user just clicked a particular
button.

 4. The model changes the data that it’s maintaining about the application’s
current state.

 5. The model notifies all view objects that its data changed.

 6. The view on display receives the notification from the model about the
current state, and updates itself as necessary.

 The update might simply be a change in a graph being displayed, or the
update could be the replacement of the current screen with that of a
new screen.

Figure 4-6:
Flow control

in an MVC
app.

User highlights
buttons and clicks

trackball.

OS executes
fieldChanged()

callback of
ButtonField.

The callback (Controller) tells
the Model to update the data

being stored.

The Model changes
the data in storage.

The Model informs
the screen (View) of

updated data.

09_467114-ch04.indd 9609_467114-ch04.indd 96 8/30/10 1:06 PM8/30/10 1:06 PM

97 Chapter 4: Designing and Organizing Your BlackBerry App

The preceding steps cover the general flow of control when using an MVC
design for a BlackBerry app. The controller is represented by UI element
callbacks, the views are represented by BlackBerry screen objects, and the
model coordinates the actions performed by the user (through the controller)
with the display of information on the screen (through the views).

 You’re not obligated to implement an MVC to deliver your app to the
BlackBerry App World, but having a defined structure before you begin coding
will reduce the challenges you face when developing your app.

What state are you from?
One choice for implementing a model component is a state machine, which is
a model of behavior that controls the execution of an application by breaking
up the operations of the app into separate pieces. State machines are very
useful for managing software applications in general as well as for managing
screens (the view component) in particular. I won’t go into too many details
here, but in general, a state machine operates as follows:

 ✓ The application hovers in one state, until an event causes a transition.
An event may be a user action, or a callback from the OS.

 ✓ A transition is a message delivered to the state machine. The state
machine uses the message to determine what state the application
should hover in next.

 ✓ Each state can transition to a limited number of other states.

The view component of an MVC application updates itself when it gets a
notification from the model component. Because the view component is only
responsible for painting pixels, the model component must provide the
information about which pixels to paint and with what color. To perform this
function, the model has to maintain information about the current “state”
that the application is in, which itself is a combination of a prior “state” and
input delivered from the controller component.

You use a state machine as follows (see Figure 4-7 and Listing 4-7):

 1. The controller delivers input events from the user or OS to the model.

 2. The model’s current state determines what the subsequent state should
be, based on the current state and the input from the controller.

 3. The model resets to the subsequent state, which now becomes the
current state.

 4. The model notifies the view to update itself.

 5. The view determines what the current state is, and displays itself as
appropriate.

09_467114-ch04.indd 9709_467114-ch04.indd 97 8/30/10 1:06 PM8/30/10 1:06 PM

98 Part II: BlackBerry Application Development

Figure 4-7:
The state
machine.

User selects
Menu item on

current screen.

Controller sends
menu item message

to Model.

Model determines future state
given the message from the

Controller and the current state.

Model sets future
state as current state.

View updates its
display.

Model tells the View
what the current

state now is.

Listing 4-7: Simplified Model Implementing a State Machine
// step 1 happens as a result of
// a callback which executes
// Model.changeState()

public class ModelObject
{
 private State m_currentState;
 private ViewObject m_view;

 public ModelObject()
 {
 }

09_467114-ch04.indd 9809_467114-ch04.indd 98 8/30/10 1:06 PM8/30/10 1:06 PM

99 Chapter 4: Designing and Organizing Your BlackBerry App

 public void changeState(String inMessage)
 {
 // step 2
 State futureState = m_currentState.getFutureState(inMessage);
 // step 3
 m_currentState = futureState;
 // step 4
 m_view.updateUsingState(m_currentState);
 }
}

public class StateObject
{
 private Hashtable m_futureStates;

 public StateObject()
 {
 // initialize the future states Hashtable
 // each message acts as a key to retrieve
 // the State object stored in the Hashtable
 }

 public State getFutureState(String inMessage)
 {
 //
 return ((State)m_futureStates.get(inMessage));
 }

}

public class ViewObject
{
 private Screen m_currentScreen;
 public ViewObject()
 {
 }

 public updateUsingState(State inState)
 {
 // step 5
 // using information contained in inState
 // update the display
 }
}

Point of view
The view component can be something as simple as one screen, or it could
be a class that maintains a set of screens. I tend to implement the latter. The
applications that I build for users all have multiple screens, so the view
component that I construct is a class that manages a fixed set of screens.

09_467114-ch04.indd 9909_467114-ch04.indd 99 8/30/10 1:06 PM8/30/10 1:06 PM

100 Part II: BlackBerry Application Development

When a notification arrives from the model component, my view component
performs the following actions; see Listing 4-8:

 1. Determines which screen must be on display based on the information
provided by the model

 2. Updates the contents of the screen to be displayed

 3. Displays the screen

Listing 4-8: View Object Updating Based on State
public class ViewObject
{
 private SettingsScreen m_settings;
 private AboutScreen m_about;
 private HelpScreen m_help;
 private Screen m_currentScreen;

 public ViewObject()
 {
 m_settings = new SettingsScreen();
 m_about = new AboutScreen();
 m_help = new HelpScreen;
 m_currentScreen = m_settings; // first screen to be seen
 UiApplication.getUiApplication().pushScreen(m_currentScreen);
 }

 public void updateUsingState(State inState)
 {
 // step 1 is the Model object
 // calling this code
 // step 2
 Screen noLongerCurrent = m_currentScreen;
 if (inState.getName().equals(“Help”))
 {
 m_currentScreen = m_help;
 }
 else if (inState.getName().equals(“About”))
 {
 m_currentScreen = m_about;
 }
 else if (inState.getName().equals(“Settings”))
 {
 m_currentScreen = m_settings;
 }
 else
 {
 System.exit(0);
 // we exit
 }
 UiApplication.getUiApplication().pushScreen(m_currentScreen);

09_467114-ch04.indd 10009_467114-ch04.indd 100 8/30/10 1:06 PM8/30/10 1:06 PM

101 Chapter 4: Designing and Organizing Your BlackBerry App

 // remove screen since not needed
 UiApplication.getUiApplication().popScreen(noLongerCurrent);
 }
}

Pretty simple and straightforward. And you will find it easy to track down
problems because the view’s job is to get data from the model and show
it. The model’s job is to tell the view what’s supposed to be displayed; the
view’s job is to make sure it displays what the model has in its current state.

Controller freak
The controller component is sometimes combined with the view component in
GUI-based applications. The reason for this is that the controller component
passes information to the model from user input, and user input elements
are created and managed from within the view component. You will generally
add callbacks (discussed in the following sections) to UI elements that will
execute as a result of user actions; having this as part of the view consolidates
the actions with their UI elements within the same block of code. For mobile
devices, you’ll find it makes sense to combine these two objects into one.
You’ll find that developers still call this Model-View-Controller because the
three components are all still there, but the View-Controller has become
merged code.

Callbacks: The Java version
of phoning home
You can write Java programs to support the BlackBerry OS when the OS
wants to execute something in your app as a result of external inputs.
Regardless of how the input arises, the OS might need more information from
your application to proceed. Or, more likely, you want your app to react
when something happens so that it gives the OS a piece of code to execute
when the correct circumstances arise.

The OS getting information from your app or receiving code from your app to
execute is a callback; there are two ways to provide them:

 ✓ Your application subclasses an OS class and overrides a method
in that class which the OS will call. The OS will eventually call that
method as a result of a user’s actions, executing your application’s code.
Note that you don’t always have to create a complete subclass; your
code can instantiate an object of the class you want and override the
appropriate methods in that class on the fly. You can see this in Listing
4-9, where a BlackBerry OS MenuItem object is created and its run()
method is implemented as part of creating the object.

09_467114-ch04.indd 10109_467114-ch04.indd 101 8/30/10 1:06 PM8/30/10 1:06 PM

102 Part II: BlackBerry Application Development

Listing 4-9: Creating a MenuItem and its run() Method at Once
public void makeMenu(Menu inMenu, int inContext)
{
 MenuItem helpItem = new MenuItem(“Help”, 10000, 10)
 {
 public void run()
 {
 UiApplication.getUiApplication().pushScreen(new HelpScreen());
 }
 };

 inMenu.add(helpItem);
}

 ✓ Your application creates a class that implements an interface, and
then provides an object of that class to the OS for its use. The OS treats
the object provided by using the interface’s methods without knowing
that it’s your class’ implementations of those methods that are being
executed. Listing 4-10 shows the implementation of an e-mail attachment
handler that will read certain types of files that arrived with the user’s
e-mail.

Listing 4-10: The KarlEmailAttachmentHandler Imports “.karl” Files
public class KarlEmailAttachmentHandler implements AttachmentHandler
{
 public KarlEmailAttachmentHandler()
 {
 // constructor for the class
 }

 public String menuString()
 {
 // return the text for use to see in menu
 // when an attachment we’d like to read
 // is selected
 return (“Open Attachment for KarlEmail”);
 }

 public boolean supports(String inContentType)
 {
 if (inContentType.toLowerCase().indexOf(“.karl”))
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

 public void run(Message inMessage, SupportedAttachmentPart inPart)

09_467114-ch04.indd 10209_467114-ch04.indd 102 8/30/10 1:06 PM8/30/10 1:06 PM

103 Chapter 4: Designing and Organizing Your BlackBerry App

 {
 // import the contents of the attachment
 }
}

You might already know about the different ways that Java programs running
on a desktop PC make use of callbacks to provide mechanisms for handling
all kinds of user and other external inputs. The BlackBerry OS, although
it has fewer reasons for making calls into your code, still provides a lot of
opportunities for you to implement callbacks, such as

 ✓ Responding to a menu selection made by the user

 ✓ Reacting to the user clicking a button

 ✓ Handling a keystroke

 ✓ Reacting to a timed operation

 ✓ Reacting to a screen change

 ✓ Retrieving data coming in from a network connection

 ✓ Responding to an incoming e-mail

All these situations require using callback-handling mechanisms. Some are
easily implemented by creating a subclass that overrides its parent’s methods
for handling behaviors that the OS will expect to execute; your application’s
version of the class can do something different from the OS version of the
class. Listing 4-11 shows you a subclass of MainScreen that overrides
close() to provide its own functionality. Others might have to be implemented
through the use of an interface, depending on what the OS requires you to
deliver. You can see this kind in Listing 4-11. And sometimes you can provide
classes “on the fly,” exploiting the Java language’s syntax that lets you
implement a class as a parameter to be passed into an OS routine. The
MenuItem implemented in Listing 4-11 is an example of this kind.

Listing 4-11: A Subclass of MainScreen that Overrides close() to Provide
Its Own Functionality
public class MyScreenSubclass extends MainScreen
{
 public MyScreenSubclass()
 {
 }

 public void close()
 {
 // this method will be called instead
 // of the close() method implemented as
 // part of MainScreen.
 }
}

09_467114-ch04.indd 10309_467114-ch04.indd 103 8/30/10 1:06 PM8/30/10 1:06 PM

104 Part II: BlackBerry Application Development

The following sections take a look at some of the situations in the preceding
bullet list and describe the approaches for handling them.

Selecting from a menu
BlackBerry users make use of the menus that applications provide. (I imagine
there’s a repetitive-stress injury soon to be called “BlackBerry Left-Thumb”
caused by excessive use of the BlackBerry menu button.) Figure 4-8 shows
you the BlackBerry menu button on a BlackBerry Bold 9700.

Figure 4-8:
The

BlackBerry
menu

button,
on every

BlackBerry
device.

Menu button

Escape button

End Call button

Pressing this button brings up the BlackBerry menu, a list of possible actions
that the user can select from to do something.

Your application can add its own menu items to each of its screen objects,
and each screen can have its own unique set of menu items. When the
user selects one of the items from the menu, your application will have to
respond, and the BlackBerry OS will be calling your “menu item callback”
code. Listing 4-12 shows you how to create a menu item and override its
“run” method on the fly:

Listing 4-12: Creating a Menu Item and Overriding Its Run Method
public class MenuApplicationScreen extends MainScreen
{
 // the Screen’s constructor will handle
 // initialization of the items on display

09_467114-ch04.indd 10409_467114-ch04.indd 104 8/30/10 1:06 PM8/30/10 1:06 PM

105 Chapter 4: Designing and Organizing Your BlackBerry App

 public void makeMenu(Menu inMenu, int inContext)
 {
 inMenu.add(new MenuItem(“Start Timer”, 1000, 10)
 {
 public void run()
 {
 handleStartTimer(); // call back into the class
 }
 });
 super.makeMenu(inMenu, inContext);
 }

 protected void handleStartTimer()
 {
 // start the timer
 }
}

You can see in the overridden MainScreen.makeMenu() method that
a new MenuItem object is created as the parameter to the Menu.add()
method. In addition, the MenuItem.run() method is overridden on the fly,
simply by adding the new run() method to the object created from the new
MenuItem() statement.

You could also create a completely separate class for this particular menu
item, especially if this particular menu item were to be used in more than
one screen. For instance, an About this Application menu item that appears
on more than one screen and that displays a dialog screen detailing informa-
tion about your app is a perfect candidate for creating a unique MenuItem
subclass. An About screen usually doesn’t carry information that changes
as a result of user action, which means an AboutMenuItem class is pretty
self-contained. About screens don’t have to communicate details about user
actions while the dialog is displayed, and About screens usually aren’t inter-
ested in retrieving information from the screen users were on when they
selected the About this Application menu item.

Clicking buttons
If you give users a button to click, they will click it eventually. For your appli-
cation to handle the user’s button-push action, you provide a callback via the
implementation of an interface.

Adding a button (ButtonField object) to your screen is easy; getting it to
respond to a user clicking it is easy, but not obvious. Listing 4-13 shows a
code snippet that does this.

09_467114-ch04.indd 10509_467114-ch04.indd 105 8/30/10 1:06 PM8/30/10 1:06 PM

106 Part II: BlackBerry Application Development

Listing 4-13: Adding a Button to Click and Code to Execute as its Callback
public class ButtonApplicationScreen extends MainScreen implements

FieldChangeListener
{
 private ButtonField m_button;

 public ButtonApplicationScreen()
 {
 super();
 m_button = new ButtonField(“Press Me First!”);
 this.add(button);
 aButton.setFieldChangeListener(this);
 }

 public void fieldChanged(Field inField, int inContext)
 {
 if (inField == m_Button)
 {
 // handle button click
 }
 }
}

The code implemented in Listing 4-13 demonstrates the use of an interface-
implementing class to function as a callback. FieldChangeListener
is an interface that requires you to code the method fieldChanged()
in any class that wishes to masquerade as a listener for changing fields.
Within the fieldChanged() method in Listing 4-13, my code snippet
is checking whether the incoming Field object that has changed is the
button that was created in the constructor. Although it doesn’t occur in
this code snippet, your code can use the same object (the screen) as the
FieldChangeListener for multiple UI elements. Your fieldChanged
method will be executed for each element that has your screen class as its
FieldChangeListener. As such, you will have to code your fieldChanged
method to determine which of the multiple elements caused the OS to call
into your code.

Responding to keystrokes
As you can see from Figure 4-8, BlackBerry devices come with many different
keys. Your application can react to a user pressing a key on the keyboard
when one of your application’s screens is on display. The code snippet in
Listing 4-14 shows you a very simple example of this.

09_467114-ch04.indd 10609_467114-ch04.indd 106 8/30/10 1:06 PM8/30/10 1:06 PM

107 Chapter 4: Designing and Organizing Your BlackBerry App

Listing 4-14: Implementing a Screen’s Capability to Handle Key Presses
protected boolean keyDown(int inKeycode, int inTime)
{
 boolean result = true;
 switch (inKeycode)
 {
 case Keypad.KEY_ENTER:
 this.handleKeyEnter();
 break;
 case Keypad.KEY_ESCAPE:
 this.handleKeyEscape();
 break;
 default:
 // let the parent class handle it
 result = super.keyDown(inKeycode, inTime);
 break;
 }
 return (result);
}

Listing 4-14 represents a method in a MainScreen subclass that overrides
the MainScreen.keyDown() method. There are actually several different
keyboard-related methods in MainScreen:

 ✓ keyDown(int keycode, int time): Your application’s screen
object will execute this method when the user presses a key while the
screen is on display. However, some UI elements — such as an edit
field — will intercept the user’s key presses because the OS delivers the
key-down event to a field that has the focus first. You could use this to
move jigsaw puzzle pieces around the screen.

 ✓ keyRepeat(int keycode, int time): Because a user may hold a
key down to repeat it, the OS will tell your application when this happens.
I’ve rarely made use of this method, but it’s available if your application
wants to take advantage of a particular key being held down. You might
make use of a specific repeating key in a Space Invaders kind of game to
sweep a cannon from left to right as aliens try to bombard your home
planet.

 ✓ keyUp(int keycode, int time): This method will be called by the
BlackBerry OS when the user releases a key just pressed, just in case
you want to execute code when the user releases a specific key. This
method seems to behave the same as keyDown() because it’s pretty
difficult to press a key and not release it while your app is running.

09_467114-ch04.indd 10709_467114-ch04.indd 107 8/30/10 1:06 PM8/30/10 1:06 PM

108 Part II: BlackBerry Application Development

Your app can use the preceding methods to respond to user keyboard
actions, and respond in different ways when keys are pressed. For instance,
your code might decide to handle the user’s pressing the Escape key differently
from the default action provided by the MainScreen superclass, which
normally executes a close this screen operation. I don’t recommend modifying
the behavior of the Escape or Menu keys, because users depend on their
proper behavior as implemented in all the RIM-supplied applications. Your
users will be confused if Escape does not perform as expected, and smashing
your users’ expectations isn’t very friendly.

09_467114-ch04.indd 10809_467114-ch04.indd 108 8/30/10 1:06 PM8/30/10 1:06 PM

Chapter 5

Setting Up Screens and
User Interfaces

In This Chapter
▶ Creating screens to display your info

▶ Managing a screen’s contents

▶ Creating menus

▶ Working with an interactive environment

▶ Communicating with background threads

▶ Managing the screen stack

Your BlackBerry application delivers information to your users — and
gets information back — through screens. A screen is a container for

UI elements, which provide the visual part of your application. The screens
that your application uses must deliver content in a way that is helpful (tells
the users what to do), efficient (minimizes scrolling, clicking, and reading
required), and appropriate (focuses on achieving the application’s goal). This
chapter guides you through the various aspects of creating the visual pieces
of your application, including how to present information to your users and
how to enable users to provide information back in kind.

The BlackBerry development libraries contain a rich set of classes that
enable your application to deliver its information in a variety of forms.
These classes include items such as simple text labels and buttons as well as
graphic images and hierarchical trees of data.

In this chapter, I give you the basic information you need to create and
manage the screens that your application will employ to exchange information
with your users.

10_467114-ch05.indd 10910_467114-ch05.indd 109 8/30/10 1:07 PM8/30/10 1:07 PM

110 Part II: BlackBerry Application Development

The Screen
BlackBerry devices have a small color LCD screen where users find important
information in their mobile lives. In combination with a keyboard and a
mechanism for navigation — a trackwheel, trackball, trackpad, or touchscreen —
the screen enables users to discover new details from and also contribute
new data to your application. The screen is the focal point for users, and
therefore you need to master this part of your application to control the
information you want your application to deliver.

Choosing a screen type
You can use several different classes to display information on a BlackBerry
screen:

 ✓ Screen (net.rim.device.api.ui.Screen): This is the basic
screen class that provides a bare minimum of features and functionality.

 ✓ FullScreen (net.rim.device.api.ui.container.FullScreen):
This class inherits the basic screen features and functionality, and adds
a layout manager for performing vertical layout of its contents.

 ✓ PopupScreen (net.rim.device.api.ui.container.PopupScreen):
This is the basic class used for dialog screens that pop up when some-
thing interesting happens.

 ✓ MainScreen (net.rim.device.api.ui.container.MainScreen):
This class inherits the features and functionality of FullScreen, and
adds features common to standard BlackBerry applications.

 ✓ Dialog (net.rim.device.api.ui.component.Dialog): This
class is used to display transient dialog boxes to the user, and wait for
the user to provide more data.

 ✓ Status (net.rim.device.api.ui.component.Status): This
class is used to display a dialog box to show ongoing status. The user
may dismiss this dialog by clicking the trackwheel, or by pressing the
spacebar or the Escape key.

 I develop the displays for my application using screens based on the
MainScreen class because it provides a good set of features and functionality
right out of the box, and adding anything to or replacing anything in that set is
very easy. Most of the information the user provides to my application comes
from direct interaction with the screens I create; some interaction results from
the use of dialog boxes as well. In Figure 5-1, you can see a MainScreen
created for a user to enter first-time password information.

10_467114-ch05.indd 11010_467114-ch05.indd 110 8/30/10 1:07 PM8/30/10 1:07 PM

111 Chapter 5: Setting Up Screens and User Interfaces

Figure 5-1:
A

MainScreen
object

created
and dis-

played on a
BlackBerry

screen.

Creating a screen
In this section, I describe what it takes to show a screen in a BlackBerry
application. The example in Listing 5-1 is very simple: An application initializes
itself and creates a blank screen with one menu item, and puts it on the
BlackBerry’s display. After the code, I give you the steps to use Listing 5-1 to
build the app.

Listing 5-1: SimpleScreenApp.java contents
/*
 * SimpleScreenApp.java
 *
 * © Karl G. Kowalski, 2011
 * Confidential and proprietary.
 */

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;

public class SimpleScreenApp extends UiApplication
{
 public static void main(String[] inArgs)
 {
 SimpleScreenApp ssa = new SimpleScreenApp();
 ssa.enterEventDispatcher();
 }

 public SimpleScreenApp()
 {

(continued)

10_467114-ch05.indd 11110_467114-ch05.indd 111 8/30/10 1:07 PM8/30/10 1:07 PM

112 Part II: BlackBerry Application Development

Listing 5-1 (continued)

 }

 public void activate()
 {
 this.pushScreen(new SimpleScreen());
 }
}

class SimpleScreen extends MainScreen
{
 public SimpleScreen()
 {
 super();
 this.initialize();
 }

 protected void initialize()
 {
 this.setTitle(“Simple Screen App”);
 }

 public void close()
 {
 Dialog.alert(“Closing the app”);
 super.close();
 }
}

Follow these steps to take the code in Listing 5-1 and create a simple app that
displays a screen and menu:

 1. Create a workspace, project, and a main Java file in the project as
described in Chapter 3. Name the project SimpleScreenApp or
choose your own favorite name.

 2. Enter the code found in Listing 5-1 into the Java file.

 3. Build the application and execute it as described in Chapter 3.

 The JDE compiles the Java code you entered and packages it as an
application for the BlackBerry simulator, and then launches the
simulator.

 4. When the simulator launches, navigate to the application you created
and launch the application.

 I’m not sure why the JDE needs you to do the actual launching instead of
just running it on its own, but this is the way the JDE does things.

 The main screen is displayed, as shown in Figure 5-2.

10_467114-ch05.indd 11210_467114-ch05.indd 112 8/30/10 1:07 PM8/30/10 1:07 PM

113 Chapter 5: Setting Up Screens and User Interfaces

Figure 5-2:
The Simple
ScreenApp

MainScreen
display.

 5. Click the Menu button in the simulator.

 A menu is displayed, as shown in Figure 5-3. The menu contains only one
item, Close. This is part of the functionality provided by MainScreen.

Figure 5-3:
Simple

ScreenApp
displays
a simple

menu.

 6. Click the Close button.

 The dialog box shown in Figure 5-4 appears.

Figure 5-4:
Simple

ScreenApp
showing the
Close dialog

box.

 7. Click the OK button in the dialog box.

 The application closes, taking the screen and the dialog box with it, and
returning you to the display of the applications in the BlackBerry ribbon.

10_467114-ch05.indd 11310_467114-ch05.indd 113 8/30/10 1:07 PM8/30/10 1:07 PM

114 Part II: BlackBerry Application Development

Extending a screen’s basic functionality
The standard MainScreen class is a great starting point for creating your
own screens. MainScreen inherits a wealth of features and functionality
from its ancestor classes, and you can override some of these methods to
enhance the behavior of your application at certain significant points during
your MainScreen subclass’ lifetime:

 ✓ void onUiEngineAttached(boolean): This method is called by
the BlackBerry OS when your screen is pushed onto the screen stack,
after layout has occurred, but before the screen is drawn on the display.
This provides an opportunity for you to make last-minute adjustments
to the screen’s contents such as setting the time display of a digital
clock and launching a thread to update it. This method is also called
when the BlackBerry OS is about to remove your screen from the screen
stack, which gives your app the opportunity to tidy up, such as halting
the thread that updates the digital clock. The input parameter is true
when the OS is about to display the screen, and false when the OS is
about to remove it.

 ✓ void onExposed(): This method is called by the BlackBerry OS when
a screen is revealed by the removal (through a call to UiApplication.
popScreen()) of a screen above it in the screen stack.

 ✓ void onObscured(): This method is the opposite of onExposed().
The BlackBerry OS calls onObscured() when a different screen is
pushed on top of your screen.

 ✓ void onSave(): The BlackBerry OS calls this method for your Screen
subclass when users close a screen where they’ve made changes: for
instance, on a settings screen. You override this method to perform
the steps necessary to save whatever changes the user made to your
screen.

 ✓ boolean keyDown(int, int): This method is called by the
BlackBerry OS when the user presses a keyboard key while your screen
is on display.

 Touchscreen devices have a keyboard present only if the selected UI
element requires a keyboard.

 ✓ boolean keyUp(int, int): This method is called by the
BlackBerry OS when the user releases a keyboard key while your screen
is on display.

10_467114-ch05.indd 11410_467114-ch05.indd 114 8/30/10 1:07 PM8/30/10 1:07 PM

115 Chapter 5: Setting Up Screens and User Interfaces

User Interface Elements
Your application will present users with information that they need to see
and act upon. To do this, you fill your application screens with a variety of
text and images, add buttons and editable fields, plus a whole lot more. The
BlackBerry library contains more than a few UI elements for your application
to employ for communication with the user.

The following is a list of some standard UI elements you’ll use frequently:

 ✓ Field (net.rim.device.api.ui.Field): The base user interface
class. All the different UI components, such as buttons and labels,
inherit their basic functionality from Field. Your application’s screens
maintain a list of the Field objects that are added to be displayed.

 ✓ BitmapField (net.rim.device.api.ui.component.
BitmapField): A class for displaying an image as a bitmap. A
BitmapField object can display BMP, JPG, and PNG image types, as
well as Raw ARGB data (an image as a series of pixels, each pixel’s color
represented by a 4-byte value of Alpha, Red, Green, and Blue compo-
nents; Alpha is used to control the transparency of the pixel).

 ✓ ButtonField (net.rim.device.api.ui.component.
ButtonField): A class representing a button the user can click to
command your application to execute an operation.

 ✓ CheckboxField (net.rim.device.api.ui.component.
CheckboxField): A class representing a check box for the user to
select an option.

 ✓ ChoiceField (net.rim.device.api.ui.component.
ChoiceField): A class representing a set of choices, similar to a
drop-down list, from which the user can select one item.

 ✓ DateField (net.rim.device.api.ui.component.DateField): A
class that stores a date and time selection for the user.

 ✓ EditField (net.rim.device.api.ui.component.EditField): A
class that stores text the user enters.

 ✓ GaugeField (net.rim.device.api.ui.component.GaugeField):
A class that displays a horizontal progress bar.

 ✓ LabelField (net.rim.device.api.ui.component.LabelField):
A class for displaying static text data, such as labels for text boxes and
so on. The text is displayed in the system’s main display font; for greater
flexibility in text entry and display, use the RichTextField instead.

10_467114-ch05.indd 11510_467114-ch05.indd 115 8/30/10 1:07 PM8/30/10 1:07 PM

116 Part II: BlackBerry Application Development

 ✓ ListField (net.rim.device.api.ui.component.ListField): A
class for displaying a vertical list of items. Your application can enhance
the default functionality of a ListField by providing code to draw the
contents of each item in the list.

 ✓ PasswordEditField (net.rim.device.api.ui.component.
PasswordEditField): A class that allows the user to enter passwords
into a text box. Instead of showing the characters the user types, the
field shows dots.

 ✓ RadioButtonField (net.rim.device.api.ui.component.
RadioButtonField): A class that allows the user to make a single
selection from a set of radio buttons.

 ✓ RichTextField (net.rim.device.api.ui.component.
RichTextField): A class that your application can use to display text
in a variety of fonts and styles.

 ✓ SeparatorField (net.rim.device.api.ui.component.
SeparatorField): A class that displays a horizontal line across the
width of the component.

 ✓ TreeField (net.rim.device.api.ui.component.TreeField):
A class that your application can use to display a simple tree structure,
similar to the display of a file system hierarchy of folders and documents.

Figure 5-5 shows some of the basic UI elements as they appear on a Black
Berry display. These UI elements, plus all the others available as subclasses
of net.rim.device.api.ui.Field, represent the components that your
application adds to its screens to provide your users a way to communicate
with your application, and the means for your application to communicate
back.

Figure 5-5:
Basic user

interface
elements.

10_467114-ch05.indd 11610_467114-ch05.indd 116 8/30/10 1:07 PM8/30/10 1:07 PM

117 Chapter 5: Setting Up Screens and User Interfaces

 As of this writing, no UI editor exists to allow you to visually implement your
screens with all their UI elements. You have to create all your user interfaces
programmatically, by typing in code to create new screens, button, text fields,
and everything else you want your application to display.

User interface callbacks
If your application is simply going to tell users everything you want them to
know in one long paragraph, you can do that with one LabelField added to
a MainScreen, filled with all your text. But if you want your application to
respond to information the user provides you, your application needs to provide
code to support user interactions with items, such as a ButtonField.
You use callbacks to support user interaction. A callback is the code your
application adds to buttons and other UI elements so that the button (or
other item) will call back your application when the user clicks or presses it.

Callbacks for UI elements are provided through the use of a field change–
listener mechanism. Follow these steps to use a callback:

 1. Create a class that implements the BlackBerry FieldChangeListener
(net.rim.device.api.ui.FieldChangeListener) interface.

 Your application uses this class to support the callback mechanism
used by buttons and other UI items.

 2. Fill out the code for the FieldChangeListener.fieldChanged
(Field, int) method.

 This is the code that executes when the UI element to which this
FieldChangeListener is assigned undergoes a change, such as a user
pressing a button or typing text into an EditField.

 3. Create an object of your new FieldChangeListener class
implementation.

 4. Assign the object to the appropriate UI element by executing that
element’s Field.setChangeListener(FieldChangeListener)
method.

 This is where the UI element is told to use the code you provided in
Step 2 to respond to what the user does with the UI element.

Because callbacks are used often, the preceding approach is sometimes
streamlined to take advantage of Java’s capability to create classes on the fly.
Listing 5-2 shows a FieldChangeListener class being created within the
code assigning the FieldChangeListener to a button.

10_467114-ch05.indd 11710_467114-ch05.indd 117 8/30/10 1:07 PM8/30/10 1:07 PM

118 Part II: BlackBerry Application Development

Listing 5-2: Setting the FieldChangeListener on a Button, on the Fly
protected void initializeButtonListener()
{
 ButtonField goButton = new ButtonField(“Go!”);
 goButton.setChangeListener(new FieldChangeListener()
 {
 public void fieldChanged(Field infield, int inContext)
 {
 // handle the button click
 Dialog.alert(“Button Click”);
 }
 });
}

By using this approach, your application is creating a temporary class —
one that has complete access to the public and protected methods within
the class it is executed within. This means that this temporary FieldChange
Listener implementation can make calls to the other nonprivate methods
available within the Screen class where this method is implemented.

Creating a custom user interface element
Your application isn’t limited to using only the UI elements provided by the
BlackBerry library. Anything you can imagine, you can implement as a UI
element and place it on a screen. As long as your custom class is a subclass
of the BlackBerry Field class, your application can add it to a screen and
use it as if it were a standard BlackBerry UI element.

The BlackBerry Field class (net.rim.device.api.ui.Field) is an
abstract class. This means that when you create a custom UI class that
extends Field, you must implement two methods for it because the
specification of Field promises that these methods exist, but does not
implement them within Field itself. Field serves the purpose of providing
a basic set of features and functionality, some of which are already included
in RIM’s libraries, two of which must be implemented by subclasses. Here are
the two required methods to be implemented by your custom UI element:

 ✓ protected void layout(int width, int height): This
method is called by the OS when your application tries to display your
custom element. Your custom element can use this method to lay out
any subcomponents it might contain.

 ✓ protected void paint(net.rim.device.api.ui.
Graphics graphics): This method is called for your custom
element to draw itself on the screen.

10_467114-ch05.indd 11810_467114-ch05.indd 118 8/30/10 1:07 PM8/30/10 1:07 PM

119 Chapter 5: Setting Up Screens and User Interfaces

 Implementing these methods is an absolute requirement: The BlackBerry
compiler will fail to compile your custom UI element if you don’t provide both
methods in your class.

In addition to the two preceding methods, two other methods are implemented
by default for the Field class, but RIM strongly suggests that your custom UI
class override the Field implementation with your own. These methods are

 ✓ protected int getPreferredHeight(): This method allows
your custom implementation to provide a preferred height value. This
method is normally called by layout manager objects to ensure that a
Field subclass on display can get the vertical space it requires.

 ✓ protected int getPreferredWidth(): Similar to the previous
method, this method provides your custom implementation’s preferred
width to a layout manager.

Menus
Every BlackBerry application that presents information to users makes use
of menus. Unlike those found in a desktop application, BlackBerry menus are
separate from the controls and displays within an application’s screens. Your
users can make your application display a screen’s menu by clicking the
Menu button. The BlackBerry UI library contains a Menu class (net.rim.
device.api.ui.component.Menu), an instance of which is created
by the OS when the user clicks the Menu button. The OS then calls a specific
method in the screen object to add items to the menu: the void make
Menu(Menu, int) method. Your application must override this method in
all screen classes used by your application. Figure 5-6 shows the menu that
appears when the user clicks the Menu button while inside the BlackBerry
Browser application.

Figure 5-6:
The

BlackBerry
Browser

menu.

10_467114-ch05.indd 11910_467114-ch05.indd 119 8/30/10 1:07 PM8/30/10 1:07 PM

120 Part II: BlackBerry Application Development

Understanding the MenuItem class
A BlackBerry menu contains menu items, which are the individual commands
that a user can select to perform an operation. When an application runs,
the screen on display handles the menu interactions, and so that screen’s
code must set up the menu for the user to see. The items in a menu are
represented by instances of the MenuItem class (net.rim.device.api.
ui.MenuItem).

For each MenuItem created and added to the screen’s menu, the
void run() method must be implemented. This method is what the
OS executes if the user selects this particular menu item.

 The MainScreen class provides a default menu, adding a single menu item,
Close, to it. This menu item terminates the application if the user selects
it. However, if your application overrides the makeMenu method in your
MainScreen subclass, you have to add your own Close menu item, and
provide code to handle its selection appropriately.

 You can code menu items in two ways:

 ✓ As a subclass of MenuItem: This approach is pretty straightforward and
useful if your application will reuse a particular menu item on multiple
screens, such as a Help menu item. However, this type of menu item
usually must be self-contained. Good object-oriented coding practices
recommend using this approach.

 ✓ Inline, when adding a MenuItem to a menu: This is achieved by creating
a MenuItem object and adding methods to it on the fly. If you’ve done
any desktop Java programming, this approach is similar to the usual
approach for adding an actionListener object to a button object.
Coding a MenuItem inline permits the object created to access any of
the methods within the class that creates this object, but restricts usage
of the MenuItem to the screen where it was created.

 The MenuItem’s toString() method can be overridden to support
modification of the displayed text while the application is running. Your app
can use this feature to display contextual information in a menu item to relate
it to a selected item on the user’s screen. For instance, if your app manages
events in a calendar and displays the different events scheduled on a particular
day, when the user selects the Lunch Hour event for deletion and presses the
Menu button, your app’s MenuItem could update its text to say “Delete Lunch
Event?”, which would remind the user of the specific item selected.

10_467114-ch05.indd 12010_467114-ch05.indd 120 8/30/10 1:07 PM8/30/10 1:07 PM

121 Chapter 5: Setting Up Screens and User Interfaces

Creating a menu in a BlackBerry
application
The code in Listing 5-3 demonstrates adding menu items to screens so that
you can get a feel for how menu items and screens interact.

Listing 5-3: Code addition to SimpleScreen Class within
SimpleScreenApp.java
 protected void makeMenu(Menu inMenu, int inInstance)
 {
 inMenu.add(new MenuItem(“Show Dialog”, 10000, 100)
 {
 public void run()
 {
 showDialog();
 }
 });
 super.makeMenu(inMenu, inInstance);
 }

 protected void showDialog()
 {
 Dialog.alert(“You clicked the Menu”);
 }

To implement the preceding code, follow these steps:

 1. In the JDE, open the SimpleScreenApp.java module created in the
earlier section, “Creating a screen.”

 2. Create several new methods within the SimpleScreen class. Add the
code snippet in Listing 5-3 within the SimpleScreen class.

 3. Build and run SimpleScreenApp (see Chapter 3 for details).

In the code snippet shown in Listing 5-3, two new methods are added to the
MainScreen subclass for the SimpleScreenApp. The first overrides the
default makeMenu() method to add a menu item Show Dialog, and then calls
the superclass’ makeMenu() method to add the default Close menu item. The
second method is called when the user selects the Show Dialog menu item.

10_467114-ch05.indd 12110_467114-ch05.indd 121 8/30/10 1:07 PM8/30/10 1:07 PM

122 Part II: BlackBerry Application Development

The added MenuItem is created with three parameters:

 ✓ Show Dialog: This is the text that the menu item will display.

 ✓ 10000: This ordering parameter determines where in the menu the
item will appear. Lower numbers appear closer to the top of the
menu. In addition, a separator bar is added automatically between two
MenuItems whose ordering values differ by 65536 or more.

 ✓ 100: This value represents priority, which determines which menu item
is likely to receive the focus.

You can see an example of menu items and their ordering in Figure 5-7. Lower
values of ordering means the menu item is closer to the top of the screen.
Lowest value of priority means the menu item gets preselected.

This example comes with five menu items — the first three added by the
application’s code, and the last two added by the BlackBerry OS. Here’s how
they were created in code:

 ✓ The top menu item, 9k Ord, 100 Pri, was given an ordering value of
9000, and a priority value of 100. Because it has the lowest ordering
value of the three menu items, this item is at the top of the menu.

 ✓ The middle menu item, 10k Ord, 10 Pri, was given an ordering value of
10000, and a priority of 10. This menu item, therefore, is placed beneath
the top menu and above the bottom menu. Because it has the lowest
priority value of the three menu items, this item is preselected (the blue
highlight color).

 ✓ The bottom menu, 100k Ord, 100 Pri, was given an ordering value of
100000 — and because this value is more than 65536 greater than that
of the middle menu item, the BlackBerry OS creates a separator line
between this item and the one above it. Its priority value is the same as
the top menu item.

Figure 5-7:
The display

of a
menu with

multiple
menu items.

10_467114-ch05.indd 12210_467114-ch05.indd 122 8/30/10 1:07 PM8/30/10 1:07 PM

123 Chapter 5: Setting Up Screens and User Interfaces

 The three parameters can be adjusted while the application is running by
overriding their respective methods within MenuItem. Subclassing MenuItem
makes this easy, but the methods can also be overridden similar to the run
method created when the instance itself is added to the menu. The three
methods are

 ✓ String toString() for the menu item text

 ✓ int getOrdinal() for the ordering parameter

 ✓ int getPriority() for the priority

Responding to User Interaction
Aside from using menus, a BlackBerry user will interact with your application
through the use of several mechanisms:

 ✓ Keyboard: All text input is performed from the keyboard. This can either
be a full keyboard (such as that found on a BlackBerry Curve or Bold)
or a condensed one (also known as a SureType keyboard, such as that
found on a BlackBerry Pearl). The Storm series of BlackBerry devices
can display either, depending on user preference and the device’s
orientation.

 ✓ Trackwheel: The original BlackBerry devices used a wheel on the side
to move the focus (which item is selected) or scroll the screen. The
most recent devices to use the trackwheel are the BlackBerry 7100 and
BlackBerry 8700. As of 2007, this selection mechanism has been supplanted
by the trackball.

 ✓ Trackball: This is the most common selection mechanism, and it permits
the user to select UI elements in multiple directions, instead of just one.

 ✓ Trackpad: This is the newest input mechanism, very similar to the
trackball but with no moving parts.

 ✓ Touchscreen: This mechanism is available only on the BlackBerry Storm
series of devices. A touchscreen offers users a more direct approach for
selecting and manipulating objects displayed on a BlackBerry screen.

Your application can take advantage of how the user interacts with the
BlackBerry device by listening for inputs from one of the preceding mechanisms.
For instance, you can provide code that will handle the user’s pressing the
Enter key or the Escape key on the keyboard, or the user pressing the
trackwheel or trackball when a custom UI element is in focus.

10_467114-ch05.indd 12310_467114-ch05.indd 123 8/30/10 1:07 PM8/30/10 1:07 PM

124 Part II: BlackBerry Application Development

Laying Out the User Interface
Your BlackBerry app uses screens to display information and interactive UI
elements for the user to manipulate. Each piece of the UI that you add to a
screen will be drawn according to the rules of the layout manager for that
screen. Your app can use the default layout manager that MainScreen is
initialized with VerticalFieldManager. Or you can set a screen to use any
of several other layout managers that the BlackBerry OS provides. You can
even create one of your own if the stock layout managers don’t give you the
precise kind of UI your app requires.

Controlling the layout of the user interface
The most important means of controlling the display of your application’s
information is through the use of a layout manager. A layout manager is
responsible for determining where a UI element will be positioned on the
display. The BlackBerry software library comes with a set of premade layout
managers, and the MainScreen class uses the VerticalFieldManager
as its default layout manager. The following list shows the layout manager
classes available for BlackBerry applications, and Figure 5-8 shows how they
work:

 ✓ Manager (net.rim.device.api.ui.Manager): This is the basic
manager class, which provides default functionality for managing UI
elements. All layout manager classes inherit from this class. This class
is an abstract class like Field, which means you can’t create an object
from this class and must instead create one of its subclasses, or else
extend this class with your own custom manager class.

 ✓ DialogFieldManager (net.rim.device.api.ui.container.
DialogFieldManager): This field manager is used to lay out Dialog
and Status screens. When your app creates a Dialog to display
information to the user, the BlackBerry OS uses a DialogFieldManager
to lay out the UI items in the Dialog in a specific way. Every Dialog
comes with an icon image in its upper-left corner, and a text message to
the right. Below these two items is where any buttons for controlling the
Dialog such as OK or Cancel are displayed. And any extra items that
your app adds to the Dialog, such as a field to enter text, will be placed
vertically between the buttons and the first two items.

 ✓ FlowFieldManager (net.rim.device.api.ui.container.
FlowFieldManager): This field manager provides functionality to lay
out UI elements in a horizontal-then-vertical flow. The first UI element
you add to the screen is placed in the upper-left corner, and each sub-
sequent UI element is placed to the right of the previous element until it

10_467114-ch05.indd 12410_467114-ch05.indd 124 8/30/10 1:07 PM8/30/10 1:07 PM

125 Chapter 5: Setting Up Screens and User Interfaces

reaches the right edge of the screen. At that point, UI elements are placed
in a new row below the previous one, starting at the left side again.

 ✓ HorizontalFieldManager (net.rim.device.api.ui.
container.HorizontalFieldManager): This field manager lays out
UI elements along a single horizontal row.

 ✓ VerticalFieldManager (net.rim.device.api.ui.container.
VerticalFieldManager): This field manager lays out UI elements in a
single vertical column.

Figure 5-8:
How the

layout
manager

classes
work.

Icon Message

User Fields Area

Item 1

Item 4

Item 2

Item 3

Item 5 Item 6

Item 1 Item 2 Item 3

Item 2

Item 1

Item 3

DialogFieldManager

FlowFieldManager

HorizontalFieldManager

VerticalFieldManager

10_467114-ch05.indd 12510_467114-ch05.indd 125 8/30/10 1:07 PM8/30/10 1:07 PM

126 Part II: BlackBerry Application Development

 Notice that the fully qualified class name of each of the subclasses of Manager
contains the word container. This is an indication that these classes can
contain UI elements. All UI elements are subclasses of the BlackBerry library
class Field (net.rim.device.api.ui.Field), which is what layout
managers can contain. All layout managers are themselves subclasses of the
Field class, meaning that a layout manager can contain and be contained
within another layout manager, which is extremely useful for making complex
display layouts using just the horizontal and vertical layout managers.

A layout manager is essential for applications that need to display on a
variety of different screen shapes and sizes. Table 5-1 shows a sample of the
different BlackBerry devices and their screen dimensions.

Table 5-1 BlackBerry Device Screen Dimensions

Device Name Screen Width Screen
Height

Pearl (81xx) 240 260

Pearl Flip (82xx) 240 320

Curve (83xx) 320 240

Curve (89xx) 480 360

Bold (9000) 480 320

Storm (95xx) portrait 360 480

Storm (95xx) landscape 480 360

Bold (9700) 480 360

As you can see, your application will encounter a variety of different screen
sizes, undoubtedly with more to come in the future as RIM releases new
smartphones. To make sure that your application displays its content well
on all the devices your users will download (and purchase!) it for, a layout
manager becomes a necessity.

Creating a screen with a custom
layout manager
Customizing a layout manager is pretty easy: Start with a BlackBerry OS
layout manager that almost does what you want, and then create a subclass
of it, overriding the methods that you want to control.

10_467114-ch05.indd 12610_467114-ch05.indd 126 8/30/10 1:07 PM8/30/10 1:07 PM

127 Chapter 5: Setting Up Screens and User Interfaces

The three methods you will want to override to create a custom layout
manager are as follows:

 ✓ int getPreferredHeight(): Your customized layout manager
reports its desired height to the BlackBerry OS with this method.

 ✓ int getPreferredWidth(): Your customized layout manager reports
its desired width to the BlackBerry OS using this method.

 ✓ void sublayout(int maxWidth, int maxHeight): This method
is crucial; your customized layout manager performs a sizing and
positioning operation on all of its contents in this method.

Listing 5-4 shows the SimpleLayoutManager class that creates a custom
layout manager.

Listing 5-4: SimpleLayoutManager Code Snippet
class SimpleLayoutManager extends VerticalFieldManager
{
 public SimpleLayoutManager()
 {
 super();
 }

 public int getPreferredWidth()
 {
 int preferredWidth = Display.getWidth();
 return (preferredWidth);
 }

 protected void sublayout(int inMaxWidth, int inMaxHeight)
 {
 int xPos = 0;
 int yPos = 0;
 int screenWidth = Display.getWidth();
 int numberFields = this.getFieldCount();
 for (int index=0; index<numberFields; ++index)
 {
 Field aField = this.getField(index);
 this.layoutChild(aField, inMaxWidth, inMaxHeight);
 if (0 == index % 2)
 {
 xPos = 0;
 }
 else
 {
 xPos = screenWidth - aField.getPreferredWidth();
 }
 this.setPositionChild(aField, xPos, yPos);

(continued)

10_467114-ch05.indd 12710_467114-ch05.indd 127 8/30/10 1:07 PM8/30/10 1:07 PM

128 Part II: BlackBerry Application Development

Listing 5-4 (continued)

 yPos += aField.getPreferredHeight();
 }
 this.setExtent(inMaxWidth, inMaxHeight);
 }
}

To use a custom layout manager class, follow these steps:

 1. In the JDE, open the SimpleScreenApp.java module.

 2. Add a new class to the end of the module.

 The code snippet in Listing 5-4 shows the new SimpleLayoutManager
class.

 3. Add the following code to import the Display class at the top of the
module:

import net.rim.device.api.system.Display;

 This informs the compiler where to find the description of the Display
class for use in the layout manager.

 4. Rewrite the initialize method in the SimpleScreen class.

 The following code snippet shows the instructions that add a
SimpleLayoutManager as a field contained by the SimpleScreen, as
well as adding four separate LabelField objects that the layout manager
will place within the screen.

protected void initialize()
{
 this.setTitle(“Simple Screen App”);
 SimpleLayoutManager slm = new SimpleLayoutManager();
 LabelField label0 = new LabelField(“Label Zero”);
 LabelField label1 = new LabelField(“Label One”);
 LabelField label2 = new LabelField(“Label Two”);
 LabelField label3 = new LabelField(“Label Three”);
 slm.add(label0);
 slm.add(label1);
 slm.add(label2);
 slm.add(label3);
 this.add(slm);
}

 The rewritten initialize method creates a customized layout manager
and adds to it a set of LabelField objects. Then it adds the layout
manager object to the screen. When the screen is pushed onto the
screen stack, its layout method is called, which in turn calls the
sublayout method of the layout manager.

 5. Build and run SimpleScreenApp (see Chapter 3).

 The screen shown in Figure 5-9 is what you see.

10_467114-ch05.indd 12810_467114-ch05.indd 128 8/30/10 1:07 PM8/30/10 1:07 PM

129 Chapter 5: Setting Up Screens and User Interfaces

Figure 5-9:
Simple

ScreenApp,
with a

custom-
ized layout

manager
displaying

left-right
labels.

The most important section in the SimpleLayoutManager is the sublayout
method implementation. This is where your custom layout manager dictates
how the contents of the screen are going to be displayed. The most interesting
line in the code in Listing 5-4 is the line if (0 == index%2). This is where
the layout manager decides whether to put a particular child field on the left
or on the right. Notice after the execution of setPositionChild, the y-position
variable is adjusted for the height of the field that was just sized and placed
on the screen; this is done to make sure the next field is positioned vertically
below the current one. Lastly, the call to setExtent must be executed to
make sure that the container holding the layout manager (in this case, the
SimpleScreen object) gives the layout manager its necessary size.

Threaded Operation
A long time ago, computer programs operated linearly: one step followed by
the next. If a calculation took ten minutes to complete, the user was left
tapping a foot, humming some song, waiting for the computer program to
return the results. Today, this behavior is no longer acceptable. Applications
that go away for longer than a few seconds are wasting a user’s time, and are
perceived as such. The UI must be responsive to the user’s actions, even if
something the user enacted takes longer than expected.

BlackBerry applications are encouraged — and in some cases, required — to
create threads to maintain their responsiveness to the user’s actions while
executing a lengthy process. A thread is a block of code that executes in
parallel with the main application. While the main application is responding
to the user’s input, a thread can execute in the background to complete a
task.

The following sections introduce threads; for more details on threading, see
Chapter 7.

10_467114-ch05.indd 12910_467114-ch05.indd 129 8/30/10 1:07 PM8/30/10 1:07 PM

130 Part II: BlackBerry Application Development

Understanding when to use threads
The following types of tasks should be implemented as threads:

 ✓ Tasks that might take a long time to complete: A task that must access
resources on the Internet through HTTP or other network connection
types falls into this category.

 ✓ Tasks that must update a display repeatedly: A clock or countdown
timer falls into this category.

Both types of tasks usually want to modify the display of information available
to users, even if only to inform the user that the task they ordered has
completed.

 Certain methods in certain BlackBerry classes will block: Their execution will
halt your application’s progress in whatever thread the method is called.
These methods are required to be called from within a thread that is not the
main application thread. Blocking calls are noted within the API documentation
of the call. One example of a blocking call is Connector.open() — your app
can use this call to send data to and receive data from network services.

This poses a problem. When the user clicks a button onscreen, the application
is already in a state where changes to the display can be made and updates
appear instantly. However, when a background thread finishes its calculation
of the right price to buy XYZ stock shares, updating the display with the new
information must occur at the right moment because the application might
not be in the proper state for updating the screen.

To handle this situation, the BlackBerry OS provides a set of routines that
any thread may call, at any time, to deliver new information from the thread
to the display, and have the display updated soon afterward. These routines
are available within the Application (net.rim.device.api.system.
Application) class and its subclasses. The routines most often used are

 ✓ void Application.invokeAndWait(Runnable): This routine
takes a Runnable object as an input parameter, installs it into the
application’s event queue, and waits until the code in the Runnable
object has executed before returning. Your app would use this call to
update the screen as soon as possible.

 ✓ void Application.invokeLater(Runnable): This routine takes
a Runnable object as an input parameter, installs it into the application’s
event queue, and returns without waiting for the code in the Runnable
object to finish. This is the best method to use when your background
thread has finished its lengthy stock-quote calculations and it’s time to
let the user know at what price she should buy XYZ. The update is not
instantaneous, but the user won’t notice because she knows the
calculations are not instantaneous, either.

10_467114-ch05.indd 13010_467114-ch05.indd 130 8/30/10 1:07 PM8/30/10 1:07 PM

131 Chapter 5: Setting Up Screens and User Interfaces

 ✓ Object Application.getEventLock(): This routine retrieves the
application’s UI event lock. The event lock is an object that your code
can request whenever you want to ensure that UI changes you intend
to make will execute in synchronization with the main event thread.
Your application should hold this object for only short periods of time,
quickly update the UI while holding the lock, and then release the lock
immediately. Your app could use this approach to update the contents
of a progress bar to indicate the time remaining for a background
process to complete.

Using a thread to update the
display from the background
The following code example in Listing 5-5 extends the previous examples in
this chapter to update a display.

Listing 5-5: LabelThread Class for Updating the Display from a
Background Thread
class LabelThread extends Thread
{
 protected SimpleLayoutManager m_manager;
 protected boolean m_continue = true;
 public static final String[] LABEL_STRINGS = new String[]
 {“Label 1”,
 “Label One”,
 “Label Uno”,
 “Label Un”,
 “Label Ein”,
 “Label yksi”,
 „Label viens“};
 protected int m_indexOne = 0;

 public LabelThread(SimpleLayoutManager inManager)
 {
 m_manager = inManager;
 }

 public synchronized void stopThread()
 {
 m_continue = false;
 }

 public void run()
 {
 while (true == m_continue)
 {

(continued)

10_467114-ch05.indd 13110_467114-ch05.indd 131 8/30/10 1:07 PM8/30/10 1:07 PM

132 Part II: BlackBerry Application Development

Listing 5-5 (continued)

 try
 {
 Thread.sleep(1000L);
 this.adjustLabelOne();
 }
 catch (InterruptedException iExcept)
 {
 break;
 }
 }
 }

 protected void adjustLabelOne()
 {
 if (null != m_manager)
 {
 int stringIndex = m_indexOne % LABEL_STRINGS.length;
 String textOne = LABEL_STRINGS[stringIndex];
 Field fieldOne = m_manager.getField(1);
 if (fieldOne instanceof LabelField)
 {
 final LabelField labelOne = (LabelField)fieldOne;
 synchronized (UiApplication.getEventLock())
 {
 labelOne.setText(textOne);
 }
 }
 m_indexOne++;
 }
 }
}

After some initial setup, the heart of the LabelThread is the adjust
LabelOne method. This method

 1. Pulls the second (index 1) Field from the SimpleLayoutManager

 2. Picks a text string from the array (bounded by the array’s length)

 3. After acquiring the event lock from the UiApplication, sets the text

The modification of the text triggers a chain reaction that causes the
SimpleLayoutManager to modify the size, and therefore the position, of the
second LabelField. The stopThread method allows an external agent —
the SimpleScreen in this example — to halt the thread in a manner that is
safe for the thread.

10_467114-ch05.indd 13210_467114-ch05.indd 132 8/30/10 1:07 PM8/30/10 1:07 PM

133 Chapter 5: Setting Up Screens and User Interfaces

To implement the code in Listing 5-5, follow these steps:

 1. In the JDE, open the SimpleScreenApp.java module.

 2. Add a new class to the end of the module, as shown in Listing 5-5.

 3. Modify the makeMenu method in the SimpleScreen class to add two
new menu items.

 The following code shows the original makeMenu with the added menu
items:

protected void makeMenu(Menu inMenu, int inInstance)
{
 inMenu.add(new MenuItem(“Show Dialog”, 10000, 100)
 {
 public void run()
 {
 showDialog();
 }
 });
 inMenu.add(new MenuItem(“Start Motion”, 11000, 100)
 {
 public void run()
 {
 startMotion();
 }
 });
 inMenu.add(new MenuItem(“Stop Motion”, 12000, 100)
 {
 public void run()
 {
 stopMotion();
 }
 });
 super.makeMenu(inMenu, inInstance);
}

 The two menu items simply provide a means for the user to start and
stop the thread that modifies the displayed label. The menu items
added in this step execute the two methods startMotion() and
stopMotion(). A member variable is added to maintain a reference
to the thread created in startMotion so that you can stop it inside
stopMotion.

10_467114-ch05.indd 13310_467114-ch05.indd 133 8/30/10 1:07 PM8/30/10 1:07 PM

134 Part II: BlackBerry Application Development

 4. Add a new member variable and the two methods to SimpleScreen.

 The following code shows the new lines to be added to the
SimpleScreen class:

private LabelThread m_motionThread;

protected void startMotion()
{
 if (null == m_motionThread)
 {
 m_motionThread = new LabelThread((SimpleLayoutManager)this.

getField(0));
 m_motionThread.start();
 }
}

protected void stopMotion()
{
 if (null != m_motionThread)
 {
 m_motionThread.stopThread();
 }
 m_motionThread = null;
}

 5. Build and run the application (see Chapter 3).

 Unfortunately, I can’t show animations in a printed book, so Figure 5-10
just shows the screen in both states. When you run the app, you see the
right-hand Label One text changing and shifting once every second.

Figure 5-10:
The label
in the left

screen
changes to

show the
label in the

right screen.

10_467114-ch05.indd 13410_467114-ch05.indd 134 8/30/10 1:07 PM8/30/10 1:07 PM

135 Chapter 5: Setting Up Screens and User Interfaces

The Screen Stack
The BlackBerry OS maintains a screen stack containing your application’s
screens. To show a screen to the user, your application must push the screen
onto the screen stack. This causes the BlackBerry to execute a series of
operations that eventually draws the contents of the screen on the user’s
display. Similarly, to remove a screen from display, your application must
pop the screen from the top of the screen stack. The two methods for these
two operations are found in the UiApplication class, and they look like this:

 ✓ void pushScreen(Screen)

 ✓ void popScreen(Screen)

 Each screen object can be pushed on the stack only once. Pushing the same
screen object onto the stack more than once will cause the BlackBerry OS to
throw an exception. If you need to show the same screen more than once, you
can push two different screen objects of the same screen subclass onto the
stack. Because they are separate pieces of code and data, the BlackBerry OS
won’t throw an exception.

The most important issue with the screen stack is this:

When your application pops the last screen off of its screen stack, the
application will be terminated.

This means that your application must pay attention to the comings and
goings (pushes and pops) of screen objects during its operation. It might be
perfectly fine for your application to terminate abruptly because the user
initiated a course of action that caused the final screen to be removed from
the screen stack. Then again, if your application is executing a thread in the
background — such as waiting for some data to be returned across a network
connection — the connection will be severed because the thread will be
terminated when the application ends.

 Your application needs to manage its screens wisely. I’ve found the simplest
approach is to always create a new screen and push it onto the screen stack,
and then pop the previous screen (if coming from another screen) out from
under it. In this way, there’s only one screen on the screen stack at a time, and
your application will only terminate when your user tells it to close the current
screen.

10_467114-ch05.indd 13510_467114-ch05.indd 135 8/30/10 1:07 PM8/30/10 1:07 PM

136 Part II: BlackBerry Application Development

10_467114-ch05.indd 13610_467114-ch05.indd 136 8/30/10 1:07 PM8/30/10 1:07 PM

Chapter 6

Storing Your Users’ Data
In This Chapter
▶ Storing user data

▶ Deciding which storage model to use

▶ BlackBerry programming with storage models

Your users will expect your application to be interactive and respond to
every action they make in using it. A worthwhile application must do

more than that, though, because users will expect your application to keep
track of all the information that they provide. Even if the information your
app keeps track of is as simple as where the user left off last time, your users
will definitely appreciate your app more if it behaves as a butler, concierge,
maitre d’ — and that means retaining all the important, relevant, detailed
information that your users provide.

This chapter provides you with the guidance necessary for you to quickly
understand the various BlackBerry storage models, how to package the data
your users expect your application to remember, and how to retrieve it the
next time they open your application. You’ll also see how to take advantage
of backing up the data, and restoring it should a user’s device suffer a
catastrophe.

The BlackBerry OS has several storage models to choose from, which means
you can choose the approach that makes the most sense for your application
to follow. For example, your application might use simple file-based storage,
recording data either to flash memory or to a removable card. Or your
application might use persistent storage (for information that lasts long-term)
or runtime storage (for information retained only while the device is powered
on). In this chapter, I demonstrate each storage mechanism and provide
details for understanding which model to choose for your data storage
needs.

11_467114-ch06.indd 13711_467114-ch06.indd 137 8/30/10 1:07 PM8/30/10 1:07 PM

138 Part II: BlackBerry Application Development

Understanding BlackBerry
Storage Models

Current BlackBerry smartphones such as the Storm provide two physical
mechanisms for storing application data:

 ✓ Flash memory

 ✓ MicroSD storage cards

Older BlackBerry smartphones such as the 8700 do not permit storage using
removable cards and are thus limited to using only flash memory storage.

The BlackBerry OS extends the physical storage into different models:

 ✓ Persistent storage

 ✓ Runtime storage

 ✓ File storage

 ✓ Database storage (for devices running OS version 5.0 or later)

Each storage model has its own advantages and disadvantages, which I
explain in the following sections.

Persistent Storage
The persistent storage model is the most convenient of the models that the
BlackBerry OS provides. Persistent storage is literally that: storage of data
that’s available from one launch of your application to the next launch of
your application, as well as from the moment the device is turned off until it’s
turned back on again. This is the BlackBerry equivalent of a safe-deposit box:
Your users know that whatever information your application puts into the
“box” will be there when they need to see it again. After all, your users expect
data that gets stored to be available whenever they launch your application,
including after a power-off followed by a power-on.

You can see in Figure 6-1 that the application My-Cast Weather returns to
showing the weather in San Diego, where it was when I last exited the app.

11_467114-ch06.indd 13811_467114-ch06.indd 138 8/30/10 1:07 PM8/30/10 1:07 PM

139 Chapter 6: Storing Your Users’ Data

Figure 6-1:
This app

uses
persistent
storage to
remember
where the

user left off.

Persistent storage methods
The BlackBerry persistent storage model depends on both of the following:

 ✓ PersistentObject (net.rim.device.api.system.
PersistentObject)

 ✓ Persistable (net.rim.device.api.utilPersistable)

PersistentObject is the safe-deposit box that your application uses to
store the information your users contribute to your app. Your application
will need to use several important pieces of code to store and retrieve
information on a BlackBerry:

 ✓ PersistentObject PersistentStore.getPersistentObject
(long ID): Your application uses this method to create a
PersistentObject if it doesn’t yet exist or to retrieve one that your
application created.

 ✓ Object PersistentObject.getContents(): This is the method
that retrieves an object stored persistently: for example, the locations
of my favorite places to check on the weather in My-Cast Weather. If the
PersistentObject does not yet have any contents, this method will
return null.

 ✓ void PersistentObject.setContents(Object inData): Your
application uses this method to set the data that the persistent storage
model will contain.

 ✓ void PersistentObject.commit(): Your application executes
this method to cause the BlackBerry OS to copy the contents of the
PersistentObject into the persistent storage mechanism.

11_467114-ch06.indd 13911_467114-ch06.indd 139 8/30/10 1:07 PM8/30/10 1:07 PM

140 Part II: BlackBerry Application Development

Persistable is an interface that your data objects must implement if your
application plans to store the objects instead of just their contents. This
interface must be implemented in the class for each object that your
application will place in persistent storage. The BlackBerry smartphone OS
expects that all objects handed to it to be stored in persistent storage will
implement the Persistable interface. You can see this implemented for the
class WordLockerCategoryRecord shown in Listing 6-1.

Listing 6-1: The Data Class WordLockerCategoryRecord Implements
Persistable and Can Be Stored in Persistent Storage
import java.util.Date;
import net.rim.device.api.util.Persistable;

public class WordLockerCategoryRecord implements Persistable
{
 private String m_name;
 private long m_creationTimestamp;

 public WordLockerCategoryRecord(String inCategoryName, Date inCreationDate)
 {
 m_name = inCategoryName;
 m_creationTimestamp = (inCreationDate == null) ? new Date().

getTime() : inCreationDate.getTime();
 }

}

A WordLockerCategoryRecord is now a candidate for being placed into
persistent storage.

The BlackBerry OS class PersistentStore is the first stop on your
application’s path to storing and/or retrieving any data placed in the persistent
storage model. Your application must call the (static) getPersistentObject
method to access the PersistentObject your application will use. Calling
this method will either create a PersistentObject (if it doesn’t exist
already) or retrieve an existing one.

 Your application must supply a unique, long (64-bit) data value as an input
parameter to PersistentStore.getPersistentObject(). The simplest
way to create such a “key” for your application’s persistent stored objects is

 1. In the JDE, with a Java source file or other text file opened for
editing, type a unique text identifier.

 One easy way to do this is to use the main package name for your
classes as the unique identifier, such as

com.kowalskisoftware.blackberryappdevelopment.MainClassName

 2. Highlight the unique text identifier.

11_467114-ch06.indd 14011_467114-ch06.indd 140 8/30/10 1:07 PM8/30/10 1:07 PM

141 Chapter 6: Storing Your Users’ Data

 3. Right-click the highlighted text.

 This brings up a contextual menu.

 4. Select Convert “Highlighted-Text” to Long.

 This replaces the highlighted text with a long value, such as
0x40f8cf1717f37babL. You can then copy this value as the identifier
for your persistent storage. This key will always be associated with a
specific PersistentObject.

The PersistentObject retrieved for your application will store almost
any object that your application can create because every class in Java is a
descendant of java.lang.Object, the class that setContents() accepts
as a parameter. The following objects can be stored persistently:

 ✓ Basic types (Boolean, Byte, Character, Integer, Long, Object,
Short, String, Vector, and Hashtable)

 ✓ Objects of classes that implement the Persistable interface

Container types, such as java.util.Vector and java.util.Hashtable
objects, will be stored, but only if their contents fall into the preceding
categories.

 Serialization is a means by which an object expresses its contents in a form,
usually as a String, that can be easily stored. If your application uses custom
data objects to maintain its information, providing a toString() method
for the custom data class allows your application to serialize the data in the
object. This can make storage easier because String is already set to be
stored persistently. You would also then want to construct objects using the
String data retrieved from the persistent storage model, an action known as
deserialization.

 Deciding when to save your application’s data is up to you. Usually, it’s best to
save it as soon as the data changes. You do this by performing a commit —
your app executes the method PersistentObject.commit() — at the
moment of change; your application will always have the current state of the
user’s experience kept in record. However, the performance of your application
may be affected by executing a commit too often. So, you might have to run
some performance tests to determine the optimal frequency at which to save
data for your application.

Your application’s persistent data exists in the flash memory on the
BlackBerry smartphone. In order to use it, your app retrieves the data and
makes a copy of it in local memory. If users change the data, they’re only
changing the copy in local memory. Your app must then copy that information
back into the persistent storage memory in order to ensure that the user’s
additions, modifications, and deletions are remembered when the user
returns to your app. Your app could perform the copy-back-to-persistent-
storage every time the user changes something. For an app where only a

11_467114-ch06.indd 14111_467114-ch06.indd 141 8/30/10 1:07 PM8/30/10 1:07 PM

142 Part II: BlackBerry Application Development

small amount of data is changing over time, this would work. However, you
will find that as the amount of data your app stores for your users increases,
copying each and every change will slow down your app, making it more
sluggish over time.

Kinds of information to store
in persistent storage
Your application should store every piece of data in persistent storage that
your users expect to see the next time they open your application. This
includes information such as the following:

 ✓ Settings: Suppose your application presents data in textual form.
Some users might have difficulty reading the normal text size, so your
application could enhance readability by allowing each user to set the
size of the text. Your users will expect that the text size they set today
will be the same the next time they launch your application, so that
size selection is that something your application would need to store,
persistently, until they change it again. Any kind of setting that users will
modify and expect to be remembered by your application is something
that belongs in persistent storage.

 ✓ History: Game applications usually record high scores. If your game also
allows users to pause midgame and return, your application would need
to record where your user left off and then return there when your game
is launched again. This is a perfect reason to store this data in persistent
storage. And games aren’t the only apps that could benefit from recording a
user’s history. For example, apps like a reader for an e-book and an
electronic voice recorder are perfect candidates, too.

 ✓ User-created data: Shopping lists, to-do lists, gift lists, holiday card
lists — we all have information we want to record. Think of all the sticky
notes you’ve ever written. All this information, recorded electronically
and available right in your hand at a moment’s notice: all handy stuff to
store persistently.

How persistent is persistent storage?
BlackBerry maintains the data stored using persistent storage very
long-term: forever, as long as the BlackBerry has some power. The persistent
storage model will keep your saved data after your application is closed, and
the data will be available when the application is launched again. This data
will also be available even when your user turns off the BlackBerry — or
worse, forgets to keep the battery charged (there’s a small battery in every

11_467114-ch06.indd 14211_467114-ch06.indd 142 8/30/10 1:07 PM8/30/10 1:07 PM

143 Chapter 6: Storing Your Users’ Data

BlackBerry that keeps a minimum amount of power just for the memory, so
users can forget to charge their smartphone for a few days). And even when
your users upgrade their BlackBerry OS to a new and improved version, they
will usually temporarily back up the data during the upgrade process. (Note:
That depends on how the upgrade occurs; more on that in Chapter 14.)

 There is one restriction to persistent data, though: If the class type of an
object stored using the PersistentStore is not known to the OS, the entire
PersistentObject stored by the application will be removed when the
application itself is deleted from the device.

So what does this mean for your application? If your application stores
data in an object of a class available only within your application, the
PersistentObject used to store your application’s data will be deleted
when your application is deleted.

However, if your application uses a class that’s available as part of
the BlackBerry OS — for instance, a java.lang.String — then the
PersistentObject used to store the application data will be available to
your application even when your app is deleted and then reinstalled. This
behavior can be useful, but it can also be dangerous. For example, think
about highly sensitive data, such as credit card information or any data that
can assist an identity thief. That kind of data should be stored so that
deleting your application removes that data as well. Encrypting such data
would also make it more difficult to extract, but encryption of data is beyond
the scope of this book.

The BlackBerry OS provides classes and examples for encrypting and
decrypting data, and you can find all of this information within the HTML
documentation files you downloaded when you installed the JDE. Assuming
you performed a default installation, you will find the starting point for the
HTML documentation at the following location on your Windows PC:

C:\Program Files\Research In Motion\BlackBerry JDE 4.5.0\docs\api\index.html

Runtime Storage
In addition to persistent storage, the BlackBerry OS offers a less-permanent
model for storing data: runtime storage. This storage is not persistent: Any
data stored using this model will be available only while the device is powered
on. Most BlackBerry users, like those of every other mobile device, keep their
BlackBerry devices on nearly all the time. (After all, when was the last time
you turned off your cell phone completely? Most likely answer: during take-off
or landing on an airline flight.)

11_467114-ch06.indd 14311_467114-ch06.indd 143 8/30/10 1:07 PM8/30/10 1:07 PM

144 Part II: BlackBerry Application Development

When a user does turn off a BlackBerry — such as when the OS is updated or
an application is installed or removed — runtime storage memory is erased
as if nothing had ever been recorded there. For the most part, the persistent
storage model is your application’s best place to store data.

The runtime storage model is similar to using the company refrigerator at
your office: You can put stuff into and take stuff out of it every day of the
week, but every Friday, all the contents of the refrigerator are removed and
tossed away. So here are some reasons why you would use the runtime
storage instead of persistent storage:

 ✓ E-mail attachment handlers: Your app can install code that the OS will
use to retrieve data from e-mail attachments. However, your app can’t ask
the OS whether its attachment handler has already been installed — if
your app installs a handler each time it’s launched, the OS will dutifully add
another one to its list. Your app can place a flag inside the runtime store to
check whether an attachment handler has already been installed. The OS
will remove all attachment handlers when the smartphone is powered off,
and will remove the contents of the runtime store as well.

 ✓ Listeners: Your app can install code within the OS to be informed of
events related to many different processes running on the smartphone.
Each time the device is powered off, all the listener objects your app
installed will be removed. Your app can use the runtime store to keep
track of whether its listeners have been installed, because the runtime
store is also erased when the smartphone is off. Your app’s runtime
store flag will be present only as long as the listeners are installed, and
the OS will remove the flag (and everything else) in the runtime store
when it removes the listeners.

Runtime storage methods
The BlackBerry OS provides a class, RuntimeStore, for you to use when
adding and retrieving data using the runtime store. You will find this class
similar to that of the persistent store, PersistentStore. The RuntimeStore
object is very easy to work with, and offers just a few simple methods for your
app to use:

 ✓ RuntimeStore RuntimeStore.getRuntimeStore(): Your
application will call this method to access the BlackBerry OS-wide
runtime storage object.

 ✓ Object RuntimeStore.get(long ID): Similar to Persistent
Store.getPersistentObject(long), your application will provide a
unique identifier to retrieve its data object from the runtime store.

 ✓ void RuntimeStore.put(Object data): This method delivers an
object containing data into the runtime storage model.

11_467114-ch06.indd 14411_467114-ch06.indd 144 8/30/10 1:07 PM8/30/10 1:07 PM

145 Chapter 6: Storing Your Users’ Data

 Unlike objects stored in the persistent storage model, custom data objects
stored using the runtime storage model do not have to implement
Persistable. Any object that your application creates may be added to the
RuntimeStore.

Kinds of information to store
in runtime storage
In my BlackBerry development experience, I have encountered only one
specific situation where runtime storage has proved very beneficial: namely,
when knowing that the device had just gone through a power-cycling was
necessary.

One project I worked on included a feature that implemented a capability to
read e-mail attachments in a special way. This required creating code to act
as an e-mail attachment handler. An attachment handler object was created
when the application was launched and submitted to the BlackBerry OS to be
executed when users performed certain operations.

There was just one problem: Every time the application was launched, an
attachment handler object would be added to the BlackBerry OS, even if
a prior launch had already done the same thing. There was no way for my
application to ask the OS whether such an object had been added at any
previous execution of my application. As a result, the user would start to see
multiple instances of my attachment handler whenever they clicked an e-mail
attachment. If the application had installed five identical attachment handlers,
there would be five menu items labeled Import Kowalski Attachment
when the user clicked the attachment.

Clearly, this is undesirable behavior. Because resetting the device — powering
it off and then on again — cleared the BlackBerry’s memory of my attachment
handler’s existence, the runtime storage model became the perfect place to
store knowledge of whether my application had already installed its attachment
handler. By storing a flag in the runtime storage area, and checking for the
flag’s existence when the application starts up, my application could determine
whether an e-mail attachment should be created and added into the OS.

The BlackBerry OS also clears out all of the registered listener objects that
your app might install. The following is a list of some of the types of listener
objects your app can create and install:

 ✓ MessageListener: Your app can register to listen for incoming or
outgoing messages such as e-mail or SMS.

 ✓ PhoneListener: Your app can also listen for when the smartphone
makes or receives phone calls.

11_467114-ch06.indd 14511_467114-ch06.indd 145 8/30/10 1:07 PM8/30/10 1:07 PM

146 Part II: BlackBerry Application Development

 ✓ PIMListener: Whenever the user modifies something in their Personal
Information Manager (such as the BlackBerry Contacts application),
your application can register to receive notification.

 ✓ ProximityListener: Your app can register to be informed of when
the user has moved their BlackBerry smartphone within a certain range
of a particular GPS location.

Your app should use the runtime store to keep track of whether it has
already registered listeners with the OS. The collection of registered listeners
is wiped out by the OS when the smartphone is turned off. So is the runtime
store. So the runtime store is the perfect place for your application to store a
flag indicating that it has created and registered its listeners. If the flag isn’t
there, that means your app should create and register its listeners. If the flag
is there, your app knows it doesn’t have to create any more.

File Storage
Current BlackBerry smartphones provide access to greater data storage
through the use of MicroSD cards. These cards are available in sizes ranging
from 1 to 64GB, and BlackBerry applications can access them to store
information persistently. MicroSD cards are useful for storing data such as

 ✓ Audio files

 ✓ Image files

 ✓ Video files

MicroSD cards enable users to move their data physically from one device to
another, including backing up the contents of a card to a home PC.

The BlackBerry OS also permits your application to store data as a file in a
file system on the device itself, apart from a MicroSD card. Both the device
files and the MicroSD card files are accessed through BlackBerry OS file–
system methods, including methods that permit your application to create,
modify, and find files.

Your app can make use of the file system to store any data it collects that is
likely to be rather large. For instance, your app could turn on the smartphone’s
microphone for the user to record their thoughts orally, and then store
the information within an available MicroSD card — audio recordings can
become large, and a MicroSD card is a much better place to store this
information than flash memory.

11_467114-ch06.indd 14611_467114-ch06.indd 146 8/30/10 1:07 PM8/30/10 1:07 PM

147 Chapter 6: Storing Your Users’ Data

File storage methods
The BlackBerry OS uses very few classes and methods to handle file storage.
The most important of the file storage classes include

 ✓ Connector (javax.microedition.io.Connector): This class is
used to open a connection to a file system location, otherwise known as
a file. This class is part of the Java Micro Edition (JME) framework.

 ✓ FileConnection (javax.microedition.io.file.
FileConnection): This class can be extracted from a Connector
object, and provides access to the file in memory. This class specifically
provides input and output stream capabilities, to permit read and write
access to files in the file system. This class is part of the JME framework.

Kinds of information to store
in file system storage
The file storage model is similar to the persistent storage model: Files and
data stored inside are maintained across a power-off/power-on cycle on the
device. However, the innards of the file are left up to your application to
structure — or not — as you see fit. The persistent storage model accepts
data as objects, and the file system model requires you to decide how the
data must be placed in the file.

The benefit of using file storage is that the files can be moved from one
BlackBerry to another via a MicroSD card. A disadvantage is that the file
is accessible to any application that knows where to find the file in the file
system, and this might require your application to take steps to secure the
data stored in the file. Users might not mind if your application’s settings
values are available to another application; credit card numbers, however,
are a different story.

Database Storage
In BlackBerry OS 5.0, the SQLite database system is implemented, and the
BlackBerry OS provides classes and methods to create, insert, update,
search, and delete database records via standard SQL commands.

11_467114-ch06.indd 14711_467114-ch06.indd 147 8/30/10 1:07 PM8/30/10 1:07 PM

148 Part II: BlackBerry Application Development

Database storage methods
The database framework (net.rim.device.api.database) contains the
following classes to use in manipulating a database:

 ✓ DatabaseFactory: This class is used to create an object that implements
the Database interface, which your application can use to read
information from and add information to a file-based database.

 ✓ Database: This class provides access to standard database manipulation
tools, including SQL statements and transactions.

 ✓ Statement: Your application will create Statement objects to act as
database queries for reading data from and adding data into a database
table.

 ✓ Cursor: Your application will use Cursor objects to cycle through the
rows of a database table.

 ✓ Row: A Row object represents a single row of a database table, and your
application can access the values in the columns of the row.

Kinds of information to store
in database storage
The SQLite database engine uses file-based storage of data, so most of the
same rules and restrictions for storing your application’s data in a file apply
to storing it in a database. Database storage provides the structure and
syntax of SQL, which can prove more convenient for data storage, retrieval,
and modification than streaming data into and out of a file, depending on the
amount of data. If you’re comfortable using SQL syntax — and especially if
your application is going to store large amounts of data — choosing database
storage is probably a good choice.

 As I mention earlier, database storage is available only on devices that have
upgraded to BlackBerry OS 5.0 or higher.

BlackBerry Programming
with Storage Models

Time to put your storage system knowledge to use. Because I use BlackBerry JDE
4.5 for this book’s examples, I don’t demonstrate the database storage model.
The BlackBerry smartphone OS 4.5 does not include database storage code.
However, using persistent, runtime, and file system storage will work just fine.

11_467114-ch06.indd 14811_467114-ch06.indd 148 8/30/10 1:07 PM8/30/10 1:07 PM

149 Chapter 6: Storing Your Users’ Data

The example application implements multiple screens, one each for persistent,
runtime, and file storage. Each screen handles its own particular approach
to storing data, and provides a LabelField indicating what’s stored and an
EditField to allow users to set new data in the storage. Each screen loads
data from the appropriate location when the screen is displayed. If no data is
available, a default text string is shown. In addition, each screen comes with
two menu items:

 ✓ Save XXX Data: Choosing this menu option saves the data entered in the
EditField into the appropriate storage mechanism.

 ✓ Clear XXX Data: Choosing this menu option clears any stored data by
storing a zero-length string.

Listings 6-2 through 6-6 show the entire code for the StorageTest application.

Listing 6-2 is the code present in the main application module for the
StorageTest application. You will see that this module doesn’t really do
that much — it just sets up the application when the user launches it. The
main() method creates a new StorageTest application object and tells it
to execute its enterEventDispatcher()method. The OS takes over at this
point, and eventually calls back into the activate() method. This method
merely creates a StorageTestScreen object (implemented in Listing 6-3),
and pushes it onto the screen stack.

Listing 6-2: StorageTest.java (Main Application Module)
/*
 * StorageTest.java
 *
 * © Karl G. Kowalski, 2010
 * Confidential and proprietary.
 */

package com.karlgkowalski.blackberryfordummies.storagetest;

import net.rim.device.api.ui.*;

public class StorageTest extends UiApplication
{
 public static void main(String[] inArgs)
 {
 StorageTest st = new StorageTest();
 st.enterEventDispatcher();
 }

 public StorageTest()
 {
 }

(continued)

11_467114-ch06.indd 14911_467114-ch06.indd 149 8/30/10 1:07 PM8/30/10 1:07 PM

150 Part II: BlackBerry Application Development

Listing 6-2 (continued)

 public void activate()
 {
 this.pushScreen(new StorageTestScreen());
 }
}

Listing 6-3 shows what’s contained in the StorageTestScreen module.
This module defines the StorageTestScreen class to be a subclass of
MainScreen, the default BlackBerry OS screen class. This screen contains
three buttons, initialized in the initialize() method:

 ✓ Persistent: Clicking this button will execute the method showPersistent
Screen(). This will display a new screen to demonstrate the use of the
persistent store.

 ✓ Runtime: Clicking this button will execute the method showRuntime
Screen(). This will display a new screen to demonstrate the use of the
runtime store.

 ✓ File: Clicking this button will execute the method showFileScreen().
This will display a new screen to demonstrate the use of the file store.

The methods executed by clicking the above buttons each creates a different
screen and displays the screen by pushing it on top of the screen stack. You
can see in Listings 6-4 through 6-6 the behavior of the new screens on display.

 Screens pushed onto the screen stack are like pancakes piled onto a heap: The
last one pushed is on top, and is the only one that your users see. Chapter 5
covers this aspect of BlackBerry programming in greater detail.

Listing 6-3: StorageTestScreen.java (The Main Screen)
/*
 * StorageTestScreen.java
 *
 * © Karl G. Kowalski, 2010
 * Confidential and proprietary.
 */

package com.karlgkowalski.blackberryfordummies.storagetest;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;

public class StorageTestScreen extends MainScreen
{
 public StorageTestScreen()
 {
 super();

11_467114-ch06.indd 15011_467114-ch06.indd 150 8/30/10 1:07 PM8/30/10 1:07 PM

151 Chapter 6: Storing Your Users’ Data

 this.initialize();
 }

 protected void initialize()
 {
 this.setTitle(“Storage Test”) ;
 ButtonField persistentButton = new ButtonField(“Persistent”);
 ButtonField runtimeButton = new ButtonField(“Runtime”);
 ButtonField fileButton = new ButtonField(“File”);
 this.add(persistentButton);
 this.add(runtimeButton);
 this.add(fileButton);
 persistentButton.setChangeListener(new FieldChangeListener()
 {
 public void fieldChanged(Field inField, int inContext)
 {
 showPersistentScreen();
 }
 });
 runtimeButton.setChangeListener(new FieldChangeListener()
 {
 public void fieldChanged(Field inField, int inContext)
 {
 showRuntimeScreen();
 }
 });
 fileButton.setChangeListener(new FieldChangeListener()
 {
 public void fieldChanged(Field inField, int inContext)
 {
 showFileScreen();
 }
 });
 }

 protected void showPersistentScreen()
 {
 UiApplication.getUiApplication().pushScreen(new PersistentStoreScreen()

);
 this.setDirty(false);
 }

 protected void showRuntimeScreen()
 {
 UiApplication.getUiApplication().pushScreen(new RuntimeStoreScreen());
 this.setDirty(false);
 }

 protected void showFileScreen()
 {
 UiApplication.getUiApplication().pushScreen(new FileStoreScreen());
 this.setDirty(false);
 }
}

11_467114-ch06.indd 15111_467114-ch06.indd 151 8/30/10 1:07 PM8/30/10 1:07 PM

152 Part II: BlackBerry Application Development

The next three listings (Listing 6-4 through Listing 6-6) show the implementation
of the code for each of the three screens displayed as a result of clicking the
buttons in the StorageTestScreen display. In Listing 6-4, the implementation
of PersistentStoreScreen provides two elements, a LabelField to
display anything currently in the persistent store, and an EditField to
allow the user to change the contents of the persistent store. If the contents
of the EditField are modified in any way (such as if the user enters any text
into the field), the setDirty() method is called. This is because the data in
the EditField can only be stored in the persistent store if the menu item
Save Persistent Data is selected. You can clear the contents of the persistent
store through the use of the Clear Persistent Data menu item.

The getMyPersistentObject() method is a convenience method, written
so that I didn’t have to keep typing the same code every time I wanted to
retrieve the object stored in the persistent store (this happens when I want
to get the data that’s been stored, or set the data to be stored). The methods
storeInPersistentStorage() and extractTextFromPersistent
Storage() do exactly what their titles claim. Lastly, the makeMenu()
method adds this screen’s menu items to the BlackBerry menu.

When this screen is created, its UI components are initialized to display the
contents of the persistent store, if any. By selecting the menu items, the user
can either set the persistent store to hold any text entered in the EditField
component, or clear the contents of the persistent store.

Listing 6-4: PersistentStoreScreen.java (The Screen for Reading Data
from and Writing Data into the Persistent Storage Model)
/*
 * PersistentStoreScreen.java
 *
 * © Karl G. Kowalski, 2010
 * Confidential and proprietary.
 */

package com.karlgkowalski.blackberryfordummies.storagetest;

import net.rim.device.api.ui.component.*;

Your dirty flag is showing
The dirty flag is a property of every Screen
object. This flag is set by the BlackBerry OS
when the user interacts with a screen, such
as entering text, clicking buttons, and so on. If
your user selects the default Close menu item

and the screen being closed has its dirty
flag set to true, the user will be informed that
the screen may need to be saved. Resetting the
dirty flag in the code in Listing 6-2 prevents
this for StorageTestScreen.

11_467114-ch06.indd 15211_467114-ch06.indd 152 8/30/10 1:07 PM8/30/10 1:07 PM

153 Chapter 6: Storing Your Users’ Data

import net.rim.device.api.ui.container.*;
import net.rim.device.api.ui.FieldChangeListener;
import net.rim.device.api.ui.Field;
import net.rim.device.api.ui.MenuItem;
import net.rim.device.api.system.PersistentStore;
import net.rim.device.api.system.PersistentObject;

public class PersistentStoreScreen extends MainScreen
{
 public static final String DEFAULT_CONTENTS = “_nothing_stored_”;
 private LabelField m_fromStorage;
 private EditField m_toStorage;

 public PersistentStoreScreen()
 {
 super();
 this.initialize();
 }

 protected void initialize()
 {
 this.setTitle(“Persistent Storage”);
 String psString = this.extractTextFromPersistentStorage();
 m_fromStorage = new LabelField(“From Persistent Storage: [“ + psString +

“]”);
 m_toStorage = new EditField(“Store in Persistent Storage: “, “”);
 this.add(m_fromStorage);
 this.add(m_toStorage);
 m_toStorage.setChangeListener(new FieldChangeListener()
 {
 public void fieldChanged(Field inField, int inContext)
 {
 setDirty(false); // contents must be saved through menu
 }
 });
 }

 public void makeMenu(Menu inMenu, int inContext)
 {
 inMenu.add(new MenuItem(“Save Persistent Data”, 10000, 100)
 {
 public void run()
 {
 storeInPersistentStorage();
 }
 });
 inMenu.add(new MenuItem(“Clear Persistent Data”, 10100, 100)
 {
 public void run()
 {
 PersistentObject storage = getMyPersistentObject();

(continued)

11_467114-ch06.indd 15311_467114-ch06.indd 153 8/30/10 1:07 PM8/30/10 1:07 PM

154 Part II: BlackBerry Application Development

Listing 6-4 (continued)

 if (null != storage)
 {
 storage.setContents(DEFAULT_CONTENTS);
 storage.commit();
 Dialog.alert(“Storage reset”);
 }
 }
 });
 super.makeMenu(inMenu, inContext);
 }

 PersistentObject getMyPersistentObject()
 {
 return (PersistentStore.getPersistentObject(0xc46aeeaa2592b482L));
 }

 protected void storeInPersistentStorage()
 {
 PersistentObject storage = this.getMyPersistentObject();
 if (null != storage)
 {
 storage.setContents(m_toStorage.getText());
 storage.commit();
 Dialog.alert(“Text stored”);
 }
 }

 protected String extractTextFromPersistentStorage()
 {
 String psString = DEFAULT_CONTENTS;
 PersistentObject storage = this.getMyPersistentObject();
 if (null != storage)
 {
 Object storedContents = storage.getContents();
 if (null != storedContents)
 {
 psString = storedContents.toString();
 }
 }
 return (psString);
 }
}

In Listing 6-5, you see the code that implements saving and retrieving data
from the runtime store. Notice that this code parallels that in Listing 6-4 —
the only difference is where the data gets stored and retrieved from. Instead
of using a PersistentStore object to access the data, the code in Listing
6-5 uses a RuntimeStore object.

11_467114-ch06.indd 15411_467114-ch06.indd 154 8/30/10 1:07 PM8/30/10 1:07 PM

155 Chapter 6: Storing Your Users’ Data

Listing 6-5: RuntimeStoreScreen.java (The Screen for Reading Data from
and Writing Data into the Runtime Storage Model)
/*
 * RuntimeStoreScreen.java
 *
 * © Karl G. Kowalski, 2010
 * Confidential and proprietary.
 */

package com.karlgkowalski.blackberryfordummies.storagetest;

import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.system.RuntimeStore;
import net.rim.device.api.ui.*;

public class RuntimeStoreScreen extends MainScreen
{
 private String DEFAULT_RUNTIME_TEXT = “no_runtime_text”;
 private LabelField m_fromRuntimeStore;
 private EditField m_toRuntimeStore;

 public RuntimeStoreScreen()
 {
 super();
 this.initialize();
 }

 protected void initialize()
 {
 this.setTitle(“Runtime Storage”);
 m_fromRuntimeStore = new LabelField(“From Runtime Storage: [“ +
 this.extractTextFromRuntimeStore() + “]”);
 m_toRuntimeStore = new EditField(“Store in Runtime Storage: “, “”);
 this.add(m_fromRuntimeStore);
 this.add(m_toRuntimeStore);
 m_toRuntimeStore.setChangeListener(new FieldChangeListener()
 {
 public void fieldChanged(Field inField, int inContext)
 {
 setDirty(false); // contents must be saved through menu
 }
 });
 }

 public void makeMenu(Menu inMenu, int inContext)
 {
 inMenu.add(new MenuItem(“Save Runtime Data”, 10000, 100)
 {
 public void run()
 {

(continued)

11_467114-ch06.indd 15511_467114-ch06.indd 155 8/30/10 1:07 PM8/30/10 1:07 PM

156 Part II: BlackBerry Application Development

Listing 6-5 (continued)

 setRuntimeStorageText(m_toRuntimeStore.getText());
 Dialog.alert(“Stored text”);
 }
 });
 inMenu.add(new MenuItem(“Clear Runtime Data”, 10100, 100)
 {
 public void run()
 {
 setRuntimeStorageText(DEFAULT_RUNTIME_TEXT);
 Dialog.alert(“Storage reset”);
 }
 });
 super.makeMenu(inMenu, inContext);
 }

 protected String extractTextFromRuntimeStore()
 {
 String rsString = this.getRuntimeStorageText();
 return (rsString);
 }

 protected Object getRuntimeStoreObject()
 {
 Object rsObj = null;
 RuntimeStore rs = RuntimeStore.getRuntimeStore();
 if (null != rs)
 {
 rsObj = rs.get(0xe7ccdcf49882229L);
 }
 return (rsObj);
 }

 protected void setRuntimeStorageText(String inText)
 {
 RuntimeStore rs = RuntimeStore.getRuntimeStore();
 if (null != rs)
 {
 rs.put(0xe7ccdcf49882229L, inText);
 }
 }

 protected String getRuntimeStorageText()
 {
 String rsText = DEFAULT_RUNTIME_TEXT;
 Object rsObj = this.getRuntimeStoreObject();
 if (null != rsObj)
 {
 rsText = rsObj.toString();
 }
 return (rsText);
 }
}

11_467114-ch06.indd 15611_467114-ch06.indd 156 8/30/10 1:07 PM8/30/10 1:07 PM

157 Chapter 6: Storing Your Users’ Data

Lastly, Listing 6-6 shows you how to implement code to store and retrieve
data by using the file storage model. Using the file system on a BlackBerry
smartphone is more complex than using the persistent or runtime storage
models. The OS requires your code to check for any possible problem during
some of the methods you will need to execute when opening, modifying, or
closing files. The basic operation of the code is similar to that of the runtime
and persistent store code: read the data from the file and display it, allow the
user to change the data, and store new data into the file when ordered to.
You may notice that there’s a lot more code involved in retrieving the data
from the file and writing data to the file. Using the file system to store data is
thus less convenient than using the persistent or runtime storage models for
retaining your app’s data.

Listing 6-6: FileStoreScreen.java (The Screen for Reading Data From
and Writing Data to the File System Storage Model)
/*
 * FileStoreScreen.java
 *
 * © Karl G. Kowalski 2010
 * Confidential and proprietary.
 */

package com.karlgkowalski.blackberryfordummies.storagetest;

import net.rim.device.api.ui.container.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.*;
import java.io.*;
import javax.microedition.io.*;
import javax.microedition.io.file.*;
import java.util.*;

public class FileStoreScreen extends MainScreen
{
private static final String DEFAULT_FILE_TEXT = “_no_file_text_”;
private static final String NO_FILE = “_no_file_”;
private static final String FILE_URL_START = “file:///store/home/user/”;
private static final String FILE_STORE_FILENAME = “file_storage_test.txt”;

private LabelField m_fromStore;
private EditField m_toStore;

public FileStoreScreen()
{
this.initialize();
}

protectedvoidinitialize()

(continued)

11_467114-ch06.indd 15711_467114-ch06.indd 157 8/30/10 1:07 PM8/30/10 1:07 PM

158 Part II: BlackBerry Application Development

Listing 6-6 (continued)

{
this.setTitle(“File Storage”);
String fileContents= NO_FILE;
fileContents= this.getFileStoreContents();
m_fromStore=new LabelField(“Text from File Store: [“ + fileContents + “]”);
 m_toStore=new EditField(“Store in File: “, “”);
 this.add(m_fromStore);
 this.add(m_toStore);
 m_toStore.setChangeListener(new FieldChangeListener()
 {
 public void fieldChanged(Field inField, int inContext)
 {
 setDirty(false);
 }
 });
 }

 protected String getConnectionString()
 {
 StringBufferbuffy = new StringBuffer();
 buffy.append(FILE_URL_START);
 buffy.append(FILE_STORE_FILENAME);
 return (buffy.toString());
 }

 protected FileConnection getFileConnection(String inConnectionString)
 {
 FileConnection conn = null;
 try
 {
 conn=(FileConnection)Connector.open(inConnectionString,
 Connector.READ_WRITE);
 }
 catch (Exception except)
 {
 Dialog.alert(“Exception while opening file connection: “ +
 except.toString());
 }
 return (conn);
 }

 protected String getFileStoreContents()
 {
 String fileContents = DEFAULT_FILE_TEXT;
 try
 {
 FileConnection fileConn=this.getFileConnection(
 this.getConnectionString());
 if (null != fileConn && fileConn.exists())
 {
 DataInputStream dis = fileConn.openDataInputStream();
 int contentLength = dis.available();

11_467114-ch06.indd 15811_467114-ch06.indd 158 8/30/10 1:07 PM8/30/10 1:07 PM

159 Chapter 6: Storing Your Users’ Data

 if (contentLength > 0)
 {
 byte[] contentArray = new byte[contentLength];
 dis.read(contentArray);
 fileContents = new String(contentArray);
 }
 }
 else
 {
 fileContents = NO_FILE;
 }
 fileConn.close();
 }
 catch (IOException ioExcept)
 {
 Dialog.alert(“Exception while loading file contents: “+
 ioExcept.toString());
 }
 return (fileContents);
 }

 protected void storeDataInFileStorage(String inData)
 {
 try
 {
 FileConnection fConn = (FileConnection)Connector.open(
 this.getConnectionString());
 if (false == fConn.exists())
 {
 fConn.create();
 this.writeDataToFile(fConn, inData.getBytes());
 }
 else
 {
 this.writeDataToFile(fConn, inData.getBytes());
 }
 Dialog.alert(“Wrote data to file”);
 }
 catch (Exception except)
 {
 Dialog.alert(“exception thrown while storing data:”+except.toString()

);
 }
 }

 protected void writeDataToFile(FileConnection inFileConn, byte[] inData

) throws IOException
 {
 if (null != inFileConn && null != inData)
 {
 DataOutputStream dos = inFileConn.openDataOutputStream();
 dos.write(inData);

(continued)

11_467114-ch06.indd 15911_467114-ch06.indd 159 8/30/10 1:07 PM8/30/10 1:07 PM

160 Part II: BlackBerry Application Development

Listing 6-6 (continued)

 dos.flush();
 inFileConn.close();
 }
 }

 protected void storeInFileStorage()
 {
 this.storeDataInFileStorage(m_toStore.getText());
 }

 protected void clearFileStorage()
 {
 try
 {
 FileConnection fileConn= this.getFileConnection(
 this.getConnectionString());
 if (null != fileConn)
 {
 if (true == fileConn.exists())
 {
 fileConn.delete();
 }
 }
 Dialog.alert(“File storage cleared”);
 }
 catch (IOException ioExcept)
 {
 Dialog.alert(“Exception thrown while clearing file storage: “ +
 ioExcept.toString());
 }
 }

 public void makeMenu(Menu inMenu, int inContext)
 {
 inMenu.add(new MenuItem(“Save File Data”, 10000, 100)
 {
 public void run()
 {
 storeInFileStorage();
 }
 });
 inMenu.add(new MenuItem(“Clear File Data”, 10100, 100)
 {
 public void run()
 {
 clearFileStorage();
 }
 });
 super.makeMenu(inMenu, inContext);
 }
}

11_467114-ch06.indd 16011_467114-ch06.indd 160 8/30/10 1:07 PM8/30/10 1:07 PM

161 Chapter 6: Storing Your Users’ Data

The BlackBerry OS only allows your app to make a connection to the file using
a class called Connector. This class requires you to provide a URL to tell the
OS where to find the file you want to access. This URL is of the form

file://root_node/file_name

The components of this URL are described as follows:

 ✓ file: The Connector class can make a variety of different types
of connections. Here, you use file to tell Connector to create a
connection to a file stored in the BlackBerry file system.

 ✓ root_node: The BlackBerry file system requires a starting point for
where the file is located. The following two places are acceptable for use
as the root_node of the connection string:

 • store/home/user: This starting point tells the BlackBerry
OS that your app will be looking for and accessing files in the
BlackBerry smartphone’s flash memory.

 • SDCard: This starting point tells the BlackBerry OS that your app
will be looking for and accessing files in the BlackBerry smartphone’s
MicroSD card, if one is installed.

 ✓ file_name: This is where you set the name of the specific file your app
will use to store data.

 The important point to note is that your application might need to determine
whether an SD card is installed because the cards are removable. The code
snippet in Listing 6-7 shows one way to figure out whether an SD card is
installed.

Listing 6-7: Finding Out Whether an SD Card Is Installed
public boolean isSDCardInstalled()
{
 boolean sdCardInstalled = false;
 try
 {
 FileConnection fConn = (FileConnection)Connector.open(“file:///SDCard/”,
 Connector.READ);
 sdCardInstalled = fConn.exists();
 }
 catch (Exception except)
 {
 }
 return (sdCardInstalled);
}

11_467114-ch06.indd 16111_467114-ch06.indd 161 8/30/10 1:07 PM8/30/10 1:07 PM

162 Part II: BlackBerry Application Development

This very simple code snippet returns a flag indicating whether the directory
exists, which is a good indication of whether the SD card itself is installed in
the device.

And that’s it. Your application can store and retrieve data from the long-term
and short-term storage areas on BlackBerry devices.

11_467114-ch06.indd 16211_467114-ch06.indd 162 8/30/10 1:07 PM8/30/10 1:07 PM

Chapter 7

Getting Tied Up in Threads
In This Chapter
▶ Introducing threads

▶ Knowing when to use threads

▶ Scheduling events with threads

▶ Weaving threads into the user experience

Your average desktop PC can multitask and run several different applica-
tions all at the same time, allowing you to browse the Internet, down-

load songs, search for that file whose name starts with Z, all while you play
your favorite version of solitaire.

Your BlackBerry smartphone also provides the capability to run multiple
applications at the same time. But more importantly, your BlackBerry appli-
cation can also perform different tasks at the same time. A BlackBerry appli-
cation that executes different tasks concurrently achieves this by launching
different threads, each of which represents one task. In this chapter, you read
about the threads that the BlackBerry OS provides, and how to exploit them
to make your app more accommodating to users’ expectations.

Understanding Basic Threads
Time for a crash course in threads. A complete explanation is beyond the
scope of this book, but you can readily find quite a few online and written
resources available to fill in the gaps.

An application is a sequence of instructions delivered to the central process-
ing unit (CPU) of the computer or smartphone the app is to run on. The CPU
can execute only one instruction at a time. However, as CPUs have gotten
faster and faster, it has become possible for a CPU to operate as if it were
executing two or more sets of instructions simultaneously. The OS juggles

12_467114-ch07.indd 16312_467114-ch07.indd 163 8/30/10 1:07 PM8/30/10 1:07 PM

164 Part II: BlackBerry Application Development

the different sets of instructions to be executed together, giving each a
period of time in which to proceed before interrupting one and starting (or
restarting) another. A thread is one of those sets of instructions.

Using threads allows developers to perform some tasks in the background
of an application while the user is looking at data on display. The user can
interact with the UI of an application even while the app is waiting for data
to download (a common occurrence with the networked apps of today).
This double duty is important because network data retrieval can take a
noticeable amount of time. If your app doesn’t use threads to perform the
data access in the background, your users are left staring at an unchanging
display, unable to interact with the app or even the device, until your code
returns to interactive execution after the data is or fails to be retrieved. This
is not a very pleasant experience for users.

Here are the three thread items that the BlackBerry OS supports:

 ✓ Thread (java.lang.Thread): This is the basic BlackBerry thread
class, which implements the Runnable interface, described later in this
list. You can subclass this class to create objects that the BlackBerry OS
executes as independent subprocesses.

 ✓ TimerTask (java.util.TimerTask): Your app uses a TimerTask
to implement subprocesses that need to be scheduled later, or those
that are to be executed repeatedly. You use TimerTask objects in
conjunction with a Timer object (java.util.Timer), which manages
their execution.

 ✓ Runnable (java.lang.Runnable): This is actually an interface. Your
classes can implement the Runnable interface and be incorporated into
a Thread object. You use this interface when you can’t or don’t want to
subclass a Thread: for instance, when the class you intend to use as a
Runnable already extends a different class.

 Java does not permit multiple inheritance — that is, one class can’t extend
two parent classes — but a class can implement multiple interfaces.

Your app uses the preceding classes and the interface for all the operations it
needs to perform in the background. The operations, in general, come in two
flavors:

 ✓ Fire and forget. This is the easiest type of operation to place in a thread.
The thread launches, executes some code, and stops. An example of this
type of operation would be code that delivers information to a network
repository.

12_467114-ch07.indd 16412_467114-ch07.indd 164 8/30/10 1:07 PM8/30/10 1:07 PM

165 Chapter 7: Getting Tied Up in Threads

 ✓ Call me when you’re done: You’ll find that this is the type of operation
you come across most frequently. Your users direct your application to
perform a lengthy operation, after which your app reports back some
information about the results of the operation. This type of operation
requires that some sort of callback mechanism is in place for the thread
to execute when it has finished its processing. An example of this type
would be code that searches through a user’s Calendar for upcoming
birthdays over the next year.

Knowing when to use a thread
You use a thread to perform an operation in only one situation:

When the operation that your app intends to execute will take too much
time away from your app paying attention to the user’s actions.

BlackBerry users have many things to do. After all, they own a BlackBerry
because owning one makes them more efficient in their day. Users read and
write e-mail, check their calendars, browse the Web, and maybe even make
and receive phone calls. BlackBerry users are always in a rush, have no
time to waste, and can’t stand to wait. All right, I’m exaggerating, but you
get the picture. If your app is holding up everything in its effort to down-
load all the pictures and ads from that hot new restaurant’s menu, your
user will move on to something else, putting your application into the
background.

So, how much time is “too much”? You might not like this answer: It depends.
And you might have to wait for feedback from your users before you can
determine whether you should put a particular operation into a background
thread. I prefer not to leave users waiting, so if something I want my app to
do doesn’t finish really quickly (a few tenths of a second), that’s something I
want to put in a separate thread and run in the background.

Here are a few suggestions for particular operations where you will want to
consider implementing threaded behavior:

 ✓ Network operations: Accessing the Internet is always a chancy process.
You can never tell when the service your app is trying to contact is
going to be too busy, leaving your app’s connection request in a holding
pattern. You should definitely put all code that uses the Connection
class (javax.microedition.io.Connection) into a thread that runs
independently of the main event thread. I discuss and demonstrate net-
working threads in Chapter 9.

12_467114-ch07.indd 16512_467114-ch07.indd 165 8/30/10 1:07 PM8/30/10 1:07 PM

166 Part II: BlackBerry Application Development

 ✓ Certain BlackBerry APIs: Some BlackBerry classes that your app might
use — other than networking — will require that your app execute them
only in a thread separate from the main event thread. For example, your
app may execute Session.waitForDefaultSession() when trying
to access the default mail service of the BlackBerry OS in order to inter-
act with e-mail. The BlackBerry API documentation points out whether a
class or one of its methods is blocking; that is, if calling the method will
halt the processor until something external to your app returns data to
it. Code that contains a blocking-method call must be placed in a thread
separate from the main event thread. In the following code block, you
can see a code snippet that must be placed in a Thread in order to send
an e-mail message. When placed inside a thread, this code will wait for
the OS to provide the starting object (Session) that allows creating and
sending e-mail messages.

try
{
 // blocking call
 Session defaultSession = Session.waitForDefaultSession
 if (null != defaultSession)
 {
 Transport emailTransporter = defaultSession.getTransport();
 if (null != emailTransporter)
 {
 Address myAddr = new Address(Address.EMAIL_ADDR, “kgkfordummies@

gmail.com”);
 Message aMessage = new Message();
 aMessage.addRecipient(Message.RecipientType.TO, myAddr);
 aMessage.setSubject(“This just in...”);
 aMessage.setContent(“Greetings from a remote user!”);
 emailTransporter.send(aMessage);
 }
 }
}
catch (Exception except)
{
 // handle any problem
}

 ✓ Scheduled operations: Your app might require a certain event to occur
at a specific time, such as a clue being revealed in a detective mystery
game or an alarm set to ring after a certain number of minutes. While
your app is running, you could code it to periodically check the time and
then trigger the event when the time is right. Or else you could create
a thread that does nothing but wait for the intervening interval to pass,
and then execute at the right moment.

 ✓ Repeated operations: Your app might display a clock that marks progress
toward a goal, such as the one shown in Figure 7-1. Your users will expect
that clock to be changing its time display, once per second — maybe

12_467114-ch07.indd 16612_467114-ch07.indd 166 8/30/10 1:07 PM8/30/10 1:07 PM

167 Chapter 7: Getting Tied Up in Threads

more frequently if your app marks times for Olympic tryouts, maybe less
frequently if your app counts down the shopping days until the next big
event or holiday. Regardless of how often your app updates its time dis-
play, you need to put the code to update the display inside a thread.

Figure 7-1:
An example

of a prog-
ress clock.

Thread things to worry about
You will find that threads are easy to deal with — as long as you keep them
simple. As a rule, I try to keep my threads’ main code no longer than one
screen’s worth of executable statements. The following sections provide a
few other rules to keep handy when you’re dealing with threads.

Calling back to the thread’s origin
One part of your app launches the thread, and because this is usually as a
result of user action, the launch occurs within the main event thread. Most
likely, your thread has been launched to perform some action in response to
a user action that takes too long to perform. In addition, your app’s response
to the user’s action requires a result to be returned to the user when the
thread has finished. Because this thread is separated from the main event
thread and the rest of your app’s code, your thread requires some mecha-
nism to return data back to your app.

The best way to do this is by providing a callback object to the thread, usu-
ally in its constructor method. The callback object, usually an interface
implemented by the object that creates the thread, provides a means by
which your thread can return any results it achieves back to the object that
created the thread. You can see in Listing 7-1 the ThreadCallbackClass
that implements the success and failure methods of the ThreadCallback
interface.

12_467114-ch07.indd 16712_467114-ch07.indd 167 8/30/10 1:07 PM8/30/10 1:07 PM

168 Part II: BlackBerry Application Development

Listing 7-1: The Class ThreadCallbackClass Implements
the ThreadCallback Interface

public ThreadCallbackClass implements ThreadCallback
{
 public ThreadCallbackClass()
 {
 }

 public void threadSuccess(String inMessage)
 {
 synchronized (UiApplication.getUiApplication().getEventLock())
 {
 Dialog.alert(“The thread has completed successfully: “ + inMessage);
 }
 }

 public void threadFailure(Exception inException)
 {
 synchronized (UiApplication.getUiApplication().getEventLock())
 {
 Dialog.alert(“The thread encountered a failure: “ + inException.

toString());
 }
 }
}

You can accomplish this by specifying a success method within the interface.

You also want to specify a failure method in the interface because sometimes
threads don’t always succeed in their tasks.

In Listing 7-2, you see the interface ThreadCallback, which the
ThreadCallbackClass implements. Interfaces are pretty simple, and you
use them as placeholders to represent functionality implemented in a sepa-
rate class. Code that uses an interface’s methods, such as shown in Listing
7-3, only knows about the methods that the interface defines.

Listing 7-2: The ThreadCallback Interface Only Provides Two Methods

public interface ThreadCallback
{
 public void threadSuccess(String inMessage);
 public void threadFailure(Exception inException);
}

You can see in Listing 7-3 the ThreadUsingCallback class, which is cre-
ated with a parameter that must implement the ThreadCallback interface.
A ThreadUsingCallback object performs its operation and then calls
either the success method or the failure method of the object that represents
a ThreadCallback. A ThreadUsingCallback object extends the Thread

12_467114-ch07.indd 16812_467114-ch07.indd 168 8/30/10 1:07 PM8/30/10 1:07 PM

169 Chapter 7: Getting Tied Up in Threads

class, which allows it to perform its operations as a separate subprocess
within the main application. A ThreadUsingCallback object must be ini-
tialized with an object that implements the ThreadCallback interface. This
allows the ThreadUsingCallback object to report its success or failure
using the interface’s methods

Listing 7-3: The ThreadUsingCallback Object Reports Success or Failure

public ThreadUsingCallback extends Thread
{
 private ThreadCallback m_callback;
 public ThreadUsingCallback(ThreadCallback inCallback)
 {
 m_callback = inCallback;
 }

 public void run()
 {
 try
 {
 // perform operation
 m_callback.threadSuccess(“The Operation has finished”);
 }
 catch (Exception except)
 {
 // something bad happened
 // let the callback know
 m_callback.threadFailure(except);
 }
 }
}

Thread count limits
The BlackBerry OS permits only 32 threads per application, so you should
really avoid going crazy with them. I tend to permit only one thread at a time,
other than the main event thread. So far, I haven’t found a need for more than
that, although your mileage may vary.

Synchronization
You will find the biggest challenge in keeping your thread’s operations syn-
chronized with other code in your app. For example, in an app that launches
multiple threads to find the ten best prices for airline flights from Boston to
Paris, you’d want to synch the addition of each block of flight data and the
display of the summary of all the flights.

You can reduce the likelihood of running into thread synchronization issues
by keeping your use of threads to a minimum, as well as keeping the thread
code small and simple. However, synchronization problems can still creep in,
even if you’re careful. You will find that most synchronization problems

12_467114-ch07.indd 16912_467114-ch07.indd 169 8/30/10 1:07 PM8/30/10 1:07 PM

170 Part II: BlackBerry Application Development

involve two different threads attempting to modify and use the same
resource: a race condition. The Java language supplies a resolution to this
problem: the synchronized keyword. Assigning this keyword to parts of
your code reduces the chances that a race condition occurs. Listing 7-4
shows you two methods, one synchronized (incrementInSync()) and
the other not synchronized (incrementUnsync()). The only difference in
operation between the two methods is the first one will only operate for one
thread executing it at a time. In the second method, the following problem
can occur if multiple threads attempt to execute the method:

 ✓ Thread A executes the method incrementUnsync().

 ✓ The CPU starts to perform the sequence of steps to increment the value
of the m_unsyncCount variable.

 ✓ However, just before the increment is added, the OS pauses Thread A’s
execution and allows Thread B to resume its operations.

 ✓ Thread B is also executing the method incrementUnsync().

 ✓ The CPU performs the entire sequence of steps to increment the value
of the m_unsyncCount variable. Thread B is completed, and the OS
resumes Thread A’s execution.

 ✓ Because the resumption of Thread A’s operations also resets the
values of everything Thread A had in memory, including the value
of m_unsyncCount right before Thread A was paused, the value of
m_unsyncCount is returned to what it was before Thread B had incre-
mented it. This eliminates Thread B’s result, as if it had never happened.
If both threads had used incrementInSync() instead of incre-
mentUnsync(), the problem would not have happened because the
synchronized keyword ensures that the code inside the method will
execute to completion for each thread that uses it and the OS will not
pause it during its operation.

Listing 7-4: The Difference between Synchronized
and Unsynchronized Methods

int m_syncCount = 0;

public synchronized void incrementInSync()
{
 m_syncCount = m_syncCount + 1;
}

int m_unsyncCount = 0;

public void incrementUnsync()
{
 m_unsyncCount = m_unsyncCount + 1;
}

12_467114-ch07.indd 17012_467114-ch07.indd 170 8/30/10 1:07 PM8/30/10 1:07 PM

171 Chapter 7: Getting Tied Up in Threads

While the example in Listing 7-4 is pretty simplified and its resolution is
pretty simple, as your application becomes more complicated, you will
encounter more difficulty in tracking down this kind of problem.

Deadlocks
You might encounter situations where one thread is waiting for access to a
resource that is locked by another thread, and where the second thread is
waiting for a resource that is locked by the first thread. This is a deadlock:
Neither thread can execute because each is waiting for the other to finish.

The best solution to this problem is to keep your threads’ operational code
to a minimum: Each thread should have only one task that it should be able
to complete independent of the operation of any other thread. Of course, if
you choose to have only one thread other than the main event thread, this
problem doesn’t tend to show up.

Listing 7-5 shows a snippet of code that demonstrates how this can occur.
The Sibling class has two methods that are each declared with the
synchronized keyword. The code shown after the Sibling class dem-
onstrates the deadlock occurring. When a synchronized method of an
object is called, the object itself is considered to be locked. In this snippet,
you can see that at some point in time each Sibling object will be locked
(because the synchronized method executeActionOnSibling() is
being executed), and will be trying to execute a synchronized method
(executeAction()) on the other Sibling object (which requires the first
Sibling to lock the other). Neither object can obtain the lock on the other,
and so the two Thread objects will be forever paused and resumed.

Listing 7-5: Two Sibling Classes Attempt to Execute
Each Other’s Methods

public class Sibling
{
 public Sibling()
 {
 }

 public synchronized void executeActionOnSibling(Sibling inSib)
 {
 // sleep for a bit, to
 // let the threads catch up
 try
 {
 Thread.sleep(1500L);
 }
 catch (InterruptedException iEx)
 {

(continued)

12_467114-ch07.indd 17112_467114-ch07.indd 171 8/30/10 1:07 PM8/30/10 1:07 PM

172 Part II: BlackBerry Application Development

Listing 7-5 (continued)
 }
 inSib.executeAction();
 }
 public synchronized void executeAction()
 {
 // perform operations that can take a while
 }
}

// the following is code in some other class
public void lockSiblings()
{
 final Sibling sib1 = new Sibling();
 final Sibling sib2 = new Sibling();

 Runnable runner1 = new Runnable()
 {
 public void run()
 {
 sib1.executeActionOnSibling(sib2);
 }
 };
 Runnable runner2 = new Runnable()
 {
 public void run()
 {
 sib2.executeActionOnSibling(sib1);
 }
 }
 Thread one = new Thread(runner1);
 Thread two = new Thread(runner2);
 one.start();
 two.start();
}

One solution to the deadlock problem is to create a thread-scheduler: A class
whose sole purpose is to ensure that only one thread at a time is performing
operations in the background. You can see in Listing 7-6 a ThreadScheduler
that manages Runnable objects and launches SafeThread objects one at a
time. Your code will have to ensure that threads are only ever launched by
using the ThreadScheduler. The ThreadScheduler class holds a collection
of Runnable objects that each get launched when the previous one is finished.

Listing 7-6: Threads Are Only Launched Using Threadscheduler

public class ThreadScheduler
{
 private Vector m_threads = new Vector();
 private boolean m_continue = true;
 private boolean m_paused = false;

12_467114-ch07.indd 17212_467114-ch07.indd 172 8/30/10 1:07 PM8/30/10 1:07 PM

173 Chapter 7: Getting Tied Up in Threads

 public ThreadScheduler()
 {
 }

 public synchronized void scheduleThread(Runnable inRunner)
 {
 m_threads.addElement(inRunner);
 }

 public void launchScheduler()
 {
 Runnable runner = new Runnable()
 {
 public void run()
 {
 while (true == m_continue)
 {
 if (m_threads.size() > 0)
 {
 this.pauseScheduler();
 Runnable runner = (Runnable)m_threads.elementAt(0);
 SafeThread aThread = new SafeThread(this, runner);
 aThread.start();
 while (true == m_paused)
 {
 try
 {
 Thread.sleep(200L);
 }
 catch (InterruptedException iEx)
 {
 }
 }
 }
 }
 }
 };
 Thread schedulerThread = new Thread(runner);
 schedulerThread.start();
 }

 public synchronized void descheduleFirstThread()
 {
 if (m_threads.size() > 0)
 {
 m_threads.removeElementAt(0);
 }
 this.wakeScheduler();
 }

(continued)

12_467114-ch07.indd 17312_467114-ch07.indd 173 8/30/10 1:07 PM8/30/10 1:07 PM

174 Part II: BlackBerry Application Development

Listing 7-6 (continued)

 public synchronized void pauseScheduler()
 {
 m_paused = true;
 }

 public synchronized void wakeScheduler()
 {
 m_paused = false;
 }
}

class SafeThread extends Thread
{
 private ThreadScheduler m_owner;

 public SafeThread(ThreadScheduler inTS, Runnable inRunner)
 {
 super(inRunner);
 m_owner = inTS;
 }

 public void run()
 {
 super.run(); // call Runnable’s method to execute
 m_owner.descheduleFirstThread();
 }
}

Hopefully, I haven’t scared you away from using threads. A thread is a power-
ful tool that provides a solution to accomplishing long-running tasks while
still giving the user a sense that they are still in control of your app.

Using Threads to Schedule Events
Single-event scheduling is the easiest kind of threading. You use a Timer
and a TimerTask subclass to perform the operation you want to schedule
for some time in the future. The TimerTask class already implements the
Runnable interface, so all you have to do is the following:

 1. Create a subclass of TimerTask.

 2. Override your subclass’s run() method.

 This is where you place the guts of what your scheduled event will do.

12_467114-ch07.indd 17412_467114-ch07.indd 174 8/30/10 1:07 PM8/30/10 1:07 PM

175 Chapter 7: Getting Tied Up in Threads

 3. Create an instance of your subclass.

 4. Create an instance of a Timer.

 5. Execute Timer.schedule(TimerTask, delayInMilliseconds).

That’s all that you need to do. Simple, right?

Setting up and executing a TimerTask
The following running example demonstrates how to set up and execute a
TimerTask with a Timer to schedule an event — namely, changing the color
of a field — to execute an arbitrary number of seconds into the future (1–99).

 1. Launch the BlackBerry JDE.

 2. Create a workspace.

 I call mine TiedUpInThread because I use it for all the thread demon-
stration projects.

 3. Create a project within the workspace.

 I name mine ScheduleEvent and place it in a subfolder of the same
name so that I can keep the code of the different projects separated.

 4. Create an application class in the project.

 I call mine ScheduledEvent.java.

 5. Add the code in Listing 7-7 to your application class.

Listing 7-7: Application Class Code for ScheduledEvent

package com.karlgkowalski.scheduledevent;

import net.rim.device.api.ui.*;

public class ScheduledEvent extends UiApplication
{
 public static void main(String[] inArgs)
 {
 ScheduledEvent se = new ScheduledEvent();
 se.enterEventDispatcher();
 }

 public ScheduledEvent()
 {
 }

(continued)

12_467114-ch07.indd 17512_467114-ch07.indd 175 8/30/10 1:07 PM8/30/10 1:07 PM

176 Part II: BlackBerry Application Development

Listing 7-7 (continued)

 public void activate()
 {
 this.pushScreen(new ScheduledEventScreen());
 }
}

 6. Create a screen class for your application in the project.

 I use ScheduledEventScreen, as can be seen in the call to pushScreen
in the application class’s activate() method.

 7. Add the code in Listing 7-8 to your screen class.

Listing 7-8: Code for the ScheduledEvent Screen

package com.karlgkowalski.scheduledevent;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.ui.component.*;

import java.util.*;

public class ScheduledEventScreen extends MainScreen implements
FieldChangeListener

{
 private EditField m_eventDelay;
 private EventField m_eventField;
 private ButtonField m_scheduleEventButton;
 private ScheduledEventScreenManager m_manager;
 private Timer m_timer;
 boolean m_isRunning;

 public ScheduledEventScreen()
 {
 super();
 this.initialize();
 }

 private void initialize()
 {
 m_isRunning = false;
 m_timer = new Timer();
 m_manager = new ScheduledEventScreenManager();
 this.add(m_manager);
 this.setTitle(”Scheduled Event Screen”);

12_467114-ch07.indd 17612_467114-ch07.indd 176 8/30/10 1:07 PM8/30/10 1:07 PM

177 Chapter 7: Getting Tied Up in Threads

 m_eventDelay = new EditField(”Seconds until event: ”, ”10”, 2,
EditField.FILTER_NUMERIC);

 m_manager.add(m_eventDelay);
 m_scheduleEventButton = new ButtonField(”Go!”);
 m_manager.add(m_scheduleEventButton);
 m_scheduleEventButton.setChangeListener(this);
 m_eventField = new EventField();
 m_manager.add(m_eventField);
 }

 public void fieldChanged(Field inField, int inContext)
 {
 if (inField == m_scheduleEventButton)
 {
 if (true == m_isRunning)
 {
 m_isRunning = false;
 m_timer.cancel();
 m_timer = new Timer();
 }
 // just being sure it’s our button
 // get seconds from edit field
 int secondsToDelay = 10;
 String secondsString = m_eventDelay.getText();
 if (secondsString.length() > 0)
 {
 secondsToDelay = Integer.parseInt(secondsString);
 }
 if (0 == secondsToDelay)
 {
 secondsToDelay = 1;
 }
 long msToDelay = 1000L * (long)secondsToDelay;
 EventFieldTask eft = new EventFieldTask(m_eventField);
 m_timer.schedule(eft, msToDelay);
 m_isRunning = true;
 }
 }
}

The screen implemented in Listing 7-8 sets up the behavior and operation
of the items on display. First, a Timer object is created, and the boolean is
used to indicate whether the timer already running is set. Then an edit field
is added to allow you to change the delay before the color is changed in the
EventField. A button is added to execute the scheduled event, and then
the EventField is added. The button sets the screen to be called when the
user clicks it, and that causes the screen’s fieldChanged() method to be
executed.

12_467114-ch07.indd 17712_467114-ch07.indd 177 8/30/10 1:07 PM8/30/10 1:07 PM

178 Part II: BlackBerry Application Development

The fieldChanged() method shows what happens when the user clicks
the button. If the timer is already running, the application causes it to halt
its scheduled events. This is to make sure that any event that gets scheduled
takes precedence over anything already in the queue. The seconds value
stored in the EditField is turned into an integer value, with a minimum
of 1 second and a default of 10 seconds if nothing is entered. The seconds
value is converted to a long (a Java primitive data type, which can represent
a value between –9,223372,036,854,775,808 and +9,223372,036,854,775,807,
inclusive), and then a new EventFieldTask is created and scheduled using
the timer.

Scheduling events by using
the layout manager
The ScheduledEventScreen class makes use of a layout manager, so that’s
the next class to be entered.

 1. Create the screen layout manager class in the project.

 In my example, the name I choose is ScheduledEventScreenManager.

 2. Add the code in Listing 7-9 to your layout manager class to lay out its
screen elements.

Listing 7-9: Layout Management Code for the ScheduledEventScreen Class

package com.karlgkowalski.scheduledevent;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.system.Display;

public class ScheduledEventScreenManager extends VerticalFieldManager
{
 public static final int TITLE_SEPARATOR_HEIGHT = 4;
 public ScheduledEventScreenManager()
 {
 super(Manager.NO_HORIZONTAL_SCROLL + Manager.NO_VERTICAL_SCROLL +

Manager.NO_HORIZONTAL_SCROLLBAR + Manager.NO_VERTICAL_SCROLLBAR);
 }

 public int getPreferredWidth()
 {
 return (Display.getWidth());
 }

 public int getPreferredHeight()

12_467114-ch07.indd 17812_467114-ch07.indd 178 8/30/10 1:07 PM8/30/10 1:07 PM

179 Chapter 7: Getting Tied Up in Threads

 {
 return (Display.getHeight());
 }

 public void sublayout(int inWidth, int inHeight)
 {
 Font sysFont = Font.getDefault();
 int titleBarOffset = sysFont.getHeight() + TITLE_SEPARATOR_HEIGHT;
 int yPos = titleBarOffset;
 int numberFields = this.getFieldCount();
 for (int index=0; index<numberFields; ++index)
 {
 Field aField = this.getField(index);
 int width = aField.getPreferredWidth();
 int height = aField.getPreferredHeight();
 int xPos = 0;
 this.layoutChild(aField, width, height);
 if (aField instanceof ButtonField)
 {
 // want button to be centered
 xPos = (inWidth - aField.getWidth())/2;
 // also want available width/height
 width = inWidth;
 height = inHeight;
 }
 else if (aField instanceof EventField)
 {
 yPos = Display.getHeight()/2 + titleBarOffset;
 }
 this.layoutChild(aField, width, height);
 this.setPositionChild(aField, xPos, yPos);
 yPos += aField.getHeight();
 }
 // always remember to set our own display extent
 this.setExtent(Display.getWidth(), this.getPreferredHeight());
 }
}

The layout manager ensures that the button added to the screen is centered
along the horizontal. In addition, it lays out the Field subclass EventField
to place it at the bottom of the screen. (See Figure 7-2.) That’s the next class
to add.

 1. Create a subclass of Field in the project.

 This class displays a color and its name. My choice is EventField.
In keeping with the past few classes, I might have named it
ScheduledEventField, but I think I was getting tired of following a
naming convention.

 2. Add the code in Listing 7-10 to your Field subclass to display a color
and its name, choosing a random color from a predefined set.

12_467114-ch07.indd 17912_467114-ch07.indd 179 8/30/10 1:07 PM8/30/10 1:07 PM

180 Part II: BlackBerry Application Development

Figure 7-2:
The layout

manager
places the
custom UI

class Event-
Field at the

bottom of
the screen.

Listing 7-10: Code to Display a Color and Its Name

package com.karlgkowalski.scheduledevent;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.system.Display;

import java.util.*;

public class EventField extends Field
{
 private Vector m_colors = new Vector();
 private Hashtable m_colorNames = new Hashtable();

12_467114-ch07.indd 18012_467114-ch07.indd 180 8/30/10 1:07 PM8/30/10 1:07 PM

181 Chapter 7: Getting Tied Up in Threads

 private int m_currentIndex = 0;
 private Random m_random = new Random(); // random number generator

 public EventField()
 {
 this.initialize();
 }

 private void initialize()
 {
 m_colorNames.put(new Integer(Color.BURLYWOOD), “Burlywood”);
 m_colorNames.put(new Integer(Color.BLUEVIOLET), “Blue-Violet”);
 m_colorNames.put(new Integer(Color.CHARTREUSE), “Chartreuse”);
 m_colorNames.put(new Integer(Color.CRIMSON), “Crimson”);
 m_colorNames.put(new Integer(Color.DARKORANGE), “Dk. Orange”);
 m_colorNames.put(new Integer(Color.FUCHSIA), “Fuschia”);
 m_colorNames.put(new Integer(Color.HOTPINK), “Hot Pink”);
 m_colorNames.put(new Integer(Color.LAWNGREEN), “Lawn Green”);
 m_colorNames.put(new Integer(Color.SILVER), “Silver”);
 m_colorNames.put(new Integer(Color.PALEVIOLETRED), “Pale Violet Red”);
 Enumeration keyEnum = m_colorNames.keys();
 while (true == keyEnum.hasMoreElements())
 {
 Object key = keyEnum.nextElement();
 m_colors.addElement(key);
 }
 m_currentIndex = this.getRandomIndex(); // set first index to random
 }

 public int getPreferredWidth()
 {
 return (Display.getWidth());
 }

 public int getPreferredHeight()
 {
 Font defaultFont = Font.getDefault();
 int titleBarOffset = defaultFont.getHeight() +

ScheduledEventScreenManager.TITLE_SEPARATOR_HEIGHT;
 return (Display.getHeight()/2-titleBarOffset);
 }

 protected void layout(int inWidth, int inHeight)
 {
 this.setExtent(inWidth, this.getPreferredHeight());
 }

 private int getRandomIndex()
 {
 int randomIndex = -1;
 do

(continued)

12_467114-ch07.indd 18112_467114-ch07.indd 181 8/30/10 1:07 PM8/30/10 1:07 PM

182 Part II: BlackBerry Application Development

Listing 7-10 (continued)
 {
 randomIndex = m_random.nextInt(m_colors.size());
 }
 while (randomIndex == m_currentIndex);
 return (randomIndex);
 }

 public void updateField()
 {
 m_currentIndex = this.getRandomIndex();
 this.invalidate();
 }

 protected void paint(Graphics inGraphics)
 {
 Integer colorInteger = (Integer)m_colors.elementAt(m_currentIndex);
 inGraphics.setBackgroundColor(colorInteger.intValue());
 inGraphics.clear(); // clears entire field background with the background

color
 inGraphics.setColor(Color.BLACK);
 String colorName = m_colorNames.get(colorInteger).toString();
 int yPos = this.getHeight()/2;
 int xPos = this.getWidth()/4;
 inGraphics.drawText(colorName, xPos, yPos);
 }
}

Your Field subclass must implement the layout(int width, int
height) method. The Field class is declared abstract, and the layout
method is declared but not implemented. The BlackBerry JDE compiler
enforces this rule and will holler at you if you forget it.

The most interesting part of the code is the paint method. A color, defined
by an Integer object, is selected from the Vector containing all the colors
defined for the class. The Field background is set to this color, and then the
clear method is executed, erasing the Field by painting the Field rectan-
gle with the background color. Then the name of the color, selected from the
Hashtable using the color Integer as a key, is drawn in black.

The updateField method, called from the TimerTask subclass, does two
things:

 ✓ Selects a new index, which is a random number less than the maximum
colors in the list, as long as it’s not equal to the current index

 ✓ Tells the operating system to redraw this Field, by calling the
invalidate() method

12_467114-ch07.indd 18212_467114-ch07.indd 182 8/30/10 1:07 PM8/30/10 1:07 PM

183 Chapter 7: Getting Tied Up in Threads

Implementing threads
Finally, it’s time to implement the threaded portion of the application. This is
the subclass of TimerTask.

 1. Create a subclass of TimerTask in the project.

 I call this one EventFieldTask.

 2. Add the code in Listing 7-11 into the TimerTask subclass to tell an
EventField object to update itself.

Listing 7-11: The TimerTask Subclass

package com.karlgkowalski.scheduledevent;

import java.util.TimerTask;

public class EventFieldTask extends TimerTask
{
 private EventField m_eventField;

 public EventFieldTask(EventField inField)
 {
 m_eventField = inField;
 }

 public void run()
 {
 if (null != m_eventField)
 {
 // tell our field to update itself
 m_eventField.updateField();
 }
 }
}

You can see that the EventFieldTask doesn’t really do much at all, and yet
it is a fully functional background process. The benefit of using a TimerTask
to do the background processing is that you don’t have to write code that
will decide what moment to execute the code in the run() method. That is
handled by the Timer object.

The EventField class places the drawing of its contents into its paint()
method, but the application never calls this method directly. The redraw-
ing occurs as a result of the invalidate() method that the EventField.
updateField() method executes, right after a new color is selected. The
invalidate() method signals the BlackBerry OS that this EventField
needs to be redrawn whenever the BlackBerry OS has a free moment.

12_467114-ch07.indd 18312_467114-ch07.indd 183 8/30/10 1:07 PM8/30/10 1:07 PM

184 Part II: BlackBerry Application Development

With all these classes implemented, it’s now time to see it execute. You build
and run the project in the BlackBerry simulator (or a real device, if you also
sign the application). You will see an edit field, a button, and a randomly col-
ored EventField displayed onscreen when you launch the app from within
the simulator, as shown in Figure 7-3.

Figure 7-3:
Launching

the app from
a simulator.

When you click the button, after a delay of whatever number seconds you
entered, the bottom part of the screen will change color and draw the name
of the color, as shown in Figure 7-4. (Okay, in this black-and-white book, you
have to use your imagination a bit!) If you change the value in the delay field,
the change will be delayed by the new amount.

Note: If you have a stopwatch, or even if you count “one-one-thousand, two-
one-thousand” up to the delay value entered in the field, you will notice that
the actual delay is a little bit longer than the number of seconds entered in
the field. This has to do with how the BlackBerry OS implements the Timer
class, but before you go blaming RIM, this behavior is also present in every
implementation of Java.

If you implemented your own Thread subclass to perform a scheduled opera-
tion, your subclass would have to execute the method Thread.sleep(long
delay). The input parameter is the number of milliseconds you want the
subclass to hibernate, and after that span of time has passed, your Thread
subclass will awaken and perform the operation you set it to do. However,
this approach also exhibits the longer-than-expected delay behavior that the
Timer shows. For the most part, your users aren’t going to notice the differ-
ence. But sometimes it’s important to get your timing to be exact. The best
way to do this is by using the code in Listing 7-12.

12_467114-ch07.indd 18412_467114-ch07.indd 184 8/30/10 1:07 PM8/30/10 1:07 PM

185 Chapter 7: Getting Tied Up in Threads

Figure 7-4:
The bot-

tom of the
screen

changes
color.

Listing 7-12: Code Snippet for a More Accurate Delay

public void run()
{
 long sleepTime = SLEEP_INTERVAL;
 long currentTime = System.currentTimeMillis();
 while (true)
 {
 try
 {
 Thread.sleep(sleepTime);
 long awakeTime = System.currentTimeMillis();
 long timeAsleep = awakeTime - currentTime;
 sleepTime = 2*SLEEP_INTERVAL - timeAsleep;

(continued)

12_467114-ch07.indd 18512_467114-ch07.indd 185 8/30/10 1:07 PM8/30/10 1:07 PM

186 Part II: BlackBerry Application Development

Listing 7-12 (continued)
 currentTime = awakeTime;
 if (...) // conditions for done sleeping
 {
 break;
 }
 }
 catch (Exception except)
 {
 }
 }
}

The Thread in Listing 7-13 will sleep for a specified SLEEP_INTERVAL and
then adjust the next interval to account for whether the previous time spent
sleeping was greater or lesser than what was desired. Although this work-
around won’t work perfectly, it does reduce the “drift,” which can be consid-
erable if your thread is going to be running for a long time.

 Unfortunately, you can’t use this code as part of a TimerTask approach. The
Timer object takes care of “sleeping” for the desired amount of time. If you
need really accurate time delays or scheduling, you must implement a Thread
subclass on your own.

Using a Timer for repeated operations
You can also schedule events using a Timer to execute at regular intervals.
This requires you to use a different Timer.schedule() method, adding
a parameter that tells the Timer how much time to wait before execut-
ing the TimerTask again. You implement this as a small modification to
the application that you just created. All the new code pieces are added to
ScheduledEventScreen.java.

 1. Add a new member variable to ScheduledEventScreen: a
CheckboxField.

 This is a boolean indicator of whether to repeat. The following line
shows the new member variable.

private CheckboxField m_repeats;

 2. Add the following two lines to the initialize() method, right
before the creation of the ButtonField so that the CheckboxField
appears above the ButtonField in the display.

m_repeats = new CheckboxField(“Repeat”, false);
m_manager.add(m_repeats);

12_467114-ch07.indd 18612_467114-ch07.indd 186 8/30/10 1:07 PM8/30/10 1:07 PM

187 Chapter 7: Getting Tied Up in Threads

 3. Replace this line of code

m_timer.schedule(eft, msToDelay);

 near the end of the ScheduledEventScreen.fieldChanged()
method with the code in Listing 7-13.

Listing 7-13: Picking a Schedule Based on the Checkbox Setting

 if (true == m_repeats.getChecked())
 {
 // use the delay as the repeat period.
 m_timer.scheduleAtFixedRate(eft, msToDelay, msToDelay);
 }
 else
 {
 m_timer.schedule(eft, msToDelay);
 }

 4. Build and run the application.

You can now set the Timer to repeat the EventFieldTask after another
period of time has passed, equivalent to the delay for the first time. You can
also return to a “one-shot” approach by unchecking the check box and click-
ing the button again.

 I ran into a problem when I first implemented this code. An exception was
being thrown the second time I would click the button, changing from a
repeated schedule back to a one-shot. According to the Java documentation,
after the Timer.cancel() method is called, no more tasks can be scheduled:
The Timer is terminated. The solution was to create a new Timer, right after
calling Timer.cancel(). Lesson to learn: Always read the documentation
when trying something (relatively) new!

Neither the scheduled event nor repeated scheduled event make use of a call-
back mechanism. That’s next.

Using a Thread to Notify the User
of Something Important

As I mention earlier, you want to use a Thread subclass to perform opera-
tions that are going to take more time than a user is willing to wait. Operations
involving networking fall into this particular category because you can never
tell for sure when a network-based service is going to respond to you.

12_467114-ch07.indd 18712_467114-ch07.indd 187 8/30/10 1:07 PM8/30/10 1:07 PM

188 Part II: BlackBerry Application Development

For example, one application I worked on retrieved time information from a
network service to synchronize the app’s operation to a particular time. I cre-
ated a Thread subclass that contacted the network time service, interpreted
the returned data, and delivered the resulting time value to the application.
Because the time-retrieval portion was connecting to the network, the opera-
tion of the Thread subclass was not synchronized to that of the application,
and so I implemented a callback mechanism so that the Thread subclass
could return the data to the app after it completed its mission.

In the following running example, you see how to provide a callback to a
Thread subclass and watch it operate. Figure 7-5 shows the steps. Here’s the
synopsis:

Figure 7-5:
Providing a
callback to
the Thread

subclass.

User launches app.

User clicks dialog OK.

User enters number of
seconds for delay.

After delay, dialog is
displayed.

User enters text
message into dialog.

User waits for dialog
to appear.

Display sets text field
to user text message.

User launches thread
to display dialog after

delay.

After delay, dialog
executes code to

update screen with
user text message.

12_467114-ch07.indd 18812_467114-ch07.indd 188 8/30/10 1:07 PM8/30/10 1:07 PM

189 Chapter 7: Getting Tied Up in Threads

 1. The user launches the application.

 2. The user selects a menu item to create a Thread subclass and launch it
to perform a background operation.

 3. After a delay, a dialog box appears.

 4. The user provides information to the dialog box and commits or cancels
the dialog box.

 5. After a delay, the result of the dialog box’s operation is reported back to
the application.

 6. The application displays the results for the user.

Creating the application class
to display a notice
Here are the steps:

 1. Create a new project in the same workspace. Call it NotifyAndReply
and put it in a subfolder of the same name, just to keep things straight.

 2. Create an application class, NotifyAndReply.java, in the project.

 3. Enter the code in Listing 7-14 into the application class.

 The application code for this module is pretty much boilerplate: The
names have changed, but the execution is still the same. This is basic
application class code; you just create an instance of your application
and then wait for the event dispatcher to call activate() and display
the screen.

Listing 7-14: Application Class to Display NotifyAndReplyScreen.

package com.karlgkowalski.notifyandreply;

import net.rim.device.api.ui.*;

public class NotifyAndReply extends UiApplication
{
 public static void main(String[] inArgs)
 {
 NotifyAndReply nar = new NotifyAndReply();
 nar.enterEventDispatcher();
 }

 public NotifyAndReply()
 {
 }

(continued)

12_467114-ch07.indd 18912_467114-ch07.indd 189 8/30/10 1:07 PM8/30/10 1:07 PM

190 Part II: BlackBerry Application Development

Listing 7-14 (continued)

 public void activate()
 {
 this.pushScreen(new NotifyAndReplyScreen());
 }
}

 4. Create the interface class for the callback object.

 I name this one NotifyAndReplyOriginator because the class that
implements this is going to be the origin of the Thread subclass, and
thus the one it needs to call back.

 5. Add the code in Listing 7-15 into the interface class that shows the
methods that the Thread subclass’s owner must implement.

 You’ll find this to be pretty simple, I hope!

Listing 7-15: Callback Interface Showing Methods

package com.karlgkowalski.notifyandreply;

public interface NotifyAndReplyOriginator
{
 public void notifyAndReplyCommit(String inResult);
 public void notifyAndReplyCancel();
 public void notifyAndReplyInterrupted();
 public long getDelayMS();
}

The class implementing the callback must provide four methods. The first
three (all starting with notifyAndReply) are really the callback methods.
These are the methods that the Thread calls just before it terminates, indi-
cating that one of three things has happened:

 ✓ The user clicked the OK button on the displayed dialog box.

 ✓ The user clicked the Cancel button on the dialog box.

 ✓ Something else interrupted the flow of operation, probably during the
Thread.sleep() method call.

The last method, getDelayMS(), is called by the Thread subclass to get
the delay (in milliseconds) from the originator object. This puts the burden
of providing that information on the class that is responsible for getting the
delay value from the user: the Screen subclass.

12_467114-ch07.indd 19012_467114-ch07.indd 190 8/30/10 1:07 PM8/30/10 1:07 PM

191 Chapter 7: Getting Tied Up in Threads

Using the Screen subclass to get
the delay value from the user
Tackling the Screen subclass is next:

 1. Create the subclass NotifyAndReplyScreen.java.

 2. Add the code in Listing 7-16 into the Screen class.

 This Screen subclass shows the main application screen for the user to
interact with.

Listing 7-16: The Screen Subclass to Show the Main Application Screen

package com.karlgkowalski.notifyandreply;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.ui.component.*;

import java.util.*;

public class NotifyAndReplyScreen extends MainScreen implements
NotifyAndReplyOriginator

{
 private EditField m_delay;
 private LabelField m_response;
 private boolean m_isExecuting;

 public NotifyAndReplyScreen()
 {
 this.initialize();
 }

 private void initialize()
 {
 m_delay = new EditField(“Delay to display dialog: “, “10”, 2,

EditField.FILTER_NUMERIC);
 m_response = new LabelField(“Response: <none>”);
 this.add(m_delay);
 this.add(m_response);
 m_isExecuting = false;
 }

 public void makeMenu(Menu inMenu, int inContext)

(continued)

12_467114-ch07.indd 19112_467114-ch07.indd 191 8/30/10 1:07 PM8/30/10 1:07 PM

192 Part II: BlackBerry Application Development

Listing 7-16 (continued)
 {
 MenuItem dialogThreadMenuItem = new MenuItem(“”, 10000, 10)
 {
 public void run()
 {
 if (false == m_isExecuting)
 {
 // only want to run if we aren’t running already
 startDialogThread();
 }
 }
 };
 inMenu.add(dialogThreadMenuItem);
 inMenu.addSeparator();
 super.makeMenu(inMenu, inContext);
 }

 private void startDialogThread()
 {
 NotifyAndReplyThread narThread = new NotifyAndReplyThread(this);
 m_isExecuting = true;
 narThread.start(); // this calls the Thread’s run() method
 }

 public void notifyAndReplyCommit(String inResult)
 {
 m_response.setText(inResult);
 m_isExecuting = false;
 this.invalidate();
 }

 public void notifyAndReplyCancel()
 {
 m_response.setText(“Dialog was cancelled”);
 m_isExecuting = false;
 this.invalidate();
 }

 public long getDelayMS()
 {
 int delay = Integer.parseInt(m_delay.getText());
 return ((long)delay*1000L);
 }

 public void notifyAndReplyInterrupted()
 {
 m_response.setText(“Thread Interrupted!”);
 m_isExecuting = false;
 this.invalidate();
 }
}

12_467114-ch07.indd 19212_467114-ch07.indd 192 8/30/10 1:07 PM8/30/10 1:07 PM

193 Chapter 7: Getting Tied Up in Threads

You can see the Screen subclass being created in the initialize()
method, and the startDialogThread() method is where the Thread sub-
class is created and launched. NotifyAndReplyScreen implements the
NotifyAndReplyOriginator interface — it fleshes out the four methods
necessary to act as an originator — and that’s what gets passed into the
Thread subclass constructor.

Delivering the NotifyAndReplyThread class
Finally, deliver the NotifyAndReplyThread class:

 1. Create the Thread subclass, NotifyAndReplyThread.

 2. Add the code in Listing 7-17 into the NotifyAndReplyThread class.

 This Thread subclass code does the background work: Namely, delay-
ing before the dialog is displayed, and then delaying after the user clicks
OK or Cancel.

Listing 7-17: The Thread Subclass

package com.karlgkowalski.notifyandreply;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;

public class NotifyAndReplyThread extends Thread
{
 private NotifyAndReplyOriginator m_originator;
 private EditField m_responseField;
 private long m_delayMS;

 public NotifyAndReplyThread(NotifyAndReplyOriginator inOriginator)
 {
 m_originator = inOriginator;
 m_delayMS = m_originator.getDelayMS();
 if (0 >= m_delayMS)
 {
 m_delayMS = 10000L;
 }
 }

 public void run()
 {
 if (null != m_originator)
 {
 try
 {

(continued)

12_467114-ch07.indd 19312_467114-ch07.indd 193 8/30/10 1:07 PM8/30/10 1:07 PM

194 Part II: BlackBerry Application Development

Listing 7-17 (continued)
 // wait the requested delay
 Thread.sleep(m_delayMS);
 this.displayDialog();
 }
 catch (InterruptedException iExcept)
 {
 m_originator.notifyAndReplyInterrupted();
 }

 }
 }

 private void displayDialog()
 {
 // now display the dialog
 final Dialog aDialog = new Dialog(Dialog.D_OK_CANCEL, “Enter a text

response”, 0, null, 0L);
 m_responseField = new EditField(“”, “”);
 aDialog.add(m_responseField);
 synchronized (UiApplication.getEventLock())
 {
 UiApplication.getUiApplication().invokeLater(new Runnable()
 {
 public void run()
 {
 int result = aDialog.doModal();
 if (Dialog.OK == result)
 {
 handleCommit(m_responseField.getText());
 }
 else
 {
 handleCancel();
 }
 }
 });
 }
 }

 private void handleCommit(String inResponse)
 {
 if (null != m_originator)
 {
 try
 {
 Thread.sleep(m_delayMS);
 m_originator.notifyAndReplyCommit(inResponse);
 }
 catch (InterruptedException iExcept)
 {

12_467114-ch07.indd 19412_467114-ch07.indd 194 8/30/10 1:07 PM8/30/10 1:07 PM

195 Chapter 7: Getting Tied Up in Threads

 m_originator.notifyAndReplyInterrupted();
 }
 }
 }

 private void handleCancel()
 {
 if (null != m_originator)
 {
 m_originator.notifyAndReplyCancel();
 }
 }
}

The NotifyAndReplyThread.run() method implements the background
processing. When you’re creating your background threads, this is where you
implement the work that they will do. In this instance, the thread is simply
going to sleep for the time delay that the user specified on the main screen.
After the thread wakes up, the NotifyAndReplyThread.display
Dialog() method is executed. And this is where a most interesting thing
happens: a Runnable executing in a Thread.

NotifyAndReplyThread is supposed to display a dialog box that asks the
user to enter some information, to be displayed on the main screen when the
thread has completed. However, the thread is separate from the main event
thread, which means it has no access to the main display operations, where
Screen subclasses are placed onto the screen stack. Informational dialog
boxes — alerts — can be launched from any part of your code. But this is an
interactive dialog box, which requires something a bit more intensive.

After a Dialog object is created and has an EditField added to its set of
components, the NotifyAndReplyThread requests the event lock from
the UiApplication Singleton instance. This lock is returned as a Java plain
Object, and this is then synchronized, effectively permitting the thread to
act as if it were running within the main event thread. As long as the event
lock object is held synchronized, the main application thread will pause
while the background thread that requested and synchronized the event
lock object performs its tasks. This allows the background thread to make
changes to the UI elements on display, and forces the main application
thread to respond to those changes when the event lock is released. After it
has the event lock, the thread then executes the following:

cUiApplication.getUiApplication().invokeLater()

This method takes a Runnable object — created on the fly, within the call —
which implements a run() method to display the Dialog. The object was
created outside the invocation of the run() method, and so it is marked as
“final” to allow it to be used within the run() method.

12_467114-ch07.indd 19512_467114-ch07.indd 195 8/30/10 1:07 PM8/30/10 1:07 PM

196 Part II: BlackBerry Application Development

The preceding complexity is necessary to get around the fact that the
NotifyAndReplyThread is operating in the background while simultane-
ously working with the display to show things to the user requires operating
in the foreground, otherwise known as the main event thread. If you’ve ever
programmed in Java on a desktop PC, you find a similar arrangement through
the use of the SwingUtilities.invokeLater(Runnable obj) method.

You can replace the code implemented in the NotifyAndReplyThread.
run() method with code to satisfy your own app’s needs for background
operations.

Chapter 9 introduces you to using Thread subclasses for handling network
communications.

12_467114-ch07.indd 19612_467114-ch07.indd 196 8/30/10 1:07 PM8/30/10 1:07 PM

Part III

Developing
Enterprise-Class
BlackBerry Apps

13_467114-pp03.indd 19713_467114-pp03.indd 197 8/30/10 1:07 PM8/30/10 1:07 PM

In this part . . .

The majority of BlackBerry users are tied to their
corporate e-mail through a BlackBerry Enterprise

Server (BES). As an app developer, you can take advantage
of this relationship or be burned by it. This part gives you
the details you need in order to understand where the
BES can interfere with and even restrict your application,
and then how to deal with the challenges. You find out
how to take advantage of the features of a BES to enable
an administrator to configure your application’s use on all
the BlackBerry smartphones in the corporate enterprise.
And you also see what a networked BlackBerry application
is capable of when it can reach the farthest corners of the
Internet from the palm of a user’s hand.

13_467114-pp03.indd 19813_467114-pp03.indd 198 8/30/10 1:07 PM8/30/10 1:07 PM

Chapter 8

Writing Apps for the Enterprise
In This Chapter
▶ Introducing the BlackBerry Enterprise Server (BES)

▶ Handling e-mail and e-mail attachments

▶ Paying attention to BES IT policy limitations

▶ Tackling security exceptions

Your BlackBerry application will be downloaded by many BlackBerry
users. This audience will consist of different types of users, and like it or

not, quite a few of them will be using their BlackBerry device as an extension
of their work life. These are the Enterprise users, and there are a great many
of them — everyone from Mr. Spock to Dr. McCoy.

However, you have to handle these users a little differently than everyone
else because to a great degree, an Enterprise user’s BlackBerry isn’t entirely
under his or her control. An Enterprise BlackBerry device connects to an
internal corporate network of computers, and the corporate IT security folks
need to protect that internal network from the Internet. This means that your
BlackBerry application can encounter rules and restrictions imposed upon a
user’s BlackBerry device — rules and restrictions governed by a BlackBerry
Enterprise Server, or BES (pronounced bezz).

The BES is a very complex and powerful tool. I don’t go over all the details
here, but I do make sure you understand the different ways in which the BES
can be configured that can have an effect on your application.

In this chapter, I provide background information about the BES and some
of its features and functionality. You gain a surface-level understanding of a
BES, so you know how your application can be affected by a BES as well as
how to take advantage of it.

My intention here isn’t to deter you from writing BlackBerry applications for
Enterprise customers. Instead, this chapter is meant as a “take heed” post:
an information store for you to keep in the back of your mind while you

14_467114-ch08.indd 19914_467114-ch08.indd 199 8/30/10 1:08 PM8/30/10 1:08 PM

200 Part III: Developing Enterprise-Class BlackBerry Apps

write your BlackBerry applications. Millions of BlackBerry devices and users
are out in the world, and the majority of them are connected to a corporate
network via a BES. The information provided in this chapter should at least
make you aware that your app may have to accommodate the configurations
a BES administrator imposes upon the corporate users.

 Users can download your app before their devices become Enterprise-
activated with a BES, and so your app might suddenly find roadblocks in its
way that hadn’t been there the day before. Your app will be better positioned
to handle this situation now that you’re at least aware of the possibility, and
hopefully be able to warn your users that the circumstances of its operation
have changed. With luck, that won’t be a major issue; but the more apps you
sell, the more devices you sell them to, the greater the chance that some BES
will throw your app a curve ball.

Activating for the Enterprise
Large companies — also called corporate enterprises — have lots of comput-
ers, all nicely connected with each other. This encourages and enables shar-
ing of information and enhances productivity, which is why large companies
set up all this hardware and software, and why they have in-house corporate
IT departments to keep things running smoothly. As mobile devices have
become more prevalent among the workforce, and as these devices become
more powerful and more capable, companies have been adjusting their cor-
porate networks to accommodate these mobile computers.

From a corporate perspective, the BlackBerry is a mobile communications
device that can allow a remote user to send and receive e-mail anywhere
the user can find a wireless phone signal or a Wi-Fi network connection.
This makes the BlackBerry very useful for employees to keep in touch with
the rest of their company when they’re away from the office. To make the
BlackBerry even more useful, a company needs to deploy the BlackBerry
Enterprise Server, otherwise known as the BES.

 There are two types of BES available from RIM, the standard BlackBerry
Enterprise Server, and the BlackBerry Enterprise Server Express. The differ-
ences are these:

 ✓ The BES Express is free, so it is more appealing to small businesses and
anyone who communicates using BlackBerry smartphones.

 ✓ The BES Express comes with less capability than the full BES, eliminat-
ing custom application IT policies and preventing custom data-pushing
through the BES Express to applications on the smartphones.

14_467114-ch08.indd 20014_467114-ch08.indd 200 8/30/10 1:08 PM8/30/10 1:08 PM

201 Chapter 8: Writing Apps for the Enterprise

Understanding what the BES does
The BES provides a gateway between the Internet (where the remote
BlackBerry users are) and the corporate network (where the proprietary
corporate information resides). The connection between the BES and each
BlackBerry is encrypted, so data traveling between the BlackBerry device
and the corporate network is secure. The BES offers the following capabili-
ties for IT administrators who are going to manage the BlackBerry devices in
their corporate enterprises:

 ✓ E-mail access through the device: This capability is why so many
people choose a BlackBerry device: to keep constantly connected to
corporate communications. Users send and receive e-mail via their
BlackBerry devices. The BES integrates with the corporate e-mail
system, and a user’s BlackBerry becomes just another mail client. Your
application can make use of the e-mail access your users’ devices pro-
vide, including making sense of e-mail attachments.

 ✓ Calendar maintenance: In addition to e-mail, users can access their cal-
endars, such as Microsoft Outlook, on their BlackBerry devices. If your
application is targeted at the corporate enterprise user, you can take
advantage of accessing calendar information.

 ✓ Internet access control: Corporate Internet usage policies can be
enforced on the BlackBerry devices that are activated on the BES. Your
application might be unable to connect to certain Web sites on the
Internet as a result of this, so you’ll have to provide a means of getting
around this problem or executing with reduced or zero Internet access.
Your app will be prevented from accessing any Web site that corporate
policies prevent regular desktop computers from accessing — but your
app will have to let your users know of any lack of connection.

 ✓ Push-data delivery: A BES supports the capability of an external applica-
tion to push data through its secure connection to a specific BlackBerry.
Your application can set itself up to “listen” for incoming data pushes.
If you create your app to do so, you will also have to develop a desktop-
based application that will connect to a BES and deliver the data to be
pushed to your users’ BlackBerry devices.

 ✓ Data backup and restore: The BES supports synchronization of
BlackBerry device data and will take “snapshots” of the current set of
data on a user’s BlackBerry on a regular basis. While the BlackBerry is
registered with the BES, the BES will continually update its backup with
the contents of the device, keeping the BES database a mirror image of
the device’s data set. If the device is wiped — that is, its user-specific
information removed, just as if it had been bought new — when the
device is activated with the BES, the backed-up data will be restored to
the device. This is especially useful when a user upgrades an old device

14_467114-ch08.indd 20114_467114-ch08.indd 201 8/30/10 1:08 PM8/30/10 1:08 PM

202 Part III: Developing Enterprise-Class BlackBerry Apps

for a new one, and wants the new device to match what the previous
BlackBerry had. Your application can take advantage of data backup to
maintain its stored information in a BES for safekeeping.

 ✓ Remote wiping: A BES can wipe any of its registered BlackBerry devices
when the device is active on the wireless carrier’s network. Generally
this is only done when the device is lost, and this is for safety reasons.
After all, a BlackBerry device registered with a corporate BES is effec-
tively an open door to the corporate network. Your application will
likely not have to worry about this situation; however, any data stored
by your application in persistent or runtime storage will be erased. (See
Chapter 6 for more information about storage.) Data stored on a remov-
able MicroSD card will be retained.

 ✓ Usage-policy enforcement: The BES can control some of the behavior
of the BlackBerry devices that are within its control. The BES calls these
IT policies. I go over some of these controlled behaviors in the section,
“Reading Application IT Policies,” later in this chapter.

 ✓ Provision of custom application policies: The BES (with the excep-
tion of BlackBerry Enterprise Server Express) can deliver information
to BlackBerry devices that’s specific to your application. Your app can
examine these named policies and extract data associated with them
for its own use. If your application is destined to execute in a corpo-
rate enterprise, you might want to take advantage of a BES by using its
custom application policies to deliver information to your application
running on each device the BES controls.

As you can guess, the BES is a very powerful and very complex piece of soft-
ware. Because most BlackBerry users are part of a corporate enterprise, the
odds are high that your application will execute on an Enterprise-activated
device. Of course, this also means that if you create an application that
provides features intended for a corporate enterprise, you’ll have a large
customer base to sell into. Your app better be capable of handling all the
requirements that an Enterprise-activated device insists upon.

Enterprise activation
When a BlackBerry user pulls a new BlackBerry out of the box, the
BlackBerry is ready to talk to the Internet. However, this newly born mobile
computing device is not automatically connected to the user’s corporate net-
work. The user must Enterprise-activate the BlackBerry device. To do this, the
user and the BES administrator must collaborate. Two things happen:

 1. The administrator must set up the corporate BES to expect the user’s
BlackBerry’s request to activate.

 2. The user must direct the BlackBerry to connect to the corporate BES.

14_467114-ch08.indd 20214_467114-ch08.indd 202 8/30/10 1:08 PM8/30/10 1:08 PM

203 Chapter 8: Writing Apps for the Enterprise

The process can take 30–60 minutes, depending on how many pieces of infor-
mation the BES needs to deliver to the device. As shown in the diagram in
Figure 8-1, a BlackBerry device has a long path of communication between it
and the corporate network.

Figure 8-1:
The com-

munications
pathway

between a
BlackBerry
device and
the corpo-
rate BES.

Internet

Internet

RIM Network
Operations Center

(NOC)

Corporate BES BlackBerry

Wireless
Service
Provider

Wireless
Network

When the device is activated, the user can access any part of the corporate
network from the BlackBerry, just as if the device were a desktop PC connect-
ing via Ethernet cable. Your application can now similarly access the corporate
network — if the BES administrator allows noncorporate software to do so.

Interacting with E-Mail
As a networked e-mail device, the BlackBerry will provide access to a user’s
e-mail. In the corporate BES environment, the BES is connected with the
e-mail service that the company provides. A user’s e-mail will come into the
corporate e-mail service, and the corporate BES will continuously query the

14_467114-ch08.indd 20314_467114-ch08.indd 203 8/30/10 1:08 PM8/30/10 1:08 PM

204 Part III: Developing Enterprise-Class BlackBerry Apps

corporate e-mail service on behalf of the Enterprise-activated BlackBerry
devices. The BES will deliver users’ e-mails to their respective BlackBerry
devices through its “push” feature.

Your application can access a user’s e-mail messages, including any attach-
ments. Your application can even create and transmit e-mail messages on the
user’s behalf. However, because this kind of automatic behavior (reading,
writing, and sending messages) can be exploited by malicious software, the
BlackBerry OS will inform the user of what your application is capable of, and
will ask the user’s permission for your app to behave in this fashion.

This permission request may be taken care of by the BES; the BES adminis-
trator can set the BlackBerry device to automatically accept this behavior
of your application, or automatically deny it. If your application is meant to
operate as an enterprise-class app and is accepted as such by the BES admin-
istrators, all is well and good. But if your application is meant for use by indi-
viduals, independent of the corporate enterprise, this behavior might fail to
operate.

Handling attachments
On a corporate network, employees move many documents amongst
themselves by attaching the document to an e-mail message. Because
BlackBerry devices are just another e-mail client on the corporate net-
work, they are capable of receiving and manipulating e-mail attachments as
well. Spreadsheets, presentations, word processing documents: Standard
BlackBerry applications can import and display these sources of information
should the BlackBerry user wish to view them.

 E-mail attachments can be delivered via the BlackBerry Internet Service (BIS)
in addition to a BES, so even non-corporate users can use your app to handle
e-mail attachments. A BIS is a simple e-mail service hosted by RIM to provide
an e-mail address for the customers of each wireless service provider. For
instance, because I’m a BlackBerry-carrying AT&T subscriber, I have an e-mail
address at att.blackberry.net.

Your application can similarly import and interpret data stored in an e-mail
attachment. The process works like this:

 1. Your application is installed onto the user’s device.

 This step must come before the e-mail arrives on the device. The order-
ing of this step is critical: If the e-mail arrives before the application
is installed or before the attachment handler is installed (see the next
step), the BlackBerry OS won’t inform your application that an attach-
ment it might be interested in is available.

14_467114-ch08.indd 20414_467114-ch08.indd 204 8/30/10 1:08 PM8/30/10 1:08 PM

205 Chapter 8: Writing Apps for the Enterprise

 2. Your application adds an attachment handler to the OS for the types of
e-mail attachments your app is interested in.

 This handler will be asked by the OS whether your app wants to accept
the contents of an attachment when the user selects one. So if your app
expects users to import digital images to create a pocket photo album,
your app could make it easy to pull images from e-mails sent to the
smartphone.

 3. An e-mail message is created.

 4. A properly named file is attached to the e-mail message.

 This is another of the important steps of the process. The filename
can be any normal desktop PC filename, but the name must start with
x-rimdevice. The BlackBerry device OS will show the attachment is
present even if the filename does not start with x-rimdevice, but the
data in the attachment will not be delivered to the device without it.

 5. The e-mail message is sent to the BlackBerry user’s e-mail account.

 6. The BES finds the e-mail message when it arrives at the user’s e-mail
account.

 7. The BES delivers the e-mail message to the user’s BlackBerry.

 8. The e-mail message arrives at the user’s BlackBerry.

 9. The user opens the e-mail message using the BlackBerry Mail application.

 10. The user shifts the selection cursor onto the listed e-mail attachment
and clicks the BlackBerry menu button.

 Your application adds a menu item if the attachment is the type of file
that your app is interested in.

 11. The user selects your app’s menu item.

 12. Your application imports the contents of the attached file.

Figure 8-2 shows a flowchart illustrating the steps that your app follows in
order to deliver an e-mail attachment’s contents into your application.

 The two key points for e-mail attachment management are that the application
must be installed before the e-mail arrives, and the attached file’s name must
begin with x-rimdevice.

The BlackBerry smartphone has to execute some operations behind the
scenes for e-mail attachments that your application registers to handle. If
your application is not present on the smartphone when the e-mail with your
app’s attachment arrives, the smartphone OS may not know to ask your app
whether it’s interested in the attachment. This requirement is documented
in the BlackBerry Java API documentation for the interface class net.rim.
blackberry.api.mail.AttachmentHandler.

14_467114-ch08.indd 20514_467114-ch08.indd 205 8/30/10 1:08 PM8/30/10 1:08 PM

206 Part III: Developing Enterprise-Class BlackBerry Apps

Figure 8-2:
Your app

can provide
users a way

to access
information
sent to their
BlackBerry

smartphone
as an e-mail
attachment.

MyApp installed onto
user’s BlackBerry.

App gives attachment handler to
OS. Handler will import

attachments with .myapp file type.

Email with attachment delivered
to BlackBerry. Attachment named:
x-rimdeviceMyAttachment.myapp.

User views mail and
highlights attachment.

User opens menu and selects
Import for MyApp.

BlackBerry OS executes MyApp
attachment handler.

MyApp attachment handler opens
attachment and extracts data.

MyApp stores data on BlackBerry.

User launches MyApp and new
data from attachment is displayed.

The attachment file’s name must have x-rimdevice as the first letters in its
name, because the smartphone OS will not download the attached file if the
name does not follow this rule. This is to reduce the possibility that a large

14_467114-ch08.indd 20614_467114-ch08.indd 206 8/30/10 1:08 PM8/30/10 1:08 PM

207 Chapter 8: Writing Apps for the Enterprise

e-mail attachment is automatically downloaded against the BlackBerry user’s
wishes. Unfortunately, your users and therefore your application won’t know
that the file has not been downloaded until your app tries to pull in the data.
In this case, your app will have to inform users that the attachment is empty,
and that they should check with whoever sent the e-mail for what went
wrong. This is also documented in the BlackBerry Java API documentation
for AttachmentHandler.

 One application I worked on provided more than a few headaches for custom-
ers who have run afoul of these conditions. Your application and its documen-
tation need to clearly explain these requirements to your corporate users.
Otherwise, you’ll get these headaches, too! One user suggested that my appli-
cation didn’t actually have to be installed before the e-mail attachment had
arrived. Upon some investigation, we discovered that the BlackBerry smart-
phone had received the e-mail with its attachment while a previous version
of my application was already installed, and that if the older application were
removed and a newer one installed, the prior attachment (downloaded and
available for the older app) was still available for the newer app.

Writing an e-mail attachment handler
The code in Listing 8-1 shows what an e-mail attachment handler looks like.

Listing 8-1: A BlackBerry E-Mail Attachment Handler

Import net.rim.blackberry.api.mail.*;

public class Uhura implements AttachmentHandler
{
 public Uhura()
 {
 }

 public String menuString()
 {
 return (“Import My Attachment”);
 }

 public Boolean supports(String inContentType)
 {
 // check for the right file type extension
 boolean weAreInterested =
 (inContentType.toLowerCase().indexOf(“.mytype”) >= 0);
 return (weAreInterested);
 }

 public void run(Message inMessage, SupportedAttachmentPart inPart)

(continued)

14_467114-ch08.indd 20714_467114-ch08.indd 207 8/30/10 1:08 PM8/30/10 1:08 PM

208 Part III: Developing Enterprise-Class BlackBerry Apps

Listing 8-1 (continued)
 {
 if (null != inPart)
 {
 try
 {
 int partSize = inPart.getSize();
 if (partSize > 0)
 {
 byte[] dataArray = (byte[])inPart.getContent();
 // you now have all content in the attachment
 }
 else
 {
 // no content in the part.
 }
 }
 catch (Exception except)
 {
 // something bad happened, didn’t get the data
 }
 }
 }
}

The attachment handler in the listing does three different things, and these
are the methods that the AttachmentHandler interface requires:

 ✓ boolean supports(String): Your attachment handler imple-
ments this method to tell the BlackBerry Mail application that your
application is interested in this type of attachment. The input parameter
is a string that incorporates the filename of the attached file. In Listing
8-1, the code checks for whether the string contains the text .mytype.
This would most likely be the file extension part of the filename. The
example converts the incoming string to all-lowercase to rule out any
potential case-sensitivity.

 ✓ String menuString(): If the BlackBerry Mail application determines
that your attachment handler is ready, willing, and able to take on the
data in the attachment, your attachment handler will be asked to pro-
vide a text string that is inserted into the menu the user has requested
be displayed. This method is where you will provide this information.

 ✓ void run(Message, SupportedAttachmentPart): Finally, when
the user selects the menu item your attachment handler displays, this
is the method that will be executed. The important point to note here is
that the data is delivered as an array of type byte. You are free to use
this stream of bytes in any fashion.

Your application will need to create an attachment handler object, along the
basic design shown in Listing 8-1. Creating one is the first step; installing it as
part of the device OS is the second step. Listing 8-2 shows how this is done.

14_467114-ch08.indd 20814_467114-ch08.indd 208 8/30/10 1:08 PM8/30/10 1:08 PM

209 Chapter 8: Writing Apps for the Enterprise

Listing 8-2: Creating and Installing an E-Mail Attachment Handler

// need this import statement
import net.rim.blackberry.api.mail.AttachmentHandlerManager;

// add this code to your application class to install an attachment handler
AttachmentHandlerManager ahm = AttachmentHandlerManager.getInstance();
ahm.addAttachmentHandler(new Uhura());

One last issue remains. You will want to install only one attachment han-
dler while the device is active. This makes installing an attachment handler
slightly more complicated than just executing the code snippet in Listing 8-2.
If this code snippet is executed more than once, another attachment handler
will be added for each execution, and the attachment handler object that you
created in every previous execution will still be part of the device OS. So how
do you ensure that only one is ever installed while the device is on? Simple:
Use the runtime storage mechanism, which I explain in Chapter 6.

The runtime store is purged every time the device is powered on, making it
a great place to keep track of whether you’ve done something in a previous
launch of your app. The runtime store is one of several different places your
app can use to hold on to data for later use. In this instance, your app will use
the runtime store to inform your app for whether it should install its e-mail
attachment handler. If your application wants to install an e-mail attachment
handler, you should implement the following:

 ✓ In your application’s main() method, check the runtime storage for
the existence of an attachment handler object. This can be as simple as
a Boolean object, or even just a String, used as a flag. You’re inter-
ested only in the presence or absence of some specific object, such as
a String (perhaps some text you can use while making sure your app
works perfectly) or a simple Integer object — it really doesn’t matter,
as long as your app treats its absence in the runtime store to mean your
e-mail attachment handler was not installed, and its presence to mean
your app doesn’t need to add another handler.

 ✓ If the flag exists in the runtime storage, your app doesn’t need to do any-
thing more.

 ✓ If the flag doesn’t exist, you create and install the attachment handler
object, as shown in Listing 8-2. And don’t forget to create the flag and
add it to the runtime storage so your app won’t do this a second time.
The code snippet Listing 8-3 shows how to check the runtime store to
see whether your flag object exists. First the code sets the variable fla-
gIsPresent to false, and then the RuntimeStore object is retrieved
from the OS — there is only one. If the RuntimeStore object is present,
the code tries to retrieve anything that might be stored under the key
value (the long data type MY_APP_RUNTIME_STORE_KEY, which can
be any 64-bit value, unique to your app). If there’s something there, the
variable flagIsPresent is set to true.

14_467114-ch08.indd 20914_467114-ch08.indd 209 8/30/10 1:08 PM8/30/10 1:08 PM

210 Part III: Developing Enterprise-Class BlackBerry Apps

Listing 8-3: Snippet of Code to Check for a Flag in the Runtime Store

private static final long MY_APP_RUNTIME_STORE_KEY = 0xe7ccdcf49882229L;

public boolean isFlagPresent()
{
 boolean commanderDataIsHere = false;
 RuntimeStore rs = RuntimeStore.getRuntimeStore();
 if (null != rs)
 {
 if (null != rs.get(MY_APP_RUNTIME_STORE_KEY))
 {
 commanderDataIsHere = true;
 }
 }
 return (commanderDataIsHere);
}

Listing 8-4 shows you how to place an object into a runtime store. Like the
code in Listing 8-3, this snippet retrieves the RuntimeStore object from the
OS. Assuming it’s not null, the code then executes the put() method and
places a string value into RuntimeStore using the same key that the code
in Listing 8-3 used.

Listing 8-4: Snippet of Code to Set a Flag in the Runtime Store

private static final long MY_APP_RUNTIME_STORE_KEY = 0xe7ccdcf49882229L;
public void setRuntimeStoreFlag()
{
 RuntimeStore rs = RuntimeStore.getRuntimeStore();
 if (null != rs)
 {
 rs.put(MY_APP_RUNTIME_STORE_KEY, “warpFactorTen”);
 }
}

That’s all you need do to access and process e-mail attachments.

Standard BES IT Policies
The BES comes with a standard set of IT policies already defined and ready
to be imposed upon all the BlackBerry devices that have gone through
Enterprise-activation. These policies encompass a wide range of differ-
ent categories for controlling users’ Blackberry devices for the corporate
enterprise. As a developer, you want your app to take advantage of all the
features of a BlackBerry smartphone that can make your users’ lives easier.
However, sometimes corporate policies for how users use their BlackBerry
smartphones can interfere with your app’s attempts to exercise BlackBerry
functionality to its fullest — and the corporate enterprise is going to win.

14_467114-ch08.indd 21014_467114-ch08.indd 210 8/30/10 1:08 PM8/30/10 1:08 PM

211 Chapter 8: Writing Apps for the Enterprise

The following is a list of some of the IT policies that a BES administrator can
set that may affect your application’s behavior when installed on a BlackBerry:

 ✓ Allow External Connections: This IT policy can disable external net-
work connections. This is likely the most important IT policy that can
hamper your application if your app is going to try to talk to a network
resource outside the corporate network. For instance, some corporate
enterprises use a Web site filtering system to ensure corporate users
aren’t wasting time with sites that provide online gambling. If your app
checks the current lottery numbers at www.lottery.com, the corpo-
rate BES policy might prevent your app’s operation.

 ✓ Allow Internal Connections: This IT policy determines whether net-
work connections are permitted inside the corporate network. The BES
administrator might disable internal network connections to prevent the
possibility that malicious software on a BlackBerry would attack the cor-
porate network. Your application would be concerned about this policy
being enabled if you were delivering an enterprise application intending
to communicate with resources in the corporate network.

 ✓ Allow Access to the Interprocess Communications API: Although it
doesn’t sound threatening, this IT policy, if enabled, can deny your
application access to the device’s persistent store mechanism (which
you can read about in Chapter 6).

 ✓ Allow Access to the Media API: This IT policy allows or prevents your
application to run or create multimedia files on a BlackBerry device.

 ✓ Allow Access to the Phone API: All the phone APIs — which allow your
application to make calls, or access call logs — are controlled by this
policy.

 ✓ Allow Access to the PIM API: Your app’s capability to pull out infor-
mation from the user’s personal information, such as contacts, is con-
trolled by this IT policy.

 ✓ Allowed Access to the Wi-Fi API: This IT policy determines whether
a BlackBerry device can use a Wi-Fi connection for data transmission.
Your application might not depend on Wi-Fi use specifically, but you
might need to inform users if your application is going to attempt to
download a large amount of data via the wireless network, giving them a
chance to opt out.

 ✓ Disable Bluetooth: This IT policy can prevent the use of Bluetooth com-
munications.

 ✓ Disable Photo Camera: If your app makes use of the built-in camera, this
IT policy can foil your attempts to take pictures using the BlackBerry.

 ✓ Disable GPS: Some BlackBerry devices contain GPS hardware and soft-
ware to determine the geographic location of the device. This IT policy
can disable the device’s capability to make this determination; there-
fore, your application might be prevented from performing location-
based services.

14_467114-ch08.indd 21114_467114-ch08.indd 211 8/30/10 1:08 PM8/30/10 1:08 PM

212 Part III: Developing Enterprise-Class BlackBerry Apps

 ✓ Disable All Wireless Synchronization: BlackBerry devices normally syn-
chronize their data with a BES on a regular basis. This IT policy will dis-
able that backup data operation, and your application will be unable to
rely on data being backed up to the BES. When developing your app to
take advantage of automatic BES data backups, you must keep in mind
that a BES administrator might prevent this operation.

 ✓ Disable External Memory: Some BlackBerry devices allow external
memory cards to be added, providing greater storage capacity, espe-
cially for media files such as video and audio. If your application plans
to access these memory cards, this IT policy can disable that access.

A great many more IT policies are available for BES administrators to config-
ure, so I don’t list them all because it would take too many pages and most
won’t affect an app’s operation. The ones in the preceding list can have a
direct effect on your application’s capability to operate as planned.

Reading Application IT Policies
The BES provides a means by which an administrator can configure your
application for application-specific settings. BES IT policies are name-value
pairs defined at the BES by the administrator and then assigned to one or
more BlackBerry devices. Your application can retrieve IT policies that are
present on a user’s BlackBerry device, but your app must know the name of
the policy, as set by the administrator, to get the value.

 The BlackBerry Enterprise Server Express does not permit custom application
IT policies, so administrators on that type of BES can’t configure your applica-
tion for their users.

The following value types are available as IT policy values:

 ✓ Boolean (boolean)

 ✓ Byte (byte)

 ✓ Byte Array (byte[])

 ✓ Integer (int)

 ✓ String

The most useful of these is String because you can convert from a String
to any other type (assuming you know what’s in it). The other types are
more constrained, but the BES will then enforce their individual nature for
the value part of the IT policy being defined. An administrator creating an
Integer name-value pair will find that only integers can be used as input for
the value.

14_467114-ch08.indd 21214_467114-ch08.indd 212 8/30/10 1:08 PM8/30/10 1:08 PM

213 Chapter 8: Writing Apps for the Enterprise

IT policies are only available for a user whose BlackBerry is managed by a
BES. Your application can look for the specific IT policy name your app wants
to read, but you must be prepared to handle those cases where the IT policy
has not been set, or does not exist. The BlackBerry class responsible for
retrieving IT policy data is (not surprisingly)

ITPolicy (net.rim.device.api.itpolicy.ITPolicy)

It has a number of methods, and the basic ones are listed here:

 ✓ static boolean getBoolean(String, boolean): Returns a
boolean value for the IT policy named in the String parameter. The
second parameter is the value used if the named policy does not exist.

 ✓ static byte getByte(String): Returns a byte value for the IT
policy named in the String parameter. The null byte (‘\0’) is returned
if the named policy does not exist.

 ✓ static byte[] getByteArray(String): Returns a byte array
for the IT policy named in the String parameter. A value of null is
returned if the named policy does not exist.

 ✓ static int getInteger(String, int): Returns an integer for
the IT policy named in the String parameter. The second parameter is
the value used if the named policy does not exist.

 ✓ static String getString(String): Returns a String for the IT
policy named in the String parameter. The value of null is returned if
the named policy does not exist.

Using these methods, your application can retrieve data set up by the BES
administrator specifically for your application.

Dealing with BES Security
One of the most important issues that will arise when your application is run-
ning on a BES-controlled BlackBerry is when it tries to do something that the
BES administrator does not allow. The simplest of these is network access:
The IT department may implement a set of policies that limits whether and
how applications running on its users’ BlackBerry devices can make network
connections to online resources. The real problem with this issue is that
your application might not be informed that its network access is limited
until your app makes an attempt to download from or upload to a Web-based
resource.

In Figure 8-3, you see a dialog box that will come up when your application
is installed on a BlackBerry and your application is set to attempt to make a
network connection — or, as in this case, attempt to start a server to listen
for incoming HTTP-Push connections.

14_467114-ch08.indd 21314_467114-ch08.indd 213 8/30/10 1:08 PM8/30/10 1:08 PM

214 Part III: Developing Enterprise-Class BlackBerry Apps

Figure 8-3:
The

FirstBlack-
BerryApp
attempts
to start a

push-server
listener.

At this point, one of two things can occur:

 ✓ The user clicks Yes, and your app is allowed to proceed. The device
will never again ask the user to permit your application to perform its
operation.

 ✓ The user clicks No, and your app is prevented from performing the oper-
ation that triggered this message. In addition, the device will never again
ask the user to permit your application to execute this code. Your app is
effectively prevented, until and unless the user resets the permissions.

This is the normal behavior of the device, all by itself. But when a BES is
involved, things get a little more complicated. The BES administrator can
configure all users’ BlackBerry devices to either deny or allow applications
permission to perform potentially dangerous operations. If configured by the
BES, the user will never see a dialog box from the device asking to grant per-
mission to your application to do its work.

Your application will have to handle this possibility. The only way to do that
in code is to wrap all your network-connection calls with a try-catch block
and check for exceptions being thrown, of any type — and fail, gracefully. In
addition, you should inform users prior to their purchasing your app from
the BlackBerry App World that your application makes use of restricted APIs,
and that they should take this into account before purchasing your applica-
tion. Although this tack might turn some potential buyers away from your
application, this is much safer than leading them astray after purchase.

14_467114-ch08.indd 21414_467114-ch08.indd 214 8/30/10 1:08 PM8/30/10 1:08 PM

Chapter 9

Networking Your BlackBerry App
In This Chapter
▶ Understanding the BlackBerry on a network

▶ Communicating via HTTP

▶ Communicating via HTTPS

▶ Setting up a push listener

BlackBerry devices are connected to the Internet all day long, from sun-
rise to sundown to sunrise again, every day of every week, every week

of every month, every month of every year. All right, that’s an exaggeration.
But that’s what you should assume when your app is on a BlackBerry — and
your app should take advantage of this.

After all, today’s world is internetworked: Every computer that wants to com-
municate is able to do so with every other computer that wants to. And that
paradigm has shifted to the mobile computer world, down to the level of
smartphones. Your BlackBerry app will run on a powerful handheld network
platform, capable of firing a tractor-beam to drag in data for your users. And
your users will expect nothing less.

For example, I created an app that uses the BlackBerry’s networking capabil-
ity to do several things, all of which illustrate what I mean:

 ✓ Access the Help page: Rather than place the instructions on how to use
the app within the app itself, I put together a simple Web page that users
can view from the comfort of the BlackBerry Browser. The app itself
takes care of launching the browser to access the URL users will need to
see the details of using my app, The Word Locker.

 ✓ Set up password retrieval: Users who misplace or forget their pass-
words need some way of retrieving them. In order to permit users to
retrieve unknown passwords, The Word Locker provides a process
through which users can identify themselves to the Web site, which can
assist them in resetting passwords.

15_467114-ch09.indd 21515_467114-ch09.indd 215 8/30/10 1:08 PM8/30/10 1:08 PM

216 Part III: Developing Enterprise-Class BlackBerry Apps

 ✓ Resetting the password: I lost track of how often I forgot very important
passwords. The Word Locker anticipates this, and its Web site contains
a storage system that accepts the information the user provides through
the app, and if the information is correct, enables the app to allow the
user to provide a new password without destroying the data.

In this chapter, using my app as example, I show you how to connect your
app to a Web site and any other network data repository. Your apps will be
able to pull data from sources on the Internet, and push data up to wherever
you want it to go.

Using a Well-Connected BlackBerry
BlackBerry devices are smartphones, so they’re connected to a wireless ser-
vice provider such as AT&T, Sprint, T-Mobile, Verizon, or one of many others
(at least as long as the bill is paid). Some BlackBerry devices can connect
using Wi-Fi over a wireless router, and the numbers of these are increasing,
keeping pace with the arrival of more Wi-Fi hotspots. Your users will very
nearly always be connected to the Internet, and your app should make use of
this fact in every way that you can imagine.

 Users believe they are always connected to a networked world, so you should
take advantage of that belief to deliver features that expand and enhance your
app’s goals with this belief at the core.

The communication channels available to your application on a BlackBerry
are these:

 ✓ Wireless service: This is the wireless provider’s network, using 3G and
now 4G network technology to speed data between the phone and the
Internet.

 ✓ Wi-Fi: Hotspots in hotel rooms, restaurants, coffee shops, commuter
trains, and now even airplanes make access to the Internet an expected
feature. In fact, the exceptional situation is for there to not be Wi-Fi
access.

 ✓ Bluetooth: This technology started as a simple means for users to wire-
lessly connect headphones to their smartphones for hands-free opera-
tion. But your app can use Bluetooth communications to talk to another
copy of your app running on a nearby BlackBerry device. This could
lead to some interesting social networking apps.

As you can read in Appendix B, a BlackBerry might have its communications
capability governed by rules set on a BlackBerry Enterprise Server (BES).
This possible limitation can cause some of the communications channels that
your app wants to use to be unavailable.

15_467114-ch09.indd 21615_467114-ch09.indd 216 8/30/10 1:08 PM8/30/10 1:08 PM

217 Chapter 9: Networking Your BlackBerry App

Checking for service
Your app can ask the BlackBerry smartphone about the kinds of communica-
tion channels that your app can use before your app makes any attempt to
use them. This will enable your app to act responsibly, and your users won’t
be left with an app that seems to be nonfunctional when they try to download
something — like high scores — from your Web site.

The BlackBerry OS provides two classes

 ✓ RadioInfo (net.rim.device.api.system.RadioInfo)

 ✓ WLANInfo (net.rim.device.api.system.WLANInfo)

to deliver information about a variety of different aspects of wireless
communication:

 ✓ Network type: Your app can determine whether communications are
occurring through the wireless service provider or Wi-Fi connection.

 ✓ Radio state: You should definitely check this value, which will let you
know whether network communication is possible.

 ✓ Whether data service is available: The BlackBerry “data service” is a
feature that enables a BlackBerry to communicate via TCP/IP networking
through the wireless service provider. Service providers sell data plans to
their BlackBerry users, so this value will indicate whether the BlackBerry
your app is running on can make network or socket connections.

 ✓ The current carrier network name: Your app might not use this for its
normal operations but for debugging on multiple devices with the mul-
titude of carriers, knowing this information might assist when tracking
down and isolating problems.

 The preceding information is for network communications, such as Wi-Fi and
the carrier wireless networks only. Bluetooth information is available through
two Bluetooth classes:

 ✓ BluetoothSerialPort (net.rim.device.api.bluetooth.
BluetoothSerialPort): You use objects from this class to read and
write information across a Bluetooth connection.

 ✓ BluetoothSerialPortInfo (net.rim.device.api.bluetooth.
BluetoothSerialPortInfo): You use objects in this class to provide
more detailed information about Bluetooth connections.

The code in Listing 9-1 shows how to determine whether and which types of
communications are available on a user’s BlackBerry:

15_467114-ch09.indd 21715_467114-ch09.indd 217 8/30/10 1:08 PM8/30/10 1:08 PM

218 Part III: Developing Enterprise-Class BlackBerry Apps

Listing 9-1: Determining Communications Capability
from within Your App

public boolean isWirelessOn()
{
 int radioState = RadioInfo.getState();
 return (radioState==RadioInfo.STATE_ON);
}

public boolean isWiFi()
{
boolean isWiFi = false;

 int networkType=RadioInfo.getNetworkType();
boolean validNet=(networkType==RadioInfo.NETWORK_802_11);
 boolean wifiOn=(RadioInfo.getActiveWAFs() & RadioInfo.WAF_WLAN)!=0;
 boolean wifiConnected= (WALNInfo.getWLANState()==WLANInfo.WLAN_STATE_

CONNECTED);
 boolean isWiFi = validNet & wifiOn & wifiConnected;
 return (isWiFi);
}

public boolean isNetwork()
{
 int networkType = RadioInfo.getNetworkType();
 return (networkType!=RadioInfo.NETWORK_802_11);
}

public boolean hasBluetooth()
{
 return (BluetoothSerialPort.isSupported());
}

Choosing what service to use
You should analyze what your app is going to do with the information it col-
lects from your users. This question should lead you to ask several others:

 ✓ Does my app need to retrieve data from a Web site on the Internet?
This requires a network channel.

 ✓ Does my app need to deliver data to a Web site on the Internet?
Similar to retrieving data from a Web site, this requires using a network
channel.

 ✓ Is my app going to receive data from a BlackBerry Enterprise Server
(BES) via HTTP-Push? This will require a network channel, but differ-
ent from communicating with a Web site: You have to set up a “listener”
within your app for a BES to contact to deliver data.

15_467114-ch09.indd 21815_467114-ch09.indd 218 8/30/10 1:08 PM8/30/10 1:08 PM

219 Chapter 9: Networking Your BlackBerry App

 ✓ Does my app communicate with other nearby BlackBerry users? The
Bluetooth short-range communications channel is your best choice for
this. However, a combination of GPS (Global Positioning System) and a
network channel (if both services are available) could extend the dis-
tance beyond what Bluetooth allows.

Communicating with Services
on the Internet

Your app connects to a service on the Internet by following these generalized
steps (see Figure 9-1):

Figure 9-1:
Your app
connect-
ing to the
Internet.

Application creates HttpConnection
object by opening a connection

to a specific URL.

Application uploads data through
the HttpConnection object using

an OutputStream object.

Application downloads data
through the HttpConnection object

 using an InputStream object.

Application closes the
HttpConnection.

 1. Your app opens a connection to the resource, defined by a URL.

 This connection is an HttpConnection object (or perhaps an
HttpsConnection object), and your app might have to provide addi-
tional parameters to open the connection successfully.

 2. Using the connection, your app delivers data (upload) to the service
running at the URL and expecting incoming data.

15_467114-ch09.indd 21915_467114-ch09.indd 219 8/30/10 1:08 PM8/30/10 1:08 PM

220 Part III: Developing Enterprise-Class BlackBerry Apps

 This delivery is done through the use of an OutputStream object
(java.io.OutputStream).

 3. Using the connection, your app retrieves data (download) from the ser-
vice (which may be as simple as a file containing the data).

 This retrieval is done through the use of an InputStream object
(java.io.InputStream).

 4. Your app closes the connection.

This is the standard approach to communication between a client application
(such as your app running on a networked BlackBerry device) and a service
(such as a Web site). Before I dive into the code examples to demonstrate
how a BlackBerry app trades data with a network service, an introduction
into packaging your data is appropriate.

Structuring your data
You will find it important and useful to structure your data because software
behaves best when everything is orderly. Your application is either going to
deliver data to a network service or retrieve data from one. For all the differ-
ent data resources on the Internet available to your app, the data is going to
possess some kind of structure. If your app is going to deliver or retrieve data
in conjunction with a service under your control, you will be responsible for
defining what that structure is. If your app is trading data with a service you
don’t control, you will have to determine what the data’s structure must be.

My preferred form of data trading involves using XML (eXtensible Markup
Language). You can find a great many good resources and tutorials about
XML on the Internet, as well as several good books in the For Dummies series.
My app uses XML to package the data delivered to the Web service and
receives data from the service packaged as XML. The BlackBerry OS provides
built-in functions to handle XML data that make reading and writing XML data
blocks very easy.

My app, The Word Locker, stores users’ notes in their smartphones. The
user can access these notes only by entering the password. The Word Locker
app provides a means to reset the password without deleting the notes. This
process, if the user chooses to use it, requires the user to enter answers to
selected security questions. The answers are then encoded and stored at
www.thewordlocker.com.

The code in Listing 9-2 shows what the XML data that my app delivers to the
Web service for initializing the security questions looks like.

15_467114-ch09.indd 22015_467114-ch09.indd 220 8/30/10 1:08 PM8/30/10 1:08 PM

221 Chapter 9: Networking Your BlackBerry App

Listing 9-2: XML Data Delivered to a Web Service
Running at thewordlocker.com

<?xml version=”1.0” encoding=”UTF-8” ?>
<thewordlocker version=”1.0”>
 <passwordResetInit>
 <query id=”1”>1913005938794</query>
 <query id=”2”>2967726624309986171</query>
 <query id=”3”>8439910125</query>
 </passwordResetInit>
</thewordlocker>

Here are the important points to remember about the preceding XML data:

 ✓ The first line must always be the XML identifier. Nothing else can be first.

 ✓ The thewordlocker tag (line 2) is the document tag. The version
attribute is an identifier that tells the service what version of the XML
data structure is being used by the client application. This lets the Web
service know what to expect in the XML data that follows, in case the
Web service is updated.

 ✓ The passwordResetInit tag is used to tell the service that the service
should initialize the data for a future password-reset request.

 ✓ The query tag is used to provide specific identifying information to the
service, to match that presented when a future password-reset request
is made. The data within the tag is a compressed form of information the
user provides within the application.

Because my app and the service are communicating with each other, each
transmission of data between the app and the service will initiate a response
from the receiver. This is to ensure that the data was received. The service’s
response to the XML data delivered in Listing 9-2 can be seen in Listing 9-3.

Listing 9-3: The Response My App Will Receive after
Transmitting the Data to the Service

<?xml version=”1.0” encoding=”UTF-8” ?>
<thewordlockerService version=”1.0”>
 <passwordResetInitOK/>
</thewordlockerService>

The response is very simple and easy to understand — just what you’d
expect. If something bad had happened at the service’s end of things, the ser-
vice would respond with something different.

When users have forgotten the password to access their notes, they will initi-
ate a password-reset operation. To do this, the user must enter information

15_467114-ch09.indd 22115_467114-ch09.indd 221 8/30/10 1:08 PM8/30/10 1:08 PM

222 Part III: Developing Enterprise-Class BlackBerry Apps

into the screen to answer selected security questions. After the user has
entered the answers, the app transmits the data to the Web service using the
XML data, shown in Listing 9-4.

Listing 9-4: The Word Locker App Delivers the Security
Question Answers to the Service

<?xml version=”1.0” encoding=”UTF-8” ?>
<thewordlocker version=”1.0”>
 <passwordReset>
 <query id=“1“>1913005938794</query>
 <query id=“2“>2967726624309986171</query>
 <query id=“3“>8439910125</query>
 </passwordReset>
</thewordlocker>

Finally, Listing 9-5 shows the response sent by the Web service to my app
when the information entered by the user and transmitted to the service is
correct.

Listing 9-5: The XML Response Sent to The Word Locker
When the Answers to the Security Questions Are Correct

<?xml version=”1.0” encoding=”UTF-8” ?>
<thewordlockerService version=”1.0”>
 <passwordResetOK/>
</thewordlockerService>

Very simple, and very easy for my app to read and interpret. When The Word
Locker receives this response, the user will be allowed to create a new pass-
word without losing any data.

After you decide upon a structure for the blocks of data you want to move
around, or after you determine how to interpret the blocks of data your app
will be receiving from a service not under your control, you’re ready to set
up your application to connect to the service and deliver or retrieve data.

Your application will have to handle one more important issue, though,
which I address in the following section.

Behaving like a well-mannered
application
You will find that writing code to communicate with network services can be
straightforward and easy. That’s on your side of the process, which might
lead you to innocently assume that network communications just work.

15_467114-ch09.indd 22215_467114-ch09.indd 222 8/30/10 1:08 PM8/30/10 1:08 PM

223 Chapter 9: Networking Your BlackBerry App

Unfortunately, the real world of communicating across the Internet is some-
times a bit unpredictable. Any number of problems can occur while your
app is trying to make a network connection. Because of this, and because
of the nature of the BlackBerry code that your app will execute to connect
to a network service, your app’s network communications code is required
to operate from within a thread of execution that is separate from the main
application thread. Chapter 7 covers how threads work in BlackBerry appli-
cations, but because this issue is important for networking, I take a few para-
graphs to explain some of the code you see in the examples.

Your application runs as a process in the BlackBerry OS on the smartphone.
Each process can have several different threads of execution: sequences of
application code that execute independently. The BlackBerry smartphone’s
processor executes only one command at a time, but the commands for one
thread can be paused while the processor starts executing the commands of
a different thread. The BlackBerry OS does a great job of managing all that
operation; you don’t need to add anything special to your application to
manage these low-level details.

However, certain operations your application can execute will block, which
means that the processor is halted while it waits for something to happen.
The BlackBerry OS won’t allow the main event thread to become blocked,
and this is the code in the BlackBerry Application object (net.rim.
device.api.system.Application) that handles messages that come
from the operating system and from the user.

The reason for this is simple: The BlackBerry user expects the device to be
responsive to use, and if your application halts itself while waiting for incom-
ing data or for a connection attempt to succeed (or fail!), this interferes with
the user experience.

In addition, the BlackBerry OS maintains an event queue for each running
application, which is limited in size. If your application halts the code that
manages the event queue, the OS will pick up on this situation and terminate
your app. Network communications operations generally take perceptible
amounts of time to achieve either success or failure, and certain of these
operations will block. To accommodate this behavior, your app must take a
few precautions, as shown in Figure 9-2:

 ✓ Place all code that communicates with the network into a separate
thread of operation.

 ✓ Provide a means for the thread to call back into your application’s code.

 Usually, your application is going to want to find out whether the net-
work communication operation in its own thread has succeeded or
failed, so your thread code needs to provide a mechanism for transmit-
ting that information, plus any information that’s been retrieved from
the network service, back into the main body of the application.

15_467114-ch09.indd 22315_467114-ch09.indd 223 8/30/10 1:08 PM8/30/10 1:08 PM

224 Part III: Developing Enterprise-Class BlackBerry Apps

Figure 9-2:
Preventing

the OS from
blocking
network

communica-
tions.

Application creates a Thread
object and gives the Thread the

package to send.

Application continues
independent of Thread.

Application launches Thread.

Application packages data to
send to network service.

Thread is launched.

Thread ends.

Thread opens connection
to network service.

Thread delivers data to
network service.

The code examples in the next sections demonstrate using threads to assist
in performing network communications.

Coding to send data to a network service
You’re ready to create code that sends data to a network service. Your app
accesses that service through a URL, and your app connects to that URL and
uploads the data to it. Listing 9-6 shows the structure of a Java interface class
that provides the callback mechanism for the network data retrieval thread.
You can see the interface class provided to the thread so that the suc-
cessful result of the data delivery, or an exception, can be delivered to the
application.

15_467114-ch09.indd 22415_467114-ch09.indd 224 8/30/10 1:08 PM8/30/10 1:08 PM

225 Chapter 9: Networking Your BlackBerry App

A callback is a piece of code intended to be executed by a thread outside the
main application thread of execution, which delivers information back to the
main application thread. Much like an actor who performs in an audition and
waits for the producers to call him back, the main application is waiting for
the thread to call back with the results of its operations.

Listing 9-6: The Interface Class Provided to the Thread

package com.karlgkowalski.wordlocker.util;

public interface WordLockerNetworkResponse
{
 public void passwordResetInitialized();
 public void passwordResetInitFailure(Exception inFailure);
 public void executePasswordReset();
 public void passwordResetFailure(Exception inFailure);
}

The interface class is pretty simple to understand, which makes explain-
ing it easy:

 ✓ The thread calls passwordResetInitialized() or executePass-
wordReset() if the operation succeeds. One method is required for
each of the two types of communications request (uploading the data
to initialize a future password reset, and uploading the data to request a
password reset).

 ✓ The thread calls either passwordResetInitFailure() or pass-
wordResetFailure() if the operation fails. The parameter passed into
each of those routines is the exception that caused the failure.

My application includes a class that implements this interface, and an
instance of that class is handed to the thread classes that will communicate
with the Web service to initialize or request a password reset.

The Word Locker app provides users with the opportunity to reset pass-
words without losing their notes, but only if they initialize the Web service
with the answers to security questions they select. You can see the code in
Listing 9-7 that acts as a repository in the app to package the answers the
users provide. The SecurityQuestionResponse class also creates the
XML delivered to the Web service.

Listing 9-7: The SecurityQuestionResponse Class Implementation

package com.karlgkowalski.wordlocker.util;

import net.rim.device.api.system.DeviceInfo;

(continued)

15_467114-ch09.indd 22515_467114-ch09.indd 225 8/30/10 1:08 PM8/30/10 1:08 PM

226 Part III: Developing Enterprise-Class BlackBerry Apps

Listing 9-7 (continued)
public class SecurityQuestionResponse
{
 private String m_q1;
 private String m_q2;

 public SecurityQuestionResponse(String inQ1, String inQ2)
 {
 m_q1 = inQ1;
 m_q2 = inQ2;
 }

 public String getXml()
 {
 StringBuffer buffy = new StringBuffer();
 buffy.append(“<?xml version=\”1.0\” encoding=\”UTF-8\” ?>”);
 buffy.append(“<thewordlocker version=\”1.0\”>”);
 buffy.append(“ <passwordResetInit>”);
 buffy.append(“ <query id=\”1\”>”+m_q1+”</query>”);
 buffy.append(“ <query id=\”2\”>”+m_q2+”</query>”);
 buffy.append(“ <query id=\”3\”>”+this.getDeviceId()+”</query>”);
 buffy.append(“ </passwordResetInit>”);
 buffy.append(“</thewordlocker>”);
 return (buffy.toString());
 }

 private String getDeviceId()
 {
 int deviceId = DeviceInfo.getDeviceId();
 String deviceIdString = Integer.toHexString().toUpperCase();
 return (deviceIdString);
 }
}

Listing 9-8 demonstrates the basic code needed to perform the delivery of
the SecurityQuestionResponse data to the Web service, and Figure 9-3
shows the progression:

 1. The user selects security questions and enters the answers on the
screen.

 2. The application packages the information and launches a thread to
deliver the information to the Web service.

 3. The application waits for a response from the Web service but allows
the user to continue using the app.

 4. The thread opens a connection to the Web service.

15_467114-ch09.indd 22615_467114-ch09.indd 226 8/30/10 1:08 PM8/30/10 1:08 PM

227 Chapter 9: Networking Your BlackBerry App

 5. The thread delivers an XML form of security question answers to the
Web service by writing the data through an OutputStream that it gets
from the connection.

 6. The thread executes the flush() method of the OutputStream.

 This ensures that the data has all been delivered to the Web service
before the next step.

 7. The thread opens an InputStream from the connection and reads the
success or failure response from the Web Service.

 8. The thread informs the application about success or failure.

Figure 9-3:
Sending
answers

to security
questions
up to The

Word
Locker Web

service.

User enters the answers
to selected security questions.

Application creates a
SecurityQuestionResponse object.

Application waits for the Web
service to initialize the password

reset information.

Application receives success
or failure message from

PasswordResetInitialization thread.

PasswordResetInitialization
thread is launched.

Thread informs Application
about success or failure.

Thread opens connection
to network service.

Application creates
PasswordResetInitialization object

and sets its contents to the
SecurityQuestionResponse object.

Thread delivers
SecurityQuestionResponse

to network service.

15_467114-ch09.indd 22715_467114-ch09.indd 227 8/30/10 1:08 PM8/30/10 1:08 PM

228 Part III: Developing Enterprise-Class BlackBerry Apps

Listing 9-8: Transmitting the Security Question Responses
to The Word Locker Web Service

/*
 * PasswordNetworkReset.java
 *
 * © Karl G. Kowalski, 2010
 * Confidential and proprietary.
 */

package com.karlgkowalski.wordlocker.util;

import javax.microedition.io.Connector;
import javax.microedition.io.HttpConnection;
import java.io.*;
import org.w3c.dom.*;
import net.rim.device.api.xml.parsers.*;

public class PasswordNetworkReset extends Thread
{
 private SecurityQuestionResponse m_data;
 private WordLockerNetworkResponse m_responder;

 public static final String WORDLOCKER_PASSWORDRESETSERVICE_URL = “http://
www.thewordlocker.com/passwordresetservice.asmx”;

 public static final String WORDLOCKER_PASSWORDRESETINITOK_TAG =
“passwordResetInitOK”;

 public static final String WORDLOCKER_PASSWORDRESETOK_TAG =
“passwordResetOK”;

 public static final String WORDLOCKER_FAILUREMESSAGE_ATTRIBUTENAME =
“message”;

 public PasswordNetworkReset(WordLockerNetworkResponse inResponder,
SecurityQuestionResponse inSqr)

 {
 m_data = inSqr;
 m_responder = inResponder;
 }

 public void run()
 {
 boolean keepGoing = true;
 int attemptsRemaining = 3;
 while (true == keepGoing)
 {
 boolean connectionSuccess = false;
 try
 {
 attemptsRemaining--; // reduce count
 HttpConnection conn = (HttpConnection)Connector.open(WORDLOCKER_

PASSWORDRESETSERVICE_URL);
 connectionSuccess = true; // got past attempt to open
 // set the proper HTTP request method

15_467114-ch09.indd 22815_467114-ch09.indd 228 8/30/10 1:08 PM8/30/10 1:08 PM

229 Chapter 9: Networking Your BlackBerry App

 conn.setRequestMethod(HttpConnection.POST);
 //create an output stream to upload data
 OutputStream oStream = conn.openOutputStream();
 //
 oStream.write(m_data.getXml().getBytes());
 oStream.flush();
 // create an input stream to show the result
 DataInputStream diStream = new DataInputStream(conn.

openInputStream());
 int availableBytes = diStream.available();
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 // loop until no more bytes to read
 while (0 < availableBytes)
 {
 byte[] wsResponse = new byte[availableBytes];
 diStream.read(wsResponse);
 // add incoming bytes to buffer
 baos.write(wsResponse);
 // find out how many more there are
 availableBytes = diStream.available();
 }
 // all bytes are now available in the baos
 // time to check the response
 // since the response is in XML, create an
 // XML Document object to see it
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 // change the array of bytes just retrieved
 // into an input stream
 Document doc = db.parse(new ByteArrayInputStream(baos.

toByteArray()));
 // now check the response
 this.checkResponseDocument(doc);
 }
 catch (Exception except)
 {
 if (false == connectionSuccess)
 {
 // if an exception occurred in the
 // Connector.open() call, accommodate
 // the possibility that a subsequent
 // attempt might succeed (workaround for
 // issues discovered on a BlackBerry
 // Storm2 with a 5.0 OS where the call
 // to open failed the first attempt but
 // succeeded the second)
 if (0 == attemptsRemaining)
 {
 keepGoing = false;
 this.handleException(except);
 }
 }

(continued)

15_467114-ch09.indd 22915_467114-ch09.indd 229 8/30/10 1:08 PM8/30/10 1:08 PM

230 Part III: Developing Enterprise-Class BlackBerry Apps

Listing 9-8 (continued)
 else
 {
 this.handleException(except);
 }
 }
 }
 }

 private void checkResponseDocument(Document inDoc)
 {
 if (null != inDoc)
 {
 if (true == m_data.isInitializer())
 {
 NodeList initResponseNodes = inDoc.getElementsByTagName(

WORDLOCKER_PASSWORDRESETINITOK_TAG);
 if (initResponseNodes.getLength() > 0)
 {
 // report success
 m_responder.passwordResetInitialized();
 }
 else
 {
 // failure
 this.handleAttemptFailure(initResponseNodes);
 }
 }
 else
 {
 NodeList responseNodes = inDoc.getElementsByTagName(

WORDLOCKER_PASSWORDRESETOK_TAG);
 if (responseNodes.getLength() > 0)
 {
 // report success
 m_responder.executePasswordReset();
 }
 else
 {
 // failure
 this.handleAttemptFailure(responseNodes);
 }
 }
 }
 }

 private void handleAttemptFailure(NodeList inResponseNodes)
 {
 Node responseNode = inResponseNodes.item(0);
 // attributes should contain failure message

15_467114-ch09.indd 23015_467114-ch09.indd 230 8/30/10 1:08 PM8/30/10 1:08 PM

231 Chapter 9: Networking Your BlackBerry App

 if (responseNode instanceof Element)
 {
 Element responseElement = (Element)responseNode;
 NamedNodeMap attributes = responseElement.getAttributes();
 Node messageAttributeNode = attributes.getNamedItem(

WORDLOCKER_FAILUREMESSAGE_ATTRIBUTENAME);
 if (null != messageAttributeNode)
 {
 // retrieve the text of the failure message
 String message = messageAttributeNode.getNodeValue();
 Exception except = new Exception(message);
 this.handleException(except);
 }
 }
 }

 private void handleException(Exception inExcept)
 {
 if (true == m_data.isInitializer())
 {
 m_responder.passwordResetInitFailure(inExcept);
 }
 else
 {
 m_responder.passwordResetFailure(inExcept);
 }
 }
}

The PasswordNetworkReset class is created with two parameters: the
object that implements the WordLockerNetworkResponse callback meth-
ods, which is called when the network communications have succeeded or
failed; and the SecurityQuestionResponse object. Everyone hopes for
success, but failures happen — but now you are prepared for it.

The code in Listing 9-8 demonstrates the basic approach for uploading
information to a Web service and downloading the response. You can see
that the Web service is contacted through the use of the URL http://
www.thewordlocker.com/passwordresetservice.asmx. The
PasswordNetworkReset thread object uses the Connector.open()
method to make the network connection and open it. The object that is
returned is cast to an HttpConnection type, which is a class that sup-
ports the methods used by the thread to transmit data to the Web service
as part of an HTTP-POST transmission. The Web service returns its data
into the connection, which the thread retrieves using the Connector.
getInputStream() method. This stream is then provided to an XML doc-
ument builder class that builds an in-memory XML document of the data
coming in. The Document object that is created from the stream is then
parsed to find the response of the Web service to the original request:

15_467114-ch09.indd 23115_467114-ch09.indd 231 8/30/10 1:08 PM8/30/10 1:08 PM

232 Part III: Developing Enterprise-Class BlackBerry Apps

 ✓ The initialization request was successful. The body of the Document
contains the <passwordResetInitOK> tag.

 ✓ The initialization request failed. The body of the Document con-
tains an XML block that looks like <passwordResetInitFailure
message=”failure reason”>.

 ✓ The password reset request was successful. The body of the Document
contains the <passwordResetOK> tag.

 ✓ The password reset request failed. The body of the Document con-
tains an XML block that looks like <passwordResetFailure
message=”failure reason”>.

The successful end of this code results in the thread executing the appro-
priate success callback method provided by the object representing the
WordLockerNetworkResponse. If anything goes wrong, the appropriate
failure callback method of the WordLockerNetworkResponse object will
be executed, and the reason for the failure will be provided in the form of an
Exception object.

 You may notice something interesting near the beginning of the run()
method. I have set a pair of boolean data values, one called keepGoing and
one called connectionSuccess. The first of these is a value used by a
while loop, which causes the code to keep trying to connect to the network
service. The second is initialized to false, and immediately after the
Connector.open() call it gets set to true. The reason for this is that if
the Connector.open() call throws an exception for any reason, then
connectionSuccess will be false within the catch block. Inside the
catch block, the code will return to the beginning of the while loop to make
the connection attempt again, up to a total of three separate attempts. This is
to guard against a particular situation that occurs on certain BlackBerry
smartphones running certain versions of the BlackBerry OS. I discovered that
occasionally the Connector.open() method would fail and throw an excep-
tion the very first time it was executed, but would succeed the second time it
was executed. The code implemented above is a workaround for this issue.
Although the issue appeared only on one smartphone running a specific ver-
sion of the OS, it was easier to implement a try-it-again approach than to
check for which OS version and which smartphone the app was executing on.

 What you should remember from this are the following tips:

 ✓ Sometimes your app has to implement code to get around unexpected
issues in the BlackBerry OS.

 ✓ Because the issue described previously was not apparent when testing
the code on a simulator, you really do need to test your app on a real
smartphone.

15_467114-ch09.indd 23215_467114-ch09.indd 232 8/30/10 1:08 PM8/30/10 1:08 PM

233 Chapter 9: Networking Your BlackBerry App

Making use of HTTP connections
As shown in Listing 9-8, if your app is going to be connecting to a Web
server, using an HttpConnection enables your app to provide, as well
as make use of, more detailed information regarding the connection. An
HttpConnection object provides more methods for accessing HTTP header
fields of a Web resource, some of which are

 ✓ setRequestMethod(String): A Web server can respond to several
different request methods. If you don’t modify this, the default method
used is GET. In The Word Locker’s password reset communication I have
set the request method to HttpConnection.POST, which is defined
within the HttpConnection class.

 ✓ int getLength(): Your app can determine the length of the data to
be delivered by the online resource. This value is retrieved from the
content-length header field.

 ✓ int getResponseCode(): Your app will likely be most interested in
calling this method because it returns the HTTP response code of the
connection request. You can find a list of the available HTTP response
codes online at www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html. You can also find a set of constants defined in the docu-
mentation of the HttpConnection class (javax.microedition.
io.HttpConnection). The two most common are

 • 200: This response code means: Okay, everything worked as
expected.

 • 404: This response code means: Nothing found at the URL (no file
or service).

 ✓ long getLastModified(): This method returns the value of the
last-modified header field. Your app can check this field to determine
whether the information retrieved from the online resource is newer
than the last set of data you retrieved.

 All these methods are available for use as soon as the call to Connector.
open() is executed and returns an HttpConnection object.

Making use of HTTPS connections
Sometimes Web services use a level of security that encrypts the trans-
mission of information between a client application and the service.
This type of connection uses an HttpsConnection object instead of an
HttpConnection object. If the URL your app will use starts with https://
instead of http://, you will want to cast the object you receive from
Connector.open() as an HttpsConnection.

15_467114-ch09.indd 23315_467114-ch09.indd 233 8/30/10 1:08 PM8/30/10 1:08 PM

234 Part III: Developing Enterprise-Class BlackBerry Apps

Your app may need to use an HttpsConnection when communicating a
secure Web service, such as a bank or financial institution — the kind of com-
munication that your users and the services your app is connecting to expect
to be protected from any prying eyes. For example, if your app connects to
a user’s stock market account over the Web, use the HttpsConnection
class: The stock market service will very likely require it. If you’ve set up
your own Web service to provide stock information to your app’s users
and your app allows users to make trading decisions, users will expect that
those orders are secure when your app communicates them to your Web
service: This requires that your app communicates with your service using
HttpsConnection.

Using HttpsConnection in place of an HttpConnection adds another new
method not available in HttpConnection: SecurityInfo getSecurity
Info().

The object returned (javax.microedition.io.SecurityInfo) contains
information related to the encryption protocol used to protect the commu-
nications, and can also be used to retrieve the certificate used by the Web
service. Your app might need to access the certificate in order to verify that
the service is owned and operated by the proper authority.

 When your app executes Connector.open() for an HTTPS URL, the
BlackBerry device will perform some verification of the credentials that the
network service presents to the BlackBerry OS when the connection is
attempted. BlackBerry smartphones come with some certificates preinstalled,
and these are used to validate any new certificate that is presented. If the
BlackBerry can’t validate the service’s certificate, the OS might interrupt the
process and ask the user to accept or deny the attempt. If your user refuses to
allow the connection to proceed, your application’s attempt to connect with
the service will fail.

Setting Up a Push Listener
The preceding example shows how your application running on a BlackBerry
can communicate with network resources, such as Web pages and even
scripts on Web servers. If your application is for a corporate enterprise envi-
ronment and is intended to run on a BlackBerry connected to a BES, another
network communication opportunity is available: running a process that
waits for an incoming HTTP-Push connection from the BES.

HTTP-Push is the protocol that the BES and the BlackBerry Internet Service
(BIS) use to deliver information to BlackBerry devices. BlackBerry users
don’t have to continually check for whether they’ve received new e-mail mes-
sages; the BES or the BIS simply pushes the messages out to their devices.

15_467114-ch09.indd 23415_467114-ch09.indd 234 8/30/10 1:08 PM8/30/10 1:08 PM

235 Chapter 9: Networking Your BlackBerry App

The BES also provides a feature that allows administrators to deliver data to
applications running on specific devices using the same HTTP-Push mecha-
nism, as shown in Figure 9-4. The process works like this:

Figure 9-4:
Delivering

data via an
HTTP-Push

mechanism.

User launches BlackBerry
application.

User tells application to start
listening for an HTTP-Push.

Application launches Listener
thread.

Application rests in
background awaiting BES

to perform a Push.

Application receives data
and processes it.

Listener thread starts
in background.

Listener thread
receives data.

Application delivers
data to BES for user.

BES Administrator
launches application

to Push data.

BES opens connection
to application running
on user’s BlackBerry.

Listener thread
delivers data to

application.

 1. The user launches the app on the BlackBerry device.

 2. The user initiates a push listener from within the app.

 3. The BES administrator executes an application on a desktop machine.

 This application is something you would have to write for your users in
addition to the application running on the BlackBerry device itself.

 4. The desktop application connects with the BES and delivers a destina-
tion and a package of data for delivery to the user’s device.

15_467114-ch09.indd 23515_467114-ch09.indd 235 8/30/10 1:08 PM8/30/10 1:08 PM

236 Part III: Developing Enterprise-Class BlackBerry Apps

 5. The BES queues the delivery of the data and eventually transmits it to
the device.

 6. The push listener on the device receives the information and processes it.

This operation requires more effort than simply connecting to a Web-based
resource via a URL. In a BES-based environment, this process delivers infor-
mation much more securely through the connection between the BES and the
device. Note that the connection is one way: The push works from the BES to
the device.

 The BIS does not provide HTTP-Push features. This is a BES-only process.

On the BlackBerry device, your application effectively becomes a server,
which means that your app waits for the BES to open a communications con-
nection to your app. Of course, this means that your app will block while
waiting for an incoming connection, and so the push-listener process must
be launched as a thread separate from the main execution thread of your
app. This also requires that your app is up and running until the BES makes
the connection. When a user exits your application, the device will terminate
all running threads. This means that your app will have to be careful when
a user attempts to close your app, and prevent the app from getting killed.
Luckily, there’s a safe way to do this:

void Application.requestBackground()

Executing this method will cause the BlackBerry OS to place your app into
the background. Effectively, this hides your application from the user, and
the user will believe the app has exited. The app will receive no interaction
from the user, but the thread containing the push listener will still be able to
receive incoming connections.

The code snippet in Listing 9-9 demonstrates the run method of a thread that
sets up a push listener and waits for incoming HTTP-Push connections from
a BES:

Listing 9-9: The Setup of a Push Listener inside a Thread

public void run()
{
 try
 {
 synchronized(this)
 {
 StreamConnectionNotifier notify = (StreamConnectionNotifier)Connector.

open(“http://:1234” + “;deviceside=false”);
 StreamConnection conn = notify.acceptAndOpen();
 InputStream dataStream = conn.openInputStream();

15_467114-ch09.indd 23615_467114-ch09.indd 236 8/30/10 1:08 PM8/30/10 1:08 PM

237 Chapter 9: Networking Your BlackBerry App

 DataBuffer db = new DataBuffer();
 byte[] dataBlock = new byte[1024];
 int dSize = 0;
 while (-1 != (dSize = dataStream.read(dataBlock)))
 {
 db.write(dataBlock, 0, dSize);
 }
 dataStream.close();
 conn.close();
 notify.close();
 }
 }
 catch (Exception except)
 {
 // handle issues
 }
}

The code in Listing 9-9 sets up a push listener that will block at the accept
AndOpen() call, waiting for the BES to open a connection. This connection
is at a specific port number, which must be between 1 and 65535, but several
port numbers are not available:

 ✓ 80

 ✓ 443

 ✓ 7874

 ✓ 8080

Your app won’t know before trying to use a particular port number whether
that port isn’t already in use — someone else’s app may already be using
it. Figure 9-5 shows you information about the IOPortAlreadyBound
Exception exception that is thrown if two separate pieces of code try to
start listening on the same port.

Figure 9-5:
Your app
receives

this excep-
tion if it tries

to listen on
a port other

code is
using.

15_467114-ch09.indd 23715_467114-ch09.indd 237 8/30/10 1:08 PM8/30/10 1:08 PM

238 Part III: Developing Enterprise-Class BlackBerry Apps

Your code enters the catch block in Listing 9-9 if the port your app tries to
use is already in use. Because 65,000+ ports are available, there’s only a small
chance you’ll run into a conflict. But because setting up a listener port is
crucial for receiving HTTP-Push data from a BES, and because both the BES
application and the BlackBerry app have to use the same port value, this is
definitely something you will have to determine before you deliver your final
product. In addition, running a listener thread in your app should be done
only infrequently, so you’re not using a particular port more than absolutely
necessary.

The code in Listing 9-9 uses port 1234. After the connection is made, the execu-
tion of this code will continue, opening an input stream and setting up a buffer
to hold the data. A byte array is created to hold 1,024 bytes, and the code exe-
cution loops while reading the stream of data 1,024 bytes at a time. When all is
done, the DataBuffer object will contain all the bytes that were read in from
the BES. Your app can then interpret this data and use it.

From the BES administrator side of things, a different application is required:
namely, one that can connect to the HTTP-Push feature on the BES, as illus-
trated in Figure 9-6. The process for performing this is as follows:

 1. The administrator collects information about the BES — specifically, the
network location of the BES (IP address, host name, and so on).

 2. The desktop application connects to the BES using a URL, and delivers
the data as part of a POST request.

 3. The administrator collects the data to be delivered to a user. This data
is delivered via HTTP-POST to the BES.

 4. The administrator determines the recipient to whose BlackBerry the
data is to be delivered.

 This can either be the device’s PIN (an 8-hexadecimal digit number,
unique for each BlackBerry device), or the user’s enterprise e-mail
address (the e-mail address that the BES uses to identify the user).

 5. The administrator executes the desktop application and provides all the
preceding information to the application.

 6. The desktop application opens an HTTP-POST connection to the BES at
the IP address or host name provided.

 Included in the URL are the port number that the push listener in your
application is listening to and also the recipient’s PIN or e-mail address.

 7. The desktop application writes the data to be delivered to the output
stream of the connection.

 8. The BES returns a status of 200 if everything succeeds (this is the HTTP
response code for “everything is okay”).

15_467114-ch09.indd 23815_467114-ch09.indd 238 8/30/10 1:08 PM8/30/10 1:08 PM

239 Chapter 9: Networking Your BlackBerry App

Figure 9-6:
An HTTP-

Push
connecting
through the

BES.

BES Administrator launches
Push Application.

Push Application retrieves
data from provided source.

Push Application opens an
HTTP-Push connection

to the BES.

Push Application delivers the
data into the BES HTTP-Push

connection.

The BES accepts the incoming
data for HTTP-Push and closes

the connection.

The BES locates the BlackBerry
to receive the data.

The BES opens a secure connection
to the receiving BlackBerry.

The BES delivers the data to the
receiving BlackBerry and closes

the connection.

15_467114-ch09.indd 23915_467114-ch09.indd 239 8/30/10 1:08 PM8/30/10 1:08 PM

240 Part III: Developing Enterprise-Class BlackBerry Apps

The code in Listing 9-10 shows an example method used in a desktop applica-
tion to deliver data to a BES for it to push to a device.

Listing 9-10: Connecting to a BES and Delivering Data
for the BES to Push to a Device

public void executePush(String inHost, int inAppPort, String inUser, String
inData)

{
 try
 {
 URL connUrl = new URL(“http”, inHost, 8080, “/push?DESTINATION=

”+inUser+”&PORT=”+inAppPort+”&REQUESTURI=localhost”);
 HttpURLConnection conn=(HttpURLConnection)connUrl.openConnection();
 conn.setDoInput(true);
 conn.setDoOutput(true);
 conn.setRequestMethod(“POST”);
 OutputStream oStream = conn.getOutputStream();
 oStream.write(inData.getBytes());
 oStream.flush();
 oStream.close();
 int contentLength = conn.getContentLength();
 if (contentLength > 0)
 {
 // check the response
 }
 }
 catch (Exception except)
 {
 // handle errors
 }
}

And that’s all there is to BES push and BlackBerry push listening.

 Recent changes within the BlackBerry Push services allow for BIS users to
create push applications on their own with no BES required. The only caveat
to this is that the free services are rather limited (8kb of data pushed
through BIS) and applications must be approved. However, you can sign up
for the BlackBerry ISV program and gain more access to the services —
though the services aren’t free. More information can be found at http://
na.blackberry.com/eng/developers/javaappdev/pushapi.
jsp#tab_tab_features.

15_467114-ch09.indd 24015_467114-ch09.indd 240 8/30/10 1:08 PM8/30/10 1:08 PM

Part IV

Finishing and
Debugging Your App

16_467114-pp04.indd 24116_467114-pp04.indd 241 8/30/10 1:08 PM8/30/10 1:08 PM

In this part . . .

After you put together all the pieces of your BlackBerry
application, you need to make sure that it runs with

no surprises. In this part, you find out what it takes to
move your application from a BlackBerry simulator onto a
real BlackBerry device, and all the joys and challenges
you might encounter. Developing software on your desktop
PC for a virtual device is nice and safe, but here, you find
out just what it’s like to use your app as your users do.
You also experience the thrill of hunting down and taming
any pesky bugs that infiltrate your code. This is where
you polish your app and smooth off its rougher edges.

And finally, your app is ready to upload to the App World.
This part contains the steps you follow to organize all the
various files and information you need to submit your app
to RIM’s reviewers for delivery to the BlackBerry App World.

16_467114-pp04.indd 24216_467114-pp04.indd 242 8/30/10 1:08 PM8/30/10 1:08 PM

Chapter 10

Running Your Code on
a Real Device

In This Chapter
▶ Getting signing keys from RIM

▶ Signing the application

▶ Deploying via Desktop Manager

▶ Running your app on a real device

Your application is written, the JDE compiles and builds it with no errors,
and it runs perfectly well in the BlackBerry simulators. Now the true

test arrives: Does your app work on a real device?

The tests you’ve run so far using BlackBerry simulators demonstrate that
your app will run without error. Deploying your app to a real BlackBerry
smartphone is a simple procedure, and your app should run as easily on a
real BlackBerry as it does on a simulated one. But there can be some not-so-
obvious differences between running your app on a simulator in an environment
where everything is controlled, and running your app on a physical smartphone
whose behavior is somewhat less than perfect.

This chapter explains how to move your app from your desktop computer
to your BlackBerry to test it. This is one of the most important parts
of BlackBerry application development. Your users have real, physical
BlackBerry smartphones. Just like Ford and GM test their autos not only at
closed proving grounds but also on real city streets, you need to bring your
app to a real BlackBerry before you’re done with developing it. And RIM
will definitely test it on a real smartphone when you submit your app for
distribution through the BlackBerry App World.

17_467114-ch10.indd 24317_467114-ch10.indd 243 8/30/10 1:09 PM8/30/10 1:09 PM

244 Part IV: Finishing and Debugging Your App

Moving from Simulator to Device
Before you test your app on a BlackBerry, be aware that some of the
BlackBerry OS classes that your application uses might require your application
to be signed by using signing keys that you purchase from RIM. Signing
your app is a very simple process — you use a tool that comes with the
BlackBerry JDE you downloaded (see Chapter 2). As a result of signing your
app, the BlackBerry smartphone OS will recognize that your app has been
authorized by RIM to execute on the smartphone. This is a simple mechanism
for BlackBerry users to know that RIM has approved your application. I go
over the process of signing later in this chapter in the “Signing up to do
signing” section.

You sign your app because RIM has restricted the use of certain code in the
BlackBerry OS to apps that have been signed. Many of the classes available
in the BlackBerry OS don’t require your application to be signed to use them,
and your application can do many useful and interesting things without
needing to be signed. However, your application can do much more that is
useful and interesting with those BlackBerry classes that require you to sign
your app. For instance, here’s a list of some features you might want to use
in your application that require signing your code for execution on a real
device:

 ✓ Storing data in persistent or runtime storage

 ✓ Launching the BlackBerry Browser to view a Web site

 ✓ Creating, sending, and viewing e-mail and attachments

 ✓ Using the RIM encryption libraries

 ✓ Connecting to servers on the Internet

After your application is signed, you are ready to install it on a device using
Desktop Manager, which is the desktop PC application that comes with a
BlackBerry smartphone to help users manage their BlackBerry and all the
content they put on it. Chapter 14 gives more details about the BlackBerry
Desktop Manager.

Signing up to do signing
To sign your applications, you need to register with RIM and pay a $20 fee to
acquire three files you then use to generate your signing keys.

Follow these steps to register and download the signing files:

 1. Using a Web browser, navigate to https://www.blackberry.com/
SignedKeys.

17_467114-ch10.indd 24417_467114-ch10.indd 244 8/30/10 1:09 PM8/30/10 1:09 PM

245 Chapter 10: Running Your Code on a Real Device

 2. Fill out all required information (name, address, credit card information,
and e-mail address).

 3. Enter a Registration PIN.

 This is the most important step. Your PIN is a ten-digit number that
you choose and provide to RIM in the appropriate field. I selected a
combination of two area codes, and the ages of two members of my
family.

 Keep a record of your PIN in a safe place. You need it later on when
you are installing the files RIM will e-mail to you. RIM will also send you
through the postal service a piece of paper confirming your purchase
and with the PIN printed on it, but you will get this piece of paper
sometime after RIM e-mails you the files to install.

 RIM will e-mail three files to the account you specify in the registration.
These files contain the data necessary to set up the Signature tool you
use to get your code signed. Each of the three files covers a separate set
of restricted code in the BlackBerry OS.

 • The file client-RBB-1234567890.csi covers some of the
BlackBerry Application APIs (1234567890 is a number that RIM uses
to identify your registration, and will be the same for each of the
files). You can use these APIs to give your app control over the
BlackBerry Browser app.

 • The file client-RCR-1234567890.csi covers some of the
BlackBerry Cryptography APIs. If your app performs any cryptographic
functions, such as using a password to encrypt and decrypt
sensitive data such as credit card numbers, you need to use these
APIs. Using these APIs may cause issues with submitting your app
to the App World because some governments dislike the idea of
encrypted data running around outside the government’s control. I
go over this in Chapter 12.

 • The file client-RRT-1234567890.csi covers some of the
BlackBerry Runtime APIs. You would use these APIs to access
certain hardware features of the BlackBerry smartphone, such as
GPS services.

 4. Double-click each file and follow the instructions to install them.

 You need the PIN you registered with RIM when you purchased the
signing keys in order to set up the Signature tool. After you’ve used your
PIN in the installation of the keys RIM sent you, you no longer need it.
However, the most important part of the setup process is that you need
to supply a password that you use for as long as you have these keys.
This is the only password you use when signing your apps with the
Signature tool, so be sure to keep this in a safe place. After you install
the data from the three files and the Signature tool is set up, you’re
ready to sign your application’s code modules so your application will
be permitted to execute on a real device!

17_467114-ch10.indd 24517_467114-ch10.indd 245 8/30/10 1:09 PM8/30/10 1:09 PM

246 Part IV: Finishing and Debugging Your App

Signing apps on multiple machines
Your signing keys, used to perform part of the app-signing process, are
stored in a specific place on your computer after you install them. If you plan
to do all your application builds on that one machine, you’re all set.

However, over the years that I have been developing software, putting all
my eggs (keys) in one basket (machine) sounds like an invitation to serious
problems should something ever go wrong with that machine. At the very
least, I want to be able to perform signing from a separate machine as well as
my main build machine. That way, the chance that both machines will fail at
the last possible second before I try to sign my application seems to be small
compared with the chance that the one machine I can sign from will. So you
might find it useful to copy the keys stored for the Signature tool to at least
one other machine, or to back up the files on a CD or DVD.

You need to copy two files from the machine where you installed the
Signature tool. On your Windows development machine, these files can be
found at C:\Program Files\Research In Motion\BlackBerry JDE
4.5.0\bin. The two files are

 ✓ sigtool.db: This file contains information that the Signature tool uses
to connect to the RIM signing servers for the three different signatures.

 ✓ sigtool.csk: This contains the public and private key information that
the Signature tool uses to generate the data used as part of the signature
of your app (this data is what the Signature tool transmits to RIM, which
RIM then signs itself and sends back to the Signature Tool to add it to
your app’s code).

 Under no circumstances should you modify the contents of these files. I keep
copies of mine safe, on a CD-ROM, just in case my computer experiences a
failure that corrupts its hard drive.

After you install the Java Development Environment (JDE) onto another
machine, do the following:

 1. Copy these two files to the exact same place on the new machine.

 2. Launch the Signature tool.

 Read how to launch the Signature tool in the upcoming section, “Signing
Your Application.”

You might be required to create keys used to store the information in the DB
and CSK files again, but both sets of Signature tool data (on the old and new
machines) will execute a BlackBerry application signing process successfully.

 This process is also useful for teams of multiple developers. Each developer is
enabled to sign BlackBerry applications using their own workstation.

17_467114-ch10.indd 24617_467114-ch10.indd 246 8/30/10 1:09 PM8/30/10 1:09 PM

247 Chapter 10: Running Your Code on a Real Device

The Build Process, Revisited
As indicated in Chapter 3, the BlackBerry JDE performs a variety of tasks
when it builds your application. The following files are created as a result of
performing a build. (Here, Application is a placeholder for the actual name
of your application.)

 ✓ Application.cod: This is the code module file: the compiled and
linked program that will be installed and run — after being signed — on
a BlackBerry device

 ✓ Application.csl: This file, used by the Signature tool, contains
information about what kind of signatures is needed. This file tells the
Signature tool which signatures are required, if any.

 ✓ Application.cso: Like the CSL file, this file is used by the Signature
tool, in this case to determine which signatures are optional. You will
always use the Signature Tool to sign your application’s COD files, and
so you don’t need to pay too much attention to whether a signature
is optional — just let the Signature tool do its job, and everything will
work.

 ✓ Application.debug: This file is used during debugging, providing
information that the JDE debugger uses.

 ✓ Application.jad: This is the Java Application Descriptor file, which
allows your application to be hosted on a Web server for users to
download it.

 ✓ Application.jar: This file is an intermediate container for your
application’s compiled Java classes, prior to their being packaged as a
COD file.

 ✓ Application.rapc: This file contains some information that will be
folded into the JAD file.

The Signature tool makes use of the COD, CSO, and CSL files.

Signing Your Application
You can launch the Signature tool in several ways:

 ✓ From within the JDE: This is the simplest way, seeing as how as you’ll
be spending most of your time developing the application using the JDE.

 ✓ From the Start menu: If you installed the JDE Components package, you
can launch the Signature tool from the Start Menu by choosing Start➪
Research In Motion➪BlackBerry JDE Component Package 4.5.0➪
Signature Tool.

17_467114-ch10.indd 24717_467114-ch10.indd 247 8/30/10 1:09 PM8/30/10 1:09 PM

248 Part IV: Finishing and Debugging Your App

 ✓ From the command line: The Signature tool can be found within the BIN
directory in your BlackBerry JDE directory. At the command prompt,
enter java –jar SignatureTool.jar.

 I always launch the Signature tool from the command line. To save time
navigating the file system to find the files I want to sign, I create a little batch
script file:

java –jar “C:\Program Files\Research In Motion\BlackBerry
JDE 4.5.0\bin\SignatureTool.jar”

I save this in a file called sign_app.bat in the same directory as the app I
want to sign. When I execute this script, the Signature tool is already at the
right directory in the file system, with the files I want to sign ready to be
opened. The nice thing is that I can reuse it by copying it to any directory
where I have files that need to be signed.

The signing process goes as follows:

 1. Launch the Signature tool, using one of the methods described in the
preceding bullet list.

 Figure 10-1 shows the Open dialog box. The Signature tool wants to sign
a file!

Figure 10-1:
The startup

screen
for the

Signature
tool.

 2. Navigate to find the COD file that the JDE built for your application.

 This example uses the StorageTest application created in Chapter 6.

17_467114-ch10.indd 24817_467114-ch10.indd 248 8/30/10 1:09 PM8/30/10 1:09 PM

249 Chapter 10: Running Your Code on a Real Device

 3. Select the COD file and then click OK.

 Figure 10-2 shows the elements of your COD file that the Signature tool
will need to sign.

Figure 10-2:
The

Signature
tool’s view

of your
unsigned
COD file.

 4. Click the Request button.

 You’re prompted for the password you supplied during the setup of the
Signature tool. This is the password you entered into the Signature tool
while setting it up with the three files RIM e-mailed to you — not the PIN you
entered when you filled out the Web form to purchase the signing keys.

 5. Enter your password in the Password text box and then click OK.

 The items in the Status column will be updated as the Signature tool
requests RIM to sign the COD module(s).

 The result is a signed COD file. Figure 10-3 shows the message that the
Signature tool displays when the signing request has been successful,
and Figure 10-4 shows the screen with Signed in the Status column for
each signature.

Figure 10-3:
The

Success
message.

17_467114-ch10.indd 24917_467114-ch10.indd 249 8/30/10 1:09 PM8/30/10 1:09 PM

250 Part IV: Finishing and Debugging Your App

Figure 10-4:
The

Signature
tool’s view

of your
successfully
signed app.

 6. Click the Close button to end the signature process.

 Your application is now signed and ready to be loaded onto a real
device.

Understanding what the
signing process does
If your application makes use of any of the restricted classes in the
BlackBerry OS, the OS will look for the required signatures within the COD
file loaded on the device.

RIM restricts your application’s use of certain classes, mainly to reduce the
chance that a malicious application developer could do something unpleasant.
While RIM’s approach doesn’t prevent such behavior, it does provide RIM
with some capability to track down anyone who tries to abuse the use of the
restricted classes. Some examples of the restricted classes are:

 ✓ Message class: Your app can access the smartphone’s set of e-mail
messages through a series of restricted classes, of which Message is
the final result. I use my mobile device to send e-mail messages to my
business associates when we’re generating new ideas for new products;
I would definitely be unhappy if those messages fell into a competitor’s
hands.

 ✓ Phone class: Your app can set up code to keep track of the smartphone
when making and receiving calls. Similar to my e-mail privacy, I’d prefer
to keep my phone usage to myself.

17_467114-ch10.indd 25017_467114-ch10.indd 250 8/30/10 1:09 PM8/30/10 1:09 PM

251 Chapter 10: Running Your Code on a Real Device

 ✓ Cryptographic classes: A large number of cryptographic classes are in
the BlackBerry OS, and your app can use them to store information in
an encrypted form to be decrypted later. Originally, the cryptographic
libraries in the BlackBerry OS were the property of a third party, and so
your app would have to use a separate signing key obtained by license
from that third party in order to make use of these classes. Recently,
RIM purchased that company and made the cryptographic classes
available without a separate license. However, you must still sign your
app to use these classes.

When you request your COD file to be signed using the Signature tool, after
providing the correct password, the Signature tool creates a hash value of
your application’s code and then transmits that value to RIM’s signing service.
A hash value is a calculation of the numeric value of all the bytes of data in
your COD file. The algorithm used to calculate the hash value is supposed to
generate a unique value such that a small difference between two COD files
will produce significantly different hash values — the objective is that the
set of bytes in two different COD files will always produce two different hash
values. This is what the BlackBerry smartphone OS uses to make sure that
your application — the collection of bytes in the COD file — was the one that
was actually signed by RIM.

The signing service — hosted by and at RIM — signs the hash value that the
Signature tool delivered, incorporating information regarding your business
organization through the keys that you purchased from RIM. The signed
value is then returned to the Signature tool, which then incorporates the
signature into your COD file. A separate signature might be required for
different parts of the BlackBerry OS; in the example earlier in this chapter,
one signature was required and two were optional, and all three were
performed and added to the StorageTest.cod file.

 By default, the simulators that come with the JDE, as well as any simulators
downloaded separately from RIM, don’t require COD modules to be signed.
However, the simulators can be executed with a setting that does require COD
modules to be signed, which makes them a better simulation of a real device.

Finding out if your signing
succeeded or failed

 The e-mail address that you used when you purchased code-signing keys will
receive an e-mail from the RIM signing service for each signature it generates
when you use the Signature tool. I recommend creating a folder to hold these
e-mails and setting up a filter to automatically place them in that folder. That
way, more important e-mails don’t get lost amid dozens of messages from RIM.

17_467114-ch10.indd 25117_467114-ch10.indd 251 8/30/10 1:09 PM8/30/10 1:09 PM

252 Part IV: Finishing and Debugging Your App

The message in the e-mail is one of the following types:

 ✓ A signing was successful. In this (optimal) kind of message, you’ll note
that it indicates which signing was performed (required, optional, and
so on), as well as how many signing attempts you have left. The number
you start with is 2,147,483,648 and that gives you approximately 68 years
of signatures at one every second. I haven’t yet found out what happens
when you run out.

 ✓ A signing failed. This can happen for a variety of reasons. Most commonly,
the password was entered incorrectly. As I mention previously, failure
also happens because of network problems or because RIM’s service is
temporarily down.

Deploying Your Application onto a Real
Device Using Desktop Manager

Here’s one more step before your application is ready to be loaded onto a
real device. A separate file, which does not get created by the build process,
must be created for Desktop Manager. The file is the ALX file (Application
Loader XML) and has the file extension .alx. This file contains information
about your application for Desktop Manager and the BlackBerry OS to
understand.

You create an ALX file as follows:

 1, Open your project in the JDE.

 I’ll use the StorageTest project in this sequence of steps.

 2. Right-click the project element, and then choose Generate ALX File
from the contextual menu that appears.

 Figure 10-5 shows what you should see just before selecting the menu
item.

 The ALX file will be created in the folder containing the COD file.

 The contents of the ALX file are generated from the project properties
that are set for the application. To edit the project properties

 a. Right-click the project element and then choose Properties from the
contextual menu that appears. Alternatively, you can press Alt+Enter.

 The Properties dialog box appears.

 b. Select the General tab to see or modify some of the content that will
be placed in the ALX file.

17_467114-ch10.indd 25217_467114-ch10.indd 252 8/30/10 1:09 PM8/30/10 1:09 PM

253 Chapter 10: Running Your Code on a Real Device

Figure 10-5:
Select the
menu item

to generate
an ALX file.

 The most important project property, especially regarding the ALX file,
is the application version number.

 The application version number — a.b.c — is what Desktop Manager
will use to determine whether to replace a version of your application
already on a device with a newer one.

After you have the ALX file generated and the COD file signed, Desktop
Manager is the tool you use to deploy your application to a device. Here’s
how you do that:

 1. Launch Desktop Manager by choosing Start➪All
Programs➪BlackBerry➪Desktop Mananger.

 You should have already installed it when you unpacked your device.
Figure 10-6 shows the startup screen for Desktop Manager version 4.6.

 2. Connect your BlackBerry to your computer with the USB cable.

 DM picks up on the fact that you connected your BlackBerry and
displays the BlackBerry device PIN.

 3. Click the Application Loader icon.

 This switches to the Application Loader screen, as shown in Figure 10-7.

 4. Click the Start button.

 The DM connects to the device. Both DM and the device flash their
screens until DM figures out what applications are already on the
device, and lists them, as shown in Figure 10-8.

17_467114-ch10.indd 25317_467114-ch10.indd 253 8/30/10 1:09 PM8/30/10 1:09 PM

254 Part IV: Finishing and Debugging Your App

Figure 10-6:
Starting

up the
BlackBerry

Desktop
Manager.

Figure 10-7:
Load an
applica-

tion on the
Application

Loader
screen.

 5. Click the Browse button, and in the dialog box that appears, navigate
to your application’s ALX file.

 6. Click Open.

 The DM processes the data and decides whether to include your
application in the list of applications to be deployed to the device. This
is one place where problems can occur. Desktop Manager might refuse
to accept your application, with the message Unable to find any
applications for the device. This results from a situation where
there is a mismatch between Desktop Manager and the particular device
connected to your PC.

17_467114-ch10.indd 25417_467114-ch10.indd 254 8/30/10 1:09 PM8/30/10 1:09 PM

255 Chapter 10: Running Your Code on a Real Device

Figure 10-8:
The Desktop

Manager
lists applica-
tions loaded

on the
BlackBerry.

 To fix this problem, you must do one of two things:

 • Update the version of Desktop Manager to match the version of
BlackBerry device OS on the device. Desktop Manager has a
version number, such as 4.6, that matches the BlackBerry OS
version number on the device.

 Note: In general, software written for one Blackberry OS version
number will run on a BlackBerry OS with the same or higher
version number. This is not always 100 percent true, but it is
almost always true.

 • Install the BlackBerry OS onto your PC that matches the OS on the
BlackBerry device. Don’t worry. You’re not replacing Windows on
your desktop PC; you’re providing a copy of the BlackBerry device
OS to Desktop Manager so that it learns how to “speak” appropriately
to your device.

 Desktop Manager displays a list of items with check boxes next to them,
indicating which items are marked for deployment to the device. In
addition, the Action column indicates what Desktop Manager will do
with the marked items. Unchecked items will be removed from the
device if they are installed; their Action value will be Remove. Checked
items are added to the device if they’re not installed; their Action value
will be Install. Everything else will have an Action value of None, indicating
no action will be taken.

 7. Click Next.

 This displays a summary window, indicating the actions that Desktop
Manager will take with your next click.

17_467114-ch10.indd 25517_467114-ch10.indd 255 8/30/10 1:09 PM8/30/10 1:09 PM

256 Part IV: Finishing and Debugging Your App

 8. Click Finish.

 Your app is installed onto your device, and Desktop Manager displays
Update complete and The loading operation was successful.

You have now successfully deployed your app through a USB cable and onto
a real device. Now it’s time to see what it looks like.

Running Your Application
I assume that you’re familiar with launching applications on a BlackBerry,
so here I will focus on finding the application you just installed. You can find
your app in one of two places, depending on what BlackBerry device you
have and what BlackBerry OS is installed:

 ✓ Downloads folder: Because your app is not standard equipment, the
Desktop Manager delivers it into the Downloads folder. This happens on
devices running OS 4.6 or later, such as the BlackBerry Storm or Tour.

 ✓ Applications folder: Devices running OS 4.5 or earlier have an
Applications folder, and you’ll find your application hiding there. These
devices include the BlackBerry Pearl and 8800.

After you find your app, you’re all set to launch it.

Because you’ve coded the application perfectly, tracked down all the bugs
with the simulator, and successfully signed and deployed your app, you’ll
find no issues running it on your BlackBerry. You’ll also find it behaves
exactly like it did on the simulators, but you might notice a few discrepancies
between the app running on a simulator and running on a device:

 ✓ Performance is slower. Your desktop PC running a BlackBerry simulator
generally runs faster than the actual BlackBerry device, unless you’re
using a really slow PC.

 ✓ Graphics are different. Your desktop PC’s resolution (unless you’re
a graphics professional with really high-end equipment) is a lot worse
than your BlackBerry screen’s resolution. This means that pixels on
the BlackBerry screen are smaller than they are on your monitor; the
simulator’s display makes things look larger, and the device’s screen
shows them smaller.

 You might want to experiment with your user interface elements to determine
what works and what doesn’t. Creating an intuitive user interface is still more
an art than a science. You can find some user interface design assistance
from RIM at http://docs.blackberry.com/en/developers/
deliverables/6625/.

17_467114-ch10.indd 25617_467114-ch10.indd 256 8/30/10 1:09 PM8/30/10 1:09 PM

Chapter 11

Debugging Your Application
In This Chapter
▶ Discovering the types of errors that arise

▶ Using the JDE Debugger

▶ Using the BlackBerry Event Logger

▶ Tracking bugs

In an application developer’s fantasy world, applications would always
be perfect the moment you wrote the last line of code, the JDE built the

COD module, the ALX file was buffed and shined, the signatures were glued
on, and Desktop Manager streamed the resulting bytes down into a perfectly
working BlackBerry device.

In the real world, however, applications don’t always execute correctly.
Sometimes they don’t even build correctly — the dream gets cut short before
you even need to use the Signature tool. So you need to find a way to fix
things.

Using the Debugger is very easy. Debugging, however, is a long and painful
process. Your application is only ever as complete as its most challenging
user — and the more users you deliver to, the more challenges they will
subject your application to. You can lock down the more obvious defects in
your application through judicious use of the Debugger and the tools available
in the JDE.

In this chapter, I show you how to use the JDE Debugger, and how to use the
BlackBerry Event Logger to track down the bugs and fix them.

Understanding Where Errors Occur
Luckily, the JDE provides tools you can use to analyze your application while
you’re coding it, while it’s running in the simulator, and even while it’s running
on a device. And as you develop more BlackBerry applications, you will
discover that you find errors during all three phases. Here’s a look at what
defects in your code can cause for each phase:

18_467114-ch11.indd 25718_467114-ch11.indd 257 8/30/10 1:09 PM8/30/10 1:09 PM

258 Part IV: Finishing and Debugging Your App

 ✓ While you’re writing code: Face it. Everyone makes typing mistakes.
Sometimes they’re easy to spot; sometimes they’re not. The BlackBerry JDE
is unforgiving about typing mistakes, though, and will refuse to build your
application unless it’s satisfied that all the words are spelled correctly. That
includes all the elements of your classes, their methods, and their variables.

 The BlackBerry JDE uses the standard version of Java to compile your
source code, albeit with a subset of its libraries. Just like the standard Java
compiler, the BlackBerry JDE might spew several lines of errors when only
one part of your code is really broken. You should always start your review
of coding errors from the first one that the JDE shows you because fixing
this first might resolve all the other error messages the JDE displays.

 ✓ While you’re using the simulator: The BlackBerry simulator will catch a
great many runtime errors. In Java, when something really bad happens
while a program is running, the Java Virtual Machine throws an exception.
This is a special situation, one that your code might or might not be
ready to handle. For instance, attempting to call a method of an object
before it has been created will cause the Java Virtual Machine to throw a
NullPointerException. The JDE Debugger halts the execution of the
application if this exception is not caught by your application’s code. At
that point, the JDE provides substantial information regarding what was
attempted and what part of your code is misbehaving.

 Some BlackBerry OS classes and methods require your code to anticipate
exceptions that might be thrown, and others might throw exceptions
even without requiring your code to prepare for the possibility. And
sometimes, bad things still get through despite the best of intentions.

 ✓ While you’re running the app on a BlackBerry: Running your application
many times on the simulator might shake out a great many runtime
errors, but you still need to execute your application a number of times
on a real device. This provides more, and even significantly different,
types of errors that your application will need to handle. These problems
tend to be caused more by logic errors: places in your code where the
BlackBerry is happy to do precisely what you told it, but you told it to
do the wrong thing. Unfortunately, the BlackBerry can’t intuit what you
meant for it to do, and so it just goes ahead and does its best to succeed
at completing the orders you gave it.

The BlackBerry JDE displays any coding errors you made when you tell it to
build your application. You’ll also see it showing warning messages about
stuff the compiler wants you to know. In the top part of Figure 11-1, you can
read about three separate errors, which all come from a typing mistake in an
earlier line — the code in that section depends on a variable called ordinal,
which was defined earlier as an integer except back in the definition I spelled
it as ordnal. The bottom of Figure 11-1 shows you some warnings. Many of
these can be ignored — for instance, the compiler will tell you about each
code module that must be signed because your code is using BlackBerry
classes that only signed applications are allowed to use, and I’m pretty
certain you’re planning to sign your app when it’s built, regardless.

18_467114-ch11.indd 25818_467114-ch11.indd 258 8/30/10 1:09 PM8/30/10 1:09 PM

259 Chapter 11: Debugging Your Application

Figure 11-1:
Coding

errors and
warning

messages
show you

something is
wrong.

The BlackBerry JDE also comes with its Debugger, which is a tool that executes
your code on a simulator and allows you to see precisely where in your
source code bad things are happening. The Debugger won’t execute if your
code doesn’t build, so coding errors must be fixed first. However, because
runtime errors can be found only while your code is running, you will find the
BlackBerry Debugger to be an invaluable tool for tracking down just what’s
going wrong. And you can also debug your application running on a real
device while looking at the source code it’s executing from within the JDE.

Using the JDE Debugger
As I mention earlier, you can debug your application while it runs in a
simulator within the JDE. Every time you launch a simulator from the JDE,
you are running its Debugger. The lowest pane of the JDE window has a

18_467114-ch11.indd 25918_467114-ch11.indd 259 8/30/10 1:09 PM8/30/10 1:09 PM

260 Part IV: Finishing and Debugging Your App

Debug tab that becomes the active tab when you launch the simulator, and
shows informative messages as the simulator starts up. See Figure 11-2.

Figure 11-2:
The JDE

Debugger
buttons.

Go

Break Now

Step Over

Step Into

Step Out

Run to Cursor

Debug tab is active.

The Debugger comes with buttons for standard debugging operations:

 ✓ Go (F5): The Debugger continues from where it was stopped, first
executing the line it has stopped upon.

 ✓ Break Now: The Debugger halts execution, wherever the app currently
is, just as if it had hit a breakpoint. There is no function key assigned to
this operation — so you can’t accidentally hit it. Because the application
is mostly running BlackBerry code while your app is running, clicking
the Break Now button almost always halts the code while it’s executing
something inside the BlackBerry OS. You see the result shown in
Figure 11-3. I use Break Now to halt my application when I believe my
code is doing something incorrect, or the application is not responding.

18_467114-ch11.indd 26018_467114-ch11.indd 260 8/30/10 1:09 PM8/30/10 1:09 PM

261 Chapter 11: Debugging Your Application

 ✓ Step Over (F10): The Debugger executes the line it stopped on, and then
stops at the next statement or breakpoint. (Read more about breakpoints
in the following section.)

 ✓ Step Into (F11): If the Debugger stops on a line of code that’s a method
call, Step Into tells the Debugger to go to and stop at the first line within
the method. Note that this is useful only for methods within your code,
and not code provided by the BlackBerry OS.

 ✓ Step Out (Shift+F11): The Debugger executes every line of code from the
point at which it stopped, until it exits the method in which it stopped.

 ✓ Run to Cursor (Ctrl+F11): The Debugger executes every line of code
from the point at which it stopped, and stops at the line where you place
the editing cursor. I use this if I don’t know precisely where an error
is hiding. I set a breakpoint at the beginning of a block of code where I
suspect the problem lies, and then place the cursor further ahead in the
code, and click this button. If the Debugger gets to the cursor’s location,
then I know the problem is somewhere else.

Figure 11-3:
The JDE

Debugger
after

clicking
the Break

Now button,
showing

that no
source code

is available
for you to

see.

18_467114-ch11.indd 26118_467114-ch11.indd 261 8/30/10 1:09 PM8/30/10 1:09 PM

262 Part IV: Finishing and Debugging Your App

Setting, deleting, and
disabling breakpoints
A breakpoint is a location where the JDE places a flag that the simulator will
detect, telling it to halt just before it tries to execute that line of code. You
can use breakpoints to stop the operation of your application before it does
something wrong. For instance, if your application is storing data within the
persistent store (see Chapter 6 for details on the BlackBerry persistent
storage) but doesn’t seem to retrieve the correct data, you could set a pair
of breakpoints: one in the code that stores the data, and one in the code that
extracts it. With your app stopped at either breakpoint, you can step through
each code statement and check the data at each step to make sure everything
is as it should be. If your app is doing something wrong, some part of the
data at one of the steps won’t be what you expect. At that moment, you can
track down the source of the error.

Setting a breakpoint within your application is simple:

 1. Open a source code file in the JDE.

 2. Move the cursor onto the line of code where you wish to set a breakpoint
and then press F9.

 You can also right-click the line of code and choose Set Breakpoint at
Cursor from the shortcut menu that appears.

 The breakpoint appears on the far left of the line of code as a large red
dot, as shown in Figure 11-4.

Figure 11-4:
An active

breakpoint.

Breakpoint

 When the application executes, the Debugger halts the simulator at
the indicated line of code. The application now waits for you to tell the
simulator how to proceed. Normally, you set a breakpoint to check the
data in use by the application where the Debugger has stopped it — you

18_467114-ch11.indd 26218_467114-ch11.indd 262 8/30/10 1:09 PM8/30/10 1:09 PM

263 Chapter 11: Debugging Your Application

can check every piece of data in the method being executed, and in the
member variables of the class this method is part of. So if your app has
halted in the initialize() method of a screen that is about to be
displayed, you can review all the text that the screen is going to show
to make sure that the buttons the user is supposed to see have all been
created and added to the screen.

When you no longer need the breakpoints you set, you’ll want to remove
them. After all, when you’ve fixed the code that was misbehaving, there’s
no need to keep stopping to see whether it behaves like it’s supposed
to. To remove a breakpoint, right-click the breakpoint and choose Delete
Breakpoint at Cursor from the shortcut menu; alternatively, click the line
containing the breakpoint and press F9.

 You can also disable breakpoints. Disabling a breakpoint means the debugger
will no longer stop at the breakpoint when your code executes, but the
breakpoint is still indicated (gray instead of red) on the screen. This allows
you to temporarily remove the effects of a breakpoint but doesn’t completely
erase it, making it easy to remember where you left the breakpoint. To disable
a breakpoint, right-click and choose Disable Breakpoint at Cursor.

Executing your application
with the JDE Debugger
To start your application with the JDE Debugger and the JDE simulator, do
the following:

 1. Press F5.

 This builds your application (if necessary) and launches the simulator.

 2. Using the simulator, navigate to your application and launch it.

That’s all there is to it. The Debugger is connected to your application and
monitors its progress. If you have set any breakpoints, the debugger halts
when one is reached, and the JDE displays an arrow pointing to the line of
code where it stopped. Figure 11-5 shows you the JDE stopped within my
application, right before the app shows its first screen.

 The simulator is a separate application. When a breakpoint is reached and the
Debugger stops your application, the simulator will appear to be unresponsive.
You have to bring the JDE main window to the front. Windows flashes the JDE
item on the taskbar to indicate that the JDE wants your attention.

18_467114-ch11.indd 26318_467114-ch11.indd 263 8/30/10 1:09 PM8/30/10 1:09 PM

264 Part IV: Finishing and Debugging Your App

Figure 11-5:
The

Debugger
stopped

right before
the New

Password
Screen

object is
pushed onto

the screen
stack.

Using the BlackBerry Event Logger
My favorite form of debugging desktop applications involves printing text
to a screen, or better still, a file. I call this “printf-debugging,” after the
C-language print-to-standard–output function, printf. It’s very retro, from a
time before integrated development environments (IDEs), before source-level
debuggers (yes, I’m old enough to remember those years). It’s also very
reliable, and it works with just about every programming language or
development platform.

The BlackBerry compiler will accept the standard Java form of printf,
System.out.println(), but this will work only on a simulator through
the JDE. Luckily, the BlackBerry OS provides a mechanism to do the same
thing: the BlackBerry Event Logger (net.rim.device.api.system.
EventLogger). In this section, you discover how your application can
deliver messages into the BlackBerry event log, as well as how to retrieve
them.

Your application can place text and other types of messages in the BlackBerry
event log. Your application thus can provide operational feedback to you
while you’re developing your code, so you can keep track of what’s going on
while the application is running and get a list of all the important information
your application comes across. This assists your debugging efforts when you
need to know precisely where something is going awry, especially if a problem
occurs when a user is running your application.

18_467114-ch11.indd 26418_467114-ch11.indd 264 8/30/10 1:09 PM8/30/10 1:09 PM

265 Chapter 11: Debugging Your Application

The BlackBerry OS itself uses the event log, but the OS events are rather
cryptic and difficult to interpret. However, every time your application
catches a throwable Java object, a message is automatically sent to the event
log by the OS. And if an exception is thrown that your code does not catch,
the OS writes a stack trace of that exception to the event log.

Setting up your application
to use the Event Logger
The EventLogger class provides only static methods. You don’t have to
create an EventLogger object: You simply execute the method you want,
whenever you want. You must register your application with the Event
Logger before you can start logging messages to the event log.

Here are the steps to follow to register your application and then send data
into the event log:

 1. In your code, create a unique application identifier.

 The simplest way to do this is as you did for accessing the persistent
storage model, covered in Chapter 6:

 a. Open the application’s main class file in the JDE.

 b. Type the fully qualified class name (for example, com.karlgkowalski.

storagetest.StorageTest).

 c. Select the entire fully qualified class name.

 d. Right-click and choose Convert Your Application Class Name to Long
from the shortcut menu.

 The JDE converts the text string in place to a long integer.

 2. Early in your application’s execution, register the unique identifier
and your application’s name with the Event Logger by entering the
following code:

EventLogger.register(your-app-id, “your-app-name”, EventLogger.VIEWER_
STRING);

 This statement links your application’s name with the event log
whenever your application’s unique identifier is used to log an event.
In addition, the VIEWER_STRING log type tells the BlackBerry event log
that it should present information coming from your application as a
string of text. This is the best choice.

 3. Execute EventLogger.logEvent() where you want to write
information into the event log:

String logMessage = “message for event log”;
EventLogger.logEvent(your-app-id, logMessage.getBytes());

18_467114-ch11.indd 26518_467114-ch11.indd 265 8/30/10 1:09 PM8/30/10 1:09 PM

266 Part IV: Finishing and Debugging Your App

That’s all there is to sending events to the BlackBerry event log.

 Your application can’t read events from the event log. It can only write events
into the log.

Viewing and extracting the event log
The BlackBerry event log can be read at any time on the device itself. To
view the event log on the device, hold down the Alt key and type lglg. (For a
touchscreen device using BlackBerry OS 5.0 or later, show the SureType
keyboard, hold the Alt key until it locks, and then type ,5,5.)

Your device displays a screen much like the one shown in Figure 11-6.

Figure 11-6:
A

BlackBerry
event log

displayed on
a device.

Viewing the event log using the device is somewhat challenging because of
the device’s screen size and because you can only look at the contents of one
message at a time. However, you can avoid reading the log on the device in a
couple ways:

 ✓ Copy the day’s contents and paste them into an e-mail. While viewing
the log on the device, press the Menu button and select Copy Day’s
Contents. Figure 11-7 shows you a dialog box that asks whether
you want all messages or just a subset — I recommend choosing
All. Selecting this item copies the log messages for that day into the
BlackBerry’s copy buffer, and you can then switch to the Messages app
and paste the text into an e-mail message. (I usually send the message to
my e-mail address so I can view it on my PC.)

18_467114-ch11.indd 26618_467114-ch11.indd 266 8/30/10 1:09 PM8/30/10 1:09 PM

267 Chapter 11: Debugging Your Application

Figure 11-7:
Choose All
to copy the

entire
day’s log

messages.

 ✓ Download the entire event log to your PC. I have found this to be the
approach I use the most because I can search the contents of the entire
log (or as much as the device has retained) at my leisure.

 To download the event log to your PC, follow these steps:

 1. Connect your device to your PC with a USB cable.

 2. Launch a command line window and navigate to the JDE’s bin
directory.

 If you installed the JDE using the default location, that should be
here:

C:\Program Files\Research In Motion\BlackBerry JDE 4.5.0\bin

 3. Type the following into the command line prompt:

 javaloader –u eventlog > logfilename.txt

 You now have a file logfilename.txt in the current directory on
your PC that contains all the contents of the event log from your
BlackBerry device.

 I prefer to name my downloaded log files using a combination of date, time,
and BlackBerry device, such as 20100213_1738_8900.txt. This gives me
enough information to be able to differentiate log files from different devices
and dates.

For example, the text in Listing 11-1 shows some event log statements
generated for one of the example applications, ScheduledEvent, found in
Chapter 7. These statements were at the end of a thousand-line log file
downloaded from a BlackBerry running the application. The first, second,
and last messages came from the application; the third message was generated
by the BlackBerry OS. In each message are the following items:

18_467114-ch11.indd 26718_467114-ch11.indd 267 8/30/10 1:09 PM8/30/10 1:09 PM

268 Part IV: Finishing and Debugging Your App

 ✓ guid: This is the numeric value that the application initializes the
EventLogger with, to uniquely identify the application.

 ✓ time: The date and time the event was logged.

 ✓ severity: The value representing the severity of the event that was
logged. You can set this value as desired for each log statement your
app sends to the EventLogger, but I recommend using the default
value (0).

 ✓ type: This is the type of EventLogger message, defined when the
EventLogger is initialized by your application. I recommend initializing
the EventLogger with EventLogger.VIEWER_STRING as done in the
steps to set up the EventLogger earlier in this section.

 ✓ app: This is the name of the application, set when the EventLogger is
initialized.

 ✓ data: This is the information delivered using the EventLogger.
logEvent() method. This is where you can see the text delivered in
the three messages logged by ScheduledEvent.

In the last message, you can see the text displaying some data retrieved from
the ScheduledEventScreen class in its fieldChanged() method (note
that this text is part of the data delivered to the EventLogger, and is
something the application code provides).

Listing 11-1: BlackBerry Event Log from the ScheduledEvent Application
guid:0x96D9820232F61853 time: Thu Jul 15 21:48:18 2010 severity:0 type:2

app:ScheduledEventApp data:Event Logger start message
guid:0x96D9820232F61853 time: Thu Jul 15 21:48:18 2010 severity:0

type:2 app:ScheduledEventApp data:Finished initializing
ScheduledEventScreen

guid:0x34B0DF76DFC172F2 time: Thu Jul 15 21:48:29 2010 severity:0 type:2
app:net.rim.simapp data:ABRT

guid:0x96D9820232F61853 time: Thu Jul 15 21:48:39 2010 severity:0 type:2
app:ScheduledEventApp data:ScheduledEventScreen.fieldChanged>
secondsToDelay[7] repeats[true]

The event log will also contain a record of exceptions that your application
runs into. Listing 11-2 shows what a NullPointerException being thrown
in the ScheduledEvent application would look like in the event log. Note
that this exception was intentionally created by the application.

18_467114-ch11.indd 26818_467114-ch11.indd 268 8/30/10 1:09 PM8/30/10 1:09 PM

269 Chapter 11: Debugging Your Application

Listing 11-2: Exceptions Your App Encounters while Executing
guid:0x9C3CD62E3320B498 time: Thu Jul 15 22:41:42 2010 severity:1 type:3

app:Java Exception data:
 NullPointerException
 ScheduledEvent constructor threw me!
 ScheduledEvent
 ScheduledEvent
 <init>
 0x303
 ScheduledEvent
 ScheduledEvent
 main
 0x2AD

The standard elements are all there, but after those pieces, some more
information comes about the NullPointerException and where in the
application it occurred. The last ten lines of the exception listing are broken
down like this:

 ✓ Line 1: NullPointerException. This is the type of the exception that
the application ran into. You should know that this means the application
attempted to execute a method on an object when the object had not
yet been created.

 ✓ Line 2: ScheduledEvent constructor threw me! This text is the
message that was added to the NullPointerException when it was
created.

 ✓ Lines 3–6: These four lines indicate four items:

 • The application where the exception occurred: ScheduledEvent

 • The class where the exception occurred: ScheduledEvent

 • The method where the exception occurred: <init>, which in this
case indicates the ScheduledEvent constructor

 • The offset (in bytes as a hexadecimal value) from the beginning of
the method where the exception occurred: 0x303

 ✓ Lines 7–10: Similar to the previous four lines, these show information
about what part of the application made the call into the code at the
previous four lines. This represents the sequence of method calls that
the OS keeps track of, where one method executes code in another
method, which executes code in yet another method, and so on.

18_467114-ch11.indd 26918_467114-ch11.indd 269 8/30/10 1:09 PM8/30/10 1:09 PM

270 Part IV: Finishing and Debugging Your App

A NullPointerException is the most common exception your app will
encounter — it happens because your app tries to use an object that hasn’t
been created. The BlackBerry compiler won’t issue a warning or an error while
it creates your application if you don’t set up a try/catch block around all
the possible places in your code where a NullPointerException might
occur.

 Although I prefer to use event logging as my main debugging approach, this
method does have limitations. The primary drawback of this method is
performance. If you write information to the event log at every step of your
app’s execution, you slow down the device. Therefore, I use event logging
to narrow the scope of examining my application’s behavior, ideally drilling
down to one method in one class, where I can then heavily log events and
inspect just that one area of my application. This does prolong the experience,
as you create log statements, execute, review the log, and repeat until you
discover the misbehaving piece of code.

Keeping Track of Bugs
You will spend a great deal of your time writing your application. And
although it would be fantastic to write completely bug-free code, your
application will eventually run afoul of someone doing something, somewhere,
that causes a malfunction. Perhaps the worst that will happen is your app
just crashes and refuses to run. Then again, perhaps your bug will be more
subtle, only executing every third Tuesday at midnight but only during a full
moon — and taking out the entire accumulated data at that precise moment,
leaving your users really upset, and you unable to reliably reproduce the
error.

You don’t need a full-featured, bug-tracking database to support small
development efforts. However, the sooner you start taking development
seriously, the sooner you will find yourself delivering high-quality apps.
Serious development efforts require equally serious bug-maintenance efforts.
And while you might find it easier to just list all the “known issues” with your
application in a plain vanilla text file, at some point, you will find it worth
the effort to formally write up all issues you or your users encounter in a
more-structured repository.

 Unfortunately, most bug-tracking software systems require a database server
for storing and searching through all the issues you will record. In addition,
some of the free systems require using a Web server to support a Web-based
front end to the database. This means that you will have to get your hands
dirty to keep track of your bugs. Only a little dirty, though, because the free
database and Web servers are pretty easy to maintain if you use them only
for bug tracking. And you shouldn’t provide access to them from outside your
connection to the Internet, which can reduce the chances of a security
vulnerability that could compromise your system.

18_467114-ch11.indd 27018_467114-ch11.indd 270 8/30/10 1:09 PM8/30/10 1:09 PM

271 Chapter 11: Debugging Your Application

Getting serious about tracking bugs
The most important action you can take to keep track of your application’s
bugs is to write down everything. This may sound simple, but you will find
that it can be very difficult to actually accomplish when you’re running your
app and something unexpected happens. The simple bugs are easy to
reproduce, and generally are the result of one particular set of circumstances
that occurred at the last possible moment before your app did something
that caused a bad thing to happen. This is what makes them easy to resolve.

You will find that the more-challenging bugs are subtle, and depend upon
a sequence of events — some user-initiated, some not — that occurs in the
right order. You might not pick up on all the elements of the sequence, or the
proper order, when the bug causes the operation of your app to go wrong.
Usually, you see only the end result, and lose track of all the steps that
transpired (seemingly correctly) on the way to that end result. Of course,
the subtle bugs typically show up only when you’re trying to solve or see
something else, and your focus is on something other than the problem that
shows up. But, hey! No one said this was going to be easy.

Here’s a list of the information you will want to keep track of when you find
an “anomaly” in your code:

 ✓ Steps to reproduce: Recording the steps to reproduce an issue gives
you two critical pieces of data: what it takes to cause the problem, and
how to know when the problem has been resolved.

 ✓ Device type: Luckily, only RIM makes BlackBerry devices, so you
don’t have to worry about problems from differences among various
manufacturers. However, you do still have to consider the potential
differences between the various devices. Does it have a trackball or a
trackpad? A real keyboard or (on a touchscreen) a virtual one?

 ✓ Device operating system. Each BlackBerry has its own version of
device OS, different from that of other device types and wireless service
providers. When RIM changes the OS enough to renumber the device
OS, sometimes an app that used to work no longer does.

This information will help you define what aspects of your app a bug is
interfering with. Because there are so many different ways an application can
go wrong, you will want to establish the limitations of the device plus your
app to “fence in” the behavior of the bug. The following is a list of circumstances
that bring bugs into existence:

 ✓ Improper initialization of variables: This is probably the biggest cause
of all bugs, and happens more frequently than any other cause. In a Java
class, a member variable can be initialized in any method of the class.
You will see that my classes generally have an initialize method,
used to set up the values of the member variables for an instance created

18_467114-ch11.indd 27118_467114-ch11.indd 271 8/30/10 1:09 PM8/30/10 1:09 PM

272 Part IV: Finishing and Debugging Your App

of that class. However, that doesn’t prevent initializing the member
variables in some other method, which gets executed at some other
point in time. You can restrict access to internal member variables
through the disciplined use of getter and setter methods, and by
making all your member variables have private or protected access
control.

 ✓ Improper timing of threads: You can avoid this error by avoiding the
use of all threads, all the time! Still, you will see this happen eventually.
This situation occurs when your app has multiple threads running at the
same time, and you haven’t prepared for the possibility that the first one
to finish is not the one you expected.

 ✓ Unhandled exceptions: This particular type of bug can be challenging
to track down. You should always keep the following idea in mind: An
exception can be thrown at you without any warning. Although the
BlackBerry APIs clearly specify when a class’ methods can throw an
exception during their operation — and the compiler will not let you escape
without setting up your code to handle one of these — sometimes
exceptions are thrown that are not specified by the APIs. You can’t
predict these, which means you will be exceptionally frustrated when
you come across one. However, you’ll still have to figure them out.

Using a bug-tracking program
Using a bug-tracking solution solves the problem of keeping track of
everything that goes wrong, which also enables you to trace progress in
fixing things. In addition, sooner or later, users are actually going to use
your app — and this means that they’ll start finding more bugs for you. Users
are a lot like unpaid Quality Assurance engineers: They will exercise your
application in ways you never thought possible.

So far, my favorite bug-tracking solution is Bugzilla (www.bugzilla.org).
It’s fairly easy to get it up and running, but as I mention previously, you need
to install both a database server and a Web server to make use of it. Bugzilla
depends on the Web server to deliver the forms and reports to you, and uses
the database server to store all the information regarding the bug tracking
it does. You can find documentation for setting up all three pieces on the
Bugzilla Web site. I like Bugzilla because it’s free and because it’s fun to use
and supported by expert developers who like to keep it that way. However,
Bugzilla is an open source effort, which means getting support for it can be
a little challenging. The Bugzilla support Web page (www.bugzilla.org/
support) provides a link to some Bugzilla consultants you can contact for
paid support of issues you encounter. Or you can search through the Bugzilla
newsgroup (news://news.mozilla.org/mozilla.support.bugzilla)
to find answers to questions others have asked in the past, and even ask
your own.

18_467114-ch11.indd 27218_467114-ch11.indd 272 8/30/10 1:09 PM8/30/10 1:09 PM

273 Chapter 11: Debugging Your Application

You can get away without using a bug-tracking system for a while, but the
more prolific you are, the more apps you develop, and the more users you
sell to — meaning, you’re going to have to get organized on this. For a small
shop, your development machine itself will suffice to provide a running
Apache Web server, database, and Bugzilla deployment.

 Implementing a solution ahead of time and disciplining yourself to use it
correctly is an investment in the future, which will reward you in the end.

18_467114-ch11.indd 27318_467114-ch11.indd 273 8/30/10 1:09 PM8/30/10 1:09 PM

274 Part IV: Finishing and Debugging Your App

18_467114-ch11.indd 27418_467114-ch11.indd 274 8/30/10 1:09 PM8/30/10 1:09 PM

Chapter 12

Submitting to the BlackBerry
App World

In This Chapter
▶ Obeying RIM’s rules

▶ Getting your app in shape

▶ Submitting your app to the BlackBerry App World

Your app is finished. You ran it through multiple simulators, multiple
times. Maybe you even tested it in multiple languages (say, French,

German, Spanish, and Italian). You also installed it onto a real BlackBerry to
make sure the app runs as perfectly there as it does on a simulator because,
after all — especially for corporate apps — a real BlackBerry behaves
noticeably different from its simulator. Your app is now ready for the
BlackBerry App World, though, so it’s time to get it there.

In this chapter, I submit the app I wrote called The Word Locker to the
BlackBerry App World. Every smartphone I’ve used has an application for
taking notes that comes with the phone. This turns your smartphone into
an electronic notepad — flashes of genius will hit you from time to time, and
because your smartphone is always nearby, you can jot down these notes
quickly and save them. The BlackBerry smartphone comes with Memo Pad.
The Word Locker takes this a step further by providing a level of security —
no one can see the notes you create without entering the correct password.

This chapter shows you how to get your app into the App World, taking you
through the final steps for bringing your app out to users whose lives will be
greatly enhanced as a result of your efforts.

19_467114-ch12.indd 27519_467114-ch12.indd 275 8/30/10 1:09 PM8/30/10 1:09 PM

276 Part IV: Finishing and Debugging Your App

Getting Ready to Submit Your App
Before you can submit your app to the App World, you must be a vendor. In
Figure 12-1, you can see the entry point for App World Vendors, which is the
starting point for you to become one. The URL for the portal is https://
appworld.blackberry.com/isvportal. (Chapter 2 walks you through
that process.) After you receive an acknowledgment e-mail from RIM indicating
that your request to become an official vendor has been approved, you can
submit your first app. Submitting your application to the App World is a little
more involved than just uploading the COD file, though: You also have to
provide metadata (information about the application you’re delivering) to
help users understand your app and decide whether to download it.

Figure 12-1:
Entering the
BlackBerry
App World

Vendor
Portal.

You can find more information about submitting applications and managing
your vendor data at

http://docs.blackberry.com/en/developers/deliverables/15522/BlackBerry_App_
World_storefront-Administration_Guide--1086301-0409112053-
001-2.0-US.pdf

19_467114-ch12.indd 27619_467114-ch12.indd 276 8/30/10 1:09 PM8/30/10 1:09 PM

277 Chapter 12: Submitting to the BlackBerry App World

 Have all the required information in the following list ready to go before you
start the process of submitting your app to the App World. This will make the
process go more smoothly and faster. (Note: The App World Vendor Portal
site has a habit of timing out after a few minutes of inactivity, so if you can get
out of the gate with all your information and files ready to go, you can avoid
wasting time re-entering required items that didn’t get saved.)

Here’s what metadata and files (some of which is optional) you need to have
ready when you submit your app to the App World:

 ✓ Application name: This is the name you implemented and built with the
Java Development Environment (JDE). Most important is the restriction
against using special characters such as ™ or ®. RIM recommends using
only ASCII characters. (This means you should only use characters in
your app’s name that can be typed directly from your PC’s keyboard,
excluding function keys. Pretty much anything alphanumeric will be okay.)

 ✓ Application icon or logo: You need to provide an icon or logo as a PNG
(Portable Network Graphics) file for the App World to use to display and
identify your application to BlackBerry users. The file must be sized at
480 x 480 pixels. See Figure 12-2 for some example logos.

Figure 12-2:
Application

icons.

 ✓ Category: RIM provides 20 categories of applications through the App
World, so you need to decide upfront where your app belongs. Note:
You can select only one category for your app. The current set of
categories are

Business Education Entertainment Finance
Games Health &

Wellness
IM & Social
Networking

Maps &
Navigation

Music & Audio News Photo & Video Productivity
Reference &
eBooks

Shopping Sports &
Recreation

Test Center

Themes Travel Utilities Weather

 You can find the current number of apps available for each of the
categories by navigating to the BlackBerry App World site. The first
App World Web page you come to shows the available categories, but
not the number of apps in each. To find this information, simply click
any of the categories, and the current count of apps in those categories
will appear. In each category, the app count for each subcategory (if

19_467114-ch12.indd 27719_467114-ch12.indd 277 8/30/10 1:09 PM8/30/10 1:09 PM

278 Part IV: Finishing and Debugging Your App

any) is also displayed. The top three most populous app categories
are Themes, Games, and Reference & eBooks. The least populous app
categories are Weather, Shopping, and Education. Your app will appear
with all the other apps in your chosen category, which means it will be
fighting to catch the eyes of the App World visitors looking for an app
like yours. A weather or shopping app will have less competition than a
game or a theme, but don’t let that stop you from writing your app.

 ✓ License type: RIM provides three different license types that you can
choose from to allow users to download your application:

 • Free: Users download your app, and neither you nor RIM make any
money off the transaction. This is clearly not going to turn you into
a millionaire. I submitted The Word Locker as a Free app because
it was fairly simple in its design and has no frills. One reason I
did this was to generate feedback from users to help guide me in
improving the app — and an improved Word Locker may be
submitted as a Paid app.

 • Paid: Users download your app only after making a payment, which
is split between you (70 percent) and RIM (30 percent). To charge
users to download your app, you have to have signed all of the
license agreements during the process where you registered to
become an App World Vendor. (Chapter 2 covers the vendor
registration process.) If your app is submitted as a Paid app, you
will also have to choose a license model, covered next.

 • Try & Buy: This license type allows users to download a version
of your app with limited functionality for free, and then purchase
the full version after they get hooked. Note that you may have to
provide two separate COD files for this license type, depending on
which license model you choose for your license.

 ✓ License model: You have to choose a license model if your app’s license
type is either Paid or Try & Buy. RIM provides the following license
models to choose from:

 • Static: This is the simplest license model. No other information is
required. RIM handles all the details. For Try & Buy, this license
model requires you to submit two separate COD files: one is your
Try app with limited functionality, and the other is the full-featured
Buy app.

 • Single: This license model requires you to supply a single license
key that is used to unlock the application.

 • Pool: This license model is similar to the Single model, except
that you provide RIM a collection of different serial numbers that
unlock the application. RIM delivers a different serial number to
each user.

19_467114-ch12.indd 27819_467114-ch12.indd 278 8/30/10 1:09 PM8/30/10 1:09 PM

279 Chapter 12: Submitting to the BlackBerry App World

 • Dynamic: This license model means that the App Store server
makes an HTTP connection to a URL — which you must also
provide during the submission process — when it is time to
generate a license key. The Web site at the URL must generate a
dynamic license key based on your own algorithm. You can find
more detailed information about this at

http://na.blackberry.com/eng/developers/appworld/Dynamic_License_Flow.pdf

 ✓ Application description: The description is your place to tell users what
your app does to make their lives better. Your application description
is your primary marketing tool, so you want to make sure you cover the
basic details of what your application does in a way that gives users a
vision of how using your app will be beneficial. You are limited to 2,000
characters, though, so write concisely and compellingly. Here’s an
example of good and bad application descriptions:

 • Bad: The Word Locker application stores your notes, and only
someone who has the password can see them.

 • Good: Your notes are safe from prying eyes with The Word Locker.
Enter a password, and you can store any text you like, knowing
only you can see your notes.

 ✓ Wireless service providers: RIM sells BlackBerry smartphones through
a wide variety of service providers. Generally, you want to deliver your
app to as many providers (and therefore customers) as you can, but if
you want to give only one provider’s users exclusive access to your app,
this is where you so indicate that. (I haven’t found any good reason for
excluding the customers of a particular wireless service provider.)

 ✓ Country/Region: You can limit your app to specific countries to which
the App World delivers. Again, the fewer restrictions you place on the
sale of your app, the more you will sell. One reason you may choose to
limit which countries your app is available for purchase could be related
to export control restrictions. For instance, The Word Locker required
an export control classification number that indicates the fact that some
cryptographic code is executed (to hide the password). Restricting the
country to USA-only would mean less export control because the product
would not be available outside the United States. Of course, I would be
limiting my sales because of this restriction. You can select from the
following:

 • Available in All Countries: This selection allows App World to offer
your app in all the countries where App World is available.

 • Available Only in the Countries Selected Below: Selecting this option
reveals a list of all the countries in the world, and you select those
countries where App World will allow users to download your app.
Note that although all countries are listed, the App World is not
necessarily available everywhere.

19_467114-ch12.indd 27919_467114-ch12.indd 279 8/30/10 1:09 PM8/30/10 1:09 PM

280 Part IV: Finishing and Debugging Your App

 • Available in All Countries Except for the Ones Selected Below: This
selection is the opposite of the previous bullet. You select those
countries where you do not want App World to allow users to
download your app.

 ✓ Releases: Your app must have at least one release version number,
although for the Try & Buy license type, you need two: one for the trial
version and one for the full release. You can use any numbering scheme
you prefer, but most BlackBerry applications generally follow the
dotted-triplet format (for example, version 4.2.1).

 ✓ File bundles: You provide a collection of information about your
application, including the COD file(s) that make up your app. In addition,
you can set up different versions of your app to be provided to different
BlackBerry devices. For example, you might have optimized a version
of your app for certain devices, such as the BlackBerry Storm, to take
advantage of its capability to do both landscape and portrait orientations.
You can upload the different COD files for each separate device at this
stage of the submission process.

 ✓ Screenshots (optional): You can provide screenshots from your app.
The App World allows up to 50 screenshots, each of which can be up to
640 x 640 pixels. GIF, JPG, and PNG image types are accepted. You will
want to show off screens from your app to give potential buyers some
visuals of your app in use.

Deciding on a price for your app
The pricing tiers for BlackBerry applications are as follows:

 ✓ Free

 Users don’t pay to download your application.

 ✓ $2.99–$19.99, in increments of $1

 ✓ $19.99–$99.99, in increments of $10

 ✓ $99.99–$599.99, in increments of $50

 ✓ $599.99–$999.99, in increments of $100

I chose to set The Word Locker price as Free because it is a fairly simple app
with very few frills. I have already thought of features that I will probably add
in a future version — for instance, the capability to back up the set of data
to a PC using Desktop Manager. I have an idea for another app already, and
if I can get it implemented, I will definitely charge something for it because I
believe there’s a market for this particular app idea, and the price will be low
enough (less than $10) that a BlackBerry user who makes use of this app will
be happy to pay a small fee for it.

19_467114-ch12.indd 28019_467114-ch12.indd 280 8/30/10 1:09 PM8/30/10 1:09 PM

281 Chapter 12: Submitting to the BlackBerry App World

You can search through the App World for apps similar to yours and discover
what other developers are asking for their apps. A quick look over the App
World Catalog shows that the most populous categories have about 10 percent
of their apps for free, and the lesser categories have about 50 percent of their
apps for free. As of this writing, the most expensive game app was $14.99,
and the most expensive business app was $199.99.

Paying for the submission
When you submit your application for RIM to review and finally deliver to
the App World, RIM will charge you $20 for the effort. This fee comes from
the $200 you pay when you register to become a vendor at the BlackBerry
App World, which in essence means that you have a total of ten submissions
already paid for in advance. If you use them up, you’ll have to purchase
another set of ten submissions for another $200. RIM is also happy to take
your money at any point, so you can purchase as many submissions as you
have money to pay. The important points to remember about this are

 ✓ Each time you submit an application to be reviewed, it will cost one
submission ($20).

 ✓ If your application is rejected by RIM, submitting a revised application
will again cost one submission.

 ✓ If you submit multiple versions of the same application to be reviewed,
with each version submitted for a different BlackBerry model, the
combined set of application versions counts as one submission.

Understanding What RIM
Looks for in Your App

The BlackBerry App World allows one-stop shopping for BlackBerry users
to find and download software to make their BlackBerry smartphones more
useful. RIM wants to sell more smartphones, of course, and so RIM wants
users to enjoy the experience of not only being able to find quality applications
in their App World, but also the experience of the applications themselves.
Accordingly, your application must meet RIM’s expectations of quality and
consistency. Although I’m not privy to all the details of what RIM does and
does not look for, here are a few do’s and don’ts to keep in mind:

 ✓ Your app should not crash the user’s BlackBerry smartphone. This
is something that holds true on just about every machine or operating
system. Users abhor and eschew apps that crash or terminate abruptly.
RIM will run your app on the BlackBerry smartphones you designate as
being able to run your app. So your app must not crash.

19_467114-ch12.indd 28119_467114-ch12.indd 281 8/30/10 1:09 PM8/30/10 1:09 PM

282 Part IV: Finishing and Debugging Your App

 ✓ Your app should comply with the BlackBerry App World Vendor
Guidelines. You can find the guidelines by going to the Vendor Portal
site at https://appworld.blackberry.com/isvportal and
clicking the BlackBerry App World Vendor Guidelines link.

 ✓ Your app should be careful about memory usage. BlackBerry smartphones
may have a couple of hundred megabytes of operational memory
(memory your app will use to manipulate information while running),
but that’s total memory, used by the OS and any other running applications.
For example, if you’re planning an app that creates animation in the
palm of a user’s hand, be sure that your app is very stingy when it
comes to creating objects. You want your app to “play nice” with the
limited resources.

 ✓ Your app should be careful about communicating over the wireless
network. A lot of users pay for every byte that gets moved up to or
down from the network, so your app should inform the user of the
potential for large amounts of data being uploaded or downloaded, and
give them the option of living without that particular feature.

 ✓ Be careful with your application description. Remember that the App
World is a public place, with no parental oversight restrictions, and
your app’s description will be read by a wide variety of people. RIM will
want all the aspects of your app displayed at the App World to make the
user’s experience of using the App World to reflect well upon RIM and
the App World in general. RIM will probably consider your application
description worthy of review although it’s not clear that RIM will reject
an application and require another submission payment just because
your wording is not “politically correct.” One of the reasons I mention
this is that although this has not occurred in my experience with the
App World, I have seen this happen while submitting an application to
another online marketplace for a different smartphone. The description
my colleagues and I put together included the app’s name in just about
every sentence, and the reviewer felt that this was a little too much. So,
we removed about one-half of the usages of the app name, and within a
day or two, the app was available for download.

After RIM reviews your application submission and accepts it, you will be
able to “light it up” and mark it ready to be downloaded at the App World.
On average, the time between submitting your app and RIM completing the
review is about one business week. After your app is accepted, it takes about
24 hours from the time you post your application for sale at the App World
until it becomes available for users to download. I cover this in the next
section.

19_467114-ch12.indd 28219_467114-ch12.indd 282 8/30/10 1:09 PM8/30/10 1:09 PM

283 Chapter 12: Submitting to the BlackBerry App World

Submitting Your App to the
BlackBerry App World

This section covers the steps of delivering all the data you collected, plus
your BlackBerry application to the BlackBerry App World, for review by RIM
and eventual successful downloads by your prospective users. Ready?

 1. Do a clean build of your app from the JDE (see Chapter 3).

 This step makes sure that your code compiles and builds correctly —
and, most importantly, that nothing has inadvertently gone wrong since
the last time you built it.

 2. Sign your COD file (refer to Chapter 10).

 Without the signature, your app won’t run on a real device, and RIM
doesn’t sign your submitted COD files for you.

 3. Point your browser to https://appworld.blackberry.com/
isvportal.

 Refer to Figure 12-1 to see the Vendor Portal page.

 4. Log in, using the username and password you selected when you
registered to become a vendor.

 Figure 12-3 shows the successful login page.

Figure 12-3:
A

successful
vendor

login.

19_467114-ch12.indd 28319_467114-ch12.indd 283 8/30/10 1:09 PM8/30/10 1:09 PM

284 Part IV: Finishing and Debugging Your App

 5. Click the Manage Applications link.

 This brings you to the Manage Applications page, which shows a list
of all the apps you’ve submitted and their status. For the first app you
submit, this page will be pretty empty.

 6. Click the Add Application button.

 Figure 12-4 shows the result. Your next step is to tell RIM about any
Export Control information you have regarding your application.
Because RIM will sell your application in foreign countries, certain
procedures must be followed to ensure that you’re not trying to deliver
high-value technology without permission.

 7. Fill out the Export Control information and then click Next.

 The Export Control information you provide to RIM is used to determine
whether RIM can sell your application in a country other than that of its
origin. The U.S. government wants to be sure that the software you ship
to customers outside the US meets the export control regulations. For
example, a mobile app that provides access to a user’s eBay account
can be exported because it won’t be doing anything more than a Web
browser can already do. However, the U.S. government has decided to
restrict foreigners’ access to some types of applications. For instance,
an application that uses strong encryption to store data entered by a
user on their BlackBerry would make it difficult for the agents of a law
enforcement agency to retrieve the data in a timely manner. My app The
Word Locker ran slightly afoul of this part of the App World submission,
and I had to determine how my app was to be classified under the U.S.
export control regulations. Because my app didn’t use encryption but
did use part of the BlackBerry cryptographic libraries, RIM wanted to
know precisely how the app should be classified so that it would not
be punished for selling something outside the U.S. borders that the U.S.
government classifies as not to be exported. You can find out more
about U.S. export classifications at www.bis.doc.gov.

19_467114-ch12.indd 28419_467114-ch12.indd 284 8/30/10 1:09 PM8/30/10 1:09 PM

285 Chapter 12: Submitting to the BlackBerry App World

Figure 12-4:
Provide

Export
Control

information
for your app.

 The Enter Main Application Data screen appears, as shown in Figure 12-5.

19_467114-ch12.indd 28519_467114-ch12.indd 285 8/30/10 1:09 PM8/30/10 1:09 PM

286 Part IV: Finishing and Debugging Your App

Figure 12-5:
Tell the App
World about
your app on

this page.

 8. Enter the requested application data and then click Next:

 • Application Name: Enter your application’s name in the text box.
Note: You can’t use copyright or trademark symbols in the
application’s name, as mentioned in the section, “Getting Ready
to Submit Your App.” The two check boxes below the Application
Name field should be left unchecked.

 • Icon: Click the Add button and select the 480 x 480 image you
want to be used for display through the App World on the various
BlackBerry devices. Note: This is not necessarily the same file as
that used within the application for display on the device Home
screen; the two images should be nearly identical in appearance,
however.

 • Category: Select the category that your app best fits from this
drop-down list.

 • Sub-category: If your Category selection reveals another drop-down
list, select the subcategory that your app best fits.

19_467114-ch12.indd 28619_467114-ch12.indd 286 8/30/10 1:09 PM8/30/10 1:09 PM

287 Chapter 12: Submitting to the BlackBerry App World

 • License Type: Select the type of license from the drop-down list.
Refer to the earlier section, “Getting Ready to Submit Your App”
for more about the License Type.

 After you click Next, the Add Languages and Descriptions of Your
Application page appears, as shown in Figure 12-6.

 9. Select the language(s) that your app supports, enter a description of
your app in the Application Description(s) text field, and then click
Next.

 The Distribution Restrictions page appears, as shown in Figure 12-7.

Figure 12-6:
Add your

application
description

and the
languages

you support
in your app

here.

19_467114-ch12.indd 28719_467114-ch12.indd 287 8/30/10 1:09 PM8/30/10 1:09 PM

288 Part IV: Finishing and Debugging Your App

Figure 12-7:
Select the

carriers and
countries
your app

will be
running on

(or not).

 10. Select which carrier(s) your app was designed for and which
country(ies) you want to sell your app to from the Carrier Restrictions
and Country Restrictions drop-down lists, respectively; then click
Next.

 This stage allows you to set the restrictions on which wireless service
providers’ users might or might not be permitted to download your
app — and, similarly, which countries’ users may be permitted to
download your app.

 The ScreenShots page appears, as shown in Figure 12-8.

 11. Click the Add Screenshot button and browse to the screen shot(s) you
want to upload; then click Next.

 You can add up to 50 screen shots on this page.

 When you click Next, the Releases page appears, as shown in upcoming
Figures 12-9 and 12-10.

19_467114-ch12.indd 28819_467114-ch12.indd 288 8/30/10 1:09 PM8/30/10 1:09 PM

289 Chapter 12: Submitting to the BlackBerry App World

Figure 12-8:
Upload
screen

shots of
your app

for users to
view before

they buy.

 12. Click the Add Release button to expand the Web page. Provide the
following information, and then click Next:

 • Selected Release, Release Version, and Release Notes: Select the
release number and enter the version number. In the Release
Notes text field, add any comments about the current release.

 • View Bundle, Bundle Name, and Minimum OS: If you have different
COD files for different devices or OS versions, create a separate
File Bundle for each by clicking the Add New Bundle button. Enter
the name in the Bundle Name text box, and then select the OS
version number from the Minimum OS drop-down list.

 • Supports All Devices: Select this check box if your app will run on
all devices; deselect if you are targeting a specific device.

 • Filebundle Language: Select the language from this drop-down list.

 • COD Files: Click the Add button and then navigate on your machine
to the COD file for each File Bundle for your app.

19_467114-ch12.indd 28919_467114-ch12.indd 289 8/30/10 1:09 PM8/30/10 1:09 PM

290 Part IV: Finishing and Debugging Your App

 Figures 12-9 and 12-10 show a completed Releases and File Bundle page
for my sample app The Word Locker. You can see in Figure 12-10 that all
devices running OS 4.5.0 should be able to download and run my app.

Figure 12-9:
The Release

page.

19_467114-ch12.indd 29019_467114-ch12.indd 290 8/30/10 1:09 PM8/30/10 1:09 PM

291 Chapter 12: Submitting to the BlackBerry App World

Figure 12-10:
A completed

File Bundle
page.

 After you click Next, the Application Summary page appears, as shown
in Figure 12-11.

19_467114-ch12.indd 29119_467114-ch12.indd 291 8/30/10 1:09 PM8/30/10 1:09 PM

292 Part IV: Finishing and Debugging Your App

Figure 12-11:
The

submission
summary

page.

 13. Review the settings you selected in the previous screens, and then
select either the Leave Application and Releases(s) in Draft and
Submit for Review Later radio button or the Submit Application and
Release(s) for Review Immediately radio button.

 Leaving your app as a draft does not cost you any submission points.
As illustrated in Figure 12-12, I left my Word Locker app as a draft while
I tracked down some bugs. When I returned to complete the submission
process, the Manage Application page (reached in Step 5) showed The
Word Locker status as Draft, and clicking the link of its name brought
me to the Edit Application Submission page, as shown in Figures 12-13
and 12-14.

19_467114-ch12.indd 29219_467114-ch12.indd 292 8/30/10 1:09 PM8/30/10 1:09 PM

293 Chapter 12: Submitting to the BlackBerry App World

Figure 12-12:
Word

Locker sits
in limbo
while its

author goes
bug hunting.

Figure 12-13:
The top half

of the Edit
Application
Submission

page.

19_467114-ch12.indd 29319_467114-ch12.indd 293 8/30/10 1:09 PM8/30/10 1:09 PM

294 Part IV: Finishing and Debugging Your App

Figure 12-14:
The

bottom half
of the Edit

Application
Submission

page.

 14. Click Finish.

 When you complete your submission, RIM has your app and will review
it over the next week or so.

And that’s it. Your application is ready for review by RIM. If you were careful
about your application development, there should be no difficulty in your
app being selected to appear in the BlackBerry App World.

After I submitted my Word Locker app for review, I got an e-mail from RIM
indicating that the app was in queue for review.

If RIM approves your app, you will receive an e-mail indicating that your app
has been approved and that you will need to login to the App World Vendor
portal to finalize the process. Follow these steps:

 1. Log in to the App World Vendor Portal.

 2. Click the Manage Applications link.

 You will be shown the applications that you’ve uploaded for review.

19_467114-ch12.indd 29419_467114-ch12.indd 294 8/30/10 1:09 PM8/30/10 1:09 PM

295 Chapter 12: Submitting to the BlackBerry App World

 3. For the application that has been approved, click the Post for Sale link
in the Status column.

Figure 12-15 shows the applications page at the Vendor portal after RIM
approved the app (top) and after I instructed RIM to post it for sale at the
App World (bottom).

Figure 12-15:
The Word

Locker
available for

sale at the
App World.

If RIM rejects your app, you have to review the reasons provided for rejection
and address those reasons.

For example, The Word Locker was held up on its first submission because of
export control restrictions. I received an e-mail from RIM exactly two weeks
after I submitted the app, asking me to fill out a PDF form indicating the
encryption that my app performed and to send the form back to RIM. I did
so, but I didn’t include enough information about the export classification. I
did include in the e-mail body a textual description of what my application
used from the cryptographic library, and RIM’s response was to provide
me a different Export Classification form to precisely define which export
classification my app fell into. After that, RIM accepted The Word Locker, and
I was able to post it for sale in the App World.

19_467114-ch12.indd 29519_467114-ch12.indd 295 8/30/10 1:09 PM8/30/10 1:09 PM

296 Part IV: Finishing and Debugging Your App

19_467114-ch12.indd 29619_467114-ch12.indd 296 8/30/10 1:09 PM8/30/10 1:09 PM

Part V

Securing and
Supporting Your App

20_467114-pp05.indd 29720_467114-pp05.indd 297 8/30/10 1:09 PM8/30/10 1:09 PM

In this part . . .

If you were going to write just one app, you could
probably ignore this part — but just like eating those

famed potato chips, you can’t stop at just one! Each app
you write will itself generate ideas for new apps, or at
least new ideas for a future version. So this part assists
your understanding of what you can do to support not
only your first app but also every other app you write or
dream of writing.

You also discover the basics of source code control and
why it’s a good idea to track your bugs in an organized
manner. (As you can read here, the best thing you can do
when you find a problem is to record it, if only for posterity.)
You also find out about the joy of creating your own wiki,
where you can give your ideas a place to rest so you can
find them again at will, and unload them from your head
so that you have more space for more ideas.

20_467114-pp05.indd 29820_467114-pp05.indd 298 8/30/10 1:09 PM8/30/10 1:09 PM

Chapter 13

Best Practices for Application
Development

In This Chapter
▶ Introducing coding styles

▶ Architecting maintainable code

▶ Finding and fixing memory leaks

▶ Making your app lean and mean

▶ Keeping your code safe and organized

Writing applications for BlackBerry can bring you satisfaction, frustration,
joy, and sorrow — just like writing for every platform and operating

system you can think of. A Hello, World! application is easy to write and
take care of; anything more complicated is, well, more complicated both to
implement and also to maintain. After you release your application to the
App World, you will experience the “pleasure” of many users finding every
nook and cranny of your app and all the different problems that result. Some
of these problems will be user error, some will be the fault of the device or
even the operating system. Still, most problems will be the result of something
you neglected to prevent. And don’t discount feedback: Your users will
sometimes comment on things that a future version of your app might do.

Strive to write your application while keeping an eye toward the future. After
all, at some point, you’re going to have to modify, augment, or rewrite your
code. And although actually making changes is something most of us don’t
want to think about, if you take the time to plan ahead and write your code
today knowing that something tomorrow will require you to improve what you
write now, you and your code will both be in a good position for whatever
the future brings. This mindset does take discipline as well as a little more
work, but the benefits of keeping your code maintainable from the beginning
definitely outweigh the cost of making it maintainable.

You will also find that making your code readable is another worthwhile goal.
When you go back to update your app, you have to get back into “rhythm” with
your code: That is, you’ll need to understand precisely what’s going on. If your

21_467114-ch13.indd 29921_467114-ch13.indd 299 8/30/10 1:10 PM8/30/10 1:10 PM

300 Part V: Securing and Supporting Your App

code isn’t readable or if you find yourself taking a long time to remember why
you implemented a specific approach to solving a problem, you could end up
breaking the code you’re trying to improve. If your code is easy to comprehend
from the first moment you look at it, though, you can make changes faster and
more effectively, with little risk of introducing more problems.

In this chapter, I introduce you to some of the elements of the coding style
that I prefer (some of which you might have noticed from the code samples
elsewhere in this book). I also go over some architectural concepts, ways to
structure your code, and some design patterns that I use fairly frequently.
Then, I talk a bit about memory leaks and how to avoid them, as well as how
to streamline your app. And finally, I talk about backing up your data and
using a source code control system to keep your code safe and organized.

Coding with Style
If you’ve been programming for awhile, you already have a coding style that
you’re comfortable with. If you’re like me, your coding style has evolved,
especially if you work with other software developers or if you’ve read many
code samples in books. You might have gotten used to one particular style
simply because of the amount of programming you’ve done for a particular
platform using a specific tool. Maybe you just accept the default initial
coding that a tool provides and adjust your coding accordingly to match
the tool’s style of coding. Sun Microsystems, the creator of Java, has its own
coding style guidelines — not hard-and-fast rules, per se, but suggestions put
together as the Java programming language evolved.

The following sections describe some of the coding style standards I’ve
amassed over my software development career. Adhering to them helps me
to come up to speed fairly quickly whenever I have to start working on my
code again. That’s what code styles is all about: Putting your code into a
state where you can easily slide back into developing and improving it.

Naming classes and variables
The following sections describe the naming conventions I follow when creating
classes and different types of variables.

Naming classes
I follow the Sun recommendation for naming classes. The names of classes
in my applications are all in camel case, wherein the first letter of each
word of the class name is capitalized and all the rest are lowercase, such as
NewPasswordScreen. This is one of the places where Sun violates its own
suggestion: For example, the Java URL class (java.net.URL) is clearly not

21_467114-ch13.indd 30021_467114-ch13.indd 300 8/30/10 1:10 PM8/30/10 1:10 PM

301 Chapter 13: Best Practices for Application Development

in camel case, nor are several other URL-related classes. RIM occasionally
violates this suggestion as well. However, my code always follows this style
so it’s easy to tell what is and is not a class name.

Naming member variables
Almost every class you write will have member variables; you’ll store data
for each object of your class for later reference. If your entire class fits on
one screen, you can see which variables are member variables and which
ones are not. Chances are, though, that you’re adding a decent amount of
code — more than one screen’s worth — which means that you’ll eventually
be staring at a block of code far away from where the member variables are
declared. And you’ll want to have an easy way to determine which variable is
which. Listing 13-1 shows an example of two classes demonstrating good and
bad member variable naming.

Listing 13-1: The Good and the Bad of Naming Member Variables
public class GoodMemberVariable
{
 private int m_time;

 public void setTime(int time)
 {
 m_time = time;
 }

 public GoodMemberVariable()
 {
 }
}

public class BadMemberVariable
{
 private int time;

 public void setTime(int time)
 {
 // this will compile, but what value will be
 // assigned to which variable?
 time = time;
 }

 pubic BadMemberVariable()
 {
 }
}

I put m_ in front of all my member variables to distinguish them from any
other member variable. In addition, I make sure that my member variable
names are noticeably different from the names of any other variables used in
the class’s methods.

21_467114-ch13.indd 30121_467114-ch13.indd 301 8/30/10 1:10 PM8/30/10 1:10 PM

302 Part V: Securing and Supporting Your App

Naming parameter variables
Back in the days of C programming, I adopted a coding style for naming
the parameters passed into a function, prefixing them with in, out, or io
depending on whether the parameters were to be used (respectively) as data
coming into the function, data the function would create and return, or data
that acted as both. I still follow this approach in my Java coding because I
find it very important to make obvious which variables were passed into a
method, and which ones are local or member variables. Almost all the
methods I write use in parameters; typically, my methods return new objects
as opposed to setting data in an object that is passed in as a parameter.
Simple data types such as int will only ever be input parameters because
their values are copied into the method when the method is called, and are
unchanged when the method returns to the code that called it.

Naming local variables
I find it useful to provide local variables with names longer than one character,
and almost always much longer than that. The names will necessarily avoid
the patterns I use for parameter variables and member variables, and generally
these names will be very indicative of what the variables are used to
accomplish. For instance, the loop variable in my for loops is always
something like index (because I’m usually using it as an index into a set of
items). Another example: If I write code to calculate the X and Y coordinates
of items my application displays on a screen, I use xPos and yPos for the
calculated values. This reduces the likelihood of my misunderstanding the
use of x or y as it provides information specific to the position my code is
calculating.

Keeping method and class sizes small
My rule for writing class methods is no longer than one screen — and preferably
much shorter. The more code you stuff into a method — that is, the more
you want the method to do — the greater the chance you will introduce an
error, and the more difficult it will be for you to find the error when you
discover the problems it causes. Short methods are easy to debug, and you
can build up lots of simple, short methods into large conglomerations that do
just about anything.

Now, this doesn’t mean that my methods are always small every moment that
I work on them. I might violate this rule on a daily basis while creating and
improving my code, and then later go back over what I produced to reduce
it to a smaller size. My approach to coding is to write first, and re-factor
second. But I do make sure the re-factoring gets done, which helps keep my
methods readable and easy to understand when I come back to improve
them.

21_467114-ch13.indd 30221_467114-ch13.indd 302 8/30/10 1:10 PM8/30/10 1:10 PM

303 Chapter 13: Best Practices for Application Development

In line with making methods as small as can be, you should try to keep your
classes small as well. At the very least, you will find it easier to scroll through
a few hundred lines of a class than you will to scroll through a few thousand
lines of a class. (And yes, I’ve worked on classes that were more than a
thousand lines long.)

 Part of accomplishing this goal means that you will need to limit the capabilities
of each of your classes. Putting too much functionality or too many features
into a class will increase the size of the class. This leads to more methods,
leading to greater likelihood of errors, and thereby more debugging. If you find
your classes getting fatter and fatter, review each of the largest ones. Very
likely, you can find a way to carve off some functionality to place in a separate,
smaller class. In Listing 13-2, you see an example of a class that contains
several pieces of data to support its usage as a text-editing screen. The text
being edited, the time of the edit, and whether the edit has occurred are
contained in the TextEditScreenBig object as separate member variables.

Listing 13-2: The TextEditScreenBig Class Contains Several
Member Variables to Do Its Job
// all-in-one Big class
public class TextEditScreenBig extends MainScreen
{
 private String m_text;
 private long m_editTime;
 private boolean m_modified;
 public TextEditScreenBig(String inText)
 {
 super();
 m_text = inText;
 m_modified = false;
 m_editTime = Calendar.getInstance().getTime().getTime();
 }

 public String getText()
 {
 return (m_text);
 }

 public boolean isModified()
 {
 return (m_modified);
 }

 public long getEditTime()
 {
 return (m_editTime);
 }
}

21_467114-ch13.indd 30321_467114-ch13.indd 303 8/30/10 1:10 PM8/30/10 1:10 PM

304 Part V: Securing and Supporting Your App

In Listing 13-3, you see that TextEditScreenSmall contains only one
member variable of the class TextClass. TextClass contains as its member
variables the same members that TextEditScreenBig carried. The
TextClass object is easier to work with because it keeps all the related
pieces of information together — the text, when it was modified, and whether
it was modified.

Listing 13-3: TextEditScreenBig Broken Up into Two Classes
public class TextClass
{
 private String m_text;
 private long m_editTime;
 private boolean m_modified;
 public TextClass(String inText)
 {
 m_text = inText;
 m_editTime = 0L;
 m_modified = false;
 }

 public void setText(String inText)
 {
 if (false == inText.equals(m_text))
 {
 m_text = inText;
 m_editTime = Calendar.getInstance().getTime().getTime();
 m_modified = true;
 }
 }

 public String getText()
 {
 return (m_text);
 }

 public long getEditTime()
 {
 return (m_editTime);
 }

 public boolean isModified()
 {
 return (m_modified);
 }
}

public class TextEditScreenSmall extends MainScreen
{
 private TextClass m_textObj;

21_467114-ch13.indd 30421_467114-ch13.indd 304 8/30/10 1:10 PM8/30/10 1:10 PM

305 Chapter 13: Best Practices for Application Development

 public TextDisplayScreenSmall(TextClass inTextObj)
 {
 m_textObj = inTextObj;
 }

 public TextClass getTextObj()
 {
 return (m_textObj);
 }
}

Assigning protection
If you’re familiar with Java, you’ve seen the three protection classifications:
public, protected, and private. You can use them on the following items in
your code:

 ✓ Classes

 ✓ Methods

 ✓ Member variables

Class protection
Most of the time you want your classes to be public. This is true for classes
in one part of your package hierarchy that make use of classes in another
part of the hierarchy: Only classes declared to be public can be used in
other parts of the hierarchy. You can provide a minimal kind of security
by creating classes in a package with no protection declared: This creates
“package private” classes, which are classes that can only be accessed from
classes within that particular piece of the hierarchy.

In Listing 13-4, you see three classes that are in two different places in the
package hierarchy:

 ✓ com.karlgkowalski.wordlocker.util.FirstUtility: Declared
as a public class, your code in another part of the package hierarchy can
create and use this class of object.

 ✓ com.karlgkowalski.wordlocker.util.SecondUtility: This
class is not declared public, so only classes within the com.karlgkow
alski.wordlocker.util package can create and use these objects.

 ✓ com.karlgkowalski.wordlocker.storage.WordLockerStorage:
WordLockerStorage: A class defined in a separate part of the package
hierarchy. A WordLockerStorage object can create FirstUtility
objects, but not SecondUtility objects.

21_467114-ch13.indd 30521_467114-ch13.indd 305 8/30/10 1:10 PM8/30/10 1:10 PM

306 Part V: Securing and Supporting Your App

Note that the three classes shown in Listing 13-4 would be implemented in
three separate files.

Listing 13-4: The WordLockerStorage Class Can Create and Use
FirstUtility Objects, But Not SecondUtility Objects
// FirstUtility.java
package com.karlgkowalski.wordlocker.util;

public class FirstUtility
{
 // class implementation
}

// SecondUtility.java
package com.karlgkowalski.wordlocker.util;

class SecondUtility
{
 // class implementation
}

// following code in different package
// WordLockerStorage.java
package com.karlgkowalski.wordlocker.storage;

import com.karlgkowalski.wordlocker.util;

public class WordLockerStorage
{
 public WordLockerStorage()
 {
 FirstUtility u1 = new FirstUtility();
 // the Java compiler will refuse to compile
 // this next line and display an error
 SecondUtility u2 = new SecondUtility();
 }
}

Method protection
You can control access to the methods in your application by setting
protection levels for each. The important points to remember about method
access control are that

 ✓ A public method is usable by any code that creates an instance of
your class.

 ✓ A protected method is usable by any code within the class, as well as
any code within any subclass of it.

 ✓ A private method is usable only by your class.

21_467114-ch13.indd 30621_467114-ch13.indd 306 8/30/10 1:10 PM8/30/10 1:10 PM

307 Chapter 13: Best Practices for Application Development

 I generally use protected and public protections on methods. There’s usually
a reason to subclass one of my classes in the future, and using private
methods makes that a little difficult. Use your own judgment to determine
which methods to make public and which should have greater protection.

Member variable protection
Member variables follow the same rules of behavior as methods:

 ✓ A public member variable is usable by any code that creates an instance
of your class.

 ✓ A protected member variable is usable by any code within the class, as
well as any code within any subclass of it.

 ✓ A private member variable is usable only by your class.

 My own approach to using member variable protection is that member
variables should almost always be private, rarely protected, and never public.

 Your code can only directly modify private member variables from within the
class where they are defined. Not even subclasses can modify them directly.
Sometimes you might want a subclass to be able to access a member variable
in a parent class; the best way to do that is to provide public or protected
methods in the parent class to get and set the data of the member variable. In
Listing 13-5, you find two classes that demonstrate the use of private member
variables within a parent class and its child.

Listing 13-5: A Parent Class with a Private Member Variable That
Its Child Class Can’t Access
// parent class
public class ParentClass
{
 private int m_parentInt;
 public ParentClass()
 {
 m_parentInt = 5;
 }

 public int getParentInt()
 {
 return (m_parentInt);
 }
}

// child class
public class ChildClass extends ParentClass
{
 private int m_childInt;

(continued)

21_467114-ch13.indd 30721_467114-ch13.indd 307 8/30/10 1:10 PM8/30/10 1:10 PM

308 Part V: Securing and Supporting Your App

Listing 13-5 (continued)

 public ChildClass()
 {
 // compiler will accept this
 // next line
 m_childInt = 2*this.getParentInt();
 }

 public int getSum()
 {
 // compiler will display an error and
 // refuse to compile this next line because
 // the ChildClass is not permitted to access
 // the private member variable of the parent
 return (m_childInt+m_parentInt);
 }
}

This channels all the efforts to modify data within an object through specific
gateways. You can control and monitor all such modifications, thereby
reducing the possibility that the data your object uses to get its job done is
not what you expect it to be.

Avoid using magic numbers
A magic number is a number entered into the code without any explanation
of its origin or its use. I confess that I still sometimes put magic numbers into
my code because it’s easy and quick just to type it while I’m typing code.
But when shipping code — namely, code that will reach the App World — I
replace them with constant variables that have meaningful names. I do this
because I will forget why I picked a particular value, and if it’s sitting there
with no explanation of what it is or why it was typed in that particular line of
code, I will have to spend more time to research why the value is as I left it.

Listing 13-6 demonstrates a code snippet indicating how to properly create
magic numbers and incorporate them and other constant data in your app.

Listing 13-6: Adding a Magic Number
public class MagicNumberClass
{
 public static final int MAGIC_INTEGER = 173;
 public static final String MAGIC_TEXT = “Waterfall”;
 // the remainder of the class code
}

21_467114-ch13.indd 30821_467114-ch13.indd 308 8/30/10 1:10 PM8/30/10 1:10 PM

309 Chapter 13: Best Practices for Application Development

You can modify the protection level, currently set to public, to suit your
app’s needs for using the data outside of this class.

The static keyword tells the compiler that there will only ever be one of
these values for all the instances of this class that your code creates. The
final keyword tells the compiler that no code is permitted to modify what
this item (I won’t call it a “variable” because it doesn’t vary) is initialized to
be. As a result, your app can depend on the value of this item being constant
while your application is running.

Using Singleton patterns
One of my favorite design patterns is the Singleton. A Singleton ensures that
one and only one instance of the class exists, and provides a global point of
access to it.

In my application, I use a Singleton to restrict access to the stored data. By
using a Singleton class for this task, I rely on only the code developed in the
Singleton class to deposit and retrieve information from the BlackBerry
persistent storage mechanism. This gives me one-stop shopping for stored
data, and I am only ever creating one object and one set of code to perform
the operations necessary for interacting with the data in the storage. You
will no doubt find uses for Singleton patterns in your code as well, beyond
providing access to data storage. Listing 13-7 demonstrates the simplicity of
setting up a Singleton class.

Listing 13-7: Defining and Implementing a Singleton Class
public class StorageAccess
{
 private static StorageAccess m_instance;

 public static StorageAccess getInstance()
 {
 if (null == m_instance)
 {
 m_instance = new StorageAccess();
 }
 return (m_instance);
 }

 private StorageAccess()
 {
 // do your initialization here
 }

 // other methods for the StorageAccess object to perform
}

21_467114-ch13.indd 30921_467114-ch13.indd 309 8/30/10 1:10 PM8/30/10 1:10 PM

310 Part V: Securing and Supporting Your App

The constructor of a Singleton must not be made public because a public
constructor allows any code to create and make use of an instance of the
class, and you don’t want to allow any code that kind of access to your
Singleton classes. You should make the constructor private.

Commenting code
Small applications that do simple things generally don’t need comments.
However, as you develop larger and more complicated apps, you will discover
that your memory of why you did something a specific way fades over time.
No one I’ve worked for demanded that I provide comments in my code, but I
use comments because some issue inevitably comes up later on in the
development that requires me to question why I did something that particular
way. Without a solid explanation to justify what I did, I have to waste time
figuring it out all over again.

You’ll get a feel for how and where to comment as you gain experience
developing applications. Here are a few cases where commenting your code
is beneficial:

 ✓ Positive justification: Your approach to solving a particular problem is
based on experience you had in similar situations. You found a solution
that you can use again, so marking the code with a comment to that
effect is helpful.

 ✓ Negative justification: In this case, although you don’t have evidence
that your approach is the best way to solve a problem, you know of several
other ways that don’t work. So, you put a comment in your code to note
a workaround for something you can’t get to work any other way.

Plugging the Leaks
One of the most challenging problems in software development came about
when programming languages such as C allowed developers to request
chunks of memory from the operating system. This was a truly wonderful
thing: Instead of having to calculate precisely how much memory your app
was going to use in its operations and implement your app to use only that
much, your app could now just ask for whatever memory space was required,
at the moment it needed it. This was truly freedom: I remember developing
applications using programming languages where I had to guess what the
utmost maximum amount of data I was going to need to run my application.
In addition, the size of the application grew: The memory was allocated as
part of the entire application. With the advent of C, though, the application
was as large as it needed to be, and would grow when and if it needed to do so.

21_467114-ch13.indd 31021_467114-ch13.indd 310 8/30/10 1:10 PM8/30/10 1:10 PM

311 Chapter 13: Best Practices for Application Development

However, there was a disadvantage to on-demand memory. The price for the
benefit of your app being allowed to request memory from the OS whenever
your app needed it was that your app also had to return that memory to the
OS — for use by a future request — when the memory was no longer needed.
Your app now lived a very dynamic existence. It could grab memory while
running, but it also would be required to free up that memory as well.

Your app could hold onto all the memory it requests from the OS, but that
would only eventually bring the amount of unused memory lower and lower,
and most applications use some amount of temporary memory to execute.
This means that as your app requests and retains all the memory it wants,
the execution of the application can eventually cause the OS to halt your app
because it has run out of memory in which to operate. So developers of C
programs had to discipline themselves to balance the moments where their
apps requested memory from the OS with moments when their apps freed
that same memory. And sometimes something bad happened: a memory leak.

Then Java came along. The developers of Java knew that memory leaks were
a real problem for pre-Java applications. So Java was developed to address
this problem, and its solution was garbage collection. Every Java application —
including BlackBerry apps — runs as a process within a Java Virtual Machine
(JVM). Part of the JVM is a garbage collector, a process that coexists with
every other Java application and pays attention to blocks of memory
requested by each application. The garbage collector is especially interested
in blocks of memory no longer able to be referenced by applications as a
result of resetting the value stored in the container of the reference to the
memory block to something other than what was allocated. The code snippet
in Listing 13-8 demonstrates this.

Listing 13-8: Intentionally Losing a Reference to a Block of Memory
public void memoryLost()
{
 // requesting memory for a ClassA instance
 ClassA a = new ClassA();
 a = new ClassA();
 // the original request has now gone missing
}

In the second line of the method, the variable a has had its original contents —
a reference to a ClassA object — replaced by a new reference to a new
ClassA object. When this happens, the first object is no longer referenced
by the application; its memory block is just sitting, unused. The garbage
collector eventually picks up on this fact and releases the memory automatically,
returning it to the pool of available memory. Because your app has lost its
reference to the object, it’s obvious that your app no longer wants access to
the contents of this object, and so losing it isn’t a horrible thing.

21_467114-ch13.indd 31121_467114-ch13.indd 311 8/30/10 1:10 PM8/30/10 1:10 PM

312 Part V: Securing and Supporting Your App

Don’t depend on the garbage collector
to take care of leaks
The garbage collector is supposed to free up blocks of memory that were
requested by your app but which your app retains no reference it can use to
access the data. However, the BlackBerry garbage collector doesn’t run all
the time. Instead, it appears to execute to resolve all the leaked memory only
when the OS runs out of unused memory and can’t oblige a request for more.
And this might not happen for quite some time.

As I mention previously, you can get rid of leaked memory simply by terminating
your app. In other words, when the user shuts down your application, the OS
frees all the memory that was requested by your app. However, here are two
situations in which your app can cause memory leaks to happen while your
app is running:

 ✓ When users use the Switch Application feature to keep your app
running while they do something else

 ✓ When your app chooses to go into the background, even if the user
has selected the Close menu option

 Ordinarily, your application should terminate when the user selects
Close. However, if the user has set your app to perform some background
processing, closing the app would terminate this feature, so your app
will continue to run in the background instead of actually closing.

Operating in the background
One of the great features of the BlackBerry is that users can run multiple
applications, much like they can on desktop PCs. A user may run the Browser
to grab the latest stock quotes while writing a response to a corporate
e-mail. Users access the range of running applications by selecting the Switch
Application menu item, as shown in Figure 13-1.

Figure 13-1:
Jump

from one
application
to the next.

21_467114-ch13.indd 31221_467114-ch13.indd 312 8/30/10 1:10 PM8/30/10 1:10 PM

313 Chapter 13: Best Practices for Application Development

When a user selects Switch Application, the applications that are running on
the BlackBerry are displayed in a window, and the user can select one to use
in place of the current application. This window is shown in Figure 13-2.

Figure 13-2:
Select

the app to
switch to.

The Call Log application is highlighted in Figure 13-2. This is the app that
will be brought into the foreground for the user to interact with (while the
Browser is sent to the background).

This means that your users expect your app to provide this capability as
well. Your application must support being placed into the background when
a user wants to check e-mail, and being brought back into the foreground
later. Apps support moving between the background and foreground through
two methods that override in the subclass of UiApplication:

 ✓ void UiApplication.activate(): This method is called by the
BlackBerry OS when your application is moved from the background
into the foreground. This is the primary location for memory leaks to
arise.

 ✓ void UiApplication.deactivate(): This method is called by the
BlackBerry OS when your application is moved from the foreground into
the background. Here, you will make sure that your application performs
any tasks needed before it gets suspended.

The good news is that the activate() method is really the only place
where you have to worry about memory leaks creeping in as a result of a user
switching your application into the background.

Your application can create a memory leak as a result of creating new objects
when activate() is executed. One of the easy ways to do this is to push
a screen onto the screen stack within the activate() method. If you look
closely at the code in Listing 13-9, this pushes a new screen onto the screen
stack whenever the user switches out of the application and returns to it.

21_467114-ch13.indd 31321_467114-ch13.indd 313 8/30/10 1:10 PM8/30/10 1:10 PM

314 Part V: Securing and Supporting Your App

Listing 13-9: The activate() Method from Chapter 3
public void activate()
{
 this.pushScreen(new FirstBlackBerryScreen());
}

Why? Because the app is simply pushing a new screen, created as a parameter
into the pushScreen() method when it gets called. And the previous screen
pushed the last time the app was launched has now been leaked. You can use
the UiApplication.getScreenCount() method to find out how many
screens are already on the stack, and handle the situation accordingly when
your application again runs through the activate() method. Listing 13-10
(an implementation of activate() that checks whether the app already
has a screen displayed) shows a better way to implement the activate()
method found in Listing 13-9.

Listing 13-10: Check for the Presence of a Screen to Avoid Memory Leak
public void activate()
{
 if (this.getScreenCount() > 0)
 {
 this.updateDisplay();
 }
 else
 {
 this.pushScreen(new FirstBlackBerryScreen());
 }
}

This activate() method checks for any screens already on the stack, and
just tells them all to update themselves if there are any. If no screens are on
the stack, the code creates one. This ensures that only one screen will end
up being placed on the stack as a result of switching out of and back into the
application. Your code also has to provide for this possibility as well because
a user who moves from one application to another fairly frequently might
cause activate() to be executed numerous times in your application.
And if your app is creating and pushing screens onto the stack using
activate(),the amount of available memory will decrease, and your app’s
performance will suffer.

 Memory leaks are your responsibility. The garbage collector present in the
BlackBerry JVM doesn’t run frequently enough to recover memory blocks,
such as objects your app creates when your app no longer maintains a reference
to them. Just a glance through the first few results of an online search engine
looking for “blackberry memory leak” demonstrates that more than a few
applications aren’t keeping a close eye on their use of memory.

21_467114-ch13.indd 31421_467114-ch13.indd 314 8/30/10 1:10 PM8/30/10 1:10 PM

315 Chapter 13: Best Practices for Application Development

The official RIM statement regarding review of your application as part of the
process for submitting your app to the App World does not specifically
mention memory leakage as a reason for disqualification. A memory leak is
not an error that will destroy data or cause harm to the device or user, and
a leak is easily removed simply by terminating the offending application (or
rebooting the smartphone). However, because checking for memory leaks
while executing applications is a simple process, you’re better off locking
down every piece of your code that could lead to one. The description in this
section should help you hunt down memory leaks in your BlackBerry app.

Streamlining Your App
Your application development will undoubtedly cover many paths as you
prototype and experiment with different ideas. You’ll also find some things
that work according to plan, and others that just plain don’t. I have developed
enough applications, BlackBerry and others, to know that the code I end up
with doesn’t always look as pretty as it should. I enjoy experimenting with
different ways of getting problems solved, and this leads to leftovers and
no-longer-used code modules that clutter up the entire application. You will
likely discover that when you come back to a previously published application
after some time, you’ll find a lot of stuff that you meant to get to later now
has to be reevaluated or removed.

The following sections provide simple tips to keep your application manageable.

Don’t reinvent the wheel
The BlackBerry class framework has hundreds of classes, and chances are
that one of them already has the features or functions you’re looking for.
Your app can use one of these directly, or else subclass it and extend its
capabilities. If you create your own class, you add to the size of your
application, which will affect your users in the following ways:

 ✓ Longer start times: The more code the OS has to pull in, the longer your
app will appear to take to start up.

 ✓ Longer download times: Each byte of your application gets downloaded
from the App World; the more there are, the more time it takes.

 ✓ Greater storage space requirements: BlackBerry devices have a limited
amount of space to store applications into. You want your app to be as
small as possible.

21_467114-ch13.indd 31521_467114-ch13.indd 315 8/30/10 1:10 PM8/30/10 1:10 PM

316 Part V: Securing and Supporting Your App

Group source files using
the package hierarchy
The desktop version of Java — Java Standard Edition — requires that Java
source code modules must reside in a file-system hierarchy of folders that
matches the “package” locations of the class. This means that a Java class
that has the following line representing its location in the package hierarchy

package com.karlgkowalski.myblackberryapp.util;

must reside in a folder path that looks like this (following the Windows file
system):

{current directory}\com\karlgkowalski\myblackberryapp\util

Discipline yourself to place appropriate types of source modules into the
appropriate spots in the file system hierarchy. This makes it easier to find
things in the future as well as keep track of things while you’re working on
them. I usually use the following in all my application projects (all packages
start with com.karlgkowalski.{application_name}):

 ✓ ui: This folder consists of all the user interface classes I implement for
the application. I may create subfolders for more specific UI classes.

 ✓ util: This folder contains utility classes; usually, it’s a catch-all folder
for everything that doesn’t quite fit anywhere else.

 ✓ network: I put network-related classes into this folder; usually, I will
implement a class that encapsulates the network functionality, and place
it within this folder so that I know the kind of work it’s doing.

 ✓ data: In applications where I’m storing data, especially if the data
requires a particular grouping of different types of information, I create
classes inside this folder.

Keep method sizes small
One of the principles of object-oriented programming is that smaller pieces of
code are much easier to debug. My experience has been that if a method takes
more than one screen’s worth of vertical space to implement, it’s time to break
up that method. Granted, it’s easy to add just ten more lines of code to a method
to fix something now. So again, you will need to discipline yourself to avoid
the easy path. However, taking the simpler way first sometimes is beneficial —
that is, as long as you schedule yourself to review and re-factor the eventually
bloated method (all 17 pages of it) to something easier to figure out.

21_467114-ch13.indd 31621_467114-ch13.indd 316 8/30/10 1:10 PM8/30/10 1:10 PM

317 Chapter 13: Best Practices for Application Development

Each class should accomplish
just one purpose
Similar to the warning about keeping your methods small, you should extend
that idea and keep your classes to a small size in terms of functionality. That’s
part of what’s required when you use the MVC (Model-View-Controller) approach:
keeping the classes that make up each component of MVC limited to doing one
thing each, and doing it well. (See Chapter 4 for more about the MVC approach.)

Reduce the public methods in your
classes to the bare minimum
Each method in a class that you declare public is, effectively, a method that
can be executed by any other class in your application. This creates a great
many paths for a particular class’s methods to be executed. And that will
make tracking down problems more of a challenge. Limiting access to a class’s
methods for manipulating data reduces the footprint of the class and thereby
restricts the options for other classes to interact with the class’s internal data.

Backing Up and Organizing Your Code
The more software you write, the more stuff you have to manage. Every
software project requires a multitude of different pieces that all have to work
together. After a few projects, you might need a bigger hard drive! If something
in your development machine fails, all your efforts are at risk. “Save early,
save often” may not be enough to recover your code if your entire machine
collapses into a pile of virtual dust.

The following sections introduce you to some basic concepts regarding the
care and maintenance of your application code outside the immediate tasks
of getting the app uploaded to the App World. I might sound like a parent in
the following sections. However, the practices outlined here can potentially
save you an enormous amount of headache and heartache should the
worst-case scenario occur.

Backing up your precious data
I admit it: For the longest time, I refused to do backups. I justified this childish
refusal with the belief that even if the worst thing possible happened, I could
always recover the data on my computer even if it meant writing it all over again.

21_467114-ch13.indd 31721_467114-ch13.indd 317 8/30/10 1:10 PM8/30/10 1:10 PM

318 Part V: Securing and Supporting Your App

And nothing bad ever happened (nope, no story of how failing to back up
data cost me time, money, or something else very important). What did
happen was I realized that I didn’t want to spend days or weeks re-creating
my work, especially when I undertook a contract job where I wrote all my
code on my machine. Losing all the work I had done was not something
worth taking a chance on.

So, I now back up all my crucial files and projects, complete with source code
and other files from the development environment — everything I can’t easily
re-create myself — on both CD-Rs and an external drive. My startup company
does complete backups on a daily basis, and monthly backups to more
permanent storage.

Make sure you back up all the important components of your BlackBerry
application development projects. The most critical components are your
source modules — these are the containers of your Java code — and your
image files, which are the crown jewels of your application. You don’t want to
have to start from scratch should your hard disk fail. The other components
include the project and workspace files used by the JDE, and the files containing
the data you use to sign your application. Anything the JDE creates for you —
such as the COD, ALX, or JAD files — you don’t need to back up.

The preceding set of components should all be backed up onto a reliable
storage system. My recommendations are to do

 ✓ A daily backup onto an external hard drive: I don’t recommend using
memory sticks (USB flash drives) because they are small and easily
misplaced. I recommend using an external hard drive, preferably
connected to your local area network. This is the simplest and easiest
way to back up your crucial files. It’s less guaranteed than recordable
media, but it’s faster so you can do it every day.

 ✓ Less-frequent backups onto recordable media: CD and DVD burners are
cheap, as are blank CDs and DVDs. There’s no reason to avoid doing this
kind of backup. If saving your development efforts to a disk saves you a
few hours’ worth of rewriting, the backup system is worth its cost.

 This kind of backup is more permanent and therefore more secure than
backing up to a hard drive. You don’t need to do this every day, but
once weekly or perhaps even monthly will suffice. The best thing about
recordable media is you don’t have to worry about a failure after the
data is verified on the disk; the usable lifetime of the disk is generally
longer than the time period over which the data is useful.

 Discipline yourself to get the backups done regularly. Fortunately, most operating
systems can support scripts to back up parts or even all of your desktop PC hard
drives. And a number of third-party solutions are dedicated to this as well. In
addition, several third-party solutions allow you to back up your data to a
network server on the Internet, which will relieve you of any worry about data
recovery because these services, in turn, back up their own data regularly.

21_467114-ch13.indd 31821_467114-ch13.indd 318 8/30/10 1:10 PM8/30/10 1:10 PM

319 Chapter 13: Best Practices for Application Development

Keeping your code organized with
a source code control system
You will find it difficult to work anywhere in the software industry today
without coming into contact with a source code control system (SCCS). You
use an SCCS to organize and manage the files you use in your application’s
development. These files include but are not limited to the following (identical
to the list for backups):

 ✓ Source code

 ✓ Images

 ✓ JDE files

 ✓ Other files

What makes this different from doing a backup? An SCCS performs some
management functions beyond those of a simple backup. These functions
include

 ✓ Diff-ing: You can see the differences between the current version of a
file and every version that came before it. This feature can be extremely
helpful when you want to find out precisely where things went wrong.
And it’s even more useful if you’re working on a team, where everyone
can modify any file, at any moment.

 ✓ History: Each time you add, update, or delete a file from the source
code repository, you add a note to the action. With a minimal amount of
discipline, you can keep these notes simple and informative. The SCCS
can provide a list of the changes that were made over time as a summary
of the life of your application’s pieces.

 ✓ Snapshot: At some point, you will decide that your app is as done as it’s
going to be. All your app’s modules and components are ready to be put
together for delivery to the App World, so you tell the SCCS to mark all
the components for your app. You use this as a snapshot — a moment
in time where you know everything is ready to ship. In the future, no
matter what changes you make to the components, this snapshot is
always available from the SCCS to bring you back to a known good point.

 ✓ Branching: Most SCCSes support branching: making a complete copy
of your app’s components to enable you to try something new. A new
branch of the application is a completely separate app, as far as the
SCCS knows. You would use branching to build a specialized version of
your app for a particular customer: for example, you create a version
of your app that’s modified for a customer’s specific business. Using
a different branch of the source code and other components to build
a specialized version of your app allows you to keep the two versions
separate. Later, you can merge the two branches so that new features in
the specialized version can be made available to a new set of customers.

21_467114-ch13.indd 31921_467114-ch13.indd 319 8/30/10 1:10 PM8/30/10 1:10 PM

320 Part V: Securing and Supporting Your App

I find SCCSes to be an annoying and generally unpleasant necessity. However,
as projects get larger, a good SCCS becomes even more necessary. The same
is true when you start working on many different projects. If you’re planning
to do more than one BlackBerry application, you should invest in an SCCS
that you are comfortable with and that suits your needs and abilities. The
following list provides several free source code control systems:

 ✓ Perforce: A free, two-user version of Perforce is available at
www.perforce.com. Perforce comes with a Windows GUI client that
makes using it pretty easy. There’s also a command line interface.
Perforce provides you with the basic features of an SCCS, plus a lot
more. Perforce is the easiest SCCS to set up and get working with.

 ✓ Subversion (SVN): SVN is a Web-based SCCS, from the open source Apache
project, available at http://subversion.apache.org. One important
challenge with this SCCS is that it requires a Web server to operate. Apache
(www.apache.org) provides a Web server you can install yourself, also for
free, but this choice does make for more work at your end.

 ✓ Concurrent Versioning System (CVS): CVS (available at www.nongnu.org/
cvs) is the oldest SCCS and perhaps has the steepest learning curve to set
up and use. After you get used to its syntax, though, you’ll find it actually
pretty easy to use. For my startup company, we settled on CVS because we
needed more than a two-user capability (which ruled out the free version of
Perforce). CVS is also open source. CVS was originally a command line tool,
but you can download several free Windows-based client applications.

Do you really need source code control?
Is an SCCS absolutely necessary? No. But you
will find it very useful as you develop more
and more applications for the BlackBerry
App World, as well as for any other mobile
device development you may choose to do in
the future. And you should always be thinking
beyond your current development work.

One of the best features of a source code
control system is that you can do backups

very easily because all the files you need to
back up are conveniently located in the source
code control system area. That makes it easier
for you to get into the habit of doing backups
regularly. An SCCS requires more input from
you to perform its tasks and do them well,
but you will find that using an SCCS is less of
a headache than trying to remember to do its
tasks yourself.

21_467114-ch13.indd 32021_467114-ch13.indd 320 8/30/10 1:10 PM8/30/10 1:10 PM

Chapter 14

Application Deployment
and Upgrades

In This Chapter
▶ Deploying via a PC

▶ Deploying via a BES

▶ Deploying via the Web

▶ Upgrading your app

Although this book is mostly about BlackBerry application delivery
through the BlackBerry App World, a couple of other deployment

options for BlackBerry applications are available. The advantage of using
BlackBerry App World is that it provides a simplified approach to making
your application available to the millions of BlackBerry users:

 ✓ One-stop shopping experience: Every user knows to go to the App
World to search for more apps.

 ✓ Centralized payment mechanism: You don’t need the extras of handling
checks, processing credit card payments, and so on.

The App World certainly makes it easier for you to offer your app, and easier
for users to purchase it. However, other options are available:

 ✓ Desktop download: Just like you deployed your app to your own
BlackBerry to really test its features as users would experience them,
you can also deliver your app to your users and let them deploy your
app via the BlackBerry Desktop Manager application.

 ✓ BlackBerry Enterprise Server (BES) download: For corporate enterprise
BlackBerry users governed by a BES, your app can be delivered wirelessly
to some or all BES-activated users from the BES itself.

 ✓ Web download: Your BlackBerry application can be placed on a Web
server with the appropriate settings to allow users to download your
app through the BlackBerry Browser.

22_467114-ch14.indd 32122_467114-ch14.indd 321 8/30/10 1:10 PM8/30/10 1:10 PM

322 Part V: Securing and Supporting Your App

In this chapter, I go over these different deployment options and show you
what you need to know about each one, to give you the greatest range of
opportunities for delivering your application to anyone who wants it. I also
cover upgrading your app, and how to make upgrading your app seamless for
users so they don’t lose any data they created with the previous version of
your app.

Delivery from a Desktop PC
For a user to deploy your application from their desktop PC to their
BlackBerry, you need to deliver two files to the user (see Figure 14-1):

Figure 14-1:
Delivering

an app from
a PC.

Q W E R T Y

space

U I O P

A

�

�S D F G H J K L

alt Z X C V

1 2 3 (

* 4 5 6 Q

7 8

0

9 ?
B N M s

) — – + @

: ; ’ ” Del

! , .

sym

Desktop
Manager

JDE builds application COD
and ALX files

COD & ALX

Desktop Manager
delivers COD to
smartphone

22_467114-ch14.indd 32222_467114-ch14.indd 322 8/30/10 1:10 PM8/30/10 1:10 PM

323 Chapter 14: Application Deployment and Upgrades

 ✓ Your application’s signed COD file: This is your application’s executable,
so it’s necessary no matter what delivery mechanism you choose.

 ✓ Your application’s ALX file: This is the file that you create apart from
your application (and I still wonder why RIM hasn’t made this something
the build process does by default), which provides information to
Desktop Manager.

I discuss the creation of the COD file in Chapter 3, and the ALX file in Chapter 10.

The Desktop Manager application (provided with every BlackBerry) provides
users the ability to add and remove applications to their BlackBerry smartphones
across a USB cable (also provided with every BlackBerry). The steps to
deploying your application using Desktop Manager are the same as those
described in Chapter 10. In Figure 14-2, you can see that The Word Locker
application is highlighted and the check box has been checked so that
Desktop Manager will install the application onto my BlackBerry Curve 8900.

Figure 14-2:
Desktop

Manager
shows that
The Word

Locker will
be installed.

 When a corporate BES controls a user’s BlackBerry smartphone, the restrictions
placed on the BlackBerry will still apply when the user attempts to use
Desktop Manager to deliver applications to the smartphone. If the BES
administrator prevents users from installing applications onto their smartphones,
the Desktop Manager can’t install your app onto the BlackBerry. I went through
this exact problem with the BlackBerry smartphone I bought through eBay.

To use this approach, you will have to find a way to deliver these two files
to your end users. This can be achieved by e-mailing a ZIP file containing the
two files to each user who has requested and paid for your app. You can also
automate the process through the use of a Web site to collect payment
information and upon successful authorization allow the user to download
the two files.

22_467114-ch14.indd 32322_467114-ch14.indd 323 8/30/10 1:10 PM8/30/10 1:10 PM

324 Part V: Securing and Supporting Your App

Delivery through a BES
Most BlackBerry users use their BlackBerry smartphones to gain access
to their corporate network. This is achieved when users activate their
smartphones to the corporate BES, which establishes a secure connection
from the BlackBerry smartphone to the internal corporate network. However,
this means that the user gives up some control over the operation of their
smartphone because the BES administrator can dictate certain rules of
behavior over the device, as I detail in Chapter 8.

In certain cases, the BES administrator may restrict the users’ ability to
download applications from BlackBerry App World, and it is possible that
third-party applications can be deployed only through the BES. To that end,
your application will have to be delivered to the BES administrator, who will
then schedule the deployment of your app through the BES.

This approach to application delivery is not as glamorous as using the
BlackBerry App World. If your application has a strong appeal to corporate
enterprise BlackBerry users, though, you will want to be prepared for
delivery in this fashion.

 When delivering your app for distribution to the App World, you need a lot
of different pieces of information, but there’s really only one important file:
your application’s COD file. (True, there’s an image file used by App World for
visual display, but it’s not really very important.)

Comparatively, just like Desktop Manager delivery, BES delivery requires two
files (see Figure 14-3):

 ✓ The signed COD file

 ✓ The ALX file

However, the BES uses a tool that takes these two files and creates a package
that it can deploy to users’ BlackBerry smartphones. You can use the same
approaches described in the previous section to deliver the ALX and COD
files to any company that wants to purchase your app for its users: Package
the two files into a ZIP file and e-mail them, or deliver them via a Web site.
(You can find more information about setting up a Web site for selling your
app in Starting an Online Business For Dummies, 6th Edition, by Greg Holden
[Wiley].)

22_467114-ch14.indd 32422_467114-ch14.indd 324 8/30/10 1:10 PM8/30/10 1:10 PM

325 Chapter 14: Application Deployment and Upgrades

Figure 14-3:
Delivery

of an app
through the

BES.

Q W E R T Y

space

U I O P

A

�

�S D F G H J K L

alt Z X C V

1 2 3 (

* 4 5 6 Q

7 8

0

9 ?
B N M s

) — – + @

: ; ’ ” Del

! , .

sym

JDE builds application COD
and ALX files

COD & ALX

Desktop Manager
delivers COD to
smartphone

Delivery via e-mail or
Web download

Delivery via the Web
BlackBerry users also download applications onto their smartphones by
using the BlackBerry Browser on their phone. Given a URL for a particular file
sitting on a Web site, the BlackBerry Browser will prompt users who want to
download your application with a dialog box, as shown in Figure 14-4.

You need two files to allow users to download your app from your Web site
(you do not need the ALX file):

 ✓ Your application COD file (of course!).

 ✓ Your application Java Application Descriptor (JAD) file. You can find
more information about the JAD file in Chapter 3.

22_467114-ch14.indd 32522_467114-ch14.indd 325 8/30/10 1:10 PM8/30/10 1:10 PM

326 Part V: Securing and Supporting Your App

Figure 14-4:
Users can
download

your app
by navigat-

ing their
browser to

your app.

Both files must be available at the same place on the Web server. Users
navigate their browser to the JAD file. BlackBerry Browser is smart enough to
determine that the user is trying to download a COD file application, and
displays the dialog box shown in Figure 14-4 as a result. The user is presented
with a choice of downloading the application or canceling the download.

Using a Web server to deliver your application allows you to control access
to your app: No one who hasn’t gone through your process to allow users to
download your app will be able to install it onto their device. This means that
you have the ability to charge users for downloading your application in a
way that can prevent other users from making copies of your app and
distributing it without your permission or compensation. Of course, you will
have to set up the Web site and the payment process yourself, but there are
a variety of tools for that task. Some of the available options for online sales
processing include the following:

 ✓ PayPal

 ✓ Yahoo! Merchant Solutions

 ✓ Google Checkout for Merchants

 ✓ ProStores

 ✓ 1&1 Internet

 ✓ PayLoads

 You will have to configure your Web server to permit users to download your
app COD files as a result of the user navigating their BlackBerry Browser to
the location of your app’s JAD file. Your Web server comes with a default
configuration that permits users to access the HTML and HTM file types.
Because your server doesn’t know anything about COD or JAD files, you must
configure the server to allow users to access those types of files. You will
have to add MIME (Multipurpose Internet Mail Extension) types to your Web
server’s configuration. There are two you need to add:

22_467114-ch14.indd 32622_467114-ch14.indd 326 8/30/10 1:10 PM8/30/10 1:10 PM

327 Chapter 14: Application Deployment and Upgrades

 ✓ For JAD files: text/vnd.sun.j2me.app-descriptor

 ✓ For COD files: application/vnd.rim.cod

Consult your Web server’s guide to modify its permitted MIME types.

Upgrading Your App
Upgrading your app is the best way to get new features and functionality
into the hands of your users. Through the App World, users can review and
comment on your application, providing you with feedback on what they like
and dislike about the different features of your application. You can use this
information to develop improvements and provide an updated version when
you’ve implemented the right amount of new and improved functionality.
And when your upgraded application has survived the rounds of review
performed by RIM, the BlackBerry App World notifies owners of your app
about the update, prompting them to download the latest and greatest
version of your application.

Progress marches on
The world of software development is
constantly changing. New hardware, new
equipment, new smartphones — and new
software to run on them. Your application can
sit still: That is, you can develop it once and
never touch it again. Or, hmm, your application
can grow with the BlackBerry platform as it
evolves into a better, stronger, more powerful
future.

To illustrate, consider that the BlackBerry
smartphones of 2010 are much more powerful
and capable than the original BlackBerry
smartphones of 2002. Today’s users expect that
next-generation BlackBerry smartphones will
offer them more features and functionality than
their current-generation devices. And you will
have to keep your app up to date with respect

to newer BlackBerry smartphones — after all,
your competitors surely will.

For instance, a BlackBerry application built
in 2007 to run on the top of the line devices at
that time would be unable to take advantage of
the touchscreen- and accelerometer-enabled
BlackBerry Storm, which came out the following
year. RIM introduces approximately four new
models every year. In addition to introducing
new models, RIM also updates its operating
systems for its prior models. Although this is
usually a beneficial change, there is a chance
that your app might break as a result of
changes under the hood. To keep your app from
falling behind others, and maintain your users’
appreciation of your app as a valuable tool in
their BlackBerry toolkit, you will have to keep
your application updated on a regular basis.

22_467114-ch14.indd 32722_467114-ch14.indd 327 8/30/10 1:10 PM8/30/10 1:10 PM

328 Part V: Securing and Supporting Your App

You must consider several points when creating an upgrade of your application.
These items are easily overlooked, and if you do, you can make the path from
“I’d really like to have this feature” to “Version 2 now available at the App
World, New and Improved!” much longer than expected. You need to be
careful about the following points:

 ✓ A new version of your application delivered to the BlackBerry App
World requires you to use up another submission credit. RIM doesn’t
care whether your issue is a bug fix or a completely revamped edition.
Another submission credit will be subtracted for a new application
version delivered for RIM to review and submit for App World distribution.
You must decide exactly what qualifies as enough of a modification to
be worthy of the effort and the expenditure of another submission. You
can find out more about the submission process and your submission
credits in Chapter 12.

 ✓ The new version of your app must have the same name as the old
version of your app.

 ✓ The version number of your application must change to a greater
value. This sounds obvious, but it’s easy to overlook: You must modify
the project Properties to set the version number of your application. See
Figure 14-5. Of course, you also want to change it everywhere you use
the version number within your application to keep everything aligned.
For example, you must change the version number in the project
Properties screen. Figure 14-5 shows you the version number field
highlighted in the project Properties screen. If you’ve included an About
box within your app, you need to change it there as well. For the alternate
delivery options mentioned in this chapter, you have to regenerate the
ALX file as well, because it includes the version number.

 ✓ Any object within your application that you have implemented as
Persistable must also exist in the new version of your application,
with precisely the same fully qualified class name and also must have
precisely the same member variables. Chapter 6 covers the details of
using the Persistable interface in your apps.

 If your older application is storing its own objects in the persistent
storage system of a user’s BlackBerry, the upgraded version of your
application must be able to retrieve those exact same objects. In the
next section, I go over a means by which you can handle this in your
application, which reduces the restrictions of maintaining classes in an
unchanging state.

22_467114-ch14.indd 32822_467114-ch14.indd 328 8/30/10 1:10 PM8/30/10 1:10 PM

329 Chapter 14: Application Deployment and Upgrades

Figure 14-5:
The

Properties
screen.

Insistent persistence
As I mention in Chapter 6, your app can take advantage of storing its own
information by using the persistent storage mechanism available in the
BlackBerry OS. Your app’s data can be stored as a set of objects specific to
your application if the classes that define those objects implement the RIM
interface Persistable. You can also store basic Java class objects, which
means that your application will have to create a basic Java object for each
piece of information that your app needs to store. In Chapter 6, I mention the
following issues:

 ✓ If your app stores Persistable objects, those objects will be removed
after your application is deleted.

 ✓ If your app stores basic Java objects, those objects will still be
maintained in the persistent store even after your app is deleted.

When a user upgrades your application, the Persistable objects that your
app stores must be present in the upgraded application. Otherwise, the
upgrade will fail. The failure will happen because the upgrade process checks
that the classes that are marked Persistable in the installed version of the
app are not available in the upgrade version of the app.

22_467114-ch14.indd 32922_467114-ch14.indd 329 8/30/10 1:10 PM8/30/10 1:10 PM

330 Part V: Securing and Supporting Your App

I have not yet created an update to The Word Locker at the App World,
but my experience with upgrading applications via Desktop Manager has
convinced me that RIM will investigate this as part of the App World
submission review of your application upgrade, and I expect the upgrade will
fail (through the App World) the same way it will via Desktop Manager. The
Persistable objects must match both in their fully qualified class names
and in their set of member variables. Otherwise, well, I’m sure you get the
picture.

My application, The Word Locker, stores user-entered text in the persistent
storage area of the BlackBerry smartphone. The objects stored in the
persistent storage area contain basic Java elements as member variables
such as int, long, and String types. My app also defines as Persistable
the classes that contain the stored data, and so my app can store these
objects directly in the persistent storage. Any upgrade version of The Word
Locker must contain the same classes that were stored by the previous
version of The Word Locker.

The following list provides solutions to this problem:

 ✓ Maintain the legacy persistent data classes and migrate to newer
persistent data classes as part of the upgrade. Your upgraded application
reads through the old persistent storage and retrieves the legacy data,
converting the old objects into objects of the new data classes. Then
your new app creates a new persistent store with the new objects.
Lastly, the old persistent store is deleted. As a result, the new application
will maintain copies of the older code simply for migration purposes.
The older code can be dropped in a future upgrade because no objects
of the older classes exist. Listing 14-1 shows you a snippet of code that
demonstrates how an object from a previous version stored in persistent
storage can be used to generate a replacement object in a new version
of your application. You would have to implement UpgradeObject to
know what elements of OldObject to extract and make use of.

 ✓ Serialize the data stored in the persistent store. Your application
should store data as String objects, created by the class objects
that your app uses to maintain the data. During the upgrade, the new
application reads the old data String objects from the persistent
store and converts them into the new classes. In this manner, your app
doesn’t have any classes that are Persistable, so there’s no issue
with changing the class names or their member variables. The only
issue in this approach is that your app’s data is maintained even if the
application is deleted from the device. This approach might not be
appropriate for your application, especially if you’re storing sensitive
data.

22_467114-ch14.indd 33022_467114-ch14.indd 330 8/30/10 1:10 PM8/30/10 1:10 PM

331 Chapter 14: Application Deployment and Upgrades

Listing 14-1: Old Version of an Object Initializes a New Version
public void upgradeToNewData()
{
 PersistentObject storage = PersistentStore.getPersistentObject(STORAGE_KEY);
 OldObject oldObj = (OldObject)storage.getContents();
 // use prior version object to initialize the new version object
 UpgradeObject upgradeObj = new UpgradeObject(oldObj);
}

Serializing your data
You need to implement code that serializes your data. Serialization is the act
of turning the data contained within your objects into a neutral form, such as
a string. You can structure your internal data by using XML, and turn each
basic type of data within your objects into name-value pairs within the XML.
The BlackBerry OS provides standard XML classes to assist in this process.
Listing 14-2 demonstrates the serialization of the WordLocker Category
class.

Listing 14-2: Turning WordLockerCategoryRecord into a Block of
XML for Serialization
String m_name; // name of the category
long m_creationTimestamp; // creation date

public String serialize()
{
 StringBuffer buffer = new StringBuffer();
 buffer.append(“<? xml version=\”1.0\” ?>\n”);
 buffer.append(“<WordLocker version=\”1.0\”>\n”);
 buffer.append(“<Category name=\””);
 buffer.append(m_name);
 buffer.append(“\”>\n”);
 buffer.append(“<CreationDate timestamp=\””);
 buffer.append(m_creationTimestamp);
 buffer.append(“\”/>\n”);
 buffer.append(“</Category>\n”);
 buffer.append(“</WordLocker>\n”);
 return (buffer.toString());
}

The output of the serialize() method is a String object that contains the
XML representation of both the category name and the category’s creation
date:

22_467114-ch14.indd 33122_467114-ch14.indd 331 8/30/10 1:10 PM8/30/10 1:10 PM

332 Part V: Securing and Supporting Your App

 ✓ <Category name=””/>: This block contains the name of the category
as an attribute called name.

 ✓ <CreationDate timestamp=””/>: This block contains the long data
value representing the creation date of the category as an attribute
called timestamp.

Deserializing data
When you store serialized data like this, you can easily retrieve it in a future
version of your application by providing an implementation that will deserialize
the string data and initialize the member variables of a new object. Listing
14-3 demonstrates the reverse operation:

Listing 14-3: Deserializing the String Version of a Category and
Creating a New WordLockerCategoryRecord Object
private void deserialize(String inSerial)
{
 if (null != inSerial && inSerial.length() > 0)
 {
 ByteArrayInputStream bais = new ByteArrayInputStream(inSerial.getBytes()

);
 try
 {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 Document doc = db.parse(bais);
 NodeList categoryNodes = doc.getElementsByTagName(“<Category>”);
 if (null != categoryNodes && categoryNodes.getLength() > 0)
 {
 // only want the first
 Node categoryNode = categoryNodes.item(0);
 m_name = this.getAttributeValue(categoryNode, “name”);
 }
 NodeList creationDateNodes = doc.getElementsByTagName(“<CreationDate>”

);
 if (null != creationDateNodes && creationDateNodes.getLength() > 0)
 {
 Node creationDateNode = creationDateNodes.item(0);
 String creationDateString = this.getAttributeValue(creationDateNode,

“timestamp”);
 if (null != creationDateString)
 {
 m_creationTimestamp = Long.parseLong(creationDateString);
 }
 else
 {
 m_creationTimestamp = new Date().getTime();

22_467114-ch14.indd 33222_467114-ch14.indd 332 8/30/10 1:10 PM8/30/10 1:10 PM

333 Chapter 14: Application Deployment and Upgrades

 }
 }
 }
 catch (Exception except)
 {
 // handle anything that goes wrong here
 }
 }
}

private String getAttributeValue(Node inNode, String inAttributeName)
{
 String attrValue = null;
 if (null != inNode && null != inAttributeName && inAttributeName.length() >

0)
 {
 NamedNodeMap attrs = inNode.getAttributes();
 if (null != attrs && attrs.getLength() > 0)
 {
 Node attrNode = attrs.getNamedItem(inAttributeName);
 if (null != attrNode)
 {
 attrValue = attrNode.getNodeValue();
 }
 }
 }
 return (attrValue);
}

public WordLockerCategoryRecord(String inSerial)
{
 this.deserialize(inSerial);
}

The work of deserializing the incoming String data is handled within the
deserialize() method by using the XML parser found in the BlackBerry
OS: net.rim.device.api.parsers.DocumentBuilder. This class does
all the work to split up the standard XML data that comes in. Here’s the basic
process:

 ✓ The incoming String data is converted to a ByteArrayInputStream
because that’s what the DocumentBuilder object requires for
performing its parsing operation.

 ✓ A new instance of DocumentBuilderFactory is created.

 ✓ The DocumentBuilderFactory is used to create the
DocumentBuilder object.

 ✓ The DocumentBuilder object parses the ByteArrayInputStream to
produce a Document object.

22_467114-ch14.indd 33322_467114-ch14.indd 333 8/30/10 1:10 PM8/30/10 1:10 PM

334 Part V: Securing and Supporting Your App

 ✓ The Document object is used to extract a NodeList of the set of all XML
tags that match <Category>.

 ✓ Because I know I care only about the first Node in the NodeList, the
code only retrieves that one item.

 ✓ That first Node is passed to the getAttributeValue() method to
retrieve the named attribute, which is used to initialize the m_name
member variable. Because m_name is a String, no further processing is
required.

 ✓ The process is repeated for the m_creationTimestamp member variable.
In this case, because the m_creationTimestamp is a long value, the
String returned from getAttributeValue() is converted to the
original type.

Figure 14-6 shows you the deserialization process.

 You can use the BlackBerry OS XML objects to serialize the data as well. I
chose not to do so in this instance because the XML structure needed to
represent a WordLockerCategoryRecord is relatively small and easily put
together by using a StringBuffer. For more complex XML, you might find
it useful to implement serialization while you do deserialization. If your data
objects contain other complex objects as member variables, your XML
structure may include hierarchies of XML tag data, in which case using the
XML objects to perform the serialization would be your best choice.

By serializing your data, you provide a standard format for future versions of
your application to retrieve the data. When users upgrade from an older to a
newer version of your application, they want to be assured that all their work
done in the prior version smoothly migrates to the new version. They don’t
want to lose any of their information, and they don’t want to be required to
put it all back in again, even assuming they can remember it all. And that’s
why users use smartphones: to keep track of the wide variety of information
that enters their lives. Your users will appreciate the effort you put into your
application to make your app easy to use, and maintaining the information
that they contribute.

Handling multiple versions of your app
Because you’re thinking about the future of your app, you will want to
consider the possibility that the next version of your app that a user installs
might be several versions newer than the one they originally installed.
Version 3 of your application has to be able to handle data being migrated
from version 1, and not just data from version 2. As a result, you will likely

22_467114-ch14.indd 33422_467114-ch14.indd 334 8/30/10 1:10 PM8/30/10 1:10 PM

335 Chapter 14: Application Deployment and Upgrades

want to serialize a version number of the objects storing the data in serialized
form so that some future version of the same object can deserialize
appropriately.

Figure 14-6:
Deserializing
XML data to
re-create a

serialized
object.

Use the DocumentBuilderFactory to
create a DocumentBuilder object.

Create DocumentBuilderFactory
object.

For each <Category> Node, get its
child <CreationDate> Node.

For each <CreationDate> child Node,
get its timestamp attribute.

For each <Category> Node, get its
name attribute.

Convert an SML String to an array of
bytes and initialize a

ByteArrayInputStream object.

Use the DocumentBuilder object to
create a Document object with the

ByteArrayInputStream.

Get the set of Node objects contained
in the Document object that match the

<Category> tag.

The best way to do that is to add a data-version component into your
serialized output, and react to it when the data is read back in. In your
implementation of the specific class that’s being serialized, you implement a
deserialize() method that pays attention to the version attribute of the
data String. In Listing 14-4, you can see the XML that the code in Listing
14-3 would create, with random values inserted for the name and creation
timestamp.

22_467114-ch14.indd 33522_467114-ch14.indd 335 8/30/10 1:10 PM8/30/10 1:10 PM

336 Part V: Securing and Supporting Your App

Listing 14-4: The XML Created for the Serialized Category “On The Road”
<?xml version=”1.0” ?>
<WordLocker version=”1.0”>
 <Category name=”On The Road”>
 <CreationDate timestamp=”12791109568”/>
 </Category>
</WordLocker>

The version attribute for the WordLocker tag is set to 1.0. You can use
this as the indicator for which data elements were present when the data was
written into the serialized form. Although a newer version of WordLocker
might add more member variables to a Category object — in fact, could
even completely replace the WordLockerCategoryRecord class used to
represent different categories — the data contained in an older record can
still be imported and interpreted in the new application. You could similarly
add a version attribute to the Category tag itself, although that is probably
more than is required. Any changes to the structure or contents of a
Category record would very likely result from an update (and thus a new
version number) for the entire application.

22_467114-ch14.indd 33622_467114-ch14.indd 336 8/30/10 1:10 PM8/30/10 1:10 PM

Part VI

The Part of Tens

23_467114-pp06.indd 33723_467114-pp06.indd 337 8/30/10 1:10 PM8/30/10 1:10 PM

In this part . . .

With every new BlackBerry come new features as
well as new ways for you to take charge of the

smartphone and deliver its power to your users. And with
every version of the Java Development Environment
(JDE), RIM provides a new set of sample code, increasing
the library of applications that show off what your coding
skills can accomplish.

This part delivers my ten favorite sample applications,
where you can find examples of the interesting features
that a BlackBerry will let you play with. But don’t let those
hold you back — check out the remainder of the samples.
And you should look forward to each new version of the
JDE for the examples that arrive with it.

Finally, in this part, I also give you tips for keeping your
development efforts focused on the things that matter
while you work on your app.

23_467114-pp06.indd 33823_467114-pp06.indd 338 8/30/10 1:10 PM8/30/10 1:10 PM

Chapter 15

Ten Most Useful Sample
BlackBerry Apps

Longer ago than I prefer to recall, I was handed a book on programming
in BASIC that contained the source code for more than 100 games. The

book did not cover theory, data structures, or anything deeply philosophical.
Most games worked as written, some required a work-around, and one
horse-racing game never did work. (Perhaps I should rewrite it as a
BlackBerry app?) The end result was that I learned to program by taking
those examples and making them work. Today, I still look for example code
when I need to solve problems.

You can find the RIM sample applications in the following default location.
If you have a different version of the JDE, use its version number instead of
4.5.0:

C:\Program Files\Research In Motion\BlackBerry JDE 4.5.0\samples\samples.jdw

This workspace contains all the separate sample projects, each a separate
application designed to show you the specific — and most importantly,
correct — way of doing something. You can run them all from the BlackBerry
simulator, or sign them to run on a real BlackBerry device. In this chapter, I
describe the ten sample apps that I find to be the most interesting and useful.

contactsdemo
Most likely, your application will be storing data, one way or another. It’s
pretty difficult to avoid, and at the very least, your users will want to go right
back to the place they were the last time they ran your app. The contacts
demo application uses the persistent storage mechanism to store its data,
and it also supports reacting to changes in the device’s settings for content
protection or compression. A second project, called ContactsDemo_auto
startup, is included with this application. This project is known as an
Alternate Entry Point (AEP), which provides your app a way to perform some
initialization behind the scenes without displaying a screen. (I describe this
in more detail in Chapter 3.)

24_467114-ch15.indd 33924_467114-ch15.indd 339 8/30/10 1:10 PM8/30/10 1:10 PM

340 Part VI: The Part of Tens

custombuttonsdemo
The custombuttonsdemo is a small app that shows you how you can create
just about any shape of button you like. In a broader sense, you see how you
can extend a Field object to represent any UI element you can envision.
The sample app contains a class that demonstrates the different aspects you
must implement for a Field subclass when you want to use your own unique
interface elements rather than standard ones.

httpdemo
The httpdemo sample app contains useful code samples for performing
network operations. The app waits for you to input a URL, and then will fetch
the HTML text from the Web server and display it all as text in the scrolling
field below the URL. Don’t forget to launch the MDS simulator if you run
this app on a BlackBerry simulator. Read more about the MDS simulator in
Appendix A.

gpsdemo
The Global Positioning System (GPS) is one of the most useful programs ever
developed by the U.S. military, and now 21st century cell phones can use
this 1960s-era technology to determine a location. Certain BlackBerry models
come with GPS hardware and support the Java Micro Edition (JME) Location
framework (javax.microedition.location), which provides classes
that you can use to determine the latitude, longitude, and altitude of the
user’s BlackBerry device. Your application can then use this data to provide
sight-seeing or public transit information for visitors to foreign cities. Imagine
flying to a faraway city and using your BlackBerry to help you go to the
cultural sites you want to visit.

localizationdemo
If you’re looking to sell your application to people who don’t speak English,
look to the localizationdemo sample app for code examples to ensure
that all your pieces of text are correctly localized, meaning your app shows
its menus in French when running on a BlackBerry whose language is set to
French. The demo provides English text also translated to four other languages
(German, Spanish, French, and Italian); you’ll need to use a simulator that

24_467114-ch15.indd 34024_467114-ch15.indd 340 8/30/10 1:10 PM8/30/10 1:10 PM

341 Chapter 15: Ten Most Useful Sample BlackBerry Apps

comes with multiple languages already installed, or deploy a signed version
of the application onto a device that is multilingual. You’ll find that making
your application speak different languages is actually pretty easy, but the
first step is to separate the text your app will display to the user from the
code that creates the display.

memorydemo
As painful as it is to admit, your application will consume memory. And the
more you use, the greater the chance that the OS will run out of memory
for you to use because other apps need it, too. If your app makes use of
large data files (such as movies or music), a low-memory condition is likely
to occur. The memorydemo sample app demonstrates how to set up your
application to provide a means by which your app can free up stale memory
blocks — data that isn’t used frequently enough to keep in memory.

notificationsdemo
The BlackBerry OS allows your application to transmit and respond to
notifications generated either by the OS or by your own application. A
notification is essentially a message that your application can sign up to
receive. In addition, your application can alert the BlackBerry user that it has
something new for the user to know. An application that makes use of social
networking to keep users informed of the status of others in the network could
use this feature, and the techniques in the notificationsdemo sample app
are worth reviewing.

phoneapidemo
Your application can reach into the phone records of a user’s BlackBerry if
the user gives the app permission to do so. The phoneapidemo is an
application that can list the phone calls made and received by the
BlackBerry. The source code for this sample shows the use of various UI
components such as display lists, and how to integrate your app with the
BlackBerry OS phone APIs. If you look at the phone APIs (net.rim.black
berry.api.phone), you will find that your app can pay attention to all the
different phone operations. Note, however, that if the user does not grant
your application permission to access this information, any attempt to use
a phone API will cause a ControlledAccessException to interrupt the
execution of your app and prevent the use of that code.

24_467114-ch15.indd 34124_467114-ch15.indd 341 8/30/10 1:10 PM8/30/10 1:10 PM

342 Part VI: The Part of Tens

smsdemo
A quarter of a century ago, SMS (Short Message Service) was defined for
use with mobile handsets. With the exception of my parents, pretty much
everyone in the world has used text messaging to communicate with, well,
pretty much everyone else in the world. Your application can take advantage
of the BlackBerry’s ability to transmit and receive SMS messages. The sms
demo application gives you sample code to do just that, showing you how to
create a message connection object and use it to broadcast messages from
and intercept messages received on a BlackBerry device.

tictactoedemo
Tic-tac-toe is a very simple game, and the tictactoedemo provides the
basic game, you versus the BlackBerry, to demonstrate various UI elements.
As a bonus, you can play a game against someone on another BlackBerry,
using the BlackBerry Messenger service. This application demonstrates
two-way communication using the APIs of the BlackBerry Messenger to
transmit the game-move information from one player to the other. The demo
sets up the communications service and coordinates transmission and
reception of each player’s move to the other.

xmldemo
Much of the information transmitted across the Internet is in the form of
 XML data. The BlackBerry contains a full XML DOM parser, which is a set
of APIs that will load and interpret XML text, as well as create properly
formatted XML text. The xmldemo project demonstrates how you can use the
DOM parser to read and write XML data. The xmldemo application loads an
XML file into the DOM parser and then proceeds to display the information in
a hierarchy on the BlackBerry display.

24_467114-ch15.indd 34224_467114-ch15.indd 342 8/30/10 1:10 PM8/30/10 1:10 PM

Chapter 16

Ten BlackBerry Development Tips

I’ve been working with the BlackBerry platform for more than four years
now, and while RIM keeps me hopping with new features and functionality to

play with, a few things I do remain the same from one app to the next. When
writing code, I have a closetful of reminders for standard tricks I’ve learned
to keep the application in an easy-to-maintain, easy-to-improve state. I
discovered almost all these tips as a result of doing something the wrong way
first, and then rewriting the code to do it the right way. Here are ten tips that
help you get your code right the first time.

Keep Your Constant Strings in One Place
RIM sells BlackBerry devices all around the world, in more than 100 countries.
This means that your application has a market that includes people who
don’t speak English and don’t want to use an application that only speaks
English. To reach them — and their wallets — your application needs to
display text in all the languages you want to sell to. The BlackBerry development
environment comes with tools to enable your app to automatically deliver
text strings in the language the user has set the device to use. To do this,
you have to make an effort to pull out any hard-coded text strings from
your classes, and replace them with code to retrieve the text from a
ResourceBundle object. And remember that concatenation (creating a text
string by combining two or more different strings) works differently in
different languages, so you’ll need to take note of where your app is doing
something like this.

Manage All Screens
The primary object your application uses to communicate with your users
is its screens. You have to master the knowledge of screen management; see
Chapter 5 for basics of screens and their requirements. You also need to
experience the actual screens running in the simulator and on a device. Keep
the following rules in your mind when your app is dealing with screens:

25_467114-ch16.indd 34325_467114-ch16.indd 343 8/30/10 1:10 PM8/30/10 1:10 PM

344 Part VI: The Part of Tens

 ✓ Push new screens on the top the screen stack before you pop (remove)
old ones.

 ✓ Always use Application.getEventLock() or Application.
invokeLater() to make changes on a screen from a process in the
background.

 ✓ Except for transitions, keep only one screen on the screen stack at a
time. With a little discipline, you should be able to achieve this goal.
This assists you greatly throughout your app’s existence because you
always know what screen is the active one.

Don’t Lose Your Memory
Unlike other programming languages, Java reduces the need for developers
to keep track of all the memory their objects allocate. Your app doesn’t have
to match a delete or free operation with every new you use to create a
new object. However, that doesn’t mean you should leave unused objects
just lying around, waiting for the Java garbage collector to pick up after you.
BlackBerry devices have a limited amount of memory that can be used to
hold data while your application is running, and Java starts the garbage
collection process only when that memory is almost all gone.

Your app should be very strict in its use of memory, especially when it comes
to creating new screen objects because these objects use up a significant
amount of memory, and they’re also the easiest objects to leave lying around.
Ideally, your app will have as few screens as possible and create a new one
only when absolutely necessary. One way to accomplish this is to only ever
create one instance of a screen, and then recycle that instance (reinitialize it)
when you need it again.

Keep Your Constants All Together
One of the biggest problems in development using older programming
languages was the overuse of magic numbers — some unexplained and
arbitrary number in the middle of the source code. The originator of the code
might have an instinctive awareness of what the number meant and why it
was that value, but future generations usually had a difficult time figuring out
why that number couldn’t be something different — or worse, where else
that particular value came into play.

25_467114-ch16.indd 34425_467114-ch16.indd 344 8/30/10 1:10 PM8/30/10 1:10 PM

345 Chapter 16: Ten BlackBerry Development Tips

Java coding guidelines (and you’ve read them all, right? Check out http://
java.sun.com/docs/codeconv/CodeConventions.pdf) dictate how
you should set up your constants within the classes you create. I won’t tell
you to use all the coding conventions in the Sun Java guidelines, but the one
on constants is both easy to implement and extremely helpful for handling
problems that arise in the future.

Keep the Order Straight
Every application, whether written for a desktop PC or a BlackBerry or
something else, has a predefined order of operation. From the moment the
user tells the OS to launch the app until the moment the first screen is displayed
for the user to see, your app follows a prescribed sequence of events. If you
keep this order close at hand when you’re programming your app, you’re
much more likely to know what stage your app is in at a given moment while
it’s running. Table 16-1 is a list of the major events, in order, that your
application will move through.

Table 16-1 The Natural Order of Things

Event Object Method

User launches app UiApplication main(String[]
args)

OS tells app to begin UiApplication activate()

Screen is pushed onto stack MainScreen onDisplay()

Screen about to be drawn MainScreen onUiEngine
Attached()

Menu or dialog is removed MainScreen onExposed()

Screen is closed MainScreen close()

OS puts app in background UiApplication deactivate()

This list of method calls — which are executed by the OS — gives you a
sequence you will refer to again and again while you’re developing your app
and learning how it behaves.

25_467114-ch16.indd 34525_467114-ch16.indd 345 8/30/10 1:10 PM8/30/10 1:10 PM

346 Part VI: The Part of Tens

Harmonize with RIM
RIM is constantly introducing new devices and new versions of its device OS.
The good news is this means new features and functionality head your way
several times a year. The bad news is that sometimes code that worked in a
previous version of the OS no longer works in the new version. The real bad
news is that when something breaks, you have to deal with it, one way or
another.

You should periodically check the BlackBerry developer Web site (http://
na.blackberry.com/eng/developers) and keep up with the latest and
greatest of what’s going on with RIM. For instance, as of this writing, the
newest released device OS is 5.0, and the upcoming 6.0 device OS has been
demonstrated at the 2010 Wireless Enterprise Symposium (WES). In addition,
JDE 5.0 is now available.

Initialize at the Right Moment
Every object you create, every member variable of even the simple Java
types, requires initialization. Many difficulties in your development result
from variables being uninitialized when you expected them to be valid data.
Sometimes this can be difficult to track, especially if your app does any
background processing that hasn’t finished when the mainline of your app
tries to use the data delivered by the background process. The Java compiler
initializes all member variables to one of several innocuous values:

 ✓ Zero

 ✓ null

 ✓ false

However, local variables must be initialized before being used, or else the
compiler refuses to compile the code.

For certain objects, such as the Application object or any Screen object,
you might have to wait for the right time to perform initialization. After the
constructor has been executed, the OS goes through its own initialization
phase. For Application objects, this is the time between the call to
enterEventDispatcher and the execution of activate. For Screen
objects, this is the time between pushing the screen onto the screen stack
and the execution of its onUiEngineAttached method. So you want to
make certain you override these two methods to finish your initialization just
before you present the user with something on the screen.

25_467114-ch16.indd 34625_467114-ch16.indd 346 8/30/10 1:10 PM8/30/10 1:10 PM

347 Chapter 16: Ten BlackBerry Development Tips

Catch Those Exceptional Moments
Java provides you with a mechanism for handling unexpected behavior on
the part of the device or the operating system by throwing exceptions. This
allows you to write code that can react to unpredictable events through
something called the try-catch mechanism. The BlackBerry APIs contain
uncountable numbers of methods that can throw exceptions, and you want
to make sure that your app can handle at least all of the most likely ones.
Otherwise, your users will see something like the screen shown in Figure 16-1.

Figure 16-1:
An app

throws an
exception

that bubbles
up outside

the app.

One thing to keep in mind: Your app can’t catch all exceptions. Some of them
come from out of nowhere, and there’s just nothing you can do about those.
The BlackBerry API documentation provides you with the obvious ones, but I
have come across some very subtle programming issues — usually involving
at least another thread of execution — that throw not-so-obvious exceptions.

Remember the User
Your application is going to be downloaded and used by hundreds, thousands,
millions (I hope!) of users. Users bring their own expectations and hopes
when it comes to using your app, so you need to craft your app in a way
that keeps their basic needs in mind. A BlackBerry user is almost always a
high-energy, on-the-go, no-time-to-waste person, and your app needs to be
built with this in mind. It’s easy to scroll through several thousand vertical
pixels’ worth of information in a Web page on your desktop PC; a user trying
to scroll through that much on a BlackBerry screen is going to go somewhere
else. The same is true for non-Web applications: Your users depend on you to
provide them with the information they want quickly and easily. Try to keep
the pertinent information in one screen, with supporting screens just one
click away.

25_467114-ch16.indd 34725_467114-ch16.indd 347 8/30/10 1:10 PM8/30/10 1:10 PM

348 Part VI: The Part of Tens

RIM provides a User Interface Guide that you definitely should take a look at
(http://docs.blackberry.com/en/developers/deliverables/6625).
The guide contains information about all the different models and their
characteristics, as well as design principles to help you develop your
application to be useful across all the BlackBerry devices. Learning these
principles will help you keep your app living up to its users’ expectations.

Don’t Take It All Too Seriously
I enjoy programming and have developed applications for many different
platforms. The BlackBerry makes some things easy, and also provides
challenges requiring me to be persistent and sometimes even creative. I still
scream at the computer, the simulator, the JDE, and the application whenever
they do something I didn’t count on. At that point, it’s easy to see I’m taking
things too seriously, and I need to take a break. Hopefully you will learn this
as well to reduce the stress that arises when your app just simply won’t do
what you tell it to do.

Programming is fun, which is what it should be. The fact that you’ve purchased
this book suggests that you think so, too. When the code you’re working on is
frustrating and stymieing you, it’s no longer much fun. That’s when it’s time
to step away, for just a little bit, and escape from the problem at hand. You
can come back to it in an hour, or a day, when emotions have died down and
the problem is no longer a wall slammed down on the path you chose, but is
instead a challenge to learn about and overcome. Programming is all about
solving problems.

25_467114-ch16.indd 34825_467114-ch16.indd 348 8/30/10 1:10 PM8/30/10 1:10 PM

Part VII

Appendixes

26_467114-pp07.indd 34926_467114-pp07.indd 349 8/30/10 1:11 PM8/30/10 1:11 PM

In this part . . .

Sometimes chunks of valuable information are just
better encapsulated as references in a “room of their

own,” which is why books have appendixes — and that’s
what this part is.

Here, you find a virtual debate between simulation and
reality: the benefits and challenges of BlackBerry simulators
versus the positives and negatives of using the real things.
You discover why BlackBerry simulators can give you the
next best thing to the real thing, and also why a real
device will expose your app to the real world that real
users experience.

26_467114-pp07.indd 35026_467114-pp07.indd 350 8/30/10 1:11 PM8/30/10 1:11 PM

Appendix A

Device and Service Simulators
In This Appendix
▶ Using the device simulators in the JDE

▶ Using downloaded device simulators

▶ Using the Mobile Data Service simulator

▶ Using the Email Service simulator

You can download and install all the tools you need to develop, build,
and run your BlackBerry app for free. RIM provides the JDE complete

with BlackBerry smartphone simulators in one package. These simulated
smartphones operate exactly as the real smartphones using the same
version of the BlackBerry OS, so you can be sure that if your app runs
perfectly on the simulator, your app will run perfectly on the real thing. Okay,
that’s not always true — real smartphones can and do misbehave — but
you’ll find that your app does behave on a real smartphone pretty much as it
does on a simulator. And you can be sure that if your app fails on a simulator,
it will definitely fail on a real smartphone.

RIM also provides BlackBerry smartphone simulators apart from the
JDE. See, RIM is developing new versions of its smartphone OS and new
BlackBerry smartphones all the time, but you’ll find that RIM doesn’t update
the JDE packages quite as quickly as it puts new smartphones on the market.
You want to test your app on the new smartphones without waiting for RIM
to release the next generation of the JDE.

In this appendix, you discover how to use the simulators that come with the
JDE to test and stress-test your app before you bring it to the BlackBerry App
World, without having to buy all the different smartphone models to test it
on. I also show you where to find and how to install the latest BlackBerry
smartphone simulators available at RIM so you can keep up to date and be
sure that your app is good to run on the new hardware as well as the old.

27_467114-bapp01.indd 35127_467114-bapp01.indd 351 8/30/10 1:11 PM8/30/10 1:11 PM

352 Part VII: Appendixes

Smartphone simulators won’t be enough to fully capture the complete
BlackBerry smartphone experience — real users holding real BlackBerry
smartphones can get real e-mail and connect to real Web services. So in
addition to device simulators, RIM provides a pair of service simulators that
you use to provide network and e-mail capability to BlackBerry smartphone
simulators. I show you where you can find these simulators at RIM so you
can download, install, and set up so your BlackBerry smartphone simulators
are connected just like their real physical cousins are.

Using BlackBerry JDE Device Simulators
All BlackBerry device simulators execute the exact same code as an actual
BlackBerry device using the same operating system version number. That
is, your application, running on a simulator, will execute its code just as if it
were running on an actual device. This means you can be pretty certain how
your application will behave on your users’ BlackBerry devices just by
running it on the BlackBerry simulators.

Each version of the JDE comes with its own set of simulated BlackBerry
devices. The JDE version 4.5 comes with the following device simulators:

 ✓ 81xx Pearl series (8100, 8110, 8120, 8130)

 ✓ 83xx series Curve (8300, 8310, 8320, 8330)

 ✓ 8700 and 8703e

 ✓ 88xx series (8800, 8820, 8830)

The JDE version 4.7 comes with the following simulators:

 ✓ 8830

 ✓ 95xx series Storm (9500, 9530)

 As you can see, the JDE v. 4.7 doesn’t provide as many different device
simulators as the JDE v. 4.5; however, the JDE v. 4.5 does not come with the
BlackBerry Storm, which is one of the most popular BlackBerry models. That’s
because the Storm itself uses BlackBerry device OS 4.7 or later, and so the 4.7
JDE is required to create applications that can take advantage of the Storm’s
touchscreen.

You can launch your application using the simulators that come with the JDE
in two ways:

27_467114-bapp01.indd 35227_467114-bapp01.indd 352 8/30/10 1:11 PM8/30/10 1:11 PM

353 Appendix A: Device and Service Simulators

 ✓ From within the JDE itself, by pressing the F5 key: This is the quickest
way to get your app up and running, and the JDE will also build your
application if needed.

 ✓ From the command line by performing the steps in the following list.
The JDE simulators are found in the following directory, assuming that
you installed the JDE at the default location:

C:\Program Files\Research In Motion\BlackBerry JDE x.y.z\simulator

 Each separate simulator has a BAT file in this directory, and that file
contains the fledge.exe command line command to launch an
application. This application is the engine for all the simulated
BlackBerry devices.

To launch your application in a simulator from the command line, follow this
procedure:

 1. Open a command window.

 2. Navigate to

C:\Program Files\Research In Motion\BlackBerry JDE 4.5.0\simulator

 For this example, I’m using the 4.5.0 JDE.

 3. In this directory is a collection of .BAT files, one for each simulator;
pick your favorite simulator from the list.

 Figure A-1 shows a directory listing of the set of .BAT files that come
with the 4.5.0 JDE.

Figure A-1:
The default

simulator
BAT files
installed
with the

BlackBerry
4.5.0 JDE.

 Of all the smartphone simulators installed with the 4.5.0 JDE, my
preferred is the BlackBerry 8310 Curve, so I use the BAT file 8310.bat
to launch it.

27_467114-bapp01.indd 35327_467114-bapp01.indd 353 8/30/10 1:11 PM8/30/10 1:11 PM

354 Part VII: Appendixes

 4. Execute the BAT file of your simulator.

 When I type the following command — 8310.bat — into the command
window, the BlackBerry 8310 simulator launches. The BAT file is a script
file that contains the commands needed to launch the simulator executable
with the settings needed to simulate the BlackBerry 8310 Curve.

 5. Choose File➪Load Java Program.

 The Windows Open File dialog box appears.

 6. Navigate to the location of your app’s COD file, select it, and click the
Open button.

 The COD file contains all the code in your application, and this is all you
need the simulator to open. In Figure A-2, you can see the 8310 simulator’s
Open File dialog box ready to open WordLocker.cod.

Figure A-2:
WordLocker.

cod is
selected to

be added
to the

simulator’s
set of apps.

 The simulator installs your app, and your app’s icon is displayed on the
BlackBerry simulator screen.

 7. Move the simulator’s selection cursor to your app and click the app to
launch it.

 You operate the BlackBerry smartphone simulator just like you would a
real BlackBerry. All the keys — as well as the operations of the trackball,
trackwheel, trackpad, and touchscreen — are mapped to keys on your
PC’s keyboard. If you hold your mouse over the simulator’s keys, you
see in the bottom-left corner of the window the PC key that maps to the
simulator key. In Figure A-3, you can see that the BlackBerry menu key
(the button to the left of the trackball) maps to Keyboard:Insert (the
mouse hovering over the menu button didn’t get captured in the screen
capture). You move the selection cursor (the yellow highlight at the
topmost icon in Figure A-3) using the PC’s arrow keys.

27_467114-bapp01.indd 35427_467114-bapp01.indd 354 8/30/10 1:11 PM8/30/10 1:11 PM

355 Appendix A: Device and Service Simulators

Figure A-3:
Mapping the
menu button

to the PC’s
Insert key.

Selection cursor

Keeping things tidy
Every time you build an application using the
JDE and then execute that application with the
JDE’s simulator, a copy of your application’s
code files (COD files) is placed in the simulator
directory, deleting any older version of
your app. This copy will stay there until you

delete it, which means that every other
application you build and run will stay there as
well. Fortunately, you can execute the BAT file
in the simulator directory — clean.bat — to
clean the simulator directory of all the COD files
that shouldn’t be there.

27_467114-bapp01.indd 35527_467114-bapp01.indd 355 8/30/10 1:11 PM8/30/10 1:11 PM

356 Part VII: Appendixes

 When you launch the simulator from a command line window, the JDE is not
informed. This means that the JDE can’t be used to debug or monitor the
simulator or your app running on it. This sequence of steps prepares you for
launching simulators you download directly from RIM, so you can test your
app on the latest simulated smartphones. You can connect the JDE to the
simulator as it is running so that you can monitor and debug your app just as
if you had launched it from within the JDE. Here’s how you do that:

 1. Launch your app using a simulator from the command line, as
detailed earlier.

 2. Launch the JDE.

 3. Load your application workspace into the JDE if it’s not already there.

 4. Choose Debug➪Attach To➪Simulator.

 Alternatively, you can also press Ctrl+Shift+O.

 The JDE connects to the simulator. You’re now ready to test your app,
and catch any piece of code that misbehaves.

Using the MDS Simulator
BlackBerry users are networked users. Their devices talk to the Internet
through a wireless service provider or through a Wi-Fi connection; they
receive e-mail, go to Web sites, push and pull data — everything you can
do with an Internet connection. If your app is going to enhance the user’s
Internet experience, you definitely need to test that functionality before your
app goes public. And seeing as how this is the appendix on simulators, this
section is all about how a BlackBerry device simulator accesses the Internet.

The JDE you installed comes with an MDS simulator. MDS — Mobile Data
Service — is a service of the BlackBerry Enterprise Server (BES) system. The
MDS simulator is designed to provide access for device simulators to the
Internet through the Windows operating system.

To launch the MDS simulator, choose Start➪All Programs➪Research In
Motion➪BlackBerry JDE 4.5.0➪MDS-CS. The MDS simulator opens a command
line window, like that shown in Figure A-4, which displays lines of text output,
telling you what the MDS is doing. The last line

Admin. Task- pending push messages

indicates that the MDS has completed its initialization and is waiting for
activity.

27_467114-bapp01.indd 35627_467114-bapp01.indd 356 8/30/10 1:11 PM8/30/10 1:11 PM

357 Appendix A: Device and Service Simulators

Figure A-4:
BlackBerry

MDS
simulator

after
initialization

and ready to
network.

With the MDS simulator launched, a BlackBerry device simulator can access
the Internet, just as if it were a BlackBerry (even though it uses your PC’s
Internet connection). You can see this by following these steps:

 1. Launch a BlackBerry simulator.

 It doesn’t matter whether you launch it from the JDE or from the command
line. In this example, I’m launching the AT&T BlackBerry 9700 simulator.

 2. Launch the BlackBerry Browser application on the simulator just like
you would on a BlackBerry.

 3. Type yahoo.com (or your favorite Web site) into the URL entry text box.

 You can enter this by using the keys on your PC’s keyboard. You can
also click the onscreen keys using your mouse, but I find using the
keyboard to be much faster.

 4. Press Enter.

 You see the text in the MDS command window scrolling by as the MDS
performs various operations. This confirms that the BlackBerry simulator
is communicating with the MDS simulator and from there to the Internet.
You can see some of this text in Figure A-5.

 After the MDS simulator retrieves all the information that the URL provided,
the BlackBerry simulator will display the Web page you surfed to.

The MDS simulator can provide more functionality than simple outward-
bound network access, but at the moment, this is all you need to know. I
cover network communications from within a BlackBerry app in Chapter 9.

27_467114-bapp01.indd 35727_467114-bapp01.indd 357 8/30/10 1:11 PM8/30/10 1:11 PM

358 Part VII: Appendixes

Figure A-5:
BlackBerry

MDS
simulator in

communica-
tion with a

BlackBerry
device

simulator.

Using the Email Service Simulator (ESS)
If your application will make use of e-mail messages or their attachments, you
need to test this functionality. You can do this pretty easily by using a real
device with a real wireless connection. However, when you’re running on a
simulator, you also need to simulate the e-mail service so that the simulated
device can send and receive e-mail messages just like a real device would.

 As of this writing, only the 4.1.4 ESS application seems to work as described.
If your application requires testing e-mail interaction on a simulator, this
version is the one you need. You don’t require the 4.1.4 version of the JDE,
however; the 4.1.4 ESS will work with current device simulators.

 If your application is going to access e-mail, either to send or receive, your
best bet is to buy a real device complete with a service plan that allows you
to do this. The ESS isn’t complicated or difficult to set up, but the hairs on the
back of my neck stand on end whenever I think of using it because I’ve managed
to successfully get only the 4.1.4 version to work correctly.

Downloading the latest ESS
To download the 4.1.4 ESS, perform the following steps:

 1. Point your browser to

http://na.blackberry.com/eng/developers/resources

 You see a screen that looks similar to that shown in Figure A-6.

27_467114-bapp01.indd 35827_467114-bapp01.indd 358 8/30/10 1:11 PM8/30/10 1:11 PM

359 Appendix A: Device and Service Simulators

Figure A-6:
RIM

BlackBerry
resource

page.

 2. Click the Download the BlackBerry Email and MDS Services Simulator
Package v4.1.4 link.

 You are taken to a familiar “please enter your registration information”
screen, hopefully with all the required text boxes filled out.

 3. Check all the required text boxes and fill in those that are missing.

 Sometimes one or two don’t get filled in. I think RIM just wants to make
sure that a human being is at the controls.

 4. Click the Next button.

 You are taken to the Eligibility screen.

 5. Check Agree (because I’m pretty sure you do!) and then click Next.

 You’ll be presented with the Software Download for Developers screen,
showing you that you’re about to download a file called BlackBerry_
Email_MDS_4.1.4.exe.

 6. Click the Download button.

 The usual download process will run.

 7. Navigate via Windows Explorer to the file you just downloaded and
double-click the file to start the installation process.

27_467114-bapp01.indd 35927_467114-bapp01.indd 359 8/30/10 1:11 PM8/30/10 1:11 PM

360 Part VII: Appendixes

 8. Accept all the defaults and let the installation run.

 The ESS application and the MDS application can’t be executed together. I
haven’t determined why this is, but when both are running, the ESS application
doesn’t receive any communication from either the smartphone simulator or
Outlook if MDS is running, too. If you want to test your application’s e-mail
capabilities, you have to close MDS if it’s already running. (It won’t hurt your
app or your PC if both are running at the same time; it’s just that ESS won’t
work correctly.)

Running the ESS
To run ESS version 4.1.4, choose Start➪All Programs➪Research In Motion➪
BlackBerry Email and MDS Services Simulators 4.1.4➪ESS. You see the Email
Server Simulator window (shown in upcoming Figure A-4) when the ESS is
launched.

You can also run the ESS from a command line window. This has the added
advantage of providing more information about what the ESS is doing, just
in case you run into problems with its operation. I prefer launching ESS from
the command line window because

 ✓ I enjoy the hum of debug messages scrolling across the window.

 ✓ When something goes wrong, it’s obvious.

 ✓ When something should be going right, but doesn’t, it’s obvious. (This
is how I discovered that the ESS wasn’t getting any e-mail attempts from
the smartphone simulator while MDS was also running.)

The ESS will operate in one of two modes:

 ✓ Connected mode: In this mode of operation, the ESS will communicate
with a real e-mail server, one which you will need to provide enough
information for ESS to act as a middleman between the device simulator
and the e-mail service. Outgoing messages created on the BlackBerry
device simulator will be delivered using the e-mail service you configure
ESS to communicate with. Connected mode works well with corporate
e-mail services, but does not work easily with services such as Gmail,
Yahoo!, or Hotmail — I haven’t yet gotten my BlackBerry simulator to
work with my Gmail account.

 ✓ Standalone mode: Using this mode of operation turns the ESS into an
e-mail server running on your PC. This is the best approach to using ESS
because you can set up Outlook or Outlook Express to communicate
with your BlackBerry simulator through ESS.

27_467114-bapp01.indd 36027_467114-bapp01.indd 360 8/30/10 1:11 PM8/30/10 1:11 PM

361 Appendix A: Device and Service Simulators

Configuring the ESS
I recommend running the ESS in Standalone mode when you want to test
using e-mail with your application. Figure A-7 shows the ESS setup on my PC,
before executing Standalone mode.

Figure A-7:
ESS settings

to perform
Standalone

mode
operation.

To start the ESS, all you need to do is the following. This sequence of steps
sets the ESS to act as a mail server running on your PC, but only for the
BlackBerry simulator. In this example, I’m using Standalone mode; see the
preceding section.

 1. Select the Standalone Mode radio button.

 The POP3 port and SMTP port values are prefilled for you, and you don’t
want to change them. Your local e-mail client (such as Outlook) will by
default expect the ESS to use those values.

 The ESS uses your PC to store the e-mail messages that the BlackBerry
simulator sends out, and the e-mail messages your e-mail client sends
to the BlackBerry simulator. The ESS is acting as a post office, except it
keeps copies of the e-mail messages sent in either direction, just like a
real e-mail service does. The Clean FS button removes all those copies,
so you should click it every time you launch the ESS, before you click its
Launch button.

 2. Enter a name into the Name text box.

27_467114-bapp01.indd 36127_467114-bapp01.indd 361 8/30/10 1:11 PM8/30/10 1:11 PM

362 Part VII: Appendixes

 This name can be anything you choose, so I usually put my own name,
in all lowercase. This helps me pick out these messages in my Outlook
inbox more easily — you might consider setting it to something like
BlackBerry Simulator to make it stand out even more.

 3. Enter the e-mail address that will be used in the Email text box.

 I chose kgk@mymachine.com. The choice of e-mail address is completely
up to you because you set up your favorite e-mail application, such as
Outlook, to use that account. This isn’t a real e-mail account — this is
only for the ESS to manage. You create a new account in your e-mail
client to use this e-mail address and tell it that this address is controlled
by the ESS. Note that Web-based e-mail services can’t be used with the
ESS. After this step, you don’t need to change any other information on
the screen.

 The PIN text box is the BlackBerry 8-hexadecimal digit Personal
Identification Number. There’s a different one for every real BlackBerry
smartphone. For the simulator, the PIN is assigned and can be set to any
8-hexadecimal digit value you’d like. The default is 2100000A. If you take
a peek inside the BAT file for the BlackBerry simulator you launch, you
see that one of the pieces of information used to launch the simulator
is this PIN value. You can change it, but I’ve found it better to stick with
the default because then I don’t have to remember what I’ve changed it to.

 4. Click the Launch button.

That’s all you need to do to run ESS and have it act as a mail server specifically
for BlackBerry device simulators. If you launch a BlackBerry device simulator
(such as the 9700 AT&T Bold 2), it will connect by default to the ESS for
messages. You can create e-mail messages, using the device simulator, and
send them to the ESS.

If you want to access the messages sent by the BlackBerry device simulator
to the ESS, you need to set up a Windows mail application (such as Outlook
Express) to connect to the ESS.

To configure Outlook 2007 to communicate with the BlackBerry simulators,
follow these steps:

 1. Launch Outlook 2007.

 2. Select Tools➪Account Settings.

 Outlook 2007 shows you the list of e-mail accounts it’s aware of. Figure A-8
demonstrates my Outlook BlackBerry simulator e-mail account.
The account kgk@mymachine.com is set to talk to the ESS and the
BlackBerry simulator.

 3. Click New.

 This starts the process of creating a new e-mail account.

27_467114-bapp01.indd 36227_467114-bapp01.indd 362 8/30/10 1:11 PM8/30/10 1:11 PM

363 Appendix A: Device and Service Simulators

Figure A-8:
The list

of e-mail
accounts in
my Outlook

2007.

 4. Select Microsoft Exchange, POP3, IMAP, or HTTP, and click Next.

 5. Select the Manually Configure Server Settings or Additional Server
Types check box, and then click Next.

 This disables all the other entry fields.

 6. Select Internet E-mail and click Next.

 Apparently, the only reason you need to do this is so Outlook knows
you’re not trying to connect to Microsoft Exchange.

 7. Fill in the page as follows:

 • In the Your Name text box, enter any name you wish.

 • In the E-mail Address text box, enter the same e-mail address you
entered for the ESS.

 • From the Account Type drop-down list, select POP3 (it should be
that already).

 • In both the Incoming Mail Server and the Outgoing Mail Server
(SMTP) text boxes, enter localhost.

 • In the User Name text box, enter the username of the e-mail
address you entered in the E-mail Address text box.

 • Leave the Password text box blank.

 • Make sure the Remember Password and Require Logon Using
Secure Password Authentication (SPA) check boxes are unchecked.

 Figure A-9 shows the settings for my kgk@mymachine.com account in
Outlook 2007.

27_467114-bapp01.indd 36327_467114-bapp01.indd 363 8/30/10 1:11 PM8/30/10 1:11 PM

364 Part VII: Appendixes

Figure A-9:
The e-mail

account
allows

Outlook to
send e-mail

messages
to the

BlackBerry
simulator

through
the ESS

simulator.

 8. Click Next and then click Finish on the last screen to finish the
account creation.

 If you use another e-mail client, check the user documentation for your e-mail
application to determine how to connect it to the ESS as if it were the mail
server.

After you have your ESS running and your mail client communicating to it, a
BlackBerry device simulator can send e-mail messages to ESS for your mail
client to receive, and your mail client can send e-mail messages to ESS for the
BlackBerry device simulator to receive.

 In my experiments setting up the ESS and Outlook 2007 to work together to
send and receive e-mail messages between Outlook and the BlackBerry
simulator, I got frustrated when the BlackBerry simulator was sending e-mail
to the ESS, but nothing was showing up in my Outlook Inbox. The ESS messages
flashing by in the command-line window looked good, no errors were
reported, but nothing was showing up in Outlook no matter how many times
I clicked the Send/Receive button. Worse, Outlook’s little window displaying
the steps it was taking was showing no errors or failures either. Then I noticed
my Junk E-mail folder was getting more messages. Apparently, Outlook didn’t
trust the BlackBerry simulator or the ESS. After I told Outlook to stop treating
those messages as junk, it all worked fine. Lesson learned: Always check your
Junk E-mail folder!

27_467114-bapp01.indd 36427_467114-bapp01.indd 364 8/30/10 1:11 PM8/30/10 1:11 PM

Appendix B

Real Devices and Services
In This Appendix
▶ Using a BlackBerry device for development

▶ Getting familiar with BlackBerry Internet Service (BIS)

▶ Getting familiar with BlackBerry Enterprise Server (BES)

Your development efforts in creating The Greatest BlackBerry App can
be performed almost completely using the device simulators and the

service simulators downloaded from RIM. Before you send your app to the
BlackBerry App World, though, you must run it on a real device at least once
to properly test it. If you’ve ever developed an application for a mobile platform,
you already know this. If creating an app for a BlackBerry is your first mobile
device experience, just take my word for it. An app only works as well as it’s
tested, and because the final destination for your BlackBerry app is a real
device, you have to test it on a real BlackBerry. And if your BlackBerry app
wants to access the Internet, you’ll need to test that as well.

In this appendix, I give you a solid background of BlackBerry devices and cover
basic details about the BIS and the BES so you’ll have a good understanding of
what you need to do to ensure your application runs on real hardware.

Picking Out a BlackBerry Device
You can acquire a BlackBerry in two ways:

 ✓ Buy a new or refurbished device from a wireless service provider.
This requires a service contract with the wireless service provider,
which might not fit into your budget.

 ✓ Buy a used device. This way is usually less expensive than buying from
a wireless service provider but comes with its own set of advantages
and disadvantages.

Chapter 1 provides a list of the BlackBerry models available as of this writing.

28_467114-bapp02.indd 36528_467114-bapp02.indd 365 8/30/10 1:11 PM8/30/10 1:11 PM

366 Part VII: Appendixes

 Keep in mind that if you want to write an app for a particular BlackBerry
model, you may have to purchase it from a particular carrier — for example,
you can only purchase a Storm from Verizon.

Buying new or refurbished
Purchasing a new BlackBerry from one of the wireless service providers is the
most expensive way to go. You can, of course, find refurbished devices from
the providers for significantly reduced cost. In both cases, though, you have to
purchase at least a data plan. Wireless service providers are always looking to
increase the number of subscribers, so they usually have some rebate or discount
available (although it usually requires signing a one-year or two-year contract).
Be sure to read the fine print. For example, the BlackBerry I bought (keep
reading) wasn’t eligible for a rebate because I didn’t purchase a voice plan for it.

I chose a new BlackBerry Curve 8900 from AT&T. I also own another touch-
screen smartphone from AT&T, which got me a little discount in the service
contract. Because I already have a voice plan for that other phone, I selected
only a data plan for my BlackBerry to keep my costs down. The 8900 comes
with Wi-Fi, so I can connect via either 3G speeds when I’m out and about or
faster Wi-Fi when I’m near a network I trust. AT&T and T-Mobile offer BlackBerry
models that come with Wi-Fi; Verizon and Sprint are starting to do the same.
I recommend buying a BlackBerry smartphone that will support the app you
want to create. My Word Locker app doesn’t depend on the smartphone having
a touchscreen, so the BlackBerry Curve I bought works perfectly fine for testing
the app on a real device. If you choose the 4.5.0 version of the JDE, your app will
execute the same on all BlackBerry smartphones running OS 4.5.0 or later, with
the exceptions as noted in Chapter 2.

So should you go with a refurbished model? My experience with refurbished
equipment in other areas of electronics such as computers has led me to
believe that refurbished hardware is just as good as new — that is, as long
as the manufacturer is trustworthy and the hardware comes with a warranty
that is equivalent to that of new hardware. And a refurbished model is certainly
more trustworthy overall than buying a used device. I have seen cost savings
of 25 to 30 percent, depending on the model. One disadvantage is that you
may not find the particular BlackBerry model that you’re looking for, and the
carrier may only have limited numbers available. My recommendation is to
investigate what refurbished models are available at each carrier, and then
determine whether a new model is within your budget.

 The carrier assumes responsibility for making sure that the refurbished
BlackBerry you purchase works just as if it had come fresh from the factory.
As you see later in this chapter, used BlackBerry smartphones don’t come
with this guarantee, and this can cause problems. I recommend talking with a
representative of the carrier, either by phone or through e-mail, to make sure
of the carrier’s responsibility and the warranty status when you buy a refurbished
BlackBerry smartphone.

28_467114-bapp02.indd 36628_467114-bapp02.indd 366 8/30/10 1:11 PM8/30/10 1:11 PM

367 Appendix B: Real Devices and Services

Buying used
BlackBerry devices, like other smartphones and cellphones in general, are
now coming to be seen as consumables. RIM is developing new BlackBerry
smartphones every three to six months, and wireless service providers
attract their customers with discounted prices on top phone models that
come with two-year contracts. Many BlackBerry users replace their 2-year-old
devices with new ones when they renew their wireless service contracts.
And that means that all the old devices replaced by new devices have to go
somewhere.

As the largest marketplace for used equipment, eBay (www.ebay.com) is
probably the first place you should look for used BlackBerry devices. Craig’s
List (www.craigslist.org) is another great place to search, especially for
sellers who are close by. My experience has been with eBay, and I purchased
a used AT&T BlackBerry 8820 from an online auction. This device had been
used by the seller in a corporate environment, and the seller got a new phone
with a new contract, prompting him to sell his old device.

The 8820 comes with Wi-Fi, so a service contract wasn’t necessary to access
the Internet through a WiFi connection. I offered the high bid, and the seller
shipped me the device along with a USB cable and the password.

There was just one problem: The device had previously been Enterprise
Activated. Enterprise Activation means the BlackBerry device is connected
to your corporate e-mail account and can access corporate network services
such as intranets. This process is known as BES-ing (bezz-ing) a device
because the device is being associated with a BlackBerry Enterprise Server
(BES). The benefits of Enterprise Activation are discussed in the later section
“BlackBerry Enterprise Server (BES)”; my focus here is on what can happen
when you purchase a used BlackBerry that was originally associated with a BES.

When I charged up the used 8820 and turned it on, I discovered two anomalies:
There was no Browser application installed, and the device refused to let
me install applications I created and signed myself. This state seemed rather
strange. I knew from some development experience, though, that there were
a great many rules that could be enforced on a BlackBerry that were associated
with a BES, and which would continue to be enforced even after that
BlackBerry was no longer connected to that BES. When my development
team and I first discovered this lingering rules enforcement, we were very
surprised. And that is what had happened to my used BlackBerry: The original
owner had used it under the authority of his corporate BES environment, and
that environment included rules that dictated the following:

 ✓ The user would not be allowed to access the Web via a browser.

 ✓ The user would not be allowed to install applications.

28_467114-bapp02.indd 36728_467114-bapp02.indd 367 8/30/10 1:11 PM8/30/10 1:11 PM

368 Part VII: Appendixes

That left me with one problem: how to get these rules reversed. My development
team determined that even erasing and reinstalling the device OS (wiping the
device) didn’t remove these rules.

The only way to undo the rules assigned to the device by the BES was to
Enterprise Activate the device to a BES under my control, and then set the
rules to be more flexible. The company I work for grants me access to a BES,
and so that was the solution to my 8820’s problems.

 The lessons for you to take away from my experience are

 ✓ Buying a used BlackBerry is cheaper than buying a new or refurbished
BlackBerry.

 ✓ But a used BlackBerry might have restrictions placed on it that limit its
usefulness and that might be difficult or even impossible to remove.

So, before purchasing or even bidding on a used BlackBerry, ask the seller
these questions:

 ✓ Was the device originally purchased for personal use?

 ✓ Was the device ever Enterprise Activated for access to a corporate
network? This question might be difficult for the seller to answer if the
device was bought and sold more than once.

 ✓ If the device was Enterprise Activated for the seller’s use, can the
administrator remove any restrictions before you purchase the device?

Some online tools claim to remove rules that have been placed on a device
associated with a BES, but be careful using them. It turns out that rules can’t
actually be removed: They can only be replaced by less-restrictive rules.

BlackBerry Internet Service (BIS)
The reason why most people choose BlackBerry smartphones is simple:
BlackBerry smartphones do e-mail well. The first BlackBerry devices
worked with a BES, something that only medium to large businesses could
afford. Then RIM introduced BlackBerry Internet Service (BIS). Using BIS, a
BlackBerry user can create an e-mail account managed by RIM and connected
to the user’s wireless service provider. After purchasing my BlackBerry 8900,
I set up an account through the AT&T portion of BIS, and now have an e-mail
account specifically for my BlackBerry device in the att.blackberry.net
domain.

BIS provides BlackBerry users with an e-mail account hosted by RIM, and it
also allows access to other e-mail providers, including

28_467114-bapp02.indd 36828_467114-bapp02.indd 368 8/30/10 1:11 PM8/30/10 1:11 PM

369 Appendix B: Real Devices and Services

 ✓ Gmail

 ✓ Yahoo!

 ✓ Hotmail

 ✓ Any Web-based e-mail provider that supports POP3 or IMAP

BIS doesn’t impose rules on BlackBerry devices, so if you bought a used
BlackBerry that had BIS service, your app won’t be affected by that service.
However, BIS is a service that is owned, operated, managed, and maintained
by RIM, and that can sometimes indirectly cause issues for your app, such
as e-mail attachments not being delivered to the smartphone or even service
interruptions. Because the BIS is primarily an e-mail service, the issues will
show up around your app’s interactions with e-mail.

The BlackBerry device OS allows applications to interact with all of a user’s
e-mail — if the user gives your app permission to do so. Because BIS acts as
a mail service for a BlackBerry device, anything your app expects from the
BlackBerry Email application programming interfaces (APIs) will be dependent
upon BIS performing its e-mail duties correctly. Like every piece of software
ever written, BIS can sometimes fail in achieving this goal. These issues can
be difficult to diagnose seeing as how your app isn’t the reason for the failure.
This is one of the reasons I include a discussion about logging information on
a running device in Chapter 11.

BlackBerry Enterprise Server (BES)
BlackBerry Enterprise Server is one of the most important components of the
realm of BlackBerry. BES is deployed within a corporate environment, which
provides employees in a corporation the ability to connect to and access
resources within the internal corporate network from their BlackBerry
devices.

Here are the main features that a BES provides to BlackBerry users in an
enterprise:

 ✓ E-mail: BES synchronizes users’ BlackBerry devices with their corporate
e-mail server. This is accomplished using push technology: BES delivers
new e-mail to a BlackBerry device when it arrives at the e-mail server,
and the user never needs to request it.

 ✓ Web access: The BES acts as a gateway to the Internet for corporate
BlackBerry users. This means that a corporate user might be prevented
from accessing URLs that the IT department within the enterprise
determined to be undesirable or not serving the needs of the business.
Your app, if used on a BES-ed device, might need to handle a situation
where it’s prevented from making network connections.

28_467114-bapp02.indd 36928_467114-bapp02.indd 369 8/30/10 1:11 PM8/30/10 1:11 PM

370 Part VII: Appendixes

 ✓ Internal network access: In addition to its duties protecting the corporate
BlackBerry users from nasty Web sites, BES also provides access to the
network resources behind the corporate firewall. Your app may be
permitted to access these resources as well.

 ✓ Push technology: BES uses push technology to deliver e-mail messages
to a user’s device. The same push technology can also be used to deliver
other data to your application running on a device. However, this also
requires the administrator of a BES to execute an application behind
the corporate firewall to deliver the data to the BES for forwarding on to
your application that’s running on a specific user’s device.

A BES can establish rules — known to BES administrators as IT Policy
Settings — for any and all devices that the BES manages. Administrators can
impose a great many rules upon devices under management of the BES, and
some of them can interfere with the operation of your app. Here are just a
few of the rules that can change the behavior of your application:

 ✓ Disabling the camera (photo and video)

 ✓ Requiring the user to confirm sending messages via SMS (Multimedia
Messaging Service), MMS (Multimedia Messaging Service), and e-mail

 ✓ Disabling SMS messaging

 ✓ Restricting outgoing calls

 ✓ Disallowing network connection

 ✓ Disallowing applications’ use of the persistent storage on the smartphone.
(I go over the storage capabilities of BlackBerry smartphones and how
your app can use them in Chapter 6.)

 ✓ Disabling use of an external memory card

 ✓ Disabling Wi-Fi access

 ✓ Disabling Bluetooth access

If your app expects to make use of any of the preceding features, keep in
mind that users whose devices are Enterprise Activated will potentially be
subject to the security settings imposed by BES.

 Some of the devices that your app ends up on will be monitored by and
affected by a BES. You will want to keep your users informed about what
your application does before they purchase it. Your application may access
features and functionality that a BES administrator has determined are not
allowed for the BlackBerry devices the BES manages — and that will prevent
your app from operating fully or possibly at all.

Consider the following before releasing your app to the App World. This is
by no means a complete list, but you’ll get the basic ideas for handling
situations regarding the use of your app in a BES environment where your
app’s functionality may be affected by something outside your control:

28_467114-bapp02.indd 37028_467114-bapp02.indd 370 8/30/10 1:11 PM8/30/10 1:11 PM

371 Appendix B: Real Devices and Services

 ✓ Give a warning before users download the app. As part of the
description of your app on display at BlackBerry App World, you should
include information about what your app uses that might conflict with
rules set on a BES, if the user’s device is associated with one. Users
can decide before downloading your app whether they can live with
the consequences of your app’s functionality being limited by the BES
administrator’s choice of restrictions. For instance, if your application
uses persistent storage to remember recorded audio notes a user makes
while using your app, you should point this out in your app’s App World
description and mention this as a requirement for anyone running your
app. Most BES administrators don’t prevent use of persistent storage,
but you’ll provide better customer service if your users are aware that
this is a requirement.

 ✓ Make sure your apps fail safely. Your app will need to gracefully handle
situations where a user’s BlackBerry is prevented from operating as
your app wishes. Your app should be able to operate even if all restrictions
given in the preceding list are enforced. For instance, your game app
may attempt to connect to a Web-based service to post and retrieve
high scores, but a BES administrator could block your app’s access to
the external network. This should not prevent users from being able
to play the game. When a BES administrator’s policies prevent your
app from operating normally, your app will receive an Exception when
it tries to perform a forbidden operation. For instance, if a BES policy
prevents network access by third-party applications (such as yours),
your app’s attempt to open a network connection using the Connector
class will cause a ControlledAccessException to be thrown by the
smartphone OS. Your app should catch the exception (your app will
already be wrapping the use of Connector with a try/catch block)
and should display an appropriate error message for this specific
exception, such as “The policies assigned to your smartphone do not
permit this application to communicate with the network.” I discuss
networking in detail in Chapter 9.

 ✓ Allow users to try before buying. BlackBerry App World provides a Try
& Buy option: Users can download your app from the App World for free
for a limited time period, after which they must pay for your app to
continue using it. You are responsible for implementing any control
features with respect to Try & Buy such as enforcing the time limit as
well as activating the application when the user purchases the full
version. The sidebar “Try & Buy applications” shows you a simple
algorithm to keep track of how long your app has been in use.

 You are responsible for your app’s success or failure to operate correctly on
the devices where it’s installed. You might be unable to prevent your app’s
failure when faced with running on a device protected by strong BES restrictions.
I prefer a combination of all three approaches.

28_467114-bapp02.indd 37128_467114-bapp02.indd 371 8/30/10 1:11 PM8/30/10 1:11 PM

372 Part VII: Appendixes

Try & Buy applications
As a Try & Buy application, your app is downloaded by users for free from the App World for a trial
period. Your app is responsible for enforcing this trial period. You can add code similar to the following
to determine whether the user has been using your app longer than a week. If the app detects a
Long object stored in persistent storage, it assumes that this object is the date stored (in a value of
milliseconds since January 1, 1970, as returned by the OS) when the app was launched for the first
time — if the user never launches your app, there’s no reason to worry about how long it’s been used.
If the difference in milliseconds between the current time and the stored time is greater than the value
of a week’s worth of milliseconds, the application displays a screen that tells the user the trial period
is over. If the current date is less than that of a week, the application displays its main screen. Your
own version of the timer will have to include logic that determines whether the user has performed
the Buy part of the Try & Buy approach in addition to simply determining whether a week has passed
since the app’s first use. I present more details about BlackBerry persistent storage in Chapter 6.

// this method is implemented inside the
// UiApplication subclass you create for your app
 public static final long WEEK_DURATION_MILLISECONDS = 60L*60L*24L*7L*1000L;
 public void activate()
 {
 PersistentObject persistentStorage = PersistentStore.getPersistentObject(

TRYANDBUY_PERSISTENT_STORAGE_KEY);
 if (null != persistentStorage)
 {
 Long storedStartDate = (Long)persistentStorage.getContents();
 if (null != storedStartDate)
 {
 Calendar now = Calendar.getInstance();
 long nowMilliseconds = now.getTime().getTime();
 // get current date in milliseconds since epoch
 long deltaMilliseconds = nowMilliseconds - storedStartDate.longValue();

// get time in milliseconds since the start date
 if (deltaMilliseconds > WEEK_DURATION_MILLISECONDS)
 {
 this.pushScreen(new TrialPeriodOverScreen());
 }
 else
 {
 this.pushScreen(new MainApplicationScreen());
 }
 }
 else
 {
 // this is the first time
 Long startDate = new Long(System.currentTimeMillis());
 persistentStorage.setContents(startDate);
 persistentStorage.commit();
 }
 }

 }

28_467114-bapp02.indd 37228_467114-bapp02.indd 372 8/30/10 1:11 PM8/30/10 1:11 PM

373 Appendix B: Real Devices and Services

So how do you get a BES?
A BlackBerry Enterprise Server is, to put it bluntly, a very expensive and
complicated piece of software. If your employer has a BES setup for its
employees, you will likely be able to develop your application without having
to set one up. Your test BlackBerry smartphone will have to be Enterprise
Activated to your employer’s BES.

However, in early 2010, RIM released BlackBerry Enterprise Server Express as
a fully functional BES for small businesses. BES Express comes free with
service for 1 user; additional users may be added for $99 each, up to 30 users.
For testing your app against a fully functional BES equivalent, this would be
an appropriate selection. Watch out for a few things, however:

 ✓ Hardware: BES requires a powerful PC, with lots of speed and memory
and storage space. Even for only one user, BES demands high performance.

 ✓ Operating system: BES and BES Express run only on Microsoft Windows
Server 2003 or 2008.

 ✓ E-mail server: BES Express operates only in conjunction with Microsoft
Exchange. The BES can use Microsoft Exchange, IBM Lotus Domino, and
Novell GroupWise.

 ✓ Database server: BES and BES Express require Microsoft SQL Server to
maintain its operational information.

 ✓ Internet access: BES requires access to the Internet: specifically, inward
and outward access through a particular port (3101), which your firewall
has to open. This is the port that BES uses to communicate with the RIM
servers, and from there to the wireless service providers.

Table B-1 summarizes the requirements for BES and BES Express.

Table B-1 BES and BES Express Requirements

Enterprise
Server

Hardware OS E-mail Server Database
Server

Internet
Access

BES Pentium
IV-class
processor,
2+ GHz,
1.5GB RAM

Microsoft
Windows
Server
2003 or
2008

Microsoft
Exchange,
IBM Lotus
Domino, Novell
GroupWise

Microsoft
SQL Server

Port 3101
open

BES
Express

Same as
BES

Same as
BES

Microsoft
Exchange

Same as
BES

Same as
BES

Installing, configuring, and operating a BES are beyond the scope of this book.

28_467114-bapp02.indd 37328_467114-bapp02.indd 373 8/30/10 1:11 PM8/30/10 1:11 PM

374 Part VII: Appendixes

Exploiting BES push technology
As I mention earlier, BES uses push technology to deliver e-mail from the mail
server to a user’s BlackBerry. This approach is automated, and no action is
required by the user to acquire new mail — the e-mail arrives on its own and
is waiting in the user’s Inbox.

Your application can make use of the same technology if your app is intended
to run on enterprise BlackBerry devices. For instance, you could create an
app to listen for proprietary sales terms, delivered only to BlackBerry
smartphones used by the corporate enterprise’s salespeople. This requires
two pieces:

 ✓ Your app must be “listening” for incoming data deliveries coming from
the BES. This is the client side of the push.

 ✓ You must provide a standalone PC application that will deliver data to
the BES for transmission to a particular device. This is the server side of
the push.

The server application must be running on a machine that’s permitted to
communicate directly with the BES. The server application must perform the
following operations:

 ✓ Collect the data to be delivered to the device.

 ✓ Open an HTTP connection to the BES on a specific port. This port
defaults to 8080, and is known as the HTTP-Push port. The parameters
of the HTTP request are given in the following list.

 ✓ Deliver the data as the POST data in the HTTP connection.

 ✓ Retrieve the HTTP response from the BES.

The HTTP request delivers the identification parameters as well as
authentication data (account and password, if the BES is secured) as
part of the URL for the request. The URL will look something like this:

http://<host>:<port>/push?DESTINATION=<device_PIN>&PORT=<device_port>
&REQUESTURI=localhost

The parameters (items within the angle brackets < >) are

 ✓ <host>: This is the hostname or the IP address of the BES, which the
server application attempts to connect to for delivery of the data.

 ✓ <port>: This is the port the BES used for HTTP-Push; the default is 8080.

28_467114-bapp02.indd 37428_467114-bapp02.indd 374 8/30/10 1:11 PM8/30/10 1:11 PM

375 Appendix B: Real Devices and Services

 ✓ <device_PIN>: This is the 8-digit (hexadecimal) unique identifier for
the BlackBerry device that will receive the data. This can also be the
user’s precise e-mail address that the BES maintains for that user, which
enables the BES push technology to work correctly even if the user gets
a new device.

 Sometimes corporate e-mail servers use one e-mail address that looks
good to humans and another that is stored internally — for instance,
you might send e-mail to me as karlkowalski@blazingapps.com,
but inside the e-mail server, that e-mail address is actually kkowalsk0@
ponyexpress.blazingapps.com. If you use the e-mail address
instead of the device PIN, you must use the e-mail address that the BES
uses for the user.

 ✓ <device_port>: This is the port that your client application, running
on the BlackBerry device, has to open to receive incoming HTTP-Push
attempts.

The code in Listing B-1 shows Java code opening a connection to a BES for
delivering HTTP-Push data to an app running on a BlackBerry device:

Listing B-1: Server “Push” Code in Java
String data = “this is the pushed data”;
// dummy data to be delivered
String devicePIN = “1234ABCD”; // dummy device PIN
String appPort = “7117”; // dummy application port
URL theURL = new URL(“http”, “localhost”, 8080,
“/push?DESTINATION=”+devicePIN+”&PORT=”
+appPort+”&REQUESTURI=localhost”;
HttpURLConnection conn = (HttpURLConnection)
theURL.openConnection();
conn.setDoInput(true); // to receive the confirmation
conn.setDoOutput(true); // to send the data
conn.setRequestMethod(“POST”);
OutputStream outStream = conn.getOutputStream();
// to write the data
outStream.write(data.getBytes());
// data written as byte array
outStream.close();
InputStream inStream = conn.getInputStream();
// contains the response
int contentLength = conn.getContentLength();
if (contentLength > 0)
{
 byte[] bArray = new byte[contentLength];
 DataInputStream dataInStream = new DataInputStream
(inStream);
 dataInStream.readFully(bArray);
 String responseString = new String(bArray); //
}

28_467114-bapp02.indd 37528_467114-bapp02.indd 375 8/30/10 1:11 PM8/30/10 1:11 PM

376 Part VII: Appendixes

Two possible responses are returned by a BES to an HTTP-Push connection
request:

 ✓ A response starting with 200: This is the good response, and means
that the BES accepted the data you handed to it to be delivered via
HTTP-Push to the device-ID/user–e-mail specified.

 ✓ Any other response: These are the bad responses. Most times, you will
see a bad response returned because of an incorrectly specified user
e-mail or device ID.

The code snippet in Listing B-2 shows code your application must be
executing on the BlackBerry device, in a thread separate from the main
thread, to listen for and receive HTTP-Push data deliveries. This code is
taken from one of the 4.5.0 JDE sample applications, HTTPPushDemo. You
will see a lot of try/catch blocks, which leads to lots of indenting and
sectioning of code. These blocks are placed around calls to OS functions
that can throw Exceptions that must be caught. For instance, the call
to Connector.open() can fail if the requested port (7117) is already in
use. If the Connector.open() call succeeds, the code then executes the
StreamConnectionNotifier.acceptAndOpen() call, operating on
the notify variable. This is a blocking call, which is why this code must be
placed within a Thread object (and I go over these details in Chapter 7). The
remaining code creates and fills a buffer with the incoming data, and then
calls a method — updateMessage() — to handle the data that came in. The
end of the snippet is devoted to handling exceptions while trying to make
sure all the appropriate objects get closed correctly.

Listing B-2: BlackBerry Code Snippet to Listen for Push Connection
// flag so an outside process can signal to stop listening
private boolean _stop = false;
// size of data buffer, to read in data in small chunks
public static final int CHUNK_SIZE = 256;
// the URL to open for listening to incoming Pushes
// the port number matches that in Listing B-2
private static final String URL = “http://:7117”;

public void run()
{
 StreamConnection stream = null;
 InputStream input = null;
 MDSPushInputStream pushInputStream=null;

 while (!_stop)
 {
 try
 {
// Synchronize here so that we don’t end up creating a connection
// that is never closed.

28_467114-bapp02.indd 37628_467114-bapp02.indd 376 8/30/10 1:11 PM8/30/10 1:11 PM

377 Appendix B: Real Devices and Services

 synchronized(this)
 {
// Open the connection once (or re-open after an IOException), so we don’t
// end up in a race condition, where a push is lost if it comes in before
// the connection is open again. We open the url with a parameter that indicates
// that we should always use MDS when attempting to connect.
 _notify = (StreamConnectionNotifier)Connector.open(URL +

“;deviceside=false”);
 }
 while (!_stop)
 {
// NOTE: the following will block until data is received.
// so this snippet needs to be within a Thread
 stream = _notify.acceptAndOpen();
 try
 {
 input = stream.openInputStream();
 pushInputStream= new MDSPushInputStream((HttpServerConnection)

stream, input);
// Extract the data from the input stream.
 DataBuffer db = new DataBuffer();
 byte[] data = new byte[CHUNK_SIZE];
 int chunk = 0;
 while (-1!= (chunk=input.read(data)))
 {
 db.write(data, 0, chunk);
 }
// the following call makes use of the data
 updateMessage(data);

// This method is called to accept the push.
 pushInputStream.accept();
 input.close();
 stream.close();
 }
 catch (IOException e1)
 {
// A problem occurred with the input stream, however, the
// original StreamConnectionNotifier is still valid.
 if (input != null)
 {
 try
 {
 input.close();
 }
 catch (IOException e2)
 {
 }

(continued)

28_467114-bapp02.indd 37728_467114-bapp02.indd 377 8/30/10 1:11 PM8/30/10 1:11 PM

378 Part VII: Appendixes

Listing B-2 (continued)

 }
 if (stream != null)
 {
 try
 {
 stream.close();
 }
 catch (IOException e2)
 {
 }
 }
 }
 }
 _notify.close();
 _notify = null;
 }
 catch (IOException ioe)
 {
// Likely the stream was closed. Catches the exception thrown by
// notify.acceptAndOpen() when this program exits.
 if (_notify != null)
 {
 try
 {
 notify.close();
 notify = null;
 }
 catch (IOException e)
 {
 }
 }
 }
 }
}

 Keep in mind that the HTTP-Push technology works only with BES-ed
BlackBerry devices, and using the technique for delivering data to BlackBerry
devices works only in conjunction with a server-side application that a BES
administrator will execute. This feature is possible only for corporate,
enterprise-class BlackBerry applications.

28_467114-bapp02.indd 37828_467114-bapp02.indd 378 8/30/10 1:11 PM8/30/10 1:11 PM

Index

• Numerics •
4.1.4 ESS application, 358
32-bit versions of Windows, 3
100 value, 122
200 response code, 233, 376
404 response code, 233
8310.bat BAT fi le, 353
10000 ordering parameter, 122

• A •
A signing failed message, 252
A signing was successful message, 252
About option, 43, 328
About this Application screen, 83
AboutMenuItem class, 105
abstract classes, 118
accelerometers, 42, 45
accept AndOpen() method, 237
Account Settings option, 362
Account Type drop-down list, 363
actionListener object, 120
activating devices, 202–203
active breakpoints, 262
Add Application button, 284
Add New Bundle button, 289
Add Release button, 289
Add Screenshot button, 288
adjust LabelOne method, 132
AEP (alternate entry points), 74–76, 339
Agree option, 359
Allow Access to the Interprocess

Communications API IT policy, 211
Allow Access to the Media API IT policy, 211
Allow Access to the Phone API IT policy, 211
Allow Access to the PIM API IT policy, 211
Allow External Connections IT policy, 211
Allow Internal Connections IT policy, 211
Allowed Access to the Wi-Fi API IT policy, 211
Alternate CLDC Application Entry Point option,

75
alternate entry points (AEP), 74–76, 339
ALX fi les, 252–253, 323–324
API documentation, 54–55
app item, 268

App World
becoming developers and vendors, 32
brainstorming, 31–32
deciding kind of app to create, 31
overview, 30
registering with, 37–41
submitting apps to

overview, 275–280
paying for submissions, 281
pricing, 280–281
requirements for applications, 281–282
submitting, 283–295

Vendor Guidelines, 282
Vendor Portal, 283, 294
Vendor Support link, 38

application classes, creating to display notices,
189–190

application COD fi les, 61–62
application interactions classes, 25
Application Loader icon, 253
Application Name text box, 286
Application object, 223, 346
Application subclass, 89
Application tab, 75
Application.cod fi le, 247
Application.csl fi le, 247
Application.cso fi le, 247
Application.debug fi le, 247
Application.getEventLock() method, 344
Application.jad fi le, 247
Application.jar fi le, 247
Application.rapc fi le, 247
applications. See also App World

alternate entry points, 74–76
backing up data, 317–318
coding

commenting code, 310
magic numbers, 308–309
naming classes, 300–301
naming local variables, 302
naming member variables, 301
naming parameter variables, 302
protecting classes, 305–306
protecting member variables, 307–308
protecting methods, 306–307
Singleton patterns, 309–310
small method and class size, 302–305

29_467114-bindex.indd 37929_467114-bindex.indd 379 8/30/10 1:11 PM8/30/10 1:11 PM

380 BlackBerry Application Development For Dummies

applications (continued)

creating
with Java Development Environment, 61–62
overview, 65–69, 72–74

debugging
BlackBerry Event Logger, 264–270
errors, 257–259
Java Development Environment Debugger,

259–264
overview, 25
tracking bugs, 270–273

deploying
from desktop PC, 322–323
through BES, 324–325
through Web, 325–327
using Desktop Manager, 252–256

designing
callback management, 101–108
creativity, 79–80
fundamentals of, 83–92
planning application functions, 81–82
record keeping, 79–80
screen management, 94–101

development challenges
choosing OS versions, 27–29
programming defensively, 29–30

display classes, 69–72
for Enterprise devices

activating, 202–203
BlackBerry Enterprise Server, 201–202,

213–214
e-mail, 203–210
IT policies, 210–213
overview, 199–200

executing, 263–264
exiting phase, 89–92
icon for, 277
logo for, 277
memory leaks

garbage collector, 312
operating in background, 312–315
overview, 310–311

menus, creating in, 121–123
navigating smartphones, 12–18
overview, 299–300
parts of, 83
programming

debugging, 25
Java, 24–25
software patterns, 25–26

reasons for developing, 9–11
running phase, 86–89, 256

sample
contactsdemo, 339
custombuttonsdemo, 340
gpsdemo, 340
httpdemo, 340
localizationdemo, 340–341
memorydemo, 341
notificationsdemo, 341
phoneapidemo, 341
smsdemo, 342
tictactoedemo, 342
xmldemo, 342

signing
on multiple machines, 246
overview, 244–245
process of, 247–252

source code control systems, 319–320
startup phase, 84–86
streamlining development

grouping source fi les using package
hierarchy, 316

overview, 315
purpose of classes, 317
reducing number of public methods, 317
small method size, 316

submitting
overview, 275–280
paying for, 281
pricing, 280–281
process of, 283–295
requirements for, 281–282

tools for developing
choosing devices, 22–23
development computers, 20–22
downloading software, 18–19
simulators, 19–20

upgrading
deserializing data, 332–334
multiple versions, 334–336
overview, 327–328
persistence, 329–330
serializing data, 331–332

Applications folder, 256
architecting, 82
Argument Passed to “static public void

main(String args[])” text box, 75
AttachmentHandler interface, 208
attachments, 204–207
audio fi les, 146
Available in All Countries option, 279–280
Available Only in the Countries Selected Below

option, 279

29_467114-bindex.indd 38029_467114-bindex.indd 380 8/30/10 1:11 PM8/30/10 1:11 PM

381381 Index

• B •
background display, 131–134
backing up data, 201, 317–318
Bango, 40
BAT fi les, 353
BES (BlackBerry Enterprise Server)

BES-ing, 367
download option, 321
getting, 373
HTTP-Push connections, 239
overview, 201–202, 369–372
push technology, 374–378
security, 213–214
system, 356
upgrading apps from, 324–325

BES (BlackBerry Enterprise Server) Express, 200
BIS (BlackBerry Internet Service), 368–369
BitmapField class, 115
BlackBerry App World

becoming developers and vendors, 32
brainstorming, 31–32
deciding kind of app to create, 31
overview, 30
registering with, 37–41
submitting apps to

overview, 275–280
paying for submissions, 281
pricing, 280–281
requirements for applications, 281–282
submitting, 283–295

Vendor Guidelines, 282
Vendor Portal, 283, 294
Vendor Support link, 38

BlackBerry Developer Knowledge Base, 56
BlackBerry Developer Web site, 346
BlackBerry Developer Zone page, 34, 37, 38
BlackBerry Enterprise Server. See BES
BlackBerry Event Logger

overview, 264–265
setting up applications, 265–266
viewing and extracting event logs, 266–270

BlackBerry Internet Service (BIS), 368–369
BlackBerry Java Development Environment. See

JDE
BlackBerry Storm device, 27–28
BlackBerry Storm2 device, 27–28
BlackBerry workspace, 61
BlackBerry_ Email_MDS_4.1.4.exe fi le, 359
BlackBerry_JDE_4.5.0.exe fi le, 49

blocking
application progress, 130, 223
network communications, 224

Bluetooth, 24, 216, 370
BluetoothSerialPort class, 217
BluetoothSerialPortInfo class, 217
Boolean (boolean) IT policy value, 212
boolean indicator, 186
boolean keyDown(int, int) method, 114
boolean keyUp(int, int) method, 114
Boolean object, 209
boolean supports(String) method, 208
branching, 319
Break Now button, 260–261
breakpoints, 262–263
Browse button, 254
Browser menu, 119
bugs

BlackBerry Event Logger
overview, 264–265
setting up applications for, 265–266
viewing and extracting event logs, 266–270

errors, 257–259
Java Development Environment Debugger

breakpoints, 262–263
executing applications with, 263–264
overview, 259–261

overview, 25
tracking

overview, 270–272
using bug-tracking programs, 272–273

Bugzilla program, 272
business logic, 94
ButtonField class, 115, 186
buttons, clicking, 105–106
buying

development computers, 20–22
devices

new, 366
refurbished, 366
used, 367–368

smartphones, 23
Byte (byte) IT policy value, 212
Byte Array (byte[]) IT policy value, 212

• C •
calculated values, 302
calendar maintenance, 201
Call Log application, 313

29_467114-bindex.indd 38129_467114-bindex.indd 381 8/30/10 1:11 PM8/30/10 1:11 PM

382 BlackBerry Application Development For Dummies

callbacks
clicking buttons, 105–106
defi ned, 101, 225
handling, 93, 103
objects, 167
overview, 101–104
responding to keystrokes, 106–108
selecting from menus, 104–105
to Thread subclass, 188
user interface, 117–118

camel case, 300
Carrier Restrictions drop-down list, 288
catch block, 232, 238
categories, App World, 277
Category drop-down list, 286
<Category name=””/> block, 332
Category tag, 336
CD burners, 318
CheckboxField class, 115, 186
Checkout with PayPal button, 41
ChoiceField class, 115
class directive, 67
classes

application, 189–190
display, 69–72
inheritance trees of, 54
naming, 300–301
protection for, 305–306
purpose of, 317
reducing number of public methods in, 317
size of, 302–305

Clean FS button, 361
clean.bat directory, 355
Clear XXX Data option, 149
client-RBB-1234567890.csi fi le, 245
client-RCR-1234567890.csi fi le, 245
client-RRT-1234567890.csi fi le, 245
close() method, 84, 89, 345
Close Workspace option, 64
COD fi les, 61–62
COD Files section, 289
code

blocks of, 2
commenting, 310
compiling, 22
editing, 21
fi les of, 355
magic numbers, 308–309
naming classes, 300–301
naming local variables, 302
naming member variables, 301
naming parameter variables, 302

protecting classes, 305–306
protecting member variables, 307–308
protecting methods, 306–307
sending data to network services, 224–234
Singleton patterns, 309–310
small method and class size, 302–305

code module fi le, 247
commenting, 310
Commercial Consumer Developer item, 35
commits, 141
compilers, 62
compiling code, 22
computers, selecting, 20–22
concatenation, 343
Concurrent Versioning System (CVS) system,

320
Connected mode, 360
Connection class, 165
connection services

checking for, 217–218
choosing, 218–219
overview, 216

Connection-Factory class, 46
connectionSuccess value, 232
Connector (javax.microedition.

io.Connector) class, 147
Connector class, 161, 371
Connector.getInputStream() method, 231
Connector object, 147
Connector.open() method, 231–234, 376
constants, 343–345
contactsdemo application, 339
ContactsDemo_auto startup project, 339
ControlledAccessException, 341, 371
controller, 95, 101
Convert “Highlighted-Text” option, 141
Copy Day’s Contents option, 266
corporate enterprises, 200
count limits, 169
country drop-down list, 33
Country Restrictions drop-down list, 288
CrackBerry.com developer forum, 58
Craig’s List, 367
Create New File in Project option, 66
Create New Project option, 66, 75
<CreationDate timestamp=””/> block, 332
creativity, 79–80
cryptographic classes, 251
Cursor class, 148
custombuttonsdemo application, 340
CVS (Concurrent Versioning System) system,

320

29_467114-bindex.indd 38229_467114-bindex.indd 382 8/30/10 1:11 PM8/30/10 1:11 PM

383383 Index

• D •
data backups, 201, 317–318
data folder, 316
data item, 268
data serialization

deserializing, 141, 332–334
serializing, 141, 331–332

data storage models
database storage

information types for, 148
methods of, 148

fi le storage
information types for, 147
methods of, 147
overview, 146

overview, 137–138
persistent storage

information types for, 142
methods of, 139–142
overview, 138, 142–143

programming with, 148–162
runtime storage

information types for, 145–146
methods of, 144–145
overview, 143–144

data structuring, 220–222
Database class, 148
database storage

information types for, 148
methods of, 148
overview, 138

DatabaseFactory class, 148
DataBuffer object, 238
DateField class, 115
deactivate() method, 84, 89, 345
deadlocks, 171–174
Debug pane, 73
Debugger

breakpoints, 262–263
executing applications with, 263–264
overview, 259–261

debugging applications
BlackBerry Event Logger

overview, 264–265
setting up applications for, 265–266
viewing and extracting event logs, 266–270

errors, 257–259
Java Development Environment Debugger

breakpoints, 262–263
executing applications with, 263–264
overview, 259–261

overview, 25
tracking bugs

overview, 270–272
using bug-tracking programs, 272–273

delay values, 191–193
Delete Breakpoint at Cursor option, 263
deploying applications

from desktop PC, 322–323
through BES, 324–325
through Web, 325–327
using Desktop Manager, 252–256

deserialize() method, 333, 335
deserializing data, 141, 332–334
designing applications

callback management
clicking buttons, 105–106
overview, 101–104
responding to keystrokes, 106–108
selecting from menus, 104–105

creativity, 79–80
fundamentals of

exiting phase, 89–92
parts of applications, 83
running phase, 86–89
startup phase, 84–86

planning application functions, 81–82
record keeping, 79–80
screen management

controller component, 101
Model-View-Controller, 94–97
states, 97–99
views, 99–101

Desktop download option, 321
Desktop Manager, 252–256
developer documentation, 55–57
developer forums, 56–58
developer labs, 57
Developer Role drop-down list, 35
developer tutorials, 57
developers, 32
Developers link, 34
developing applications

backing up data, 201, 317–318
challenges to

choosing OS versions, 27–29
programming defensively, 29–30

coding
commenting code, 310
magic numbers, 308–309
naming classes, 300–301
naming local variables, 302
naming member variables, 301
naming parameter variables, 302

29_467114-bindex.indd 38329_467114-bindex.indd 383 8/30/10 1:11 PM8/30/10 1:11 PM

384 BlackBerry Application Development For Dummies

protecting classes, 305–306
developing applications, coding (continued)

protecting member variables, 307–308
protecting methods, 306–307
Singleton patterns, 309–310
small method and class size, 302–305

constants, 343–345
initialization, 346
keeping up to date with RIM, 346
memory, 344
memory leaks

garbage collector, 312
operating in background, 312–315
overview, 310–311

order of events, 345
overview, 299–300
screens, 343–344
source code control systems, 319–320
streamlining

grouping source fi les using package
hierarchy, 316

overview, 315
purpose of classes, 317
reducing number of public methods, 317
small method size, 316

throwing exceptions, 347
tools for

choosing devices, 22–23
development computers, 20–22
downloading software, 18–19
simulators, 19–20

users, 347–348
device simulators

downloading, 50–53
Java Development Environment, 352–356
overview, 20
running code from, 244–246

<device_PIN> parameter, 375
<device_port> parameter, 375
devices

Enterprise
activating, 202–203
BlackBerry Enterprise Server, 201–202,

213–214
e-mail, 203–210
IT policies, 210–213
overview, 199–200

overview, 22–23
purchasing

new, 366
refurbished, 366
used, 367–368

running code on
building process, 247
deploying using Desktop Manager, 252–256
overview, 243–256
running applications, 256
signing, 244–245
signing applications, 247–252
signing on multiple machines, 246

screen dimensions, 126
Dialog class, 110, 124, 195
DialogFieldManager class, 124–125
diff-ing function, 319
Digital River, 37–40
dirty fl ags, 152
Disable All Wireless Synchronization IT policy,

212
Disable Bluetooth IT policy, 211
Disable Breakpoint at Cursor option, 263
Disable External Memory IT policy, 212
Disable GPS IT policy, 211
Disable Photo Camera IT policy, 211
display

choosing type of screen, 110–111
controller component, 101
creating, 111–113, 126–129
dimensions of, 126
extending basic functionality of, 114
managing screens, 93, 343–344
Model-View-Controller, 94–97
states, 97–99
touchscreen, 15–16, 42, 123
updating using threaded operations, 131–134
views, 99–101

display classes, 69–72
Distribution Restrictions page, 287–289
Do You Agree? page, 48
Document object, 231
documentation

API, 54–55
developer, 55–57

DocumentBuilder object, 333
Download button, 359
Download the BlackBerry Email and MDS

Services Simulator Package v4.1.4 link, 359
downloading

development tools, 18–19
device simulators, 50–53
duration time, 315
Email Service Simulator, 358–360
Java Development Environment, 47–50

Downloads folder, 256
DVD burners, 318
Dynamic license model, 279

29_467114-bindex.indd 38429_467114-bindex.indd 384 8/30/10 1:11 PM8/30/10 1:11 PM

385385 Index

• E •
e-attachment handlers, 207–210
eBay, 367
Eclipse development environment, 19
Edit Application Submission page, 293, 294
edit fi eld, 177
EditField class, 115, 152
editing code, 21
Editor area, 63–64
8310.bat BAT fi le, 353
Eligibility page, 48, 52, 359
e-mail

attachments, 204–207
overview, 203–204
through BlackBerry Enterprise Server, 201, 369
writing e-attachment handlers, 207–210

Email Service Simulator. See ESS
enterEventDispatcher() method, 85, 149
Enterprise Activation, 367–368, 373
Enterprise devices

activating, 202–203
BlackBerry Enterprise Server, 201–202,

213–214
e-mail, 203–210
IT policies, 210–213
overview, 199–200

Enterprise Server
BES-ing, 367
download option, 321
getting, 373
HTTP-Push connections, 239
overview, 201–202, 369–372
push technology, 374–378
security, 213–214
system, 356
upgrading apps from, 324–325

Enterprise Server Express, 200
ESS (Email Service Simulator)

confi guring, 361–364
downloading, 358–360
overview, 20, 50
running, 360

ESS option, 360
event lock, 131
Event Logger

overview, 264–265
setting up applications, 265–266
viewing and extracting event logs, 266–270

event logs, 266–270
EventField class, 177, 179–180, 183

EventLogger class, 265
events, scheduling

implementing threads, 183–186
layout manager, 178–182
overview, 174–175
TimerTask, 175–178
using Timer for repeated operations, 186–187

Exception object, 232
exceptions

in debugging, 265
throwing, 347
unhandled, 272

executeAction() method, 171
executeActionOnSibling() method, 171
executePasswordReset() method, 225
executing applications, 263–264
exiting phase, 84, 89–92
export classifi cations, 284
Export Control information, 284–285
eXtensible Markup Language (XML), 220
external hard drives, 318
extracting event logs, 266–270
extractTextFromPersistent Storage()

method, 152

• F •
false parameter, 114, 346
Field class, 106, 115, 119, 179, 182, 340
fieldChanged() method, 106, 177–178, 268
FieldChangeListener class, 106, 117
FieldChangeListener.fieldChanged

(Field, int) method, 117
File Bundle page, 291
fi le bundles, 280
File button, 150
fi le storage

information types for, 147
methods of, 147
overview, 146

Filebundle Language drop-down list, 289
FileConnection (javax.microedition.

io.file.File Connection) class, 147
fi les and projects area, 63–64
final keyword, 309
flagIsPresent variable, 209
fl ags, dirty, 152
fl ash memory, 138
fledge.exe command line application, 353
fl ow control, 94
fl owcharts, 81–82
FlowFieldManager class, 124–125
flush() method, 227

29_467114-bindex.indd 38529_467114-bindex.indd 385 8/30/10 1:11 PM8/30/10 1:11 PM

386 BlackBerry Application Development For Dummies

focus, 123
formatted XML text, 342
forums, 56–58
forward compatible, 28
404 response code, 233
4.1.4 ESS application, 358
Free license type, 278
full keyboard, 18
FullScreen class, 110

• G •
garbage collector, 312
GaugeField class, 115
Generate ALX File option, 252
Get Help link, 47
Get Started button, 38
getAttributeValue() method, 334
getDelayMS() method, 190
getMyPersistentObject() method, 152
getPersistentObject method, 140
getter method, 272
Go button, 260
Google, 57
GPS (Global Positioning System), 42, 219, 340
gpsdemo application, 340
guid item, 268

• H •
handling callbacks, 93, 103
hash values, 251
Help page, accessing, 215
help resources

API documentation, 54–55
developer forums, 56–58
Google, 57
online developer documentation, 55–57

history information, 142, 319
home screen icon, 61
HorizontalFieldManager class, 125
<host> parameter, 374
HTTP connections, 233
HttpConnection class, 219, 231, 233
httpdemo application, 340
HTTP-POST connections, 238
HTTP-Push connections, 218, 235, 238–239
HTTPPushDemo application, 376
HTTPS connections, 233–234
HttpsConnection object, 233–234

• I •
I Agree radio button, 37
Icon section, 286
icons used in book, 5–6
image fi les, 61, 146
implementing threads, 183–186
import command, 68
incrementInSync() method, 170
incrementUnsync() method, 170
index, 182
information storage

database storage
information types for, 148
methods of, 148

fi le storage
information types for, 147
methods of, 147
overview, 146

overview, 137–138
persistent storage

information types for, 142
methods of, 139–142
overview, 138, 142–143

programming with, 148–162
runtime storage

information types for, 145–146
methods of, 144–145
overview, 143–144

initialization, 346
initialize() method, 71, 128, 263, 271
input parameter, 184
InputStream object, 220
installing JDE, 47–50
int getLength() method, 233
int getOrdinal() method, 123
int getPreferredHeight() method, 127
int getPreferredWidth() method, 127
int getPriority() method, 123
int getResponseCode() method, 233
Integer (int) IT policy value, 212
Integer object, 182
integer value, 178
interaction logic, 94
interface

elements of
callbacks, 117–118
creating, 118–119
overview, 115–117

layout of
controlling, 124–126
custom layout manager, 126–129

29_467114-bindex.indd 38629_467114-bindex.indd 386 8/30/10 1:11 PM8/30/10 1:11 PM

387387 Index

menus
creating, 121–123
MenuItem class, 120
overview, 119

overview, 83, 109
responding to user interactions, 123
screen stacks, 135
screens

choosing type of, 110–111
creating, 111–113
extending basic functionality of, 114

threaded operations
overview, 129
using to update display from background,

131–134
when to use, 130–131

interface class, 190, 224, 225
interface logic, 94
internal corporate networks, 199
internal network access, 370
Internet

access to, 201
coding, 224–234
HTTP connections, 233
HTTPS connections, 233–234
overview, 215–216, 219–220
services

checking for, 217–218
choosing, 218–219
coding, 224–234
HTTP connections, 233
HTTPS connections, 233–234
overview, 216, 219–220
structuring data, 220–222

setting up Push listener, 234–240
structuring data, 220–222

Internet E-mail option, 363
invalidate() method, 182, 183
invokeLater() method, 344
IOPortAlreadyBoundException exception, 237
IT policies

Allow Access to the Interprocess
Communications API, 211

Allow Access to the Media API, 211
Allow Access to the Phone API, 211
Allow Access to the PIM API, 211
Allow External Connections, 211
Allow Internal Connections, 211
Allowed Access to the Wi-Fi API, 211
Disable All Wireless Synchronization, 212
Disable Bluetooth, 211
Disable External Memory, 212

Disable GPS, 211
Disable Photo Camera, 211
overview, 202, 210, 370
reading, 212–213

• J •
JAD (Java Application Descriptor) fi les, 62, 247,

325, 327
JAR (Java ARchive) fi les, 62
Java, 3, 19, 23–25, 345
Java Application Development link, 47
Java Application Development Tools &

Downloads link, 47
Java ARchive (JAR) fi les, 62
Java Debug Wire Protocol (JDWP) tool, 50
Java Development Environment. See JDE
.java extension, 61
java –jar SignatureTool.jar command,

248
Java Micro Edition (JME), 24, 340
Java Runtime Environment (JRE), 42
Java Software Development Kit (JDK), 3
Java Standard Edition (JSE), 19, 316
Java Virtual Machine (JVM), 311
Javadoc API, 49
java.io.* package, 24
java.lang.* package, 24
java.util.* package, 24
javax.bluetooth.* package, 24
javax.microedition.* package, 24
javax.xml.* package, 24
JDE (Java Development Environment)

applications
alternate entry points, 74–76
building, 72–74
creating, 61–62, 65–69
display classes, 69–72

Debugger
breakpoints, 262–263
executing applications, 263–264
overview, 259–261

device simulators, 352–356
display, 63–64
downloading, 47–50
4.5.0 download page, 48
installing, 47–50
overview, 42–43, 59–60
project fi les, 61
versions of, 44–46, 352

29_467114-bindex.indd 38729_467114-bindex.indd 387 8/30/10 1:11 PM8/30/10 1:11 PM

388 BlackBerry Application Development For Dummies

JDK (Java Software Development Kit), 3
.jdp fi le extension, 61
.jdw fi le extension, 61
JDWP (Java Debug Wire Protocol) tool, 50
JME (Java Micro Edition), 24, 340
JRE (Java Runtime Environment), 42
JSE (Java Standard Edition), 19, 316
JVM (Java Virtual Machine), 311

• K •
keepGoing value, 232
keyboards, 16–18, 123
keyDown(int keycode, int time) method,

107
keyRepeat(int keycode, int time)

method, 107
keystrokes, 103, 106–108
keyUp(int keycode, int time) method, 107
Knowledge Base, 56

• L •
LabelField class, 115, 128, 152
labs, developer, 57
language resource fi les, 61
Launch button, 362
layout(int width, int height) method,

182
layout manager, 126–129, 178–182
layout method, 182
Learn More About and Download the BlackBerry

JDE link, 47
Leave Application and Releases(s) in Draft and

Submit for Review Later radio button, 292
legacy persistent data classes, 330
license model, 278
license type, 278
License Type drop-down list, 287
linearly operating computers, 129
listeners, 144, 218
ListField class, 116
Load Java Program option, 52, 354
local variables, 302
localizationdemo application, 340–341
lock objects, 195
logEvent() method, 268
logfilename.txt fi le, 267
long getLastModified() method, 233

• M •
m creationTimestamp member variable, 334
m_unsyncCount variable, 170
magic numbers, 308–309, 344
main() method, 65, 68–69, 76, 83–84
main class, 64
main(String[] args) method, 84, 345
MainScreen class, 107–108, 114, 120, 124
MainScreen.keyDown() method, 107
MainScreen.makeMenu() method, 105
makeMenu() method, 120–121, 152
Manage Applications link, 284, 294
Manager class, 124
MDS (Mobile Data Service) simulator, 20, 50,

356–358
MDS-CS option, 356
MediaWiki package, 80
member variables

naming, 301
protecting, 307–308

memory
leaks of

garbage collector, 312
operating in background, 312–315
overview, 310–311

overview, 344
memory sticks, 318
memorydemo application, 341
Menu button, 43
MenuItem class, 101, 105, 120
MenuItem.run() method, 105
menus

creating in applications, 121–123
MenuItem class, 120
overview, 119
selecting from, 104–105

Message class, 250
MessageListener object, 145
messages
The loading operation was successful,

256
A signing failed message, 252
A signing was successful message, 252
Unable to find any applications for

the device, 254
Update complete, 256

29_467114-bindex.indd 38829_467114-bindex.indd 388 8/30/10 1:11 PM8/30/10 1:11 PM

389389 Index

messaging
e-mail

attachments, 204–207
overview, 203–204
through BlackBerry Enterprise Server, 201,

369
writing e-attachment handlers, 207–210

Multimedia Messaging Service, 370
push technology

exploiting, 374–378
HTTP-Push connections, 218, 235, 238–239
overview, 201, 204
Push listener, 234–240

Short Message Service, 342, 370
metadata, 276
methods

protecting, 306–307
public, 317
size of, 302–305, 316

MicroSD cards, 138, 146
MIME (Multipurpose Internet Mail Extension),

326
Minimum OS drop-down list, 289
MMS (Multimedia Messaging Service), 370
Mobile Data Service (MDS) simulator, 20, 50,

356–358
model portion, 94
Model-View-Controller (MVC), 94–97
Multimedia Messaging Service (MMS), 370
Multipurpose Internet Mail Extension (MIME),

326
multitasking, 163
MVC (Model-View-Controller), 94–97
My Downloads folder, 49

• N •
naming

classes, 300–301
local variables, 302
member variables, 301
parameter variables, 302

negative justifi cation, 310
net.rim. blackberry.api.mail.

AttachmentHandler interface class, 205
net.rim.blackberry.* category, 25
net.rim.device.* package, 25
net.rim.plazmic.* category, 25
network channels, 218

network folder, 316
network operations, 165
networking

overview, 215–216
services

checking for, 217–218
choosing, 218–219
coding, 224–234
HTTP connections, 233
HTTPS connections, 233–234
overview, 216, 219–220
structuring data, 220–222

setting up Push listener, 234–240
new devices, purchasing, 366
new MenuItem() method, 105
New Password Screen object, 264
New Workspace option, 65
Notepad, 80
notifi cations, using threads for

creating application classes, 189–190
delivering NotifyAndReplyThread classes,

193–196
overview, 187–189
using screen subclass to get delay values from

users, 191–193
notificationsdemo application, 341
NotifyAndReplyOriginator interface, 193
NotifyAndReplyThread class, 193–196
NotifyAndReplyThread.displayDialog()

method, 195
NotifyAndReplyThread.run() method, 195
null value, 346
NullPointerException exception, 268–270

• O •
Object Application.getEventLock()

routine, 131
Object PersistentObject.getContents()

method, 139
Object RuntimeStore.get(long ID)

method, 144
object-oriented programming (OOP), 4
onDisplay() method, 84, 345
100 value, 122
onExposed() method, 84, 345
online forums, 56–58
onUiEngine Attached() method, 84, 86, 345,

346
OOP (object-oriented programming), 4

29_467114-bindex.indd 38929_467114-bindex.indd 389 8/30/10 1:11 PM8/30/10 1:11 PM

390 BlackBerry Application Development For Dummies

operating systems (OS)
tracking bugs, 271
versions of, 27–29, 45

operational memory, 282
Options icon, 43
ordinal variable, 258
organizing applications

callback management
clicking buttons, 105–106
overview, 101–104
responding to keystrokes, 106–108
selecting from menus, 104–105

creativity, 79–80
fundamentals of

exiting phase, 89–92
parts of applications, 83
running phase, 86–89
startup phase, 84–86

planning application functions, 81–82
record keeping, 79–80
screen management

controller component, 101
Model-View-Controller, 94–97
states, 97–99
views, 99–101

org.w3c.dom.* package, 24
org.xml.* package, 24
OS. See operating systems
OutputStream object, 220, 227

• P •
package directive, 67
package hierarchy, 316
package private classes, 305
Paid license type, 278
paint() method, 182–183
parameter variables, 302
password resetting and retrieval, 215–216
PasswordEditField class, 116
PasswordNetworkReset class, 231
passwordResetFailure() method, 225
passwordResetInit tag, 221
passwordResetInitFailure() method, 225
passwordResetInitialized() method, 225
<passwordResetInitOK> tag, 232
<passwordResetOK> tag, 232
PayPal accounts, 37

Perforce system, 320
Persistable interface, 141, 328–329
persistence

deserializing data, 332–334
overview, 329–330
serializing data, 331–332

Persistent button, 150
persistent storage

information types for, 142
methods of, 139–142
overview, 138, 142–143

PersistentObject PersistentStore.
getPersistentObject
(long ID) method, 139

PersistentObject.commit() method, 141
PersistentStore object, 154
Phone class, 250
phoneapidemo application, 341
PhoneListener object, 145
PIMListener object, 146
planning application functions, 81–82
Plazmic Media Engine, 25
PNG (Portable Network Graphics) fi les, 277
pointing devices, 12–13
policies. See IT policies
Pool license model, 278
POP3 option, 363
PopupScreen class, 110
<port> parameter, 374
Portable Network Graphics (PNG) fi les, 277
positive justifi cation, 310
POST data, 238, 374
Post for Sale link, 295
pricing applications, 280–281
printf-debugging, 264
priority, 122
private member variables, 307
private methods, 306
programming

bug-tracking, 272–273
debugging, 25
defensively, 29–30
Java, 24–25
software patterns, 25–26
with storage models, 148–162

progress clock, 167
Project type drop-down list, 75
Properties dialog box, 75
Properties screen, 329

29_467114-bindex.indd 39029_467114-bindex.indd 390 8/30/10 1:11 PM8/30/10 1:11 PM

391391 Index

protected int getPreferredHeight()
method, 119

protected int getPreferredWidth()
method, 119

protected member variables, 307
protected methods, 306
protected void layout method, 118
protected void paint method, 118
protecting

classes, 305–306
member variables, 307–308
methods, 306–307

ProximityListener object, 146
public classes, 305
public member variables, 307
public methods, 306, 317
public static main() method, 65
purchasing

development computers, 20–22
devices

new, 366
refurbished, 366
used, 367–368

smartphones, 23
Push listener, 234–240
push technology

exploiting, 374–378
HTTP-Push connections, 218, 235, 238–239
overview, 201, 204
Push listener, 234–240

pushScreen() method, 72, 314
put() method, 210

• Q •
query tag, 221
QWERTY keyboard, 18

• R •
race condition, 170
Radio state, 217
RadioButtonField class, 116
RadioInfo class, 217
RAPC compiler, 19
recordable media, 318
refurbished devices, purchasing, 366

Register For Free button, 34
registering

with App World, 37–41
with Research In Motion, 33–37

Release Notes text fi eld, 289
Release page, 290
release version numbers, 280
Release Version text fi eld, 289
remote wiping, 202
repeated operations, 166
Request button, 249
Required fi elds, 34
Research In Motion option, 49
Research In Motion. See RIM
ResourceBundle object, 343
restricted classes, 250
RichTextField class, 115–116
RIM (Research In Motion)

keeping up to date with, 346
registering with, 33–37
requirements for applications, 281–282

Row class, 148
run() method, 101, 104–105
Run to Cursor button, 261
Runnable objects, 130, 164, 172, 174, 195
running code on devices

building process, 247
overview, 243–256
signing, 244–252
from simulators, 244–246
using Desktop Manager, 252–256

running phase, 84, 86–89
Runtime button, 150
runtime storage

information types for, 145–146
methods of, 144–145
overview, 143–144

RuntimeStore class, 144, 154, 209, 210
RuntimeStore RuntimeStore.

getRuntimeStore() method, 144

• S •
SafeThread objects, 172
sample applications
contactsdemo, 339
custombuttonsdemo, 340
gpsdemo, 340

29_467114-bindex.indd 39129_467114-bindex.indd 391 8/30/10 1:11 PM8/30/10 1:11 PM

392 BlackBerry Application Development For Dummies

sample applications (continued)

httpdemo, 340
localizationdemo, 340–341
memorydemo, 341
notificationsdemo, 341
phoneapidemo, 341
smsdemo, 342
tictactoedemo, 342
xmldemo, 342

Save XXX Data option, 149
scheduled operations, 166
ScheduledEvent constructor threw me!

code line, 269
ScheduledEventScreen class, 178, 268
ScheduledEventScreen.fieldChanged()

method, 187
scheduling events. See events, scheduling
Screen class, 86, 90, 110, 118, 176, 346
screen stacks, 135
Screen subclass, 89, 191–193
screens

choosing type of, 110–111
controller component, 101
creating, 111–113, 126–129
dimensions of, 126
extending basic functionality of, 114
managing, 93, 343–344
Model-View-Controller, 94–97
states, 97–99
touchscreen, 15–16, 42, 123
views, 99–101

screenshots, 280
ScreenShots page, 288
seconds value, 178
SecondUtility objects, 305
security, 213–214, 227
SecurityQuestionResponse class, 225, 231
Select a Carrier drop-down list, 52
Select a Smartphone drop-down list, 51
Selected Release text fi eld, 289
Selection cursor, 355
seller questions, 368
Send/Receive button, 364
SeparatorField class, 116
serialize() method, 331
serializing data, 141, 331–332
servers, 236
service simulators

Email Service Simulator
confi guring, 361–364
downloading, 358–360
running, 360

Mobile Data Service, 20, 50, 356–358
overview, 351–352

services
BlackBerry Enterprise Server

BES-ing, 367
download option, 321
getting, 373
HTTP-Push connections, 239
overview, 201–202, 369–372
push technology, 374–378
security, 213–214
system, 356
upgrading apps from, 324–325

BlackBerry Internet Service, 368–369
checking for, 217–218
choosing, 218–219
communicating with

coding, 224–234
HTTP connections, 233
HTTPS connections, 233–234
overview, 219–220
structuring data, 220–222

Session.waitForDefaultSession()
method, 166

Set Breakpoint at Cursor option, 262
setContents() method, 141
setDirty() method, 152
setRequestMethod(String) method, 233
setter method, 272
settings, storing, 142
severity item, 268
Short Message Service (SMS), 342, 370
Show Dialog text, 122
showFileScreen() method, 150
showPersistent Screen() method, 150
showRuntime Screen() method, 150
Sibling class, 171
Signature tool, 245–247
signing applications

on multiple machines, 246
overview, 244–245
process of, 247–252

sigtool.csk fi le, 246
sigtool.db fi le, 246
Simple ScreenApp MainScreen display, 113
SimpleLayoutManager class, 127–128
SimpleScreen class, 121, 128–129
SimpleScreenApp.java module, 111, 121, 128,

133
Simulator option, 356

29_467114-bindex.indd 39229_467114-bindex.indd 392 8/30/10 1:11 PM8/30/10 1:11 PM

393393 Index

simulators, 244–246, 352–356
device

downloading, 50–53
Java Development Environment, 352–356
overview, 20
running code from, 244–246

Email Service Simulator
confi guring, 361–364
downloading, 358–360
running, 360

Mobile Data Service, 20, 50, 356–358
overview, 19–20, 351–352

Single license model, 278
Singleton patterns, 26, 309–310
smartphones, 12–18
SMS (Short Message Service), 342, 370
smsdemo application, 342
snapshots, 319
software

downloading, 18–19
patterns of, 25–26

Software Download for Developers screen, 359
Software Download for Device Simulators page,

52
source code control systems, 319–320
source code editor, 60
source fi les, 316
source-level debugger, 60
Specialization section, 36
SQLite database engine, 46, 148
stale memory blocks, 341
Standalone mode, 360–361
start times, 315
startDialogThread() method, 193
startMotion() method, 133
startup phase, 84–86
state machine, 97–98
Statement class, 148
states, 97–99
static boolean getBoolean(String,

boolean) method, 213
static byte getByte(String) method,

213
static byte[] getByteArray(String)

method, 213
static int getInteger(String, int)

method, 213
static keyword, 309
Static license model, 278
static String getString(String)

method, 213

Status class, 110
Status column, 249
Status zone, 63–64
Step Into button, 261
Step Out button, 261
Step Over button, 261
stopMotion() method, 133
stopThread method, 132
storage cards, 42
storage models

database storage, 148
fi le storage, 146–147
overview, 138
persistent storage

information types for, 142
methods of, 139–142
overview, 138, 142–143

programming with, 148–162
runtime storage

information types for, 145–146
methods of, 144–145
overview, 143–144

storage space requirements, 315
StorageTest application, 149, 248, 252
StorageTest.cod fi le, 251
StorageTestScreen object, 149–150, 152
storeInPersistentStorage() method, 152
Storm device, 27–28
Storm2 device, 27–28
storyboards, 81
StreamConnectionNotifier.acceptAnd

Open() method, 376
streamlining applications

grouping source fi les using package hierarchy,
316

overview, 315
purpose of classes, 317
reducing number of public methods, 317
small method size, 316

String IT policy value, 212
String menuString() method, 208
String objects, 76
String toString() method, 123
Sub-category drop-down list, 286
sublayout method, 129
submission credit, 328
submission summary page, 292
Submit an Application or Theme to BlackBerry

App World or Learn How to Register link,
38

29_467114-bindex.indd 39329_467114-bindex.indd 393 8/30/10 1:11 PM8/30/10 1:11 PM

394 BlackBerry Application Development For Dummies

submitting applications
overview, 275–280
paying for, 281
pricing, 280–281
process of, 283–295
requirements for, 281–282

Subversion (SVN) system, 320
super() method, 71
SureType keyboard, 17, 123
SVN (Subversion) system, 320
SwingUtilities.invokeLater(Runnable

obj) method, 196
Switch Application menu item, 89, 313
synchronization, 169–171
synchronized keyword, 170–171
System.exit(0) method, 89

• T •
Technical Level – Mobile drop-down list, 36
Technology options, 35
10000 ordering parameter, 122
TextClass object, 304
TextEditScreenBig object, 303
The loading operation was successful

message, 256
32-bit versions of Windows, 3
Thread class, 164, 171, 376
Thread subclass, 184, 188
ThreadCallback interface, 167–168
ThreadCallbackClass class, 168
threads

calling back to origins, 167–169
count limits, 169
deadlocks, 171–174
improper timing of, 272
network communications, 224
for notifi cations

creating application classes, 189–190
delivering NotifyAndReplyThread classes,

193–196
overview, 187–189
using screen subclass to get delay values

from users, 191–193
overview, 163–165
scheduling events using

implementing threads, 183–186
layout manager, 178–182
overview, 174–175

Timer for repeated operations, 186–187
TimerTask, 175–178

synchronizations, 169–171
threaded operations

overview, 129
updating display from background, 131–134
when to use, 130–131

using, 165–167
ThreadScheduler class, 172
Thread.sleep() method, 190
ThreadUsingCallback class, 168
throwable Java objects, 265
tictactoedemo application, 342
time item, 268
timed operation, 103
Timer class, 164, 174, 177, 183–184, 186–187
Timer.cancel() method, 187
Timer.schedule() method, 186
TimerTask class, 164, 174–178
TimerTask subclass, 174, 182–183
timestamp attribute, 332
Toolbar, 63
toString() method, 120, 141
touchscreen, 15–16, 42, 123
trackball, 14, 123
trackpad, 15, 123
trackwheel, 13, 123
transitions, 97
TreeField class, 116
true parameter, 114
Try & Buy applications, 278, 371–372
try/catch blocks, 214, 270, 371, 376
tutorials, 57
200 response code, 233, 376
type item, 268

• U •
UI. See user interface
ui folder, 316
UiApplication class, 54, 68, 84, 135, 313, 345
UiApplication.getScreenCount() method,

314
Unable to find any applications for the

device message, 254
unhandled exceptions, 272
U.S. export classifi cations, 284
universal versions, 45
Update complete message, 256
updateField() method, 182–183

29_467114-bindex.indd 39429_467114-bindex.indd 394 8/30/10 1:11 PM8/30/10 1:11 PM

395395 Index

updateMessage() method, 376
updating display from background, 131–134
upgrading applications

multiple versions, 334–336
overview, 327–328
persistence

deserializing data, 332–334
overview, 329–330
serializing data, 331–332

upgrading OS versions, 45
used devices, purchasing, 367–368
User Interface Guide, 348
user interface (UI)

elements of, 115–119
layout of

controlling, 124–126
custom layout manager, 126–129

menus
creating, 121–123
MenuItem class, 120
overview, 119

overview, 83, 109
responding to user interactions, 123
screen stacks, 135
screens

choosing type of, 110–111
creating, 111–113
extending basic functionality of, 114

threaded operations
overview, 129
using to update display from background,

131–134
when to use, 130–131

util folder, 316

• V •
Vector classes, 24
Vendor Portal page, 283, 294
Vendor Registration page, 39
vendors, 32
version attribute, 221, 336
versions

of Java Development Environment, 44–46, 352
multiple, upgrading, 334–336
names, 328
numbers, 42, 44, 328
of operating systems, 27–29, 45
universal, 45

VerticalFieldManager class, 125

video fi les, 146
video tutorials, 57
View All BlackBerry Smartphone Simulator

Downloads link, 51
View Bundle section, 289
VIEWER_STRING log type, 265
views, 95, 99–101
virtualization applications, 19
void Application.invokeAndWait routine,

130
void Application.invokeLater routine, 130
void make Menu(Menu, int) method, 119
void onExposed() method, 114
void onObscured() method, 114
void onSave() method, 114
void onUiEngineAttached(boolean)

method, 114
void PersistentObject.commit() method,

139
void PersistentObject.setContents

(Object inData) method, 139
void popScreen(Screen) method, 135
void run(Message,

SupportedAttachmentPart) method, 208
void run() method, 120
void RuntimeStore.put(Object data)

method, 144
void sublayout method, 127
void UiApplication.activate() method,

313
void UiApplication.deactivate()

method, 313

• W •
warranties, 366
Web access, 369
Web download option, 321
WES (Wireless Enterprise Symposium), 346
while loop, 232
Wi-Fi, 216, 370
wikis, 80
Windows, 3
wiped devices, 201, 368
Wireless Enterprise Symposium (WES), 346
wireless services, 216
WLANInfo class, 217
Word Locker app, 82
WordLockerNetworkResponse object, 231, 232
Workspace Name fi eld, 65

29_467114-bindex.indd 39529_467114-bindex.indd 395 8/30/10 1:11 PM8/30/10 1:11 PM

396 BlackBerry Application Development For Dummies

• X •
XML (eXtensible Markup Language), 220
XML DOM parser, 342
xmldemo application, 342
x-rimdevice fi lename, 205

• Z •
Zero value, 346

29_467114-bindex.indd 39629_467114-bindex.indd 396 8/30/10 1:11 PM8/30/10 1:11 PM

Spine: .816”

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/blackberryapplicationdevelopment Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

Karl G. Kowalski
RSA, The Security Division of EMC

Learn to:
• Download and work with the JDE

• Take advantage of developer tools,
including device and service simulators

• Create your own BlackBerry apps

• Submit your apps to BlackBerry App
World and get them accepted

BlackBerry®

Application Development

Making Everything Easier!™

Visit the companion Web site at www.dummies.com/

go/blackberryappdev to find source code files for the

code listings in the book.

 Open the book and find:

• The tools you need to start
programming apps

• How to decide which JDE version
to download and use

• Pointers for creating menus and
screens

• Hints for using threads

• How to use different types of
storage in your app

• How to use simulators and real
devices to test your app

• Tips to get your app accepted to
BlackBerry App World

• How to submit multiple versions
of your app and upgrade it

Karl G. Kowalski writes application software for mobile platforms including

BlackBerry, iPhone, and J2ME devices. He has developed software for several

versions of the RSA SecurID® product, BlackBerry devices, and the first version

of RSA SecurID for iPhone devices.

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-46711-4

Programming/Application Development

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Be a part of the BlackBerry boom
and learn to program for one of
the hottest handhelds around

With more than 50 million BlackBerry users, it’s no wonder
the BlackBerry developer community is growing. Now you
can join the ranks. With this practical, hands-on guide, you’ll
develop an application from concept to completion. From
coding your app to uploading it to BlackBerry App World
and selling it, adding more juice to your BlackBerry apps has
never been easier!

• Discover the world of app development — register as a developer
and begin coding your first app

• Dive into code — create and display screens, accept and store
data, and use threads to multitask

• Create apps for the corporate enterprise — understand how the
BES can affect your app’s ability to run properly and connect to
networks

• Put the finishing touches on your app — debug your application
both on a simulator and on a real device

• Sell your app — deploy your app to BlackBerry App World and
upgrade it down the road

B
lackB

erry
® A

pplication
D

evelo
p

m
en

t

Kowalski

Spine: .816”

	BlackBerry® Application Development For Dummies®
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Getting Started on BlackBerry Apps
	Chapter 1: Gathering What You Need to Develop BlackBerry Apps
	Why Develop BlackBerry Apps?
	Discovering Apps, BlackBerry Style
	Filling Your Toolbox
	Using Your Programming Skills
	Understanding BlackBerry Application Development Challenges
	Entering a Brave, New BlackBerry App World

	Chapter 2: Registering and Downloading
	Registering with RIM
	Signing Up to Be a Citizen of the App World
	Getting the JDE
	Downloading and Installing a JDE
	Downloading and Using Alternate Device Simulators
	Tapping Helpful Resources

	Chapter 3: Coding with the BlackBerry Java Development Environment
	Getting Familiar with the JDE
	Creating a BlackBerry Application with the JDE
	Building and Running Your First BlackBerry App
	Adding an Alternate Entry Point

	Part II: BlackBerry Application Development
	Chapter 4: Designing and Organizing Your BlackBerry App
	Getting Creative and Keeping a Record
	Planning What Your App Will Do
	The Fundamentals of BlackBerry Applications
	Handling Screens and Callbacks

	Chapter 5: Setting Up Screens and User Interfaces
	The Screen
	User Interface Elements
	Menus
	Responding to User Interaction
	Laying Out the User Interface
	Threaded Operation
	The Screen Stack

	Chapter 6: Storing Your Users’ Data
	Understanding BlackBerry Storage Models
	Persistent Storage
	Runtime Storage
	File Storage
	Database Storage
	BlackBerry Programming with Storage Models

	Chapter 7: Getting Tied Up in Threads
	Understanding Basic Threads
	Using Threads to Schedule Events
	Using a Thread to Notify the User of Something Important

	Part III: Developing Enterprise-Class BlackBerry Apps
	Chapter 8: Writing Apps for the Enterprise
	Activating for the Enterprise
	Interacting with E-Mail
	Standard BES IT Policies
	Reading Application IT Policies
	Dealing with BES Security

	Chapter 9: Networking Your BlackBerry App
	Using a Well-Connected BlackBerry
	Communicating with Services on the Internet
	Setting Up a Push Listener

	Part IV: Finishing and Debugging Your App
	Chapter 10: Running Your Code on a Real Device
	Moving from Simulator to Device
	The Build Process, Revisited
	Signing Your Application
	Deploying Your Application onto a Real Device Using Desktop Manager
	Running Your Application

	Chapter 11: Debugging Your Application
	Understanding Where Errors Occur
	Using the JDE Debugger
	Using the BlackBerry Event Logger
	Keeping Track of Bugs

	Chapter 12: Submitting to the BlackBerry App World
	Getting Ready to Submit Your App
	Understanding What RIM Looks for in Your App
	Submitting Your App to the BlackBerry App World

	Part V: Securing and Supporting Your App
	Chapter 13: Best Practices for Application Development
	Coding with Style
	Plugging the Leaks
	Streamlining Your App
	Backing Up and Organizing Your Code

	Chapter 14: Application Deployment and Upgrades
	Delivery from a Desktop PC
	Delivery through a BES
	Delivery via the Web
	Upgrading Your App

	Part VI: The Part of Tens
	Chapter 15: Ten Most Useful Sample BlackBerry Apps
	contactsdemo
	custombuttonsdemo
	httpdemo
	gpsdemo
	localizationdemo
	memorydemo
	notificationsdemo
	phoneapidemo
	smsdemo
	tictactoedemo
	xmldemo

	Chapter 16: Ten BlackBerry Development Tips
	Keep Your Constant Strings in One Place
	Manage All Screens
	Don’t Lose Your Memory
	Keep Your Constants All Together
	Keep the Order Straight
	Harmonize with RIM
	Initialize at the Right Moment
	Catch Those Exceptional Moments
	Remember the User
	Don’t Take It All Too Seriously

	Part VII: Appendixes
	Appendix A: Device and Service Simulators
	Using BlackBerry JDE Device Simulators
	Using the MDS Simulator
	Using the Email Service Simulator (ESS)

	Appendix B: Real Devices and Services
	Picking Out a BlackBerry Device
	BlackBerry Internet Service (BIS)
	BlackBerry Enterprise Server (BES)

	Index

