Athman Bouguettaya
Quan Z. Sheng
Florian Daniel Editors

Advanced Web
Services

@ Springer

http://www.allitebooks.org

Advanced Web Services

M.al litebooks. cogl

http://www.allitebooks.org

Athman Bouguettaya - Quan Z. Sheng

Florian Daniel
Editors

Advanced Web Services

Foreword by Michael P. Papazoglou

@ Springer

M.al litebooks. cogl

http://www.allitebooks.org

Editors

Athman Bouguettaya Florian Daniel

School of Computer Science Dipartimento di Ingegneria e Scienza
and Information Technology dell’Informazione

RMIT University Universita di Trento

Melbourne, VIC Povo, Trento

Australia Italy

Quan Z. Sheng

School of Computer Science
University of Adelaide
Adelaide, SA

Australia

ISBN 978-1-4614-7534-7 ISBN 978-1-4614-7535-4 (eBook)
DOI 10.1007/978-1-4614-7535-4
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013942479

© Springer Science+Business Media New York 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

M.al litebooks. cogl

http://www.allitebooks.org

To my parents, Horia and Mahmoud,
and my wife Malika
Athman Bouguettaya

To my parents Shuilian and Jianwu,
my brothers Guanzheng and Xinzheng,
my wife Yaping and my daughters Fiona
and Phoebe
Quan Z. Sheng

To Cinzia, my family, my friends
Florian Daniel

M.al litebooks. cogl

http://www.allitebooks.org

Foreword

Service-Oriented Computing (SOC) is the computing paradigm that utilizes soft-
ware services as fundamental elements for developing and deploying distributed
software applications. Services are self-describing, platform-agnostic computa-
tional elements that support rapid, low-cost composition of distributed applica-
tions. They perform functions, which can be anything from simple requests to
complicated business processes. Services allow organizations to expose their core
competencies programmatically via a self-describing interface based on open
standards over the Internet (or intra-net) using standard (XML-based) languages
and protocols. Because services provide a uniform and ubiquitous information
distributor for wide range of computing devices (such as handheld computers,
PDAs, cellular telephones, or appliances) and software platforms (e.g., UNIX or
Windows), they constitute a major transition in distributed computing.

A Web service is a specific kind of service that is identified by a URI that
exposes its features programmatically over the Internet using standard Internet
languages and protocols, and can be implemented via a self-describing interface
based on open Internet standards (e.g., XML interfaces which are published in
network-based repositories).

Understanding the conceptual underpinnings and mastering the technical
intricacies of Web services is anything but trivial and is absolutely necessary to
construct a well-functioning service-based system or application. Web service
technology is undergoing continuous, rapid evolution, thanks to both standardi-
zation efforts pushed forward by the industry and the research efforts of the sci-
entific community.

Web services standards are still evolving. However, they seem to converge
today on a handful of standards: the Simple Object Access Protocol (SOAP) for
service communication, Web Services Description Language (WSDL) for service
description, Universal Description, Discovery, and Integration Infrastructure
(UDDI) for registering and discovering services, and the Business Process Exe-
cution Language (BPEL) for service composition. A plethora of WS-* specifica-
tions also exists to describe the full spectrum of activities related to Web services
in topics such as reliable messaging, security, privacy, policies, event processing,
and coordination, to name but a few.

vii

M.al litebooks. cogl

http://www.allitebooks.org

viii Foreword

Leading international conferences, such as the International Conference on
Service Oriented Computing (ICSOC), the International Conference on Web
Services (ICWS), the International Conference on Service Computing (SCC), and
others, have spearheaded groundbreaking research efforts. This has led to the
emergence of novel topics such as semantic Web services, automated Web service
composition, Web service recommendations, quality of service, trust, and a range
of other interesting themes. Related conference series such as Web Engineering,
Cloud Computing, Business Process Management, HCI, and Database-related
conferences have all been strongly influenced by the emergence of Web services
and consistently feature Web service-related topics in their calls for papers. These
conferences contribute to the wealth of knowledge that is growing exponentially
around Web services.

The content of this book and that of its companion book Web Services Foun-
dations (Springer, 2013) reflect such activities. It is a testimonial of the leading
role of its editors and their highly influential work in the area of Web services.
Together, both books cover an enormous wealth of important topics and tech-
nologies that mirror the evolution of Web services. They provide an exhaustive
overview of the challenges and solutions of all major achievements pertaining to
Web services. Each chapter is an authoritative piece of work that synthesizes all
the pertinent literature and highlights important accomplishments and advances in
its subject matter.

To my knowledge, this is the first attempt of its kind, providing complete
coverage of the key subjects in Web services. I am not aware of any other book
that is as thorough, comprehensive and ambitious in explaining the current state of
the art of scientific research and in synthesizing the perspectives and know-how of
so many experts in the field. Both books are a must-read for everyone interested in
the field. They cater for the needs of both novices to the field as well as seasoned
researchers and practitioners. They are a major step in this field’s maturation and
will serve to unify, advance, and challenge the scientific community in many
important ways.

It is a real pleasure to have been asked to provide the foreword for this book
collection. I am happy to commend the editors and authors on their accomplish-
ment, and to inform the readers that they are looking at a landmark in the
development of the Web services field. Anybody serious about Web services ought
to have handy a copy of Web Services Foundations and Advanced Web Services in
their private library!

Tilburg, The Netherlands, December 2012 Michael P. Papazoglou

M.al litebooks. cogl

http://www.allitebooks.org

Preface

Web Service technology is undeniably the preferred delivery method for the
Service-Oriented Computing (SOC) paradigm. It has evolved over the years to be
a comprehensive, interdisciplinary approach to modern software development.
Web services have gone beyond software componentization technology to embody
and express the software manifestation of a general trend transforming our modern
society from an industrial, production-centric economy into a digital, service-
centric economy. Web services aim to provide the missing conceptual links that
unify a variety of different disciplines, such as networking, distributed systems,
cloud computing, autonomic computing, data and knowledge management,
knowledge-based systems, and business process management. Web services are
the technological proxies of services that power much of the developed and
increasingly developing economies. In this respect, Web services play a central
role in enabling and sustaining the growth of service-centric economies and help
modernizing organizations, companies, and institutions also from an IT
perspective.

Over the last decade, Web services have become a thriving area of research and
academic endeavors. Yet, despite a substantial body of research and scientific
publications, the Web services community has been hitherto missing a one stop-
shop that would provide a consolidated understanding of the scientific and tech-
nical progress of this important subject. This book (the second of a two-book
collection) is a serious attempt to fill this gap and serve as a primary point of
reference reflecting the pervasive nature of Web services.

This book is the second installment of a two-book collection (we discuss the
foundational topics in the first book, Web Services Foundations, Springer, 2013).
Together, they comprise approximately 1,400 pages covering state-of-the-art
theoretical and practical aspects as well as experience using and deploying Web
services. The collection offers a comprehensive overview of the scientific and
technical progress in Web services technologies, design, architectures, applica-
tions, and performance. The second book of the collection consists of three major
parts:

ix

M.al litebooks. cogl

http://www.allitebooks.org

< Preface

I Advanced Services Engineering and Management (11 chapters)—It explores
advanced engineering problems, such as Web service transactions and
recovery, security and identity management, trust and contracts, and Web
service evolution and management;

II Web Service Applications and Case Studies (5 chapters)—It covers concrete
scenarios of the use of Web service technology and reports on empirical
studies of real-world Web service ecosystems;

IIT Novel Perspectives and Future Directions (10 chapters)—It surveys
approaches of the applications on how the Web service paradigm can be
applied to novel contexts, such as human-centric computing, human work,
and the Internet of Things, and discusses the value of Web services in the
context of mobile and cloud computing.

The first book (Web Services Foundations, Springer, 2013) consists of two
major parts:

I Foundations of Web Services (12 chapters)—It explores the most represen-
tative theoretical and practical approaches to Web services, with a special
focus on the general state-of-the-art approaches to Web service composition;

Il Service Selection and Assisted Composition (16 chapters)—It focuses on
other aspects of Web service composition problem, specifically takes a deep
look at non-functional aspects (e.g., quality of service), Web service rec-
ommendations, and how Web service composition is made easy for less
expert developers.

The topics covered in the collection are reflective of their intent: they aim to
become the primary source for all pertinent information regarding Web service
technologies, research, deployment, and future directions. The purpose of the two
books is to serve as a trusted and valuable reference point to researchers and
educators who are working in the area of Web services, to students who wish to
learn about this important research and development area, and to practitioners who
are using Web services and the service paradigm daily in their software devel-
opment projects.

This collection is the result of an enormous community effort, and their pro-
duction involved more than 100 authors, consisting of the world’s leading experts
in this field. We would like to thank the authors for their high-quality contributions
and the reviewers for their time and professional expertise. All contributions have
undergone a rigorous review process, involving three independent experts in two
rounds of review. We are also very grateful to Springer for their continuous help
and assistance.

Melbourne, Australia, December 2012 Athman Bouguettaya
Adelaide, Australia Quan Z. Sheng
Trento, Italy Florian Daniel

M.al litebooks. cogl

http://www.allitebooks.org

Contents

Part I Advanced Services Engineering and Management

1 Design and Management of Web Service Transactions
with Forward Recovery
Peter Dolog, Michael Schifer and Wolfgang Nejdl

2 A Generic Framework for Testing the Web
Services Transactions
Rubén Casado, Muhammad Younas and Javier Tuya

3 Universal Identity Management Based on Delegation
Yang Zhang and Jun-Liang Chen

4 The Roadmap of Trust and Trust Evaluation in Web
Applications and Web Services.
Lei Li and Yan Wang

5 Web Service-Based Trust Management
in Cloud Environments.
Talal H. Noor and Quan Z. Sheng

6 Web Service Contracts: Specification and Matchmaking
Marco Comerio, Flavio De Paoli, Matteo Palmonari
and Luca Panziera

7 A Certification-Aware Service-Oriented Architecture.
Marco Anisetti, Claudio A. Ardagna, Michele Bezzi,
Ernesto Damiani, Samuel Paul Kaluvuri and Antonino Sabetta

8 A Test Automation Framework for Collaborative Testing
of Web Service Dynamic Compositions
Hong Zhu and Yufeng Zhang

M.al litebooks. cogl

xi

http://dx.doi.org/10.1007/978-1-4614-7535-4_1
http://dx.doi.org/10.1007/978-1-4614-7535-4_1
http://dx.doi.org/10.1007/978-1-4614-7535-4_2
http://dx.doi.org/10.1007/978-1-4614-7535-4_2
http://dx.doi.org/10.1007/978-1-4614-7535-4_3
http://dx.doi.org/10.1007/978-1-4614-7535-4_3
http://dx.doi.org/10.1007/978-1-4614-7535-4_4
http://dx.doi.org/10.1007/978-1-4614-7535-4_4
http://dx.doi.org/10.1007/978-1-4614-7535-4_4
http://dx.doi.org/10.1007/978-1-4614-7535-4_5
http://dx.doi.org/10.1007/978-1-4614-7535-4_5
http://dx.doi.org/10.1007/978-1-4614-7535-4_6
http://dx.doi.org/10.1007/978-1-4614-7535-4_7
http://dx.doi.org/10.1007/978-1-4614-7535-4_8
http://dx.doi.org/10.1007/978-1-4614-7535-4_8
http://www.allitebooks.org

Xii

10

11

WSDARWIN: Studying the Evolution of Web
Service Systems
Marios Fokaefs and Eleni Stroulia

SCML: A Change Management Language for Adaptive
Long Term Composed Services.
Xumin Liu and Athman Bouguettaya

A Semantic-Based Approach to Generate Abstract Services
for Service Organization.
Xumin Liu and Hua Liu

Part I Web Service Applications and Case Studies

12

13

14

15

16

Exploring Service Networks of Biological Processes
onthe Web o .
George Zheng and Athman Bouguettaya

Automating Tendering Processes with Web Services:

A Case Study on Building Construction Tendering
inHongKong
Dickson K. W. Chiu, Nick L. L. NG, Sau Chan Lai,

Matthias Farwick and Patrick C. K. Hung

Service Trust Management for E-Government Applications
Surya Nepal, Wanita Sherchan and Athman Bouguettaya

Trust-Oriented Service Provider Selection in Complex
Online Social Networks.
Guanfeng Liu and Yan Wang

Analyzing Web Services Networks: Theory and Practice . .
Peep Kiingas, Marlon Dumas, Shahab Mokarizadeh
and Mihhail Matskin

Part III Novel Perspectives and Future Directions

17

Work asa Service
Daniel V. Oppenheim, Lav R. Varshney and Yi-Min Chee

Contents

http://dx.doi.org/10.1007/978-1-4614-7535-4_9
http://dx.doi.org/10.1007/978-1-4614-7535-4_9
http://dx.doi.org/10.1007/978-1-4614-7535-4_10
http://dx.doi.org/10.1007/978-1-4614-7535-4_10
http://dx.doi.org/10.1007/978-1-4614-7535-4_11
http://dx.doi.org/10.1007/978-1-4614-7535-4_11
http://dx.doi.org/10.1007/978-1-4614-7535-4_12
http://dx.doi.org/10.1007/978-1-4614-7535-4_12
http://dx.doi.org/10.1007/978-1-4614-7535-4_13
http://dx.doi.org/10.1007/978-1-4614-7535-4_13
http://dx.doi.org/10.1007/978-1-4614-7535-4_13
http://dx.doi.org/10.1007/978-1-4614-7535-4_14
http://dx.doi.org/10.1007/978-1-4614-7535-4_15
http://dx.doi.org/10.1007/978-1-4614-7535-4_15
http://dx.doi.org/10.1007/978-1-4614-7535-4_16
http://dx.doi.org/10.1007/978-1-4614-7535-4_17

Contents

18

19

20

21

22

23

24

25

Virtualizing Software and Human for Elastic

Hybrid Services
Muhammad Z. C. Candra, Rostyslav Zabolotnyi, Hong-Linh Truong
and Schahram Dustdar

Realizing a Social Ecosystem of Web Services.
Zakaria Maamar, Youakim Badr, Noura Faci and Quan Z. Sheng

ubiREST: A RESTful Service-Oriented Middleware
for Ubiquitous Networking
Mauro Caporuscio, Marco Funaro, Carlo Ghezzi and Valérie Issarny

Mobile Web and Cloud Services
Satish Narayana Srirama

TOSCA: Portable Automated Deployment and Management
of Cloud Applications.
Tobias Binz, Uwe Breitenbiicher, Oliver Kopp and Frank Leymann

A V-Model Approach for Business Process Requirements
Elicitation in Cloud Design.
Nuno Ferreira, Nuno Santos, Ricardo J. Machado,

José Eduardo Fernandes and Dragan Gasevic¢

Cloud-Based Systems Need Multi-Level Management
Luciano Baresi, Domenico Bianculli and Sam Guinea

Web Services for Things.
Guangyan Huang, Jing He and Yanchun Zhang

Xiii

http://dx.doi.org/10.1007/978-1-4614-7535-4_18
http://dx.doi.org/10.1007/978-1-4614-7535-4_18
http://dx.doi.org/10.1007/978-1-4614-7535-4_19
http://dx.doi.org/10.1007/978-1-4614-7535-4_20
http://dx.doi.org/10.1007/978-1-4614-7535-4_20
http://dx.doi.org/10.1007/978-1-4614-7535-4_21
http://dx.doi.org/10.1007/978-1-4614-7535-4_22
http://dx.doi.org/10.1007/978-1-4614-7535-4_22
http://dx.doi.org/10.1007/978-1-4614-7535-4_23
http://dx.doi.org/10.1007/978-1-4614-7535-4_23
http://dx.doi.org/10.1007/978-1-4614-7535-4_24
http://dx.doi.org/10.1007/978-1-4614-7535-4_25

Contributors

Marco Anisetti Dipartimento di Informatica, Universita degli Studi di Milano,
Bramante 65, Crema 26013, Italy, e-mail: marco.anisetti@unimi.it

Claudio A. Ardagna Dipartimento di Informatica, Universita degli Studi di
Milano, Bramante 65, Crema 26013, Italy, e-mail: claudio.ardagna@unimi.it

Youakim Badr INSA de Lyon, Villeurbanne 69621, France, e-mail: youakim.
badr @insa-lyon.fr

Luciano Baresi Deep-SE Group, Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Piazza L. da Vinci 32, Milan 1-20133, Italy, e-mail:
luciano.baresi @polimi.it

Michele Bezzi SAP Research Sophia-Antipolis, 805, Av. du Docteur Maurice
Donat, Mougins 06254 Mougins Cedex, France, e-mail: michele.bezzi@sap.com

Domenico Bianculli SnT Centre, University of Luxembourg, 4 rue Alphonse
Weicker, Luxembourg, Luxembourg, e-mail: domenico.bianculli@uni.lu

Tobias Binz IAAS, University of Stuttgart, Universititsstr. 38, 70569 Stuttgart,
Germany, e-mail: binz@iaas.uni-stuttgart.de

Athman Bouguettaya School of Computer Science and Information Technology,
RMIT, Melbourne, Australia, e-mail: athman.bouguettaya@rmit.edu.au

Uwe Breitenbiicher IAAS, University of Stuttgart, Universitétsstr. 38, Stuttgart
70569, Germany, e-mail: breitenbuecher @iaas.uni-stuttgart.de

Muhammad Z. C. Candra Distributed Systems Group, Vienna University of
Technology, Argentinierstrasse 8/184-1, Vienna 1040, Austria, e-mail: m.candra@
dsg.tuwien.ac.at

Mauro Caporuscio Dipartimento di Elettronica e Informazione, Politecnico di
Milano, Piazza L. da Vinci 32, 20133 Milan, Italy, e-mail: mauro.caporuscio@
polimi.it

Rubén Casado Department of Computing, University of Oviedo, Asturias, Spain,
e-mail: rcasado@]lsi.uniovi.es

XV

XVi Contributors

Yi-Min Chee IBM Thomas J. Watson Research Center, Hawthorne, NY, USA,
e-mail: ymchee @us.ibm.com

Jun-Liang Chen State Key Laboratory of Networking and Switching Technol-
ogy, Beijing University of Posts and Telecommunications, Beijing, China, e-mail:
chjl@bupt.edu.cn

Dickson K. W. Chiu Dickson Computer Systems, 7 Victory Avenue, Kowloon,
Hong Kong; Department of Computer Science and Engineering, Hong Kong
University of Science and Technology, Hong Kong, China, e-mail: dicksonchiu@
ieee.org

Marco Comerio University of Milano-Bicocca, Viale Sarca 336, 20126 Milan,
Italy, e-mail: comerio@disco.unimib.it

Ernesto Damiani Dipartimento di Informatica, Universitaa degli Studi di Milano,
Bramante 65, 26013 Crema, Italy, e-mail: ernesto.damiani @unimi.it

Flavio De Paoli University of Milano-Bicocca, Viale Sarca 336, 20126 Milan,
Italy, e-mail: depaoli@disco.unimib.it

Peter Dolog Department of Computer Science, Aalborg University, Selma Lag-
erloefs Vej 300, 9220 Aalborg, Denmark, e-mail: dolog@cs.aau.dk

Marlon Dumas University of Tartu, Tartu, Estonia, e-mail: marlon.dumas@ut.ee

Schahram Dustdar Distributed Systems Group, Vienna University of Technol-
ogy, Argentinierstrasse 8/184-1, 1040 Vienna, Austria, e-mail: dustdar@dsg.
tuwien.ac.at

Noura Faci Claude Bernard Lyon 1 University, Lyon, France, e-mail: noura.
faci@univ-lyonl . fr

Matthias Farwick Institute of Computer Science, University of Innsbruck,
Innsbruck, Austria, e-mail: csae8781@uibk.ac.at

José Eduardo Fernandes Bragana Polytechnic Institute, Bragana, Portugal,
e-mail: jef@ipb.pt

Nuno Ferreira I2S Informtica, Sistemas e Servios S.A., Porto, Portugal, e-mail:
nuno.ferreira@i2s.pt

Marios Fokaefs Department of Computing Science, University of Alberta, Ed-
monton, AB, Canada, e-mail: fokaefs@ualberta.ca

Marco Funaro Dipartimento di Elettronica e Informazione, Politecnico di Mi-
lano, Piazza L. da Vinci 32, 20133 Milan, Italy, e-mail: funaro@elet.polimi.it

Dragan Gasevi¢ School of Computing and Information Systems, Athabasca
University, Athabasca, Canada, e-mail: dgasevic@acm.org

Contributors Xvii

Carlo Ghezzi Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza L. da Vinci 32, 20133 Milan, Italy, e-mail: carlo.ghezzi @polimi.it

Sam Guinea Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza L. da Vinci 32, 20133 Milan, Italy, e-mail: sam.guinea@polimi.it

Jing He Victoria University, Melbourne, Australia, e-mail: jing.he @vu.edu.au

Guangyan Huang Victoria University, Melbourne, Australia, e-mail: guangyan.
huang @vu.edu.au

Patrick C. K. Hung Faculty of Business and Information Technology, University
of Ontario Institute of Technology, Oshawa, Canada, e-mail: patrick.
hung @uoit.ca

Valérie Issarny Domaine de Voluceau, INRIA Paris-Rocquencourt, Le Chesnay
78153, France, e-mail: valerie.issarny @inria.fr

Samuel Paul Kaluvuri SAP Research Sophia-Antipolis, 805, Av. du Docteur
Maurice Donat, Mougins 06254 Mougins Cedex, France, e-mail: samuel.
kaluvuri @sap.com

Oliver Kopp TAAS, University of Stuttgart, Universititsstr. 38, Stuttgart 70569,
Germany, e-mail: kopp@iaas.uni-stuttgart.de

Peep Kiingas University of Tartu, Tartu, Estonia, e-mail: peep.kungas@ut.ce

Sau Chan Lai Department of Computer Science and Engineering, Hong Kong
University of Science and Technology, Hong Kong, China, e-mail: chanlaze@
ust.hk

Frank Leymann IAAS, University of Stuttgart, Universititsstr. 38, Stuttgart
70569, Germany, e-mail: leymann@iaas.uni-stuttgart.de

Lei Li Department of Computing, Macquarie University, Sydney, NSW 2109,
Australia, e-mail: lei.li@outlook.com

Guanfeng Liu Department of Computing, Macquarie University, North Ryde,
NSW, Australia, e-mail: guanfeng.liu@mgq.edu.au

Hua Liu Xerox Research Center at Webster, Webster, USA, e-mail: hua.liu@
Xerox.com

Xumin Liu Department of Computer Science, Rochester Institute of Technology,
Rochester, USA, e-mail: x]1@cs.rit.edu

Zakaria Maamar Zayed University, Dubai, U.A.E, e-mail: zakaria.maamar@
zu.ac.ae

Ricardo J. Machado Centro ALGORITMI, Escola de Engenharia, Universidade
do Minho, Guimares, Portugal, e-mail: rmac@dsi.uminho.pt

Xviii Contributors

Mihhail Matskin Royal Institute of Technology, Stockholm, Sweden, e-mail:
misha@kth.se

Shahab Mokarizadeh Royal Institute of Technology, Stockholm, Sweden,
e-mail: shahabm@kth.se

Wolfgang Nejdl L3S Research Center, University of Hannover, Appelstr. 9a,
Hannover 30167, Germany, e-mail: nejdl@13s.de

Surya Nepal CSIRO ICT Centre, Sydney, Australia, e-mail: Surya.Nepal @
csiro.au

Nick L. L. NG Department of Computer Science and Engineering, Hong Kong
University of Science and Technology, Hong Kong, China, e-mail: nickng@
ust.hk

Talal H. Noor School of Computer Science, The University of Adelaide,
Adelaide, SA 5005, Australia, e-mail: talal@cs.adelaide.edu.au

Daniel V. Oppenheim IBM Thomas J. Watson Research Center, Hawthorne,
NY, USA, e-mail: music@us.ibm.com

Matteo Palmonari University of Milano-Bicocca, Viale Sarca 336, 20126 Milan,
Italy, e-mail: palmonari @disco.unimib.it

Luca Panziera University of Milano-Bicocca, Viale Sarca 336, 20126 Milan,
Italy, e-mail: panziera@disco.unimib.it

Antonino Sabetta SAP Research Sophia-Antipolis, 805, Av. du Docteur Maurice
Donat, Mougins 06254 Mougins Cedex, France, e-mail: antonio.sabetta@sap.com

Nuno Santos CCG-Centro de Computaao Gréfica, Campus de Azurm, Guimares,
Portugal, e-mail: nuno.santos@ccg.pt

Michael Schifer L3S Research Center, University of Hannover, Appelstr. 9a,
30167 Hannover, Germany, e-mail: Michael. K.Schaefer@gmx.de

Quan Z. Sheng School of Computer Science, The University of Adelaide,
Adelaide, SA 5005, Australia, e-mail: gsheng@cs.adelaide.edu.au

Wanita Sherchan IBM Research, Melbourne, Australia, e-mail: wanitash@
au.ibm.com

Satish Narayana Srirama Mobile Cloud Laboratory, Institute of Computer
Science, University of Tartu, J Liivi 2, Tartu 50409, Estonia, e-mail: srirama@
ut.ee

Eleni Stroulia Department of Computing Science, University of Alberta,
Edmonton, AB, Canada, e-mail: stroulia@ualberta.ca

Contributors Xix

Hong-Linh Truong Distributed Systems Group, Vienna University of Technol-
ogy, Argentinierstrasse 8/184-1, 1040 Vienna, Austria, e-mail: truong@dsg.
tuwien.ac.at

Javier Tuya Department of Computing, University of Oviedo, Asturias, Spain,
e-mail: tuya@uniovi.es

Lav R. Varshney IBM Thomas J. Watson Research Center, Hawthorne, NY,
USA, e-mail: Irvarshn @us.ibm.com

Yan Wang Department of Computing, Macquarie University, Sydney, NSW
2109, Australia, e-mail: yan.wang@mgq.edu.au

Muhammad Younas Department of Computing and Communication Technolo-
gies, Oxford Brookes University, Oxford, UK, e-mail: m.younas@brookes.ac.uk

Rostyslav Zabolotnyi Distributed Systems Group, Vienna University of Tech-
nology, Argentinierstrasse 8/184-1 1040 Vienna, Austria, e-mail: rstzab@dsg.
tuwien.ac.at

Yanchun Zhang Victoria University, Melbourne, Australia, e-mail: yanchun.
zhang@vu.edu.au

Yang Zhang State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China, e-mail:
yangzhang @bupt.edu.cn

Yufeng Zhang National Laboratory for Parallel and Distributed Processing,
School of Computer Science, The National University of Defense Technology,
Changsha, China, e-mail: yufengzhang @nudt.edu.cn

George Zheng Science Applications International Corporation, McLean, VA,
USA, e-mail: george.zheng @saic.com

Hong Zhu Department of Computing and Electronics, School of Technology,
Oxford Brookes University, Oxford OX33 1HX, UK, e-mail: hzhu@brookes.ac.uk

Part 1
Advanced Services Engineering
and Management

Chapter 1
Design and Management of Web Service
Transactions with Forward Recovery

Peter Dolog, Michael Schiifer and Wolfgang Nejdl

Abstract In this chapter we describe a design of compensations using forward
recovery within Web service transactions. We introduce an approach to model com-
pensation capabilities and requirements using feature models, which are the basis for
defining compensation rules. These rules can be executed in a Web service environ-
ment that we extend with the concept of an abstract service, which is a management
component for flexible compensation capabilities. We describe the design and also
discuss advantages and disadvantages of such an approach.

1.1 Introduction

A Web service allows a provider to encapsulate functionality and to make it available
for use via a network. A client can invoke such a Web service to use its functionality.
By combining existing Web services from different service providers, a new and
more complex distributed application can be created, which in turn can be offered
as a new value-added composite service. Such a distributed application is usually
created based on a business process, which consists of a logical sequence of actions
that can include the invocation of a Web service. Accordingly, it is vitally important
to control the processing of each single action and the overall process in order to be
able to guarantee correct execution. This is done by using transactions.

P. Dolog (<)

Department of Computer Science, Aalborg University, Selma Lagerldefs Vej 300,
9220 Aalborg, Denmark

e-mail: dolog@cs.aau.dk

M. Schifer - W. Nejdl
L3S Research Center, University of Hannover, Appelstr. 9a, 30167 Hannover, Germany
e-mail: Michael.K.Schaefer@gmx.de

W. Nejdl
e-mail: nejdl@13s.de

A. Bouguettaya et al. (eds.), Advanced Web Services, 3
DOI: 10.1007/978-1-4614-7535-4_1,
© Springer Science+Business Media New York 2014

4 P. Dolog et al.

A transaction consists of a set of operations (“units of work™) that are executed
within a system. Before and after the transaction, this system has to be in a consistent
state [6]. The concept of transaction originates from database systems, which require
an effective control of operations in order to guarantee data consistency. This is
achieved by requiring that transactions fulfill the ACID properties [6, 7]: Atomicity,
Consistency, Isolation, and Durability.

In the context of a distributed application, a distributed transaction [6] controls
the execution of operations on multiple loosely-coupled Web services (participants)
from different providers. Each operation is an invocation of one of the services and
executes functionality provided by the particular service that is called. Any kind of
service, independent of the actual functionality it implements (e.g. reserving a flight,
performing a money transfer, transforming data), can in principle participate in such
a transaction. A coordinator is responsible for the creation of the transaction, the
registration of participants, and the evaluation of the participant’s results.

Due to the fact that a distributed transaction has to include external sources via
a network connection, it is usually not possible to fulfill all ACID properties, as
each one imposes restrictions on the system which can be a disadvantage in such an
environment. For example, in order to be able to handle long-running transactions,
which take a long time until they complete, it is necessary to relax the isolation
property. This means that locks on resources are removed even though the overall
transaction is not yet complete, so that other transaction can access these resources
and are not blocked. However, it can still happen that the transaction fails, and if this
is the case it is necessary for the coordinator to initiate a compensation, which reverts
all operations that were already performed in order to restore the state of the system
before the transaction was started. The Web services that were already processed
have to do a rollback, i.e. they have to execute a predefined set of actions that
undo their original operation. This notion of rolling back the system to a previous
state is known as backward recovery [16], as it reverses the operations that have
been performed. Whether such rollback operations exist, and what steps they consist
of, depends highly on the system and the Web services involved. A compensation
protocol can only provide the orchestration of compensative activities, the developer
of a rollback operation has to ensure that its result represents the consistent state
before the transaction was started.

There are alternative approaches how to relax the isolation property within a Web
service environment. Reference [9] describes the “Promises” pattern, which defines
a “Promise Manager” that receives resource promise requests from a service. In
comparison to the classic ACID isolation, this promise does not lock an individual
resource but instead ensures that one from a pool of (anonymous) resources with the
same properties will be available.

Web service coordination and transaction specifications [11-13] have been defined
that provide the architecture and protocols required for transaction coordination of
Web services. Several extensions have been proposed to enhance these protocols to
add more flexibility [2, 20]. While these protocols provide the means for transac-
tions in a distributed environment, it is still a challenge to guarantee its consistency.

M.al litebooks. cogl

http://www.allitebooks.org

1 Design and Management of Web Service Transactions with Forward Recovery 5

[10] describes an approach to check already at application design time whether the
distributed application will always terminate in a consistent state.

The specifications in their original form provide only limited compensation capa-
bilities [8]. In most cases, the handling of a service failure is restricted to backward
recovery. Subsequently, the aborted transaction will usually have to be restarted,
because the failed distributed application still has to perform its tasks. Backward
recovery therefore results in the loss of time and money, and additional resources
are needed to restart the transaction. Moreover, the provider of the service that has
encountered an error might have to pay contractual penalties because of a violated
Service Level Agreement (SLA). The rollback of the complete transaction due to
the failure of one service can also have widespread consequences: All dependent
transactions on the participating Web services (i.e. transactions that have started
operations on a service after the currently aborting transaction and therefore have
a completion dependency [3]) have to abort and perform a rollback, which in turn
can trigger the abort of other transactions and thus lead to cascading compensations.
This is sometimes called the domino effect [16].

In addition to the problematic consequences of backward recovery, current
approaches do not allow any changes in a running transaction. If for example erro-
neous data was used in a part of a transaction, then the only possible course of action
is to cancel the transaction and to restart it with correct data.

An alternative to backward recovery is forward recovery. The goal of this
approach is to proactively change the state and structure of a transaction after a
service failure occurred, and thus to avoid having to perform a rollback and to enable
the transaction to finish successfully.

To illustrate forward recovery in a Web service environment, consider as example
a company’s monthly payroll processing. In the first step, the company has to calcu-
late the salary for each employee, which can depend on a multitude of factors like
overtime hours or bonuses. In the next step, the payment of the salary is performed,
which comprises several operations: Transfer of the salary from the company’s to
the employee’s account, transfer of the employee’s income tax to the account of the
fiscal authorities, and printing and mailing of the payslip. The employee has only
one task, which he has to perform each month: He transfers the monthly installment
for his new car to the car dealer’s account.

The company’s and the employee’s operations are each controlled by a business
process and are implemented using services from multiple providers (Fig. 1.1). The
two business processes use transactions in order to guarantee a consistent execution
of all required operations. For simplicity, only the services of transaction T1 are
shown, although of course also transaction TO and T2 consist of several services.

While this scenario is quite simple, it has multiple dependencies within and
between the two running transactions. Therefore, it is important that both trans-
actions can complete successfully and do not have to be aborted and rolled back.
Nevertheless, a situation in which such a need arises can become imminent quite
easily:

6 P. Dolog et al.

Business Process: Company Business Process: Employee

Transaction T2

Perform
monthly tasks

Transaction TO Transaction T1

Perform Perform
calculations payment

L
Transfer Transfer Print and P

salary tax send payslip @

Accounts
Company

l l
[Employee]
[Tax]
l l

Car Dealer

Fig. 1.1 The example scenario

e Situation 1: One of the Web services might encounter a problem during the exe-
cution of its operations. For example, it could be that the service that transfers the
salary fails due to an internal error.

e Situation 2: A mistake might have been made regarding the input data of one of the
operations. In this scenario, it could be that the calculation of the salary is flawed
and too much has been transferred to the employee’s account.

As explained above, using a backward recovery approach in such a scenario
would be costly. However, using a forward recovery approach allows to handle both
situations without a rollback:

e Situation 1: Although the Web service failed, it would still be possible to save
the transaction by using a different service. Such a replacement of the original
Web service is encouraged by the fact that usually multiple services from different
providers exist that provide the same or similar capabilities.

e Situation 2: The operations with the erroneous input data have already been
processed, and the transaction would have to be rolled back even if an admin-
istrator notices the failure before the transaction has been finished. However, the
salary transfer could be easily corrected with another money transfer operation.

This scenario is only one example where a forward recovery of transactions would
be beneficial. Similarly, such an approach could help in other situations such as
overloaded services, timeouts, or other errors.

In this chapter we describe a design approach [17] and an environment which is
able to handle forward recovery compensation of Web service transactions [19]. The
approach is based on the idea that there is a possibility to replace a failed service in
the transaction with another one with the same or similar capabilities and by doing
so to avoid unnecessary rollbacks. In addition, the design includes an approach
to model and match compensation capabilities and requirements. The contribution

1 Design and Management of Web Service Transactions with Forward Recovery 7

of this chapter is that it provides more detailed examples and explains the whole
approach from design of the rules to their execution within the environment.

The main idea of the design is the introduction of a new component called an
abstract service, which does not directly implement any functionality that is pro-
vided to the client, but instead functions as a management unit for flexible com-
pensation capabilities [18]. As part of these capabilities, it specifies and manages
potential replacements for participating Web services to be used. The compensations
are performed according to predefined rules, and are subject to contracts [14]. An
abstract service’s functional and compensation capabilities can be specified using
feature models, which allow a client to describe his requirements for a service, and
a provider to specify a service’s capabilities. These individual feature models can be
used to automatically find matching services for a given set of requirements.

Such a solution has the following advantages:

e Compensation strategies can be defined on both, the service provider and the client
side. They utilize local knowledge (e.g. the provider of a service knows best if and
how his service can be replaced in case of failure) and preferences, which increases
flexibility and efficiency.

e The environment can handle internally and externally triggered compensations.

e The client of a service is informed about complex compensation operations, which
makes it possible to trigger additional compensations. Compensations can thus
consist of multiple operations on different levels.

e By extending the already adopted Web service specification, it is not necessary to
discontinue current practices if compensations are not required.

e The separation of the compensation logic from the coordination logic allows for a
generic definition of compensation strategies, independent from the coordination
specification currently in use. They are therefore more flexible and can easily be
reused in a different context.

The rest of the chapter is structured as follows: Sect. 1.2 describes how we propose
to represent compensation capabilities using feature models. Section 1.3 describes the
specification of compensation rules and possible compensation activities. Section 1.4
describes the abstract service architecture where compensations can be executed
according to compensation rules. Finally, Sect. 1.5 provides a discussion regarding
advantages and shortcomings of the approach.

1.2 Compensations Design

We are introducing a compensation design approach which provides a set of models
that describe both functional and compensation capabilities of a service:

e on the service provider side, mandatory features which are needed to provide
at least the minimum functionality, as well optional features which extend the
capabilities or level of service;

e on the service consumer side, features the client requires in order for the service
to suit his needs.

8 P. Dolog et al.

We adopt a feature modeling approach and a methodology from [5, 17]. According
to that methodology, first a conceptual model is defined which describes the main
concepts and relationships between them. The configuration view on the concepts
is described by means of feature modeling for both functionality and compensation
capabilities.

Subsequently, the functionality and compensation models are merged to describe
the offered capabilities by a service provider, or requested functionalities and restric-
tions posed on compensations by a service consumer. Different algorithms can then
be employed to match feature models of a client and a service provider. In the fol-
lowing we will explain the introduced models in more detail.

1.2.1 Conceptual Model

In order to formalize different types of compensations, a conceptual model has been
created that constitutes the basis for the feature models in the following sections.
The result is the compensation concept model as seen in Fig. 1.2.

Concept>> <<Concept>>
<<Concept>> Sa i >
Compensation [i 7iComp on|;——~{Compensation
Plan Action
4
‘ [[\ \ [\
<<Concept>> || <<Concept>> || <<Concept>> || <<Concept>> <I<-\ggri]t(i:oeg;>l> <I<\(c:lcc)|ri1t(i>ggta>l> «ggggieopr:»
INoCompensation|| Repetition Replacement || Forwarding Service Request o

Fig. 1.2 The compensation concept model

Each Compensation contains a CompensationPlan, which in turn consists of one
or more CompensationActions. Which CompensationActions exist and how they can
be implemented depends on the actual environment. Accordingly, the ones listed are
not necessarily complete and can be extended in the future.

Based on this definition of compensation concepts, it is now possible to create
feature models in order to define what a service can do, should be able to do, and is
not allowed to do.

1.2.2 Compensation Feature Model

The compensation concept model is the basis for the definition of the compensation
feature model, which is depicted in Fig. 1.3. It describes the mandatory and optional
features of the compensation concept, and will be used in the next step to define
service-specific feature models, which can be part of a contract between a service
provider and a service client.

1 Design and Management of Web Service Transactions with Forward Recovery 9

<<Concept>>
Compensation

<<OptionalFeature>> <<MandatoryFeature>>|
[ExternalCompensation| InternalCompensation|
Handling Handling
N\ NZ I . Nz

<<OptionalFeature>>

<<OptionalFeature>>
i Replacement

<<OptionalFeature>>
For ing

<<VariationPoint>> <<VariationPoint>>
{Kind = AND} {Kind = OR}

7
<<OptionalFeature>>

<<OptionalFeature>> <<OptionalFeature>>
s e &

’«MandatoryFeature»‘
NoC i

éI

<<OptionalFeature>> ||<<MandatoryFeature>>|| <<OptionalFeature>>

<<OptionalFeature>>

<MandatoryFeature> 2
’< ServiceAbort >‘ AdditionalService || AdditionalRequest PartialRequest L;zt:eetgi‘:’e:t AllRequest
SFieH
<MandatoryFeature> ‘
RequestSequence <<g:;gﬁg’g§fgiu;g>

Change

Fig. 1.3 The compensation feature model

The main two features of the model are the InternalCompensationHandling and
the ExternalCompensationHandling features. An internal compensation is triggered
by an internal service error, while an external compensation is triggered from outside
of the transaction. An example for an externally triggered compensation could be
the handling of the salary transfer mistake from the scenario described in Sect. 1.1
that is spotted by an administrator.

These main features structure the available compensation types as features accord-
ing to their application: Repetition and Replacement are only available for internal
compensation operations, and SessionRestart, Forwarding and AdditionalActions are
only available for external compensation operations. The exception for this separa-
tion is NoCompensation, which is the only common compensation feature. Only
two of these features are mandatory, the InternalCompensationHandling and the
NoCompensation feature. This is due to the fact that the elementary feature of a
compensation in our context is inactivity: If no rule or compensation capabilities
exist, then the service has to fail without any other operations. Accordingly, the
ability to perform external compensations is only optional.

The SessionRestart includes as an optional feature the invocation of an additional
service (AdditionalService), and requires via a variation point (AND) the Service-
Abort, RequestSequenceChange, and AllRequestRepetition features. The capability
to abort the service, change the request log, and resend all requests is needed to per-
form the session restart, and therefore these three features are mandatory. Likewise,
the AllRequestRepetition feature cannot work without the ResultResending feature.

Within an externally triggered compensation, it is possible to invoke additional
services and to create and send additional requests to the service. That is why the
AdditionalActions feature includes the AdditionalService and AdditionalRequest fea-
tures. They are connected via an OR variation point as the AdditionalActions feature
needs at least one of these two features.

The basic operation mode of the Repetition compensation feature is the resending
of the last request to the service. Therefore, the LastRequestRepetition feature is

10 P. Dolog et al.

mandatory, and the PartialRequestRepetition only optional. Finally, the Replacement
feature requires at least one of the LastRequestRepetition, PartialRequestRepetition,
or AllRequestRepetition features.

1.2.3 Capability Feature Model

The Capability feature model specifies the capabilities of a service. This model can
be provided in the public description of the service (e.g. in the UDDI entry), and can
thus be used in the client’s search process for a suitable service.

The definition of a service’s features includes both the specification of function-
ality as well as compensation capabilities. The capability feature model is realized
by merging the service’s functionality feature model with its compensation feature
model. The functionality feature model describes the features of the service that con-
stitute the offered operations, e.g. the booking of a flight. The compensation feature
model describes the service’s compensation capabilities. It is created by using the
compensation feature model described in the previous section as a basis, and then
altering it by deleting features that are not offered (e.g. a service that does not provide
external compensation capabilities will delete this part of the model completely), by
changing the mandatory/optional properties, or by adding features at certain parts
(e.g. by specifying the additional services that can be used in the compensation
process).

<<Concept>>
Service
I
~ - Mand F
toryFeature>>|
<<MandatoryFeature>> || <<MandatoryFeature>> Ssadanaal :
Operation 1 Operation 2 Internaﬁ(;zm;i):gnsatlon

N —

<<MandatoryFeature>>|| <<OptionalFeature>>
NoCompensation Repetition
<<MandatoryFeature>>|
LastRequest
Repetition

Fig. 1.4 Merging of the functionality and compensation models

This process of merging the two different models is depicted in Fig. 1.4. Here, a
service offers two basic operations, “Operation 1” and “Operation 2”, which form
the functionality feature model (dark grey). The service is able to handle internal
compensations by either doing nothing (the mandatory default action), or by repeating
the last request. This forms the compensation model (light grey). The two models
are merged (symbolized by the dashed arrow), and thus form the service’s capability
feature model. The mandatory/optional properties are interpreted in this context as
“will be used by the service” and “can be used by the service”, respectively. The
interpretation is different in the requirement feature model.

1 Design and Management of Web Service Transactions with Forward Recovery 11

1.2.4 Requirement Feature Model

The client creates a requirement description in order to be able to initiate a search
for a suitable service. The specification is being done very much like the definition
of the capability feature model described in the previous section: A common model
is being created that includes the required functionality and compensation features.
This model is called the requirement feature model.

However, although the basic process of creating the requirement feature model is
the same, the interpretation of the mandatory/optional properties differs. A mandatory
feature has to be provided by the service and is thus critical for the comparison
process, while an optional feature can be provided by the service, and is seen as a
bonus in the evaluation of the available services.

In the search process, each service’s capability feature model will be compared to
the client’s requirement feature model, and the client can thus decide which service
is suitable for its needs.

1.2.5 Restriction Feature Model

After the client has found the necessary services that offer the required functional and
compensation features, the contract negotiation with each service will be performed.
A vital part of this contract is the specification of compensation features that the
service is allowed to use. While it is of course possible to do this restriction by simply
searching for services that only perform the allowed compensation actions, such an
approach significantly reduces the available services. Moreover, it is quite possible
that a client wants to use the same service in multiple applications, where each has
its own rules regarding the compensation actions that are permitted. Therefore, it is
beneficial to use a restriction feature model that can be part of the contract, and to
which the service dynamically adapts its compensation actions.

The restriction feature model can be defined by using the compensation feature
model described in Sect. 1.2.2. By removing features from this model, the client can
state that these are not allowed to be used in the compensation process. Only those
features that are still in the model are permitted. Therefore, it is not necessary to
distinct between mandatory and optional features.

When the service wants to invoke a specific compensation action, it will first
consult the contract’s restriction feature model. If the compensation action is part of
the model, then the service is allowed to use it. This way, the service can dynamically
adapt to the requirements of each single client.

1.2.6 Model Comparison Algorithm

We define a comparison algorithm to match the requirement model of a client
and the capability model of a service. These two models are the input for the

12 P. Dolog et al.

algorithm, which iteratively compares them and calculates a numerical compatibility
score:

e Using the requirement feature model as a basis, the features are compared stepwise.
In this process, it is required that the same features are found in the same places,
because the same feature structure is expected.

e Each mandatory feature in the requirement model has to be found in the capability
feature model. If this is not the case, the comparison has failed and a negative
compatibility score is returned to indicate this. However, if a mandatory feature is
included in the capability model, this will not have any impact on the comparison
score, as the mandatory features are the minimum this is expected.

e Each optional feature in the requirement model can exist in the capability model,
but does not have to. Each one found counts as a bonus added to the compatibility
score. This accounts for the fact that a service that provides more than the minimum
is better, as it can more easily be used in different applications.

e Additional features in the service’s capability model, like the specification of
additional services used in the compensation process, are ignored as long as they
are found in the appropriate place, e.g. as a subfeature to the “AdditionalService”
feature. Any other additional features will lead to a failure of the comparison.

Once the comparison is completed, the compatibility score will be returned. At
the moment, a very simple score is used that does not include advanced properties
like feature priorities, which could be used in the future:

e If the comparison has failed, the compatibility score will be —1.

e Each mandatory feature that is found does not increase the score. A service which
provides only the mandatory features (and is thus suitable) will therefore have a
compatibility score of 0.

e Each optional feature in the capability model increases the score by 1.

As it can be seen, every compatibility score equal to or higher than O classifies a
service as suitable for the client’s needs. Moreover, the higher the score is, the more
features a service provides. Using this simple score, it is easy to compare multiple
services and their capabilities.

1.2.7 Example

The use of feature models will now be examined based on the “Transfer salary”
service of the scenario described in Sect. 1.1. The services in this scenario can be
used in different distributed applications, and it is therefore important that their
compensation capabilities can be adapted.

Capability Feature Model (depicted in Fig. 1.5): The functional features of this
service are the “Debit” and “Credit” operations, which are mandatory. The service
is capable of performing all compensation actions, and accordingly the complete
compensation feature model is merged with the functional model. Finally, the service

1 Design and Management of Web Service Transactions with Forward Recovery 13

<<Concept>>
SalaryTransfer

N7 N4
<<OptionalFeature>> || i | y <<MandatoryFeature>>|
[ExternalCompensation||~~" %~ 2 H InternalCompensation|
com) ‘ Debit Credit onas
T T
N2 v A7 v N

<<OptionalFeature>>

N2
<<OptionalFeature>>
i Replacement

For

<<OptionalFeature>>

<<OptionalFeature>> <<OptionalFeature>>
AdditionalActi F iti

’«Manda{oryFeature»‘
NoC i

<<VariationPoint>> <<VariationPoint>>

{Kind = OR}

{Kind = AND}

AN
. " <<OptionalFeature>> ||<<MandatoryFeature>>|| <<OptionalFeature>>
<Masnedrat_oryfsal_ttjre> <fOp}|c_>naIFeatur_e>> <A<Opll_onaIFeature>> PartialRequest LastRequest AllRequest
viee It iti Repetition petiti
N% 1
<|g/|earhdeast?sn;Fia;:J‘::ee> <<MandatoryFeature>> <<MandatoryFeature>:
i Change TelephoneCall ResultResending

Fig. 1.5 The SalaryTransfer capability feature model

specifies that an additional service will be used in the compensation procedures: This
is defined by adding the “TelephoneCall” feature to the “AdditionalService” feature.
By providing this feature model, the service can state its capabilities and informs the
client about a special operation it uses for this purpose.

<<Concept>>
SalaryTransfer

N7 v
<<MandatoryFeature>> | [<<MandatoryFeature>>]
xter < Dgft r <<Manda(\§?;¥;tealure>> InternalCompensation|
Handlin Handling
T
N
<MandatoryFeature>>|| <<OptionalFeature>> || <<OptionalFeature>> |<<MandatoryFeature>> l<<MandatoryFeature>>| k<MandatoryFeature>:
SessionRestart Forwarding dditionalActi NoC: i Repetition Replacement
<<VariationPoint>> <<VariationPoint>>
{Kind = AND} {Kind = OR|
— ~Z O F Mand; Fe o] F
: ; tionalFeature>> |l<<MandatoryFeature>>(| <<OptionalFeature>>
<MandatoryFeature>>|| <<OptionalFeature>> || <<OptionalFeature>> <<P§rtiaIRe
0 b A o quest LastRequest AlIRequest
’< ServiceAbort AdditionalService AdditionalRequest Repetition Repetition Repetition
1
[<<MandatoryFeature>>]
<MandatoryFeature>
Reques;ltaS:euence ResultResending

Fig. 1.6 The SalaryTransfer requirement feature model

Requirement Feature Model (Fig.1.6): The client that creates the payment
processing application specifies its requirements for the “Salary Transfer” service in
a requirement feature model. The functional features are the “Debit” and “Credit”
operations. Regarding the required compensation features, the client is looking for
a service that is able to perform the “Repetition” and “Replacement” compensation
actions for internal error handling, and the “SessionRestart” for external compensa-
tion handling. Accordingly, these features are marked as “mandatory”.

14 P. Dolog et al.

<<Concept>>
Compensation

<<AllowedFeature>> <<AllowedFeature>>
[ExternalCompensation| InternalCompensation|
Handling Handling

N\
<<AllowedFeature>>
NoC i

<<AllowedFeature>>
Replacement

<<AllowedFeature>>

<<AllowedFeature>>
SessionRestart Additi Acti

<<AllowedFeature>>

<<VariationPoint>>

{Kind = AND}

AllowedFeature>> || <<AllowedFeature>> || <<AllowedFeature>>
<<AllowedFeature>> <<AllowedFeature>> || <<5 %
PartialRequest LastRequest AllRequest
ServiceAbort AdditionalRequest F by Repetition Repetiti

7N
<<AllowedFeature>> ‘

<<AllowedFeature>>
Requ%itas:g:ence ResultResending

Fig. 1.7 The restriction feature model

Restriction Feature Model (Fig. 1.7): After the client has found a suitable service
that offers the required capabilities, he defines the permitted compensation actions.
In this example, the client does not want for the new application’s service that it
uses additional services in the event of a compensation. Therefore, the respective
feature (“AdditionalService”) is removed from the compensation feature model. This
restriction model is part of the contract that the client has with the service. When the
service now encounters a situation that requires compensation, it will only execute
compensation plans that are in accordance with the model’s restrictions.

1.3 Compensation Rules

Compensation rules are specifications of permitted compensations in the context
of a particular Web service. The compensation activities and types that are part
of these rules are adopted by a designer from the compensation and capabilities
feature models. Two different kinds of compensations can be specified within these
rules: Internally triggered compensations, which can be handled through a service
replacement, and externally triggered compensations.

Each rule specifies the exact steps that have to be performed in the compensation
process. For the purpose of defining the available compensation operations, we dis-
tinguish between basic compensation activities, which constitute the available single
compensation operations, and complex compensation types, which are composed
compensation processes consisting of multiple activities. This is shown in Fig. 1.8.

The compensation types specify which combinations of compensation activities
can be defined in rules for handling internal and external compensations, as it is
not desirable to allow every possible combination within the environment. When a
service receives a request for a compensation, it will first of all check whether a rule
for the current situation exists, and if this is the case, it will validate each rule before
executing the given set of compensation activities in order to guarantee that they are
consistent with the available compensation types.

M.al litebooks. cogl

http://www.allitebooks.org

1 Design and Management of Web Service Transactions with Forward Recovery 15

Compensation Activities

c
s12| |
o = ©
s S8 |5 2
c | = T8¢ IS
tl2|8|5|8|2|8|681|6
25| 8|2(2(518(5|%
Sls|lc|ls|lg|8|g|2|c|p
1] o D 8‘ c b T | £ % S
SlZle|lc|L|o|e|E| 5| S
s(8|2%/3(8/c|2|8]|¢
cl2|8|8|2|®B|T|Z|2|3
s | 8| |2|6|5|5|s|2|x
Q|| = Tlals|=|L8 S| =
sl2|512/158(8|18(3(8|3
Nr Compensation Type o |S|d||o0|2||o ||z
01 NoCompensation
02 N
Repetition
03 T
04 @
05 £ Replacement
06
07 Forwarding
08 | & | AdditionalService
Q
09 5 AdditionalRequest
10 SessionRestart -

- Included compensation activity |:| Possibly included compensation activity

Fig. 1.8 The compensation types and their included activities

Therefore, although the combination of different compensation activities allows
the definition of flexible and complex rules, it is not permitted to define arbitrary
compensation handling processes. Only the predefined compensation types can be
used, and it is thus guaranteed that a service does not execute a process defined in a
compensation rule that is not permitted or possible. At the same time, this approach
allows the future extension of the environment with new compensation strategies: In
order to test or include new compensation strategies, it is possible to simply define
a new compensation type and extend the service to accept it.

1.3.1 Basic Compensation Activities

Compensation activities are the basic operations which can be used in a compen-
sation process. ServiceReplacement replaces the currently used Web service with
a different one, which offers the same capabilities. LastRequestRepetition resends
the last request to the service. PartialRequestRepetition resends the last n requests
from the request sequence of the current session (i.e. within the current transaction)
to the service, while AllRequestRepetition resends all requests. CompensationFor-
warding forwards the external compensation request to a different component that
will handle it. AdditionalServicelnvocation invokes an additional (external or inter-
nal) service, which performs a particular operation required for the compensation

16 P. Dolog et al.

(e.g. the invocation of a logging service). AdditionalRequestGeneration creates and
sends an additional request to the Web service. Such a request is not influenced by the
client, and the result will not be forwarded to the client. ServiceAbortInitiation can-
cels the operations on the service, i.e. the service aborts and reverses all operations
which have been performed so far. RequestSequenceChange performs changes in the
sequence of requests that have already been sent to the Web service. ResultResending
sends new results for old requests, which have already returned results.

1.3.2 Compensation Types

Compensation types aggregate multiple compensation activities, and thus form com-
plex compensation operations (Fig. 1.8). These types are the compensation actions
which can be used for internal and external compensations.

The most simple type is NoCompensation, which does not perform any operation.

The Repetition type is important for the internal error handling, as it repeats the
last request or the last n requests. The last request can for example be resent to a
service after a response was not received within a timeout period. A partial resend
of n requests can for instance be necessary if the request which failed was part of a
sequence. A partial repetition of requests will result in the resending of results for
old requests to the client, which has to be able to process them.

The compensation type Replacement can be used if a service fails completely. It
replaces the current service with a different one, and resends either all requests, a
part of the requests, or only the last one. Resending only the last request is possible if
a different instance of the service that has failed can be used as replacement, which
works on the same local data and can therefore simply continue with the operations.

Forwarding is special in comparison with the other types as it only indirectly uses
the available activities. It forwards the handling of the compensation to a different
component, which can potentially use each one of the compensation activities (which
are therefore marked as “possibly included”) in the process.

In an externally triggered compensation, it is sometimes necessary to invoke
additional services and send additional requests to the service. For this purpose, the
compensation types AdditionalService and AdditionalRequest exist.

The final compensation type is SessionRestart. This operation is required if the
external compensation request cannot be handled without a restart of the complete
session, i.e. the service has to be aborted and subsequently the complete request
sequence has to be resent. The requested change will be realised by a change in the
request sequence prior to the resending.

1.3.3 Example of a Compensation Rule
Figure 1.9 shows an example of an external compensation rule specified in an XML

document. This example rule handles the refund of excess salary that has been trans-
ferred to the employees account as described in the example in Sect. 1.1.

1 Design and Management of Web Service Transactions with Forward Recovery 17

<cmp:ExternalCompensationRule identifier="refundSalaryDifference">
<cmp: CompensationCondition>
<cmp:RequestMethod identifier="transferSalaryMethod" />
<cmp:ParticipantRequest identifier="getAccountBalanceMethod"
parameterFactory="CheckEmployeeAccountParameterFactory">
<cmp:Result resultEvaluator="AccountInCreditResultEvaluator" />
</cmp:ParticipantRequest>
</cmp:CompensationCondition>
<cmp: CompensationPlan>
<cmp : Compensation>
<cmp:AdditionalRequest identifier="transferSalaryMethod"
parameterFactory="RefundSalaryDifferenceParameterFactory" />
</cmp:Compensation>
<cmp : Compensation>
<cmp: ServiceRequest
serviceAddress="http://localhost:8080/axis/services/TelephoneCall"
methodName="initializeTelephoneCall" />
</cmp:Compensation>
</cmp:CompensationPlan>
</cmp:ExternalCompensationRule>

Fig. 1.9 An example compensation rule

The compensation condition consists of two single condition elements:

1. RequestMethod—The rule applies to external compensation requests, which
aim at changing requests that originally invoked the service’s method “trans-
ferSalaryMethod”, i.e. it applies to external compensations that try to change the
details of an already completed salary transfer.

2. ParticipantRequest—The second condition element specifies a request that has
to be sent to the current service. The goal of the request is to check whether the
account of the employee will still be in credit after the excess amount has been
refunded. The condition’s request invokes the service’s method “getAccount-
BalanceMethod”. The request parameters are created by the parameter factory
“CheckEmployeeAccountParameterFactory”. After the request has returned the
current balance, the predefined result evaluator “AccountInCreditResultEvalua-
tor” is responsible for checking whether the salary refund can be performed, and
thus whether the rule’s condition is fulfilled or not.

The rule’s compensation plan consists of two steps as well:

1. AdditionalRequest—An additional request is sent to perform the required changes,
i.e. the money transfer back to the company’s account. It invokes the service’s
method “transferSalaryMethod”. The parameters for this request are created by
the parameter factory “RefundSalaryDifferenceParameterFactory”.

2. ServiceRequest—An additional external service is used as part of the compen-
sation. The method “initializeTelephoneCall” has to be invoked. This external
service performs a precautionary telephone call which informs the employee
about the error in the salary calculation and the refund that has been performed.

This is of course only a simple example. External compensation rules can consist
of a multitude of single conditions and/or compensation operations.

18 P. Dolog et al.

1.4 Web Service Environment with Transaction Coordination

The compensation rules from the previous section can be interpreted by an envi-
ronment we have designed and implemented as a prototype. The environment builds
upon adapted Web service coordination and transaction specifications [11-13]. They
provide a conceptual model and architecture for environments where business activ-
ities performed by Web services are embedded in a transactional context.

N\ e B\
Server Process Client Process

Client

Web Service 1

5.t

I Service Stub

|

| |

|

i :

Y Y A

|
I
I
N Y - . 1. .
| |3. Call with TID v ;
N. Run transaction _and context | Client Stub l
protocol
| |4. Register with TID _ [A)
A J
2. Register, get transaction context | |
Transaction ~— - - — — — —
Coordinator - 1

N+1. Notify about outcome

Fig. 1.10 Transactional environment for Web services adopted from [1]

Figure 1.10 depicts an excerpt of such an environment with the main components.
The client runs business activities Al to A5, which are part of a transactional context
that is maintained by a transaction coordinator. Client and server stubs are responsible
for getting and registering the activities and calls for Web services in the right context.
The sequence of conversation messages is numbered. For clarity, we only show a
conversation with a Web service provider that performs business activity Al. The
coordinator is then responsible for running appropriate protocols, for example a
distributed protocol for Web service environments such as [2].

We extend the architecture and the infrastructure based on the specifications
[11-13] in order to enable it to handle both internally and externally triggered com-
pensations as described in the previous sections.

Figure 1.11 depicts the extension to the transaction Web service environment,
namely the abstract service and the adapter components. This extension does not
change the way how client, coordinators and providers operate. Instead of invok-
ing a normal Web service, a client invokes an abstract service, which looks like a
standard Web service to the outside. However, the abstract service is a management
component for forward recovery compensation handling, which wraps multiple con-

1 Design and Management of Web Service Transactions with Forward Recovery 19

crete services that offer the same functionalities and can thus replace each other. The
abstract service is therefore a mediator between a client and the concrete service
that performs the required operations. At the same time, the adapter functions as
a mediator between transaction coordinator, abstract service and concrete service
to ensure proper transactional context and to provide the means to intercept failure
notifications and create messages required in the compensation handling process.

4% Client
Contract exchange

Request/response

Abstract Service Interface
Abstract,Service
~

|

‘ Management ‘

Adapter

o
o
]
b=
=
= ice li I Registration
% Concrete service list g : : > Adapter Management
E Concrete service wrappers : Incident reporllng,
> S| PP = ?D. Compensation interaction :
il Request log =
o S Coordinator
E Compensation rules repository © Capabilities
=
c
8 Contract repository 4
_
T
[! Registration,
Comp ion Interface F Status messagin
| Concrete oing
External compensation Request/response| Service Registration,
interaction Status messaging

\ ¥
» Transaction
Initiator Coordinator

Fig. 1.11 The abstract service and adapter transaction environment

1.4.1 Abstract Service

The central element of the extension is the notion of the abstract service. The client
stub communicates with the Web service provider stub through the abstract service.
An abstract service does not directly implement any operations, but rather functions
as a management unit, which allows to:

e define a list of Web services which implement the required capabilities,

e invoke a service from the list in order to process requests which are sent to the
abstract service,

e replace a failed service with another one from the list without a failure of the
transaction, and

e process externally triggered compensations on the running transaction.

To the outside, it provides an abstract interface and can be used like any other Web
service, and uses the same mechanisms like SOAP [15] and WSDL [4]. On the inside,

20 P. Dolog et al.

it manages a list of concrete services which provide the required capabilities. When
the abstract service receives a request, it chooses one of these services and invokes it.
Which concrete service is chosen depends on the abstract service’s implementation.
In the simplest case, the abstract service only selects the next concrete service on
the list. However, it would be possible to give the abstract service the capability
to dynamically assess each concrete service and to choose the one that optimizes
the client’s QoS requirements. Interface and data incompatibilities are solved by
predefined wrappers.
This approach has multiple benefits:

e Usually, a client does not care which specific service handles his requests, as
long as the job will be done successfully and in accordance with the contract.
The abstract service design supports this notion by providing the capabilities to
separate the required abilities from the actual implementation.

e The available list of concrete services enables the abstract service to provide
enhanced compensation possibilities.

e The definition of an abstract service can be done independently from the business
process in which it will be used. It can therefore be reused in multiple applications.
If a specific service implementation is no longer usable, then the business process
does not have to be changed, as this is managed in the abstract service.

Figure 1.11 depicts the basic structure of an abstract service. Four interfaces are
supplied to the outside: The service operations for which the abstract service has
been defined can be accessed via the abstract service interface. A contract can be
exchanged or negotiated by using the contract exchange interface. Execution events
of a service (e.g. a failure) can be signaled via the event interface. Compensations
can be triggered from the outside using the compensation interface.

On the inside, the main component is the management unit, which receives and
processes requests, selects and invokes concrete services, and handles compensa-
tions. In order to do so, it has several elements at its disposal:

e Concrete service list: Contains the details of all available concrete services.

e Concrete service wrappers: Define the mapping of the generic abstract service
interface to the specific interface of each concrete service.

e Request log: Holds all requests of the current session.

e Compensation rules repository: Manages the rules that control the compensation
handling process.

e Contract repository: Contains the existing contracts with the different clients.

1.4.2 Adapter

Abstract services could be used in conjunction with a wide variety of technologies.
Therefore, it would be preferable if the definition of the abstract service itself could
be generic. However, the participation in a transaction requires capabilities that are
different for each transaction management specification.

1 Design and Management of Web Service Transactions with Forward Recovery 21

That is why the transaction specific requirements are encapsulated in a so-called
adapter (see Fig.1.11). An abstract service registers with this adapter, which in
turn registers with the transaction coordinator. To the coordinator it appears as if the
abstract service itself has registered and sends the status messages. When the abstract
service invokes a concrete service, it forwards the information about the adapter,
which functions as a coordinator for the service. The service registers accordingly
at the adapter as a participant in the transaction.

As can be seen, the adapter works as a mediator between the abstract service,
the concrete service, and the transaction coordinator. The adapter receives all status
messages from the concrete service and is thus able to process them before they
reach the actual coordinator. Normal status messages can be forwarded directly to
the coordinator, while failure messages can initiate the internal compensation han-
dling through the abstract service. If the adapter receives such an error message,
it informs the abstract service that can then assess the possibility of compensation,
which includes checking both the existing compensation rules and the restriction
feature model. The adapter will be informed about the decision, and can act accord-
ingly. If for example the replacement of a failed concrete service is possible, then the
adapter will deregister this service and wait for the replacement to register. In this
case, the failure message will not be forwarded to the transaction coordinator. The
compensation assessment could of course also show that a compensation is not possi-
ble (or permitted). In such a case, the adapter will simply forward the failure message
to the coordinator, which will subsequently initiate the abort of the transaction.

1.4.3 Compensation Protocol

While the compensation rules specify when and how a compensation can be per-
formed, the compensation protocol controls the external compensation process itself
and its interaction with the different participants.

An externally triggered compensation always has the purpose of changing one
particular request that has already been processed at the service. More specifically,
the compensation request contains the original request with its data that has to be
changed (requestl (datal)), and the new request-data (data?2) to which the
original request has to be changed to (requestl (data?2)). The participants in
the protocol are the abstract service, the client which uses the abstract service in
its business process, the initiator which triggers the external compensation (either
the client itself, or any other authorized source like an administrator), the concrete
service which is currently being utilized by the abstract service, and the transaction
coordinator. An externally triggered compensation can only be performed if the
transaction in which the abstract service participates has not yet finished, as this
usually has consequences for the client due to result resending.

The protocol consists of two stages. The first stage is the compensation assess-
ment: As soon as the abstract service receives a request for a compensation, it
checks whether it is feasible and what the costs would be. To that end, predefined

22 P. Dolog et al.

compensation rules are being used, which consist of a compensation condition
(defines when a compensation rule can be applied) and a compensation plan (defines
the compensation actions that have to be performed). The second stage of the protocol
is the compensation execution, which performs the actual compensation according
to the plan. Whether this stage is actually reached depends on the initiator: After the
assessment has been completed and has come to a positive conclusion, the initiator,
based on this data, has to decide whether the compensation should be performed.

As the client and the initiator of an external compensation can differ, the pro-
tocol contains the means to inform the client about the compensation process. It
also ensures that the current concrete service and the transaction coordinator are
informed about the status of the external compensation, as it is possible that the
concrete service’s (and thus the abstract service’s) state changes due to the external
compensation. The concrete service has to enter a specific external compensation
handling procedure state for this purpose. While the concrete service is in this state,
it will wait for additional requests from the abstract service, and the coordinator is
not allowed to complete the transaction. While assessing the possibilities for a com-
pensation, and while performing it, the abstract service cannot process additional
requests (and either has to store the requests in a queue, or has to reject them with
an appropriate error message).

Because of the requirements of the compensation protocol, it is necessary to adapt
the normal transaction protocol with additional state changes regarding the coordina-
tor and participant (i.e. the concrete service). This has been done in our implementa-
tion for the BusinessAgreementWithCoordinatorCompletion protocol
(refer to [11]), using an extended version introduced in [2] as a basis that uses trans-
action dependency graphs in order to solve cyclic dependencies. The result of the
state diagram adaptation for the compensation protocol is depicted in Fig. 1.12.

Two new states have been introduced, ExCompensation I and ExCompen-
sation ITI. While both represent the external compensation handling procedure
state which the concrete service has to enter, it is necessary to distinct between them,
because depending on the former state different consequential transitions exist.

If the concrete service as participant is currently either in the Active state or
the Completing state when receiving an ExCompensate notification from the
adapter, it will enter the ExCompensation I state. While the concrete service is
in this state, it will wait for new requests from the abstract service, and the coordinator
will not finish the transaction. If the external compensation procedure is canceled
after the assessment has been performed, the concrete service will be instructed to
re-enter its former state by receiving either an Active or a Complete instruction
from the adapter. The transaction processing can then continue in the normal way.
In contrast, if the external compensation is executed and performed successfully,
the concrete service will receive an ExCompensated message, which instructs it
to enter the Active state. This is necessary for two reasons: Firstly, because any
additional requests as part of the external compensation handling require that the
participant again performs the Completing operations. And secondly, because
the abstract service’s client will be informed about the external compensation that

1 Design and Management of Web Service Transactions with Forward Recovery 23

Cancel

ExCompensation |

_ .ExCompensate
Exit

|ExCompensated,
|Active _
Complete | L \Wait Completed
‘ | |
Waitin, 4 —
‘ ‘ \@/ | | Compensat
I 1A
|
‘ | ExCompensate, ‘Walt | :ExCompensate :Fault Faulted
‘ i ‘Completed\ |
|
‘ \\EﬁxCﬁomBerlsatiedi ExComp ion Ii Compensate |
|
N
|
‘Fault \\ Fault Faut
‘ S~
~
—~ -—
L T = —
—————— Coordinator generated —— —— —— += Participant generated —-—:—-— - - Adapter generated

Fig.1.12 The state diagram of the BusinessAgreementWithCoordinatorCompletion
protocol with extensions for the external compensation handling

has been performed, and it is possible that additional operations are required by the
client as a consequence of the compensation.

In addition to these options within the ExCompensation I state, the same
transitions exist as in the Active and Completing states, i.e. the coordinator can
Cancel the operations, and the participant can Exit or send a Fault notification.

If the concrete service is either in the Waiting or Completed state when
receiving an ExCompensate message, it will enter the ExCompensation IT
state. In principle, the state has the same meaning as ExCompensation I:
The concrete service will wait for new abstract service requests, and at the same
time the coordinator is not allowed to finish the transaction. The concrete service
will be notified to enter the Active state through an ExCompensated mes-
sage after a successful external compensation execution. However, in contrast to
ExCompensation I, different consequential transitions are available, and there-
fore it is necessary to separate these two states. In case of a compensation abort, the
concrete service can be instructed to re-renter its former state through a Wait or
Completed message. Moreover, a Faul t message can be sent to signal an internal
failure. Finally, the coordinator can send a Compensate instruction while the con-
crete service is in the ExCompensation IT state. The concrete service can only
be instructed to Compensate if it is either in the Waiting or the Completed
state. Therefore, it is necessary to introduce ExCompensation IT, as thisoption
is not available for the Active and Completing states and thus may not be
permitted within ExCompensation I.

The extended state diagram contains new transitions generated by the adapter in
addition to the ones from the participant (i.e. the concrete service) and the coordinator.

24 P. Dolog et al.

This is actually a simplification, because although the adapter creates the messages
and sends them to the coordinator and the participant, both are not aware of the fact
that the adapter has sent them. To the coordinator it always looks as if the participant
has sent the messages, while the participant thinks that the coordinator has sent them,
as both are unaware of the extended transaction environment. Therefore, in order to
obtain a state diagram that shows only transitions generated by either the coordinator
or the participant, it would be necessary to create two different state diagrams, one
from the participant’s view and one from the coordinator’s.

1.4.4 Application on the Client and Provider Side

The abstract service design can be applied on both, the client and the provider side.
A client who wants to create a new distributed application using services provided
by multiple providers can utilize abstract services in two different ways:

1. The client can include the abstract service from a provider in his new business
process, and can use the added capabilities.

2. The client can define a new abstract service, which manages multiple concrete
services that can perform the same task.

The main goal of a Web service provider is a successful and stable execution of
the client’s requests in accordance with the contracts. If the service of a provider fails
too often, he might face contractual penalties, or the client might change the provider.
He can use abstract services in order to enhance the reliability and capability of his
services by creating an abstract service which encapsulates multiple instances or
versions of the same service. These can be used in case of errors to compensate the
failure without the need for a transaction abort.

1.4.5 Client Contracts

While the different compensation capabilities of an abstract service allow the han-
dling of internal and external compensations, it may not always be desirable for a
client that these functionalities are applied. The abstract service environment there-
fore allows the definition and evaluation of contracts.

A client will negotiate a contract with the abstract service before sending the
first request. This contract not only contains legal information and the Service Level
Agreement, but can also specify (using a restriction feature model as described in
Sect. 1.2.5) which compensation operations the abstract service is permitted to apply.
The abstract service adapts dynamically to this contract by checking the restrictions
defined in it prior to performing a compensation: A compensation rule may only be
applied if all necessary compensation operations are permitted via the contract. It can
thus happen that although a compensation rule exists for handling a compensation,
the abstract service will not apply it because the contract restricts the use of required

M.al litebooks. cogl

http://www.allitebooks.org

1 Design and Management of Web Service Transactions with Forward Recovery 25

compensation operations. Accordingly, an abstract service that is not allowed to
use any compensation capabilities will act exactly like a standard Web service. A
client therefore can make use of the forward recovery capabilities, but he does not
have to, and thus always has the control over the environment’s forward recovery
compensation handling features.

Because of this ability to dynamically adapt to each client’s contract, it is possible
to use the same abstract service in a wide variety of distributed applications with
differing requirements regarding compensation handling.

1.4.6 Transaction Environment Adaptation

The abstract service and adapter approach has been designed as an extension of the
current transaction coordination structure so that it is easy to integrate it into existing
environments and different transaction protocols. Therefore, it is not necessary to
change either the client, coordinator or concrete service in order to use the internal
compensation handling capability: An abstract service that manages different con-
crete services and that is able to replace failed concrete services can be used like a
normal Web service and without any changes to the transaction protocol.

However, the introduced external compensation functionality for changing already
processed requests requires some changes in the transaction environment:

1. It is necessary to extend the existing transaction specification protocols to pro-
vide the capability to perform external compensations. This has been shown
for the BusinessAgreementWithCoordinatorCompletion protocol
in Sect. 1.4.3. Accordingly, the coordinator and the participating concrete service
have to be able to handle this adapted protocol.

2. The external compensation process requires that reports about a performed com-
pensation or the resending of results can be sent to the client of a transaction. It
is therefore necessary that the client provides the expected interfaces and that he
is able to process these reports in accordance with his business process.

The extent of the changes thus depends on the compensation requirements.

1.4.7 Middleware Prototype

The described design approach has been implemented as a prototype in order to ver-
ify the design and the protocols. The implementation has been done using Apache
Tomcat as Web container, and Apache Axis as SOAP engine. The WS-Transaction
specification has been chosen for the transaction coordination, more specifically
the adapted BusinessAgreementWithCoordinatorCompletion proto-
col that has been introduced in Sect. 1.4.3. The implementation has been published
online at SourceForge.net as the FROGS (forward recovery compensation handling
system) project: http://sourceforge.net/projects/frogs/.

http://sourceforge.net/projects/frogs/

26 P. Dolog et al.

1.5 Discussion

The evaluation of the approach is discussed in detail in [19]. Here we provide a sum-
mary of the findings: The experiments showed that in our environment about twice
as many transactions as in a standard environment finish successfully. Furthermore,
a similar improvement can also be found if we look at how many transactions finish
in one minute. The number of messages sent in the environment is of course higher,
which is, however, compensated by the increased number of transactions that do not
have to roll back. Also, the number of additional messages is justified well enough
if the overall cost of forward recovery is lower than the cost of the rollback and
cumulative cascading rollbacks.

The current approach still has some shortcomings. The transition from design
to compensation rules needs to be studied in order to support it via semi-automatic
tools. Also, the algorithms for matching capability and requirement models require
further studies, as the proposed algorithm is limited to an exact match. Especially
approximation and similarity methods can be beneficial in this context. In addition,
the support for different types of configuration models seems quite useful to study.
So far, we have concentrated our efforts on defining the architecture and the required
protocol. It will be necessary to do a further analysis of the proposed protocol to
ensure that it is complete and is not susceptible to race conditions, which can occur
in a real-life environment where less than optimal conditions exist, messages can be
delayed or lost, and many concurrent accesses can exist.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services - Concepts, Architectures and
Applications. Springer (2003)

2. Alrifai, M., Dolog, P., Nejdl, W.: Transactions Concurrency Control in Web Service Environ-
ment. In: ECOWS ’06: Proceedings of the European Conference on Web Services, pp. 109-118.
IEEE, Washington, DC, USA (2006). DOI 10.1109/ECOWS.2006.37

3. Choi, S., Jang, H., Kim, H., Kim, J., Kim, S.M., Song, J., Lee, Y.J.: Maintaining Consistency
Under Isolation Relaxation of Web Services Transactions. In: A.H.H. Ngu, M. Kitsuregawa,
E.J. Neuhold, J.Y. Chung, Q.Z. Sheng (eds.) WISE, Lecture Notes in Computer Science, vol.
3806, pp. 245-257. Springer (2005)

4. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description Lan-
guage (WSDL) 1.1. W3C note, W3C (2001)

5. Dolog, P, Nejdl, W.: Using UML-Based Feature Models and UML Collaboration Diagrams to
Information Modelling for Web-Based Applications. In: T. Baar, A. Strohmeier, A. Moreira,
S.J. Mellor (eds.) Proc. of UML 2004 — The Unified Modeling Language. Model Languages
and Applications. 7th International Conference, LNCS, vol. 3273, pp. 425-439. Springer (2004)

6. Dostal, W., Jeckle, M., Melzer, 1., Zengler, B.: Service-orientierte Architekturen mit Web
Services. Spektrum-Akademischer Verlag (2005)

7. Gray, J.: The Transaction Concept: Virtues and Limitations. In: VLDB 1981: Intl. Conference
on Very Large Data Bases, pp. 144—154. Cannes, France (1981)

http://dx.doi.org/10.1109/ECOWS.2006.37

1

8.

10.

11.

13.

14.
15.
16.

17.

18.

19.

20.

Design and Management of Web Service Transactions with Forward Recovery 27

Greenfield, P., Fekete, A., Jang, J., Kuo, D.: Compensation is Not Enough. In: 7th International
Enterprise Distributed Object Computing Conference (EDOC 2003), pp. 232-239. IEEE Com-
puter Society, Brisbane, Australia (2003)

Greenfield, P., Fekete, A., Jang, J., Kuo, D., Nepal, S.: Isolation Support for Service-based
Applications: A Position Paper. In: CIDR, pp. 314-323 (2007)

Greenfield, P., Kuo, D., Nepal, S., Fekete, A.: Consistency for Web Services Applications.
In: Proceedings of the 31st international conference on Very large data bases, VLDB ’05,
pp. 1199-1203. VLDB Endowment (2005). URL http://dl.acm.org/citation.cfm?id=1083592.
1083731

Ltd., A.T., Systems, B., Ltd., H., Corporation, I., Technologies, I., Corporation, M.: Web
Services Business Activity Framework (2005). Published at ftp://www6.software.ibm.com/
software/developer/library/ WS-BusinessActivity.pdf

Ltd., A.T., Systems, B., Ltd., H., Corporation, I.B.M., Technologies, I., Corporation, M.: Web
Services Coordination (2005). Published online at ftp://www6.software.ibm.com/software/
developer/library/WS-Coordination.pdf

Ltd., A.T., Systems, B., Ltd., H., Corporation, I.B.M., Technologies, I., Inc., M.C.: Web Services
Atomic Transaction (2005). Published at ftp://www6.software.ibm.com/software/developer/
library/W S- AtomicTransaction.pdf

Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40-51 (1992)

Nielsen, H.F., Mendelsohn, N., Moreau, J.J., Gudgin, M., Hadley, M.: SOAP Version 1.2 Part
1: Messaging Framework. W3C recommendation, W3C (2003)

Pullum, L.L.: Software Fault Tolerance — Techniques and Implementation. Artech House,
Inc., Norwood, MA, USA (2001)

Schifer, M., Dolog, P.: Feature-Based Engineering of Compensations in Web Service Envi-
ronment. In: M. Gaedke, M. Grossniklaus, O. Diaz (eds.) Web Engineering, 9th International
Conference, ICWE 2009, Lecture Notes in Computer Science, vol. 5648, pp. 197-204. Springer,
San Sebastidn, Spain (2009)

Schifer, M., Dolog, P., Nejdl, W.: Engineering Compensations in Web Service Environment.
In: P. Fraternali, L. Baresi, G.J. Houben (eds.) ICWE2007: International Conference on Web
Engineering, LNCS, vol. 4607, pp. 32—46. Springer Verlag, Como, Italy (2007)

Schifer, M., Dolog, P., Nejdl, W.: Environment for Flexible Advanced Compensations of Web
Service Transactions. ACM Transactions on Web 2(2) (2008)

Yang, Z., Liu, C.: Implementing a Flexible Compensation Mechanism for Business Processes
in Web Service Environment. In: ICWS ’06. Intl. Conference on Web Services, pp. 753-760.
IEEE Press, Salt Lake City, Utah, USA (2006)

http://dl.acm.org/citation.cfm?id=1083592.1083731
http://dl.acm.org/citation.cfm?id=1083592.1083731
ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf

Chapter 2
A Generic Framework for Testing
the Web Services Transactions

Rubén Casado, Muhammad Younas and Javier Tuya

Abstract This chapter focuses on web services transactions which support creating
robust web services applications by guaranteeing that their execution is correct and
the data sources are consistent. More specifically, it investigates into the festing of
such transactions which has not received proper attention from the current research.
It presents a generic framework for testing different models and standards of web
services transactions. The framework is implemented as a prototype system using
the case study of Jboss Transactions and is applied to test the predominant web
services models and standards such as Web Services Business Activity (WS-BA).
The results show that the framework automatically generates test cases and detects
possible faults or failures during the processing of web services transactions running
under different model and standards.

2.1 Introduction

Web services provide a new computing paradigm in which functional and non-
functional requirements of specialised services are published over the Internet such
that they can be dynamically discovered and composed in order to create composite
services that provide integrated and enhanced functionality. Web services transac-
tions (or WS transactions) are used to ensure reliable execution of services and to
maintain the consistency of data. WS Transactions are defined as sequences of web
services operations or processes that are executed under certain criteria in order to

R. Casado (X)) - J. Tuya
Department of Computing, University of Oviedo, Asturias, Spain
e-mail: rcasado @lsi.uniovi.es

J. Tuya

e-mail: tuya@uniovi.es

M. Younas

Department of Computing and Communication Technologies, Oxford Brookes University,
Oxford, UK

e-mail: m.younas@brookes.ac.uk

A. Bouguettaya et al. (eds.), Advanced Web Services, 29
DOI: 10.1007/978-1-4614-7535-4_2,
© Springer Science+Business Media New York 2014

30 R. Casado et al.

achieve mutually agreed outcome regardless of system failures or concurrent access
to data sources i.e., either all the web services operations succeed completely or
fail without leaving any incorrect or inconsistent outcomes. The classical and most
widely used criteria are the ACID (Atomicity, Consistency, Isolation, Durability)
which require that a transaction be treated as a single atomic unit of work in order to
maintain consistency and persistency of data. Consider, for example, an online ser-
vice provider (e.g., Amazon) that develops web services based solutions to automate
the order and delivery of online books as part of a WS transaction. Such transaction
can only be considered as successful once the books (purchased) are delivered to a
customer and the payment has received.

Numerous models and protocols have been developed for WS Transactions,
including, the OASIS Business Transaction Protocol (BTP) [24], Web Services Busi-
ness Activity (WS-BA) [29], Web Services Transaction Management (WS-TXM)
[25] and other models and frameworks [1, 20]. These aim to improve the quality
of WS transactions in terms of response time efficiency, failure recovery, flexibility
and support for long running and complex business applications. For example, [1]
present an optimistic concurrency control protocol in order to optimise the through-
put and response time of WS transactions. The authors in [20] propose an algorithm
for selecting QoS-aware transactional web services that meet user’s requirements.

This chapter focuses on another quality dimension which is the testing of WS
transactions. Though there exists research work on testing non-transactional web ser-
vices [4, 5], the area of WS transactions testing has not been properly researched yet.

Generally, the software testing aims to systematically explore the behaviour of
a system or a component in order to detect unexpected behaviours. In other words,
testing identifies whether the intended and actual behaviours of a system differ, or
(at gaining confidence) that they do not. In our case, the focus of testing is to detect
possible faults or failures in WS transactions running under different models or
standards (e.g., BTP, WS-BA). The objective is to identify the observable differences
between the behaviours of implementation and what is expected on the basis of
specification of WS transaction models and standards. Based on our previous work
[8, 9], this chapter presents a generic framework for testing WS transactions. The
framework is comprised of the following phases:

e To design a generic model that abstractly represents the commonly used WS trans-
action models and standards (e.g., BTP, WS-BA).

e To automatically generate test cases and map them to different WS transactions
models and standard.

e To perform testing and evaluation using the standard case study of Night Out,
which is provided by Jboss [19] in their implementation of the WS-BA standard.

e To automatically compare the expected and actual outcomes in order to identify
possible faults or failures in WS transactions.

The chapter is organized as follows. Section2.2 gives an analysis of WS transaction
models and standards. Section 2.3 presents the proposed framework. It also presents
the generic transaction model and illustrates the process of representing some of
the WS Transactions standards using the proposed transaction model. Section2.4

2 A Generic Framework for Testing the Web Services Transactions 31

presents the evaluation and results. Section 2.5 gives a critical analysis of the proposed
framework. Conclusions are presented in Sect. 2.6.

2.2 WS Transactions

WS transactions are defined as sequences of web services operations or processes
that are executed under certain criteria in order to achieve mutually agreed outcome
regardless of system failures or concurrent access to data sources. But WS trans-
actions have distinct characteristics than the classical database transactions. They
are based on various models ranging from classical ACID criteria to advanced or
extended transaction models. Two Phase Commit (2PC) protocol and its variants
[12] have commonly been used for maintaining ACID properties. ACID properties
are vital for WS transactions that need strict isolation and data consistency. How-
ever, they are not suitable for long running WS transactions as they result in resource
locking/blocking problems. Advanced transaction models have been developed to
address 2PC and ACID related issues. These includes, nested transaction model
[23], SAGA model [15], open-nested [33], Split-join [31], Contracts [32], Flex [35],
and WebTram [34]. The underlying strategy of these models is to relax the strict
ACID criteria and to allow for compensation of partially completed transactions in
order to maintain application correctness and data consistency.

The work in [11] proposes a theoretical approach in order to specify, analyze
and synthesize advanced transaction models. Transactional patterns that combine
workflow process adequacy and the transactional processing reliability are identified
in [2]. In [16], the authors present a high level UML-based language to design
transaction process with diverse transactional semantics. An XML representation
is proposed in [18]. In our previous work [7], a risk-based approach is used to define
general test scenarios for compensatable transactions. Further, in [6], we present test
criteria for transactional web services composition. The approach is based on the
dependencies which are defined between participants of a WS transaction. In [21],
authors have developed a model of communicating hierarchical timed automata in
order to describe long-running transactions. This approach verifies the properties of
transactions using model checking. The work presented in [13] translates programs
with compensations to tree automata in order to verify compensating transactions.
The authors in [22] proposes a formal model to verify the requirement of relaxed
atomicity with temporal constraints whilst [14] uses event calculus to validate the
transactional behaviour of WS compositions.

In addition to the above, several standards have been developed for WS transac-
tions. For instance, the OASIS Business Transaction Protocol (BTP) [24] coordinates
loosely web services. BTP was designed and developed by several major vendors
including BEA, Hewlett-Packard, Sun Microsystems, and Oracle. BTP adapts 2PC
for short lived transactions and nested transaction model for long-lived transactions.

Web Services Composite Application Framework (WS-CAF) [25] is a set of WS
specifications in order to support composite web services applications. Basically,
WS-CAF uses WS-Transaction Management (WT-TXM) to manage transactions

32 R. Casado et al.

Table 2.1 Test execution results

Standards Coordination Transaction model Relationship
Short Long

BTP 4 ACID/2PC Nested X

TXACID 4 ACID/2PC X WS-TXM

TXLRA 4 X SAGA WS-TXM

TXBP 4 X Open-nested WS-TXM

WS-AT 4 ACID/2PC X WS-COOR

WS-BA 4 X SAGA WS-COOR

in composite services. WT-TXM is built around three models: ACID Transaction
(TXACID), Long Running Transaction (TXLRA) and Business Transaction Process
(TXBP). These models are defined in order to meet the different requirements of
web services. For example, if a web service is required to abide by strict isolation
and consistency policy then it adapts the TXACID model.

Web Services Atomic Transactions (WS-AT) [28] and Web Services Business
Activity (WS-BA) [29] are built on top of Web Services Coordination (WS-COOR)
[27]. WS-AT and WS-BA thus follow the coordination mechanism of WS-COOR.
WS-AT follows 2PC protocol while WS-BA uses the SAGA model.

The above standards and their underlying transaction models and protocols are
summarized in Table2.1. ‘Coordination’ represents whether a particular standard
provides coordination facilities. ‘Transaction Model’ shows the underlying transac-
tion models and protocols on which the WS transaction standard is based on. ‘Short
and ‘Long’ respectively represent short-lived and long-lived WS transactions. ‘Rela-
tionship’ represents the relationship between the WS transaction standards.

From Table 2.1, we make some useful observations that motivate the need for a
generic model for testing the WS transactions. Our first observation is that all the
standards separate the coordination and the management of transactions and also
distinguish between short-lived and long-lived transactions. Second, these standards
have proprietary definitions of their underlying transaction models despite the fact
that some of them are based on similar concepts. Third, the support for long-lived
transactions is based on different advanced transaction models. For instance, TXLRA
adapts SAGA while TXBP adapts open-nested transaction model. This reveals that
WS transactions do not have a homogeneous transaction models or protocols. Instead
they are characterized by a diversity of transaction models and protocols.

Given the diversity of WS transactions standards it is essential to develop a generic
model that has the capability to represent and test WS transactions running under
different standards. In the next section we define the proposed framework.

2 A Generic Framework for Testing the Web Services Transactions 33
2.3 The Generic Framework

This section presents the proposed framework for testing the WS transactions. It
first describes the transaction model and then illustrates the process of modelling the
current WS transaction standards.

2.3.1 The Transaction Model

This section presents the first phase of the proposed framework i.e., to design a
generic model that abstractly represents the commonly used WS transaction models
and standards. It provides the basic definitions and relationships of WS transactions
and also explains the different roles played by the participants (component systems)
in the execution of WS transactions.

WS Transaction: A WS Transaction, wT, is defined as a set S = s, ..., s, of
sub-transactions (or activities) which are executed in order to consistently and (semi)
atomically acquire web services. Each wT is associated with one Coordinator, k,
while each sub-transaction, s;, is executed by an Executor, e;. Transaction context
is defined as a set of functional information and transaction configuration shared
by the sub-transactions. Each s; can be represented as a single level sub-transaction
or as nested sub-transactions, which is denoted as wT,.. wT, s;, and w7, are related
in a parent:child relationship. The outcome of w7 is called atomic if all its sub-
transactions complete their execution in an agreed manner. Alternatively, the outcome
is called mixed if subtransactions can have different final states or outcomes, i.e.,
some completed and others not.

In the proposed model, subtransactions have different types [3, 20]. A subtrans-
action, s;, is lockable if the resources (or data) that it uses can be locked until the
completion of the parent transaction. A sub-transaction is compensatable if its effect
can be semantically undone through a compensating transaction. If a sub-transaction
is successfully completed and its effects cannot be semantically undone, then it is
called pivot. A sub-transaction is retriable if it guarantees a successful termination
after a finite number of invocations. A sub-transaction is replaceable if there is an
alternative sub-transaction that can perform a similar task. Note that the different
types of sub-transactions are defined as these are commonly used in WS transaction
models and standards.

The execution of awT involves different participants, each of which plays a certain
role. We identify four different roles for the participants involved in processing the
wT and its sub-transactions:

e Executor: represents a participant which is responsible for executing and termi-
nating a sub-transaction.

e Coordinator: coordinates the overall execution of wT. For instance, it collects the
results (votes) from participants in order to consistently process wT.

e [nitiator: represents a participant which starts w7. That is, it submits wT to the
coordinator and requests a transaction context.

34 R. Casado et al.

Transaction

| Terminator

|
Initiator il e e i 65 ______ =i

|
|
|
creation I
|
|
|

Coordinator

decision
notification

execution notification

Waiting

executor
state

setup Exacutor]
(] @
subtransaction

\

Fig. 2.1 Participant and roles in the proposed transaction model

e Terminator: represents a participant which decides when and how wT has to be
terminated. It also participates in the coordination tasks. In some situations, it can
play the role of a sub-coordinator.

The above roles are diagrammatically represented in Fig.2.1 using UML state chart
notation. The purpose of defining the above roles is to automatically and uniformly
represent the different roles of participants in different WS transactions standards.
As shown in Fig. 2.1, each participant plays a certain role and makes transition from
one state to another during the processing of wT.

2.3.2 Representation of WS Transaction Models and Standards

This section describes the process of modelling WS transaction models and standards
using the proposed framework. As proof of concept we model the BTP and WS-BA

2 A Generic Framework for Testing the Web Services Transactions 35

standards as these are the commonly accepted standards in WS transactions. The
modelling process is composed of the following steps:

2.3.2.1 Role Identification and Modelling

This step identifies the roles of participants in a target WS transaction standard and
models it using the roles defined in the proposed framework.

The BTP implements the nested transaction model [23] and defines two main
roles; Superior and Inferior. In other words, it defines Superior:Inferior relationship
between a parent transaction, w7, and its sub-transactions, s;. Figure2.2a shows
the BTP representation of w7 and its sub-transactions using the Superior:Inferior
relationship, and Fig.2.2b represents the same w7 using the proposed framework.
In BTP the superior makes the decision and the inferior abides such decision in
order to complete the transaction. The superior of BTP is modelled as Initiator in
the proposed framework. Also the superior can be modelled as Coordinator and
Terminator as it decides on the outcome of the subtransactions. Inferior of BTP
executes a subtransaction and is therefore modelled as Executor in the proposed
framework.

The WS-BA defines two outcomes of wT: (i) MixedOutcome allows that sub-
transactions may have distinct outcomes or final states, (ii) AtomicOutcome requires
all the subtransactions to complete their execution in an agreed manner. The main
roles are played by the: Executor and Coordinator. Figure2.3 depicts the mod-
elling of WS-BA using the proposed framework. Figure 2.3a shows the AfomicOut-
come, whilst Fig.2.3b shows the MixedOutcome scenario. In both scenarios the role
of Initiator is taken by the first participant who interacts with a Coordinator. In
AtomicOutcome the role of Terminator is taken by the Coordinator. This is due to
the fact that Coordinator can be the participant that knows all Executors’s output. It
also knows the final outcome: close or terminate w7 if all executors have success-
fully executed their sub-transactions, or compensated otherwise. In MixedOutcome,

Fig. 2.2 Representation of BTP roles and relationships

M.al litebooks. cogl

http://www.allitebooks.org

36 R. Casado et al.

the Initiator is the Terminator since each Executor may have its specific or distinct
decision so the outcome depends on the business logic.

2.3.2.2 State Transitioning and Messages

This section describes the mapping of the state transitions and messages between a
target WS transaction standard and the proposed framework.

Figures2.4 and 2.5 give more details on the state transitions and message
communication between Executor and Coordinator during the processing of wT.
Note that here we only model these two participants as they play a major role in
executing wT. The Inferior and Superior (in BTP) are respectively represented by
Executor and Coordinator. Similarly Executor and Coordinator are used to represent
WS-BA participants involved in wT.

BTP mapping: When a w7 is started at the initiative of an Initiator a request is
sent to the Coordinator for creation of a context for the new transaction. The Coor-
dinator replies the Initiator and other Executors with the context information and
then moves from INITIAL state to ACTIVE state. Each Executor receives a context,
enrols with the Coordinator and then moves from READY to ACTIVE state. The
Executor moves to COMPLETED state after processing its sub-transaction. Coor-
dinator moves to PREPARE state awaiting decisions from Executors. The Executor
sends its outcome to the Coordinator and moves to DECISION state. The Coor-
dinator collects the outcomes from all Executors and takes the final decision by
moving from PREPARE state to DECISION state. The final decision is sent to each
Executor and the Coordinator then moves to CONFIRM state. Each Executor sends
acknowledgement and changes its state to END state through the transition (either
completed rollback or completed successfully). Once the Coordinator has received
all confirmations, it moves to END state. Note that an Executor can leave the wT
before confirming the completion of sub-transaction. So it can move from ACTIVE
state to CANCEL state.

) AORNR. | . AR S
| Initiatoryr Terminatoryr
i Coordinator,r
]
: E-cecatorw/ ' Initiatoryr; i

Fig. 2.3 WS-BA relationships modeling

2 A Generic Framework for Testing the Web Services Transactions 37

Although BTP uses the 2PC protocol, Executors are not required to lock data on
becoming prepared (i.e., in prepared state). This can produce a contradictory decision
since the Coordinator could take a decision for all the Executors but some Executors
may take their own decisions. When the Coordinator detects any contradiction it
notifies the concerned Executor and moves to the END state. If the Coordinator
wants to cancel, the Executor uses completed pivot. In some cases, it uses completed
rollback. Further, BTP allows replaceable subtransactions. Thus if an Executor is not
able to start or carry on with its sub-transaction, it moves to FAILED state. A new
Executor is selected and the previous one moves to END state.

WS-BA mapping: The Initiator initiates w7 and requests a context from Coor-
dinator. The Coordinator responds with a context. After w7 initiation, Executors
join the current w7 and move from READY to ACTIVE state, wherein they execute
their sub-transactions. After processing sub-transaction, each Executor moves from
ACTIVE to COMPLETED state. Coordinator moves from ACTIVE to PREPARE
state after receiving decision from all the Executors. In WS-BA, when the transaction
is of MixedOutcome, the decision for each sub-transaction is taken independently
by each Executor. In this case, the Coordinator moves from PREPARE to DECI-
SION state whenever it receives an Executor’s notification. The Coordinator decides
about its outcome and moves from DECISION to CONFIRM state. In the case of
AtomicOutcome type, the Coordinator moves from PREPARE to DECISION state
after receiving decisions from each Executor. The Coordinator then sends the global
decision to all Executors and moves from DECISION to CONFRIM state. Finally it
awaits the acknowledgements from Executors. Once these are received, the Coordi-
nator then moves to END state. When an Executor is not able to start executing its
sub-transaction it moves from READY to ABORTED state. If the sub-transaction
was cancelled while it was still under execution, the Executor moves from ACTIVE
to CANCELLED state. In case of failure it moves from ACTIVE to FAILED state.

Executor

Finigh

[Ermor I

compensating failurg | |compieted ermongaus
—

Hart

Compensated

| Failed] ended replace [replatesbie]

processing fallure retey [retriable] comyensat

compilated phvol [phvat]

(“Reasy) (A) [""."omp!elén T~ "Diecision > End
“ execution local commited I s x completed suceshuly
[1 M 1 5 | |tocal cancet AR ey - @
| = - = J 2
completed roliback lockabie] FAA

no execution cancel

Aboeed Canceled
ended canceled
—

ended abored

Fig. 2.4 Executor: State transitions and message communication

38 R. Casado et al.

2.4 Implementation and Evaluation of the Proposed Framework

The process of testing aims at showing whether the intended and actual behaviours
of a system differ, or at gaining confidence that they do not. The main goal of
testing in our context is failure detection, i.e., the observable differences between the
behaviours of implementation and what is expected on the basis of the specification of
WS Transaction standards. We exploit a model-based testing approach that encodes
the intended behaviour of a system and the behaviour of its environment. Model-based
testing is capable of generating suitable test cases and it has also been successfully
used in others WS domains [10].

In order to validate and evaluate our framework we have designed a test process
which comprises test design, test implementation, test execution and outcome eval-
uation. In the following, we first explain the testing process. We then illustrate the
implementation of the proposed framework. Finally, we discuss the evaluation of the
framework.

Coordinator

[Coardnation
Creation
= unrecoverable confim z unrecoverable active |'Ac_Fa-lua]
|C‘D_F:||ec|l 5| Unrecoverabile I
5 : |
(J (T recovery s

recovery gonfirming

Ende unrecoder

[Canfim suonoteicabon / MoedOuteome |~ Active) | created (Tingial |

i b unrecoverabie prepare| M [minatjanre
s (FEEETEE) unrecoveratle decision |
ose, (EERS). restart] o
Tk [Abored
" | ened abortrvety

l | | Waiting 1

®

| Tailure corfirming

1

g] preparing
lrecory preparng

failure pregaring

: Frepane
partial veredict / MedOutcome gener J ApmicOute ome]

Fig. 2.5 Coordinator: State transitions and message communication

2.4.1 Testing Process

The testing process includes selecting a test criterion, test design, test implementa-
tion, test execution and outcome evaluation. This section presents how the proposed
framework implements those phases using the generic transaction model.

2 A Generic Framework for Testing the Web Services Transactions 39

The first step to design the tests is to select a test criterion. Since the model is based
on states and transitions, we use the well known criterion of transition coverage [30].
By applying a test criterion over the generic transaction model, we obtain a set of
abstract test cases. Each abstract test case is mapped to a concrete test case which is
composed of the test scenario and the expected system outcome. The basic concepts
used in the test process are defined as follows.

e Test criterion: This defines a rule that imposes constraints (or requirements) on a
set of test cases.

e Transition coverage criterion: The set of test cases must include tests that cause
every transition between states in a state-based model (e.g., as in Figs.2.4 and 2.5)

e Abstract Test case: This represents a sequence of states and transitions of a par-
ticipant using the generic transaction model. The notation S; — S/ is used to
denote that the participant p; changes its current state S to " executing the tran-
sition labelled, t. If the participant is the Coordinator, it is denoted by k. We use
S — Sf’ S SE - Sl.d to denote a sequence of state transitions.

e Test scenario: This represents a sequence of actions in a human-understandable
way to provide guidance to the tester to execute a test case.

e System outcome: The internal state of the process defined by a sequence of
exchanged messages between participants using a specific WS transaction stan-
dard. The notation i[m]j is used to denote that the participant p; sends message
m to participant p ;. We use i[m1]j —I[m2]o—- - -—v[m,]z to denote a sequence
of messages.

The test phases included in the proposed framework are depicted in Fig.2.6 and
are described as follow:

Test design: This phase defines the test requirements for an item and derives the
logical (abstract) test cases. At this stage the test cases do not have concrete values for
input and the expected results. The abstract test cases are automatically generated by
applying transition coverage criterion over the abstract model. It is obtained from a set
of different paths where each path defines an abstract test case. Thus the tests achieved
using this criterion are a set of paths that cover all states and transitions of a model.

Test implementation: The sequence of states and transitions specified by the
abstract test cases generated in the test design phase are mapped to a specific WS
transaction standard, for example, BTP or WS-BA (see Sect.2.3). As discussed above
the proposed generic model has the ability to capture the behaviours of WS trans-
action standards as well as mapping the abstract cases to different WS transaction
standards. These features provide the capability of automatically obtaining the test
scenario and the expected system output.

Test execution and outcome evaluation: Once the test cases are implemented,
they are executed over the system under test (e.g., BTP or WS-BA) and the actual
outcome is obtained. Finally, for each test case, the expected outcome is compared
to the actual outcome to find differences in behaviour and to detect failures. Two
outcomes are considered: (i) user outcome: this refers to what the user perceives; for
instance, to reserve theatre tickets and to see whether the number of booked tickets
is correct. (ii) system outcome: this refers to the non-visible process that the system

40 R. Casado et al.

Test case
mapping

Failure? D
B e A q
Abstract test case Expected Outcomes
generation system mmmmbeh e ——— »| comparison
-~

outcome
Modelling

Test design Test impl ation Test execution and outcome evaluation
Abstract | & i
Testcases
i
]
Test Test Actual
scenario ==re====TTH execution [T > Dsystem outcome
__________________ 1
i
]
i
i
i
1

pommm———

T o — D ---------- .
framework
Application
under test

Fig. 2.6 Test process of the proposed framework

has carried out to achieve the requirements e.g., the correct exchange of messages
between the participants according to the given transaction standard.

Both outcomes are necessary for detecting the differences in the behaviour of WS
transactions. Consider a simple application that runs as a WS transaction in order to
book theatre tickets. Assume that there is a fault in creating messages and the format
of confirmation messages is incorrect. In a test scenario where the user confirms a
reservation, the systems outcome would be to inform the user that the booking was
successfully completed because the application has already sent the confirmation
message to the theatre service. Since the message was incorrectly created, the theatre
service would reject the reservation and, as a result, the tickets cannot be booked.
Thus, the tester needs not only the user outcome, but also the internal state of the
process to know whether a test case has detected a failure or not. In this work we
focus on Executors internal behaviours related to the WS transactions. Thus we only
need to evaluate the system outcome.

2.4.2 Prototype System

We have developed a prototype system that implements the main phases of the
proposed framework (Fig.2.6).

e Modelling: The prototype system prompts the tester to provide information (e.g.
services, roles, transaction standard, etc) and to create the WS transaction.

e Abstract test case generation: the abstract test cases for all the participants (Coor-
dinator, Executor, etc) are automatically generated by the prototype system.

e Test case mapping: Abstract test cases are mapped to WS transaction standards
(e.g., BTP or WS-BA). That is, the prototype system automatically generates the

2 A Generic Framework for Testing the Web Services Transactions 41

concrete test cases (for each WS transaction standards) which are composed of
the test scenario and the expected system outcome. A test scenario is defined as a
sequence of actions in a human-readable way to provide guidance to the tester to
execute a test case.

e Outcomes comparison: test cases are executed in order to produce the actual sys-
tems outcome. The prototype system automatically compares the actual systems
outcome with the expected systems outcome in order to detect any fault or failure.

The prototype system is implemented in Java 1.5. It includes three components:
Model, Tests and Outcome. The Model implements the generic transaction model. It
also includes a graphic interface to allow the tester to enter all the necessary informa-
tion such about the system under test such as roles, URL, WS transaction standard,
etc. The Model component sends the information to the 7ests component. The Tests
component implements two activities: first, it applies the transition coverage criterion
in order to generate the abstract test cases for all the participants. It then maps all
the abstract test cases into concrete test cases. That is, the Model component gener-
ates the test scenario (text file) and the expected systems outcome (as an XML file).
Finally, the Outcome component compares two XML files to identify any possible
faults. This component has a graphic interface that allows the tester to add an XML
file (the actual systems outcome obtained from the execution of test scenario) and to
select the test case for comparison purpose. The result of both outcomes is shown to
the tester.

2.4.3 Evaluation

In order to evaluate the proposed framework we utilise the Night Out case study
which is adopted from the Jbosss implementation of the WS-BA standard [29]. This
study concerns booking three independent services for night time leisure: Restaurant
service allows customers to reserve a table for a specified number of dinner guests.
Theatre service provides reservation of seats in a theatre and allows customers to
book a specified number of tickets for different categories such as seats in circle,
stalls, or balcony. Taxi service provides the facility to book a taxi. These services
are implemented as transactional web services. The client side of the application is
implemented as a servlet which allows users to select reservations and then book a
night out by invoking each of the services within the scope of a WS transaction. For
example, if seats are not available in a restaurant or a theatre, then taxi will not be
required. Each service, exposed as Java API for XML Web Services (JAX-WS) [17]
endpoint, has a GUI with state information and an event trace log.

In this chapter we described the process of modelling and testing the WS-BA stan-
dard using the prototype system. But the prototype system is capable of representing
different WS transaction models and standards.

42 R. Casado et al.
2.4.3.1 Modelling of WS-BA-Based Transactions

The transactional aspects of WS-BA included in the Night Out application has been
modelled according to the aforementioned procedure. As shown in Fig.2.7, Night
Out (client side) takes the role of Initiator since it starts the transaction and asks
the other web services to participate in the transaction. Restaurant, Theatre and Taxi
services are modelled as Executors as they execute individual sub-transactions. Some
sub-transactions (e.g. Theatre) are independent of others (e.g. Restaurant). That is, if
one sub-transaction cannot complete its execution the others are allowed to commit.
The Taxi activity is dependent on some of the services. For instance, if a table is
not available in the restaurant, the customer still needs a taxi to go to the theatre.
The role of Coordinator is taken by an external service, WSCoorl I, provided by
the server. It follows the WS-COOR [27] and WS-BA [29] standards to exchange
required messages.

2.4.3.2 Abstract Test Case Generation and Mapping

This phase generates various abstract cases for each Executor, i.e., Restaurant, The-
atre and Taxi. The abstract test cases are automatically generated and mapped to
specific standard in this case, the WS-BA standard. As explained above, these tests
cases define the test scenario and the expected system outcome. For example, in the
following we explain the process of mapping the abstract test cases to a specific
sequence of WS-BA messages. Consider the sequence shown in Fig.2.8 of state
transitioning and messages wherein an Executor moves from Ready to End state (see
Fig.2.4).

Applying the transition coverage criterion over the above, abstract test case is
mapped to a specific sequence of WS-BA message (see Fig.2.9). From this sequence
of messages, our prototype system automatically generates the test scenario which
is shown in Fig.2.10.

Based on the above, the prototype system can generate and map various test cases
for Restaurant, Theatre and Taxi services. Figure2.11 contains eight test cases for
the Restaurant, Theatre and Taxi. Res_1, Thr_1, and Tax_1 respectively represent
test case 1 for Restaurant, Theatre and Taxi services. Res_2, Thr_2, and Tax_2 mean
test case 2 and so on. Note that these eight are example test cases. But the prototype
system is capable of generating other possible test cases.

2.4.3.3 Test Execution and Outcome Evaluation

The prototype system executes the generated test cases using the Night Out services.
The results of test execution are summarised in Table2.2. ‘Pass’ means that a test
case is executed but has not detected any failure during the processing of a service
(e.g., booking a restaurant, theatre or taxi). ‘Fails’ means that the actual outcome
differs from the expected outcome (i.e. a fault has been detected). ‘Blocked” means

2 A Generic Framework for Testing the Web Services Transactions 43

that a test case cannot be executed because the application does not have the interface
to perform the required actions.

Pass: Test cases 3, 6, and 7 are executed but the prototype system has detected no
failures. That is, Rest_3, 6, 7, Thr_3, 6, 7, and Tax_3, 6, 7 have passed the tests.

Coordinatorie

LA

A A
Transaction Reservations
creation decision
i Initiator N
T coordination
Terminator

Theatre

coordination .”‘ M
< 1l

Taxi Restaurant
reservation reservation

h h

Executor | 1 - Executor Executor

5l [

Fig. 2.7 Roles and representation of Night Out Services

COMPLETED ——— DECISION D

READY Execution ACTIVE Local commited Local completed m[crad_mcsfutb'EN

Fig. 2.8 Executor abstract sequence

Blocked: Two of the test cases were blocked due to the following reasons. Test
case 1 requires cancelling the activity (Cancel message) once the Executor has started
but has not finished yet. But WS-BA standard does not allow cancelling a concrete
booking once the service has started executing its activity. Test case 8 defines a
scenario where the Executor is not able to complete its activity (CanNotComplete
message) but has retried executing its action. However, the WS-BA does not allow
the services to retry its activity without starting a new transaction.

Fail: During the execution of test cases 3 and 4 interface-related failures were
detected. The application, which allows changing manually the capacity of each

44 R. Casado et al.

Activity < Clgse

Cloped

Tester Night Ouf application| Theafre service WScoordll service
Transaction details ————— CkeateCoordinationContext
Start » »
Set transaction up | CreateCoordinationContextResponse | Transaction context

: -) '
1 ' 1
' ' 2 1
: /! — Context Register !
‘ Involve participants | Receive context | ! Register participant
1 il 1
. : H RegisterResponse '
' [' !
| [! 1
i Input ' i
i Application data i Completed |
1
1
1

Ci lination
B =

Fig. 2.9 Sequence diagram of a test scenario for theatre service

resource (i.e. number of tables and number of seats in the theatre), either crashes or
does not update the capacity when the button is pressed.

Test case 5 detected an important transaction-related failure in the compensation
process under WS-BA specification. The goal of this test case is to successfully
confirm the booking of theatre tickets when the other service reservations (restaurant
and taxi) have been undone through compensating transactions (see Fig.2.11).

After the execution of the test case, we obtain the expected systems outcome. By
comparing the expected systems outcome and the actual systems outcome, a failure
is detected by the prototype system. This is shown in the code snippet in Fig.2.12.
The expected systems outcome requires receiving a CLOSE message once the The-
atre service has successfully completed its activity (see sequence diagram in Fig.2.9).
However, the actual outcome has a COMPENSATED message since Restaurant ser-
vice was not able to commit. As a result, the Theatre reservations were automatically
undone. The fault which causes such failure is detected by the prototype system
as there is a difference (or discrepancy) in the ‘Register’ message the way Theatre
service is registered in the Night Out under the WS-BA specification. That is, it reg-
isters the Theatre service as an AtfomicOutcome when a MixedOutcome was expected
(Fig.2.13). In other words, if Taxi or Restaurant services are not able to make their
reservations, the Theatre service will automatically undo the reservation even if the
customer would wish to keep the theatre tickets.

The results obtained from the test comparison are also useful for a debugging
process. In the above tests, the faults mean that the transaction was not correctly con-
figured or coded. This can help in identifying the faults in the code. For example, the
above fault was found in BasicClient.java file, at line number 496 in the code shown
in Fig.2.14. The configuration of the transaction is made using the class UserBusi-
nessActivitylmple, through the factory pattern using UserBusinessActivityFactory

2 A Generic Framework for Testing the Web Services Transactions 45

class. By looking at the implementation of that class we found (in Fig.2.15) that the
transaction is defined as an AtomicOutcome.

STEP 1: NightOut starts the process. It sends a contextrequest
(CreateCoordinationContext message)to the coordinator WiScorri i

STEP 2: WScorrl1 sends the fransaction context
(CreationCoordinationContextResponse message)to NightOuf

STEP 3: Theatrereceives a transaction context from the initiator NightOut

STEP 4: Theatre accepts to participate in the process. It requests to be registered in
the transaction, thusit sends Register messageto WScorril 1

STEP 5: WScorrl I receives Register message from Theatre and registers Theatre
in the transaction. It sends RegisterResponse message to Theatre

STEP 6: NightOutf sends the application datato Theatre

STEP 7: Theatre successfully completes its activity. Theatre sends Completed
message to notify its outcome to the Coordinator WScoirrl I

STEP 8: Theatre has successfully completedits activity. Theafrenotifies the results
and leaves the transaction. Theatre sends Close message to notify the
Coordinator WScorrll whichinturn replies witha Closed message

Fig. 2.10 Test scenario for theatre service

2.5 Discussion

This section gives a critical overview of the proposed framework and illustrates its
merits and demerits. The prototype system implements the main phases of the test-
ing process. But it still lacks full automation of the overall process. For instance, the
tester has to model the given WS standard under test according to the roles defined by
the framework such as Initiator, Coordinator, Executor and Terminator. Information
on each service such as its URL or the transaction standard used has to be pro-
vided by the tester. With such information, the framework automatically generates
the abstract test cases and maps them to WS transaction standards. Further, the tester
has to manually execute the test scenario in order to get the actual systems outcome.
The actual systems outcome is provided to the prototype system by the tester which
then automatically compares both outcomes in order to detect faults. Despite the
semi-automatic nature of the framework, it still helps the tester in two ways: (i) defin-
ing specific test cases for WS transactions and (ii) automating some of the most
tedious and error-prone phases of testing. Our future work includes the full automa-
tion of the overall testing process.

The framework relies on the capability of the proposed generic transaction model
in order to capture the behaviour of existing transaction standards. The generic model,

M.al litebooks. cogl

http://www.allitebooks.org

46 R. Casado et al.

Test Case Ids Description
Restaurant | Theatre | Taxi

Cancel the in-progress booking (of restaurant, theatre,

Rest_1 Thr 1 | Tax_1 taxi). That is, a service is started but has not confirmed
the reservation yet.
Service is executed but is unsuccessful as there is no taxi
Rest 2 Thr 2 | Tax 2 or seat available in restaurant or theatre
Rest 3 Thr 3 | Tax 3 Cii.lflcel (undo) booking by executing the compensating
- - - action
Confirm successful booking after the commit of the
Rest_4 Thr 4 Tax_4 transaction
Successfully confirm the theatre tickets booking when
Rest 5 Thr 5 | Tax_5 the other services reservations have been undone
through compensating transactions
Rest 6 Thr 6 | Tax_6 Abort service before it has started its execution

Failure occurs during the compensation process of
completed booking

Use retry actionifthere is a failure during the booking
process

Rest 7 Thr 7 | Tax 7

Rest_8 Thr 8 | Tax_8

Fig. 2.11 Test cases for the Night Out services

Table 2.2 Test execution results

Executor Generated test cases Pass Fail Blocked
Restaurant 8 3 3 2
Theatre 8 3 3 2
Taxi 8 3 3 2

presented in this chapter, has been designed after an in-depth study of the existing
solutions of WS transactions. Currently BTP, WS-BA and WS-TXM transaction
standards have been modelled using the generic transaction model. Our analysis
revealed that though these standards are incompatible between each other, they are
based on same theoretical concepts. Thus they can be modelled using the roles
specified in the generic transaction model. In future, we intend to study the capability
of the generic transaction model to model transaction-based applications running
under non-transaction standards such as [26].

In terms of the test case generation, the proposed framework applies transition test
criterion that ensures the coverage of all transitions and states specified in the generic
transaction model. The framework however does not guarantee the code coverage.
As a part of the future research work we plan to enhance the prototype system in
order to monitor the execution of the code.

2 A Generic Framework for Testing the Web Services Transactions

<soap:Envelope
xmlns:soap="http://schemas.xm
lsoap.org/soap/envelope/">
<soap:Header>

<soap:Envelope
xmlns:soap="http://schemas.x
mlsoap.org/soap/envelope/">
<soap:Header>

<Action <Action
xmins="http://www.w3.0rg/2005 xmins="http://www.w3.0rg/200
/08/addressing"> 5/08/addressing">

http://docs.oasis-
open.org/ws-
tx/wsba/2006/06/Close
</Action>

(a) Expected outcome

http://docs._oasis-
open.org/ws—
tx/wsba/2006/06/Compensate
</Action>>

(b) Actual outcome

Fig. 2.12 Fault in message exchange

<wscoord:CoordinationType>
http://docs.ocasis-
open.org/ws—
tx/wsba/2006/06/MixedOutcome
</wscoord:CoordinationType>

(a) Expected outcome

<wscoord:CoordinationType>
http://docs.ocasis-
open.org/ws—
tx/wsba/2006/06/AtomicOutcome
</wscoord:CoordinationType>

(b) Actual outcome

Fig. 2.13 Fault in registration process

private boolean testBusinessActivity(int restaurantSeats, int
theatreCircleSeats, int theatreStallsSeats, int
theatreBalconySeats, boolean bookTaxi) throws Except

{

System.out.println("CLIENT: obtaining

userBusinessActivity...");

UserBusinessActivity uba =

UserBusinessActivityFactory.userBusinessActivity ()

47

Fig. 2.14 Fault identification: transaction setup

2.6 Conclusion

This chapter investigated into the issue of testing the WS Transactions. In it we
designed, developed and evaluated the generic framework which is capable of dynam-
ically modelling different WS transaction models and standards. The framework
exploits model-based testing technique in order to automatically generate test cases
for testing the WS transaction standards. The framework is implemented as a proto-
type system with which various test cases were automatically generated and mapped
to different WS transaction standards. The evaluation was performed using the case
study of Night Out, which is an open source application provided by Jboss [19].

48

R. Casado et al.

public class UserBusinessActivityImple extends User
BusinessActivity {

public void begin(int timeout) throws

WrongStateException, SystemException {

try {
if (contextManager.currentTransaction(} != null)
throw new WrongStateException();
CoordinationContextType ctx = factory.create(

BusinessActivityConstants.WSBA PROTOCOL ATOMIC OUTCOME,
null, null);

Fig. 2.15 Fault identification: protocol implementation

The experiments show that our framework can effectively be used to define different
test cases as well as test the different WS transactions models and standards.

References

10.

11.

12.

. Alrifai, M., Dolog, P., Balke, W.T., Nejdl, W.: Distributed management of concurrent web

service transactions. Services Computing, IEEE Transactions on 2(4), 289-302 (2009)

. Bhiri, S., Godart, C., Perrin, O.: Transactional patterns for reliable web services compositions

(2006)

. Bhiri, S., Perrin, O., Godart, C.: Ensuring required failure atomicity of composite web services

(2005)

. Bozkurt, M., Harman, M., Hassoun, Y.: Testing web services: A survey. Tech. rep., Department

of ComputerScience, King’s College London (2010)

. Canfora, G., Penta, M.: Service-Oriented Architectures Testing: A Survey, pp. 78-105.

Springer-Verlag (2009)

. Casado, R., Tuya, J., Godart, C.: Dependency-based criteria for testing web services transac-

tional workflows. In: Next Generation on Web Services Practices, pp. 74-79. IEEE (2011)

. Casado, R., Tuya, J., Younas, M.: Testing long-lived web services transactions using a risk-

based approach. In: 10th International Conference on Quality Software, pp. 337-340. IEEE
Computer Society, 1849260 (2010)

. Casado, R., Tuya, J., Younas, M.: Evaluating the effectiveness of the abstract transaction model

in testing web services transactions. Concurrency and Computation: Practice and Experience
pp- n/a—n/a (2012)

. Casado, R., Tuya, J., Younas, M.: Testing the reliability of web services transactions in coop-

erative applications (2012)

Cavalli, A., Cao, T.D., Mallouli, W., Martins, E., Sadovykh, A., Salva, S., Zadi, F.: Webmov:
A dedicated framework for the modelling and testing of web services composition. In: IEEE
International Conference on Web Services (2010)

Chrysanthis, PK., Ramamritham, K.: Synthesis of extended transaction models using acta.
ACM Trans. Database Syst. 19(3), 450-491 (1994)

Elmagarmid, A.K.: Database transaction models for advanced applications. Morgan Kaufmann
Publishers (1992)

2 A Generic Framework for Testing the Web Services Transactions 49

13.

14.

15.
16.

17.
18.

19.
20.

21.

22.

23.

24.
25.
26.
217.
28.
29.
30.

31.
32.

33.

34.

35.

Emmi, M., Majumdar, R.: Verifying compensating transactions. In: International Conference
Verification, Model Checking, and Abstract, Interpretation, pp. 29-43 (2007)

Gaaloul, W., Rouached, M., Godart, C., Hauswirth, M.: Verifying composite service transac-
tional behavior using event calculus (2007)

Garcia-Molina, H., Salem, K.: Sagas (1987)

Gioldasis, N., Christodoulakis, S.: Utml: Unified transaction modeling language. In: The Third
International Conference on Web Information Systems Engineering (2002)

GlassFish: Jax-ws (2005)

Hrastnik, P., Winiwarter, W.: Using advanced transaction meta-models for creating transaction-
aware web service environments. International Journal of Web Information Systems (2005)
Jboss: Jboss transactions (2006)

Joyce El, H.: Tqos: Transactional and qos-aware selection algorithm for automatic web service
composition. IEEE Transactions on Services Computing 3, 73-85 (2010)

Lanotte, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Design and verification of long-
running transactions in a timed framework. Science of Computer Programming pp. 76-94
(2008)

Li, J., Zhu, H., He, J.: Specifying and verifying web transactions. In: International conference
on Formal Techniques for Networked and Distributed Systems, pp. 149—-168 (2008)

Moss, E.: Nested transactions: An approach to reliable distributed computing. Massachusetts
Institute of Technology (1981)

OASIS: Business transaction protocol (2004)

OASIS: Web services composite application framework (2005)

OASIS: Web services business process execution language v2.0 (2007)

OASIS: Web services coordination, http://docs.oasis-open.org/ws-tx/wscoor/2006/06 (2007)
OASIS: Web services atomic transaction (2009)

OASIS: Web services business activity (2009)

Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from state-based specifi-
cations. Journal of Software Testing, Verification and Reliability 13(13), 25-53 (2003)

Pu, C., Kaiser, G.E., Hutchinson, N.C.: Split-transactions for open-ended activities (1988)
Reuter: Contracts: A means for extending control beyond transaction boundaries. Proceedings
of the 3rd International Workshop on High Performance Transaction Systems (1989)
Weikum, G., Schek, H.J.: Concepts and applications of multilevel transactions and open nested
transactions. Database transaction models for advanced applications. Morgan Kaufmann Pub-
lishers Inc. (1992)

Younas, M., Eaglestone, B., Holton, R.: A formal treatment of a sacred protocol for multidata-
base web transactions. Database and Expert Systems Applications 1873, 899-908 (2000)
Zhang, A., Nodine, M., Bhargava, B., Bukhres, O.: Ensuring relaxed atomicity for flexible
transactions in multidatabase systems. ACM, SIGMOD Record (1994)

http://docs.oasis-open.org/ws-tx/wscoor/2006/06

Chapter 3
Universal Identity Management Based
on Delegation in SOA

Yang Zhang and Jun-Liang Chen

Abstract Relationship-focused and credential-focused identity management are
both user-centric notions in Service-oriented architecture (SOA). For composite ser-
vices, pure user-centric identity management is inefficient because each sub-service
may authenticate and authorize users and users need to participate in every identity
provisioning transaction. If the above two paradigms are unified into universal iden-
tity management, where identity information and privileges are delegatable, user-
centricity will be more feasible in SOA. The credential-focused system is a good
starting point for constructing a universal identity management system. However,
how to implement a practical delegation scheme is still a challenge although some
delegatable anonymous credential schemes have been theoretically constructed. This
paper aims to propose a practical solution for universal identity management. For
this, a pseudonym-based signature scheme is firstly designed, where pseudonyms
are self-generated and unlinkable for realizing user privacy. Next, a proxy signature
is presented with the pseudonyms as public keys where delegation can be achieved
through certificate chains. Finally, the WS-Federation is extended to build a universal
identity management solution.

Y. Zhang () - J.-L. Chen

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China
e-mail: YangZhang @bupt.edu.cn

J.-L. Chen
e-mail: chjl@bupt.edu.cn

A. Bouguettaya et al. (eds.), Advanced Web Services, 51
DOI: 10.1007/978-1-4614-7535-4_3,
© Springer Science+Business Media New York 2014

52 Y. Zhang and J.-L. Chen

3.1 Introduction

3.1.1 Motivation

In Service-oriented architecture (SOA), individuals often use identity providers to
provide their identity information and the identities are represented by a set of
attributes [1, 2]. Based on the user-centricity philosophy, identity management sys-
tems [3, 4] are classified into relationship-focused and credential-focused systems
[5]. In the relationship-focused system, identity providers play an important role
and are involved in each transaction that conveys identity information to a service
provider. The users only adopt identity providers to provide identity information
and have control over their attributes. Therefore, the users participate in every iden-
tity provisioning transaction. On the contrary, in the credential-focused system, the
users obtain long-term credentials from identity providers and store them locally.
Then, these credentials are used to provide identity information without involving
the identity provider. The users are still involved in every identity transaction as in
the relationship-focused approach.

The above two paradigms provide user-centric privacy management in personal
data dissemination. The apparent major advantage of user centricity is that users
retain control through their involvement in each transaction. In fact, this is also the
major drawback of user centricity because it cannot handle delegations. A universal
identity management system incorporates the advantages of these user-centric sys-
tems and provides a delegation capability. The credential-focused system is suitable
for constructing a universal identity management system. However, constructing a
universal identity management system from credential-focused identity management
systems is non-intuitive and complex, because the specific properties of anonymity,
minimal data disclosure and various anonymity revocation capabilities involve multi-
party transactions. These render delegation a formidable task to tackle.

In SOA, the users may access more than one service at any given time. When they
use the same pseudonym to access different services, all their transactions are link-
able. It would be ideal for the users to be able to self-generate different pseudonyms
based on their credentials without interacting with identity providers. On the other
hand, the users should use the same pseudonym to link different actions in one transac-
tion and delegate their privilege to others in order to improve the runtime performance
of composite services. Therefore, the features of self-generation of pseudonyms and
delegation of identity information are essential in the universal identity management
system. For instance, let it be assumed that a user called Liming visits a hospital
called People-Health. Following the visit, he has to get certain clinical tests done in
some examination centers several times, the results of which are required for proper
comprehensive diagnosis. Owing to privacy restrictions, most of the test centers do
not reveal this data to anyone but the user. Therefore, Liming himself has to retrieve
the data every time it is needed by the People-Health. As this exercise is cumbersome,
Liming is looking for a method that enables the People-Health to directly retrieve
the desired data from the various centers and to generate the pseudonyms without

3 Universal Identity Management 53

online identity providers. Such a capability, besides being more efficient, is vital to
handle cases of emergency.

When the delegation scheme is defined, the universal identity management system
can be realized based on web service technologies. As a public specification, WS-
Federation [4] defines a framework to allow different security domains to federate,
such that authorized access to web services can be realized in distributed realms. That
includes mechanisms for brokering of identity, attribute, authentication and autho-
rization assertions between domains, and privacy of federated claims. Based on WS-
Trust [40], WS-Federation supports delegation by using identity providers to issue
appropriate security tokens for providers in different security domains. As a relation-
focused framework, it also has the undesirable features of general relation-focused
paradigms. Our solution extends this relation-focused framework with enhanced cre-
dentials to achieve universal identity management.

Users are a key component of the SOA environment. Therefore, how to realize
easy-to-use identity management systems and provide consistent experiences and
transparent security is very critical in our solution. The notion of Identity Metasys-
tem [36, 37] has been introduced to put an abstract identity management layer on
the Internet to allow existing identity systems based on various technologies to inter-
operate with each other. The identity metasystem introduces the important concept
of an “information card” modeled after a business card, licence, etc. In general, an
information card is a digital representation of user identity to realize easy-to-use and
consistent experiences. However, the identity metasystems do not support delegation
and composite services. In SOA, a service often consists of sub-services, and dele-
gation mechanisms are critical for efficiency. We combine the identity metasystem
which is the user perspective and WS-Federation framework which is the service fed-
eration perspective, and extend them to construct the universal identity management
solution.

3.1.2 Related Work

There is no straightforward transformation of anonymous credential schemes without
delegation into delegatable schemes. Classic anonymous credential systems were
introduced by Chaum [6] in 1985, as a way of allowing the user to work effectively, but
anonymously, with multiple organizations. The works of [7-10] developed the model
and implementation of anonymous credential systems. Camenisch and Lysyanskaya
[11-13] proposed anonymous credential systems, which are more efficient than the
earlier ones, by constructing a signature scheme with efficient protocols. All the
above systems use interactive zero-knowledge protocols to prove the possession of
credentials without optimizing the rounds of interaction. Belenkiy [14] introduced
non-interactive anonymous credentials in 2007 to solve this problem. However, the
scheme could not be directly transformed into a delegatable anonymous credential
scheme.

54 Y. Zhang and J.-L. Chen

Delegatable anonymous credential schemes were proposedin [15, 16] where users
can obtain credentials from identity providers and delegate their credentials to other
users. If an identity provider issues user A a credential for his given pseudonym
Nymy, user A can prove to user B that Nym 4 has a credential from the identity
provider. Credentials received directly from the identity provider are level 1 creden-
tials, those that have been delegated once are level 2 credentials, and so on. User A
can also delegate his credential to user B, and user B can then prove that he has a
level 2 credential from the identity provider where user B proves to others his pos-
session of a credential without involving any identity information on A. However,
the size of the possession proof increases with the increase in delegation level, and
cannot be bounded to a constant number by aggregating proofs. Further-more, in
these schemes, identity providers are involved in issuing credentials when a new
pseudonym is generated, and these schemes are not efficient either as far as network
resources are concerned.

Camenisch, Sommer, and Zimmermann proposed a general certification frame-
work for SOA where identity information can be privacy-enhanced [17]. They
claim that their framework can be integrated into today’s Public Key Infrastructure
(PKI) on the Internet. The framework includes cryptographic primitives for realiz-
ing the functionality, definition of protocol interfaces for the Certificatelssuance and
CertificateProof protocols and a powerful specification language with well-defined
semantics that allows defining the data to be released in a transaction. However, the
framework and implementation do not specify how to realize delegation. The solution
offered here not only utilizes the advantage of the general certification framework,
but also provides a new way of implementing the Certificatelssuance and Certifi-
cateProof protocols to realize delegation.

In this paper, a pseudonym-based signature scheme is proposed to construct prac-
tical delegation solutions for universal identity management where users can self-
generate pseudonyms based on their credentials. The self-generated pseudonyms
are used as public keys. The privacy is ensured by the unlinkability between dif-
ferent pseudonyms. According to this idea, we get a natural solution to the del-
egation problem. A conventional signature scheme often immediately allows for
(non-anonymous) delegatable credentials: A, who has a public signing key and a
certification chain of length L, can sign B’s public key, giving B a certification chain
of length L+ 1. Therefore, the delegation solution consists of two signature schemes
in which the pseudonyms are used as public keys: a pseudonym-based signature
scheme and a conventional proxy signature scheme [18-21]. The pseudonym-based
signature scheme provides anonymous proof of possession of credentials to protect
the user’s privacy where service providers verify the signature to decide whether
the signer has the rights to access the services. In the conventional proxy signature
scheme, the original signers delegate their signing capability to proxy signers with-
out divulging their private keys. Then, the proxy signer creates a valid signature on
behalf of the original signer. The receiver of the signature verifies the signature and
the original signer’s delegation together. Our proxy signature scheme has the delega-
tion capability by warrant. A warrant explicitly states the signer’s identity, delegation
period and the qualification of the message on which the proxy signer can sign, etc.

3 Universal Identity Management 55

Zero-knowledge proofs of credential possession in classic anonymous credential
systems can be converted to signatures via the Fiat-Shamir heuristic [22]. Compared
with pseudonym-based signature schemes, the converted signature schemes have
four undesirable features: First, the pseudonyms in the converted signature schemes
are not self-generated; second, an identity provider must provide an online issuing
service; third, the ability to sign under the pseudonyms is lacking; fourth, the sig-
nature size is often too long. Compared with group signature schemes [23-27], the
pseudonym-based signature scheme requires self-generated pseudonyms that can be
used as public keys, while group signature schemes do not need any pseudonym, nor
do they specify how to generate them. Therefore, besides the self-generation feature,
the scheme proposed here has the desirable feature that the pseudonyms are used
as temporal public keys for signatures. This feature can be compared to that of the
ID-based signature schemes where signers have the ability to sign with their identi-
ties. Unlike the identity in ID-based signature schemes, pseudonyms are not directly
bound to real identities or certificates because pseudonyms are self-generated. Thus,
the security notion is a bit different from that of the ID-based signature schemes. To
prove the unforgeability of pseudonym-based schemes, the challenger should distin-
guish between forged pseudonyms and valid randomized pseudonyms generated by
adversaries who have obtained some valid credentials.

Our pseudonym-based scheme is similar to the DAA (Direct Anonymous Attes-
tation) scheme [28, 29] which coordinates a TPM (Trust Platform Module) and a
host together to generate pseudonyms and signatures. The scheme was adopted by
the Trusted Computing Group as the method for remote authentication of a TPM,
while preserving the privacy of the user of the platform that contains the module.
Compared with DAA, this scheme does not require a TPM to work online, which
improves the performance of the scheme. Although DAA adopts group signature
schemes [23-27] to generate pseudonyms that link transactions, it is not clear how it
can be used to build a delegation solution for universal identity management. While
DAA uses pseudonyms to link transactions, ours uses pseudonyms to achieve privacy
because one pseudonym is unlinkable to the other. Moreover, ours uses pseudonyms
as public keys for signatures.

In a distributed federated identity environment, there exists some leading specifi-
cation such as SAML (Security Assertion Markup Language) [42], Liberty
ID-FF (Identity Federation Framework) [43] and WS-Federation [4]. These specifi-
cations support privacy-preservation and have capabilities to prevent identity track-
ing and collusion through issuance of an opaque handle for each user. The work of
[44] extended the existing framework for federated identity management to support
delegation. However, these specifications do not address the issue of anonymous
delegation. In this relation-focused model, the identity provider is involved in almost
every identity provision transaction, systems are difficult to use in a long-term cre-
dential setting, and the token is often issued with a limited audience set which in turn
pre-determines the use of the token.

56 Y. Zhang and J.-L. Chen

3.1.3 Contributions

The contribution of this paper is three-fold. Our first contribution is that a signature-
based natural approach is adopted to define the delegation model for universal
identity management in SOA. Our second contribution is that the novel concept
of a pseudonym-based signature scheme is introduced where pseudonyms are self-
generated and messages can be bound to the self-generated pseudonyms which are
used as the public keys for signatures. Based on this, the novel pseudonym-based sig-
nature scheme is constructed. Our third contribution is the application of our scheme
to universal identity management systems where the delegation of the privilege to
access services is realized by adopting warrant proxy signature schemes [18-21]
based on time-varying pseudonyms.

3.1.4 Organization of the Paper

The remainder of the paper is structured as follows. Section 3.2 gives a description of
preliminaries. Section 3.3 contains our delegation model. Section 3.4 focuses on the
construction of the universal identity management solution. Section 3.5 presents how
to design the implementation of a delegation model. Section3.6 gives our deploy-
ment. Finally, conclusions are drawn in Sect.3.7.

3.2 Preliminaries

Suppose we have groups G| and G of the same prime order p and security parameter
k. Assume the discrete logarithm problem is hard in both groups. Then we need a
cryptographic bilinear map e : G; x G; — G to satisfy the following properties
[30, 31]:

1. Bilinearity: Ya,b € Z*%, P, Q € Gy, e(aP,bQ) = e(P, Q) .

2. Non-degeneracy: For any point P € G, e(P, P) # lg,.

3. Computability: there exists an efficient algorithm to compute e(P, Q) forVP, Q €
Gy.

To give the security proof of our scheme, we introduce a problem which is slightly
different from the one proposed by Mitsunari et al. [32] and is called (k,n)-CAA
(Collusion Attack Algorithm with k Traitors and n Examples).

Definition 3.1 (k,n)-CAA. Collusion Attack Algorithm with k Traitors and n Exam-
ples

Let (G1, G2, e) be as above, k,n be integers, P, Py, ..., P, € G, x € Z). Given
P,Pj,a; € Zp,xP,xP;,1/(x +aj)p|l <i<k,1<j=<n, tocompute 1/(x +
a)P for someaP; ¢ a;Pj|1 <i <k, 1<j<n.

M.al litebooks. cogl

http://www.allitebooks.org

3 Universal Identity Management 57

The (k,n)-CAA is considered to be hard in the literature. That is, the probability
of success of any probabilistic, polynomial-time, 0/1 valued algorithm in solving
(k,n)-CAA problem is negligible. A function F(y) is said to be negligible if it is less
than 1/y’ for every fixed / > 0 and sufficiently large integer y.

3.3 Delegation Model for Universal Identity Management

Participants in a delegation model for universal identity management comprise iden-
tity providers (who grant credentials), user # (who obtains credentials), user v (who
is delegated by u to access services, and can be a service provider) and service
providers. Our model is different from the delegatable anonymous credential sys-
tems. In the latter, the user first registers a pseudonym with the identity provider, and
then the identity provider grants to the user a credential associated with the registered
pseudonym. Our model, on the other hand, allows the users to first get a credential
from the identity provider, and then to generate multiple new pseudonyms as needed
while the identity provider does not participate. Without interacting with the identity
provider, the users can show service providers that they possess the right credentials.
Compared with a relationship-based delegation scheme, in our model, the users can
self-generate different pseudonyms and directly delegate privileges to others without
the identity provider’s participation.
The delegation model can be defined by the following six sub-protocols’

Identity

Provider

5. Delegation

Delegator 4. Signing Delegatee Signing Service
—=°

5 ST » 7. Return Provider
RENIE

3. Pseudonym Generation 6. Delegation Verification

Fig. 3.1 Delegation model

Setup: The identity provider generates system parameter and system public/private
key pairs.
Credential Issuing: The identity provider grants a secret credential to user u.

58 Y. Zhang and J.-L. Chen

Pseudonym Generation: User u# generates a new pseudonym in a current time slot
according to its secret credential and timestamp. Two pseudonyms are unlinkable
and only loose time synchronization is required.

Signing-warrant: User u signs a warrant that contains delegation period, delegated
pseudonyms, and the services to be accessed, etc. User v obtains a proxy key
according to his private key and the signature of the warrant.

Delegation-Signing: User v generates proxy signatures on behalf of user u.

Delegation-Verification: Service providers verify proxy signatures from v together
with u’s delegation.

The relationship among the six sub-protocols is illustrated in Fig. 3.1. If the service
provider trusts the identity provider (IdP) and a secret credential is issued to the
delegator u by the IdP, u can grant to the delegatee v the access privilege to the service
when v does not have the privilege. # uses the pseudonym generation protocol to
protect its privacy and the signing-warrant protocol to grant the privilege.

Our delegation model can be implemented by two signature schemes. The first
one is the pseudonym-based signature scheme which provides anonymous proof of
the possession of credentials to protect the user’s privacy. Service providers verify
the signature to decide whether the signer has the rights to access the services. The
second one is a warrant proxy signature scheme, where the original signer u del-
egates his signing capability to the proxy signer v without leaking his private key,
and then the proxy signer creates a valid signature on behalf of the original signer. The
pseu-donym-based signature scheme mainly implements Credential Issuing,
Pseudonym Generation and Signing—warrant, and the warrant proxy signature
scheme mainly implements Delegation—Signing and Delegation—Verification.

When v again delegates his signing capability to other users, he adopts the war-
rant proxy signature scheme, instead of the pseudonym-based signature scheme.
Compared with certificate chain approaches to delegating the signing capability, our
solution can aggregate signatures for the warrant m,,, verifies the aggregated sig-
nature only once and avoids verifying signatures one by one down the certificate
chain. According to the general certification framework for SOA [17], our signature-
based delegation solution has potential to be integrated into today’s PKI where
Sign-ing-warrant can realize the Certificatelssuance protocol, and Delegation—
Signing and Delegation—Verification can realize the Certificate Proof protocol.

3.4 Universal Identity Management Solution

Our solution takes the credential-focused identity approach as a starting point, which
may be trivially set to short-term credentials. With delegation enhanced, users can re-
issue security tokens based on long-term credentials stored in their personal identity
metasystem. The underlying credential-focused approach can provide strong data
minimization and anonymity.

In this solution, it is assumed that different security domains are federated, and
there exists a personal identity metasystem to aid a user to manage his identities.

3 Universal Identity Management 59

Figure 3.2 illustrates a framework focusing on a relationship among a requestor, a
delegatee, a resource and a personal identity metasystem. The requestor (user) uses
his personal identity metasystem to log in to his local security domain. The local
security domain and delegatee (web service B) security domain trust each other such
that the requestor can use a short-term credential to access the delegatee based on the
trust relationship of identity providers in the two domains. When it wants to access
the resource (web service C) in the resource domain, the delegatee (web service B)
can be appointed to represent the requestor anonymously with certain attributes if
the requestor has the privilege to access the resource and the delegatee hasn’t.
The detailed runs in Fig.3.2 are as follows.

Step 1: A secret credential is issued to the requestor by the IdP C in domain C if
the requestor has not stored the credential to access resource C (web service
C). That is to say, the Credential Issuing sub-protocol in the delegation model
is executed between the IdP C and the requestor’s selector.

Step 2: The secret credential is stored in the requestor’s storage service which is
a part of her personal identity metasystem.

Step 3: The requestor makes a compound resource request (involving web
service B and web service C). Web service B is in security domain B and web
service C is in security domain C.

Step 4: The client application uses its short-term credential obtained from IdP A
in the requestor’s security token to make the request. IdP A and IdP B trust
each other. IdP B is in security domain B.

| Security Domain B

3. Request o 4. Request
tApp" — -
i N 5. Accesd Policy
6. Activate |
Selector
10 Issue Deldgation Toke]
7. Select IC o = o
User 9- Issue Delegatio > elector ¢ - |
Token 3 IC 13. Return|Composite
=
2. Up [Down - - EE] Request wit] Delegihon Tok
IC . : 1. Issue | equest with Delegafion Token
8y Sclf-generation Credential N n Result

Self IdP & Storage Service

Idp C Security Domain C

I
I
I
I
I
I
} Web Service C
|
|
Security Domain A I
|

Fig. 3.2 Universal identity management solution

60 Y. Zhang and J.-L. Chen

Step 5: Web service B finds that the request is compound, and involves web
service C. It returns an access policy which specifies that the requestor should
delegate it her privileges such that it can efficiently interact with web service C.

Step 6: The client application activates the Selector which is the visual window
for the user to select one information card (IC).

Step 7: The requestor uses her Selector to select one appropriate IC according to
the access policy.

Step 8: The requestor’s self-IdP self-generates pseudonyms based on its stored
credential using the Pseudonym Generation sub-protocol in the delegation
model.

Step 9, 10: The requestor’s metasystem uses the Signing—warrant sub-protocol
in the delegation model to issue a delegation token with respect to the
self-generated pseudonym.

Step 11: Web service B uses the Delegation—Signing sub-protocol in the
delegation model to sign an access-token request to the IdP in the domain C.
The IdP in domain C uses the Delegation—Verification sub-protocol in the
delegation model to verify the request. If the verification is successful, it
returns an access token to the requestor. Web service B makes a service request
to the resource using the access token.

Step 12, 13: The resource returns the service response to the delegatee, and the
delegatee returns a composite service response to the requestor.

3.5 Delegation Construction

3.5.1 Pseudonym-Based Signature Scheme I,

In the pseudonym-based signature scheme ITj;¢, unlike in an identity-based signature
scheme [33, 34], the user can non-interactively renew public/private key pairs. If
the renewed public key is viewed as a pseudonym, then a pseudonym can be self-
generated.

In [T;e, an identity provider (or a domain manager, or an organization manage-
ment centre) generates the credential Cre for the user u. The user u generates, by
accessing Cre, apseudonym (P, P,) thatis unlinkable to other pseudonyms. Without
the identity provider reissuing Cre, u canrenew (P,, P,) by accessing Cre. The user u
uses different pseudonyms to prevent adversaries from linking different transactions
and analyzing their traffic patterns.

I1y;, is modelled by five algorithms as follows:

PGen: 1t generates the system parameters param and the master-key ms.
Gen: Executed by the identity provider, it generates the credential Cre for the
user u.

3 Universal Identity Management 61

A — Gen: Executed by u, it generates the pseudonym (P, , P,) and corresponding
secret value /1,,.
Sign: It takes as input the user’s private key (Cre, /L/) and the message m to
return the signature of m under (Cre, u/).
Verify: It takes as input u's pseudonym (P,, P,), the organization public key
(W, W;), the message m, and the signature sig to return either 1 or 0.

In our construction, the identity provider periodically publishes a set of public
restriction keys W;, ..., W; which correspond to the time slots slot;, ..., slot;. A
new public restriction key begins to work when a new time slot starts. The public
restriction keys are used to enable the user to update his pseudonyms. The func-
tion T (time) takes time as input and outputs a time slot where only loose time
synchronization is required.

Definition 3.2 [T, is made up of the following five algorithms:

PGen(1°): Setup G, Gy, eand P € Gy,
pick cryptographic hash functions Hy, H> : {0, 1}* — G,
compute Q; = H{(T (time;)),
choose a master-key s €g Zp,
compute organization’s public keys W = sP, W; = sQ,,
return ms = s’ param = (G1, Ga, e, P, W, W;, Hy, H3).

Gen(ms, param,u): |L €R Zp,
Cre=(u, Suw) = (u, 1/(s + w)P),
return Cre.
User u can verify the correctness by checking e(uP + W, S,) = e(P, P).

A — Gen(Cre, param, time;): Q; = H{(T (time;)), ,u, €R Zp,
Pu = (PL"_IQQI",PM :/’LSle
return ((Py, P,), ,u_)
The key pair (P,, P,)/(i, i , Sy) of the user u satisfy

e(Py + Wi, Su) = e(Qi, P)e(Qi, S)* = e(Qi, P)e(Qi. Py).
Sign(m, (Pu, Pu), (14, i, Su), param, time;): r,r €g Zp,

RG =rQi, R =1[e(Qi, P)e(Qi, P)I",

¢ = Hy(m||[Rg|RI| Pul| Pl T (time;)),

zi=cu+p)+rz2=cu +r,
return sig = (c, z1, 22).

Verify(m, sig, (P,, P, param, time;): Parse sig = (c, 21, 22),
Qi = Hi(T (time;)),
Re =210i —cPy, o
R = [e(Qi, P)e(Qi, P)I*/e(Py + Wi, P,
¢ = Hy(m||RG||R|| Pyl| PullT (time;)),
if c = ¢ then return 1, otherwise return 0.

62 Y. Zhang and J.-L. Chen

This signature scheme is converted from a zero-knowledge proof via the Fiat-
Shamir heuristic [22]. The prover and verifier undertake a proof of knowledge values
satisfying the following equation:

e(Py+ Wi, P) = e((u + 1) Qi + 50, 1 /(s + 1) P)
Po=u+u)0i.

The protocol for proving knowledge of the discrete logarithm is as follows:

!
Prover u: choosesr,r €g Zp,

computes Rg = rQ;, R = [e(Qi, P)e(Qi, P,
sends (Rg, R) to the verifier v.

Verifier v: receives (Rg, R),
chooses ¢ €g Z),
sends c to the prover u.

Prover u: receives c,
’ ! !
computes z1 =c(u+pu)+r,zo=cu +r,
sends (z1, z2) to the verifier v.

Verifier v: receives (z1, 22),
verifies the correctness by checking
z10i = cP, + Rg and L
e(Py + Wi, Py)°R = [e(Qi, P)e(Qi, P)I*.

In our pseudonym-based signature scheme, the value c¢ is non-interactively
obtained by computing the hash value of (m||Rg||R||Pul||P.||T (time;)) accord-
ing to the Fiat-Shamir heuristic [22]. If u proves possession of the knowledge of the
discrete logarithm (,u/, w+ /1,/) satisfying

e(Py+ Wi, P,) = [e(Qi. P)e(Qi, P)"
Py = (n+1)0i,
the verifier v will believe that the credential Cre = (u, Sy,) = (u, /(s + p)P) is

issued to (P, P,) by the identity provider. When the user u signs a message under
(Py, P,), the identity provider can track the transcripts by iteratively computing

e(Py + Wi, Su) = e(Qi, P)e(Qi, P)

according to its stored private keys {S1, Sz, ...} .

3 Universal Identity Management 63

3.5.2 Proxy Signature Scheme Iy,

Assume the user v has a public/private key pair (PK, = vQ;,v) and the user u
has some rights to access one service serv with a public/private key pair (PK, =
(Py, P, (u, ,u,, Su)). The user u can grant the user v to delegate himself to access
the service serv. It does not matter whether the user v has the rights to access serv.
The service provider of serv verifies the proxy signature from v and then knows
whether v is indeed delegated by PK,,. If v is delegated by PK, and has rights to
access serv, v will be allowed to access serv. v creates the warrant which contains
related information such as P,, a part of the pseudonym of u, the delegation period,
etc. Also, u generates the signature « for m,, and conveys both the signature and m,,,
to v. v creates a proxy key from « and m,,. The following proxy signature scheme is
from the work of [35], where the key generation algorithm of the original signer is
slightly different.

Definition 3.3 [1,;, is made up of the following five algorithms:

Setup(1€): Generate G1, Gy, e and Q; € Gy,
pick cryptographic hash functions Hy, Hy:{0, 1}* — Gy,
return param = (G, Gy, e, P, W, W;, H|, Hy).

KGen(param, u,v): The key of the original signer u:
t=pu+u PKey, =P, =10;.SK, =T,
The key of the proxy signer v:
PKey, =vQ;, SK, =v,v €g Z).

PKGen(param, t,v, PKey,): Generate a proxy key for v:
Create the warrant m,.
u signs my,: o = tHy(m,,),
v checks whether (m,,, @) satisfies
e(a, Q;) = e(H (my,), PKey,).
If true, v gets a proxy key (o, v).

PSign(m, param, m,,, («, v)): Vv generates proxy signatures:
o = a + vHy(ml|my),
return sig = (m, o).

PVerify(m, sig, param, PKey,, PKey,): If
e(U, Ql) = e(Hl (mw)s PKeyu)e(HZ(mHmW)v PKeyv);
then return 1.
Otherwise, return 0.

The security proof of this scheme can be found in [35]. When u delegates his sign-
ing capability to the user v, v will possess u’s privilege to access the services. u adopts
the pseudonym-based signature scheme [1y;, to generate time-varying pseudonyms
for privacy and the proxy signature scheme 11 ;, torealize delegation. Therefore, the
delegation solution consists of I1y;; and IT;c. When v again delegates the privilege
to another user x, I1y;, is executed as follows:

64 Y. Zhang and J.-L. Chen

Setup(1¢): Generate G, G2, e and Q; € Gy,
pick cryptographic hash functions Hy, H> : {0, 1}* — G,
return param = (G1, Ga,e, P, W, W;, H{, H>).

KGen(param, u,v): The key of the original signer v:
PKey, = PKey, + PKey,, SK, = v,
The key of the proxy signer x:
PKey, = xQi, SKx = X, X €R Z).

PKGen(param, v, x, PKey,V): Generate a proxy key for x:
v signs m,,:
o« =« + vHi(m,,),
where m,, is created by u and « is the signature for m,, produced by u. x checks
whether (m,,, a/) satisfies ,
e, Qi) = e(H,(my). PKey,).
If true, x gets a proxy key (o, X)-

PSign(m, param, m,,, (o, X)): Vv generates proxy signatures:
o =a + xHa(m|lmy),
return sig = (m, o).

PVerify(m, sig, param, PKey ., PKey;): If
e(o, Qi) = e(Hi(my), PKey,)e(Hy(m||lmy,), PKey,),
then return 1.
Otherwise, return 0.

Compared with certificate chain approaches to delegating the signing capabil-
ity, our solution can aggregate signatures for the warrant m,,,, verify the aggregated
signature only once and thus avoids verifying signatures one by one down the cer-
tificate chain. That is to say, if x; — xo — --- — x, is the user chain for delegation
and @y — oy — -+ — «, is the signature chain for the warrant m,, which
are respectively produced by these users, then x,, obtains the aggregated signature
o = a1 + -+ + o, and the proxy key (¢, SK,). x,, generates the proxy signature
for the message m as follows: 0 = o + SK;, Hy(m||m,,). Service providers compute
PKey = PKey,, + PKey,, + - - -+ PKey,, and verify the signature under PKey. If
the signature is valid and x| has proved the possession of the issued credentials, the
service providers will allow x,, to access the services. The service providers verify
only one signature and not the signatures produced by each delegation user in order
to show that the last delegatee has the privilege for accessing the services. In addition,
the conventional certificate chain can also be used in our solution.

Reverting to the health-care example cited in the introduction, Liming can adopt
Ij;, to generate the new pseudonym, and signs the warrant that contains the
pseudonym, time period, and the names of those health examination services. Then,
Liming conveys the signature and the warrant to People-Health to enable them to
obtain the proxy key. Therefore, People-Health can directly request the results of
health examinations from the test centres by signing the request messages under

3 Universal Identity Management 65

the proxy key according to the algorithm PSign in IT);,. The examination cen-
tres concerned have stored the test results of the user because Liming adopted the
pseudonym as his identity and proved by using IT,;, that has the rights to consume
the examination services and access the results, which protects the privacy of Liming
by not disclosing his real identity, exact age and other identity information. When
the request messages signed by People-Health are received, the examination centres
verify the corresponding signature according to the algorithm PVerify in I1;,. If
the signature is valid, the stored results will be conveyed to People-Health.

In some settings, the identity provider of a service domain may want to control
the generation of pseudonyms. For example, when users require adequate protection
of their personal information, anonymous communication services are often used
to deliver the consumer services [2]. If the users are just in an ad hoc network,
they will be not only service consumers but also service providers. In this case,
the pseudonym-generation approach is required to have the pseudonym-uniqueness
property for a period of time. Otherwise, if adversaries have controlled one node, they
can forge different pseudonyms according to different neighbours, that is, they can
forge false topology. They can also use a different pseudonym for a different instance
of anonymous communication services and infer their traffic patterns by distinguish-
ing messages relating to different pseudonyms, which often expose the VIP’s private
information or their action characteristics. Therefore, the identity providers should
have the means to manage how to self-generate pseudonyms besides delegation
of identity information. We propose a variation of the pseudonym-based signature
scheme to satisfy the requirement in the next section.

3.5.3 Pseudonym-Controlled Variation of I1;,

In order to provide control over the self-generation properties of pseudonyms, the
algorithm A — Gen of I1;, is modified such that the new pseudonyms do not take
effect until the start of a new time slot and publication of new restriction keys. Identity
providers manage pseudonym-generation by adopting restriction keys and time slots.

The identity provider periodically publishes a set of public restriction keys
{Wi, ..., W;} which correspond to time slots {slot;, . .., slot;}. Anew public restric-
tion key begins to work when a new time slot starts. The public restriction keys are
used to ensure the uniqueness of the pseudonym of a user in a single time slot and
make it possible for the user to generate his pseudonyms. The pseudonym-controlled
variation Iy, of the pseudonym-based signature is as follows:

Definition 3.4 I1,;, is made up of the following five algorithms:

PGen(1%): Setup G, Gy,eand P € Gy,
pick cryptographic hash functions Hy, H, : {0, 1}* — G,
compute Q; = Hi(T (time;)),
choose a master-key s €g Z),

66 Y. Zhang and J.-L. Chen

compute organization’s public keys W = s P, W; = s Q;,
return ms = s’ param = (G1, Ga, e, P, W, W;, Hy, H3).

Gen(ms, param,u): W €R Zp,
Cre = (u, Sy) = (1, 1/(s + n)P),
return Cre.
User u can verify the correctness by checking e(uP + W, S,) = e(P, P).

A — Gen(Cre, param, time;): Q; = H|(T (time;)),
Py = pnQ;
return P,.
The key pair P, /(jt, S,) of the user u satisfy
e(Py + Wi, Sy) = e(Qi, P).

Sign(m, Py, (u, Sy), param, time;): «,r, r €R Zp,
T ZaSMaRG[:]"Qi,Rze(Qi’P)r’
¢ = Hy(ml||T||Rg;||R|| Py||T (time;)),
z1=ca+r,za=cu+r,
return sig = (T, c, 21, 22).

Verify(m, sig, (Py, P_u), param, time;): Parsesig = (T, c, z1, 22),
Qi = Hi(T (timey)),
RG, =220i—cPy,
R = e(Qi, P)*! fe(Py + W, T)C,
¢ = Hy(m||T||Rg; ||R|| Pu||T (time;)),
if c = ¢ then return 1, otherwise return 0.

When the identity provider in the domain publishes some pseudonyms {P,j, ceey
P,]} of user u in its certificate revocation list, the credential of u is revoked in time
slots {slot;, ..., slot;}. This revocation solution is simple and attractive because the
computation is efficient and the pseudonyms of u that are not in these time slots are
still unlinkable. The signatures produced by u are also traceable since the identity
provider can compute all the users’ pseudonyms in all the time slots according to
{1, u2, .. .1

When IT,;, is adopted to construct delegation solutions combined with I7 ;¢ , the
warrant m,, will contain related information such as the delegation period, service
name, and so on. Unlike the IT;,-based scheme, it does not include one part of the
public key of u. The security proof of I1,y;, is similar to that of IT;g.

3.6 Deployment Framework for Delegation Model

SOA is a very popular paradigm for system integration and interoperation. Web ser-
vice is the current standard for SOA. Therefore, the industry is pursuing the deploy-
ment of identity management systems in distributed different security domains, called
FIM (Federated Identity Management) [3, 4], to build one cornerstone of the web ser-
vice security. Current user-centricity FIM systems are mostly relationship-focused,

3 Universal Identity Management 67

and can enhance the user’s privacy by following the data minimization and transaction
unlinkability principles. Multiple industry products [36, 37] embrace this paradigm.
However, the bottle-neck effect will become more serious for identity providers if the
delegation function is implemented only based on the relationship-focused model.
Some credential-focused systems are also developed to achieve FIM. The example
is idemix [38, 39], but it does not support self-generation and efficient delegation.
This section describes how to deploy our solution in the relationship-focused par-
adigm by integrating the credential-focused paradigm to realize universal identity
management.

We adopt the concept from WS-Federation [4] to describe how to deploy the
delegation scheme for universal identity management. As a public specification,
WS-Federation defines a framework to allow different security domains to federate,
such that authorized access to web services can be realized in distributed realms.
That includes mechanisms for brokering of identity, attribute, authentication and
authorization assertions between domains, and privacy of federated claims. Based
on WS-Trust [40], WS-Federation supports delegation by using identity providers
to issue appropriate security tokens for entities in different security domains. As
a relation-ship-focused framework, it also has the undesirable features of general
relation-ship-focused paradigms. Our scheme can be deployed in this relationship-
focused framework with enhanced credentials to achieve universal identity manage-
ment. The basic entities mapping between the delegation solution and WS-Federation
is provided as follows.

IdP: An Identity Provider is an entity that acts as an authentication service to
end-requestors and as a data origin authentication service to service providers. IdPs
are third parties trusted to maintain some of the requestor’s identity information. The
original IdP is enhanced to issue secret credentials by adding the Credential Issuing
interface.

Requestor: An end user—an application or a machine—is typically represented by
adigital identity and may have multiple valid digital identities. The original requestor
is enhanced to self-generate pseudonyms and delegate privileges by adding the issued
party interface of Credential Issuing and a Signing-warrant interface.

Resource: A web service, service provider, or any valuable thing. Sometimes, it
can act as another requestor. The original resource is enhanced to sign messages and
verify signatures by adding Delegation-Signing and Delegation-Verification inter-
faces. When it acts as a requestor, it delegates privileges to other resources by adding
a Signing-warrant interface.

Before describing general deployment in typical scenarios, we revert to the health-
care example cited in the introduction. Assume the Citizen Identity Provider (CIP)
issues Liming a digital identity credential which can be used to prove he is a citizen in
that city. Figure 3.3 illustrates the application of the delegation model with privacy-
preserving in this example, where People-Health can directly retrieve the desired
data from the test centres. Such a capability, besides being more efficient, is vital to
handle cases of emergency.

68 Y. Zhang and J.-L. Chen

‘ People-Health ‘ ‘ Test-Center

i
i

1. Credential Issuing i |
| |

|

|

3. Doing Test with Pseudonym

4. Storing Test Results

5. Issue cjelegation token with Signing-warram
[

6. Reques‘t Results with Delegation-Signing
—_—

7. Delegation-Verification

i

i

8. Return Test Results i
-—
i

Fig. 3.3 Delegation procedure for health-care example

The example runs as follows:

Step 1: A secret credential is issued to Liming by the Citizen Identity Provider
where the Gen of [Iy;, is used. That is to say, the Credentiallssuing
sub-protocol in the solution is executed between the CIP and Liming.

Step 2: Liming adopts the A — Gen of I;, to generate the new pseudonym
(PLiming FL,-,,,,-,,g). That is to say, the PseudonymGeneration sub-
protocol in the solution is executed by Liming.

Step 3: Liming uses the pseudonym (Pr;ming, FLiming) as his identity to
undergo health examination in the test centres, where he may prove his
citizenship by using the Sign of Iy;, (This is not illustrated in the figure).

Step 4: The test centre stores the test results under the user (Pr;ming, FL,-m,-ng)
because Liming adopted the pseudonym as his identity.

Step 5: Using the Sign of I;,, Liming signs the warrant m,, that contains
FLiminga time period, and the names of those test centres. Then, Liming
conveys the signature o and the warrant m,, to People-Health to enable them to
obtain the proxy key («, v). That is to say, the Signing—warrant sub-protocol in
the solution is executed between People-Health and Liming.

Step 6: People-Health can directly request the results of health examinations
from the test centres by signing the request messages under the proxy key
(a, v) according to the algorithm PSign in I1 ;.

Step 7: When the request messages signed by People-Health are received, the
test centre concerned verifies the corresponding signature according to the
algorithm PVerify in IT ;.

Step 8: If the signature is valid, the stored results will be conveyed to
People-Health.

For general deployment, some typical scenarios are used to illustrate the delegation
model. In Figs. 3.4 and 3.5, the requestor has stored some long-term credentials which

3 Universal Identity Management 69

! m
!
l
l
b)
Requestor 2, Resource <i0—>
: ~—— !
1

Domain A

v

Domain B ! Domain C

Fig. 3.4 The requestor IdP issues credentials

[1
} 1ap
| I _»
1 _ -1-
1 _- A-- 1
_4- 1
1 1
| 3!
Requestor Resource Resource
l l
l l
Domain A : Domain B : Domain C

Fig. 3.5 The target service IdP issues credentials

may be from his IdP or C’s IdP. Credentials from the IdP in other domains mean that
if that IdP issues the requestor a long-term credential in one transaction, it can be
used sub-sequently in other transactions for efficiency and convenience. Each arrow
represents a possible communication path between the participants. Each dashed
arrow represents that the possible communication can be executed offline or has
been completed between the participants.

InFig. 3.4, asecret credential is issued to the requestor by the IdP in the requestor’s
trust realm (domain A) (1). The requestor self-generates identity security tokens
(pseudonyms) based on its credential, and sends a delegation token to the re-
source/service in domain B (2). The delegation signing tokens are then provided
to the IdP in domain C and access security tokens are returned from C (3). Resource
B uses the access token to access resource C. In Fig. 3.5, a secret credential to access
resource C is issued to the requestor from the IdP in domain C (1). The requestor
self-generates pseudonyms based on its credential, and sends a delegation token to
the resource/service in domain B (2). Resource B uses the delegation signing token
to access resource C. Unlike the classic delegation process in WS-Federation, no IdP
is involved when new identity and delegation tokens are needed if the requestor has
stored the credentials, and the privacy of the requestor is protected using unlinkable

70 Y. Zhang and J.-L. Chen

Requestor Requestor Web Service C Web
IdP Seryice B IdP Service C
1.Issue
“credential |

2.Issue delegation token
L4

3.Makerequest N
"14.Use delegation
signing token t

request

5. Return access
token

6. Make request using access toke;l

7. Return Result

oH

8. Return Result

A

Fig. 3.6 The requestor IdP issues credentials

Requestor Web Service C Web
Service B IdpP Service C

1. Issue|credential

2. Issue delegation token

>
3. Make request R

4. Make request using delegation
signing token ”

5. Return|result

oH

& 6. Return result

Fig. 3.7 The target service IdP issues credentials

pseudonyms. In both cases, it does not matter whether IdP B and IdP C trust each
other.

Figures 3.6 and 3.7 illustrates the message sequence of the delegation procedure
in these typical scenarios where a resource accesses data from another resource on
behalf of the requestor. In Fig. 3.6, the delegation solution runs as follows.

3 Universal Identity Management 71

Step 1: A secret credential is issued to the requestor by the IdP in domain A if the
requestor has not stored the credential. That is to say, the Credential Issuing
sub-protocol in the solution is executed between the IdP and the requestor.

Step 2: The requestor self-generates pseudonyms based on its stored credential
using the Pseudonym Generation sub-protocol in the solution. Then, it uses the
Signing—warrant sub-protocol to issue a delegation token with respect to the
self-generated pseudonym.

Step 3: The requestor makes a composite service request to service B.

Step 4: Service B uses the Delegation—Signing sub-protocol to sign an access
token request to the IdP in domain C.

Step 5: The IdP in domain C uses the Delegation—Verification sub-protocol to
verify the request. If the verification is successful, it returns an access token to
the service in domain B.

Step 6: Service B makes a service request to service C using the access token.

Step 7,8: Service C returns the service response to service B, and service B
returns a composite service response to the requestor.

InFig. 3.7, the delegation scheme runs on almost the same lines as those of Fig. 3.6,
which corresponds to Fig. 3.5, and is as follows.

Step 1: A secret credential is issued to the requestor by the IdP in domain C if
the requestor has not stored the credential to access resource C and is trusted.
That is to say, the Credentiallssuing sub-protocol in the solution is executed
between the IdP in domain C and the requestor.

Step 2: The requestor self-generates pseudonyms based on its stored credential
using the PseudonymGeneration sub-protocol in the solution. Then, it uses the
Signing—warrant sub-protocol to issue a delegation token with respect to the
self-generated pseudonym.

Step 3: The requestor makes a composite service request to service B.

Step 4: Service B uses the Delegation—Signing sub-protocol to sign a service
request to the resource in domain C. Because the credential is issued by the IdP
in domain C, service C can directly verify the signature produced by service B,
where IdP C may not involve the transactions and service C knows the public
keys of its IdP.

Step 5: Service C uses the Delegation—Verification sub-protocol to verify the
request. If the verification is successful, it returns a request result to service B.

Step 6: Service B forms composite results and returns them to the requestor.

For a delegation chain x; — x» — --- — x, where the requestor is denoted by
X1, resource A is denoted by x>, and so on, the delegation solution works as above by
iterating delegation token issuance. Therefore, we describe in detail the delegation
token in the chain as follows:

{a, K Set}

72 Y. Zhang and J.-L. Chen

where o« = a1 + - - - + o, 1s the signature and oy — ap — - -+ — @, is the signature
chain for the warrant m,, which are respectively produced by x; — x2 — -+ — xp;
K Set is a list of pseudonyms, i.e., {PKey, , PKeyxnl, PKey = PKey,, + PKey,, +
PKey,, -+ PKeyxnl }, where middle pseudonyms can be hidden.

In the above deployment, we use the relationship-focused framework and trust
model from WS-Federation. Requestors use stored credentials to reduce interaction
rounds, and enhance the controllability of identity transactions with self-generating
identities and self-issuing credentials.

3.7 Conclusions

In this paper, a practical delegation solution for universal identity management, as
well as a novel notion of a pseudonym-based signature scheme, is introduced. In
our proposal, the users prove the possession of valid credentials without interact-
ing with identity providers. Beyond user-centricity, our delegation solution also
allows for privilege delegation to improve the runtime performance of composite
services. As the natural certificate chains, the solution consists of two signature
schemes: a pseudonym-based signature scheme and a conventional warrant proxy sig-
nature scheme. The pseudonym-based signature scheme can be used to self-generate
pseudonyms, to prove the possession of credentials, and to achieve privacy based on
time-varying pseudonyms. The proxy signature scheme is used to delegate the sign-
ing capability where the proxy key includes the signature of warrants produced by the
signing protocol in the pseudonym-based signature scheme. Therefore, the model and
constructions will provide strong building blocks for the design and implementation
of universal identity management systems [41, 45].

References

Cameron K (2005) Laws of identity http://www.identityblog.com. May 2005
. PRIME Consortium. Privacy and Identity Management for Europe (PRIME). http://www.
prime-project.eu
Identity-management. Liberty alliance project. http://www.projectliberty.org
Kaler C, Nadalin A (2003) Web services federation language.
Bhargav-Spantzel A, Camenisch J (2006) User Centricity: A Taxonomy and Open Issues. In:
The Second ACM Workshop on Digital Identity Management - DIM, 493-527.
6. Chaum D (1985) Security without identification: transaction systems to make big brother
obsolete. Communications of the ACM, 28(10): 1030-1044.
7. Chaum D, Evertse JH (1986) A secure and privacy-protecting protocol for transmitting personal
information between organizations. Advances in Cryptology-CRYPTO’86, p 118-167.
8. Damgard IB (1988) Payment systems and credential mechanisms with provable security against
abuse by individuals. Advances in Cryptology-CRYPTO’88, p 328-335
9. Chen LD (1995) Access with pseudonyms. Lecture Notes in Computer Science, 1029: 232-243
10. Lysyanskaya A, Rivest R, Sahai A (1999) Pseudonym systems. In: Selected Areas in Cryptog-
raphy, 6th Annual International, Workshop, SAC’99, p 184-199

DO

kW

http://www.identityblog.com.
http://www.prime-project.eu
http://www.prime-project.eu
http://www.projectliberty.org

3 Universal Identity Management 73

11.

12.

13.

14.

15.

16.

17.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Camenisch J, Lysyanskaya A (2001) Efficient non-transferable anonymous multi-show cre-
dential system with optional anonymity revocation. In: Pfitzmann B (ed) EUROCRYPT 2001,
vol 2045 of LNCS, Springer Verlag, p 93—118

Camenisch J, Lysyanskaya A (2002) A signature scheme with efficient protocols. In: SCN
2002, vol 2576 of LNCS, p 268-289

Camenisch J, Lysyanskaya A (2004) Signature schemes and anonymous credentials from bilin-
ear maps. In: CRYPTO 2004, vol 3152 of LNCS, p 56-72

Belenkiy M, Chase M, Kohlweiss M (2008) Non-Interactive Anonymous Credentials. Theo-
retical Cryptography Conference (TCC) 2008. http:// eprint.iacr.org/2007/384.

Chase M, Lysyanskaya A (2006) On signatures of knowledge. In: Dwork C (ed) CRYPTO
2006, vol 4117 of LNCS, p 78C96

Belenkiy M, Camenisch J, Chase M, Kohlweiss M, Lysyanskaya A, Shacham H (2008) Dele-
gatable Anonymous Credentials. http://eprint.iacr.org/2008/428.

Camenisch J, Sommer D, Zimmermann R (2006) A General Certification Framework with
Applica-tions to Privacy-Enhancing Certificate Infrastructures. IFIP International Federation
for Information Processing, p 25-37

. Mambo M, Usuda K, Okamoto E (1996) Proxy signatures: Delegation of the power to sign

mes-sages. IEICE Transaction on Fundamentals, vol. E79-A, no. 9, p 1338-1354.

. Kim S, Park S, Won D (1997) Proxy signatures revisited. Proceedings of ICICS97, LNCS

1334, Springer-Verlag, p 223-232

Okamoto T, Tada M, Okamoto E (1999) Extended proxy signatures for smart card. Proceedings
of Information Security Workshop99, LNCS 1729. Springer-Verlag, p 247-258

Herranz J, Saez G (2004) Revisiting fully distributed proxy signature schemes. Proceedings of
Indocrypt04, LNCS 3348. Springer-Verlag, p 356370

Fiat A, Shamir A (1986) How to prove yourself: Practical solutions to identification and signa-
ture problems. In: Odlyzko AM (ed) Proceedings of Crypto 1986, vol 263 of LNCS. Springer-
Verlag, p 186-194

Chaum D, van Heyst E (1991) Group signatures. In: Davies DW (ed) Proceedings of Eurocrypt
1991, vol 547 of LNCS. Springer-Verlag, p 257-265

Bellare M, Micciancio D, Warinschi B (2003) Foundations of Group Signatures: Formal Defin-
itions, Simplified Requirements, and a Construction Based on General Assumptions. Eurocrypt
03, LNCS 2656. Springer-Verlag, p 614-629

Boneh D, Boyen X (2004) Short Signatures without Random Oracles. Eurocrypt04, LNCS
3027. Springer-Verlag, p 56-73

Bellare M, Shi H, Zhang C (2005) Foundations of Group Signatures: The Case of Dynamic
Groups. In: CT C RSA05, LNCS 3376. Springer-Verlag, p 136153

Delerablee C, Pointcheval D (2006) Dynamic Fully Anonymous Short Group Signatures.
Progress in Cryptology - VIETCRYPT 2006, Hanoi, Vietnam, p 193-210

Brickell E, Camenisch J, Chen LQ (2004) Direct anonymous attestation. Proceedings of the
ACM Conference on Computer and Communications Security, Washington, DC, p 132-145
Camenisch J (2006) Protecting (anonymous) credentials with the trusted computing groups
trusted platform modules, vol.2. In: Proceedings of the 21st IFIP International Information
Security Confer-ence (SEC 2006)

Boneh D, Franklin M (2001) Identity-based encryption from the Weil pairing. In Proc. of
CRYPTO’01, vol 2139, p 213-229

Barreto P, Kim H, Bynn B, Scott M (2002) Efficient algorithms for pairing-based cryptosystems.
In Proc. CRYPTO’02, p 354-368

Mitsunari S, Sakai R, Kasahara M (2002) A new traitor tracing. IEICE Trans. Vol. E85-A,
No.2, p 481-484

Hess F (2002) Efficient identity based signature schemes based on pairings. SAC 2002, LNCS
2595, p 310-324

Zhang F, Kim K (2002) ID-based blind signature and ring signature from pairings. Advances
in Cryptology-Asiacrypt 2002.

http://eprint.iacr.org/2008/428

74

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Y. Zhang and J.-L. Chen

Huang X, Mu Y, Susilo W, Zhang F, Chen X (2005) A short proxy scheme: efficient authentica-
tion in the ubiquitous world. In: EUC Workshops 2005, LNCS 3823, Berlin. Springer-Verlag,
p 480489

MICROSOFT (2005) A technical reference for InfoCard v1.0 in Windows

Higgins Trust Framework, 2006. http://www.eclipse.org/higgins/.

Camenisch J, Herreweghen EV (2002) Design and implementation of the idemix anonymous
cre-dential system. Proceedings of the 9th ACM Conference on Computer and Communica-
tions, Security, p 21-30

Camenisch J, Gross T, Sommer D (2006) Enhancing Privacy of Federated Identity Management
Protocols. Proceedings of the Sth ACM workshop on Privacy in Electronic Society, p 67-72
IBM, Microsoft, Actional, BEA, Computer Associates, Layer 7, Oblix, Open Network, Ping
Identity, Reactivity, and Verisign. Web Services Trust Language (WS-Trust). February 2005.
Segev A, Toch E (2009) Context-Based Matching and Ranking of Web Services for Composi-
tion. IEEE Transactions on Service Computing, vol 2(3): 210-222

OASIS (2005) Assertions and Protocol for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS Standard, March 2005.

Liberty Alliance Project (2003) Liberty ID-FF Protocols and Schema Specification. Version
1.2, November 2003. http://www.projectliberty.org/specs.

Gomi H, Hatakeyama M, Hosono S, Fujita S (2005) A Delegation Framework for Federated
Identity Management. Proceedings of the 2005 Workshop on Digital Identity Management, p
94-103

Zhang Y, Chen JL (2011) A Delegation Solution for Universal Identity Management in SOA.
IEEE Transactions on services computing, p 70-81

http://www.eclipse.org/higgins/
http://www.projectliberty.org/specs

Chapter 4
The Roadmap of Trust and Trust Evaluation
in Web Applications and Web Services

Lei Li and Yan Wang

Abstract Inthe 1980s and 1990s, the issue of trust in many aspects of life has drawn
much attention in a significant number of studies in social science. Nowadays, with
the development of Web applications, trust evaluation has become a significant and
important issue, especially when a client has to select a trustworthy one from a pool
of unknown service providers. An effective and efficient trust evaluation system is
highly desirable and critical to clients for identifying potential risks, providing objec-
tive trust results and preventing huge monetary losses.This research roadmap presents
an overview of the general structure of trust, the bases of trust and the concepts of
trust in different disciplines. Then the typical trust evaluation methods in each area of
Web applications, including e-commerce, P2P networks, multi-agent systems, rec-
ommendation systems, social networks and service-oriented computing, are briefly
introduced from technology, state of the art and scientific challenges standpoints.
This roadmap provides not only the necessary background for on-going research
activities and projects, but also the solid foundations for deciding on potential future
research on trust evaluation in broader contexts.

4.1 Introduction

In our daily life, there are many occasions when we have to trust others to behave as
they promised or as we expect them to do. For example, we trust a bus driver can take
us to our destination on time; we trust a doctor to conduct a physical examination
and check whether we have an illness; we trust a motor mechanic to find out whether
there is a problem in our car and then repair it; we trust a bank and deposit our
money. Each time when we trust, we have to put something at risk: our lives, our

L. Li (X)) - Y. Wang
Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
e-mail: lei.li@outlook.com

Y. Wang
e-mail: yan.wang@mgq.edu.au

A. Bouguettaya et al. (eds.), Advanced Web Services, 75
DOI: 10.1007/978-1-4614-7535-4_4,
© Springer Science+Business Media New York 2014

76 L. Liand Y. Wang

assets, our properties, and so on. On these occasions, we may use a variety of clues
and past experiences to believe in these individuals’ good intentions towards us and
decide on the extent to which we can trust them. This is the general procedure of
trust evaluation in daily occasions [36].

Nowadays, with the development of information communication technologies,
from time to time it is necessary to have some interactions with others on the Web.
For example, download some files from others, or purchase some products or services
from online e-commerce or e-service websites. In Web applications, when a client
intends to have an interaction selected from a large pool of service providers, in
addition to functionality, the trustworthiness of a service provider is a key factor in
service provider selection. This is due to the fact that any service client would like
to have transactions with reputable service providers so as to reduce the possibility
to be deceived. This makes trust evaluation a significant and important issue in Web
applications, especially when the client has to select one from unknown service
providers.

Conceptually, trust is the measure taken by one party of the willingness and ability
of another party to act in the interest of the former party in a certain situation [31].
If the trust value is in the range of [0, 1], it can be taken as the subjective probability
by which one party expects that another party can perform a given action [29].

The issue of trust has been actively studied in Peer-to-Peer (P2P) networks (e.g.,
[14, 30, 91]), which can be used for information-sharing systems (e.g., GNutella!).
In a P2P system, it is quite natural for a client peer to doubt if a serving peer can
provide the complete file prior to any download action, which may be quite time-
consuming and network bandwidth-consuming. Unlike some trust management sys-
tems in e-commerce (EC) or service-oriented environments (SOC), in the P2P trust
management system a requesting peer needs to inquire the trust data of a serving peer
(target peer) from other peers who may have transacted with the serving peer [30,
57, 91]. The computation of the trust level of the serving peer from the collected trust
ratings is then performed by the requesting peer rather than a central management
server, because of the decentralized architecture of the P2P system.

Unlike P2P information-sharing networks or the eBay?> reputation management
system where a binary rating system is used [91], in SOC environments a trust
rating is usually a value in the range of [0, 1] given by a service client [81, 85, 87],
representing the subjective belief of the service client on their satisfaction with a
service or a service provider. The trust value of a service or a service provider can
be calculated by a trust management authority based on the collected trust ratings
representing the reputation of the service or the service provider.

In general, in a trust management enabled system, service clients can provide
feedback and trust ratings after completed transactions. Based on the ratings, the
trust value of a service provider can be evaluated to reflect the quality of services in a
certain time period. This trust evaluation approach in service-oriented environments
is the focus of research works nowadays in service-oriented computing.

! http://www.gnutella.com/
2 http://www.eBay.com/

http://www.gnutella.com/
http://www.eBay.com/

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 77

Effective and efficient trust evaluation is highly desirable and critical to service
clients for identifying potential risks, providing objective trust results and preventing
huge monetary loss [83].

In this chapter, the literature review on trust is organized as follows:

e Section4.2 presents a general structure of trust, which provides a general global
picture of trust. With this structure, it is easy to start a preliminary theoretical
analysis of trust.

e Section4.3 identifies the bases of trust, with which trust can be established from
a variety of diverse sources of trust-related information.

e Section4.4 briefly introduces the concepts of trust defined in multiple disciplines,
including sociology, history, psychology, economics and so on.

e Section4.5 focuses on trust evaluation models used in different areas of Web
applications, including e-commerce, P2P networks, multi-agent systems, recom-
mendation systems and social networks.

e Section4.6 focuses on the typical trust evaluation methods used in service-oriented
computing.

e In Sect.4.7, the above mentioned trust evaluation methods in Web applications are
categorized into different taxonomies with respect to trust evaluation techniques,
the structure of trust and the bases of trust respectively.

e Finally, Sect.4.8 concludes our work in this chapter.

4.2 General Structure of Trust

The general structure of trust has been proposed in [55] and graphically represented
in Fig.4.1. This structure provides a general global picture of trust, with which
professionals, scientists and even ordinary citizens can start a preliminary theoretical
analysis of trust. With primary trust and reflective trust as the horizontal axis, and
micro-social trust and macro-social trust as the vertical axis, this presentation creates
four spaces which correspond to four orthogonally placed forms of trust.

e Vertically, passing from the bottom half of Fig. 4.1 toward the top, we move from
micro-social trust (i.e., personal, private and interpersonal trust) toward macro-
social trust (i.e., professional, group and organizational trust).

e Horizontally, the left-hand side of Fig.4.1 is characterized by trust as feelings,
either based on the interdependence between the self and other, or associated with
security or social cohesion [1]. As we move toward the right-hand part of Fig.4.1,
trust becomes conceptualized and rationalized [1]. Trust in the right-hand part of
Fig.4.1 is contractual, and is based on obligations and morality.

In other words, in the left-hand side we focus on primary trust (i.e., immediately
apprehended [preconceptual] forms of trust), while in the right-hand side trust is
established between the self and a stranger, an institutions or a kind of group (i.e.,
reflective trust [1]). However, once trust has been established, it transforms into
common knowledge and becomes taken-for-granted and commonly understood.

78 L. Liand Y. Wang

Macro-social trust

A priori generalized trust Context-specific trust
’

Prec}m{ptual trust Conceptyl rust

\ /
In-group solidarity N /
\ /
Primary trust Taken-for-granted trust \\ , 7 Reflective trust
Preconceptual trust / N Conceptual trust
7 \
7 \
7 \
PreC}néptual trust Conceptkl rust
/ N
Basic trust Inner dialogicality

Micro-social trust

Fig. 4.1 General structure of trust

In contrast to the left-hand side of Fig.4.1, this taken-for-grantedness arises from
reflective thinking. There is also a case whereby, as a result of an individual’s doubt
trust is brought back into discourse explicitly. When trust is explicitly verbalized,
it is no longer taken-for-granted and is partly or fully destroyed. It is necessary to
establish trust from the very beginning again.

4.2.1 Basic Trust

Now let us focus on the bottom left quadrant of Fig.4.1, in which there is what
developmental psychologists describe as basic trust between a mother and her baby.

Basic trust is the first mark of an individual’s mental life, even before feelings of
autonomy and initiative develop [17]. Through the mutuality between a mother and
her baby, basic trust evolves through mutual somatic experiences and “‘unmistak-
able communication” that creates security and continuity. With the presupposition
that humans possess the capacity to make distinctions, the child, equipped with an
innate capacity for intersubjectivity, learns through actions, experiences and com-
munications to differentiate between the mental states of others, between feelings,
and between trustworthy and untrustworthy relations [73].

4.2.2 A Priori Generalized Trust

Moving to the second quadrant in the top left part of Fig.4.1, we can see that a
priori generalized trust which is above all a fundamental psychosocial feeling, and

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 79

is instantaneously apprehended, quite often without the awareness of those concerned
[54]. Generally speaking, the top left quadrant contains trust which is characterized
by the kinds of social relations in a society where individuals have certain kinds of
social activities. Particularly, in a heterogeneous and complex society like ours, trust
is person-specific and content-specific [73]. In our society, during daily life we have
to deal with strangers all the time, but here we only deal with one aspect of a stranger
and not with the whole person. For example, we trust a motor mechanic to find out
whether there is a problem in our car and then repair it, but we don’t trust him/her
on anything else, such as conducting a physical examination and checking whether
we have an illness.

In this quadrant, somewhere more towards the intersection, we can place in-group
solidarity [11], which can be taken as a special form of trust. It includes the social
binding and bounding of close in-groups, such as the social cohesion and social ties
within family, friends, neighbors, coactivists, and other communities.

4.2.3 Context-Specific Trust

Now we focus on the third quadrant of Fig.4.1, and this quadrant includes trust
resulting from a variety of forms, ranging from cooperation to audits, strategies,
calculations and so on. The typical form of trust located in this quadrant is context-
specific trust [56], which can be derived from contextual information.

In the computer science discipline, it is firstly pointed out in [56] that trust is
context sensitive: “Whilst I may trust my brother to drive me to the airport, I most
certainly would not trust him to fly the plane!” Generally, context is any information
characterizing the situation of an entity [76]. An entity, in turn, can be a person, a
place, or an object that is considered relevant to the interaction between a user and
an application, including the user and the application themselves [78].

A typical and simple context-specific trust evaluation process in SOC environ-
ments is as follows: in a trust management system, regarding a service client A who
has never interacted with a service provider B in the past, before making the decision
to have an interaction with B, A asks other clients what are their trust ratings for B
under the target context required by A. Then the trust from A to B will be established
only if the weighted average of the trust ratings from other entities is larger than a
threshold, where the weights of trust ratings are determined based on the similarity
of the context of a trust rating and the target context required by A [66].

4.2.4 Inner Dialogicality

Finally, we arrive at the bottom right quadrant of Fig. 4.1, and in this quadrant we can
place inner dialogicality [2]. By inner dialogicality, we mean the capacity of humans
to carry out internal dialogues (i.e., dialogues within the self). For example, it could

80 L. Liand Y. Wang

include evaluations of one’s own and others’ past experiences and present conduct,
which reflects personal issues and predicts the future conduct. Inner dialogues include
not only self-confidence but also self-doubt [55]. With inner dialogues, individuals
can develop an awareness of how, where, when and why they can trust or have
confidence in specific others (or in themselves).

With the proposed general structure of trust, any form of trust should fall into one
of these four quadrants. As the forms of trust in the same quadrant have the similar
properties, when we start to analysis a new form of trust, it is possible to begin the
research with analyzing the evaluation approaches for other forms of trust in the same
quadrant and then determine the corresponding evaluation approaches for the new
form of trust.

4.3 Bases of Trust

In the proposed general structure of trust, there are a lot of forms of trust. But, how
to establish trust? Research on identifying the bases of trust attempts to establish the
conditions which lead to the emergence of trust, including psychological, social, and
organizational factors that influence individuals’ expectations about others’ trustwor-
thiness and their willingness to behave trustworthily during an interaction [1, 32].
The bases of trust are significant to understand trust and measure trust in computer
science.

4.3.1 Dispositional Trust Establishment

Individuals behave differently in their general predisposition to trust different people
[32]. To explain the origins of such dispositional trust, Rotter [69] proposed that indi-
viduals tend to build up general trustworthiness about other people from their early
trust-related experiences (e.g., the basic trust proposed in Sect.4.2.1). In addition, we
usually assume that an individual has a relatively stable personality characteristic [69]
in a certain situation, i.e., a relatively stable dispositional trust in a certain situation.
However, as the dispositional trust is related to individuals’ personal characteristic,
it is usually hard to estimate its value directly.

4.3.2 History-Based Trust Establishment

In the literature, it has been pointed out that individuals’ willingness to engage
in trusting others is largely a history dependent process [6]. Interactional histories
provide decision makers with useful trust information on the estimation of others’
dispositions, intentions and motivations. With the assumption of a relatively stable

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 81

personality characteristic, this historical information also provides a basis for making
predictions about others’ future behaviors.

Interactional histories have a significant effect on two psychological facets of trust
judgment.

e First, individuals’ estimations about others’ trustworthiness depend on their prior
expectations about others’ behaviors.

e Second, these expectations vary with subsequent experience, which either validates
or discredits the expectations.

In this regard, history-based trust can be taken as an important basis for establishing
knowledge-based or personalized trust [35].

For example, in [12], with personalized weights on different transaction attributes
introduced by a service client, the trust value of a service provider can be calculated
from a collection of his/her service invocation history records.

Personalized knowledge about interaction history can provide important infor-
mation for trust estimation. However, from time to time such knowledge is hard to
obtain. In most situations, it is impossible for decision makers to accumulate sufficient
knowledge about the potential individuals with whom they would like to transact.
As a consequence, a variety of substitutes for such direct personalized knowledge
about interaction history have to be utilized [13] and many other bases of trust have
to be introduced.

4.3.3 Third Parties as Conduits of Trust

Considering the importance of personalized knowledge about interaction history
regarding others’ trustworthiness and its difficulty to obtain, third parties can be
introduced as conduits of trust because of their diffusion of trust-related information.

In our daily life, the most common examples of using third parties as conduits
of trust are gossip and word-of-mouth. These ways can provide a valuable source
of second-hand knowledge about others [8], but the effects of these ways on trust
estimations are complex and do not always have positive effects on the estimation
of others’ trustworthiness. That is because third parties usually tend to disclose
only partial information about others [8]. In particular, when an individual has a
strong relation to a prospective trustee, third parties usually prefer to convey the
information which they believe the individual wants to hear, i.e., the information
which strengthens the tie between third parties and the individual [32]. This will
increase the certainty about the trustee’s trustworthiness. Thus, in this situation,
third parties tend to amplify such trust.

Third parties also play an important role in the development and diffusion of trust
in social networks [79]. When there is no sufficient knowledge or interaction history
available, individuals can turn to third parties for transferring their well-established
trust relationships. This provides a base of trust which will be validated or discredited
with subsequent experience.

82 L. Li and Y. Wang

4.3.4 Category-Based Trust Establishment

Category-based trust refers to trust estimation based on the information regarding a
trustee’s membership in a social or an organizational category. For example, we can
take gender, race or age as a social category to establish the category-based trust.
This category information usually unknowingly influences others’ estimations about
the trustee’s trustworthiness.

The theoretical foundation of category-based trust is established from the fact that
due to the cognitive consequences of categorization and ingroup bias, individuals
tend to attribute positive characteristics such as cooperativeness and trustworthiness
to other ingroup members [7]. As a result, individuals can establish a kind of deper-
sonalized trust (i.e., category-based trust) on other ingroup members only based on
the awareness of their shared category membership.

As pointed out in [70], in SOC environments, a service provider inherits by default
the reputation of a social category it belongs to, especially when direct information
about personal interactions with the service provider is lacking. In fact, this category-
based trust is evaluated based on the trustworthiness of other members in this social
category, which has already been known to the service client.

4.3.5 Role-Based Trust Establishment

Role-based trust focuses on trust estimation based on the knowledge that a trustee
occupies a particular role in an organization rather than that a truster has the spe-
cific knowledge about the trustee’s dispositions, intentions and motivations. To some
extent, it is believable that technically competent role performance is usually aligned
with corresponding roles in organizations [3]. For example, in the case of vehicle
maintenance, we usually trust a motor mechanic to find out whether there is a prob-
lem with the car. Therefore, individuals can establish a kind of trust based on the
knowledge of role relations, even without personalized knowledge or interaction
history.

Role-based trust is established from the fact that there are some prerequisites to
occupy a role in an organization, such as the training and socialization processes
that role occupants have undergone, and their intentions to ensure their technically
competent role performance.

Role-based trust can also be quite vulnerable, especially during organizational
crises or when novel situations occur which confuse organizational roles or break
down role-based interactions.

4.3.6 Rule-Based Trust Establishment

Both formal and informal rules capture much of the knowledge about tacit under-
standings regarding transaction behaviors, interactional routines, and exchange

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 83

practices [53]. Formal rules are determined by a trust management authority to estab-
lish trust between truster and trustee. For example, with the help of PayPal®, a buyer
can trust an unknown seller for a certain transaction. In contrast, informal rules
are not explicitly determined by any trust management authority. Instead, they are
formed by tradition, religion or routines. For example, in academic environments,
early career researchers usually trust senior researchers to help them and guide their
research path.

Rule-based trust is estimated not on a conscious calculation of consequences, but
rather on shared understandings regarding rules of appropriate behaviors. Regarding
the effects of rules on individuals’ self-perceptions and expectations about other
participants in a social network, rules can create and sustain high levels of trust
within the social network [53].

4.4 Concept of Trust in Multiple Disciplines

Complex social phenomena like trust cannot be properly understood from the per-
spective of a single discipline or in separation from other social phenomena [55].
Although considerable attention to the problem of defining trust has been afforded
[32], as it is understandable that a single researcher cannot master all the knowledge
related to trust in all related disciplines, thus a concise and universally accepted def-
inition of trust has remained elusive, and the concept of trust is usually based on
analysis from the viewpoint of a single discipline, as discussed below.

From the perspective of sociology and history, according to Seligman [72], “trust
enters into social interaction in the interstices of systems, when for one reason or
another systematically defined role expectations are no longer viable”. If people play
their roles according to role expectations, we can safely conduct our own transac-
tion accordingly. The problem of trust emerges only in cases where there is “role
negotiability”, i.e., there is “open space” between roles and role expectations [72].

Seligman [72] also points out that trust is a modern phenomenon. What might
appear as trust in premodern societies was nothing but “confidence in well-regulated
and heavily sanctioned role expectations”. Modernity saw the rise of individualism
and the proliferation of societal roles. There was thus a greater degree of negotiability
of role expectations and a greater possibility for role conflicts, and this resulted in a
greater potential for the development of trust in modern society.

From the perspective of sociology, Coleman [10] proposes a four-part definition
of trust.

e Placement of trust allows actions that otherwise are not possible, i.e., trust allows
actions to be conducted based on incomplete information on the case in hand.

e If the person in whom trust is placed (i.e., a trustee) is trustworthy, then the trustor
will be better off than if s/he had not trusted. Conversely, if the trustee is untrust-
worthy, then the trustor will be worse off than if s/he had not trusted.

3 http://www.paypal.com.au/

http://www.paypal.com.au/

84 L. Li and Y. Wang

e Trust is an action that involves a voluntary transfer of resources (e.g., physical,
financial, intellectual, or temporal) from the truster to the trustee with no real
commitment from the trustee.

e A time lag exists between the extension of trust and the result of the trusting
behavior.

This definition allows for the discussion of trust behaviors, which is useful in
reasoning about human-computer trust and trust behaviors in social institutions.

From the perspective of psychology, trust is the belief in the person who you trust
to do what you expect. Individuals in relationships characterized by high levels of
social trust are more apt to exchange information and to act with benevolence toward
others than those in relationships lacking trust. Misztal [64] points out three basic
things that trust does in the lives of people: It makes social life predictable, creates
a sense of community, and makes it easier for people to work together.

From the perspective of economics, trust is often conceptualized as reliability in
transactions [55].

In all cases, trust involves many heuristic decision rules, requiring the trust man-
agement authority to handle a lot of complex information with great effort in rational
reasoning [9].

4.5 Trust Evaluation in Web Applications

The issue of trust has been studied in some Web application fields.

4.5.1 Trust Evaluation in E-Commerce Environments

Trust is an important issue in e-commerce (EC) environments. At eBay (see Footnote
2), after each transaction, a buyer can give feedback with a rating of “positive”,
“neutral” or “negative” to the system according to the service quality of the seller.
eBay calculates the feedback score S = P — N, where P is the number of positive
ratings left by buyers and N is the number of negative ratings. The positive feedback
rate R = P+LN (e.g., R = 99.1 %) is then calculated and displayed on web pages.
This is a simple trust management system providing valuable trust information to
buyers.

In [97], the Sporas system is introduced to evaluate trust for EC applications based
on the ratings of transactions in a recent time period. In this method, the ratings of later
transactions are given higher weights as they are more important in trust evaluation.
The Histos system proposed in [97] is a more personalized reputation system com-
pared to Sporas. Unlike Sporas, the reputation of a seller in Histos depends on who
makes the query, and how that person rated other sellers in the online community. In
[75], Song et al. apply fuzzy logic to trust evaluation. Their approach divides sellers

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 85

into multiple classes of trust ranks (e.g., a 5-star seller, or a 4-star seller). In [86],
Wang and Lin present some reputation-based trust evaluation mechanisms (such as
transaction-specific trust, raters’ credibility and the social relationship between a
rater and ratee) to more objectively depict the trust level of sellers on forthcoming
transactions and the relationship between interacting entities.

4.5.2 Trust Evaluation in P2P Information Sharing Networks

The issue of trust has been actively studied in Peer-to-Peer (P2P) information sharing
networks as a client peer needs to know prior to download actions which serving
peer can provide complete files. In [14], Damiani et al. propose an approach for
evaluating the trust of peers through a distributed polling algorithm and the XRep
protocol before initiating any download action. This approach adopts a binary rating
system and is based on the Gnutella (see Footnote 1) query broadcasting method.
EigenTrust [30] adopts a binary rating system as well, and aims to collect the local
trust values of all peers to calculate the global trust value of a given peer. Some other
P2P studies also adopted the binary rating system. In [91], Xiong and Liu propose a
PeerTrust model which has two main features. First, they introduce three basic trust
parameters (i.e., the feedback that a peer receives from other peers, the total number
of transactions that a peer performs, the credibility of the feedback sources) and two
adaptive factors in computing the trustworthiness of peers (i.e., transaction context
factor and the community context factor). Second, they define some general trust
metrics and formulas to aggregate these parameters into a final trust value. In [57],
Marti and Garcia-Molina propose a voting reputation system that collects responses
from other peers on a target peer. The final trust value is calculated by aggregating
the values returned by responding peers and the requesting peer’s experience with
the target peer. In [100], Zhou and Hwang discover a power-law distribution in peer
feedbacks, and develop a trust system with a dynamical selection on a small number
of power nodes that are the most trustworthy in the system.

4.5.3 Trust Evaluation in Multi-Agent Systems

Trust has also drawn much attention in the field of multi-agent systems. In [77], Teacy
et al. introduce the TRAVOS system (Trust and Reputation model for Agent-based
Virtual OrganisationS) which calculates an agent’s trust on an interaction partner
using probability theory, taking into account the past interactions between agents.
In [21], Griffiths proposes a multi-dimensional trust model which allows agents
to model the trust value of others according to various criteria. In [70], Sabater
and Sierra propose a model discussing trust development between groups. When
calculating the trust from individual A to individual B, a few factors are considered,
e.g., the interaction between A and B, the evaluation of A’s group to B and B’s group,

86 L. Liand Y. Wang

and A’s evaluation to B’s group. In [15], a community-wide trust evaluation method
is proposed where the final trust value is computed by aggregating the ratings (termed
as votes in [15]) and other aspects (e.g., the rater’s location and connection medium).
In addition, this approach computes the trust level of an assertion (e.g., trustworthy
or untrustworthy) as the aggregation of multiple fuzzy values representing the trust
resulting from human interactions. In [26], during trust evaluation, the motivations
of agents and the dependency relationships among them are also taken into account.

4.5.4 Trust-Aware Recommendation Systems

Conventional recommender systems mainly employ the information filtering tech-
niques for making recommendations. In such systems, collaborative filtering
approaches [25] or content-based filtering approaches [16, 65] are used for mak-
ing recommendations, which collect ratings from the users with similar profiles or
the items similar to the one a user liked in the past, respectively. However, these
conventional approaches take users individually and do not address the trustworthi-
ness of recommendations directly. In addition, as pointed out in [71], the sparsity of
data in recommender systems has been an outstanding problem, which makes the
filtering techniques less effective. Nevertheless, the ultimate goal of recommender
systems is to provide high quality and trustworthy recommendations that can very
likely be accepted by users. To this end, using the reviews/recommendations from
social networks has drawn much attention in recent studies [49, 50].

Social influence occurs when one’s emotions, opinions or behaviours are affected
by others.* As indicated in Social Psychology [5, 18, 93], in the real society, a person
prefers the recommendations from trusted friends. In addition, based on statistics,
Sinha and Swearingen [74] and Bedi et al. [4] have demonstrated that given a choice
between the recommendations from trusted friends and those from recommender
systems, in terms of quality and usefulness, trusted friends’ recommendations are
more preferred.

Social networks are important to recommender systems due to the data sparsity
problem [49, 71] and the scenarios in real life that people turn to friends and friends’
friends for soliciting opinions [5, 93], raising the need of trust propagation/inference
in social networks (i.e., evaluating the trust between two non-adjacent participants).
Earlier studies have adopted the averaging strategies [19], multiplication strategies
[42, 82], or probabilistic approaches [33, 34] based on the trust values between
adjacent participants. However, they ignore contextual factors that influence trust
relations and trust inference (e.g., a person’s recommendation role [89] or the social
intimacy between people [46]), and/or simply take the confidence to other people as
a probabilistic value without discussing from where the confidence comes. Most of
the existing studies usually model their approaches intuitively, without following the
principles from Social Science or Social Psychology. In some recent work [46—48],

4 http://qualities-of-a-leader.com/personal-mbti-type-analysis/

http://qualities-of-a-leader.com/personal-mbti-type-analysis/

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 87

following the principles in Social Psychology [1, 62], both the recommendation role
resulting from social positions (e.g., a professor) and expertise, and trust and social
intimacy degree between adjacent participants in social networks have been taken
into account.

4.5.5 Trust Evaluation in Social Networks

The studies of social network properties can be traced back to 1960s when the
small-world characteristic in social networks was validated by Milgram [61] (i.e., the
average path length between two Americans was found to be about 6.6 hops). Inrecent
years, sociologists and computer scientists investigated the characteristics of popular
online social networks (OSNs) [63] (e.g., Facebook,’ MySpace6 and Flickr’), and
validated the small-world and power-law characteristics (i.e., the probability that a
node has a degree k is proportional to k=", r > 1).

In recent years, the new generation of social network based web application sys-
tems has drawn the attention from both academia and industry. The study in [45]
has pointed out that it is a trend to build up social network based web applications
(e.g., e-commerce or online recruitment systems). In real applications, according to
a survey on 2600 hiring managers in 2008 by CareerBuilder (careerbuilder.com, a
popular job hunting website), 22 % of those managers used social networking sites
to manually investigate potential employees. The ratio increased to 45 % in June
2009 and 72 % in January 2010. In Oct. 2011, eBay (see Footnote 2) announced their
strategic plan to deepen the relationship with Facebook (see Footnote 5) for creating
a new crop of e-commerce applications with social networking features, integrating
both their e-commerce platform and social networking platform seamlessly.®

In the literature, the issue of trust becomes increasingly important in social net-
works. In [82], Walter et al. identify that network density, the similarity of prefer-
ence between agents, and the sparseness of knowledge about the trustworthiness of
recommendations are crucial factors for trust-oriented recommendations in social
networks. However, the trust-oriented recommendation can be attacked in various
ways, such as sybil attack, where the attacker creates a potentially unlimited number
of identities to provide feedback and increase trust level. In [95], Yu et al. present
SybilGuard, a protocol for limiting the corruptive influences of sybil attacks, which
depends on the established trust relationship between users in social networks.

Trust propagation, during which the trust of a target agent can be estimated from
the trust of other agents, is an important problem in social networks. In [20], Golbeck
and Hendler present trust propagation algorithms based on binary ratings. In social

3 http://www.facebook.com
6 http://myspace.com
7 http://flickr.com

8 Refer to the Reuters news “eBay and Facebook unveil e-commerce partnership” at http://www.
reuters.com/article/2011/10/12/ebay-facebook-idUSN1E79B22Y20111012.

http://www.facebook.com
http://myspace.com
http://flickr.com
http://www.reuters.com/article/2011/10/12/ebay-facebook-idUSN1E79B22Y20111012
http://www.reuters.com/article/2011/10/12/ebay-facebook-idUSN1E79B22Y20111012

88 L. Liand Y. Wang

networks, many more non-binary trust propagation approaches have been proposed.
In [22], Guha et al. develop a framework dealing with not only trust propagation
but also distrust propagation. In [24], Hang et al. propose an algebraic approach to
propagating trust in social networks, including a concatenation operator for the trust
aggregation of sequential invocation, an aggregation operator for the trust aggrega-
tion of parallel invocation, and a selection operator for trust-oriented multiple path
selection. In [80], Victor et al. present a trust propagation model, which takes into
account fuzzified trust, fuzzified distrust, unavailable trust information and contra-
dictory trust information simultaneously.

4.6 Trust Evaluation in Service-Oriented Environments

In recent years, Service-Oriented Computing (SOC) has emerged to be an increas-
ingly important research area attracting attention from both the research and industry
communities [51, 67]. In SOC applications, various services are provided to clients
by different providers in a loosely-coupled environment. In such context, a service
can refer to a transaction, such as selling a product online (i.e., the traditional online
services), or a functional component implemented by Web service technologies [42].
When a client looks for a service from a large set of services offered by different
service providers, in addition to functionality, the reputation-based trust level of a
service provider is a very important concern from the view point of the service client
[29, 42, 44, 51]. It is also a critical task for the trust management authority to be
responsible for maintaining the list of reputable and trustworthy services and service
providers, and making these information available to service clients [67].

In general, in a trust management mechanism enabled system, service clients can
provide feedback and trust ratings after transactions. Then, the trust management
system can calculate the trust value based on collected ratings reflecting the quality
of recent transactions, with more weights assigned to later transactions [37, 83]. The
trust value can be provided to service clients by publishing it on web or responding
to their requests [37, 43]. An effective and efficient trust management system is
highly desirable and critical for service clients to identify potential risks, providing
objective trust results and preventing huge financial loss [29].

In the literature, the issue of trust has received much attention in the field of SOC.
In [81], Vu et al. present a model to evaluate service trust by comparing the advertised
service quality and the delivered service quality. If the advertised service quality is
as good as the delivered service quality, the service is reputable. In [87], Wang et al.
propose some trust evaluation metrics and a formula for trust computation with which
a final trust value is computed. In addition, they propose a fuzzy logic based approach
for determining reputation ranks that particularly differentiate the service periods of
new and old (long-existing) service providers. The aim is to provide incentives to
new service providers and penalize those old service providers with poor service
quality. In [52], Malik and Bouguettaya propose a set of decentralized techniques
aiming at evaluating reputation-based trust with the ratings from clients to facilitate

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 89

the trust-oriented selection and composition of Web services. In [12], Conner et al.
present a trust model that allows service clients with different trust requirements to use
different weight functions that place emphasis on different transaction attributes. This
customized trust evaluation provides flexibility for service clients to have different
trust values from the same feedback data.

Now let us introduce some important topics on trust evaluation in service-oriented
environments.

4.6.1 Trust Vector and Its Evaluation

In the literature, in most existing trust evaluation models [14, 30, 44, 77, 81, 85, 87,
91, 97], a single final trust level (F7TL) is computed to reflect the general or global
trust level of a service provider accumulated in a certain time period (e.g., in the
latest 6 months). This FTL may be presumably taken as a prediction of trustworthi-
ness for forthcoming transactions. Single-trust-value approaches are easily adopted
in trust-oriented service comparison and selection. However, a single trust value can-
not preserve the trust features well, e.g., whether and how the trust trend changes.
Certainly, a full set of trust ratings can serve for this purpose, but it is usually a large
dataset as it should cover a long service period. A good option is to compute a small
dataset to present a large set of trust ratings and well preserve its trust features.

In [37, 43], Li and Wang propose a trust vector with three values, including final
trust level (FTL), service trust trend (S77) and service performance consistency
level (SPCL), to depict a set of trust ratings. In addition to FTL, the service trust
trend indicates whether the service trust ratings are becoming worse or better. ST7 is
obtained from the slope of a regression line that best fits the set of ratings distributed
over a time interval. The service performance consistency level indicates the extent
to which the computed STT fits the given set of trust ratings. However, the computed
trust vector can represent the set of ratings well only if these ratings imply consistent
trust trend changes and are all very close to the obtained regression line.

In a more general case with trust ratings for a long service history, multiple time
intervals (MTI) have to be determined, within each of which a trust vector can be
obtained and can represent well all the corresponding ratings. In [41], Li and Wang
propose three trust vector based MTI analysis approaches, which are better than the
two existing boundary included MTI algorithms in [83]. The proposed bisection-
based boundary excluded greedy MTI algorithm has a lower time complexity, and
it is much faster than any of the other four MTI algorithms. The proposed boundary
mixed optimal MTI analysis algorithm can guarantee the representation of a large
set of trust ratings with a minimal set of values while highly preserving the trust
features. Therefore, a small set of data can represent well a large set of trust ratings
with well preserved trust features.

In the literature, there exist some other approaches using trust vectors, with dif-
ferent focuses. In [68], Ray and Chakraborty propose a trust vector that consists of
the experience of a truster about a trustee, the knowledge of the truster regarding the

90 L. Liand Y. Wang

trustee for a particular context, and the recommendation of other trustees. The focus
of this model is how to address these three independent aspects of trust in evalua-
tions. In [99], Zhao and Li propose a method using a trust vector to represent the
directed link with a trust value between two peers. The trust vector includes a truster,
atrustee and the trust value that the truster gives to the trustee. In [85], Wang and Lim
propose an approach to evaluate situational transaction trust in e-commerce environ-
ments, which binds a new transaction with the trust ratings of previous transactions.
Since the situational trust vector includes service specific trust, service category trust,
transaction amount category specific trust and price trust [84], it can deliver more
objective transaction specific trust information to buyers and prevent some typical
attacks.

4.6.2 Trust Evaluation in Composite Services

To satisfy the specified functionality requirement, a service may have to invoke
other services forming composite Web services with complex invocations and trust
dependency among services and service providers [60]. Meanwhile, given a set of
various services, different compositions may lead to different service structures. In
[58, 59], Medjahed et al. present some frameworks and algorithms for automatically
generating composite services from specifications and rules. Although these certainly
enrich the service provision, they greatly increase the computation complexity and
thus make trustworthy service selection and discovery a very challenging task.

In real applications, the criteria of searching services should take into account
not only functionalities but also other properties, such as QoS (quality of service)
and trust. In the literature, a number of QoS-aware Web service selection mecha-
nisms have been developed, aiming at QoS improvement in composite services [23,
90, 98]. In [98], Zeng et al. present a general and extensible model to evaluate the
QoS of composite services. Based on their model, a service selection approach has
been introduced using linear programming techniques to compute optimal execution
plans for composite services. The work in [23] addresses the selection and composi-
tion of Web services based on functional requirements, transactional properties and
QoS characteristics. In this model, services are selected in a way that satisfies user
preferences, expressed as weights over QoS and transactional requirements. In [90],
Xiao and Boutaba present an autonomic service provision framework for establish-
ing QoS-assured end-to-end communication paths across domains. Their algorithms
can provide QoS guarantees over domains. The above works have their merits in
different aspects. However, none of them has taken parallel invocation into account,
which is fundamental and one of the most common existing invocations in composite
services [60, 96].

Menascé [60] adopts an exhaustive search method to measure service execution
time and cost involving probabilistic, parallel, sequential and fastest-predecessor-
triggered invocations. However, the algorithm complexity is exponential. Yu et al.
[96] study the service selection problem with multiple QoS constraints in composite

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 91

services, and propose two optimal heuristic algorithms: the combinatorial algorithm
and the graph-based algorithm. The former one models the service selection as a
multidimension multichoice 0-1 knapsack problem. The latter one can be taken as a
multiconstraint optimal path problem. Nevertheless, none of these works addresses
any aspect of trust.

As pointed in [94], in richer service environments such as SOC or e-commerce, a
rating in [0, 1] is more suitable. In [92], Xu et al. propose a reputation-enhanced QoS-
based Web service discovery algorithm for service matching, ranking and selection
based on existing Web service technologies. Malik and Bouguettaya [52] propose a
set of decentralized techniques aiming at evaluating reputation-based trust with the
ratings from peers to facilitate trust-based selection and composition of Web services.

4.6.3 Subjective Trust Evaluation

Conceptually, if the trust value is in the range of [0, 1], it can be taken as the subjective
probability by which, one party expects that another party can perform a given action
[29].

In [28], Jgsang describes a framework for combining and assessing subjective
ratings from different sources based on Dempster-Shafer belief theory, which is a
generalization of the Bayesian theory of subjective probability. Wang and Singh
[88] set up a bijection from subjective ratings to trust values with a mathematical
understanding of trust in a variety of multiagent systems. However, their models
use either a binary rating (positive or negative) system or a triple rating (positive,
negative or uncertain) systems that are more suitable for security-oriented or P2P
file-sharing trust management systems.

Considering service invocation structures in composite services, in [38] Li and
Wang propose a global trust evaluation approach, in which each rating is in the range
of [0, 1]. However, this approach has not taken the subjective probability property
of trust into account. In [42], Li et al. propose a Bayesian inference based subjec-
tive trust evaluation approach which aggregates the subjective ratings from clients.
Nevertheless, this approach still has some drawbacks. Firstly, it assumes that the trust
ratings of each service component conform to a normal distribution, which is contin-
uous. However, trust ratings adopted in most existing rating systems (see Footnote
2)9’ 10 are discrete numbers. Thus, they cannot conform to a continuous distribution.
Secondly, the proposed subjective probability approach (Bayesian inference) is to
evaluate the trust values of service components, which is not used in the global trust
evaluation of composite services. Therefore, although service invocation structures
have been taken into account, the global trust evaluation of composite services does
not keep the subjective probability property of trust. As in most existing rating sys-
tems (see Footnotes 2, 9 and 10) trust ratings are discrete numbers, the numbers of

? http://www.epinions.com/
10 http://www.youtube.com/

http://www.epinions.com/
http://www.youtube.com/

92 L. Li and Y. Wang

the occurrences of all ratings of each service component conform to a multinomial
distribution [39]. Hence, in [39] Li and Wang propose a subjective trust estimation
approach for service components based on Bayesian inference, which can aggregate
the non-binary discrete subjective ratings given by service clients and keep the sub-
jective probability property of trust ratings and trust results. Although the joint sub-
jective probability approach proposed in [39] considers the trust dependency between
service components caused by direct invocations, it does not take into account the
composition of trust dependency, which is caused by indirect invocations in compos-
ite services. To solve this problem, in [40], on the basis of trust dependency caused
by direct invocations, Li and Wang propose a SubjectivE probabiLity basEd deduC-
TIVE (SELECTIVE) approach to evaluate the subjective global trustworthiness of a
composite service. All these processes follow subjective probability theory and keep
the subjective probability property of trust in evaluations.

4.7 Trust Evaluation Taxonomy

Trust evaluation is based on the trusters’ knowledge of trust, which is only in
the trusters’ minds. This makes the analysis process highly human-dependent
and therefore prone to errors. Knowledge of trust can be abstract/general, or
domain/application specific, etc. From different viewpoints, the trust evaluation
approaches in Web applications (e.g., the ones presented in Sect.4.5) can be cat-
egorized into different taxonomies as follows.

4.7.1 Trust Evaluation Technique Based Taxonomy

Similar to the taxonomy in [15, 83], we can categorize the above mentioned trust
evaluation approaches in Web applications as follows according to their computation
techniques. Some approaches may correlate to more than one category. Please refer
to Table4.1 for details.

e Category I: In this category, to evaluate the trust value it adopts the approach of
calculating the summation or weighted average of ratings, like the models in [15,
21, 85, 87, 91, 971.

In addition, based on this additive approach, a few studies address how to compute
the final trust value by considering appropriate metrics. For example,

— later transactions are more important [97], in which the ratings from later trans-
actions are assigned larger weights;

— the evaluation approach should provide incentive to consistently good quality
services and punish malicious service providers [87, 91].

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 93

Table 4.1 Trust evaluation approaches under trust evaluation technique based taxonomy

Category 1 Category 2 Category 3 Category 4 Category 5

[12] /
[15] v v
[20] v

[21] v

[22] v

[24] v

[28]
[39]
[52]
[77] v
[80]
[82]
[85]
[87]
[91]
[95]
[97]
[100]

LA

LK
L

LA

— Some other studies also consider context factors, e.g., the new transaction
amount and service category [85], the rater’s profile and location [15], or the
relationship between the rater’s group and the ratee [21].

e Category 2: This category addresses the subjective property of trust for trust rating
aggregation, e.g., the work in [28, 39], where subjective probability theory [27] is
adopted in trust evaluation.

e Category 3: The approaches in this category (e.g., [77]) adopt Bayesian systems,
which take binary ratings as input and compute reputation scores by statistically
updating beta probability density functions (PDF).

e Category 4: This category uses flow models (or network structures), e.g., in [12,
20, 22, 24, 80, 82, 95, 97, 100], which compute the trust of a target through some
intermediate participants and the trust dependency between them.

e Category 5: While each of the above categories calculates a crisp value, the last
category adopts fuzzy models, e.g., in [15, 87], where membership functions are
used to determine the trustworthiness of targets.

4.7.2 Trust Structure Based Taxonomy

According to the general structure of trust described in Sect. 4.2, the trust evaluation
approaches in Web applications (e.g., the ones presented in Sect.4.5) can be cate-
gorized into the first quadrant of Fig.4.1. This is not a big surprise since each trust

94 L. Li and Y. Wang

evaluation approach in Web applications focuses on trust in a specific environment
(e.g., e-commerce, P2P networks, service-oriented computing, multi-agent systems
or social networks), and reflective and macro-social trust belongs to the first quadrant.

In contrast, the second and third quadrants focus on primary (taken-for-granted)
trust, and there is no necessity to have any trust evaluation approach in these quad-
rants. The fourth quadrant focuses on self trust evaluation.

4.7.3 Trust Bases Based Taxonomy

According to the bases of trust proposed in Sect. 4.3, the trust evaluation approaches
presented in Sect.4.5 can be analyzed as follows to find out which base of trust is
adopted in each trust evaluation approach. Some approaches may be based on more
than one bases of trust. Please refer to Table 4.2 for details.

Table 4.2 Trust evaluation approaches under trust bases base taxonomy

Dispositional History- Third Parties Category- Role- Rule-
based as Conduits based based based

[12] i

[14] v

[15] i
[20]
[21]
[22]
[24]
[26]
(28]
[30]
[52]
[57]
[70]
[75]
[77] i
[80]
[81]
[82]
[85]
[86]
[87]
[91]
[95]
[97]
[100]

LA &
DG S S LA &

LA L &«
S

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 95

e Dispositional Trust focuses on the personality of a truster, with the assumption of
a relatively stable personality characteristic, like the model in [77].

e History-based Trust is the most widely adopted trust base in trust evaluation. For
example, it has been taken into account in [12, 14, 26, 30, 52, 57, 70, 75, 81,
85-87, 91, 97, 100].

e Third Parties as Conduits of Trust is another widely adopted trust base to evaluate
trust. For example, it has been adopted by the models in [20, 22, 24, 26, 28, 70,
717, 80, 82, 95, 100].

e Category-based Trust addresses the information regarding a trustee’s membership
in a social or organizational category, e.g., in [70].

e Role-based Trust uses the knowledge that a trustee occupies a particular role in
the organization, e.g., the work in [15, 26, 86].

e Rule-based Trust specifies formal or informal rules, which can determine trust,
like the models in [21, 28, 87].

4.8 Conclusions

This chapter provides a general overview of the research studies on trust and trust
evaluation. Conceptually, we present the general structure of trust, the bases of trust
and the concepts of trust in different disciplines. The general structure of trust presents
a general cross-disciplinary analysis of trust, and provides a general picture contain-
ing all kinds of trust. The bases of trust illustrate what leads to the emergence of trust.
The concepts of trust present different aspects of trust from the different viewpoints
of different disciplines.

In addition, the typical trust evaluation methods are introduced in a variety of
Web application areas, including e-commerce, P2P networks, multi-agent systems,
recommendation systems, social networks and service-oriented computing. Finally,
these trust evaluation methods in Web applications can be categorized into different
taxonomies. The trust evaluation methods presented in this chapter cover a wide range
of applications and are based on many different types of mechanisms, and there is no
single trust evaluation method that will be suitable in all contexts and applications.
This roadmap provides not only the necessary background for on-going research
activities and projects, but also the solid foundations for deciding on potential future
research on trust evaluation in broader contexts.

References

1. P.S. Adler. Market, hierarchy, and trust: The knowledge economy and the future of capitalism.
Organization Science, 12(2):215-234, 2001.

2. M. Bakhtin. Speech Genres and Other Late Essays. University of Texas Press, 1986.

3. B. Barber. The logic and limits of trust. Rutgers University Press, 1983.

96

4.

5

6.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

L. Li and Y. Wang

P. Bedi, H. Kaur, and S. Marwaha. Trust based recommender system for semantic web. In
1JCAI 2007, pages 2677-2682, 2007.

E. Berscheid and H. T. Reis. Attraction and Close Relationships in The Handbook of Social
Psychology. Oxford University Press, 1998.

S.D. Boon and J. G. Holmes. The dynamics of interpersonal trust: Resolving uncertainty in the
face of risk. In R. Hinde and J. Groebel, editors, Cooperation and Prosocial Behavior, pages
167-182. Cambridge Univ. Press, 1991.

. M. B. Brewer. In-group favoritism: the subtle side of intergroup discrimination. In D. M.

Messick and A. E. Tenbrunsel, editors, Codes of Conduct: Behavioral Research and Business
Ethics, pages 160—171. Russell Sage Found, 1996.

. R. S. Burt and M. Knez. Kinds of third-party effects on trust. Rationality and Society, 7:255—

292, 1995.

. C. Castelfranchi and R. Falcone. Trust is much more than subjective probability: Mental com-

ponents and sources of trust. In HICSS 2000, 2000.

J. Coleman. Foundations of Social Theory. Belknap Press of Harvard University Press, 1998.
R. Collins. Sociological Insight: an Introduction to Non-obvious Sociology. Oxford University
Press, 1992.

W. Conner, A. Iyengar, T. A. Mikalsen, I. Rouvellou, and K. Nahrstedt. A trust management
framework for service-oriented environments. In WWW 2009, pages 891-900, 2009.

D. W. Creed and R. E. Miles. Trust in organizations: a conceptual framework linking organi-
zational forms, managerial philosophies, and the opportunity costs of controls. In R. Kramer
and T. Tyler, editors, Trust in organizations: Frontiers of Theory and Research, pages 16-38.
Sage Publications, 1996.

E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P. Samarati, and F. Violante. A reputation-
based approach for choosing reliable resources in peer-to-peer networks. In ACM Conference
on Computer and Communications Security (CCS 2002), pages 207-216, 2002.

E. Damiani, S. D. C. di Vimercati, P. Samarati, and M. Viviani. A wowa-based aggregation
technique on trust values connected to metadata. Electr. Notes Theor. Comput. Sci., 157(3):131—
142, 2006.

M. Deshpande and G. Karypis. Item-based top- n recommendation algorithms. ACM Trans.
Inf. Syst., 22(1):143-177, 2004.

E. Erikson. Identity: Youth and Crisis. W. W. Norton & Company, 1968.

S. Fiske. Social Beings: Core Motives in Social Psychology. John Wiley and Sons Press, 2009.
J. Golbeck. Generating predictive movie recommendations from trust in social networks. In
iTrust 2006, pages 93—104, 2006.

J. Golbeck and J. A. Hendler. Inferring binary trust relationships in web-based social networks.
ACM Trans. Internet Techn., 6(4):497-529, 2006.

N. Griffiths. Task delegation using experience-based multi-dimensional trust. In AAMAS 2005,
pages 489496, 2005.

R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust. In
WWW 2004, pages 403—412, 2004.

J. E. Haddad, M. Manouvrier, G. Ramirez, and M. Rukoz. QoS-driven selection of web services
for transactional composition. In ICWS 2008, pages 653-660, 2008.

C.-W. Hang, Y. Wang, and M. P. Singh. Operators for propagating trust and their evaluation in
social networks. In AAMAS 2009, pages 1025-1032, 2009.

J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for per-
forming collaborative filtering. In SIGIR 1999, pages 230-237, 1999.

T. D. Huynh, N. R. Jennings, and N. R. Shadbolt. An integrated trust and reputation model
for open multi-agent systems. Autonomous Agents and Multi-Agent Systems, 13(2):119-154,
2006.

R. Jeffrey. Subjective Probability: The Real Thing. Cambridge University Press, April 2004.
A. Jgsang. Subjective evidential reasoning. In IPMU 2002, 2002.

A. Jgsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service
provision. Decision Support Systems, 43(2):618-644, 2007.

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 97

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

55.

56.
57.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for reputation
management in p2p networks. In WWW 2003, pages 640-651, 2003.

D. H. Knight and N. L. Chervany. The meaning of trust. Technical Report WP9604, University
of Minnesota, Management Information Systems Research Center, 1996.

R. M. Kramer. Trust and distrust in organizations: Emerging perspectives, enduring questions.
Annual Review of Psychology, 50:569-598, 1999.

U. Kuter and J. Golbeck. Sunny: A new algorithm for trust inference in social networks using
probabilistic confidence models. In AAAI 2007, pages 1377-1382, 2007.

U. Kuter and J. Golbeck. Using probabilistic confidence models for trust inference in web-based
social networks. ACM Trans. Internet Techn., 10(2), 2010.

R.J.Lewicki and B. B. Bunker. Trust in relationships: a model of trust development and decline.
In B. Bunker and J. Rubin, editors, Conflict, Cooperation, and Justice. Jossey-Bass, 1995.

L. Li. Trust Evaluation in Service-Oriented Environments. PhD thesis, Macquarie University,
2011.

L. Li and Y. Wang. A trust vector approach to service-oriented applications. In ICWS 2008,
pages 270-277, 2008.

L. Li and Y. Wang. Trust evaluation in composite services selection and discovery. In /IEEE
SCC 2009, pages 482-485, 2009.

L. Li and Y. Wang. Subjective trust inference in composite services. In AAAI 2010, pages
1377-1384, 2010.

L.Liand Y. Wang. A subjective probability based deductive approach to global trust evaluation
in composite services. In ICWS 2011, pages 604-611, 2011.

L. Li and Y. Wang. The study of trust vector based trust rating aggregation in service-oriented
environments. World Wide Web, In press, 2012.

L. Li, Y. Wang, and E.-P. Lim. Trust-oriented composite service selection and discovery. In
ICSOC/ServiceWave 2009, pages 50-67, 2009.

L.Li, Y. Wang, and V. Varadharajan. Fuzzy regression based trust prediction in service-oriented
applications. In ATC 2009, pages 221-235, 2009.

M. Li, X. Sun, H. Wang, Y. Zhang, and J. Zhang. Privacy-aware access control with trust
management in web service. World Wide Web, 14(4):407-430, 2011.

G. Liu, Y. Wang, and L. Li. Trust management in three generations of web-based social net-
works. In CPSC 2009, pages 446-451, 2009.

G. Liu, Y. Wang, and M. A. Orgun. Optimal social trust path selection in complex social
networks. In AAAI 2010, pages 1391-1398, 2010.

G. Liu, Y. Wang, and M. A. Orgun. Quality of trust for social trust path selection in complex
social networks. In AAMAS 2010, pages 1575-1576, 2010.

G. Liu, Y. Wang, M. A. Orgun, and E.-P. Lim. A heuristic algorithm for trust-oriented service
provider selection in complex social networks. In /EEE SCC 2010, pages 130-137, 2010.

H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using probabilistic
matrix factorization. In CIKM 2008, pages 931-940, 2008.

H. Ma, T. C. Zhou, M. R. Lyu, and 1. King. Improving recommender systems by incorporating
social contextual information. ACM Trans. Inf. Syst., 29(2):9, 2011.

Z. Malik and A. Bouguettaya. Rater credibility assessment in web services interactions. World
Wide Web, 12(1):3-25, 2009.

Z.Malik and A. Bouguettaya. RATEWeb: Reputation assessment for trust establishment among
web services. VLDB J., 18(4):885-911, 2009.

J. G. March. Primer on Decision Making: How Decisions Happen. Free Press, 1994.

1. Markova. Trust and Democratic Transition in Post-Communist Europe. Oxford University
Press, 2004.

1. Markova, A. Gillespie, and J. Valsiner. Trust and Distrust: Sociocultural Perspectives. Infor-
mation Age Publishing, 2008.

S. Marsh. Formalising Trust as a Computational Concept. University of Stirling, 1994.

S. Marti and H. Garcia-Molina. Limited reputation sharing in p2p systems. In ACM EC 2004,
pages 91-101, 2004.

98

58.

59.

60.

61.
62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

L. Li and Y. Wang

B. Medjahed and A. Bouguettaya. A multilevel composability model for semantic web services.
IEEE Trans. Knowl. Data Eng., 17(7):954-968, 2005.

B. Medjahed, A. Bouguettaya, and A. K. ElImagarmid. Composing web services on the semantic
web. VLDB J., 12(4):333-351, 2003.

D. A. Menascé. Composing web services: A QoS view. I[EEE Internet Computing, 8(6):88-90,
2004.

S. Milgram. The small world problem. Psychology Today, 2(30), 1967.

R. Miller, D. Perlman, and S. Brehm. Intimate Relationships. McGraw-Hill College Press,
2007.

A. Mislove, M. Marcon, P. K. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement and
analysis of online social networks. In Internet Measurement Conference 2007, pages 2942,
2007.

B. Misztal. Trust in Modern Societies: The Search for the Bases of Social Order. Polity Press,
1996.

R. J. Mooney and L. Roy. Content-based book recommending using learning for text catego-
rization. In ACM DL 2000, pages 195-204, 2000.

L. Mui. Computational Models of Trust and Reputation: Agents, Evolutionary Games, and
Social Networks. PhD thesis, Massachusetts Institute of Technology, Dec 2002.

M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented computing: a
research roadmap. Int. J. Cooperative Inf. Syst., 17(2):223-255, 2008.

I. Ray and S. Chakraborty. A vector model of trust for developing trustworthy systems. In 9th
European Symposium on Research Computer, Security, pages 260-275, 2004.

J. B. Rotter. Interpersonal trust, trustworthiness, and gullibility. American Psychologist,
35(1):1-7, 1980.

J. Sabater and C. Sierra. REGRET: reputation in gregarious societies. In Agents 2001, pages
194-195, 2001.

B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based collaborative filtering rec-
ommendation algorithms. In WWW 2001, pages 285-295, 2001.

A. B. Seligman. The Problem of Trust. Princeton University Press, 2000.

G. Simmel. The Sociology of Georg Simmel. The, Free Press, 1950.

R. R. Sinha and K. Swearingen. Comparing recommendations made by online systems and
friends. In DELOS Workshop 2001: Personalisation and Recommender Systems in Digital
Libraries, 2001.

S. Song, K. Hwang, R. Zhou, and Y.-K. Kwok. Trusted p2p transactions with fuzzy reputation
aggregation. [EEE Internet Computing, 9(6):24-34, 2005.

T. Strang, C. Linnhoff-Popien, and K. Frank. Cool: A context ontology language to enable con-
textual interoperability. In IFIP WG6.1 International Conference on Distributed Applications
and Interoperable Systems 2003, pages 236-247, 2003.

W.T.L. Teacy, J. Patel, N. R. Jennings, and M. Luck. Travos: Trust and reputation in the context
of inaccurate information sources. Autonomous Agents and Multi-Agent Systems, 12(2):183—
198, 2006.

S. Toivonen, G. Lenzini, and I. Uusitalo. Context-aware trust evaluation functions for dynamic
reconfigurable systems. In Proceedings of the WWW’06 Workshop on Models of Trust for the
Web (MTW’06), 2006.

B. Uzzi. Social structure and competition in interfirm networks: The paradox of embeddedness.
Administrative Science Quarterly, 42(1):35-67, 1997.

P. Victor, C. Cornelis, M. D. Cock, and P. P. da Silva. Gradual trust and distrust in recommender
systems. Fuzzy Sets and Systems, 160(10):1367-1382, 2009.

L.-H. Vu, M. Hauswirth, and K. Aberer. QoS-based service selection and ranking with trust
and reputation management. In CooplS 2005, pages 466—483, 2005.

F. E. Walter, S. Battiston, and F. Schweitzer. A model of a trust-based recommendation system
on a social network. Autonomous Agents and Multi-Agent Systems, 16(1):57-74, 2008.

Y. Wang and L. Li. Two-dimensional trust rating aggregations in service-oriented applications.
IEEE T. Services Computing, 4(4):257-271, 2011.

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 99

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

Y. Wang, L. Li, and E.-P. Lim. Price trust evaluation in e-service oriented applications. In
CEC/EEE 2008, pages 165-172, 2008.

Y. Wang and E.-P. Lim. The evaluation of situational transaction trust in e-service environments.
In ICEBE 2008, pages 265-272, 2008.

Y. Wang and K.-J. Lin. Reputation-oriented trustworthy computing in e-commerce environ-
ments. [EEE Internet Computing, 12(4):55-59, 2008.

Y. Wang, K.-J. Lin, D. S. Wong, and V. Varadharajan. Trust management towards service-
oriented applications. Service Oriented Computing and Applications, 3(2):129-146, 2009.

Y. Wang and M. P. Singh. Formal trust model for multiagent systems. In International Joint
Conference on Artificial Intelligence (IJCAI 2007), pages 1551-1556, 2007.

Y. Wang and V. Varadharajan. Role-based recommendation and trust evaluation. In CEC/EEE
2007, pages 278-288, 2007.

J. Xiao and R. Boutaba. QoS-aware service composition and adaptation in autonomic commu-
nication. IEEE Journal on Selected Areas in Communications, 23(12):2344-2360, 2005.

L. Xiong and L. Liu. Peer Trust: Supporting reputation-based trust for peer-to-peer electronic
communities. I[EEE Trans. Knowl. Data Eng., 16(7):843-857, 2004.

Z. Xu, P. Martin, W. Powley, and F. Zulkernine. Reputation-enhanced QoS-based web services
discovery. In ICWS 2007, pages 249-256, 2007.

I. Yaniv. Receiving other peoples’ advice: Influence and benefit. J. Artif. Intell. Res. (JAIR),
93(1).

B. Yu, M. P. Singh, and K. Sycara. Developing trust in large-scale peer-to-peer systems. /EEE
Symposium on Multi-Agent Security and Survivability, pages 1-10, 2004.

H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman. Sybilguard: defending against sybil
attacks via social networks. IEEE/ACM Trans. Netw., 16(3):576-589, 2008.

T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms for web services selection with end-to-end
Qos constraints. TWEB, 1(1), 2007.

G. Zacharia and P. Maes. Trust management through reputation mechanisms. Applied Artificial
Intelligence, 14(9):881-907, 2000.

L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality driven web
services composition. In WWW 2003, pages 411421, 2003.

H. Zhao and X. Li. Vectortrust: Trust vector aggregation scheme for trust management in
peer-to-peer networks. In /8th International Conference on Computer Communications and
Networks, pages 1-6, 2009.

100. R. Zhou and K. Hwang. Powertrust: A robust and scalable reputation system for trusted

peer-to-peer computing. I[EEE Trans. Parallel Distrib. Syst., 18(4):460-473, 2007.

Chapter 5
Web Service-Based Trust Management in Cloud
Environments

Talal H. Noor and Quan Z. Sheng

Abstract Trustis one of the most concerned obstacles for the adoption and growth of
cloud computing. Although several solutions have been proposed recently in man-
aging trust feedbacks in cloud environments, how to determine the credibility of
trust feedbacks is mostly neglected. In addition, guaranteeing the availability of the
trust management service is a difficult problem due to the unpredictable number
of cloud service consumers and the highly dynamic nature of cloud environments.
In this chapter, we propose a framework that uses Web services to improve ways
on trust management in cloud environments. In particular, we introduce an adap-
tive credibility model that distinguishes between credible and malicious feedbacks
by considering the cloud service consumers’ capability and majority consensus of
their feedbacks. We also present a replication determination model that dynamically
decides the optimal replica number of the trust management service so that the trust
management service can be always maintained at a desired availability level. The
approaches have been validated by a prototype system and experimental results.

5.1 Introduction

Over the past few years, cloud computing is gaining a considerable momentum as a
new computing paradigm for providing flexible services, platforms, and infrastruc-
tures on demand [3, 6]. Government agencies, businesses and researchers can benefit
from the adoption of cloud services. For instance, it only took 24 h, at the cost of

T. H. Noor () - Q. Z. Sheng
School of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia
e-mail: talal@cs.adelaide.edu.au

Q. Z. Sheng
e-mail: gsheng @cs.adelaide.edu.au

A. Bouguettaya et al. (eds.), Advanced Web Services, 101
DOI: 10.1007/978-1-4614-7535-4_5,
© Springer Science+Business Media New York 2014

102 T. H. Noor and Q. Z. Sheng

merely $240, for the New York Times to archive its 11 million articles (1851-1980)
using Amazon Web Services (AWSh).

Given the quick adoption of cloud computing in the industry, there is a signifi-
cant challenge in managing trust among cloud service providers and cloud service
consumers. Indeed, trust is one of the top obstacles for the adoption and growth of
cloud computing [3, 6, 17]. Recently, a considerable amount of research works have
recognized the significance of trust management and proposed several solutions to
assess and manage trust based on trust feedbacks collected from participants [7, 10,
17, 35]. However, one particular problem has been mostly neglected: to what extent
can these trust feedbacks be credible. On the one hand, it is not unusual that a trust
management system will experience malicious behaviors from its users. On the other
hand, the quality of the trust feedbacks differs from one person to another, depend-
ing on how experienced she is. This chapter focuses on improving ways on the trust
management in cloud environments. In particular, we distinguish the following key
issues of the trust management in cloud environments:

e Results Accuracy. Determining the credibility of trust feedbacks is a significant
challenge due to the dynamic interactions between cloud service consumers and
cloud service providers. It is difficult to know how experienced a cloud service con-
sumer is and from whom malicious trust feedbacks are expected. Indeed, the trust
management protection still requires extensive probabilistic computations [18, 37]
and trust participants’ collaboration by manually rating trust feedbacks [22].

e Availability. In a cloud environment, guaranteeing the availability of the trust
management service is a difficult problem due to the unpredictable number of
cloud service consumers and the highly dynamic nature of cloud environments.
Consequently, approaches that requires understanding of the trust participants’
interests and capabilities through similarity measurements [34] are inappropriate
in the cloud environment. Trust management systems should be adaptive and highly
scalable.

e Assessment and Storage. The trust assessment of a service in existing techniques
is usually centralized, whereas the trust feedbacks come from distributed trust
parties. Trust models that follow a centralized architecture are more prone to
several problems including scalability, availability, and security (e.g., Denial of
Service (Dos) attack) problems [16]. Given the open and distributed nature of
cloud environments we believe that a centralized solution is not suitable for trust
feedback assessment and storage.

In this chapter, we overview the design and implementation of the proposed frame-
work. This framework helps distinguish between the credible trust feedbacks and the
malicious trust feedbacks through a credibility model. It also guarantees high avail-
ability of the trust management service. In a nutshell, the salient features of the
proposed framework are:

e Feedback Credibility. We develop a credibility model that not only distinguishes
between trust feedbacks from experienced cloud service consumers and feedbacks

! http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing- fun/

http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/

5 Web Service-Based Trust Management in Cloud Environments 103

from amateur cloud service consumers, but also considers the majority consensus
of feedbacks, i.e., how close a trust feedback is to the majority trust feedbacks.

e Replication Determination. High availability is an important requirement to the
trust management service. We propose to spread replicas of the trust management
service and develop a replication determination model that dynamically deter-
mines the optimal number of the trust management service replicas, which share
the trust management workload, thereby always maintaining the trust management
service at a desired availability level.

e Distributed Assessment and Storage. To avoid the drawbacks of centralized
architectures, our trust management service allows trust feedback assessment and
storage to be managed distributively. Each trust management service replica is
responsible for trust feedbacks given to a set of cloud services.

The remainder of the chapter is organized as follows. In Sect.5.2, we present
some background of cloud services and their deployment models. The design of the
framework is briefly presented in Sect. 5.3. Section 5.4 details the trust management
service, including distributed trust feedback collection and assessment, as well as the
replication determination model for high availability of the trust management service.
Section 5.5 describes the credibility model. Section 5.6 reports the implementation
and several experimental evaluations. Finally, Sect.5.7 overviews the related work
and Sect. 5.8 provides some concluding remarks.

5.2 Background

Cloud services are established based on five essential characteristics [26], namely,
(i) on-demand self-service where cloud service consumers are able to automatically
provision computing resources without the need for human interaction with each
cloud service provider, (ii) broad network access where cloud service consumers
can access available computing resources over the network, (iii) resource pooling
where computing resources are pooled to serve multiple cloud service consumers
based on a multi-tenant model where physical and virtual computing resources are
dynamically reassigned on-demand, (iv) rapid elasticity where computing resources
are elastically provisioned to scale rapidly based on the cloud service consumers
need, and (v) measured service where computing resources usage is monitored,
metered (i.e., using pay as you go mechanism), controlled and reported to provide
transparency for both cloud service providers and consumers.

5.2.1 Cloud Service Models

Cloud services have three different models, including Infrastructure as a Service
(TaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) based on
different Service Level Agreements (SLAs) between a cloud service provider and a

104 T. H. Noor and Q. Z. Sheng

Fig. 5.1 Cloud service
models

Software as a Service (SaaS)

Platform as a Service (Paas)

Infrastructure as a Service (IaaS)

cloud service consumer [5, 9, 26]. Figure 5.1 depicts the structured layers of cloud
services:

e Infrastructure as a Service (laaS). This model represents the foundation part of
the cloud environment where a cloud service consumer can rent the storage, the
processing and the communication through virtual machines provided by a cloud
service provider (e.g., Amazon’s Elastic Compute Cloud (EC2) [1] and Simple
Storage Service (S3) [2]). In this model, the cloud service provider controls and
manages the underlying cloud environment, whereas the cloud service consumer
has control over his/her virtual machine which includes the storage, the processing
and can even select some network components for communication.

e Platform as a Service (PaaS). This model represents the integration part of the
cloud environment and resides above the IaaS layer to support system integra-
tion and virtualization middleware. The PaaS allows a cloud service consumer
to develop his/her own software where the cloud service provider provisions the
software development tools and programming languages (e.g., Google App [13]).
In this model, the cloud service consumer has no control over the underlying cloud
infrastructure (e.g., storage network, operating systems, etc.) but has control over
the deployed applications.

e Software as a Service (SaaS). This model represents the application part of the
cloud environment and resides above the PaaS layer to support remote accessibility
where cloud service consumers can remotely access their data which is stored
in the underlying cloud infrastructure using applications provided by the cloud
service provider (e.g., Google Docs [14], Windows Live Mesh [27]). Similarly, in
this model, the cloud service consumer has no control over the underlying cloud
infrastructure (e.g., storage network, operating systems, etc.) but has control over
his/her data.

5 Web Service-Based Trust Management in Cloud Environments 105

5.2.2 Cloud Service Deployment Models

Based on the Service Level Agreement (SLA), all cloud service models (i.e., IaaS,
PaaS, SaaS) can be provisioned through four different cloud service deployment
models, namely Private, Community, Public, and Hybrid [26, 36] depending on the
cloud service consumer’s needs. Figure 5.2 depicts how cloud services are arranged to
support these four cloud services deployment models and shows different interactions
between cloud service providers and consumers. The interactions include business-
to-business (B2B) and business-to-client (B2C).

e Private Cloud. In this deployment model, computing resources are provisioned for
aparticular organization (e.g., a business organization as shown in Fig. 5.2a), which
involves several consumers (e.g., several business units). Essentially, interactions
in this deployment model are considered as B2B interactions where the computing

(a) (b)

\ i \
@ E@ i) = @ «@ @

Business to Business to
Cloud demi Cloud Service Buslness Client
Service Orgamzation Unit Org i Or izati cti Interaction

Fig. 5.2 Cloud service deployment models. a Private cloud, b community cloud, ¢ public cloud,
d hybrid cloud

106 T. H. Noor and Q. Z. Sheng

resources can be owned, governed, and operated by the same organization, a third
party, or both.

e Community Cloud. In this deployment model, computing resources are provisioned
for a community of organizations, as shown in Fig.5.2b, to achieve a certain
goal (e.g., high performance, security requirements, or reduced costs). Basically,
interactions in this model are considered as B2B interactions where the computing
resources can be owned, governed, and operated by the community (i.e., one or
several organizations in the community), a third party, or both.

e Public Cloud. In this deployment model, computing resources are provisioned
for the public (e.g., an individual cloud service consumer, academic, government,
business organizations or a combination of these cloud service consumer types
as shown in Fig.5.2c). Essentially, interactions in this model are considered as
B2C where the computing resources can be owned, governed, and operated by an
academic, government, business organization, or a combination of them.

e Hybrid Cloud. In this deployment model, computing resources are provisioned
using two or more deployment models (e.g., private and public clouds can be
deployed together using a hybrid deployment model as shown in Fig.5.2d). Basi-
cally, interactions in this model include B2B and B2C interactions where com-
puting resources are bound together by different clouds (e.g., private and public
clouds) using portability techniques (e.g., data and application portability such as
cloud bursting for load balancing between clouds).

Given all possible service and deployment models and interactions in cloud envi-
ronments, we argue that managing trust in cloud environment is not an easy task due
to the highly dynamic, distributed, and non-transparent nature of cloud services [3,
17, 29-31]. In the following section, we present the design of the framework for
Web service-based trust management in cloud environments.

5.3 The Framework

In cloud environments, the number of cloud service consumers is usually highly
dynamic where new cloud service consumers can join while others might leave
around the clock. This requires the trust management service to be adaptive and
highly scalable in order to collect the trust feedbacks and update the trust results
constantly. We propose a framework using Service Oriented Architecture (SOA). In
particular, our framework uses Web services to span several distributed trust man-
agement service nodes that expose interfaces so that trust parties (i.e., the cloud
service consumers) can give their trust feedbacks or request a trust assessment for
a particular cloud service through multiple messages based on the Simple Object
Access Protocol (SOAP) or REST [33]. Figure 5.3 depicts the main components of
the framework, which consists of three different layers, namely the Provider Layer,
the Trust Management Service Layer, and the Consumer Layer.

5 Web Service-Based Trust Management in Cloud Environments 107

e &

Provider Layer

Cloud Service
Advertisement
Cloud Service
Interaction
Trust Management Layer Sarvice Service
Advertisement ;
Registry

Cloud Service
Discovery

Trust 2 clh] [@ Service Service
Interaction cb Interaction Discovery

Consumer Layer
Legend
Cloud Service Cloud I Ii
Provider Service laas Paas
—_
X .
Cloud Service Trust Service Trust Management Trust Feedbacks and
Consumer Interactions Service Assessment Requests

Fig. 5.3 Architecture of the WS-based trust management in cloud environments framework

e The Providers Layer. This layer consists of different cloud service providers who
are providing cloud services. The minimum indicative feature that every cloud
service provider should have is to provide the infrastructure as a service (i.e., the
cloud service provider should have a data center that provides the storage, the
process, and the communication). In other words, the cloud service providers can
provide either IaaS (Infrastructure as a Service) only, IaaS and PaaS (Platform
as a Service), IaaS and SaaS (Software as a Service), or all of the cloud services
models.

108 T. H. Noor and Q. Z. Sheng

e The Trust Management Layer. This layer consists of several distributed trust
management service nodes that expose interfaces so that cloud service consumers
can give their trust feedbacks or inquire about the trust results.

e The Consumer Layer. Finally, this layer consists of different cloud service con-
sumers who consume cloud services. For example, a new startup that has limited
funding can consume cloud services (e.g., hosting their services in Amazon S3).
A cloud service consumer can give trust feedbacks of a particular cloud service
by invoking the trust management service (see Sect.5.4).

Our framework also contains a Service Registry (see Fig.5.3) that has several
responsibilities including (i) Service Advertisement: both cloud service providers
and the trust management service are able to advertise their services through the
Service Registry; (ii) Service Discovery: the trust management service and cloud
service consumers are able to access the Service Registry to discover cloud services.

It should be noted that we assume that the communication is secured. Attacks that
occur in the communication security level such as Man in Middle (MIM) attack [4] are
beyond the scope of this work. We also assume that cloud service consumers have
unique identities. Attacks that use the notion of multiple identities (i.e., the Sybil
attack [12]) or Whitewashing Attack that occur when the malicious cloud service
consumers (i.e., attackers) desperately seek new identities to clean their negative
history records [21] are also beyond the scope of this work.

Cloud service consumers can give trust feedbacks for a certain cloud service or
send a trust assessment request to the trust management service regarding a certain
cloud service. In the following sections, we will focus on introducing our design of
the trust management service.

5.4 Trust Management Service

5.4.1 Trust Feedback Collection and Assessment

In our framework, the cloud service trust behavior is represented by a collection of
invocation history records denoted as H. Each cloud service consumer ¢ hold her
point of view regarding the trustworthiness of a specific cloud service s in the invoca-
tion history record which is managed by the assigned trust management service. Each
invocation history record is represented in a tuple that consists of the cloud service
consumer primary identity C, the cloud service identity S, a set of trust feedbacks
F and the aggregated trust feedbacks weighted by the credibility F, (i.e., H = (C,
S, F, F.)). Each feedback in F is represented in numerical form in which the range
of the normalized feedback is [0, 1], where 0, +1, and 0.5 means negative feedback,
positive feedback, and neutral respectively.

Whenever a cloud service consumer inquires the trust management service regard-
ing the trustworthiness of a certain cloud service s, the trust result, denoted as T (s),
is calculated using:

5 Web Service-Based Trust Management in Cloud Environments 109
Vs
2 Fedl, s)

e ===v6

(5.1)

where V (s) is all of the feedbacks given to the cloud service s and |V (s)| represents
the length of the V (s) (i.e., the total number of feedbacks given to the cloud service s).
F.(l, s) are the trust feedbacks from the /th cloud service consumer weighted by the
credibility.

The trust management service distinguishes between credible trust feedbacks and
malicious trust feedbacks through assigning the cloud service consumer’s Experience
aggregated weights Exp(l) to the trust feedbacks F (I, s) as shown in Eq. 5.2, where
the result F,.(/, s) is held in the invocation history record 4 and updated in the assigned
trust management service. The details on how to calculate Exp(l) is described in
Sect.5.5.

F.(l,s)=F(,s)* Exp(l) 5.2)

5.4.2 Availability of Trust Management Service

Guaranteeing the availability of the trust management service is a significant chal-
lenge due to the unpredictable number of invocation requests the service has to handle
at atime, as well as the dynamic nature of the cloud environments. An emerging trend
for solving the high-availability issue is centered on replication. In our approach, we
propose to spread trust management service replicas over various clouds and dynam-
ically direct requests to appropriate clouds (e.g., with lower workload), so that its
desired availability level can be always maintained.

However, there is clearly a trade-off between high availability and replication cost.
On the one hand, more clouds hosting the trust management service means better
availability. On the other hand, more replicas residing at various clouds means higher
overhead (e.g., cost and resource consumption such as bandwidth and storage space).
Thus, it is essential to develop a mechanism that helps determine the optimal number
of the trust management service replicas in order to meet the trust management
service’s availability requirement.

‘We propose a replication determination model to allow the trust management ser-
vice to know how many replicas are required to achieve a certain level of availability.
Given the trust management service s, failure probability denoted p that ranges
from O to 1, the total number of s;,,, replicas denoted r, and the availability threshold
denoted e, that also ranges from O to 1. The desired goal of the replication is to ensure
that at least one replica of the trust management service is available, represented in
the following formula:

Ca(stms) < 1= p"tm) (5.3)

where p”(ms) represents the probability that all trust management service replicas
are failed, and 1 — p”©ms) represents the opposite (i.e., the probability of at least

110 T. H. Noor and Q. Z. Sheng

Fig. 5.4 Trust management 1

service replication number 500 v .
. . .
determination -] || i
400 L4
300 A

200 A

T(Slms)

100 4

one trust management replica is available). As a result, the optimal number of trust
management service replicas can be calculated as follows:

r(Stms) > lng(l — eq(Stms)) (5.4)

For example, if the availability threshold e,(s;ns) = 0.99 and the failure
probability of trust management service p = 0.2 (low), r(s;ms) > 2.86, mean-
ing that at least 3 trust management service replicas are needed. Similarly, if
eq(Stms) = 0.99 and the failure probability of the trust management service p = 0.8
(high), 7(syms) > 20.64 which means at least 21 replicas are required. Figure 5.4
depicts the relationship between the main components of the replication determina-
tion model. It can be clearly seen that the relationship between p and r(sss) 1S a
direct or positive relationship (i.e., any change in p is associated with a change in
7 (Syms) in the same direction). The relationship between e, (s;,s) and 7 (sy,5) 1s also
a direct or positive relation. However, it should be noted that p has a larger influence
on 7 (Syns) than eq ().

Whenever a cloud service consumer needs to send the invocation history record or
a trust assessment request of a certain cloud service, (c, s) can be sent to a particular
trust management service decided by using a consistent hash function (e.g., sha-256).
Unlike previous work such as in [10] where consistent hashing technique is used to
map all of the invocation history records for a certain client to a particular trust

Tms, (a b, €) Tms, ,(m, n) Tms,,(x, y, 2)

h(d. a) hf.) ‘ X i h(l, z)
h(e, b] h (g, m) h(h, n) h(.y) | h(kz)
8 8 8 8 8 8 8

Fig. 5.5 Trust management service replicas identification example

d e

5 Web Service-Based Trust Management in Cloud Environments 111

management service instance (e.g., all trust feedback given to a certain cloud service
in our case), in our framework each trust management service replica is responsible
for trust feedbacks given to a set of cloud services where trust feedbacks are handled
as follows:

|hash(s)|

Tms;q(s) = Z byte; (hash(s)) | mod r(sims) (5.5)
i=1

where the first part of the equation represents the sum of each byte of the hashed
cloud service identity hash(s). The second part of the equation represents the optimal
number of the trust management service replicas r (s,). This insures that the chosen
trust management service replica is within the optimal number range.

Figure 5.5 depicts an example of the trust management service nodes’ identifica-
tion where many cloud service consumers (d to /) have interacted with cloud services
a,b,c,m,n, x,yand z. All aggregated invocation history records H for interactions
with cloud services a, b, and ¢ are sent to the first trust management service replica
(i.e., the trust management service that holds the identifier 7' ms;4(a, b, ¢)). Similarly,
all H for interactions with other cloud services (m to z) are sent to trust management
service replicas that hold the identifier Tms;q(m, n) and Tms;q(x, y, z) respectively.
We can see that each trust management service replica is holding all of the invocation
history records H for interactions with a set of cloud services.

5.5 Credibility Model

Sine the trust behavior of a cloud service in our framework is represented by a
collection of invocation history records that contain cloud service consumers trust
feedbacks, there is a considerable possibility that the trust management service
receives inaccurate or even malicious trust feedbacks from amateur cloud service
consumers (e.g., who lack experience) or vicious cloud service consumers (e.g., who
submit lots of negative feedbacks in a short period in order to disadvantage a partic-
ular cloud service). To overcome these issues, we propose a credibility model, which
is centered on the cloud service consumer’s experience.

In our model, a cloud service consumer with considerable experience of giving
trust feedbacks can gain a credibility as an expert. To be able to differentiate between
expert cloud service consumers and amateur cloud service consumers, we further
consider several factors including the cloud service consumer’s Capability and the
Majority Consensus.

5.5.1 Cloud Service Consumer’s Capability

It is a common sense that older people are likely to be more experienced in judging
things than younger people [32]. However, this is only true if the elder people have

112 T. H. Noor and Q. Z. Sheng

experienced considerable number of judging practices. As a result, we believe that
“elder” cloud service consumers who have many judging practices are likely to be
more experienced and capable than “younger” cloud service consumers with little
experience. A cloud service consumer’s capability, denoted as B, is measured as
follows:

L+ 0@ if Vel < Ag(o)

B(c) = Ag(©) 5.6
© [2 otherwise (56)

where V c(c) represents all of the feedbacks given by the cloud service consumer ¢ and
|Ve(c)| represents the length of Ve(c) (i.e., the total number of feedbacks given by
the cloud service consumer c). Ag(c) denotes the virtual Age of a certain cloud service
consumer, measured in days since the registration in the trust management service.
The idea behind adding the number 1 to this ratio is to increase the value of a cloud
service consumer experience based on the capability result. In other words, we use
B(c) as a reward factor. The higher the value of B(c) is, the more experienced a cloud
service consumer is. It should be noted that even if a malicious cloud service consumer
attempts to manipulate the capability result by giving numerous trust feedbacks in a
short period of time, the capability result will not exceed 2.

5.5.2 Majority Consensus

It is well-known that the majority of people usually agree with experts’ judgments
about what is good [8]. Similarly, we believe that the majority of cloud service con-
sumers agree with Expert cloud service consumers’ judgments. In other words, any
cloud service consumer whose trust feedback is close to the majority trust feedbacks
is considered an Expert Cloud Consumer, Amateur cloud service consumers other-
wise. In order to measure how close the cloud service consumer’s trust feedbacks to
the majority trust feedbacks (i.e., the Majority Consensus, J(c)), we use the standard
deviation (i.e., the root-mean-square) which is calculated as follows:

2
5 el (_Fek Siveit FEL
heVe(e) k=1 Ve,] VO =TVe@h]

(5.7)

[Ve(o)l

J@)=1-—

where the first part of the numerator represents the mean of the cloud service con-
sumer c’s trust feedbacks F(c, k) for the kth cloud service. The second part of
the numerator represents the mean of the majority trust feedbacks given by other
cloud service consumers denoted F (I, k) (i.e., the /th cloud service consumer trust
feedbacks, except the cloud service consumer c’s trust feedbacks) to the kth cloud
service. This procedure is done for all cloud services to which cloud service consumer
c give trust feedbacks (i.e., Vc(c)).

5 Web Service-Based Trust Management in Cloud Environments 113

Table 5.1 Notation and meanings

Notation ~Meaning Notation ~Meaning

J(c) The majority consensus F(c, k) The cloud service consumer c¢’s
trust feedback instance for the
kth cloud service

Ve(e,k) Al trust feedbacks given by the F(l, k) The majority trust feedbacks given

cloud service consumer c for the kth by other cloud service
cloud service consumers for the kth cloud
service
V (k) All trust feedbacks given for the kth ~ Ve(c, k) All trust feedbacks given by the
cloud service cloud service consumer ¢ for
the kth cloud service
B(c) The cloud service consumer’s capa- Vc(c) All cloud services to which cloud
bility service consumer ¢ give trust
feedbacks to
Ag(c) The virtual Age of a certain cloud Exp(c) Cloud service consumer’s
service consumer experience

Based on the specified cloud service consumer’s experience factors (i.e., cloud
service consumer’s capability and majority consensus), the trust management ser-
vice distinguishes between the Expert cloud service consumers and the Amateur
cloud service consumers through assigning the cloud service consumer’s Experience
aggregated weights Exp(c) to each of the cloud service consumers trust feedbacks
as shown in Eq.5.2. The cloud service consumer’s Experience aggregated weights
Exp(c) is calculated as follows:

Exp(c) = B * B(c) j: mx J(c) (5.8)

where 8 and B(c) denote the cloud service consumer’s Capability factor’s normalized
weight (i.e., parameter) and the factor’s value respectively. The second part of the
equation represents the Majority Consensus factor where u denotes the factor’s
normalized weight and J(c) denotes the factor’s value. A represents the number
of factors used to calculate Exp(c). For example, if we only consider cloud service
consumer’s capability, . = 1;if we consider both cloud service consumer’s capability
and majority consensus, A = 2 (Table5.1).

We use the majority consensus as a penalty factor. The lower the value of J(c)
is, the lower the experience of the cloud service consumer c is. It should be worth
mentioning that this is not the case for the cloud service consumer capability factor
B(c), which is used as a reward factor.

114 T. H. Noor and Q. Z. Sheng

5.6 Implementation and Experimental Evaluation

In this section, we report the implementation and preliminary experimental results
in validating the proposed approach. Our implementation and experiments were
developed based on the NetLogo platform [28], which was used to simulate the cloud
environments. We particularly focused on validating and studying the performance
of the proposed credibility model (see Sect.5.5).

Since it is hard to find some publicly available real-life trust data sets, in our
experiments, we used Epinions? rating data set which was collected by Massa and
Avesani [25]. The reason that we chose Epinions data set is due to its similar
data structure (i.e., consumers opinions and reviews on specific products and ser-
vices) with our cloud service consumer trust feedbacks. In particular, we considered
user_1id in Epinions as the cloud service consumer primary identity C, item_id
as the cloud service identity S, and we normalized the rating_value as the cloud
service consumers trust feedbacks F to scale of O to 1. The data set has 49,290 users,
139,738 items, and 664,824 trust feedbacks.

Figure 5.6 depicts the prototype system interface for a cloud service. We imported
the Epinions data sets to create the cloud environment that we are intending to
analyze. Figure 5.6 depicts the cloud environment network for a particular cloud
service. The cloud shape represents the cloud service, the circles represent the cloud
service consumers and the links represent the interactions between the cloud service
consumers and the cloud service. The sizes of the circles indicate the credibility
of cloud service consumers. For example, a smaller-sized cloud service consumer
means that her feedbacks are less credible.

We evaluate our credibility model using both analytical analysis and empirical
analysis. The analytical analysis focuses on measuring the trust result accuracy when
using the credibility model and without using the credibility model. The analytical
model calculates the trust results without weighting the trust results (i.e., we turn
the Exp(c) to 1 for all cloud service consumers). The empirical analysis focuses
on measuring the trust result accuracy for each factor in our credibility model (i.e.,
the Cloud Consumer’s Capability factor and the Majority Consensus factor). The
parameters setup for each corresponding experiment factor are depicted in Table 5.2.

Figure 5.7 depicts the analytical analysis of the trust results for a particular cloud
service. From the figure, it can be seen that the trust results are oscillating more
significantly when calculating the trust without considering the credibility factors
than when calculating the trust with all credibility factors. In other words, even if
the trust management service receives inaccurate or malicious trust feedbacks from
amateur or malicious cloud service consumers, it is difficult to manipulate the trust
results by using our credibility model.

2 http://www.trustlet.org/wiki/Downloaded_Epinions_dataset

3 Please note that the lengths of the links do not represent anything because the cloud service
consumers’ positions were assigned randomly around the corresponding cloud service.

http://www.trustlet.org/wiki/Downloaded_Epinions_dataset

5 Web Service-Based Trust Management in Cloud Environments 115

Fig. 5.6 Netlogo-based prototype system

Table 5.2 Experiment factors and parameters setup

Experiment design B w A Exp(c)
With credibility factors 1 1

Without credibility factors 1
Cloud service consumer’s capability factor 1 0 1

Majority consensus factor 0 1 1

Figure 5.8 shows the empirical analysis of the trust results for the same cloud ser-
vice. It is clear that the trust results obtained by only considering the cloud service
consumer’s capability factor are higher than the trust results by only considering the
majority consensus factor. This is true, because we use the cloud service consumer
capability factor as a reward factor and the majority consensus factor as a penalty
factor. This reflects how adaptive our credibility model is where the credibility fac-
tors can easily be tweaked according to the trust management service’s needs. For
instance, for optimistic situations where only a few cloud service consumers have
high values of capability, increasing the cloud service consumer’s capability factor
(i.e., B) will help the trust management service to distinguish between experienced
cloud service consumers and inexperienced ones. On the other hand, for pessimistic
situations where many cloud service consumers have high values of capability, the
majority consensus factor (i.e., ;) needs to be increased.

116 T. H. Noor and Q. Z. Sheng

]
5
wy
[}
(-4
i
=1
=

0.2 —o— Without Credibility

0.1 —=— With Credibility

0+ . . - - . !
0 20 40 60 80 100 120
Number of Feedbacks

Fig. 5.7 With credibility factors versus without credibility factors

0.9 4
0.8
0.7 1
0.6 4

i 7\/WW
0.4

0.3
0.2 4 Cloud Consumers Capability

Trust Results

0.1 =~ Majority Consensus

0 20 40 60 80 100 120
Number of Feedbacks

Fig. 5.8 Cloud service consumer’s capability factor vs. majority consensus factor

5.7 Related Work

Trust management is considered as one of the critical issues in cloud computing and
a very active research area [5, 17, 20, 24].

Koetal. [19] proposed TrustCloud framework for accountability and trust in cloud
computing. In particular, TrustCloud consists of five layers including workflow, data,
system, policies and laws, and regulations layers to address accountability in the cloud
environment from all aspects. All of these layers maintain the cloud accountability life
cycle which consists of seven phases including policy planning, sense and trace, log-
ging, safe-keeping of logs, reporting and replaying, auditing, and optimizing and rec-
tifying. Brandic et al. [5] proposed a novel approach for compliance management in
cloud environments to establish trust between different parties. The approach is devel-
oped using a centralized architecture and uses compliant management technique to
establish trust between cloud service consumers and cloud service providers. Unlike

5 Web Service-Based Trust Management in Cloud Environments 117

previous works that use policy-based trust management techniques, we evaluate the
trustworthiness of a cloud service using reputation-based trust management tech-
niques. Reputation represents a high influence that cloud service consumers have
over the trust management system [11] especially that the opinions of the various
cloud service consumers can dramatically influence the reputation of a cloud service
either positively or negatively.

Other research works also use reputation-based trust management techniques.
For instance, Habib et al. [15] proposed a multi-faceted Trust Management (TM)
system architecture for cloud computing to help the cloud service consumers to
identify trustworthy cloud service providers. In particular, the architecture mod-
els uncertainty of trust information collected from multiple sources using a set of
Quality of Service (QoS) attributes such as security, latency, availability, and cus-
tomer support. The architecture combines two different trust management techniques
including reputation and recommendation where operators (e.g., AND, OR, NOT ,
FUSION, CONSENSUS, and DISCOUNTING) are used. Hwang et al. [17] proposed
a security aware cloud architecture that assesses the trust for both the cloud service
provider and the cloud service consumers. To assess the trustworthiness of cloud
service providers, Hwang et al. proposed the trust negotiation approach and the data
coloring (integration) using fuzzy logic techniques. To assess the trustworthiness of
cloud service consumers, they proposed the Distributed-Hash-Table (DHT)-based
trust-overlay networks among several data centers to deploy a reputation-based trust
management technique. Unlike previous works which did not consider the problem
of unpredictable attacks against cloud services, we present an occasional attacks
detection model that not only detects misleading trust feedbacks from collusion and
Sybil attacks, but also has the ability to adaptively adjust and tweak the trust results
for cloud services that have been affected by occasional and periodic malicious
behaviors.

Conner et al. [10], proposed a trust management framework for service-oriented
architecture (SOA) that focuses on service provider’s perspective to protect resources
from unauthorized access. This framework has a decentralized architecture that offers
multiple trust evaluation metrics to allow trust parties to have customized evaluation
to assess their clients (i.e., cloud service consumers). Malik and Bouguettaya [23]
proposed reputation assessment techniques based on the existing quality of service
(QoS) parameters that enable the cloud service consumers to personalize the crite-
ria in assessing the reputation of Web services. The approach has a decentralized
architecture where each cloud service consumer records their own perceptions of
the reputation of a particular service provider. The proposed framework supports
different assessment metrics such as rater credibility, majority rating, past rating his-
tory, personal experience for credibility evaluation, personal preferences, personal
experience for reputation assessment, and temporal sensitivity.

Unlike previous works that require extensive computations or trust parties’ col-
laboration by rating the trust feedbacks, we present a credibility model supporting
the distinguishment between trustworthy feedbacks and malicious trust feedbacks.
We were inspired by Xiong and Liu who differentiate between the credibility of a
peer and the credibility of the feedback through distinguishing several parameters

118 T. H. Noor and Q. Z. Sheng

to measure the credibility of the trust participants feedbacks [38]. However, their
approach is not applicable in cloud environments.

5.8 Conclusions and Future Work

Given the quick adoption of cloud computing in the last few years, there is a significant
challenge in managing trust among cloud service providers and cloud service con-
sumers. In this chapter, we have presented a framework that uses Web services to
improve ways to manage trust in cloud environments. We introduced an adaptive cred-
ibility model that assesses cloud services’ trustworthiness by distinguishing between
credible trust feedbacks and amateur or malicious trust feedbacks. We particularly
introduced two trust parameters including the cloud service consumer’s capability
factor and the majority consensus factor in calculating the trust value of a cloud
service. In addition, our trust management service allows trust feedback assessment
and storage to be managed in a distributed way. In the future, we plan to deal with
more challenging problems such as the Sybil attack and the Whitewashing attack.
Performance optimization of the trust management service is another focus of our
future research work.

Acknowledgments Talal H. Noor’s work has been supported by King Abdullah’s Postgraduate
Scholarship, the Ministry of Higher Education: Kingdom of Saudi Arabia.

References

1. Amazon-EC2: Elastic Compute Cloud (Amazon EC2) (2011), accessed 01/04/2011, Available
at: http://aws.amazon.com/ec2

2. Amazon-S3: Amazon Simple Storage Service (Amazon - S3) (2011), accessed 29/03/2011,
Auvailable at: http://aws.amazon.com/s3

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, 1., Zaharia, M.: A View of Cloud Computing. Communications of the
ACM 53(4), 50-58 (2010)

4. Aziz, B., Hamilton, G.: Detecting Man-in-the-Middle Attacks by Precise Timing. In: Proc.
of the 3rd Int. Conf. on Emerging Security Information, Systems and Technologies (SECUR-
WARE’09). Athens/Glyfada, Greece (Jun 2009)

5. Brandic, I., Dustdar, S., Anstett, T., Schumm, D., Leymann, F., Konrad, R.: Compliant Cloud
Computing (C3): Architecture and Language Support for User-Driven Compliance Manage-
ment in Clouds. In: Proc. of IEEE 3rd Int. Conf. on Cloud Computing (CLOUD’10). Miami,
Florida, USA (Jul 2010)

6. Buyya, R., Yeo, C., Venugopal, S.: Market-oriented Cloud Computing: Vision, Hype, and
Reality for Delivering it Services as Computing Utilities. In: Proc. of IEEE 10th Int. Conf. on
High Performance Computing and Communications (HPCC’08). Dalian, China (Sep 2008)

7. Chen, K., Hwang, K., Chen, G.: Heuristic Discovery of Role-Based Trust Chains in Peer-to-
Peer Networks. IEEE Transactions on Parallel and Distributed Systems 20(1), 83-96 (2008)

8. Child, I.: The Psychological Meaning of Aesthetic Judgments. Visual Arts Research 9(2 (18)),
51-59 (1983)

http://aws.amazon.com/ec2
http://aws.amazon.com/s3

5 Web Service-Based Trust Management in Cloud Environments 119

9.

10.

11.

12.

14.

15.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Clark, K., Warnier, M., Brazier, F., Quillinan, T.: Secure Monitoring of Service Level Agree-
ments. In: Proc. of the 5th Int. Conf. on Availability, Reliability, and Security (ARES’10).
Krakow, Poland (Feb 2010)

Conner, W., Iyengar, A., Mikalsen, T., Rouvellou, I., Nahrstedt, K.: A Trust Management
Framework for Service-Oriented Environments. In: Proc. of the 18th Int. Conf. on World Wide
Web (WWW’09). Madrid, Spain (Apr 2009)

Dellarocas, C.: The Digitization of Word of Mouth: Promise and Challenges of Online Feedback
Mechanisms. Management Science 49(10), 1407-1424 (2003)

Friedman, E., Resnick, P., Sami, R.: Algorithmic Game Theory, chap. Manipulation-Resistant
Reputation Systems, pp. 677-697. Cambridge University Press, New York, USA (2007)

. Google-Apps: Google Apps (2011), accessed 03/04/2011, Available at:http://www.google.

com/apps/intl/en-au/business/index.html#utm_campaign=en-au&utm_source=en-ha-apac-
au-bk-google&utm_medium=ha&utm_term=google-20app

Google-Docs: Google Docs - Online documents, spreadsheets, presentations, surveys, file stor-
age and more (2011), accessed 11/04/2011, Available at: https://docs.google.com/

Habib, S., Ries, S., Muhlhauser, M.: Towards a Trust Management System for Cloud Comput-
ing. In: IEEE 10th Int. Conf. on Trust, Security and Privacy in Computing and Communications
(TrustCom’11). Changsha, China (Nov 2011)

. Hoffman, K., Zage, D., Nita-Rotaru, C.: A Survey of Attack and Defense Techniques for

Reputation Systems. ACM Computing Surveys (CSUR) 42(1), 1-31 (2009)

. Hwang, K., Li, D.: Trusted Cloud Computing with Secure Resources and Data Coloring. IEEE

Internet Computing 14(5), 14-22 (2010)

. Jgsang, A., Quattrociocchi, W.: Advanced Features in Bayesian Reputation Systems. In: Proc.

of the 6th Int. Conf. on Trust, Privacy and Security in Digital Business (TrustBus’09). Linz,
Austria (Sep 2009)

Ko, R., Jagadpramana, P., Mowbray, M., Pearson, S., Kirchberg, M., Liang, Q., Lee, B.: Trust-
Cloud: A Framework for Accountability and Trust in Cloud Computing. In: IEEE World
Congress on Services (SERVICES’11). Washington, DC, USA (Jul 2011)

Krautheim, F., Phatak, D., Sherman, A.: Introducing the Trusted Virtual Environment Module:
A New Mechanism for Rooting Trust in Cloud Computing. In: Proc. of the 3rd Int. Conf. on
Trust and Trustworthy Computing (TRUST’ 10). Berlin, Germany (Jun 2010)

Lai, K., Feldman, M., Stoica, 1., Chuang, J.: Incentives for Cooperation in Peer-to-Peer Net-
works. In: Proc. of the 1st Workshop on Economics of Peer-to-Peer Systems. Berkeley, CA,
USA (Jun 2003)

Malik, Z., Bouguettaya, A.: Rater Credibility Assessment in Web Services Interactions. World
Wide Web 12(1), 3-25 (2009)

Malik, Z., Bouguettaya, A.: RATEWeb: Reputation Assessment for Trust Establishment Among
Web services. The VLDB Journal 18(4), 885-911 (2009)

Manuel, P., Thamarai Selvi, S., Barr, M.E.: Trust Management System for Grid and Cloud
Resources. In: Proc. of the Ist Int. Conf. on Advanced Computing (ICAC’09). Chennai, India
(Dec 2009)

Massa, P., Avesani, P.: Trust Metrics in Recommender Systems. In: Computing with Social
Trust, pp. 259-285. Human-Computer Interaction Series, Springer London (2009)

Mell, P., Grance, T.. The NIST Definition of Cloud Computing (Sep2011), accessed:
05/06/2012, Available at: http://csrc.nist.gov/publications/drafts/800- 145/Draft-SP-800- 145/
Draft/800_145_cloud-efinition.pdf

Microsoft: Windows Live Mesh 2011 (2011), accessed 09/05/2011, Available at:https://www.
mesh.com/

NetLogo: Netlogo home page (2011), accessed 1/3/2011, Available at: http://ccl.northwestern.
edu/netlogo/

Noor, T.H., Sheng, Q.Z.: Credibility-Based Trust Management for Services in Cloud Environ-
ments. In: Proc. of the 9th Int. Conf. on Service Oriented Computing (ICSOC’11). Paphos,
Cyprus (Dec 2011)

http://www.google.com/apps/intl/en-au/business/index.html#utm_campaign=en-au&utm_source=en-ha-apac-au-bk-google&utm_medium=ha&utm_term=google-20app
http://www.google.com/apps/intl/en-au/business/index.html#utm_campaign=en-au&utm_source=en-ha-apac-au-bk-google&utm_medium=ha&utm_term=google-20app
http://www.google.com/apps/intl/en-au/business/index.html#utm_campaign=en-au&utm_source=en-ha-apac-au-bk-google&utm_medium=ha&utm_term=google-20app
https://docs.google.com/
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145/Draft/800_145_cloud-efinition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145/Draft/800_145_cloud-efinition.pdf
https://www.mesh.com/
https://www.mesh.com/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

120 T. H. Noor and Q. Z. Sheng

30. Noor, T.H., Sheng, Q.Z.: Trust as a Service: A Framework for Trust Management in Cloud
Environments. In: Proc. of the 12th Int. Conf. on Web and Information Systems (WISE’11).
Sydney, Australia (Oct 2011)

31. Pearson, S., Benameur, A.: Privacy, Security and Trust Issues Arising From Cloud Computing.
In: Proc. IEEE 2nd Int. Conf. on Cloud Computing Technology and Science (CloudCom’10).
Indianapolis, Indiana, USA (Nov - Dec 2010)

32. Roosevelt, E.: Facing the problems of youth. The P.T.A. magazine: National Parent-Teacher
Magazine 29(30), 1-6 (1935)

33. Sheth, A.P., Gomadam, K., Lathem, J.: SA-REST: Semantically Interoperable and Easier-to-
Use Services and Mashups. IEEE Internet Computing 11(6), 84-87 (2007)

34. Skopik, F., Schall, D., Dustdar, S.: Start Trusting Strangers? Bootstrapping and Prediction of
Trust. In: Proc. of the 10th Int. Conf. on Web Information Systems Engineering (WISE’09).
Poznan, Poland (Oct 2009)

35. Skopik, F., Schall, D., Dustdar, S.: Trustworthy Interaction Balancing in Mixed Service-
Oriented Systems. In: Proc. of ACM 25th Symp. on Applied Computing (SAC’10). Sierre,
Switzerland (Mar 2010)

36. Sotomayor, B., Montero, R., Lorente, I., Foster, I.: Virtual Infrastructure Management in Private
and Hybrid Clouds. IEEE Internet Computing 13(5), 14-22 (2009)

37. Weng, J., Miao, C., Goh, A.: Protecting Online Rating Systems from Unfair Ratings. In:
Proc. of the 2nd Int. Conf. on Trust, Privacy, and Security in Digital Business (TrustBus’05).
Copenhagen, Denmark (Aug 2005)

38. Xiong, L., Liu, L.: Peertrust: Supporting Reputation-based Trust for Peer-to-Peer Electronic
Communities. [EEE Transactions on Knowledge and Data Engineering 16(7), 843-857 (2004)

Chapter 6
Web Service Contracts: Specification
and Matchmaking

Marco Comerio, Flavio De Paoli, Matteo Palmonari and Luca Panziera

Abstract Web services promise universal interoperability through integration of
services developed by independent providers. The coming of the Cloud Computing
paradigm extends the need to share resources (e.g., platform, infrastructure, data)
that are accessible as Web services. This means that a key factor to build com-
plex and valuable business processes among cooperating organizations relies on the
efficiency of automate the discovering of appropriate Web services. The increasing
availability of Web services that offer similar functionalities requires mechanisms
to go beyond the pure functional discovery. This chapter proposes the evaluation of
Web service contracts, which define non-functional properties (NFPs) and applica-
bility conditions associated with Web services, as a solution to automate process
composition and enactment. Today, there is a lack of tools and algorithms that fully
support this solution due to several open issues. First, existing languages don’t pro-
vide the right constructs for the specification of Web service contracts. Second, the
lack of standard languages determines heterogeneity in Web service contract spec-
ifications raising interoperability issues. Third, Web service contract evaluation is
only partially supported by existing discovery engines and composition tools when
combining different services from different providers. This chapter proposes some
research efforts on addressing these open issues.

M. Comerio () - F. De Paoli - M. Palmonari - L. Panziera
University of Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy
e-mail: comerio @disco.unimib.it

F. De Paoli
e-mail: depaoli@disco.unimib.it

M. Palmonari
e-mail: palmonari @disco.unimib.it

L. Panziera
e-mail: panziera@disco.unimib.it

A. Bouguettaya et al. (eds.), Advanced Web Services, 121
DOI: 10.1007/978-1-4614-7535-4_6,
© Springer Science+Business Media New York 2014

122 M. Comerio et al.

6.1 Introduction

Web services aim at addressing interoperability and integration issues to deliver
complex business processes by discovering and composing services distributed over
the Internet and developed by independent providers. The building of such com-
plex and valuable processes requires efficient discovery and composition techniques.
Moreover, the emerging cloud computing paradigm that offers resources (software,
platform, infrastructure, and data) as on-demand services accessible through Web
services makes the development of enhanced discovery and composition processes
urgent.

There is a growing consensus that pure functional discovery and composition of
Web services are inadequate to develop valuable processes. This is due to the increas-
ing availability of Web services, in the Internet and cloud computing environments,
which offer similar functionalities but with different non-functional properties (e.g.,
price, availability and copyright). Therefore, a promising path towards the automatic
definition of valuable business processes is the development of Web service discovery
and composition tools and techniques to evaluate non-functional properties (NFPs).

Currently, NFPs that state the conditions to access and use services are expressed
by means of policies, licenses, and service level agreements. Despite of differences,
their common goal is to regulate a business transaction between the service provider
and the service consumer and thereby, commonly considered under the umbrella
term Web Service Contract (WS contract, for short). A WS contract includes one or
more contractual terms described in forms of conditions established on NFPs, such
as quality of service (e.g., response time and availability), legal aspects (e.g., fair
use and copyrights), intellectual rights (e.g., allowing or denying composition), and
business aspects (including financial terms such as payment and tax).

Despite enhancement of Web service discovery and composition with the evalua-
tion of WS contracts is increasingly considered strategic, currently there is a lack of
tools and algorithms that fully support it. This is mainly due to the lack of shared stan-
dard ways to express descriptions of contractual terms. Basically, service providers
represent these terms as they wish, causing strong ambiguity and redundancies that
make difficult, or even impossible without specific techniques, the automatic inter-
pretation in multi-provider service-oriented contexts.

This chapter discusses some research efforts on addressing WS contract specifica-
tion and matchmaking, which are at the core of the possible solutions. In particular,
we present (i) a semantic meta-model that provides a sound and robust base to for-
mally describe WS contracts, (ii) a set of techniques and rules to extract contractual
terms from available WS contract descriptions and (iii) an effective approach to WS
contract matchmaking, and a framework that implements it.

The chapter is organized as follows. Section 6.2 discusses motivations and state
of the art of the research on WS contracts. Sections 6.3 presents the semantic meta-
model and the set of rules and techniques to extract contractual terms. Section 6.4
describes the approach to WS contract matchmaking. Section6.5 concludes the
chapter.

6 Web Service Contracts 123

6.2 Motivation and State of the Art

In the literature, the mutual understanding between providers and consumers is typ-
ically established by specifying policies, service level agreements and licenses.

A policy establishes a relationship between involved parties by specifying obliga-
tions and authorizations. A policy provides the means for specifying and modulating
the behavior of a feature to align its capabilities and constraints with the requirements
of its users [18].

A Service Level Agreement (SLA) is a bilateral statement signed between a service
provider and a service consumer, that describes the minimum performance criteria a
provider commits to meet while delivering a service and typically sets out the reme-
dial actions and penalties that take effect when the actual performance falls below the
promised standard. Thus, an SLA specifies the expected operational characteristics
of a service in business oriented terms between a provider and a consumer in such a
way that they can be measured, monitored, and managed [26].

A license includes all transactions between the licensor (e.g., service provider)
and the licensee (e.g., service consumer) in which the licensor establishes the rights
granted to the licensee when using some specific services for a specific tenure under
predefined terms and conditions [13].

In general, policies, SLAs, and licenses serve as acommon denominator to specify
normative aspects of services and establish business relationships between providers
and consumers. In the literature, terms like policies, SLAs, and licenses are often
considered synonyms; therefore, we prefer to use the term Web Service Contract
to include all possible contractual terms, including the ones addressed by policies,
SLAs, and licenses.

Definition 6.1 Web Service Contract. Given a Service s offered by a Provider p
to potential Customers C, a Web service contract W SC is a legal binding exchange
of promises or agreements between p and C expressed through a set of contractual
terms CT = {cty, ..., ct,} that regulate the provisioning of s.

Definition 6.2 Contractual Term. Given a Web service contract W SC associated
with a Service s, a Contractual Term cz in W SC is a non-functional property referred
to a concern of s.

Example 6.1 Web Service Contract and Contractual Term. The Safe Logistic
Operator offers the Freight Transportation service with a Web service contract
including a contractual term specifying that the transportation is covered by a blanked
insurance.

Currently, the literature focuses on the definition of models for WS contract spec-
ification. In particular, recent contributions deal with the analysis of the different
contractual terms. According to [8], contractual terms can be classified into: (i) Qual-
ity of Service (QoS) terms that represent technical issues of a service (e.g., security
and performance); (ii) Business terms that describe financial terms and conditions
(e.g., price, insurance and compensation agreements); (iii) Service Context terms

124 M. Comerio et al.

that define technical aspects (e.g., compliancy to available devices and connections)
as well as profile aspects (e.g., service coverage) of the context associated with a
service and (iv) License terms that state responsibilities among involved parties and
conditions on service usage (e.g., compliancy to legal statements and regulations).
This classification can be further detailed as defined in [24], where a customizable
part of a service contract (namely, individual contract) has been introduced to include
contractual terms on: (i) Provider Obligation (e.g., quality of service guarantees),
(i1) Use of Information (e.g., data licenses), (iii) Warranties and Liabilities (e.g.,
warranty on the accuracy of the provided information), (iv) Delivery Time (e.g., time
conditions on service delivery) and (v) Price and Payment Terms (e.g., business terms

related to service usage).
3
-—
-
—_—
—
-

Specification

(=]
t

Monitoring /
@
- -
-
=
-

WS Contracts

Composition Negotiation

Fig. 6.1 WS Contracts in service lifecycle

WS contracts have a role in several activities in service lifecycle, as illustrated in
Fig.6.1:

Web Service Contracts 125

Web Service Specification: in order to support efficient discovery and composition
of Web services, service specifications should also include offered non-functional
properties. Such properties are described in WS contracts. Several approaches
have been presented in the literature, among others, the most relevant are [1, 22,
24, 39, 48].

Web Service Matchmaking: when more than one Web service satisfies the requested
functional requirements, the evaluation of WS contracts allows for the identifica-
tion of services that best match the requirements on non-functional properties. The
most relevant approaches to contract-based Web service matchmaking are [6, 14,
23, 28, 41, 42, 45].

Web Service Negotiation: in many real business situations, WS contracts cannot be
considered static documents, instead they define reference terms to be negotiated
between providers and consumers to reach a tailored agreement. The most relevant
approaches to contract-based Web service negotiation are [9, 44].

Web Service Composition: when two or more Web services are to be composed, WS
contract should be evaluated to validate the composition from a non-functional-
property point of view in order to avoid illegal or unauthorized compositions. The
most relevant approaches to contract-based Web service composition are [37, 47].
Web Service Monitoring: during the execution of a Web service, the contractual
terms need to be checked against the actual state and behavior of the service.
When a violation of the contract terms is detected, exception handling actions
should be put in place. The most relevant approaches to contract-based Web service
monitoring are [16, 48].

Due to space reasons, in the rest of the chapter we will focus on issues and research

results related to Web service specification and matchmaking.

6.2.1 Issues on Web Service Contract Specification

The specification of contractual terms defining non-functional properties of a service
is a complex task since the following aspects must be considered:

synonym and homonym: similar properties may have different names (e.g., in
different languages or domains) or the same name may refer to different properties
(e.g., in different domains a property may have different implications).
quantitative and qualitative values: contractual terms can be expressed with
numeric values defined in different units (e.g., price in Euro or in USD), or they
can be purely qualitative (e.g., usability is good, trust is high, software is open
source).

technological and business interdependencies: contractual terms present techno-
logical interdependencies (e.g., the WS has a higher price since it guarantees a
certain bandwidth) and business interdependencies (e.g., some contractual terms
are offered only to business users, others to private users).

126 M. Comerio et al.

Table 6.1 Shortcomings of current WS contract descriptions

Semantic XML-based Template-based Free-text
Machine interpretability (4 (4 X X
Interoperability v Limited Limited Limited
Expressivity (4 Limited 4 v
Reasoning v X X X

As mentioned in Sect. 6.1, there are many way to specify WS contracts that bring
to heterogeneous descriptions that can be categorized as follows:

e semantic descriptions: defined by means of semantic Web languages and based
on domain ontologies.

e XML-based descriptions: defined by < attribute, value > clauses, where
attribute identifies an offered NFP and value specifies the value of that NFP.

e template-based descriptions: defined according to a predefined template. The con-
tractual terms are plain texts in natural language.

e free-text descriptions: defined by unstructured textual documents written in natural
language.

The mentioned descriptions present different levels of machine interpretability,
interoperability, expressivity and reasoning (see Table 6.1). Machine interpretabil-
ity represents the possibility for a machine to conceive the significance of a WS
contract. Interoperability defines the possibility to automatically interpret the WS
contract meaningfully and accurately in different contexts and domains. Expres-
sivity represents the capability to define articulated contractual terms supporting
the specification of technological and business interdependencies. Reasoning is the
capability of a machine to automatically form inferences from terms specified into
a WS contract. In Table6.1, the symbol “¢”” means that the contract description
type covers the capability; otherwise the symbol “X” is used. In case in which the
capability is partially covered, the label “limited” is used.

Semantic descriptions fully support machine interpretability, interoperability and
reasoning due to the explicit definition of relations between property names and
property values. Moreover, the specification of expressive contractual terms is also
supported at the cost of describing technological and business interdependencies
through the use of articulated axioms [2, 39].

XML-based descriptions present contractual terms defined by text labels; there
is not a formal definition of NFP names and values, nor measurement methods
and units. Therefore, semantic misunderstandings are likely to occur causing lim-
ited interoperability. Moreover, expressivity is also limited since the specification of
articulated contractual terms is not allowed. Finally, reasoning cannot be supported
since relations among names and values are not explicitly stated.

Template-based and free-text descriptions present an high-level of expressivity
due to the use of natural language that can express specifications of articulated
WS contracts. On the contrary, they are not machine-processable and cannot be
exploited for reasoning. Interoperability is limited since different terminology can

6 Web Service Contracts 127

be used in different domains to express the same contractual terms (i.e., synonyms
and homonyms are not explicitly stated).

According to the above criteria, semantic descriptions represent the best solution
to define WS contracts. This conclusion is confirmed by the survey in [2], where
languages based on Logic programming or Description logics appear to have enough
expressivity for the description of articulated contractual terms regarding privacy
and security concerns of a service. The languages analyzed in [2] are classified
in two main groups: standard-oriented languages and research-oriented languages.
The former provide a well-defined but restricted set of features (e.g., possibility
to specify actions to be performed at runtime); the latter strive toward generality
and extensibility and provide a number of more advanced features (e.g., support for
negotiation).

Such languages cover only the specification of contractual terms on privacy and
security concerns of a service. To the best of our knowledge, no languages have
been proposed in the literature to cover all types of terms discussed above. As a
matter of facts, the most popular research-oriented models for semantic Web service
descriptions, namely OWL-S [30] and WSMO [43], and the associated languages,
OWL and WSML respectively, only marginally cover the specification of contractual
terms. OWL-S does not natively support the specification of contractual terms; an
extension of the model is required for their specification. WSMO basically allows for
attribute-value descriptions of contractual terms that are not included in the logical
model and thus reasoning activities on them cannot be performed. Several papers
[22, 39] try to overcome such limitations. As demonstrated in [11], these solutions
support the definition of expressive service contracts with the disadvantage of strong
effort required for their specifications.

The following research issue emerges: there is a lack of semantic meta-models to
provide sound and robust bases for describing WS contracts. A proper meta-model
should be:

e independent from the specific language used for actual semantic specifications, so
it can be adopted in different contexts providing for interoperability;

e expressive enough to represent all the needed properties, but simple enough to
require low effort for its usage;

e flexible enough to support the definition of automatic techniques and rules to
extract contractual terms from available descriptions, whether they are semantic,
XML-based, template-based or free-text.

This research issue has been addressed by the Policy Centered Meta-model
(PCM) [11]. The PCM supports: (i) expressive descriptions addressing qualitative
contractual terms by means of logical expressions and quantitative terms by means
of expressions including ranges and inequalities and, (ii) structured descriptions that
aggregate different term descriptions into a single entity with an applicability con-
dition. Moreover, the PCM outperforms other models providing a good trade-off
between provided expressiveness and effort required for its application. Finally, the
PCM is independent from a single language: it has been expressed both in WSMO
and OWL to overcome their limitations. Details about the semantic of the PCM and

128 M. Comerio et al.

techniques and rules to perform the mapping from heterogeneous sources to the PCM
are provided in Sect.6.3.

6.2.2 Issues on Web Service Contract Matchmaking

The WS contract matchmaking problem can be defined as follows: given a set of WS
contracts WSC = {wscy, ..., wsc,}, and a specification R of requested contractual
terms, define a sorting relation on W SC based on R. In this chapter, we assume that
each wsc; € WSC consists of an eligible contract associated with a Web service
identified by a discovery engine (e.g., GLUE2 [5] or OWLS-MX [21]) according to
its functional properties.

Historically, the first approaches proposed for WS contract matchmaking focused
only on QoS terms, which were expressed by numeric values. Syntactic matching
of contractual terms were performed and matching scores were computed by math-
ematical functions [28, 41, 45]. These approaches are very efficient, but not very
precise due to the syntactic approach, which may cause semantic misunderstandings
when dealing with qualitative contractual terms.

Tools and approaches based on the evaluation of semantic descriptions have been
proposed to improve the effectiveness of QoS-based matchmaking [6, 42]. In par-
ticular, the coming of WSMO and its extensions to support the specification of all
types of contractual terms, promoted the development of more precise WS contract
semantic matchmakers [12, 14, 15, 20, 31, 36]. Semantic approaches take advan-
tage of reasoning techniques to mediate between different terminologies and data
models by means of logical axioms and rules. Therefore, reasoning techniques are
very suitable to handle qualitative values of contractual terms. However, reasoning
tools are not very practical to deal with numeric expressions and formulae, since they
show very low efficiency.

Therefore, pure semantic and non-semantic approaches appear to be inadequate to
solve the WS contract matchmaking problem. In particular, they show the following
limitations: (i) expressivity: service contracts that include logical expressions on
ontology values and numeric expressions including ranges and inequalities are not
supported; (ii) generality: semantic mediation between contractual term descriptions
based on different domain ontologies is not supported; (iii) extensibility: parametric
matching evaluation by means of customized evaluation functions cannot be defined;
(iv) flexibility: evaluation of incomplete specifications (i.e., unspecified contractual
terms in requests or offers) is not supported.

The following research issue emerges: there is a lack of an effective approach
to WS contract matchmaking that combines high level of expressivity, generality,
extensibility and flexibility.

In [23, 46] this issue is partially addressed by extending WSMO or OWL-S with
the integration of mathematical techniques. However, both are not able to evaluate
multi-value qualitative and quantitative expressions defined by ranges. The research
issue is completely addressed by the Policy Matchmaker and Ranker (PoliMaR)

6 Web Service Contracts 129

framework,! which implements an hybrid approach to exploit logic-based tech-
niques for qualitative evaluations, and algorithmic techniques for numeric expres-
sions. Details on the hybrid approach and PoliMaR are provided in Sect. 6.4.

6.3 Towards Web Service Contract Specification

Here we discuss the experience in defining the Policy Centered Meta-model (PCM)
[11] that has been developed to address representation and evaluation of non-
functional properties collected into requested and offered WS contracts. PCM has
been designed to be independent of any specific language. Currently, PCM has been
formalized in WSML and OWL.? The usage of PCM as an extension of the WSMO
logical model has been accepted by the WSMO working group [38].

PCM provides a step towards the development of an expressive, flexible and
technology-independent framework for specifying Web Service contracts. The main
advantages of PCM in relation to other proposed models have been discussed in
several works (e.g., [11]) and can be summarized as follows:

e Expressivity: PCM provides a good trade-off between expressiveness and com-
plexity of the model. Besides PCM provides a simplified structure for organizing
contract descriptions (e.g. arbitrary logical axioms for specifying NFPs are not
allowed, while these are allowed in [38]), it has been showed that PCM sup-
ports the representation of the most significant types of contract (policies, SLAs,
license), and mappings to existing languages, such as WSOL [40], WSLA [19]
and ODRL-S [13] have been defined [8].

e Flexibility: the model has been easily extended along time to represent NFPs
extracted from heterogeneous data formats (semantic, XML-based, template-
based and textual descriptions) [8, 32, 33]; as a result, a large number of semantic
PCM-based descriptions of real services extracted from existing (non semantic)
sources have been made available to semantic matchmaking tools.

e WS technology independence: PCM has been applied to describe contracts for
SOAP-based services [7] and RESTful services [32, 33]; PCM descriptions can
be associated with service descriptions represented in any model, provided that
the description has a unique identifier.

6.3.1 The Policy Centered Meta-Model

Informally, PCM is centered around the concept of policy as aggregation of single
non-functional properties (NFPs) to form a bundle of offers or requests, that is, a
WS contract according to the terminology defined in Sect. 6.2. A policy offered by a
service, Service Policy in the following, is associated with a Condition that defines

1 Available at: http:/sourceforge.net/projects/polimary.
2 PCM formalizations are available at: http://www.siti.disco.unimib.it/research/ontologies/.

http://sourceforge.net/projects/polimar/.
http://www.siti.disco.unimib.it/research/ontologies/.

130 M. Comerio et al.

the requirements a consumer or the execution context should fulfill to select that
policy. For example, a service provider in the logistic domain may offers a shipment
service associated with a service policy (namely, Premium Policy) with a condition
(namely, Premium Condition) stating that the consumer must be subscribed to at
least 10 shipments. Each NFP in a policy is defined by a Constraint Expression
(Expression for short) that can involve either quantitative or qualitative criteria. For
example, the mentioned Premium Policy may offer a base price equal to 100 Euros
and a blanket insurance. On the other side, a policy defining user requirements,
Requested Policy in the following, consists of Requests, which are NFPs associated
with a weight named Relevance. For example, a requested policy may state, among
others, a mandatory constraint on the service price (i.e., price less than or equal to 120
Euros) and a preference on the service insurance (i.e., fire insurance or any insurance
type that includes it).
Formally, the meta-model can be defined as follows.

Definition 6.3 Non-Functional Property. Let L be a set of property labels, C a
set of constraint operators, A = {Dy, ..., D,} a set of disjoint domains, U a set
of units of measure; an Expression is a triple exp =< ¢, V,u >, where ¢ € C,
VD, for some DeA, and u € U. A NFP specification (NFP for short) is a couple
p =< l,exp >, where [€ L and exp is an Expression. With [”, ¢?, VP, and u?
we denote the property label, the constraint operator, the set of values and the unit
of measure of the NFP p, respectively.

PCM makes a distinction between qualitative and quantitative Expressions and
qualitative and quantitative NFPs. A Qualitative Expression < ¢, V,u > refers to
objects taken from a given domain, that is, the domain D such that V' C D is a set
of arbitrary objects; since different measurement systems need not to be considered,
whereas objects are denoted by identifiers, u takes “id” (identifier) as default value in
qualitative expressions. A Quantitative Expression < ¢, V,u > refers to numerical
values, that is, the domain D such that V C D is a numerical domain, e.g. .4, N
and so on. The Unity of measure for Qualitative NFPs are NFPs whose Expressions
are qualitative expressions; Quantitative NFPs are NFPs whose Expressions are
quantitative expressions.

Example 6.2 Quantitative NFP. The quadruple < of f.BasePricel, = 100, Euros
> represents the base price specification of the Premium Policy.

Example 6.3 Qualitative NFP. The quadruple <off.Insurancel, all, blanketInsur-
ance, id> represents the insurance specification of the Premium Policy.

Definition 6.4 Service Policy. Given a set of Services S, and a set of applicability
conditions identifiers PC, a Service Policy is a tuple sp = {P, pc, S}, with P
denoting a set of NFPs P = {py, ..., px} such that ﬂle ¥ = ¢ (non shared labels),
pc € PC,and S is a set of services associated with the policy.

Given a service s, we denote with SP* the set of all the policies sp such that
sp = {P, pc, s} for some P and some pc.

6 Web Service Contracts 131

Example 6.4 Service Policy. The triple <P1, Premium Condition, Freight Trans-
port> represents the premium policy associated with the Freight Transport service
where P1 includes the NFPs in Examples 6.2 and 6.3.

Definition 6.5 Request and Requested Policy. A Request r isacouple < p, rel >,
where p isaNFP and rel € [0..1]. A Requested Policy is defined by a set of requests

rp={r1,...,ra}.

Example 6.5 Request and Requested Policy. A Requested Policy includes the fol-
lowing requests <req. BasePrice, lessEqual, 120, Euros, 0.8> and <req. Insurance,
include, fire insurance, id, 0.6>.

6.3.2 Semantic Representation of the PCM

The PCM conceptual syntax has been designed to be independent of any specific
language. The concrete syntax in OWL and WSML has been defined to provide
for: (i) the definition of constraint expressions and operators by introducing specific
classes (e.g. the class of set operators and set expressions); (ii) the exploitation of
ontology axioms to formally define the mutual relationship among constraints (e.g.,
set expressions can have only ontology instances as values); (iii) the representation of
qualitative expression values as instances of ontologies, formally defining constraints
on the value domain (i.e., ontology concepts and their mutual relationships) and (iv)
the exploitation of logical inferences and semantic technologies for matching and
evaluating properties.

. pem hasConditlon
N pcm:RangeExp.
pcm:PolicyCondition
pem:PolicyNfp pem:Single\ValueExp.
pcm:hasE)@ression
pem:Qualitative Exp. pem:CustomExp.

Fig. 6.2 PCM main classes. Dashed arcs represent domain/range restrictions over the properties
and continuous arcs represent subclass relationships

132 M. Comerio et al.

The main classes of the PCM are represented in Fig. 6.2 (refer to [11] for details).
Policies are represented by the class Policy, and NFPs are represented by the class
PolicyN fp (labels identifying NFPs are URIs); the class Request is a subclass of
PolicyN fp with the specification of a relevance value; the class Requested Policy
is asubclass of Policy with NFPs of class Request;the class N fp Expression is the
superclass of different types of expressions: qualitative and quantitative. Figure 6.3
shows the properties that characterize each class of Expressions, the respective
ranges, and a set of built-in constraint operators.

Expression Class

pcm:hasOperator pem:SetOperator // {all, exist, include}
pem:hasParameters URI (instance)

Set Expression

aAnelend

pem:hasOperator pem:CustomOperator // e.g. semanticDistance
pcm:hasParameters -

Custom Expression

_ pem:hasOperator pem:BinaryOperator // 21, 21, 51, £/}
g:?:s\;;zl#e pcm:hasParameter Lit (numercal value)
g pem:hasUnit pem:Unit
§ pem:hasOperator pem:TernaryOperator /f {interval}
g' pem:hasMinParameter | Lit (numerical value)

Range Expression - -
pcm:hasMaxParameter | Lit (numerical value)

pem:hasUnit pem:Unit

Fig. 6.3 Expression classes

As for SetOperators, PCM introduces (i) the standard logical operators all and
exist with their logical meanings, and (ii) the operator include. Intuitively, a include-
based request (e.g., [need insurance including fire insurance) asks for values that
logically include the selected values (e.g., a blanket insurance); logical inclusion
is looked up by exploring hierarchical properties of a different nature (e.g., part-
of, topological inclusion). The set of CustomOperators allows domain experts to
introduce other operators to deal with object values. For example, a request based
on semanticDistance operator may ask for values that are semantically close to the
specified one.

As for quantitative expressions, PCM defines a set of operators that supports the
most common clauses for numeric values (e.g., inequalities and ranges). Besides
the standard binary operator = (equal), and ternary operator interval that fixes a
minimum and a maximum value, new operators have been introduced to increase
expressiveness of inequalities. These operators are:

(1) =1 (greaterEqual) to specify a lower bound, so that the highest possible value
18 better;

6 Web Service Contracts 133

(i1) > (atLeast) to specify a lower bound, so that the lowest possible value is
better;

(iii) <| (lessEqual) to specify an upper bound, so that the lowest possible value
is better;

(iv) <1 (atMost) to specify an upper bound, so that the highest possible value is
better.

6.3.3 Web Service Contract Extraction from Heterogeneous
Sources

As discussed in Sect. 6.2, heterogeneity prevents from automatic evaluation of con-
tracts; therefore, techniques to deliver comparable descriptions is needed. Currently,
no comprehensive solutions to solve this problem have been presented in the lit-
erature. Recent proposals, such as the VieSLAF framework [3] and the Integrated
Service Engineering (ISE) workbench [35], are innovative but partial solutions since
only the management of service level agreement (SLA) mappings is supported.

The definition of techniques and rules to extract contractual terms from available
semantic, XML-based, template-based and free-text descriptions and to map them
to a reference meta-model is still a open research issue.

6.3.3.1 Semantic Descriptions

A possible solution to extract contractual terms from heterogeneous semantic descrip-
tions of WS contracts is to develop wrappers that use ontology matching systems
(e.g., AgreementMaker [10]) to create mappings to a reference meta-model, such
as PCM [8]. Since WS contracts can be described according to different seman-
tic models (e.g., OWL-S, WSMO, MicroWSMO, WSOL) and by means of multiple
ontologies, a wrapper for each semantic model must be defined. The ontology match-
ing systems can find pairs of related concepts and evaluate semantic affinity between
concepts to create correct mappings.

Let us consider the mapping between a WSOL specification [40] and a PCM-
based WS contract. The concept of service offering in WSOL is mapped to a
pcm:Policy; QoS constraints and access rights are represented as pcm:PolicyNfp
and pcm:PolicyCondition, respectively. The mapping required a preliminary step in
which an ontology matching system is used to identify semantic matching between
concepts in the user ontology and concepts in the reference ontology. In the example
shown in Fig. 6.4, the concept ont:MaxRequestNumber specified in the user ontol-
ogy matches with the concept ref:RequestLimit in the reference ontology. After this
preliminary step, pre-defined rules are used to complete the mapping. For example,
for each identified QoS constraints in the WSOL specification (e.g., regNumber in
Fig.6.4), a new instance (requestLimitl) of the correspondent pcm:PolicyNfp is cre-
ated. The instance is defined by means of an expression having operator, parameter

134 M. Comerio et al.

|
Refarence Ontology
raf:} <mappi
! \ t‘:ﬂhr»‘ln?xﬂnmssdﬁumbep
Ontology <ref RequestLimi>
q /' ass
User Ontology
{ont:}
<7uml version="1.0" encoding="UTF.8"?> policy1 rdf:type pem:Policy .
i policy pem:hasNfp requesiLimitt .
<wsokofferngType name="S01" service="10". > r
<m%;5wnslr&-pmist mm@=m‘> requestLimit] rdf:type refReqestLimit
<wsol:QoSconstraint name="reqNumber™>] ALimitt E> i
iy |—»| PCM Wrapper requestLin requestLi
gname="ont:MaxRequestNumber"/> requestLimitExpression? rdf:type ref:RequesiLimilExpr .
<wsol:CoStype tlypeNames"ontequal > requesiLimitExp jont ™ q
<wsol-qVakee> 100 </wsolqValue> requestLimitExpression! pem:hasParamater “100°
<wsol:qUnit unitName="ont:query/day’/> requestLimitExpression! pem:hasUnit ref-queryPerDay .
<iwsol-QoSconstraint> PCM-based
<fwsol QuSconstraintlist> WS Contract
<hwsoloffedingTypes WSsoL
i description Mapping

Rules

Fig. 6.4 An example of semantic WS contract mapping

and unit equals to wsol:QoStype.typeName, wsol:qValue and wsol:qUnit.unitName
of the QoSConstraint. In the example, the resulting sematic descrition is expressed
in OWL, according to N-Triples format.>

6.3.3.2 XML-Based Descriptions

A possible approach to extract semantic WS contracts from XML-based documents,
and represents them according to a reference meta-model (e.g., PCM) is described in
[33]. The approach is based on the usage of two main data structures and knowledge
elements: source-to-policy templates and semantic mappings.

A Source-to-Policy Template is an XML document defined by the following main
elements (the datatypes and the allowed values for each element are specified within
round brackets):

e WSName (XPath): represents the path defined by an XPath expression to extract
the name of the Web service;

e WSProperty*[property Value(XPath), property Type(String), propertyDescription
(String)]: represents a property that describes a characteristic of a WS. Each
WSProperty is described by a XPath expression to extract the value of the property,
the type (qualitative or quantitative) of the PCM property to which the property is
mapped, and the label associated with the property in the extracted contracts.

The XPath query expression is exploited by a wrapper to formulate the query
over semi-structured documents to extract the desired data. An example of Source-
to-Policy Template is represented in Listing 6.1. The elements tagged by “WSName”
and “WSProperty” are the ones used to build PCM-based WS contracts.

3 Specification available at: http://www.w3.org/ TR/rdf-testcases/#ntriples.

http://www.w3.org/TR/rdf-testcases/#ntriples.

6 Web Service Contracts 135

Listing 6.1 An example of Source-to-Policy Template.

encoding="UTF-8"?> <tns:template
xmlns:tns="http://pcm. itis. disco. unimib. it/s2ptenplate"
xmlns:xsi="http:/ www. w3. org/2001/ XML Schema-instance">
< tns:WS Name >
/feed /entry /content /name
</tns:WS Name >
<tns:WS Property >
<tns:property Value >
/feed /entry /content /dataFormats
</tns:property Value >
<tns:property Type >qualitative</tns:property Type >
<tns:property Descpription>
Data formats
</tns:property Description>
</tns:WS Property>
</tns:template>

A set of semantic mappings are defined between properties in the Source-to-Policy
Template at design time. Mappings are defined by equivalence relations between
properties < p, g > and the transitive closure of the mappings is computed. Map-
pings are established between properties of the same type (i.e., qualitative/quantita-
tive properties are mapped only to qualitative/quantitative properties). Intuitively, a
mapping between properties states that those properties address the same characteris-
tic with no particular regards to possible different units of measure. For example, two
different properties that adopt different scales for user-rating values (e.g. user ratings
expressed in range [1..5] versus user ratings expressed in range [1..10]) are consid-
ered equivalent. Therefore, each mapping is associated with functions to convert the
values expressed in a unit into values expressed in the other, and vice versa.

6.3.3.3 Template-Based and Free-Text Descriptions

As a matter of facts, template-based and free-text are the most common kind of
WS contracts available. In both cases, service characteristics are described by text
in natural language, which makes difficult the identification of contractual terms. A
possible approach is to apply simple Information Retrieval (IR) techniques, such as
keyword extraction (words and terms are identified and extracted from the service
contract textual description), and stop words removal (terms that are non-significant
or don’t provide any meaning are removed) to index such descriptions.* The result
is a set of keywords that are potential terms to be included in a WS contract. An IR-
based approach to extract contractual terms from textual descriptions and to include
them into a PCM-based WS contract has been defined in [4]. Basically, the approach
consists in (i) using the IR techniques to extract a vector of keywords representing
potential contractual terms and (ii) adding the vector into an existing PCM-based
description to be used for matchmaking.

4 For simplicity, the description of IR techniques is omitted, interested readers can to refer to [29].

136 M. Comerio et al.

A more sophisticated approach exploits natural language processing (NLP) tech-
niques [17] such as Word splitting (for parsing concatenated text), Stemming (for
reducing inflected words to their stem, base, or root form), Part Of Speech (POS)
tagging (for marking up the words in a text as corresponding to a particular part of
speech), Word Sense Disambiguation (WSD) (for identifying which sense of a word
is used in a sentence, when the word has multiple meanings). An example of usage
of such such techniques is proposed in [25].

6.4 Towards Web Service Contract Matchmaking

Here we discuss some research efforts on addressing issues on WS contract match-
making. In particular, we present an hybrid approach to WS contract matchmaking
that combines logic-based and algorithmic techniques. Logic-based techniques are
used for mediation and qualitative NFP evaluation instead more practical algorith-
mic techniques are used for quantitative NFP evaluation. The aim of the proposal
is to overcome the limitations of purely semantic or non-semantic approaches (see
Sect.6.2.2) using logical reasoning techniques on semantic WS contract descriptions
only when they are strictly needed to improve the precision of the matchmaking.
The hybrid approach has been implemented in the Policy Matchmaker and Ranker
(PoliMaR) framework, which evolved along time in order to consider the issues
discussed in Sect.6.2.2.

The proposed hybrid approach to service matchmaking provides a step towards
the development of effective, flexible, and Web-scale matchmaking systems handling
different types of contracts. The main advantages over others approaches, discussed
in details in [7, 32, 33], can be summarized as follows:

e Effectiveness: PoliMaR performs effective semantic-based non-boolean match-
making dealing with, possibly under specified, qualitative and quantitative contract
terms [7]; these semantic matchmaking techniques have been applied to descrip-
tions of contracts of different kinds [8], including user-generated descriptions of
contracts available in existing Web sources [32, 33].

e Extensibility: the decomposition of the matching process and architectural mod-
ularity supports different matching strategies and customized processes to ful-
fill application domain needs; this feature have been tested by adopting different
matching functions, and different configuration of matching components without
changes to the core matching strategy [4, 7, 27, 32, 33];

e Web-compliant Scalability and Performance: recent results showed that the adoption
of caching and lightweight service-based distributed architectures can overcome
scalability and performance limitations, which often affect semantic-based tools.
By balancing loads for tasks that require significant computational resources and
using different computing nodes, the proposed approach can perform matching
over thousands of contract specifications extracted from the Web at run-time [32,
33].

6 Web Service Contracts 137

6.4.1 An Hybrid Approach to Web Service Contract Matchmaking
and Ranking

In [7], a four-phase process for WS contracts Matchmaking and Ranking has been
proposed and formalized. As shown in Fig. 6.5, given a PCM-based requested con-
tract and a set of PCM-based offered contracts the process is composed as follows:
the term matching phase identifies the terms in the offered contracts that match
with each requested term in the requested contract. The result is a set of matching
term couples; the local evaluation phase evaluates, for each identified matching
couple, how the offered term satisfies the requested one. Results are in range [0, 1];
the global evaluation phase evaluates, for each offered contract, the results of the
previous phase to compute a global matching score. Results are values in range [0,
n]; finally, the contract ranking phase sorts the offered contracts according to their
global matching scores.

Term
Matching

Local
Evaluation

Global
Ewvaluation

Contract
Ranking

ED

N

-

\

CONTRACT_B Matching tem-couphs Oiobal Eval, Results Rarking Fiasuits

PCMBASED |
CONTRACT & | <o :
LA PCM-BASLO
cemZ A | CONTRACT_C

CONTRA
CONTRA =
CONTRACT B=13

Local Eval. Resuts ‘

Fig. 6.5 The four-phase process for WS contract matchmaking and ranking

6.4.1.1 Term Matching

In order to identify matching term couples, the proposed mediator-centric hybrid
approach exploits domain ontologies, rule-based mediators and an inference engine
to solve semantic mismatches. In particular, mediators are defined as logic program-
ming rules and stored in a rule domain ontology; rules have the following form:

(S:’ 13’ 57) <~ (Sla pla 01)’ (52, p25 02)3 R} (Sl’h pl’lv On)

Rules are composed by a head and a body. The body represents a condition through
a conjunction of statements defined by the RDF triples (s;, p;, 0;) with 1 <i < n.
Each triple specifies a relation, through a predicate p, between two concepts, defined
by a subject s and an object o. If the condition is verified, the relation defined by the
triple (5, p, 0) exists.

An example of term matching rules is defined in Listing 6.2. The three rules
specify that every instance o of BasePrice and ServicePrice classes matches with

138 M. Comerio et al.

Listing 6.2 An Example of Term Matching Rules

(?r,pr:pricingMatches, ?0) <— (?r,rdf:type,nfpr:BasePriceRequest) ,(?0,rdf:type,nfpol:BasePrice)
(?r,pr:pricingMatches, ?0) <— (?r,rdf:type,nfpr:BasePriceRequest) ,(?0,rdf:type,nfpo2: ServicePrice)
(?r,pem: matches, ?0) <— (?r,pr:pricingMatches, ?0)

every instance r of the class BasePriceRequest. Moreover, the matching is defined as
a pricing relation type (pricingMatches). Prefixes (e.g., nfpol:) define namespaces
of the ontologies in which the related concepts are specified. These prefixes permit
the mediation across several ontologies.

Term matching rules can be modelled through standard rule languages, such as
SWRL.® Jena Rules,® for OWL descriptions.

6.4.1.2 Local Evaluation

For each couple <r,0> identified along the Term Matching, a local score (Is) stating
how much o satisfies r is computed. A Is is expressed by a value in the range [0..1],
where 0 means “no match” and 1 means “exact match”. Each s is computed through
a local evaluation function selected on the basis of the constraint operators used
to specify r and o. Links between functions and constraint operators are not fixed
and they can be customized in order to supply a flexible and extensible solution
for the local evaluation. Only mathematical functions are used for the evaluation of
quantitative terms; while for the evaluation of qualitative properties, mathematical
functions are used in combination with logic programming rules that exploit semantic
dependencies among terms based on the domain ontologies [7]. For example, let us
consider an ontology for the insurance domain, where the fireInsurance is defined as
partOf the blanketInsurance. Therefore, a WS contract offering blanketIinsurance
satisfies a requested contract specified through an include operator and asking for a
firelnsurance.

6.4.1.3 Global Evaluation and Contract Ranking

Different Multi-Criteria Decision Making (MCDM) approaches can be used to per-
form the global score gs evaluation of a WS contract. An example is the Simple
Additive Weighting (SAW) technique that consists in multiplying the value of each
Is for the relevance (rel) that the consumer associates with the requested term. The
formula is defined as follows:

5 Specification available at: http://www.w3.org/Submission/SWRL/.
6 Specification available at: http:/jena.apache.org/documentation/inference/.

http://www.w3.org/Submission/SWRL/.
http://jena.apache.org/documentation/inference/.

6 Web Service Contracts 139

n
gSWScontract — Zld<r,o>,— wrel”

i=1

Different techniques can be used to perform the WS contract ranking according
to their gs. The simplest technique consists of using a traditional sorting algorithm.

6.4.2 The PoliMaR Framework

The Policy Matchmaker and Ranker (PoliMaR) framework implements the hybrid
approach to WS contract matchmaking and ranking proposed in the previous section.
During its development lifecycle, three different versions have been released.

After the implementation of the first core version [7], testing activities denoted
a high system response time when performing reasoning activities. This issue made
the first PoliMaR version inadequate to be used as a Web application. Therefore, two
other versions have been developed: a cache-based and a distributed version.

6.4.2.1 The Core Architecture

The process of enabling WS contract matchmaking can be divided in two phases:

e setup-time: a number of offered contracts are stored into the ontology repository
together with all the ontologies necessary for their evaluation. Moreover, a config-
uration file defining configuration parameters to be used along the matchmaking
process is specified.

e run-time: a requested contract is submitted to the engine and the term matching,
local evaluation, global evaluation and contract ranking activities are performed.
The result is a list of offered contracts ordered respect to their compliance with
the requested one.

PoliMaR AFPI
Execution Engine
Ontology Config.
Manager Ontology M:fc;rw?n Local Global Contract Manager
Loader 9 Evaluator Evaluator Ranker
Evaluator

Repository Controller] | Reasoner Controller | | Ext Tool Con!roller Config. Controller

ﬁ | Reasoner Mathematica H ggﬁce? ﬁ i

Ontology Library Config. File

Repository Functions

Fig. 6.6 The core PoliMaR architecture

140 M. Comerio et al.

The PoliMaR tool supports setup-time and run-time activities, from the storages
of contracts by the service providers and the submission of requested contract by the
service consumers, to the definition of the ranked list of contracts.

The architecture of the core version of the PoliMaR tool, illustrated in Fig. 6.6,
is composed of independent modules that supply services through an API that gives
access to: (i) an ontology manager, which is in charge of receiving contract descrip-
tions and storing them into an appropriate repository; (ii) an execution engine, which
receives the requested contract and implements the execution strategies to fulfill
the matchmaking process; (iii) a configuration manager, which allows the client to
specified configuration parameters to be used to perform the matchmaking.

The execution engine relies on a set of components providing for specific features
that can be extended by new components without disrupting the architecture. Since
the adopted interaction model prevents components to communicate each other, they
act as servers that provide their services to the execution engine and make it the
orchestrator of the matchmaking process, which can enact different workflows to
implement different logics.

The PoliMaR core components are the following:

e Ontology loader: is in charge of loading into the reasoner through the reasoner
controller all the knowledge necessary to realize the term matching and the local
evaluation of qualitative terms.

e Term matching evaluator: implements the process necessary to perform the term
matching phase. Through the reasoner controller, this component submits the
matching rules to the reasoner and receives a set of matching couples as results.

e Local evaluator: implements the process necessary to perform the local evaluation
phase. For each matching couple produced by the term matching evaluator, the
local score evaluation is performed exploiting a specific function retrieved from
the library functions.

e Global evaluator: implements the process necessary to perform the global evalu-
ation phase. This component retrieves from the library functions the function to
be used for the global score evaluations. The function is loaded and executed on
the local scores computed by the local evaluator.

e Contract ranker: implements the process necessary to perform the contract ranking
phase. The function to be used to perform the ranking is retrieved from the library
functions and it is loaded and executed on the global scores computed by the global
evaluator.

6.4.2.2 The Cache-Based Architecture

Asdiscussed in [7], reasoning activities introduce a relevant performance overhead in
the matchmaking process. The first proposed strategy to increase the performance of
the PoliMaR framework makes use of caching techniques to extract and store all the
knowledge needed for the matchmaking process at setup time. This strategy requires
to modify the activities to be performed at setup-time and run-time as follows:

6

Web Service Contracts 141

setup-time: different types of caches must be created in order to make available in
practical data structures all the knowledge needed for the run-time evaluation. The
caches are created through the reasoner that extracts relevant information from
the ontology repository.

run-time: a requested contract is submitted to the engine and the cache-based
matchmaking process is performed. The use of a reasoner is no longer needed.

In order to support both term matching and local evaluation, two different types

of caches are created: (i) matching cache that includes, for each possible requested
term, all the instances of concepts defined in the ontology repository that satisfy
predefined matching rules; (ii) relation cache that includes, relations (e.g., inclusion,
equality) between instances of concepts defined in the ontology repository.

PoliMaR API
Execution Engine
Ontology Config.
Manager Cache MZ;:?I"I Local Global Contract Manager
Builder 9 || Evaluator || Evaluator || Ranker
Evaluator
Data Controller Ext Tool Contro[ler Config. Controller

Choco
R
ﬁ eason - ﬁ —= - é i

Ontology Caches Library Config. File

Repository Functions

Fig. 6.7 The cache-based PoliMaR architecture

The cache-based PoliMaR architecture (shown in Fig.6.7) introduces two new

components:

Cache builder: replaces the ontology loader and implements the functionalities
required for cache management. It is in charge of creating the caches at setup-time
and updating them at run-time when new ontologies are stored in the ontology
repository.

Data controller: replaces the original repository controller and reasoner controller
and aims at making the upper components independent of the actual underlying
reasoner and of the technology used to manage the ontology repository and the
caches.

6.4.2.3 The Distributed Architecture

The cache-based architecture dramatically reduces the response time of the PoliMaR
framework, but at the cost of another limitation: the management of dynamic prop-
erties (e.g., QoS) requires continuous cache refreshing in order to preserve data

142 M. Comerio et al.

consistency, but the cache building performance is low since reasoning is required.
To increase the response time, a distributed version of PoliMaR has been defined.
The architecture of the distributed PoliMaR is shown in Fig. 6.8. The high mod-
ularity of the core architecture allows us to create two distributed components, the
orchestrator and the local matchmaker, that collects existing modules.

PoliMaR Web API (REST) g

Execution Engine §

g

Orchestr. | 5

=g 5

Local Matchmaker Web API (REST) % § Contract MCOHﬁg-
= anager
Ontology = Ontology Term Local Global Loc:_al 5 Ranker e
Manager Loader M Evaluator | Evaluator Config. | 5
Evaluator Manager | §
Repository Controller = Reasoner Controller | | Ext. Tool Controller | | Config. Controller Config. Controller

' (I

Choco
Reasoner Seler

' :

Mathematica

Local Orchestrator

Ontology hy Librat

Repository Contig. Fomagey Contfig. File
1le
ile

Fig. 6.8 The distributed PoliMaR architecture

The task of the orchestrator is to manage the matchmaking process through the
orchestration of the local matchmakers and performing the contract ranking. Instead,
local matchmakers collect the modules that perform the first three steps of the match-
making process: term matching, local evaluation and global evaluation. The com-
munication overhead is kept low thanks to the adoption of REST style interfaces to
deliver a lightweight and flexible service-oriented architecture [34].

As discussed in details in [33], this distributed architecture ensures a relevant
performance improvement. This improvement is enabled by a partial parallelization
of the matchmaking process performed by the local matchmaker. Moreover, each
local matchmaker performs a more efficient reasoning exploiting a smaller and less
complex knowledge base.

6.5 Concluding Remarks

Web service contracts are legally binding exchange of promises and agreements
between service providers and potential service consumers expressed through sets
of contractual terms on non-functional properties covering QoS, legal, intellectual
right, and business characteristics of services and their data.

The enhancement of Web service discovery and composition with the evaluation
of WS contracts is promising, but currently not supported by Web service discov-
ery and composition engines. This is due to the fact that service providers represent
WS contracts using heterogeneous formalisms, causing strong ambiguity and redun-

6 Web Service Contracts 143

dancies and preventing their right interpretation in multi-provider service-oriented
environments.

From the analysis of the literature two main issues emerge: (i) the definition of a
semantic meta-model that provides a sound and robust base to formally describe WS
contracts and (ii) the definition of an effective approach to WS contract matchmaking
with high levels of expressivity, generality, extensibility and flexibility.

The chapter reports research experiences that addressed the mentioned issues.
The Policy Centered Meta-model (PCM) [11] is a semantic meta-model that sup-
ports the definition of expressive and structured WS contract descriptions aggregating
qualitative and quantitative contractual terms into a single entity with an applicabil-
ity condition. Different techniques can be used to extract contractual terms from
available WS contract descriptions and to map them into PCM-based WS contracts.
Examples are in [4, 8, 33] where (i) wrapping techniques appear to be a valid solu-
tion for the extraction of terms from semantic descriptions, (ii) template-based and
semantic mappings are proposed to manage XML-based descriptions and, (iii) IR
and NLP are proposed to extract terms from free-text descriptions.

The hybrid approach implemented into the Policy Matchmaker and Ranker
(PoliMaR) framework [7] that combines logic-based and algorithmic techniques
represents an effective solution to WS contract matchmaking with high levels of
expressivity, generality, extensibility and flexibility.

References

1. Bochicchio, M.A., Longo, A.: Modelling contract management for cloud services. In: IEEE
International Conference on Cloud Computing (CLOUD 2011), pp. 332-339. Washington,
DC, USA (2011)

2. Bonatti, P.A., Coi, J.L.D., Olmedilla, D., Sauro, L.: Rule-based policy representations and
reasoning. In: In Semantic Techniques for the Web, The REWERSE Perspective, Lecture
Notes in Computer Science, vol. 5500, pp. 201-232. Springer (2009)

3. Brandic, 1., Music, D., Leitner, P., Dustdar, S.: Vieslaf framework: Enabling adaptive and
versatile sla-management. In: In proc. of International Workshop on Grid Economics and
Business Models 2009 (GECON 09), pp. 60-73. Delft, The Netherlands (2009)

4. Calegari, S., Comerio, M., Maurino, A., Panzeri, E., Pasi, G.: A semantic and information
retrieval based approach to service contract selection. In: Proc. 9th International Conference
on Service-Oriented Computing (ICSOC 2011), pp. 389—403. Paphos, Cyprus (2011)

5. Carenini, A., Cerizza, D., Comerio, M., Della Valle, E., De Paoli, F., Maurino, A., Palmonari,
M., Turati, A.: Glue2: a web service discovery engine with non-functional properties. In: Proc.
of the Fifth European Conference on Web Services (ECOWS ’07). Dublin, Ireland (2008)

6. Chaari, S., Badr, Y., Biennier, F.: Enhancing web service selection by qos-based ontology and
ws-policy. In: Proceedings of the 2008 SAC ACM, SAC 08, pp. 2426-2431. ACM (2008)

7. Comerio, M., De Paoli, F., Palmonari, M.: Effective and flexible nfp-based ranking of web
services. In: Proc. of Inter. Conf. on Service Oriented Computing (ICSOC), pp. 546-560.
Stockholm, Sweden (2009)

8. Comerio, M., Truong, H.L., De Paoli, F., Dustdar, S.: Evaluating contract compatibility for
service composition in the seco2 framework. In: Proc. of Inter. Conf. on Service Oriented
Computing (ICSOC), pp. 221-236. Stockholm, Sweden (2009)

144

9.

10.

11.

12.

14.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

M. Comerio et al.

Comuzzi, M., Pernici, B.: Negotiation support for web service selection. Technologies for
E-Services pp. 29-38 (2005)

Cruz, LE, Antonelli, E.P., Stroe, C.: Agreementmaker: Efficient matching for large real-world
schemas and ontologies. PVLDB 2(2), 1586-1589 (2009)

De Paoli, E., Palmonari, M., Comerio, M., Maurino, A.: A Meta-Model for Non-Functional
Property Descriptions of Web Services. In: Proc. of the IEEE International Conference on Web
Services (ICWS), pp. 393—400. Beijing, China (2008)

Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta, A., Norton, B., Pedrinaci, C.:
IRS-III: A broker-based approach to semantic Web services. Web Semantics: Science, Services
and Agents on the World Wide Web 6(2), 109-132 (2008)

. Gangadharan, G.R., D’Andrea, V., lannella, R., Weiss, M.: Odrl service licensing profile

(odrl-s). In: 5th International Workshop for Technical, Economic, and Legal Aspects of Busi-
ness Models for Virtual Goods (2007)

Garcia, J.M., Toma, 1., Ruiz, D., Ruiz-Cortes, A.: A service ranker based on logic rules eval-
uation and constraint programming. In: Proc. of 2nd Non Functional Properties and Service
Level Agreements in SOC Workshop (NFPSLASOC). Dublin, Ireland (2008)

. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: Wsmx-a semantic service-oriented

architecture. In: Proc. of IEEE International Conference on Web Services (ICWS 2005), pp.
321-328. IEEE (2005)

Jarma, Y., Boloor, K., Dias de Amorim, M., Viniotis, Y., Callaway, R.: Dynamic service contract
enforcement in service-oriented networks. Services Computing, IEEE Transactions on PP(99),
1(2011). doi:10.1109/TSC.2011.45

. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Lan-

guage Processing, Computational Linguistics and Speech Recognition, second edn. Prentice
Hall (2008). http://www.worldcat.org/isbn/013122798X

Kamoda, H., Yamaoka, M., Matsuda, S., Broda, K., Sloman, M.: "Policy Conflict Analysis
Using Free Variable Tableaux for Access Control in Web Services Environments". In: "Pro-
ceedings of the 14th International World Wide Web Conference (WWW)" (2005)

Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service level agree-
ments for web services. Journal of Network and Systems Management 11(1), 57-81 (2003)
Keller, U., Lara, R., Lausen, H., Polleres, A., Fensel, D.: Automatic location of services. In:
The Semantic Web: Research and Applications, Lecture Notes in Computer Science, vol. 3532,
pp. 1-16. Springer Berlin / Heidelberg (2005)

Klusch, M., Fries, B., Sycara, K.: Owls-mx: A hybrid semantic web service matchmaker for
owl-s services. Web Semant. 7(2), 121-133 (2009). http://dx.doi.org/10.1016/j.websem.2008.
10.001

Kritikos, K., Plexousakis, D.: Semantic qos metric matching. In: Proc. of the European Con-
ference on Web Services (ECOWS), pp. 265-274. IEEE Computer Society, Washington, DC,
USA (2006)

Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of highly
configurable web services. In: Proc. of the 16th international conference on World Wide Web
(WWW ’07), pp. 1013-1022. ACM, New York, NY, USA (2007). http://doi.acm.org/10.1145/
1242572.1242709

Lamparter, S., Luckner, S., Mutschler, S.: Semi-automated management of web service con-
tracts. International Journal of Services Sciences 1(3/4) (2008)

Lee, K.H., Lim, J.: Constructing composite web services from natural language requests. Web
Semantics: Science, Services and Agents on the World Wide Web 8(1) (2011)

Lewis, L., Ray, P.: Service level management definition, architecture, and research challenges.
In: Global Telecommunications Conference, 1999. GLOBECOM ’99, vol. 3, pp. 1974-1978
vol. 3 (1999). doi:10.1109/GLOCOM.1999.832515

Li, P., Comerio, M., Maurino, A., De Paoli, F.: Advanced non-functional property evalua-
tion of web services. In: Proceeding of Seventh IEEE European Conference on Web Services
(ECOWS’09), pp. 27-36. IEEE (2009)

http://dx.doi.org/10.1109/TSC.2011.45
http://www.worldcat.org/isbn/013122798X
http://dx.doi.org/10.1016/j.websem.2008.10.001
http://dx.doi.org/10.1016/j.websem.2008.10.001
http://doi.acm.org/10.1145/1242572.1242709
http://doi.acm.org/10.1145/1242572.1242709
http://dx.doi.org/10.1109/GLOCOM.1999.832515

6 Web Service Contracts 145

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Liu, Y., Ngu, A., Zeng, L.: Qos computation and policing in dynamic web service selection.
In: Proc. of the 13th international World Wide Web conference on Alternate track papers and
posters (WWW Alt. *04), pp. 6673 (2004)

Manning, C.D., Raghavan, P., Schiitze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008)

Martin, D.: Semantic Markup for Web Services. Formalization available at: http://www.w3.
org/Submission/OWL-S/ (2004)

Mokhtar, S., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: Easy: Efficient semantic
service discovery in pervasive computing environments with qos and context support. Journal
of Systems and Software 81(5), 785-808 (2008)

Panziera, L., Comerio, M., Palmonari M. De Paoli, F., Batini, C.: Quality-driven Extraction,
Fusion and Matchmaking of Semantic Web API Descriptions. Journal of Web Engineering
11(3), 247-268 (2012)

Panziera, L., Comerio, M., Palmonari, M., De Paoli, F.: Distributed matchmaking and ranking of
web apis exploiting descriptions from web sources. In: Proceedings of the IEEE International
Conference on Service-Oriented Computing and Applications (SOCA 2011). Irvine, USA
(2011)

Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. “big” web services:
making the right architectural decision. In: Proceedings of the 17th International Conference
on World Wide Web (WWW) 2008, pp. 805-814 (2008)

Spillner, J., Winkler, M., Reichert, S., Cardoso, J., Schill, A.: Distributed contracting and mon-
itoring in the internet of services. In: Proc. of the 9th International Conference on Distributed
Applications and Interoperable Systems (DAIS), pp. 129-142. Lisbon, Portugal (2009)
Stollberg, M., Keller, U., Lausen, H., Heymans, S.: Two-phase web service discovery based
on rich functional descriptions. In: E. Franconi, M. Kifer, W. May (eds.) The Semantic Web:
Research and Applications, Lecture Notes in Computer Science, vol. 4519, pp. 99-113. Springer
Berlin / Heidelberg (2007)

Surya, N., John, Z.: Issues on the compatibility of web service contracts. In: L. Jie-Zhang
(ed.) Innovations, Standards and Practices of Web Services: Emerging Research Topics, pp.
154-188. IGI Global (2012)

Toma, I., Foxvog, D., Paoli, ED., Comerio, M., Palmonari, M., Maurino, A.: Non-functional
properties in web services. wsmo d28.4 v0.2. Tech. rep., http://www.wsmo.org/TR/d28/d28.
4/v0.2/20080416 (2008)

Toma, 1., Roman, D., Fensel, D.: On describing and ranking services based on non-functional
properties. In: Third International Conference on Next Generation Web Services Practices
(NWESP °07), pp. 61-66. IEEE Computer Society, Washington, DC, USA (2007)

Tosic, V., Patel, K., Pagurek, B.: Wsol - web service offerings language. In: CAiSE *02/ WES
’02: Revised Papers from the International Workshop on Web Services, E-Business, and the
Semantic Web, pp. 57-67. Springer-Verlag, London, UK (2002)

Vu, L., Hauswirth, M., Porto, F., Aberer, K.: A search engine for QoS-enabled discovery of
semantic web services. International Journal of Business Process Integration and Management
1(4), 244-255 (2006)

Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A qos-aware selection model for semantic web
services. In: Proc. of the 4th Intl Conference on Service-Oriented Computing (ICSOC’06), pp.
390-401. Chicago, IL, USA (2006)

WSMO: The Web Service Modeling Ontology (WSMO). Final Draft. Available at: http://www.
wsmo.org/TR/d2/v1.2/20050413/ (2005)

Yan, J., Kowalczyk, R., Lin, J., Chhetri, M., Goh, S., Zhang, J.: Autonomous service level
agreement negotiation for service composition provision. Future Generation Computer Systems
23(6), 748-759 (2007)

Yu, H.Q., Reiff-Marganiec, S.: A method for automated web service selection. In: proc. of the
Congress on Services (SERVICES), pp. 513-520 (2008)

Zaremba, M., Migdal, J., Hauswirth, M.: Discovery of optimized web service configurations
using a hybrid semantic and statistical approach. In: Web Services, 2009. ICWS 2009. IEEE
International Conference on, pp. 149-156. IEEE (2009)

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.wsmo.org/TR/d28/d28.4/v0.2/20080416
http://www.wsmo.org/TR/d28/d28.4/v0.2/20080416
http://www.wsmo.org/TR/d2/v1.2/20050413/
http://www.wsmo.org/TR/d2/v1.2/20050413/

146 M. Comerio et al.

47. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware middle-
ware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311-327 (2004). http://dx.
doi.org/10.1109/TSE.2004.11

48. Zou, J., Wang, Y., Lin, K.J.: A formal service contract model for accountable saas and cloud
services. In: Proc. of IEEE International Conference on Services Computing (SCC 2010), pp.
73-80. Miami, Florida, USA (2010)

http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1109/TSE.2004.11

Chapter 7
A Certification-Aware Service-Oriented
Architecture

Marco Anisetti, Claudio A. Ardagna, Michele Bezzi, Ernesto Damiani,
Samuel Paul Kaluvuri and Antonino Sabetta

Abstract The widespread development of Service-Oriented Architecture (SOA)
and web services is changing the traditional view of information technology. Today,
software applications are increasingly distributed and consumed as a service, and
business processes are implemented by selecting and composing services provided
by different suppliers at run-time and with a minimal human intervention. In this
scenario, where services are usually selected on the basis of clients’ functional pref-
erences, the risk of providing powerful but insecure applications raises, and the prob-
lem of guaranteeing and preserving the security of services and business processes
becomes stringent. To this aim, we put forward the idea that security certification
techniques can be adopted to provide the evidence that a service system has some
security properties and behaves as expected. However, existing security certification
techniques are not well-suited to the service scenario, since they are designed for
static and monolithic software and then cannot support the intrinsic SOA dynamics.
In this chapter, we discuss recent developments in the area of extending security

M. Anisetti (<)) - C. A. Ardagna - E. Damiani

Dipartimento di Informatica, Universita degli Studi di Milano,
Via Bramante 65, 26013 Crema, Italy

e-mail: marco.anisetti @unimi.it

C. A. Ardagna
e-mail: claudio.ardagna@unimi.it

E. Damiani
e-mail: ernesto.damiani @unimi.it

M. Bezzi - S. P. Kaluvuri - A. Sabetta

SAP Research Sophia-Antipolis, 805, Av. du Docteur Maurice Donat,
06254 Mougins Cedex, France

e-mail: michele.bezzi@sap.com

S. P. Kaluvuri
e-mail: samuel.kaluvuri@sap.com

A. Sabetta
e-mail: antonino.sabetta@sap.com

A. Bouguettaya et al. (eds.), Advanced Web Services, 147
DOI: 10.1007/978-1-4614-7535-4_7,
© Springer Science+Business Media New York 2014

148 M. Anisetti et al.

certifications to web services. In particular, we first review current certification
approaches, and highlight requirements and challenges for applying them to the ser-
vice ecosystem. We then present an advanced methodology for security certification
based on testing, as a crucial part of a novel approach for security certification devel-
oped in the context of the FP7 EU project Advanced Security Service cERTificate for
SOA (ASSERT4S0A).

7.1 Introduction

Recent enhancements of Internet technologies and the growing success of SOA and
web services are moving current vision of ICT towards the Internet of Services [40].
Today, in fact, many software applications are released as service-based products,
and business processes are implemented by composing loosely-coupled services
provided by different suppliers. SOA and Web service standards provide a powerful
framework to specify distributed applications by defining their messaging (e.g., using
the Web Service Description Language (WSDL) [24]), conversation (e.g., using the
Web Service Conversation Language (WSCL) [2]), and/or coordination (e.g., using
the Business Process Execution Language (BPEL) [1]).

The price we pay for such a convenient way of specifying distributed applications
and developing business processes is an increasing difficulty in the evaluation of their
non-functional properties. This is especially true for security properties, since run-
time selection and composition of services provided by unknown parties can increase
the risk of security issues. As a consequence, the users are much more concerned
about the risk of developing powerful but insecure services. There is therefore the
need of providing new assurance techniques that fit the SOA environment and allow
users to evaluate a service not only using its functional properties but also verifying
non-functional ones. The availability of service-oriented assurance techniques aims
to increase the confidence of the users that a given service is secure and behaves as
expected.

The research community is trying to address the above issues by adapting cur-
rent development, verification, and certification techniques to the SOA environment
(e.g., [7, 9, 14, 19, 20, 22, 30, 45]). These techniques have to manage the intrinsic
dynamics of SOA applications and environments, and must be integrated within the
selection, discovery, and composition processes which are at the basis of the SOA
success. Among the different assurance techniques that can be used to address the
above problems, security certification is increasingly adopted. Originally, security
certification schemes have been defined for traditional static and monolithic software
systems, to the aim of proving some properties that are then used at deployment and
installation time [18]. These solutions cannot be adopted in a SOA scenario as they
are, but they need to be enhanced to meet SOA requirements.

In this chapter, the challenges and issues of security certification schemes for ser-
vices are analyzed from two different perspectives: (i) we analyze how a test-based
security certification scheme can be defined and integrated within SOA to provide

7 A Certification-Aware Service-Oriented Architecture 149

a certification-aware selection process; (ii) we analyze how a suitable framework
for managing the full life-cycle of services with certified security properties can
be provided, including certificate issuing and management, certification-aware ser-
vice discovery, certificate validation, and service consumption. The remaining of
this chapter is organized as follows. First, we analyze requirements on certification
schemes for services (Sect. 7.2) also discussing how they are changing the trust model
underlying the SOA infrastructure (Sect.7.3). Then, we present a possible specifica-
tion of a test-based security certification scheme for SOA (Sect.7.4). Moreover, we
illustrate the framework provided by ASSERT4SOA to support a certification-aware
SOA (Sect.7.5), giving an overview of the high-level components of the framework
and a certification-aware development environment. Finally, we discuss the next steps
in the certification of evolving and composed services (Sect. 7.6).

7.2 Requirements on Security Certification of Services

Currently available certification schemes aim to provide trustworthy evidence that
a particular software system has some features, conforms to specified requirements,
and behaves as expected [18]. Some of these schemes have focused on security prop-
erties and requirements. The Trusted Computer System Evaluation Criteria (TCSEC)
(commonly referred as Orange Book) [46], provided by the U.S Department of
Defense (DoD) in 1985, has been the first security certification solution. TCSEC
aimed to propose a standard for security certification of software that (i) provides
guidelines to develop products satisfying security requirements, (ii) defines a means
to measure the level of trust provided by the system, and (iii) allows software pur-
chasers to state their requirements on the software. Following the TCSEC effort,
many other solutions have been provided world-wide, as for instance, Information
Technology Security Evaluation Criteria (ITSEC) [26] in 1991, Canadian Trusted
Computer Product Evaluation Criteria (CTCPEC) [18] in 1993. A major drawback
of these solutions is that they implement national certifications that are totally inde-
pendent from each other. As a consequence, the cost of certifying a software system
at an international level has been very high for a long time. The Common Criteria
(ISO 15408) certification scheme [24] has been defined to address this limitation
and provides an international standard for affordable software security certification,
including a general framework to specify, design, and evaluate security properties
of IT products. Common Ceriteria therefore reduces the costs of certifying a system,
while it maintains high complexity. Recently, some lightweight software certifica-
tion processes have been specified with the goal of reassuring the users without the
complexities of existing processes. As an example, Certificat de Sécurité de Premier
Niveau (CSPN) [3] has been designed as an alternative to Common Criteria and
provides a lightweight security certification infrastructure. If, on one side, CSPN
provides a lower level of security assurance than Common Criteria, on the other
side, it is less complex and allows to achieve security certification in less time.

150 M. Anisetti et al.

Although the many advantages of the above certification schemes, they are not
suitable for a service ecosystem. In fact, they usually consider static and mono-
lithic software, provide certificates including human-readable statements signed by
a trusted third party, and consider system-wide certificates to be used at deployment
and installation time. A promising direction to increase the level of assurance of
existing SOA applications and web services must (i) extend existing schemes to fit
the SOA dynamics and (ii) support the selection and composition of services on
the basis of the evidence that proves a set of security properties for each single ser-
vice. We therefore identify the following requirements that are fundamental for the
definition of a service-oriented certification scheme.

e Machine-readable certificates. A service provider should be able to retrieve a
machine-readable certificate for its services by interacting with a trusted certifi-
cation authority. The certificate proves a set of properties and can be consumed at
run-time by clients searching for a service that provides a set of functionalities with
a given level of assurance. Also, clients should be able to access and analyze (if
needed) the evidence supporting the properties. There exist two classes of evidence
that can be included in the certificate to support the claim that a service holds a
property [18]: (i) test-based evidence providing test-based proofs that a test carried
out on the service has given a certain result, which in turn shows that a given prop-
erty holds for that service; or (ii) model-based evidence providing formal proofs
that a service holds some properties and meets formal specifications in terms of
security requirements. The generation, management, and availability of accurate
evidence are fundamental aspects to integrate the security certification process and
outcomes within the SOA infrastructure. Some approaches for software systems
(e.g., Common Criteria [24]) integrate both test-based and model-based evidence
to provide different levels of assurance on software properties. In this chapter, as
explained in Sect. 7.4, we focus on test-based evidence as the means to provide a
first level of security assurance for services.

e Support for certification-aware service selection and composition. The certifi-
cation scheme should be designed to enhance the run-time service selection and
composition processes, which are at the basis of the SOA paradigm. First, the SOA
infrastructure should be extended to allow clients to select only those services that
address their security preferences. This requirement introduces the need of a solu-
tion that matches clients’ preferences with assurance information (i.e., evidence)
in the certificates. Second, the SOA infrastructure should provide a composition
process that aims to implement a composed service with some security proper-
ties. This process is driven by the properties to be certified on the composition
and selects only those services that have a security certificate compatible with the
target properties.

e Certificate life-cycle management. A service provider should be able to maintain
the freshness of certificates awarded to its services, also upon a new delivery
of the service code. Given the high dynamics of services, a low-cost solution
for incremental certification of evolving services is required to limit the need of
re-certification from scratch. A proper solution should then re-use as much as

7 A Certification-Aware Service-Oriented Architecture 151

possible the evidence and information in certificates awarded to older versions of
the service, to release a certificate for the new version.

e Service-based framework. The certification scheme should be enriched by a
service-based framework thatis responsible for all certification activities, including
certificate release/revocation, certificate life-cycle management, and certificate-
based selection and composition of services. The framework should include a
certification-aware service registry and all components needed to manage certi-
fied services.

7.3 A Trust Model for Service Certification

The adoption of security certification techniques for services has a double impact on
the SOA infrastructure. On one side, it changes the traditional trust model underlying
SOA [6, 16], while on the other side, as discussed in Sect. 7.2, it would enhance the
selection and composition processes with requirements on non-functional properties
of services.

In general, when no certification techniques are used, the process of service pur-
chase involves two parties: (i) a service provider implementing and deploying a
service, and (ii) a client (either a human being or another service provider) selecting
and composing services implemented by different service providers to build com-
plex applications. Each service provider makes claims in the form of human-readable
statements on their services’ functionalities, as well as on their non-functional prop-
erties. These claims can be of two types: (i) assertions on functionalities of a service
(e.g., “the service supports functionalities for storing, retrieving, updating, and delet-
ing files”), and assertions linking functionalities and some abstract properties (e.g.,
“a mechanism to encrypt-decrypt messages in transit is implemented and implies
confidentiality of the communications”). In this case, the assertions are usually self-
certified by the service provider and added to the service specifications. The service
provider can optionally provide a set of evidence supporting its assertions, as for
instance, testing results, bug fixing reports, and the like. The client trust in an assertion
k made by a service provider s can be denoted with a variable T} g, taking a value on an
ordinal scale or in the interval [0, 1]. This value can be influenced by many factors, as
for instance, the market standing and reputation of the service provider, the evidence
type, the way in which the evidence supporting the assertion has been generated.

The integration of a security certification scheme within the SOA infrastructure
modifies the trust relationship between a client and a service provider. In this new
scenario, a trusted external entity (i.e., a certification authority—CA) is responsible
to collect, validate, and publish security assertions (and related evidence) on services.
The client trust in an (set of) assertion k£ made by a certification authority CA can be
denoted with a variable Ty ca, and implicitly represents the level of trust the client
has on a service certifying a set of properties. In particular, assertions produced by
the security certification process are used as follows.

152 M. Anisetti et al.

e Security property definition. Certified assertions are used to define the security
properties supported by a given service. These properties belong to the well-known
confidentiality, integrity, or availability classification [7, 21, 25]. The client trust
in a service will then depend on it having all functionalities required to achieve
some security properties.

e Certification authority. Certified assertions are used to identify who has validated
the security functionalities of the service. The client trust in a service will depend
on the entity (i.e., certification authority) signing the assertions, how the entity
has been accredited, and the adopted collection and validation processes. Usually,
a certification scheme also provides a set of criteria for entities, called security
evaluation facilities, to ensure that these entities are capable and competent of
performing security evaluations under a clearly defined quality system.

e Security functionality validation. Certified assertions are used to specify the nature
of the evidence supporting the validation of a security functionality. The client trust
in a service will depend on the nature of the available evidence. A security func-
tionality can be verified using a test-based approach; alternatively, its properties
can be proven based on a formal model. The focus of the validation can be on
security functionality alone, or the development process may also have been taken
into account. Certification schemes clearly define how evidence has been collected
and stored, and how the product has been validated.

A trust model for service certification involves three main parties: a client that
searches for a certified service, a service provider that communicates with a certi-
fication authority to certify its services, and a certification authority that produces
assertions on service functionalities, provides evidence supporting the assertions,
and specifies properties implied by evidence and assertions for the service under
certification. Upon a request for service certification by a service provider, the certi-
fication authority collects the needed information by the service provider and starts
the evaluation activities. These activities result in the certification of a set of security
properties for the service. The client trust Ty ca, where k is the set of assertions
supporting a set of properties for the service, depends on the assertions themselves,
the produced evidence, the mechanisms used by the CA to produce the evidence,
and the reputation of the CA. As said, there are cases in which the service provider
itself may provide the set k of assertions on its services, on which the client has a
given level of trust T} . It is important to stress that certifications are often used as
a selling argument, compared to a competitor’s product with no certificate or self-
signed certificate. In general, the service provider assumes that 7y c4 > T s, and the
increase in revenue due to increased trust will be greater than the cost of certification.
This is indeed the case because the credibility and reputation of a service provider
rarely outperform the trust in a certificate signed by a certification authority which
is internationally recognized.

7 A Certification-Aware Service-Oriented Architecture 153

7.4 Machine-Readable Certification of Services

Current certification schemes lack of a machine-readable, semantics-aware format
for expressing security properties, and cannot be used to support and automate run-
time security assessment in a highly-dynamic SOA environment. As a consequence,
existing certification schemes do not support, from a client perspective, a reliable
way to assess the trustworthiness of a web service (composed or not) in the context
where (and at the time when) it will be actually executed. In this section, we present
a service-oriented approach that aims to fill this gap by expressing, assessing, and
certifying security properties of complex service-oriented applications. The proposed
solution, which consists of a test-based security certification scheme, permits to
specify machine-readable certificates (e.g., using an XML-based language) proving
that a service has a security property. Clearly, also the evidence in the certificate
supporting the property is in a machine-readable form, in such a way that it can be
used to query and compare different certificates. In the following of this section, we
present the test-based certification scheme and how it fits the SOA environment.

7.4.1 Test-Based Certification of Services

According to Damiani et al. [18], “fest-based certificates are evidence-based proofs
that a test carried out on the software has given a certain result, which in turn
shows (perhaps with a certain level of uncertainty) that a given property holds for
that software. In particular, test-based certification of security-related properties is
a complex process, identifying a set of high-level security properties and linking
them to a suitable set of white- and black-box software tests”. Starting from this
definition, a machine-readable certificate should link a set of security properties with
the evidence supporting them. More in detail, a service-oriented certification scheme
needs to define (i) the set of security properties that can be certified on the services,
(ii) the categories of tests that can be used to provide the evidence supporting a
property, (iii) a model of the services under test that is used to generate the test cases
of a given category, and in turn the test evidence supporting a given property.

Hierarchy of security properties. A security property is defined as a pair p = (p,A)
where p is an abstract property (e.g., confidentiality, integrity) and A is the set of class
attributes that refer to a set of threats the service proves to counteract, to a security
function implemented by the service, or to specific characteristics of the implemented
security function [7]. The domain of each attribute a € A is characterized by a
(partial/total) order relationship <, and the value of a is denoted as v(a). Security
properties can be formally organized in a hierarchy defined as a pair (2, <p), where
& is the set of all security properties, and <p is a partial order relationship over
Z. Given two properties p; and p; in &, we write that pi <p p; (i.e., p; is an
abstraction of p;),if p;.p = pj.pandVk = 1, ... |A|, either v; (ay) is not specified

154 M. Anisetti et al.

*.
€))
Authentication ‘ Integrity ‘ ‘ Confidentiality ‘
e .
Robustness s Authentication Authentication Integrity algo_ RSA Confidentiality
Malformed key=1024
Input ‘ ‘
Type= SF=PWD- SF=Token- . algo=RSA algo=DES
Malformedbased based Integrity |-@ key=2048

digest=SHA-

XML Tree Authentication }. SF=Token+PWD 256

(b) Functionality Penetration
* *
|
Random Non-Valid | |Well-Formed
Input XML Tree XML Tree
Boundary Equivalence Malformed
Value Partitioning XML Tree

Fig. 7.1 An example of a hierarchy of security properties (a) and categories of tests (b) [7]

or vi(ax) =ak vj(ak). In general, a service proving property p; always proves p;.
Figure 7.1a shows an example of a hierarchy of security properties.

Categories of tests. Each category T (e.g., functionality) specifies a set of test types
(e.g., random input), which represent the test design technique used to generate the
test cases and the certification evidence. Test types are organized in a hierarchy
(Z,<7), one for each test category T, where 7 is the set of all test types for the
category T, and <7 is a partial order relationship over 7. Given two test types t;
andt; in 7, t; < t; if t; is an abstraction of ¢;. Figure 7.1b shows a first example of
categories of tests, which can be extended to embrace additional testing categories
and types in [47]. We note that each test category has a set TA of test attributes. Each
test attribute ta € TA is characterized by a total order relationship <,.

Service model. In the literature, different approaches model services as state
automata and transition systems (e.g., [22, 30]). These approaches are mainly aimed
to improve testing performance and test generation, and to evaluate the correctness
of the service under test. Starting from the work in [22], we model a service as a
Symbolic Transition System (STS) [23]; STS, in fact, is a suitable solution to rep-
resent and certify complex Web services involving communications over the Net.
A symbolic transition system is a tuple (.%,s0,?,.%,o/,—), where .% is a set of
states, so € .7 is the initial state, ¥ is the set of internal variables, .# is the set of
interaction variables, <7 is the set of actions (web service operations), and — is the
transition relation. Each transition relation consists of a set of edges connecting two
states and labeled with an action, a guard (conditions on transition), and an update
mapping (new assignments to variables). Service models can be specified at differ-
ent levels including information coming from different sources as: (i) information

7 A Certification-Aware Service-Oriented Architecture 155

Interface Implementation

Fig. 7.2 An example of STS-based model

in the WSDL interface only (WSDL-based model), which defines the interface of a
service in terms of operations and messages; (ii) information in the WSDL interface
extended with information about the conversation (communication flow between
clients and services) in the WSCL document (WSCL-based model). WSCL defines
the service interactions as the messages to be exchanged and the expected transitions
based on the results of these interactions; (iii) information in the WSDL interface and
WSCL document extended with details on the implementation of the WSDL opera-
tions (implementation-based model). We note that in case (i) we have an STS-based
model for each WSDL operation, while in cases (ii) and (iii), we have a single STS-
based model involving conversations and operation implementations, respectively.
The service model is used to automatically generate those test cases that will be used
to certify a service and produce the supporting evidence. We note that the generation
of test cases is pretty simple in case we consider basic data types (e.g., integers,
strings), while it is more difficult for complex data types (e.g., XML fragments). In
the latter scenario, the test cases can be manually constructed and then automatically
selected according to the test category. Figure 7.2 shows an example of STS-based
model that presents the flow of communication of a service both at the interface level
(operations in WSDL and conversations in WSCL) and at the implementation level
(operation implementation). Operations in the WSDL interface and functions in the
implementation are denoted as 0;(.) and f;(.), respectively. Each transition edge can
be labeled with an input action ?0(.)/?f(.), the corresponding output /o(.)/!f{.), and
conditions (i.e., guards) on transitions presented in square brackets. Each WSDL
operation consists of three states as follows: (i) no input has been received (States 1

156 M. Anisetti et al.

and 4), (ii) the input has been received, no output has been produced (States 2 and 5),
(iii) output has been produced and sent to the client (States 3, 4, and 6). We note that
States 2 and 5 are linked to the real operation implementation (i.e., States 2a,2b,2¢,2d,
and States 5a,5b,5c, resp.). We also note that State 4 represents the state at point (iii)
when it refers to the operation in State 2, while it represents the state at point (i)
when the operation at State 5 is considered. The implementation of the first WSDL
operation (State 2) represents an if statement within function fI(.), while the imple-
mentation of the second operation (State 5) represents a simple function call f2(.).
Based on the states, edges, and guards regulating state transitions, we can automat-
ically generate test cases as the set of inputs (and expected outputs) that permit to
cover the proposed STS model [34].

To conclude, a test-based certificate is composed of: (i) a (set of) security property;
(i1) a (set of) evidence signed by a third party proving that the service supports the
property; (iii) a service model used to generate the test cases for service certification.

7.4.2 Certification-Aware Service Selection

The traditional SOA infrastructure permits dynamic and run-time selection and
composition of services based on the clients’ preferences. Current service selec-
tion and discovery approaches (e.g., UDDI business registries and service search
engine) mostly rely on functional matching between services and clients’ preferences
[27, 35, 41] or support non-functional matching based on QoS properties [37, 48].
It is important to note that only few of the selection approaches supporting non-
functional matching consider the mechanisms implemented by the service to achieve
a non-functional property (e.g., [44]), while none of them considers the assurance
level and the certification metadata in the matching process. Furthermore, the selec-
tion of the best service, which is achieved by comparing and ordering (usually in a
ranked list) services satisfying clients’ preferences, is mainly based on the property
strength without considering how the property has been proven.

The certification scheme proposed in this chapter can be integrated within the
existing SOA infrastructure, to enhance service selection and composition processes
with a mechanism where clients define their security preferences in terms of prop-
erties, models, and evidence, and match them against the certificates awarded to the
services. The best service is then retrieved by evaluating information in the certifi-
cates including the mechanisms behind the property, the evidence supporting the
property, and the assurance level. In the following, we define (i) a matching process,
which permits clients to evaluate if the assurance level provided by a service cer-
tificate is compatible with their own preferences; (ii) a comparison process, which
permits clients to identify the best service among the ones identified at point (i).

Matching process. We introduce a triple-matching strategy which involves a check
on security properties (property-match) [31], service model (model-match), and evi-
dence (evidence-match) in the certificate [7]. Let C(p, m, e) be a certificate awarded

7 A Certification-Aware Service-Oriented Architecture 157

to a service, where p = (p, A) is a security property, m is a model level (e.g.,
WSDL-, WSCL-, or implementation-based model), and e = (¢,TA) is the evidence
including the test type ¢ and related attributes TA. Also let R(p’,m’,¢’) be a user
request over security property p’, model m’, and evidence ¢’. The matching process
compares p and p’ (property-match), m and m’ (model-match), e and ¢’ (evidence-
match). The matching process is successful if both property-match, model-match,
and evidence-match succeed, and provides an output as follows:

1. match, if and only if: (i) p’< pp (property-match), (i) m’ is less detailed than m
(model-match), and (iii) 7’ <7¢ and Vk = 1...|T A|, either V' (fay) is not specified
or V' (tax) =g v(tay) (evidence-match).

2. no match, otherwise.

In the following we discuss the match/no match scenarios by means of two exam-
ples based on the hierarchies in Fig.7.1.

Example 7.1 (Match) Let us consider a service s that has a certificate C proving
the security property p = (p, A) = (Robustness, {Type = Malformed XML Tree})
with service model m = WSCL-based and evidence ¢ = (t, TA) = (Penetration
test using Malformed XML Tree,{card = k}). Suppose now that a client submits a
request R to a registry searching for a service that has a certificate proving a generic
security property p’ = (p’, A") = (Robustness, {Type = Malformed Input}) with
service model m’ = WSDL-based and evidence ¢’ = (¢/, TA") = (Penetration
test using Non-Valid XML Tree,{card = m}), with TA.card>TA'.card, where
TA.card and TA'card are the cardinalities of the test sets. The registry searches
among its services and selects those that expose a certificate C(p,m,e) that satisfies
R(p'.m’,e"). Service s is selected since p’< p p based on the hierarchy in Fig.7.1a, m’
is less detailed than m, and t' <7t and TA'.card<TA.card based on the hierarchies
in Fig.7.1b.

Example 7.2 (No Match) Letus consider the same service s in Example 7.1. Suppose
now, that a user is submitting a request R that differs from the one in Example 7.1
because it requires a model m’ = implementation-based. As in Example 7.1, the
matching between C and R provides a successful property- and evidence-match.
However, in this example, there is no model-match because m is less detailed
than m’.

The output of a matching process is a set of services which satisfy the client’s pref-
erences. The client’s preferences can vary from being very specific (e.g., expressing
concrete properties, test-based evidence, and model) to more general (e.g., express-
ing just an abstract property). Although the proposed matching approach allows to
produce a very specific query, we claim that the prototypical client of a SOA platform
will not specify a fine-grained request, but a more general one leaving some details
unspecified. The fact that a client will not specify every possible parameter in the
request, leaves some degree of freedom that the matching process must manage. In
general, the more these degrees of freedom, the bigger the set of services selected as
the output of the matching process. To be the selection process more effective, there is

158 M. Anisetti et al.

the need of an approach that provides an ordering of the services that match the pref-
erences of the client, thus giving to the client a more useful comparative evaluation
of the services. This process is called comparison process and is discussed in the
following of this section.

Comparison process. The comparison process receives as input the set of services
that satisfy the client’s preferences (matching process) and returns as output a ranked
list of these services, that is, a partial order calculated on the basis of information
contained in the service certificates. Several approaches are possible to generate the
ranked list, which can be grouped into two broad categories as follows.

e A cumulative metric computed using quality indexes on the information in the
certificate (i.e., property, model, evidence). This is the simplest approach and
introduces compensation effects between indexes (e.g., using weighted average).
Every information in the certificate is used in the definition of the ranked list and
its importance depends on the weight used for aggregation.

e Rule-based aggregation of metrics, in which the ranked list is computed following
some pre-defined rules. For instance, a simple rule can impose a specific evaluation
order, where properties are evaluated first; if two services cannot be ordered using
their properties, models and evidence are compared.

In both categories, the ranked list is generated comparing services that match the
client’s preferences on the basis of some specific metrics ordering properties, models,
and evidence in their certificates. Based on the certification scheme in this section,
properties in the certificates of two different services can be compared using the
security property hierarchy in Fig.7.1. Then, models can be compared by evaluating
their level of detail (i.e., WSDL, WSCL, implementation). We note that a set of
indexes (e.g., number of nodes, edges, linearly independent paths) can be defined to
evaluate the quality of the service model, and used to rank and compare services.
Finally, the evidence can be compared using the hierarchies of test types and the
specified test attributes. Also in this case, a set of metrics (e.g., evaluating the test
case coverage on the service model) can be defined to evaluate the certification quality
and used to rank and compare services.

To conclude, we note that different approaches can produce different ranked lists
of services that match the clients’ preferences. Clients’ profiles can then be defined to
make the ranked list closer to their expectations. As an example, if a client expresses
a profile with trust on property definition only, a rule-based aggregation considering
the property first should be used.

7.5 ASSERT4S0OA Framework

In this section, we describe the ASSERT4SOA framework, which implements a
certification-aware service-oriented architecture based on the test-based certifica-
tion scheme described in Sect. 7.4. The framework provides a set of features through
which the full life-cycle of services with certified security properties can be man-

7 A Certification-Aware Service-Oriented Architecture 159

aged, including certificate issuing and management, certification-aware discovery
and matchmaking,' certificate verification, and service consumption [11].

7.5.1 Functionalities

To address the requirements described in Sect. 7.2, the ASSERT4SOA implementation
provides the following set of functionalities.

e Certificate model and language. A model (see Sect.7.4) and an XML-based lan-
guage have been developed to enable the representation of service certificates
(Assert in the following). The model and language allow the specification of the
security properties of a service and the evidence that under-pins them (i.e., test
cases used in the certification process).

e Service discovery. A client can query the framework and retrieve a list of services
with certificates that match its functional and security preferences (i.e., matching
process in Sect.7.4.2). As an example, a business process modeler or a developer
for a banking application specifies the functional preferences, that is, a service
which provides credit worthiness of a customer, as well as the security preferences,
that is, proper access control restrictions on the service provider side, in the query
that is sent to the discovery framework. Service discovery matches certificates and
the certified properties in the services with the specified preferences to retrieve a set
of compatible services. This is done dynamically without any human intervention
as the framework can receive queries from service-based applications at runtime.

e Certificate comparison. A core function of the framework is to rank services based
on their certificates (see comparison process in Sect.7.4.2). This is a complex
process that involves ontological reasoning to the aim of comparing functionally-
equivalent services with different certificates. For example, we may need to com-
pare two services with the same security property that has been certified using
different categories and types of tests. This problem becomes even more complex
when two services have been certified using different classes of evidence, such
as for instance, model-based evidence and test-based evidence. In addition, the
reasoning algorithms have to take into account that there exists relations among
security properties specified in ontologies.

e Certificate issuing and management. The framework includes tools and user inter-
faces that allow assert issuers and managers to create certificates and to manage
their life-cycle (i.e., their issuing, update, and revocation).

1 We note that in the ASSERT4S0A terminology the certification-aware matchmaking process refers
to the matching and comparison processes in Sect. 7.4.2.

160 M. Anisetti et al.

9
-

Query Engine

Verify

Assert E I
Register 1

Assert

Discovery
Engine

Assert
Management

] Matchmaking

9

—
~ Back-end Registry

ASSERTASOA

Fig. 7.3 Component overview

7.5.2 High-Level Component Overview

Figure 7.3 presents a high-level overview of the ASSERT4S0OA framework [12]. Here,
we mainly focus on the subsystems that are responsible for the core ASSERT4SOA
functionalities; other components that are related to somewhat “standard” functions
(e.g., system management, access control, logging) are left out of this description
for the sake of conciseness.

Front-end. This is the common entry-point providing an uniform API through which
clients can consume the functionalities provided by the ASSERT4SOA framework.
The Front-end protects the framework providing access control functionalities; also,
it represents an important source of security-relevant events, which are captured in a
secure Audit Trail. Clients may want to access the front-end to: (i) use the discovery
and matchmaking capabilities of the framework, and find a list of candidate services
that correspond to the criteria specified in the query (see Sect. 7.4.2), and (ii) manage
the lifecycle of certified services and of the related asserts, including registering,
updating, and verifying them.

Query Engine. This component is connected to the Front-end, the Discovery Engine,
and the Matchmaking. It is in charge of parsing the query coming from the client
and passing it on to the Discovery Engine. Queries contain both a specification of the
functionalities that candidate services must offer as well as a set of conditions on their
non-functional properties. This component decouples the query language used by the
client from the language that is used internally by the ASSERT4SOA framework. The
queries coming from the client may specify a subscription option; in this case, the

7 A Certification-Aware Service-Oriented Architecture 161

query is periodically evaluated and the client can receive continuous updates as new
matches are found that satisfy the query.

Discovery Engine and Matchmaking. Based on the information in the client
queries, the Discovery Engine coordinates several different subsystems. First, it
accesses the Back-end Registry to retrieve an initial set of candidate services, based on
their functional description. Then, it instantiates a matchmaking strategy. Such a strat-
egy is basically a description of how various fypes of matchmaking modules should
be coordinated and how their results should be aggregated to determine the final list of
candidate services, ranked according to their degree of fit, to be returned to the client.
The strategy and the initial list of services obtained from the Registry Abstraction Layer
is given as input to the Matchmaking Subsystem (not depicted in Fig.7.3).

The Matchmaking Subsystem is controlled by the Discovery Manager which acti-
vates it by passing as input (i) an initial set of (functionally matching) candidates,
and (ii) a matchmaking strategy (produced based on the content of the query). As
a result of the matchmaking process, the candidate services are filtered (discarding
those that do not match the non-functional preferences) and ranked according to their
degree of fit. Internally, the Matchmaking Subsystem is organized as a hierarchical,
dynamically configurable architecture. It is hierarchical since a Master Matchmaker
controls a set of Slave Matchmakers and aggregates the results coming from each
slave in a single measure; it is dynamically configurable since the organization of the
slaves is determined and realized at run-time, based on the matchmaking strategy,
which in turn is determined based on the query.

This design allows each slave to be realized as a very targeted, domain-specific
evaluator of a particular property or dimension, whereas the master matchmaker is
only concerned with the coordination of slaves. In this way, additional (or alternative)
slave matchmakers can be plugged into the system, thus supporting the evaluation
of an extensible range of properties. While the focus of ASSERT4SOA is on security-
related properties, the architecture accommodates a sophisticated coordination of
different pluggable matchmaking components, in such a way that the decision as to
which candidate has to be chosen can be taken on a more comprehensive basis (e.g.,
capturing constraints related to performance, reliability, cost, and so on). Slave match-
makers may be provided by external third-party services, giving an additional level
of dynamism and diversity and possibly enhancing availability and fault-tolerance
(although raising, at the same time, additional security and trust concerns).

Assert Management. This module includes a tool used by assert issuers to express
the results of their assessment in a certificate. The tool provides a graphical user
interface that guides the issuer (typically a certification authority) in the process, and
produces as output an assert that conforms to the assert XML-schema and that is
digitally signed by the issuer. Furthermore, an assert validation component is used
to check the assert validity. This component is used both server-side, before the
results of matchmaking are pushed to the client, and client-side, where clients may
want to check the asserts on their own, before consuming a service. The validation
involves several steps. First, the signature on the assert is checked to ensure it is
authentic. Then, the well-formedness of the assert is verified. Finally, the credentials

162 M. Anisetti et al.

of the assert issuer are checked, based on the preferences of the client. The Assert
Management module includes the functionality to publish certified services in the
Back-end Registry, available through the registry abstraction module, for managing
their life-cycle.

Back-end Registry. While service descriptions may be stored in several (possibly
heterogeneous) back-end repositories, this component provides a uniform access to
such repositories, regardless of the differences in their interfaces and protocols. The
request coming from the Query Engine is split by the Discovery Engine into two parts
that are treated separately: (i) the characterization of security properties required
by the client, and (ii) the description of the interface, functionality, and other non-
security QoS conditions that are expressed as part of service discovery queries. Based
on the latter, the Discovery Engine queries the Back-end Registry to retrieve a set of
candidate services that satisfy the required interface, functional, and non-security
characteristics.

7.5.3 Certification-Aware Development Environment

A typical usage scenario would see a developer of a service-based application (SBA)
who uses the ASSERT4SO0A framework to identify and consume component services.
In addition to the functional requirements for the SBA, the developer has also to take
into account the security requirements for the application. These requirements are
analyzed and translated by the developer into security requirements for the individual
services that have to be composed in the application.

To access the functionalities provided by the ASSERT4S0OA framework through its
API, the developer may use a web-based front-end whereby she can browse and filter
the services available in an ASSERT4SOA-enabled repository. Alternatively, using a
dedicated extension to her IDE, the developer can access the same functionalities
directly inside the development environment (e.g., through an ASSERT4SOA plugin)
as depicted in Figs. 7.4 and 7.5. The interactions in the two cases are analogous; here
we concentrate on the latter.

Enhanced Service Browser. The developer uses the service browser to lookup cer-
tified services by functionality, with services organized in categories. The security
properties of the matching services are used as an additional dimension based on
which services can be grouped, ranked, and filtered.

Service Security Properties Inspector. A dedicated view in the IDE is used to
display the certified security properties of a service, as showed in Fig.7.5. The basic
information on the assert (such as, issuer information, time of issuing, and so on) is
displayed together with a detailed view of the content of the certificate, including the
certified properties, the service model, and the evidence on which the certification is
based.

7 A Certification-Aware Service-Oriented Architecture 163

= Procna Deviopmme | b« AP et Tisvolifns Sl
Fie a1 Vew Revigen fewih Pt G lo e Weden e
. ©- 2 8 & 320 o -0-9%- B~ Hri- - Bl
B = 55| £ hoebtmborpen

e
1 B amvmtogerarm] Hocktroies

I
i
1

i
I
Ot * Ministers w3 L) ‘E o)

[it i, * e ity v e, % Semn o 5 bwchon o G
e s [orp———

Fig. 7.4 Proof-of-concept of an Assert-enabled modeling environment

Service Security Properties
| Security Properties | Aasert issuer,
Servce Informaton
Abstracl Praperty Deseription
Confidentiality Confidertiality of data in transit
FinanciaData Inc Confidentiality Confidantiaiity of data in permanen storage
Integiity Indegrity of data in permanent slorage

| Get current stock detalls

* wrsionno. 23542
Assen lsued o 23 Apal 2011

Assent Bsued by TrustedLab inc
Security Froparty Detals

.
Lofem ipsum dolor Sl amet, maions omars D) Assert contert
o nceas: D Confidentlality of data in transit o il
Bectus Bt runc. QUBM eEMCd S8, SEmper - Exidenc

U potants peliertesque qusque. In sget AEHANEY ENomce N Wl Ganick Model

SOpIRN 50, 5it QIS WEIDULM UEncies The: sarsos sures thet the dets D wwertace Specifcation
;szm'e:ﬁ‘:‘;u::‘“'ﬁﬁ;gg'g‘am recened 8% input and prowded as [Behsoural Model
nascelur puiner sed, in dolor pede in 3‘5‘69_‘.;'%'%{""' Gl el B 7 Secaity Tergat Soacibeaton
sliquam, fisus nec emor gus pharetr Eros - 03 Evdence Specification
BlUS QUET BUZUR SUSPANGSSE. MENS 5 (] Test Suite

Futrm risus et 0. N wiFces QuO Ut bectus, Test Resuts

etiam veslbuLm Uma & es1, pretum huctus et
‘wrsmod nigor suctor vesbEuium Venenatis
progsent nsus orcl, anto nam woiLtpat or

Venty Asser, LL Ha

Fig. 7.5 Security property inspector

Assert Validation. The plugin allows the developer to trigger the assert validation
at any time. The validation is automatic when the developer selects a service from a
result set obtained in response to a query or browsing action. The developer may also
choose to (re-)validate services that have already been included in the application
(business process in Fig.7.4).

164 M. Anisetti et al.

Stored Security Preferences. In addition to application-specific security require-
ments (entered by the developer as part of her browsing actions), there are prefer-
ences that can be stored and reused across development sessions and projects. These
preferences represent, for instance, the constraints imposed by the developer com-
pany on the selection of third-party services, regardless (in addition to) the specific
requirements of the application being developed.

7.6 Next Steps: Security Certification of Evolving and
Composed Services

Two of the most prominent characteristics of SOA applications are their ability to
continuously evolve and support changing environments, and to support composition
scenarios. A certification scheme for SOA has to take into consideration and manage
these aspects and the impact they may have on the certification process. In particular,
there is the need of new approaches limiting the amount of re-certification in case
of evolving services, and providing a solution to infer properties of a composition
given the properties of its basic services.

Service evolution can have a substantial impact on security certifications, since
the release of a new version of a service may invalidate the certificates awarded
to the old version. This scenario is costly and can reduce the increase in revenue
given by the certified service, since a re-certification process from scratch can be
triggered at each service change. A fundamental issue for the certifier then arises:
how to certify evolving services saving costs? The most interesting solution from
a certifier point of view is an approach to incremental certification [8], which aims
to re-use as much as possible the certificates and related evidence available from
older versions of the service, to certify the new version. This solution can reduce
the time and costs needed for the certification of evolving services. For instance,
let us consider a service s.v1.0 and its evolution s.v1.1. Service s.v1.1 is a new
release of 5.v1.0 with small variations including some bug fixing. In this case, a
solution allowing to apply incremental certification and to certify only the new parts
of s.v1.1 that have an impact on the security properties in the certificate, gives a
huge advantage in terms of performance and costs. The same approach can also be
adopted in cases of major revisions, although the amount of re-used certification
evidence is reduced and the need of re-certification increases. There are also cases in
which incremental certification is not applicable. For instance, if the change affects
an horizontal functionality (e.g., a mechanism for message signature) that is used by
all service operations, a re-certification from scratch is required.

Our solution, and in particular the test-based certification approach, provides some
interesting functionalities that can be used by the CA to manage the certification of
evolving services. As an example, the service model, that we use in the certification
process to produce the test cases and related evidence, can help to identify which
parts of the service and which subset of test cases are affected by changes among two

7 A Certification-Aware Service-Oriented Architecture 165

different versions. Since the security property is directly associated with its model,
changes in the model require incremental certification. Using this simple analysis,
the CA can evaluate whether service changes have an impact on service certificates,
and in this case can identify which of the existing test cases and evidence are not
valid and need to be substituted/re-executed. If changes have no impact on the model
and certificate, no activities are required. If changes have an impact on the whole
service implementation, a re-certification from scratch is needed.

Let us again consider the two services s.v1.0 and s.v1.1, and suppose that the
differences between them are captured by a service model m. Based on m, it is
possible to produce the additional test evidence required to incrementally certify
s.vl.1. We note that, in some cases, the CA can just adapt the previous certificate
re-using the same evidence (or a subset of it) and signing the (reduced) certificate
for the new service version. This activity can result in a decreasing quality of the
certification process, thus affecting the ranking of the service in the comparison
process.” In other cases, the CA applies incremental certification, by adding new test
cases or by re-executing existing ones, to test m and generate new evidence for it.

Focusing on composition scenarios, composed services can be implemented by
dynamically using orchestration or choreography approaches. Indeed, the certifica-
tion of service compositions can be realized according to two approaches: (i) certify
the composition as a single service (static composition with static binding), (ii) certify
the composition by using certificates of basic services (dynamic or static composi-
tion with dynamic binding). The first approach recalls the certification of a single
service. In particular, the CA certifies the composition using the complete model
(that includes the model of every basic service and the BPEL of the composition)
and the evidence produced for the entire composition. This approach is possible only
for static compositions with static binding, and considers the composition as a single
service in which basic services are statically integrated. Clearly this approach is not
optimal, although it works correctly for static compositions. The second approach is
based on the idea of re-using certificates of basic services to produce the certificate
of the composed one. This approach assumes the knowledge of the service compo-
sition (i.e., BPEL composition), the property to be certified for the composition, and
aims to reduce the effort required to the CA. A service composition defines how the
basic services interact and exchange requests and responses. Furthermore, a set of
composition patterns define simple rules that permit to derive the security properties
of the composed service starting from the security properties of the basic services
and by looking at their interactions.’

The process of certifying a composition of services based on testing has two fun-
damental steps: (i) select basic services to be composed on the basis of the property
to be certified for the composition, the certified security patterns, the BPEL compo-

2 This could sound contradictory from the software engineering point of view since service s.v1.1
is an updated version of s.v1.0 and thus it should be “better” than the previous version. From the
certification point of view, however, if we do not have the evidence that s.v1.1 is “better” than
s.v1.0, we should not claim it in the certificate.

3 We note that the patterns can be certified themselves increasing the trust in the composition.

166 M. Anisetti et al.

sition, and the security properties of the basic services, (ii) derive the evidence that
supports the certified composition, since no real testing is done on the composition.
The first step is simply obtained by selecting services having certificates that permit
to infer the expected property for the composition, based on certified composition
pattern. Although in some cases this can be considered enough from a CA point of
view, the service provider retrieves a certificate for the composed service with no
evidence that a property holds. In this scenario, the service ranking is usually low
and the service is put at the end of the ranked list. The second step instead aims
to derive a “virtual” set of evidence for the composition using the evidence of each
basic service. The term “virtual” means that the evidence of the composition is not
generated using real testing. This “virtual” evidence is generally a subset of the evi-
dence of the basic services, and is obtained by using composition patterns. At the end
of this process, the composed service has its own certificate supported by a “virtual”
evidence, which can be used to achieve a better ranking in the selection process.

To conclude, the certification scheme proposed in this chapter provides the basis
to support the important characteristics of a SOA environment, and can be extended
to address most of the issues involving incremental certification of evolving services
and most of the challenging tasks in the certification of service compositions.

7.7 Related Work

Traditional approaches for the development, verification, validation, and certifica-
tion of systems have mainly focused on monolithic software, which is evaluated
at design-time before each system is really installed and used by a client. In this
area, the research community has mostly considered software testing to assess and
verify the correct functioning of services [4, 36]. However, some works have also
focused on non-functional verification of software, as for instance, in [49], where the
authors define a model-based approach to automatic testing of attack scenarios, and
in [29], where a systematic specification-based testing of security-critical systems
is proposed based on UMLsec models. Moreover, as discussed in Sect. 7.2, several
approaches have been defined for certifying software systems ranging from national
specifications (e.g., [26, 46]) to international ones (e.g., [24]). Also, given the high
overheads and costs of software certification, lightweight and domain-specific certi-
fication schemes have been recently defined (e.g., [3, 15]).

Today, solutions for service testing have been inspired by existing approaches
for software systems and share a common ground with them. However, even if they
come from the same scientific ground, service testing differs from standard soft-
ware testing practices, because the loosely coupled nature of web services severely
limits the way testers can interact with the services during the testing process. Sim-
ilarly to the case of software testing, the research literature has initially focused on
addressing the problem of testing functional properties of web services, and to auto-
matically generate test cases for service verification [9, 13, 14]. Tsai et al. [45] first
propose the idea of using and extending WSDL standard to cope with web service

7 A Certification-Aware Service-Oriented Architecture 167

testing. They enrich the WSDL interface with input-output dependency, invocation
sequence, hierarchical functional description, and concurrent sequence specification.
Salva and Rabhi [39] provide a solution to evaluate the robustness of services, which
automatically generates test cases from the WSDL. Mao [33] proposes a hierarchi-
cal testing framework, which evaluates services at both unit and system levels. The
unit level considers information in the WSDL interface and applies combinatorial
testing, while the system level uses a state model of the information in the BPEL
process specification to generate test cases. Jokhio et al. [28] apply specification-
based software techniques to semantic web services, and define a solution to test
case generation starting from their goal specification. Test cases are used to test the
correctness of the real implementation.

Other works have proposed model-based solutions for testing web services [10,
20, 22, 30]. These solutions provide a modeling of web services for automatic gen-
eration of test cases, verification of the functional correctness of services, and iden-
tification of faults. Frantzen et al. [22] use symbolic transition systems to model and
test web service coordination. The transition systems are used as a starting point
to automatically generate test cases which fit service composition. Keum et al. [30]
propose a solution using extended finite state machine to automatically generate test
cases. The authors enrich the WSDL interface with information about the dynamic
behaviour of services to improve the testing coverage. Bentakouk et al. [10] propose
a solution based on STS-based testing and STM solver to verify that a service compo-
sition conforms to its specifications and/or user requirements. Endo and Simao [20]
present a solution based on finite state machines and a Java prototype, which aim to
automatically generate test cases for functional verification of services.

A recent and active field of research is focusing on verification and certification
of service non-functional properties. The US-based Software Engineering Institute
(SED) [42] has published a requirements document on the service certification and
accreditation process for the US Army CIO/G-6. The document describes a process
for certifying services to assure that they are not malicious to the service-oriented
infrastructure they are deployed in or interacting with. Anisetti et al. [7] presents a
test-based certification scheme for services. The proposed solution models services
as symbolic transition systems using information in the WSDL interface and in the
WSCL document, and details about their implementation. Test cases are generated
using the service models. Kourtesis et al. [32] present an approach to conformance
testing managed by the SOA registry to improve the reliability of SOA environments.
In general, if the service is functionally equivalent to its specifications, a certificate is
awarded to it. Serhani et al. [43] focus on Quality of Service (QoS) certification and
propose an architecture relying on a QoS broker for efficient web service selection,
on the basis of clients’ functional and QoS requirements.

To conclude, some works are currently facing the problem of managing service
evolution and their impact on clients and services. These solutions (e.g., [5, 12]) are
mainly aimed to provide an approach that limits the impact that dynamic changes
and variations on services may have on the involved parties, run-time active conver-
sations, and existing business processes.

168 M. Anisetti et al.

7.8 Conclusions

In this chapter we discussed how the advent and success of SOA and web ser-
vices are changing traditional ICT systems and, in particular, we focused on the
problem of providing powerful and secure services that prove support for security
requirements using certification techniques. To this aim, we described challenges
and issues to be considered in developing certification schemes for services and we
also discussed how service security certification changes the trust model underly-
ing SOA. We then presented a certification scheme for services, which relies on
testing to provide the evidence that a security property is supported. In this con-
text, we illustrated an approach to service certification, including a description of
the FP7 EU Project ASSERT4SOA framework that integrates the service certification
process within the SOA infrastructure. Although security certification schemes have
been provided since long, there is the need to adapt them to SOA and its intrinsic
processes, as for instance, the run-time selection and composition of services and
the management of evolving applications.

Acknowledgments This work was partly supported by the EU-funded project ASSERT4SOA (grant
no. 257351).

References

1. A.Alvesetal.: Web Services Business Process Execution Language Version 2.0. OASIS (2007).
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html, Accessed in date September
2012

2. A.Banerji et al.: Web Services Conversation Language (WSCL) version 1.0. World Wide Web
Consortium (W3C) (2002). http://www.w3.org/TR/wscl10/, Accessed in date September 2012

3. Agence Nationale de la Sécurité des Systemes d’ Information (ANSSI): Certificat de Sécurité de
Premier Niveau. http://www.ssi.gouv.fr/fr/certification-qualification/cspn/, Accessed in date
September 2012

4. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press, New
York, NY, USA (2008)

5. Andrikopoulos, V., S., Benbernou, Papazoglou, M.: On the evolution of services. IEEE Trans-
actions on Software Engineering PP(99) (2011)

6. Anisetti, M., Ardagna, C., Damiani, E.: Certifying security and privacy properties in the inter-
net of services. In: L. Salgarelli, G. Bianchi, N. Blefari-Melazzi (eds.) Trustworthy Internet.
Springer (2011)

7. Anisetti, M., Ardagna, C., Damiani, E.: Fine-grained modeling of web services for test-based
security certification. In: Proc. of the 8th International Conference on Service Computing (SCC
2011). Washington, DC, USA (2011)

8. Anisetti, M., Ardagna, C., Damiani, E.: A low-cost security certification scheme for evolving
services. In: Proc. of the 19th IEEE International Conference on Web Services (ICWS 2012).
Honolulu, HI, USA (2012)

9. Baresi, L., Di Nitto, E.: Test and Analysis of Web Services. Springer, New York, USA (2007)

10. Bentakouk, L., Poizat, P., Zaidi, F.: Checking the behavioral conformance of web services with
symbolic testing and an SMT solver. In: Proc. of the 5th International Conference on Tests &
Proofs (TAP 2011). Ziirich, Switzerland (2011)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html,
http://www.w3.org/TR/wscl10/,
http://www.ssi.gouv.fr/fr/certification-qualification/cspn/,

7 A Certification-Aware Service-Oriented Architecture 169

11.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Bezzi, M., Kaluvuri, S., Sabetta, A.: Ensuring trust in service consumption through security
certification. In: Proc. of the International Workshop on Quality Assurance for Service-Based
Applications (QASBA 2011). Lugano, Switzerland (2011)

. Bezzi, M., Sabetta, A., Spanoudakis, G.: An architecture for certification-aware service dis-

covery. In: Proc. of the 1st IEEE International Workshop on Securing Services on the Cloud
(IWSSC 2011). Milan, Italy (2011)

. Bozkurt, M., Harman, M., Hassoun, Y.: Testing web services: A survey. In: Technical Report

TR-10-01. Department of Computer Science, King’s College London (2010)

Canfora, G., di Penta, M.: Service-oriented architectures testing: A survey. Software Engineer-
ing: International Summer Schools, ISSSE 20062008 1, 78—-105 (2009)

CCHIT: Certification Commission for Healthcare Information Technology. http://www.cchit.
org/, Accessed in date September 2012

Chang, E., Hussain, F., Dillon, T.: Trust and Reputation for Service-Oriented Environments:
Technologies For Building Business Intelligence And Consumer Confidence. John Wiley &
Sons, Ltd (2006)

. Chinnici, R., Moreau, J., Ryman, A., Weerawarana, S.: Web Services Description Language

(WSDL) version 2.0. World Wide Web Consortium (W3C) (2007). http://www.w3.org/TR/
wsdl20/, Accessed in date September 2012

Damiani, E., Ardagna, C., El Ioini, N.: Open source systems security certification. Springer,
New York, NY, USA (2009)

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Securing SOAP
e-services. International Journal of Information Security (IJIS) 1(2), 100-115 (2002)

Endo, A., Simao, A.: Model-based testing of service-oriented applications via state models. In:
Proc. of the 8th IEEE International Conference of Service Computing (SCC2011). Washington,
DC, USA (2011)

Focardi, R., Gorrieri, R., Martinelli, F.: Classification of security properties (Part II: Network
security). In: R. Focardi, R. Gorrieri (eds.) Foundations of Security Analysis and Design II -
Tutorial Lectures. Springer Berlin / Heidelberg (2004)

Frantzen, L., Tretmans, J., de Vries, R.: Towards model-based testing of web services. In:
Proc. of the International Workshop on Web Services - Modeling and Testing (WS-MaTe
2006). Palermo, Italy (2006)

Frantzen, L., Tretmans, J., Willemse, T.: Test generation based on symbolic specifications. In:
Proc. of the 4th International Workshop on Formal Approaches to Software Testing (FATES
2004). Linz, Austria (2004)

Herrmann, D.: Using the Common Ceriteria for IT security evaluation. Auerbach Publications
(2002)

Irvine, C., Levin, T.: Toward a taxonomy and costing method for security services. In: Proc.
of the 15th Annual Conference on Computer Security Applications (ACSAC 1999). Phoenix,
AZ, USA (1999)

Jahl, C.: The information technology security evaluation criteria. In: Proc. of the 13th Interna-
tional Conference on Software Engineering (ICSE 1991). Austin, TX, USA (1991)

Jeong, B., Cho, H., Lee, C.: On the functional quality of service (FQoS) to discover and compose
interoperable web services. Expert Systems with Applications 36(3, Part 1), 5411-5418 (2009)
Jokhio, M., Dobbie, G., Sun, J.: Towards specification based testing for semantic web services.
In: Proc. of the 20th Australian Software Engineering Conference (ASWEC 2009). Gold Coast,
Australia (2009)

Jiirjens, J.: Model-based security testing using UMLsec: A case study. Electronic Notes in
Theoretical Computer Science 220(1), 93—104 (2008)

Keum, C., Kang, S., Ko, LY., Baik, J., Choi, Y.I.: Generating test cases for web services using
extended finite state machine. In: Proc. of the 18th IFIP International Conference on Testing
Communicating Systems (TestCom 2006). New York, NY, USA (2006)

Kim, A., Luo, J., Kang, M.: Security ontology for annotating resources. In: Proc. of the 4th
International Conference on Ontologies, Databases, and Applications of Semantics (ODBASE
2005). Agia Napa, Cyprus (2005)

http://www.cchit.org/,
http://www.cchit.org/,
http://www.w3.org/TR/wsdl20/,
http://www.w3.org/TR/wsdl20/,

170

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

M. Anisetti et al.

Kourtesis, D., Ramollari, E., Dranidis, D., Paraskakis, I.: Increased reliability in SOA envi-
ronments through registry-based conformance testing of web services. Production Planning &
Control 21(2), 130-144 (2010)

Mao, C.: Towards a hierarchical testing and evaluation strategy for web services system. In:
Proc. of the 7th ACIS International Conference on Software Engineering Research, Manage-
ment and Applications (SERA 2009). Haikou, China (2009)

Myers, G.: The Art of Software Testing, Second Edition. John Wiley & Sons, Inc., Hoboken,
NJ, USA (2004)

Paliwal, A., Shafiq, B., Vaidya, J., Xiong, H., Adam, N.: Semantics-based automated service
discovery. IEEE Transactions on Services Computing 5(2), 260-275 (2012)

Pezze, M., Young, M.: Software Testing and Analysis: Process, Principles, and Techniques.
John Wiley & Sons, New York, NY, USA (2008)

Rajendran, T., Balasubramanie, P.: An optimal broker-based architecture for web service dis-
covery with QoS characteristics. International Journal of Web Services Practices 5(1), 3240
(2010)

Ryu, S., Casati, F., Skogsrud, H., Betanallah, B., Saint-Paul, R.: Supporting the dynamic evolu-
tion of web service protocols in service-oriented architectures. ACM Transactions on the Web
2(2), 13:1-13:46 (2008)

Salva, S., Rabhi, I.: Automatic web service robustness testing from WSDL descriptions. In:
Proc. of the 12th European Workshop on Dependable Computing (EWDC 2009). Toulouse,
France (2009)

Schroth, C.,Janner, T.: Web 2.0 and SOA: Converging concepts enabling the internet of services.
IT Professional 9(3), 3641 (2007)

seekda! http://webservices.seekda.com/browse, Accessed in date September 2012

Securing Web services for army SOA. http://www.sei.cmu.edu/solutions/softwaredev/
securing-web-services.cfm, Accessed in date September 2012

Serhani, M., Dssouli, R., Hafid, A., Sahraoui, H.: A QoS broker based architecture for efficient
web services selection. In: Proc. of the IEEE International Conference on Web Services (ICWS
2005). Orlando, FL, USA (2005)

Thakar, U., Dagdee, N., Agrawal, A.: A methodology to compose web services using compat-
ible components based on QoS and security requirements of the users. International Journal of
Computer Applications 46(10), 30-37 (2012)

Tsai, W., Paul, R., Yamin, W., Chun, F., Dong, W.: Extending WSDL to facilitate web ser-
vices testing. In: Proc. of the 7th IEEE International Symposium on High Assurance Systems
Engineering (HASE 2002). Tokyo, Japan (2002)

USA Department of Defence: Department Of Defense Trusted Computer System Evaluation
Criteria (1985)

van Veenendaal, E.: Standard glossary of terms used in Software Testing. International Soft-
ware Testing Qualifications Board (ISTQB) (2010). http:/www.astgb.org/documents/ISTQB_
Glossary_of_Testing_Terms_2.1.pdf, Accessed in date September 2012

Yu, H., Reiff-Marganiec, S.: Non-functional property based service selection: A survey and
classification of approaches. In: Proc. of Non Functional Properties and Service Level Agree-
ments in Service Oriented Computing Workshop (NFPSLAM-SOC) 2008. Dublin, Ireland
(2008)

Zulkernine, M., Raihan, M.E,, Uddin, M.G.: Towards model-based automatic testing of attack
scenarios. In: Proc. of the 28th International Conference on Computer Safety, Reliability and
Security (SAFECOMP 2009). Hamburg, Germany (2009)

http://webservices.seekda.com/browse,
http://www.sei.cmu.edu/solutions/softwaredev/securing-web-services.cfm,
http://www.sei.cmu.edu/solutions/softwaredev/securing-web-services.cfm,
http://www.astqb.org/documents/ISTQB_Glossary_of_Testing_Terms_2.1.pdf
http://www.astqb.org/documents/ISTQB_Glossary_of_Testing_Terms_2.1.pdf

Chapter 8

A Test Automation Framework

for Collaborative Testing of Web Service
Dynamic Compositions

Hong Zhu and Yufeng Zhang

Abstract The dynamic composition of services owned by different vendors demands
a high degree of test automation, which must be able to cope with the diversity of
service implementation techniques and to meet a wide range of test requirements
on-the-fly. These goals are hard to achieve because of the lack of software artefacts
of the composed services and the lack of the means of control over test executions
and the means of observations on the internal behaviours of composed services. Yet,
such integration testing on-the-fly must be non-intrusive and non-disruptive while the
composed services are in operation. This chapter presents a test automation frame-
work for such on-the-fly testing of service compositions to facilitate the collaboration
between test services through utilisation of Semantic Web Services techniques. In
this framework, an ontology of software testing called STOWS are used for the regis-
tration, discovery and invocation of test services. The composition of test services is
realized by using test brokers, which are also test services but specialized in the coor-
dination of other test services. The ontology can be extended and updated through
an ontology management service so that it can support a wide open range of test
activities, methods, techniques and types of software artefacts. We also demonstrate
the uses of the framework by two running examples.

H. Zhu (X))

Department of Computing and Communication Technologies,
Oxford Brookes University, Oxford OX33 1HX, UK

e-mail: hzhu@brookes.ac.uk

Y. Zhang

National Laboratory for Parallel and distributed Processing School of Computer Science,
The National University of Defense Technology, Changsha, China

e-mail: yufengzhang @nudt.edu.cn

A. Bouguettaya et al. (eds.), Advanced Web Services, 171
DOI: 10.1007/978-1-4614-7535-4_8,
© Springer Science+Business Media New York 2014

172 H. Zhu and Y. Zhang

8.1 Introduction

The past few years have seen a rapid growth in the research on testing Web Services
(WS) [15, 18], which mostly falls into the following categories.

e Generation of test cases. Techniques have been developed to generate test cases
from syntax definitions of WS in WSDL [1, 2, 10, 12, 13, 21, 23, 34, 35, 37, 41,
45, 49], business process and behavioural models in BPEL [4, 5, 22, 31, 33, 36,
39, 40, 53], ontology based descriptions of semantics in OWL-S [3, 28, 48], and
other formal models of WS such as finite state machines and labelled transition
systems [6, 14, 38], grammar graphs [24, 25], and first order logic [46], etc.

e Generation of testbed. A service often relies on other services to perform its
function. However, in service unit testing and also in progressive service integration
testing, the service under test needs to be separated from other services that it
depends on. Techniques have been developed to generate service stubs [8] or
mock services [27] to replace the other services for testing.

e Checking the correctness of test outputs. Research work has been reported in the
literature to check the correctness of service output against formal specifications,
such as using metamorphic relations [19], or a voting mechanism to compare the
output from multiple candidate services [44, 47], etc.

These techniques have addressed various WS specific issues, such as the robust-
ness in dealing with invalid inputs and errors in invocation sequences, fault tolerance
to the failures of other services that it depends on and broken communication con-
nections, and security in the environment that is vulnerable to malicious attacks, and
so on. A number of prototypes and commercial tools have also been developed to
support various activities in testing WS, such as Coyote [45], WS-FIT [37], TAXI
[11], PLASTIC [9], LTSA-WS [38]; just to mention a few.

However, despite the advances made in the past few years, great challenges remain.
In particular, it is still an open question how to cope with the following difficult issues
in WS integration testing [17, 18, 54].

e Thelack of software artefacts. A service-oriented application commonly consists
of services owned by many different stakeholders. Thus, typically, developers of
a service have no access to the design document, source code, even the executable
code of the other services. These software artefacts are crucial to perform test
activities efficiently and effectively.

e The lack of control over test executions. A service-oriented application is intrin-
sically distributed, and typically contains components and services running on
hardware owned by other stakeholders. Thus, a tester usually cannot control the
test executions of the other owners’ services.

e The lack of a means of observation of internal behaviour. Another consequence
of distributed ownership of services is that testers often cannot observe the internal
behaviours of the services owned by other vendors.

Moreover, it is widely recognized that an integration testing technology for WS
dynamic composition must meet the following requirements.

8 A Test Automation Framework for Collaborative Testing 173

e Capability of dealing with diversity. The distributed and shared ownership of
services also implies that the parts of a service-oriented application may operate
on a variety of hardware and software platforms with different deployment config-
urations and delivering services of differing quality. Testing has to be performed
in a heterogeneous environment. On the other hand, different service requesters
may well have different test requirements to meet their own business purposes.
Testing must deal with all such varieties and their combinations.

e Capability of testing on-the-fly. A typical scenario of service-oriented computing
is that a service requester searches for a required function in a registry, and then
dynamically links to the service and invokes it. It is widely believed that testing
before the invocation is necessary especially in mission critical applications. Such
testing, called testing on-the-fly, differs from traditional integration testing due
to the fact that the time of testing is just before the invocation while all parts to
be integrated are already in operation. A consequence of testing on-the-fly is that
it eliminates the possibility of manual testing. Thus, all test activities must be
performed automatically.

e Capability of testing non-intrusively and non-disruptively. Another conse-
quence of testing on-the-fly is that, from a service provider’s point of view, the
test invocations of a service must be distinguished from the real ones so that the
normal operation of the service is not interrupted by test activities. On the other
hand, from a client’s point of view, test invocations should also be distinguished
from real ones so that they do not actually receive the real services and do not pay
for such test invocations as real services.

It has been recognized that to address all these issues, testing WS dynamic compo-
sitions should be a collaborative effort contributed to by all stakeholders [11, 44, 54].
In this chapter, we present a test automation framework for collaborative testing of
web services. The framework presented here has its inception in 2006 [54] based
on the author’s previous work on agent-based approach to testing web-based sys-
tems [55, 56]. A preliminary implementation and case study of the framework was
reported in [51]. In [57], the details of test brokers and ontology management were
presented and further experiments with the prototype implementation were reported.
In [52], the test broker were extended to a general service composition mechanism
so that not only test services can be dynamically composed and integrated through
service brokers.

The remainder of the chapter is organised as follows. In Sect. 8.2, the framework
and its prototype implementation are presented. Section 8.3 illustrates its uses with
two running examples in typical scenarios of WS dynamic composition. Section 8.4
discusses its main features and reports the main results of the experiments with the
prototype. Finally, Sect. 8.5 concludes the chapter with a discussion of future work.

174 H. Zhu and Y. Zhang

8.2 The Test Automation Framework

This section elaborates the framework and briefly outlines the prototype implemen-
tation. More details can be found in [57].

8.2.1 The Architecture of the Framework

As shown in Fig. 8.1, the architecture of the test automation framework consists of

e an ontology of software testing for web services called STOWS,

e an ontology manager, which is a web service for the extension and revision of the
ontology STOWS, and

e a number of test services.

These components are based on the Semantics Web Service technology and interact
with the UDDI and Matchmaker facility.

Ontol
[[UDDI Registry }1—«{ Matchmaker j I\/Far?a(;ge}rl

_______ U N !
MMesters | I"Test Brokers 1=
I ,\7{ Tester T, | _v Test Broker 2 | | | |
Pl Tester T 1 (Test Broker 1 I w |
| ester T ‘ I r IE est Broker j I F 51 I
| “ﬁ{ Tester Ty | | # Test Broker N | | | é |
L e e e — ?_ —_—— L — — Af ________] 9 |

i i

____________ SL______JZ________ 5"
Mservices | I 3 |
|| T-service of A |<1—«>| T-service of A, |<1‘«> e 4 » | L |
| F-services - - - --" ';

Fig. 8.1 Reference architecture of the framework

The following subsections will present these components of the architecture.

8.2.2 Test Services

The key notion of the framework is test services (T-service in short), which are
services designated to perform various test tasks [54].

8 A Test Automation Framework for Collaborative Testing 175

A T-service can be provided by the same organization of the normal service in
order to perform the testing of a normal web service. For the sake of clarity, we use
functional service (or F-service in short) to denote the normal services in the sequel.

A Test service can also be provided by a third party that is independent of the
normal service provider, and specialized in performing certain testing tasks. A special
type of such T-services is test brokers, which coordinate and compose test services
in order to perform complicated test tasks.

8.2.2.1 Service Specific T-services

Ideally, each F-service should be accompanied by a special T-service to support the
testing of the F-service. Such a T-service should provide the following three types
of functions related to testing.

1. Invoking test execution. The T-service accompanying an F-service should enable
test executions of the F-service to be invoked. Thus, the normal operation of
the original F-service is not disturbed by test requests and the cost of testing
is not charged as real invocations of the F-service. The F-service provider can
distinguish real requests from the test requests so that no real world effect is caused
by test requests. A T-service that only provides this test execution function can be
regarded as a mock service [27]. However, T-service can be much more powerful
by providing the following two functions.

2. Providing required documents. A T-service accompanying an F-service should
also provide further support to other test activities. For example, the formal speci-
fication of the semantics of the F-service, the internal design of the F-service such
as UML diagrams, the configuration of the hardware and software platform, the
service policy, even the source code, etc., are of particular importance to testers.
These kinds of information can be released to trusted T-services subject to pre-
serve the intellectual property rights and privacy, but withheld from the general
public.

3. Observing internal behaviour. Many test activities rely on the information of
system’s internal behaviours, such as the measurement of code coverage, the
checking of the internal states of the program during test executions, etc. These
can also be provided by the accompanying T-services.

To ensure that the testing carried out on a T-service faithfully represents the
functional services, the following two principles should be maintained in the design
and implementation of T-services.

e (a) A T-service should act in the same way as its functional service as much as
possible so that the F-service is correct on an input if the T-service passes a test
on the input.

e (b) A T-service should have a ‘firewall’ so that effects on the environment are
stopped and the normal operation of the F-service is not disrupted.

176 H. Zhu and Y. Zhang

An implication of principle (a) is that the business logic that a service implements
may be duplicated by its corresponding T-service in order to test it adequately. On
the other hand, an exact copy of the F-service may not achieve the goal of T-service
according to principle (b). It is worth noting that in certain special cases the T-service
can be absent and all testing are performed on the F-services. For example, if a service
contains no internal state and has no effect on its environment, the T-service can be a
simple duplicate of the F-service, even be the F-service itself. When the development
and maintenance of a T-service is too expensive, or testing the service on-the-fly is
unnecessary, the role of T-service can be performed by the F-service, or an identical
copy of the F-service.

For example, the American’s Insurance Industry Committee on Motor Vehicle
Administration (IICMVA) requires that each insurance company provides a WS for
online verification of car insurances and maintains two identical environments: one
for test and one for production [29].

8.2.2.2 General Purpose Testers

Besides the service specific T-service that accompanies an F-service, a test service
can also be a general purpose test tool that performs various test activities, such
as test planning, test case generation, and test result checking, etc. A general pur-
pose T-service can be specialized in certain testing techniques or methods such as
the generation of test cases from WSDL or BPEL using certain WS testing tech-
niques mentioned in Sect. 8.1. For the sake of convenience, such general purpose T-
services are also called testers in the sequel to distinguish them from service specific
T-services.

It is worth noting that the framework provides a facility for the integration of
testing services rather than any specific testing techniques or tools. Most existing
works on WS testing are complementary to the framework in the sense that their
methods, techniques and tools can be implemented as T-services. The framework
facilitates their integration by providing the interfaces and collaboration mechanisms
and enables test services to provide the software artefacts that testing processes
require. The loosely coupled framework lays a foundation for composing various
T-services by the utilization of Semantic WS technology.

8.2.2.3 Test Brokers

One particular type of general purpose T-services that will greatly improve the col-
laboration between the parties involved in WS testing is test broker. As discussed
in Sect. 8.1, test tasks are usually too complicated to be performed directly by one
T-service. A solution to this problem is to introduce test brokers, which compose and
coordinate other T-services to carry out test tasks. Typically, there are multiple test
brokers; for example, each specializes in one type of testing processes.

8 A Test Automation Framework for Collaborative Testing 177

As a coordinator, a test broker receives test requests, decomposes the task into
subtasks and generates test plans, searches for capable testers for each subtask,
invokes testers and returns test results to users. It controls the process of testing.
A test broker not only bridges the gap between the users and testers, but can also
monitor the dynamic behaviours of T-services and keep a repository of tests per-
formed on each service for future choices of T-services and optimization of test
efforts.

We have developed a prototype test broker. Figure 8.2 shows the architecture of
our prototype test broker. It receives test tasks from service requesters, decomposes
a test task into a sequence of subtasks, sets a test plan, searches for other T-services
capable of performing the subtasks, and then invokes the T-services according to
the plan to carry out the subtasks and passes information between them. Finally,
it assembles the results from the services and reports to the service requester. The
broker is composed of the following four modules.

Communication Module provides an interface to the users. It receives test requests
in the form of test tasks and sends out test results in SOAP format. It transfers test
tasks to Task Analyzer and gets test results from the Task Execution Module. Failures
to fulfil test requests are also reported to the requesters through this module.

~
Knowledge-Base
of Software Testing : Test Broker
PR # Matchmaker
Ontology Tester Search
Management |¢ Task Analyzer Module
Registry
.
Testing .| Communication Task Execution
Service
g Module Module
Requester
L L

X L3 ./
4 M
[Tester le [Tester sz Tester T,

Fig. 8.2 The structure of a test broker

Task Analyzer decomposes a test task into several subtasks and produces test plans
according to codified knowledge of software testing processes. It also keeps the track
of test plan executions for each task so that backtracking can be made when a subtask
fails.

Tester Search Module searches for testers for each subtask in the test plan gener-
ated by the Task Analyzer. A failure to find a suitable tester for a subtask is reported
to the Task Analyzer and an alternative test plan may be generated if any, or the
whole testing process fails.

Task Execution Module executes the test plan by invoking the testers and passing
information between them. A failure to carry out a subtask is reported to the Task

178 H. Zhu and Y. Zhang

Analyzer and an alternative tester will be employed if any, or an alternative test plan
is generated if possible. Otherwise, the whole testing process fails.

The knowledge-base of software testing processes plays a central role in the test
plan generation. It contains codified knowledge on how a task can be fulfilled by a
number of subtasks. Each type of tasks is defined by a set of parameters. There are two
kinds of parameters: descriptive parameters and functional parameters. The former
describes the functionality of the task, such as the activity of the task, the execution
environment of the task, and so on. The latter gives the data to be transformed by the
task, including input and output data. The values of these parameters are concepts
defined in the ontology.

The knowledge is represented in the form of rules:

TPy n) = T P11y s Piny)i e e s TP <« oy Phong)

where T is a task and pq, ..., p, are its parameters. It means that the task 7" can be
decomposed into k subtasks Tl’ -+ Ty, where p; 1, ..., pin, (1 <i < k) are parame-
ters.

It is required that a parameter p; ; of subtask T is constructed from py, ..., p,
and the output parameters of its previous subtasks, i.e. {py,y|x < i,y < n,}. This
means that the subtasks can be executed in the order as they occur in the rule. The
value of a parameter will be passed from one to the next according to the parameters
dependency between subtasks.

It is also required that each of the output parameters of task 7 is constructed from
the set of output parameters of subtasks 7/ (i = 1, ..., k). This is to ensure that task
T is realized by the subtasks in the rule.

Therefore, a rule is not only a logic decomposition of a task into several sub-
tasks, but also an expression of the workflow and the collaborations between various
kinds of services to complete a specific kind of task. Moreover, from computational
point of view, these rules also provide heuristic rules for narrowing the search space
for generating service composition plans. In fact, each rule can be considered as a
template of test plans. A test task is then checked against the templates one by one.
When a match is found, a test plan is produced by instantiating the template. Each
rule can also be regarded as a collaboration pattern of T-services with heuristics about
how to compose and coordinate T-services. This significantly reduces the size and
complexity of the space in which T-services are searched for and combined. Thus,
the complexity of T-service composition and collaboration can be reduced.

Our implementation of test brokers enables the user to write their own rules and
instantiate the knowledge-base so that a number of test brokers can be registered and
employed in testing. Figure 8.3 shows the process that the test broker interacts with
Matchmaker and other T-services.

8 A Test Automation Framework for Collaborative Testing 179

8.2.3 Registry and Matchmaker

As discussed above, in our framework, T-services interoperate with each other via
SOAP messages. They need to advertise their service descriptions in a service registry
to be discovered and invoked at runtime to achieve testing on-the-fly with a high
degree of automation. Because of the complexity of the semantics of the service
descriptions, we use Semantic WS registry to register T-services, which is composed
of an UDDI registry and a Matchmaker [30].

User Requests a Matchmaker Returns |[1ot Report
Test Task Search Results A
T
Task (in OWL)

Generate
Test Plan

List of Candidate
If empty T-services

If not empty

Select a T-service

Test Plan
A Subtask 1 Selected
il T-services
Subtask n
¢ Set Profile parameters
according to Subtask

Convert Test Task into
Required Tester Capabilily

v

\ Tester Capability (In OWL)

v

‘ T-service
Invocation Message

Transform into Service Profile T
(by Matchmaker Client API) Select An Report Test
Alternative Results to
¢ T-service The User
If has al el A
‘ Service Profile (In OWL-S) ‘ asa ternative
T-service
¢ #V Failure Test
: ; Generale An Message Results
[Submit To Search Engine j_ Alternative If no A A
Test Plan alternative
If success . i
If fail =senico If|fail If sugcess
A

\ 4
Test Report [Execute T-service j

Fig. 8.3 Process model of test broker

The OWL-S/UDDI Matchmaker (Matchmaker for short) extends UDDI registry
with a capability based service matching engine [30, 43]. It provides three levels of
matching between capability and search request.

1. Exact matching: the capabilities in the registry and in the request match exactly.

180 H. Zhu and Y. Zhang

2. Plug-in matching: the service provided is more general than the requested.
3. Relaxed matching: the service provided is similar to the requested.

The Matchmaker also provides filters for users to construct more accurate service
discovery: which are namespace filter, domain filter, text filter, I/O type filter and
constraint filter [32]. With these filters, users can construct necessary compound
filters to control the precision of matching. The matching engine returns a numeric
score for each candidate so that the higher the score, the more similar between the
candidate and the request. Therefore, selection from the candidates can be based on
the scores that tagged by the Matchmaker on the candidate services.

‘We have used Matchmaker to enhance the registration and discovery of T-services
with semantic information. A T-service provider must first register the service with
its profile that defines its capability by using the API provided by the Matchmaker.
A service search request is also submitted to the Matchmaker.

8.2.4 STOWS: Ontology of WS Testing

The semantic information used in the registration, discovery and invocation of
T-services are represented in an ontology called STOWS (Software Testing Ontology
for WS), which proposed in [54] based on the ontology developed in [55, 56]. It was
adapted for WS testing.

Concepts in STOWS are classified into three categories: elementary concepts,
basic testing concepts and compound testing concepts.

The elementary concepts are those general concepts about computer software
and hardware based on which testing concepts are defined. They include the simple
objects involved in software testing, such as the types of hardware and software
artefacts and their formats, etc.

The basic testing concepts include Tester, Artefact, Activity, Context, Method, and
Environment. They are described as follows.

e Tester. A tester refers to a particular party who participates in a test activity. Gen-
erally speaking, testers can be human beings, organizations and software systems.
In the service-oriented framework, T-services perform the test tasks, thus they
are testers, too. It can be an atomic T-service, or a composition of T-services.
One important property of tester is its capability, which reflects the capability to
perform test tasks.

e Activity. There are various test activities including test planning, test case gen-
eration, test execution, result validation, adequacy measurement and test report
generation, etc.

e Artefact. Various kinds of artefacts may be involved in test activities as input/output,
such as test plan, test case, test result, program, specification and so forth. The most
important property of class Artefact is Location, whose value is an URL referring
to the location of the Artefact. Each type of artefacts is a subclass of Artefact, and

8 A Test Automation Framework for Collaborative Testing 181

inherits the properties from Artefact. The subclasses of Artefact can be added into
the ontology using the ontology management services.

e Context. Test activities may occur in different software development stages and
have various test purposes. The concept context defines the contexts of test activ-
ities in testing processes and test methodologies. Typically, the contexts include
unit testing, integration testing, system testing, regression testing, etc.

e Method. For each test activity, there may be multiple applicable test methods.
Method is a part of the capability and also an optional part of test task. Test
methods can be classified in a number of different ways. For example, test methods
can be classified into program-based, specification-based, usage-based, etc. They
can also be classified into structural testing, fault-based testing, error-based testing,
etc. Structural testing methods can be further classified into control-flow testing,
data-flow testing, etc. Therefore, test methods are represented as a hierarchy in the
ontology.

e Environment. It is the hardware and software configuration in which a test activity
is performed.

These basic concepts are combined together to express compound testing con-
cepts, which include Task and Capability.

e Capability. The capability of a T-service represents its capability of performing
test tasks. The class Capability in the ontology defines the aspects that affect the
capability of a service to perform tasks, including the activities that the service can
do, the test methods that the service uses, the artefacts that the service consumes
and produces, the context in which the service performs test activities, and the
environment in which test activities are carried out, etc. Therefore, it is composed
of several basic test concepts. The structure of Capability is shown in the UML
class diagram given in Fig.8.4.

e Task. Task describes the test task to be carried out. It is used in service invocation.
A test task also has six aspects: the activity to be performed, the context of the
activity, the required test method and test environment, and the input and output
artefacts. The compositions are in the same structure as capability as shown in
Fig. 8.4, but have different semantics.

[Capability/Task | [Artifact |
A ABA !

| I
H Method | | Capability Data |

| Context ||Environment|

Fig. 8.4 The structure of capability and task

182 H. Zhu and Y. Zhang

In OWL-S,! semantic descriptions are represented in the form of service profiles
and used in service registration and discovery. The vocabulary of a subject domain
is defined in a data model as classes with subclass relations.

To implement the ontology STOWS, we represent the concepts, including ele-
mentary, basic and compound concepts, as classes in OWL data model. To use the
ontology for the registration, discovery and invocation of T-services, the compound
concepts capability and task are transformed into service profiles. In OWL-S, a
service profile contains the IOPR (Inputs, Outputs, Preconditions and Results) and
a classification of the service. Figure 8.5 shows how the concept of capability is
represented in service profile.

- ———— — ———————— o = ——————— -

Capability { Service Profile
Activity '—r_f‘ Service Classification
Context INPUT

Context

4 o
Method Method
Input Artefact ——— | 5 ocoe

(
1

1

1

I ! I

| .

| Environment ——1L |)

| [1 Environment
1

1

1

1

1

Output Artefact [

—_——— e — ———

OUTPUT
Artefact

Fig. 8.5 Mapping between capability and service profile

In the service profile of T-service, the test context, the environment and the method
aspects are represented as input parameters Context, Environment and Method. For
example, Fig.8.6 shows a part of a service profile, whose serviceClassification is
TestCaseGeneration. The hasInput and hasOutput properties indicate that the service
takes a Program as input and produces TestCase as output. By representing capa-
bility and task concepts in profiles, OWL-S/UDDI Matchmaker can be employed to
perform semantic-based search of T-services.

It is worth noting that test tasks and capabilities have the similar structure and the
corresponding semantics so that test requests (i.e. test tasks) can be easily transformed
into search requests (i.e. testers’ capabilities). Similarly, testers’ capabilities can be
transformed into test subtasks according to the test plan and submitted to the testers.
In the implementation of the prototype, we used the Mindswap OWL-S API to parse
task and capability profiles and to invoke T-services automatically.

The use of an ontology of software testing provides a standard set of vocabulary for
encoding the semantic information passed between T-services as well as for T-service
registration and discovery. However, it is impossible to build a complete ontology
of software testing given the huge volume of software testing knowledge and the
rapid development of new testing techniques, methods and tools. Instead, we take
the so-called crowd-sourcing approach to the construction of the ontology. It is the
same approach that Wikipedia is developed. We achieve this by regarding STOWS

U http://www.w3.org/Submission/OWL-S/
2 http://www.mindswap.org/2004/owl-s/api/

http://www.w3.org/Submission/OWL-S/
http://www.mindswap.org/2004/owl-s/api/

8 A Test Automation Framework for Collaborative Testing 183

<profile:Profile rdf:about="#testcase generation">
<profile:serviceClassification rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI">
http://... /testingontology.owl#TestCaseGeneraton
</profile:serviceClassification>
<profile:hasInput>
<process:Input rdf:ID="input_program">
<process:parameterType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI">
http://.../testingontology.owl#Program
</process:parameterType>
</process:Input> </profile:haslnput>
<profile:hasOutput>
<process:Output rdf:ID="output_testcase">
<process:parameterType rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI">
http://.../testingontology.owl#TestCase
</process:parameterType> </process:Output>
</profile:hasOutput>
</profile:Profile>

Fig. 8.6 An example of service profile

as an ontology framework in which new vocabulary can be added and updated, and
make it open to the public for population. This is supported by a facility for dynamic
management of the ontology detailed in the next section.

8.2.5 Ontology Manager

The crowd-sourcing approach to ontology construction is achieved by dynamic
management of the ontology through another special service, i.e. the ontology
management service (OMS). It provides a mechanism to populate and update the
ontology. It is delivered as a WS to facilitate the public access to the mechanism.

The ontology management service is implemented using the Protege-OWL API>,
which is an open source Java library for OWL and RDF. Using the API, OWL data
model stored in OWL files or databases can be loaded, changed and saved, queries be
made, and reasoning performed using a description logic inference engine. Therefore,
the manipulation of the ontology can be implemented as operations on OWL files.
Figure 8.7 shows the structure of OMS.

OMS provides a WS interface to read and update the ontology data model, which
is open to the public. The kernel of OMS is the Manager module. It provides three
services to users: AddClass, DeleteClass and UpdateClass to add new concept, delete
concept and revise concept of the ontology.

3 http://protege.stanford.edu/plugins/owl/api/guide.html

http://protege.stanford.edu/plugins/owl/api/guide.html

184 H. Zhu and Y. Zhang

Ontology Management Service

Update
Log

Ontology
Data Model

Ve

Manager

Conflict Checker
Authority Checker

AddClass O

DeleteClass O

UpdateClass O

Fig. 8.7 The structure of OMS

For example, suppose that a T-service is developed to generate test cases using a
new method not included in the ontology, say data mutation. Then, a new test method
name DataMutation can be added to the ontology as a subclass of TestMethod. If a
new T-service is to be registered that generates test cases from a new formal specifi-
cation language called FSL, then a new type of software artefacts called FSL can be
added to the ontology as a subclass of SoftwareArtefact. The relationship between
classes in Ontology is represented as properties of classes. Adding or removing a
relation can be done by applying operations on the ontology file via OMS. For exam-
ple, if a subsumes relation from branch testing to statement testing is to be added, a
Subsumes property can be added to class BranchTesting with the value that refers to
the class StatementTesting.

However, to prevent misuses of the ontology management service, restrictions on
the manipulation of the data model are imposed through two technical solutions.

First, we classify the classes in the ontology into two types: elementary classes
and extended classes. Elementary classes are those that form the framework of the
ontology STOWS. None of them could be pruned down from the ontology hier-
archy to avoid structural damage to the ontology. The extended classes are those
classes attached to the framework to populate the ontology with concrete concepts
and instances of the concepts. They can be added by the users and deleted from
the hierarchy. We have implemented an Authority Checker, which checks delete
operations to ensure that the class to be deleted is an extended class.

Second, we have also implemented a Conflict Checker, which checks the opera-
tions on the ontology to ensure that the new class to be added does not exist in the
ontology and that the class to be deleted has no subclasses in the hierarchy.

Due to the openness of ontology management, there is a risk of errors caused
by update during task executions. If the update is only to add a new concept to the
ontology, there should be no effect on existing tasks and services, thus no risk of such
errors. However, if the update changes or deletes an existing concept or relation, a
task running at the time of update may be affected if it uses the changed concept or
relation and rely on the ontology to understand the messages. In such cases, errors
may occur due to the updates during execution. How to prevent such errors and reduce
the risk of such errors remains an open question that deserves further research.

8 A Test Automation Framework for Collaborative Testing 185

8.3 Running Examples

We now illustrate how the framework works in WS integration testing using two
running examples of typical scenarios in the dynamic composition of WS.

8.3.1 Example 1: Testing On-The-Fly for WS Dynamic
Composition

Our first example is the integration testing in the dynamic composition of the services
of a car insurance broker with the web services of an insurance company.

8.3.1.1 The Scenario

Suppose that a fictitious car insurance broker CIB operates a web-based system that
provides online services of car insurance. In particular, they provide the following
services to their end users.

The end users submit car insurance requirements to CIB and get quotes from
various insurers that CIB is connected to, and then select one to insure the car. To
do so, CIB takes information of the car, including its usage, and the payment. It uses
the WS of its bank B to check the validity of user’s payment information, passes
the payment to the selected insurer and takes commissions from the insurer and/or
the user. The car insurance broker’s software system has a user interface to enable
interactive uses, and a WS interface to enable other programs to connect as service
requesters. Its binding to the bank’s WS is static. However, since insurance is an active
business domain, new insurance providers may emerge and existing ones may leave
the market from time to time, the broker’s software binds dynamically to multiple
insurance providers to ensure that the business is competitive on the market. The
structure of the system is shown in Fig. 8.8.

GUI Interface CIB’s service

requester

BankB | CiB L » WS
Services Services Registry
Insurer A1’s Insurer A2's Insurer An’s

Services Services Services

Fig. 8.8 Structure of car insurance broker services

186 H. Zhu and Y. Zhang

The developer of CIB’s service must test not only its own code, but also its inte-
gration with other WS, i.e. the WS of the insurers and the bank. Here, we focus on the
integration with dynamic binding. Thus, suppose that CIB will dynamically compose
with the WS of the PingAn Insurance Ltd. in China that provides car insurance to
the customers through a web-based application.* It is a real-world example.

8.3.1.2 Architecture of Test Services

By applying the framework to the scenario, each of the functional WS of the bank
B, CIB and insurer A; has an accompanying T-service. Thus, we have the following
architecture shown in Fig.8.9. In particular, the following services are involved in
the testing of the dynamic composition of CIB and the WS of PingAn Insurance.

e CIQS: the WS of the PingAn Insurance. It is the web service to be tested.

e TCE: a service specific T-service that executes the test cases for CIQS.

e TCG: a special purpose WS testing tool that generates test cases.

e CIB: the WS of the car insurance broker CIB. It acts as the testing requester, and
generates and submits test tasks to the test broker to test CIQS.

Register/
Matchmaker

TCG: Tester (Test
Case Generator)

A N
Test Broker
A
Y
Bank I_3‘s T-service of CIB TCE: T-Serv ice of
T-service ClQs

Bank B’s . CIQS: PingAn Insur-
F-service of CIB ance Quote F-Service

v N
Insurer Ay’s Insurer As’s Insurer Ay’s
F-service F-service F-service

T-service

T-service

T-service

[Insurer Ay’s][Insurer Az’s

J

Insurer Ay’s]

Fig. 8.9 System architecture of the typical scenario

These T-services are registered to the UDDI registry using the STOWS ontology.
For example, TCG is a WS that takes the WSDL file of a service to be tested as input

4 http://www.pingan.com/campaign/channels/pingan/car-quote/index.jsp

http://www.pingan.com/campaign/channels/pingan/car-quote/index.jsp

8 A Test Automation Framework for Collaborative Testing 187

and generates random test cases as output. These artefacts are stored in files and
referred to through URLSs of the file locations. To describe this service, the following
classes were added into the ontology.

e WSDL.: a subclass of ServiceDescription, which is in turn the subclass of Artefact.
It stands for the WSDL document of a service.

e ServiceTesting: a subclass of Context that stands for service testing.

e RandomTestingMethod: a subclass of Method that stands for the random testing
method in test case generation.

e CarlnsuranceQuoteServiceTestCase: a subclass of TestCase that stands for the test
case file for testing car insurance quote service.

In the service profile that describes the capability of TCG, the serviceClassifi-
cation is TestCaseGeneration. The Input artefact is WSDL. The context of TCG is
ServiceTesting. Its environment is of type Environment, which is the ancestor of
all the classes and stands for test environments. This means it imposes no specific
requirement on the environment. Its method is RandomTestingMethod. The output
artefact is of type CarlnsuranceQuoteServiceTestCase.

8.3.1.3 Collaboration Process
Consider the situation that the CIB intends to establish a dynamic composition with

insurer PingAn and to test the service on-the-fly. It delegates the task to a test broker
TB. Figure 8.10 shows a typical example of collaboration processes managed by TB.

1. Search for testers

- = Registry
2. List of testers | (UDDI + Matchmaker)

A .
4. Search for testers | |5. Lists of testers

\

CiB 3. Request of test | Test Broker
T-service service g B
A 10. Test report 7. Test 8.Request
6. Request to cases to invoke
generate test 9.Test ;i)s;':sexecu-
cases y results v
TCG: TCE:
Tester (Test T-Service of
Case Generator) CIGS
clB Intended composition | ClQS: PingAn
F-service of services > Insurance .Quote
F-Service

Fig. 8.10 The collaboration process in a typical scenario

188 H. Zhu and Y. Zhang

The process starts with the generation of a test task by CIB’s WS and submission
of a search request for finding a proper tester to the service registry. The search
request message contains a test task, which is matched against the capabilities of the
registered testers. The search result is a list of testers who are capable of performing
the task. From this list, the test broker TB is selected. A test request as shown in
Fig.8.11 is then sent to TB requesting to test CIQS.

Once the test broker receives the test task, it generates a test plan that consists of
two subtasks:

e Subtask 1: Generating test cases according to a car insurance industry standard.
The input artefact of the task is of type WSDL. The output of this subtask is of
type CarlnsuranceQuoteServiceTestCase.

e Subtask 2: Executing test cases and reporting test results. Its input is of type
CarlnsuranceQuoteServiceTestCase and its output type is CarlnsuranceQuoteSer-
viceTestResult.

<Task rdf:ID="insuranceQuoteService TestingTask">
<needContext>
<ServiceTesting rdf:ID="serviceTesting"/>
</needContext>
<needMethod>
<RandomTestingMethod rdf:ID="randomTestingMethod"/>
</needMethod>
<needEnvironment>
<Environment rdf:ID="environment"/>
</needEnvironment>
<needServiceClassification>
<ServiceClassification rdf:ID="serviceClassification"/>
</needServiceClassification >
<inputArtefact>
<WSDL rdf:ID="CarlnsuranceQuoteServiceWSDL">
<Location rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string ">
http://.../CarlnsuranceQuoteService ?wsdl
</Location>
</WSDL >
</inputArtefact>
<outputArtefact>
<CarlnsuranceQuoteServiceTestResult rdf:ID="testresult">
<Location rdf:datatype="http://www.w3.0rg/2001/XMLSchemat#string">
http://.../artefacts/testresult/fictitioustestresult.xml
</Location>
</CarlnsuranceQuoteServiceTestResult >
</outputArtefact>
</Task>

Fig. 8.11 An instance of test tasks in the running example

For each subtask in the test plan, the broker translates the subtask into the cor-
responding capability description and constructs a service profile. The test broker
then submits the service profile to the Matchmaker to search for appropriate testers.
In this case, testers TCG and TCE are selected for the subtasks, respectively. The

8 A Test Automation Framework for Collaborative Testing 189

test planning finished with each subtask associated with a tester, and the test plan is
passed to the execution module of the test broker for executing the subtasks.

The task execution module of the test broker calls the testers associated to each
subtask according to the order given in the test plan. Data are passed from one subtask
to another through invocation messages. In particular, the output artefact of the first
subtask is passed to the second subtask. The output of the second subtask is the final
result of the test, which is an OWL object. It is then returned to the client.

8.3.2 Example 2: Wrapping A Testing Tool into a Test Service

In this running example we demonstrate how to wrap an automated testing tool into
a test service and how the tester can be composed together with other T-services to
accomplish complex testing tasks.

8.3.2.1 Wrapping a Testing Tool

The testing tool in this running example is a general purpose testing tool called
CASCAT [50], which generates test cases from algebraic specifications. It is wrapped
into a web service by providing it with a WS interface. The web service version of the
tool is referred to as TCG in the sequel. The following gives some technical details
of the registration, search and invocation of the tester.

In the registration of TCG, the service takes a CASOCC specification file as input
and generates test cases as output. These artefacts are stored in files and referred
to through URLSs of the file locations. To describe this service, the following new
classes are added into the ontology.

e CasoccSpecification: a subclass of Specification that stands for algebraic specifi-
cation in CASOCC.

e ComponentTest: a subclass of Context that stands for component testing.

e CASOCCmethod: a subclass of Method that stands for the method of test case
generation from CASOCC.

In its service profile, the serviceClassification is set as TestCaseGeneration. The
Input artefact is specified as the class CasoccSpecification. As described in the pre-
vious section, the service profile has three parameters that represent the aspects of
the service capability. The context of TCG is ComponentTest. Its environment is
Environment and represents no requirement on the test environment. Its method is
CASOCCmethod. The output artefact is TestCase.

190 H. Zhu and Y. Zhang
8.3.2.2 Collaboration Process

Similar to the first running example, suppose that a client wants to test a WS called
NCS, which is a web service that provides numeric calculations of complex numbers.
The client constructs a test task and submits it to the registry to search for a tester.
As aresult, a test broker is found to perform the testing.

Figure 8.12 shows the test task that client submitted to the test broker requesting
test NCS against an algebraic specification written in CASOCC. The input artefact
of the task is of type CasoccSpecification, and the output artefact type is TestResult.

Once the test broker receives the test task, it decomposes it into subtasks and
generated a test plan that consisted of the following three subtasks:

e Subtask I: Generating test cases from the specification. The input artefact of the
task is of type CasoccSpecification. The output of this subtask is of type Casoc-
cTestCase.

e Subtask 2: Transforming the test cases into the format that are executable by
the T-service of NCS. Its input is of type CasoccTestcase and output is of type
CalculatorTestCase.

e Subtask 3: Executing test cases and report test results. Its input is of type Calcula-
torTestCase and its output artefact type is TestResult.

<Task rdf:ID="thirdTask">
<hasContext>
<ServiceTest rdf:ID="serviceTest"/> </hasContext>
<hasMethod rdf:resource="# CASOCCBasedMethod "/>
<hasEnvironment rdf:resource="#notLimited"/>
<hasActivity rdf:resource="#multiactivites"/>
<inputArtefact>
<CasoccSpecification rdf:ID="casoccSpecification">
<Location rdf:datatype= "http://www.w3.0rg/2001/XMLSchema#anyURI|">
http://.../specification/Calculator.asoc
</Location> </CasoccSpecification> </inputArtefact>
<outputArtefact>
<TestResult rdf:ID="testresult">
<Location rdf:datatype= "http://www.w3.0rg/2001/XMLSchema#anyURI">
http://.../artefacts/testresult/fictitioustestresult.txt
</Location> </TestResult> </outputArtefact>
<testObject>
<TestObject rdf:ID="calculateService">
<operationName rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">
Add </operationName>
<endpoint rdf:datatype="http://www.w3.0rg/2001/XMLSchema#string">
http://.../axis/services/Calculatorimpl
</endpoint> </TestObject> </testObject>
</Task>

Fig. 8.12 The task to test NCS based on algebraic specification

For each subtask in the test plan, the broker translates it into the corresponding
capability description and constructs a service profile. The test broker then submits

8 A Test Automation Framework for Collaborative Testing 191

the service profile to the Matchmaker to search for appropriate testers. In this case,
testers TCG, TFT and T-NCS are discovered for the subtasks, respectively. The test
planning finishes with each subtask associated with a tester. The test plan is then
passed to the execution module for executing the subtasks.

The task execution module calls the testers associated to each subtask according
to the order given in the test plan. Data are passed from one subtask to another by the
construction of invocation message to the testers. In particular, the output artefact of
a subtask is passed to the next subtask. The output of the third subtask is the final
result of the test, which is again an OWL object. It is returned to the client by the
broker. Figure 8.13 summarises the collaboration process described above.

Search

Test Broker |————>| Matchmaker
testers

Invoke ‘ (:
tester \Reg|ster

TCG: Test Case TFT: Test Case T-NCS: Test
Generator Format Transformer Executor for NCS

|

[NCS: Numeric Calculation Web Service]

Fig. 8.13 The collaboration between the web services in running Example 2

8.4 Discussion: Main Feature of the Framework

The framework implements collaborative testing of WS within the service-oriented
architecture using ontology and also the concept of T-services. In this framework,
various testing functions are provided by T-services, such as generating test plan and
test cases, invoking test executions, collecting test results, checking output correct-
ness, measuring test adequacy and coverage, and so forth. It does not only applicable
to functional testing as demonstrated in the running examples, but also applicable
to non-functional tests, for example, through collaboration with a non-functional
test service. The collaborations between test services are autonomous rather than
enforced. That is, what to test and how to test is the choice of the service requester,
but how to fulfil a client’s test request is the choice of test service provider. A T-
service requester need to search for T-services, negotiate the cost of test, select a
T-service provider and invoke the T-service at runtime. The test activities are then
performed by a T-service provider. Test brokers are also T-services but specialised
in the composition of T-services. Complicated testing processes and interactions
between T-services can be handled by such professionally developed T-services to
simplify the uses of T-services. The approach has the following advantages.

192 H. Zhu and Y. Zhang

A. Scalability

The framework is scalable since T-services are distributed and there is no extra-
burden on UDDI servers. Experiments reported in [52, 57] shows that the average test
service search time increases with the number of testers in the registry, but in almost
a linear manner, as shown in Fig. 8.14. With the size of knowledge base increases, the
time spent by a test broker to generate test service composition plans also increases,
but again in an almost linear rate as shown in Fig.8.15. With the increase of the
complexity of testing tasks, which is measured by the number of different types of
subtasks to fulfil the task, the time overhead increases in a quadratic polynomial
function as shown in Fig. 8.16. Therefore, the test broker is capable of dealing with
test problems of practical sizes with respect to the number of testers registered, the
size of the knowledge-base, and the complexity of test tasks.

3500

3000 y=0.0004x2+6.1862x+207.16
2500 f Ri=09948 >

2000
1500 |

Time (ms)

1000 | « Search Services Time

Trend

500 [

0 L 1 L L L . L
0 60 120 180 240 300 360 420 480

The number of services

Fig. 8.14 Execution time dependence on the number of testers registered in UDDI

350

800 1 y =4E-05x2+0.0609x+ 20 044
250 R2=0.9873

200
150 |
100 |
50

Time (ms)

AverageTime
Trend

1 1 I L I L I I 1

1
0 200 400 600 800 1000120014001600180020002200
The number of task plan templates

Fig. 8.15 Execution time dependence on the number of plan templates in knowledge-base

8 A Test Automation Framework for Collaborative Testing 193

18
16 | y=10601x2+3168.2x+11949
14 } R2=0.9999 i
—~ 12 F
2
[0)) 10
£ ol
| ——-+—— Total
6 L] Search for Services
4F ---+--- Invocation of Subtasks
N -1 4 Planning
2r Trend
0 bomm e y e A mmmmm == A mm = m— = 4
1 2 3 4 5

The number of subtasks

Fig. 8.16 Execution time dependence on the number of subtasks

B. Feasibility

The framework is implemented without any change to the existing standards of
Semantic WS [7]. A case study reported in [57] demonstrated that a wide range of
different types of test services can be supported and integrated into the framework.
Table 8.1 summarises the services used in the case study.’

C. Capability of dealing with diversity

The need of dealing with variety is achieved through collaborations among many
T-services and the employment of ontology of software testing to integrate multiple
testing tools. An experiment applying data mutation testing techniques [42] shows
clearly that the framework is capable of dealing with services of subtle differences
so that the best match can be automatically selected to perform testing tasks [57].

D. Fully automated for testing on-the-fly

The automation of test processes for testing on-the-fly, especially the dynamic
composition of T-services, can be also achieved by employing ontology of software
testing and test brokers. Moreover, test executions can be performed by running
a separate T-service, thus they do not interfere with the normal operations of the
services under test.

E. Extendibility

This framework employs an ontology management facility to enhance its extendibil-
ity. With this, the software testing ontology can be extended and maintained through
public services.

5 Java NCSS can be found at URL: http://javancss.codehaus.org/, and PMD can be found at URL:
http://pmd.sourceforge.net/

http://javancss.codehaus.org/
http://pmd.sourceforge.net/

194 H. Zhu and Y. Zhang

Table 8.1 Testers integrated in the framework

Name Description

CASCAT [50] A CASOCC-based test case generation tool

Test case format translator Translates the test case generated by CASCAT into the
format recognizable by calculator test case executor

Test case executor Executes test case for a numeric calculator web service

Klee [16] Generate and execute test cases from C source code by
symbolic execution

Magic [20] Check conformance between component specifications
and their implementations

XML comparator Compare XML files

Java NCSS Measure two standard metrics for Java program

Findbugs [26] Find bugs in Java program by static analysis

PMD A static analysis tool for finding potential bugs and other
problems in Java source code

WSDL-based test generator [2] A WSDL based test case generation tool

Web service test case executor [2] Execute the test case generated by WSDL based test

case generator

8.5 Conclusion and Future work

In this chapter, we presented a service-oriented architecture for testing WS. In this
architecture, various T-services collaborate with each other to complete test tasks.
We employ the ontology of software testing STOWS to describe the capabilities of
T-services and test tasks for the registration, discovery and invocation of T-services.
The knowledge intensive composition of T-services is realized by the development
and employment of test brokers, which are also T-services. We implemented the
architecture in Semantic WS technology. Case studies have demonstrated the fea-
sibility of the architecture and illustrated how to wrap up general purpose testing
tools and turn them into T-services and how to develop service specific T-services to
support the testing of a WS. Experimental evaluation also shows its scalability.

The test broker in the framework plays an important role in automation of testing
processes. Further research on the design and implementation of powerful test bro-
kers will have a significant impact on the usability of the T-services. In particular,
using knowledge of software testing processes to generate test plans seems a promis-
ing topic for further work. Currently, such knowledge of software testing process is
represented in the form of task decomposition rules. A question is whether such
knowledge can be encoded in a process definition language such as BPEL. If yes,
a careful analysis of the benefit and comparison of the two are necessary. Another
direction to enhance the functionality of test brokers is to associate monitoring func-
tions to brokers as Tsai et al. suggested so that the previous performance of T-services
can be taken into consideration in the selection of testers.

An issue that has not been addressed adequately in the prototype is the testing of
long running processes. A simple solution could be to allow testers to distinguish

8 A Test Automation Framework for Collaborative Testing 195

long running processes from short running tasks either in the test request message
(i.e. in the test task description) or in the service description (i.e. in WSDL). An
upper limit to the waiting time for test results should then be set accordingly to avoid
infinite waiting. The broker could also set different running modes for short and long
running tasks.

Moreover, as discussed in Sect. 8.1, a particular difficulty in testing WS is due to
the lack of software artefacts to support test activities. The framework presented in
this chapter offers the opportunity to incorporate a trust mechanism so that design
documents, source code and many other types of internal information of services can
be delivered to trustable T-services. Further research on how such a trust mechanism
to interoperate with the T-services needs to be worked out in detail.

Another hard problem to be solved is associated to the management of ontology.
Consistency problem may occur when the ontology is updated during the execution
of a task. How to prevent such errors and to reduce the risk is still an open question.

Testing is one of the quality assurance activities for the development of services. It
is worth investigating into how to extend and/or adapt the framework for a wider range
of quality assurance activities such as static analysis and verification and dynamic
monitoring of services, etc. This may need to extend the network model of WS to
incorporate the internal structure of services.

Acknowledgments The work reported in this chapter is partly funded by the National Basic
Research Program of China (973) under Grant No. 201 1CB302603 and the National Natural Science
Foundation of China under Grant No. 60725206.

References

1. de Almeida, L.F., Vergilio, S.R.: Exploring perturbation based testing for web services. In:
Proc. of ICWS’06, pp. 717-726. IEEE CS (2006)

2. Bai, X., Dong, W., Tsai, W., Chen, Y.: Wsdl-based automatic test case generation for web
services testing. In: Proc. of SOSE’05, pp. 215-220. IEEE CS (2005)

3. Bai, X., Lee, S., Tsai, W.T., Chen, Y.: Ontology-based test modeling and partition testing of
web services. In: Proc. of ICWS’08, pp. 465—472. IEEE CS (2008)

4. Bartolini, C., Bertolino, A., Marchetti, E.: Introducing service-oriented coverage testing. In:
Proc. of ASE’08, pp. 57-64. IEEE CS (2008)

5. Bartolini, C., Bertolino, A., Marchetti, E., Parissis, I.: Data flow-based validation of web ser-
vices compositions: Perspectives and examples. In: R.e.a. Lemos V (ed.) Architecting Depend-
able Systems, LNCS, vol. 5135, pp. 298-325. Springer-Verlag (2008)

6. Belli, F., Linschulte, M.: Event-driven modeling and testing of web services. In: Proc. of
COMPSAC’08, pp. 1168-1173. IEEE CS (2008)

7. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34-43
(2001).

8. Bertolino, A., Angelis, G.D., Frantzen, L., Polini, A.: Model-based generation of testbeds for
web services. In: Proc. of TestCom/FATES’08, pp. 266-282 (2008)

9. Bertolino, A., Angelis, G.D., Frantzen, L., Polini, A.: The plastic framework and tools for testing
service-oriented applications. In: Software Engineering: Int’l Summer Schools, (ISSSE’08),
pp. 106-139 (2008)

196 H. Zhu and Y. Zhang

10. Bertolino, A., Gao, J., Marchetti, E.: Xml every-flavor testing. In: Proc. of WEBIST 06, pp.
268-273. INSTICC Press (2006)

11. Bertolino, A., Gao, J., Marchetti, E., A.Polini: Taxi-a tool for xml-based testing. In: Proc. of
ICSE’07 (Companion), pp. 53-54. IEEE CS (2007)

12. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Automatic test data generation for xml schema-
based partition testing. In: Proc. of AST’07, p. 4. IEEE CS (2007)

13. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Systematic generation of xml instances to test
complex software applications. In: N.e.a. Guelfi (ed.) Rapid Integration of Software Engineer-
ing Techniques, LNCS, vol. 4401, pp. 114-129. Springer (2007)

14. Bertolino, A., Polini, A.: The audition framework for testing web services interoperability. In:
Proc. of EUROMICRO’0S, pp. 134-142 (2005)

15. Bozkurt, M., Harman, M., Hassoun, Y.: Testing & verification in service-oriented architecture:
A survey. Software Testing, Verification and Reliability (STVR) (To Appear).

16. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. OSDI (2008)

17. Canfora, G., Penta, M.: Testing services and service-centric systems: Challenges and opportu-
nities. IT Professional 8(2), 10-17 (2006)

18. Canfora, G., Penta, M.: Service-oriented architectures testing: A survey. In: A. Lucia, F. Ferrucci
(eds.) Software Engineering: Int’l Summer Schools (ISSSE 2006-2008), Revised Tutorial
Lectures, LNCS, vol. 5413, pp. 78-105. Springer-Verlag (2009)

19. Chan, W.K., Cheung, S.C., Leung, K.R.P.H.: A metamorphic testing approach for online testing
of service-oriented software applications. Int’l Journal of Web Services Research 4(2), 61-81
(2007)

20. Edmund, S.C., Clarke, E., Groce, A., Jha, S., Vienna, T.: Modular verification of software
components in c. IEEE Trans. Softw. Eng. 30, 388-402 (2004)

21. Emer, M.P,, Vergilio, S.R., Jino, M.: A testing approach for xml schemas. In: Proc. of
COMPSAC’05, pp. 57-62. IEEE CS (2005)

22. Garcia-Fanjul, J., Tuya, J., de la Riva, C.: Generating test cases specifications for bpel compo-
sitions of web services using spin. In: Proc. of WS-MaTe (2006)

23. Hanna, S., Munro, M.: An approach for wsdl-based automated robustness testing of web ser-
vices. In: C.e.a. Barry (ed.) Information Systems Development: Challenges in Practice, Theory,
and Education, vol. 2, pp. 493-504. Springer (2009)

24. Heckel, R., Lohmann, M.: Towards contract-based testing of web services. Electronic Notes
in Theoretical Computer Science 82(6) (2004)

25. Heckel, R., Mariani, L.: Automatic conformance testing of web services. In: Proc. of FASE’05,
pp- 34—48. Springer (2005)

26. Hovemeyer, D., Pugh, W.: Finding more null pointer bugs, but not too many. In: Proc. of
PASTE’07, pp. 9-14 (2007)

27. Huang, H.,Liu, H., Li, Z., Zhu, J.: Surrogate: A simulation apparatus for continuous integration
testing in service oriented architecture. In: Proc. of SCC’08, vol. 2, pp. 223-230. IEEE CS
(2008)

28. Huang, H., Tsai, W., Paul, R., Chen, Y.: Automated model checking and testing for composite
web services. In: Proc. of ISORC’05, pp. 300-307. IEEE CS (2005)

29. IICMVA: Model user guide for implementing online insurance verification, version 4, Insur-
ance Industry Committee on Motor Vehicle Administration, USA. http://www.iicmva.com/
IICMVAPublications.html (2010). (Accessed on 20 Oct. 2010).

30. K. Sycara M. Paolucci, A., Srinivasan, N.: Automated discovery, interaction and composition
of semantic web services. J. Web Semantics 1(1), 27-46 (2003)

31. Kaschner, K., Lohmann, N.: Automatic test case generation for services. In: Proc. of Fourth
Int’l Workshop on Engineering Service-Oriented Applications: Analysis and Design (WESOA
2008), LNCS. Springer-Verlag (2008)

32. Kawamura, T., Blasio, J.A.D., Hasegawa, T., Paolucci, M., Sycara, K.: A preliminary report of
a public experiment of a semantic service matchmaker combined with a uddi business registry.
In: Proc. of ICSOC’03, pp. 208-224. IEEE CS (2003)

http://www.iicmva.com/IICMVAPublications.html
http://www.iicmva.com/IICMVAPublications.html

8 A Test Automation Framework for Collaborative Testing 197

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Lallali, M., Zaidi, F., Cavalli, A., Hwang, I.: Automatic timed test case generation for web
services composition. In: Proc. of ECOWS’08, pp. 53-62 (2008)

Lee, S.C., Offutt, J.: Generating test cases for xml-based web component interactions using
mutation analysis. In: Proc. of ISSRE’01, pp. 200-209. IEEE CS (2001)

Li, J.B., Miller, J.: Testing the semantics of w3c xml schema. In: Proc. of COMPSAC’05, pp.
443-448. IEEE CS (2005)

Li, Z., Sun, W., Jiang, Z.B., Zhang, X.: Bpel4ws unit testing: Framework and implementation.
In: Proc. of ICWS’05, pp. 103-110. IEEE CS (2005)

Looker, N., Munro, M., Xu, J.: Ws-fit: A tool for dependability analysis of web services.
In: Proc. of COMPSAC’04, pp. 120-123. IEEE CS (2004)

Magee, J., Kramer, J., Uchitel, S., Foster, H.: Ltsa-ws: a tool for model-based verification of
web service compositions and choreography. In: Proc. of ICSE’06, pp. 771-774. IEEE CS
(2006)

Mayer, P.: Design and implementation of a framework for testing bpel compositions. Master’s
thesis, Leibnitz Univ., Germany (2006)

Mei, L., Chan, W.K., Tse, T.H.: Data flow testing of service-oriented workflow applications.
In: Proc. of ICSE’08, pp. 371-380. IEEE CS (2008)

Offutt, J., Xu, W.: Generating test cases for web services using data perturbation. SIGSOFT
Softw. Eng. Notes 29(5), 1-10 (2004)

Shan, L., Zhu, H.: Generating structurally complex test cases by data mutation. The Computer
Journal 52, 571-588 (2009)

Srinivasan, N., Paolucci, M., Sycara, K.: Adding owl-s to uddi, implementation and throughput.
In: Proc. of The 1st Int’l Workshop on Semantic Web Services and Web Process Composition,
pp. 169-182 (2004)

Tsai, W., Chen, Y., Paul, R., Liao, N., Huang, H.: Cooperative and group testing in verification
of dynamic composite web services. In: Proc. of COMPSAC’04, vol. 2: Workshops and Fast
Abstracts, pp. 170-173. IEEE CS (2004)

Tsai, W., Paul, R., Song, W., Cao, Z.: Coyote: An xml-based framework for web services
testing. In: Proc. of HASE’02, pp. 173-174. IEEE CS (2002)

Tsai, W., Wei, X., Chen, Y., Paul, R., Bai, X.: Swiss cheese test case generation for web services
testing. IEICE - Trans. Inf. Syst. 88(12), 2691-2698 (2005)

Tsai, W., Zhou, X., Chen, Y., Bai, X.: On testing and evaluating service-oriented software.
Computer 41(8), 40-46 (2008)

Wang, Y., Bai, X., Li, J., Huang, R.: Ontology-based test case generation for testing web
services. In: Proc. of ISADS’07, pp. 43-50. IEEE CS (2007)

Xu, W, Offutt, J., Luo, J.: Testing web services by xml perturbation. In: Proc. of ISSRE’05,
pp. 257-266. IEEE CS (2005)

Yu, B., Kong, L., Zhang, Y., Zhu, H.: Testing java components based on algebraic specifications.
In: Proc. of ICST’08, pp. 190-199. IEEE CS (2008)

Zhang, Y., Zhu, H.: Ontology for service oriented testing of web services. In: Proc. of SOSE’08.
IEEE CS (2008)

Zhang, Y., Zhu, H.: An intelligent broker approach to semantics-based service composition.
In: Proc. of COMPSAC 2011, pp. 20-25. IEEE CS, Munich, Germany (2011)

Zheng, Y., Zhou, J., Krause, P.: An automatic test case generation framework for web services.
Journal of Software 2(3), 64—77 (2007)

Zhu, H.: A framework for service-oriented testing of web services. In: Proc. of COMPSAC’ 06,
pp. 679-691. IEEE CS (2006)

Zhu, H., Huo, Q.: Developing a software testing ontology in uml for a software growth envi-
ronment of web-based applications. In: e. H. Yang (ed.) Software Evolution with UML and
XML, pp. 263-295. IDEA Group Inc. (2005)

Zhu, H., Huo, Q., Greenwood, S.: A multi-agent software environment for testing web-based
applications. In: Proc. of COMPSAC’03, pp. 210-215. IEEE CS (2003)

Zhu, H., Zhang, Y.: Collaborative testing of web services. IEEE Transactions on Services
Computing 5(1), 116-130 (2012)

Chapter 9
WSDARWIN: Studying the Evolution
of Web Service Systems

Marios Fokaefs and Eleni Stroulia

Abstract The service-oriented architecture paradigm prescribes the development of
systems through the composition of services, i.e., network-accessible components,
specified by (and invoked through) their interface descriptions. Systems thus devel-
oped need to be aware of changes in, and evolve with, their constituent services.
Therefore, the accurate recognition of changes in the specification of a service is
an essential functionality in supporting the software lifecycle of service-oriented
systems. In this chapter, we extend our previous empirical study on the evolution
of web-service interfaces and we classify the identified changes according to their
impact on client applications. To better understand the evolution of web services,
and, more importantly, to facilitate the systematic and automatic maintenance of
web-service systems, we introduce WSDARWIN, a specialized differencing method
for web services. Finally, we discuss the application of such a comparison method
on operation- (WSDL) and resource-centric (REST) web services.

9.1 Introduction

Service-system evolution and maintenance is an interesting variant of the general
software-evolution problem. The problem is complex and challenging due to the
fundamentally distributed nature of service-oriented systems, whose constituent parts
may reside on different servers, across organizations and beyond the domain of
any individual entity’s control. At the same time, since the design of a service-
oriented system is expressed in terms of the interface specifications of the underlying
services, the overall system needs and can be aware only of the changes that impact

M. Fokaefs (<) - E. Stroulia

Department of Computing Science,
University of Alberta, Edmonton, AB, Canada
e-mail: fokaefs @ualberta.ca

E. Stroulia
e-mail: stroulia@ualberta.ca

A. Bouguettaya et al. (eds.), Advanced Web Services, 199
DOI: 10.1007/978-1-4614-7535-4_9,
© Springer Science+Business Media New York 2014

200 M. Fokaefs and E. Stroulia

these interface specifications; any changes to the service implementations that do not
impact their interfaces are completely transparent to the overall system. In effect, the
specifications of the system’s constituent services serve as a boundary layer, which
precludes service-implementation changes from impacting the overall system.

The directly affected party in the evolution of service systems is the client, i.e.,
the consuming party. Figure 9.1 shows a typical evolution scenario from the client’s
perspective. Initially, the client invokes the service and a fault may be detected. It is
not usual for the client to have a priori knowledge about any changes on the service,
unless there is frequent and effective communication between the provider and the
client. Once the fault is detected, the client has to compare the old service interface
with the new one from the provider to identify the nature of the changes and possibly
their effect on the application. The next step is to adapt the client application to the
new version of the service. This requires as much information as possible in order
to make the adaptation process systematic and, if possible, fully automatic. Finally,
the client has to test the application to make sure the adaptation worked, since not

all changes are automatically adaptable.

Get new
Invoke service service
interface
This is why recognizing the changes to the specification of a service interface and

Fig. 9.1 The evolution process from the client’s perspective

their impact on client applications is highly desirable and a necessary prerequisite for
actually adapting the applications to the new version of the service. Further, assuming
that a precise method for service-specification changes existed, it would be extremely
useful if one could (a) characterize the changes in terms of their complexity, and
(b) semi-automatically develop adapters for migrating clients from older interface
versions to newer ones.

In this work, we introduce WSDARWIN, a domain-specific differencing method
to compare (a variety of) web-service interfaces. Most frequently, services are devel-
oped following two approaches: operation-centric, whose interfaces are specified as
Web Service Description Language (WSDL)! files, and data-centric (REST), which
are specified as Web Application Description Language (WADL)? files. Although
the two approaches are quite different in the syntax they use to specify web ser-
vices and their associated technologies, they share a palette of building elements,
namely functions and data. WSDARWIN takes advantage of this fundamental com-
monality to produce accurate comparison results in an efficient and scalable man-
ner for service interfaces regardless of their specification syntax. In this work, we
compare WSDARWIN with our old comparison approach VTRACKER [6] and dis-
cuss their differences with respect to performance and scalability. Finally, we apply

Compare
new-old
interface

U http://www.w3.org/TR/wsdl
2 http://www.w3.org/Submission/wadl/

http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/wadl/

9 WSDARWIN: Studying the Evolution of Web Service Systems 201

WSDARWIN on Unicorn,®> W3C’s unified validator and Amazon Elastic Cloud
Computing (EC2) web service and we present some special cases to demonstrate
how the comparison method is used and how its results are presented.

In addition to comparing pairs of specifications to recognize their differences, we
are also interested in analyzing the long-term evolution of real world services. We
have already presented an empirical study [6], where we analyzed a set of commer-
cial WSDL web services including the Amazon Elastic Cloud Computing (Amazon
EC2),* the FedEx Package Movement Information and Rate Services,> the PayPal
SOAP API® and the Bing search service,’ using VTRACKER, as a comparison method.
In that work, we studied the evolution of the aforementioned services and reported
our findings on evolution patterns, we identified particular change scenarios and dis-
cussed them with respect to their impact on potential client applications and, finally,
we correlated these changes with business decisions concerning the services in an
effort to reason about the evolution of each service. In this chapter, we extend the find-
ings of this empirical study by providing additional statistics about the changes that
the examined services underwent and, more importantly, we provide a classification
of the service change scenarios according to their impact on client applications.

The rest of the chapter is organized as follows. In Sect. 9.2 we present the extended
results of our empirical study on the evolution of WSDL services and we present
the classification of service changes. In Sect.9.3, we introduce WSDARWIN as a
comparison method for service interfaces and demonstrate its usage on a WSDL
and a WADL service. Section9.4 provides an overview of the literature related to
our work. Finally, Sect. 9.5 concludes this chapter and discusses some of our future
plans.

9.2 Study of Web Service Evolution

Before developing methods and tools to support the evolution process of web services,
it is important to first study and understand how service interfaces change. This way,
we can identify what is important to pay attention to and what can be simplified
in order to build improved automated processes. In our work, we have studied five
real-world web services offered by companies in the industry of web applications,
whose evolution spans across different time periods and exhibits interesting evolution
patterns.

e Amazon EC2. The Amazon Elastic Compute Cloud is a web service that provides
resizable compute capacity in the cloud. We studied the history of the web service
across 18 versions of its WSDL specification, dating from 6/26/2006 to 8/31/2010.

3 http://code.w3.org/unicorn/

4 http://aws.amazon.com/ec2/

5 http://www.fedex.com/us/developer

6 https://www.paypalobjects.com/en_US/ebook/PP_APIReference/architecture.html
7 http://www.bing.com/developers

http://code.w3.org/unicorn/
http://aws.amazon.com/ec2/
http://www.fedex.com/us/developer
https://www.paypalobjects.com/en_US/ebook/PP_APIReference/architecture.html
http://www.bing.com/developers

202 M. Fokaefs and E. Stroulia

e The FedEx Rate Service operations provide a shipping rate quote for a specific
service combination depending on the origin and destination information supplied
in the request. We studied 9 versions of this service.

e The FedEx Package Movement Information Service operations can be used to
check service availability, route and postal codes between an origin and destination.
We studied 3 versions of this service.

e The PayPal SOAP API Service can be used to make payments, search transactions,
refund payments, view transaction information, and other business functions. We
studied 4 versions of this service.

e The Bing Search service provide programmatic access to Bing content Source-
Types such as Image, InstantAnswer, MobileWeb, News, Phonebook, Related-
Search, Spell, Translation, Video, and Web. We studied 5 versions of this service.

9.2.1 Analyzing the Evolution of the Services

Table 9.1 shows the evolution profile of all the examined services in terms of data
types and operations. Each row corresponds to a service version. Columns 3—8 report
the percentage of types and operations in this version that underwent edits (Changes,
Deletions, Additions) from the previous version. The change columns include two
types of changes: renaming or other changes in the “signature” of the object (type or
operation), i.e., the attributes of the particular XML element and changes that were
propagated from children nodes. For example, if the input or output of an operation
or the contained elements of a type are changed, then these changes are propagated
to the parent element.

Amazon EC2, as it can be seen from the tables, followed a very distinct pattern of
evolution. The developers chose to augment a single service with new operations as
they were being developed. For this reason, we observe many additions and changes
and a complete lack of deletions. Although this policy eventually produced a rather
long WSDL file, it was also prudent in the sense that deleting an operation creates
a non-recoverable situation. In such a case a client application should be changed
and recompiled. Furthermore, we can observe a correlation between adding new
operations and adding new types. This is because in the Amazon services there is a
2-to-1 relationship between types and operations (one input type and one output type
for each operation). The changes in the types are usually because of enhancements
in previous functionality or to accommodate new functionality. In version 6, we can
observe a special case: there are small changes and deletions in types and no other
activity. Upon closer examination, it becomes clear that this change represents, in
fact, a refactoring.

The FedEx services (Rate and Package Movement) do not follow the same evo-
lution pattern. These services have a very small number of operations (1 and 2
respectively), which rarely change. On the other hand, the data types evolve vig-
orously with changes, deletions and additions of new types especially in the Rate
service. An interesting change in the Rate service occurred between versions 3 and 4.

9 WSDARWIN: Studying the Evolution of Web Service Systems 203

Table 9.1 The evolution profile of types and operations in the studied services

Service Ver Types Operations
C(%) D(%) A(%) C(%) D(%) A(%)

Amazon EC2 2 5.00 0.00 25.00 0.00 0.00 21.43
Amazon EC2 3 1.33 0.00 8.00 0.00 0.00 11.76
Amazon EC2 4 2.47 0.00 0.00 0.00 0.00 0.00
Amazon EC2 5 7.41 0.00 7.41 0.00 0.00 5.26
Amazon EC2 6 2.30 2.30 0.00 0.00 0.00 0.00
Amazon EC2 7 4.71 0.00 30.59 0.00 0.00 30.00
Amazon EC2 8 0.00 0.00 23.42 0.00 0.00 30.77
Amazon EC2 9 26.28 0.00 10.22 2.94 0.00 8.82
Amazon EC2 10 0.66 0.00 3.97 2.70 0.00 2.70
Amazon EC2 11 0.00 0.00 8.92 0.00 0.00 7.89
Amazon EC2 12 1.17 0.00 4.68 0.00 0.00 4.88
Amazon EC2 13 1.68 0.00 44.69 0.00 0.00 51.16
Amazon EC2 14 1.54 0.00 5.02 0.00 0.00 4.62
Amazon EC2 15 5.88 0.00 8.82 0.00 0.00 8.82
Amazon EC2 16 0.34 0.00 10.14 0.00 0.00 9.46
Amazon EC2 17 1.53 0.00 7.36 0.00 0.00 7.41
Amazon EC2 18 12.00 0.00 4.57 0.00 0.00 4.60
FedEx Rate 2 26.32 1.32 11.84 0.00 0.00 0.00
FedEx Rate 3 14.29 0.00 9.52 0.00 0.00 0.00
FedEx Rate 4 25.00 8.70 47.83 0.00 0.00 100.00
FedEx Rate 5 9.38 0.78 4.69 50.00 50.00 0.00
FedEx Rate 6 10.53 3.01 39.85 0.00 0.00 0.00
FedEx Rate 7 15.38 2.75 15.93 0.00 0.00 0.00
FedEx Rate 8 8.25 0.97 11.17 0.00 0.00 0.00
FedEx Rate 9 18.06 0.44 0.44 0.00 0.00 0.00
Bing 2.1 11.29 0.00 14.81 0.00 0.00 0.00
Bing 2.2 7.35 1.61 11.29 0.00 0.00 0.00
Bing 2.3 2.94 0.00 0.00 0.00 0.00 0.00
Bing 2.4 1.43 0.00 2.94 0.00 0.00 0.00
PayPal 53.0 12.35 0.00 107.69 0.00 0.00 110.53
PayPal 62.0 7.07 0.00 22.22 0.00 0.00 20.00
PayPal 65.1 1.82 0.00 11.11 0.00 0.00 10.42
FedEx Pack. 3 10.00 0.00 0.00 0.00 0.00 0.00
FedEx Pack. 4 5.00 0.00 0.00 0.00 0.00 0.00

Until version 3 the service offered a single operation named getRate. In version 3,
a second operation, named rateAvailableServices, was introduced. In ver-
sion 4, however, the new operation was promptly deleted, getRate was renamed
to getRates, and based on the reorganization of the types, it appears that the
responsibilities of the deleted operation were merged into the original one.

Bing and PayPal have both had a relatively short lifecycle but still exhibit inter-
esting differences between them. Bing’s history has been relatively stable, with few
modifications given also the small number of elements in its WSDL specification

204 M. Fokaefs and E. Stroulia

(1 operation and between 54 and 70 types). PayPal, on the other hand, follows an
expansion pattern similar to the one Amazon follows; it is consistently enhanced
with new operations. The great increase observed in Fig.9.2a in the number of oper-
ations between the first two examined versions of PayPal is because there are a lot
of intermediate versions for which we have no data.

(a) 1c0

9 Q0

° 80

- 70

n

; o == Amazon
8‘ ig —8— Rate
(P 3 =8 Bing
; 22 —d— PackageMovement

= e ——— payPal
10
0 +o—w—D—o—0—8—0—0—9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Examined Versions

(b) 400
350
300
250
200
150
1c0

50

of Types

il Bing

== PackageMovement

i PyPal

1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18
Examined Versions

Fig. 9.2 The evolution of the examined services. a Evolution of number of operations. b Evolution
of number of types

Figures9.2a, b show the evolution of the operations and types of the examined
services. An interesting observation from these figures concerns the Amazon service,
where we can see that the particular service seems to have three distinct phases: the
first is from version 1 to version 6, the second is from 7 to 12 and the third from 13
to 18. These phases are the result of the business decisions that have been described
in [6].

9.2.2 Classification of Service Changes

Based on the discussion about specific changes that happened in the web services we
examined in [6], we propose a classification of these changes based on their impact
on client applications. Because of the distributed nature of service systems, clients

9 WSDARWIN: Studying the Evolution of Web Service Systems 205

usually have very little information to understand the changes in web services and
contemplate their impact on their applications. Therefore, accurately recognizing
and characterizing service changes will facilitate clients reason about these changes
and systematically build adapters for their applications. We distinguish three types
of changes with respect to their impact on clients.

1. No-effect changes do not impact the client at all. The client functionality is not
disrupted and neither is the interface, which practically means that the client can
still operate using the old stub. Changes in this category include adding new
types (as long as these types are not used by existing operations) and adding new
operations (assuming that the semantics of the service are preserved and there are
no interdependencies between the new and the old operations).

2. Adaptable changes affect the interface of the client, but the functionality of the
service remains the same. These changes, from the point of view of the provider,
usually correspond to refactorings on the source code of the service. In other
words, they are changes meant to improve the design of the service and leave
the functionality unaffected. They can be easily addressed by generating a new
stub and changing the old stub, still used by the client application, to invoke the
new one and thus the evolved service [7]. This way we avoid changing the client
code by modifying only autogenerated code. Changes in this category include
refactorings, renaming and changing input or output for an operation (assuming
that the new input or output are existing types and not new ones).

3. Non-recoverable changes imply that the functionality of the service is affected, in
a way that the client breaks and we cannot address the issue without changing and
recompiling the client code. In some cases, the change is so subtle as not to affect
the interface of the client. In other words, the client still works but the results
produced are not the desired ones. The problem in this case can be identified
by means of unit and regression testing. Removing elements from the service
interface (without replacing them) is a non-recoverable change.

Even after the identification of detailed changes between versions of the service
interface and the classification of these changes, the adaptation of client applications
may still not be plausible. Even in the first two categories, functionality may be
affected and this impact may seem invisible or easily addressable by examining just
the service interface. For this reason, testing of the adapted client application may
still be needed and additional (manual) effort may be required.

9.2.3 Implications of the Empirical Study

Apart from drawing conclusions for the evolution of web service interfaces, including
evolution patterns, lifecycles, good and bad practices, through the empirical studies
we identified types of simple or more complex, but definitely recurring, changes.
These examples, along with ones drawn from our experience in designing and devel-
oping software systems, have been used to design the comparison component of

206 M. Fokaefs and E. Stroulia

WSDARWIN. The study has shown us what kind of changes to expect and the instances
of these changes in commercial web services have helped us to understand how we
can automatically identify such changes.

On the other hand, the classification of service changes primarily contributes to
the adaptation and generally the evolution of client applications. In a recent work
[7], we propose an adaptation algorithm that automatically adapts client applications
to adaptable changes of the service interface. The knowledge of what category the
change belongs to, can help us identify whether automatic adaptation can be applied.
The classification can also improve the comparison method. For instance, in case
of refactorings, these types of changes have very specific mechanics (see the work
by Fowler [8]), which can be translated to comparison rules in WSDARWIN, thus
expanding the system’s capabilities to identify a greater variety of changes.

9.3 WSDARWIN

In order to be able to systematically adapt client applications to the changes of the
web services on which they rely, we, first, should be able to accurately recognize the
changes a web service undergoes. In developing a web-service differencing algo-
rithm, one should consider two quality properties: (a) the efficiency and scalability
of the algorithmic process, and (b) the understandability of the output it produces.
The process has to be efficient and scalable because service-interface descriptions
can be quite lengthy and complex, as they may contain many and complex types
and numerous operations. On the other hand, as the differencing process is usually
preformed in service of another task, such as adaptation for example, its output has
to be understandable by the developers and it also has to be designed to be easily
consumed by any downstream automated process.

In the WSDARWIN comparison method, we ensure efficiency by using a concise,
domain-specific model to represent the relevant information of a service interface.
The model captures the most important information of a service’s elements such as
names, types, their structure and the relationships with each other, thus, providing a
simpler, more lightweight syntactic representation of the service representation than
either WSDL or WADL. In addition, the algorithm employs certain heuristics on
name comparisons to further improve the efficiency. The rationale underlying these
heuristics is that within the same service (even between versions) names are unique
and can therefore be treated as IDs. The use of the same name for different elements
is not likely (and in many cases it is not allowed). For this reason, it only makes
sense to compare strings using exact matching and not partial matching techniques
such string-edit distance. Furthermore, instead of comparing named XML nodes like
VTRACKER, WSDARWIN compares model entities based on their specific type (e.g.
operations with operations, complexTypes with complexTypes etc.). This way it is
not necessary to compare all elements against each other, thus avoiding false results
due to fuzzy mapping and gaining further efficiency improvement over VTRACKER.

9 WSDARWIN: Studying the Evolution of Web Service Systems 207

WSDARWIN’s output follows the model shown in Fig.9.3.% Figure9.3a shows
the model used to represent WSDL service interfaces. The operations, which are
the invocation points between the provided service and the client application,
have input and output types. The type hierarchy is in accordance with the XML
Schema speciﬁcation9: PrimitiveTypes include strings, integers, boolean etc.;
SimpleTypes are based on certain restrictions on their values (e.g. enumerations);
ComplexTypes are composed of other types. The model omits elements that add
no further structural information for the clients, such as messages and high level
elements from the schema, which only serve as references. Therefore, only the
elements to which these references point were eventually included in the model.

Figure 9.3b corresponds to the WADL interface model. The element resources
contains a set of resource elements, which in turn contain methods and these
have requests and responses. Requests consist of a set of parameters and
the responses, which are usually returned as a file of structured data such as XML or
JSON, refer to elements in an XML schema file. The IType hierarchy is the same as
in the WSDL model.

In both these models, the containment relationships (denoted by the black dia-
monds) indicate parent-child relationships between element types. For example, an
operation in WSDL has two children: an input type and an output type. The children
elements together represent the structure of a WS element. Structural information
can be used to uniquely identify elements. If two elements across two web-service
specifications have the same children, then there is high confidence that they are one
and the same element.

Figures 9.4a, b' show examples of the instantiation of the WSDL and WADL
models for the Amazon EC2 and the Unicorn validator, respectively. The figures
clearly demonstrate the structure of elements, implemented by the parent-children
relationship between WS elements as defined in the interface models.

Figure 9.3c models the changes. We can have different types of deltas including
changes, additions, deletions, moves and moves and changes. The two hierarchies
are connected through the Bridge design pattern [9] and their relationship is that each
delta has a source WS element and a target WS element.

The interface models define the structure and the vocabulary of the diff scripts
produced by WSDARWIN; the Delta model defines the annotations for each mapping
reported in these scripts. Designing WSDARWIN in this manner, we have striven for a
balance of specificity to the syntax of the compared specification (WSDL vs. WADL)
and generality in the definition of the changes the interfaces go through. This design,
we believe, makes the output clear to web-service system developers and enables
them to understand and better reason about the changes in the services. Furthermore,
the output is designed with consideration to a downstream automated adaptation
process, since it provides a full mapping between the elements and the type of every
change so that the process can assess its impact on the client application.

8 The diagrams were designed using the Eclipse EMF toolkit.
9 http://www.w3.org/XML/Schema
10 The figures were generated by the Eclipse EMF toolkit.

http://www.w3.org/XML/Schema

208 M. Fokaefs and E. Stroulia

ut
['® ddfwselement : Delts ot 3 —e—l
H simpleType
= name : EString | Bprmtvetype | [H Complextype |
S restrictionBase : EString = name : EString = name : EString
© enumerations : EEList = variableName : EString = variableMame : EString
® diff(wsElement) : Delta ® diff(wSElement) : Delta ® diff(wsElement) : Delta

(b) E simpleType B primitiveType |
= gnumerations : EEList = pame : EString = name : EString
= name : EString = variableMame : EString | = variableName :
= restrictionBase : EString @ diff(wsElement) : Delta ® di

® diff : Delta

o+ elements

1 element
H Resources { __E Representation
= base ; EString o iaType : EString
® diff(WsElement) : Delta ® diff(wSElement) : Delta
0.0 FEOvTCes o
Resource B B Method
= path : EString 05 I'='id: estring
@ difffwsElement) : Delta = name : EString
@ diff(WsElement) : WSElement

0. E param

Option
= value : EStri

= required : EBoolean
@ diff(wsElement) : Delta

= changedattribute : EString
= gldValue : EString
= newValue : EString

P WSDLEIemq WADLEleme

L 1 L |

Fig. 9.3 The WSDARWIN comparison framework. a The WSDL service interface model. b The
WADL service interface model. ¢ The WSDARWIN delta model

9 WSDARWIN: Studying the Evolution of Web Service Systems 209

(a) 4 B pitfomuresowresSenicetvomtionmodeiamuzonseni () 4 [pltfoms/resourcesSeniceEvoluion/modeliunicomay
4 < Operation Runinstances 4 < Resources http://qa-dev.w3.0rg:8001/css-validator/
4 4 Complex Type RuninstancesType 4 < Resource validator
4 4 Complex Type RunlnstancesinfoType 4 4 Methed CssValidationUri
4 4 Complex Type RuninstanceltemType 4 4 Request
< Primitive Type imageld:=xs:string & Param uri
4 Primitive Type minCount:=xs:int 4 4 Param warning
4 Primitive Type maxCount:=xsint 4 Option no
<% Primitive Type keyM ing 4 Option0
4 4 Complex Type GroupSetType 4 Optionl
4 4 Complex Type GroupSetType 4 Option 2
< Primitive Type groupld:=xs:string 4 < Param profile
< Primitive Type additionallnf string 4 Option essl
4 4 Complex Type UserDataType 4 Option css2
< Primitive Type data:=xs:string 4 Option ess21
4 Primitive Type version: 4 Option css3
4 Primitive Type encoding:=xs:string 4 Option svg
4 4 Complex Type ReservationInfoType 4 Option svgbasic
<% Primitive Type reservationld:=xs:string < Option svgtiny
4 Primitive Type ewnerld:=xs:string 4 Option mobile
4 4 Complex Type GroupSetType 4 Option atsc-tv
4 Primitive Type groupld: g <4 Optiontv
4 4 Complex Type RunninglnstancesSetType 4 Param usermedium
4 4 Complex Type RunninglnstancesitemType < Param lang
4 Primitive Type instanceld:=xs:string &+ Param output
4 Primitive Type imageld:=xs:string 4 4 Method CssValidationText
4 4 Complex Type InstanceStateType 4 < Request
< Primitive Type code:=xsiint > Param text
<4 Primitive Type name:=xs:string 4 < Paramwarning
4 Primitive Type dnsMame:=xs:string 4 Option no
4 Primitive Type reason:=xs:string 4 Option0
< Primitive Type keyName:=xs:string 4 Option1
4 Primitive Type amilaunchindec=xs:string 4 Option 2

& Param profile

+ Param usermedium
& Param lang

4 Param output

Fig. 9.4 Snippets of WSDL and WADL instances of the WSDARWINinterface models. a Amazon
EC2. b W3C Unicorn CSS validator

Let us now review WSDARWIN in some detail. For each version v to be examined,
WSDARWIN extracts E,, the set of elements in the specification of the v version of
the service. This set contains tuples (id, t, a, s) where id is the identifying attribute
of the element (usually the name), ¢ is the type of the element, a is the set of its
attributes and s is the structure of the element.

In the context of the WSDARWIN comparison, the ID or the structure can uniquely
identify an element. Therefore, if two elements, belonging in two different versions,
share at least one of these two properties (ID and structure), then WSDARWIN con-
siders them to be two versions of the same element. Since web service interfaces are
artifacts generated by source code, they also follow the programming conventions
of the underlying programming language. In principle, two entities in the same file
cannot have the same name, or a compilation error occurs. Therefore, we can safely
assume that the name of an entity is its unique identifier. On the other hand, we
also consider structure to be a unique identifier so as to be able to identify cases
of renaming. In the rare case, where the new version contains two elements, one
with the same name as the old entity and the other with the old entity’s structure but

210 M. Fokaefs and E. Stroulia

different name, WSDARWIN might get confused, but the diff script exactly the same
set of edit operation: one addition and one change.

Note that the set £, contains elements of all types across the WSDL and WADL
specification syntaxes. For every element in a specific version of the web-service
e € E,, WSDARWIN identifies

e A,: The set of attributes, other than the ID, and

e S.: The structure of the element, if it is a complex element. Note that, as we
mentioned above, the structure refers to the children of complex elements such as
input and output types for operations and elements for complex types.

Finally, for each comparison A, between two versions vy, vy € V, where V is
the set of versions of a web-service specification to be analyzed, we determine the
added and deleted matched elements by using the symbols “+” and “—” respectively.
Therefore, E Z is the set of elements that were added. We also use the symbol “#” to
denote mapped elements, e.g. EZ.

WSDARWINrelies on a set of rules to map and differentiate the elements between
different versions of the service interfaces. Table 9.2 summarizes the rules we use to
compare service interfaces.

Table 9.2 The definition of rules used by WSDarwin for the comparison of web service interfaces

Name of comparison rule Rule

1 Exact matching Vae, € Ae;,Vae, € Ae, : ae, literal = a,.literal

2 Mapping Jdej, ez € Ez ce1.t = eyt and (ey.id = ep.id or ey.s = e3.5)
3 Changed 3Gidi, 1i, a;, 5;) € EX and 3(id}, 1}, d, s)) € E}

4 Propagated change A(id;, t;, a;, s;) € Ei and 3(id;, t;, aj s}) € Ei

5 Matched A@d;, ti, ai, si) GEZ and 3(id;, tj, aj, s;) € Ei

6 Added ey, ¢ EX

7 Deleted ey, ¢ EX

8 Changed (Renamed) 3@d;, ti, a;i, si) € E, and Gd’, tj,aj,s;) € EZ

9 Moved A3id;, ti, ai, s;) € Ey and 3(id;, tj,a;,s;) € Ef

10 Moved and Changed 3(id;, t;, ai, i) € E, and El(id;, 1, a//, s;) IS EZ

1. The first rule is the exact matching rule. In case of simple attributes (such as the
element’s ID and attributes belonging in the A, set of the element), two attribute
values are the same if and only if they have the same literal. In case of structure
(i.e., the set of children of an element), two elements are considered structurally
equal if and only if all their children are equal. Children equality is determined
in an iterative manner.

2. The second rule states that two elements are “mapped” to each other, i.e., they
are considered the same element across the two interface versions, if their type
and at least one of their identifying properties, i.e., ID and structure, match. It is
important to note that two mapped elements are not necessarily matched. There
can still exist differences in which case a Change Delta is reported. On the other
hand, matched elements are always mapped.

9

10.

WSDARWIN: Studying the Evolution of Web Service Systems 211

An element is considered “changed” if its ID was found in both versions but
some of the values of its other attributes differ across the two versions.

If there is a change in the structure of the element (i.e., its children have changed),
the element itself is considered “changed” even if none of the attributes of the
parent element have changed. This is because the adaptation process starts from
the root element of a service request which is considered to be the operation.
Therefore, if some part of its input or its output is affected the operation is still
considered affected.

. If two elements are mapped and no differences are identified, they are labeled as

“matched”. The need to retain matched elements in the final comparison script
is because an automated adaptation process needs a full mapping between the
two versions.

An “addition” is identified if an element’s name (its ID) that did not exist in the
old version, but it was not found in the new version.

Correspondingly, a “deletion” is identified if an element’s name existed in the
old version, but it was not found in the new version.

. Inasecond phase, the additions and deletions are reexamined to recognize poten-

tial changes in the element IDs or moves. If an element is identified as deleted
from the old version and another element as added in the new version and the
two elements have identical structure but differ with respect to their IDs then
these elements are labeled as “changed (renamed)”.

. In a similar scenario, where elements are mapped between the deleted and added

sets, these elements are marked as “moved”. The reason they couldn’t be identi-
fied in the first run of the comparison is because the process follows the structure
of the service interface and elements are compared only in the context of their par-
ents. Legitimate moves in a WSDL interface include primitive types being moved
between complex types. Another also legal, but less probable, move can occur
when two operations exchange their input or output types. In WADL, where the
structure is more complicated, we can have resource elements being moved
between resources elements and methods being moved between resource
elements. Moves involving data types are also possible in this syntax.

If the moved elements also differ in their structures or their IDs, they are labeled
as “moved and changed”. If they differ with respect to both structure and ID,
then they are considered different elements and are report as an addition and a
deletion.

Based on the model and using the rules, in the first phase, the differencing method

performs pairwise comparisons between the elements of the service interfaces start-
ing from the more complex ones, such as the WSDL or WADL files themselves, and
going down the hierarchy of the service elements as shown by Algorithm 1. First, the
algorithm reports any changes in the attributes of the element (using the 3rd rule) or
in the ID of the element (using the 8th rule) (steps 1-4). Second, the children of the
compared elements are mapped according to the 2nd rule (step 7). Those that were
not mapped are considered added, according to the 6th rule, or deleted, according to
the 7th rule (step 8). If a complex element is added or deleted all of its children are

212 M. Fokaefs and E. Stroulia

Algorithm 1 diff(e;, e;) WSDARWIN service interface comparator

1: Compare the attributes of the two elements.

2: if Changes are detected then

3: SetElementDelta to ChangeDelta (e, ep)

4: end if

5: for all ¢; € Children(ey) do

6: forall ¢y € Children(ey) do

7. if —Mapped(cy, cp) then

8: Add DeleteDelta (c¢;) OR AddDelta (¢p) to ElementDelta
9: for all cc; € Children(cy) do

10: Add DeleteDelta (ccy) to DeleteDelta (cg)

11: end for

12: for all ccr € Children(cy) do

13: Add AddDelta (ccp) to AddDelta (¢p)

14: end for

15: else

16: Call diff(cy, ¢p)

17: Add result to ElementDelta

18: if The result contains only MatchDeltas AND ElementDelta != null then
19: Set ElementDelta to MatchDelta (e, ep)

20: else

21: //Change propagated.

22: Augment ElementDelta with ChangeDelta (e, ep)
23: end if

24: end if

25: end for

26: end for

Algorithm 2 findMoveDeltas(Delza)

1: for all AddDelta (ey) AND DeleteDelta (e) € Deltado
if Mapped(e;, ep) then
if Changed(eq, e>) then
Create MoveAndChangeDelta (e, e7)
Replace DeleteDelta (e1) with MoveAndChangeDelta (eq,ep)
else
Create MoveDelta (e, ep)
Replace DeleteDelta (e1) with MoveDelta (e, es)
end if
10: endif
11: end for

VRN RWN

also added or deleted to acquire a full mapping between the two versions (steps 9—
14). The elements that were mapped are then compared (step 16). The comparisons
continue this way until they reach simple elements, such as XSD elements or WADL
param elements, which are only compared based on their attributes since they have
no children and the comparison result is returned to the parent. In the final step,
the algorithm checks if the children of the compared elements and the children of
their children are matched according to the 5th rule, then the compared elements are
matched as well (step 19). Otherwise, a change is propagated to the parent according
to the 4th rule (step 22). In a second phase shown by Algorithm 2, WSDARWIN tries
to identify moved elements among the added and the deleted ones. In the first phase,
additions and deletions are identified within the scope of an element. In the second
phase, the hierarchy is collapsed and additions and deletions are reexamined to detect
moves based on the 9th and the 10th rule.

9 WSDARWIN: Studying the Evolution of Web Service Systems 213

9.3.1 WSDARWIN Versus VTRACKER

VTRACKER, the first method we used for web-service differencing, is a generic
domain-agnostic differencing algorithm that can be used to compare heteroge-
neous interfaces, i.e., interfaces described in different schemas. In other words,
VTRACKER can be used to compare any pair of XML documents. For this reason,
this method uses fuzzy mapping and partial matching. For the former option, since
we don’t always know a mapping between the elements of the two interfaces, the
algorithm compares all elements with each other (regardless of their type) and estab-
lishes a mapping based on their structural similarity. As far as the partial matching
is concerned, the algorithm uses the notion of distance to compare elements with
each other. Then, using a stable marriage algorithm it matches the elements with the
lowest edit distance. VTRACKER can be configured to include information about the
specific XML syntax used by the files to be compared. In our previous study [6],
we configured VTRACKER to work with WSDL interfaces. In the end, the output
produced by the algorithm is a text-like document containing the appropriate XML
edit operations to go from the first file to the second.

WSDARWIN, on the other hand, is a comparison method tailored to the web-
service domain and it is developed from the beginning with knowledge about the
structure of the interfaces, thus improving on quality properties such scalability and
understandability. Fuzzy mapping can cause problems in the case of elements of
different types named in a similar manner if they correspond to the same concept.
In the case of web services, the convention is to name operations and their input
and output types similarly to denote their relationship. Fuzzy mapping and partial
matching also contribute to decreased efficiency and accuracy: when the algorithm
considers a variety of increasingly relaxed methods for establishing correspondence
between two elements, then it has to perform more computations (resulting to ineffi-
ciency) and it risks establishing correspondence on more “risky” grounds (resulting
to inaccuracy). WSDARWIN takes advantage of the fact that web services share a com-
mon palette of elements, regardless of their syntax, namely data and functionality. In
other words, this method is domain-specific, but technology-agnostic. Furthermore,
having a priori knowledge, it compares elements according to their types and taking
advantage of naming conventions, it uses exact matching to compare literals. Finally,
the output of WSDARWIN is based on the Deltas and follows the structure of the ser-
vice interface, which makes it not only understandable but also easily consumable
by automated adaptation techniques. Table 9.3 summarizes the comparison between
VTRACKER and WSDARWIN.

Figure 9.5 shows the execution time of VTRACKER and WSDARWIN with respect
to the size of the compared service interfaces. Time measurements were performed in
a machine with an Inter Core 2 Duo 1.87 GHz CPU, 3 GB RAM and 64-bit operating
system. This figure clearly demonstrates the scalability of WSDARWIN even in the
presence of large services. VITRACKER approximates an exponential execution time
while WSDARWIN’s is linear. Apart from the fuzzy mapping and partial matching,
another factor that contributes to VTRACKER’s large execution time is the fact that

214

M. Fokaefs and E. Stroulia

Table 9.3 Comparison between VTRACKER and WSDARWIN

VTRACKER

WSDARWIN

Domain-agnostic
Technology-specific
Heterogeneous comparisons
— Can be applied on any XML-like file
Less efficient
— Fuzzy mapping
— Partial matching
Free text output
— XML edit operations

Domain-specific
Technology-agnostic
Homogeneous comparisons
— Can be applied only on the WS domain
More efficient
— Mapping according to type, structure and identifier
— Exact matching (same literal)
Structured output
— Deltas

— Directly consumable by CASE tools

when comparing the structure of an element, the method has to resolve and compare
references and this resolution takes place for each reference. WSDARWIN, on the
other hand, resolves references only once during the parsing of the service interface
and replaces the references with containment relationship, so the method avoids the
time to seek for the element corresponding to a reference every time it encounters
one.

600000
— WSDanwin <
500000 +
== == Vtracker !
400000 +

300000 '

Time in ms

200000 v

100000 e

o Z
0 500 1000 1500 2000 2500 3000

Size of service interface (number of XML nodes)

Fig. 9.5 Comparison between WSDARWIN and VTRACKER in terms of their execution time

9.3.2 Applying WSDARWIN on the Comparison of Service
Interfaces

In this section, we demonstrate with examples how the WSDARWIN differencing
method can be used to compare different versions of service interfaces. We applied
the method on Amazon EC2, which has a WSDL-based interface, and Unicorn,
which has a WADL-based interface. We chose these examples to show that given

9 WSDARWIN: Studying the Evolution of Web Service Systems 215

(a)

1. ChangeOperation RunInstances -> RunInstances

2. Change ComplexType:RunInstancesType -> :RunInstancesType

3. Add PrimitiveType -> instanceType:string

4. Add PrimitiveType -> imageId:string

5. Add PrimitiveType -> keyName:string

6. Add PrimitiveType -> minCount:int

7. Add PrimitiveType -> maxCount:int

8. Delete ComplexTypeinstancesSet:RunInstancesInfoType ->

9. Delete PrimitiveType keyName:string ->

10. Delete PrimitiveType imageId:string ->

11. Delete PrimitiveType minCount:int ->

12. Delete PrimitiveType maxCount:int ->

13. Match PrimitiveType addressingType:string -> addressingType:string

14. Match ComplexTypegroupSet:GroupSetType -> groupSet:GroupSetType

15. Match ComplexTypeitem:GroupItemType -> item:GroupItemType

16. Match PrimitiveType groupId:string -> groupId:string

17. Match ComplexTypeuserData:UserDataType -> userData:UserDataType

18. Match PrimitiveType data:string -> data:string

19. Match PrimitiveType additionalInfo:string -> additionalInfo:string

(b)

1. Change Operation RunInstances -> RunInstances

2. Change ComplexType :RunInstancesType -> :RunInstancesType

3. Add PrimitiveType -> instanceType:string

4. Add PrimitiveType -> imageld:string

5. Add PrimitiveType -> keyName:string

6. Add PrimitiveType -> minCount:int

7. Add PrimitiveType -> maxCount:int

8. Delete ComplexType instancesSet:RunInstancesInfoType ->

9. Move PrimitiveType keyName:string
instancesSet:RunInstancesInfoType ->:RunInstancesType

10. Move PrimitiveType imageld:string
instancesSet:RunInstancesInfoType ->:RunInstancesType

11. Move PrimitiveType minCount:int
instancesSet:RunInstancesInfoType ->:RunInstancesType

12. Move PrimitiveType maxCount:int
instancesSet:RunInstancesInfoType ->:RunInstancesType

13. Match PrimitiveType addressingType:string -> addressingType:string

14. Match ComplexType groupSet:GroupSetType -> groupSet:GroupSetType

15. Match ComplexType item:GroupItemType -> item:GroupItemType

16. Match PrimitiveType groupld:string -> groupIld:string

17. Match ComplexType userData:UserDataType -> userData:UserDataType

18. Match PrimitiveType data:string -> data:string

19. Match PrimitiveType additionallInfo:string -> additionallInfo:string

Fig. 9.6 Snippet of the diff script between two versions of the Amazon EC2 service. a Diff script
without the detection of move operations. b Diff script with the detection of move operations

the proper model to represent the service interface, the comparison method, which
is based on the delta model, can be applied to compare the interfaces regardless of
their underlying specification technology.

Figure 9.6 shows a snippet of the output of WSDARWIN for the Amazon EC2
service. The diff script follows the hierarchy of the WSDL interface starting with the
operations and then their input and output types. Each line is prefixed with the type of
the edit operation performed for each element. The detection of move operations is

216 M. Fokaefs and E. Stroulia

activated for the scriptin Fig. 9.6a, and deactivated for the script reported in Fig. 9.6b.
Comparing the two figures, we observe that the move operations are first perceived as
additions and deletions, in the first phase of the comparison algorithm. In the second
phase, the deletions are replaced by move operations but the additions are kept in the
diff script.

In this example, we have a case of an “Inline Type” refactoring as described in our
previous work [6]. As it can be seen from the figure, such a refactoring occurs when
a type (RunInstancesInfoType), which is nested into another complex type
(RunInstancesType, is deleted from the service and its constituent elements
are all added in the parent type. By identifying the edit operations as moves and
not as actual deletions, we can characterize this change as adaptable according to
our classification. This is because the data exists in both versions but is “packaged”
differently.

Also, edit operations of children elements are propagated as changes to the parent
element. This is so that the adaptation process knows as early as possible which are
the operations that are affected, since these are the contact elements between the
service interface and client applications. For example, as it can be seen in the figure,
because of the changes (additions and deletions) in the input of the RunInstances
operation, these changes affect the operation which is marked as changed, despite
not being directly changed.

1. Change WADLFile files/unicorn/css-validator/css-validatorvl.wadl
1 -» files/unicorn/css-validator/css-validatorV8.wadl
3. Change Resources http://jigsaw.w3.org/css-validator/
-» http://qa-dev.w3.org:8001/css-validator/
@base http://jigsaw.w3.org/css-validator/
-> http://qa-dev.w3.org:86@1/css-validator/

4 Change Resource validator -»> validator

5. Match Method CssValidationUri (GET) -»> CssValidationUri (GET)

6. Match Request Request -> Request

7 Match Param usermedium -> usermedium

8 Match Param output -> output

9. Match Param uri -> uri

18. Match Param lang -> lang

11. Match Param warning -> warning

12. Match Param profile -» profile

13. Change Method CssValidationText (POST) -» CssValidationText (GET)
@name POST -» GET

14. Match Request Request -> Request

15. Match Param text -> text

16. Match Param usermedium -> usermedium

17. Match Param output -> output

18. Match Param lang -> lang

19, Match Param warning -> warning

2. Match Param profile -»> profile

21. Match Method CssValidationFile (POST) -»> CssValidationFile (POST)

22, Match Request Request -> Request

23. Match Param file -> file

24, Match Param usermedium -> usermedium

25, Match Param output -> output

26. Match Param lang -> lang

Fig. 9.7 The diff script between two versions of the WADL-based CSS validator of Unicorn

9 WSDARWIN: Studying the Evolution of Web Service Systems 217

Figure 9.7 shows the output of WSDARWIN for the CSS validator service of Uni-
corn. The only major difference between the Unicorn and the Amazon diff scripts
is that the former follows the WADL hierarchy. The edit operations are reported in
exactly the same manner based on the delta model. In this case, we also have an
instance of an attribute change (line 13). These changes are reported by identifying
which attribute was changed (in this case attribute “name” of method “CssValida-
tionText”) prefixed by the symbol “@” for attribute, along with its old value and
its new value. An attribute change subsumes a propagated change, since both edit
operations mark the element as affected. For this reason, we do not need an additional
type delta for either edit operation.

As we have already mentioned, while the structure and the vocabulary of the diff
script are dictated by the underlying syntax model, the Deltas are used as annotations.
This demonstrates and emphasizes the fact that WSDARWIN is technology-agnostic;
regardless of the syntax model, the Delta language can be applied to provide the
comparison context of the diff script.

9.4 Related Work

Our work relates to differencing, WSDARWIN’s contribution, and service evolution,
the substance of our empirical study.

9.4.1 Model- and Tree-Differencing Techniques

Fluri et al. [5] proposed a tree-differencing algorithm for fine-grained source code
change extraction. Their algorithm takes as input two abstract syntax trees and
extracts the changes by finding a match between the nodes of the compared trees.
Moreover, it produces a minimum edit script that can transform one tree into the
other given the computed matching. The proposed algorithm uses the bi-gram string
similarity to match source code statements (such as method invocations, condition
statements, and so forth) and the sub-tree similarity of Chawathe et al. [3] to match
source code structures (such as if statements or loops). The method also uses names
and types as IDs to map elements and can identify primarily changes, additions,
deletions and moves for different types of elements.

Kelter et al. [10] proposed a generic algorithm for computing differences between
UML models encoded as XMI files. The algorithm first tries to detect matches in
a bottom-up phase by initially comparing the leaf elements and subsequently their
parents in a recursive manner until a match is detected at some level. When detecting
such a match, the algorithm switches into a top-down phase that propagates the last
match to all child elements of the matched elements in order to deduce their differ-
ences. The algorithm reports four different types of differences, namely structural
(denoting the insertion or deletion of elements), attribute (denoting elements that

218 M. Fokaefs and E. Stroulia

differ in their attributes’ values), reference (denoting elements whose references are
different in the two models) and move (denoting the move of an element to another
parent element). Although the method does not use IDs to map elements, they are
necessary to identify moves. For this reason, custom ones are constructed using the
name of the element and its path along the XMI tree.

Xing and Stroulia [15] proposed the UMLDiff algorithm for automatically detect-
ing structural changes between the designs of subsequent versions of object-oriented
software. The algorithm produces as output a tree of structural changes that reports
the differences between the two design versions in terms of additions, removals,
moves, renamings of packages, classes, interfaces, fields and methods, changes to
their attributes, and changes of the dependencies among these entities. UMLDiff
employs two heuristics (i.e., name-similarity and structure-similarity) for recogniz-
ing the conceptually same entities in the two compared system versions. These two
heuristics enable UMLDAIff to recognize that two entities are the same even after they
have been renamed and/or moved. The UMLDIff algorithm has been employed for
detecting refactorings performed during the evolution of object-oriented software
systems, based on UMLDiIff change-facts queries [16].

Recently, Xing [14] proposed a general framework for model comparison, named
GenericDiff. While it is domain independent, it is aware of domain-specific model
properties and syntax by separating the specification of domain-specific inputs from
the generic graph matching process and by making use of two data structures (i.e.,
typed attributed graph and pair-up graph) to encode the domain-specific properties
and syntax so that they can be uniformly exploited in the generic matching process.
Unlike the aforementioned approaches that examine only immediate common neigh-
bors, GenericDiff employs a random walk on the pair-up graph to spread the corre-
spondence value (i.e., a measurement of the quality of the match it represents) in the
graph.

In our previous work [6], we adopted VTRACKER to recognize the differences
between two versions of a web-service interface. VTRACKER is designed to compare
and recognize the similarities and differences between XML documents, based on
the Zhang-Shasha tree-edit distance [17] algorithm.

WSDARWIN is tailored around a very specific domain, that of web services. There-
fore, a lot of domain-specific information and characteristics are imbued in the com-
parison method. However, we do borrow some fundamental differencing techniques
from the works described in this section. For example, many methods employ the
concept of a model to describe the compared artifacts. In fact, the underlying model
is the one that will determine the accuracy and the efficiency of the comparison
method. Second, the use of identifiers for mapping compared elements is a widely
used technique, also present in the VTRACKER algorithm. Finally, the propagation of
changes as described in WSDARWIN, is a similar technique as the top-down/bottom-
up approach used by Kelter et al.

Table 9.4 positions WSDARWIN among the aforementioned works with respect to
whether they are generic or domain-specific, what kind of edit operations they can
identify (Change, Addition, Deletion, Move, compleX changes), if they employ IDs

9 WSDARWIN: Studying the Evolution of Web Service Systems 219

Table 9.4 Comparison between differencing techniques

Method Type Edit Operations IDs Exact Matching Model
Kelter generic CADM) No(Yes) No UML/XMI
Fluri domain-specific CADM Yes No AST
UMLDiff domain-specific CADMX Yes No Custom/UML
GenericDiff generic CADM Yes No UML
VTRACKER generic CADM Yes No XML
WSDARWIN domain-specific CADM Yes Yes Custom/WS

for the mapping of elements, whether they use exact matching in the comparison and
finally what is the underlying model.

9.4.2 Service-Evolution Analysis

In addition to web-service (and web-service version) comparison, substantial efforts
have been dedicated to the task of web-service evolution analysis. Wang and
Capretz [13] proposed an impact-analysis model as a means to analyze the evo-
lution of dependencies among services. By constructing the intra-service relation
matrix for each service (capturing the relations among the elements of a single ser-
vice) and the inter-service relation matrix for each pair of services (capturing the
relations among the elements of two different services) it is possible to calculate the
impact effect caused by a change in a given service element. A relation exists from
element x to element y if the output elements of x are the input elements of y, or
if there is a semantic mapping or correspondence built between elements of x and
y. Finally, the intra- and inter-service relation matrices can be employed to support
service change operations, such as the addition, deletion, modification, merging and
splitting of elements.

Aversano et al. [2] proposed an approach, based on Formal Concept Analysis, to
understand how relationships between sets of services change across service evolu-
tion. To this end, their approach builds a lattice upon a context obtained from service
description or operation parameters, which helps to understand similarities between
services, inheritance relationships, and to identify common features. As the service
evolves (and thus relationships between services change) its position in the lattice
will change, thus highlighting which are the new service features, and how the rela-
tionships with other services have been changed. This approach is useful to study
the evolution of similar interchangeable services.

Ryu et al. [12] proposed a methodology for addressing the dynamic protocol
evolution problem, which is related with the migration of ongoing instances (conver-
sations) of a service from an older business protocol to a new one. To this end, they
developed a method that performs change impact analysis on ongoing instances,
based on protocol models, and classifies the active instances as migratable or

220 M. Fokaefs and E. Stroulia

non-migratable. This automatic classification plays an important role in support-
ing flexibility in service-oriented architectures, where there are large numbers of
interacting services, and it is required to dynamically adapt to the new requirements
and opportunities proposed over time.

In a similar vein, the WRABBIT project [4] proposed a middleware for wrapping
web services with agents capable of communication and reflective process execution.
Through their reflective process execution, these agents recognize run-time “conver-
sation” errors, i.e., errors that occur due to changes in the rules of how the partner
process should be composed and resolve such conversation failures.

Pasquale etal. [11] propose a configuration management method to control depen-
dencies between and changes of service artifacts including web services, application
servers, file systems and data repositories across different domains. Along with the
service artifacts, Smart Configuration Items (SCIs), which are in XML format, are
also published. The SCIs have special properties for each artifact such as host name,
id etc. Interested parties (like other application servers) can register to the SCIs and
receive notifications for changes to the respective artifact by means of ATOM feeds
and REST calls. Using a discovery mechanism the method is able to identify new,
removed or modified SCIs. If a SCI is identified as modified, then the discovery
mechanism tracks the differences between the two items and adds them as entries in
the new SCI. The changes that can be identified are delete, add, modify a property
or delete, add, modify a dependency.

Andrikopoulos et al. [1] propose a service evolution management framework.
The framework generally aims to support service providers evolve their services.
It contains an abstract technology-agnostic model to describe a service system in
its entirety, specifying all artifacts such as service interfaces, policies, compositions
etc. and divide the artifacts in public and private. This division implies that the
management framework has knowledge about the service’s back-end functionality,
which in turn means that it can be used only by the provider. The authors also propose
a classification for the changes based on the basic operations (additions, deletions
etc.) and guidelines on how to evolve, validate and conform service specifications
to older versions. Although such a management framework may lead to a smooth
evolution process, inconsistencies may still occur between services and their clients.
Therefore, support to clients is equally important.

Table9.5 summarizes the comparison between WSDARWIN and these other
projects along 3 dimensions:

e what kind of dependencies the method examines:

— inter-dependencies, requiring knowledge about different parts of the service
system;
— intra-dependencies, focusing on a particular part;

e whether the method provides any support to consumers of the service.
e what is the architectural level the method uses to study the service systems:

— business protocol level, where the method needs information about various ser-
vices in the system;

9 WSDARWIN: Studying the Evolution of Web Service Systems 221

Table 9.5 Comparison between service evolution works

Method Dependencies Client Support Level
Wang Inter Yes Protocol
Aversano Inter No Interface
WRABBIT Inter Yes Protocol
Pasquale Intra Yes Interface
Ryu Inter No Protocol
Andrikopoulos Intra No Source Code
WSDARWIN Intra Yes Interface

— interface, where the method only examines boundary artifacts, such as service
interfaces;
— source code, where the method needs back-end information.

9.5 Conclusion and Future Work

In this chapter, we introduced WSDARWIN as a comparison algorithm to support of
web-service evolution tasks. Using a set of models to represent the service interfaces
(whether this is WSDL or WADL) and to capture their differences, WSDARWIN per-
form efficient, scalable and accurate comparisons. Furthermore, the results of these
comparisons are in a structured format that can potentially be used by other tools
such as automatic client adaptation processes. The comparison method is precisely
defined by a set of rules based on the representation and delta models. The usage of
WSDARWIN was demonstrated on a WSDL and a WADL web service.

Using WSDARWIN we extended our previous empirical study on the evolution of
several families of quite widely used commercial web services: Amazon EC2, FedEx
Rate, Bing, PayPal and FedEx Package Movement Information. We examined what
types of changes occur in the interfaces of actual, commercial web services and how
these changes affect their client applications. Our main observation was that for the
most part, as expected, web services were expanded rather than being changed or
having their elements removed. This is because the addition of new features does not
impact the behavior of clients that already use the service. Furthermore, changes,
if made in a conservative manner, do not negatively impact clients much. On the
other hand, deletion of elements should be avoided, as it will likely break a client
application.

The most important result of the study was to identify a set of frequently applied
changes and classify them in three categories according to how they can be handled
by the client: no-effect, where changes don’t affect the client at all, non-recoverable,
where changes affect the functionality but cannot be addressed automatically and

222 M. Fokaefs and E. Stroulia

adaptable, where changes affect the interface of the service and the client can be
automatically adapted to these changes.

In the future, we plan to extend our comparison method in two directions. The
first direction involves identifying more complicated edit operation that consist of
the simple ones, change, add, delete and move. This will help us characterize the
changes from version to version according to our classification and easily assess their
impact on client applications. Second, having defined separate models to represent
WSDL and WADL service interfaces, we plan to merge the two into a single web
service meta-model to describe service interfaces regardless of their specification.
Since the rules and the comparison process are independent of the model, a unified
model will allow us to compare any kind of service interface, even heterogeneous
once.

Acknowledgments The authors would like to acknowledge the generous support of NSERC,
iCORE, and IBM.

References

1. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Managing the evolution of service spec-
ifications. In: CAiSE °08, pp. 359-374. Springer-Verlag, Berlin, Heidelberg (2008)

2. Aversano, L., Bruno, M., Penta, M.D., Falanga, A., Scognamiglio, R.: Visualizing the Evolution
of Web Services using Formal Concept Analysis. 8th International Workshop on Principles of
Software, Evolution pp. 57-60 (2005)

3. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change Detection in Hierarchi-
cally Structured Information. ACM Sigmod Internation Conference on Management of Data
pp- 493-504 (1996)

4. Elio, R., Stroulia, E., Blanchet, W.: Using interaction models to detect and resolve inconsis-
tencies in evolving service compositions. Web Intelli. and Agent Sys. 7(2), 139-160 (2009)

5. Fluri, B., Wiirsch, M., Pinzger, M., Gall, H.C.: Change Distilling: Tree Differencing for Fine-
Grained Source Code Change Extraction. IEEE Transactions on Software Engineering 33(11),
725-743 (2007)

6. Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., Lau, A.: An empirical study on web
service evolution. In: ICWS 2011, pp. 49-56 (2011)

7. Fokaefs, M., Stroulia, E.: Wsdarwin: Automatic web service client adaptation. In: CASCON
12 (2012)

8. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring Improving the Design
of Existing Code. Addison Wesley, Boston, MA (1999)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-
Oriented Software, 1 edn. Addison-Wesley Professional (1994)

10. Kelter, U., Wehren, J., Niere, J.: A Generic Difference Algorithm for UML Models. Software
Engineering 2005, Fachtagung des GI-Fachbereichs Softwaretechnik pp. 105-116 (2005)

11. Pasquale, L., Laredo, J., Ludwig, H., Bhattacharya, K., Wassermann, B.: Distributed cross-
domain configuration management. In: Proceedings of the 7th International Joint Conference
on Service-Oriented Computing, ICSOC-ServiceWave *09, pp. 622-636 (2009)

12. Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R.: Supporting the Dynamic
Evolution of Web Service Protocols in Service-Oriented Architectures. ACM Transactions on
the Web 2(2), 1-46 (2008)

13. Wang, S., Capretz, M.A.M.: A Dependency Impact Analysis Model for Web Services Evolution.
IEEE International Conference on Web Services pp. 359-365 (2009)

9 WSDARWIN: Studying the Evolution of Web Service Systems 223

14.

15.

16.

17.

Xing, Z.: Model Comparison with GenericDiff. 25th IEEE/ACM International Conference on,
Automated Software Engineering pp. 135-138 (2010)

Xing, Z., Stroulia, E.: Analyzing the Evolutionary History of the Logical Design of Object-
Oriented Software. IEEE Transactions on Software Engineering 31(10), 850-868 (2005)
Xing, Z., Stroulia, E.: Refactoring Detection based on UMLDiff Change-Facts Queries. 13th
Working Conference on Reverse Engineering pp. 263-274 (2006)

Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related
problems. SIAM Journal on Computing 18, 1245-1262 (1989)

Chapter 10
SCML: A Change Management Language
for Adaptive Long Term Composed Services

Xumin Liu and Athman Bouguettaya

Abstract We propose a Web Service Change Management Language (SCML) to
manage top-down changes in Long term Composed Services (LCSs). A LCS is a
collaboration between autonomous Web services that collectively provide a value-
added service. Due to the dynamic environment, managing changes is a fundamental
challenge for the successful deployment of a LCS. We first propose a change tax-
onomy that classifies changes into different categories. Based on the taxonomy, we
define a set of change operators that specify different types of changes in a precise
and formal way. The change operators can be mapped to a set of SCML statements,
which are declarative and easy-to-use. We describe a systematic procedure to process
SCML statements. We then propose our prototype implementation for the proposed
SCML.

10.1 Introduction

Web services are gaining momentum as a new computing paradigm for deliver-
ing business functionalities on the Web. They are increasingly regarded as the
most promising backbone technology that enables the modeling and deployment
of the Service-Oriented Architecture (SOA) [11]. Web services are distinguished
from other traditional applications by two major features: global availabilities and
standardization. First, Web services take advantages of the powerful communica-
tion paradigm of the Web to provide global availabilities [15]. Second, Web ser-
vices have enjoyed intensive standardization support. They are built upon XML-
based standards as a vehicle for exchanging messages across heterogeneous Web
applications [4, 7, 12, 17-22]. Typical Web service standards include WSDL for

X. Liu (X)
Department of Computer Science, Rochester Institute of Technology, Rochester, USA
e-mail: xI@cs.rit.edu

A. Bouguettaya
School of Computer Science and Information Technology, RMIT, Melbourne, Australia

A. Bouguettaya et al. (eds.), Advanced Web Services, 225
DOI: 10.1007/978-1-4614-7535-4_10,
© Springer Science+Business Media New York 2014

226 X. Liu and A. Bouguettaya

service description [22], UDDI for service discovery [19], and SOAP for service
invocation [18]. Driven by the advantages offered by SOA, many service providers
expose to move their business functionalities on the Web using Web services.
This, in turn, has opened the opportunities for composing autonomous services
on demand [3]. Thus, SOA has also opened the opportunities for building up
cross-organization collaborations in a distributed, heterogeneous, and dynamic
environment. A composed Web service is therefore an on-demand and dynamic col-
laboration between autonomous Web services that collectively provide a value added
service. Each autonomous service specializes in a core competency, which reduces
cost with increased quality and efficiency for the business entity and its consumers.
A composed Web service can be short term or long term. Comparing with short time
composed services, where the collaboration of services has a very limited time and
will be resolved thereafter, a long term composed service (referred to as a LCS) has
an open-ended lifetime. It usually has a long-run business goal and business com-
mitment to its customers. The partnership among its component services is relatively
stable unless the occurrence of some exceptional event [26]. LCSs have attracted a lot
of attentions since they empower a virtual enterprise, which is a cross-organization
collaboration to offer value-added and customized services [13].

A LCS consists of several outsourced Web services, but acts as a virfually coherent
entity. Each service specializes in a core competency, which promotes cost reduc-
tions and increased quality for the LCS and its consumers. Business entities, in the
form of Web services, are often geographically distributed and organizationally inde-
pendent. LCSs will introduce new business opportunities through dynamic alliances.
First, the provisioning of software services dramatically reduces the capital required
to start a business. A LCS can built upon the legacy systems, which are wrapped as
Web services. The services are readily available for integration and orchestration.
It is superior to build up a complex software application from scratch. Second, as
the number of business increases on the Web, it will be possible to select the “best”
services from a pool of “similar” services [10]. The consumer or end user of the LCS
will benefit from the open competition between businesses. Third, partners of a LCS
can be selected dynamically. Each Web service is described in a standard format,
which allows automatic and dynamic discovery and integration. Thus, business orga-
nizations will be able to form project-driven alliances. Current application domains
of LCSs include the travel industry, computer industry, scientific community, auto-
mobile industry, etc.

One of the most challenging research issues in realizing LCSs is to deal with
changes during the lifetime of a LCS. Because of the dynamic nature of Web service
infrastructure, changes should be considered as the rule and managed in a structured
and systematic way [6, 13, 24]. Changes are usually introduced by the occurrence of
new market interests, business regulation, new technologies, etc. Such changes are
always associated with a requirement on the modification of a LCS with respect to the
functionality it provides, the way it performs, the partners it is composed of, and the
performance it delivers. Once a change occurs, a LCS needs to quickly adjust itself
to fulfill the requirement introduced by the change. The adjustment also needs to be
performed in an automatic manner considering the frequent occurrence of changes.

10 SCML: A Change Management Language 227

By doing this, a LCS can maximize the market interests it attracts, optimize the way
it outsources its functionality, and thus maintain its competitiveness among its peers.
Changes in LCSs can be classified into two categories: top-down changes and bottom-
up changes [25]. In this chapter, we focus on top-down changes. More specifically,
top-down changes refer to the changes initiated by a LCS owner. An example of such
changes is the addition of a local attraction service to a travel agency LCS.

Change management in the context of composed services poses a set of research
issues.Changes need to be first captured and modeled in a formal way so that they can
be understood and processed. The change reaction process then should be designed
and implemented. Finally, the change reaction process needs to be evaluated for
verification and correctness purpose. In this chapter, we address the issue of change
specification. Changes may be specified in a literal way at first place, which is infor-
mal and sometimes vague. Examples of such change specifications include “increase
a LCS’s profit” and “stop outsourcing the service that has a low reliability”. This
type of specification obviously lacks sufficient formalization and semantics to support
change management in a systematic way. Changes need to be machine comprehen-
sible so that they can be automatically and correctly enacted. Therefore, a change
specification should be unambiguous, formal, and disciplined, which are described
as follows.

e Unambiguous: A change is always associated with a specific goal on a LCS. During
the process of change management, the LCS will be modified and the goal will be
reached ultimately. Therefore, a change specification should be unambiguous so
that the goal can be deterministic.

e Formal: To improve the automation of change management, it is important that the
software agents understand what change is intended to make to a LCS. Therefore,
a change specification should contain machine-understandable semantics, such as
pre-defined keywords and logic-base expressions.

e Disciplined: To ensure that a change is feasible, it is important that a change
specification contains all the necessary information. For example, if a change
requires to remove a service that has a low reliability, it needs to specify at what
degree a service’s reliability is considered as low. Therefore, a change specification
should be disciplined. For different types of changes, different types of information
are required to be contained in a change specification.

In this chapter, we present a Web Service Change Management Language (SCML) for
the propose of modeling changes. SCML allows change specifications which achieve
the above characteristics. Besides, it is also complete and declarative. By complete,
it means that all meaningful top-down changes can be specified using SCML. By
declarative, it means that SCML is non-operational. Using SCML, a LCS’s owner
only needs to specify what a change is, instead of specifying how to change. In another
word, the ower does not need to concern the details of implementing a change when
specifying it.

The reminder of this chapter is organized as follows. In Sect. 10.2, we describe
a travel agency LCS, which will be used as a running example in this chapter.

228 X. Liu and A. Bouguettaya

In Sect. 10.3, we propose a supporting infrastructure that enables a LCS. In Sect. 10.4,
we propose a change taxonomy that classify changes into different categories. Based
on the schema and the taxonomy, we propose a set of change operators in Sect. 10.4.
In Sect. 10.5, we propose a change language that provides comprehensive specifi-
cation support for change management. In Sect. 10.6, we propose a procedure that
processes the SCML change specifications. In Sect. 10.7, we describe a prototype
that processes the proposed language. In Sect. 10.8, we discuss several representative
related work and differentiate our work with them. In Sect. 10.9, we conclude our
work.

10.2 Case Study

In this section, we describe a scenario from travel industry to motivate our work. It
will also be used as a running example to illustrate the key idea of this chapter.

Consider a travel agency LCS that aims to provide a comprehensive travel package
that outsources the functionalities from different service providers, including flight,
hotel, taxi, weather, and online payment. Users can thus book airlines, reserve hotels,
reserve taxis, or check weather information by directly accessing this LCS. Suppose
that a recent market survey shows that car rental services have attracted more interests
than taxi services serving as the ground transportation. In this case, the LCS’s owner
may want to replace the taxi service by a car rental service. Moreover, users that
choose car rental service probably also take interest in the local traffic information,
such as the router from the airport to the hotel. In addition, users may tend to include
local activities to their travel packages nowadays. For example, when a user plans
a trip to Orlando, he or she may also want to visit the local activities, such as the
Universal Orlando and the SeaWorld Orlando. In this case, he or she may want to
reserve the tickets for the activities via the travel agency. If the travel agency LCS
does not incorporate the service into the enterprise, it risks becoming obsolete and
loosing business.

10.3 An Infrastructure of Service-Oriented Enterprises

In this section, we present a supporting infrastructure of a LCS. We first give an
overview of a LCS’s architecture, as depicted in Fig. 10.1. It mainly consists of two
key components: LCS schema and LCS instance. It also contains two supporting
components: ontology providers and Web service providers. A LCS schema is the
kernel of a LCS since it defines its high-level business logic. It guides the composition
of outsourced Web services to perform the functionality of the LCS.The change
language is built upon a LCS’s schema.

10 SCML: A Change Management Language 229

|
inslantiates

subscribes

—

provid

“—

provides

services ' Providers

Fig. 10.1 The architecture of a LCS

10.3.1 LCS Architecture

A LCS schema consists of a set of abstract services and the relationships among these
services. An abstract service specifies one type of functionality provided by the Web
services. They are not bounded to any concrete services. They are defined in terms of
service concepts in a Web service ontology. A LCS instance is a composition of a set
of concrete services, which instantiates a LCS schema. It actually delivers the func-
tionality and performance of a LCS.The ontology provider manages and maintains
a set of ontologies that describe the semantics of Web services. A LCS outsources
semantics from an ontology provider to build up its schema. Ontology providers also
provide semantics for automating the process of change management [25]. The Web
service providers offer a set of Web services, which can be outsourced to form LCS
1stances.

10.3.2 LCS Schema

The different between a LCS and the traditional enterprise is that a LCS outsources
its functionality from individual and autonomous services. Therefore, a LCS’s func-
tionality can be specified as the combination of the functionalities of the services
it outsources and their composition. We use a directed graph to specify a LCS’s
functionality. A LCS’s functionality is typically not defined using the concrete Web

230 X. Liu and A. Bouguettaya

services, but using the service ontology [14, 23], which we refer to as abstract
services. Each abstract service describe one type of functionality, such as airline
services, hotel services, and etc. The composition of different services specifies how
they interact with each other by exchanging messages. It can be defined in terms of
data flow and control flows.

Definition 10.3.1 A LCS schema graph is a directed graph that has two types of
edges, i.e., DG = {N, DE, CE}, where:

e Nisasetofnodes, N = {n,, ny,na, ..., n,, ny}. ne and n,, are two special nodes
that represent the user of the LCS. n; is the starting point of the control flow and
data flow. It has only outgoing edges. n,, is the ending point of the control flow and
data flow. It has only incoming edges. n; represents an abstract service (1 < i < n).

e CE is a set of edges, i.e., CE = {cey,cea, ..., ce:}, where ce; = {np, ng, ci}
represents that n, will be invoked immediately after n; is invoked if condition c;
is fulfilled, where ny,, n, € N. If ny, is n,, it means that the invocation of the LCS
starts from invoking n,. If n, is n,, it means that the invocation of the LCS ends
with invoking np,.

e DE is a set of edges, i.e., DE = {dey,de>, ..., des}, where de; = {ns, n;, d;}
represents that ny sends a message containing data d; to n,. Here, d; is a subset of
ny’s output and a subset of n,’s input. ng, n, € N. If ny is ng, it means the data d; is
part of the input of an LCS obtained from the users. If n; is n,,, it means the data
d; is part of the output of a LCS returning to the users.

Figure 10.2 shows the schema of the travel agency LCS in our running example.

Legends:
>

Service Nodes
— Data Flow Edge
=) Control Flow Edge

Fig. 10.2 The travel agency LCS schema

10.3.3 LCS Quality

The quality of a LCS consists of a set of quality parameters, such as reliability, fee,
invocation duration, reliability, etc. These parameters constitute a quality model that
is used to evaluate how well a LCS performs. The quality model is domain-specific.

10 SCML: A Change Management Language 231

A LCS outsources its functionality from multiple services. Meanwhile, it also
outsources quality models from these services. Therefore, we define a LCS’s quality
model as follows.

Definition 10.3.2 A LCS’s quality model is a set Q = {q1, q2, . . . , qn}, Where q; is
a quality parameter. Meanwhile Q € (UnieN n;.Q).

Since a LCS’s quality is actually delivered by the Web services it outsources,
the quality thus can be determined by these services. Since a LCS instance contains
multiple services, the QWS values of these services will be aggregated as the overall
QoS of the LCS [27].

10.3.4 LCS Context

The context of a LCS consists of a set of context types, such as location, time,
user, travel type, etc. The context carries important information for describing the
interaction between a LCS and its users. Since a LCS outsources its functionality
from multiple services, its context structure can be determined by these services.
Therefore, we define a LCS’s context model as follows.

— Add
Outsourced
. —— Remove
Services
L—— Replace
—Functiona Data User Input
[Transfer E LCS Output
Message Exchange
Composition—)
Sequential
Invocation —— Parallel
Changes —— Order Outsourced
Conditional Selection
—— Location
Context :
——— Time
| Non- |
functional Cost .
o —— Duration
Quality — Privacy
Reliability
Security
Fig. 10.3 A taxonomy of top-down changes in a LCS
Definition 10.3.3 A LCS’s context model is a set C = {c1, ¢y, ..., cy}, where c; is

a context type. Meanwhile C € (UnieN n;.C).

232 X. Liu and A. Bouguettaya

10.4 Change Taxonomy

The first step of specifying a change of a LCS is to identify a clear classification of
these changes. Thus, different types of changes will be specified in different ways.
As depicted in Fig. 10.3, we use change requirements, which reflects the purpose of
introducing a change, as a dimension, changes can be classified based on the key
features of a LCS. This conforms to the classical change taxonomy approaches from
the fields of software engineering and workflow systems [9, 16]. The features of
a LCS can be classified into functional and non-functional. The functional feature
refers to the functionality of a LCS. The non-functional features include context and
quality. Top-down changes are expected to modify one or more of the features of a
LCS. Therefore, we classify changes based on these features. We elaborate on each
type of changes and define the corresponding change operators in this section.

10.4.1 Functional Changes

Functional changes are those that require to modify the functionality of a LCS.
A LCS’s functionality is specified by two types of information: the abstract services
it outsources and their composition.

Change to Outsourced Services

A LCS may change the type of services it outsources. The change includes adding,
removing, and replacing a functionality. This could happen for the purpose of fulfill-
ing three types of requirements: functional requirements, context type requirements,
and quality model requirements.

Functional Requirements: A LCS’s outsourced services may be changed to
fulfill a functional requirement. It can be adding a service to the business model to
enrich its functionality. For example, a travel agency may need to outsource a Point-
Of-Interest (POI) service to attract more customers. A LCS may also want to remove
a service from its business model. For example, consider that a travel agency LCS
may outsource an airline service, a hotel service, a train service, a taxi service, and
a car rental service. Suppose that the train service does not make satisfactory profit
for the LCS. In this case, it may need to be removed from the LCS. A LCS may also
want to replace a service in its business model. For example, a travel agency LCS
may use an online payment system for reserving a trip. The payment system only
supports online bank wire transfer. Considering that users may prefer to use credit
card for online transactions, a credit card supported payment service will be used to
replace the original one.

As defined in a Web service ontology, the functionality of a Web service has two
facets: operations and data [14, 23]. For the first facet, the intended service should
provide the specified operations. An example of such a change is “adding a service
that provides flight status checking operation”. For the second facet, the intended
service should provide the ability of transducing data. Put differently, it should be

10 SCML: A Change Management Language 233

able to generate the specified output by using the given input. An example of such
a change is “adding a service that can generate the weather information given a
zip code”. More specifically, a functional requirement (f) is a triplet (OP, Dy, Do),
where OP is a set of operations that a service should provide, Dy and Do are two
sets of data items stating that a service should be able to generate Do by using Dj.

Context Type Requirements: A LCS’s outsourced services may be changed due
to a new context type requirement. Each abstract service is associated with a set of
context types, which constitute the environment structure of the service. Suppose that
a LCS is required to support a new context, such as historical data. It then needs to
ensure that each outsourced service is able to embed the historical data information in
the SOAP message during the interactions. This may trigger the change of “removing
the service that does not support a context type of history data”.

Quality Model Requirements: A LCS’s outsourced services may be changed
due to a new quality requirement. Each abstract service is associated with a quality
model, which includes the parameters for service evaluation. For example, a top-down
change may require a new quality parameter to evaluate the outsourced services, such
as privacy. This may trigger the change of “removing the service that does not include
privacy in its quality model”.

We define the change operators for selecting abstract services based on the above
requirements as follows.

o] g, (op, O): Tt will traverse the service ontology O to find the abstract services
that provide the specified operation op. This operator takes op and O as input and
returns an abstract service.

o [T 5 (Dy, Do, O): It will traverse the service ontology O to find the abstract services
that can generate the required output of Do by using the given input D;. This
operator takes two sets of data, Dy, Do as well as a service ontology O as input
and returns an abstract service.

e I1€(c, 0): Tt will traverse the service ontology O to find the abstract services that
support a context type c. This operator takes ¢ and O as input and returns a list of
abstract services.

e I19(g, 0): It will traverse the service ontology O to find the abstract services that
include a quality parameter ¢ in its quality model. This operator takes s and g as
input and returns a list of abstract services.

For the selected service node, we define two change operators as below.

e 1S (s, M, op): It performs the operation op, by either adding an abstract service
to or removing it from a LCS schema M. This operator takes s, M, and op as input
and returns a new LCS schema as its output.

o A5 (Soids Snew» M): Tt replaces an abstract service s,y with another abstract
service Suey in @ LCS schema M. This operator takes s,;4, Spew, and M as input
and returns a new LCS schema as its output.

Change to Composition
A LCS’s composition defines how it performs its functionality. It specifies the
collaboaration of the outsourced services in a LCS. A LCS’s composition may change

234 X. Liu and A. Bouguettaya

under two situations. First, when a new service is added to a LCS or a service is deleted
from a LCS, a composition change will be introduced. For example, when adding a
payment service to a travel agency LCS, the payment service needs to be combined
with other services. Second, a LCS’s owner may want to change the way that the
component services are combined together for some purpose, such as optimization.
For example, suppose that a hotel service and a car rental service are invoked sequen-
tially. There is no invocation dependency between them since they do not exchange
messages with each other. In this case, the LCS’s owner may want to parallelize their
invocation to decrease the overall duration time. The change to a LCS’s composition
can occur to both data transfer and invocation order.

Data transfer: Change to data transfer among services includes the modifica-
tion of user input, LCS output, adding or deleting a message between two services.
(1) User input: The user input is obtained from the user of a LCS. It contains the
information that is necessary to invoke the services outsourced by the LCS. Once
there is a change on the outsourced services, a change of the user input may be intro-
duced. For example, when adding a car rental service, some information is required
from the user to invoke the service, such as the car type (i.e., full size, compact, mid-
size, economy, etc.). A change of the user input may also be introduced by a LCS’s
owner. For example, a travel agency LCS provides the airline+hotel package. In this
package, the information about location and check in/out time is typically determined
by the result of invoking the airline service. The owner may now want to change it
by letting users provide these information. In this way, users can have more options
when they choose their hotels. (2) LCS output: The LCS output is generated by a LCS
and returned to its users. It is contributed directly or indirectly by the services that the
LCS outsources from. Once there is a change of the outsourced services, a change of
the LCS output may be introduced. For example, when adding a car rental service, the
LCS will generate more information, such as the pick up/drop off location, time, date,
and charges. A change of LCS output may also be introduced by a LCS’s owner. For
example, a travel agency LCS is used to generate the weather information. The owner
may want to stop providing such information in the future. (3) Message exchange:
The message exchange is performed between outsourced services in a LCS. A Web
service is interacted by its users or partners completely by exchanging message. It
is invoked by an input message and reacts to the message with an output message.
More specifically, a message () is a tuple {s/, s, D}, where s is the service that
the data comes from, s’ is the service that the data goes to, and D is a set of data
items delivered. Once there is a change of the outsourced services, a change of the
message exchange between services may be introduced. For example, when adding
a traffic service to a travel package, the LCS owner may want to add the message
exchanges from the airline service and the hotel service to the traffic service so that it
can generate the corresponding driving direction between the airport to the hotel. We
define the change operators for change of data flow as below.

e Al (M, D, op): It performs the operation op, by either adding the data items in D
to or removing them from a LCS’s input. This operator takes M, D, and op as its
input and returns a new schema as its output.

10 SCML: A Change Management Language 235

(a)

0

Fig. 10.4 Four types of process constraints. a Sequential constraint, b Parallel constraint,
¢ Outsourcing constraint, and d Conditional selection constraint

NG (M, D, op): 1t performs the operation op, by either adding the data items in D
to or removing them from a LCS’s output. This operator takes M, D, and op as its
input and returns a new schema as its output.

o AMX (m, M, op): It performs the operation op, by either adding a data transfer m
to or removing it from a LCS schema M.

Invocation order: The control flow of a LCS specifies the invocation order among
component services. Meanwhile, it also specifies certain process constraint between
two services, as depicted in Fig. 10.4. We define four types of process constraints
below.

e Sequential Constraint: P~~ (s1, s2) means that s; is invoked before the invocation
of s5. It usually exists between the services where one service requires the result
of another service’s invocation.

e Parallel Constraint: P! (s, s1, $2) means that s’s invocation is in parallel with the
invocation block from s to s». It usually exists between two services where there
is no direct or indirect data exchanges between them.

e Outsourcing Constraint: p (s1, s2) means that s; outsources functionality from
s7. It usually exists between two services where a service’s (i.e., s2’s) invocation
is totally embedded in another service’s (i.e., s1’s) invocation. For the sake of
simplicity and without the loss of generality, we assume that s, does not have any
interaction with other services in a LCS than s;.

e Conditional Selection Constraint: P7(s, (c1,81), ..., (cy, $p)) means that after the
invocation of s, if ¢; is fulfilled, s; will be then invoked, where 1 < i < n. It
always exists among different services which provide the similar functionality in
a coarse granularity. For example, taxi services and car rental services both provide
the ground transportation.

236 X. Liu and A. Bouguettaya

Adding a new service will naturally introduce the changes to the invocation order
among component services in a LCS. The invocation order between the new service
and the other services may be specified by the owner of a LCS. It is worth to note that
some invocation order for new services can also be automatically generated. It will
be determined by the owner of a LCS whether it is necessary to specify the invocation
order for new services or not. For the changes of the invocation order between two
existing services, “adding” actually does a “replacing” work here. More specifically,
when adding a new process constraint on the invocation order between two services,
the previous one will be deleted to avoid the conflicts. For example, if the owner of an
travel agency LCS wants to change the invocation order of the hotel service and the
car rental service from sequential to parallel, he needs to first delete the sequential
constraint between these two services and then add a parallel constraint. We define
the change operators for the change of control flow as below.

e Ap” (s1,s2, M): It adds a sequential constraint on the order of invoking s; and s
defined in M. The operator takes sy, 52, M, as its input and returns a new schema
as its output.

° AL', (s, 81, 82, M): It adds a parallel constraint on the order of invoking s; and s
defined in M. The operator takes s, s1, 2, M as its input and returns a new schema
as its output.

° A;,' (s1, 52, M): It adds an outsourcing constraint on the order of invoking s and
the block from s; to s> defined in M. The operator takes s1, 57, and M as its input
and returns a new schema as its output.

° A?D (s, C,S,M): It will add a conditional selection constraint on the order of
invoking services in S defined in M. The operator takes C, S, M, op as its input
and returns a new schema as its output.

10.4.2 Non-Functional Changes

Non-functional changes are those that require to change the non-functional features
of a LCS, including context and quality changes.

The context of a LCS specifies its environmental information. It can be any meta-
data that is related to the interactions between the LCS and its users, such as location,
time, and payment methods. A top-down change may require to change the context
of its component services. For example, in a travel agency LCS, the taxi service
is located in the US. Suppose users tend to use the taxi service when they travel
in Europe. The LCS owner may want to change the location of the taxi service it
outsources to Europe to better serve user needs. The result of this change may be
a replacement of the concrete taxi service in the LCS. For another example, in the
LCS, the hotel service only accepts credit card payment. Suppose users tend to use
other payment methods, such as paypal. The LCS owner may want to change the
payment method of the hotel service it outsources accordingly. The result of this

10 SCML: A Change Management Language 237

change may be that the LCS owner will find another hotel service which satisfies the
new context requirement to replace the previous one.

The context change operator, ACM (A, M), will enforce a context constraint A on
a LCS with the schema M. A is a triplet {S, v, e}, where the services in 1L.S should
have the value of A.v for the context A.e. This operator takes A and M as its input
and returns a new LCS instance as its output. For example, AM ({{taxi}, ‘Europe’,
location}, travel _LCS) means that the change requires the location of the taxi service
in the travel agency LCS is in Europe.

The quality of a LCS refers to its non-functional features, such as its reliability,
fee, invocation duration, and reputation. It evaluates the quality delivered by a LCS.
A top-down change may require to modify the quality that a LCS delivers. For
example, a LCS owner may want to guarantee that the providers of its component
services should have a decent reputation. We define a quality change as follows.

The quality change operator, A (8, M), will enforce a quality constraint § on a
LCS withthe schema M. § isatriplet {S, r, i}, where the services in §.S should have the
value of §.r for the quality parameter §.i. This operator takes § and M as its input and
returns a new LCS instance as its output. For example, A2Y ({{car_rental, hotel},
‘high’, reputation}, travel_LCS) means that the change requires that the car rental
service and the hotel service in the travel agency LCS should have a high reputation.

10.5 SCML Language

Based on the proposed change model, we present a Web Service Change Manage-
ment Language (SCML) in this section. Change operators can be used to describe a
change. However, it is not a friendly way for LCS’s owners due to the esoteric and
uncommon notations. SCML paves the way for end users to input a change specifi-
cation in a convenient fashion. SCML is an SQL-like language. It defines five types
of commands: (1) create command for defining a LCS schema; (2) select command
for querying both abstract services and concrete Web services; (3) alter command for
specifying functional changes; (4) update command for specifying non-functional
changes; (5) drop command for deleting a LCS schema. The commands are defined
and elaborated on in this section.

10.5.1 Create Command

The create command is used to specify a new LCS schema. A LCS schema is given
a name using two keywords: CREATE and LCS. For example, by writing

238 X. Liu and A. Bouguettaya

CREATE LCS travel-agency...

A LCS named as travel-agency is created. A LCS is associated with a Web service
ontology from where it outsources semantics. Therefore, the Web service ontology
is specified first. We use a keyword ONTOLOGY to specify the ontology provider
that offers the ontology. For example, by writing

ONTOLOGY o http://wsms-dev.csiro.au:8080/.../Ontology AccessWithConfig

A LCS is associated with an ontology service which provides ontological seman-
tics for the LCS.

After that, the abstract services in a LCS is specified. Each abstract service cor-
responds to a service concept in the Web service ontology. It is then described using
the name of the service concept. We use the keyword, SERVICES, to specify one or
more abstract services. For example, by writing

SERVICES s, airline, s, taxi, s;, hotel
SERVICES s, payment

we specify four abstract services for the LCS.

We use a keyword, CONTROL FLOWS, to specify one or more control flow edges
in a LCS schema graph. Each edge is given a name and a description. The description
includes the information about the service node that the edge comes from, the service
node the edge goes to, and the condition the edge delivers. For example, by writing

CONTROL FLOWS cl (sq, sy, true), c2 (sy, s, true)

we specify a control flow edge from the airline service to the hotel service.

We use a keyword, DATA FLOWS, to specify one or more data flow edges in a LCS
schema graph. Each edge is given a name and a description. The description includes
the information about the service node that the edge comes from, the service node
that the edge goes to, and the data item the edge delivers. For example, by writing

DATA FLOWS d1 (s, s, ticket_price),

we specify a data flow edge from the airline service to the payment service with
the information of a ticket’s price.

Recall that there are two special service nodes: n,, and n., which refer to the user
of aLCS. We use a keyword, USER, to specify these two service nodes when defining
edges in a LCS schema graph. For example, by writing

DATA FLOWS d2 (USER, sl1, user_Id), d3 (s1, USER, flight_schedule)

we specify two data flow edges. In d1, the information is obtained from a LCS’s
users and sent to the airline service. In d2, the data is generated by the airline service
and returned to users.

After specifying a LCS schema graph, we use a keyword, QUALITIES to specify
one or more quality parameters that are used to evaluate a LCS. A quality parameter
is given a name and a description. For example, by writing

QUALITIES q1 availability, g2 cost

we specify two quality parameters.

We use a keyword, CONTEXTS, to specify one or more contexts of a LCS. A con-
text is given a name and a description. For example, by writing

CONTEXTS cl location, c2 time, c3 currency
we specify three contexts for the LCS.
Therefore, we can define a LCS schema as follows.

http://wsms-dev.csiro.au:8080/.../OntologyAccessWithConfig

10 SCML: A Change Management Language 239

CREATE LCS travel-agency (
ONTOLOGY o http://wsms-dev.csiro.au:8080/.../Ontology Access WithConfig
SERVICES s, airline, s; taxi, s, hotel, s, payment, s,, weather...

CONTROL FLOWS cl (sg, sp, true), c2 (sp, sz, true)...
DATA FLOWS dl1 (s4, sp, ticket_price),
QUALITIES ql availability, g2 cost

CONTEXTS cl location, c2 time, ¢3 currency

10.5.2 Select Command

The select command is used to specify a query on a Web service ontology. The
corresponding change operators include: I7 5;, (op, 0), IT 5 (Dy, Do, O), Hg (c, 0),
and I7, 5 (g, 0). A query can be performed based on the features of a LCS: functional
and non-functional. Similar to a select statement in SQL, a SCML select command
is formed of the three clauses, which start with three keywords: SELECT, FROM, and
WHERE, respectively.

SELECT <abstract service list>
FROM <ontology>
WHERE <condition>

where <abstract service list> is a list of abstract services that are intended to be
retrieved by the query; <ontology> is the Web service ontology that the query
is performed upon; and <condition> is a conditional expression (Boolean) that
identifies the services to be retrieved by the query. In SCML, a conditional expression
has the following format:
<abstract service> <operator> <values>

The operators include hasOperation, hasInput, hasOutput, hasQuality, and
hasContext. They are defined for the four change operators that require a query on
a Web service ontology. For each of these change operators, we give an example of
a SCML query statement.

o I] é; (op, O): SELECT s FROM o WHERE s hasOperation (airline_reservation)

o I] 5 (Dy, Do, O): SELECT s FROM o WHERE s hasInput (location, date) and s hasOutput
(weather_information)
o [5 (g, O): SELECT s FROM o WHERE s hasQuality (privacy)

o [] g (¢, O): SELECT s FROM o WHERE s hasContext (history_data)

http://wsms-dev.csiro.au:8080/.../OntologyAccessWithConfig

240 X. Liu and A. Bouguettaya

10.5.3 Alter Command

The alter command is used to specify functional changes in a LCS. The possible
alter LCS schema actions include (1) adding or deleting user input or LCS out-
put, (2) adding, deleting, or replacing abstract services and/or data flow edges), and
(3) adding a process constraint.
For (1) and (2), the alter command is formed as:
ALTER LCS <LCS name> <action> <element type> <value>

where an action can be ADD, DELETE, or REPLACE. An element type can be INPUT,
OUTPUT, SERVICES, and DATA FLOWS. When the action is REPLACE, the element
type has to be SERVICES. The value type for REPLACE action is a pair. For other
actions, the value contains a service name and the name of its corresponding service
concept in the service ontology. The alter command corresponds to the five functional
change operators. We give an example of a SCML alter command for each of them.

o AS (s,0,M,o0p): ALTER LCS travel-agency ADD SERVICES(s; traffic, s; local_
activity, s, address_to_zip);

o A5 (Soids Spew, O, M): ALTER LCS travel agency REPLACE SERVICES (s;, s,
car_rental);

e A (M, D, op): ALTER LCS travel-agency ADD INPUT (car_type)

e 19 M, D, op): ALTER LCS travel-agency DELETE OUTPUT (taxi_charge, taxi_sche-
dule)

o NMX (m, M, op): ALTER LCS travel-agency ADD DATA FLOWS (<USER, s,
car_type>)

When adding a process constraint, the alter command is formed as:
ALTER LCS <LCS name> ADD PROCESS CONSTRAINT <constraint type>
<value>
where <constraint type> can be SEQUENTIAL, PARALLEL, OUTSOURCING, and
CONDITIONAL SELECTION. The four constraint types correspond to the four change
operators. We give an example of a SCML alter command for each of them.

e AL~ (s1,52, M): ALTER LCS travel-agency ADD PROCESS CONSTRAINT SEQUEN-
TIAL (54, 5¢);

° ALl) (s, 51, 52, M): ALTER LCS travel-agency ADD PROCESS CONSTRAINT PARAL-
LEL (sp, ¢, S¢);

° A;,' (s1, 82, M): ALTER LCS travel-agency ADD PROCESS CONSTRAINT OUT
SOURCING (sy, 57);

° AZ, (s, C, S, M): ALTER LCS travel-agency ADD PROCESS CONSTRAINT CONDI-
TIONAL SELECTION (s, <travel_type="international”, s; >,
<travel_type="domestic”, s, >);

10 SCML: A Change Management Language 241

10.5.4 Update Command

The update command is used to specify non-functional changes. The possible update
LCS actions include: (1) changing a LCS quality, and (2) changing a LCS context.
When changing a LCS quality, a update command is formed as:
UPDATE LCS <LCS name> SET <service list> <quality parameter>23 <operator>
<value>
When changing a LCS context, a update command is formed as:
UPDATE LCS <LCS name> SET <service list> <context type> <operator>
<value>
The operators can be “=",“<”“<="“>" “>=" and “<>".
The command corresponds to the two non-functional change operators. We give
an example of a SCML update command for each of them.

o NOM (8, M): UPDATE LCS travel-agency SET (s, s,) q1=*‘high”
o A™ (). M): UPDATE LCS travel-agency SET (s,) c1=“European”

10.5.5 Drop Command

The drop command is used to drop a named LCS schema. We use two keywords:
DROP and LCS to specify a drop command. For example, by writing
DROP LCS travel-agency
we delete the travel agency LCS schema.

10.5.6 Analysis on SCML

SCML needs to achieve the five characteristics to be qualified as a way to model
changes in LCSs, including unambiguous, formal, disciplined, complete, and declar-
ative. We give the analysis on SCML with respect to these five characteristics as
follows.

SCML is built upon the proposed change taxonomy and change operators. Differ-
ent types of change operators can be mapped to ALTER and UPDATE commands in
SCML. For these commands, different keywords are used to specify the types of the
changes and the related parameters. Therefore, a legal SCML statement contains the
sufficient information to specify a change, which ensures the change specification to
be unambiguous and disciplined.

Predefined keywords are used to constitute an SCML statement. The semantic of
these keywords are understandable for machines, such as ALTER, LCS, SELECT,
ADD, etc. The semantic of an SCML statement is understandable and processable
for machines. Therefore, an SCML change specification is formal.

242 X. Liu and A. Bouguettaya

Each top-down change will fall into one or more categories defined in the change
taxonomy. Each change category is mapped to a change operator. Therefore, for a
simple change that falls into one change category, it can be specified in term of the
corresponding change operator and then be mapped to an SCML statement. For a
complex change which falls into more than one change categories, multiple change
operators can be used to specify the change. It then can be specified by multiple
SCML statement. Therefore, SCML can be used to specify all top-down changes. It
is complete.

SCML is SQL-like language. Therefore, it is declarative. For example, if a LCS’s
owner wants to add a POI service to the LCS, he does not need to provide the oper-
ational information, i.e., how to integrate the POI service with other participated
services.

10.6 SCML Processing

In this section, we propose a systematic procedure to process SCML statements.
As showed in Fig. 10.5, there are several components that involve in the proce-
dure, including an SCML parser, Ontology manager, Change analyzer, LCS schema
manager, schema-level processor, and Instance-level processor. We describe these
components as follows.

SCML
statements

v

Select | SCML parser | _Create
Drop

Alter|Update

; Change operators

A

Manager Manager
Functional Non-functional
operator; operators

Schema-level
Processor

stance-Leve
Processor
SOE Schema
(Updated)

Fig. 10.5 SCML processing framework

10 SCML: A Change Management Language 243

10.6.1 SCML Parser

The SCML parser takes the first step of processing an SCML statement, which is
initially expressed in term of strings. During this step, the parser first checks the
syntax of the SCML statement. Besides syntax errors, semantic errors will also be
detected. For example, the parser will check whether the service name appearing
in the statement are names of the services in the ontology, whether the context of a
service is included in the context type defined in the ontology, and so on. For create
and drop SCML statements, the parser forwards them to the LCS schema manager
for the further process. For other types of SCML statements, the parser translates
them in format of change operators and forwards them to different SCML processing
components.

10.6.2 Schema Manager and Ontology Manager

The LCS schema manager maintains two types of information: a set of LCS schema
definitions and a set of Web service ontology definition. It processes two types of
SCML commands: create and drop commands. When processing an SCML create
statement, the LCS schema manager extracts the definition of the schema from the
statement and add it to the schema definition set. It also extracts the ontology infor-
mation from the statement. The ontology information is expressed as the URL of the
service which provides the ontology information. The LCS schema manager stores
the URL and connect it with the related LCS schema.

The ontology manager processes SCML SELECT commands. It retrieves the
required semantics from the ontology service specify in the query. The ontology man-
ager leverages the ontology query infrastructure offered by ontology providers [25].

10.6.3 Change Analyzer

The change analyzer takes a set of change operators translated from ALTER and
UPDATE SCML commands as input. It first determines the feasibility of implement-
ing the change. It then forwards the change operator to the two other components:
schema-level processor and instance-level processor. A change is feasible if there will
be an executable plan for implementing the change. The feasibility of a change will
be checked in different stages: initial stage by the change analyzer, schema-level by
the schema-level processor, and instance-level stage by the instance-level processor.
In the initial stage, the change whose specification shows obvious unfeasibility will
be identified. Such obvious unfeasibility includes (1): the service that is required to
be added has already included in a LCS; (2): the service that is required to be removed
does not participate in the LCS. Moreover, if a change specification consists of a set

244 X. Liu and A. Bouguettaya

of change operators, the change analyzer goes through all the change operators and
checks the conflict among the change operators. For example, adding and removing
an airline service from a travel agency LCS are conflict with each other. For another
example, adding a parallel and sequence order between two services at the same time
are conflict with each other. The unfeasible changes will not be further processed.
The second step of change analysis is to group the change operators and send them
to different components based on their types. The functional change operators will
be sent to the schema-level processor. The non-functional operators will be sent to
the instance-level processor.

10.6.4 Schema-Level Processor

The schema-level processor takes a set of functional change operators as input. It
then updates the schema based on the change operators. It first directly translates a
change operators as the operations on the schema graph. The process is referred to
as change reaction. For example, for a change that requires to add a new service to
a LCS, a new node will be added to the schema graph. For a change that requires to
delete a service from a LCS, the corresponding service node will be removed from
the schema graph. The process is performed fulfill the functional requirement of a
change. However, it may lead the schema graph in inconsistent state, i.e., services
cannot collaborate properly. For example, if a new service is added, it may be an
isolated node in the schema graph. It then cannot be invoked. For another example,
a POI service depends on a hotel service to provide the input information, such as
the location and activity time. If the hotel service is deleted, the POI service cannot
be invoked since it does not have the enough information for the invocation.

The schema-level processor then further modifies the schema graph to maintain
the correctness of the state. The process of referred to as change verification [26].
The schema-level processor first checks whether a service can be invoked based on
the data flow. It checks each service can get enough input to be invoked. If not, it
will make matching between the required input with the output of other services to
create new data flows among them. The process is guided by the dependency between
different services within a domain. A service S4 is depend on another service Sp if
Sa relies on Sp to provide its input when they are combined together. An example of
such a dependency is the one between a hotel service and an airline service. A user
can book a airline or a hotel service individually via a travel agency. But when
he wants a flight+hotel package, the information needed by the hotel service, such
as check-in, check-out date, depends on the output of the airline service, i.e., the
flight information. The dependency between different services is defined by domain
experts and included in the Web service ontology definition [25]. The feasibility of
a change will be checked at this step. A change is not feasible if it causes a cycle in
data transfer. An example of a data transfer cycle is: service A waits for service B’s
to provide its input; B waits for service C to provide its input; meanwhile, C waits
for A to provide its input. The unfeasible change will be detected and it will not

10 SCML: A Change Management Language 245

be further processed. The second step of change verification is to check whether a
service can be invoked based on the control flow. For each data flow in the schema
graph, there should be a corresponding execution path ensure the data transfer. The
useless nodes will be detected and removed: isolated nodes and unreachable nodes.
A node is isolate if it does not have incoming and outgoing edges. It is useless since
there are no interaction between these nodes and other nodes in the schema graph.
A node is unreachable if there is no path from the starting node to it. It is useless
since it can not be invoked within the LCS. Any cycle in the control flow will also
be detected and broken.

The output of the schema-level processor is an updated schema graph. The new
graph ensures the functional requirement of the change. It is also in a correct con-
figuration that ensures the proper composition of services.

10.6.5 Instance-Level Processor

The instance-level processor take a set of non-functional operators and the schema
graph as input. If the schema graph has been changed by the schema-level processor,
the instance-level processor will use the updated schema graph as input. the instance-
level processor will perform two steps to generate the new LCS’s instance: service
selection and service integration.

For each newly added service node in the schema graph, the instance-level proces-
sor select the corresponding concrete Web services. The selection is based on the two
criteria: functional and non-functional. Each service node the in the graph refers to
a type of functionality of Web services. The concrete service that provides the func-
tionality will be picked up. If there are non-functional requirements associated on the
new service, the service that fulfills the requirement will be selected. An example of
such a change is that the owner of a travel agency LCS wants to add a new POI ser-
vice with a high reputation to the LCS. If there are new non-functional requirements
associated on the existing services, the current service will be replaced by other ser-
vice that fulfills the requirement. An example of such a change is that the owner of
a travel agency LCS wants to replace the current hotel service with the one that has
the availability higher than 99 %. If there are new non-functional requirements on
the entire LCS, all the available orchestrations of services will be generated and the
one that fulfills the requirement will be picked. An example of such a change is that
the owner of a travel agency LCS wants to decrease the overall duration of the LCS
to 5. The change feasibility is checked during this process. If there is no available
services that can fulfill both the functional and the non-functional requirement of a
change, the change is not feasible.

After selecting the services, the instance-level processor integrates these services
together. It generates a BPEL process based on the schema graph [2]. The execution
order among services is defined by the control flow. For the data flows between
two services, a SOAP message is generated to delivered the information exchange
between the services.

246 X. Liu and A. Bouguettaya

10.7 Implementation

In this section, we describe a prototype that implements the proposed SCML
language. The prototype provides a graphic user interface for users to input an SCML
specification and generates the result of language enactment. In this prototype, we
focus on the two key SCML clauses: create command and alter command. We use
a travel agency LCS in our running example as the scenario. For the sake of space,
we only introduce some representative steps of using the system.

Users need to submit a create command to define a LCS schema graph. As depicted
in Fig. 10.6, the information includes the nodes of the graph and the two sets of edges
(i.e., data flow edges and the control flow edges). Each node represents an abstract
Web service and is assigned to an id. An example of such a node id is Airline. Each
node corresponds a concept in a Web Service Modeling Language (WSML) file,
which contains the semantic definition of the abstract service. A data flow edge is
represented as a triplet: the node that the edge comes from, the node that the edge
goes to, and a data set pair delivered by the edge. An example of such a triplet is
{Airline, Hotel, {arrival_date, check_in_date}}, which means that an airline service
sends a message to a hotel service containing the information of the arrival_date,
which can be used as the check_in_date for the hotel service. A control flow edge
is represented as a triplet: the node invoked first, the node invoked afterwards, and
the condition on the invocation of the second node. An example of such a triplet
is {Airline, Hotel, “true”}, which means that a hotel service will be invoked after an
airline service is invoked. After submitting the create command, users can click the
execute button to create the LCS schema graph, which is depicted in Fig. 10.7.

Users need to submit an alter command to specify a change. As depicted in
Fig. 10.8, an alter command contains the information of changes, such as the change
operator (i.e., adding or removing), the type of change objectives (i.e., service, data
flow, or control flow), and the change objectives. After editing the alter command,
users can click the execution button to implement the change, which is depicted in
Fig. 10.9. In the graph, there are three new services added (i.e., carRental, Traffic, and
LocalActivity). The invocation orders and message exchanges among these services
and other services in the LCS are automatically generated.

10.8 Related Work

Change management is an active research topic in database management, knowledge
engineering, and software evolution. Research efforts are also underway to provide
change management in a Web service community and adaptive workflow systems
[1, 5]. There are some change models have been proposed to specify different types of
changes. In this section, we will elaborate some representative works and differentiate
them with our work.

10 SCML: A Change Management Language 247

P LCS Change Management System
File Edit View Debug About

| Start Page I Graph Overview | Pre-Change | Post-Change Step View |
LCS Schema: create.xt loaded

WSML: Load ontology from a pre-defined WSML file | Load
Graph: |CADocuments and Setli giDeskloplSCMLAIstdistcreate bd | Browse
System Message:

Service Info loaded. Select a LCS schema graph file.

| SOE Overview Ifnm:llnnal HNon-Func |’ Command

Cormmand Input:

CREATE LCS travel-agency (=3
ONTOLOGY o hitpiwsms-dev.csim.aw is2isenvicesi(gyAccess4CM L
IMPUT userlD password from_address from_airport to_airport deparing_date returning_date;
| QUTPUT user_name go_flight_number go_from_airport go_to_airport go_deparing_date go_
departing_time go_arriving_date return_light_number returm_from_airport return_flight_number returm_departi
ng_date return_deparing_time return_arriving_date return_arriving_lime hotel_name hotel_address room_de
;scrlpllon user_information taxd_pickup_date taxi_pickup_time one_day_weather payment_receipt,
SERVICES s1 Airline, 52 Tauxi, 53 Hotel, 54 Payment, 55 Weather,
CONTROLFLOWS c1 N_ui Airline , c2 Airline Hotel t, ¢3 Hotel Taxi §, c4 Holel Weather f, ¢5 Taxi—
-

FPY) Al Il hi -

| Execute Clear Import from File

Fig. 10.6 The input of a create command

In [1], a petri-net based change model is proposed. The change model is used to
specify bottom-up changes in LCSs, which are initiated at the service level and then
propagated to the business level. built upon the differentiation the changes between
two levels: service level and business level. The changes initiated at the service
level is called as triggering changes. The changes initiated at the business level is
called as reactive changes. A set of mapping rules are defined between triggering
changes and reactive changes. These rules are used for propagating changes. The
reactive changes are modeled as Petri-nets. In [1], the work mainly focus on devising
handling mechanisms for exceptional changes. An example of such mechanisms is
that the system will switch to use an alternative service if a sudden failure occurs to
a service. Petri-nets are chosen to provide formal semantics for bottom-up changes.
In this chapter, we focus on modeling the top down changes, which are initiated by a
LCS’s owner in case of the occurrence of new business requirements or new business
regulations.

248 X. Liu and A. Bouguettaya

[T LS Change Man®Ermenl System
FreuEo Viow Osteg About

StariPagn | Graldi Overview | PraCtmage | Pest-Chrmge Slap Vies |

Show Compusition 3% St Graph Or il o Dwtis Howe 2ooim Controk:
@ £ Daa Fowe TiNern iak West Erlmnm[Toomm om O

Pr Changs Sarire Compoailon

Show CompriRion Sl Grih Ovientation Data Fiow Zoom Citbiot -

Ctomioy Bbstason GREl O wes Mlu«mmm[u-_qn Znom Out

Fig. 10.7 The control flow and data flow of a LCS

10 SCML: A Change Management Language 249

In [5], the work focuses on modeling dynamic changes within workflow systems.
It introduces a Modeling Language to support Dynamic Evolution within Workflow
System (ML-DEWS). A change is modeled as a process class, which contains the
information of roll-out time, expiration time, change filter, and migration process.
The roll-out time indicates when the change begins. The expiration time indicates
when the change ends. The change filter specifies the old cases that are allowed to
migrate to the new procedure. The migration process specifies how the filtered-in
old cases migrate to the new process. In [5], the language is defined for human
consumption, not for machines. The change specification is not formal enough for
completely understandable and processable by machines. The change management
process based on ML-DEWS is not automated. SCML, in the other hand, is formal.
It can be understandable and processable by machines. Based on the SCML change
specification, the new LCS schema can be automatically generated.

In [8], a framework is presented to detecting and reacting to the exceptional
changes that can be raised inside workflow-driven Web application is proposed. It

I LCS Change Management System
File Edit View Debug About

[Start Page _' Graph Overview | Pre.Change | Post-Change Step View |

LCS Schema: alter.txt loaded

WSML: Load ontology from a pre-defined YWSML file Load
Graph: [CADocuments and SetingstyuailDeskloplsCMLdistdi 0 IL Browse J
System Message:

LCS Schema Loaded. Pre-Change Service Compostion can be viewed from "Ovensiew” Tab.
SOE Overview | Functional | Non-Func | Command

Command Input:

'rALTER LCS travel-agency ADD SERVICES CarRental, Traffic, LocalActivities;

;ALTER LCS travel-agency DELETE SERVICES Taxi

WLTER LCS travel-agency ADD INPUT pick_up_airport pick_up_date pick_up_time drop_ofi_date drop_ofi_time ¢
ar_type lo_address location from_date to_dale

ALTER LCS travel-agency ADD OUTPUT car_information pick_up_airport pick_up_date pick_up_time drop_ofl_d
ia1e drop_off_time rental_charge router_direction aclivity_information

ALTER LCS travel-agency DELETE OUTPUT taxi_pickup_date taxi_pickup_time

[Execute || Clear il mpnnflnlnFﬁe

Output:

Fig. 10.8 The input of a set of alter commands

250 X. Liu and A. Bouguettaya

Post Change Servce Comgosion

I LS Change Management System
File Edn View Debug About

Start Page | | Pre-Change | Past
Data Flow Zoom Cantrok:
CCotiolfiow ® Dataflow mMerth O West)P GraphinWedow | Zoomin | I__?mom_

Pre-Charge Senate Composfion

Fig. 10.9 The control flow and data flow of a LCS before and after change enactment

10 SCML: A Change Management Language 251

first classifies these changes into behavioral (or user-generated), semantic (or appli-
cation), and system exceptions. The behavior exceptions are driven by improper
execution order of process activities. For example, the free user navigation through
Web pages may result in the wrong invocation of the expired link, or double-click the
link when only one click is respected. The semantic exceptions are driven by unsuc-
cessful logical outcome of activities execution. For example, a user does not keep
paying his periodic installments. The system exceptions are driven by the malfunc-
tioning of the workflow-based Web application, such as network failures and system
breakdowns. It then proposes a modeling framework that describes the structure
of activities inside hypertexts of a Web application. The hypertext belonging to an
activity is broken down into pages, where are univocally identified within an activity.
framework to handle these changes. The framework consists of three major compo-
nents: capturing model, notifying model, and handling model. The capturing model
capture events and store the exceptions data in the workflow model. The notifying
model propagate the occurred exceptions to the users. The handling model defines
a set of recovery policy to resolve the exception. For different types of exceptions,
different recovery policies will be used. In this chapter, we focus on different type
of changes. Changes are treated as the “rule”, not the “exception”.

10.9 Conclusion

We propose SCML, a formal language, to specify top-down changes. The SCML
is built upon a LCS schema, which is represented as a directed graph. The SCML
focuses on a proposed change taxonomy, which classifies changes into two cate-
gories: functional and non-functional changes. It is centered around four types of
clauses: definitive, query, change, and drop. The definitive clauses are used to define
a LCS schema. The query clauses are used to specify a query on a Web service
ontology. The change clauses are used to specify top-down changes. A procedure of
processing SCML statements is presented. We also describe a prototype implemented
to show the practicality of the proposed approach.

References

1. M. S. Akram, B. Medjahed, and A. Bouguettaya. Supporting Dynamic Changes in Web Service
Environments. In International Conferences on Service Oriented Computing (ICSOC), Trento,
Italy, 2003.

2. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, S. Weerawarana. Business Process Execution Language for
Web Services Version 1.1. Technical report, BEA Systems and IBM Corporation and Microsoft
Corporation and SAP AG and Siebel Systems, http://www.ibm.com/developerworks/library/
ws-bpel/, May 2003.

http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/library/ws-bpel/

252 X. Liu and A. Bouguettaya

3. Y. Baghdadi. A Web services-based business interactions manager to support electronic com-
merce applications. In ICEC ’05, 2005.

4. BPMI. Business Process Modeling Language (BPML. http://www.bpmi.org/bpml.esp, 2003.

5. Clarence A. Ellis and Karim Keddara. A workflow change is a workflow. In Business Process
Management, Models, Techniques, and Empirical Studies, pages 201-217, London, UK, 2000.
Springer-Verlag.

6. Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and Klaus Pohl.
A journey to highly dynamic, self-adaptive service-based applications. Automated Software
Engineering.

7. R. Khalaf and W. A. Nagy. Business Process with BPELAWS: Learning BPEL4WS, Part
6. Technical report, IBM, http://www-106.ibm.com/developerworks/webservices/library/ws-
bpelcol6/, 2003.

8. Marco Brambilla, Stefano Ceri, Sara Comai, and Christina Tziviskou. Exception handling
in workflow-driven web applications. In WWW ’05: Proceedings of the 14th international
conference on World Wide Web, pages 170-179, New York, NY, USA, 2005. ACM Press.

9. Nazim H. Madhavji. The prism model of changes. IEEE Trans. Softw. Eng., 18(5), 1992.

10. Qi Yu and Athman Bouguettaya. Framework for web service query algebra and optimization.
ACM Trans. Web, 2(1):1-35, 2008.

11. Qi Yu, Xumin Liu, Athman Bouguettaya, and Brahim Medjahed. Deploying and managing
web services: issues, solutions, and directions. VLDB Journal, 17(3):537-572, 2008.

12. Satish Thatte. XLANG Web Services for Business Process Design. http://www.gotdotnet.com/
team/xml_wsspecs/xlang-c/default.htm, 2001.

13. Setrag Khoshafian. Service oriented enterprises. Auerbach Publications, Boston, MA, USA,
2006.

14. The OWL Services Coalition. Owl-s: Semantic markup for web services. Technical report,
http://www.daml.org/services/owl-s/1.1B/owl-s/owl-s.html, July 2004.

15. A. Tsalgatidou and T. Pilioura. An Overview of Standards and Related Technology in Web
Services. Distributed and Parallel Databases, 12(2):135-162, 2002.

16. W. M. P. van der Aalst and T. Basten. Inheritance of workflows: an approach to tackling
problems related to change. Theoretical Computer Science, 270(1-2):125-203, 2002.

17. W3C. Extensible Markup Language (XML). http://www.w3.org/XML, 2003.

18. W3C. Simple Object Access Protocol (SOAP). http://www.w3.org/TR/SOAP/, 2003.

19. W3C. Universal Description, Discovery, and Integration (UDDI). http://www.uddi.org, 2003.

20. W3C. Web Service Choreography Interface (WSCI). http://www.w3.org/TR/wsci/, 2003.

21. W3C. Web Services Architecture. http://www.w3.org/TR/ws-arch/, 2003.

22. W3C. Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl, 2003.

23. WSMO Working Group. Web Service Modeling Ontology (WSMO). http://www.wsmo.org/,
2004.

24. Xumin Liu and Athman Bouguettaya. Managing top-down changes in service oriented enter-
prises. In IEEE International Conference on Web Services (ICWS), Salt Lake City, Utah, July
2007.

25. Xumin Liu and Athman Bouguettaya. Ontology support for managing top-down changes in
composite services. In CollaborateCom 2008, Orlando, FL, Nov. 2008.

26. Xumin Liu, Athman Bouguettaya, Xiaobing Wu, and Li Zhou. Ev-Ics: A system for the evolu-
tion of long-term composed services. IEEE Transactions on Services Computing, 99(PrePrints),
2012.

27. Xumin Liu, Athman Bouguettaya, Qi Yu, and Zaki Malik. Efficient change management in
long-term composed services. Service Oriented Computing and Applications, 5(2):87-103,
2011.

http://www.bpmi.org/bpml.esp
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol6/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol6/
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.daml.org/services/owl-s/1.1B/owl-s/owl-s.html
http://www.w3.org/XML
http://www.w3.org/TR/SOAP/
http://www.uddi.org
http://www.w3.org/TR/wsci/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl
http://www.wsmo.org/

Chapter 11
A Semantic-Based Approach to Generate
Abstract Services for Service Organization

Xumin Liu and Hua Liu

Abstract Service organization has been considered as the key enabler for efficient
web service management. It gives a high-level and structured view of the important
features of web services, including their functionality and inter-service relation-
ships, which can be leveraged to allow a top-down declarative way of querying and
composing web services. Abstract services that conceptualize the functionality pro-
vided by web services, has been widely adopted as the kernel component of web
service organization. However, how to generate abstract services is non-trivial. Cur-
rent approaches either assume the existence of abstract services or adopt a manual
process that demands intensive human intervention. We propose a novel approach
to fully automate the generation of abstract services. We first explain the process
of generating homogeneous service spaces, i.e., service communities, which consist
of a set of functionally similar services. We then present a process of generating
abstract services within a service community. We leverage semantics to address the
issues raised by syntactical-level service descriptions. An comprehensive experimen-
tal study on real world web service data is conducted to demonstrate the effectiveness
and efficiency of the proposed approach.

11.1 Introduction

Efficient web service management has been an essential and long-lasting challenge
since the introduction of Service-Oriented Computing (SOC). It becomes more crit-
ical when the emergence of Cloud Computing further impels the growth of SOC,
which results in the dramatic increase in the number of web services on the web.
This introduces significant difficulties of accessing to the services in an automatic

X. Liu (X))
Department of Computer Science, Rochester Institute of Technology, Rochester, USA
e-mail: xI@cs.rit.edu

H. Liu
Xerox Research at Webster, Webster, USA

A. Bouguettaya et al. (eds.), Advanced Web Services, 253
DOI: 10.1007/978-1-4614-7535-4_11,
© Springer Science+Business Media New York 2014

254 X. Liu and H. Liu

way, such as locating a desirable services and leveraging existing services to con-
struct business processes. The natural solution to deal with the large number of
web services and allow efficient web service management is to build up a service
organization, where related services are grouped together and their relationships are
clearly specified. Such a service organization gives a high-level and structured view
of the important features of web services, including their functionality and inter-
service relationships. It can be leveraged to allow a top-down and declarative way of
querying and composing Web services [5].

The concept of abstract services has been introduced and widely adopted as the
kernel component of web service organization [10]. The idea is to conceptualize
the functionality provided by Web services in a service space as abstract services
and use them as the basis of efficient service management [15]. Examples of such
functionalities include get_route, get_map, weather_inquiry and so on. An abstract
service is associated with the group of web services providing the defined function-
ality. The relationship between an abstract service and its associated actual services
is anomalous to the one between a class and it objects. Based on the description
of abstract services and their associations with actual services, service manage-
ment tasks, including service description, service discovery, service composition,
and change management, can be designed and performed in a top-down fashion.
That is, they can be carried out first on the “schema-level”, where only abstract
services are involved, and then on “instance-level”, where only the associated web
services are dealt with. More specifically, service discovery can start at identifying
the abstract services that match a query requirement and then search in the web ser-
vices instantiating the abstract services. Hence, both the efficiency and accuracy of
service discovery are expected to be greatly improved through narrowing down the
searching space. Similar to service discovery, service composition can start at design-
ing the composition schema by identifying suitable abstract services and building
up a schema-level workflow. The schema will then be instantiated by finding actual
services for the abstract services and orchestrate them [6, 8]. Following the same
rationale, abstract services also facilitate the process of dealing with the frequent
changes in service oriented enterprises [2, 13, 14].

While the usage of abstract services holds tremendous promise, how to generate
abstract services poses a set of key challenges. Existing approaches usually adopt a
manual process to create abstract services and generate the mapping to the concrete
services. The process starts by designing an abstract service based on the designer’s
view of the service space and user query requirements. To have a complete and
comprehensive view of the service space, the designer needs to manually go through
all service descriptions. Moreover, the designer will also need to manually specify
the mapping between an abstract service and the corresponding concrete services.
This is simply infeasible considering that there are a large number of web services
and the number still keeps increasing. An alternative way is to ask service providers
to link their services to predefined abstract services when publishing their services.
This is, however, impractical considering the autonomous and independent nature of
service providers. An efficient approach for generating abstract services is needed,
where human efforts should be minimized.

11 A Semantic-Based Approach 255

Some recent research efforts have been conducted for bootstrapping homoge-
nous web service spaces, i.e., web service communities, where related services are
grouped together [9, 11, 12, 20-22, 24]. The majority of these approaches lever-
ages information retrieval techniques (e.g. TF/IDF) when computing the similarity
between web service descriptions, where each web service is modeled as a vector of
terms. WSDL documents are dominantly targeted since WSDL is the de facto way
that service providers take to describe their services. It is thus practical to assume
that a service’s WSDL description is accessible. The approaches then apply various
data clustering algorithms to generate service communities from the service similar-
ity matrix. They differ mostly in the constructions of the term vectors, calculations
of the similarity metrics, and clustering algorithms (e.g., QT, k-means, SVD, and
SS-BVD). Inspired by these existing approaches, abstract service generation can be
accomplished by following two steps. First, applying service community learning
approaches to group web services providing similar functionalities together, i.e.,
forming service communities. This process can be fully automated by leveraging the
existing web service community learning approaches. With the adoption of informa-
tion retrieval technique, the process is proved to yield relatively high accuracy. This
is due to the observation that some common naming are usually followed for web
service development, especially for the WSDL documents which are automatically
generated from programming source codes. Second, extracting common features of
services within a service community to define abstract services.

The existing service community learning approaches only generate the mapping
between a service community and its member services. The outcome lacks sufficient
summative description of functionality of the member services, i.e., abstract services.
Simply using cluster centroids or representative terms to label a service community
is far away from being sufficient. First, such labels cannot precisely capture the func-
tionality of all member services. Users still need to go through a service’s description
to determine whether the service provides the desired functionality. Second, it is not
guaranteed that the labels have high coverage of member services’ functionality. To
address these issues, we propose an automatic abstract service generation process to
extract functional features of a service community’s member services. We define an
abstract service in terms of its input and output. All possible definitions of abstract
services can be generated by enumerating the possible combination of input and
output data items. We choose those abstracts services that can be instantiated by
sufficient number of actual services, i.e., having a supporting ratio no less than a
predefined threshold, to ensure the representativeness of the abstract services. To
improve the efficiency of the process, we leverage association rule mining tech-
niques to generate and prune the candidate abstract services. We start with finding
possible output of an abstract service by checking whether there are enough number
of services generating the output. For each output as such, we enumerate all possible
input and check whether there are enough number services from the result of the first
step that consume the given input. The mapping between an abstract service and the
member services are generated during the process. We apply a set of heuristics to
improve the efficiency and scalability of the process.

256 X. Liu and H. Liu

The abstract service generation process could be suffered from the lack of seman-
tical description contained in WSDL descriptions. This is due to the observation
that web services in a service community are usually provided by independent and
autonomous service providers. Various naming conventions and “dialects” are used
to describe services. More specifically, different web service providers might use the
same term to specify different meanings. For example, the term “courses” can be used
to represent classes and also degrees. It is also the case that different web services
use different terms to specify the same meaning. For example, some web service
providers use the term of “geocode” and others use “coordinates”. It is essential to
reconcile the diversities among web service descriptions when generating abstract
services. Furthermore, the ontological relationships between different terms, such as
“graduate students” and “person” should also be considered to precisely define and
compute the supporting ratio of an abstract service . In this chapter, we incorporate
semantics to the process of abstract services generation to improve the accuracy of
the produced outcome.

The remainder of this chapter is organized as follows. In Sect. 11.2, we describe
a process of bootstrapping homogenous web service spaces. In Sect. 11.3, we for-
mally define an abstract service and its support ratio. We then define the abstract
service generation problem that we address. In Sect. 11.4, we propose a process of
generating abstract services from a service community. Possible abstract services are
enumerated in a heuristic way. We use a bitmap to efficiently check each abstract
service’s support ratio. We further improve this process by incorporating semantics
to the process, which is presented in Sect. 11.4. In Sect. 11.5, we present a compre-
hensive experimental study to demonstrate the effectiveness and performance of the
proposed algorithms. In Sect. 11.6, we discuss some representative related works. In
Sect. 11.7, we conclude our chapter and discuss future work.

11.2 Web Service Community Generation

Abstract services are generated from a service community, where each community
groups services that provide a certain type of functionality. As the process of service
community generation is not the focus of this chapter, we present the general idea of
this process. The detailed description of an advanced service community generation
process can be found in [17]. The process takes WSDL documents as input since
WSDL is de facto standard way of describing services. As depicted in Fig. 11.1, the
process consists of several key steps, including extract terms, model services, com-
pute service similarity, and cluster services. We elaborate on these steps as follows.

The first step is to use web service crawlers to retrieve WSDL documents by
crawling the Web and store them in a service repository. Besides traditional web
search engines, e.g., google and bing, existing web service search engines, e.g.,
seekda ! and programmableWeb,” can be used as the sources of the service repository.

! http://webservices.seekda.com/
2 http://www.programmableweb.com

http://webservices.seekda.com/
http://www.programmableweb.com

11 A Semantic-Based Approach 257

WSDL |
Documents

. Compute service Cluster
Extract Terms ————){ Model services ——— similiarity — e
. » o
5 & s AR
(] |
Service description container Service-term vectors service similarity matrix Service community

Fig. 11.1 The service community learning process

We then parse WSDL documents and store all the detailed description for each
operation, including the operation name and detailed description of input and output
messages. The message description includes the message name and the description
of each part, which consists of the part name and its data type.

We adopt the current information retrieval approaches when comparing two ser-
vices. Generally speaking, two services in the same community should have a higher
similarity than the ones in different domains (e.g., travel, medical, and finance). For
example, flight_reservation and find_hotel are expected to have a higher similarity
than flight_reservation and get_Medicine_name. Although WSDL mainly describes
a service at the syntactic level, information retrieval techniques can be adopted to
extract semantics from WSDL descriptions. This is due to the observation that some
common naming conventions are usually followed for Web service development,
especially for the WSDL documents which are automatically generated from pro-
gramming source codes. For example, an operation usually has the name of the
original function, such as TemperatureConversion. Based on this observation, we
can analyze the functional features of a service from the terms in its description.
Following these lines, we extract ferms from a service description to compute the
service similarity.

It is very common that an element in a WSDL document appears in a com-
posite format. For example, an operation may have a name like get_Map, send
PurchaseRequest, or orderl. Thus, tokenization is performed on an operation’s
description to extract simple terms. The tokenization process decomposes a given
expression into simple terms. It consists of case change, suffix numbers elimina-
tion, word stemming, and underscore separator [19]. The output of the tokenization
process is a set of terms that are used to model a service. The terms are stored in a
service description container.

258 X. Liu and H. Liu

Let .7 be the set of terms extracted from all operation descriptions. It contains k
terms with distinct meanings. Here, we use Wordnet,? a lexical database, to connect
between synonyms. Let |D| be the number of operation descriptions, d be an oper-
ation’s description. n’.’ ; be the times that term #; and all its synonyms appear in ith
operation’s description. We define the representativeness of a term, i.e., the adjusted
TF/IDF, as:

/

i DI
/

2k Ny i

x log — 1
8ld 1 e d|

rji = tfj; X idf; = (11.1)

Here #; €’ d holds true if term #; or its synonyms appears in the service description.

Based on Eq.11.1, a service s; can be specified as a term vector < ry,
i, ..., rk,; >. The similarity of two services is computed as the cosine similar-
ity between the two vectors.

Sim(si, 5j) = cos(vi, vj) = v{ vi/ (| Vil l[lv;]) (11.2)

From Eq.11.2, we can generate a service similarity relevance matrix .45, where
S

myg, = Sim(ops, op;). We then apply data clustering techniques to group related
operations together. The objective here is to classify services into several groups
(each group corresponds to a service community), so that the services assigned to
each group are more similar to each other than the service assigned to different
groups.

K-Means is a widely used centroid-based data clustering algorithm. The basic
idea of applying K-Means is firstly randomly choose k operations as initial centroid.
k is a predefined number that represents the number of resulting clusters. The algo-
rithm then iteratively clusters operations, computes new centroids (c;), re-clusters
operations based on the new centroids, till centroids do not change. The process
of clustering is guided to maximize the cohesion of a cluster, which is defined in
Eq.11.3. K-Means is efficient with time complexity of &(KIM), where K is the

number of clusters, / is the number of iterations, and M is the size of the matrix.

k

cohesion = Z Z cos(d, ¢;) (11.3)

i=1 deC;

11.3 Problem Statement of Abstract Service Generation

In this section, we first formally define an abstract service and its support ratio. We
then present the formal definition of abstract service generation problem.

3 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

11 A Semantic-Based Approach 259

11.3.1 Abstract Service and Support Ratio

An abstract service should be describe in terms of the functional capacity of member
services of a service community. A query requirement specified in terms of abstract
services will be mapped to concrete services if there is a match. A query requirement
is usually formatted as looking for a service that takes a given input and generates a
given output. An example would be: find a service that takes an address as input and
returns weather information. Along with this line, we define an abstract service as:

Definition 11.3.1 An abstract service is a binary | = {l.I,1.0}, where [.I =
{i1, iz, ..., ip}isitsinput, and [.O = {01, 02, . . ., 0,} 1s its output.

Through an abstract service / of a service community ¢, users can understand
what type of queries can be satisfied by ¢’s member services. That is, being provided
with the data items in [./, the instances of / can generate all the data items in [.O.
To measure the portion of services in ¢ that can satisfy the query, we first define the
support of a concrete service as follows.

Definition 11.3.2 A concrete service s is said to support an input .#, denoted as
5I(F),if s.I C .7 sis said to support an output &, denoted as 5.0(0), if 5.0 2 O,
s is said to support an abstract service [, denoted as $(1), if s.1(/.I) and 5.0(1.0).

Based on Definition 11.3.2, we compute the support ratio of an abstract service
as follows. Let S = {s1, 52, ..., s} be the set of all member services in a service
community. The support ratio o (/) is calculated as follows:

{silsi € S ASD}
IS]
Example 11.3.1 Suppose the weather community contains five services, whose
inputand output are listed in Table 11.1. Given an abstract service [y = {{zipcode},
{weather}}, the services that support [include: 57, s5. Therefore, I’s support ratio
is 0.4. Another abstract service [= {{zipcode}, {weather,map_url}} has
a zero support ratio since there is no service supports it.

o(l) = (11.4)

11.3.2 Abstract Service Generation Problem

A support ratio of an abstract service reflects the portion of the member services
in a service community that have the functional capacity defined by the abstract

Table 11.1 Member services

. . ID Input Output

in weather community
S1 city, state, country weather, gas_price
52 zipcode weather, gas_price
$3 city, state, country weather, map_url
54 geocode map_url, gas_station
s5 zipcode weather

260 X. Liu and H. Liu

service. A higher support ratio that an abstract service has, the more representative
the abstract service is. We use a threshold 7, 0 < t < 1, as the minimum support
ratio of a representative abstract service.

Definition 11.3.3 An abstract service [is representative for a community c if its
support ratio is no less than the threshold, i.e., o (L) > .

Moreover, based on Definition 11.3.2, if a concrete service s supports an input /,
it supports all I’s superset. If a service s supports an output O, it supports all O’s
subset. Therefore, for two abstract services, [, I’, if the input of /" is a superset of the
input of / and the output of /' is a subset of I’s output, any service that supports [also
supports /'. In this case, [is dominated by I’ with respect to support ratio, denoted
as !’ = . Thatis, if I’ = I, o(I") > o(I). If] is representative, [is more preferred
than [’ since it has fewer input and more output, meaning that users are required to
provide fewer input but will gain more output from invoking I’s instances than {"’s
instances. In another word, / defines stronger functional capability. To optimize the
labeling result, we define an optimal abstract service as follows:

Definition 11.3.4 An abstract service [is optimal if it is representative and it does
not dominate any other representative abstract services.

Therefore, the problem of abstract service generation is modeled as: given ., the
set of a service community’s member services, and a support ratio threshold t, find
a set of abstract services £, where each abstract service | € £ is optimal.

11.4 Candidate Abstract Service Generation and Pruning

To produce all candidate abstract services, a brute-force approach is to enumerate
all possible inputs, denoted as .% ¢ enumerate all possible outputs, enumerate all
combinations between .# ¢ and ﬁ(‘f, denoted as %, and prune those that do not have
enough support ratio. Let S be the set of the service community’s member services.
Let 2.4 be the input data set, i.e., 7y = U/_,s;..#, and 2 be the output data set,
ie., 9p = Ul_,si.0. We have:

I = =27s1=
177 ;(l.)
%6
%01 _
0% = —2Z61-1
167 ;(l.
] =177 x |67 = 217014170l

The brute-force approach has serious performance issue due to the exponentially
increased computational complexity. To address this issue, we employ the idea of
Apriori principle of frequent itemsets generation to heuristically generate candidate
abstract services. We start with identifying all the possible outputs of an optimal

11 A Semantic-Based Approach 261

abstract service. For each output as such, we then find the matching inputs. The
mapping between the abstract service and the concrete services is also automatically
generated during this process.

11.4.1 Candidate Output Generation

The overall idea of heuristic candidate output generation output is that we use the
relationships between different outputs to filter out those outputs that are impossible
to have a sufficient support ratio. By this, we narrow down the searching space. When
compute the support ratio of an output, we only go through the concrete services that
have the potential of supporting the output. By this, we decrease the number of
comparisons between a candidate output and concrete outputs. We further optimize
this process by using a bitmap structure to achieve O(1) computational complexity.
The whole process is guided by the following theorem.

Theorem 11.4.1 If an output’s support ratio is less than the threshold, i.e., it is not
associated with a representative abstract service, then all its superset must also not
be associated with a representative abstract service. Moreover, if a concrete service
does not support an output, it must also not support all the output’s superset.

The proof of Theorem 11.4.1 directly follows Definition 11.3.2.

gas_station, gas_station, gas_station, | / [gas_price, gas_price, map_url, Y
gas_price map_url weather ! map_url weather weather /
gas_station, gas_station, gas_station, gas_price,
gas_price, gas_price, map_url, map_url,
map_url weather weather weather

gas_station,gas_price,map_url,weather

Fig. 11.2 A pruned output lattice using Apriori principle (z = 0.3)

We build a candidate output lattice where a node is a subset of all its child nodes,
as shown in Fig. 11.2. The nodes in the lattice will be generated and evaluated in
a breadth-first way. We use k-output to represent an output consisting of k data
items. As described in Algorithm 3, the process starts with generating and evaluating
candidate 1-output set from %, and filtering out those whose support ratios are less
than the threshold (Line 1). When evaluating the support ratio of a node, we only go
through the services that support the current node’s parent nodes. We further optimize
this process by using a bitmap structure to achieve O(1) computational complexity.

262 X. Liu and H. Liu

An output data item d’s occurrence in service outputs is bit encoded. The support
ratio of an output can be computed by performing an bitwise and operation between
the bit codes of all its data items (Line 5-6). In Example 11.3.1, weather is encoded
as [11101] and map_url is encoded as [00110]. The bit code of the output, {weather,
map_url}, is computed as [00100]. Therefore, the output’s support ratio is 0.2. If an
output node o has a sufficient support ratio, 0 will be included in the k-output set
(Line 6-7). All the parent nodes of o will then checked whether they have the same
support ratio as o. If there is such a parent, p, it can not be associated with an optimal
abstract service since p and o share the same group of supporting services and p is a
subset of 0. All such p will be removed (Line 8-12).

After evaluating all the nodes in %7, k-output set, Oy is generated and be used to
generate the next candidate output set, ;1 (Line 15). This step follows the idea of
apriori-gen method proposed in [1], i.e., merging two k-output nodes if they have
(k — 1) shared items. For example, {a, b, c} will be merged with {a, b, d}, but not
{a, d, e}. We then filter out those nodes that are impossible to be representative, i.e.,
one of its parents is not in Oy. If all its parents are in Oy, a (k+ 1)-output node will be
generated ((k;r])) times. We then only keep such nodes (Line 15). After removing the
duplicates from %1, the algorithm goes to the next iteration if 6% is not empty.
Let [Opmayx| 1s the maximum length of data items in a service’s output, the algorithm
always stops before or on k = |04y |. The result will be the union of all &, (Line 18).

Algorithm 3 Candidate Output Generation

Require: a list of service instance S, output set &, threshold t
Ensure: a set of output sets OF, such that for o € 0, 5(0) > t
Lik=1%, < {d)de Pp)

2: while 6, is not empty do

3: ﬁk =¢

4: forall o € € do

5: r = &ge,d.bitmap

6: if (o(0) = "C‘g‘l‘"’) > 7 then

7: ﬁk <~ o0

8: for all p &(parent(o) do

9: if o(0) = o(p) then

10: remove p from Oj_;

11: end if

12: end for

13: end if

14: end for

15: Cy41 = apriori’_gen(0}) {merge any two output with k — 1 shared data items as a (k + 1)-output and keep those
who are generated (U‘;])) times}

16: k=k+1
17: end while
18: result=U0}

By applying Theorem 11.4.1, the searching space of candidate output set is
significantly pruned. As shown in Fig.11.2, the process has visited only seven
out of fifteen nodes in the lattice. Four nodes out of them have a sufficient sup-
port ratio, including {gas_price}, {map_url}, {weather}, and {gas_price, weather}.
Since {gas_price} has the same support ratio as its child node, {weather,
gas_price}, itis not optimal. The other three nodes are returned.

11 A Semantic-Based Approach 263

11.4.2 Matching Input Generation

Once the candidate outputs are returned, the next step is to find each candidate output
the matching inputs to construct candidate abstract services. Moreover, if an input i
matches an output o, all its supersets matches o as well. Therefore an input should
minimally match a candidate output so that the constructed abstract service is optimal.
We define an minimal matching input as follows.

Definition 11.4.1 An input i is said to match an output o if the abstract service
constructed from i and o has a support ratio no less than the threshold. i is minimum
if it cannot still match o after removing a data item from it.

To find a matching input for an output o, a brute-force approach is to enumerate
and evaluate all subsets of Z ». To improve the performance, we use the relationships
between different input to filter out the ones that are impossible to match o. By this,
we narrow down the searching space. When evaluating an input, we only go through
the concrete services that support o and have the potential of supporting the input. By
this, we decrease the number of comparison between a candidate input and concrete
inputs. The whole process is guided by the following theorem.

Theorem 11.4.2 If an input i does not match an output o, then all of i’s subsets must
also not match o. Moreover, if a concrete service does not support an input, it must
also not support all the input’s subsets.

The proof of Theorem 11.4.2 directly follows Definition 11.3.2.

Algorithm 4 Candidate Input Sets Generation

Require: a list of service instance S, an output o, threshold t
Ensure: a set of input sets .#, such that fori € ., o (I(i,0)) >

1: @/J :/Us.l(s €0.8)

2 k=12 yl;

3: 6y < node(2' ;)

4: while 6, is not empty and k > 1 do

5: Ir=¢

6: forallic % do

7. i.count = 0; i.§:¢ .

8: for all s € Nparent(i).S do

9: if i D 5./ then

10: i.count++; iS<s

11: end if

12: end for

13: if % > 7 then

14:]1(i

15: remove all i’s parents from .7 |

16: end if

17: end for

18: €}_1=gen_next_level_input(.#;) {Intersect any two inputs with k — 1 shared data items as a (k — 1)-output and
keep those who are generated (<"7§+U) times }

19 k=k-1
20: end while
21: result=U.7;

264 X. Liu and H. Liu

For each candidate output, we build an input lattice so that a node is a superset
of all its child nodes, as shown in Figs. 11.3 and 11.4. The lattice will be traversed
in a breadth-first way. We use k-input to represent an input consisting of k data
items. As described in Algorithm 4, the process first merges the inputs of all the
services that support o and uses the result, @{’),,, as the root note of the lattice (Line
1-3). This will greatly decrease the size of the generated lattice without missing a
potential matching input, as shown in Figs.11.3 and 11.4. The searching process
starts with generating k-input nodes, where k = |.@’]|. During each iteration, all
the nodes in the candidate list, %%, will be examined by counting the number of 0’s
supporting services that support the input. Based on Theorem 11.4.2, we only check
those services that support all the parents of the current node (Line 8—12). For the
root node, this step can be skipped since it is supported by all 0’s supporting services.
If the current node matches o, the node will be added to k-input set (Line 13—-14). All
its parent nodes will be removed from (k + 1)-input set since they are not minimum
(Line 15). For example, in Fig. 11.4, all {d}’s ancestors are removed.

After evaluating all the nodes in %%, k-input set, .% is generated and will be used
to generate the next level input set, 6% (Line 18). This step uses the similar idea of
apriori’-gen method in Algorithm 3, i.e., only generating the (k — 1)-inputs that have
the potential of matching o. The algorithm then goes to next iteration k = k — 1 if
k-1 is notempty. Let |1, | is the minimum length of a service’s input, the algorithm
always stops before or on k = |I,,j,,|. The result will be the union of all .# (Line 21).

start here

a:city b: state c:country d: zipcode e: geocode

Fig. 11.3 A pruned input lattice using Apriori principle (t = 0.3, O = {weather, gas_price}), the
minimum matching input is {a, b, c, d}

11 A Semantic-Based Approach 265

start here

a:city b:state c:country d:zipcode e:geocode

Fig. 11.4 A pruned input lattice using Apriori principle (z = 0.3, O = {weather}), the minimum
matching inputs are {a, b, ¢} and {d}

Table 11.2 Optimal abstract services (t = 0.4)

ID Input Output Support services
A zipcode, city, state, country weather, gas_price s,5
b zipcode weather $2, 85
I3 city, state, country weather s1, 83
n city, state, country, geocode map_url 53, 54

Table 11.2 shows the optimal abstract services generated from Example 11.3.1
with the support ratio threshold t = 0.3.

11.4.3 Semantic-Based Abstract Service Generation

Till now, we present a complete process of generating abstract services from a ser-
vice community. The process is grounded with WSDL descriptions of web ser-
vices. It could be suffered from the lack of semantics delivered in the syntactic-
level service descriptions. More specifically, WSDL does not capture the relation-
ships between terms so it only supports “keyword-based”” scheme. This would lead
to the two major accuracy issues of generating abstract services. First, failing to
identify and handle synonyms, duplicate abstract services may be generated. For
example, {postalcode} — {weather} and {zipcode} — {weather} will be consid-
ered and evaluated as two different abstract services. Second, failing to identify
and handle relationships between two concepts, such as equivalent, subclass-of, and

266 X. Liu and H. Liu

property-of, might lead to incorrectly compute the support ratio of an abstract service.
For example, a service with coordinate as input and weather as output will not
be considered to support the abstract service whose input is geocode and output is
weather. Therefore, it is important to incorporate the relationships between terms
to the process of abstract service generation.

Pizza house cafeteria buffet Fine dining

, I I ~
7/ | I ~

Fig. 11.5 An ontology of concepts in POI domain

Current web technologies, such as OWL, use ontology to describe terms and
their relationships. Figure 11.5 depicts the snippet of a Point of Interests (referred
to as POI) ontology structure. Three types of relationships are defined, including
equivalent, subclass of, and property of, whose semantics are in line with the ones in
RDF and OWL, including owl:sameAs, rdfs:subClassOf, and rdf:Property relations
[3, 7]. A concept c; is equivalent to another concept ¢ iff ¢y E ¢ and ¢; 3
c2. We identify synonyms if they are linked to the same or equivalent concepts.
A concept ¢ is a subclass of another concept ¢; iff ¢ C ¢p, such as buffet isa
subclass of restaurant. A concept ¢y is a property of another concept cp if cy isin¢>’s
property list. Description Logic (DL) [4] is used for reasoning concept relationships.
The relationships between terms can be derived from the relationships between the
concepts that they are linked to.

Once mapping the terms in WSDL descriptions to the nodes in an ontology tree,
the following steps will be incorporated to the proposed abstract service generation
process.

11.4.3.1 Replace Synonyms by a Unified Term

This step is to rewrite the web service WSDL descriptions to reconcile the syntactic
difference among synonyms. For each group of synonyms, a unified term will be
chosen and replace all other terms in the group. Z 4 and 24 will be regenerated
with a smaller size. We use 9} and Qfﬁ to denote the new input data set and output
data set.

11 A Semantic-Based Approach 267
11.4.3.2 Semantic-Based Support Ratio Calculation

We redefine ‘e’ for ‘C’ and ‘D’ in Definition 11.3.2 to take into account of relation-
ships between concepts when computing the supporting ratio, as follows.

Definition 11.4.2 A data d is said to semantically be included in a data set D, i.e.,
d €’ D, if either d € D, or there is a data d’ € D that d’ is a descendent of d or d is
a property fd’.

For example, a concrete service with the output {pizza house, address} can be
counted as supporting the candidate output {restaurant, address}, which improve
the accuracy of computing support ratio. Furthermore, by adding semantics, we
can explore new representative abstract services. To help understand the idea, we
revise our running example as follows by adding one service, which is depicted in
Table 11.3.

Without incorporating semantics, adding se to the list will not change the list
of representative abstract services. When considering term relationships, we find
that gas-station and hotel share a common ascendant, i.e., POI. Therefore,
a new abstract service with the input {geocode} and output {POI} is found to be
representative. Itis supported by s4 and s¢ so its supportratiois 0.33, which exceeds 7.
Therefore, we change the process of enumerating candidate abstract services based
on the following observation:

if a term t| is an ascendant of another term ty, its support ratio is always higher
then t)s.

Therefore, we add these common ascendants to the data sets, 7, to fully explore
potential candidate output. Two terms may have multiple ascendants. For exam-
ple, pizza house and buffet have two ascendants, restaurant and POI in
Fig. 11.5, we only consider minimal common ascendant (MCA), i.e., restaurant, to
avoid redundancy. That is, for every pair {dy, d>}, where d1, d» € 2/, add d to ’[})
if d is their MCA. Following the same line, we identify the largest common descen-
dants (LCD) between two terms and add them to :@’j when evaluating matching input
items.

Definition 11.4.3 is also followed when using bitmap structure to encode a candi-
date output. In the example, after adding {POI} to &/, POT is encoded as [000101]
since it is supported by s4 and s¢.

Table 11.3 Revised list of

member services in weather ID _Input Output

community s| city, state, country weather, gas_price
s2 zipcode weather, gas_price
s3 city, state, country weather, map_url
sS4 geocode map_url, gas_station
s5 zipcode weather

S¢ geocode map_url, hotel

268 X. Liu and H. Liu

Table 11.4 Service

.. Community Number of services
communities
Communication 20
Food 17
Medical 16
Travel 16
Education 32

11.5 Experimental Study

To assess the effectiveness of the proposed abstract service generation algorithms, we
performed a set of experiments on a real-world Web service dataset, whose WSDL
descriptions are obtained from OWLS-TC, a service retrieval test collection [18].
All experiments were carried out on a Mac Pro with 2.66 GHz Quad-Core processor
and 6GB DDR3 memory under Mac OS X operating system. To clearly illuminate
the results, we randomly chose a subset of service descriptions from five different
domains from the service collection. The randomly selected services are from five
different application domains, including medical, communication, food, travel, and
education.

We applied the service community construction algorithm we proposed in [16]
to generate five different service communities. The community construction algo-
rithm groups together services that provide similar functionalities by calculating the
relevance of the operations provided by these services. Table 11.4 shows the service
communities and their corresponding number of services. We applied out abstract
service generation algorithm to these communities to produce the input/output labels
for these services. In what follows, we present the result of output and input label
generation. Limited by space, we choose the Medical service community to explain
the result. Table 11.5 gives the details of all the services, including their inputs and
outputs, in the Medical service community.

11.5.1 Output Label Generation

We applied Algorithm 3 to the Medical service community to generate the output
labels. We set 7, the threshold for the supportratio, as 0.1. Table 11.6 reports the output
labels for the medical services. The support ratio as well as the supporting services
are listed together with each output label. Two labels are generated that include one
output and three labels are generated with two outputs. Since the maximum number
of outputs of all medical services is two, it is impossible to generate labels with more
than two outputs.

The pruning strategy presented in Sect. 11.4 plays a key role to ensure the effi-
ciency of the algorithm. As shown in Table 11.5, all the medical services generated
13 different outputs. Even for a relatively small community as such, a brute-force

A Semantic-Based Approach 269

11

(panunuoo)

[AINVIDISAHd SAQI0D

-HITVIIAINLINALLVALAD]
[AIOMSSVANVIDISAHd SAI0DTYA
~TVIIAINLNALLYd LED]
[ANILANANOLLYZIYOHLNY
TSAYODTYTVIIAININALLVALAD]
[FIINONTINVINSNI
-HITVAHINALLVd SQI0D SQIODIITVIIAANATZINO
[INFWNIOATATMONIDV SAI0Ddd -HYTVIIAINLNALLVALED] -HLOV SQIO0DTITVYIIAdN
~TVOIAINLNALLVdALVddn] [LNFNLVHYL SAI0Ddy'1 “INALLVdLADINTNADAAT
[SAYODTATYIIAIINAAZIMOHLNAY SAY0D -VOIQAWINALLYVALVAdN] -MONMDV SAIODAITVIIA
-HYTVIIAININALLVALAD] [NOLLISOdSdOINALLVd LIOdSNVILLNALLVA] “HNLNHIIOdILVAdN 198 8
[ONILOIaadd] [TVLIdSOH] ONILOIAHT¥d 198 L
ONLLYDILLSHANI SSHIAAV
[DNILVOILSTANI 1 [SSTIAAV-TVLSOd] [TVLIdSOH] ~TV1SOd 198 9
[DNILVOLLSHANI | [TVLIdSOH] ONILVOLLSHANI 198 S
AIVININNS
[SSADOYITVIIOOTOHIASITYNOILNALNI] TSSAD0MdTVIIDOT
(AIVININNS] [TVLIdSOH] ~OHOASATYNOLLNHLNI 198 ¥
[AINSVANWANIL] TINSVANANILL ™
* [SSHDOYIDLLSONDVIA] [TVLIdSOH] SSHOOYDILSONDOVIA 193 €
TVAYALNIANLL
[TVAYFLNIGINIL] [SSADOYIDILSONDVIA] [TVLIdSOH] SSHOOUADILSONDOVIA 198 T
NOLLVINAANLL ™
[SSHDOYIDILSONDOVIA] [TVLIdSOH] SSHOOYdIILSONOVIA 193 1
[NOILVINAANWIL] * [SSED0OYIOILSONDOVIA] [TVLIdSOH] SSHOOYIDILSONDOVIA 198 0
ndinp nduy IARS IS

ATUNWWOD 0TAISS [BIIPAW) UI SAIAIS ST d[qRL

X. Liu and H. Liu

270

[DNILVOILSTANI] [DINI'TOTVOIAAN] ONILVOLLSHANI 198 ST
[FINSVAWTNIL | HINSVANTINILL
[SSADOYIDILSONDVIC] [DINI'TOTVOIAAN] TSSHOOYIOLLSONDOVIA 198 4l
[TVAYALNIANIL] TVAIALNIANIL
[SSADOUIDILSONDVIA | [DINITOTVOIdaIN] TSSHOOYIOLLSONDOVIA 198 €l
[NOLLVINAANIL] NOLLVINAANIL
[SSADOUIILLSONDVIA | [DINI'TOTVOIddIN] TSSHDOOYIOLLSONDOVIA 198 !
[SSHDOYIDILSONDVIC] [DINITOTVOIAAN] SSHDOYIDLLSONOVIA 193 1
[Asdo1d7] [DINITOTVOIAAN] ASdOIg 198 01
[ANILALVATYATIIVLIN
-HIIVd TVLIdSOHINYOANI]
[TV1IdSOHQ4.L
-DdTdS TVLIdSOHINYOANI]
[ASNOdSTILNANIDATTM [SWOLdNASAASON ASNOdSTHILNINADAT TMON
-ONSIV TVLIdSOHWYIOANI] -OVIA TVLIdSOHIWYOANI] SOV TVLIASOHINJOAND?S 6
mdino ndug QIIAIRS ais

(Ponunuod) 1 AAqEL

11 A Semantic-Based Approach 271

Table 11.6 Output labels for the medical service community

Output Support SID

One-output Labels

[_DIAGNOSTICPROCESS] 0.5 0,1,2,3,11,12,13, 14
[_INVESTIGATING] 0.1875 5,6,15

Two-output Labels

[_DIAGNOSTICPROCESS] [_TIMEINTERVAL] 0.125 2,13
[_LDIAGNOSTICPROCESS] [_TIMEMEASURE] 0.125 3,14
]_DIAGNOSTICPROCESS] [_TIMEDURATION] 0.125 1,12

approach requires to generate 2'3 = 8192 output labels. Algorithm 3 enumerated
much less number of labels due to the proposed pruning strategy. Specifically, it first
generates 13 output labels for the first level of the output lattice. Among these 13
labels, 8 are pruned as their support ratios are less than t = 0.1. The remaining out-
puts include [_DIAGNOSTICPROCESS], [_TIMEINTERVAL], [_INVESTIGAT-
ING], [_TIMEMEASURE], and [_TIMEDURATION]. Then, only these outputs
will be used to generated labels with two outputs. Hence, (;) = 10 labels are gen-
erated, among which only the three as shown in Table 11.6 having a support ratio
no less than 7 are kept. Since no medical service has more than two outputs, the
algorithm terminates. Therefore, the algorithm enumerates 10 + 13 = 23 labels,
which is 600 less times than a brute-force approach. This makes Algorithm 3 more
efficient and scalable to very large sized service communities.

It is also worth to note that the three two-output labels have the same support
ratio as their parent output labels [_TIMEINTERVAL], [TIMEMEASURE], and
[_TIMEDURATION], respectively. Hence, the three parent labels are removed as
being dominated by their child output labels.

11.5.2 Input Label Generation

We applied Algorithm 4 to the generated output labels to identify their inputs.
The result is a set of representative labels (i.e., input and output) for the ser-
vice community. Table 11.7 shows the final representative labels for the medical
services. We have some interesting observations. First, the final result has six
labels whereas the size of the output labels is five. The reason is that the out-
put label [_DIAGNOSTICPROCESS] is separated into two labels in the final
result with different inputs. The supporting services for final abstract service
[output([_DIAGNOSTICPROCESS]), input([_HOSPITAL])] consist of services,
0, 1, 2, and 3. Similarly, the supporting services for final abstract service [out-
put([_DIAGNOSTICPROCESS]), input([_MEDICALCLINIC])] consist of ser-
vices, 11, 12, 13, and 14.

272 X. Liu and H. Liu

Table 11.7 Optimal abstract services for the medical service community

Output Input Support SID

One-output Labels

[_LDIAGNOSTICPROCESS] [_LHOSPITAL] 0.25 0,1,2,3
[_MEDICALCLINIC] 0.25 11,12, 13, 14

[_INVESTIGATING] [_HOSPITAL] 0.125 56

Two-output Labels

[_DIAGNOSTICPROCESS] [_HOSPITAL] [MEDICALCLINIC] 0.125 2,13
[_TIMEINTERVAL]

[_DIAGNOSTICPROCESS] [_HOSPITAL] [MEDICALCLINIC] 0.125 3,14
[_TIMEMEASURE]

]_DIAGNOSTICPROCESS] [_HOSPITAL] [MEDICALCLINIC] 0.125 1,12
[_TIMEDURATION]

Another interesting observation is that the support ratio of the final abstract ser-
vice[output ([_INVESTIGATING]), input([_HOSPITAL])]is 0.125, which is lower
than the support ratio of the corresponding output label [_INVESTIGATING]. This is
because two inputs can generate [_INVESTIGATING], which includes [_HOSPIT-
AL] and [_MEDICALCLINIC]. However, only one service (i.e., service 15) support
final abstract service [output([_INVESTIGATING]), input([_MEDICALCLI-
NIC])], which makes its support ratio fall below t. Hence, this abstract service
is removed. On the other hand, two services (i.e., 5 and 6) support final abstract
service. [output([_INVESTIGATING]), input([_HOSPITAL])], which achieves a
support ratio at 0.125 > 7. Therefore, only this abstract service is kept in the final
result.

The proposed pruning strategy also ensures the efficiency and scalability of the
input label generation algorithm. The analysis is similar to the one in the above
section.

11.6 Related Work

This work is closely related to web service functionality-based labeling and web
service community learning. In this Section, we discuss some representative related
works and differentiate this work from them.

11.6.1 Service Functionality-Based Labeling

In [23], a system, “DeepMiner” is proposed to automatically derive domain ontolo-
gies for semantically marking up Web services. It takes a set of web sites that

11 A Semantic-Based Approach 273

potentially provide Web services in a domain as input and uses machine learning
approaches to incrementally learn domain ontologies. DeepMiner observes the query
interfaces and data pages of the web sites. A base ontology is first generated from the
query interfaces. DeepMiner then grows the ontology by investigating more informa-
tion from the data pages. SLINK algorithm is used to discover distinctive concepts
over multiple interfaces. The work mainly focuses on semantically annotate a web
service’s input and output. Our work mainly focuses on extract common functional
features from a set of web services, forming an abstract service to represent the
concrete services.

In [9], a self-organizing based clustering, “taxonomic clustering”, is proposed to
automatically generate an ontological organization of web services for each of the
four dimensions: input, output, precondition, and effect. A set of web services is ran-
domly selected as the sample space. Taxonomic web service clusters are generated
over the sample space for each dimension independently. Such a cluster has a hier-
archical structure where the relationships of services include ancestor/predecessor,
sibling, or mutually disjoint. A sample web service is positioned by finding for the
most specific parents (MSP) and least specific children (LSC). A service query can be
answered by finding the MSP in the input cluster space and LSC in the output cluster
space. This work clusters web services based on their input, output separately, which
lacks an integrated view. Moreover, this work include all services in the hierarchy
using exact match. Therefore, it is sensitive to outliers, which introduces difficulties
in dealing with the service space with large volume and great diversity. In our work,
we label a service community integrating both input and output of member services.
We only keep the labels that are supported by a sufficient number of services to
ignore outliers.

11.6.2 Web Service Community Learning

In [24], a co-clustering approach is proposed to generate web service communities
based on WSDL descriptions. The approach improves the precision and recall of
community generation by clustering web services and operations together. It builds up
a service matrix and an operation matrix based on their term TF/IDFs. The similarity
between a web service and an operation is computed as a dot product of the service
vector and the operation vector. A co-occurrence matrix of services and operations
is modeled as an undirected bipartite graph which consists a set of service nodes,
a set of operation nodes, and the edges between them. Each edge is weighted as the
similarity between the corresponding service and operation. Based on the bipartite
graph model, the Singular Vector Decomposition (SVD) approach is used to group
related web services and operations into the same communities.

The work proposed in [11] applies a clustering algorithm, Quality Threshold
(QT), to cluster web services into functionally similar service groups. It measures
the similarity between two services by comparing the elements in WSDL documents,
including service names, complex data types, messages, portTypes, as well as terms.

274 X. Liu and H. Liu

In [19], URBE (Uddi Registry By Example) is proposed to intelligently retrieve
Web services based on similarity between Web service interfaces. The similarity
between two WSDL documents is computed based on the elements and the terms
included in the documents. It defines a maximization function to calculate the similar-
ity between the elements in two sets, based on a bipartite graph model. It then uses
the maximization function to compute the similarity between names, operations,
names, and parts. The work also utilizes Wordnet to solve the syntactic conflicts
between synonyms. URBE is then extended to compute similarity between seman-
tically annotated Web service descriptions, i.e., SAWSDL documents.

These approaches proposed in [11, 19, 24] mainly focus on bootstrapping web
service communities. None of them takes a further step on labeling a service commu-
nity by defining abstract services from it. This work is built upon these approaches
and propose a heuristic process of generating abstract services in an automatic way.

11.7 Conclusion

We present an automatic approach to generate abstract services for constructing a
functionality-based service organizaiton. The process starts with bootstrapping ser-
vice communities, where similar services are grouped together. Within a service com-
munity, abstract services are generated in an automatic way. We model the problem
as finding the abstract services whose supporting ratios are no less than a predefined
threshold. The process enumerates all possible candidate abstract services and prune
them using the threshold. The result is further optimized by filtering out those that
can be represented by (i.e., dominate) other candidates. The mapping between an
abstract service and the member services are also generated during the process. We
apply a set of heuristics to improve the efficiency and scalability of the process. We
further improve the accuracy of the generated outcome by incorporating semantics
to the process. In the future work, we plan to apply our approach to large scale data
sets to extensively evaluate the efficiency.

Acknowledgments This work is supported by a Xerox research grant.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases.
In Proceedings of the 20th International Conference on Very Large Data Bases, VLDB 94,
pages 487499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

2. S. Akram, A. Bouguettaya, X. Liu, A. Haller, and F. Rosenberg. A change management frame-
work for service oriented enterprises. I/NGC, 1(1), 2010.

3. Grigoris Antoniou, Grigoris Antoniou, Grigoris Antoniou, Frank Van Harmelen, and Frank Van
Harmelen. Web ontology language: Owl. In Handbook on Ontologies in Information Systems,
pages 67-92. Springer, 2003.

11

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

A Semantic-Based Approach 275

. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-

Schneider, Eds.. The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York, NY, USA, 2003.

. A. Bouguettaya, S. Nepal, W. Sherchan, X. Zhou, J. Wu, S. Chen, D. Liu, L. Li, H. Wang, and

X. Liu. End-to-end service support for mashups. IEEE T. Services Computing, 3(3):250-263,
2010.

. A. Bouguettaya, S. Nepal, W. Sherchan, X. Zhou, J. Wu, S. Chen, D. Liu, L. Li, H. Wang, and

X. Liu. End-to-end service support for mashups. IEEE Transactions on Services Computing,
3:250-263, 2010.

. Dan Brickley and R. V. Guha. Resource description framework (RDF) schema specification

1.0, March 2000.

. G. Canfora, M.o Di Penta, R. Esposito, and M. Villani. An approach for qos-aware service

composition based on genetic algorithms. In Proceedings of the 2005 conference on Genetic
and evolutionary computation, GECCO ’05, pages 1069-1075, 2005.

. S.Dasgupta, S. Bhat, and Y. Lee. Taxonomic clustering and query matching for efficient service

discovery. In ICWS, pages 363-370, 2011.

. S. Dustdar and W. Schreiner. A survey on web services composition. International Journal of

Web and Grid Services, 1:1-30, August 2005.

. K. Elgazzar, A. E. Hassan, and P. Martin. Clustering wsdl documents to bootstrap the discovery

of web services. In ICWS 2010, pages 147-154, 2010.

. W. Liu and W. Wong. Discovering homogenous service communities through web service

clustering. In Proceedings of the 2008 AAMAS international conference on Service-oriented
computing: agents, semantics, and engineering, SOCASE’08, pages 69—82, Berlin, Heidelberg,
2008. Springer-Verlag.

. X. Liu and A. Bouguettaya. Managing top-down changes in service oriented enterprises. In

IEEFE International Conference on Web Services (ICWS), Salt Lake City, Utah, July 2007.

X. Liu, A. Bouguettaya, X. Wu, and L. Zhou. Ev-Ics: A system for the evolution of long-term
composed services. IEEE Transactions on Services Computing, 99(PrePrints), 2012.
X.Liu,C.Liu,M. Rege, and A. Bouguettaya. Semantic support for adaptive long term composed
services. In JICWS, pages 267-274, 2010.

X. Liu and H. Liu. Constructing operation-level ontologies for web services. In ICWS 2011
(Work-In-Progress), Washington DC, July 2011.

X. Liu and H. Liu. An integrated framework for web service ontology development. Interna-
tional Journal of Next Generation Computing (IJNGC), to appear, 2012.

OWLS-TC. OWL-S service retrieval test collection. http://projects.semwebcentral.org/
projects/owls-tc, 2005

P. Plebani and B. Pernici. URBE: Web service retrieval based on similarity evaluation. /[EEE
Transactions on Knowledge and Data Engineering, 21:1629—-1642, 2009.

A. Salunke, M. Nguyen, X. Liu, and M. Rege. Web service discovery using semi-supervised
block value decomposition. In Proceedings of the IEEE International Conference on Informa-
tion Reuse and Integration (IRI 2011), pages 3641, 2011.

Amit Salunke, Minh Nguyen, Xumin Liu, and Manjeet Rege. Web service discovery using
semi-supervised block value decomposition. In IRI, pages 36-41. IEEE Systems, Man, and
Cybernetics Society, 2011.

A. Segev and Q. Z. Sheng. Bootstrapping ontologies for web services. IEEE Transactions on
Services Computing, 5(1):33-44, 2012.

W. Wu, A. Doan, C. Yu, and W. Meng. Bootstrapping domain ontology for semantic web
services from source web sites. In In Proceedings of the VLDB-05 Workshop on Technologies
for E-Services, pages 11-22, 2005.

Q. Yu and M. Rege. On service community learning: A co-clustering approach. In ICWS 2010,
pages 283-290, 2010.

http://projects.semwebcentral.org/projects/owls-tc
http://projects.semwebcentral.org/projects/owls-tc

Part II
Web Service Applications
and Case Studies

Chapter 12
Exploring Service Networks of Biological
Processes on the Web

George Zheng and Athman Bouguettaya

Abstract We propose a service-oriented framework for exploring networks of
processes modeled as Web services. In particular, we apply this approach to bio-
logical processes that builds upon and extends existing biological representation
methodologies. We present our prototype service exploration tool, named PathEx-
plorer, to discover potentially interesting biological pathways linking service models
of biological processes. We describe an innovative approach used by PathExplorer
to identify useful pathways and its service-based simulation strategy to support pre-
dictive analysis.

12.1 Introduction

Worldwide research projects in genomics, epigenomics and proteomics have con-
tributed to the recent explosion of the amount of data describing biological entities
and processes at various levels. These processes are often manifested through enti-
ties” interactions with one another and the surrounding environment. The interactions
themselves are the foundations for many of the pathways that are essential to the well
being of our body. A biological pathway is a series of actions among molecules in
a cell that leads to a certain product or a change in a cell [3]. Biological pathways
have traditionally been discovered manually [37] based on experimental data such as
gene expression data from microarrays, protein-protein interaction data from large-
scale screening, and pathway data from previous discoveries. As a whole, biological

G. Zheng (X))
Science Applications International Corporation, McLean, VA, USA
e-mail: george.zheng @saic.com

A. Bouguettaya

School of Computer Science and Information Technology, RMIT University,
Melbourne, Australia

e-mail: athman.bouguettaya@rmit.edu.au

A. Bouguettaya et al. (eds.), Advanced Web Services, 279
DOI: 10.1007/978-1-4614-7535-4_12,
© Springer Science+Business Media New York 2014

280 G. Zheng and A. Bouguettaya

pathways form the bridges that link much of the diverse range of biological data into
a logical picture of why and how human genes and cells function the way they do.
Disturbances and alterations in many of these pathways are expected to be linked to
various diseases. Although research projects have begun answering many questions
regarding how the human biological machinery works, much of the gold mine of bio-
logical information generated from these projects is still unexplored to a large extent:
critical links hidden across various lab results are still waiting to be identified; isolated
segments of potentially more comprehensive pathways are yet to be linked together.
While early exposure of these hidden pathway linkages is expected to deepen our
understanding of how diseases come about and help expedite drug discovery for
treating them, it is now obvious that the complexity and enormity of information
involved in the exposure of such hidden linkages may be too overwhelming for an
unaided human mind to comprehend. As a result, such exposure often requires the
use of mining tools, which can be used to help identify pathways and conduct pre-
dictive pathway analysis, e.g., through simulation. Unfortunately, approaches taken
today for representing biological data focus on either pathway identification or path-
way simulation, but not both. This consequently makes it difficult to devise effective
mining tools.

We propose a service-oriented framework to model and deploy biological entities
and their processes as Web services to bridge the gap between the above two repre-
sentation approaches. Using this strategy, biological processes are modeled as Web
service operations and exposed via standard Web service interfaces. An operation
may consume some input substance meeting a set of preconditions and then produce
some output substance as a result of its invocation. Some of these input and output
substances may themselves trigger processes that are known to us and thus can also
be modeled and deployed as Web services. Domain ontologies containing definition
of various entity types would be used by these Web services when referring to their
operation inputs and outputs. This service oriented process modeling and deployment
strategy opens up new interesting possibilities. First, like existing natural language
processing approaches (e.g., [25, 34, 36, 38]), it allows us to use service mining tools
to proactively and systematically sift through Web service description documents in
the service registry for automatic discovery of previously hidden pathways. Second,
it brings about unprecedented opportunity for validating such pathways right on
the Web through direct invocation of involved services. This second capability also
makes it possible to carry out simulation-based predictive analysis of interactions
involving a large number of entities modeled by these services. When enough details
are captured in the service process models, this in-place invocation capability allows
for inexpensive and accessible simulations, which are expected to provide predictive
results that can be validated in vitro and/or in vivo experiments. In the presence of
a large amount of biological information already made available in many formats
from various sources, the adoption of this approach will undoubtedly incur an initial
cost. However, this cost is only one-time and will be relatively trivial compared to
the on-going development cost of various coupling mechanisms required between
applications hosting biological data and limited potential such coupling mecha-
nisms can offer. To demonstrate the feasibility of our service-oriented modeling and

12 Exploring Service Networks 281

mining approach, we have implemented our service mining tool in a prototype called
PathExplorer, which can be used to discover potentially interesting biological path-
ways linking service models of biological processes. We have also implemented a
service-oriented simulation strategy in PathExplorer for the purpose of predictive
analysis.

We organize the remainder of the paper as follows. Section 12.2 first introduces
the concept of service recognition, which forms the basis of much of our mining
algorithms. Section 12.3 introduces our service-oriented framework. Section 12.4
describes our strategy for modeling biological processes as Web services. Section 12.5
presents the application of our framework to the service models and results obtained
with respect to the discovery and analysis of biological pathways. Section 12.6 dis-
cusses related approaches that are currently used to represent biological entities. We
conclude the paper in Sect. 12.7.

12.2 Web Service Recognition

Much like molecules in the natural world where they can recognize each other and
form bonds in between [19], Web services and operations can also recognize each
other through both syntax and semantics. Consequently, potentially interesting and
useful service compositions may emerge from bottom up through such mechanism.
In the following, we map behaviors/processes manifested by biological substances
as operations. Operations from the same substance are grouped together and encap-
sulated in one service. We identify three relevant types of recognition between Web
services and operations, as shown in Fig. 12.1.

Fig. 12.1 Service/operation recognition mechanisms

282 G. Zheng and A. Bouguettaya

Recognition. A target operation (e.g., op.2) recognizes a source operation (e.g.,
opa1), if the source operation generates some or all input parameters (e.g., p : T,
and p : Tjp) of the target operation.

In the following two patterns, we assume that the availability of a service is directly
proportionate to the quantity of entity instances that provide the service. Thus, the
increase in such quantity tends to promote the service and reduction in such quantity
tends to inhibit the service.

Promotion. When an operation (e.g., op.1 of S.) produces a substance (e.g., p : Ty
as output parameter of op.1), which in turn manifests a set of behaviors/processes
encapsulated in a service (e.g., Sy), we say that the operation promotes the service.

Inhibition. When an operation (e.g., op.2 of S;) consumes a substance (e.g., p : Tp
as input parameter of op.2), which in turn manifests a set of behaviors/processes
encapsulated in a service (Sp), we say that the operation inhibits the service.

Note that in order for Web services and operations to recognize one another using
these mechanisms, additional pre- and post-conditions may also need to be met.

12.3 Service Oriented Framework

Figure 12.2 shows our pathway exploration framework. It starts with scope specifi-
cation, a manual phase involving a domain expert providing a general goal for the
subsequent search. Different from traditional service composition approaches where
specific search criteria are specified (e.g., compose a travel service that supports flight
booking, car rental and hotel reservation), our search is driven by the desire to iden-
tify any interesting and useful service compositions that may come up in the search
process. For performance reasons, the general goal is provided to scope down the
initial search space to a reasonable size. The goal is expressed using mining context
[44], defined as a set of domains carved out by a set of locale attributes of min-
ing interest. Consequently, the mining context encompasses functional areas (e.g.,
cell enzyme, drug functions) and/or locales (e.g., heart, brain) where these functions
reside. Scope specification is followed by several automatic phases. The first of these
is search space determination, where the mining context is used to define a focused
library of existing service models found on the Web as the initial pool for further
exploration. The next is the screening phase, where Web services in the focused
library would go through filtering algorithms for the purpose of identifying poten-
tially interesting leads of service compositions or pathway segments. These leads are
then semantically verified based on a subset of operation pre- and post-conditions.
Finally, verified leads are linked together using our linking algorithms for establish-
ing more comprehensive pathway network. Discovered pathways from the screening
phase are input to the evaluation phase, which determines whether they are actually
useful. In the following subsections, we describe each of these phases in more details.

12 Exploring Service Networks 283

Service Models
on the Web

Search Space
Determination

Evaluation
, | N Y
—_a

Domain Expert

Pathway Networks

Focused Library

Static Verified
Pathway . 8 Pathway
Verification
Segments Segments

Fig. 12.2 Service-oriented pathway exploration framework

12.3.1 Scope Specification and Search Space Determination

The scope specification phase of our framework involves the specification of a mining
context that determines a set of ontologies to use for the pathway discovery process
[44]. These ontologies are referenced by Web services for defining the types of their
operation input and output parameters. Consequently, the mining context defines the
coverage of the search space when looking for composable component services for
the purpose of pathway discovery. Usually the more specific a context is, the narrower
a search space would be. Within the next search space determination phase, a focused
library is determined based on the mining context [44]. The focused library consists
of Web services from the service registry that are involved in the mining context. In
other words, Web services contained in the focused library would reference some
ontologies covered by the mining context.

12.3.2 Screening

The screening phase is used to identify composable biological service models and
ultimately pathway networks. This phase contains three steps: filtering, static verifi-
cation, and linking. We describe these in the following subsections.

284 G. Zheng and A. Bouguettaya
12.3.2.1 Filtering

With the focused library as input, our filtering algorithms [44] are used to generate a
collection of lead service compositions or pathway segments. These algorithms rely
on three service/operation recognition mechanisms illustrated in Fig. 12.1 to identify
the composability of services and service operations.

12.3.2.2 Static Verification

The leads identified via filtering are verified using our static verification algorithm
[43], which eliminates false compositions based on checking pre- and post-conditions
involving binary variables (e.g., whether the input to an operation is activated) and
enumerated properties (e.g., whether there is a match between the locale for an input
parameter).

12.3.2.3 Linking

Our linking algorithms [43] are applied to the verified leads to generate more com-
prehensive composition leads. In [43], we represented pathways discovered in the
screening phase using the tree format due to its simplicity in implementation. How-
ever, this representation strategy has the inherent difficulty of merging potentially
duplicate nodes in the pathways. In [45], we extended our rendering algorithms to
represent pathways in GraphML [5], which can then be rendered and automatically
arranged using yEd [16].

12.3.3 Evaluation

The goal of the evaluation is to identify interesting pathways out of those discovered
from the screening phase. Evaluation is carried out in two steps: objective evaluation
and subjective evaluation, as shown in Fig. 12.3.

12.3.3.1 Objective Evaluation

Objective evaluation aims at automatically highlighting interesting pathway sub-
graphs within a pathway network based on limited input from the user [46]. This
is achieved in three substeps: automatic identification of interesting edges within a
pathway network, user selecting interesting nodes for further pursuit based on such
identification, and automatic establishment of a connected subgraph within the iden-
tified pathway network. The connected subgraph highlights interesting composition
flows based on the heuristics that such flows would link user selected nodes with as
many interesting edges as possible.

12 Exploring Service Networks 285

/

Entity Container

3 Entity %
| Instance |

T

Graph with Interesting
Composition Flow

N

Selection of Interesting Nodes

t

‘ Graph with Interesting Edges ‘

“e.__| Patway | Interesting Edges
Networks Identification

Fig. 12.3 Evaluation of pathway networks

12.3.3.2 Subjective Evaluation

Subjective evaluation aims at identifying useful pathways out of discovered pathway
networks. Subjective evaluation contains two distinctive steps, namely hypothesis
formulation and simulation. When presented with a pathway showing highlighted
interesting composition flow, the user may attempt to formulate hypothesis based on
the indirect relationships that are derived from the way the pathway network is laid
out. Such hypothesis can then be tested out using simulation.

We will illustrate the above steps using real examples after we present how we
model biological processes as Web services.

12.4 Service Model Development

Our service oriented framework for pathway discovery assumes that biological
processes are modeled using Web services. We expect that these models will initially
have minimal details about known attributes and processes based on lab discoveries.
As our knowledge increases and the modeling techniques continue to mature, the
fidelity and completeness of these models will also be increased accordingly. One
of the most challenging issues in modeling biological entities is how to approximate
the richness of their processes and contextual uncertainties (e.g., varying temperature
and fluidity of the surrounding environment) in a way that the models themselves

286

G. Zheng and A. Bouguettaya

would yield similar responses to the same stimuli or changes in the environment.
Instead of trying to solve the issues of model accuracy and completeness, which by
themselves are active research topics [33, 42], we focus on how Web services can be
used as a vehicle to describe aspects of biological entities that we already know how
to model. For this purpose, we compiled a list of process models based on [2, 8, 18,
26, 32, 41]. In addition to describing process models, these sources also reveal some
simple relevant pathways that can be manually put together. We show examples of
process models and corresponding simple pathways in Fig. 12.4.

15-LO service

COX1 Service produce PGG2

LXA4 PGG2
=2 Arachidanic Acid
produce LXA4 ! focafe = Endoplasmic Reticulum
1 PLA2 Service _—
Suppress
inflammation 8 Liberated Arachidonic Acid
L LXA4 Service liberate ArachidonicAcid
() PGE2
a
e COX2 Service produce PGE2
bind Nociceptor (e)
Nociceptor
‘ot covered
PGE2 (probability: 1 - (qn)) Stomach
Service /" Stomachcel CellService produce mucus PGI2
Induce 15-L0 Gastric
\ 15-LO Juice
(b) Senvice
/ Neutrophil Y Mucus)
incite (of quantity g,,) Mucus Service cover stomach wall
locale != injury (f)
Neutrophil atinjury COX2 e ~
LTB4 Pain signal at spinal cord
Senvce) recruit Neutrophil
|
produce LTB4 Pain signal at brain
transmit Pain
process Pain Brain Service
Neutrophil Produce
Service
e cox2 Spinal Cord e
Vi) ransmit Pain Relief
- 231874 J Relief signal at brain
(c)
4 N =
Pain signal ati _ Relief signal at spinal cord Y,
pogimptr (@
sense Pain 1. NF-xB/Rel not phosphorylated Y
Nociceptor 2. locale = cytoplasm
Service __local = inflammation
188 not phosphoryiated NF-kB/Rel N
Sevi =
transmit Pain Pain signal in spinal cord / PR translocate 5500 = nucleus
o (EP }——
Jocal = al cord N)
A 2 IkBService bind NF-kB/Rel N /Rl
stimulate proinfiammatory
L — . gene transcription
L ST Relief signal in spinal cord P)

(d)

(h)

. operation

0 precondition
. inhibiting operation

® postcondition

[P regular entity

service-providing entity

Fig. 12.4 Examples of conceptual process model and simple pathway

12 Exploring Service Networks 287

Multiple examples of recognition, promotion and inhibition can be found in these
models. For example, Fig. 12.4a shows that an enzyme called 15 LO provides an
operation called produce LXA4, which promotes the service of a lipoxin called LXA4.
Figure 12.4c shows that upon injury, LTB4 recruits Neutrophil, promoting its service
and hence its operation of producing COX2. Figure 12.4e shows that the service of
an enzyme called PLA2 can liberate Arachidonic Acid, which can in turn be used
as input to the produce PGG2 operation of COX1’s service or the produce PGE2
operation of the COX2 service. Figure 12.4f shows that Gastric Juice’s service can
inhibit the services of both Stomach Cell and Mucus. Examples of pre- and post-
conditions can be found in Fig. 12.4h, which shows that when not phosphorylated,
a protein called NF-xB/Rel can translocate from cytoplasm to cell nucleus, where
it can stimulate proinflammatory gene transcription. NF-kB/Rel’s service, however,
may be inhibited by the service of another protein called I« B through I«B’s bind
NF-kB/Rel operation. We use process models such as those in Fig. 12.4 as references
when developing WSDL and WSML Web services in Sects. 12.4.1 and 12.4.2. We

Lifting
Adapter

Adapter

WSDL Services
Hosted by Jetty Server

Registry

Search Space
Determination

Fig. 12.5 Service model development

288 G. Zheng and A. Bouguettaya

also use simple pathways manually constructed as references when we check the
correctness of pathways automatically discovered using our mining algorithms.

To model biological processes as real Web services, we first capture the actual
process details for each type of biological entity as a WSDL [13] service and deploy
these services using a Jetty Web server [7], as shown in the upper left corner of
Fig. 12.5. We then expose the semantic interface (i.e., ontological types of opera-
tion input and output, pre- and post-conditions) of each WSDL service using Web
Service Modeling Language (WSML) [10] as a Semantic Web service. Web Ser-
vice Modeling Toolkit (WSMT) [12] can be used to define both the ontologies and
Semantic Web Services (SWS) in the registry. These can be either cold deployed to
the Web Services Modeling eXecution environment (WSMX) [14] during WSMX
startup or hot deployed by the WSMT at WSMX runtime. WSML service can be
finally invoked during runtime with the help of lowering and lifting adapters. We
discuss details involved in these steps in the following subsections.

12.4.1 WSDL Service Modeling of Biological Processes

We first define an XML schema (Fig. 12.6) containing generic types such as Input-
Substance, OutputSubstance and BooleanResponse. These types are intended to be
used by biological process models in our experiment to represent their input and
output substances. For example, type OutputSubstance contains information about
an output substance type, location, amount and a generic boolean flag that can be
used for passing additional information (e.g., the output of liberate ArachidonicAcid
in Fig. 12.4e would have this flag set to true for being liberated). In some cases,
an operation may simply return a boolean response indicating whether the corre-
sponding process represented by the operation has been invoked successfully. The
XML schema is then run through an xjc [6] compiler to generate corresponding bean
classes. We define each process model with a Java class based on these bean classes.
Using Axis2 [1] running inside a Jetty Web server [7], these Java classes are then
exposed as WSDL Web services at runtime.

We show an example WSDL service for COX1 in Fig. 12.7 and list in Table 12.1
all WSDL services and their operations that are used in our experiment. For each
WSDL service operation, we include in Table 12.1 its corresponding input and output
parameters, and a simple description of logic used in the corresponding Java class.
The Java class takes as its input the object of type InputSubstance that is contained in
the operation input SOAP message, and returns an object of type OutputSubstance
or BooleanResponse. The returned object is then used to populate the output SOAP
message of the operation. We use default to denote default operation logic that can
be derived using the following rules:

12 Exploring Service Networks

e If the returned object is of type OutputSubstance, then the default logic is to set

the location and amount attributes to be equal to those used in the input object.

e If the return object is of type BooleanResponse, then the default logic is to check
whether the type attribute of the input object is the same as expected. If so, set the

result attribute of BooleanResponse to true. Otherwise, set it to false.

We list for each operation in the third column of Table 12.1 the expected value for

the rype attribute.

<?xml version="1.0"7>

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://servicemining.org/"
targetNamespace="http://servicemining.org/">

<xsd:element name="ArachidonicAcid" type="InputSubstance" />

<xsd:complexType name="InputSubstance">
<xsd:sequence>
<xsd:element name="type" type="xsd:string" minOccurs="1"
maxOccurs="1" />
<xsd:element name="Tlocation" type="xsd:string" minOccurs="1"
maxOccurs="1" />
<xsd:element name="amount" type="xsd:float" minOccurs="1"
maxOccurs="1" />
<xsd:element name="flag" type="xsd:boolean" minOccurs="1"
maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="OutputSubstance">
<xsd:sequence>
<xsd:element name="type" type="xsd:string" minOccurs="1"
maxOccurs="1" />
<xsd:element name="1location" type="xsd:string" minOccurs="1"
maxOccurs="1" />
<xsd:element name="amount" type="xsd:float" minOccurs="1"
maxOccurs="1" />
<xsd:element name="flag" type="xsd:boolean" minOccurs="1"
maxOccurs="1" />
</xsd:sequence>
</xsd:compTlexType>

<xsd:complexType name="BooleanResponse">
<xsd:sequence>
<xsd:element name="result" type="xsd:boolean" minOccurs="1"
maxOccurs="1" />
</xsd:sequence>
</xsd:compTlexType>

</xsd:schema>

Fig. 12.6 Schema for WSDL services

290 G. Zheng and A. Bouguettaya

<?xml version="1.0" encoding="UTF-8"7><definitions xmlns="http://
schemas.xmlsoap.org/wsdl/" xm1ns:tns="http://serv1cem1n1nﬂ.org/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:soap="http://
schemas.xmlsoap.org/wsdl/soap/" targetNamespace="http://
servicemining.org/" name="COX1Service">
<types>
<xsd:schema> o
<xsd:import schemalLocation="http://servicemining.org:8001/
COX1?xsd=1" namespace="http://servicemining.org/"></xsd:import>
</xsd:schema>
</types>
<message hame="producePGG2">
<part element="tns:producePGG2" name="parameters"></part>
</message>
<message name="producePGGZResgonse">
<part element="tns:producePGG2Response" name="parameters"></part>
</message>
<portType name="COX1">
<operation name="producePGG2">)
<input message="tns:producePGG2"></input>
<output message="tns:producePGG2Response"></output>
</operation>
</portType> -
<binding name="COX1PortBinding" t{pe="tns:COX1">
<soap:binding style="document" transport="http://
sohemas.xm]soap.org/soap/httB'></soap:b1nd1ng>
<operation name="producePGG2" > i
<$oap{operat1on soapAction="producePGG2"></soap:operation>
<input>
sgoap:body use="1iteral"></soap:body>
</input>
<output>)
<soap:body use="1literal"></soap:body>
</output>
</operation>
</binding>
<service name="COX1Service">)
<port name="COX1Port".b1nd1ng="tns:COX1PortBind1ng">
<soap:address location="htip://servicemining.org:8001/COX1"></
soap:address>
</port>
</service>
</definitions>

Fig. 12.7 WSDL description of COX1 service

12.4.2 WSML Service Wrapping of WSDL Service

Although the internal details of biological processes can be modeled as WSDL Web
services, WSDL itself does not provide elaborate mechanism for expressing the pre-
and post-conditions of service operations. WSDL also lacks the semantics needed to
unambiguously describe data types used by operation input and output messages. We
choose WSML [10] among others (e.g., OWL-S [17], WSDL-S [15]) to fill this gap
due to the availability of WSMX, which supports the deployment of ontologies and
Web services described in WSML. Based on the conceptual service models captured
in Fig. 12.4, we categorize biological entities into several ontologies as shown in
Fig. 12.8. These include DrugOntology, ProteinOntology, NervousSystemOntology,
FattyAcidOntology and CellOntology. They would all refer to a CommonOntology
containing generic entity types such as Substance, the root concept of all entity types.
We use UnknownSubstance as a placeholder for process inputs that are not fully
described in the literature. We also create a MiscOntology capturing definitions of

291

12 Exploring Service Networks

(ponunuoD)

Jneeq Jsuodsayuesjoog RENEN Jonayasuas

p109 [eurds 03 uonesol ndino 108 ured ured UIDIUUSUD.L]
uonewIwR Ul 0) uonedo[Indino 19§ ureq 101dao100N UIDJISUIS 101doo1ooN

Jneeq Jsuodsayuesjoog oy geddesIN uondLISUDL L O J2ID|NULIS
sna[onu 0) uoneodo[Indino 18 [eygeddey N eygeddey N 21D20]SUD.A] ey geddey N

Ppaje[A120® J0U sk ndino el 7X0D Jmsumouun) ZX0D2ompoid
Jneed YL L8IECY #g112omposd [ydonnaN
Pa12A09 se ndino Se[q [[oDYorWOo)S [[eDYorWolSg 1P YODUL0I§12400 SNONA
ey asuodsayueajoog JSumouyun uoypuwuplfurssaiddns s al

Jneeq asuodsayuesjoog Jnsumouun) UONDUIUDUT2110U1
paanfur se ndino jo oreso] Sefq [ydonnan [rydonnan JydoainaNIInLOa.L a1
pajeAnoe se ndino 30§ BRI BRI DI N [21DA11OD Sd1
ey asuodsayueajoog geddeyy goddpyaivilioydsoyd ©19q I
Jneyog asuodsoyuesjoog [eygeddey N 123 qgoddvy JNpu1q qeddeyy

Jneq asuodsoyuesjoog SNONJA snonpaga)dop

0 031 1ndino jo junowre
A} 195 “OSIMIAYIQ ‘PAISAOD JOU SB

ndino ey ‘snonw £q pa1oaod st indur J [[DYyorWOoIS [[PDYyorWOoIS§ 112DYoPUi01§2pP0.12 Q0IN[oLNSsen)
e 7HuIpuR[SeIsoIq PIOYIIUOPIYORIY candaomposd TX0D
1919181d 01 UONELOO] INdINO 198 7Dulpue[3eIsold PIOYOIuOpIYORLY 7DD daomposd 1X0D
ureiq o) uonedof ndino 10§ Jorey ured ugssadoid urerg
wnIEYIopUd 0] uonedsof ndino 198 ZHuipue[SeIsoiq ZHuIpue[3eIsoiq ZHOJ210[na11d poorg

JneRq Jsuodsoyuesjoog BRI pIaq Y YIpulq

Jneeq asuodsayuesjoog 7X0D ZX0D21]8120D
Jneyeg asuodsayueajoog I1XO0D [X0D21v]£120D udsy
uonewIwRPuI 0) uonedo[Indino 19§ VX1 Jmsumousun) XV 12onpoid o1 SI™

asuodsayquesjooq 1o
ad{; nquIe ad{; nquyIe

o1301 uoneradQ QoueysqngindinQ doue)sqngindug suonerodQ ERFNEIN

S901AIOS TS Jo suonduosaq 1°ZT dIqeL

G. Zheng and A. Bouguettaya

292

Jneq asuodsayuesjoog Jmsumouun) UONILIISUOIOSDA VXL
Jneed CVXL CHUIpUE[SLISOId Zvxaonposd ISVXdL
Jnejeq SNONJA Zlurpue[3elsoid snonpgaonpoid [1oDYyorwols

p109 [eurds 03 uonedo| Indino 108 Jory RENEN| Jonayuingimusun.ay
ureiq o3 uoneodof ndino 18 ured ured UIDJ IS UDA] pioDreurdg
pareraqry se ndino Serg vv \A4 PRYIMUOPIYIDLY2ID12q]] [AAC!
Jneq zlurpue3eisoid ZHuIpue[3eIsold z1oda2onposd aseyuASZIDd
ey asuodsayueajoog FnSumouyun uonv3a133y3a121v]gssaiddns 7IOd

punoq se indino Sefq 10)dad100N 10)dad100N 101d22100NpUIG

ndur
Jo1et Jo 9 01 01 3ndino Jo yunoure dy) 138 o1 s Jmsumouur) OIS [2onpul ¢dDd
Jnejaq ZHuIpue[SeIsoIg 7DuIpue[3e)soid ZHDd2ompoid 9sepIxXoIdd
asuodsayuesjooq 1o
2d{1 anquye 2d{1 anquye

o1301 uonjeradQ QoueysqngindinQ Joueysqngindug suonjeradQO ER)FNEIN

(ponunuoD) [°ZI AqeL

12 Exploring Service Networks 293

entity types found in the literature that don’t seem to belong to any domain. Table 12.2
shows ontological concepts that have attributes not depicted in Fig. 12.8. Since many
of the ontological concepts are subConceptOf Substance in CommonOntology, they
all inherit the locale and quantity attributes from Substance.

Ve . N\
((b) NemousSystemOntology\ Ta) Common (g)Mlscomology
Ontology UnknownSubstance
PainSignal Lipoxin
- ~ A
ReliefSignal Signal (f) ProteinOn!oIogy LXA4
7 [Leukotrene |
SpinalCord NF_kappaB_Rel Leuknene
|_kappaB LTB4
SomaticReceptor
Aspirin — IKK_beta
- Fatty_Acid - A\
;Jr Ibuprofen A _15_LO0 -
TXA2
A —{ Arachidonic_Acid -_ L
Others ... TBXAS1 Proinflammatory_
Prostaglandin Cytokine
CentralNerve A ACI2SVIasS Growth_Factor
PGG2
- Cell
_Pen heralNerve - _--F’LA2
- (d) CellOntology ™ A
-~
,,,,,,,,,,,,,,, Legend-—————-. Stomach_cell
——> subConceptOf .
U Others ...) @)FattyAcmOntology/ _LATP)

Fig. 12.8 Example ontologies

Using these ontologies, we then wrap the semantic interfaces of existing WSDL
services as WSML services. Figure 12.9 gives an example of WSML service named
NF_kappaB_Rel_1_Service. Note WSML uses the capability section to represent
service operation. In addition, preconditions and postconditions are expressed in
WSMO axiom logical expressions [11]. For the given example of operation translo-
cate, the capability section states for the precondition that the input entity instance
named nfkbr should be of type NF_kappaB_Rel, which is defined in ProteinOn-
tology. In addition, nfkbr’s attribute locale should be equal to cyfoplasm and its
attribute phosphorylated should be equal to false. Similarly, the postcondition of
the same operation states that the locale attribute has been changed to nucleus. The
interface section states that input entity NF_kappaB_Rel has grounding with the
input parameter of operation translocate of the corresponding WSDL service. The
output from the WSDL service operation should be mapped to NF_kappaB_Rel as
defined in the protein ontology.

In the non functional properties (nfp) section (towards the top of Fig. 12.9) of each
WSML service, we add a provider property to indicate the corresponding ontological
type of an entity that can provide the service. We use this information in our mining
algorithms later to establish the relationship between a service providing entity and
the service it provides. Second, we add a modelSource property in the nfp section

294

Table 12.2 Attributes of ontological concepts

G. Zheng and A. Bouguettaya

Ontology Concept Attribute Attribute type
CommonOntology Substance locale _string
quantity _decimal
UnknownSubstance localelnjured _boolean
Bool result _boolean
Signal locale _string
ProteinOntology NF_kappaB_Rel phosphorylated _boolean
1_kappaB phosphorylated _boolean
COX acetylated _boolean
IKK_beta activated _boolean
NervousSystemOntology Nociceptor isBound _boolean
FattyAcidOntology Arachidonic_Acid liberated _boolean
localelnjured _boolean
MiscOntology A23187 localelnjured _boolean

to indicate the source information that the model is based on. This information
allows our algorithms to automatically identify interesting pathway segments within
a discovered pathway network. Third, we add a providerConsumable property in
the nfp section to indicate whether the service providing entity should be consumed
along the invocation of its operation. For example, in order for mucus (Fig. 12.4f) to
cover the wall of the stomach, the mucus itself will have to be consumed. Finally,
one of the limitations of WSML is that it allows for the specification of pre- and post-
conditions for only an entire service, but not its individual operations. Since different
service operations in practice may have different pre- and post-conditions, we have
to split services that each originally has multiple operations into several services
(e.g., NF_kappaB_Rel_1_Service and NF_kappaB_Rel_2_Service) so that each new
service would contain only one operation. This change allows us to specify different
conditions individually for these operations. We use the name of these services to
keep track of their relationship and use that information to merge these services
towards the end of the screening phase.

Table 12.3 lists the preconditions and postconditions for some of the other WSML
services that are used in our experiment. We use default listed for some of the pre- and
post-conditions to indicate that the corresponding condition simply checks whether
the parameter used during invocation is of the prescribed type.

12.4.3 WSML Service Invocation

The WSML service invocation module (top right of Fig. 12.5) is used in two cases.
In the first case, after each pair of WSDL and WSML are developed and deployed,
we need to verify that the services are themselves free of programming errors. In

12 Exploring Service Networks 295

wsmlVariant "http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"
namespace { _"http://servicemining.org/SWSs/NF kappaB Rel 1 Service#",
po "http://servicemining.org/Ontologies/ProteinOntology#",
dc “"http://purl.org/dc/elements/1.1%",
wsml 7"http://www.wsmo.org/wsml/wsmlfsyntax#” }

webService NF_kappaB Rel 1 Service
nfp
dc#contributor hasValue "George Zheng"
"http://owner" hasValue "http://ServiceMining"
“"http://modelSource" hasValue "http://ServiceMinin
“"http://provider" hasValue "http://servicemining.o
Ontologies/ProteinOntology#NF kappaB Rel"
"http://providerConsumable" hasValue "http://
servicemining.org/true" -

endnfp
importsOntology
{ . L. . .
po#ProteinOntology For simplicity, we use the index irv
! Fig. 12.4 as indication for modelSource;
capability translocate

precondition

definedBy

?nfkbr memberOf NF_ kappaB Rel[
locale hasValue 21,
phosphorylated hasValue ?p] and

(?1 = "cytoplasm") and
(?p = false).
postcondition
definedBy

?nfkbr memberOf NF kappaB Rell[
locale hasValue 2?17 and
(?1 = "nucleus").

interface NF_kappaB Rel 1 Servicelnterface

choreography NF_kappaB_Rel 1 ServiceChoreography
stateSignature NF_kappaB Rel I ServiceStatesignature

importsOntology
{
po#ProteinOntology
in
concept po#NF kappaB Rel withGrounding "http://
servicemining.org:8001/

NFkappaBRel?wsdl#wsdl.interfaceMessageReference (NFkappaBRel/translocate/in0)"

out
concept po#NF kappaB Rel

transitionRules NF kappaB Rel 1 ServiceTransitionRules

Fig. 12.9 Semantic interface description in WSML

the second case, we need to simulate the interactions among biological entities and
their processes that are involved in a pathway network that has been discovered using
our mining algorithms. The invocation of WSML services is realized with the help
of both lowering and lifting adapters. For illustration purposes, we show both the
input SOAP message packaged by a lowering adapter and output SOAP message
consumed by a lifting adapter in Fig. 12.10 for operation producePGG?2.

When a WSML service is to be invoked, the lowering adapter is used to parse out
attribute values of the input entity and package them into an input SOAP message
(Fig. 12.10a) to be used to invoke the corresponding WSDL service. Note in addition
to the translation from ontological type Arachidonic_Acid to ArachidonicAcid for
the type attribute, the following translations have also taken place in the lowering

G. Zheng and A. Bouguettaya

296

(ponunuoD)

nneg
(onny = o) pue [, an[eASey snony
AGPa1oA0d][[0) YyorwolS JOIoquIdw IS,

ey
nejg
(onm = 1) pue [[;, aneAsey paxnfug
dreodor]iydonnaN jorequiaw [rydonnauy,
(onn = v;) pue [e; an[eASey
PajeAnOR] B19Q SMN] JOIqUISW RGN,

nnea

nnejoq
nnejoq
nnejoq

(Lurelq,, = 1g) pue [[; dn[eAsey
9[e00[][euSISIAI[AY JOIoquuaut S,

(enn = 1¢) pue [[; on[eAsey
paan[ugareosor]rydonnaN jorequaw [rydonnaug,
(asrey = 9;) pue [9;, anfeASey
SNONAAGPAIOA0D][[9D YorWOIS JOIOqUIdW IS,
(uonewwreyut,, = [;) pue [[;, SnfeAsey
9[ed0[]9durISqNSUMOUNUN) JOIoquIaUL SN,
Jneed
(9181 = 1¢) Pu® [[;, Sn[eAsey
paanfugareosor] jiydonnayN joloquiaw [ydonnauy,
(asrey = B;) pue [g; anfeASey
PajeAnOR]RIaq MM JORqUIDW BIDQYL,
(ostey = d;) pue [d;, on[ep sey
payejAroydsoyd] geddey | joIequow qyI;,
(osrey = dg) pue [d;,
anfep sey pare[Aioydsoyd|joy geddey IN
JOodequiaur q3jyuy,
(enn =) pue [[; Sn[eAsey
PaIRIaqI|PIOY IOIUOPIYdLLY JOIOqUIdW BRj,
(enn =) pue [[; Sn[eAsey
PaIRIRqI[[PIOY ~ dIuOpIYdRLY JOIOqUIdW BRj,
(. ureiq,, =1z) pue
[1¢, onreAsey oeodo[]reusisured joloquau sd;,

g 1 72onposd
11D YODUL0]§.42400

uoypuuvlfurssaiddns
UONDWWDfUI2]10U1

1ydoainan oL
piog ~YY[2IPa11oD

goddvy~ja1p)La0ydsoyd

12y goddpy~ Npuiq
zADd2omposd

70D d2ompord

urpgssasold

Qo1A10S ™ 1 TIydonnaN
QOTAIISSNONA

MIARSYVXT
MRS T v LT

IS PA LT
AT

QITAIIS®INq M1

o1areggeddey |
NIARSTXOD

OIALSTXOD

Qo1ATOSUTRIg
QOIATS ¢ uLdsy

nejed Jnejed D12q Yy Ipulq
(asrey = ®;) pue
Jnejoq [®, an[eAsey pare[A1008]7X 0D JOIqUISW 7X09;, ZX0D210]£120D QOIATRS ¢ uLdsy
(asey = v;) pue
ey [, an[eAsey pare[A100e] 1 X0 JOIoqUISUW X090, X0 2101200 QOIATRS | uldsy
UOT)IPU0DISO] UOnIPU0IAIJ Anqede) ER)FNEIN

SOOIAISS TINSAA JO SuonIpuod)sod pue SUORIPU0dAI €7T dAqeL

297

12 Exploring Service Networks

ey
(.,pI0d euids,, = [,) pue [|; oan[eAsey
9Teo0]|[euSISIoroy JOIoqUIau S1;,
(.ureiq,, = [g) pue [[;, an[eAsey
Jreoo|reusigureq joIaquiaur sd;,

(en1 = 1) pue [an[eAsey pajesaqr]
POy oruopIyoRIY JOIOqUISW Bej,

ey
(enn = q¢) pue [q;, anfeAsey
punogst]103dadrooN JoIequiawr 3doouy,

(orare1d,, = 7))

pue [[;, an[eAsey a[eoo[|gHOd JOIequiawr gysdy,
(Jureiq,, =1g) pue

[1¢, anTeA SeY 91200 |[eUSISIOI[Y JOIqUIAU SIj,
(.,p10o [eulds,, = ;) pue

[1, anyeAsey oreoof|[eusigureq joIoquraur sd;,
(. munnoner orwsedopus,, = o[;) pue (9s[ejy
= 11,) pue [0, SN[BASEY 9[EI0 ‘[, SN[eASLY

PareIaqI[[PIoY OIUOPIYOETY JOIOqUISW BRj,
(wnrpayopus,, =)

pue [, anJeAsey a[eoo[|gHOd JoIequiaw gysdy,
(os1e3 = q¢) pue [q;,

anfeA sey punogsi]10ydedtooN jorequour 3doouy,

Zyxpaonposd
Jonayuinginusun.y

UIDJINUSUD.L]

PIOYIIUOPIYOIDLY2ID12q1]

zIndaonpoad

403d22120NpUIG

MIARSISVXEL
201A10§ ~¢ ploDreulds

Q01A10§ ™ [~ pIoDeurds

ARSIV 1d
QOIAIOSISLYIUASZIDd

IS T THOI
MRS [7dDd

nnejeg nejed OT S 2ompul
(..pIoo [eurds,, = ;) pue
ey [1¢, anTeASBY 91Rd0[|[RuSISI[ey JOequiaur sd, Jonayasuas 901A10G ¢ 101da01O0N
(.,pI02 eurds,, =) pue [[; onfeAsey (L uonewwreyut,, = ;) pue
Jreoor]eusisured jorequow sd;, [1¢, onreAsey oeoso[]reusisured joloquiau sd;, UIDJINUSUD.L] Q01A10§ ¢ 103da0100N
(enn = q¢) pue [q;,
Jnejoq enpeAsey punogsiioidestooN jorequiowr 3doouy, UIDJISUIS 901A10§ ™ [103da0100N
(. snoponu,, = 7)) pue [[;, an[eASey uoyd1IISUDL [IUIL)
Jnejeq Jreoo[][oy geddey AN JOIequiaw IQyu;, Ltoppunuvifuroigaipmuinis IAIRS ¢ [y geddey N
(enn =1;) pue [1
anfeA sey painfujo[esor]eoueisqngumouyun)
Jnejeq JOIoquidw syn;, ZX0D2omposd Qo1a10§ ¢ [IydonnaN
uonIpuodISoq uonIpuodAIJ Anqede) ERIVNEIN

(panunuo)) ¢TI AqBL

298 G. Zheng and A. Bouguettaya

<?xml version="1.0" encoding="UTF-8"7>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://
schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<q0:producePGG2 xmlns:qO0="http://servicemining.org/">
<q0:ArachidonicAcid>
<type>ArachidonicAcid</type>
<location>endoplasmic_reticulum</location>
<amount>1.0</amount>
<flag>true</flag>
</q0:ArachidonicAcid>
</q0:producePGG2>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

(a) Input

<?xml version="1.0" encoding="UTF-8"7>
<soapenv:Envelope xmlins:ns1="http://servicemining.org/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:xsd="http://www.w3.0org/2001/XMLSchema" >
<soapenv:Body>
<ns1:producePGG2Response>
<ns1:ProstaglandinG2>
<type>ProstaglandinG2</type>
<location>platelet</Tocation>
<amount>1.0</amount>
<flag>false</flag>
</ns1:ProstaglandinG2>
</ns1:producePGG2Response>
</soapenv:Body>
</soapenv:Envelope>

(b) Output

Fig. 12.10 SOAP messages of COX1 WSDL service operation producePGG2: a input, b output

adapter: locale to location, quantity to amount, and liberated to flag. For simplicity,
the lowering adapter expects only one extra attribute of _boolean type and converts
it to a generic boolean flag.

After the WSDL service is invoked, the lifting adapter is used to parse out attribute
values from the corresponding output SOAP message (Fig. 12.10b). These values are
subsequently used to create an instance of an ontological entity type as specified in
an adapter ontology (shown in Fig.12.11) containing mappings for such conver-
sion. According to this adapter ontology, ProstaglandinG?2 field in the output SOAP
message is mapped to concept PGG2 of FattyAcidOntology, location is mapped to
locale, and amount is mapped to quantity (bottom of Fig. 12.11).

12 Exploring Service Networks 299

ontology AdapterOntology

concept xml2wsmlmapping

instanceMappings impliesType (1 *) _string
valueMappings impliesType (1 *) _string
conceptOutput impliesType (1 1) _string
inputMessage impliesType (1 1) _string

instance acetylateCOX2Response memberOf xml2wsmlmapping
valueMappings hasValue { "//result=result"}
conceptOutput hasValue "CommonOntology#Bool"
inputMessage hasValue "//ns1:BOOL"

instance activateIKKBetaResponse memberOf xml2wsmlmapping
valueMappings hasValue { "//location=locale(_string)",
"//amount=quantity", "//flag=activated"}
conceptOutput hasValue "ProteinOntology#IKK_beta"
inputMessage hasValue "//ns1:IKKBeta"

instance bindIKKBetaRelResponse memberOf xml2wsmlmapping
valueMappings hasValue { "//result=result"}
conceptOutput hasValue "CommonOntology#Bool"
inputMessage hasValue "//ns1:BOOL"

instance bindNociceptorResponse memberOf xml2wsmlmapping
valueMappings hasValue { "//location=locale(_string)",
"//amount=quantity", "//flag=isBound"}
conceptOutput hasValue "NervousSystemOntology#Nociceptor"
inputMessage hasValue "//ns1:Nociceptor"

instance bindNFkappaBRelResponse memberOf xml2wsmlmapping
valueMappings hasValue { "//result=result"}
conceptOutput hasValue "CommonOntology#Bool"
inputMessage hasValue "//ns1:BOOL"

instance circulatePGH2Response memberOf xml2wsmlmapping
valueMappings hasValue { "//location=locale(_string)",
"/ /amount=quantity"}
conceptOutput hasValue "FattyAcidOntology#PGH2"
inputMessage hasValue "//ns1:ProstaglandinH2"

instance coverStomachWallResponse memberOf xml2wsmImapping
valueMappings hasValue { "//location=locale(_string)",

"//amount=quantity", "//flag=coveredByMucus"}
conceptOutput hasValue "CellOntology#Stomach_Cell"
inputMessage hasValue "//ns1:StomachCell"

instance producePGG2Response memberOf xml2wsmlmapping
valueMappings hasValue { "//location=locale(_string)",
"//amount=quantity"}
conceptOutput hasValue "FattyAcidOntology#PGG2"
inputMessage hasValue "//ns1:ProstaglandinG2"

Fig. 12.11 Adapter ontology for lifting adapter

300 G. Zheng and A. Bouguettaya

12.5 Experiment

We have implemented our pathway exploration framework in PathExplorer, which
is used in our experiment to discover pathways linking service models of biological
processes. We included in the mining context all seven ontologies shown in Fig. 12.8.
No locale (e.g., heart, brain) is explicitly specified. Thus, all locales are considered.
During the search space determination phase (lower right of Fig. 12.5) in our experi-
ment, PathExplorer is used to interrogate APIs of the WSMX runtime library to find
WSML services that refer to each of the seven ontologies. These services are then
collected as part of the focused library for later processing.

In Fig. 12.12a, we show pathways discovered using our screening algorithms and
then represented in the graph format. For brevity, we display only shortened names
for nodes in the graph. We keep the full name containing either the ontological path
for entity nodes or the WSML service path for both service and operation nodes
in a separate description field, which is not shown in Fig. 12.12a. In addition, for
better diagram readability we omit pre- and post-condition details of operation link-
ing edges such as the two forming a loop between operation coverStomachWall
and entity Stomach_Cell.' However, we keep track of the pre- and post-conditions in
PathExplorer as such information along with the ontological entity paths and WSML
service paths are needed when we try to invoke these services during simulation. To
ensure the correctness of our algorithms, we compared segments within the auto-
matically discovered pathway network with those constructed manually in Fig. 12.4
and found them to be consistent in all cases. For example, if we follow the path start-
ing with COX2Service at the bottom left of Fig. 12.12a, we see that COX2 Service
has an operation called produce PGE2, which generates PGE2. This is consistent
with Fig. 12.4e. Furthermore, PGE2’s corresponding service called PGE2 Service
contains two operations: bind Nociceptor and induce 15-LO. This is consistent with
Fig.12.4b.

Identification of Interesting Edges—Interesting segments (or edges) of a lead com-
position network (highlighted in Fig. 12.12a) can be identified based on the outcome
of comparing the source indicator of linkages in the pathway graph representing three
types of service/operation recognitions as described in Sect. 12.3.2.1. These inter-
esting edges highlight previously hidden linkages between individual services and
operations. For example, Fig. 12.12a shows that connections from produce PGE2 to
PGE? and from PGE?2 to PGE?2 Service are not only included as integral parts of the
pathway network, but are highlighted as interesting edges as well. Such information
is not obviously apparent if we examine a large number of simple pathways that
are individually and independently put together in a manual fashion, such as those
shown in Fig. 12.4.

Selection of Interesting Nodes—In this step, the user would use interesting edges
highlighted in the previous step as visual clues to select nodes of interest to pursue
further. For illustration purposes, we assume that the user has selected five such nodes

! The precondition along the upper edge states that Stomach_Cell is not covered by Mucus and the
postcondition along the lower edge states that Stomach_Cell is covered by Mucus.

12 Exploring Service Networks 301

o

service providing entity service blocker operalion provider operation

Fig.12.12 Discovered pathways: a interesting pathway segments highlighted, b connected pathway
subgraph highlighted

as shown in Fig. 12.12b. These are: service node AspirinService, parameter node
Mucus, service providing entity node Stomach_Cell, parameter node PainSignal,
and parameter node ReliefSignal.

Graph Expansion—Our graph expansion strategy [46] is applied next to link user
identified interesting nodes with as many interesting edges as possible into a con-
nected graph as highlighted in Fig. 12.12b. Using the same process, unrelated inter-
esting pathway segments are excluded and no longer highlighted.

302 G. Zheng and A. Bouguettaya

Hypothesis Formulation—When presented with a pathway showing highlighted
interesting composition flow as in Fig. 12.12b, the user may attempt to formulate
hypothesis based on indirect relationships that are derived from the way the pathway
network is laid out. For example, one such hypothesis may state that an increase in
the dosage amount of Aspirin will lead to the relief of pain, but may increase the risk
of ulcer in the stomach.

Simulation of Pathways—Hypotheses such as the one introduced above can be
tested out using simulation strategies outlined in Algorithm 5. When an operation is
to be invoked, the algorithm checks two factors. First, it examines whether all the
pre-conditions of the operation are met. An operation that does not have available
input entities meeting its preconditions should simply not be invoked. Second, the
algorithm determines how many instances are available for providing the correspond-
ing service. This factor is needed because each biological entities of the same type
has a discrete service process that deals with input and output of a finite proportion.
The available instances of a particular service providing entity will drive the amount
of various other entities they may consume and/or produce. For this reason, the algo-
rithm treats each entity node in a pathway network such as one shown in Fig. 12.12b
as a container of entity instances of the noted ontology type. In some cases, the
service provider is also used as an input parameter. For example, the sensePain oper-
ation from the NociceptorService in Fig.12.4d has a precondition stating that the
Nociceptor itself should be bound in order to provide this service. In order to express
this precondition, we decided to include the service providing entity also as an input
parameter. In such a case, the number of service providing instances will be deter-
mined by checking further whether each of the service providing entity instances
also meets the precondition of the corresponding operation.

In Algorithm 5, an initial number of instances for each entity type et are first
generated based on function f(et) (lines 01-03). It is conceivable that an expert
may want to create different number of instances at the beginning for different entity
types. Next, we conduct / iterations of operation invocations (lines 05-31). We take a
snapshot of the quantities at the end of each iteration and before the very first iteration
(lines 30 and 04). We determine the number of times the corresponding operation
should be invoked based on the quantity of the corresponding service providing
entity (lines 7-15). To make sure that an operation from a service providing entity
of a small quantity also gets the chance to be invoked, a random number generator
is used (line 15). Upon invocation of the operation, we remove the corresponding
entity instances consumed in the invocation (lines 19-24). Finally, we add the output
parameter instance to the corresponding entity container (lines 25 and 26).

We start by simulating how the quantity of Aspirin affects the erosion of stomach
and sensation of pain. The simulation results obtained from each run of PathExplorer
are compiled into an Excel spreadsheet, which is then used to generate plots such as
those in Figs. 12.13 and 12.14, where the horizontal axis represents the iterations of
operation invocation and vertical axis represents the quantity of various substance
involved. Figure 12.13a—c shows that given a fixed initial quantity of 60 for COX1,
the increase in the dosage amount of Aspirin has a negative effect on the stomach, i.e.,
as the quantity of Aspirin continues to increase from (a) to (c), the severity of stomach

12 Exploring Service Networks 303

Algorithm S Simulation Algorithm

Input: Pathway Network PN, function f() determining initial number of instances for an entity type, total number of
iterations /, upper bound S for random number generator random with uniform distribution

Output: Statistics Stats

Variables: entity type et, entity instance container Container(et) of type et, operation op, input entity op;,,, output entity
opout and precondition op pre

1: foraller € PN do

2: Container(et) < create f(et) instances;

3: end for

4: Stats < Tally entity quantities in each container;

S: fori =0to I do

6: forallop € PN do

7: s < op.get Provider Servce();

8: etparameter < op.getInput Parameter().get EntityType();
9: el provider < S-get Provider EntityType();

10: if elparameter = €l provider then

11: n < number of entities of type et oyider that match oppre
12: else

13: n < number of entities of type efparameter

14: end if

15: n < n/S+ ((random.nextInt(S) < (n modulo S))?1 : 0);
16: for j =0tondo

17: if Jop;, € Container(etparameter) : 0piy matches oppre then
18: 0pout < invoke(op) with opjy;

19: if etparameter # €tprovider N Provider is consumable then
20: Container (et proyider)-remove(0);

21: end if

22: if etparameter # et provider ¥ Provider is consumable then
23: Container(etparameter)-remove(opiy);

24 end if

25: etparameter < Opout-get EntityType();

26: Container(etparameter)-add(0pout);

27: end if

28: end for

29: end for

30: Stats < Tally entity quantities in each container;

31: end for

erosion also increases. For example, when the quantity of Aspirin is 10, there is no
sign of stomach erosion. When the quantity of Aspirin increases to 100, the quantity
of stomach cell, after 150 iterations of operation invocation, drops to 20, which is
one third of the initial quantity. This confirms the user hypothesis that Aspirin has a
side effect on the stomach. In addition, we also noticed that given a fixed quantity of
Aspirin, the reduction of the initial quantity of COX1/ also has a negative effect on the
stomach (Fig. 12.13d—f). When the initial quantity of COX1 is high, it takes longer for
all the COX1 to get acetylated by Aspirin. As aresult, enough PGG2 and consequently
PGH?2 and PGI2 will be built up to feed into the produceMucus operation of the
StomachCellService. As the initial quantity of COX/ becomes smaller and while
the depletion rate of Mucus by GastricJuiceService remains the same, less Mucus is
being produced by the StomachCellService as less PGI2 becomes available.

While Fig. 12.13 clearly illustrates the relationships between Aspirin and Stom-
ach_Cell, the relationship between the dosage amount of Aspirin and the sensation
of pain is less obvious in the same figure. Except for Fig. 12.13a, which shows some
accumulation of PainSignal when the quantity of Aspirin is 10, the rest of plots

304

Initial COX1 =60
(a) Aspirin =10

G. Zheng and A. Bouguettaya

Aspirin = 40
(d)Initial COX1 =120

5c=‘\\ /

N
o
ol N

ST . N

SRR D PRP RSP D DS

(e)Initial COX1 = 90

120

100
so{x

60 \
20
Q Q("Q(bﬁ@bﬁbﬁ/\ﬁ%ﬁgﬁ\ \@@@Q\@@Q

() Initial COX1 = 30
120

60

50
40

30

20
10 1

W P

100

80
60 —“\
40

.
fﬁui\mmm- -

0
CRXR® PSR SRSOP SO S

PRSPPSO PSR

—a—Stomach_Cell ——Mucus —e—PGI2 —e—PainSignal —s—COX1 ——PGG2 —n—CO/‘Q‘

Fig. 12.13 Simulation results with original configurations

show no pattern of such accumulation or the variation thereof. A closer look at
the highlighted pathway in Fig. 12.12b reveals that this is actually consistent with
the way the simulation is set up. Since PainSignal is created and then converted
by the Brain to ReliefSignal, which disappears after it is sensed by Nociceptor, this
whole path at the bottom actually acts as a ‘leaky bucket’. To examine exactly what is
going on along that path, we decided to make two changes in the simulation setting.
First, we reduced the maximum frequency of invoking the Brain service to half that

12 Exploring Service Networks 305

Initial COX1 = 60, senseRelief enabled Initial COX1 = 60, senseRelief disabled
(a) Aspirin =10 (d) Aspirin =10

PR SOSSS O SO S

(b) Aspirin = 40
70 70

60

50
40

30

20

10 7

o o

(f) Aspirin = 100

70
“N AN
50

40

R 00000000

R-0000002QC0CRYII2 2 22098 o

ORP R RE SR PO D DO

|+PGE2 —&—>Stomach_Cell —@—ReliefSignal —e—Bound_MNociceptor —¢—PainSignal —e—COX1 ——COX2

Fig. 12.14 Simulation results with modified configurations

of Nociceptor. This creates a potential imbalance between the production rate of
PainSignal and ReliefSignal since the processPain operation from the BrainService
will be consequently invoked less frequently than the sensePain operation from the
NociceptorService. Second, we disabled the senseRelief operation of the Nocicep-
torService. This essentially stops the leaking of the ReliefSignal that are generated
as a result of the PainSignal. When we apply only the first change to the simulation,

306 G. Zheng and A. Bouguettaya

the imbalance of the processing rates for PainSignal and ReliefSignal results in a
net accumulation of PainSignal when the quantity of Aspirin is 10 (Fig. 12.14a).
When the quantity is increased to 40 (Fig. 12.14b), we see there are some occasional
and temporary accumulation of PainSignal. As the quantity of Aspirin continues to
increase (Fig. 12.14c), we see no detectable accumulation of PainSignal. Finally, we
apply the second change along with the first one. Consequently, we notice that while
the pattern of PainSignal’s accumulation hasn’t changed much, there is a consistent
accumulation of ReliefSignal. Since each PainSignal is eventually converted to a
ReliefSignal by the Brain according to the highlighted pathway in Fig. 12.12b, the
rate of ReliefSignal’s accumulation actually provides a much better picture on how
fast PainSignal has been generated. We see that as the dosage amount of Aspirin
increases, less ReliefSignal is generated, an indication that less PainSignal has been
generated. Thus it is obvious that the increase of the dosage amount of Aspirin has
a positive effect on the suppression of PainSignal’s generation. This confirms the
other half of user’s original hypothesis.

Simulation results such as these presented in Figs. 12.13 and 12.14 provide infor-
mation to a pathway analyst who would otherwise get such information from in vitro
and/or in vivo exploratory mechanisms.

12.6 Related Work

There are currently two major approaches used to represent biological entities: free
text based description and computer models.

Free text based approaches are mostly targeted at human comprehension. They use
free text annotations and narratives [21, 23] to describe attributes and processes of
biological entities and store them in various databases (e.g., GenBank [35], DIP [40],
KEGG [29, 31], Swiss-Prot [9], and COPE [28]). A major disadvantage with these
annotations and narratives is their lack of structure and interfaces. These are required
for a computer application to “understand” the various concepts and often complex
relationships among these concepts. Although several Natural Language Processing
(NLP) approaches (e.g., [25, 34, 36, 38]) have been devised for the purpose of
pathway discovery, these approaches focus on the identification of pathways and
offer no support for ‘what-if” analyses on identified pathways using computer-based
simulation.

A computer model of a biological entity can be created based on lab discoveries
and hypotheses. Such models can be both expressive (for human comprehension)
and structured (for computer consumption) and thus provide a better alternative to
free-text annotations. They can be understood by a human through their visual repre-
sentations and by a computer through their constituent constructs. A major advantage
of computer models is their readiness for execution with their inherent processes. By
executing processes of computer models in a simulation, we expect to verify the valid-
ity of previously identified pathways linking real biological entities as represented
by these models. When their processes are expressed as a function of surrounding

12 Exploring Service Networks 307

conditions (e.g., availability of nutrients and energy), computer models would also
have the inherent capability of responding to perturbations in these conditions, mak-
ing it possible to study the effects of the perturbations on the pathways to the extent
allowed by these models. Computer models have been pursued in [4, 20, 22, 24,
27, 30, 39]. Unfortunately, these models are often constructed to simulate entities
in an isolated local environment (as compared to the Web environment), limited to
the study of known pathways (e.g., cell death, growth factor activated kinase in BPS
[4]), and lack the ability to facilitate the discovery of new pathways linking models
that are independently developed. The service-oriented modeling and exploration
approach presented in this paper bridges the gap between the above two representa-
tion approaches. It not only allows for the automatic discovery of previously hidden
pathways, but more importantly brings about unprecedented opportunity for validat-
ing such pathways right on the Web through direct invocation of involved services,
making it possible to carry out simulation-based predictive analysis on the Web of
interactions involving a large number of entities modeled by these services. Although
we have chosen to model biological processes in this paper, we believe our approach
is generic enough to be applicable to many other processes in life. These include,
among others, knowledge production processes, which can be represented and mined
in a similar fashion.

12.7 Conclusion

We described a service-oriented framework for modeling biological processes as
Web services. We presented PathExplorer as a tool to discover pathways linking
these process models. We also described the simulation-based approach used by
PathExplorer to support predictive analysis of discovered pathways. Our framework
allows for the interrelationships among various entities involved in pathway networks
to be exposed in a more holistic fashion than traditional text-based pathway discovery
mechanisms, which inherently lack the simulation capability. In addition, the frame-
work allows such exposure to be achieved via the Web, consequently enabling better
sharing of models and simulation results than traditional modeling and simulation
approaches.

References

1. Apache axis2/java - next generation web services. http://ws.apache.org/axis2/.

2. Aspirin. http://www3.interscience.wiley.com:8100/legacy/college/boyer/0471661791/
cutting_edge/aspirin/aspirin.htm

Biological pathways. http://www.genome.gov/27530687.

Bps: Biochemical pathway simulator. http://www.brc.dcs.gla.ac.uk/projects/bps/.

The graphml file format. http://graphml.graphdrawing.org/.

oA W

http://ws.apache.org/axis2/
http://www3.interscience.wiley.com:8100/legacy/college/boyer/0471661791/cutting_edge/aspirin/aspirin.htm
http://www3.interscience.wiley.com:8100/legacy/college/boyer/0471661791/cutting_edge/aspirin/aspirin.htm
http://www.genome.gov/27530687
http://www.brc.dcs.gla.ac.uk/projects/bps/
http://graphml.graphdrawing.org/

308

10.
11.
12.
13.
14.
15.
16.
17.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

G. Zheng and A. Bouguettaya

. Java architecture for xml binding, binding compiler (xjc). http://java.sun.com/webservices/

docs/1.6/jaxb/xjc.html.

. Jetty. http://www.mortbay.org/.
. Nf-kappab pathway. http://www.cellsignal.com/reference/pathway/NF_kappaB.html.
. Uniprotkb/swiss-prot. http://www.ebi.ac.uk/swissprot/.

The web service modeling language wsml. http://www.wsmo.org/wsml/wsml-syntax.

Web service modeling ontology. http://www.wsmo.org/.

The web service modeling toolkit (wsmt). http://sourceforge.net/projects/wsmt.

Web services description language (wsdl) 1.1. http://www.w3.org/TR/wsdl.

‘Web services execution environment. http://sourceforge.net/projects/wsmx.

Web services semantics - wsdl-s. http://www.w3.org/Submission/ WSDL-S/.

yed - java graph editor. http://www.yworks.com/en/index.html.

Owl-s: Semantic markup for web services. November 2004. http://www.w3.org/Submission/
OWL-S/.

. Sunny Y. Auyang. From experience to design - the science behind aspirin. http://www.

creatingtechnology.org/biomed/aspirin.htm.

. Philip Ball. Designing the Molecular World - Chemistry at the Frontier. Princeton University

Press, Princeton, New Jersey, 1994.

Upinder S. Bhalla and Ravi Iyengar. Emergent properties of networks of biological signaling
pathways. Science, 283:381 — 387, 1999.

Roger Brent and Jehoshua Bruck. Can computers help to explain biology? Nature, 440(23):416
— 417, March 2006.

Luca Cardelli. Abstract machines of, systems biology. pp. 145-168, 2005.

Jacques Cohen. Bioinformatics: An introduction for computer scientists. ACM Computing
Surveys, 36(2):122 — 158, 2004.

H. de Jong and M. Page. Qualitative simulation of large and complex genetic regulatory systems.
In Proceedings of the 14th European Conference on Artificial Intelligence, ECAI, pages 141—
145, Amsterdam, 2000.

Daming Yao et al. Pathwayfinder: Paving the way toward automatic pathway extraction. 29:52
—62,2004.

Craig Freudenrich. How pain works. http://health.howstuffworks.com/pain.htm.

Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jrgen Pahle, Natalia Simus, Mudita
Singhal, Liang Xu, Pedro Mendes, and Ursula Kummer. Copasi - a complex pathway simulator.
Bioinformatics, 22:3067 — 3074, September 2006.

Horst Ibelgaufts. Cope - cytokines online pathfinder encyclopaedia. http://www.
copewithcytokines.de/.

M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima, T. Katayama,
M. arki, and M. Hirakawa. From genomics to chemical genomics: new developments in kegg.
Nucleic Acids Research, 34:354 — 357, January 2006.

Peter D. Karp, Suzanne Paley, and Pedro Romero. The pathway tools software. Bioinformatics,
18:S1 - S8, 2002.

Kanehisa Laboratories. Kegg: Kyoto encyclopedia of genes and genomes. http://www.genome.
jp/kegg/.

Misia Landau. Inflammatory villain turns do-gooder. http://focus.hms.harvard.edu/2001/
Augl10_2001/immunology.html.

Ben Lehner and Andrew G. Fraser. A first-draft human protein-interaction. Genome Biology,
5(9):R63, August 2004.

Daniel M. McDonald, Hsinchun Chen, Hua Su, and Byron B. Marshall. Extracting gene path-
way relations using a hybrid grammar: the arizona relation parser. Bioinformatics, 20(18):3370
— 3378, July 2004.

NCBI. Genbank. http://www.ncbi.nlm.nih.gov/Genbank/.

See-Kiong Ng and Marie Wong. Toward routine automatic pathway discovery from on-line
scientific text abstracts. volume 10, pages 104—-112, 1999.

http://java.sun.com/webservices/docs/1.6/jaxb/xjc.html
http://java.sun.com/webservices/docs/1.6/jaxb/xjc.html
http://www.mortbay.org/
http://www.cellsignal.com/reference/pathway/NF_kappaB.html
http://www.ebi.ac.uk/swissprot/
http://www.wsmo.org/wsml/wsml-syntax
http://www.wsmo.org/
http://sourceforge.net/projects/wsmt
http://www.w3.org/TR/wsdl
http://sourceforge.net/projects/wsmx
http://www.w3.org/Submission/WSDL-S/
http://www.yworks.com/en/index.html
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.creatingtechnology.org/biomed/aspirin.htm
http://www.creatingtechnology.org/biomed/aspirin.htm
http://health.howstuffworks.com/pain.htm
http://www.copewithcytokines.de/
http://www.copewithcytokines.de/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://focus.hms.harvard.edu/2001/Aug10_2001/immunology.html
http://focus.hms.harvard.edu/2001/Aug10_2001/immunology.html
http://www.ncbi.nlm.nih.gov/Genbank/

12

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Exploring Service Networks 309

Reactome. Reactome - a curated knowledgebase of biological pathways. http://www.reactome.
org/.

Carlos Santos, Daniela Eggle, and David J. States. Wnt pathway curation using automated
natural language processing: combining statistical methods with partial and full parse for
knowledge extraction. Bioinformatics, 21(8):1653 — 1658, November 2005.

Masaru Tomita, Kenta Hashimoto, Koichi Takahashi, Thomas Simon Shimizu, Yuri Matsuzaki,
Fumihiko Miyoshi, K. Saito, S. Tanida, Katsuyuki Yugi, J. C. Venter, and C. A. Hutchison III.
E-cell: software environment for whole-cell simulation. Bioinformatics, 15(1):72 — 84, 1999.
UCLA. Database of interacting proteins. http://dip.doe-mbi.ucla.edu/.

Min-Jean Yin, Yumi Yamamto, and Richard B. Gaynor. The anti-inflammatory agents aspirin
and salicylate inhibit the activity of I« B kinase-B. Nature, 369:77 — 80, November 1998.

Jing Yu, V. Anne Smith, Paul P. Wang, Alexander J. Hartemink, and Erich D. Jarvis. Advances
to bayesian network inference for generating causal networks from observational biological
data. Bioinformatics, 20(18):3594 — 3603, 2004.

George Zheng and Athman Bouguettaya. Mining web services for pathway discovery. 2007
VLDB Workshop on Data Mining in, Bioinformatics, September 2007.

George Zheng and Athman Bouguettaya. A web service mining framework. In 2007 IEEE
International Conference on Web Services (ICWS), Salt Lake City, Utah, July 2007.

George Zheng and Athman Bouguettaya. Discovering pathways of service oriented biological
processes. The Ninth International Conference on Web information Systems Engineering (WISE
2008), September 2008.

George Zheng and Athman Bouguettaya. Service-based analysis of biological pathways. BMC
Bioinformatics, October 2009.

http://www.reactome.org/
http://www.reactome.org/
http://dip.doe-mbi.ucla.edu/

Chapter 13

Automating Tendering Processes with Web
Services: A Case Study on Building
Construction Tendering in Hong Kong

Dickson K. W. Chiu, Nick L. L. NG, Sau Chan Lai, Matthias Farwick
and Patrick C. K. Hung

Abstract With the recent advancements and adoption of Web Service technolo-
gies, improvements can be made for tendering processes to solve B2B interoper-
ability and integration problems. In this paper, we detail our Tendering Process
Meta-model (TPM) to improve inefficient manual or semi-automated tendering
process. We further demonstrate our approach in a case study of the building and
construction industries, where contracting authority invite tenderers to submit an
estimate of prices, detailing the costs associated with completing a building. In this
way, the contracting authority can base their decision on the tender submissions to
select the most suitable contractor. Currently in Hong Kong, many of such tendering
processes are still mainly manual and paper based. The tenderers need to collect the

An extended abstract of this paper was presented at the 2007 GDN meeting [9].

D. K. W. Chiu (X))
Dickson Computer Systems, 117 Argyle Street, Kowloon, Hong Kong
e-mail: dicksonchiu@ieee.org

D. K. W. Chiu
Department of Computer Science and Engineering, Hong Kong University of Science
and Technology, Kowloon, Hong Kong

N.L.L.NG - S. C. Lai

Computer Science and Engineering, Hong Kong University of Science and Technology,
Kowloon, Hong Kong

e-mail: nickng@ust.hk

S. C. Lai
e-mail: chanlaze @ust.hk

M. Farwick
Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
e-mail: csae8781 @uibk.ac.at

P. C. K. Hung

Faculty of Business and Information Technology, University of Ontario Institute
of Technology, Oshawa, Canada

e-mail: patrick.hung @uoit.ca

A. Bouguettaya et al. (eds.), Advanced Web Services, 311
DOI: 10.1007/978-1-4614-7535-4_13,
© Springer Science+Business Media New York 2014

312 D. K. W. Chiu et al.

tender’s booklet, price it, and bring it back to the contracting authority’s office before
the deadline. In this paper, we present a design and implementation of an e-tendering
system (ETS) based on our TPM by using Web services for the automation of such
tendering processes. We also show how e-tendering reduces the problems that occur
in the manual process and helps decision making.

13.1 Introduction

Nowadays, technology plays an important role in many businesses, especially in
roles such as automating many business processes and facilitating better decisions.
Over the past several years, Web services have been expanded to become more
and more popular for application development, mainly due to its competitiveness in
applications integration [13]. Web services technology offers a unified platform for
both business-to-business (B2B) and business-to-customer (B2C) communications.
The goal of the Web service paradigm is to overcome some of the main drawbacks of
traditional business-to-business applications that, in most cases, result in complex,
custom, one-off solutions, that are not scalable, and costly and time consuming in
the creation.

Unlike traditional client-server models, such as a Web server or webpage sys-
tem, Web services do not provide the user with a Graphic User Interface (GUI) [4].
Instead, Web services share business logics, data, and processes through a standard-
ized programmatic interface across a network. The applications interface with each
other, but not with the users. Application developers can then add the Web service
to a GUI (such as a Web page or an executable program) to offer specific function-
alities to users. Besides, Web services realize a distributed computing model via
application-to-application communication over the Internet. For example, a tender-
ing application could reorder needed items via the Web service interface of a remote
inventory application.

Tendering processes are complex. A typical one involves lots of business proce-
dures such as tender specification preparation, tender advertisement, tender
aggregation, tender evaluation, tender awarding, contract monitoring, etc. Besides,
a tendering system often needs to communicate with other systems such as sup-
ply, order, purchase, procurement, and even account to complete its procedures. The
total number of stakeholders involved can be numerous, and it is crucial for them
to interoperate smoothly with one another through a programmatic interface written
in a common language. Ideally, a well-suited tendering process model should be
designed making use of this language to provide a framework for all stakeholders to
follow strictly, so that application-to-application communication over the Internet in
an organized manner becomes possible.

In particular, for the case that we study, the tendering process is a key business
process in the construction industry. Many information exchanges occur between
the contracting authorities and the contractors. Traditionally in Hong Kong, the ten-
dering process is paper based and involves much manual work, this can cause many

13 Automating Tendering Processes with Web Services 313

problems. Sometimes contractors even have to use handwritten submission, because
some contract authorities still require them to fill in their own pre-printed tender
booklets. Not only are such processes tedious however, handwriting is also extremely
error-prone and sometimes difficult to read. In addition, traffic jams and accidents
could cause submission deadlines to be missed.

Based on our earlier experience in developing e-Negotiation support with a
meta-modeling approach with Web services [8], we apply and extend it for ten-
dering processes. For the implementation, we are introducing an e-Tendering system
(ETS). By using electronic forms as the means of tendering, companies are able
to make split second decisions and last minute changes over the Internet. This is
desirable because of the rapid changes in the material price (e.g., price of steel, see:
http://hypertextbook.com/facts/2005/AlexGizersky.shtml) and labor cost (see: nom-
inal Wage Index by Industry Sector, http://www.info.gov.hk/censtatd/eng/hkstat/fas/
wages/w_nom_index.html). Further with the help of Web services, contractors can
provide cost estimates automatically. The pricing of each item can automatically be
calculated by using information from their corporate databases as well as immediate
estimates from subcontractors. In addition, since all the information provided by
the contractors is in a digital format, it is very easy for the contracting authority to
generate tender evaluation reports in any format. Since different contractors have
different systems and databases, a standard platform is required for the information
exchange. Web services are therefore suitable because they use standardized XML,
and are not tied to any particular operating system or programming language [4].

The rest of this paper is organized as follows. Section 13.2 introduces the back-
ground of tendering. Section 13.3 reviews related work. Section 13.4 describes the
architecture and implementation for our ETS. Section 13.5 summarizes the paper
with the advantage of our approach and our future work direction.

13.2 Tendering and Case Background

In general, no matter paper-based or computerized tendering process, both of them
begin with a needs analysis, followed by supplier selection, tender invitation and
ending with contract awarding and contract monitoring.

Need Analysis—Before a tender is issued, the responsible Contracting Authority
(CA) ensures that it researches the needs of end-users to make sure that the tender
specification meets these needs.

Supplier Selection—CA carries out their own supplier search for smaller con-
tracts, or use pre-negotiated contracts of buying groups without tendering. Suppliers
may even approach these buying groups separately to enquire about opportunities to
supply.

Tender documents—usually called an Invitation to Tender (ITT), which contains
the following sections:

a. Introduction—Background information of the tender
b. Tender Conditions—Legal parameters surrounding the tender

http://hypertextbook.com/facts/2005/AlexGizersky.shtml
http://www.info.gov.hk/censtatd/eng/hkstat/fas/wages/w_nom_index.html
http://www.info.gov.hk/censtatd/eng/hkstat/fas/wages/w_nom_index.html

314 D. K. W. Chiu et al.

. Specification—Description of the supplies, service or works to be provided

. Instructions for Tender Submission—Instructions for the bidders

. Qualitative Tender Response—Qualitative questions designed for bidder

. Pricing and Delivery Schedule—Quantitative questions designed for bidder

. Form of Tender—Declaration to be signed by the bidder

. Certificate of Non-Collusion—Declaration that the bidder has not colluded with
any other bidder on the tender

. Draft of Proposed Contract—A draft of the contract that will be signed by the
successful bidder

50 - 0 &0

—-

Tendering Procedures—Tenders are classified as ‘Restricted’, ‘Open,” and
‘Negotiated’ tenders.

Restricted Tender follows a two-stage process. All suppliers that have expressed
aninterest are sent a pre-qualifying questionnaire (PQQ). The PQQ is splitinto a num-
ber of sections, such as General Company Details, Technical Resources, Financial
Information, and References. Suppliers are short-listed based on the above infor-
mation, and the ITT are sent to appropriate ones. Normally, suppliers have certain
period of time to respond to PQQ and ITT.

Open Tender allows any supplier that expresses an interest in tendering to be
sent the ITT documents. The supplier simply sends a letter referring to the contract,
expressing an interest, and enclosing the relevant contact details. Normally, suppliers
have a certain period of time to respond to the ITT.

Negotiated Tender is carried out only under special circumstances, such as when
a project needs to be completed within a short period of time, or there is only one
supplier or contractor who has the necessary supplies or expertise, where the technical
and other parameters may not be capable of precise definition and where security
projects of national importance are involved.

Award of Contract—Most contracts are awarded on a most economically advan-
tageous tender basis. Therefore, the evaluation may not be restricted to just the cost.
A contract is awarded after evaluating a range of criteria, which are usually weighted
by importance [18]. Criteria other than cost may include quality, experience, pro-
posed payment processes, and timetable for implementation.

Contract Award—The CA signs a contract with the selected supplier based on
the “Draft of Proposed Contract” included in the tender documents once the contract
has been awarded.

Contract Monitoring—The CA expects to meet with the selected supplier on a
regular basis to review its performance and discuss any related issues.

In the Hong Kong construction industry, contracting authorities usually use ten-
dering to find the most suitable contractors to construct buildings or perform building
expiations and renovations [14]. A contract between a contracting authority and a
contractor is formed when an express or implied offer is made by one party and
is accepted without qualification or amendment by the other. The party making
the offer is commonly referred to as the offerer and the party accepting is known
as the offeree. The tender is an offer. The contracting authority invites tenderers
(here, contractors) to submit the details of prices at which goods or services may be

13 Automating Tendering Processes with Web Services 315

bought [3]. The contracting authority then selects one of the tenderers and makes a
contract between them. A standard construction project tender should include at a
minimum the following information:

e Form of Tender is used to ensure that all tenders are received on the same basis
and should be simple to compare.

e Condition of Contract sets out the rights, responsibilities, and duties of the con-
tractor in the form of numbered clauses.

e Contract Drawings are the graphic presentation, and details of works. It normally
includes drawings showing the site location(s), the position of the building(s) on
the site, floor plans, elevation and sections, as well as details of the components.

e Specifications are used to describe the nature, quality and class of materials and
workmanship required, and any constraints to the methods of construction. So,
the types of specifications used in the construction industry include design spec-
ifications, technical specifications, product specifications, and the performance
specification.

e Bill of Quantities is a schedule of all the items of workers required to complete the
project. It is in the form of a systematic and recognized list of items and represents
the breakdown of all materials, together with laborers and plans required for the
completion of the project. A bill of quantities is essential for contractors to price
the work on the same basis in tendering for a construction project so that their total
prices are directly comparable.

A tender also contains a Form of Tender to ensure that all tenders are received on
the same basis and should be simple to compare. There are several types of tendering
procedures commonly used in Hong Kong: open competitive tendering, selective
competitive tendering, and negotiated tendering are all common forms [14].

e Open competitive tendering is a traditional approach in selecting a contractor.
Competitive tendering is normally restricted to just price comparison. Any tenderer
having interest in the project also can participate in the tendering process.

e Selective competitive tendering is almost the same as the open competitive ten-
dering. The main difference between these two tendering methods is that selective
tendering involves just a list of potential tenderers to be invited. They normally
have good reputation, and the contracting authority has strong confidence in these
choices.

e Negotiated tendering is different from open and selective competitive tendering.
Negotiation is a process of conferring with the intent of finding terms of agreement.

In this paper, we use three typical types of the contracts typically used in Hong
Kong construction projects to illustrate the applicability of our approach: Lump sum
contracts are based on bill of quantities, Design and build without quantity, and Term
contract based on the schedule of rates.

e Lump sum contract is a type of contract that is commonly used for building con-
struction projects. The bill of quantities is provided to the tenderers. The tenderers
only need to provide the cost data in the tender. With the quantities of the works

316 D. K. W. Chiu et al.
Client

Tender out J {Tender inH 'll::::;r H Result F@

Priced tender

|
Tender document

Get item Request Pricin
content quotation 9

|
Enquiry

Tenderer

Price information

.

Fig. 13.1 Overview of a typical tendering process for building construction

Suppliers/sub-contractors

and the cost data, a lump sum is produced and bound to the contract. The advantage
of this type of contract is that the contracting authority can have easy control of
the cost.

e Design and build without quantity is usually used for building services works or
projects that need the contractor to design. The tenderers need to provide both the
quantities and the price of the works with their design.

e Term contract based on schedule of rates is usually used in projects with an unclear
scope, such as maintenance projects. For example, as we do not know how often
and how many doors need repair, we need a schedule of rates for such costs.
The tenderers also need to provide a trade discount for competition with others
contenders.

In a construction project, there are several parties involved in the tendering
process: contracting authority, professional teams (like architects, quantity survey-
ors), contractors, suppliers, sub-contractors. Architects are professional individuals
who design the buildings. Quantity surveyors prepare the tender document. The con-
tractors, suppliers, sub-contractors are the parties who actually construct the building.
In this paper, the ETS automates some of the tendering process. So we introduce some
details of these processes as depicted in Fig. 13.1.

e Tender-out process—In this process, based on the architect’s design, the quantity
surveyor prepares the tender document for the potential tenderers (traditionally
the tender booklets and drawings).

e Pricing process—According to the information of the tender document (like bill
of quantity), tenderers may make a request for further information or price them
based on their own suppliers cost data or sub-contractor quotations in accordance
with their profit. Tenderers usually have a database to store some frequently used
materials cost data such as concrete and reinforcement.

e Tender-in process—After pricing a tender, the tenderer needs to submit it to the
contracting authority, traditionally in a tender box at the contracting authority’s
location. Prior to the tender closing time, no one can gain access to the tender

13 Automating Tendering Processes with Web Services

BUYER

g
]

e-Tendering Systems

3. e-Tender
information

published onlne/vé
Finance Depa ment Lega epartm

—

317

5. Tender submission

7. Bids
deadlin

ent

2. e- Tender appr

1. Prepare e-Tender
information

Fig. 13.2 Tradional e-tendering system

by buyer

'Download e-Tender informatia}
from Website

INTERNET

opened on

e and analyzed
5. Prepare e-

Tender response

box to read the submitted tenders. After the tender closing time, the contracting
authority’s quantity surveyor will make the tender report of the submitted tenders.

Currently, This simple technical solution based on secure e-mail and electronic
document management, involving uploading tender documents on to a secure Website
with secure login, authentication, and viewing rules. So, the e-tendering approach is
justan electronic paperless one, which is inadequate to solve the problem. Figure 13.2
describes a typical e-tendering System involving the following steps:

1.
2.

finance and legal departments.

suppliers to look into details.

calculations.

CA staff creates the electronic ITT document online.
ITT document is sent to all the parties involved in the approval process such as

. ITT is published via the e-tendering system and is available online for interested

Suppliers access the e-tendering system to view the ITT via the CA’s website.
Suppliers plan and prepare their bids through their own systems and / or by manual

Suppliers respond to ITT by sending their bids using secure e-mail to the

e-tendering system. Security features prohibit access to any of the tender responses

until a specified deadline.

318 D. K. W. Chiu et al.

7. Once the tender deadline has been reached, the CA users of the system can view
the tenders and collaborate on-line to perform evaluation analysis of the submitted
bids, either manually or semi-automatically by bid evaluation tools.

8. The supplier of the winning bid is notified of the award via the e-tendering system.

Tools available in the current market offer various levels of sophistication.
A simple e-tendering solution may be just a simple application on a Web server,
where electronic documents are posted with basic viewing rules. This type of solu-
tion is unlikely to provide automated evaluation tools. Users need to download ten-
ders to spreadsheets and compare them manually. Such solutions can only reduce
the turn-around time of paper-based tendering slightly.

More sophisticated e-tendering systems may include more complex collabora-
tion functionality, allowing users in different locations to view and edit electronic
documents. They may also include e-mail trigger process control to alert users, for
instance, when a staff has made changes to a collaborative ITT, or a supplier has
posted a tender.

For all the above situations, manual procedure is necessary for the execution of
the tendering process. The interoperability between stakeholders is weak because of
lacking in a standardized language for interfacing, and the tendering workflow seems
to be unstructured.

Web services can be used to overcome these problems and realize an efficient
tendering process, reducing the time and cost significantly. Our approach automates
most of the tendering process’s procedures from preparing the tender specification,
tender advertising, tender aggregation, to the evaluation and placing of the contract,
under a structured model that has taken all business requirements into account after
detailed analysis. Early adopters of Web services include several industries such
as logistics businesses that may involve a set of diverse trading partners working
closely together on Internet [13]. In summary, the properties of Web services can be
summarized as follows:

e Loosely-coupled. Web services can run independently of each other on entirely
different implementation platforms and run-time environments.

e Encapsulated. The only visible part of a Web service is the public interface.

e Standard Protocols and Data Formats. The interfaces are based on a set of XML
standards.

e Invoked Over Intranet or Internet. Web services can be executed within or outside
the firewall.

e Components. The composition of Web services can enable business-to-business
transactions or connect the internal systems of separate companies, such as work-
flow.

e Ontology. Everyone must understand the functionality behind how data values are
computed.

e Business Oriented. Web services are not end-user software.

As aresult, a pool of Web services can provide an easier integration environment
to achieve interoperability, reusability and robustness. Initial Web services-based

13 Automating Tendering Processes with Web Services 319

applications are usually within businesses (behind the firewall or Intranet) in order
to gain trust.

The overhead of streamlining the tendering process from start to finish requires
more specific tender requirements for automatic evaluation of strict tender criteria
and request responses from stakeholders to be in a particular format.

13.3 Related Work

Negotiation is a decision process in which two or more parties make individual
decisions and interact with each other for mutual gain [27]. In the USA [24], the
federal government spends about USD$200 billion annually buying goods and ser-
vices from over 300,000 vendors. A typical supermarket chain requires negotiating
of over 50,000 product items annually.

In tradition, negotiation is usually associated with contracts as an outcome [23].
A contract is a binding agreement between two or more parties, defining the set of
obligations and rewards in a business process. This reduces uncertainty associated
with the interactions between the parties. Therefore, contracts are important for
attaining interoperability of business processes and enforcing their proper enactment.
Negotiation of contracts also involves two or more parties multilaterally bargaining
for mutual gain in order to achieve a mutual beneficial agreement, but each of them
may have conflicting interests [5]. In many cases, the parties are searching for an
integrative agreement. In particular, integrative agreements are likely to contribute to
business effectiveness [21]. During negotiation, proposals are sent to the other parties,
and a new proposal may be generated after receiving a counter proposal. The process
continues until an agreement or a deadlock is reached, or even one or more party quits.
During the process, each party needs to determine reactions of the other parties and
obtain their responses, while estimating the outcomes that counter-parties would like
to achieve. Whereas each party has its own utility function, they tend to be ignorant
of the others’ values and strategies, especially in a non-cooperative environment.
As a result, negotiations may involve high transaction costs and therefore has to be
streamlined, especially in high volume e-commerce environments.

The Internet has recently become a global communication platform and allows
organizations as well as individuals to communicate among each other, to carry
out various commercial activities, and to provide value-added services. Many busi-
ness activities become automated as electronic transactions, causing both transaction
costs and time to be greatly reduced. However, negotiation of contracts is often still
performed manually unsupported by computer systems or just by email. The main
problem of this is its slowness, which is further complicated by issues of culture,
ego, and pride [27].

In general, negotiation processes can be classified into bidding and bargaining.
An extended form of negotiation is to have a prelude phase of requirement and
candidate identification in processes of request for proposals (RFP) [19]. Bidding
is a multilateral distributive negotiation and it is a formal, competitive procurement

320 D. K. W. Chiu et al.

procedure. Bidding offers to supply goods, works, or services, which are solicited,
received, and evaluated. Bidding ends with a contract awarded to the bidder whose
offer is the best in terms of price and other factors that should be taken into account
in the evaluation of bids. A bargaining process involves two parties. Each party has a
single but opposing objective such as paying less or being paid more. This is called
divergence of interest between two parties. It means that the parties have incompatible
preferences among a set of available options. Both parties have opposing preferences
and the parties differ in their utility ordering for at least some of the options under
consideration [22]. The difficulty of the bargaining process lies in learning the best
value, which the opponent still would accept and in obtaining this value. In general,
the degree of divergence of interest is a joint function of the parties’ needs and the
alternatives under consideration. However, it is usual for the parties to discover new
alternatives that reduce or even eliminate a prior divergence of interest [21].

When the supplier has limited amount of goods, the supplier will sell to those
to maximize the profit. Auction is an economic mechanism for determining the
price of an item and hence the ownership of the item. Auction provides an effective,
alternative means of price discovery, especially when sellers do not know the buyers’
valuations [2]. This process is usually initiated by the supplier, and may be carried out
through its own portal or an external e-Marketplace. Many (potential) buyers will bid
at a time. Rothkopf and Park [25] provided an excellent review of different types of
auctions (such as English and Dutch auctions) and related issues. On the other hand,
tendering can be considered as a reversed situation, where the buyer wants to buy a
limited number of items (or services) and the supplier with the lowest bid will win.

When buyers want to buy an item, they have some requirements about the item
in mind. Given that, many issues in the requirements could still be left open. In this
case, the item cannot be concretely identified. The buyer (usually big companies or
government) may then advertise an RFP, aiming to attract suppliers to reply with the
details of their solutions, i.e., providing concrete information and properties of the
requested item. Upon receiving the proposals, the buyer evaluates them according to
the criteria previously defined. The buyer may need to further interact with the candi-
dates for clarifications and extra supporting information. The buyer may shortlist or
rank candidates, or the buyer may also directly select a successful candidate. By this
time, the buyer will have much more understanding on the details of product/service
requirements, their issues, and thus also in the potential contract. Then, the buyer can
negotiate further issues and criteria with the candidate(s), or initiate another tender-
ing process. The tendering process is particularly suitable if the contract is complex,
with many different issues [17].

Most studies on negotiation focus on interactive bargaining but not on B2B nego-
tiation processes. In order to address this problem, we have conducted a preliminary
study on the different requirements for different modes of negotiation [8]. We have
been focused on more repeatable and structure negotiation processes in e-commerce
(as opposed to political and governmental negotiations). In the paper, based on our
experience on RFP, we extend our application to e-Tendering, which usually also
involves more complex contracts than auctions [17].

13 Automating Tendering Processes with Web Services 321

However, manual tendering process is time-consuming and cumbersome, often
taking months of turn-around time and numerous manual procedures, which is costly
for the stakeholders involved. There are several approaches existing in the market-
place, most of which have been implemented for governmental tendering use. None
of the found approaches offer a sophisticated infrastructure of public interfaces like
in our approach.

E-NRTY is one of the most well-known approach [10]. It attempts to solve the
problem by replacing paper-based tendering processes with electronically facilitated
processes based on tendering practices to save turn-around time. However, this solu-
tion is incomplete, since the interoperability between stakeholders remains weak,
i.e., the ability for two or more systems (or components) to exchange information
and to use the information that has been exchanged is still lacking. For instance, the
tendering process may not be efficient enough if buyers need to manage the tenders
coming in by first storing them in one place, cut and paste data from the electronic
tender documents for comparison in a spreadsheet, or make use of semi-automated
evaluation tools to carry out the supplier selection process, and then reply selection
result. The labor cost is further expensive if 7x24 operation is in need.

ETHICS [20] is a Danish e-tendering system, jointly developed by the Danish
National Procurement Agency (SKI), International Business Machinery (IBM), and
the software company [inno:vasion] (http://www.innovasion.dk/). The product is
operational since 2003 and adheres to the European Union (EU) directives on dig-
ital certificates. Its initial development started in 1995. In contrast to our solution,
ETHICS relies on the centralized IBM server product Domino/Lotus instead of an
open Service-oriented Architecture (SOA). Although the implementers state that they
are positioned for the use of SOA, considering the fact that the product was not built
with SOA in mind, it means that a large amount of rebuilding would be required to
decentralize it for SOA. Additionally the current product does not provide interfaces
through which tenderers can use to integrate with their own computing environment.

Homann et al. [16] describe the technological and legal issues concerning secu-
rity and trust in e-tendering systems. The technical report focuses on the EU public
sector and especially on the qualified signatures prescribed by EU law for such trans-
actions. This report gives an extensive comparison of existing e-tendering solutions
in the public sector of which no system offers public interfaces like in our proposed
solution. Specifically the article states: “If buyers and suppliers use or want to use
e-Procurement solutions integrated within their (complete) work processes, e.g., at
a hospital, it is clear that such a solution is very individual and depends on local
circumstances. Therefore, the market of products for (public) e-Procurement solu-
tions includes services for building up individual but completely new and needed
e-Procurement solutions with integrated support for public e-Bidding as well as
extending existing solutions for public e-Bidding support” [16]. This underlines the
need for flexible SOA B2B implementations like our proposed architecture. The
technical report expands on the German governmental e-tendering system eVer-
gabe (see: http://www.evergabe-online.de/?selectedLanguage=en), which makes use
of dedicated card readers to enable qualified signatures. Also due to legislation,
the 4-eyes principle is enforced to open a tender process and to open the tender

http://www.innovasion.dk/
http://www.evergabe-online.de/?selectedLanguage=en

322 D. K. W. Chiu et al.

documents. In eVergabe the institution and the supplier are both clients to the Inter-
net based bidding platform. Each role in the process runs different client software
provided by eVergabe.

A similar study carried out by Betts et al. [1] outlines the security requirements of
e-tendering systems. The authors also propose a distributed key and timestamp archi-
tecture, which allows suppliers and tenderers to receive keys and timestamps from
trusted third parties. Although the article refers to the key and timestamp distribu-
tion mechanism as “services,” the actual technology in favor has not been discussed,
leaving it open whether a Web Service based SOA could be used.

As already mentioned, most implementations and publications focus on the public
sector. One exception is the work of Singh and Thomson [26], who describe different
e-Procurement models for business to business integration in the Australian context.
These models are the buyer model which applies when there exist few buyers and
many sellers, the marketplace model which applies when there are many buyers
and many sellers, the long term relationship model which is relevant when there
is a high degree of planning in the transaction involved, and the seller model that
should be implemented when there are few sellers and many buyers. Again, all these
approaches foresee a centralized platform to perform the integration without any
public interfaces exposed for the integration with the internal information systems
of each party.

13.4 Tendering Process Model

In this section, we introduce a model to cover different tendering procedures (open,
restricted, negotiated), its architecture, model, and implementation with Web ser-
vices. We illustrate our TPM with four typical kinds of tendering processes: Request
To Participate (RTP), Invitation To Tender (ITT), Tender Submission, and Tender
Award Notification. The tendering process can be classified into business procedures
as shown in Fig. 13.3.

The tendering phase covers the preparation of an offer by a supplier in response to a
call for competition, as well as its submission to and receipt by the CA. The awarding
phase begins with the opening of tenders. After evaluating the tenders, a winning
tender is selected and an award notice is published through the appropriate services.
Suppliers are informed of the result of the selection. This model describes three of
the award procedures: open, restricted, and competitive dialogue. The highlighted
ones in the diagram are described with UML sequence diagrams afterwards.

Four typical tendering procedure meta-models are presented in the Unified Mod-
eling Language (UML), which is a modeling language for visualizing, specify-
ing, constructing, and documenting the artifacts of a software-intensive systems.
UML offers a standard way to write a system’s blueprints, including conceptual
things such as business processes and system functions, as well as concrete things
such as programming language statements, database schemas, and reusable software
components. Note that UML standardizes only the notation, leaving software engi-
neers the freedom to adopt their own software development process.

13 Automating Tendering Processes with Web Services 323
Open Restricted Negotiated
Competitive Dialogue
Tendering
Tender does request Req 1o panici : I Request to participate
| ca clarifications / Supplier answers | || CA clarfications /Supp
Short-listing) Short-listing

‘Tenderers short-listing result notification)

:Tendererasmrt-lisﬁm result notification

Invitation to tender [Invitation to cartiioate in a dialogue
[Making tender documents available | | | Making tender d Making descriptive document
Dialogue]
Invitation to submit final tenders
Making tender docs & info avallable |
pplier questions / CA A pplier questi {CA : Supplier g { CA Answers
Tender submission Tender submission : Final tenders submission
Awarding
[Opening & E Opening & Opening & F
[CA dlarifications / CA clarifications / answers | || CAclarifications / Supplier
N | IO T W | | S
(Conlract award Contract award) Contract award
| Award notification Award notification) Award notification
i, Award reporting Award reporting Award reporting

Fig. 13.3 Tendering business processes

13.4.1 Request To Participate

Figuer 13.4 presents a meta-model of RTP in UML. In response to the correspond-
ing contract notice, suppliers (or bidders) may request to participate by sending
the required information (legal, economic, financial, and technical information) to
the CA. The request is duly signed and sent to the CA. The RTP is received by
the tendering platform or directly by the CA, which time-stamps it, and checks the
reception date against the deadline defined in the contract notice. The supplier is
notified whether its RTP is accepted.

To illustrate the implementation, the following XML business documents (SOAP
messages) are designed for the RTP Web service:

Message

Description

Request to participate

RTP response

Sent by a supplier to the CA to request participation. Contains all
required information
Sent by the CA to a supplier in response to a previous request to
participate to acknowledge receipt of RTP

324

i

Contracting Authority

Check Digital
Signature

Confirm
Receipt of RTP

Fig. 13.4 Request to Participate

Contracting Authority

Short-Listing
Inform Selected
Suppliers

Inform Rejected

Selected Tenderer

Suppliers

Invite Selected |
Suppliers

Fig. 13.5 Invitation to tender

Invitation
To Tender [~

Receive
Response

13.4.2 Invitation To Tender

D. K. W. Chiu et al.

Tenderer(s)

Prepare RTP Info

..... Send RTP

Receive
Response

Rejected Tenderer(s)

Receive
Response

Figure 13.5 presents a meta-model of ITT in UML. The CA invites some or all
pre-selected suppliers to tender. This applies also in the case of a reopening of
competition between several suppliers. When using a tendering platform, the CA
uploads the contract documents and makes them available to the suppliers it has
invited to participate or tender. The following XML business documents (SOAP
messages) are designed for the ITT Web service:

13 Automating Tendering Processes with Web Services 325

Message Description

Short-listing result Notification of rejected suppliers by the CA of the result of the short-
listing process

Invitation to tender Sent by the CA to a supplier in order to invite it to submit a tender,

after a previous request to participate

X

Contracting Authority Tenderer(s)

Prepare Tender
Digitally Sign &
Encrypt Tender
Submit Tender

Check Digital
Signature
Check Date
Store Tender Confirm | | Receipt | . Receive

Receipt of Tender Response Response

®
?.% 4113 f fﬁlﬁff;}l? ll; i;)rrzlission

Figure 13.6 presents a meta-model of Tender Submission (TS) in UML. To sub-
mit the tender electronically, the supplier prepares its tender and then sends it to
the tendering platform. The supplier may sign and encrypt it before uploading it.
However, verification and evaluation of safety requirements (i.e., time stamping,
signature features, etc.) constitute a separate process. Its sequencing depends on the
type of security technology used (such as the Public Key Infrastructure). Moreover,
time stamping and use of the digital signature may involve interactions with third
parties. These are mainly exchanged at the software or hardware level and are not
considered in our model and therefore, do not appear in the schema below. The sub-
mission date of the tender may be checked against the deadline defined in the contract
notice. The tendering platform stores all submitted tenders in a secure vault. It issues
a reception response to acknowledge receipt of the submitted tender. The following
XML business documents (SOAP messages) are designed for the TS Web service:

326 D. K. W. Chiu et al.

Message Description

Tender Offer sent by the supplier to the CA. A tender may take the form of
an electronic catalogue

Reception response Sent by the CA to a supplier in response to a tender submitted. It

acknowledges the receipt of the tender submitted

13.4.4 Tender Award Notification

Figure 13.7 presents a meta-model of Tender Award Notification (TAN) in UML.
The CA must inform all participants of the result of the tender award as soon as
possible, no matter the selected or eliminated suppliers. Besides, an award notice
is sent out as well to publish the tender award result. The following XML business
documents (SOAP messages) are designed for the TAN Web service:

Message Description

Award notice Sent by the CA for official publication using the corresponding stan-
dard form

Award result Notification of the tenders by the CA of the result of the awarding
process

Contracting Authority Comission Sélected Tenderer Rejected Tenderer(s)

Complete
Tender
Award

Notice

Inform Selected| |
Tenderers

Infomed
Rejected
Tenderers

.a| Receive
Response|

5| Receive
Response)

Deliver Tender
Awarleotice

®

Fig. 13.7 Tender award notification

...| Tender Award | | Receive
Notice Response|

13.5 Implementation

In this section, we first introduce our overall architecture design for e-Tendering
process integration. Then we detail some of the key Web service interfaces to illus-

13 Automating Tendering Processes with Web Services 327

trate how our approach works. We also highlight some technologies for tackling
security issues.

13.5.1 Service-Oriented Architecture

The Web service SOAP messaging architecture described in Fig. 13.8 has been used
to improve the integration and interoperability of the tendering process. The CA
provides the tendering Web services for suppliers. The Web Services Description
Language (WSDL) document has described the Web service technical details and
Web service interface such as what operations it supports, what protocols are adopted,
and how the data exchange should be organized [11, 15]. Itis considered as a contract
between the Web services requester and the provider.

First of all, the CA publishes the WSDL document to Universal Description, Dis-
covery and Integration (UDDI) registries, which serve as “yellow pages” of WSDL
documents that provide a standard means for describing organizations and their ser-
vices thereby allowing online service discovery [11]. Then service requesters, such
as suppliers, act as a requester entity that expects to make use of the tendering Web
services for achieving its business requirements by using UDDI registries. UDDI
provides the information for the matchmaking between the Web service provider

" Tenderer'spricing |
system (TPS)

]

]

:

i l
Price !
DB i
]

[

]

]

[

]

]

Web services
through Intemet

Notify System

Tender-in
system

I
I
:
]
. Sub- | 2 7
Supplier oont!:actor I /Single Sign-On
| System
I
I
I

b i

Fig. 13.8 Implementation architecture overview

328 D. K. W. Chiu et al.

and requester. UDDI works as a discovery agency, like a Web search engine such as
Google.

Once suppliers find the tendering Web service at the UDDI registries, the suppliers
gets the correspondent WSDL document and binds with the Web service via a SOAP
message [11]. SOAP is an XML-based messaging protocol that is independent of
the underlying transport protocol (e.g., HTTP, SMTP, and FTP). SOAP messages are
used both by the suppliers to invoke tendering Web service, and by the tendering Web
services to answer to their requests. Therefore, the tendering Web services provider
(i.e., CA) receives the input SOAP message from and generates an output SOAP
message to the suppliers. In the next subsection, we detail how Web services can
facilitate the implementation of our TPM.

There are two main subsystems in the ETS: the Client tendering system (CTS) and
the Tenderer Pricing System (TPS). In the CTS, there are two subsystems: the tender-
out system and the tender-in system. In the TPS, the pricing elements are fundamental.
These two main systems communicate by using Web services through the Internet for
tender information exchange. We now detail some Web services implementations of
each subsystem. We then show how tenderers can integrate those services into their
environment and highlight some security issues and how the system handles some
of the exceptions.

13.5.2 Web Services of the Tender-Out System

As we have discussed before, there are three types of contracts commonly used in
Hong Kong. However, even though most parts of these contracts are similar, there is
the exception of the bill of quantity. We first demonstrate the common Web services
and then the specific ones for each type of contract. According to the requirements
discussed in the previous sections, the following common Web services are necessary.
Note that the separation of clauses, items, and drawings are necessary because of
their large size.

Service Name: getConditionofContractID

Input: TenderID

Response: List of Contract Clause ID

Service Name: getConditionofContract

Input: Contract Clause ID

Response: Contract Clause ID, Contract Clause

Service Name: getSpecificationID

Input: Trade

Response: List of Contract Clause ID

Service Name: getSpecification

Input: Specification ID

Response: Specification ID, Trade, Specification Clause

Service Name: getDrawingID

Input: TenderID

13 Automating Tendering Processes with Web Services 329

Response: List of Drawing ID, List of Drawing Title
Service Name: getDrawing
Input: Drawing ID
Response: Drawing ID with the attachment of that drawing
Lump sum contract based on bill of quantities—In this type of contract, the
contracting authority needs to provide all the data, and the tenderer only needs to
return the price of the items. So the following Web services are provided.
Service Name: getltemID
Input: TenderlD
Response: List of Item ID, Item trade, Item description
Service Name: getItemDetail
Input: Item ID
Response: Item ID, Item trade, Item description, Unit, Quantity
Design and build without quantity—In this type of contract, the tenderer should
price the item and the quantity of the items. So, the parameters returned are slightly
different.
Service Name: getltemID
Input: TenderID
Response: List of Item ID, Item trade, Item description
Service Name: getItemDetail
Input: Item ID
Response: Item ID, Item trade, Item description, Unit
Term contract base on the schedule of rates —In this type of contract, since the
work details are still not specified, the price should be based on a schedule of rates.
The tenderers also provide an overall trade discount. So, the following Web services
are provided.
Service Name: getScheduleofRateID

Input: Trade
Response: List of Schedule of Rate ID, Item description

Service Name: getSchedulefRate
Input: Schedule of Rate ID
Response: Schedule of Rate ID, Trade, Item description, Rate

13.5.3 Web Services of the Tender-in System

Corresponding to the different types of contracts as discussed, the tender-in system
provides the following Web services to support the reply from the TPS of tenderers.
Note that not all the functions are used in a tender submission because of the different
requirement in the submission (e.g., lump sum contract base on bill of quantities do
not require the reply of quantities).

Service Name: priceltem

Input: Item ID, price

Response: Confirmation

330 D. K. W. Chiu et al.

Service Name: quantityltem

Input: Item ID, quantity

Response: Confirmation

Service Name: discountTrade
Input: Trade, Trade discount
Response: Confirmation

Service Name: commitTender
Input: Signed XML Format of Tender
Response: Confirmation

13.5.4 Web Services for Exception Handling

In a tendering process, some exceptions may occur. For example, a tenderer has
not replied all the pricing information or the contracting authority wants to amend
the tender. We demonstrate how some of these exceptions are supported with Web
services.

Addendum—In the tendering period, sometimes although the tender has already
been passed to the tenderer, the contracting authority may still want to amend some
details. In this case, the system enters an addendum sub-process. Usually, there are
three types of amendments: addition, modify, and deletion, as shown in Table 13.1.
The CTS needs to notify the TPS about which statements or items are being amended.
Once the TPS knows that an addendum will be issued. The TPS will request those
amended items or clauses to be updated. So the tender-out system needs to provide
the following Web service.

Service Name: getAddendumList
Input: Null
Response: List of amended clauses and items with the status of each item (addition, modify, deletion)

Consistency of the tender document—Since the whole tenderer document is
downloaded by the TPS actively, we need to ensure that each tenderer has the identical
tender document. So we need to know that the TPS gets all the clauses, items, and
drawings from the CTS. The CTS has to monitor the download status of each tenderer.
Once it finds that a tenderer has not downloaded all the details within a specific period,
it will alert the TPS to immediately retrieve the needed details. Also, the tender-in
system needs to monitor that all items have been priced. It will alert a TPS if it still
has not committed the tender near to tender-in deadline. Once the CTS find that the

Table 13.1 Three types of

action of the addendum Action Description
Addition New clauses or items added
Modify Clauses or items changed

Deletion Clauses or items removed

13 Automating Tendering Processes with Web Services 331

tender is not completed after the deadline, the submission is disqualified; this is then
marked in the tender report.

Bulk discount—In some cases, the tenderer may want to win the tender by offer-
ing a final bulk discount to the whole tender. Usually, this is in a discount rate format.
For example, the final tender sum is $500,000,000.00 and the tenderer makes a bulk
discount of 0.5 % off. So, the final tender sum becomes $487,500,000.00. In the CTS,
it should be able to handle this kind of discount. So it will provide a service for the
TPS to submit their discount.

Service Name: setBulkDiscount
Input: Input: Discount rate
Response: Confirmation

Additional information provided by tenderer—Sometimes the tenderer may
submit additional information to the tender. For example, the tenderer may submit
some detail designs or cost break downs of the works. This information sometimes
facilitates it for the contracting authority to make better decisions. So, we need to
provide a service for the TPS to submit any additional information. As the information
may be in multimedia formats, the SOAP attachment format is used. After the CTS
obtains the additional information, it makes notes on the tender report about this for
the contracting authority’s evaluation.

Service Name: submitAdditionInfo
Input: Tender ID, Information in attachment format

Response: Confirmation

Withdraw of tender—In some cases, the tenderer may want to withdraw the
tender during the tendering process. Since this is a critical action, we need to have a
further confirmation.
Service Name: withdrawTender
Input: Tender ID
Response: Confirmation Number

Service Name: confirmWithdrawal
Input: Tender ID, Confirmation Number
Response: Confirmation

13.5.5 Integration into the Tenderer’s IT-Environment

The provision of the public web service interfaces by the tender-in and tender-out
system allow suppliers for seamless integration of tendering processes into their e-
business solutions. Since Web services do not provide graphical user interfaces, the
tenderers can design their own, and integrate it into their existing environment. Also
tenderers can make use of their own backend system to calculate the prices for their
bid and to implement the TPS.

For instance, a construction company wants to take part in an e-tendering process
for a large construction project, and also wants to integrate its system into the e-
tendering infrastructure for the future. To accomplish this, the IT-department must

332 D. K. W. Chiu et al.

create the necessary graphical (web-) interfaces to create the input for the tendering
web services. Also, and very importantly, the IT department can make use of existing
databases and services in the infrastructure of the enterprise to facilitate the price
calculation and the compilation of the bid. These can, for example, be databases
for the inventory, human resources and supply chain. Preexisting services that, i.e.
calculate the parts of the cost can be reused.

Figure 13.9 shows such a scenario. A company has several existing databases and
existing services access and process the data. The New Pricing Services are those
services that need to be created if price calculation for bids has not been implemented.
The New Bidding Services are those services that handle the communication with the
remote Contracting Authority. Lastly the Integrated User Interface is the extended
user interface that provides the bidding functionalities to the tenderer.

13.5.6 Security

Security is a very important issue in the ETS. Since all the data transfer between
two parties involves trade secret, the data should be encrypted during transfer via the
Internet. Since SOAP applications can run on top of HTTP, the message can passed
via the Secure Sockets Layer (SSL) protocol, which is a proven technology and
widely deployed. In addition, we can use the W3C XML Encryption Standard (see:
http://www.w3.org/Encryption/2001/), which provides a framework for encrypting
and decrypting XML documents.

Tenderer's E-business Environment

Integrated User Interface
E
Existing Services Hew Pricing Services Hew Bidding Services I:'nterpﬂne Firewall

Internet to CA

: é

Inventory DB Human Mnources DB Supply Chain DB

T&E’l‘

Fig. 13.9 The tenderer’s e-business environment implementing the Tenderer Pricing System

http://www.w3.org/Encryption/2001/

13 Automating Tendering Processes with Web Services 333

Besides the confidentiality problem, we also need an authentication system to
authenticate the tenderers. When a TPS first accesses the tender-out system, it will
be directed to the single sign on system with the assignment of an identity key for
subsequent log-on to the CPS. As discussed, there are several types of tendering
processes, such as open competitive tendering and selective competitive tendering.
For open competitive tendering, we have to allow all tenderers to access to the tender
details. For selective competitive tendering, since only the selected tenderers can
obtain the tender document, the TPS has to check the access against its shortlist of
potential tenderers. For convenience, we can employ the technology of Single Sign-
On (http://www.opengroup.org/security/sso/). Once a TPS logs on to the CTS, the
CTS gives it a security token.

Also, we need to ensure that all the data transferred among the parties is indeed
performed by the designated parties. The ETS (both the CPS and TPS) has to use dig-
ital signatures for identification. The SOAP technology provides a security extension
SOAP-DSIG (http://www.w3.org/TR/SOAP-dsig/), which enables the validation of
identities.

In cases where an extraordinary level of trust is needed, and where contract are
digitally approved, the technique of qualified certificates can be employed to make
the authentication procedure even more secure. This method involved smart cards
that contain a private key of the signer, combined with card readers that can only
retrieve the private key when a valid password is entered into the keypad of the card
reader. This ensures that the private key (the smart card) has to be physically stolen
from the owner, in order to impersonate the owner of the key. It also allows for
the implementation of the four-eyes-principle that ensures the two persons with the
correct authorization are physically present when a certain transaction is committed.
This is especially important when contracts need to be digitally signed. The method of
qualified signatures his currently required by law in all legal government transactions
in the EU [12].

13.6 Facilitation of Decision Support with ETS

In this section, we provide an illustrative scenario how the contracting authority
makes use of the TPM as discussed in the previous section to facilitate its decision
making. It is a norm for the contracting authorities to look for the best tenderer’s
quotation meeting tender requirements. The degree of fitness may depend on their
self-defined criteria such as cost, quality, experience, service level, past performance,
scheduling, payment, etc. These criteria are considered as metrics for non-equally
weighted average score calculation to find out the best tenderer [18], which should
archive the highest score among all participated competitors. We highlight the imple-
mentation procedures as follows:

Initialization—During the invitation to tender (ITT) and tender submission pro-
cedures, stakeholders communicate with one another via an agreed schema to gather
the relevant metrics-related information. The scale can be large, say, if the TPS needs

http://www.opengroup.org/security/sso/
http://www.w3.org/TR/SOAP-dsig/

334

D. K. W. Chiu et al.

to send out hundreds of RTP for each tender, and a significant proportion of bids are
returned. All information for the current metrics is stored within their own database
management systems (DBMS).

Metrics M; Score X; Weight W;
M, :Cost X =0:>=3000K 3
X =1:2000K <= M1 < 3000K
X =2:1000K <= M1 < 2000K
X=3:0<=M1 < 1000K
M, :Location X=0:Other Countries 1
X=1: US-Based
X=2:INDIA-Based
X=3: CHINA-Based
M3:Scale X=0: Small-Scaled 2
X=1: Middle-Scaled
X=2:Large-Scaled
X=3: Enterprise-Scaled
Tenderer |Metrics Status Score Weighted Average Score
Si M; Xi xX= 7%?:3?'
M M;=2500K X=1 {3(1)+1(2)+2(3)}/6 =1.83
M»=INDIA X=2
Ms=Enterprise X=3
S> M;=8500K X=0 {3(0)+1(1)+2(3)}/6 =1.17
M>=US X=1
M3=Enterprise X=3
S3 M;=2100K X=1 {3(1)+1(3)+2(1)}/6 =1.33
M,=CHINA X=3
M;=Middle X=1
Sy M=1580K X=2 {3(2)+1(0)+2(3)}/6 =2
M>=JAPAN X=0
M3=Enterprise X=3
Ss M=2900K X=1 {3(1)+1(0)+2(2)}/6 = 1.17
M,=UK X=0
Ms=Large X=2
Score ranking of the tenderers
RankR |Tenderer S;| Weighted Average Score|Top-3 Decision
1% Sy 2 Accept
ond S1 1.83 Accept
3 S3 1.33 Accept
4th S5,Ss 1.17 Reject

Fig. 13.10 Evaluation

Score Ranking—Non-equally weighted average score is calculated for all ten-

derers (S, ..

., Sy) based on metrics criteria, and sorted with most ideal supplier

Sideal OWNS the greatest weighted average score ranked first on the list.

13 Automating Tendering Processes with Web Services 335

Ideal Tenderer(s) Identification—Normally, only one winner is chosen, while
sometimes more than one tenderers can be awarded. Besides the normal procedure
of awarding the tender to the highest scorer(s), the score ranking report provided by
the TPS may be reviewed manually for the final decision, especially when the score
difference is less than a certain threshold. In addition, sometimes when the overall
score is too low, or when all the bids violate some constraints (especially price), the
contract authority may award no tender at all.

Figure 13.10 shows an illustrative evaluation scenario. Suppose a contracting
authority considers 3 different metrics M; for tenderer selection S;ge,; from its point
of view, i.e., My: Cost, M>: Location, and M3: Scale. Besides, the metrics impor-
tance in supplier selection is M| > M3 > M,. With appropriate weighting assigned
for different metrics, the following tables are obtained, which select Sz, Si, Sa
accordingly.

13.7 Discussion and Conclusion

In this paper, we have presented a Tendering Process Meta-model based on UML
for four typical business procedures: Request To Participate (RTP), Invitation To
Tender (ITT), Tender Submission (TS), and Tender Award Notification (TAN). It is
the responsibility for different types of enterprises to implement their own Tender-
ing Process Model (TPM) that suits their own business requirements. They should
also provide reliable tendering Web services so that interoperability and integra-
tion becomes possible for B2B application-to-application communication over the
Internet, which is independent of platform, technology, and tools.

Based on this approach, we have presented our implementation of an e-Tendering
system (ETS) based on a case study of the construction in Hong Kong with some
details in the Web-service design specification. The ETS provides the tender docu-
ment details for the tenderers, and the tenderers submit their tender price via Web
services. In addition, we have also presented some of the exceptions that the system
can handle, such as withdrawal of the tender, bulk discount, etc. Other elements
discussed include some issues regarding security. We have two main stakeholders in
the ETS, namely the contracting authority and the tenderers. We discuss our findings
about their advantages as follows.

For the contracting authority, they have benefits in streamlining their work through
the digitalization of the tender document. As previously mentioned, most of the
information for the tender documents are currently prepared with a computer. They
can easily be transferred to the CTS. So, the contracting authority can save the effort in
printing them out and checking the tender booklet. Also, the electronically collected
pricing information from the tenderers can be easily used for generating the tender
report.

For the tenderers, the TPS can help them retrieve relevant rates from their cost
database. So, the tendering pricing time can be shortened, and in this way the price
is more up to date. The tenderer can make their final decisions right up until almost

336 D. K. W. Chiu et al.

the last minute. There is also no need to worry about the delivery problems faced
with physical tender documents.

The key advantage of applying Web services is to establish cross-organizational
collaboration via existing Internet standards, supporting both human Web-based and
application programmatic interactions. When both partners support Web services,
a more efficient and preferred way for event passing with the publish-and-subscribe
paradigm can be employed [7]. In addition, smaller business partners with varied
degree of automation can still participate in these business processes manually or
semi-automatically. Because of the process complexity, Web services based interac-
tions also facilitate exception handling [6], which typically require human attention
and decision.

Moreover, Web services enable external integration with e-marketplaces and bro-
kers, expanding the opportunities of TSC and therefore businesses. Internally, Web
services enable the integration of tendering processes with enterprise resource plan-
ning (ERP) and other enterprise information systems to facilitate decision support.
These are on our future research agenda.

Lastly the Web service approach prescribes all participating parties precise rules
on how to comply with the security policies that for example describe which kinds
of certificates have to be used. Without complying with these Web service policies,
a party cannot take part in the process. This is a major advantage over other business
to business integration approaches, which often implement ad hoc security solutions.

For other continuing research, we are working on extending the ETS to sub-
contractors, who may further sub-contract their works. One problem for this in Hong
Kong is the small sizes of many sub-contractors, who cannot be easily automated
to such an extent. We are also working on other exception handling mechanisms.
Another future work direction is to support e-negotiation on the price with the ten-
derers after the tendering process has finished. That is, we shall study the integration
of the e-Tendering system with an e-Negotiation system [8] together for a more
complete solution.

We are also looking into the integration with other logistics systems like delivery,
order, purchase, and procurement. We can further customize the use of Web services
as the communication channel between various logistics systems. Although the focus
in this paper is on tendering processes, similar integration work can be done for
other related processes involved in logistics to make scale-up feasible for proposed
solution. The steps are similar, first of all, understand the business requirements
to streamline the business procedures, design the message exchange specifications,
and then set up the architecture for application-to-application communication over
the Internet. The implementation approach for integration is similar to the one in
this paper even though the business requirements are not exactly the same. We can
foresee that the possible benefits for logistics industry are great. For this reason, we
will also look into some ideas for developing such a methodology for Tendering
Process Model (TPM).

13

Automating Tendering Processes with Web Services 337

References

B w

12.
13.

14.
15.

16.

17.

18.

19.

20.

. Betts, M., Black, P., Christensen, S., etal. (2006). Towards secure and legal E-tendering. Journal

of Information Technology in Construction, 11, 89-102.

Bichler, M. (2000). A Roadmap to Auction-based Negotiation Protocols for Electronic Com-
merce. Proceedings of the 33th Hawaii International Conference on System Sciences. Hawaii:
IEEE Computer Society Press.

Brook, M. (2004). Estimating and Tendering for Construction Work (2nd ed.). Oxford: Elsevier.
Cerami, E. (2002). Web Services Essentials. Sebastopol, CA: O’Reilly.

Cheung, S. C., Hung, P. C. K., Chiu, D. K. W. (2003). On e-Negotiation of Unmatched
Logrolling Views. Proceedings of the 36th Hawaii International Conference on System Sci-
ences. Big Island, Hawaii: IEEE Computer Society Press.

Chiu, D. K. W,, Cheung, S. C., Karlapalem, K., Li, Q., Till, S., Kafeza, E. (2004). Workflow
View Driven Cross-Organizational Interoperability in a Web Service Environment. Information
Technology and Management, 5(3/4), 221-250.

Chiu, D. K. W., Cheung, S. C., Till, S. (2003) An Architecture for E-Contract Enforcement
in an E-service Environment. Proceedings of the Hawaii International Conference on System
Sciences 2003. Big Island, Hawaii: IEEE Computer Society Press.

Chiu, D. K. W., Cheung, S. C., Hung, P. C. K., Chiu, S. Y. Y., Chung, A. K. K. (2005). Developing
e-Negotiation support with a meta-modeling approach in a Web services environment. Decision
Support Systems, 40(1), 51-69.

Chiu, D. K. W,,Ng,N. L. L., Lai, S.C., Hung, P. C. K. (2007). Automating Tendering Processes
with Web Services: A Case Study on Building Construction Tendering in Hong Kong. Group
Decision and Negotiation Meeting (GDN 2007), Mt. Tremblant (Montreal).

Coscia, E., Nicolodi, S., Doyle, R., Slade, A., Ginty, K., Shamsi, T.A. etal. (2000). The E-NTRY
Web-based E-commerce Platform: an advanced infrastructure supporting Tendering. Bidding
and Contract Negotiation. Proceedings from E-Business and E-Work 2000 conference. Madrid:
IOS Press.

. Erl, T. (2006). Service-Oriented Architecture: Concepts, Technology, and Design. Englewood

Cliffs, NJ: Prentice-Hall.

EU Directive 1999/93/EC (1999). On a Community framework for electronic signatures.
Gortmaker, J., Janssen, M., Wagenaar, R. W. (2004). The Advantages of Web Service Orches-
tration in Perspective. Proceedings from 6th international Conference on Electronic Commerce,
506-515. Delft, Netherlands: ACM.

Hills, M. J. (1995). Building Contract Procedures in Hong Kong. Hong Kong: Longman.
Hull, R., Benedikt, M., Christophides, V., Su. J. (2003). E-services: a look behind the Curtain.
Proceedings of the Interna-tional Symposium on Principles of Database Systems (PODS). San
Diego, CA: ACM.

Homann, F., Karabulut, Y., Voss, M., Fraikin, F. (2005). Security and Trust in public ePro-
curement (Technical Report No. TUD-CS-2005-4), Darmstadt University of Technology / SAP
Research Karlsruhe.

Lai, S. C., Chiu, D. K. W, Hung, P. C. K. (2007). e-Tendering with Web Services: A Case Study
on the Tendering Process of Building Construction. 2007 IEEE International Conference on
Services Computing (SCC 2007), Salt Lake City, Utah, 582-588.

Lau, G. K. T., Chiu, D. K. W., Hung, P. C. K. (2006). Web-service Based Information Inte-
gration for Decision Support: A Case Study on e-Mortgage Contract Matchmaking Service.
Proceedings of the Hawaii International Conference on System Science 2006. Hilo, Hawaii:
IEEE press.

Lomuscio, A. R., Wooldridge, M., Jennings, N. R. (2000). A Classification Scheme for Negotia-
tion in Electronic Com-merce. Agent-Mediated Electronic Commerce: A European Perspective,
Springer Verlag, 19-33.

Ostergaard, S., Mora-Jensen C. (2003). ETHICS - Best-of-Breed European e-Tendering Solu-
tion, Global Purchasing & Supply Chain Strategies 2004. London: Touch Briefings.

338

21.
22.

23.

24.

25.

26.

27.

D. K. W. Chiu et al.

Pruitt, D. G. (1981). Negotiation Behavior. London: Academic Press.

Pruitt, D. G. and P. J. Carnevale. (1993). Negotiation in Social Conflict. Philadelphia: Open
University Press.

Raiffa, H. (1982). The Art and Science of Negotiation. Cambridge, MA: Harvard University
Press.

Robinson, W. N. (1997). Electronic Brokering for Assisted Contracting of Software Applets,
Proceedings of the 30th Hawaii International Conference on System Sciences, 4,449-458.
Rothkopf, M. H. and S. Park. (2001). An Elementary Introduction to Auctions, Interface,31(6),
83-97.

Singh, M., Thomson D. (2002). eProcurement Model for B2B Exchanges: An Australian Exam-
ple. 15th Bled Electronic Commerce Conference eReality: Constructing the eEconomy, 15,
293-307.

Thompson, L. (1998). The Mind and Heart of the Negotiator. Englewood Cliffs, NJ: Prentice-
Hall.

Chapter 14
Service Trust Management for E-Government
Applications

Surya Nepal, Wanita Sherchan and Athman Bouguettaya

Abstract Many services and service providers compete with each other to provide
similar services in the service-oriented Web (also known as Service Web). Selection
of the best services or service providers is an important and challenging problem.
Trust plays an important role in identifying the best service provider for a customer,
where trust information is computed from customer feedback ratings for the services.
Such rating provides a measure of previous consumers’ satisfaction with the services.
The satisfaction value indicates the trustworthiness of a service provider in delivering
the services as promised (also known as service trust). This situation exists in many
E-Government applications where a large number of services are outsourced to the
third party service providers and there is a need to select the best services for cus-
tomers based on their current needs. In this chapter, we propose a community based
approach of managing service trust for E-Government applications with the focus
on a human services delivery system. We describe the architecture, implementation
and a case study of the proposed service trust management framework in the context
of delivering human services.

S. Nepal ()
CSIRO ICT Centre, Marsfield, Australia
e-mail: Surya.Nepal @csiro.au

W. Sherchan
IBM Research, Melbourne, Australia
e-mail: wanitash@au.ibm.com

A. Bouguettaya
RMIT University, Melbourne, Australia
e-mail: AthmanBouguettaya@rmit.edu.au

A. Bouguettaya et al. (eds.), Advanced Web Services, 339
DOI: 10.1007/978-1-4614-7535-4_14,
© Springer Science+Business Media New York 2014

340 S. Nepal et al.

14.1 Introduction

Services computing is poised to transition computing to a new era where data is to
take the back seat and services will take the driver seat—enabling, supporting and
delivering tremendous benefits to new applications such as human services delivery.
Central to service computing is the concept of Web services and Service Oriented
Architectures (SOA). The fast increase in the number of deployed Web services is
transforming the enterprises from a data-oriented system to a service-oriented sys-
tem with a large repository of Web services. Therefore, there is a need to go beyond
and above the basic building blocks of SOA to provide novel service management
frameworks that deal with the whole life-cycle of services from inception to disband-
ment. Towards addressing this need, we have built a prototype end-to-end service
management system called Web Service Management System (WSMS). This system
has been used in applications ranging from bioinformatics [11] to human services
[9]. This chapter describes the basic concepts behind WSMS and its application in
human services delivery, with a focus on the service trust management framework,
a significant component of WSMS.

The goal of every human services department is to design and deliver products and
services efficiently and effectively to satisfy their stakeholders including individual
citizens, residents, and other government agencies. The current human service deliv-
ery systems are typically under stress due to various reasons. These include unsustain-
able cost structures, requirement to deliver more services with limited resources and
inability to deliver better-suited services because of changing demographics and an
ageing population. It has been identified that new solutions are needed that require
whole-of-government interoperability and strategic partnerships between govern-
ment agencies and the private sector (e.g., enterprises and non-government agen-
cies). To this end, we devise a novel Human Services Delivery System (HSDS)
architecture that aims to address these major emerging challenges. Our architecture
aims to assist human services departments in enhancing their capabilities of pro-
visioning more services with lower cost (i.e., to “do more with less”). In addition,
another important goal is to raise the quality of service delivered to achieve higher
customer satisfaction. We have designed and developed a prototype human services
delivery system using WSMS. The core components of HSDS include service query
and composition, service selection and optimization, service organization, service
change management and service trust management. In this book chapter, we present
a case study of developing such a system with a particular focus on the service trust
management component, we present a case study of developing such a system with
a particular focus on the service trust management component.

The rest of the chapter is structured as follows. We next present the Human
Services Delivery System architecture and describe each of the components in brief.
We then describe the service trust management component of HSDS. This is followed
by the implementation architecture and models for human services trust computation.
Finally, we present a case study for service trust management framework within the
human service delivery system.

14 Service Trust Management for E-Government Applications 341

14.2 Human Services Delivery System

Figure 14.1 shows the implementation architecture of the Human Services Delivery
System (HSDS). This architecture aims to provide an end-to-end support for human
services delivery. It leverages and manages the various required resources for deliv-
ering human services in an automated and coherent framework. When customers
have new requirements or become eligible for new welfare services, their requests
are described as a service query and forwarded to the service management frame-
work. Then a series of activities such as service selection, service composition and
service optimization create an integrated workflow that delivers the best set of ser-
vices to meet the customers’ requirements. When changes occur, either triggered by
the customer or government legislation for example, the service change management
module will automatically handle these changes in the form of a new workflow of
services. The architecture is composed of seven modules that reflect the core com-
ponents of the service management framework. In what follows, we provide a brief
introduction of these modules.

Service & Process Repository (S &P Repository): The S &P Repository catalogues
services, resources and business processes related to human services and relevant
context information so that they can be uniquely identified and managed within their
life-cycle. Whenever new services, resources and processes become available, they
must be registered in the repository to be utilized in human service delivery. The
repository utilizes a set of ontologies to enable fast retrieval of services and semantic
interoperability for supporting automatic service composition.

Service Query & Composer: This component takes a user request and generates a
composite service. The component provides support for the underlying query model
and composition algorithms. The HSDS query model consists of a query interface, a
query language, and a query engine. The interface allows users to specify what they
want (goals) at semantic level and leave composite service generation to HSDS. The
query interface is handled by the user interface component, which is discussed in

Human Services Delivery Syste 8

(Query]8 Service
Query &
Composer

Service
Optimizer

Fig. 14.1 Human services delivery system architecture

342 S. Nepal et al.

detail in [9]. The underlying query language is Service Query Language, an XML
service query language we developed as an interface to HSDS query engine. Based
on how services are composed to create composite services, HSDS allows three types
of composition: horizontal, vertical, and hybrid [1]. Services in HSDS are organized
using a semantic model in service organization. Upon receiving a user’s query, HSDS
will first identify relevant services and perform logical reasoning to generate a com-
posite service at the semantic level. HSDS uses a matchmaking algorithm proposed
in [4—-10] and context-aware service weaving algorithm proposed in [2] to generate
composite services.

Service Optimizer: The result of Service Query Processor and Composer may con-
sist of several candidate services that fulfil the requirements of the customer. The
Service Optimizer is responsible for evaluating the alternatives and generating the
optimal integrated workflow expected to deliver the best possible user-centered qual-
ity of service to the customers. The service optimization aims to select the services
that a user would prefer the most based on the available context information. The
proposed techniques for service optimization are based on Quality of Service (QoS)
parameters. These techniques aim to identify a service with the best quality based
on context information. To conduct effective service optimization, HSDS adopts
schemes aiming to handle both quantitative and qualitative properties of services.
We propose some such techniques in [6].

Service Change Manager: The service change management is an important aspect
of human services delivery as the services in a composition may need to be changed
based on the contextual information. A service may go through frequent changes. The
triggers for these changes could come from different sources. Changes in the services
include changes in the functionality they provide, the way they work, the component
services they are composed of and the quality of service they offer. The service change
management component is designed to manage such changes all services. HSDS uses
a number of approaches to deal with the changes in user and service contexts (refer
to [7] for details). It provides a scheme for managing the life-cycle of a workflow to
reflect and react to changes occurring within the human services department or its
customers’ life situation. The Service Change Manager will interact with the Service
Query Processor and Composer to reconfigure the customer’s delivered service as
and when required.

Service Trust Manager: The service organization may contain several services
that provide similar functionality. Service composition prefers that all the services
selected during composition are the best services for the given context compared to
other similar services [3]. However, selection of the best services becomes difficult
because services may commit to provide a certain level of Quality of Service (QoS)
but may fail to deliver. Therefore, trust acts as contextual information for service
selection. A major challenge in HSDS includes providing a trust framework for
enabling the selection of services based on trust information. The trust framework
assists the Service Optimizer in identifying reliable and reputable services. Based on
the statistics of service delivery and customers’ feedback, the Service Trust Manager

14 Service Trust Management for E-Government Applications 343

evaluates the trustworthiness of individual services and records the trust information
in the S&P Repository. This the main focus of this chapter.

Service Orchestrator: The integrated optimal workflow created by the Service Opti-
mizer is executed by the Service Orchestrator. The system guides the customer to
consume the services step by step. It also helps coordinate the work of human ser-
vices department staff delivering internal and external services to accomplish the
tasks in the workflow. It is an important module of the implementation architecture
that enables concrete delivery of human services.

14.3 Service Trust Management Framework

Human services departments, being the service delivery arm of the government,
become the first point of contact and act as a coordinator to connect customers to the
appropriate services which could be internal our outsourced. An important aspect
of these outsourced services is that there may be more than one service provider
providing similar types of services. Trust plays an important role in identifying
the best service provider for a customer. Such trust information can be computed
from customer feedback ratings for the services. Such rating provides a measure of
previous consumers’ satisfaction with the services. The satisfaction value indicates
the trustworthiness of a service provider in delivering the services as promised (also
known as service trust). We propose a community based approach of managing
service trust in the human services delivery system. Our approach to the management
of trustis based on the notion of community derived from social networks. Figure 14.2
depicts the basic elements of our framework and interactions among them. In the
following, we explain them briefly using an example of Australian employment
services model.

Community provider: A community provider is the entity that defines the service
community. A community provider may be a government agency, a business coun-
cil, an academic institution, etc. A provider may provide one or more communities,
but each community has only one provider. Providers have publicly known iden-
tities. For example, Department of Employment Services is a community provider
in the context of employment services. It defines the communities of employment
service providers. In Australia, examples of employment service provider commu-
nity include communities of Job Service Providers, Disability Employment Service
Providers, and National Green Jobs Corps.

Service Community: A service community is a “container” that groups services
related to a specific area (for example, employment service providers or social
workers). We can use ontologies as templates for describing communities and their
services. For example, in the context of Australian employment services model,
Disability Employment Services are the members of the Employment Services
Community and provide employment services to disabled job seekers.

344 S. Nepal et al.

Web Services: A Web service is a software application identified by a URI (Uniform
Resource Identifier), whose interface and binding are defined, described and discov-
ered by XML artefacts, and supports direct interaction with other software applica-
tions using XML messages via Internet-based protocols. Conceptually, a Web service
may be viewed as a set of operations, where each operation is a “processing unit”
that consumes input values (called its parameters) and generates output values called
the result of that operation’s invocation. In the context of human services, a Web
service may include an operation service as defined above as well as human-assisted
services. The human-assisted services are services that involve human beings. An
example of a human service is a Job Capacity Assessment service provided by a job
capacity assessor such as a medical doctor. We assume that there are corresponding
Web services in the human services management framework to reflect the human
activity.

Service provider: The service provider is the entity that provides the service and
makes it available to consumers. A service provider may be a business, a government

Service Commiunity Community Provider

Web
ss\:’\fvei:es A Services
Defines
Instance of
& " s 8
Register with
Register with H
Instance of Community-1 Defines
&' Instance of - * &
Defines
Community 2
Register with
Interact with
. Register with
L
& -, E P &
" “Register with Register with 2)
Service feedback Community n P?::r‘ilrl:l?rs
Consumers Search in
. »)
il Cuot oftumensenkes B Published in
(Bootstrapping Module } Uses |
T v
(_ Reputation Cosecton Mo} — ——
- & —_— =
[Reputation Dissemination Maodule | | o C—
; = Service Trust Service Registry
Service Trust Manager Ontology

Fig. 14.2 A community based approach of managing trust

14 Service Trust Management for E-Government Applications 345

agency, or an academic institution. Providers have publicly known identities. A
service provider registers with the community to offer one or more services. Each
service is owned and offered by a single provider but may or may not be actually
managed by the provider. For example, the provider of a service may outsource the
task of actually operating the service to a third party. Service consumers may or may
not be able to determine all the parties involved in delivering a given service. In our
model, we do not make a distinction between the service provider and the provided
service.

Service Community ontology: The service community ontology comprises of a
hierarchical description of important concepts and their properties in a domain (for
example, employment services domain). It also includes the ontological relationships
between the concepts such as member of, subclass of or superclass of. In the context
of employment services, we define an employment services community ontology.
This ontology defines different types of employment service providers and their prop-
erties, the services they provide and the properties of these services and instances
of the services and providers. For example, DisabilityEmploymentService is a sub-
class of concept EmploymentService. Similarly, AuswideEnterprise is an instance of
DisabilityEmploymentService.

Service consumer: A service consumer is any entity that invokes a service, e.g.,
an intelligent agent, a Web application, or another Web service. A human user may
also invoke a Web service, but we assume that each user is represented by a software
component (defined proxy) in the system, similar to the human-assisted services
represented by Web-based services. For example, a job seeker is a consumer of an
employment service provided by employment service providers. Similarly, a Web
service in the employment service provider’ system is a consumer of Department of
Employment Services’ assessment service.

Service registry: A service registry is a searchable directory that contains a collection
of descriptions of Web services and their communities. A service registry has two
components: a repository of service descriptions and a registry engine that answers
the requests sent to the registry by service providers and service consumers. A service
registry may be private or public. Any provider may advertise its capabilities by
publishing the Web service in a public registry. A private registry may be used only
by a limited, known set of providers to publish services. In our framework, service
registries are only used to locate prospective service providers, and the registries do
not store any reputation related information.

Service trust ontology: The service trust ontology aims to improve knowledge
reusability and semantic interoperability of trust services regardless of trust algo-
rithms/mechanisms used by the services [8]. It provides a common framework to
capture the relationships between various trust concepts and their relationships rel-
evant to semantic service-oriented environments. In this ontology, we consider not
only services trust but also trust as a service. Our service trust ontology captures the
whole life cycle of services trust—from initialization of trust with trust bootstrapping
to various phases specific to services trust, such as composition and propagation of

346 S. Nepal et al.

trust in composite services. Each node of the ontology, representing a stage in trust
life cycle, is mapped to the service providing this functionality. This enables easy
representation of the whole life cycle of services trust. Separating trust algorithms
from trust concepts enables us to model a large number of trust algorithms provided
by different service providers.

Service trust manager: The trust manager is an entity that is responsible for com-
puting trust values of the service providers. Some of the key tasks of the service
trust manager include monitoring the quality of human services, providing mecha-
nisms to collect and process customer feedback, and providing algorithms/protocols
for collecting, evaluating and disseminating trust information. We describe them in
detail in the following sections.

14.4 Service Trust Management Implementation

In this section, we first describe the architecture of the service trust management
framework discussed earlier. This is followed by a discussion on Quality of Human
Service (QoHS) parameters used to compute service trust. We then discuss the imple-
mentation of specific service ontology and trust ontology. This is followed by a dis-
cussion of various trust models for reputation information collection, bootstrapping,
evaluation and dissemination.

14.4.1 Implementation Architecture

Figure 14.3 shows the service trust management implementation architecture along
with key elements and interfaces. We describe them briefly below.

The service ontology manager includes an ontology base and an ontology query
interface. The ontology base consists of two types of ontologies—a service commu-
nity ontology and a service trust ontology. The service community ontology stores
the ontology definitions of services within a specific domain. The service trust ontol-
ogy stores the ontology definitions of services trust and trust services and models
the relationships between different types of trust and the dependencies between dif-
ferent trust functionalities. A node in the service trust ontology defines a type of
functionality offered by a service. Some examples of such nodes are TrustBootstrap-
ping, TrustPropagation and TrustEvaluation (described in later subsections). Each
node in the ontology is associated with a list of services that provide the defined
functionality. This association enables functionality-based service discovery by first
locating the corresponding node in the ontology, then locating the Web services that
subscribe to the node.

The ontology query interface supports two types of queries in the ontology base:
functionality query and Web service query. The functionality query is to locate a

14 Service Trust Management for E-Government Applications 347

Reputation Request/Response

Trust Query Interface
Trust Query Processor

Ontology Query Interface Community Query Interface

Service Service :
Trust Community Ratings
Ontology Ontology

Service Community Manager

asuodsay/3sanbay uonensiday 19y
asuodsay/isanbay uoneiisiday adinias

asuodsayfisanbay sBuney

Fig. 14.3 A service trust management system architecture

node in the ontology and retrieve related information such as its relationship with
other nodes. The Web service query is to find a list of Web services that provide a
specific functionality, identified by a certain node in the ontology. The corresponding
concrete Web services can be retrieved by checking whether they subscribe to a
node. The community manager uses service community ontology to organise services
into different types of communities. Services providing a similar type of service
belong to the same community. The community manager also maintains raters and
ratings. The raters are the consumers who are willing to share their experiences with
others, and the ratings are the feedback given by the consumers against a service’s
quality parameters. We describe the quality parameters for human services, referred
to as QoHS, in the following section. The community manager provides appropriate
interfaces to communicate with other components of the Service Trust Management
system.

The trust manager includes a trust query interface and a trust query processor. The
trust query interface provides a query interface to the users of the trust management
service. The current implementation supports two types of interfaces: Web service
and Web portal. The Web service interface is used by other Web services to query
trust of a service (or services). For example, a query optimizer in HSDS may invoke
the trust service to inquire the trust value of a particular service using the Web
service interface. The Web portal interface is designed to be used by an end user
(or consumer). This enables the trust service to be used independently and directly
by the consumer. The trust query processor interacts with the ontology manager to
process a given trust query.

348 S. Nepal et al.

Quality of Human Services: The term Quality of Service (QoS) has been widely used
in networking technologies for managing network traffic with an aim of enhancing
user experiences. This is also applicable to Web services over the Internet. QoS
refers to the non-functional properties of Web services such as performance, relia-
bility, availability, accessibility, integrity and security. These aspects of quality are
applicable to management of human services delivery. The human services not only
represent the traditional Web services, but also services provided by humans. We
refer to the quality aspects of human services in HSDS as Quality of Human Ser-
vice (QoHS). Evaluating an experience of a human service is complex as it involves
many uncertainties. Different people can have different views about the same expe-
rience. The properties used for measuring user experiences on human services may
vary from scenario to scenario. In our case of employment services provided by third
party employment service providers, QoHS parameters include courteousness, effec-
tiveness, efficiency, convenience, responsiveness, reliability and breadth of choice.
It is important to note that the list is neither complete nor exhaustive.

1. Courteousness: The courteousness of human services refers to the manner with
which the provider provided the service to the consumers.

2. Effectiveness: Effectiveness refers to the degree to which stated objectives are
achieved.

3. Efficiency: Efficiency refers to the ability to accomplish a job within minimum
time.

4. Convenience: Convenience refers to the service providers being convenient to
their consumers.

5. Responsiveness: Responsiveness refers to the service providers being quick to
respond to their consumers’ request.

6. Reliability: Reliability refers to degree of service providers being capable of
maintaining the service and service quality.

7. Breadth of choice: Breadth of choice refers to the options provided by service
providers to their consumers.

Service Community Ontology: As mentioned earlier, our approach to manage-
ment of trust uses the concept of community. A variety of communities within the
Department of Human Services come together to offer human services. For exam-
ple, communities of employment service providers, financial advisors, job capacity
assessors, and social workers. In order to manage these different communities, we
introduce a concept of service community ontology. It typically comprises a hierar-
chical description of important concepts in a domain and describes their properties.
The trust management framework provides trust service for each of these communi-
ties. We describe the main concepts below.

Community provider: This concept represents an entity that defines the communities.
In our example, Department of Education is a community provider that defines the
employment services communities. The WSML (Web Services Modelling Language)
representation of the concept and its instance is shown below.

14 Service Trust Management for E-Government Applications 349

Community: This concept represents a group of providers providing similar services.
In our example, job providers are the members of the Job community that belongs to
the employment services community. The concept and its instance are shown below.

Service provider: The service provider is the entity that provides the service and
makes it available to consumers. A service provider may be a business, a government
agency, an academic institution, etc. A service provider registers with the community.
For example, AuswideEnterprises is an employment service provider thatis registered
with the Job community.

350 S. Nepal et al.

QoHS: The QoHS parameters are used to record the past experience of service con-
sumers on a particular service. For example, courteousness, effectiveness, efficiency,
convenience, responsiveness, reliability and breadth of choice are QoHS parameters
for Job providers. The QoS parameters for Web Services are also defined in the
similar way.

concept SetOfQoHSParameters

hasQoHSParameter ofType QoHSParameter
concept QoHSParameter

hasQoHSValue ofType _integer
instance Courteousness memberOf QoHSParameter
instance Effectiveness memberOf QoHSParameter
instance Efficiency memberOf QoHSParameter
instance Convenience memberOf QoHSParameter
instance Responsiveness memberOf QoHSParameter
instance Reliability memberOf QoHSParameter
instance BreadthOfChoice memberOf QoHSParameter

Service consumer: A service consumer is any entity that consumes a service provided
by service providers. Consumers are called raters if they are willing to share their
experience with others. For example, a job seeker is a consumer of services provided
by Job providers.

concept Consumer subConceptOf CSO#Customer
concept Rater subConceptOf Consumer
instance AliceSmithCCN20453 memberOf Rater

Service Trust Ontology: The service trust ontology defines trust concepts and their
relationships specific to human services delivery system. In this ontology, we con-
sider not only services trust but also trust as a service. Our service trust ontology
captures the whole life cycle of services trust—from initialization of trust with trust
bootstrapping to various phases specific to services trust, such as composition and
propagation of trust in composite services. This is a major departure from the current
approaches that focus on trust evaluation and trust decision making. We describe the
main concepts below (see Fig. 14.4). The concept of Trust is defined as:

concept Trust
hasTrustee ofType Trustee
hasTimeStamp ofType _dateTime
hasTrustValue ofType _string
hasEvaluationCriteria ofType ESPO#SetOfQoHSParameters
hasConfidence ofType _string
isBasedOnEvaluationPeriod ofType _duration
isBasedOnNumOfInteractions ofType _string

14 Service Trust Management for E-Government Applications 351

e 4

Y $

y |\ | A <

Ee—] -
ondtrusttvabistion

nustDermaton -
e R
k4

Tstboctstrsplrgaitiots TruscSirdks
- L — | TrustCompase
cpostionlnguliens >
b, Thusme Pl
: z S e ————
TrutCammass — ")

T bdststiors #iorn

Fig. 14.4 Service trust ontology for employment service providers

where Trustee is a service/provider to which the Trust refers. Trustor is the entity
whose level of trust on the trustee is captured by the Trust. TimeStamp is the time
when the trust value was generated. TrustValue is the actual trust value such as “7”
(numerical) or “very trustworthy” (fuzzy). EvaluationCriteria is the criteria based on
which trust is evaluated (i.e., the QoHS parameters for trust evaluation). Confidence
is the level of confidence on the trust evaluation. EvaluationPeriod is the duration
of history considered in the trust evaluation. NumOfInteractions specifies the size
of history (i.e., the number of past interactions) considered in the trust evaluation.
Inclusion of information such as TimeStamp, EvaluationCriteria, NumOfInterac-
tions, and EvaluationPeriod provides context to Trust such that two Trust instances
for the same service/provider may be compared directly based on these properties.
For example, two instances of Trust referring to the same service AuswideCaloolaEn-
terprisesBelconnen may have different TimeStamp values. This implies that one of
the instances is more recent than the other and therefore more indicative of the current
trustworthiness of that service.

Trust Service: A TrustService is a Web service that provides various trust functional-
ities such as trust bootstrapping, trust evaluation and trust propagation. TrustService
can be of several types based on the type of functionality provided by the service.
Each of these is defined as a subconcept of TrustService. At the abstract level, a
TrustService is defined as:

352 S. Nepal et al.

concept TrustService
hasServiceID ofType string
hasServiceProvider ofType ServiceProvider
hasQoHSParameterTuple ofType QoHSParameterTuple
hasInput ofType Data
hasOperation ofType Operation
hasOutput ofType Data

ServiceProvider is the provider of the TrustService. QoHSParameterTuple defines
a list of QoHS parameter tuples consisting of pairs of QoHS parameter and adver-
tised QoHS value for that parameter. Input is the input to the TrustService. Operation
defines the operations/functionalities provided by the TrustService. Output defines
the output of the TrustService. Specific types of TrustServices have specific defini-
tions for the Input, Operation and Output attributes. All other attributes remain the
same.

Operation: An Operation specifies the particular location and functionality of a
service. A service may have one or more operations. An Operation is defined as:

concept Operation
hasOperationName ofType _string
hasSoapLocation ofType _string
hasSoapAction ofType _string
isOperationOf inverseOf (hasOperation) ofType SO#Service

We have identified several types of services trust based on the purpose of trust
evaluation (see Sect. 14.5). All of these trust types are sub-concepts of Trust.
BootstrappedTrust: A new service/provider in a community needs to be assigned a
nominal trust value to ensure that newcomers are not unfairly disadvantaged. We
define such initial trust as BootstrappedTrust. For example, a new employment
service CampbellPageEmploymentService is registered in the JSA community.
Since this service is new, its trust cannot be calculated from interaction his-
tory. Therefore, this service will be assigned a nominal BootstrappedTrust. As

Trust

“,
“

Bootstrapped || Global Personalised Direct Propagated Composite
Trust Trust Trust Trust Trust Trust

Fig. 14.5 Types of service trust

14 Service Trust Management for E-Government Applications 353

CampbellPageEmploymentService gets used and evaluated by job seekers, its
BootstrappedTrust will be updated to reflect its trustworthiness. BootstrappedTrust
is defined as:

concept TrustBootStrap subConceptOf TrustService
hasInputData ofType TrustBootstrapInputData
hasOperation ofType {TrustBootstrapping, TrustEndorsement}
hasOutputData ofType BootstrappedTrust

Global Trust: In our community based environment, when trust evaluation is based
on the collective perception of the whole community, such trust is termed as Glob-
alTrust. Everyone in the community has the same level of trust for a particular
trustee (service/provider). The concept of community based trust (i.e., GlobalTrust)
is defined as:

concept GlobalTrust subConceptOf Trust
hasTrustor ofType ESPO#Community
isBasedOnNumOfInteractions ofType _integer

Trustor is the community within which GlobalTrust is evaluated. In the
employment service scenario, as CampbellPageEmploymentService gets invoked and
evaluated by its consumers, its BootstrappedTrust will be updated and becomes its
GlobalTrust. All feedback received by CampbellPageEmploymentService will be
incorporated to obtain its GlobalTrust.

Personalised Trust: When trust evaluation incorporates the trustor’s preferences with
respect to various quality parameters, such trust is termed as PersonalisedTrust.
When trust is personalised, the trust evaluation for the same trustee may be different
depending on who the trustor is. Furthermore, trustor identification may be used
to weigh the personalised trust values supplied by the trustor. PersonalisedTrust is
defined as follows:

concept PersonalisedTrust subConceptOf Trust
hasTrustor ofType ESPO#Consumer
isBasedOnNumOfInteractions ofType _integer
isBasedOnQoHSPreferences ofType QoHSPrefTuple

Trustor is the consumer whose preferences have been considered in the person-
alised trust evaluation. QoHSPreferences defines the preferences of the trustor with
value pairs of QoHSParameter and corresponding importance of that parameter to
the user specified by Weight. In our example, for employment services, Alice consid-
ers the courteousness more important than effectiveness whereas John prefers effi-
ciency over courteousness. Given these differences, for the same employment service

354 S. Nepal et al.

CampbellPageEmploymentService, Alice’s PersonalisedTrust would be different
from John’s.

Direct Trust: The concept of trust based on direct past interactions between the trustor
and trustee is defined as DirectTrust. Direct trust is a type of PersonalisedTrust. The
concept of DirectTrust is defined as follows:

concept DirectTrust subConceptOf PersonalisedTrust
hasTrustor ofType ESPO#Consumer
isBasedOnNumOfDirectInteractions ofType _integer

For DirectTrust, trustor preferences for various QoHS parameters do not need to be
specified. Trust evaluation is based on direct past evaluations, and therefore, trustor
preferences are implicit in the evaluations. In our employment services example,
Alice’s DirectTrust on CampbellPageEmploymentService is computed based only
on her past evaluations of CampbellPageEmploymentService.

Composite Trust: The concept of trust for a composite service, i.e., CompositeTrust,
is based on the trust for the component services. This also includes the BootstrapTrust
for composite services. Various algorithms may be used to determine the composite
trust value from the atomic trust values of the component services. The concept of
composite trust is defined as follows:

concept CompositeTrust
hasTrustee ofType CSO#CompositeService
hasTimeStamp ofType TimeStamp
hasCompositeTrustValue ofType _string

CompositeTrust is typically used to facilitate selection among different service
compositions providing the same functionality. Therefore, typically, CompositeTrust
would be single use, i.e., used for comparisons and then discarded. For composite
services that are likely to be used/invoked by many consumers, CompositeTrust is
stored and will be regarded as the GlobalTrust for the composite service. In this
respect, CompositeTrust can be considered as BootstrappedTrust for composite ser-
vices. In our scenario, consider a new composite employment service combining
different activities within EPP. When Alice is considering EPP activity options, the
system will compute the CompositeTrust for EPP based on the trust for services
providing different activities. If the EPP with same composition is needed for many
job seekers, its CompositeTrust will be considered to be its BootstrappedTrust and
stored. From this point onwards, JSA providers may evaluate the composite service
just like an atomic service for different activities. Ratings provided for EPP will be
used to update its GlobalTrust.

Propagated Trust: The concept of trust for the component services propagated from
the trust score assigned to the composite service is termed as PropagatedTrust. The
concept of PropagatedTrust is defined as follows:

14 Service Trust Management for E-Government Applications 355

concept PropagatedTrust
hasTrustee ofType CSO#CompositeService
hasTimeStamp ofType TimeStamp
hasCompositeTrustValue ofType _string

TypeOfPropagation specifies whether the propagation is vertical, horizontal or
hybrid, consistent with the type of service composition. In the above example, ratings
assigned to the composite service EPP are propagated to the component activity
services to obtain their PropagatedTrust. The PropagatedTrust for each component
service is then used to update the corresponding GlobalTrust.

14.4.2 Trust Models

Reputation Information Collection Model: One of the important steps in the
reputation-based trust management systems is to collect information that is neces-
sary to evaluate the reputation of services. In our proposed trust management frame-
work for human services, in particular employment services, we have proposed a
community-based reputation information collection model. Figure 14.6 shows the
interactions among different entities in our proposed model. We explain these inter-
actions further below.

1. The first step is to register all service providers in the service registries. This
step is a prerequisite for the community-based reputation information collection
model. All service providers must be registered in the service registries so that
they can be searched. For example, all JSA providers must be registered in an
employment services registry.

2. The next step is registering service consumers to the community. The community
provides a platform for a consumer to act as a rater and share its past experi-
ence with service providers. For example, a job seeker registers with the JSA
community as a rater.

3. Inthis step, consumers search for providers in the service registries. It is important
to note that other agents/services may request and search for the required services
on behalf of consumers. For example, a human service related to a business
process “looking for work” may search for all job providers meeting the job
seeker’s requirements.

4. The consumer selects a service and interacts with it. In our example, a job seeker
selects one of the job providers and interacts with it. The interaction involves
activities like creating employment plan, attending training, applying for jobs,
preparing curriculum vitae, etc.

5. The next step is assessing the reputation of the service. The reputation assess-
ment process involves getting feedback from the consumer on Quality of Human

356 S. Nepal et al.

Community

(2) Register with the C

Service Providers Service|Consumers

ﬂ

(5) A the rey

(1) Publishes Services e o 3) Search for Providerse—

Service Registries

Fig. 14.6 Community based reputation information collection model

Service (QoHS) parameters and evaluating a reputation value (following the
algorithm described in later).

6. The last step is to disseminate the evaluated reputation value to the community.
The dissemination may include the final evaluated trust value or feedback values
on each QoHS parameters or both. It depends on the underlying trust manage-
ment service. In our implementation, a job seeker’s feedback values on QoHS
parameters are disseminated to the job provider community.

Reputation Evaluation Model: Once the trust related information is collected as
described above, the trust management system must support a mechanism of evaluat-
ing trust value for each service provider. What do we understand by trust? We define
trust as the belief that a service consumer has about the intention and the ability of a
service provider to act as expected. How do we measure/establish a belief? The repu-
tation is one of the mechanisms of establishing the belief about the provider’s ability
to deliver the service as expected by consumers. This is established through con-
sumers’ past behavior. Consumers past behavior is established through a collective
perception of the consumers that have interacted with the service provider in the past.
In this section, we first define the reputation based trust, and then propose a method of
evaluating reputation considering a number of factors. We use the trust model based
on the concept of community, where the reputation represents a collective perception
of the users in the community regarding a service provider. The reputation of a given
service is a collective perception of the consumers that have interacted with or used
it in the past. The perception of each consumer about services they have invoked

14 Service Trust Management for E-Government Applications 357

is called Personal Evaluation (PerEval). The personal evaluation could be a single
value representing an overall perception or a vector representing a value for each
Quality of Human Services (QoHS) attributes such as convenience, reliability and
availability. For each service s; that it has invoked, a service consumer c; provides a
k-element vector PerEvalV representing c;’s perception of s;’s behaviour. Then, the
reputation of s;, as perceived by a consumer ¢; is defined as:

Reputation(s;j, ¢;) = /\ (PerEval,ij) (14.1)
keK

where /\ represents the aggregation function. Equation 14.1 provides a first approxi-
mation of how the assessed reputation may be calculated for a service s;. The service
s; could be a simple service or a composite service. In the case of a simple service,
the reputation value calculated by the Eq. 14.1 is directly assigned to the service s;.
However, this gets complicated if the service s; is a composite service. The reputation
value received by s; from the consumer ¢; needs to be propagated to s;’s component
services. We describe a method of propagating reputation value to component ser-
vices later. Equation 14.1 shows a simple method of evaluating reputation value of a
service provider based on a single consumer’s feedback on QoHS parameters. Let us
assume there are N number of consumers in a community who have interacted with
the service s; in the past. The reputation of the service in the community is calculated
as: B

Reputation(sj) = /\ (PerEvalz'/) (14.2)

keK,xeN

There are a number of additional factors that influence the overall reputation value
of a service such as credibility of the raters, preference of the consumer request-
ing the reputation value, and temporal sensitiveness of the feedback values. In our
current model, we consider the consumer preference and temporal sensitivity in our
calculation as follows.

Service consumers may have different preferences on QoHS parameters. This may
result in different reputation values. For example, a job seeker may give higher prefer-
ence to convenience over effectiveness, whereas another job seeker may give higher
preference on courteousness than responsiveness. We allow the service consumers to
calculate the reputation value of the service providers according to their own personal
preference. Each service consumer defines a personal preference through a weight
vector (w). Since service consumers can change their preferences from one request to
another, the W is submitted with each reputation request submission. In this manner,
the consumers have the ability to weigh the different QoHS parameters according to
their own preferences. Let w(k) denote the preference assigned to QoHS parameter k
by the service consumer c;. The reputation value in Eq. 14.2 is then represented as:

Reputation(s;) = /\ w(k) x (PerEvalzij) (14.3)
keK,xeN

358 S. Nepal et al.

Service consumers expect service providers to behave in a fair and consistent manner.
Reputation values are directly affected by the consistency of offered services. How-
ever, there are situations where all the past data is of little or no importance. For
instance, a service’s performance may degrade over time. It may be the case that
considering all historical data may provide an incorrect reputation value. In order
to counter such discrepancies, we incorporate temporal sensitivity in our evaluation
model. The rating submissions are time-stamped to assign more weight to recent
observations and less to older ones for calculating the reputation value. This is termed
as reputation fading where older perceptions gradually fade and fresh ones take their
place. We adjust the value of the reputation as:

Reputation(s;) = [\ w(k) x (PerEval’) x f (14.4)
keK,xeN

where f; is the reputation fader. In our model, the most recent perception has the
fader value 1 while older observations are decremented at equal intervals for each
time instance passed. When f; = 0, the perception is not included as it is considered
to be outdated.

Reputation Bootstrapping Model: The reputation-based trust models rely on the
feedback received from past interactions. How to deal with the newcomers with no
past interactions? This means sometimes the reputation of a service has to be started
on the basis of (a) no past experience of direct interactions, (b) a lack of experience
in any meaningful role, (c) no witness reports, and (d) no evidence-based third party
references. We refer to this issue as bootstrapping problem.

Bootstrapping is a major issue in human services because historical information
may not be available regarding new services. For example, a new JSA provider is
licensed to operate in a regional area to meet a growing demand in the region. When
anew service is introduced, it is necessary to bootstrap its trust by assigning an initial
reputation value. If the new service is assigned the lowest default reputation value,
it may be overlooked over other existing services and treated unfairly in terms of
competitive advantages. If the newcomer is assigned a high initial reputation value,
then existing services are penalised. This may give a motivation to discard their
identities and start fresh if their trust level falls below a certain threshold. Therefore,
the trust bootstrapping mechanism should not only promote new services, but also
encourage existing services to keep their reputation profiles. Here, the concept of
trust bootstrapping refers to the process initialization of trust for a new service.

We have proposed a community-based reputation bootstrapping approach for
human services. Figure 14.7 shows the interactions among different entities in the
community-based reputation bootstrapping model. We describe these interactions in
brief below.

1. The service consumer asks the reputation of a new service provider by submitting
a query to the service trust manager. For example, a Centrelink service, on behalf
of a job seeker, asks the reputation of a JSA provider by submitting a query to
the service trust manager.

14 Service Trust Management for E-Government Applications 359

Service Trust Manager

(4) Bootstrap the reputation

(3) Request Reputation Information o (5) Reputation
(1) Ask the reputation

(3) No reputation information

Service Consumers

Community Manager

Fig. 14.7 Community based reputation bootstrapping model

2. The service trust manager does not have any reputation information. The reputation
information belongs to the community manager. The service trust manager
requests the reputation information from the community. In our example, the
service trust manager requests the information from the job seeker’s community
(i.e., JSA community). It is important to mention that the service trust manager
may reside within Centrelink or may be provided by a trusted third party.

3. Since the service provider is new, the community manager informs the service
trust manager that there are no past usage information available for the given
service. This requires the initiation of bootstrapping process. In our example, this
means the JSA community does not have any feedback information associated
with a particular JSA provider.

4. The trust manager requests the bootstrapping process. The process involves the
execution of a bootstrapping algorithm and assigning the reputation value to the
new service provider. The bootstrapping algorithm could be executed in either
trust manager or community manager. The place of execution depends on how
the algorithm is implemented. In our initial implementation, the bootstrapping
algorithm simply assigns an average trust value (i.e., average of all ratings) of
all members in the community to the newcomer. Therefore, the execution of
bootstrapping algorithm takes place at the community manager.

5. The trust manager returns the reputation value to the consumer. The execution of
the bootstrapping algorithm is transparent to the consumers.

Reputation Propagation Model: The reputation value received from the consumer
for a composite service needs to be propagated to its component services. We propose
a contribution-based distribution of reputation method for propagating reputation
to component services. Each component service receives the reputation based on

360 S. Nepal et al.

their contribution towards the reputation of the composite service. The consumer
of the composite service assigns a reputation value to it based on its perception.
The composition is opaque to the consumer and appears as a single service, i.e.,
the consumers are not aware of the component services. The role and importance of
each component service may be different in different compositions. Therefore, it is
difficult to estimate the contribution of the component services to the perception of
the composite service’s consumers. A contribution from a component service to the
overall perception is based on its past ratings. A component service that has higher
reputation is likely to have a higher contribution towards the overall reputation of
the composite service as perceived by the service consumer than those with lower
reputation. This is based on the assumption that a component service with higher
reputation gives a better service to the consumers of composite service than the ones
with lower reputation values. We propose a method of propagating reputation to the
component services in [5].

14.5 Case Study

We illustrate how our trust management framework helps Alice (a citizen in need
of help) to select the best service provider in assisting her to get employed. Alice is
looking to re-enter employment after a gap of many years. Alice reports a new life
event looking for work to the Human Services Department. The service selector maps
a service request to the resources, processes and services registered in the Service
Repository.. The Service Composer creates an integrated workflow by combining eli-
gible employment services, processes and resources returned by the Service Selector.
The composer generates an abstract composite service which includes a number of
employment related services such as job capacity assessor and Employment Pathway
Plan. The service selector selects the appropriate third party services and executes it.
Once the registration process is completed, Alice has to answer a number of questions
to classify her level of difficulties in finding job.

We assume that Alice has some difficulties and needs to have her job capacity
assessed. This triggers the job capacity assessment service as well as job service
provider services. This composite service is then passed on to the Service Opti-
miser. In our framework, we measure the quality of human services using some
non-functional properties such as reputation-based trust computed on a defined set
of QoHS parameters. The Service Optimiser is responsible for ensuring that these
non-functional properties of the final integrated workflow presented to the customer
are optimal within the resource and technology boundaries of the human services
department. In the following, we explain how our trust management framework helps
the service optimiser to produce the optimal solution for the customer. We explain
it using an example of job service providers. However, the example scenario below
is applicable to all component services in the abstract composite service if there are
more than one corresponding concrete services.

14 Service Trust Management for E-Government Applications 361

The Department of Employment is registered in the CommunityManagementSer-
vice as a community provider. The Australian government has contracted a wide
range of organizations to provide employment services to its citizens. These orga-
nizations include small, medium and large enterprises operating in both profit and
non-profit modes. These organizations are called job service providers and they are
expected to deliver high quality services to the citizens. This means Department
of Employment defines a community called Job Community using the Communi-
tyManagementService. Within Job community, there are many employment service
providers. Job providers are the members of the Job community that provides employ-
ment services. These concepts about community are stored in the ontology and are
accessed using OntologyAccessService.

Alice lives in a small town. There are many Job Providers in her neighbourhood
such as X, Y and Z (real names are removed). These providers offer employment
services to customers under the contract with Department of Employment. Each
of these service providers may have been used by a large number of customers.
Their feedback is collected and managed by the CommunityManagementService.
The optimizer invokes GetTopK method of the TrustManagementService to retrieve
best Job providers for Alice. The TrustManagementService retrieves the history of
all Job providers that meet Alice’s requirements in terms of locality and the types
of services provided. It then evaluates their trust and creates a ranked list of Job
providers. The top K providers from the ranked list are returned to the optimizer
along with their trust values. The optimizer/Alice may select one of the recommended
service providers depending on the situation.

14.6 Conclusions

This chapter described a community based trust management framework for human
services. Our approach is based on the consumers’ experience on provider’s past
behaviour. We described the proposed approach, system architecture, algorithms and
protocols using the motivation from the employment services model. We reported an
initial implementation of the Service Trust Management System within the proposed
holistic Human Services Delivery System. We then discussed the proposed model
with a case study of a citizen looking for work. The initial implementation was
demonstrated in the context of employment service.

References

1. Bouguettaya, A., Nepal, S., Sherchan, W., Zhou, X., Wu, J., Chen, S., Liu, D., Li, L., Wang,
H., Liu, X. 2010. End-to-end service support for mashups. IEEE Transactions on Services
Computing 3, 3, 250-263.

362 S. Nepal et al.

9.

Li, L., Liu, D., Bouguettaya, A. 2009. Semantic weaving for context-aware web service com-
position. In International Conference on Web Information System, Engineering. 101-114.

. Maximilien, E.M. and Singh, M.P. 2004. Toward autonomic web services trust and selection. In

Proceedings of the 2nd international conference on Service oriented computing (ICSOC ’04).
ACM, New York, NY, USA, 212-221.

Medjahed, B., Atif, Y. 2007. Context-based matching for web service composition. Distributed
and Parallel Databases 21, 1, 5-37.

. Nepal, S., Malik, Z., Bouguettaya, A. 2009. Reputation Propagation in Composite Services.

International Conference on Web Services, 295-302.

Ouzzani, M., Bouguettaya, A. 2004. Efficient access to web services. IEEE Internet Computing
8,2, 3444,

Ryu, S. H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R. 2008. Supporting the dynamic
evolution of web service protocols in service-oriented architectures. ACM Transactions on the
Web 2, 2, 1-46.

Sherchan, W., Nepal, S., Hunklinger, J., Bouguettaya, A. 2010. “A Trust Ontology for Semantic
Services,” Services Computing, IEEE International Conference on, IEEE International Confer-
ence on Services Computing, pp. 313-320.

Sherchan, W., Nepal, S., Bouguettaya, A., Chen, S. 2012. Context-sensitive user interfaces for
semantic services. ACM Transactions on Internet Technologies, 11, 3.

10. Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A. 2010. Adaptive service compo-

11.

sition based on reinforcement learning. In Proceedings of International Conference on Service
Oriented, Computing (ICSOC). 92-107.

Zhou, X., Chen, S., Bouguettaya, A., Kai, X. 2009. Supporting Bioinformatic Experiments
with a Service Query Engine. In Proceedings of the 2009 Congress on Services - I (SERVICES
’09). 717-723.

Chapter 15
Trust-Oriented Service Provider Selection
in Complex Online Social Networks

Guanfeng Liu and Yan Wang

Abstract In recent years, Online Social Networks (OSNs) with numerous partici-
pants have been used as the means for rich activities. For example, employers could
use OSNs to investigate potential employees, and participants could use OSNs to look
for movie recommendations. In these activities, trust is one of the most important
indication of participants decision making, greatly demanding the evaluation of the
trustworthiness of a service provider along certain social trust paths from a service
consumer. In this chapter, we first analyze the characteristics of the current gener-
ation of functional websites and the current generation of online social networks
based on their functionality and sociality, and present the properties of the new gen-
eration of social network based web applications. Then we present a new selection
model considering both adjacent and end-to-end constraints, based on a novel con-
cept Quality of Trust and a novel complex social network structure. Moreover, in
order to select the optimal one from a lot of social trust paths yielding the most
trustworthy trust evaluation result, this chapter presents an effective and efficient
heuristic algorithm for optimal social trust path selection with constraints, which is
actually an NP-Complete problem. Experimental results illustrate that our proposed
method outperforms existing models in both efficiency and the quality of delivered
solutions. This work provides key techniques to potentially lots of service-oriented
applications with social networks as the backbone.

G. Liu (X)) - Y. Wang
Department of Computing, Macquarie University, Sydney, Australia
e-mail: guanfeng.liu@mgq.edu.au

Y. Wang
e-mail: yan.wang @mgq.edu.au

A. Bouguettaya et al. (eds.), Advanced Web Services, 363
DOI: 10.1007/978-1-4614-7535-4_15,
© Springer Science+Business Media New York 2014

364 G. Liu and Y. Wang

15.1 Introduction

Online Social Networks (OSNs) (e.g. Facebook! and MySpace?) have become
increasingly popular recently and are being used as the means for a variety of rich
activities. In service-oriented environment, OSNs can provide the infrastructure for
the recommendation of service providers or services. According to a survey on 2600
hiring managers (i.e., service consumers) in 2008 by Career Builder> (a popular job
hunting website), 22 % of them used social networking sites to investigate potential
employees (i.e., service providers). The ratio increased to 45 % in June 2009, and
72 % in January 2010. In addition, participants (i.e., service consumers) could look
for the service of movie recommendation at FilmTrust,* a movie recommendation
OSN. In recent years, the new generation of social network based web application
systems has drawn the attention from both academia and industry. The study in [1] has
pointed out that it is a trend to build up social network based web applications (e.g.,
e-commerce or online recruitment systems). In October 2011, eBay5 announced their
strategic plan to deepen the relationship with Facebook! for creating a new crop of
e-commerce applications with social networking features, integrating both their e-
commerce platform and social networking platform seamlessly.® In such a situation,
trust is one of the most important indications for service consumers decision making,
greatly demanding approaches and mechanisms for evaluating the trustworthiness
between a service consumer and a service provider who don’t know each other.

Fig. 15.1 social network structure

U http://www.facebook.com/

2 http://www.myspace.com/

3 http://www.careerbuilder.com/

4 http://trust. mindswap.org/FilmTrust/
5 http://www.ebay.com/

6 refer to the Reuters news “eBay and Facebook unveil e-commerce partnership” at http://www.
reuters.com/article/2011/10/12/ebay-facebook-idUSN1E79B22Y20111012

http://www.facebook.com/
http://www.myspace.com/
http://www.careerbuilder.com/
http://trust.mindswap.org/FilmTrust/
http://www.ebay.com/
http://www.reuters.com/article/2011/10/12/ebay-facebook-idUSN1E79B22Y20111012
http://www.reuters.com/article/2011/10/12/ebay-facebook-idUSN1E79B22Y20111012

15 Trust-Oriented Service Provider Selection in Complex Online Social Networks 365

In OSNs, one participant can give a trust value to another based on their past
interactions (e.g., Tap in Fig. 15.1). If there exist a trust path (e.g, A - B —
E — M in Fig. 15.1) linking two nonadjacent participants (there is no direct link
between them), the source participant (i.e., the service consumer) can evaluate the
trustworthiness of the target participant (i.e., the service provider) based on the trust
information between the intermediate participants along the path. The path with trust
information linking the source participant and the target participant is called a social
trust path [2, 3].

In the literature, several methods have been proposed for trust evaluation in OSNs
[2-5]. But these models have three main drawbacks: (1) As illustrated in social psy-
chology [6, 7], the social relationships between participants (e.g., the one between
an employer and an employee) and the recommendation roles of participants (e.g., a
supervisor as a referee in his postgraduate’s job application) have significant influ-
ence on trust and thus should be considered in the trust evaluation of participants.
However, they are not considered by existing methods. (2) As there are usually many
social trust paths between participants, existing methods evaluate the trustworthi-
ness of a participant based on all social paths incurring huge computation time [2,
3]. Although a few methods [4, 5] have been proposed to address the path selection
problem, they yet neglect the influence of social information on path selection. (3)
In OSNS, a source participant may have different purposes in evaluating the trust-
worthiness of a target participant, such as hiring employees or introducing products.
Therefore, a source participant should be able to set certain constraints on the trust,
social relationship and recommendation role in trust path selection. However, exist