
Advanced Web
Services

Athman Bouguettaya
Quan Z. Sheng
Florian Daniel Editors

www.allitebooks.com

http://www.allitebooks.org

Advanced Web Services

www.allitebooks.com

http://www.allitebooks.org

Athman Bouguettaya • Quan Z. Sheng
Florian Daniel
Editors

Advanced Web Services

Foreword by Michael P. Papazoglou

123

www.allitebooks.com

http://www.allitebooks.org

Editors
Athman Bouguettaya
School of Computer Science
and Information Technology

RMIT University
Melbourne, VIC
Australia

Quan Z. Sheng
School of Computer Science
University of Adelaide
Adelaide, SA
Australia

Florian Daniel
Dipartimento di Ingegneria e Scienza
dell’Informazione

Università di Trento
Povo, Trento
Italy

ISBN 978-1-4614-7534-7 ISBN 978-1-4614-7535-4 (eBook)
DOI 10.1007/978-1-4614-7535-4
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013942479

� Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.allitebooks.com

http://www.allitebooks.org

To my parents, Horia and Mahmoud,

and my wife Malika

Athman Bouguettaya

To my parents Shuilian and Jianwu,

my brothers Guanzheng and Xinzheng,

my wife Yaping and my daughters Fiona

and Phoebe

Quan Z. Sheng

To Cinzia, my family, my friends

Florian Daniel

www.allitebooks.com

http://www.allitebooks.org

Foreword

Service-Oriented Computing (SOC) is the computing paradigm that utilizes soft-

ware services as fundamental elements for developing and deploying distributed

software applications. Services are self-describing, platform-agnostic computa-

tional elements that support rapid, low-cost composition of distributed applica-

tions. They perform functions, which can be anything from simple requests to

complicated business processes. Services allow organizations to expose their core

competencies programmatically via a self-describing interface based on open

standards over the Internet (or intra-net) using standard (XML-based) languages

and protocols. Because services provide a uniform and ubiquitous information

distributor for wide range of computing devices (such as handheld computers,

PDAs, cellular telephones, or appliances) and software platforms (e.g., UNIX or

Windows), they constitute a major transition in distributed computing.

A Web service is a specific kind of service that is identified by a URI that

exposes its features programmatically over the Internet using standard Internet

languages and protocols, and can be implemented via a self-describing interface

based on open Internet standards (e.g., XML interfaces which are published in

network-based repositories).

Understanding the conceptual underpinnings and mastering the technical

intricacies of Web services is anything but trivial and is absolutely necessary to

construct a well-functioning service-based system or application. Web service

technology is undergoing continuous, rapid evolution, thanks to both standardi-

zation efforts pushed forward by the industry and the research efforts of the sci-

entific community.

Web services standards are still evolving. However, they seem to converge

today on a handful of standards: the Simple Object Access Protocol (SOAP) for

service communication, Web Services Description Language (WSDL) for service

description, Universal Description, Discovery, and Integration Infrastructure

(UDDI) for registering and discovering services, and the Business Process Exe-

cution Language (BPEL) for service composition. A plethora of WS-* specifica-

tions also exists to describe the full spectrum of activities related to Web services

in topics such as reliable messaging, security, privacy, policies, event processing,

and coordination, to name but a few.

vii

www.allitebooks.com

http://www.allitebooks.org

Leading international conferences, such as the International Conference on

Service Oriented Computing (ICSOC), the International Conference on Web

Services (ICWS), the International Conference on Service Computing (SCC), and

others, have spearheaded groundbreaking research efforts. This has led to the

emergence of novel topics such as semantic Web services, automated Web service

composition, Web service recommendations, quality of service, trust, and a range

of other interesting themes. Related conference series such as Web Engineering,

Cloud Computing, Business Process Management, HCI, and Database-related

conferences have all been strongly influenced by the emergence of Web services

and consistently feature Web service-related topics in their calls for papers. These

conferences contribute to the wealth of knowledge that is growing exponentially

around Web services.

The content of this book and that of its companion book Web Services Foun-

dations (Springer, 2013) reflect such activities. It is a testimonial of the leading

role of its editors and their highly influential work in the area of Web services.

Together, both books cover an enormous wealth of important topics and tech-

nologies that mirror the evolution of Web services. They provide an exhaustive

overview of the challenges and solutions of all major achievements pertaining to

Web services. Each chapter is an authoritative piece of work that synthesizes all

the pertinent literature and highlights important accomplishments and advances in

its subject matter.

To my knowledge, this is the first attempt of its kind, providing complete

coverage of the key subjects in Web services. I am not aware of any other book

that is as thorough, comprehensive and ambitious in explaining the current state of

the art of scientific research and in synthesizing the perspectives and know-how of

so many experts in the field. Both books are a must-read for everyone interested in

the field. They cater for the needs of both novices to the field as well as seasoned

researchers and practitioners. They are a major step in this field’s maturation and

will serve to unify, advance, and challenge the scientific community in many

important ways.

It is a real pleasure to have been asked to provide the foreword for this book

collection. I am happy to commend the editors and authors on their accomplish-

ment, and to inform the readers that they are looking at a landmark in the

development of the Web services field. Anybody serious about Web services ought

to have handy a copy of Web Services Foundations and Advanced Web Services in

their private library!

Tilburg, The Netherlands, December 2012 Michael P. Papazoglou

viii Foreword

www.allitebooks.com

http://www.allitebooks.org

Preface

Web Service technology is undeniably the preferred delivery method for the

Service-Oriented Computing (SOC) paradigm. It has evolved over the years to be

a comprehensive, interdisciplinary approach to modern software development.

Web services have gone beyond software componentization technology to embody

and express the software manifestation of a general trend transforming our modern

society from an industrial, production-centric economy into a digital, service-

centric economy. Web services aim to provide the missing conceptual links that

unify a variety of different disciplines, such as networking, distributed systems,

cloud computing, autonomic computing, data and knowledge management,

knowledge-based systems, and business process management. Web services are

the technological proxies of services that power much of the developed and

increasingly developing economies. In this respect, Web services play a central

role in enabling and sustaining the growth of service-centric economies and help

modernizing organizations, companies, and institutions also from an IT

perspective.

Over the last decade, Web services have become a thriving area of research and

academic endeavors. Yet, despite a substantial body of research and scientific

publications, the Web services community has been hitherto missing a one stop-

shop that would provide a consolidated understanding of the scientific and tech-

nical progress of this important subject. This book (the second of a two-book

collection) is a serious attempt to fill this gap and serve as a primary point of

reference reflecting the pervasive nature of Web services.

This book is the second installment of a two-book collection (we discuss the

foundational topics in the first book, Web Services Foundations, Springer, 2013).

Together, they comprise approximately 1,400 pages covering state-of-the-art

theoretical and practical aspects as well as experience using and deploying Web

services. The collection offers a comprehensive overview of the scientific and

technical progress in Web services technologies, design, architectures, applica-

tions, and performance. The second book of the collection consists of three major

parts:

ix

www.allitebooks.com

http://www.allitebooks.org

I Advanced Services Engineering and Management (11 chapters)—It explores

advanced engineering problems, such as Web service transactions and

recovery, security and identity management, trust and contracts, and Web

service evolution and management;

II Web Service Applications and Case Studies (5 chapters)—It covers concrete

scenarios of the use of Web service technology and reports on empirical

studies of real-world Web service ecosystems;

III Novel Perspectives and Future Directions (10 chapters)—It surveys

approaches of the applications on how the Web service paradigm can be

applied to novel contexts, such as human-centric computing, human work,

and the Internet of Things, and discusses the value of Web services in the

context of mobile and cloud computing.

The first book (Web Services Foundations, Springer, 2013) consists of two

major parts:

I Foundations of Web Services (12 chapters)—It explores the most represen-

tative theoretical and practical approaches to Web services, with a special

focus on the general state-of-the-art approaches to Web service composition;

II Service Selection and Assisted Composition (16 chapters)—It focuses on

other aspects of Web service composition problem, specifically takes a deep

look at non-functional aspects (e.g., quality of service), Web service rec-

ommendations, and how Web service composition is made easy for less

expert developers.

The topics covered in the collection are reflective of their intent: they aim to

become the primary source for all pertinent information regarding Web service

technologies, research, deployment, and future directions. The purpose of the two

books is to serve as a trusted and valuable reference point to researchers and

educators who are working in the area of Web services, to students who wish to

learn about this important research and development area, and to practitioners who

are using Web services and the service paradigm daily in their software devel-

opment projects.

This collection is the result of an enormous community effort, and their pro-

duction involved more than 100 authors, consisting of the world’s leading experts

in this field. We would like to thank the authors for their high-quality contributions

and the reviewers for their time and professional expertise. All contributions have

undergone a rigorous review process, involving three independent experts in two

rounds of review. We are also very grateful to Springer for their continuous help

and assistance.

Melbourne, Australia, December 2012 Athman Bouguettaya

Adelaide, Australia Quan Z. Sheng

Trento, Italy Florian Daniel

x Preface

www.allitebooks.com

http://www.allitebooks.org

Contents

Part I Advanced Services Engineering and Management

1 Design and Management of Web Service Transactions

with Forward Recovery . 3

Peter Dolog, Michael Schäfer and Wolfgang Nejdl

2 A Generic Framework for Testing the Web

Services Transactions . 29

Rubén Casado, Muhammad Younas and Javier Tuya

3 Universal Identity Management Based on Delegation

in SOA. 51

Yang Zhang and Jun-Liang Chen

4 The Roadmap of Trust and Trust Evaluation in Web

Applications and Web Services . 75

Lei Li and Yan Wang

5 Web Service-Based Trust Management

in Cloud Environments . 101

Talal H. Noor and Quan Z. Sheng

6 Web Service Contracts: Specification and Matchmaking 121

Marco Comerio, Flavio De Paoli, Matteo Palmonari

and Luca Panziera

7 A Certification-Aware Service-Oriented Architecture. 147

Marco Anisetti, Claudio A. Ardagna, Michele Bezzi,

Ernesto Damiani, Samuel Paul Kaluvuri and Antonino Sabetta

8 A Test Automation Framework for Collaborative Testing

of Web Service Dynamic Compositions . 171

Hong Zhu and Yufeng Zhang

xi

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4614-7535-4_1
http://dx.doi.org/10.1007/978-1-4614-7535-4_1
http://dx.doi.org/10.1007/978-1-4614-7535-4_2
http://dx.doi.org/10.1007/978-1-4614-7535-4_2
http://dx.doi.org/10.1007/978-1-4614-7535-4_3
http://dx.doi.org/10.1007/978-1-4614-7535-4_3
http://dx.doi.org/10.1007/978-1-4614-7535-4_4
http://dx.doi.org/10.1007/978-1-4614-7535-4_4
http://dx.doi.org/10.1007/978-1-4614-7535-4_4
http://dx.doi.org/10.1007/978-1-4614-7535-4_5
http://dx.doi.org/10.1007/978-1-4614-7535-4_5
http://dx.doi.org/10.1007/978-1-4614-7535-4_6
http://dx.doi.org/10.1007/978-1-4614-7535-4_7
http://dx.doi.org/10.1007/978-1-4614-7535-4_8
http://dx.doi.org/10.1007/978-1-4614-7535-4_8
http://www.allitebooks.org

9 WSDARWIN: Studying the Evolution of Web

Service Systems . 199

Marios Fokaefs and Eleni Stroulia

10 SCML: A Change Management Language for Adaptive

Long Term Composed Services . 225

Xumin Liu and Athman Bouguettaya

11 A Semantic-Based Approach to Generate Abstract Services

for Service Organization . 253

Xumin Liu and Hua Liu

Part II Web Service Applications and Case Studies

12 Exploring Service Networks of Biological Processes

on the Web . 279

George Zheng and Athman Bouguettaya

13 Automating Tendering Processes with Web Services:

A Case Study on Building Construction Tendering

in Hong Kong . 311

Dickson K. W. Chiu, Nick L. L. NG, Sau Chan Lai,

Matthias Farwick and Patrick C. K. Hung

14 Service Trust Management for E-Government Applications 339

Surya Nepal, Wanita Sherchan and Athman Bouguettaya

15 Trust-Oriented Service Provider Selection in Complex

Online Social Networks. 363

Guanfeng Liu and Yan Wang

16 Analyzing Web Services Networks: Theory and Practice 381

Peep Küngas, Marlon Dumas, Shahab Mokarizadeh

and Mihhail Matskin

Part III Novel Perspectives and Future Directions

17 Work as a Service . 409

Daniel V. Oppenheim, Lav R. Varshney and Yi-Min Chee

xii Contents

http://dx.doi.org/10.1007/978-1-4614-7535-4_9
http://dx.doi.org/10.1007/978-1-4614-7535-4_9
http://dx.doi.org/10.1007/978-1-4614-7535-4_10
http://dx.doi.org/10.1007/978-1-4614-7535-4_10
http://dx.doi.org/10.1007/978-1-4614-7535-4_11
http://dx.doi.org/10.1007/978-1-4614-7535-4_11
http://dx.doi.org/10.1007/978-1-4614-7535-4_12
http://dx.doi.org/10.1007/978-1-4614-7535-4_12
http://dx.doi.org/10.1007/978-1-4614-7535-4_13
http://dx.doi.org/10.1007/978-1-4614-7535-4_13
http://dx.doi.org/10.1007/978-1-4614-7535-4_13
http://dx.doi.org/10.1007/978-1-4614-7535-4_14
http://dx.doi.org/10.1007/978-1-4614-7535-4_15
http://dx.doi.org/10.1007/978-1-4614-7535-4_15
http://dx.doi.org/10.1007/978-1-4614-7535-4_16
http://dx.doi.org/10.1007/978-1-4614-7535-4_17

18 Virtualizing Software and Human for Elastic

Hybrid Services . 431

Muhammad Z. C. Candra, Rostyslav Zabolotnyi, Hong-Linh Truong

and Schahram Dustdar

19 Realizing a Social Ecosystem of Web Services 455

Zakaria Maamar, Youakim Badr, Noura Faci and Quan Z. Sheng

20 ubiREST: A RESTful Service-Oriented Middleware

for Ubiquitous Networking . 475

Mauro Caporuscio, Marco Funaro, Carlo Ghezzi and Valérie Issarny

21 Mobile Web and Cloud Services . 501

Satish Narayana Srirama

22 TOSCA: Portable Automated Deployment and Management

of Cloud Applications . 527

Tobias Binz, Uwe Breitenbücher, Oliver Kopp and Frank Leymann

23 A V-Model Approach for Business Process Requirements

Elicitation in Cloud Design . 551

Nuno Ferreira, Nuno Santos, Ricardo J. Machado,

José Eduardo Fernandes and Dragan Gasević

24 Cloud-Based Systems Need Multi-Level Management 579

Luciano Baresi, Domenico Bianculli and Sam Guinea

25 Web Services for Things . 605

Guangyan Huang, Jing He and Yanchun Zhang

Index . 631

Contents xiii

http://dx.doi.org/10.1007/978-1-4614-7535-4_18
http://dx.doi.org/10.1007/978-1-4614-7535-4_18
http://dx.doi.org/10.1007/978-1-4614-7535-4_19
http://dx.doi.org/10.1007/978-1-4614-7535-4_20
http://dx.doi.org/10.1007/978-1-4614-7535-4_20
http://dx.doi.org/10.1007/978-1-4614-7535-4_21
http://dx.doi.org/10.1007/978-1-4614-7535-4_22
http://dx.doi.org/10.1007/978-1-4614-7535-4_22
http://dx.doi.org/10.1007/978-1-4614-7535-4_23
http://dx.doi.org/10.1007/978-1-4614-7535-4_23
http://dx.doi.org/10.1007/978-1-4614-7535-4_24
http://dx.doi.org/10.1007/978-1-4614-7535-4_25

Contributors

Marco Anisetti Dipartimento di Informatica, Università degli Studi di Milano,

Bramante 65, Crema 26013, Italy, e-mail: marco.anisetti@unimi.it

Claudio A. Ardagna Dipartimento di Informatica, Università degli Studi di

Milano, Bramante 65, Crema 26013, Italy, e-mail: claudio.ardagna@unimi.it

Youakim Badr INSA de Lyon, Villeurbanne 69621, France, e-mail: youakim.

badr@insa-lyon.fr

Luciano Baresi Deep-SE Group, Dipartimento di Elettronica e Informazione,

Politecnico di Milano, Piazza L. da Vinci 32, Milan I-20133, Italy, e-mail:

luciano.baresi@polimi.it

Michele Bezzi SAP Research Sophia-Antipolis, 805, Av. du Docteur Maurice

Donat, Mougins 06254 Mougins Cedex, France, e-mail: michele.bezzi@sap.com

Domenico Bianculli SnT Centre, University of Luxembourg, 4 rue Alphonse

Weicker, Luxembourg, Luxembourg, e-mail: domenico.bianculli@uni.lu

Tobias Binz IAAS, University of Stuttgart, Universitätsstr. 38, 70569 Stuttgart,

Germany, e-mail: binz@iaas.uni-stuttgart.de

Athman Bouguettaya School of Computer Science and Information Technology,

RMIT, Melbourne, Australia, e-mail: athman.bouguettaya@rmit.edu.au

Uwe Breitenbücher IAAS, University of Stuttgart, Universitätsstr. 38, Stuttgart

70569, Germany, e-mail: breitenbuecher@iaas.uni-stuttgart.de

Muhammad Z. C. Candra Distributed Systems Group, Vienna University of

Technology, Argentinierstrasse 8/184-1, Vienna 1040, Austria, e-mail: m.candra@

dsg.tuwien.ac.at

Mauro Caporuscio Dipartimento di Elettronica e Informazione, Politecnico di

Milano, Piazza L. da Vinci 32, 20133 Milan, Italy, e-mail: mauro.caporuscio@

polimi.it

Rubén Casado Department of Computing, University of Oviedo, Asturias, Spain,

e-mail: rcasado@lsi.uniovi.es

xv

Yi-Min Chee IBM Thomas J. Watson Research Center, Hawthorne, NY, USA,

e-mail: ymchee@us.ibm.com

Jun-Liang Chen State Key Laboratory of Networking and Switching Technol-

ogy, Beijing University of Posts and Telecommunications, Beijing, China, e-mail:

chjl@bupt.edu.cn

Dickson K. W. Chiu Dickson Computer Systems, 7 Victory Avenue, Kowloon,

Hong Kong ; Department of Computer Science and Engineering, Hong Kong

University of Science and Technology, Hong Kong, China, e-mail: dicksonchiu@

ieee.org

Marco Comerio University of Milano-Bicocca, Viale Sarca 336, 20126 Milan,

Italy, e-mail: comerio@disco.unimib.it

Ernesto Damiani Dipartimento di Informatica, Universitaà degli Studi di Milano,

Bramante 65, 26013 Crema, Italy, e-mail: ernesto.damiani@unimi.it

Flavio De Paoli University of Milano-Bicocca, Viale Sarca 336, 20126 Milan,

Italy, e-mail: depaoli@disco.unimib.it

Peter Dolog Department of Computer Science, Aalborg University, Selma Lag-

erloefs Vej 300, 9220 Aalborg, Denmark, e-mail: dolog@cs.aau.dk

Marlon Dumas University of Tartu, Tartu, Estonia, e-mail: marlon.dumas@ut.ee

Schahram Dustdar Distributed Systems Group, Vienna University of Technol-

ogy, Argentinierstrasse 8/184-1, 1040 Vienna, Austria, e-mail: dustdar@dsg.

tuwien.ac.at

Noura Faci Claude Bernard Lyon 1 University, Lyon, France, e-mail: noura.

faci@univ-lyon1.fr

Matthias Farwick Institute of Computer Science, University of Innsbruck,

Innsbruck, Austria, e-mail: csae8781@uibk.ac.at

José Eduardo Fernandes Bragana Polytechnic Institute, Bragana, Portugal,

e-mail: jef@ipb.pt

Nuno Ferreira I2S Informtica, Sistemas e Servios S.A., Porto, Portugal, e-mail:

nuno.ferreira@i2s.pt

Marios Fokaefs Department of Computing Science, University of Alberta, Ed-

monton, AB, Canada, e-mail: fokaefs@ualberta.ca

Marco Funaro Dipartimento di Elettronica e Informazione, Politecnico di Mi-

lano, Piazza L. da Vinci 32, 20133 Milan, Italy, e-mail: funaro@elet.polimi.it

Dragan Gasević School of Computing and Information Systems, Athabasca

University, Athabasca, Canada, e-mail: dgasevic@acm.org

xvi Contributors

Carlo Ghezzi Dipartimento di Elettronica e Informazione, Politecnico di Milano,

Piazza L. da Vinci 32, 20133 Milan, Italy, e-mail: carlo.ghezzi@polimi.it

Sam Guinea Dipartimento di Elettronica e Informazione, Politecnico di Milano,

Piazza L. da Vinci 32, 20133 Milan, Italy, e-mail: sam.guinea@polimi.it

Jing He Victoria University, Melbourne, Australia, e-mail: jing.he@vu.edu.au

Guangyan Huang Victoria University, Melbourne, Australia, e-mail: guangyan.

huang@vu.edu.au

Patrick C. K. Hung Faculty of Business and Information Technology, University

of Ontario Institute of Technology, Oshawa, Canada, e-mail: patrick.

hung@uoit.ca

Valérie Issarny Domaine de Voluceau, INRIA Paris-Rocquencourt, Le Chesnay

78153, France, e-mail: valerie.issarny@inria.fr

Samuel Paul Kaluvuri SAP Research Sophia-Antipolis, 805, Av. du Docteur

Maurice Donat, Mougins 06254 Mougins Cedex, France, e-mail: samuel.

kaluvuri@sap.com

Oliver Kopp IAAS, University of Stuttgart, Universitätsstr. 38, Stuttgart 70569,

Germany, e-mail: kopp@iaas.uni-stuttgart.de

Peep Küngas University of Tartu, Tartu, Estonia, e-mail: peep.kungas@ut.ee

Sau Chan Lai Department of Computer Science and Engineering, Hong Kong

University of Science and Technology, Hong Kong, China, e-mail: chanlaze@

ust.hk

Frank Leymann IAAS, University of Stuttgart, Universitätsstr. 38, Stuttgart

70569, Germany, e-mail: leymann@iaas.uni-stuttgart.de

Lei Li Department of Computing, Macquarie University, Sydney, NSW 2109,

Australia, e-mail: lei.li@outlook.com

Guanfeng Liu Department of Computing, Macquarie University, North Ryde,

NSW, Australia, e-mail: guanfeng.liu@mq.edu.au

Hua Liu Xerox Research Center at Webster, Webster, USA, e-mail: hua.liu@

xerox.com

Xumin Liu Department of Computer Science, Rochester Institute of Technology,

Rochester, USA, e-mail: xl@cs.rit.edu

Zakaria Maamar Zayed University, Dubai, U.A.E, e-mail: zakaria.maamar@

zu.ac.ae

Ricardo J. Machado Centro ALGORITMI, Escola de Engenharia, Universidade

do Minho, Guimares, Portugal, e-mail: rmac@dsi.uminho.pt

Contributors xvii

Mihhail Matskin Royal Institute of Technology, Stockholm, Sweden, e-mail:

misha@kth.se

Shahab Mokarizadeh Royal Institute of Technology, Stockholm, Sweden,

e-mail: shahabm@kth.se

Wolfgang Nejdl L3S Research Center, University of Hannover, Appelstr. 9a,

Hannover 30167, Germany, e-mail: nejdl@l3s.de

Surya Nepal CSIRO ICT Centre, Sydney, Australia, e-mail: Surya.Nepal@

csiro.au

Nick L. L. NG Department of Computer Science and Engineering, Hong Kong

University of Science and Technology, Hong Kong, China, e-mail: nickng@

ust.hk

Talal H. Noor School of Computer Science, The University of Adelaide,

Adelaide, SA 5005, Australia, e-mail: talal@cs.adelaide.edu.au

Daniel V. Oppenheim IBM Thomas J. Watson Research Center, Hawthorne,

NY, USA, e-mail: music@us.ibm.com

Matteo Palmonari University of Milano-Bicocca, Viale Sarca 336, 20126 Milan,

Italy, e-mail: palmonari@disco.unimib.it

Luca Panziera University of Milano-Bicocca, Viale Sarca 336, 20126 Milan,

Italy, e-mail: panziera@disco.unimib.it

Antonino Sabetta SAP Research Sophia-Antipolis, 805, Av. du Docteur Maurice

Donat, Mougins 06254 Mougins Cedex, France, e-mail: antonio.sabetta@sap.com

Nuno Santos CCG-Centro de Computaao Gráfica, Campus de Azurm, Guimares,

Portugal, e-mail: nuno.santos@ccg.pt

Michael Schäfer L3S Research Center, University of Hannover, Appelstr. 9a,

30167 Hannover, Germany, e-mail: Michael.K.Schaefer@gmx.de

Quan Z. Sheng School of Computer Science, The University of Adelaide,

Adelaide, SA 5005, Australia, e-mail: qsheng@cs.adelaide.edu.au

Wanita Sherchan IBM Research, Melbourne, Australia, e-mail: wanitash@

au.ibm.com

Satish Narayana Srirama Mobile Cloud Laboratory, Institute of Computer

Science, University of Tartu, J Liivi 2, Tartu 50409, Estonia, e-mail: srirama@

ut.ee

Eleni Stroulia Department of Computing Science, University of Alberta,

Edmonton, AB, Canada, e-mail: stroulia@ualberta.ca

xviii Contributors

Hong-Linh Truong Distributed Systems Group, Vienna University of Technol-

ogy, Argentinierstrasse 8/184-1, 1040 Vienna, Austria, e-mail: truong@dsg.

tuwien.ac.at

Javier Tuya Department of Computing, University of Oviedo, Asturias, Spain,

e-mail: tuya@uniovi.es

Lav R. Varshney IBM Thomas J. Watson Research Center, Hawthorne, NY,

USA, e-mail: lrvarshn@us.ibm.com

Yan Wang Department of Computing, Macquarie University, Sydney, NSW

2109, Australia, e-mail: yan.wang@mq.edu.au

Muhammad Younas Department of Computing and Communication Technolo-

gies, Oxford Brookes University, Oxford, UK, e-mail: m.younas@brookes.ac.uk

Rostyslav Zabolotnyi Distributed Systems Group, Vienna University of Tech-

nology, Argentinierstrasse 8/184-1 1040 Vienna, Austria, e-mail: rstzab@dsg.

tuwien.ac.at

Yanchun Zhang Victoria University, Melbourne, Australia, e-mail: yanchun.

zhang@vu.edu.au

Yang Zhang State Key Laboratory of Networking and Switching Technology,

Beijing University of Posts and Telecommunications, Beijing, China, e-mail:

yangzhang@bupt.edu.cn

Yufeng Zhang National Laboratory for Parallel and Distributed Processing,

School of Computer Science, The National University of Defense Technology,

Changsha, China, e-mail: yufengzhang@nudt.edu.cn

George Zheng Science Applications International Corporation, McLean, VA,

USA, e-mail: george.zheng@saic.com

Hong Zhu Department of Computing and Electronics, School of Technology,

Oxford Brookes University, Oxford OX33 1HX, UK, e-mail: hzhu@brookes.ac.uk

Contributors xix

Part I

Advanced Services Engineering
and Management

Chapter 1

Design and Management of Web Service
Transactions with Forward Recovery

Peter Dolog, Michael Schäfer and Wolfgang Nejdl

Abstract In this chapter we describe a design of compensations using forward

recovery within Web service transactions. We introduce an approach to model com-

pensation capabilities and requirements using feature models, which are the basis for

defining compensation rules. These rules can be executed in a Web service environ-

ment that we extend with the concept of an abstract service, which is a management

component for flexible compensation capabilities. We describe the design and also

discuss advantages and disadvantages of such an approach.

1.1 Introduction

A Web service allows a provider to encapsulate functionality and to make it available

for use via a network. A client can invoke such a Web service to use its functionality.

By combining existing Web services from different service providers, a new and

more complex distributed application can be created, which in turn can be offered

as a new value-added composite service. Such a distributed application is usually

created based on a business process, which consists of a logical sequence of actions

that can include the invocation of a Web service. Accordingly, it is vitally important

to control the processing of each single action and the overall process in order to be

able to guarantee correct execution. This is done by using transactions.

P. Dolog (B)

Department of Computer Science, Aalborg University, Selma Lagerlöefs Vej 300,
9220 Aalborg, Denmark
e-mail: dolog@cs.aau.dk

M. Schäfer · W. Nejdl
L3S Research Center, University of Hannover, Appelstr. 9a, 30167 Hannover, Germany
e-mail: Michael.K.Schaefer@gmx.de

W. Nejdl
e-mail: nejdl@l3s.de

A. Bouguettaya et al. (eds.), Advanced Web Services, 3
DOI: 10.1007/978-1-4614-7535-4_1,
© Springer Science+Business Media New York 2014

4 P. Dolog et al.

A transaction consists of a set of operations (“units of work”) that are executed

within a system. Before and after the transaction, this system has to be in a consistent

state [6]. The concept of transaction originates from database systems, which require

an effective control of operations in order to guarantee data consistency. This is

achieved by requiring that transactions fulfill the ACID properties [6, 7]: Atomicity,

Consistency, Isolation, and Durability.

In the context of a distributed application, a distributed transaction [6] controls

the execution of operations on multiple loosely-coupled Web services (participants)

from different providers. Each operation is an invocation of one of the services and

executes functionality provided by the particular service that is called. Any kind of

service, independent of the actual functionality it implements (e.g. reserving a flight,

performing a money transfer, transforming data), can in principle participate in such

a transaction. A coordinator is responsible for the creation of the transaction, the

registration of participants, and the evaluation of the participant’s results.

Due to the fact that a distributed transaction has to include external sources via

a network connection, it is usually not possible to fulfill all ACID properties, as

each one imposes restrictions on the system which can be a disadvantage in such an

environment. For example, in order to be able to handle long-running transactions,

which take a long time until they complete, it is necessary to relax the isolation

property. This means that locks on resources are removed even though the overall

transaction is not yet complete, so that other transaction can access these resources

and are not blocked. However, it can still happen that the transaction fails, and if this

is the case it is necessary for the coordinator to initiate a compensation, which reverts

all operations that were already performed in order to restore the state of the system

before the transaction was started. The Web services that were already processed

have to do a rollback, i.e. they have to execute a predefined set of actions that

undo their original operation. This notion of rolling back the system to a previous

state is known as backward recovery [16], as it reverses the operations that have

been performed. Whether such rollback operations exist, and what steps they consist

of, depends highly on the system and the Web services involved. A compensation

protocol can only provide the orchestration of compensative activities, the developer

of a rollback operation has to ensure that its result represents the consistent state

before the transaction was started.

There are alternative approaches how to relax the isolation property within a Web

service environment. Reference [9] describes the “Promises” pattern, which defines

a “Promise Manager” that receives resource promise requests from a service. In

comparison to the classic ACID isolation, this promise does not lock an individual

resource but instead ensures that one from a pool of (anonymous) resources with the

same properties will be available.

Web service coordination and transaction specifications [11–13] have been defined

that provide the architecture and protocols required for transaction coordination of

Web services. Several extensions have been proposed to enhance these protocols to

add more flexibility [2, 20]. While these protocols provide the means for transac-

tions in a distributed environment, it is still a challenge to guarantee its consistency.

www.allitebooks.com

http://www.allitebooks.org

1 Design and Management of Web Service Transactions with Forward Recovery 5

[10] describes an approach to check already at application design time whether the

distributed application will always terminate in a consistent state.

The specifications in their original form provide only limited compensation capa-

bilities [8]. In most cases, the handling of a service failure is restricted to backward

recovery. Subsequently, the aborted transaction will usually have to be restarted,

because the failed distributed application still has to perform its tasks. Backward

recovery therefore results in the loss of time and money, and additional resources

are needed to restart the transaction. Moreover, the provider of the service that has

encountered an error might have to pay contractual penalties because of a violated

Service Level Agreement (SLA). The rollback of the complete transaction due to

the failure of one service can also have widespread consequences: All dependent

transactions on the participating Web services (i.e. transactions that have started

operations on a service after the currently aborting transaction and therefore have

a completion dependency [3]) have to abort and perform a rollback, which in turn

can trigger the abort of other transactions and thus lead to cascading compensations.

This is sometimes called the domino effect [16].

In addition to the problematic consequences of backward recovery, current

approaches do not allow any changes in a running transaction. If for example erro-

neous data was used in a part of a transaction, then the only possible course of action

is to cancel the transaction and to restart it with correct data.

An alternative to backward recovery is forward recovery. The goal of this

approach is to proactively change the state and structure of a transaction after a

service failure occurred, and thus to avoid having to perform a rollback and to enable

the transaction to finish successfully.

To illustrate forward recovery in a Web service environment, consider as example

a company’s monthly payroll processing. In the first step, the company has to calcu-

late the salary for each employee, which can depend on a multitude of factors like

overtime hours or bonuses. In the next step, the payment of the salary is performed,

which comprises several operations: Transfer of the salary from the company’s to

the employee’s account, transfer of the employee’s income tax to the account of the

fiscal authorities, and printing and mailing of the payslip. The employee has only

one task, which he has to perform each month: He transfers the monthly installment

for his new car to the car dealer’s account.

The company’s and the employee’s operations are each controlled by a business

process and are implemented using services from multiple providers (Fig. 1.1). The

two business processes use transactions in order to guarantee a consistent execution

of all required operations. For simplicity, only the services of transaction T1 are

shown, although of course also transaction T0 and T2 consist of several services.

While this scenario is quite simple, it has multiple dependencies within and

between the two running transactions. Therefore, it is important that both trans-

actions can complete successfully and do not have to be aborted and rolled back.

Nevertheless, a situation in which such a need arises can become imminent quite

easily:

6 P. Dolog et al.

Transfer

salary

Print and

send payslip

Transfer

tax

Company

Employee

Tax

Car Dealer

Accounts

Business Process: Company

Perform

calculations

Transaction T0

Perform

payment

Transaction T1

Business Process: Employee

Transaction T2

Perform

monthly tasks

Fig. 1.1 The example scenario

• Situation 1: One of the Web services might encounter a problem during the exe-

cution of its operations. For example, it could be that the service that transfers the

salary fails due to an internal error.

• Situation 2: A mistake might have been made regarding the input data of one of the

operations. In this scenario, it could be that the calculation of the salary is flawed

and too much has been transferred to the employee’s account.

As explained above, using a backward recovery approach in such a scenario

would be costly. However, using a forward recovery approach allows to handle both

situations without a rollback:

• Situation 1: Although the Web service failed, it would still be possible to save

the transaction by using a different service. Such a replacement of the original

Web service is encouraged by the fact that usually multiple services from different

providers exist that provide the same or similar capabilities.

• Situation 2: The operations with the erroneous input data have already been

processed, and the transaction would have to be rolled back even if an admin-

istrator notices the failure before the transaction has been finished. However, the

salary transfer could be easily corrected with another money transfer operation.

This scenario is only one example where a forward recovery of transactions would

be beneficial. Similarly, such an approach could help in other situations such as

overloaded services, timeouts, or other errors.

In this chapter we describe a design approach [17] and an environment which is

able to handle forward recovery compensation of Web service transactions [19]. The

approach is based on the idea that there is a possibility to replace a failed service in

the transaction with another one with the same or similar capabilities and by doing

so to avoid unnecessary rollbacks. In addition, the design includes an approach

to model and match compensation capabilities and requirements. The contribution

1 Design and Management of Web Service Transactions with Forward Recovery 7

of this chapter is that it provides more detailed examples and explains the whole

approach from design of the rules to their execution within the environment.

The main idea of the design is the introduction of a new component called an

abstract service, which does not directly implement any functionality that is pro-

vided to the client, but instead functions as a management unit for flexible com-

pensation capabilities [18]. As part of these capabilities, it specifies and manages

potential replacements for participating Web services to be used. The compensations

are performed according to predefined rules, and are subject to contracts [14]. An

abstract service’s functional and compensation capabilities can be specified using

feature models, which allow a client to describe his requirements for a service, and

a provider to specify a service’s capabilities. These individual feature models can be

used to automatically find matching services for a given set of requirements.

Such a solution has the following advantages:

• Compensation strategies can be defined on both, the service provider and the client

side. They utilize local knowledge (e.g. the provider of a service knows best if and

how his service can be replaced in case of failure) and preferences, which increases

flexibility and efficiency.

• The environment can handle internally and externally triggered compensations.

• The client of a service is informed about complex compensation operations, which

makes it possible to trigger additional compensations. Compensations can thus

consist of multiple operations on different levels.

• By extending the already adopted Web service specification, it is not necessary to

discontinue current practices if compensations are not required.

• The separation of the compensation logic from the coordination logic allows for a

generic definition of compensation strategies, independent from the coordination

specification currently in use. They are therefore more flexible and can easily be

reused in a different context.

The rest of the chapter is structured as follows: Sect. 1.2 describes how we propose

to represent compensation capabilities using feature models. Section 1.3 describes the

specification of compensation rules and possible compensation activities. Section 1.4

describes the abstract service architecture where compensations can be executed

according to compensation rules. Finally, Sect. 1.5 provides a discussion regarding

advantages and shortcomings of the approach.

1.2 Compensations Design

We are introducing a compensation design approach which provides a set of models

that describe both functional and compensation capabilities of a service:

• on the service provider side, mandatory features which are needed to provide

at least the minimum functionality, as well optional features which extend the

capabilities or level of service;

• on the service consumer side, features the client requires in order for the service

to suit his needs.

8 P. Dolog et al.

We adopt a feature modeling approach and a methodology from [5, 17]. According

to that methodology, first a conceptual model is defined which describes the main

concepts and relationships between them. The configuration view on the concepts

is described by means of feature modeling for both functionality and compensation

capabilities.

Subsequently, the functionality and compensation models are merged to describe

the offered capabilities by a service provider, or requested functionalities and restric-

tions posed on compensations by a service consumer. Different algorithms can then

be employed to match feature models of a client and a service provider. In the fol-

lowing we will explain the introduced models in more detail.

1.2.1 Conceptual Model

In order to formalize different types of compensations, a conceptual model has been

created that constitutes the basis for the feature models in the following sections.

The result is the compensation concept model as seen in Fig. 1.2.

<<Concept>>
Compensation

Action

<<Concept>>
Replacement

<<Concept>>
Forwarding

<<Concept>>
Additional
Request

<<Concept>>
Additional

Service

<<Concept>>
Session
Restart

<<Concept>>
Compensation

Plan

<<Concept>>
Repetition

<<Concept>>
NoCompensation

1 1..*

<<Concept>>
Compensation 1 1

Fig. 1.2 The compensation concept model

Each Compensation contains a CompensationPlan, which in turn consists of one

or more CompensationActions. Which CompensationActions exist and how they can

be implemented depends on the actual environment. Accordingly, the ones listed are

not necessarily complete and can be extended in the future.

Based on this definition of compensation concepts, it is now possible to create

feature models in order to define what a service can do, should be able to do, and is

not allowed to do.

1.2.2 Compensation Feature Model

The compensation concept model is the basis for the definition of the compensation

feature model, which is depicted in Fig. 1.3. It describes the mandatory and optional

features of the compensation concept, and will be used in the next step to define

service-specific feature models, which can be part of a contract between a service

provider and a service client.

1 Design and Management of Web Service Transactions with Forward Recovery 9

<<Concept>>
Compensation

<<OptionalFeature>>
ExternalCompensation

Handling

<<MandatoryFeature>>
InternalCompensation

Handling

<<OptionalFeature>>
AdditionalRequest

<<OptionalFeature>>
AdditionalService

<<MandatoryFeature>>
ServiceAbort

<<OptionalFeature>>
Repetition

<<OptionalFeature>>
Replacement

<<VariationPoint>>
{Kind = AND}

<<MandatoryFeature>>
RequestSequence

Change

<<VariationPoint>>
{Kind = OR}

<<OptionalFeature>>
AllRequest
Repetition

<<MandatoryFeature>>
LastRequest

Repetition

<<MandatoryFeature>>
ResultResending

<<OptionalFeature>>
SessionRestart

<<OptionalFeature>>
AdditionalActions

<<MandatoryFeature>>
NoCompensation

<<OptionalFeature>>
Forwarding

<<OptionalFeature>>
PartialRequest

Repetition

Fig. 1.3 The compensation feature model

The main two features of the model are the InternalCompensationHandling and

the ExternalCompensationHandling features. An internal compensation is triggered

by an internal service error, while an external compensation is triggered from outside

of the transaction. An example for an externally triggered compensation could be

the handling of the salary transfer mistake from the scenario described in Sect. 1.1

that is spotted by an administrator.

These main features structure the available compensation types as features accord-

ing to their application: Repetition and Replacement are only available for internal

compensation operations, and SessionRestart, Forwarding and AdditionalActions are

only available for external compensation operations. The exception for this separa-

tion is NoCompensation, which is the only common compensation feature. Only

two of these features are mandatory, the InternalCompensationHandling and the

NoCompensation feature. This is due to the fact that the elementary feature of a

compensation in our context is inactivity: If no rule or compensation capabilities

exist, then the service has to fail without any other operations. Accordingly, the

ability to perform external compensations is only optional.

The SessionRestart includes as an optional feature the invocation of an additional

service (AdditionalService), and requires via a variation point (AND) the Service-

Abort, RequestSequenceChange, and AllRequestRepetition features. The capability

to abort the service, change the request log, and resend all requests is needed to per-

form the session restart, and therefore these three features are mandatory. Likewise,

the AllRequestRepetition feature cannot work without the ResultResending feature.

Within an externally triggered compensation, it is possible to invoke additional

services and to create and send additional requests to the service. That is why the

AdditionalActions feature includes the AdditionalService and AdditionalRequest fea-

tures. They are connected via an OR variation point as the AdditionalActions feature

needs at least one of these two features.

The basic operation mode of the Repetition compensation feature is the resending

of the last request to the service. Therefore, the LastRequestRepetition feature is

10 P. Dolog et al.

mandatory, and the PartialRequestRepetition only optional. Finally, the Replacement

feature requires at least one of the LastRequestRepetition, PartialRequestRepetition,

or AllRequestRepetition features.

1.2.3 Capability Feature Model

The Capability feature model specifies the capabilities of a service. This model can

be provided in the public description of the service (e.g. in the UDDI entry), and can

thus be used in the client’s search process for a suitable service.

The definition of a service’s features includes both the specification of function-

ality as well as compensation capabilities. The capability feature model is realized

by merging the service’s functionality feature model with its compensation feature

model. The functionality feature model describes the features of the service that con-

stitute the offered operations, e.g. the booking of a flight. The compensation feature

model describes the service’s compensation capabilities. It is created by using the

compensation feature model described in the previous section as a basis, and then

altering it by deleting features that are not offered (e.g. a service that does not provide

external compensation capabilities will delete this part of the model completely), by

changing the mandatory/optional properties, or by adding features at certain parts

(e.g. by specifying the additional services that can be used in the compensation

process).

<<MandatoryFeature>>
InternalCompensation

Handling

<<OptionalFeature>>
Repetition

<<MandatoryFeature>>
LastRequest

Repetition

<<MandatoryFeature>>
NoCompensation

<<Concept>>
Service

<<MandatoryFeature>>
Operation 1

<<MandatoryFeature>>
Operation 2

Fig. 1.4 Merging of the functionality and compensation models

This process of merging the two different models is depicted in Fig. 1.4. Here, a

service offers two basic operations, “Operation 1” and “Operation 2”, which form

the functionality feature model (dark grey). The service is able to handle internal

compensations by either doing nothing (the mandatory default action), or by repeating

the last request. This forms the compensation model (light grey). The two models

are merged (symbolized by the dashed arrow), and thus form the service’s capability

feature model. The mandatory/optional properties are interpreted in this context as

“will be used by the service” and “can be used by the service”, respectively. The

interpretation is different in the requirement feature model.

1 Design and Management of Web Service Transactions with Forward Recovery 11

1.2.4 Requirement Feature Model

The client creates a requirement description in order to be able to initiate a search

for a suitable service. The specification is being done very much like the definition

of the capability feature model described in the previous section: A common model

is being created that includes the required functionality and compensation features.

This model is called the requirement feature model.

However, although the basic process of creating the requirement feature model is

the same, the interpretation of the mandatory/optional properties differs. A mandatory

feature has to be provided by the service and is thus critical for the comparison

process, while an optional feature can be provided by the service, and is seen as a

bonus in the evaluation of the available services.

In the search process, each service’s capability feature model will be compared to

the client’s requirement feature model, and the client can thus decide which service

is suitable for its needs.

1.2.5 Restriction Feature Model

After the client has found the necessary services that offer the required functional and

compensation features, the contract negotiation with each service will be performed.

A vital part of this contract is the specification of compensation features that the

service is allowed to use. While it is of course possible to do this restriction by simply

searching for services that only perform the allowed compensation actions, such an

approach significantly reduces the available services. Moreover, it is quite possible

that a client wants to use the same service in multiple applications, where each has

its own rules regarding the compensation actions that are permitted. Therefore, it is

beneficial to use a restriction feature model that can be part of the contract, and to

which the service dynamically adapts its compensation actions.

The restriction feature model can be defined by using the compensation feature

model described in Sect. 1.2.2. By removing features from this model, the client can

state that these are not allowed to be used in the compensation process. Only those

features that are still in the model are permitted. Therefore, it is not necessary to

distinct between mandatory and optional features.

When the service wants to invoke a specific compensation action, it will first

consult the contract’s restriction feature model. If the compensation action is part of

the model, then the service is allowed to use it. This way, the service can dynamically

adapt to the requirements of each single client.

1.2.6 Model Comparison Algorithm

We define a comparison algorithm to match the requirement model of a client

and the capability model of a service. These two models are the input for the

12 P. Dolog et al.

algorithm, which iteratively compares them and calculates a numerical compatibility

score:

• Using the requirement feature model as a basis, the features are compared stepwise.

In this process, it is required that the same features are found in the same places,

because the same feature structure is expected.

• Each mandatory feature in the requirement model has to be found in the capability

feature model. If this is not the case, the comparison has failed and a negative

compatibility score is returned to indicate this. However, if a mandatory feature is

included in the capability model, this will not have any impact on the comparison

score, as the mandatory features are the minimum this is expected.

• Each optional feature in the requirement model can exist in the capability model,

but does not have to. Each one found counts as a bonus added to the compatibility

score. This accounts for the fact that a service that provides more than the minimum

is better, as it can more easily be used in different applications.

• Additional features in the service’s capability model, like the specification of

additional services used in the compensation process, are ignored as long as they

are found in the appropriate place, e.g. as a subfeature to the “AdditionalService”

feature. Any other additional features will lead to a failure of the comparison.

Once the comparison is completed, the compatibility score will be returned. At

the moment, a very simple score is used that does not include advanced properties

like feature priorities, which could be used in the future:

• If the comparison has failed, the compatibility score will be −1.

• Each mandatory feature that is found does not increase the score. A service which

provides only the mandatory features (and is thus suitable) will therefore have a

compatibility score of 0.

• Each optional feature in the capability model increases the score by 1.

As it can be seen, every compatibility score equal to or higher than 0 classifies a

service as suitable for the client’s needs. Moreover, the higher the score is, the more

features a service provides. Using this simple score, it is easy to compare multiple

services and their capabilities.

1.2.7 Example

The use of feature models will now be examined based on the “Transfer salary”

service of the scenario described in Sect. 1.1. The services in this scenario can be

used in different distributed applications, and it is therefore important that their

compensation capabilities can be adapted.

Capability Feature Model (depicted in Fig. 1.5): The functional features of this

service are the “Debit” and “Credit” operations, which are mandatory. The service

is capable of performing all compensation actions, and accordingly the complete

compensation feature model is merged with the functional model. Finally, the service

1 Design and Management of Web Service Transactions with Forward Recovery 13

<<OptionalFeature>>
ExternalCompensation

Handling

<<MandatoryFeature>>
InternalCompensation

Handling

<<OptionalFeature>>
AdditionalRequest

<<OptionalFeature>>
AdditionalService

<<MandatoryFeature>>
ServiceAbort

<<OptionalFeature>>
Repetition

<<OptionalFeature>>
Replacement

<<VariationPoint>>
{Kind = AND}

<<MandatoryFeature>>
RequestSequence

Change

<<VariationPoint>>
{Kind = OR}

<<OptionalFeature>>
AllRequest
Repetition

<<MandatoryFeature>>
LastRequest

Repetition

<<MandatoryFeature>>
ResultResending

<<OptionalFeature>>
SessionRestart

<<OptionalFeature>>
AdditionalActions

<<MandatoryFeature>>
NoCompensation

<<OptionalFeature>>
Forwarding

<<OptionalFeature>>
PartialRequest

Repetition

<<Concept>>
SalaryTransfer

<<MandatoryFeature>>
Debit

<<MandatoryFeature>>
Credit

<<MandatoryFeature>>
TelephoneCall

Fig. 1.5 The SalaryTransfer capability feature model

specifies that an additional service will be used in the compensation procedures: This

is defined by adding the “TelephoneCall” feature to the “AdditionalService” feature.

By providing this feature model, the service can state its capabilities and informs the

client about a special operation it uses for this purpose.

<<MandatoryFeature>>
ExternalCompensation

Handling

<<MandatoryFeature>>
InternalCompensation

Handling

<<OptionalFeature>>
AdditionalRequest

<<OptionalFeature>>
AdditionalService

<<MandatoryFeature>>
ServiceAbort

<<MandatoryFeature>>
Repetition

<<MandatoryFeature>>
Replacement

<<VariationPoint>>
{Kind = AND}

<<MandatoryFeature>>
RequestSequence

Change

<<VariationPoint>>
{Kind = OR}

<<OptionalFeature>>
AllRequest
Repetition

<<MandatoryFeature>>
LastRequest

Repetition

<<MandatoryFeature>>
ResultResending

<<OptionalFeature>>
AdditionalActions

<<MandatoryFeature>>
NoCompensation

<<OptionalFeature>>
Forwarding

<<OptionalFeature>>
PartialRequest

Repetition

<<Concept>>
SalaryTransfer

<<MandatoryFeature>>
Debit

<<MandatoryFeature>>
Credit

<<MandatoryFeature>>
SessionRestart

Fig. 1.6 The SalaryTransfer requirement feature model

Requirement Feature Model (Fig. 1.6): The client that creates the payment

processing application specifies its requirements for the “Salary Transfer” service in

a requirement feature model. The functional features are the “Debit” and “Credit”

operations. Regarding the required compensation features, the client is looking for

a service that is able to perform the “Repetition” and “Replacement” compensation

actions for internal error handling, and the “SessionRestart” for external compensa-

tion handling. Accordingly, these features are marked as “mandatory”.

14 P. Dolog et al.

<<Concept>>
Compensation

<<AllowedFeature>>
ExternalCompensation

Handling

<<AllowedFeature>>
InternalCompensation

Handling

<<AllowedFeature>>
AdditionalRequest

<<AllowedFeature>>
ServiceAbort

<<AllowedFeature>>
Repetition

<<AllowedFeature>>
Replacement

<<VariationPoint>>
{Kind = AND}

<<AllowedFeature>>
RequestSequence

Change

<<AllowedFeature>>
AllRequest
Repetition

<<AllowedFeature>>
LastRequest

Repetition

<<AllowedFeature>>
ResultResending

<<AllowedFeature>>
SessionRestart

<<AllowedFeature>>
AdditionalActions

<<AllowedFeature>>
NoCompensation

<<AllowedFeature>>
PartialRequest

Repetition

Fig. 1.7 The restriction feature model

Restriction Feature Model (Fig. 1.7): After the client has found a suitable service

that offers the required capabilities, he defines the permitted compensation actions.

In this example, the client does not want for the new application’s service that it

uses additional services in the event of a compensation. Therefore, the respective

feature (“AdditionalService”) is removed from the compensation feature model. This

restriction model is part of the contract that the client has with the service. When the

service now encounters a situation that requires compensation, it will only execute

compensation plans that are in accordance with the model’s restrictions.

1.3 Compensation Rules

Compensation rules are specifications of permitted compensations in the context

of a particular Web service. The compensation activities and types that are part

of these rules are adopted by a designer from the compensation and capabilities

feature models. Two different kinds of compensations can be specified within these

rules: Internally triggered compensations, which can be handled through a service

replacement, and externally triggered compensations.

Each rule specifies the exact steps that have to be performed in the compensation

process. For the purpose of defining the available compensation operations, we dis-

tinguish between basic compensation activities, which constitute the available single

compensation operations, and complex compensation types, which are composed

compensation processes consisting of multiple activities. This is shown in Fig. 1.8.

The compensation types specify which combinations of compensation activities

can be defined in rules for handling internal and external compensations, as it is

not desirable to allow every possible combination within the environment. When a

service receives a request for a compensation, it will first of all check whether a rule

for the current situation exists, and if this is the case, it will validate each rule before

executing the given set of compensation activities in order to guarantee that they are

consistent with the available compensation types.

www.allitebooks.com

http://www.allitebooks.org

1 Design and Management of Web Service Transactions with Forward Recovery 15

Included compensation activity Possibly included compensation activity

S
e
rv

ic
e
R

e
p
la

c
e
m

e
n
t

L
a
s
tR

e
q
u
e
s
tR

e
p
e
ti
ti
o
n

P
a
rt

ia
lR

e
q
u
e
s
tR

e
p
e
ti
ti
o
n

A
llR

e
q
u
e
s
tR

e
p
e
ti
ti
o
n

C
o
m

p
e
n
s
a
ti
o
n
F

o
rw

a
rd

in
g

A
d
d
it
io

n
a
lS

e
rv

ic
e
In

v
o
c
a
ti
o
n

A
d
d
it
io

n
a
lR

e
q
u
e
s
tG

e
n
e
ra

ti
o
n

S
e
rv

ic
e
A

b
o
rt

In
it
ia

ti
o
n

R
e
q
u
e
s
tS

e
q
u
e
n
c
e
C

h
a
n
g
e

R
e
s
u
lt
R

e
s
e
n
d
in

g

Compensation Activities

Compensation Type

NoCompensation

Repetition

Replacement

Forwarding

AdditionalService

AdditionalRequest

SessionRestart

Nr

In
te

rn
a
l

E
x
te

rn
a
l

01

02

03

04

05

06

07

08

09

10

Fig. 1.8 The compensation types and their included activities

Therefore, although the combination of different compensation activities allows

the definition of flexible and complex rules, it is not permitted to define arbitrary

compensation handling processes. Only the predefined compensation types can be

used, and it is thus guaranteed that a service does not execute a process defined in a

compensation rule that is not permitted or possible. At the same time, this approach

allows the future extension of the environment with new compensation strategies: In

order to test or include new compensation strategies, it is possible to simply define

a new compensation type and extend the service to accept it.

1.3.1 Basic Compensation Activities

Compensation activities are the basic operations which can be used in a compen-

sation process. ServiceReplacement replaces the currently used Web service with

a different one, which offers the same capabilities. LastRequestRepetition resends

the last request to the service. PartialRequestRepetition resends the last n requests

from the request sequence of the current session (i.e. within the current transaction)

to the service, while AllRequestRepetition resends all requests. CompensationFor-

warding forwards the external compensation request to a different component that

will handle it. AdditionalServiceInvocation invokes an additional (external or inter-

nal) service, which performs a particular operation required for the compensation

16 P. Dolog et al.

(e.g. the invocation of a logging service). AdditionalRequestGeneration creates and

sends an additional request to the Web service. Such a request is not influenced by the

client, and the result will not be forwarded to the client. ServiceAbortInitiation can-

cels the operations on the service, i.e. the service aborts and reverses all operations

which have been performed so far. RequestSequenceChange performs changes in the

sequence of requests that have already been sent to the Web service. ResultResending

sends new results for old requests, which have already returned results.

1.3.2 Compensation Types

Compensation types aggregate multiple compensation activities, and thus form com-

plex compensation operations (Fig. 1.8). These types are the compensation actions

which can be used for internal and external compensations.

The most simple type is NoCompensation, which does not perform any operation.

The Repetition type is important for the internal error handling, as it repeats the

last request or the last n requests. The last request can for example be resent to a

service after a response was not received within a timeout period. A partial resend

of n requests can for instance be necessary if the request which failed was part of a

sequence. A partial repetition of requests will result in the resending of results for

old requests to the client, which has to be able to process them.

The compensation type Replacement can be used if a service fails completely. It

replaces the current service with a different one, and resends either all requests, a

part of the requests, or only the last one. Resending only the last request is possible if

a different instance of the service that has failed can be used as replacement, which

works on the same local data and can therefore simply continue with the operations.

Forwarding is special in comparison with the other types as it only indirectly uses

the available activities. It forwards the handling of the compensation to a different

component, which can potentially use each one of the compensation activities (which

are therefore marked as “possibly included”) in the process.

In an externally triggered compensation, it is sometimes necessary to invoke

additional services and send additional requests to the service. For this purpose, the

compensation types AdditionalService and AdditionalRequest exist.

The final compensation type is SessionRestart. This operation is required if the

external compensation request cannot be handled without a restart of the complete

session, i.e. the service has to be aborted and subsequently the complete request

sequence has to be resent. The requested change will be realised by a change in the

request sequence prior to the resending.

1.3.3 Example of a Compensation Rule

Figure 1.9 shows an example of an external compensation rule specified in an XML

document. This example rule handles the refund of excess salary that has been trans-

ferred to the employees account as described in the example in Sect. 1.1.

1 Design and Management of Web Service Transactions with Forward Recovery 17

<cmp:ExternalCompensationRule identifier="refundSalaryDifference">

<cmp:CompensationCondition>

<cmp:RequestMethod identifier="transferSalaryMethod" />

<cmp:ParticipantRequest identifier="getAccountBalanceMethod"

parameterFactory="CheckEmployeeAccountParameterFactory">

<cmp:Result resultEvaluator="AccountInCreditResultEvaluator" />

</cmp:ParticipantRequest>

</cmp:CompensationCondition>

<cmp:CompensationPlan>

<cmp:Compensation>

<cmp:AdditionalRequest identifier="transferSalaryMethod"

parameterFactory="RefundSalaryDifferenceParameterFactory" />

</cmp:Compensation>

<cmp:Compensation>

<cmp:ServiceRequest

serviceAddress="http://localhost:8080/axis/services/TelephoneCall"

methodName="initializeTelephoneCall" />

</cmp:Compensation>

</cmp:CompensationPlan>

</cmp:ExternalCompensationRule>

Fig. 1.9 An example compensation rule

The compensation condition consists of two single condition elements:

1. RequestMethod—The rule applies to external compensation requests, which

aim at changing requests that originally invoked the service’s method “trans-

ferSalaryMethod”, i.e. it applies to external compensations that try to change the

details of an already completed salary transfer.

2. ParticipantRequest—The second condition element specifies a request that has

to be sent to the current service. The goal of the request is to check whether the

account of the employee will still be in credit after the excess amount has been

refunded. The condition’s request invokes the service’s method “getAccount-

BalanceMethod”. The request parameters are created by the parameter factory

“CheckEmployeeAccountParameterFactory”. After the request has returned the

current balance, the predefined result evaluator “AccountInCreditResultEvalua-

tor” is responsible for checking whether the salary refund can be performed, and

thus whether the rule’s condition is fulfilled or not.

The rule’s compensation plan consists of two steps as well:

1. AdditionalRequest—An additional request is sent to perform the required changes,

i.e. the money transfer back to the company’s account. It invokes the service’s

method “transferSalaryMethod”. The parameters for this request are created by

the parameter factory “RefundSalaryDifferenceParameterFactory”.

2. ServiceRequest—An additional external service is used as part of the compen-

sation. The method “initializeTelephoneCall” has to be invoked. This external

service performs a precautionary telephone call which informs the employee

about the error in the salary calculation and the refund that has been performed.

This is of course only a simple example. External compensation rules can consist

of a multitude of single conditions and/or compensation operations.

18 P. Dolog et al.

1.4 Web Service Environment with Transaction Coordination

The compensation rules from the previous section can be interpreted by an envi-

ronment we have designed and implemented as a prototype. The environment builds

upon adapted Web service coordination and transaction specifications [11–13]. They

provide a conceptual model and architecture for environments where business activ-

ities performed by Web services are embedded in a transactional context.

A1

A2

A3

A4 A5

Client Stub

Client

Client ProcessServer Process

Web Service 1

2. Register, get transaction context

1.

3. Call with TID

and context

4. Register with TID

5.

N. Run transaction

protocol

N+1. Notify about outcome

Service Stub

Transaction

Coordinator

Fig. 1.10 Transactional environment for Web services adopted from [1]

Figure 1.10 depicts an excerpt of such an environment with the main components.

The client runs business activities A1 to A5, which are part of a transactional context

that is maintained by a transaction coordinator. Client and server stubs are responsible

for getting and registering the activities and calls for Web services in the right context.

The sequence of conversation messages is numbered. For clarity, we only show a

conversation with a Web service provider that performs business activity A1. The

coordinator is then responsible for running appropriate protocols, for example a

distributed protocol for Web service environments such as [2].

We extend the architecture and the infrastructure based on the specifications

[11–13] in order to enable it to handle both internally and externally triggered com-

pensations as described in the previous sections.

Figure 1.11 depicts the extension to the transaction Web service environment,

namely the abstract service and the adapter components. This extension does not

change the way how client, coordinators and providers operate. Instead of invok-

ing a normal Web service, a client invokes an abstract service, which looks like a

standard Web service to the outside. However, the abstract service is a management

component for forward recovery compensation handling, which wraps multiple con-

1 Design and Management of Web Service Transactions with Forward Recovery 19

crete services that offer the same functionalities and can thus replace each other. The

abstract service is therefore a mediator between a client and the concrete service

that performs the required operations. At the same time, the adapter functions as

a mediator between transaction coordinator, abstract service and concrete service

to ensure proper transactional context and to provide the means to intercept failure

notifications and create messages required in the compensation handling process.

Abstract Service Interface

Compensation Interface

C
o

n
tr

a
c
t

E
x
c
h

a
n

g
e
 I
n

te
rf

a
c
e

Registration

Incident reporting,

Compensation interaction

Request/response Registration,

Status messaging

Registration,

Status messaging

Management

Concrete service list

Concrete service wrappers

Request log

Compensation rules repository

Contract repository

Coordinator

Capabilities

Adapter Management

AdapterE
v
e
n

t In
te

rfa
c
e

Abstract Service

Transaction

Coordinator

Client

Request/response

Initiator

Concrete

Service

Contract exchange

External compensation

interaction

Fig. 1.11 The abstract service and adapter transaction environment

1.4.1 Abstract Service

The central element of the extension is the notion of the abstract service. The client

stub communicates with the Web service provider stub through the abstract service.

An abstract service does not directly implement any operations, but rather functions

as a management unit, which allows to:

• define a list of Web services which implement the required capabilities,

• invoke a service from the list in order to process requests which are sent to the

abstract service,

• replace a failed service with another one from the list without a failure of the

transaction, and

• process externally triggered compensations on the running transaction.

To the outside, it provides an abstract interface and can be used like any other Web

service, and uses the same mechanisms like SOAP [15] and WSDL [4]. On the inside,

20 P. Dolog et al.

it manages a list of concrete services which provide the required capabilities. When

the abstract service receives a request, it chooses one of these services and invokes it.

Which concrete service is chosen depends on the abstract service’s implementation.

In the simplest case, the abstract service only selects the next concrete service on

the list. However, it would be possible to give the abstract service the capability

to dynamically assess each concrete service and to choose the one that optimizes

the client’s QoS requirements. Interface and data incompatibilities are solved by

predefined wrappers.

This approach has multiple benefits:

• Usually, a client does not care which specific service handles his requests, as

long as the job will be done successfully and in accordance with the contract.

The abstract service design supports this notion by providing the capabilities to

separate the required abilities from the actual implementation.

• The available list of concrete services enables the abstract service to provide

enhanced compensation possibilities.

• The definition of an abstract service can be done independently from the business

process in which it will be used. It can therefore be reused in multiple applications.

If a specific service implementation is no longer usable, then the business process

does not have to be changed, as this is managed in the abstract service.

Figure 1.11 depicts the basic structure of an abstract service. Four interfaces are

supplied to the outside: The service operations for which the abstract service has

been defined can be accessed via the abstract service interface. A contract can be

exchanged or negotiated by using the contract exchange interface. Execution events

of a service (e.g. a failure) can be signaled via the event interface. Compensations

can be triggered from the outside using the compensation interface.

On the inside, the main component is the management unit, which receives and

processes requests, selects and invokes concrete services, and handles compensa-

tions. In order to do so, it has several elements at its disposal:

• Concrete service list: Contains the details of all available concrete services.

• Concrete service wrappers: Define the mapping of the generic abstract service

interface to the specific interface of each concrete service.

• Request log: Holds all requests of the current session.

• Compensation rules repository: Manages the rules that control the compensation

handling process.

• Contract repository: Contains the existing contracts with the different clients.

1.4.2 Adapter

Abstract services could be used in conjunction with a wide variety of technologies.

Therefore, it would be preferable if the definition of the abstract service itself could

be generic. However, the participation in a transaction requires capabilities that are

different for each transaction management specification.

1 Design and Management of Web Service Transactions with Forward Recovery 21

That is why the transaction specific requirements are encapsulated in a so-called

adapter (see Fig. 1.11). An abstract service registers with this adapter, which in

turn registers with the transaction coordinator. To the coordinator it appears as if the

abstract service itself has registered and sends the status messages. When the abstract

service invokes a concrete service, it forwards the information about the adapter,

which functions as a coordinator for the service. The service registers accordingly

at the adapter as a participant in the transaction.

As can be seen, the adapter works as a mediator between the abstract service,

the concrete service, and the transaction coordinator. The adapter receives all status

messages from the concrete service and is thus able to process them before they

reach the actual coordinator. Normal status messages can be forwarded directly to

the coordinator, while failure messages can initiate the internal compensation han-

dling through the abstract service. If the adapter receives such an error message,

it informs the abstract service that can then assess the possibility of compensation,

which includes checking both the existing compensation rules and the restriction

feature model. The adapter will be informed about the decision, and can act accord-

ingly. If for example the replacement of a failed concrete service is possible, then the

adapter will deregister this service and wait for the replacement to register. In this

case, the failure message will not be forwarded to the transaction coordinator. The

compensation assessment could of course also show that a compensation is not possi-

ble (or permitted). In such a case, the adapter will simply forward the failure message

to the coordinator, which will subsequently initiate the abort of the transaction.

1.4.3 Compensation Protocol

While the compensation rules specify when and how a compensation can be per-

formed, the compensation protocol controls the external compensation process itself

and its interaction with the different participants.

An externally triggered compensation always has the purpose of changing one

particular request that has already been processed at the service. More specifically,

the compensation request contains the original request with its data that has to be

changed (request1(data1)), and the new request-data (data2) to which the

original request has to be changed to (request1(data2)). The participants in

the protocol are the abstract service, the client which uses the abstract service in

its business process, the initiator which triggers the external compensation (either

the client itself, or any other authorized source like an administrator), the concrete

service which is currently being utilized by the abstract service, and the transaction

coordinator. An externally triggered compensation can only be performed if the

transaction in which the abstract service participates has not yet finished, as this

usually has consequences for the client due to result resending.

The protocol consists of two stages. The first stage is the compensation assess-

ment: As soon as the abstract service receives a request for a compensation, it

checks whether it is feasible and what the costs would be. To that end, predefined

22 P. Dolog et al.

compensation rules are being used, which consist of a compensation condition

(defines when a compensation rule can be applied) and a compensation plan (defines

the compensation actions that have to be performed). The second stage of the protocol

is the compensation execution, which performs the actual compensation according

to the plan. Whether this stage is actually reached depends on the initiator: After the

assessment has been completed and has come to a positive conclusion, the initiator,

based on this data, has to decide whether the compensation should be performed.

As the client and the initiator of an external compensation can differ, the pro-

tocol contains the means to inform the client about the compensation process. It

also ensures that the current concrete service and the transaction coordinator are

informed about the status of the external compensation, as it is possible that the

concrete service’s (and thus the abstract service’s) state changes due to the external

compensation. The concrete service has to enter a specific external compensation

handling procedure state for this purpose. While the concrete service is in this state,

it will wait for additional requests from the abstract service, and the coordinator is

not allowed to complete the transaction. While assessing the possibilities for a com-

pensation, and while performing it, the abstract service cannot process additional

requests (and either has to store the requests in a queue, or has to reject them with

an appropriate error message).

Because of the requirements of the compensation protocol, it is necessary to adapt

the normal transaction protocol with additional state changes regarding the coordina-

tor and participant (i.e. the concrete service). This has been done in our implementa-

tion for the BusinessAgreementWithCoordinatorCompletion protocol

(refer to [11]), using an extended version introduced in [2] as a basis that uses trans-

action dependency graphs in order to solve cyclic dependencies. The result of the

state diagram adaptation for the compensation protocol is depicted in Fig. 1.12.

Two new states have been introduced, ExCompensation I and ExCompen-

sation II. While both represent the external compensation handling procedure

state which the concrete service has to enter, it is necessary to distinct between them,

because depending on the former state different consequential transitions exist.

If the concrete service as participant is currently either in the Active state or

the Completing state when receiving an ExCompensate notification from the

adapter, it will enter the ExCompensation I state. While the concrete service is

in this state, it will wait for new requests from the abstract service, and the coordinator

will not finish the transaction. If the external compensation procedure is canceled

after the assessment has been performed, the concrete service will be instructed to

re-enter its former state by receiving either an Active or a Complete instruction

from the adapter. The transaction processing can then continue in the normal way.

In contrast, if the external compensation is executed and performed successfully,

the concrete service will receive an ExCompensated message, which instructs it

to enter the Active state. This is necessary for two reasons: Firstly, because any

additional requests as part of the external compensation handling require that the

participant again performs the Completing operations. And secondly, because

the abstract service’s client will be informed about the external compensation that

1 Design and Management of Web Service Transactions with Forward Recovery 23

Active Completing Completed

Canceling

Exiting

Closing

Compensating

Faulting

Ended
Complete Completed Close Closed

Compensated

Fault

Fault

Faulted

ExitExit

Cancel Cancel

Exited

Canceled

ExCompensation I

Fault

ExCompensated,

Active

Cancel

Waiting
Compensate

CompletedWait

Exit

ExCompensate

ExCompensate

Complete

ExCompensation II

ExCompensate ExCompensate
Wait

Completed

Fault

CompensateExCompensated

Coordinator generated Participant generated Adapter generated

Compensate

Fig. 1.12 The state diagram of the BusinessAgreementWithCoordinatorCompletion
protocol with extensions for the external compensation handling

has been performed, and it is possible that additional operations are required by the

client as a consequence of the compensation.

In addition to these options within the ExCompensation I state, the same

transitions exist as in the Active and Completing states, i.e. the coordinator can

Cancel the operations, and the participant can Exit or send a Fault notification.

If the concrete service is either in the Waiting or Completed state when

receiving an ExCompensate message, it will enter the ExCompensation II

state. In principle, the state has the same meaning as ExCompensation I:

The concrete service will wait for new abstract service requests, and at the same

time the coordinator is not allowed to finish the transaction. The concrete service

will be notified to enter the Active state through an ExCompensated mes-

sage after a successful external compensation execution. However, in contrast to

ExCompensation I, different consequential transitions are available, and there-

fore it is necessary to separate these two states. In case of a compensation abort, the

concrete service can be instructed to re-renter its former state through a Wait or

Completedmessage. Moreover, a Faultmessage can be sent to signal an internal

failure. Finally, the coordinator can send a Compensate instruction while the con-

crete service is in the ExCompensation II state. The concrete service can only

be instructed to Compensate if it is either in the Waiting or the Completed

state. Therefore, it is necessary to introduce ExCompensation II, as this option

is not available for the Active and Completing states and thus may not be

permitted within ExCompensation I.

The extended state diagram contains new transitions generated by the adapter in

addition to the ones from the participant (i.e. the concrete service) and the coordinator.

24 P. Dolog et al.

This is actually a simplification, because although the adapter creates the messages

and sends them to the coordinator and the participant, both are not aware of the fact

that the adapter has sent them. To the coordinator it always looks as if the participant

has sent the messages, while the participant thinks that the coordinator has sent them,

as both are unaware of the extended transaction environment. Therefore, in order to

obtain a state diagram that shows only transitions generated by either the coordinator

or the participant, it would be necessary to create two different state diagrams, one

from the participant’s view and one from the coordinator’s.

1.4.4 Application on the Client and Provider Side

The abstract service design can be applied on both, the client and the provider side.

A client who wants to create a new distributed application using services provided

by multiple providers can utilize abstract services in two different ways:

1. The client can include the abstract service from a provider in his new business

process, and can use the added capabilities.

2. The client can define a new abstract service, which manages multiple concrete

services that can perform the same task.

The main goal of a Web service provider is a successful and stable execution of

the client’s requests in accordance with the contracts. If the service of a provider fails

too often, he might face contractual penalties, or the client might change the provider.

He can use abstract services in order to enhance the reliability and capability of his

services by creating an abstract service which encapsulates multiple instances or

versions of the same service. These can be used in case of errors to compensate the

failure without the need for a transaction abort.

1.4.5 Client Contracts

While the different compensation capabilities of an abstract service allow the han-

dling of internal and external compensations, it may not always be desirable for a

client that these functionalities are applied. The abstract service environment there-

fore allows the definition and evaluation of contracts.

A client will negotiate a contract with the abstract service before sending the

first request. This contract not only contains legal information and the Service Level

Agreement, but can also specify (using a restriction feature model as described in

Sect. 1.2.5) which compensation operations the abstract service is permitted to apply.

The abstract service adapts dynamically to this contract by checking the restrictions

defined in it prior to performing a compensation: A compensation rule may only be

applied if all necessary compensation operations are permitted via the contract. It can

thus happen that although a compensation rule exists for handling a compensation,

the abstract service will not apply it because the contract restricts the use of required

www.allitebooks.com

http://www.allitebooks.org

1 Design and Management of Web Service Transactions with Forward Recovery 25

compensation operations. Accordingly, an abstract service that is not allowed to

use any compensation capabilities will act exactly like a standard Web service. A

client therefore can make use of the forward recovery capabilities, but he does not

have to, and thus always has the control over the environment’s forward recovery

compensation handling features.

Because of this ability to dynamically adapt to each client’s contract, it is possible

to use the same abstract service in a wide variety of distributed applications with

differing requirements regarding compensation handling.

1.4.6 Transaction Environment Adaptation

The abstract service and adapter approach has been designed as an extension of the

current transaction coordination structure so that it is easy to integrate it into existing

environments and different transaction protocols. Therefore, it is not necessary to

change either the client, coordinator or concrete service in order to use the internal

compensation handling capability: An abstract service that manages different con-

crete services and that is able to replace failed concrete services can be used like a

normal Web service and without any changes to the transaction protocol.

However, the introduced external compensation functionality for changing already

processed requests requires some changes in the transaction environment:

1. It is necessary to extend the existing transaction specification protocols to pro-

vide the capability to perform external compensations. This has been shown

for the BusinessAgreementWithCoordinatorCompletion protocol

in Sect. 1.4.3. Accordingly, the coordinator and the participating concrete service

have to be able to handle this adapted protocol.

2. The external compensation process requires that reports about a performed com-

pensation or the resending of results can be sent to the client of a transaction. It

is therefore necessary that the client provides the expected interfaces and that he

is able to process these reports in accordance with his business process.

The extent of the changes thus depends on the compensation requirements.

1.4.7 Middleware Prototype

The described design approach has been implemented as a prototype in order to ver-

ify the design and the protocols. The implementation has been done using Apache

Tomcat as Web container, and Apache Axis as SOAP engine. The WS-Transaction

specification has been chosen for the transaction coordination, more specifically

the adapted BusinessAgreementWithCoordinatorCompletion proto-

col that has been introduced in Sect. 1.4.3. The implementation has been published

online at SourceForge.net as the FROGS (forward recovery compensation handling

system) project: http://sourceforge.net/projects/frogs/.

http://sourceforge.net/projects/frogs/

26 P. Dolog et al.

1.5 Discussion

The evaluation of the approach is discussed in detail in [19]. Here we provide a sum-

mary of the findings: The experiments showed that in our environment about twice

as many transactions as in a standard environment finish successfully. Furthermore,

a similar improvement can also be found if we look at how many transactions finish

in one minute. The number of messages sent in the environment is of course higher,

which is, however, compensated by the increased number of transactions that do not

have to roll back. Also, the number of additional messages is justified well enough

if the overall cost of forward recovery is lower than the cost of the rollback and

cumulative cascading rollbacks.

The current approach still has some shortcomings. The transition from design

to compensation rules needs to be studied in order to support it via semi-automatic

tools. Also, the algorithms for matching capability and requirement models require

further studies, as the proposed algorithm is limited to an exact match. Especially

approximation and similarity methods can be beneficial in this context. In addition,

the support for different types of configuration models seems quite useful to study.

So far, we have concentrated our efforts on defining the architecture and the required

protocol. It will be necessary to do a further analysis of the proposed protocol to

ensure that it is complete and is not susceptible to race conditions, which can occur

in a real-life environment where less than optimal conditions exist, messages can be

delayed or lost, and many concurrent accesses can exist.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services - Concepts, Architectures and
Applications. Springer (2003)

2. Alrifai, M., Dolog, P., Nejdl, W.: Transactions Concurrency Control in Web Service Environ-
ment. In: ECOWS ’06: Proceedings of the European Conference on Web Services, pp. 109–118.
IEEE, Washington, DC, USA (2006). DOI 10.1109/ECOWS.2006.37

3. Choi, S., Jang, H., Kim, H., Kim, J., Kim, S.M., Song, J., Lee, Y.J.: Maintaining Consistency
Under Isolation Relaxation of Web Services Transactions. In: A.H.H. Ngu, M. Kitsuregawa,
E.J. Neuhold, J.Y. Chung, Q.Z. Sheng (eds.) WISE, Lecture Notes in Computer Science, vol.
3806, pp. 245–257. Springer (2005)

4. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description Lan-
guage (WSDL) 1.1. W3C note, W3C (2001)

5. Dolog, P., Nejdl, W.: Using UML-Based Feature Models and UML Collaboration Diagrams to
Information Modelling for Web-Based Applications. In: T. Baar, A. Strohmeier, A. Moreira,
S.J. Mellor (eds.) Proc. of UML 2004 — The Unified Modeling Language. Model Languages
and Applications. 7th International Conference, LNCS, vol. 3273, pp. 425–439. Springer (2004)

6. Dostal, W., Jeckle, M., Melzer, I., Zengler, B.: Service-orientierte Architekturen mit Web
Services. Spektrum-Akademischer Verlag (2005)

7. Gray, J.: The Transaction Concept: Virtues and Limitations. In: VLDB 1981: Intl. Conference
on Very Large Data Bases, pp. 144–154. Cannes, France (1981)

http://dx.doi.org/10.1109/ECOWS.2006.37

1 Design and Management of Web Service Transactions with Forward Recovery 27

8. Greenfield, P., Fekete, A., Jang, J., Kuo, D.: Compensation is Not Enough. In: 7th International
Enterprise Distributed Object Computing Conference (EDOC 2003), pp. 232–239. IEEE Com-
puter Society, Brisbane, Australia (2003)

9. Greenfield, P., Fekete, A., Jang, J., Kuo, D., Nepal, S.: Isolation Support for Service-based
Applications: A Position Paper. In: CIDR, pp. 314–323 (2007)

10. Greenfield, P., Kuo, D., Nepal, S., Fekete, A.: Consistency for Web Services Applications.
In: Proceedings of the 31st international conference on Very large data bases, VLDB ’05,
pp. 1199–1203. VLDB Endowment (2005). URL http://dl.acm.org/citation.cfm?id=1083592.
1083731

11. Ltd., A.T., Systems, B., Ltd., H., Corporation, I., Technologies, I., Corporation, M.: Web
Services Business Activity Framework (2005). Published at ftp://www6.software.ibm.com/
software/developer/library/WS-BusinessActivity.pdf

12. Ltd., A.T., Systems, B., Ltd., H., Corporation, I.B.M., Technologies, I., Corporation, M.: Web
Services Coordination (2005). Published online at ftp://www6.software.ibm.com/software/
developer/library/WS-Coordination.pdf

13. Ltd., A.T., Systems, B., Ltd., H., Corporation, I.B.M., Technologies, I., Inc., M.C.: Web Services
Atomic Transaction (2005). Published at ftp://www6.software.ibm.com/software/developer/
library/WS-AtomicTransaction.pdf

14. Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)
15. Nielsen, H.F., Mendelsohn, N., Moreau, J.J., Gudgin, M., Hadley, M.: SOAP Version 1.2 Part

1: Messaging Framework. W3C recommendation, W3C (2003)
16. Pullum, L.L.: Software Fault Tolerance — Techniques and Implementation. Artech House,

Inc., Norwood, MA, USA (2001)
17. Schäfer, M., Dolog, P.: Feature-Based Engineering of Compensations in Web Service Envi-

ronment. In: M. Gaedke, M. Grossniklaus, O. Díaz (eds.) Web Engineering, 9th International
Conference, ICWE 2009, Lecture Notes in Computer Science, vol. 5648, pp. 197–204. Springer,
San Sebastián, Spain (2009)

18. Schäfer, M., Dolog, P., Nejdl, W.: Engineering Compensations in Web Service Environment.
In: P. Fraternali, L. Baresi, G.J. Houben (eds.) ICWE2007: International Conference on Web
Engineering, LNCS, vol. 4607, pp. 32–46. Springer Verlag, Como, Italy (2007)

19. Schäfer, M., Dolog, P., Nejdl, W.: Environment for Flexible Advanced Compensations of Web
Service Transactions. ACM Transactions on Web 2(2) (2008)

20. Yang, Z., Liu, C.: Implementing a Flexible Compensation Mechanism for Business Processes
in Web Service Environment. In: ICWS ’06. Intl. Conference on Web Services, pp. 753–760.
IEEE Press, Salt Lake City, Utah, USA (2006)

http://dl.acm.org/citation.cfm?id=1083592.1083731
http://dl.acm.org/citation.cfm?id=1083592.1083731
ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf

Chapter 2

A Generic Framework for Testing
the Web Services Transactions

Rubén Casado, Muhammad Younas and Javier Tuya

Abstract This chapter focuses on web services transactions which support creating

robust web services applications by guaranteeing that their execution is correct and

the data sources are consistent. More specifically, it investigates into the testing of

such transactions which has not received proper attention from the current research.

It presents a generic framework for testing different models and standards of web

services transactions. The framework is implemented as a prototype system using

the case study of Jboss Transactions and is applied to test the predominant web

services models and standards such as Web Services Business Activity (WS-BA).

The results show that the framework automatically generates test cases and detects

possible faults or failures during the processing of web services transactions running

under different model and standards.

2.1 Introduction

Web services provide a new computing paradigm in which functional and non-

functional requirements of specialised services are published over the Internet such

that they can be dynamically discovered and composed in order to create composite

services that provide integrated and enhanced functionality. Web services transac-

tions (or WS transactions) are used to ensure reliable execution of services and to

maintain the consistency of data. WS Transactions are defined as sequences of web

services operations or processes that are executed under certain criteria in order to

R. Casado (B) · J. Tuya
Department of Computing, University of Oviedo, Asturias, Spain
e-mail: rcasado@lsi.uniovi.es

J. Tuya
e-mail: tuya@uniovi.es

M. Younas
Department of Computing and Communication Technologies, Oxford Brookes University,
Oxford, UK
e-mail: m.younas@brookes.ac.uk

A. Bouguettaya et al. (eds.), Advanced Web Services, 29
DOI: 10.1007/978-1-4614-7535-4_2,
© Springer Science+Business Media New York 2014

30 R. Casado et al.

achieve mutually agreed outcome regardless of system failures or concurrent access

to data sources i.e., either all the web services operations succeed completely or

fail without leaving any incorrect or inconsistent outcomes. The classical and most

widely used criteria are the ACID (Atomicity, Consistency, Isolation, Durability)

which require that a transaction be treated as a single atomic unit of work in order to

maintain consistency and persistency of data. Consider, for example, an online ser-

vice provider (e.g., Amazon) that develops web services based solutions to automate

the order and delivery of online books as part of a WS transaction. Such transaction

can only be considered as successful once the books (purchased) are delivered to a

customer and the payment has received.

Numerous models and protocols have been developed for WS Transactions,

including, the OASIS Business Transaction Protocol (BTP) [24], Web Services Busi-

ness Activity (WS-BA) [29], Web Services Transaction Management (WS-TXM)

[25] and other models and frameworks [1, 20]. These aim to improve the quality

of WS transactions in terms of response time efficiency, failure recovery, flexibility

and support for long running and complex business applications. For example, [1]

present an optimistic concurrency control protocol in order to optimise the through-

put and response time of WS transactions. The authors in [20] propose an algorithm

for selecting QoS-aware transactional web services that meet user’s requirements.

This chapter focuses on another quality dimension which is the testing of WS

transactions. Though there exists research work on testing non-transactional web ser-

vices [4, 5], the area of WS transactions testing has not been properly researched yet.

Generally, the software testing aims to systematically explore the behaviour of

a system or a component in order to detect unexpected behaviours. In other words,

testing identifies whether the intended and actual behaviours of a system differ, or

(at gaining confidence) that they do not. In our case, the focus of testing is to detect

possible faults or failures in WS transactions running under different models or

standards (e.g., BTP, WS-BA). The objective is to identify the observable differences

between the behaviours of implementation and what is expected on the basis of

specification of WS transaction models and standards. Based on our previous work

[8, 9], this chapter presents a generic framework for testing WS transactions. The

framework is comprised of the following phases:

• To design a generic model that abstractly represents the commonly used WS trans-

action models and standards (e.g., BTP, WS-BA).

• To automatically generate test cases and map them to different WS transactions

models and standard.

• To perform testing and evaluation using the standard case study of Night Out,

which is provided by Jboss [19] in their implementation of the WS-BA standard.

• To automatically compare the expected and actual outcomes in order to identify

possible faults or failures in WS transactions.

The chapter is organized as follows. Section 2.2 gives an analysis of WS transaction

models and standards. Section 2.3 presents the proposed framework. It also presents

the generic transaction model and illustrates the process of representing some of

the WS Transactions standards using the proposed transaction model. Section 2.4

2 A Generic Framework for Testing the Web Services Transactions 31

presents the evaluation and results. Section 2.5 gives a critical analysis of the proposed

framework. Conclusions are presented in Sect. 2.6.

2.2 WS Transactions

WS transactions are defined as sequences of web services operations or processes

that are executed under certain criteria in order to achieve mutually agreed outcome

regardless of system failures or concurrent access to data sources. But WS trans-

actions have distinct characteristics than the classical database transactions. They

are based on various models ranging from classical ACID criteria to advanced or

extended transaction models. Two Phase Commit (2PC) protocol and its variants

[12] have commonly been used for maintaining ACID properties. ACID properties

are vital for WS transactions that need strict isolation and data consistency. How-

ever, they are not suitable for long running WS transactions as they result in resource

locking/blocking problems. Advanced transaction models have been developed to

address 2PC and ACID related issues. These includes, nested transaction model

[23], SAGA model [15], open-nested [33], Split-join [31], Contracts [32], Flex [35],

and WebTram [34]. The underlying strategy of these models is to relax the strict

ACID criteria and to allow for compensation of partially completed transactions in

order to maintain application correctness and data consistency.

The work in [11] proposes a theoretical approach in order to specify, analyze

and synthesize advanced transaction models. Transactional patterns that combine

workflow process adequacy and the transactional processing reliability are identified

in [2]. In [16], the authors present a high level UML-based language to design

transaction process with diverse transactional semantics. An XML representation

is proposed in [18]. In our previous work [7], a risk-based approach is used to define

general test scenarios for compensatable transactions. Further, in [6], we present test

criteria for transactional web services composition. The approach is based on the

dependencies which are defined between participants of a WS transaction. In [21],

authors have developed a model of communicating hierarchical timed automata in

order to describe long-running transactions. This approach verifies the properties of

transactions using model checking. The work presented in [13] translates programs

with compensations to tree automata in order to verify compensating transactions.

The authors in [22] proposes a formal model to verify the requirement of relaxed

atomicity with temporal constraints whilst [14] uses event calculus to validate the

transactional behaviour of WS compositions.

In addition to the above, several standards have been developed for WS transac-

tions. For instance, the OASIS Business Transaction Protocol (BTP) [24] coordinates

loosely web services. BTP was designed and developed by several major vendors

including BEA, Hewlett-Packard, Sun Microsystems, and Oracle. BTP adapts 2PC

for short lived transactions and nested transaction model for long-lived transactions.

Web Services Composite Application Framework (WS-CAF) [25] is a set of WS

specifications in order to support composite web services applications. Basically,

WS-CAF uses WS-Transaction Management (WT-TXM) to manage transactions

32 R. Casado et al.

Table 2.1 Test execution results

Standards Coordination Transaction model Relationship

Short Long

BTP ✓ ACID/2PC Nested ✗

TXACID ✓ ACID/2PC ✗ WS-TXM

TXLRA ✓ ✗ SAGA WS-TXM

TXBP ✓ ✗ Open-nested WS-TXM

WS-AT ✓ ACID/2PC ✗ WS-COOR

WS-BA ✓ ✗ SAGA WS-COOR

in composite services. WT-TXM is built around three models: ACID Transaction

(TXACID), Long Running Transaction (TXLRA) and Business Transaction Process

(TXBP). These models are defined in order to meet the different requirements of

web services. For example, if a web service is required to abide by strict isolation

and consistency policy then it adapts the TXACID model.

Web Services Atomic Transactions (WS-AT) [28] and Web Services Business

Activity (WS-BA) [29] are built on top of Web Services Coordination (WS-COOR)

[27]. WS-AT and WS-BA thus follow the coordination mechanism of WS-COOR.

WS-AT follows 2PC protocol while WS-BA uses the SAGA model.

The above standards and their underlying transaction models and protocols are

summarized in Table 2.1. ‘Coordination’ represents whether a particular standard

provides coordination facilities. ‘Transaction Model’ shows the underlying transac-

tion models and protocols on which the WS transaction standard is based on. ‘Short’

and ‘Long’ respectively represent short-lived and long-lived WS transactions. ‘Rela-

tionship’ represents the relationship between the WS transaction standards.

From Table 2.1, we make some useful observations that motivate the need for a

generic model for testing the WS transactions. Our first observation is that all the

standards separate the coordination and the management of transactions and also

distinguish between short-lived and long-lived transactions. Second, these standards

have proprietary definitions of their underlying transaction models despite the fact

that some of them are based on similar concepts. Third, the support for long-lived

transactions is based on different advanced transaction models. For instance, TXLRA

adapts SAGA while TXBP adapts open-nested transaction model. This reveals that

WS transactions do not have a homogeneous transaction models or protocols. Instead

they are characterized by a diversity of transaction models and protocols.

Given the diversity of WS transactions standards it is essential to develop a generic

model that has the capability to represent and test WS transactions running under

different standards. In the next section we define the proposed framework.

2 A Generic Framework for Testing the Web Services Transactions 33

2.3 The Generic Framework

This section presents the proposed framework for testing the WS transactions. It

first describes the transaction model and then illustrates the process of modelling the

current WS transaction standards.

2.3.1 The Transaction Model

This section presents the first phase of the proposed framework i.e., to design a

generic model that abstractly represents the commonly used WS transaction models

and standards. It provides the basic definitions and relationships of WS transactions

and also explains the different roles played by the participants (component systems)

in the execution of WS transactions.

WS Transaction: A WS Transaction, wT, is defined as a set S = s1, . . . , sn of

sub-transactions (or activities) which are executed in order to consistently and (semi)

atomically acquire web services. Each wT is associated with one Coordinator, k,

while each sub-transaction, si , is executed by an Executor, ei . Transaction context

is defined as a set of functional information and transaction configuration shared

by the sub-transactions. Each si can be represented as a single level sub-transaction

or as nested sub-transactions, which is denoted as wTc. wT, si , and wTc are related

in a parent:child relationship. The outcome of wT is called atomic if all its sub-

transactions complete their execution in an agreed manner. Alternatively, the outcome

is called mixed if subtransactions can have different final states or outcomes, i.e.,

some completed and others not.

In the proposed model, subtransactions have different types [3, 20]. A subtrans-

action, si , is lockable if the resources (or data) that it uses can be locked until the

completion of the parent transaction. A sub-transaction is compensatable if its effect

can be semantically undone through a compensating transaction. If a sub-transaction

is successfully completed and its effects cannot be semantically undone, then it is

called pivot. A sub-transaction is retriable if it guarantees a successful termination

after a finite number of invocations. A sub-transaction is replaceable if there is an

alternative sub-transaction that can perform a similar task. Note that the different

types of sub-transactions are defined as these are commonly used in WS transaction

models and standards.

The execution of a wT involves different participants, each of which plays a certain

role. We identify four different roles for the participants involved in processing the

wT and its sub-transactions:

• Executor: represents a participant which is responsible for executing and termi-

nating a sub-transaction.

• Coordinator: coordinates the overall execution of wT. For instance, it collects the

results (votes) from participants in order to consistently process wT.

• Initiator: represents a participant which starts wT. That is, it submits wT to the

coordinator and requests a transaction context.

34 R. Casado et al.

Fig. 2.1 Participant and roles in the proposed transaction model

• Terminator: represents a participant which decides when and how wT has to be

terminated. It also participates in the coordination tasks. In some situations, it can

play the role of a sub-coordinator.

The above roles are diagrammatically represented in Fig. 2.1 using UML state chart

notation. The purpose of defining the above roles is to automatically and uniformly

represent the different roles of participants in different WS transactions standards.

As shown in Fig. 2.1, each participant plays a certain role and makes transition from

one state to another during the processing of wT.

2.3.2 Representation of WS Transaction Models and Standards

This section describes the process of modelling WS transaction models and standards

using the proposed framework. As proof of concept we model the BTP and WS-BA

2 A Generic Framework for Testing the Web Services Transactions 35

standards as these are the commonly accepted standards in WS transactions. The

modelling process is composed of the following steps:

2.3.2.1 Role Identification and Modelling

This step identifies the roles of participants in a target WS transaction standard and

models it using the roles defined in the proposed framework.

The BTP implements the nested transaction model [23] and defines two main

roles; Superior and Inferior. In other words, it defines Superior:Inferior relationship

between a parent transaction, wT, and its sub-transactions, si . Figure 2.2a shows

the BTP representation of wT and its sub-transactions using the Superior:Inferior

relationship, and Fig. 2.2b represents the same wT using the proposed framework.

In BTP the superior makes the decision and the inferior abides such decision in

order to complete the transaction. The superior of BTP is modelled as Initiator in

the proposed framework. Also the superior can be modelled as Coordinator and

Terminator as it decides on the outcome of the subtransactions. Inferior of BTP

executes a subtransaction and is therefore modelled as Executor in the proposed

framework.

The WS-BA defines two outcomes of wT: (i) MixedOutcome allows that sub-

transactions may have distinct outcomes or final states, (ii) AtomicOutcome requires

all the subtransactions to complete their execution in an agreed manner. The main

roles are played by the: Executor and Coordinator. Figure 2.3 depicts the mod-

elling of WS-BA using the proposed framework. Figure 2.3a shows the AtomicOut-

come, whilst Fig. 2.3b shows the MixedOutcome scenario. In both scenarios the role

of Initiator is taken by the first participant who interacts with a Coordinator. In

AtomicOutcome the role of Terminator is taken by the Coordinator. This is due to

the fact that Coordinator can be the participant that knows all Executors’s output. It

also knows the final outcome: close or terminate wT if all executors have success-

fully executed their sub-transactions, or compensated otherwise. In MixedOutcome,

Fig. 2.2 Representation of BTP roles and relationships

www.allitebooks.com

http://www.allitebooks.org

36 R. Casado et al.

the Initiator is the Terminator since each Executor may have its specific or distinct

decision so the outcome depends on the business logic.

2.3.2.2 State Transitioning and Messages

This section describes the mapping of the state transitions and messages between a

target WS transaction standard and the proposed framework.

Figures 2.4 and 2.5 give more details on the state transitions and message

communication between Executor and Coordinator during the processing of wT.

Note that here we only model these two participants as they play a major role in

executing wT. The Inferior and Superior (in BTP) are respectively represented by

Executor and Coordinator. Similarly Executor and Coordinator are used to represent

WS-BA participants involved in wT.

BTP mapping: When a wT is started at the initiative of an Initiator a request is

sent to the Coordinator for creation of a context for the new transaction. The Coor-

dinator replies the Initiator and other Executors with the context information and

then moves from INITIAL state to ACTIVE state. Each Executor receives a context,

enrols with the Coordinator and then moves from READY to ACTIVE state. The

Executor moves to COMPLETED state after processing its sub-transaction. Coor-

dinator moves to PREPARE state awaiting decisions from Executors. The Executor

sends its outcome to the Coordinator and moves to DECISION state. The Coor-

dinator collects the outcomes from all Executors and takes the final decision by

moving from PREPARE state to DECISION state. The final decision is sent to each

Executor and the Coordinator then moves to CONFIRM state. Each Executor sends

acknowledgement and changes its state to END state through the transition (either

completed rollback or completed successfully). Once the Coordinator has received

all confirmations, it moves to END state. Note that an Executor can leave the wT

before confirming the completion of sub-transaction. So it can move from ACTIVE

state to CANCEL state.

Fig. 2.3 WS-BA relationships modeling

2 A Generic Framework for Testing the Web Services Transactions 37

Although BTP uses the 2PC protocol, Executors are not required to lock data on

becoming prepared (i.e., in prepared state). This can produce a contradictory decision

since the Coordinator could take a decision for all the Executors but some Executors

may take their own decisions. When the Coordinator detects any contradiction it

notifies the concerned Executor and moves to the END state. If the Coordinator

wants to cancel, the Executor uses completed pivot. In some cases, it uses completed

rollback. Further, BTP allows replaceable subtransactions. Thus if an Executor is not

able to start or carry on with its sub-transaction, it moves to FAILED state. A new

Executor is selected and the previous one moves to END state.

WS-BA mapping: The Initiator initiates wT and requests a context from Coor-

dinator. The Coordinator responds with a context. After wT initiation, Executors

join the current wT and move from READY to ACTIVE state, wherein they execute

their sub-transactions. After processing sub-transaction, each Executor moves from

ACTIVE to COMPLETED state. Coordinator moves from ACTIVE to PREPARE

state after receiving decision from all the Executors. In WS-BA, when the transaction

is of MixedOutcome, the decision for each sub-transaction is taken independently

by each Executor. In this case, the Coordinator moves from PREPARE to DECI-

SION state whenever it receives an Executor’s notification. The Coordinator decides

about its outcome and moves from DECISION to CONFIRM state. In the case of

AtomicOutcome type, the Coordinator moves from PREPARE to DECISION state

after receiving decisions from each Executor. The Coordinator then sends the global

decision to all Executors and moves from DECISION to CONFRIM state. Finally it

awaits the acknowledgements from Executors. Once these are received, the Coordi-

nator then moves to END state. When an Executor is not able to start executing its

sub-transaction it moves from READY to ABORTED state. If the sub-transaction

was cancelled while it was still under execution, the Executor moves from ACTIVE

to CANCELLED state. In case of failure it moves from ACTIVE to FAILED state.

Fig. 2.4 Executor: State transitions and message communication

38 R. Casado et al.

2.4 Implementation and Evaluation of the Proposed Framework

The process of testing aims at showing whether the intended and actual behaviours

of a system differ, or at gaining confidence that they do not. The main goal of

testing in our context is failure detection, i.e., the observable differences between the

behaviours of implementation and what is expected on the basis of the specification of

WS Transaction standards. We exploit a model-based testing approach that encodes

the intended behaviour of a system and the behaviour of its environment. Model-based

testing is capable of generating suitable test cases and it has also been successfully

used in others WS domains [10].

In order to validate and evaluate our framework we have designed a test process

which comprises test design, test implementation, test execution and outcome eval-

uation. In the following, we first explain the testing process. We then illustrate the

implementation of the proposed framework. Finally, we discuss the evaluation of the

framework.

Fig. 2.5 Coordinator: State transitions and message communication

2.4.1 Testing Process

The testing process includes selecting a test criterion, test design, test implementa-

tion, test execution and outcome evaluation. This section presents how the proposed

framework implements those phases using the generic transaction model.

2 A Generic Framework for Testing the Web Services Transactions 39

The first step to design the tests is to select a test criterion. Since the model is based

on states and transitions, we use the well known criterion of transition coverage [30].

By applying a test criterion over the generic transaction model, we obtain a set of

abstract test cases. Each abstract test case is mapped to a concrete test case which is

composed of the test scenario and the expected system outcome. The basic concepts

used in the test process are defined as follows.

• Test criterion: This defines a rule that imposes constraints (or requirements) on a

set of test cases.

• Transition coverage criterion: The set of test cases must include tests that cause

every transition between states in a state-based model (e.g., as in Figs. 2.4 and 2.5)

• Abstract Test case: This represents a sequence of states and transitions of a par-

ticipant using the generic transaction model. The notation Si → S′
i is used to

denote that the participant pi changes its current state S to S′ executing the tran-

sition labelled, t. If the participant is the Coordinator, it is denoted by k. We use

Sa
i → Sb

i · · · Sc
i → Sd

i to denote a sequence of state transitions.

• Test scenario: This represents a sequence of actions in a human-understandable

way to provide guidance to the tester to execute a test case.

• System outcome: The internal state of the process defined by a sequence of

exchanged messages between participants using a specific WS transaction stan-

dard. The notation i[m1] j is used to denote that the participant pi sends message

m1 to participant p j . We use i[m1] j − l[m2]o−· · ·−v[mn]z to denote a sequence

of messages.

The test phases included in the proposed framework are depicted in Fig. 2.6 and

are described as follow:

Test design: This phase defines the test requirements for an item and derives the

logical (abstract) test cases. At this stage the test cases do not have concrete values for

input and the expected results. The abstract test cases are automatically generated by

applying transition coverage criterion over the abstract model. It is obtained from a set

of different paths where each path defines an abstract test case. Thus the tests achieved

using this criterion are a set of paths that cover all states and transitions of a model.

Test implementation: The sequence of states and transitions specified by the

abstract test cases generated in the test design phase are mapped to a specific WS

transaction standard, for example, BTP or WS-BA (see Sect. 2.3). As discussed above

the proposed generic model has the ability to capture the behaviours of WS trans-

action standards as well as mapping the abstract cases to different WS transaction

standards. These features provide the capability of automatically obtaining the test

scenario and the expected system output.

Test execution and outcome evaluation: Once the test cases are implemented,

they are executed over the system under test (e.g., BTP or WS-BA) and the actual

outcome is obtained. Finally, for each test case, the expected outcome is compared

to the actual outcome to find differences in behaviour and to detect failures. Two

outcomes are considered: (i) user outcome: this refers to what the user perceives; for

instance, to reserve theatre tickets and to see whether the number of booked tickets

is correct. (ii) system outcome: this refers to the non-visible process that the system

40 R. Casado et al.

Fig. 2.6 Test process of the proposed framework

has carried out to achieve the requirements e.g., the correct exchange of messages

between the participants according to the given transaction standard.

Both outcomes are necessary for detecting the differences in the behaviour of WS

transactions. Consider a simple application that runs as a WS transaction in order to

book theatre tickets. Assume that there is a fault in creating messages and the format

of confirmation messages is incorrect. In a test scenario where the user confirms a

reservation, the systems outcome would be to inform the user that the booking was

successfully completed because the application has already sent the confirmation

message to the theatre service. Since the message was incorrectly created, the theatre

service would reject the reservation and, as a result, the tickets cannot be booked.

Thus, the tester needs not only the user outcome, but also the internal state of the

process to know whether a test case has detected a failure or not. In this work we

focus on Executors internal behaviours related to the WS transactions. Thus we only

need to evaluate the system outcome.

2.4.2 Prototype System

We have developed a prototype system that implements the main phases of the

proposed framework (Fig. 2.6).

• Modelling: The prototype system prompts the tester to provide information (e.g.

services, roles, transaction standard, etc) and to create the WS transaction.

• Abstract test case generation: the abstract test cases for all the participants (Coor-

dinator, Executor, etc) are automatically generated by the prototype system.

• Test case mapping: Abstract test cases are mapped to WS transaction standards

(e.g., BTP or WS-BA). That is, the prototype system automatically generates the

2 A Generic Framework for Testing the Web Services Transactions 41

concrete test cases (for each WS transaction standards) which are composed of

the test scenario and the expected system outcome. A test scenario is defined as a

sequence of actions in a human-readable way to provide guidance to the tester to

execute a test case.

• Outcomes comparison: test cases are executed in order to produce the actual sys-

tems outcome. The prototype system automatically compares the actual systems

outcome with the expected systems outcome in order to detect any fault or failure.

The prototype system is implemented in Java 1.5. It includes three components:

Model, Tests and Outcome. The Model implements the generic transaction model. It

also includes a graphic interface to allow the tester to enter all the necessary informa-

tion such about the system under test such as roles, URL, WS transaction standard,

etc. The Model component sends the information to the Tests component. The Tests

component implements two activities: first, it applies the transition coverage criterion

in order to generate the abstract test cases for all the participants. It then maps all

the abstract test cases into concrete test cases. That is, the Model component gener-

ates the test scenario (text file) and the expected systems outcome (as an XML file).

Finally, the Outcome component compares two XML files to identify any possible

faults. This component has a graphic interface that allows the tester to add an XML

file (the actual systems outcome obtained from the execution of test scenario) and to

select the test case for comparison purpose. The result of both outcomes is shown to

the tester.

2.4.3 Evaluation

In order to evaluate the proposed framework we utilise the Night Out case study

which is adopted from the Jbosss implementation of the WS-BA standard [29]. This

study concerns booking three independent services for night time leisure: Restaurant

service allows customers to reserve a table for a specified number of dinner guests.

Theatre service provides reservation of seats in a theatre and allows customers to

book a specified number of tickets for different categories such as seats in circle,

stalls, or balcony. Taxi service provides the facility to book a taxi. These services

are implemented as transactional web services. The client side of the application is

implemented as a servlet which allows users to select reservations and then book a

night out by invoking each of the services within the scope of a WS transaction. For

example, if seats are not available in a restaurant or a theatre, then taxi will not be

required. Each service, exposed as Java API for XML Web Services (JAX-WS) [17]

endpoint, has a GUI with state information and an event trace log.

In this chapter we described the process of modelling and testing the WS-BA stan-

dard using the prototype system. But the prototype system is capable of representing

different WS transaction models and standards.

42 R. Casado et al.

2.4.3.1 Modelling of WS-BA-Based Transactions

The transactional aspects of WS-BA included in the Night Out application has been

modelled according to the aforementioned procedure. As shown in Fig. 2.7, Night

Out (client side) takes the role of Initiator since it starts the transaction and asks

the other web services to participate in the transaction. Restaurant, Theatre and Taxi

services are modelled as Executors as they execute individual sub-transactions. Some

sub-transactions (e.g. Theatre) are independent of others (e.g. Restaurant). That is, if

one sub-transaction cannot complete its execution the others are allowed to commit.

The Taxi activity is dependent on some of the services. For instance, if a table is

not available in the restaurant, the customer still needs a taxi to go to the theatre.

The role of Coordinator is taken by an external service, WSCoor11, provided by

the server. It follows the WS-COOR [27] and WS-BA [29] standards to exchange

required messages.

2.4.3.2 Abstract Test Case Generation and Mapping

This phase generates various abstract cases for each Executor, i.e., Restaurant, The-

atre and Taxi. The abstract test cases are automatically generated and mapped to

specific standard in this case, the WS-BA standard. As explained above, these tests

cases define the test scenario and the expected system outcome. For example, in the

following we explain the process of mapping the abstract test cases to a specific

sequence of WS-BA messages. Consider the sequence shown in Fig. 2.8 of state

transitioning and messages wherein an Executor moves from Ready to End state (see

Fig. 2.4).

Applying the transition coverage criterion over the above, abstract test case is

mapped to a specific sequence of WS-BA message (see Fig. 2.9). From this sequence

of messages, our prototype system automatically generates the test scenario which

is shown in Fig. 2.10.

Based on the above, the prototype system can generate and map various test cases

for Restaurant, Theatre and Taxi services. Figure 2.11 contains eight test cases for

the Restaurant, Theatre and Taxi. Res_1, Thr_1, and Tax_1 respectively represent

test case 1 for Restaurant, Theatre and Taxi services. Res_2, Thr_2, and Tax_2 mean

test case 2 and so on. Note that these eight are example test cases. But the prototype

system is capable of generating other possible test cases.

2.4.3.3 Test Execution and Outcome Evaluation

The prototype system executes the generated test cases using the Night Out services.

The results of test execution are summarised in Table 2.2. ‘Pass’ means that a test

case is executed but has not detected any failure during the processing of a service

(e.g., booking a restaurant, theatre or taxi). ‘Fails’ means that the actual outcome

differs from the expected outcome (i.e. a fault has been detected). ‘Blocked’ means

2 A Generic Framework for Testing the Web Services Transactions 43

that a test case cannot be executed because the application does not have the interface

to perform the required actions.

Pass: Test cases 3, 6, and 7 are executed but the prototype system has detected no

failures. That is, Rest_3, 6, 7, Thr_3, 6, 7, and Tax_3, 6, 7 have passed the tests.

Fig. 2.7 Roles and representation of Night Out Services

Fig. 2.8 Executor abstract sequence

Blocked: Two of the test cases were blocked due to the following reasons. Test

case 1 requires cancelling the activity (Cancel message) once the Executor has started

but has not finished yet. But WS-BA standard does not allow cancelling a concrete

booking once the service has started executing its activity. Test case 8 defines a

scenario where the Executor is not able to complete its activity (CanNotComplete

message) but has retried executing its action. However, the WS-BA does not allow

the services to retry its activity without starting a new transaction.

Fail: During the execution of test cases 3 and 4 interface-related failures were

detected. The application, which allows changing manually the capacity of each

44 R. Casado et al.

Fig. 2.9 Sequence diagram of a test scenario for theatre service

resource (i.e. number of tables and number of seats in the theatre), either crashes or

does not update the capacity when the button is pressed.

Test case 5 detected an important transaction-related failure in the compensation

process under WS-BA specification. The goal of this test case is to successfully

confirm the booking of theatre tickets when the other service reservations (restaurant

and taxi) have been undone through compensating transactions (see Fig. 2.11).

After the execution of the test case, we obtain the expected systems outcome. By

comparing the expected systems outcome and the actual systems outcome, a failure

is detected by the prototype system. This is shown in the code snippet in Fig. 2.12.

The expected systems outcome requires receiving a CLOSE message once the The-

atre service has successfully completed its activity (see sequence diagram in Fig. 2.9).

However, the actual outcome has a COMPENSATED message since Restaurant ser-

vice was not able to commit. As a result, the Theatre reservations were automatically

undone. The fault which causes such failure is detected by the prototype system

as there is a difference (or discrepancy) in the ‘Register’ message the way Theatre

service is registered in the Night Out under the WS-BA specification. That is, it reg-

isters the Theatre service as an AtomicOutcome when a MixedOutcome was expected

(Fig. 2.13). In other words, if Taxi or Restaurant services are not able to make their

reservations, the Theatre service will automatically undo the reservation even if the

customer would wish to keep the theatre tickets.

The results obtained from the test comparison are also useful for a debugging

process. In the above tests, the faults mean that the transaction was not correctly con-

figured or coded. This can help in identifying the faults in the code. For example, the

above fault was found in BasicClient.java file, at line number 496 in the code shown

in Fig. 2.14. The configuration of the transaction is made using the class UserBusi-

nessActivityImple, through the factory pattern using UserBusinessActivityFactory

2 A Generic Framework for Testing the Web Services Transactions 45

class. By looking at the implementation of that class we found (in Fig. 2.15) that the

transaction is defined as an AtomicOutcome.

Fig. 2.10 Test scenario for theatre service

2.5 Discussion

This section gives a critical overview of the proposed framework and illustrates its

merits and demerits. The prototype system implements the main phases of the test-

ing process. But it still lacks full automation of the overall process. For instance, the

tester has to model the given WS standard under test according to the roles defined by

the framework such as Initiator, Coordinator, Executor and Terminator. Information

on each service such as its URL or the transaction standard used has to be pro-

vided by the tester. With such information, the framework automatically generates

the abstract test cases and maps them to WS transaction standards. Further, the tester

has to manually execute the test scenario in order to get the actual systems outcome.

The actual systems outcome is provided to the prototype system by the tester which

then automatically compares both outcomes in order to detect faults. Despite the

semi-automatic nature of the framework, it still helps the tester in two ways: (i) defin-

ing specific test cases for WS transactions and (ii) automating some of the most

tedious and error-prone phases of testing. Our future work includes the full automa-

tion of the overall testing process.

The framework relies on the capability of the proposed generic transaction model

in order to capture the behaviour of existing transaction standards. The generic model,

www.allitebooks.com

http://www.allitebooks.org

46 R. Casado et al.

Fig. 2.11 Test cases for the Night Out services

Table 2.2 Test execution results

Executor Generated test cases Pass Fail Blocked

Restaurant 8 3 3 2

Theatre 8 3 3 2

Taxi 8 3 3 2

presented in this chapter, has been designed after an in-depth study of the existing

solutions of WS transactions. Currently BTP, WS-BA and WS-TXM transaction

standards have been modelled using the generic transaction model. Our analysis

revealed that though these standards are incompatible between each other, they are

based on same theoretical concepts. Thus they can be modelled using the roles

specified in the generic transaction model. In future, we intend to study the capability

of the generic transaction model to model transaction-based applications running

under non-transaction standards such as [26].

In terms of the test case generation, the proposed framework applies transition test

criterion that ensures the coverage of all transitions and states specified in the generic

transaction model. The framework however does not guarantee the code coverage.

As a part of the future research work we plan to enhance the prototype system in

order to monitor the execution of the code.

2 A Generic Framework for Testing the Web Services Transactions 47

Fig. 2.12 Fault in message exchange

Fig. 2.13 Fault in registration process

Fig. 2.14 Fault identification: transaction setup

2.6 Conclusion

This chapter investigated into the issue of testing the WS Transactions. In it we

designed, developed and evaluated the generic framework which is capable of dynam-

ically modelling different WS transaction models and standards. The framework

exploits model-based testing technique in order to automatically generate test cases

for testing the WS transaction standards. The framework is implemented as a proto-

type system with which various test cases were automatically generated and mapped

to different WS transaction standards. The evaluation was performed using the case

study of Night Out, which is an open source application provided by Jboss [19].

48 R. Casado et al.

Fig. 2.15 Fault identification: protocol implementation

The experiments show that our framework can effectively be used to define different

test cases as well as test the different WS transactions models and standards.

References

1. Alrifai, M., Dolog, P., Balke, W.T., Nejdl, W.: Distributed management of concurrent web
service transactions. Services Computing, IEEE Transactions on 2(4), 289–302 (2009)

2. Bhiri, S., Godart, C., Perrin, O.: Transactional patterns for reliable web services compositions
(2006)

3. Bhiri, S., Perrin, O., Godart, C.: Ensuring required failure atomicity of composite web services
(2005)

4. Bozkurt, M., Harman, M., Hassoun, Y.: Testing web services: A survey. Tech. rep., Department
of ComputerScience, King’s College London (2010)

5. Canfora, G., Penta, M.: Service-Oriented Architectures Testing: A Survey, pp. 78–105.
Springer-Verlag (2009)

6. Casado, R., Tuya, J., Godart, C.: Dependency-based criteria for testing web services transac-
tional workflows. In: Next Generation on Web Services Practices, pp. 74–79. IEEE (2011)

7. Casado, R., Tuya, J., Younas, M.: Testing long-lived web services transactions using a risk-
based approach. In: 10th International Conference on Quality Software, pp. 337–340. IEEE
Computer Society, 1849260 (2010)

8. Casado, R., Tuya, J., Younas, M.: Evaluating the effectiveness of the abstract transaction model
in testing web services transactions. Concurrency and Computation: Practice and Experience
pp. n/a–n/a (2012)

9. Casado, R., Tuya, J., Younas, M.: Testing the reliability of web services transactions in coop-
erative applications (2012)

10. Cavalli, A., Cao, T.D., Mallouli, W., Martins, E., Sadovykh, A., Salva, S., Zadi, F.: Webmov:
A dedicated framework for the modelling and testing of web services composition. In: IEEE
International Conference on Web Services (2010)

11. Chrysanthis, P.K., Ramamritham, K.: Synthesis of extended transaction models using acta.
ACM Trans. Database Syst. 19(3), 450–491 (1994)

12. Elmagarmid, A.K.: Database transaction models for advanced applications. Morgan Kaufmann
Publishers (1992)

2 A Generic Framework for Testing the Web Services Transactions 49

13. Emmi, M., Majumdar, R.: Verifying compensating transactions. In: International Conference
Verification, Model Checking, and Abstract, Interpretation, pp. 29–43 (2007)

14. Gaaloul, W., Rouached, M., Godart, C., Hauswirth, M.: Verifying composite service transac-
tional behavior using event calculus (2007)

15. Garcia-Molina, H., Salem, K.: Sagas (1987)
16. Gioldasis, N., Christodoulakis, S.: Utml: Unified transaction modeling language. In: The Third

International Conference on Web Information Systems Engineering (2002)
17. GlassFish: Jax-ws (2005)
18. Hrastnik, P., Winiwarter, W.: Using advanced transaction meta-models for creating transaction-

aware web service environments. International Journal of Web Information Systems (2005)
19. Jboss: Jboss transactions (2006)
20. Joyce El, H.: Tqos: Transactional and qos-aware selection algorithm for automatic web service

composition. IEEE Transactions on Services Computing 3, 73–85 (2010)
21. Lanotte, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Design and verification of long-

running transactions in a timed framework. Science of Computer Programming pp. 76–94
(2008)

22. Li, J., Zhu, H., He, J.: Specifying and verifying web transactions. In: International conference
on Formal Techniques for Networked and Distributed Systems, pp. 149–168 (2008)

23. Moss, E.: Nested transactions: An approach to reliable distributed computing. Massachusetts
Institute of Technology (1981)

24. OASIS: Business transaction protocol (2004)
25. OASIS: Web services composite application framework (2005)
26. OASIS: Web services business process execution language v2.0 (2007)
27. OASIS: Web services coordination, http://docs.oasis-open.org/ws-tx/wscoor/2006/06 (2007)
28. OASIS: Web services atomic transaction (2009)
29. OASIS: Web services business activity (2009)
30. Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating test data from state-based specifi-

cations. Journal of Software Testing, Verification and Reliability 13(13), 25–53 (2003)
31. Pu, C., Kaiser, G.E., Hutchinson, N.C.: Split-transactions for open-ended activities (1988)
32. Reuter: Contracts: A means for extending control beyond transaction boundaries. Proceedings

of the 3rd International Workshop on High Performance Transaction Systems (1989)
33. Weikum, G., Schek, H.J.: Concepts and applications of multilevel transactions and open nested

transactions. Database transaction models for advanced applications. Morgan Kaufmann Pub-
lishers Inc. (1992)

34. Younas, M., Eaglestone, B., Holton, R.: A formal treatment of a sacred protocol for multidata-
base web transactions. Database and Expert Systems Applications 1873, 899–908 (2000)

35. Zhang, A., Nodine, M., Bhargava, B., Bukhres, O.: Ensuring relaxed atomicity for flexible
transactions in multidatabase systems. ACM, SIGMOD Record (1994)

http://docs.oasis-open.org/ws-tx/wscoor/2006/06

Chapter 3

Universal Identity Management Based
on Delegation in SOA

Yang Zhang and Jun-Liang Chen

Abstract Relationship-focused and credential-focused identity management are

both user-centric notions in Service-oriented architecture (SOA). For composite ser-

vices, pure user-centric identity management is inefficient because each sub-service

may authenticate and authorize users and users need to participate in every identity

provisioning transaction. If the above two paradigms are unified into universal iden-

tity management, where identity information and privileges are delegatable, user-

centricity will be more feasible in SOA. The credential-focused system is a good

starting point for constructing a universal identity management system. However,

how to implement a practical delegation scheme is still a challenge although some

delegatable anonymous credential schemes have been theoretically constructed. This

paper aims to propose a practical solution for universal identity management. For

this, a pseudonym-based signature scheme is firstly designed, where pseudonyms

are self-generated and unlinkable for realizing user privacy. Next, a proxy signature

is presented with the pseudonyms as public keys where delegation can be achieved

through certificate chains. Finally, the WS-Federation is extended to build a universal

identity management solution.

Y. Zhang (B) · J.-L. Chen
State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China
e-mail: YangZhang@bupt.edu.cn

J.-L. Chen
e-mail: chjl@bupt.edu.cn

A. Bouguettaya et al. (eds.), Advanced Web Services, 51
DOI: 10.1007/978-1-4614-7535-4_3,
© Springer Science+Business Media New York 2014

52 Y. Zhang and J.-L. Chen

3.1 Introduction

3.1.1 Motivation

In Service-oriented architecture (SOA), individuals often use identity providers to

provide their identity information and the identities are represented by a set of

attributes [1, 2]. Based on the user-centricity philosophy, identity management sys-

tems [3, 4] are classified into relationship-focused and credential-focused systems

[5]. In the relationship-focused system, identity providers play an important role

and are involved in each transaction that conveys identity information to a service

provider. The users only adopt identity providers to provide identity information

and have control over their attributes. Therefore, the users participate in every iden-

tity provisioning transaction. On the contrary, in the credential-focused system, the

users obtain long-term credentials from identity providers and store them locally.

Then, these credentials are used to provide identity information without involving

the identity provider. The users are still involved in every identity transaction as in

the relationship-focused approach.

The above two paradigms provide user-centric privacy management in personal

data dissemination. The apparent major advantage of user centricity is that users

retain control through their involvement in each transaction. In fact, this is also the

major drawback of user centricity because it cannot handle delegations. A universal

identity management system incorporates the advantages of these user-centric sys-

tems and provides a delegation capability. The credential-focused system is suitable

for constructing a universal identity management system. However, constructing a

universal identity management system from credential-focused identity management

systems is non-intuitive and complex, because the specific properties of anonymity,

minimal data disclosure and various anonymity revocation capabilities involve multi-

party transactions. These render delegation a formidable task to tackle.

In SOA, the users may access more than one service at any given time. When they

use the same pseudonym to access different services, all their transactions are link-

able. It would be ideal for the users to be able to self-generate different pseudonyms

based on their credentials without interacting with identity providers. On the other

hand, the users should use the same pseudonym to link different actions in one transac-

tion and delegate their privilege to others in order to improve the runtime performance

of composite services. Therefore, the features of self-generation of pseudonyms and

delegation of identity information are essential in the universal identity management

system. For instance, let it be assumed that a user called Liming visits a hospital

called People-Health. Following the visit, he has to get certain clinical tests done in

some examination centers several times, the results of which are required for proper

comprehensive diagnosis. Owing to privacy restrictions, most of the test centers do

not reveal this data to anyone but the user. Therefore, Liming himself has to retrieve

the data every time it is needed by the People-Health. As this exercise is cumbersome,

Liming is looking for a method that enables the People-Health to directly retrieve

the desired data from the various centers and to generate the pseudonyms without

3 Universal Identity Management 53

online identity providers. Such a capability, besides being more efficient, is vital to

handle cases of emergency.

When the delegation scheme is defined, the universal identity management system

can be realized based on web service technologies. As a public specification, WS-

Federation [4] defines a framework to allow different security domains to federate,

such that authorized access to web services can be realized in distributed realms. That

includes mechanisms for brokering of identity, attribute, authentication and autho-

rization assertions between domains, and privacy of federated claims. Based on WS-

Trust [40], WS-Federation supports delegation by using identity providers to issue

appropriate security tokens for providers in different security domains. As a relation-

focused framework, it also has the undesirable features of general relation-focused

paradigms. Our solution extends this relation-focused framework with enhanced cre-

dentials to achieve universal identity management.

Users are a key component of the SOA environment. Therefore, how to realize

easy-to-use identity management systems and provide consistent experiences and

transparent security is very critical in our solution. The notion of Identity Metasys-

tem [36, 37] has been introduced to put an abstract identity management layer on

the Internet to allow existing identity systems based on various technologies to inter-

operate with each other. The identity metasystem introduces the important concept

of an “information card” modeled after a business card, licence, etc. In general, an

information card is a digital representation of user identity to realize easy-to-use and

consistent experiences. However, the identity metasystems do not support delegation

and composite services. In SOA, a service often consists of sub-services, and dele-

gation mechanisms are critical for efficiency. We combine the identity metasystem

which is the user perspective and WS-Federation framework which is the service fed-

eration perspective, and extend them to construct the universal identity management

solution.

3.1.2 Related Work

There is no straightforward transformation of anonymous credential schemes without

delegation into delegatable schemes. Classic anonymous credential systems were

introduced by Chaum [6] in 1985, as a way of allowing the user to work effectively, but

anonymously, with multiple organizations. The works of [7–10] developed the model

and implementation of anonymous credential systems. Camenisch and Lysyanskaya

[11–13] proposed anonymous credential systems, which are more efficient than the

earlier ones, by constructing a signature scheme with efficient protocols. All the

above systems use interactive zero-knowledge protocols to prove the possession of

credentials without optimizing the rounds of interaction. Belenkiy [14] introduced

non-interactive anonymous credentials in 2007 to solve this problem. However, the

scheme could not be directly transformed into a delegatable anonymous credential

scheme.

54 Y. Zhang and J.-L. Chen

Delegatable anonymous credential schemes were proposed in [15, 16] where users

can obtain credentials from identity providers and delegate their credentials to other

users. If an identity provider issues user A a credential for his given pseudonym

N ym A, user A can prove to user B that N ym A has a credential from the identity

provider. Credentials received directly from the identity provider are level 1 creden-

tials, those that have been delegated once are level 2 credentials, and so on. User A

can also delegate his credential to user B, and user B can then prove that he has a

level 2 credential from the identity provider where user B proves to others his pos-

session of a credential without involving any identity information on A. However,

the size of the possession proof increases with the increase in delegation level, and

cannot be bounded to a constant number by aggregating proofs. Further-more, in

these schemes, identity providers are involved in issuing credentials when a new

pseudonym is generated, and these schemes are not efficient either as far as network

resources are concerned.

Camenisch, Sommer, and Zimmermann proposed a general certification frame-

work for SOA where identity information can be privacy-enhanced [17]. They

claim that their framework can be integrated into today’s Public Key Infrastructure

(PKI) on the Internet. The framework includes cryptographic primitives for realiz-

ing the functionality, definition of protocol interfaces for the CertificateIssuance and

CertificateProof protocols and a powerful specification language with well-defined

semantics that allows defining the data to be released in a transaction. However, the

framework and implementation do not specify how to realize delegation. The solution

offered here not only utilizes the advantage of the general certification framework,

but also provides a new way of implementing the CertificateIssuance and Certifi-

cateProof protocols to realize delegation.

In this paper, a pseudonym-based signature scheme is proposed to construct prac-

tical delegation solutions for universal identity management where users can self-

generate pseudonyms based on their credentials. The self-generated pseudonyms

are used as public keys. The privacy is ensured by the unlinkability between dif-

ferent pseudonyms. According to this idea, we get a natural solution to the del-

egation problem. A conventional signature scheme often immediately allows for

(non-anonymous) delegatable credentials: A, who has a public signing key and a

certification chain of length L, can sign B’s public key, giving B a certification chain

of length L+ 1. Therefore, the delegation solution consists of two signature schemes

in which the pseudonyms are used as public keys: a pseudonym-based signature

scheme and a conventional proxy signature scheme [18–21]. The pseudonym-based

signature scheme provides anonymous proof of possession of credentials to protect

the user’s privacy where service providers verify the signature to decide whether

the signer has the rights to access the services. In the conventional proxy signature

scheme, the original signers delegate their signing capability to proxy signers with-

out divulging their private keys. Then, the proxy signer creates a valid signature on

behalf of the original signer. The receiver of the signature verifies the signature and

the original signer’s delegation together. Our proxy signature scheme has the delega-

tion capability by warrant. A warrant explicitly states the signer’s identity, delegation

period and the qualification of the message on which the proxy signer can sign, etc.

3 Universal Identity Management 55

Zero-knowledge proofs of credential possession in classic anonymous credential

systems can be converted to signatures via the Fiat-Shamir heuristic [22]. Compared

with pseudonym-based signature schemes, the converted signature schemes have

four undesirable features: First, the pseudonyms in the converted signature schemes

are not self-generated; second, an identity provider must provide an online issuing

service; third, the ability to sign under the pseudonyms is lacking; fourth, the sig-

nature size is often too long. Compared with group signature schemes [23–27], the

pseudonym-based signature scheme requires self-generated pseudonyms that can be

used as public keys, while group signature schemes do not need any pseudonym, nor

do they specify how to generate them. Therefore, besides the self-generation feature,

the scheme proposed here has the desirable feature that the pseudonyms are used

as temporal public keys for signatures. This feature can be compared to that of the

ID-based signature schemes where signers have the ability to sign with their identi-

ties. Unlike the identity in ID-based signature schemes, pseudonyms are not directly

bound to real identities or certificates because pseudonyms are self-generated. Thus,

the security notion is a bit different from that of the ID-based signature schemes. To

prove the unforgeability of pseudonym-based schemes, the challenger should distin-

guish between forged pseudonyms and valid randomized pseudonyms generated by

adversaries who have obtained some valid credentials.

Our pseudonym-based scheme is similar to the DAA (Direct Anonymous Attes-

tation) scheme [28, 29] which coordinates a TPM (Trust Platform Module) and a

host together to generate pseudonyms and signatures. The scheme was adopted by

the Trusted Computing Group as the method for remote authentication of a TPM,

while preserving the privacy of the user of the platform that contains the module.

Compared with DAA, this scheme does not require a TPM to work online, which

improves the performance of the scheme. Although DAA adopts group signature

schemes [23–27] to generate pseudonyms that link transactions, it is not clear how it

can be used to build a delegation solution for universal identity management. While

DAA uses pseudonyms to link transactions, ours uses pseudonyms to achieve privacy

because one pseudonym is unlinkable to the other. Moreover, ours uses pseudonyms

as public keys for signatures.

In a distributed federated identity environment, there exists some leading specifi-

cation such as SAML (Security Assertion Markup Language) [42], Liberty

ID-FF (Identity Federation Framework) [43] and WS-Federation [4]. These specifi-

cations support privacy-preservation and have capabilities to prevent identity track-

ing and collusion through issuance of an opaque handle for each user. The work of

[44] extended the existing framework for federated identity management to support

delegation. However, these specifications do not address the issue of anonymous

delegation. In this relation-focused model, the identity provider is involved in almost

every identity provision transaction, systems are difficult to use in a long-term cre-

dential setting, and the token is often issued with a limited audience set which in turn

pre-determines the use of the token.

56 Y. Zhang and J.-L. Chen

3.1.3 Contributions

The contribution of this paper is three-fold. Our first contribution is that a signature-

based natural approach is adopted to define the delegation model for universal

identity management in SOA. Our second contribution is that the novel concept

of a pseudonym-based signature scheme is introduced where pseudonyms are self-

generated and messages can be bound to the self-generated pseudonyms which are

used as the public keys for signatures. Based on this, the novel pseudonym-based sig-

nature scheme is constructed. Our third contribution is the application of our scheme

to universal identity management systems where the delegation of the privilege to

access services is realized by adopting warrant proxy signature schemes [18–21]

based on time-varying pseudonyms.

3.1.4 Organization of the Paper

The remainder of the paper is structured as follows. Section 3.2 gives a description of

preliminaries. Section 3.3 contains our delegation model. Section 3.4 focuses on the

construction of the universal identity management solution. Section 3.5 presents how

to design the implementation of a delegation model. Section 3.6 gives our deploy-

ment. Finally, conclusions are drawn in Sect. 3.7.

3.2 Preliminaries

Suppose we have groups G1 and G2 of the same prime order p and security parameter

κ . Assume the discrete logarithm problem is hard in both groups. Then we need a

cryptographic bilinear map e : G1 × G1 → G2 to satisfy the following properties

[30, 31]:

1. Bilinearity: ∀ a, b ∈ Z ∗
p, P, Q ∈ G1, e(a P, bQ) = e(P, Q)ab .

2. Non-degeneracy: For any point P ∈ G1, e(P, P) �= 1G2 .

3. Computability: there exists an efficient algorithm to compute e(P, Q) for∀P, Q ∈

G1.

To give the security proof of our scheme, we introduce a problem which is slightly

different from the one proposed by Mitsunari et al. [32] and is called (k,n)-CAA

(Collusion Attack Algorithm with k Traitors and n Examples).

Definition 3.1 (k,n)-CAA. Collusion Attack Algorithm with k Traitors and n Exam-

ples

Let (G1, G2, e) be as above, k,n be integers, P, P1, . . . , Pn ∈ G1, x ∈ Z p. Given

P, Pj , ai ∈ Z p, x P, x Pj , 1/(x + ai)p|1 ≤ i ≤ k, 1 ≤ j ≤ n, to compute 1/(x +

a)P for some a Pi /∈ ai Pj |1 ≤ i ≤ k, 1 ≤ j ≤ n.

www.allitebooks.com

http://www.allitebooks.org

3 Universal Identity Management 57

The (k,n)-CAA is considered to be hard in the literature. That is, the probability

of success of any probabilistic, polynomial-time, 0/1 valued algorithm in solving

(k,n)-CAA problem is negligible. A function F(y) is said to be negligible if it is less

than 1/yl for every fixed l > 0 and sufficiently large integer y.

3.3 Delegation Model for Universal Identity Management

Participants in a delegation model for universal identity management comprise iden-

tity providers (who grant credentials), user u (who obtains credentials), user v (who

is delegated by u to access services, and can be a service provider) and service

providers. Our model is different from the delegatable anonymous credential sys-

tems. In the latter, the user first registers a pseudonym with the identity provider, and

then the identity provider grants to the user a credential associated with the registered

pseudonym. Our model, on the other hand, allows the users to first get a credential

from the identity provider, and then to generate multiple new pseudonyms as needed

while the identity provider does not participate. Without interacting with the identity

provider, the users can show service providers that they possess the right credentials.

Compared with a relationship-based delegation scheme, in our model, the users can

self-generate different pseudonyms and directly delegate privileges to others without

the identity provider’s participation.

The delegation model can be defined by the following six sub-protocols’

Delegator

u

Identity

Provider
1. Setup

2. Credential Issuing

3. Pseudonym Generation

Delegatee

v

Service

Provider

4. Signing

 warrant

5. Delegation

Signing

6. Delegation Verification

7. Return

Result

Fig. 3.1 Delegation model

Setup: The identity provider generates system parameter and system public/private

key pairs.

Credential Issuing: The identity provider grants a secret credential to user u.

58 Y. Zhang and J.-L. Chen

Pseudonym Generation: User u generates a new pseudonym in a current time slot

according to its secret credential and timestamp. Two pseudonyms are unlinkable

and only loose time synchronization is required.

Signing-warrant: User u signs a warrant that contains delegation period, delegated

pseudonyms, and the services to be accessed, etc. User v obtains a proxy key

according to his private key and the signature of the warrant.

Delegation-Signing: User v generates proxy signatures on behalf of user u.

Delegation-Verification: Service providers verify proxy signatures from v together

with u’s delegation.

The relationship among the six sub-protocols is illustrated in Fig. 3.1. If the service

provider trusts the identity provider (IdP) and a secret credential is issued to the

delegator u by the IdP, u can grant to the delegatee v the access privilege to the service

when v does not have the privilege. u uses the pseudonym generation protocol to

protect its privacy and the signing-warrant protocol to grant the privilege.

Our delegation model can be implemented by two signature schemes. The first

one is the pseudonym-based signature scheme which provides anonymous proof of

the possession of credentials to protect the user’s privacy. Service providers verify

the signature to decide whether the signer has the rights to access the services. The

second one is a warrant proxy signature scheme, where the original signer u del-

egates his signing capability to the proxy signer v without leaking his private key,

and then the proxy signer creates a valid signature on behalf of the original signer. The

pseu-donym-based signature scheme mainly implements Credential Issuing,

Pseudonym Generation and Signing–warrant, and the warrant proxy signature

scheme mainly implements Delegation–Signing and Delegation–Verification.

When v again delegates his signing capability to other users, he adopts the war-

rant proxy signature scheme, instead of the pseudonym-based signature scheme.

Compared with certificate chain approaches to delegating the signing capability, our

solution can aggregate signatures for the warrant mw, verifies the aggregated sig-

nature only once and avoids verifying signatures one by one down the certificate

chain. According to the general certification framework for SOA [17], our signature-

based delegation solution has potential to be integrated into today’s PKI where

Sign-ing-warrant can realize the CertificateIssuance protocol, and Delegation–

Signing and Delegation–Verification can realize the CertificateProof protocol.

3.4 Universal Identity Management Solution

Our solution takes the credential-focused identity approach as a starting point, which

may be trivially set to short-term credentials. With delegation enhanced, users can re-

issue security tokens based on long-term credentials stored in their personal identity

metasystem. The underlying credential-focused approach can provide strong data

minimization and anonymity.

In this solution, it is assumed that different security domains are federated, and

there exists a personal identity metasystem to aid a user to manage his identities.

3 Universal Identity Management 59

Figure 3.2 illustrates a framework focusing on a relationship among a requestor, a

delegatee, a resource and a personal identity metasystem. The requestor (user) uses

his personal identity metasystem to log in to his local security domain. The local

security domain and delegatee (web service B) security domain trust each other such

that the requestor can use a short-term credential to access the delegatee based on the

trust relationship of identity providers in the two domains. When it wants to access

the resource (web service C) in the resource domain, the delegatee (web service B)

can be appointed to represent the requestor anonymously with certain attributes if

the requestor has the privilege to access the resource and the delegatee hasn’t.

The detailed runs in Fig. 3.2 are as follows.

Step 1: A secret credential is issued to the requestor by the IdP C in domain C if

the requestor has not stored the credential to access resource C (web service

C). That is to say, the Credential Issuing sub-protocol in the delegation model

is executed between the IdP C and the requestor’s selector.

Step 2: The secret credential is stored in the requestor’s storage service which is

a part of her personal identity metasystem.

Step 3: The requestor makes a compound resource request (involving web

service B and web service C). Web service B is in security domain B and web

service C is in security domain C.

Step 4: The client application uses its short-term credential obtained from IdP A

in the requestor’s security token to make the request. IdP A and IdP B trust

each other. IdP B is in security domain B.

User

IdP C

Web Service B

4. Request

 5. Access Policy

7. Select IC

8. Self-generation
1. Issue

Credential

 9. Issue Delegation

Token

10 Issue Delegation Token

Self IdP & Storage Service

2. Up |Down

IC

6. Activate

Selector

Selector

IC

Client App
3. Request

Web Service C

11. Request with Delegation Token

12. Return Result

13. Return Composite

Result

Security Domain A Security Domain C

Security Domain B

Fig. 3.2 Universal identity management solution

60 Y. Zhang and J.-L. Chen

Step 5: Web service B finds that the request is compound, and involves web

service C. It returns an access policy which specifies that the requestor should

delegate it her privileges such that it can efficiently interact with web service C.

Step 6: The client application activates the Selector which is the visual window

for the user to select one information card (IC).

Step 7: The requestor uses her Selector to select one appropriate IC according to

the access policy.

Step 8: The requestor’s self-IdP self-generates pseudonyms based on its stored

credential using the Pseudonym Generation sub-protocol in the delegation

model.

Step 9, 10: The requestor’s metasystem uses the Signing–warrant sub-protocol

in the delegation model to issue a delegation token with respect to the

self-generated pseudonym.

Step 11: Web service B uses the Delegation–Signing sub-protocol in the

delegation model to sign an access-token request to the IdP in the domain C.

The IdP in domain C uses the Delegation–Verification sub-protocol in the

delegation model to verify the request. If the verification is successful, it

returns an access token to the requestor. Web service B makes a service request

to the resource using the access token.

Step 12, 13: The resource returns the service response to the delegatee, and the

delegatee returns a composite service response to the requestor.

3.5 Delegation Construction

3.5.1 Pseudonym-Based Signature Scheme Πsig

In the pseudonym-based signature scheme Πsig, unlike in an identity-based signature

scheme [33, 34], the user can non-interactively renew public/private key pairs. If

the renewed public key is viewed as a pseudonym, then a pseudonym can be self-

generated.

In Πsig, an identity provider (or a domain manager, or an organization manage-

ment centre) generates the credential Cre for the user u. The user u generates, by

accessing Cre, a pseudonym (Pu, Pu) that is unlinkable to other pseudonyms. Without

the identity provider reissuing Cre, u can renew (Pu, Pu) by accessing Cre. The user u

uses different pseudonyms to prevent adversaries from linking different transactions

and analyzing their traffic patterns.

Πsig is modelled by five algorithms as follows:

PGen: It generates the system parameters param and the master-key ms.

Gen: Executed by the identity provider, it generates the credential Cre for the

user u.

3 Universal Identity Management 61

∆ − Gen: Executed by u, it generates the pseudonym (Pu, Pu) and corresponding

secret value µ
′
.

Sign: It takes as input the user’s private key (Cre, µ
′
) and the message m to

return the signature of m under (Cre, µ
′
).

Verify: It takes as input u
′
s pseudonym (Pu, Pu), the organization public key

(W, Wi), the message m, and the signature sig to return either 1 or 0.

In our construction, the identity provider periodically publishes a set of public

restriction keys Wi , . . . , W j which correspond to the time slots sloti , . . . , slot j . A

new public restriction key begins to work when a new time slot starts. The public

restriction keys are used to enable the user to update his pseudonyms. The func-

tion T (t ime) takes time as input and outputs a time slot where only loose time

synchronization is required.

Definition 3.2 Πsig is made up of the following five algorithms:

PGen(1κ): Setup G1, G2, e and P ∈ G1,

pick cryptographic hash functions H1, H2 : {0, 1}∗ → G1,

compute Qi = H1(T (timei)),

choose a master-key s ∈R Z p,

compute organization’s public keys W = sP, Wi = sQi ,

return ms = s’param = (G1, G2, e, P, W, Wi , H1, H2).

Gen(ms, param, u): µ ∈R Z p,

Cre = (µ, Su) = (µ, 1/(s + µ)P),

return Cre.

User u can verify the correctness by checking e(µP + W, Su) = e(P, P).

∆ − Gen(Cre, param, timei): Qi = H1(T (timei)), µ
′
∈R Z p,

Pu = (µ + µ
′
)Qi , Pu = µ

′
Su,

return ((Pu, Pu), µ
′
).

The key pair (Pu, Pu)/(µ,µ
′
, Su) of the user u satisfy

e(Pu + Wi , Su) = e(Qi , P)e(Qi , Su)µ
′

= e(Qi , P)e(Qi , Pu).

Sign(m, (Pu, Pu), (µ,µ
′
, Su), param, timei): r, r

′
∈R Z p,

RG = r Qi , R = [e(Qi , P)e(Qi , Pu)]r
′

,

c = H2(m||RG ||R||Pu ||Pu ||T (timei)),

z1 = c(µ + µ
′
) + r, z2 = cµ

′
+ r

′
,

return sig = (c, z1, z2).

Verify(m, sig, (Pu, Pu), param, timei): Parse sig = (c, z1, z2),

Qi = H1(T (t imei)),

RG = z1 Qi − cPu,

R = [e(Qi , P)e(Qi , Pu)]z/e(Pu + Wi , Pu)c,

c = H2(m||RG ||R||Pu ||Pu ||T (timei)),

if c = c then return 1, otherwise return 0.

62 Y. Zhang and J.-L. Chen

This signature scheme is converted from a zero-knowledge proof via the Fiat-

Shamir heuristic [22]. The prover and verifier undertake a proof of knowledge values

satisfying the following equation:

e(Pu + Wi , Pu) = e((µ + µ
′

)Qi + sQi , µ
′

/(s + µ)P)

Pu = (µ + µ
′

)Qi .

The protocol for proving knowledge of the discrete logarithm is as follows:

Prover u: chooses r, r
′
∈R Z p,

computes RG = r Qi , R = [e(Qi , P)e(Qi , Pu)]r
′

,

sends (RG, R) to the verifier v.

Verifier v: receives (RG , R),

chooses c ∈R Z p,

sends c to the prover u.

Prover u: receives c,

computes z1 = c(µ + µ
′
) + r, z2 = cµ

′
+ r

′
,

sends (z1, z2) to the verifier v.

Verifier v: receives (z1, z2),

verifies the correctness by checking

z1 Qi = cPu + RG and

e(Pu + Wi , Pu)c R = [e(Qi , P)e(Qi , Pu)]z2 .

In our pseudonym-based signature scheme, the value c is non-interactively

obtained by computing the hash value of (m||RG ||R||Pu ||Pu ||T (t imei)) accord-

ing to the Fiat-Shamir heuristic [22]. If u proves possession of the knowledge of the

discrete logarithm (µ
′
, µ + µ

′
) satisfying

e(Pu + Wi , Pu) = [e(Qi , P)e(Qi , Pu)]µ
′

,

Pu = (µ + µ
′

)Qi ,

the verifier v will believe that the credential Cre = (µ, Su) = (µ, 1/(s + µ)P) is

issued to (Pu, Pu) by the identity provider. When the user u signs a message under

(Pu, Pu), the identity provider can track the transcripts by iteratively computing

e(Pu + Wi , Su) = e(Qi , P)e(Qi , Pu)

according to its stored private keys {S1, S2, . . .} .

3 Universal Identity Management 63

3.5.2 Proxy Signature Scheme Πpsig

Assume the user v has a public/private key pair (PKv = vQi , v) and the user u

has some rights to access one service serv with a public/private key pair (PKu =

(Pu, Pu), (µ,µ
′
, Su)). The user u can grant the user v to delegate himself to access

the service serv. It does not matter whether the user v has the rights to access serv.

The service provider of serv verifies the proxy signature from v and then knows

whether v is indeed delegated by PKu . If v is delegated by PKu and has rights to

access serv, v will be allowed to access serv. v creates the warrant which contains

related information such as Pu , a part of the pseudonym of u, the delegation period,

etc. Also, u generates the signature α for mw and conveys both the signature and mw

to v. v creates a proxy key from α and mw. The following proxy signature scheme is

from the work of [35], where the key generation algorithm of the original signer is

slightly different.

Definition 3.3 Πpsig is made up of the following five algorithms:

Setup(1κ): Generate G1, G2, e and Qi ∈ G1,

pick cryptographic hash functions H1, H2:{0, 1}∗ → G1,

return param = (G1, G2, e, P, W, Wi , H1, H2).

KGen(param, u, v): The key of the original signer u:

τ = µ + µ
′
, PKeyu = Pu = τ Qi , SKu = τ ,

The key of the proxy signer v:

PKeyv = vQi , SKv = v, v ∈R Z p.

PKGen(param, τ, v, PKeyu): Generate a proxy key for v:

Create the warrant mw.

u signs mw: α = τ H1(mw),

v checks whether (mw, α) satisfies

e(α, Qi) = e(H1(mw), PKeyu).

If true, v gets a proxy key (α, v).

PSign(m, param, mw, (α, v)): v generates proxy signatures:

σ = α + vH2(m||mw),

return sig = (m, σ).

PVerify(m, sig, param, PKeyu, PKeyv): If

e(σ, Qi) = e(H1(mw), PKeyu)e(H2(m||mw), PKeyv),

then return 1.

Otherwise, return 0.

The security proof of this scheme can be found in [35]. When u delegates his sign-

ing capability to the user v, v will possess u’s privilege to access the services. u adopts

the pseudonym-based signature scheme Πsig to generate time-varying pseudonyms

for privacy and the proxy signature scheme Πpsig to realize delegation. Therefore, the

delegation solution consists of Πsig and Πpsig . When v again delegates the privilege

to another user x , Πpsig is executed as follows:

64 Y. Zhang and J.-L. Chen

Setup(1κ): Generate G1, G2, e and Qi ∈ G1,

pick cryptographic hash functions H1, H2 : {0, 1}∗ → G1,

return param = (G1, G2, e, P, W, Wi , H1, H2).

KGen(param, u, v): The key of the original signer v:

PKey
′

v = PKeyu + PKeyv, SKv = v,

The key of the proxy signer x :

PKeyx = χ Qi , SKx = χ, χ ∈R Z p.

PKGen(param, v, χ, PKey
′

v): Generate a proxy key for x :

v signs mw:

α
′
= α + vH1(mw),

where mw is created by u and α is the signature for mw produced by u. x checks

whether (mw, α
′
) satisfies

e(α
′
, Qi) = e(H1(mw), PKey

′

v).

If true, x gets a proxy key (α
′
, χ).

PSign(m, param, mw, (α
′
, χ)): v generates proxy signatures:

σ = α
′
+ χ H2(m||mw),

return sig = (m, σ).

PVerify(m, sig, param, PKeyx , PKey
′

v): If

e(σ, Qi) = e(H1(mw), PKey
′

v)e(H2(m||mw), PKeyx),

then return 1.

Otherwise, return 0.

Compared with certificate chain approaches to delegating the signing capabil-

ity, our solution can aggregate signatures for the warrant mw, verify the aggregated

signature only once and thus avoids verifying signatures one by one down the cer-

tificate chain. That is to say, if x1 → x2 → · · · → xn is the user chain for delegation

and α1 → α2 → · · · → αn is the signature chain for the warrant mw which

are respectively produced by these users, then xn obtains the aggregated signature

α = α1 + · · · + αn and the proxy key (α, SKn). xn generates the proxy signature

for the message m as follows: σ = α + SKn H2(m||mw). Service providers compute

P K ey = PKeyx1
+ PKeyx2

+ · · · + PKeyxn
and verify the signature under P K ey. If

the signature is valid and x1 has proved the possession of the issued credentials, the

service providers will allow xn to access the services. The service providers verify

only one signature and not the signatures produced by each delegation user in order

to show that the last delegatee has the privilege for accessing the services. In addition,

the conventional certificate chain can also be used in our solution.

Reverting to the health-care example cited in the introduction, Liming can adopt

Πsig to generate the new pseudonym, and signs the warrant that contains the

pseudonym, time period, and the names of those health examination services. Then,

Liming conveys the signature and the warrant to People-Health to enable them to

obtain the proxy key. Therefore, People-Health can directly request the results of

health examinations from the test centres by signing the request messages under

3 Universal Identity Management 65

the proxy key according to the algorithm PSign in Πpsig . The examination cen-

tres concerned have stored the test results of the user because Liming adopted the

pseudonym as his identity and proved by using Πsig that has the rights to consume

the examination services and access the results, which protects the privacy of Liming

by not disclosing his real identity, exact age and other identity information. When

the request messages signed by People-Health are received, the examination centres

verify the corresponding signature according to the algorithm PVerify in Πpsig . If

the signature is valid, the stored results will be conveyed to People-Health.

In some settings, the identity provider of a service domain may want to control

the generation of pseudonyms. For example, when users require adequate protection

of their personal information, anonymous communication services are often used

to deliver the consumer services [2]. If the users are just in an ad hoc network,

they will be not only service consumers but also service providers. In this case,

the pseudonym-generation approach is required to have the pseudonym-uniqueness

property for a period of time. Otherwise, if adversaries have controlled one node, they

can forge different pseudonyms according to different neighbours, that is, they can

forge false topology. They can also use a different pseudonym for a different instance

of anonymous communication services and infer their traffic patterns by distinguish-

ing messages relating to different pseudonyms, which often expose the VIP’s private

information or their action characteristics. Therefore, the identity providers should

have the means to manage how to self-generate pseudonyms besides delegation

of identity information. We propose a variation of the pseudonym-based signature

scheme to satisfy the requirement in the next section.

3.5.3 Pseudonym-Controlled Variation of Πsi g

In order to provide control over the self-generation properties of pseudonyms, the

algorithm ∆ − Gen of Πsig is modified such that the new pseudonyms do not take

effect until the start of a new time slot and publication of new restriction keys. Identity

providers manage pseudonym-generation by adopting restriction keys and time slots.

The identity provider periodically publishes a set of public restriction keys

{Wi , . . . , W j } which correspond to time slots {sloti , . . . , slot j }. A new public restric-

tion key begins to work when a new time slot starts. The public restriction keys are

used to ensure the uniqueness of the pseudonym of a user in a single time slot and

make it possible for the user to generate his pseudonyms. The pseudonym-controlled

variation Πvsig of the pseudonym-based signature is as follows:

Definition 3.4 Πvsig is made up of the following five algorithms:

PGen(1κ): Setup G1, G2, e and P ∈ G1,

pick cryptographic hash functions H1, H2 : {0, 1}∗ → G1,

compute Qi = H1(T (timei)),

choose a master-key s ∈R Z p,

66 Y. Zhang and J.-L. Chen

compute organization’s public keys W = s P, Wi = s Qi ,

return ms = s’param = (G1, G2, e, P, W, Wi , H1, H2).

Gen(ms, param, u): µ ∈R Z p,

Cre = (µ, Su) = (µ, 1/(s + µ)P),

return Cre.

User u can verify the correctness by checking e(µP + W, Su) = e(P, P).

∆ − Gen(Cre, param, timei): Qi = H1(T (timei)),

Pu = µQi

return Pu .

The key pair Pu/(µ, Su) of the user u satisfy

e(Pu + Wi , Su) = e(Qi , P).

Sign(m, Pu, (µ, Su), param, timei): α, r, r
′
∈R Z p,

T = αSu, RGi
= r Qi , R = e(Qi , P)r

′

,

c = H2(m||T ||RGi
||R||Pu ||T (timei)),

z1 = cα + r
′
, z2 = cµ + r,

return sig = (T, c, z1, z2).

Verify(m, sig, (Pu, Pu), param, timei): Parse sig = (T, c, z1, z2),

Qi = H1(T (t imei)),

RGi
= z2 Qi−cPu,

R = e(Qi , P)z1/e(Pu + Wi , T)c,

c = H2(m||T ||RGi
||R||Pu ||T (timei)),

if c = c then return 1, otherwise return 0.

When the identity provider in the domain publishes some pseudonyms {P i
u , . . . ,

P
j

u } of user u in its certificate revocation list, the credential of u is revoked in time

slots {sloti , . . . , slot j }. This revocation solution is simple and attractive because the

computation is efficient and the pseudonyms of u that are not in these time slots are

still unlinkable. The signatures produced by u are also traceable since the identity

provider can compute all the users’ pseudonyms in all the time slots according to

{µ1, µ2, . . .}.

When Πvsig is adopted to construct delegation solutions combined with Πpsig , the

warrant mw will contain related information such as the delegation period, service

name, and so on. Unlike the Πsig-based scheme, it does not include one part of the

public key of u. The security proof of Πvsig is similar to that of Πsig .

3.6 Deployment Framework for Delegation Model

SOA is a very popular paradigm for system integration and interoperation. Web ser-

vice is the current standard for SOA. Therefore, the industry is pursuing the deploy-

ment of identity management systems in distributed different security domains, called

FIM (Federated Identity Management) [3, 4], to build one cornerstone of the web ser-

vice security. Current user-centricity FIM systems are mostly relationship-focused,

3 Universal Identity Management 67

and can enhance the user’s privacy by following the data minimization and transaction

unlinkability principles. Multiple industry products [36, 37] embrace this paradigm.

However, the bottle-neck effect will become more serious for identity providers if the

delegation function is implemented only based on the relationship-focused model.

Some credential-focused systems are also developed to achieve FIM. The example

is idemix [38, 39], but it does not support self-generation and efficient delegation.

This section describes how to deploy our solution in the relationship-focused par-

adigm by integrating the credential-focused paradigm to realize universal identity

management.

We adopt the concept from WS-Federation [4] to describe how to deploy the

delegation scheme for universal identity management. As a public specification,

WS-Federation defines a framework to allow different security domains to federate,

such that authorized access to web services can be realized in distributed realms.

That includes mechanisms for brokering of identity, attribute, authentication and

authorization assertions between domains, and privacy of federated claims. Based

on WS-Trust [40], WS-Federation supports delegation by using identity providers

to issue appropriate security tokens for entities in different security domains. As

a relation-ship-focused framework, it also has the undesirable features of general

relation-ship-focused paradigms. Our scheme can be deployed in this relationship-

focused framework with enhanced credentials to achieve universal identity manage-

ment. The basic entities mapping between the delegation solution and WS-Federation

is provided as follows.

IdP: An Identity Provider is an entity that acts as an authentication service to

end-requestors and as a data origin authentication service to service providers. IdPs

are third parties trusted to maintain some of the requestor’s identity information. The

original IdP is enhanced to issue secret credentials by adding the Credential Issuing

interface.

Requestor: An end user—an application or a machine—is typically represented by

a digital identity and may have multiple valid digital identities. The original requestor

is enhanced to self-generate pseudonyms and delegate privileges by adding the issued

party interface of Credential Issuing and a Signing-warrant interface.

Resource: A web service, service provider, or any valuable thing. Sometimes, it

can act as another requestor. The original resource is enhanced to sign messages and

verify signatures by adding Delegation-Signing and Delegation-Verification inter-

faces. When it acts as a requestor, it delegates privileges to other resources by adding

a Signing-warrant interface.

Before describing general deployment in typical scenarios, we revert to the health-

care example cited in the introduction. Assume the Citizen Identity Provider (CIP)

issues Liming a digital identity credential which can be used to prove he is a citizen in

that city. Figure 3.3 illustrates the application of the delegation model with privacy-

preserving in this example, where People-Health can directly retrieve the desired

data from the test centres. Such a capability, besides being more efficient, is vital to

handle cases of emergency.

68 Y. Zhang and J.-L. Chen

CIP Liming People-Health Test-Center

1. Credential Issuing

2. Pseudonym Generation
3. Doing Test with Pseudonym

4. Storing Test Results

5. Issue delegation token with Signing-warrant

6. Request Results with Delegation-Signing

7. Delegation-Verification

8. Return Test Results

Fig. 3.3 Delegation procedure for health-care example

The example runs as follows:
Step 1: A secret credential is issued to Liming by the Citizen Identity Provider

where the Gen of Πsig is used. That is to say, the Credential I ssuing

sub-protocol in the solution is executed between the CIP and Liming.

Step 2: Liming adopts the ∆ − Gen of Πsig to generate the new pseudonym

(PLiming, P Liming). That is to say, the PseudonymGeneration sub-

protocol in the solution is executed by Liming.

Step 3: Liming uses the pseudonym (PLiming, P Liming) as his identity to

undergo health examination in the test centres, where he may prove his

citizenship by using the Sign of Πsig (This is not illustrated in the figure).

Step 4: The test centre stores the test results under the user (PLiming, P Liming)

because Liming adopted the pseudonym as his identity.

Step 5: Using the Sign of Πsig , Liming signs the warrant mw that contains

P Liming , time period, and the names of those test centres. Then, Liming

conveys the signature α and the warrant mw to People-Health to enable them to

obtain the proxy key (α, v). That is to say, the Signing–warrant sub-protocol in

the solution is executed between People-Health and Liming.

Step 6: People-Health can directly request the results of health examinations

from the test centres by signing the request messages under the proxy key

(α, v) according to the algorithm PSign in Πpsig .

Step 7: When the request messages signed by People-Health are received, the

test centre concerned verifies the corresponding signature according to the

algorithm PVerify in Πpsig .

Step 8: If the signature is valid, the stored results will be conveyed to

People-Health.

For general deployment, some typical scenarios are used to illustrate the delegation

model. In Figs. 3.4 and 3.5, the requestor has stored some long-term credentials which

3 Universal Identity Management 69

TRUST

Requestor

IdP

Resource

IdP

Resource

IdPTRUST

Domain A Domain B Domain C

1

2

3

4

Fig. 3.4 The requestor IdP issues credentials

TRUST

Requestor

IdP

Resource

IdP IdPTRUST

Domain A Domain B Domain C

1

2 3
Resource

Fig. 3.5 The target service IdP issues credentials

may be from his IdP or C’s IdP. Credentials from the IdP in other domains mean that

if that IdP issues the requestor a long-term credential in one transaction, it can be

used sub-sequently in other transactions for efficiency and convenience. Each arrow

represents a possible communication path between the participants. Each dashed

arrow represents that the possible communication can be executed offline or has

been completed between the participants.

In Fig. 3.4, a secret credential is issued to the requestor by the IdP in the requestor’s

trust realm (domain A) (1). The requestor self-generates identity security tokens

(pseudonyms) based on its credential, and sends a delegation token to the re-

source/service in domain B (2). The delegation signing tokens are then provided

to the IdP in domain C and access security tokens are returned from C (3). Resource

B uses the access token to access resource C. In Fig. 3.5, a secret credential to access

resource C is issued to the requestor from the IdP in domain C (1). The requestor

self-generates pseudonyms based on its credential, and sends a delegation token to

the resource/service in domain B (2). Resource B uses the delegation signing token

to access resource C. Unlike the classic delegation process in WS-Federation, no IdP

is involved when new identity and delegation tokens are needed if the requestor has

stored the credentials, and the privacy of the requestor is protected using unlinkable

70 Y. Zhang and J.-L. Chen

Requestor

IdP

Requestor Web

Service B

Web

Service C

Service C

IdP

1.Issue

credential

2.Issue delegation token

3.Make request
4.Use delegation

signing token to

request

5. Return access

token

6. Make request using access token

7. Return Result

8. Return Result

Fig. 3.6 The requestor IdP issues credentials

Web

Service C

Requestor Web

Service B

Service C

IdP

1. Issue credential

2. Issue delegation token

3. Make request

4. Make request using delegation

signing token

5. Return result

6. Return result

Fig. 3.7 The target service IdP issues credentials

pseudonyms. In both cases, it does not matter whether IdP B and IdP C trust each

other.

Figures 3.6 and 3.7 illustrates the message sequence of the delegation procedure

in these typical scenarios where a resource accesses data from another resource on

behalf of the requestor. In Fig. 3.6, the delegation solution runs as follows.

3 Universal Identity Management 71

Step 1: A secret credential is issued to the requestor by the IdP in domain A if the

requestor has not stored the credential. That is to say, the Credential Issuing

sub-protocol in the solution is executed between the IdP and the requestor.

Step 2: The requestor self-generates pseudonyms based on its stored credential

using the Pseudonym Generation sub-protocol in the solution. Then, it uses the

Signing–warrant sub-protocol to issue a delegation token with respect to the

self-generated pseudonym.

Step 3: The requestor makes a composite service request to service B.

Step 4: Service B uses the Delegation–Signing sub-protocol to sign an access

token request to the IdP in domain C.

Step 5: The IdP in domain C uses the Delegation–Verification sub-protocol to

verify the request. If the verification is successful, it returns an access token to

the service in domain B.

Step 6: Service B makes a service request to service C using the access token.

Step 7,8: Service C returns the service response to service B, and service B

returns a composite service response to the requestor.

In Fig. 3.7, the delegation scheme runs on almost the same lines as those of Fig. 3.6,

which corresponds to Fig. 3.5, and is as follows.

Step 1: A secret credential is issued to the requestor by the IdP in domain C if

the requestor has not stored the credential to access resource C and is trusted.

That is to say, the CredentialIssuing sub-protocol in the solution is executed

between the IdP in domain C and the requestor.

Step 2: The requestor self-generates pseudonyms based on its stored credential

using the PseudonymGeneration sub-protocol in the solution. Then, it uses the

Signing–warrant sub-protocol to issue a delegation token with respect to the

self-generated pseudonym.

Step 3: The requestor makes a composite service request to service B.

Step 4: Service B uses the Delegation–Signing sub-protocol to sign a service

request to the resource in domain C. Because the credential is issued by the IdP

in domain C, service C can directly verify the signature produced by service B,

where IdP C may not involve the transactions and service C knows the public

keys of its IdP.

Step 5: Service C uses the Delegation–Verification sub-protocol to verify the

request. If the verification is successful, it returns a request result to service B.

Step 6: Service B forms composite results and returns them to the requestor.

For a delegation chain x1 → x2 → · · · → xn where the requestor is denoted by

x1, resource A is denoted by x2, and so on, the delegation solution works as above by

iterating delegation token issuance. Therefore, we describe in detail the delegation

token in the chain as follows:

{α, K Set}

72 Y. Zhang and J.-L. Chen

where α = α1 +· · ·+αn is the signature and α1 → α2 → · · · → αn is the signature

chain for the warrant mw which are respectively produced by x1 → x2 → · · · → xn ;

K Set is a list of pseudonyms, i.e., {PKeyx1
, PKeyxn1

, PKey = PKeyx1
+ PKeyx3

+

PKeyx4
· · · + PKeyxn1

}, where middle pseudonyms can be hidden.

In the above deployment, we use the relationship-focused framework and trust

model from WS-Federation. Requestors use stored credentials to reduce interaction

rounds, and enhance the controllability of identity transactions with self-generating

identities and self-issuing credentials.

3.7 Conclusions

In this paper, a practical delegation solution for universal identity management, as

well as a novel notion of a pseudonym-based signature scheme, is introduced. In

our proposal, the users prove the possession of valid credentials without interact-

ing with identity providers. Beyond user-centricity, our delegation solution also

allows for privilege delegation to improve the runtime performance of composite

services. As the natural certificate chains, the solution consists of two signature

schemes: a pseudonym-based signature scheme and a conventional warrant proxy sig-

nature scheme. The pseudonym-based signature scheme can be used to self-generate

pseudonyms, to prove the possession of credentials, and to achieve privacy based on

time-varying pseudonyms. The proxy signature scheme is used to delegate the sign-

ing capability where the proxy key includes the signature of warrants produced by the

signing protocol in the pseudonym-based signature scheme. Therefore, the model and

constructions will provide strong building blocks for the design and implementation

of universal identity management systems [41, 45].

References

1. Cameron K (2005) Laws of identity http://www.identityblog.com. May 2005
2. PRIME Consortium. Privacy and Identity Management for Europe (PRIME). http://www.

prime-project.eu
3. Identity-management. Liberty alliance project. http://www.projectliberty.org
4. Kaler C, Nadalin A (2003) Web services federation language.
5. Bhargav-Spantzel A, Camenisch J (2006) User Centricity: A Taxonomy and Open Issues. In:

The Second ACM Workshop on Digital Identity Management - DIM, 493–527.
6. Chaum D (1985) Security without identification: transaction systems to make big brother

obsolete. Communications of the ACM, 28(10): 1030–1044.
7. Chaum D, Evertse JH (1986) A secure and privacy-protecting protocol for transmitting personal

information between organizations. Advances in Cryptology-CRYPTO’86, p 118–167.
8. Damgard IB (1988) Payment systems and credential mechanisms with provable security against

abuse by individuals. Advances in Cryptology-CRYPTO’88, p 328–335
9. Chen LD (1995) Access with pseudonyms. Lecture Notes in Computer Science, 1029: 232–243

10. Lysyanskaya A, Rivest R, Sahai A (1999) Pseudonym systems. In: Selected Areas in Cryptog-
raphy, 6th Annual International, Workshop, SAC’99, p 184–199

http://www.identityblog.com.
http://www.prime-project.eu
http://www.prime-project.eu
http://www.projectliberty.org

3 Universal Identity Management 73

11. Camenisch J, Lysyanskaya A (2001) Efficient non-transferable anonymous multi-show cre-
dential system with optional anonymity revocation. In: Pfitzmann B (ed) EUROCRYPT 2001,
vol 2045 of LNCS, Springer Verlag, p 93–118

12. Camenisch J, Lysyanskaya A (2002) A signature scheme with efficient protocols. In: SCN
2002, vol 2576 of LNCS, p 268–289

13. Camenisch J, Lysyanskaya A (2004) Signature schemes and anonymous credentials from bilin-
ear maps. In: CRYPTO 2004, vol 3152 of LNCS, p 56–72

14. Belenkiy M, Chase M, Kohlweiss M (2008) Non-Interactive Anonymous Credentials. Theo-
retical Cryptography Conference (TCC) 2008. http:// eprint.iacr.org/2007/384.

15. Chase M, Lysyanskaya A (2006) On signatures of knowledge. In: Dwork C (ed) CRYPTO
2006, vol 4117 of LNCS, p 78C96

16. Belenkiy M, Camenisch J, Chase M, Kohlweiss M, Lysyanskaya A, Shacham H (2008) Dele-
gatable Anonymous Credentials. http://eprint.iacr.org/2008/428.

17. Camenisch J, Sommer D, Zimmermann R (2006) A General Certification Framework with
Applica-tions to Privacy-Enhancing Certificate Infrastructures. IFIP International Federation
for Information Processing, p 25–37

18. Mambo M, Usuda K, Okamoto E (1996) Proxy signatures: Delegation of the power to sign
mes-sages. IEICE Transaction on Fundamentals, vol. E79-A, no. 9, p 1338–1354.

19. Kim S, Park S, Won D (1997) Proxy signatures revisited. Proceedings of ICICS97, LNCS
1334, Springer-Verlag, p 223–232

20. Okamoto T, Tada M, Okamoto E (1999) Extended proxy signatures for smart card. Proceedings
of Information Security Workshop99, LNCS 1729. Springer-Verlag, p 247–258

21. Herranz J, Saez G (2004) Revisiting fully distributed proxy signature schemes. Proceedings of
Indocrypt04, LNCS 3348. Springer-Verlag, p 356–370

22. Fiat A, Shamir A (1986) How to prove yourself: Practical solutions to identification and signa-
ture problems. In: Odlyzko AM (ed) Proceedings of Crypto 1986, vol 263 of LNCS. Springer-
Verlag, p 186–194

23. Chaum D, van Heyst E (1991) Group signatures. In: Davies DW (ed) Proceedings of Eurocrypt
1991, vol 547 of LNCS. Springer-Verlag, p 257–265

24. Bellare M, Micciancio D, Warinschi B (2003) Foundations of Group Signatures: Formal Defin-
itions, Simplified Requirements, and a Construction Based on General Assumptions. Eurocrypt
03, LNCS 2656. Springer-Verlag, p 614–629

25. Boneh D, Boyen X (2004) Short Signatures without Random Oracles. Eurocrypt04, LNCS
3027. Springer-Verlag, p 56–73

26. Bellare M, Shi H, Zhang C (2005) Foundations of Group Signatures: The Case of Dynamic
Groups. In: CT C RSA05, LNCS 3376. Springer-Verlag, p 136–153

27. Delerablee C, Pointcheval D (2006) Dynamic Fully Anonymous Short Group Signatures.
Progress in Cryptology - VIETCRYPT 2006, Hanoi, Vietnam, p 193–210

28. Brickell E, Camenisch J, Chen LQ (2004) Direct anonymous attestation. Proceedings of the
ACM Conference on Computer and Communications Security, Washington, DC, p 132–145

29. Camenisch J (2006) Protecting (anonymous) credentials with the trusted computing groups
trusted platform modules, vo1.2. In: Proceedings of the 21st IFIP International Information
Security Confer-ence (SEC 2006)

30. Boneh D, Franklin M (2001) Identity-based encryption from the Weil pairing. In Proc. of
CRYPTO’01, vol 2139, p 213–229

31. Barreto P, Kim H, Bynn B, Scott M (2002) Efficient algorithms for pairing-based cryptosystems.
In Proc. CRYPTO’02, p 354–368

32. Mitsunari S, Sakai R, Kasahara M (2002) A new traitor tracing. IEICE Trans. Vol. E85-A,
No.2, p 481–484

33. Hess F (2002) Efficient identity based signature schemes based on pairings. SAC 2002, LNCS
2595, p 310–324

34. Zhang F, Kim K (2002) ID-based blind signature and ring signature from pairings. Advances
in Cryptology-Asiacrypt 2002.

http://eprint.iacr.org/2008/428

74 Y. Zhang and J.-L. Chen

35. Huang X, Mu Y, Susilo W, Zhang F, Chen X (2005) A short proxy scheme: efficient authentica-
tion in the ubiquitous world. In: EUC Workshops 2005, LNCS 3823, Berlin. Springer-Verlag,
p 480–489

36. MICROSOFT (2005) A technical reference for InfoCard v1.0 in Windows
37. Higgins Trust Framework, 2006. http://www.eclipse.org/higgins/.
38. Camenisch J, Herreweghen EV (2002) Design and implementation of the idemix anonymous

cre-dential system. Proceedings of the 9th ACM Conference on Computer and Communica-
tions, Security, p 21–30

39. Camenisch J, Gross T, Sommer D (2006) Enhancing Privacy of Federated Identity Management
Protocols. Proceedings of the 5th ACM workshop on Privacy in Electronic Society, p 67–72

40. IBM, Microsoft, Actional, BEA, Computer Associates, Layer 7, Oblix, Open Network, Ping
Identity, Reactivity, and Verisign. Web Services Trust Language (WS-Trust). February 2005.

41. Segev A, Toch E (2009) Context-Based Matching and Ranking of Web Services for Composi-
tion. IEEE Transactions on Service Computing, vol 2(3): 210–222

42. OASIS (2005) Assertions and Protocol for the OASIS Security Assertion Markup Language
(SAML) V2.0. OASIS Standard, March 2005.

43. Liberty Alliance Project (2003) Liberty ID-FF Protocols and Schema Specification. Version
1.2, November 2003. http://www.projectliberty.org/specs.

44. Gomi H, Hatakeyama M, Hosono S, Fujita S (2005) A Delegation Framework for Federated
Identity Management. Proceedings of the 2005 Workshop on Digital Identity Management, p
94–103

45. Zhang Y, Chen JL (2011) A Delegation Solution for Universal Identity Management in SOA.
IEEE Transactions on services computing, p 70–81

http://www.eclipse.org/higgins/
http://www.projectliberty.org/specs

Chapter 4

The Roadmap of Trust and Trust Evaluation
in Web Applications and Web Services

Lei Li and Yan Wang

Abstract In the 1980s and 1990s, the issue of trust in many aspects of life has drawn

much attention in a significant number of studies in social science. Nowadays, with

the development of Web applications, trust evaluation has become a significant and

important issue, especially when a client has to select a trustworthy one from a pool

of unknown service providers. An effective and efficient trust evaluation system is

highly desirable and critical to clients for identifying potential risks, providing objec-

tive trust results and preventing huge monetary losses.This research roadmap presents

an overview of the general structure of trust, the bases of trust and the concepts of

trust in different disciplines. Then the typical trust evaluation methods in each area of

Web applications, including e-commerce, P2P networks, multi-agent systems, rec-

ommendation systems, social networks and service-oriented computing, are briefly

introduced from technology, state of the art and scientific challenges standpoints.

This roadmap provides not only the necessary background for on-going research

activities and projects, but also the solid foundations for deciding on potential future

research on trust evaluation in broader contexts.

4.1 Introduction

In our daily life, there are many occasions when we have to trust others to behave as

they promised or as we expect them to do. For example, we trust a bus driver can take

us to our destination on time; we trust a doctor to conduct a physical examination

and check whether we have an illness; we trust a motor mechanic to find out whether

there is a problem in our car and then repair it; we trust a bank and deposit our

money. Each time when we trust, we have to put something at risk: our lives, our

L. Li (B) · Y. Wang
Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
e-mail: lei.li@outlook.com

Y. Wang
e-mail: yan.wang@mq.edu.au

A. Bouguettaya et al. (eds.), Advanced Web Services, 75
DOI: 10.1007/978-1-4614-7535-4_4,
© Springer Science+Business Media New York 2014

76 L. Li and Y. Wang

assets, our properties, and so on. On these occasions, we may use a variety of clues

and past experiences to believe in these individuals’ good intentions towards us and

decide on the extent to which we can trust them. This is the general procedure of

trust evaluation in daily occasions [36].

Nowadays, with the development of information communication technologies,

from time to time it is necessary to have some interactions with others on the Web.

For example, download some files from others, or purchase some products or services

from online e-commerce or e-service websites. In Web applications, when a client

intends to have an interaction selected from a large pool of service providers, in

addition to functionality, the trustworthiness of a service provider is a key factor in

service provider selection. This is due to the fact that any service client would like

to have transactions with reputable service providers so as to reduce the possibility

to be deceived. This makes trust evaluation a significant and important issue in Web

applications, especially when the client has to select one from unknown service

providers.

Conceptually, trust is the measure taken by one party of the willingness and ability

of another party to act in the interest of the former party in a certain situation [31].

If the trust value is in the range of [0, 1], it can be taken as the subjective probability

by which one party expects that another party can perform a given action [29].

The issue of trust has been actively studied in Peer-to-Peer (P2P) networks (e.g.,

[14, 30, 91]), which can be used for information-sharing systems (e.g., GNutella1).

In a P2P system, it is quite natural for a client peer to doubt if a serving peer can

provide the complete file prior to any download action, which may be quite time-

consuming and network bandwidth-consuming. Unlike some trust management sys-

tems in e-commerce (EC) or service-oriented environments (SOC), in the P2P trust

management system a requesting peer needs to inquire the trust data of a serving peer

(target peer) from other peers who may have transacted with the serving peer [30,

57, 91]. The computation of the trust level of the serving peer from the collected trust

ratings is then performed by the requesting peer rather than a central management

server, because of the decentralized architecture of the P2P system.

Unlike P2P information-sharing networks or the eBay2 reputation management

system where a binary rating system is used [91], in SOC environments a trust

rating is usually a value in the range of [0, 1] given by a service client [81, 85, 87],

representing the subjective belief of the service client on their satisfaction with a

service or a service provider. The trust value of a service or a service provider can

be calculated by a trust management authority based on the collected trust ratings

representing the reputation of the service or the service provider.

In general, in a trust management enabled system, service clients can provide

feedback and trust ratings after completed transactions. Based on the ratings, the

trust value of a service provider can be evaluated to reflect the quality of services in a

certain time period. This trust evaluation approach in service-oriented environments

is the focus of research works nowadays in service-oriented computing.

1 http://www.gnutella.com/
2 http://www.eBay.com/

http://www.gnutella.com/
http://www.eBay.com/

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 77

Effective and efficient trust evaluation is highly desirable and critical to service

clients for identifying potential risks, providing objective trust results and preventing

huge monetary loss [83].

In this chapter, the literature review on trust is organized as follows:

• Section 4.2 presents a general structure of trust, which provides a general global

picture of trust. With this structure, it is easy to start a preliminary theoretical

analysis of trust.

• Section 4.3 identifies the bases of trust, with which trust can be established from

a variety of diverse sources of trust-related information.

• Section 4.4 briefly introduces the concepts of trust defined in multiple disciplines,

including sociology, history, psychology, economics and so on.

• Section 4.5 focuses on trust evaluation models used in different areas of Web

applications, including e-commerce, P2P networks, multi-agent systems, recom-

mendation systems and social networks.

• Section 4.6 focuses on the typical trust evaluation methods used in service-oriented

computing.

• In Sect. 4.7, the above mentioned trust evaluation methods in Web applications are

categorized into different taxonomies with respect to trust evaluation techniques,

the structure of trust and the bases of trust respectively.

• Finally, Sect. 4.8 concludes our work in this chapter.

4.2 General Structure of Trust

The general structure of trust has been proposed in [55] and graphically represented

in Fig. 4.1. This structure provides a general global picture of trust, with which

professionals, scientists and even ordinary citizens can start a preliminary theoretical

analysis of trust. With primary trust and reflective trust as the horizontal axis, and

micro-social trust and macro-social trust as the vertical axis, this presentation creates

four spaces which correspond to four orthogonally placed forms of trust.

• Vertically, passing from the bottom half of Fig. 4.1 toward the top, we move from

micro-social trust (i.e., personal, private and interpersonal trust) toward macro-

social trust (i.e., professional, group and organizational trust).

• Horizontally, the left-hand side of Fig. 4.1 is characterized by trust as feelings,

either based on the interdependence between the self and other, or associated with

security or social cohesion [1]. As we move toward the right-hand part of Fig. 4.1,

trust becomes conceptualized and rationalized [1]. Trust in the right-hand part of

Fig. 4.1 is contractual, and is based on obligations and morality.

In other words, in the left-hand side we focus on primary trust (i.e., immediately

apprehended [preconceptual] forms of trust), while in the right-hand side trust is

established between the self and a stranger, an institutions or a kind of group (i.e.,

reflective trust [1]). However, once trust has been established, it transforms into

common knowledge and becomes taken-for-granted and commonly understood.

78 L. Li and Y. Wang

Fig. 4.1 General structure of trust

In contrast to the left-hand side of Fig. 4.1, this taken-for-grantedness arises from

reflective thinking. There is also a case whereby, as a result of an individual’s doubt

trust is brought back into discourse explicitly. When trust is explicitly verbalized,

it is no longer taken-for-granted and is partly or fully destroyed. It is necessary to

establish trust from the very beginning again.

4.2.1 Basic Trust

Now let us focus on the bottom left quadrant of Fig. 4.1, in which there is what

developmental psychologists describe as basic trust between a mother and her baby.

Basic trust is the first mark of an individual’s mental life, even before feelings of

autonomy and initiative develop [17]. Through the mutuality between a mother and

her baby, basic trust evolves through mutual somatic experiences and “unmistak-

able communication” that creates security and continuity. With the presupposition

that humans possess the capacity to make distinctions, the child, equipped with an

innate capacity for intersubjectivity, learns through actions, experiences and com-

munications to differentiate between the mental states of others, between feelings,

and between trustworthy and untrustworthy relations [73].

4.2.2 A Priori Generalized Trust

Moving to the second quadrant in the top left part of Fig. 4.1, we can see that a

priori generalized trust which is above all a fundamental psychosocial feeling, and

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 79

is instantaneously apprehended, quite often without the awareness of those concerned

[54]. Generally speaking, the top left quadrant contains trust which is characterized

by the kinds of social relations in a society where individuals have certain kinds of

social activities. Particularly, in a heterogeneous and complex society like ours, trust

is person-specific and content-specific [73]. In our society, during daily life we have

to deal with strangers all the time, but here we only deal with one aspect of a stranger

and not with the whole person. For example, we trust a motor mechanic to find out

whether there is a problem in our car and then repair it, but we don’t trust him/her

on anything else, such as conducting a physical examination and checking whether

we have an illness.

In this quadrant, somewhere more towards the intersection, we can place in-group

solidarity [11], which can be taken as a special form of trust. It includes the social

binding and bounding of close in-groups, such as the social cohesion and social ties

within family, friends, neighbors, coactivists, and other communities.

4.2.3 Context-Specific Trust

Now we focus on the third quadrant of Fig. 4.1, and this quadrant includes trust

resulting from a variety of forms, ranging from cooperation to audits, strategies,

calculations and so on. The typical form of trust located in this quadrant is context-

specific trust [56], which can be derived from contextual information.

In the computer science discipline, it is firstly pointed out in [56] that trust is

context sensitive: “Whilst I may trust my brother to drive me to the airport, I most

certainly would not trust him to fly the plane!” Generally, context is any information

characterizing the situation of an entity [76]. An entity, in turn, can be a person, a

place, or an object that is considered relevant to the interaction between a user and

an application, including the user and the application themselves [78].

A typical and simple context-specific trust evaluation process in SOC environ-

ments is as follows: in a trust management system, regarding a service client A who

has never interacted with a service provider B in the past, before making the decision

to have an interaction with B, A asks other clients what are their trust ratings for B

under the target context required by A. Then the trust from A to B will be established

only if the weighted average of the trust ratings from other entities is larger than a

threshold, where the weights of trust ratings are determined based on the similarity

of the context of a trust rating and the target context required by A [66].

4.2.4 Inner Dialogicality

Finally, we arrive at the bottom right quadrant of Fig. 4.1, and in this quadrant we can

place inner dialogicality [2]. By inner dialogicality, we mean the capacity of humans

to carry out internal dialogues (i.e., dialogues within the self). For example, it could

80 L. Li and Y. Wang

include evaluations of one’s own and others’ past experiences and present conduct,

which reflects personal issues and predicts the future conduct. Inner dialogues include

not only self-confidence but also self-doubt [55]. With inner dialogues, individuals

can develop an awareness of how, where, when and why they can trust or have

confidence in specific others (or in themselves).

With the proposed general structure of trust, any form of trust should fall into one

of these four quadrants. As the forms of trust in the same quadrant have the similar

properties, when we start to analysis a new form of trust, it is possible to begin the

research with analyzing the evaluation approaches for other forms of trust in the same

quadrant and then determine the corresponding evaluation approaches for the new

form of trust.

4.3 Bases of Trust

In the proposed general structure of trust, there are a lot of forms of trust. But, how

to establish trust? Research on identifying the bases of trust attempts to establish the

conditions which lead to the emergence of trust, including psychological, social, and

organizational factors that influence individuals’ expectations about others’ trustwor-

thiness and their willingness to behave trustworthily during an interaction [1, 32].

The bases of trust are significant to understand trust and measure trust in computer

science.

4.3.1 Dispositional Trust Establishment

Individuals behave differently in their general predisposition to trust different people

[32]. To explain the origins of such dispositional trust, Rotter [69] proposed that indi-

viduals tend to build up general trustworthiness about other people from their early

trust-related experiences (e.g., the basic trust proposed in Sect. 4.2.1). In addition, we

usually assume that an individual has a relatively stable personality characteristic [69]

in a certain situation, i.e., a relatively stable dispositional trust in a certain situation.

However, as the dispositional trust is related to individuals’ personal characteristic,

it is usually hard to estimate its value directly.

4.3.2 History-Based Trust Establishment

In the literature, it has been pointed out that individuals’ willingness to engage

in trusting others is largely a history dependent process [6]. Interactional histories

provide decision makers with useful trust information on the estimation of others’

dispositions, intentions and motivations. With the assumption of a relatively stable

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 81

personality characteristic, this historical information also provides a basis for making

predictions about others’ future behaviors.

Interactional histories have a significant effect on two psychological facets of trust

judgment.

• First, individuals’ estimations about others’ trustworthiness depend on their prior

expectations about others’ behaviors.

• Second, these expectations vary with subsequent experience, which either validates

or discredits the expectations.

In this regard, history-based trust can be taken as an important basis for establishing

knowledge-based or personalized trust [35].

For example, in [12], with personalized weights on different transaction attributes

introduced by a service client, the trust value of a service provider can be calculated

from a collection of his/her service invocation history records.

Personalized knowledge about interaction history can provide important infor-

mation for trust estimation. However, from time to time such knowledge is hard to

obtain. In most situations, it is impossible for decision makers to accumulate sufficient

knowledge about the potential individuals with whom they would like to transact.

As a consequence, a variety of substitutes for such direct personalized knowledge

about interaction history have to be utilized [13] and many other bases of trust have

to be introduced.

4.3.3 Third Parties as Conduits of Trust

Considering the importance of personalized knowledge about interaction history

regarding others’ trustworthiness and its difficulty to obtain, third parties can be

introduced as conduits of trust because of their diffusion of trust-related information.

In our daily life, the most common examples of using third parties as conduits

of trust are gossip and word-of-mouth. These ways can provide a valuable source

of second-hand knowledge about others [8], but the effects of these ways on trust

estimations are complex and do not always have positive effects on the estimation

of others’ trustworthiness. That is because third parties usually tend to disclose

only partial information about others [8]. In particular, when an individual has a

strong relation to a prospective trustee, third parties usually prefer to convey the

information which they believe the individual wants to hear, i.e., the information

which strengthens the tie between third parties and the individual [32]. This will

increase the certainty about the trustee’s trustworthiness. Thus, in this situation,

third parties tend to amplify such trust.

Third parties also play an important role in the development and diffusion of trust

in social networks [79]. When there is no sufficient knowledge or interaction history

available, individuals can turn to third parties for transferring their well-established

trust relationships. This provides a base of trust which will be validated or discredited

with subsequent experience.

82 L. Li and Y. Wang

4.3.4 Category-Based Trust Establishment

Category-based trust refers to trust estimation based on the information regarding a

trustee’s membership in a social or an organizational category. For example, we can

take gender, race or age as a social category to establish the category-based trust.

This category information usually unknowingly influences others’ estimations about

the trustee’s trustworthiness.

The theoretical foundation of category-based trust is established from the fact that

due to the cognitive consequences of categorization and ingroup bias, individuals

tend to attribute positive characteristics such as cooperativeness and trustworthiness

to other ingroup members [7]. As a result, individuals can establish a kind of deper-

sonalized trust (i.e., category-based trust) on other ingroup members only based on

the awareness of their shared category membership.

As pointed out in [70], in SOC environments, a service provider inherits by default

the reputation of a social category it belongs to, especially when direct information

about personal interactions with the service provider is lacking. In fact, this category-

based trust is evaluated based on the trustworthiness of other members in this social

category, which has already been known to the service client.

4.3.5 Role-Based Trust Establishment

Role-based trust focuses on trust estimation based on the knowledge that a trustee

occupies a particular role in an organization rather than that a truster has the spe-

cific knowledge about the trustee’s dispositions, intentions and motivations. To some

extent, it is believable that technically competent role performance is usually aligned

with corresponding roles in organizations [3]. For example, in the case of vehicle

maintenance, we usually trust a motor mechanic to find out whether there is a prob-

lem with the car. Therefore, individuals can establish a kind of trust based on the

knowledge of role relations, even without personalized knowledge or interaction

history.

Role-based trust is established from the fact that there are some prerequisites to

occupy a role in an organization, such as the training and socialization processes

that role occupants have undergone, and their intentions to ensure their technically

competent role performance.

Role-based trust can also be quite vulnerable, especially during organizational

crises or when novel situations occur which confuse organizational roles or break

down role-based interactions.

4.3.6 Rule-Based Trust Establishment

Both formal and informal rules capture much of the knowledge about tacit under-

standings regarding transaction behaviors, interactional routines, and exchange

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 83

practices [53]. Formal rules are determined by a trust management authority to estab-

lish trust between truster and trustee. For example, with the help of PayPal3, a buyer

can trust an unknown seller for a certain transaction. In contrast, informal rules

are not explicitly determined by any trust management authority. Instead, they are

formed by tradition, religion or routines. For example, in academic environments,

early career researchers usually trust senior researchers to help them and guide their

research path.

Rule-based trust is estimated not on a conscious calculation of consequences, but

rather on shared understandings regarding rules of appropriate behaviors. Regarding

the effects of rules on individuals’ self-perceptions and expectations about other

participants in a social network, rules can create and sustain high levels of trust

within the social network [53].

4.4 Concept of Trust in Multiple Disciplines

Complex social phenomena like trust cannot be properly understood from the per-

spective of a single discipline or in separation from other social phenomena [55].

Although considerable attention to the problem of defining trust has been afforded

[32], as it is understandable that a single researcher cannot master all the knowledge

related to trust in all related disciplines, thus a concise and universally accepted def-

inition of trust has remained elusive, and the concept of trust is usually based on

analysis from the viewpoint of a single discipline, as discussed below.

From the perspective of sociology and history, according to Seligman [72], “trust

enters into social interaction in the interstices of systems, when for one reason or

another systematically defined role expectations are no longer viable”. If people play

their roles according to role expectations, we can safely conduct our own transac-

tion accordingly. The problem of trust emerges only in cases where there is “role

negotiability”, i.e., there is “open space” between roles and role expectations [72].

Seligman [72] also points out that trust is a modern phenomenon. What might

appear as trust in premodern societies was nothing but “confidence in well-regulated

and heavily sanctioned role expectations”. Modernity saw the rise of individualism

and the proliferation of societal roles. There was thus a greater degree of negotiability

of role expectations and a greater possibility for role conflicts, and this resulted in a

greater potential for the development of trust in modern society.

From the perspective of sociology, Coleman [10] proposes a four-part definition

of trust.

• Placement of trust allows actions that otherwise are not possible, i.e., trust allows

actions to be conducted based on incomplete information on the case in hand.

• If the person in whom trust is placed (i.e., a trustee) is trustworthy, then the trustor

will be better off than if s/he had not trusted. Conversely, if the trustee is untrust-

worthy, then the trustor will be worse off than if s/he had not trusted.

3 http://www.paypal.com.au/

http://www.paypal.com.au/

84 L. Li and Y. Wang

• Trust is an action that involves a voluntary transfer of resources (e.g., physical,

financial, intellectual, or temporal) from the truster to the trustee with no real

commitment from the trustee.

• A time lag exists between the extension of trust and the result of the trusting

behavior.

This definition allows for the discussion of trust behaviors, which is useful in

reasoning about human-computer trust and trust behaviors in social institutions.

From the perspective of psychology, trust is the belief in the person who you trust

to do what you expect. Individuals in relationships characterized by high levels of

social trust are more apt to exchange information and to act with benevolence toward

others than those in relationships lacking trust. Misztal [64] points out three basic

things that trust does in the lives of people: It makes social life predictable, creates

a sense of community, and makes it easier for people to work together.

From the perspective of economics, trust is often conceptualized as reliability in

transactions [55].

In all cases, trust involves many heuristic decision rules, requiring the trust man-

agement authority to handle a lot of complex information with great effort in rational

reasoning [9].

4.5 Trust Evaluation in Web Applications

The issue of trust has been studied in some Web application fields.

4.5.1 Trust Evaluation in E-Commerce Environments

Trust is an important issue in e-commerce (EC) environments. At eBay (see Footnote

2), after each transaction, a buyer can give feedback with a rating of “positive”,

“neutral” or “negative” to the system according to the service quality of the seller.

eBay calculates the feedback score S = P − N , where P is the number of positive

ratings left by buyers and N is the number of negative ratings. The positive feedback

rate R = P
P+N

(e.g., R = 99.1 %) is then calculated and displayed on web pages.

This is a simple trust management system providing valuable trust information to

buyers.

In [97], the Sporas system is introduced to evaluate trust for EC applications based

on the ratings of transactions in a recent time period. In this method, the ratings of later

transactions are given higher weights as they are more important in trust evaluation.

The Histos system proposed in [97] is a more personalized reputation system com-

pared to Sporas. Unlike Sporas, the reputation of a seller in Histos depends on who

makes the query, and how that person rated other sellers in the online community. In

[75], Song et al. apply fuzzy logic to trust evaluation. Their approach divides sellers

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 85

into multiple classes of trust ranks (e.g., a 5-star seller, or a 4-star seller). In [86],

Wang and Lin present some reputation-based trust evaluation mechanisms (such as

transaction-specific trust, raters’ credibility and the social relationship between a

rater and ratee) to more objectively depict the trust level of sellers on forthcoming

transactions and the relationship between interacting entities.

4.5.2 Trust Evaluation in P2P Information Sharing Networks

The issue of trust has been actively studied in Peer-to-Peer (P2P) information sharing

networks as a client peer needs to know prior to download actions which serving

peer can provide complete files. In [14], Damiani et al. propose an approach for

evaluating the trust of peers through a distributed polling algorithm and the XRep

protocol before initiating any download action. This approach adopts a binary rating

system and is based on the Gnutella (see Footnote 1) query broadcasting method.

EigenTrust [30] adopts a binary rating system as well, and aims to collect the local

trust values of all peers to calculate the global trust value of a given peer. Some other

P2P studies also adopted the binary rating system. In [91], Xiong and Liu propose a

PeerTrust model which has two main features. First, they introduce three basic trust

parameters (i.e., the feedback that a peer receives from other peers, the total number

of transactions that a peer performs, the credibility of the feedback sources) and two

adaptive factors in computing the trustworthiness of peers (i.e., transaction context

factor and the community context factor). Second, they define some general trust

metrics and formulas to aggregate these parameters into a final trust value. In [57],

Marti and Garcia-Molina propose a voting reputation system that collects responses

from other peers on a target peer. The final trust value is calculated by aggregating

the values returned by responding peers and the requesting peer’s experience with

the target peer. In [100], Zhou and Hwang discover a power-law distribution in peer

feedbacks, and develop a trust system with a dynamical selection on a small number

of power nodes that are the most trustworthy in the system.

4.5.3 Trust Evaluation in Multi-Agent Systems

Trust has also drawn much attention in the field of multi-agent systems. In [77], Teacy

et al. introduce the TRAVOS system (Trust and Reputation model for Agent-based

Virtual OrganisationS) which calculates an agent’s trust on an interaction partner

using probability theory, taking into account the past interactions between agents.

In [21], Griffiths proposes a multi-dimensional trust model which allows agents

to model the trust value of others according to various criteria. In [70], Sabater

and Sierra propose a model discussing trust development between groups. When

calculating the trust from individual A to individual B, a few factors are considered,

e.g., the interaction between A and B, the evaluation of A’s group to B and B’s group,

86 L. Li and Y. Wang

and A’s evaluation to B’s group. In [15], a community-wide trust evaluation method

is proposed where the final trust value is computed by aggregating the ratings (termed

as votes in [15]) and other aspects (e.g., the rater’s location and connection medium).

In addition, this approach computes the trust level of an assertion (e.g., trustworthy

or untrustworthy) as the aggregation of multiple fuzzy values representing the trust

resulting from human interactions. In [26], during trust evaluation, the motivations

of agents and the dependency relationships among them are also taken into account.

4.5.4 Trust-Aware Recommendation Systems

Conventional recommender systems mainly employ the information filtering tech-

niques for making recommendations. In such systems, collaborative filtering

approaches [25] or content-based filtering approaches [16, 65] are used for mak-

ing recommendations, which collect ratings from the users with similar profiles or

the items similar to the one a user liked in the past, respectively. However, these

conventional approaches take users individually and do not address the trustworthi-

ness of recommendations directly. In addition, as pointed out in [71], the sparsity of

data in recommender systems has been an outstanding problem, which makes the

filtering techniques less effective. Nevertheless, the ultimate goal of recommender

systems is to provide high quality and trustworthy recommendations that can very

likely be accepted by users. To this end, using the reviews/recommendations from

social networks has drawn much attention in recent studies [49, 50].

Social influence occurs when one’s emotions, opinions or behaviours are affected

by others.4 As indicated in Social Psychology [5, 18, 93], in the real society, a person

prefers the recommendations from trusted friends. In addition, based on statistics,

Sinha and Swearingen [74] and Bedi et al. [4] have demonstrated that given a choice

between the recommendations from trusted friends and those from recommender

systems, in terms of quality and usefulness, trusted friends’ recommendations are

more preferred.

Social networks are important to recommender systems due to the data sparsity

problem [49, 71] and the scenarios in real life that people turn to friends and friends’

friends for soliciting opinions [5, 93], raising the need of trust propagation/inference

in social networks (i.e., evaluating the trust between two non-adjacent participants).

Earlier studies have adopted the averaging strategies [19], multiplication strategies

[42, 82], or probabilistic approaches [33, 34] based on the trust values between

adjacent participants. However, they ignore contextual factors that influence trust

relations and trust inference (e.g., a person’s recommendation role [89] or the social

intimacy between people [46]), and/or simply take the confidence to other people as

a probabilistic value without discussing from where the confidence comes. Most of

the existing studies usually model their approaches intuitively, without following the

principles from Social Science or Social Psychology. In some recent work [46–48],

4 http://qualities-of-a-leader.com/personal-mbti-type-analysis/

http://qualities-of-a-leader.com/personal-mbti-type-analysis/

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 87

following the principles in Social Psychology [1, 62], both the recommendation role

resulting from social positions (e.g., a professor) and expertise, and trust and social

intimacy degree between adjacent participants in social networks have been taken

into account.

4.5.5 Trust Evaluation in Social Networks

The studies of social network properties can be traced back to 1960s when the

small-world characteristic in social networks was validated by Milgram [61] (i.e., the

average path length between two Americans was found to be about 6.6 hops). In recent

years, sociologists and computer scientists investigated the characteristics of popular

online social networks (OSNs) [63] (e.g., Facebook,5 MySpace6 and Flickr7), and

validated the small-world and power-law characteristics (i.e., the probability that a

node has a degree k is proportional to k−r , r > 1).

In recent years, the new generation of social network based web application sys-

tems has drawn the attention from both academia and industry. The study in [45]

has pointed out that it is a trend to build up social network based web applications

(e.g., e-commerce or online recruitment systems). In real applications, according to

a survey on 2600 hiring managers in 2008 by CareerBuilder (careerbuilder.com, a

popular job hunting website), 22 % of those managers used social networking sites

to manually investigate potential employees. The ratio increased to 45 % in June

2009 and 72 % in January 2010. In Oct. 2011, eBay (see Footnote 2) announced their

strategic plan to deepen the relationship with Facebook (see Footnote 5) for creating

a new crop of e-commerce applications with social networking features, integrating

both their e-commerce platform and social networking platform seamlessly.8

In the literature, the issue of trust becomes increasingly important in social net-

works. In [82], Walter et al. identify that network density, the similarity of prefer-

ence between agents, and the sparseness of knowledge about the trustworthiness of

recommendations are crucial factors for trust-oriented recommendations in social

networks. However, the trust-oriented recommendation can be attacked in various

ways, such as sybil attack, where the attacker creates a potentially unlimited number

of identities to provide feedback and increase trust level. In [95], Yu et al. present

SybilGuard, a protocol for limiting the corruptive influences of sybil attacks, which

depends on the established trust relationship between users in social networks.

Trust propagation, during which the trust of a target agent can be estimated from

the trust of other agents, is an important problem in social networks. In [20], Golbeck

and Hendler present trust propagation algorithms based on binary ratings. In social

5 http://www.facebook.com
6 http://myspace.com
7 http://flickr.com
8 Refer to the Reuters news “eBay and Facebook unveil e-commerce partnership” at http://www.
reuters.com/article/2011/10/12/ebay-facebook-idUSN1E79B22Y20111012.

http://www.facebook.com
http://myspace.com
http://flickr.com
http://www.reuters.com/article/2011/10/12/ebay-facebook-idUSN1E79B22Y20111012
http://www.reuters.com/article/2011/10/12/ebay-facebook-idUSN1E79B22Y20111012

88 L. Li and Y. Wang

networks, many more non-binary trust propagation approaches have been proposed.

In [22], Guha et al. develop a framework dealing with not only trust propagation

but also distrust propagation. In [24], Hang et al. propose an algebraic approach to

propagating trust in social networks, including a concatenation operator for the trust

aggregation of sequential invocation, an aggregation operator for the trust aggrega-

tion of parallel invocation, and a selection operator for trust-oriented multiple path

selection. In [80], Victor et al. present a trust propagation model, which takes into

account fuzzified trust, fuzzified distrust, unavailable trust information and contra-

dictory trust information simultaneously.

4.6 Trust Evaluation in Service-Oriented Environments

In recent years, Service-Oriented Computing (SOC) has emerged to be an increas-

ingly important research area attracting attention from both the research and industry

communities [51, 67]. In SOC applications, various services are provided to clients

by different providers in a loosely-coupled environment. In such context, a service

can refer to a transaction, such as selling a product online (i.e., the traditional online

services), or a functional component implemented by Web service technologies [42].

When a client looks for a service from a large set of services offered by different

service providers, in addition to functionality, the reputation-based trust level of a

service provider is a very important concern from the view point of the service client

[29, 42, 44, 51]. It is also a critical task for the trust management authority to be

responsible for maintaining the list of reputable and trustworthy services and service

providers, and making these information available to service clients [67].

In general, in a trust management mechanism enabled system, service clients can

provide feedback and trust ratings after transactions. Then, the trust management

system can calculate the trust value based on collected ratings reflecting the quality

of recent transactions, with more weights assigned to later transactions [37, 83]. The

trust value can be provided to service clients by publishing it on web or responding

to their requests [37, 43]. An effective and efficient trust management system is

highly desirable and critical for service clients to identify potential risks, providing

objective trust results and preventing huge financial loss [29].

In the literature, the issue of trust has received much attention in the field of SOC.

In [81], Vu et al. present a model to evaluate service trust by comparing the advertised

service quality and the delivered service quality. If the advertised service quality is

as good as the delivered service quality, the service is reputable. In [87], Wang et al.

propose some trust evaluation metrics and a formula for trust computation with which

a final trust value is computed. In addition, they propose a fuzzy logic based approach

for determining reputation ranks that particularly differentiate the service periods of

new and old (long-existing) service providers. The aim is to provide incentives to

new service providers and penalize those old service providers with poor service

quality. In [52], Malik and Bouguettaya propose a set of decentralized techniques

aiming at evaluating reputation-based trust with the ratings from clients to facilitate

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 89

the trust-oriented selection and composition of Web services. In [12], Conner et al.

present a trust model that allows service clients with different trust requirements to use

different weight functions that place emphasis on different transaction attributes. This

customized trust evaluation provides flexibility for service clients to have different

trust values from the same feedback data.

Now let us introduce some important topics on trust evaluation in service-oriented

environments.

4.6.1 Trust Vector and Its Evaluation

In the literature, in most existing trust evaluation models [14, 30, 44, 77, 81, 85, 87,

91, 97], a single final trust level (FTL) is computed to reflect the general or global

trust level of a service provider accumulated in a certain time period (e.g., in the

latest 6 months). This FTL may be presumably taken as a prediction of trustworthi-

ness for forthcoming transactions. Single-trust-value approaches are easily adopted

in trust-oriented service comparison and selection. However, a single trust value can-

not preserve the trust features well, e.g., whether and how the trust trend changes.

Certainly, a full set of trust ratings can serve for this purpose, but it is usually a large

dataset as it should cover a long service period. A good option is to compute a small

dataset to present a large set of trust ratings and well preserve its trust features.

In [37, 43], Li and Wang propose a trust vector with three values, including final

trust level (FTL), service trust trend (STT) and service performance consistency

level (SPCL), to depict a set of trust ratings. In addition to FTL, the service trust

trend indicates whether the service trust ratings are becoming worse or better. STT is

obtained from the slope of a regression line that best fits the set of ratings distributed

over a time interval. The service performance consistency level indicates the extent

to which the computed STT fits the given set of trust ratings. However, the computed

trust vector can represent the set of ratings well only if these ratings imply consistent

trust trend changes and are all very close to the obtained regression line.

In a more general case with trust ratings for a long service history, multiple time

intervals (MTI) have to be determined, within each of which a trust vector can be

obtained and can represent well all the corresponding ratings. In [41], Li and Wang

propose three trust vector based MTI analysis approaches, which are better than the

two existing boundary included MTI algorithms in [83]. The proposed bisection-

based boundary excluded greedy MTI algorithm has a lower time complexity, and

it is much faster than any of the other four MTI algorithms. The proposed boundary

mixed optimal MTI analysis algorithm can guarantee the representation of a large

set of trust ratings with a minimal set of values while highly preserving the trust

features. Therefore, a small set of data can represent well a large set of trust ratings

with well preserved trust features.

In the literature, there exist some other approaches using trust vectors, with dif-

ferent focuses. In [68], Ray and Chakraborty propose a trust vector that consists of

the experience of a truster about a trustee, the knowledge of the truster regarding the

90 L. Li and Y. Wang

trustee for a particular context, and the recommendation of other trustees. The focus

of this model is how to address these three independent aspects of trust in evalua-

tions. In [99], Zhao and Li propose a method using a trust vector to represent the

directed link with a trust value between two peers. The trust vector includes a truster,

a trustee and the trust value that the truster gives to the trustee. In [85], Wang and Lim

propose an approach to evaluate situational transaction trust in e-commerce environ-

ments, which binds a new transaction with the trust ratings of previous transactions.

Since the situational trust vector includes service specific trust, service category trust,

transaction amount category specific trust and price trust [84], it can deliver more

objective transaction specific trust information to buyers and prevent some typical

attacks.

4.6.2 Trust Evaluation in Composite Services

To satisfy the specified functionality requirement, a service may have to invoke

other services forming composite Web services with complex invocations and trust

dependency among services and service providers [60]. Meanwhile, given a set of

various services, different compositions may lead to different service structures. In

[58, 59], Medjahed et al. present some frameworks and algorithms for automatically

generating composite services from specifications and rules. Although these certainly

enrich the service provision, they greatly increase the computation complexity and

thus make trustworthy service selection and discovery a very challenging task.

In real applications, the criteria of searching services should take into account

not only functionalities but also other properties, such as QoS (quality of service)

and trust. In the literature, a number of QoS-aware Web service selection mecha-

nisms have been developed, aiming at QoS improvement in composite services [23,

90, 98]. In [98], Zeng et al. present a general and extensible model to evaluate the

QoS of composite services. Based on their model, a service selection approach has

been introduced using linear programming techniques to compute optimal execution

plans for composite services. The work in [23] addresses the selection and composi-

tion of Web services based on functional requirements, transactional properties and

QoS characteristics. In this model, services are selected in a way that satisfies user

preferences, expressed as weights over QoS and transactional requirements. In [90],

Xiao and Boutaba present an autonomic service provision framework for establish-

ing QoS-assured end-to-end communication paths across domains. Their algorithms

can provide QoS guarantees over domains. The above works have their merits in

different aspects. However, none of them has taken parallel invocation into account,

which is fundamental and one of the most common existing invocations in composite

services [60, 96].

Menascé [60] adopts an exhaustive search method to measure service execution

time and cost involving probabilistic, parallel, sequential and fastest-predecessor-

triggered invocations. However, the algorithm complexity is exponential. Yu et al.

[96] study the service selection problem with multiple QoS constraints in composite

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 91

services, and propose two optimal heuristic algorithms: the combinatorial algorithm

and the graph-based algorithm. The former one models the service selection as a

multidimension multichoice 0-1 knapsack problem. The latter one can be taken as a

multiconstraint optimal path problem. Nevertheless, none of these works addresses

any aspect of trust.

As pointed in [94], in richer service environments such as SOC or e-commerce, a

rating in [0, 1] is more suitable. In [92], Xu et al. propose a reputation-enhanced QoS-

based Web service discovery algorithm for service matching, ranking and selection

based on existing Web service technologies. Malik and Bouguettaya [52] propose a

set of decentralized techniques aiming at evaluating reputation-based trust with the

ratings from peers to facilitate trust-based selection and composition of Web services.

4.6.3 Subjective Trust Evaluation

Conceptually, if the trust value is in the range of [0,1], it can be taken as the subjective

probability by which, one party expects that another party can perform a given action

[29].

In [28], Jøsang describes a framework for combining and assessing subjective

ratings from different sources based on Dempster-Shafer belief theory, which is a

generalization of the Bayesian theory of subjective probability. Wang and Singh

[88] set up a bijection from subjective ratings to trust values with a mathematical

understanding of trust in a variety of multiagent systems. However, their models

use either a binary rating (positive or negative) system or a triple rating (positive,

negative or uncertain) systems that are more suitable for security-oriented or P2P

file-sharing trust management systems.

Considering service invocation structures in composite services, in [38] Li and

Wang propose a global trust evaluation approach, in which each rating is in the range

of [0, 1]. However, this approach has not taken the subjective probability property

of trust into account. In [42], Li et al. propose a Bayesian inference based subjec-

tive trust evaluation approach which aggregates the subjective ratings from clients.

Nevertheless, this approach still has some drawbacks. Firstly, it assumes that the trust

ratings of each service component conform to a normal distribution, which is contin-

uous. However, trust ratings adopted in most existing rating systems (see Footnote

2)9,10 are discrete numbers. Thus, they cannot conform to a continuous distribution.

Secondly, the proposed subjective probability approach (Bayesian inference) is to

evaluate the trust values of service components, which is not used in the global trust

evaluation of composite services. Therefore, although service invocation structures

have been taken into account, the global trust evaluation of composite services does

not keep the subjective probability property of trust. As in most existing rating sys-

tems (see Footnotes 2, 9 and 10) trust ratings are discrete numbers, the numbers of

9 http://www.epinions.com/
10 http://www.youtube.com/

http://www.epinions.com/
http://www.youtube.com/

92 L. Li and Y. Wang

the occurrences of all ratings of each service component conform to a multinomial

distribution [39]. Hence, in [39] Li and Wang propose a subjective trust estimation

approach for service components based on Bayesian inference, which can aggregate

the non-binary discrete subjective ratings given by service clients and keep the sub-

jective probability property of trust ratings and trust results. Although the joint sub-

jective probability approach proposed in [39] considers the trust dependency between

service components caused by direct invocations, it does not take into account the

composition of trust dependency, which is caused by indirect invocations in compos-

ite services. To solve this problem, in [40], on the basis of trust dependency caused

by direct invocations, Li and Wang propose a SubjectivE probabiLity basEd deduC-

TIVE (SELECTIVE) approach to evaluate the subjective global trustworthiness of a

composite service. All these processes follow subjective probability theory and keep

the subjective probability property of trust in evaluations.

4.7 Trust Evaluation Taxonomy

Trust evaluation is based on the trusters’ knowledge of trust, which is only in

the trusters’ minds. This makes the analysis process highly human-dependent

and therefore prone to errors. Knowledge of trust can be abstract/general, or

domain/application specific, etc. From different viewpoints, the trust evaluation

approaches in Web applications (e.g., the ones presented in Sect. 4.5) can be cat-

egorized into different taxonomies as follows.

4.7.1 Trust Evaluation Technique Based Taxonomy

Similar to the taxonomy in [15, 83], we can categorize the above mentioned trust

evaluation approaches in Web applications as follows according to their computation

techniques. Some approaches may correlate to more than one category. Please refer

to Table 4.1 for details.

• Category 1: In this category, to evaluate the trust value it adopts the approach of

calculating the summation or weighted average of ratings, like the models in [15,

21, 85, 87, 91, 97].

In addition, based on this additive approach, a few studies address how to compute

the final trust value by considering appropriate metrics. For example,

– later transactions are more important [97], in which the ratings from later trans-

actions are assigned larger weights;

– the evaluation approach should provide incentive to consistently good quality

services and punish malicious service providers [87, 91].

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 93

Table 4.1 Trust evaluation approaches under trust evaluation technique based taxonomy

Category 1 Category 2 Category 3 Category 4 Category 5

[12]
√

[15]
√ √

[20]
√

[21]
√

[22]
√

[24]
√

[28]
√

[39]
√

[52]

[77]
√

[80]
√

[82]
√

[85]
√

[87]
√ √

[91]
√

[95]
√

[97]
√ √

[100]
√

– Some other studies also consider context factors, e.g., the new transaction

amount and service category [85], the rater’s profile and location [15], or the

relationship between the rater’s group and the ratee [21].

• Category 2: This category addresses the subjective property of trust for trust rating

aggregation, e.g., the work in [28, 39], where subjective probability theory [27] is

adopted in trust evaluation.

• Category 3: The approaches in this category (e.g., [77]) adopt Bayesian systems,

which take binary ratings as input and compute reputation scores by statistically

updating beta probability density functions (PDF).

• Category 4: This category uses flow models (or network structures), e.g., in [12,

20, 22, 24, 80, 82, 95, 97, 100], which compute the trust of a target through some

intermediate participants and the trust dependency between them.

• Category 5: While each of the above categories calculates a crisp value, the last

category adopts fuzzy models, e.g., in [15, 87], where membership functions are

used to determine the trustworthiness of targets.

4.7.2 Trust Structure Based Taxonomy

According to the general structure of trust described in Sect. 4.2, the trust evaluation

approaches in Web applications (e.g., the ones presented in Sect. 4.5) can be cate-

gorized into the first quadrant of Fig. 4.1. This is not a big surprise since each trust

94 L. Li and Y. Wang

evaluation approach in Web applications focuses on trust in a specific environment

(e.g., e-commerce, P2P networks, service-oriented computing, multi-agent systems

or social networks), and reflective and macro-social trust belongs to the first quadrant.

In contrast, the second and third quadrants focus on primary (taken-for-granted)

trust, and there is no necessity to have any trust evaluation approach in these quad-

rants. The fourth quadrant focuses on self trust evaluation.

4.7.3 Trust Bases Based Taxonomy

According to the bases of trust proposed in Sect. 4.3, the trust evaluation approaches

presented in Sect. 4.5 can be analyzed as follows to find out which base of trust is

adopted in each trust evaluation approach. Some approaches may be based on more

than one bases of trust. Please refer to Table 4.2 for details.

Table 4.2 Trust evaluation approaches under trust bases base taxonomy

Dispositional History- Third Parties Category- Role- Rule-

based as Conduits based based based

[12]
√

[14]
√

[15]
√

[20]
√

[21]
√

[22]
√

[24]
√

[26]
√ √ √

[28]
√ √

[30]
√

[52]
√

[57]
√

[70]
√ √ √

[75]
√

[77]
√ √

[80]
√

[81]
√

[82]
√

[85]
√

[86]
√ √

[87]
√ √

[91]
√

[95]
√

[97]
√

[100]
√ √

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 95

• Dispositional Trust focuses on the personality of a truster, with the assumption of

a relatively stable personality characteristic, like the model in [77].

• History-based Trust is the most widely adopted trust base in trust evaluation. For

example, it has been taken into account in [12, 14, 26, 30, 52, 57, 70, 75, 81,

85–87, 91, 97, 100].

• Third Parties as Conduits of Trust is another widely adopted trust base to evaluate

trust. For example, it has been adopted by the models in [20, 22, 24, 26, 28, 70,

77, 80, 82, 95, 100].

• Category-based Trust addresses the information regarding a trustee’s membership

in a social or organizational category, e.g., in [70].

• Role-based Trust uses the knowledge that a trustee occupies a particular role in

the organization, e.g., the work in [15, 26, 86].

• Rule-based Trust specifies formal or informal rules, which can determine trust,

like the models in [21, 28, 87].

4.8 Conclusions

This chapter provides a general overview of the research studies on trust and trust

evaluation. Conceptually, we present the general structure of trust, the bases of trust

and the concepts of trust in different disciplines. The general structure of trust presents

a general cross-disciplinary analysis of trust, and provides a general picture contain-

ing all kinds of trust. The bases of trust illustrate what leads to the emergence of trust.

The concepts of trust present different aspects of trust from the different viewpoints

of different disciplines.

In addition, the typical trust evaluation methods are introduced in a variety of

Web application areas, including e-commerce, P2P networks, multi-agent systems,

recommendation systems, social networks and service-oriented computing. Finally,

these trust evaluation methods in Web applications can be categorized into different

taxonomies. The trust evaluation methods presented in this chapter cover a wide range

of applications and are based on many different types of mechanisms, and there is no

single trust evaluation method that will be suitable in all contexts and applications.

This roadmap provides not only the necessary background for on-going research

activities and projects, but also the solid foundations for deciding on potential future

research on trust evaluation in broader contexts.

References

1. P. S. Adler. Market, hierarchy, and trust: The knowledge economy and the future of capitalism.
Organization Science, 12(2):215–234, 2001.

2. M. Bakhtin. Speech Genres and Other Late Essays. University of Texas Press, 1986.
3. B. Barber. The logic and limits of trust. Rutgers University Press, 1983.

96 L. Li and Y. Wang

4. P. Bedi, H. Kaur, and S. Marwaha. Trust based recommender system for semantic web. In
IJCAI 2007, pages 2677–2682, 2007.

5. E. Berscheid and H. T. Reis. Attraction and Close Relationships in The Handbook of Social

Psychology. Oxford University Press, 1998.
6. S. D. Boon and J. G. Holmes. The dynamics of interpersonal trust: Resolving uncertainty in the

face of risk. In R. Hinde and J. Groebel, editors, Cooperation and Prosocial Behavior, pages
167–182. Cambridge Univ. Press, 1991.

7. M. B. Brewer. In-group favoritism: the subtle side of intergroup discrimination. In D. M.
Messick and A. E. Tenbrunsel, editors, Codes of Conduct: Behavioral Research and Business

Ethics, pages 160–171. Russell Sage Found, 1996.
8. R. S. Burt and M. Knez. Kinds of third-party effects on trust. Rationality and Society, 7:255–

292, 1995.
9. C. Castelfranchi and R. Falcone. Trust is much more than subjective probability: Mental com-

ponents and sources of trust. In HICSS 2000, 2000.
10. J. Coleman. Foundations of Social Theory. Belknap Press of Harvard University Press, 1998.
11. R. Collins. Sociological Insight: an Introduction to Non-obvious Sociology. Oxford University

Press, 1992.
12. W. Conner, A. Iyengar, T. A. Mikalsen, I. Rouvellou, and K. Nahrstedt. A trust management

framework for service-oriented environments. In WWW 2009, pages 891–900, 2009.
13. D. W. Creed and R. E. Miles. Trust in organizations: a conceptual framework linking organi-

zational forms, managerial philosophies, and the opportunity costs of controls. In R. Kramer
and T. Tyler, editors, Trust in organizations: Frontiers of Theory and Research, pages 16–38.
Sage Publications, 1996.

14. E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P. Samarati, and F. Violante. A reputation-
based approach for choosing reliable resources in peer-to-peer networks. In ACM Conference

on Computer and Communications Security (CCS 2002), pages 207–216, 2002.
15. E. Damiani, S. D. C. di Vimercati, P. Samarati, and M. Viviani. A wowa-based aggregation

technique on trust values connected to metadata. Electr. Notes Theor. Comput. Sci., 157(3):131–
142, 2006.

16. M. Deshpande and G. Karypis. Item-based top- n recommendation algorithms. ACM Trans.

Inf. Syst., 22(1):143–177, 2004.
17. E. Erikson. Identity: Youth and Crisis. W. W. Norton & Company, 1968.
18. S. Fiske. Social Beings: Core Motives in Social Psychology. John Wiley and Sons Press, 2009.
19. J. Golbeck. Generating predictive movie recommendations from trust in social networks. In

iTrust 2006, pages 93–104, 2006.
20. J. Golbeck and J. A. Hendler. Inferring binary trust relationships in web-based social networks.

ACM Trans. Internet Techn., 6(4):497–529, 2006.
21. N. Griffiths. Task delegation using experience-based multi-dimensional trust. In AAMAS 2005,

pages 489–496, 2005.
22. R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust. In

WWW 2004, pages 403–412, 2004.
23. J. E. Haddad, M. Manouvrier, G. Ramirez, and M. Rukoz. QoS-driven selection of web services

for transactional composition. In ICWS 2008, pages 653–660, 2008.
24. C.-W. Hang, Y. Wang, and M. P. Singh. Operators for propagating trust and their evaluation in

social networks. In AAMAS 2009, pages 1025–1032, 2009.
25. J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for per-

forming collaborative filtering. In SIGIR 1999, pages 230–237, 1999.
26. T. D. Huynh, N. R. Jennings, and N. R. Shadbolt. An integrated trust and reputation model

for open multi-agent systems. Autonomous Agents and Multi-Agent Systems, 13(2):119–154,
2006.

27. R. Jeffrey. Subjective Probability: The Real Thing. Cambridge University Press, April 2004.
28. A. Jøsang. Subjective evidential reasoning. In IPMU 2002, 2002.
29. A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online service

provision. Decision Support Systems, 43(2):618–644, 2007.

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 97

30. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for reputation
management in p2p networks. In WWW 2003, pages 640–651, 2003.

31. D. H. Knight and N. L. Chervany. The meaning of trust. Technical Report WP9604, University
of Minnesota, Management Information Systems Research Center, 1996.

32. R. M. Kramer. Trust and distrust in organizations: Emerging perspectives, enduring questions.
Annual Review of Psychology, 50:569–598, 1999.

33. U. Kuter and J. Golbeck. Sunny: A new algorithm for trust inference in social networks using
probabilistic confidence models. In AAAI 2007, pages 1377–1382, 2007.

34. U. Kuter and J. Golbeck. Using probabilistic confidence models for trust inference in web-based
social networks. ACM Trans. Internet Techn., 10(2), 2010.

35. R. J. Lewicki and B. B. Bunker. Trust in relationships: a model of trust development and decline.
In B. Bunker and J. Rubin, editors, Conflict, Cooperation, and Justice. Jossey-Bass, 1995.

36. L. Li. Trust Evaluation in Service-Oriented Environments. PhD thesis, Macquarie University,
2011.

37. L. Li and Y. Wang. A trust vector approach to service-oriented applications. In ICWS 2008,
pages 270–277, 2008.

38. L. Li and Y. Wang. Trust evaluation in composite services selection and discovery. In IEEE

SCC 2009, pages 482–485, 2009.
39. L. Li and Y. Wang. Subjective trust inference in composite services. In AAAI 2010, pages

1377–1384, 2010.
40. L. Li and Y. Wang. A subjective probability based deductive approach to global trust evaluation

in composite services. In ICWS 2011, pages 604–611, 2011.
41. L. Li and Y. Wang. The study of trust vector based trust rating aggregation in service-oriented

environments. World Wide Web, In press, 2012.
42. L. Li, Y. Wang, and E.-P. Lim. Trust-oriented composite service selection and discovery. In

ICSOC/ServiceWave 2009, pages 50–67, 2009.
43. L. Li, Y. Wang, and V. Varadharajan. Fuzzy regression based trust prediction in service-oriented

applications. In ATC 2009, pages 221–235, 2009.
44. M. Li, X. Sun, H. Wang, Y. Zhang, and J. Zhang. Privacy-aware access control with trust

management in web service. World Wide Web, 14(4):407–430, 2011.
45. G. Liu, Y. Wang, and L. Li. Trust management in three generations of web-based social net-

works. In CPSC 2009, pages 446–451, 2009.
46. G. Liu, Y. Wang, and M. A. Orgun. Optimal social trust path selection in complex social

networks. In AAAI 2010, pages 1391–1398, 2010.
47. G. Liu, Y. Wang, and M. A. Orgun. Quality of trust for social trust path selection in complex

social networks. In AAMAS 2010, pages 1575–1576, 2010.
48. G. Liu, Y. Wang, M. A. Orgun, and E.-P. Lim. A heuristic algorithm for trust-oriented service

provider selection in complex social networks. In IEEE SCC 2010, pages 130–137, 2010.
49. H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: social recommendation using probabilistic

matrix factorization. In CIKM 2008, pages 931–940, 2008.
50. H. Ma, T. C. Zhou, M. R. Lyu, and I. King. Improving recommender systems by incorporating

social contextual information. ACM Trans. Inf. Syst., 29(2):9, 2011.
51. Z. Malik and A. Bouguettaya. Rater credibility assessment in web services interactions. World

Wide Web, 12(1):3–25, 2009.
52. Z. Malik and A. Bouguettaya. RATEWeb: Reputation assessment for trust establishment among

web services. VLDB J., 18(4):885–911, 2009.
53. J. G. March. Primer on Decision Making: How Decisions Happen. Free Press, 1994.
54. I. Marková. Trust and Democratic Transition in Post-Communist Europe. Oxford University

Press, 2004.
55. I. Marková, A. Gillespie, and J. Valsiner. Trust and Distrust: Sociocultural Perspectives. Infor-

mation Age Publishing, 2008.
56. S. Marsh. Formalising Trust as a Computational Concept. University of Stirling, 1994.
57. S. Marti and H. Garcia-Molina. Limited reputation sharing in p2p systems. In ACM EC 2004,

pages 91–101, 2004.

98 L. Li and Y. Wang

58. B. Medjahed and A. Bouguettaya. A multilevel composability model for semantic web services.
IEEE Trans. Knowl. Data Eng., 17(7):954–968, 2005.

59. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing web services on the semantic
web. VLDB J., 12(4):333–351, 2003.

60. D. A. Menascé. Composing web services: A QoS view. IEEE Internet Computing, 8(6):88–90,
2004.

61. S. Milgram. The small world problem. Psychology Today, 2(30), 1967.
62. R. Miller, D. Perlman, and S. Brehm. Intimate Relationships. McGraw-Hill College Press,

2007.
63. A. Mislove, M. Marcon, P. K. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement and

analysis of online social networks. In Internet Measurement Conference 2007, pages 29–42,
2007.

64. B. Misztal. Trust in Modern Societies: The Search for the Bases of Social Order. Polity Press,
1996.

65. R. J. Mooney and L. Roy. Content-based book recommending using learning for text catego-
rization. In ACM DL 2000, pages 195–204, 2000.

66. L. Mui. Computational Models of Trust and Reputation: Agents, Evolutionary Games, and

Social Networks. PhD thesis, Massachusetts Institute of Technology, Dec 2002.
67. M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented computing: a

research roadmap. Int. J. Cooperative Inf. Syst., 17(2):223–255, 2008.
68. I. Ray and S. Chakraborty. A vector model of trust for developing trustworthy systems. In 9th

European Symposium on Research Computer, Security, pages 260–275, 2004.
69. J. B. Rotter. Interpersonal trust, trustworthiness, and gullibility. American Psychologist,

35(1):1–7, 1980.
70. J. Sabater and C. Sierra. REGRET: reputation in gregarious societies. In Agents 2001, pages

194–195, 2001.
71. B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based collaborative filtering rec-

ommendation algorithms. In WWW 2001, pages 285–295, 2001.
72. A. B. Seligman. The Problem of Trust. Princeton University Press, 2000.
73. G. Simmel. The Sociology of Georg Simmel. The, Free Press, 1950.
74. R. R. Sinha and K. Swearingen. Comparing recommendations made by online systems and

friends. In DELOS Workshop 2001: Personalisation and Recommender Systems in Digital

Libraries, 2001.
75. S. Song, K. Hwang, R. Zhou, and Y.-K. Kwok. Trusted p2p transactions with fuzzy reputation

aggregation. IEEE Internet Computing, 9(6):24–34, 2005.
76. T. Strang, C. Linnhoff-Popien, and K. Frank. Cool: A context ontology language to enable con-

textual interoperability. In IFIP WG6.1 International Conference on Distributed Applications

and Interoperable Systems 2003, pages 236–247, 2003.
77. W. T. L. Teacy, J. Patel, N. R. Jennings, and M. Luck. Travos: Trust and reputation in the context

of inaccurate information sources. Autonomous Agents and Multi-Agent Systems, 12(2):183–
198, 2006.

78. S. Toivonen, G. Lenzini, and I. Uusitalo. Context-aware trust evaluation functions for dynamic
reconfigurable systems. In Proceedings of the WWW’06 Workshop on Models of Trust for the

Web (MTW’06), 2006.
79. B. Uzzi. Social structure and competition in interfirm networks: The paradox of embeddedness.

Administrative Science Quarterly, 42(1):35–67, 1997.
80. P. Victor, C. Cornelis, M. D. Cock, and P. P. da Silva. Gradual trust and distrust in recommender

systems. Fuzzy Sets and Systems, 160(10):1367–1382, 2009.
81. L.-H. Vu, M. Hauswirth, and K. Aberer. QoS-based service selection and ranking with trust

and reputation management. In CoopIS 2005, pages 466–483, 2005.
82. F. E. Walter, S. Battiston, and F. Schweitzer. A model of a trust-based recommendation system

on a social network. Autonomous Agents and Multi-Agent Systems, 16(1):57–74, 2008.
83. Y. Wang and L. Li. Two-dimensional trust rating aggregations in service-oriented applications.

IEEE T. Services Computing, 4(4):257–271, 2011.

4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services 99

84. Y. Wang, L. Li, and E.-P. Lim. Price trust evaluation in e-service oriented applications. In
CEC/EEE 2008, pages 165–172, 2008.

85. Y. Wang and E.-P. Lim. The evaluation of situational transaction trust in e-service environments.
In ICEBE 2008, pages 265–272, 2008.

86. Y. Wang and K.-J. Lin. Reputation-oriented trustworthy computing in e-commerce environ-
ments. IEEE Internet Computing, 12(4):55–59, 2008.

87. Y. Wang, K.-J. Lin, D. S. Wong, and V. Varadharajan. Trust management towards service-
oriented applications. Service Oriented Computing and Applications, 3(2):129–146, 2009.

88. Y. Wang and M. P. Singh. Formal trust model for multiagent systems. In International Joint

Conference on Artificial Intelligence (IJCAI 2007), pages 1551–1556, 2007.
89. Y. Wang and V. Varadharajan. Role-based recommendation and trust evaluation. In CEC/EEE

2007, pages 278–288, 2007.
90. J. Xiao and R. Boutaba. QoS-aware service composition and adaptation in autonomic commu-

nication. IEEE Journal on Selected Areas in Communications, 23(12):2344–2360, 2005.
91. L. Xiong and L. Liu. Peer Trust: Supporting reputation-based trust for peer-to-peer electronic

communities. IEEE Trans. Knowl. Data Eng., 16(7):843–857, 2004.
92. Z. Xu, P. Martin, W. Powley, and F. Zulkernine. Reputation-enhanced QoS-based web services

discovery. In ICWS 2007, pages 249–256, 2007.
93. I. Yaniv. Receiving other peoples’ advice: Influence and benefit. J. Artif. Intell. Res. (JAIR),

93(1).
94. B. Yu, M. P. Singh, and K. Sycara. Developing trust in large-scale peer-to-peer systems. IEEE

Symposium on Multi-Agent Security and Survivability, pages 1–10, 2004.
95. H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman. Sybilguard: defending against sybil

attacks via social networks. IEEE/ACM Trans. Netw., 16(3):576–589, 2008.
96. T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms for web services selection with end-to-end

Qos constraints. TWEB, 1(1), 2007.
97. G. Zacharia and P. Maes. Trust management through reputation mechanisms. Applied Artificial

Intelligence, 14(9):881–907, 2000.
98. L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality driven web

services composition. In WWW 2003, pages 411–421, 2003.
99. H. Zhao and X. Li. Vectortrust: Trust vector aggregation scheme for trust management in

peer-to-peer networks. In 18th International Conference on Computer Communications and

Networks, pages 1–6, 2009.
100. R. Zhou and K. Hwang. Powertrust: A robust and scalable reputation system for trusted

peer-to-peer computing. IEEE Trans. Parallel Distrib. Syst., 18(4):460–473, 2007.

Chapter 5

Web Service-Based Trust Management in Cloud
Environments

Talal H. Noor and Quan Z. Sheng

Abstract Trust is one of the most concerned obstacles for the adoption and growth of

cloud computing. Although several solutions have been proposed recently in man-

aging trust feedbacks in cloud environments, how to determine the credibility of

trust feedbacks is mostly neglected. In addition, guaranteeing the availability of the

trust management service is a difficult problem due to the unpredictable number

of cloud service consumers and the highly dynamic nature of cloud environments.

In this chapter, we propose a framework that uses Web services to improve ways

on trust management in cloud environments. In particular, we introduce an adap-

tive credibility model that distinguishes between credible and malicious feedbacks

by considering the cloud service consumers’ capability and majority consensus of

their feedbacks. We also present a replication determination model that dynamically

decides the optimal replica number of the trust management service so that the trust

management service can be always maintained at a desired availability level. The

approaches have been validated by a prototype system and experimental results.

5.1 Introduction

Over the past few years, cloud computing is gaining a considerable momentum as a

new computing paradigm for providing flexible services, platforms, and infrastruc-

tures on demand [3, 6]. Government agencies, businesses and researchers can benefit

from the adoption of cloud services. For instance, it only took 24 h, at the cost of

T. H. Noor (B) · Q. Z. Sheng
School of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia
e-mail: talal@cs.adelaide.edu.au

Q. Z. Sheng
e-mail: qsheng@cs.adelaide.edu.au

A. Bouguettaya et al. (eds.), Advanced Web Services, 101
DOI: 10.1007/978-1-4614-7535-4_5,
© Springer Science+Business Media New York 2014

102 T. H. Noor and Q. Z. Sheng

merely $240, for the New York Times to archive its 11 million articles (1851–1980)

using Amazon Web Services (AWS1).

Given the quick adoption of cloud computing in the industry, there is a signifi-

cant challenge in managing trust among cloud service providers and cloud service

consumers. Indeed, trust is one of the top obstacles for the adoption and growth of

cloud computing [3, 6, 17]. Recently, a considerable amount of research works have

recognized the significance of trust management and proposed several solutions to

assess and manage trust based on trust feedbacks collected from participants [7, 10,

17, 35]. However, one particular problem has been mostly neglected: to what extent

can these trust feedbacks be credible. On the one hand, it is not unusual that a trust

management system will experience malicious behaviors from its users. On the other

hand, the quality of the trust feedbacks differs from one person to another, depend-

ing on how experienced she is. This chapter focuses on improving ways on the trust

management in cloud environments. In particular, we distinguish the following key

issues of the trust management in cloud environments:

• Results Accuracy. Determining the credibility of trust feedbacks is a significant

challenge due to the dynamic interactions between cloud service consumers and

cloud service providers. It is difficult to know how experienced a cloud service con-

sumer is and from whom malicious trust feedbacks are expected. Indeed, the trust

management protection still requires extensive probabilistic computations [18, 37]

and trust participants’ collaboration by manually rating trust feedbacks [22].

• Availability. In a cloud environment, guaranteeing the availability of the trust

management service is a difficult problem due to the unpredictable number of

cloud service consumers and the highly dynamic nature of cloud environments.

Consequently, approaches that requires understanding of the trust participants’

interests and capabilities through similarity measurements [34] are inappropriate

in the cloud environment. Trust management systems should be adaptive and highly

scalable.

• Assessment and Storage. The trust assessment of a service in existing techniques

is usually centralized, whereas the trust feedbacks come from distributed trust

parties. Trust models that follow a centralized architecture are more prone to

several problems including scalability, availability, and security (e.g., Denial of

Service (Dos) attack) problems [16]. Given the open and distributed nature of

cloud environments we believe that a centralized solution is not suitable for trust

feedback assessment and storage.

In this chapter, we overview the design and implementation of the proposed frame-

work. This framework helps distinguish between the credible trust feedbacks and the

malicious trust feedbacks through a credibility model. It also guarantees high avail-

ability of the trust management service. In a nutshell, the salient features of the

proposed framework are:

• Feedback Credibility. We develop a credibility model that not only distinguishes

between trust feedbacks from experienced cloud service consumers and feedbacks

1 http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/

http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/

5 Web Service-Based Trust Management in Cloud Environments 103

from amateur cloud service consumers, but also considers the majority consensus

of feedbacks, i.e., how close a trust feedback is to the majority trust feedbacks.

• Replication Determination. High availability is an important requirement to the

trust management service. We propose to spread replicas of the trust management

service and develop a replication determination model that dynamically deter-

mines the optimal number of the trust management service replicas, which share

the trust management workload, thereby always maintaining the trust management

service at a desired availability level.

• Distributed Assessment and Storage. To avoid the drawbacks of centralized

architectures, our trust management service allows trust feedback assessment and

storage to be managed distributively. Each trust management service replica is

responsible for trust feedbacks given to a set of cloud services.

The remainder of the chapter is organized as follows. In Sect. 5.2, we present

some background of cloud services and their deployment models. The design of the

framework is briefly presented in Sect. 5.3. Section 5.4 details the trust management

service, including distributed trust feedback collection and assessment, as well as the

replication determination model for high availability of the trust management service.

Section 5.5 describes the credibility model. Section 5.6 reports the implementation

and several experimental evaluations. Finally, Sect. 5.7 overviews the related work

and Sect. 5.8 provides some concluding remarks.

5.2 Background

Cloud services are established based on five essential characteristics [26], namely,

(i) on-demand self-service where cloud service consumers are able to automatically

provision computing resources without the need for human interaction with each

cloud service provider, (ii) broad network access where cloud service consumers

can access available computing resources over the network, (iii) resource pooling

where computing resources are pooled to serve multiple cloud service consumers

based on a multi-tenant model where physical and virtual computing resources are

dynamically reassigned on-demand, (iv) rapid elasticity where computing resources

are elastically provisioned to scale rapidly based on the cloud service consumers

need, and (v) measured service where computing resources usage is monitored,

metered (i.e., using pay as you go mechanism), controlled and reported to provide

transparency for both cloud service providers and consumers.

5.2.1 Cloud Service Models

Cloud services have three different models, including Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) based on

different Service Level Agreements (SLAs) between a cloud service provider and a

104 T. H. Noor and Q. Z. Sheng

Fig. 5.1 Cloud service
models

cloud service consumer [5, 9, 26]. Figure 5.1 depicts the structured layers of cloud

services:

• Infrastructure as a Service (IaaS). This model represents the foundation part of

the cloud environment where a cloud service consumer can rent the storage, the

processing and the communication through virtual machines provided by a cloud

service provider (e.g., Amazon’s Elastic Compute Cloud (EC2) [1] and Simple

Storage Service (S3) [2]). In this model, the cloud service provider controls and

manages the underlying cloud environment, whereas the cloud service consumer

has control over his/her virtual machine which includes the storage, the processing

and can even select some network components for communication.

• Platform as a Service (PaaS). This model represents the integration part of the

cloud environment and resides above the IaaS layer to support system integra-

tion and virtualization middleware. The PaaS allows a cloud service consumer

to develop his/her own software where the cloud service provider provisions the

software development tools and programming languages (e.g., Google App [13]).

In this model, the cloud service consumer has no control over the underlying cloud

infrastructure (e.g., storage network, operating systems, etc.) but has control over

the deployed applications.

• Software as a Service (SaaS). This model represents the application part of the

cloud environment and resides above the PaaS layer to support remote accessibility

where cloud service consumers can remotely access their data which is stored

in the underlying cloud infrastructure using applications provided by the cloud

service provider (e.g., Google Docs [14], Windows Live Mesh [27]). Similarly, in

this model, the cloud service consumer has no control over the underlying cloud

infrastructure (e.g., storage network, operating systems, etc.) but has control over

his/her data.

5 Web Service-Based Trust Management in Cloud Environments 105

5.2.2 Cloud Service Deployment Models

Based on the Service Level Agreement (SLA), all cloud service models (i.e., IaaS,

PaaS, SaaS) can be provisioned through four different cloud service deployment

models, namely Private, Community, Public, and Hybrid [26, 36] depending on the

cloud service consumer’s needs. Figure 5.2 depicts how cloud services are arranged to

support these four cloud services deployment models and shows different interactions

between cloud service providers and consumers. The interactions include business-

to-business (B2B) and business-to-client (B2C).

• Private Cloud. In this deployment model, computing resources are provisioned for

a particular organization (e.g., a business organization as shown in Fig. 5.2a), which

involves several consumers (e.g., several business units). Essentially, interactions

in this deployment model are considered as B2B interactions where the computing

B2B B2B

B2B

B2B

B2B

B2C

B2B

B2C

B2B

B2C

B
2C

B2B B2C

(a)

(c) (d)

(e)

(b)

Fig. 5.2 Cloud service deployment models. a Private cloud, b community cloud, c public cloud,
d hybrid cloud

106 T. H. Noor and Q. Z. Sheng

resources can be owned, governed, and operated by the same organization, a third

party, or both.

• Community Cloud. In this deployment model, computing resources are provisioned

for a community of organizations, as shown in Fig. 5.2b, to achieve a certain

goal (e.g., high performance, security requirements, or reduced costs). Basically,

interactions in this model are considered as B2B interactions where the computing

resources can be owned, governed, and operated by the community (i.e., one or

several organizations in the community), a third party, or both.

• Public Cloud. In this deployment model, computing resources are provisioned

for the public (e.g., an individual cloud service consumer, academic, government,

business organizations or a combination of these cloud service consumer types

as shown in Fig. 5.2c). Essentially, interactions in this model are considered as

B2C where the computing resources can be owned, governed, and operated by an

academic, government, business organization, or a combination of them.

• Hybrid Cloud. In this deployment model, computing resources are provisioned

using two or more deployment models (e.g., private and public clouds can be

deployed together using a hybrid deployment model as shown in Fig. 5.2d). Basi-

cally, interactions in this model include B2B and B2C interactions where com-

puting resources are bound together by different clouds (e.g., private and public

clouds) using portability techniques (e.g., data and application portability such as

cloud bursting for load balancing between clouds).

Given all possible service and deployment models and interactions in cloud envi-

ronments, we argue that managing trust in cloud environment is not an easy task due

to the highly dynamic, distributed, and non-transparent nature of cloud services [3,

17, 29–31]. In the following section, we present the design of the framework for

Web service-based trust management in cloud environments.

5.3 The Framework

In cloud environments, the number of cloud service consumers is usually highly

dynamic where new cloud service consumers can join while others might leave

around the clock. This requires the trust management service to be adaptive and

highly scalable in order to collect the trust feedbacks and update the trust results

constantly. We propose a framework using Service Oriented Architecture (SOA). In

particular, our framework uses Web services to span several distributed trust man-

agement service nodes that expose interfaces so that trust parties (i.e., the cloud

service consumers) can give their trust feedbacks or request a trust assessment for

a particular cloud service through multiple messages based on the Simple Object

Access Protocol (SOAP) or REST [33]. Figure 5.3 depicts the main components of

the framework, which consists of three different layers, namely the Provider Layer,

the Trust Management Service Layer, and the Consumer Layer.

5 Web Service-Based Trust Management in Cloud Environments 107

Fig. 5.3 Architecture of the WS-based trust management in cloud environments framework

• The Providers Layer. This layer consists of different cloud service providers who

are providing cloud services. The minimum indicative feature that every cloud

service provider should have is to provide the infrastructure as a service (i.e., the

cloud service provider should have a data center that provides the storage, the

process, and the communication). In other words, the cloud service providers can

provide either IaaS (Infrastructure as a Service) only, IaaS and PaaS (Platform

as a Service), IaaS and SaaS (Software as a Service), or all of the cloud services

models.

108 T. H. Noor and Q. Z. Sheng

• The Trust Management Layer. This layer consists of several distributed trust

management service nodes that expose interfaces so that cloud service consumers

can give their trust feedbacks or inquire about the trust results.

• The Consumer Layer. Finally, this layer consists of different cloud service con-

sumers who consume cloud services. For example, a new startup that has limited

funding can consume cloud services (e.g., hosting their services in Amazon S3).

A cloud service consumer can give trust feedbacks of a particular cloud service

by invoking the trust management service (see Sect. 5.4).

Our framework also contains a Service Registry (see Fig. 5.3) that has several

responsibilities including (i) Service Advertisement: both cloud service providers

and the trust management service are able to advertise their services through the

Service Registry; (ii) Service Discovery: the trust management service and cloud

service consumers are able to access the Service Registry to discover cloud services.

It should be noted that we assume that the communication is secured. Attacks that

occur in the communication security level such as Man in Middle (MIM) attack [4] are

beyond the scope of this work. We also assume that cloud service consumers have

unique identities. Attacks that use the notion of multiple identities (i.e., the Sybil

attack [12]) or Whitewashing Attack that occur when the malicious cloud service

consumers (i.e., attackers) desperately seek new identities to clean their negative

history records [21] are also beyond the scope of this work.

Cloud service consumers can give trust feedbacks for a certain cloud service or

send a trust assessment request to the trust management service regarding a certain

cloud service. In the following sections, we will focus on introducing our design of

the trust management service.

5.4 Trust Management Service

5.4.1 Trust Feedback Collection and Assessment

In our framework, the cloud service trust behavior is represented by a collection of

invocation history records denoted as H . Each cloud service consumer c hold her

point of view regarding the trustworthiness of a specific cloud service s in the invoca-

tion history record which is managed by the assigned trust management service. Each

invocation history record is represented in a tuple that consists of the cloud service

consumer primary identity C , the cloud service identity S, a set of trust feedbacks

F and the aggregated trust feedbacks weighted by the credibility Fc (i.e., H = (C ,

S, F , Fc)). Each feedback in F is represented in numerical form in which the range

of the normalized feedback is [0, 1], where 0, +1, and 0.5 means negative feedback,

positive feedback, and neutral respectively.

Whenever a cloud service consumer inquires the trust management service regard-

ing the trustworthiness of a certain cloud service s, the trust result, denoted as T r(s),

is calculated using:

5 Web Service-Based Trust Management in Cloud Environments 109

T r(s) =

∑|V (s)|
l=1 Fc(l, s)

|V (s)|
(5.1)

where V (s) is all of the feedbacks given to the cloud service s and |V (s)| represents

the length of the V (s) (i.e., the total number of feedbacks given to the cloud service s).

Fc(l, s) are the trust feedbacks from the lth cloud service consumer weighted by the

credibility.

The trust management service distinguishes between credible trust feedbacks and

malicious trust feedbacks through assigning the cloud service consumer’s Experience

aggregated weights Exp(l) to the trust feedbacks F(l, s) as shown in Eq. 5.2, where

the result Fc(l, s) is held in the invocation history record h and updated in the assigned

trust management service. The details on how to calculate Exp(l) is described in

Sect. 5.5.

Fc(l, s) = F(l, s) ∗ Exp(l) (5.2)

5.4.2 Availability of Trust Management Service

Guaranteeing the availability of the trust management service is a significant chal-

lenge due to the unpredictable number of invocation requests the service has to handle

at a time, as well as the dynamic nature of the cloud environments. An emerging trend

for solving the high-availability issue is centered on replication. In our approach, we

propose to spread trust management service replicas over various clouds and dynam-

ically direct requests to appropriate clouds (e.g., with lower workload), so that its

desired availability level can be always maintained.

However, there is clearly a trade-off between high availability and replication cost.

On the one hand, more clouds hosting the trust management service means better

availability. On the other hand, more replicas residing at various clouds means higher

overhead (e.g., cost and resource consumption such as bandwidth and storage space).

Thus, it is essential to develop a mechanism that helps determine the optimal number

of the trust management service replicas in order to meet the trust management

service’s availability requirement.

We propose a replication determination model to allow the trust management ser-

vice to know how many replicas are required to achieve a certain level of availability.

Given the trust management service stms failure probability denoted p that ranges

from 0 to 1, the total number of stms replicas denoted r , and the availability threshold

denoted ea that also ranges from 0 to 1. The desired goal of the replication is to ensure

that at least one replica of the trust management service is available, represented in

the following formula:

ea(stms) < 1 − pr(stms) (5.3)

where pr(stms) represents the probability that all trust management service replicas

are failed, and 1 − pr(stms) represents the opposite (i.e., the probability of at least

110 T. H. Noor and Q. Z. Sheng

Fig. 5.4 Trust management
service replication number
determination

one trust management replica is available). As a result, the optimal number of trust

management service replicas can be calculated as follows:

r(stms) > logp(1 − ea(stms)) (5.4)

For example, if the availability threshold ea(stms) = 0.99 and the failure

probability of trust management service p = 0.2 (low), r(stms) > 2.86, mean-

ing that at least 3 trust management service replicas are needed. Similarly, if

ea(stms) = 0.99 and the failure probability of the trust management service p = 0.8

(high), r(stms) > 20.64 which means at least 21 replicas are required. Figure 5.4

depicts the relationship between the main components of the replication determina-

tion model. It can be clearly seen that the relationship between p and r(stms) is a

direct or positive relationship (i.e., any change in p is associated with a change in

r(stms) in the same direction). The relationship between ea(stms) and r(stms) is also

a direct or positive relation. However, it should be noted that p has a larger influence

on r(stms) than ea(stms).

Whenever a cloud service consumer needs to send the invocation history record or

a trust assessment request of a certain cloud service, h(c, s) can be sent to a particular

trust management service decided by using a consistent hash function (e.g., sha-256).

Unlike previous work such as in [10] where consistent hashing technique is used to

map all of the invocation history records for a certain client to a particular trust

Fig. 5.5 Trust management service replicas identification example

5 Web Service-Based Trust Management in Cloud Environments 111

management service instance (e.g., all trust feedback given to a certain cloud service

in our case), in our framework each trust management service replica is responsible

for trust feedbacks given to a set of cloud services where trust feedbacks are handled

as follows:

T msid(s) =

⎛

⎝

|hash(s)|
∑

i=1

bytei (hash(s))

⎞

⎠ mod r(stms) (5.5)

where the first part of the equation represents the sum of each byte of the hashed

cloud service identity hash(s). The second part of the equation represents the optimal

number of the trust management service replicas r(stms). This insures that the chosen

trust management service replica is within the optimal number range.

Figure 5.5 depicts an example of the trust management service nodes’ identifica-

tion where many cloud service consumers (d to l) have interacted with cloud services

a, b, c, m, n, x , y and z. All aggregated invocation history records H for interactions

with cloud services a, b, and c are sent to the first trust management service replica

(i.e., the trust management service that holds the identifier T msid(a, b, c)). Similarly,

all H for interactions with other cloud services (m to z) are sent to trust management

service replicas that hold the identifier T msid(m, n) and T msid(x, y, z) respectively.

We can see that each trust management service replica is holding all of the invocation

history records H for interactions with a set of cloud services.

5.5 Credibility Model

Sine the trust behavior of a cloud service in our framework is represented by a

collection of invocation history records that contain cloud service consumers trust

feedbacks, there is a considerable possibility that the trust management service

receives inaccurate or even malicious trust feedbacks from amateur cloud service

consumers (e.g., who lack experience) or vicious cloud service consumers (e.g., who

submit lots of negative feedbacks in a short period in order to disadvantage a partic-

ular cloud service). To overcome these issues, we propose a credibility model, which

is centered on the cloud service consumer’s experience.

In our model, a cloud service consumer with considerable experience of giving

trust feedbacks can gain a credibility as an expert. To be able to differentiate between

expert cloud service consumers and amateur cloud service consumers, we further

consider several factors including the cloud service consumer’s Capability and the

Majority Consensus.

5.5.1 Cloud Service Consumer’s Capability

It is a common sense that older people are likely to be more experienced in judging

things than younger people [32]. However, this is only true if the elder people have

112 T. H. Noor and Q. Z. Sheng

experienced considerable number of judging practices. As a result, we believe that

“elder” cloud service consumers who have many judging practices are likely to be

more experienced and capable than “younger” cloud service consumers with little

experience. A cloud service consumer’s capability, denoted as B, is measured as

follows:

B(c) =

{

1 +
|V c(c)|
Ag(c)

i f |V c(c)| ≤ Ag(c)

2 otherwise
(5.6)

where V c(c) represents all of the feedbacks given by the cloud service consumer c and

|V c(c)| represents the length of V c(c) (i.e., the total number of feedbacks given by

the cloud service consumer c). Ag(c) denotes the virtual Age of a certain cloud service

consumer, measured in days since the registration in the trust management service.

The idea behind adding the number 1 to this ratio is to increase the value of a cloud

service consumer experience based on the capability result. In other words, we use

B(c) as a reward factor. The higher the value of B(c) is, the more experienced a cloud

service consumer is. It should be noted that even if a malicious cloud service consumer

attempts to manipulate the capability result by giving numerous trust feedbacks in a

short period of time, the capability result will not exceed 2.

5.5.2 Majority Consensus

It is well-known that the majority of people usually agree with experts’ judgments

about what is good [8]. Similarly, we believe that the majority of cloud service con-

sumers agree with Expert cloud service consumers’ judgments. In other words, any

cloud service consumer whose trust feedback is close to the majority trust feedbacks

is considered an Expert Cloud Consumer, Amateur cloud service consumers other-

wise. In order to measure how close the cloud service consumer’s trust feedbacks to

the majority trust feedbacks (i.e., the Majority Consensus, J (c)), we use the standard

deviation (i.e., the root-mean-square) which is calculated as follows:

J (c) = 1 −

√

√

√

√

√

∑

h∈V c(c)

(

∑|V c(c,k)|
k=1

(

F(c,k)
|V c(c,k)|

−

(

∑|V c(l,k)|
l �=c,l=1 F(l,k)

|V (k)|−|V c(c,k)|

)))2

|V c(c)|
(5.7)

where the first part of the numerator represents the mean of the cloud service con-

sumer c’s trust feedbacks F(c, k) for the kth cloud service. The second part of

the numerator represents the mean of the majority trust feedbacks given by other

cloud service consumers denoted F(l, k) (i.e., the lth cloud service consumer trust

feedbacks, except the cloud service consumer c’s trust feedbacks) to the kth cloud

service. This procedure is done for all cloud services to which cloud service consumer

c give trust feedbacks (i.e., V c(c)).

5 Web Service-Based Trust Management in Cloud Environments 113

Table 5.1 Notation and meanings

Notation Meaning Notation Meaning

J (c) The majority consensus F(c, k) The cloud service consumer c’s
trust feedback instance for the
kth cloud service

V c(c, k) All trust feedbacks given by the
cloud service consumer c for the kth
cloud service

F(l, k) The majority trust feedbacks given
by other cloud service
consumers for the kth cloud
service

V (k) All trust feedbacks given for the kth
cloud service

V c(c, k) All trust feedbacks given by the
cloud service consumer c for
the kth cloud service

B(c) The cloud service consumer’s capa-
bility

V c(c) All cloud services to which cloud
service consumer c give trust
feedbacks to

Ag(c) The virtual Age of a certain cloud
service consumer

Exp(c) Cloud service consumer’s
experience

Based on the specified cloud service consumer’s experience factors (i.e., cloud

service consumer’s capability and majority consensus), the trust management ser-

vice distinguishes between the Expert cloud service consumers and the Amateur

cloud service consumers through assigning the cloud service consumer’s Experience

aggregated weights Exp(c) to each of the cloud service consumers trust feedbacks

as shown in Eq. 5.2. The cloud service consumer’s Experience aggregated weights

Exp(c) is calculated as follows:

Exp(c) =
β ∗ B(c) + µ ∗ J (c)

λ
(5.8)

where β and B(c) denote the cloud service consumer’s Capability factor’s normalized

weight (i.e., parameter) and the factor’s value respectively. The second part of the

equation represents the Majority Consensus factor where µ denotes the factor’s

normalized weight and J (c) denotes the factor’s value. λ represents the number

of factors used to calculate Exp(c). For example, if we only consider cloud service

consumer’s capability,λ = 1; if we consider both cloud service consumer’s capability

and majority consensus, λ = 2 (Table 5.1).

We use the majority consensus as a penalty factor. The lower the value of J (c)

is, the lower the experience of the cloud service consumer c is. It should be worth

mentioning that this is not the case for the cloud service consumer capability factor

B(c), which is used as a reward factor.

114 T. H. Noor and Q. Z. Sheng

5.6 Implementation and Experimental Evaluation

In this section, we report the implementation and preliminary experimental results

in validating the proposed approach. Our implementation and experiments were

developed based on the NetLogo platform [28], which was used to simulate the cloud

environments. We particularly focused on validating and studying the performance

of the proposed credibility model (see Sect. 5.5).

Since it is hard to find some publicly available real-life trust data sets, in our

experiments, we used Epinions2 rating data set which was collected by Massa and

Avesani [25]. The reason that we chose Epinions data set is due to its similar

data structure (i.e., consumers opinions and reviews on specific products and ser-

vices) with our cloud service consumer trust feedbacks. In particular, we considered

user_id in Epinions as the cloud service consumer primary identity C , item_id

as the cloud service identity S, and we normalized the rating_value as the cloud

service consumers trust feedbacks F to scale of 0 to 1. The data set has 49,290 users,

139,738 items, and 664,824 trust feedbacks.

Figure 5.6 depicts the prototype system interface for a cloud service. We imported

the Epinions data sets to create the cloud environment that we are intending to

analyze. Figure 5.63 depicts the cloud environment network for a particular cloud

service. The cloud shape represents the cloud service, the circles represent the cloud

service consumers and the links represent the interactions between the cloud service

consumers and the cloud service. The sizes of the circles indicate the credibility

of cloud service consumers. For example, a smaller-sized cloud service consumer

means that her feedbacks are less credible.

We evaluate our credibility model using both analytical analysis and empirical

analysis. The analytical analysis focuses on measuring the trust result accuracy when

using the credibility model and without using the credibility model. The analytical

model calculates the trust results without weighting the trust results (i.e., we turn

the Exp(c) to 1 for all cloud service consumers). The empirical analysis focuses

on measuring the trust result accuracy for each factor in our credibility model (i.e.,

the Cloud Consumer’s Capability factor and the Majority Consensus factor). The

parameters setup for each corresponding experiment factor are depicted in Table 5.2.

Figure 5.7 depicts the analytical analysis of the trust results for a particular cloud

service. From the figure, it can be seen that the trust results are oscillating more

significantly when calculating the trust without considering the credibility factors

than when calculating the trust with all credibility factors. In other words, even if

the trust management service receives inaccurate or malicious trust feedbacks from

amateur or malicious cloud service consumers, it is difficult to manipulate the trust

results by using our credibility model.

2 http://www.trustlet.org/wiki/Downloaded_Epinions_dataset
3 Please note that the lengths of the links do not represent anything because the cloud service
consumers’ positions were assigned randomly around the corresponding cloud service.

http://www.trustlet.org/wiki/Downloaded_Epinions_dataset

5 Web Service-Based Trust Management in Cloud Environments 115

Fig. 5.6 Netlogo-based prototype system

Table 5.2 Experiment factors and parameters setup

Experiment design β µ λ Exp(c)

With credibility factors 1 1 2

Without credibility factors 1

Cloud service consumer’s capability factor 1 0 1

Majority consensus factor 0 1 1

Figure 5.8 shows the empirical analysis of the trust results for the same cloud ser-

vice. It is clear that the trust results obtained by only considering the cloud service

consumer’s capability factor are higher than the trust results by only considering the

majority consensus factor. This is true, because we use the cloud service consumer

capability factor as a reward factor and the majority consensus factor as a penalty

factor. This reflects how adaptive our credibility model is where the credibility fac-

tors can easily be tweaked according to the trust management service’s needs. For

instance, for optimistic situations where only a few cloud service consumers have

high values of capability, increasing the cloud service consumer’s capability factor

(i.e., β) will help the trust management service to distinguish between experienced

cloud service consumers and inexperienced ones. On the other hand, for pessimistic

situations where many cloud service consumers have high values of capability, the

majority consensus factor (i.e., µ) needs to be increased.

116 T. H. Noor and Q. Z. Sheng

Fig. 5.7 With credibility factors versus without credibility factors

Fig. 5.8 Cloud service consumer’s capability factor vs. majority consensus factor

5.7 Related Work

Trust management is considered as one of the critical issues in cloud computing and

a very active research area [5, 17, 20, 24].

Ko et al. [19] proposed TrustCloud framework for accountability and trust in cloud

computing. In particular, TrustCloud consists of five layers including workflow, data,

system, policies and laws, and regulations layers to address accountability in the cloud

environment from all aspects. All of these layers maintain the cloud accountability life

cycle which consists of seven phases including policy planning, sense and trace, log-

ging, safe-keeping of logs, reporting and replaying, auditing, and optimizing and rec-

tifying. Brandic et al. [5] proposed a novel approach for compliance management in

cloud environments to establish trust between different parties. The approach is devel-

oped using a centralized architecture and uses compliant management technique to

establish trust between cloud service consumers and cloud service providers. Unlike

5 Web Service-Based Trust Management in Cloud Environments 117

previous works that use policy-based trust management techniques, we evaluate the

trustworthiness of a cloud service using reputation-based trust management tech-

niques. Reputation represents a high influence that cloud service consumers have

over the trust management system [11] especially that the opinions of the various

cloud service consumers can dramatically influence the reputation of a cloud service

either positively or negatively.

Other research works also use reputation-based trust management techniques.

For instance, Habib et al. [15] proposed a multi-faceted Trust Management (TM)

system architecture for cloud computing to help the cloud service consumers to

identify trustworthy cloud service providers. In particular, the architecture mod-

els uncertainty of trust information collected from multiple sources using a set of

Quality of Service (QoS) attributes such as security, latency, availability, and cus-

tomer support. The architecture combines two different trust management techniques

including reputation and recommendation where operators (e.g., AND, OR, NOT ,

FUSION, CONSENSUS, and DISCOUNTING) are used. Hwang et al. [17] proposed

a security aware cloud architecture that assesses the trust for both the cloud service

provider and the cloud service consumers. To assess the trustworthiness of cloud

service providers, Hwang et al. proposed the trust negotiation approach and the data

coloring (integration) using fuzzy logic techniques. To assess the trustworthiness of

cloud service consumers, they proposed the Distributed-Hash-Table (DHT)-based

trust-overlay networks among several data centers to deploy a reputation-based trust

management technique. Unlike previous works which did not consider the problem

of unpredictable attacks against cloud services, we present an occasional attacks

detection model that not only detects misleading trust feedbacks from collusion and

Sybil attacks, but also has the ability to adaptively adjust and tweak the trust results

for cloud services that have been affected by occasional and periodic malicious

behaviors.

Conner et al. [10], proposed a trust management framework for service-oriented

architecture (SOA) that focuses on service provider’s perspective to protect resources

from unauthorized access. This framework has a decentralized architecture that offers

multiple trust evaluation metrics to allow trust parties to have customized evaluation

to assess their clients (i.e., cloud service consumers). Malik and Bouguettaya [23]

proposed reputation assessment techniques based on the existing quality of service

(QoS) parameters that enable the cloud service consumers to personalize the crite-

ria in assessing the reputation of Web services. The approach has a decentralized

architecture where each cloud service consumer records their own perceptions of

the reputation of a particular service provider. The proposed framework supports

different assessment metrics such as rater credibility, majority rating, past rating his-

tory, personal experience for credibility evaluation, personal preferences, personal

experience for reputation assessment, and temporal sensitivity.

Unlike previous works that require extensive computations or trust parties’ col-

laboration by rating the trust feedbacks, we present a credibility model supporting

the distinguishment between trustworthy feedbacks and malicious trust feedbacks.

We were inspired by Xiong and Liu who differentiate between the credibility of a

peer and the credibility of the feedback through distinguishing several parameters

118 T. H. Noor and Q. Z. Sheng

to measure the credibility of the trust participants feedbacks [38]. However, their

approach is not applicable in cloud environments.

5.8 Conclusions and Future Work

Given the quick adoption of cloud computing in the last few years, there is a significant

challenge in managing trust among cloud service providers and cloud service con-

sumers. In this chapter, we have presented a framework that uses Web services to

improve ways to manage trust in cloud environments. We introduced an adaptive cred-

ibility model that assesses cloud services’ trustworthiness by distinguishing between

credible trust feedbacks and amateur or malicious trust feedbacks. We particularly

introduced two trust parameters including the cloud service consumer’s capability

factor and the majority consensus factor in calculating the trust value of a cloud

service. In addition, our trust management service allows trust feedback assessment

and storage to be managed in a distributed way. In the future, we plan to deal with

more challenging problems such as the Sybil attack and the Whitewashing attack.

Performance optimization of the trust management service is another focus of our

future research work.

Acknowledgments Talal H. Noor’s work has been supported by King Abdullah’s Postgraduate
Scholarship, the Ministry of Higher Education: Kingdom of Saudi Arabia.

References

1. Amazon-EC2: Elastic Compute Cloud (Amazon EC2) (2011), accessed 01/04/2011, Available
at: http://aws.amazon.com/ec2

2. Amazon-S3: Amazon Simple Storage Service (Amazon - S3) (2011), accessed 29/03/2011,
Available at: http://aws.amazon.com/s3

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson,
D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing. Communications of the
ACM 53(4), 50–58 (2010)

4. Aziz, B., Hamilton, G.: Detecting Man-in-the-Middle Attacks by Precise Timing. In: Proc.
of the 3rd Int. Conf. on Emerging Security Information, Systems and Technologies (SECUR-
WARE’09). Athens/Glyfada, Greece (Jun 2009)

5. Brandic, I., Dustdar, S., Anstett, T., Schumm, D., Leymann, F., Konrad, R.: Compliant Cloud
Computing (C3): Architecture and Language Support for User-Driven Compliance Manage-
ment in Clouds. In: Proc. of IEEE 3rd Int. Conf. on Cloud Computing (CLOUD’10). Miami,
Florida, USA (Jul 2010)

6. Buyya, R., Yeo, C., Venugopal, S.: Market-oriented Cloud Computing: Vision, Hype, and
Reality for Delivering it Services as Computing Utilities. In: Proc. of IEEE 10th Int. Conf. on
High Performance Computing and Communications (HPCC’08). Dalian, China (Sep 2008)

7. Chen, K., Hwang, K., Chen, G.: Heuristic Discovery of Role-Based Trust Chains in Peer-to-
Peer Networks. IEEE Transactions on Parallel and Distributed Systems 20(1), 83–96 (2008)

8. Child, I.: The Psychological Meaning of Aesthetic Judgments. Visual Arts Research 9(2 (18)),
51–59 (1983)

http://aws.amazon.com/ec2
http://aws.amazon.com/s3

5 Web Service-Based Trust Management in Cloud Environments 119

9. Clark, K., Warnier, M., Brazier, F., Quillinan, T.: Secure Monitoring of Service Level Agree-
ments. In: Proc. of the 5th Int. Conf. on Availability, Reliability, and Security (ARES’10).
Krakow, Poland (Feb 2010)

10. Conner, W., Iyengar, A., Mikalsen, T., Rouvellou, I., Nahrstedt, K.: A Trust Management
Framework for Service-Oriented Environments. In: Proc. of the 18th Int. Conf. on World Wide
Web (WWW’09). Madrid, Spain (Apr 2009)

11. Dellarocas, C.: The Digitization of Word of Mouth: Promise and Challenges of Online Feedback
Mechanisms. Management Science 49(10), 1407–1424 (2003)

12. Friedman, E., Resnick, P., Sami, R.: Algorithmic Game Theory, chap. Manipulation-Resistant
Reputation Systems, pp. 677–697. Cambridge University Press, New York, USA (2007)

13. Google-Apps: Google Apps (2011), accessed 03/04/2011, Available at:http://www.google.
com/apps/intl/en-au/business/index.html#utm_campaign=en-au&utm_source=en-ha-apac-
au-bk-google&utm_medium=ha&utm_term=google-20app

14. Google-Docs: Google Docs - Online documents, spreadsheets, presentations, surveys, file stor-
age and more (2011), accessed 11/04/2011, Available at: https://docs.google.com/

15. Habib, S., Ries, S., Muhlhauser, M.: Towards a Trust Management System for Cloud Comput-
ing. In: IEEE 10th Int. Conf. on Trust, Security and Privacy in Computing and Communications
(TrustCom’11). Changsha, China (Nov 2011)

16. Hoffman, K., Zage, D., Nita-Rotaru, C.: A Survey of Attack and Defense Techniques for
Reputation Systems. ACM Computing Surveys (CSUR) 42(1), 1–31 (2009)

17. Hwang, K., Li, D.: Trusted Cloud Computing with Secure Resources and Data Coloring. IEEE
Internet Computing 14(5), 14–22 (2010)

18. Jøsang, A., Quattrociocchi, W.: Advanced Features in Bayesian Reputation Systems. In: Proc.
of the 6th Int. Conf. on Trust, Privacy and Security in Digital Business (TrustBus’09). Linz,
Austria (Sep 2009)

19. Ko, R., Jagadpramana, P., Mowbray, M., Pearson, S., Kirchberg, M., Liang, Q., Lee, B.: Trust-
Cloud: A Framework for Accountability and Trust in Cloud Computing. In: IEEE World
Congress on Services (SERVICES’11). Washington, DC, USA (Jul 2011)

20. Krautheim, F., Phatak, D., Sherman, A.: Introducing the Trusted Virtual Environment Module:
A New Mechanism for Rooting Trust in Cloud Computing. In: Proc. of the 3rd Int. Conf. on
Trust and Trustworthy Computing (TRUST’10). Berlin, Germany (Jun 2010)

21. Lai, K., Feldman, M., Stoica, I., Chuang, J.: Incentives for Cooperation in Peer-to-Peer Net-
works. In: Proc. of the 1st Workshop on Economics of Peer-to-Peer Systems. Berkeley, CA,
USA (Jun 2003)

22. Malik, Z., Bouguettaya, A.: Rater Credibility Assessment in Web Services Interactions. World
Wide Web 12(1), 3–25 (2009)

23. Malik, Z., Bouguettaya, A.: RATEWeb: Reputation Assessment for Trust Establishment Among
Web services. The VLDB Journal 18(4), 885–911 (2009)

24. Manuel, P., Thamarai Selvi, S., Barr, M.E.: Trust Management System for Grid and Cloud
Resources. In: Proc. of the 1st Int. Conf. on Advanced Computing (ICAC’09). Chennai, India
(Dec 2009)

25. Massa, P., Avesani, P.: Trust Metrics in Recommender Systems. In: Computing with Social
Trust, pp. 259–285. Human-Computer Interaction Series, Springer London (2009)

26. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (Sep2011), accessed:
05/06/2012, Available at: http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145/
Draft/800_145_cloud-efinition.pdf

27. Microsoft: Windows Live Mesh 2011 (2011), accessed 09/05/2011, Available at:https://www.
mesh.com/

28. NetLogo: Netlogo home page (2011), accessed 1/3/2011, Available at: http://ccl.northwestern.
edu/netlogo/

29. Noor, T.H., Sheng, Q.Z.: Credibility-Based Trust Management for Services in Cloud Environ-
ments. In: Proc. of the 9th Int. Conf. on Service Oriented Computing (ICSOC’11). Paphos,
Cyprus (Dec 2011)

http://www.google.com/apps/intl/en-au/business/index.html#utm_campaign=en-au&utm_source=en-ha-apac-au-bk-google&utm_medium=ha&utm_term=google-20app
http://www.google.com/apps/intl/en-au/business/index.html#utm_campaign=en-au&utm_source=en-ha-apac-au-bk-google&utm_medium=ha&utm_term=google-20app
http://www.google.com/apps/intl/en-au/business/index.html#utm_campaign=en-au&utm_source=en-ha-apac-au-bk-google&utm_medium=ha&utm_term=google-20app
https://docs.google.com/
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145/Draft/800_145_cloud-efinition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145/Draft/800_145_cloud-efinition.pdf
https://www.mesh.com/
https://www.mesh.com/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

120 T. H. Noor and Q. Z. Sheng

30. Noor, T.H., Sheng, Q.Z.: Trust as a Service: A Framework for Trust Management in Cloud
Environments. In: Proc. of the 12th Int. Conf. on Web and Information Systems (WISE’11).
Sydney, Australia (Oct 2011)

31. Pearson, S., Benameur, A.: Privacy, Security and Trust Issues Arising From Cloud Computing.
In: Proc. IEEE 2nd Int. Conf. on Cloud Computing Technology and Science (CloudCom’10).
Indianapolis, Indiana, USA (Nov - Dec 2010)

32. Roosevelt, E.: Facing the problems of youth. The P.T.A. magazine: National Parent-Teacher
Magazine 29(30), 1–6 (1935)

33. Sheth, A.P., Gomadam, K., Lathem, J.: SA-REST: Semantically Interoperable and Easier-to-
Use Services and Mashups. IEEE Internet Computing 11(6), 84–87 (2007)

34. Skopik, F., Schall, D., Dustdar, S.: Start Trusting Strangers? Bootstrapping and Prediction of
Trust. In: Proc. of the 10th Int. Conf. on Web Information Systems Engineering (WISE’09).
Poznan, Poland (Oct 2009)

35. Skopik, F., Schall, D., Dustdar, S.: Trustworthy Interaction Balancing in Mixed Service-
Oriented Systems. In: Proc. of ACM 25th Symp. on Applied Computing (SAC’10). Sierre,
Switzerland (Mar 2010)

36. Sotomayor, B., Montero, R., Lorente, I., Foster, I.: Virtual Infrastructure Management in Private
and Hybrid Clouds. IEEE Internet Computing 13(5), 14–22 (2009)

37. Weng, J., Miao, C., Goh, A.: Protecting Online Rating Systems from Unfair Ratings. In:
Proc. of the 2nd Int. Conf. on Trust, Privacy, and Security in Digital Business (TrustBus’05).
Copenhagen, Denmark (Aug 2005)

38. Xiong, L., Liu, L.: Peertrust: Supporting Reputation-based Trust for Peer-to-Peer Electronic
Communities. IEEE Transactions on Knowledge and Data Engineering 16(7), 843–857 (2004)

Chapter 6

Web Service Contracts: Specification
and Matchmaking

Marco Comerio, Flavio De Paoli, Matteo Palmonari and Luca Panziera

Abstract Web services promise universal interoperability through integration of

services developed by independent providers. The coming of the Cloud Computing

paradigm extends the need to share resources (e.g., platform, infrastructure, data)

that are accessible as Web services. This means that a key factor to build com-

plex and valuable business processes among cooperating organizations relies on the

efficiency of automate the discovering of appropriate Web services. The increasing

availability of Web services that offer similar functionalities requires mechanisms

to go beyond the pure functional discovery. This chapter proposes the evaluation of

Web service contracts, which define non-functional properties (NFPs) and applica-

bility conditions associated with Web services, as a solution to automate process

composition and enactment. Today, there is a lack of tools and algorithms that fully

support this solution due to several open issues. First, existing languages don’t pro-

vide the right constructs for the specification of Web service contracts. Second, the

lack of standard languages determines heterogeneity in Web service contract spec-

ifications raising interoperability issues. Third, Web service contract evaluation is

only partially supported by existing discovery engines and composition tools when

combining different services from different providers. This chapter proposes some

research efforts on addressing these open issues.

M. Comerio (B) · F. De Paoli · M. Palmonari · L. Panziera
University of Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy
e-mail: comerio@disco.unimib.it

F. De Paoli
e-mail: depaoli@disco.unimib.it

M. Palmonari
e-mail: palmonari@disco.unimib.it

L. Panziera
e-mail: panziera@disco.unimib.it

A. Bouguettaya et al. (eds.), Advanced Web Services, 121
DOI: 10.1007/978-1-4614-7535-4_6,
© Springer Science+Business Media New York 2014

122 M. Comerio et al.

6.1 Introduction

Web services aim at addressing interoperability and integration issues to deliver

complex business processes by discovering and composing services distributed over

the Internet and developed by independent providers. The building of such com-

plex and valuable processes requires efficient discovery and composition techniques.

Moreover, the emerging cloud computing paradigm that offers resources (software,

platform, infrastructure, and data) as on-demand services accessible through Web

services makes the development of enhanced discovery and composition processes

urgent.

There is a growing consensus that pure functional discovery and composition of

Web services are inadequate to develop valuable processes. This is due to the increas-

ing availability of Web services, in the Internet and cloud computing environments,

which offer similar functionalities but with different non-functional properties (e.g.,

price, availability and copyright). Therefore, a promising path towards the automatic

definition of valuable business processes is the development of Web service discovery

and composition tools and techniques to evaluate non-functional properties (NFPs).

Currently, NFPs that state the conditions to access and use services are expressed

by means of policies, licenses, and service level agreements. Despite of differences,

their common goal is to regulate a business transaction between the service provider

and the service consumer and thereby, commonly considered under the umbrella

term Web Service Contract (WS contract, for short). A WS contract includes one or

more contractual terms described in forms of conditions established on NFPs, such

as quality of service (e.g., response time and availability), legal aspects (e.g., fair

use and copyrights), intellectual rights (e.g., allowing or denying composition), and

business aspects (including financial terms such as payment and tax).

Despite enhancement of Web service discovery and composition with the evalua-

tion of WS contracts is increasingly considered strategic, currently there is a lack of

tools and algorithms that fully support it. This is mainly due to the lack of shared stan-

dard ways to express descriptions of contractual terms. Basically, service providers

represent these terms as they wish, causing strong ambiguity and redundancies that

make difficult, or even impossible without specific techniques, the automatic inter-

pretation in multi-provider service-oriented contexts.

This chapter discusses some research efforts on addressing WS contract specifica-

tion and matchmaking, which are at the core of the possible solutions. In particular,

we present (i) a semantic meta-model that provides a sound and robust base to for-

mally describe WS contracts, (ii) a set of techniques and rules to extract contractual

terms from available WS contract descriptions and (iii) an effective approach to WS

contract matchmaking, and a framework that implements it.

The chapter is organized as follows. Section 6.2 discusses motivations and state

of the art of the research on WS contracts. Sections 6.3 presents the semantic meta-

model and the set of rules and techniques to extract contractual terms. Section 6.4

describes the approach to WS contract matchmaking. Section 6.5 concludes the

chapter.

6 Web Service Contracts 123

6.2 Motivation and State of the Art

In the literature, the mutual understanding between providers and consumers is typ-

ically established by specifying policies, service level agreements and licenses.

A policy establishes a relationship between involved parties by specifying obliga-

tions and authorizations. A policy provides the means for specifying and modulating

the behavior of a feature to align its capabilities and constraints with the requirements

of its users [18].

A Service Level Agreement (SLA) is a bilateral statement signed between a service

provider and a service consumer, that describes the minimum performance criteria a

provider commits to meet while delivering a service and typically sets out the reme-

dial actions and penalties that take effect when the actual performance falls below the

promised standard. Thus, an SLA specifies the expected operational characteristics

of a service in business oriented terms between a provider and a consumer in such a

way that they can be measured, monitored, and managed [26].

A license includes all transactions between the licensor (e.g., service provider)

and the licensee (e.g., service consumer) in which the licensor establishes the rights

granted to the licensee when using some specific services for a specific tenure under

predefined terms and conditions [13].

In general, policies, SLAs, and licenses serve as a common denominator to specify

normative aspects of services and establish business relationships between providers

and consumers. In the literature, terms like policies, SLAs, and licenses are often

considered synonyms; therefore, we prefer to use the term Web Service Contract

to include all possible contractual terms, including the ones addressed by policies,

SLAs, and licenses.

Definition 6.1 Web Service Contract. Given a Service s offered by a Provider p

to potential Customers C , a Web service contract W SC is a legal binding exchange

of promises or agreements between p and C expressed through a set of contractual

terms CT = {ct1, . . . , ctn} that regulate the provisioning of s.

Definition 6.2 Contractual Term. Given a Web service contract W SC associated

with a Service s, a Contractual Term ct in W SC is a non-functional property referred

to a concern of s.

Example 6.1 Web Service Contract and Contractual Term. The Safe Logistic

Operator offers the Freight Transportation service with a Web service contract

including a contractual term specifying that the transportation is covered by a blanked

insurance.

Currently, the literature focuses on the definition of models for WS contract spec-

ification. In particular, recent contributions deal with the analysis of the different

contractual terms. According to [8], contractual terms can be classified into: (i) Qual-

ity of Service (QoS) terms that represent technical issues of a service (e.g., security

and performance); (ii) Business terms that describe financial terms and conditions

(e.g., price, insurance and compensation agreements); (iii) Service Context terms

124 M. Comerio et al.

that define technical aspects (e.g., compliancy to available devices and connections)

as well as profile aspects (e.g., service coverage) of the context associated with a

service and (iv) License terms that state responsibilities among involved parties and

conditions on service usage (e.g., compliancy to legal statements and regulations).

This classification can be further detailed as defined in [24], where a customizable

part of a service contract (namely, individual contract) has been introduced to include

contractual terms on: (i) Provider Obligation (e.g., quality of service guarantees),

(ii) Use of Information (e.g., data licenses), (iii) Warranties and Liabilities (e.g.,

warranty on the accuracy of the provided information), (iv) Delivery Time (e.g., time

conditions on service delivery) and (v) Price and Payment Terms (e.g., business terms

related to service usage).

Fig. 6.1 WS Contracts in service lifecycle

WS contracts have a role in several activities in service lifecycle, as illustrated in

Fig. 6.1:

6 Web Service Contracts 125

• Web Service Specification: in order to support efficient discovery and composition

of Web services, service specifications should also include offered non-functional

properties. Such properties are described in WS contracts. Several approaches

have been presented in the literature, among others, the most relevant are [1, 22,

24, 39, 48].

• Web Service Matchmaking: when more than one Web service satisfies the requested

functional requirements, the evaluation of WS contracts allows for the identifica-

tion of services that best match the requirements on non-functional properties. The

most relevant approaches to contract-based Web service matchmaking are [6, 14,

23, 28, 41, 42, 45].

• Web Service Negotiation: in many real business situations, WS contracts cannot be

considered static documents, instead they define reference terms to be negotiated

between providers and consumers to reach a tailored agreement. The most relevant

approaches to contract-based Web service negotiation are [9, 44].

• Web Service Composition: when two or more Web services are to be composed, WS

contract should be evaluated to validate the composition from a non-functional-

property point of view in order to avoid illegal or unauthorized compositions. The

most relevant approaches to contract-based Web service composition are [37, 47].

• Web Service Monitoring: during the execution of a Web service, the contractual

terms need to be checked against the actual state and behavior of the service.

When a violation of the contract terms is detected, exception handling actions

should be put in place. The most relevant approaches to contract-based Web service

monitoring are [16, 48].

Due to space reasons, in the rest of the chapter we will focus on issues and research

results related to Web service specification and matchmaking.

6.2.1 Issues on Web Service Contract Specification

The specification of contractual terms defining non-functional properties of a service

is a complex task since the following aspects must be considered:

• synonym and homonym: similar properties may have different names (e.g., in

different languages or domains) or the same name may refer to different properties

(e.g., in different domains a property may have different implications).

• quantitative and qualitative values: contractual terms can be expressed with

numeric values defined in different units (e.g., price in Euro or in USD), or they

can be purely qualitative (e.g., usability is good, trust is high, software is open

source).

• technological and business interdependencies: contractual terms present techno-

logical interdependencies (e.g., the WS has a higher price since it guarantees a

certain bandwidth) and business interdependencies (e.g., some contractual terms

are offered only to business users, others to private users).

126 M. Comerio et al.

Table 6.1 Shortcomings of current WS contract descriptions

Semantic XML-based Template-based Free-text

Machine interpretability ✔ ✔ ✘ ✘

Interoperability ✔ Limited Limited Limited

Expressivity ✔ Limited ✔ ✔

Reasoning ✔ ✘ ✘ ✘

As mentioned in Sect. 6.1, there are many way to specify WS contracts that bring

to heterogeneous descriptions that can be categorized as follows:

• semantic descriptions: defined by means of semantic Web languages and based

on domain ontologies.

• XML-based descriptions: defined by < attribute, value > clauses, where

attribute identifies an offered NFP and value specifies the value of that NFP.

• template-based descriptions: defined according to a predefined template. The con-

tractual terms are plain texts in natural language.

• free-text descriptions: defined by unstructured textual documents written in natural

language.

The mentioned descriptions present different levels of machine interpretability,

interoperability, expressivity and reasoning (see Table 6.1). Machine interpretabil-

ity represents the possibility for a machine to conceive the significance of a WS

contract. Interoperability defines the possibility to automatically interpret the WS

contract meaningfully and accurately in different contexts and domains. Expres-

sivity represents the capability to define articulated contractual terms supporting

the specification of technological and business interdependencies. Reasoning is the

capability of a machine to automatically form inferences from terms specified into

a WS contract. In Table 6.1, the symbol “✔” means that the contract description

type covers the capability; otherwise the symbol “✘” is used. In case in which the

capability is partially covered, the label “limited” is used.

Semantic descriptions fully support machine interpretability, interoperability and

reasoning due to the explicit definition of relations between property names and

property values. Moreover, the specification of expressive contractual terms is also

supported at the cost of describing technological and business interdependencies

through the use of articulated axioms [2, 39].

XML-based descriptions present contractual terms defined by text labels; there

is not a formal definition of NFP names and values, nor measurement methods

and units. Therefore, semantic misunderstandings are likely to occur causing lim-

ited interoperability. Moreover, expressivity is also limited since the specification of

articulated contractual terms is not allowed. Finally, reasoning cannot be supported

since relations among names and values are not explicitly stated.

Template-based and free-text descriptions present an high-level of expressivity

due to the use of natural language that can express specifications of articulated

WS contracts. On the contrary, they are not machine-processable and cannot be

exploited for reasoning. Interoperability is limited since different terminology can

6 Web Service Contracts 127

be used in different domains to express the same contractual terms (i.e., synonyms

and homonyms are not explicitly stated).

According to the above criteria, semantic descriptions represent the best solution

to define WS contracts. This conclusion is confirmed by the survey in [2], where

languages based on Logic programming or Description logics appear to have enough

expressivity for the description of articulated contractual terms regarding privacy

and security concerns of a service. The languages analyzed in [2] are classified

in two main groups: standard-oriented languages and research-oriented languages.

The former provide a well-defined but restricted set of features (e.g., possibility

to specify actions to be performed at runtime); the latter strive toward generality

and extensibility and provide a number of more advanced features (e.g., support for

negotiation).

Such languages cover only the specification of contractual terms on privacy and

security concerns of a service. To the best of our knowledge, no languages have

been proposed in the literature to cover all types of terms discussed above. As a

matter of facts, the most popular research-oriented models for semantic Web service

descriptions, namely OWL-S [30] and WSMO [43], and the associated languages,

OWL and WSML respectively, only marginally cover the specification of contractual

terms. OWL-S does not natively support the specification of contractual terms; an

extension of the model is required for their specification. WSMO basically allows for

attribute-value descriptions of contractual terms that are not included in the logical

model and thus reasoning activities on them cannot be performed. Several papers

[22, 39] try to overcome such limitations. As demonstrated in [11], these solutions

support the definition of expressive service contracts with the disadvantage of strong

effort required for their specifications.

The following research issue emerges: there is a lack of semantic meta-models to

provide sound and robust bases for describing WS contracts. A proper meta-model

should be:

• independent from the specific language used for actual semantic specifications, so

it can be adopted in different contexts providing for interoperability;

• expressive enough to represent all the needed properties, but simple enough to

require low effort for its usage;

• flexible enough to support the definition of automatic techniques and rules to

extract contractual terms from available descriptions, whether they are semantic,

XML-based, template-based or free-text.

This research issue has been addressed by the Policy Centered Meta-model

(PCM) [11]. The PCM supports: (i) expressive descriptions addressing qualitative

contractual terms by means of logical expressions and quantitative terms by means

of expressions including ranges and inequalities and, (ii) structured descriptions that

aggregate different term descriptions into a single entity with an applicability con-

dition. Moreover, the PCM outperforms other models providing a good trade-off

between provided expressiveness and effort required for its application. Finally, the

PCM is independent from a single language: it has been expressed both in WSMO

and OWL to overcome their limitations. Details about the semantic of the PCM and

128 M. Comerio et al.

techniques and rules to perform the mapping from heterogeneous sources to the PCM

are provided in Sect. 6.3.

6.2.2 Issues on Web Service Contract Matchmaking

The WS contract matchmaking problem can be defined as follows: given a set of WS

contracts W SC = {wsc1, . . . , wscn}, and a specification R of requested contractual

terms, define a sorting relation on W SC based on R. In this chapter, we assume that

each wsci ∈ W SC consists of an eligible contract associated with a Web service

identified by a discovery engine (e.g., GLUE2 [5] or OWLS-MX [21]) according to

its functional properties.

Historically, the first approaches proposed for WS contract matchmaking focused

only on QoS terms, which were expressed by numeric values. Syntactic matching

of contractual terms were performed and matching scores were computed by math-

ematical functions [28, 41, 45]. These approaches are very efficient, but not very

precise due to the syntactic approach, which may cause semantic misunderstandings

when dealing with qualitative contractual terms.

Tools and approaches based on the evaluation of semantic descriptions have been

proposed to improve the effectiveness of QoS-based matchmaking [6, 42]. In par-

ticular, the coming of WSMO and its extensions to support the specification of all

types of contractual terms, promoted the development of more precise WS contract

semantic matchmakers [12, 14, 15, 20, 31, 36]. Semantic approaches take advan-

tage of reasoning techniques to mediate between different terminologies and data

models by means of logical axioms and rules. Therefore, reasoning techniques are

very suitable to handle qualitative values of contractual terms. However, reasoning

tools are not very practical to deal with numeric expressions and formulae, since they

show very low efficiency.

Therefore, pure semantic and non-semantic approaches appear to be inadequate to

solve the WS contract matchmaking problem. In particular, they show the following

limitations: (i) expressivity: service contracts that include logical expressions on

ontology values and numeric expressions including ranges and inequalities are not

supported; (ii) generality: semantic mediation between contractual term descriptions

based on different domain ontologies is not supported; (iii) extensibility: parametric

matching evaluation by means of customized evaluation functions cannot be defined;

(iv) flexibility: evaluation of incomplete specifications (i.e., unspecified contractual

terms in requests or offers) is not supported.

The following research issue emerges: there is a lack of an effective approach

to WS contract matchmaking that combines high level of expressivity, generality,

extensibility and flexibility.

In [23, 46] this issue is partially addressed by extending WSMO or OWL-S with

the integration of mathematical techniques. However, both are not able to evaluate

multi-value qualitative and quantitative expressions defined by ranges. The research

issue is completely addressed by the Policy Matchmaker and Ranker (PoliMaR)

6 Web Service Contracts 129

framework,1 which implements an hybrid approach to exploit logic-based tech-

niques for qualitative evaluations, and algorithmic techniques for numeric expres-

sions. Details on the hybrid approach and PoliMaR are provided in Sect. 6.4.

6.3 Towards Web Service Contract Specification

Here we discuss the experience in defining the Policy Centered Meta-model (PCM)

[11] that has been developed to address representation and evaluation of non-

functional properties collected into requested and offered WS contracts. PCM has

been designed to be independent of any specific language. Currently, PCM has been

formalized in WSML and OWL.2 The usage of PCM as an extension of the WSMO

logical model has been accepted by the WSMO working group [38].

PCM provides a step towards the development of an expressive, flexible and

technology-independent framework for specifying Web Service contracts. The main

advantages of PCM in relation to other proposed models have been discussed in

several works (e.g., [11]) and can be summarized as follows:

• Expressivity: PCM provides a good trade-off between expressiveness and com-

plexity of the model. Besides PCM provides a simplified structure for organizing

contract descriptions (e.g. arbitrary logical axioms for specifying NFPs are not

allowed, while these are allowed in [38]), it has been showed that PCM sup-

ports the representation of the most significant types of contract (policies, SLAs,

license), and mappings to existing languages, such as WSOL [40], WSLA [19]

and ODRL-S [13] have been defined [8].

• Flexibility: the model has been easily extended along time to represent NFPs

extracted from heterogeneous data formats (semantic, XML-based, template-

based and textual descriptions) [8, 32, 33]; as a result, a large number of semantic

PCM-based descriptions of real services extracted from existing (non semantic)

sources have been made available to semantic matchmaking tools.

• WS technology independence: PCM has been applied to describe contracts for

SOAP-based services [7] and RESTful services [32, 33]; PCM descriptions can

be associated with service descriptions represented in any model, provided that

the description has a unique identifier.

6.3.1 The Policy Centered Meta-Model

Informally, PCM is centered around the concept of policy as aggregation of single

non-functional properties (NFPs) to form a bundle of offers or requests, that is, a

WS contract according to the terminology defined in Sect. 6.2. A policy offered by a

service, Service Policy in the following, is associated with a Condition that defines

1 Available at: http://sourceforge.net/projects/polimar/.
2 PCM formalizations are available at: http://www.siti.disco.unimib.it/research/ontologies/.

http://sourceforge.net/projects/polimar/.
http://www.siti.disco.unimib.it/research/ontologies/.

130 M. Comerio et al.

the requirements a consumer or the execution context should fulfill to select that

policy. For example, a service provider in the logistic domain may offers a shipment

service associated with a service policy (namely, Premium Policy) with a condition

(namely, Premium Condition) stating that the consumer must be subscribed to at

least 10 shipments. Each NFP in a policy is defined by a Constraint Expression

(Expression for short) that can involve either quantitative or qualitative criteria. For

example, the mentioned Premium Policy may offer a base price equal to 100 Euros

and a blanket insurance. On the other side, a policy defining user requirements,

Requested Policy in the following, consists of Requests, which are NFPs associated

with a weight named Relevance. For example, a requested policy may state, among

others, a mandatory constraint on the service price (i.e., price less than or equal to 120

Euros) and a preference on the service insurance (i.e., fire insurance or any insurance

type that includes it).

Formally, the meta-model can be defined as follows.

Definition 6.3 Non-Functional Property. Let L be a set of property labels, C a

set of constraint operators, ∆ = {D1, . . . , Dn} a set of disjoint domains, U a set

of units of measure; an Expression is a triple exp =< c, V, u >, where c ∈ C ,

V ⊆D, for some D∈∆, and u ∈ U . A NFP specification (NFP for short) is a couple

p =< l, exp >, where l ∈ L and exp is an Expression. With l p, cp, V p, and u p

we denote the property label, the constraint operator, the set of values and the unit

of measure of the NFP p, respectively.

PCM makes a distinction between qualitative and quantitative Expressions and

qualitative and quantitative NFPs. A Qualitative Expression < c, V, u > refers to

objects taken from a given domain, that is, the domain D such that V ⊆ D is a set

of arbitrary objects; since different measurement systems need not to be considered,

whereas objects are denoted by identifiers, u takes “id” (identifier) as default value in

qualitative expressions. A Quantitative Expression < c, V, u > refers to numerical

values, that is, the domain D such that V ⊆ D is a numerical domain, e.g. N , ℜ

and so on. The Unity of measure for Qualitative NFPs are NFPs whose Expressions

are qualitative expressions; Quantitative NFPs are NFPs whose Expressions are

quantitative expressions.

Example 6.2 Quantitative NFP. The quadruple<of f.BasePrice1,= 100, Euros

> represents the base price specification of the Premium Policy.

Example 6.3 Qualitative NFP. The quadruple <off.Insurance1, all, blanketInsur-

ance, id> represents the insurance specification of the Premium Policy.

Definition 6.4 Service Policy. Given a set of Services S, and a set of applicability

conditions identifiers PC , a Service Policy is a tuple sp = {P, pc, S}, with P

denoting a set of NFPs P = {p1, . . . , pk} such that
⋂k

i=1 lk = ∅ (non shared labels),

pc ∈ PC , and S is a set of services associated with the policy.

Given a service s, we denote with S Ps the set of all the policies sp such that

sp = {P, pc, s} for some P and some pc.

6 Web Service Contracts 131

Example 6.4 Service Policy. The triple <P1, Premium Condition, Freight Trans-

port> represents the premium policy associated with the Freight Transport service

where P1 includes the NFPs in Examples 6.2 and 6.3.

Definition 6.5 Request and Requested Policy. A Request r is a couple < p, rel >,

where p is a NFP and rel ∈ [0..1]. A Requested Policy is defined by a set of requests

r p = {r1, . . . , rn}.

Example 6.5 Request and Requested Policy. A Requested Policy includes the fol-

lowing requests <req. BasePrice, lessEqual, 120, Euros, 0.8> and <req. Insurance,

include, fire insurance, id, 0.6>.

6.3.2 Semantic Representation of the PCM

The PCM conceptual syntax has been designed to be independent of any specific

language. The concrete syntax in OWL and WSML has been defined to provide

for: (i) the definition of constraint expressions and operators by introducing specific

classes (e.g. the class of set operators and set expressions); (ii) the exploitation of

ontology axioms to formally define the mutual relationship among constraints (e.g.,

set expressions can have only ontology instances as values); (iii) the representation of

qualitative expression values as instances of ontologies, formally defining constraints

on the value domain (i.e., ontology concepts and their mutual relationships) and (iv)

the exploitation of logical inferences and semantic technologies for matching and

evaluating properties.

Fig. 6.2 PCM main classes. Dashed arcs represent domain/range restrictions over the properties
and continuous arcs represent subclass relationships

132 M. Comerio et al.

The main classes of the PCM are represented in Fig. 6.2 (refer to [11] for details).

Policies are represented by the class Policy, and NFPs are represented by the class

PolicyN f p (labels identifying NFPs are URIs); the class Request is a subclass of

PolicyN f p with the specification of a relevance value; the class Requested Policy

is a subclass of Policy with NFPs of class Request ; the class N f pExpression is the

superclass of different types of expressions: qualitative and quantitative. Figure 6.3

shows the properties that characterize each class of Expressions, the respective

ranges, and a set of built-in constraint operators.

Fig. 6.3 Expression classes

As for SetOperators, PCM introduces (i) the standard logical operators all and

exist with their logical meanings, and (ii) the operator include. Intuitively, a include-

based request (e.g., I need insurance including fire insurance) asks for values that

logically include the selected values (e.g., a blanket insurance); logical inclusion

is looked up by exploring hierarchical properties of a different nature (e.g., part-

of, topological inclusion). The set of CustomOperators allows domain experts to

introduce other operators to deal with object values. For example, a request based

on semanticDistance operator may ask for values that are semantically close to the

specified one.

As for quantitative expressions, PCM defines a set of operators that supports the

most common clauses for numeric values (e.g., inequalities and ranges). Besides

the standard binary operator = (equal), and ternary operator interval that fixes a

minimum and a maximum value, new operators have been introduced to increase

expressiveness of inequalities. These operators are:

(i) ≥↑ (greaterEqual) to specify a lower bound, so that the highest possible value

is better;

6 Web Service Contracts 133

(ii) ≥↓ (atLeast) to specify a lower bound, so that the lowest possible value is

better;

(iii) ≤↓ (lessEqual) to specify an upper bound, so that the lowest possible value

is better;

(iv) ≤↑ (atMost) to specify an upper bound, so that the highest possible value is

better.

6.3.3 Web Service Contract Extraction from Heterogeneous

Sources

As discussed in Sect. 6.2, heterogeneity prevents from automatic evaluation of con-

tracts; therefore, techniques to deliver comparable descriptions is needed. Currently,

no comprehensive solutions to solve this problem have been presented in the lit-

erature. Recent proposals, such as the VieSLAF framework [3] and the Integrated

Service Engineering (ISE) workbench [35], are innovative but partial solutions since

only the management of service level agreement (SLA) mappings is supported.

The definition of techniques and rules to extract contractual terms from available

semantic, XML-based, template-based and free-text descriptions and to map them

to a reference meta-model is still a open research issue.

6.3.3.1 Semantic Descriptions

A possible solution to extract contractual terms from heterogeneous semantic descrip-

tions of WS contracts is to develop wrappers that use ontology matching systems

(e.g., AgreementMaker [10]) to create mappings to a reference meta-model, such

as PCM [8]. Since WS contracts can be described according to different seman-

tic models (e.g., OWL-S, WSMO, MicroWSMO, WSOL) and by means of multiple

ontologies, a wrapper for each semantic model must be defined. The ontology match-

ing systems can find pairs of related concepts and evaluate semantic affinity between

concepts to create correct mappings.

Let us consider the mapping between a WSOL specification [40] and a PCM-

based WS contract. The concept of service offering in WSOL is mapped to a

pcm:Policy; QoS constraints and access rights are represented as pcm:PolicyNfp

and pcm:PolicyCondition, respectively. The mapping required a preliminary step in

which an ontology matching system is used to identify semantic matching between

concepts in the user ontology and concepts in the reference ontology. In the example

shown in Fig. 6.4, the concept ont:MaxRequestNumber specified in the user ontol-

ogy matches with the concept ref:RequestLimit in the reference ontology. After this

preliminary step, pre-defined rules are used to complete the mapping. For example,

for each identified QoS constraints in the WSOL specification (e.g., reqNumber in

Fig. 6.4), a new instance (requestLimit1) of the correspondent pcm:PolicyNfp is cre-

ated. The instance is defined by means of an expression having operator, parameter

134 M. Comerio et al.

Fig. 6.4 An example of semantic WS contract mapping

and unit equals to wsol:QoStype.typeName, wsol:qValue and wsol:qUnit.unitName

of the QoSConstraint. In the example, the resulting sematic descrition is expressed

in OWL, according to N-Triples format.3

6.3.3.2 XML-Based Descriptions

A possible approach to extract semantic WS contracts from XML-based documents,

and represents them according to a reference meta-model (e.g., PCM) is described in

[33]. The approach is based on the usage of two main data structures and knowledge

elements: source-to-policy templates and semantic mappings.

A Source-to-Policy Template is an XML document defined by the following main

elements (the datatypes and the allowed values for each element are specified within

round brackets):

• WSName (XPath): represents the path defined by an XPath expression to extract

the name of the Web service;

• WSProperty*[propertyValue(XPath), propertyType(String), propertyDescription

(String)]: represents a property that describes a characteristic of a WS. Each

WSProperty is described by a XPath expression to extract the value of the property,

the type (qualitative or quantitative) of the PCM property to which the property is

mapped, and the label associated with the property in the extracted contracts.

The XPath query expression is exploited by a wrapper to formulate the query

over semi-structured documents to extract the desired data. An example of Source-

to-Policy Template is represented in Listing 6.1. The elements tagged by “WSName”

and “WSProperty” are the ones used to build PCM-based WS contracts.

3 Specification available at: http://www.w3.org/TR/rdf-testcases/#ntriples.

http://www.w3.org/TR/rdf-testcases/#ntriples.

6 Web Service Contracts 135

Listing 6.1 An example of Source-to-Policy Template.

encoding="UTF-8"?> <tns:template
xmlns:tns="http://pcm. itis. disco. unimib. it/s2ptemplate"
xmlns:xsi="http://www. w3. org/2001/ XML Schema-instance">
< tns:WS Name >

/ feed / entry / content /name
</tns:WS Name >
<tns:WS Property >

<tns:property Value >
/ feed / entry / content /dataFormats

</ tns:property Value >
<tns:property Type >qualitative</ tns:property Type >
<tns:property Descpription>

Data formats
</ tns:property Description>

</tns:WS Property>
</ tns:template>

A set of semantic mappings are defined between properties in the Source-to-Policy

Template at design time. Mappings are defined by equivalence relations between

properties < p, q > and the transitive closure of the mappings is computed. Map-

pings are established between properties of the same type (i.e., qualitative/quantita-

tive properties are mapped only to qualitative/quantitative properties). Intuitively, a

mapping between properties states that those properties address the same characteris-

tic with no particular regards to possible different units of measure. For example, two

different properties that adopt different scales for user-rating values (e.g. user ratings

expressed in range [1..5] versus user ratings expressed in range [1..10]) are consid-

ered equivalent. Therefore, each mapping is associated with functions to convert the

values expressed in a unit into values expressed in the other, and vice versa.

6.3.3.3 Template-Based and Free-Text Descriptions

As a matter of facts, template-based and free-text are the most common kind of

WS contracts available. In both cases, service characteristics are described by text

in natural language, which makes difficult the identification of contractual terms. A

possible approach is to apply simple Information Retrieval (IR) techniques, such as

keyword extraction (words and terms are identified and extracted from the service

contract textual description), and stop words removal (terms that are non-significant

or don’t provide any meaning are removed) to index such descriptions.4 The result

is a set of keywords that are potential terms to be included in a WS contract. An IR-

based approach to extract contractual terms from textual descriptions and to include

them into a PCM-based WS contract has been defined in [4]. Basically, the approach

consists in (i) using the IR techniques to extract a vector of keywords representing

potential contractual terms and (ii) adding the vector into an existing PCM-based

description to be used for matchmaking.

4 For simplicity, the description of IR techniques is omitted, interested readers can to refer to [29].

136 M. Comerio et al.

A more sophisticated approach exploits natural language processing (NLP) tech-

niques [17] such as Word splitting (for parsing concatenated text), Stemming (for

reducing inflected words to their stem, base, or root form), Part Of Speech (POS)

tagging (for marking up the words in a text as corresponding to a particular part of

speech), Word Sense Disambiguation (WSD) (for identifying which sense of a word

is used in a sentence, when the word has multiple meanings). An example of usage

of such such techniques is proposed in [25].

6.4 Towards Web Service Contract Matchmaking

Here we discuss some research efforts on addressing issues on WS contract match-

making. In particular, we present an hybrid approach to WS contract matchmaking

that combines logic-based and algorithmic techniques. Logic-based techniques are

used for mediation and qualitative NFP evaluation instead more practical algorith-

mic techniques are used for quantitative NFP evaluation. The aim of the proposal

is to overcome the limitations of purely semantic or non-semantic approaches (see

Sect. 6.2.2) using logical reasoning techniques on semantic WS contract descriptions

only when they are strictly needed to improve the precision of the matchmaking.

The hybrid approach has been implemented in the Policy Matchmaker and Ranker

(PoliMaR) framework, which evolved along time in order to consider the issues

discussed in Sect. 6.2.2.

The proposed hybrid approach to service matchmaking provides a step towards

the development of effective, flexible, and Web-scale matchmaking systems handling

different types of contracts. The main advantages over others approaches, discussed

in details in [7, 32, 33], can be summarized as follows:

• Effectiveness: PoliMaR performs effective semantic-based non-boolean match-

making dealing with, possibly under specified, qualitative and quantitative contract

terms [7]; these semantic matchmaking techniques have been applied to descrip-

tions of contracts of different kinds [8], including user-generated descriptions of

contracts available in existing Web sources [32, 33].

• Extensibility: the decomposition of the matching process and architectural mod-

ularity supports different matching strategies and customized processes to ful-

fill application domain needs; this feature have been tested by adopting different

matching functions, and different configuration of matching components without

changes to the core matching strategy [4, 7, 27, 32, 33];

• Web-compliant Scalability and Performance: recent results showed that the adoption

of caching and lightweight service-based distributed architectures can overcome

scalability and performance limitations, which often affect semantic-based tools.

By balancing loads for tasks that require significant computational resources and

using different computing nodes, the proposed approach can perform matching

over thousands of contract specifications extracted from the Web at run-time [32,

33].

6 Web Service Contracts 137

6.4.1 An Hybrid Approach to Web Service Contract Matchmaking

and Ranking

In [7], a four-phase process for WS contracts Matchmaking and Ranking has been

proposed and formalized. As shown in Fig. 6.5, given a PCM-based requested con-

tract and a set of PCM-based offered contracts the process is composed as follows:

the term matching phase identifies the terms in the offered contracts that match

with each requested term in the requested contract. The result is a set of matching

term couples; the local evaluation phase evaluates, for each identified matching

couple, how the offered term satisfies the requested one. Results are in range [0, 1];

the global evaluation phase evaluates, for each offered contract, the results of the

previous phase to compute a global matching score. Results are values in range [0,

n]; finally, the contract ranking phase sorts the offered contracts according to their

global matching scores.

Fig. 6.5 The four-phase process for WS contract matchmaking and ranking

6.4.1.1 Term Matching

In order to identify matching term couples, the proposed mediator-centric hybrid

approach exploits domain ontologies, rule-based mediators and an inference engine

to solve semantic mismatches. In particular, mediators are defined as logic program-

ming rules and stored in a rule domain ontology; rules have the following form:

(s̃, p̃, õ,) ← (s1, p1, o1), (s2, p2, o2), . . . , (sn, pn, on)

Rules are composed by a head and a body. The body represents a condition through

a conjunction of statements defined by the RDF triples (si , pi , oi) with 1 ≤ i ≤ n.

Each triple specifies a relation, through a predicate p, between two concepts, defined

by a subject s and an object o. If the condition is verified, the relation defined by the

triple (s̃, p̃, õ) exists.

An example of term matching rules is defined in Listing 6.2. The three rules

specify that every instance o of BasePrice and ServicePrice classes matches with

138 M. Comerio et al.

Listing 6.2 An Example of Term Matching Rules
✞ ☎

(?r , pr :pricingMatches ,?o) <− (?r , rdf : type , nfpr :BasePriceRequest) ,(?o , rdf : type ,nfpo1:BasePrice)
(?r , pr :pricingMatches ,?o) <− (?r , rdf : type , nfpr :BasePriceRequest) ,(?o , rdf : type ,nfpo2: ServicePrice)
(?r ,pcm:matches ,?o) <− (?r , pr :pricingMatches ,?o)

✝ ✆

every instance r of the class BasePriceRequest. Moreover, the matching is defined as

a pricing relation type (pricingMatches). Prefixes (e.g., nfpo1:) define namespaces

of the ontologies in which the related concepts are specified. These prefixes permit

the mediation across several ontologies.

Term matching rules can be modelled through standard rule languages, such as

SWRL,5 Jena Rules,6 for OWL descriptions.

6.4.1.2 Local Evaluation

For each couple <r,o> identified along the Term Matching, a local score (ls) stating

how much o satisfies r is computed. A ls is expressed by a value in the range [0..1],

where 0 means “no match” and 1 means “exact match”. Each ls is computed through

a local evaluation function selected on the basis of the constraint operators used

to specify r and o. Links between functions and constraint operators are not fixed

and they can be customized in order to supply a flexible and extensible solution

for the local evaluation. Only mathematical functions are used for the evaluation of

quantitative terms; while for the evaluation of qualitative properties, mathematical

functions are used in combination with logic programming rules that exploit semantic

dependencies among terms based on the domain ontologies [7]. For example, let us

consider an ontology for the insurance domain, where the fireInsurance is defined as

partOf the blanketInsurance. Therefore, a WS contract offering blanketInsurance

satisfies a requested contract specified through an include operator and asking for a

fireInsurance.

6.4.1.3 Global Evaluation and Contract Ranking

Different Multi-Criteria Decision Making (MCDM) approaches can be used to per-

form the global score gs evaluation of a WS contract. An example is the Simple

Additive Weighting (SAW) technique that consists in multiplying the value of each

ls for the relevance (rel) that the consumer associates with the requested term. The

formula is defined as follows:

5 Specification available at: http://www.w3.org/Submission/SWRL/.
6 Specification available at: http://jena.apache.org/documentation/inference/.

http://www.w3.org/Submission/SWRL/.
http://jena.apache.org/documentation/inference/.

6 Web Service Contracts 139

gsW Scontract =

n
∑

i=1

ld<r,o>i ∗ relr

Different techniques can be used to perform the WS contract ranking according

to their gs. The simplest technique consists of using a traditional sorting algorithm.

6.4.2 The PoliMaR Framework

The Policy Matchmaker and Ranker (PoliMaR) framework implements the hybrid

approach to WS contract matchmaking and ranking proposed in the previous section.

During its development lifecycle, three different versions have been released.

After the implementation of the first core version [7], testing activities denoted

a high system response time when performing reasoning activities. This issue made

the first PoliMaR version inadequate to be used as a Web application. Therefore, two

other versions have been developed: a cache-based and a distributed version.

6.4.2.1 The Core Architecture

The process of enabling WS contract matchmaking can be divided in two phases:

• setup-time: a number of offered contracts are stored into the ontology repository

together with all the ontologies necessary for their evaluation. Moreover, a config-

uration file defining configuration parameters to be used along the matchmaking

process is specified.

• run-time: a requested contract is submitted to the engine and the term matching,

local evaluation, global evaluation and contract ranking activities are performed.

The result is a list of offered contracts ordered respect to their compliance with

the requested one.

Fig. 6.6 The core PoliMaR architecture

140 M. Comerio et al.

The PoliMaR tool supports setup-time and run-time activities, from the storages

of contracts by the service providers and the submission of requested contract by the

service consumers, to the definition of the ranked list of contracts.

The architecture of the core version of the PoliMaR tool, illustrated in Fig. 6.6,

is composed of independent modules that supply services through an API that gives

access to: (i) an ontology manager, which is in charge of receiving contract descrip-

tions and storing them into an appropriate repository; (ii) an execution engine, which

receives the requested contract and implements the execution strategies to fulfill

the matchmaking process; (iii) a configuration manager, which allows the client to

specified configuration parameters to be used to perform the matchmaking.

The execution engine relies on a set of components providing for specific features

that can be extended by new components without disrupting the architecture. Since

the adopted interaction model prevents components to communicate each other, they

act as servers that provide their services to the execution engine and make it the

orchestrator of the matchmaking process, which can enact different workflows to

implement different logics.

The PoliMaR core components are the following:

• Ontology loader: is in charge of loading into the reasoner through the reasoner

controller all the knowledge necessary to realize the term matching and the local

evaluation of qualitative terms.

• Term matching evaluator: implements the process necessary to perform the term

matching phase. Through the reasoner controller, this component submits the

matching rules to the reasoner and receives a set of matching couples as results.

• Local evaluator: implements the process necessary to perform the local evaluation

phase. For each matching couple produced by the term matching evaluator, the

local score evaluation is performed exploiting a specific function retrieved from

the library functions.

• Global evaluator: implements the process necessary to perform the global evalu-

ation phase. This component retrieves from the library functions the function to

be used for the global score evaluations. The function is loaded and executed on

the local scores computed by the local evaluator.

• Contract ranker: implements the process necessary to perform the contract ranking

phase. The function to be used to perform the ranking is retrieved from the library

functions and it is loaded and executed on the global scores computed by the global

evaluator.

6.4.2.2 The Cache-Based Architecture

As discussed in [7], reasoning activities introduce a relevant performance overhead in

the matchmaking process. The first proposed strategy to increase the performance of

the PoliMaR framework makes use of caching techniques to extract and store all the

knowledge needed for the matchmaking process at setup time. This strategy requires

to modify the activities to be performed at setup-time and run-time as follows:

6 Web Service Contracts 141

• setup-time: different types of caches must be created in order to make available in

practical data structures all the knowledge needed for the run-time evaluation. The

caches are created through the reasoner that extracts relevant information from

the ontology repository.

• run-time: a requested contract is submitted to the engine and the cache-based

matchmaking process is performed. The use of a reasoner is no longer needed.

In order to support both term matching and local evaluation, two different types

of caches are created: (i) matching cache that includes, for each possible requested

term, all the instances of concepts defined in the ontology repository that satisfy

predefined matching rules; (ii) relation cache that includes, relations (e.g., inclusion,

equality) between instances of concepts defined in the ontology repository.

Fig. 6.7 The cache-based PoliMaR architecture

The cache-based PoliMaR architecture (shown in Fig. 6.7) introduces two new

components:

• Cache builder: replaces the ontology loader and implements the functionalities

required for cache management. It is in charge of creating the caches at setup-time

and updating them at run-time when new ontologies are stored in the ontology

repository.

• Data controller: replaces the original repository controller and reasoner controller

and aims at making the upper components independent of the actual underlying

reasoner and of the technology used to manage the ontology repository and the

caches.

6.4.2.3 The Distributed Architecture

The cache-based architecture dramatically reduces the response time of the PoliMaR

framework, but at the cost of another limitation: the management of dynamic prop-

erties (e.g., QoS) requires continuous cache refreshing in order to preserve data

142 M. Comerio et al.

consistency, but the cache building performance is low since reasoning is required.

To increase the response time, a distributed version of PoliMaR has been defined.

The architecture of the distributed PoliMaR is shown in Fig. 6.8. The high mod-

ularity of the core architecture allows us to create two distributed components, the

orchestrator and the local matchmaker, that collects existing modules.

Fig. 6.8 The distributed PoliMaR architecture

The task of the orchestrator is to manage the matchmaking process through the

orchestration of the local matchmakers and performing the contract ranking. Instead,

local matchmakers collect the modules that perform the first three steps of the match-

making process: term matching, local evaluation and global evaluation. The com-

munication overhead is kept low thanks to the adoption of REST style interfaces to

deliver a lightweight and flexible service-oriented architecture [34].

As discussed in details in [33], this distributed architecture ensures a relevant

performance improvement. This improvement is enabled by a partial parallelization

of the matchmaking process performed by the local matchmaker. Moreover, each

local matchmaker performs a more efficient reasoning exploiting a smaller and less

complex knowledge base.

6.5 Concluding Remarks

Web service contracts are legally binding exchange of promises and agreements

between service providers and potential service consumers expressed through sets

of contractual terms on non-functional properties covering QoS, legal, intellectual

right, and business characteristics of services and their data.

The enhancement of Web service discovery and composition with the evaluation

of WS contracts is promising, but currently not supported by Web service discov-

ery and composition engines. This is due to the fact that service providers represent

WS contracts using heterogeneous formalisms, causing strong ambiguity and redun-

6 Web Service Contracts 143

dancies and preventing their right interpretation in multi-provider service-oriented

environments.

From the analysis of the literature two main issues emerge: (i) the definition of a

semantic meta-model that provides a sound and robust base to formally describe WS

contracts and (ii) the definition of an effective approach to WS contract matchmaking

with high levels of expressivity, generality, extensibility and flexibility.

The chapter reports research experiences that addressed the mentioned issues.

The Policy Centered Meta-model (PCM) [11] is a semantic meta-model that sup-

ports the definition of expressive and structured WS contract descriptions aggregating

qualitative and quantitative contractual terms into a single entity with an applicabil-

ity condition. Different techniques can be used to extract contractual terms from

available WS contract descriptions and to map them into PCM-based WS contracts.

Examples are in [4, 8, 33] where (i) wrapping techniques appear to be a valid solu-

tion for the extraction of terms from semantic descriptions, (ii) template-based and

semantic mappings are proposed to manage XML-based descriptions and, (iii) IR

and NLP are proposed to extract terms from free-text descriptions.

The hybrid approach implemented into the Policy Matchmaker and Ranker

(PoliMaR) framework [7] that combines logic-based and algorithmic techniques

represents an effective solution to WS contract matchmaking with high levels of

expressivity, generality, extensibility and flexibility.

References

1. Bochicchio, M.A., Longo, A.: Modelling contract management for cloud services. In: IEEE
International Conference on Cloud Computing (CLOUD 2011), pp. 332–339. Washington,
DC, USA (2011)

2. Bonatti, P.A., Coi, J.L.D., Olmedilla, D., Sauro, L.: Rule-based policy representations and
reasoning. In: In Semantic Techniques for the Web, The REWERSE Perspective, Lecture

Notes in Computer Science, vol. 5500, pp. 201–232. Springer (2009)
3. Brandic, I., Music, D., Leitner, P., Dustdar, S.: Vieslaf framework: Enabling adaptive and

versatile sla-management. In: In proc. of International Workshop on Grid Economics and
Business Models 2009 (GECON 09), pp. 60–73. Delft, The Netherlands (2009)

4. Calegari, S., Comerio, M., Maurino, A., Panzeri, E., Pasi, G.: A semantic and information
retrieval based approach to service contract selection. In: Proc. 9th International Conference
on Service-Oriented Computing (ICSOC 2011), pp. 389–403. Paphos, Cyprus (2011)

5. Carenini, A., Cerizza, D., Comerio, M., Della Valle, E., De Paoli, F., Maurino, A., Palmonari,
M., Turati, A.: Glue2: a web service discovery engine with non-functional properties. In: Proc.
of the Fifth European Conference on Web Services (ECOWS ’07). Dublin, Ireland (2008)

6. Chaari, S., Badr, Y., Biennier, F.: Enhancing web service selection by qos-based ontology and
ws-policy. In: Proceedings of the 2008 SAC ACM, SAC ’08, pp. 2426–2431. ACM (2008)

7. Comerio, M., De Paoli, F., Palmonari, M.: Effective and flexible nfp-based ranking of web
services. In: Proc. of Inter. Conf. on Service Oriented Computing (ICSOC), pp. 546–560.
Stockholm, Sweden (2009)

8. Comerio, M., Truong, H.L., De Paoli, F., Dustdar, S.: Evaluating contract compatibility for
service composition in the seco2 framework. In: Proc. of Inter. Conf. on Service Oriented
Computing (ICSOC), pp. 221–236. Stockholm, Sweden (2009)

144 M. Comerio et al.

9. Comuzzi, M., Pernici, B.: Negotiation support for web service selection. Technologies for
E-Services pp. 29–38 (2005)

10. Cruz, I.F., Antonelli, F.P., Stroe, C.: Agreementmaker: Efficient matching for large real-world
schemas and ontologies. PVLDB 2(2), 1586–1589 (2009)

11. De Paoli, F., Palmonari, M., Comerio, M., Maurino, A.: A Meta-Model for Non-Functional
Property Descriptions of Web Services. In: Proc. of the IEEE International Conference on Web
Services (ICWS), pp. 393–400. Beijing, China (2008)

12. Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta, A., Norton, B., Pedrinaci, C.:
IRS-III: A broker-based approach to semantic Web services. Web Semantics: Science, Services
and Agents on the World Wide Web 6(2), 109–132 (2008)

13. Gangadharan, G.R., D’Andrea, V., Iannella, R., Weiss, M.: Odrl service licensing profile
(odrl-s). In: 5th International Workshop for Technical, Economic, and Legal Aspects of Busi-
ness Models for Virtual Goods (2007)

14. Garcia, J.M., Toma, I., Ruiz, D., Ruiz-Cortes, A.: A service ranker based on logic rules eval-
uation and constraint programming. In: Proc. of 2nd Non Functional Properties and Service
Level Agreements in SOC Workshop (NFPSLASOC). Dublin, Ireland (2008)

15. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: Wsmx-a semantic service-oriented
architecture. In: Proc. of IEEE International Conference on Web Services (ICWS 2005), pp.
321–328. IEEE (2005)

16. Jarma, Y., Boloor, K., Dias de Amorim, M., Viniotis, Y., Callaway, R.: Dynamic service contract
enforcement in service-oriented networks. Services Computing, IEEE Transactions on PP(99),
1 (2011). doi:10.1109/TSC.2011.45

17. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Lan-
guage Processing, Computational Linguistics and Speech Recognition, second edn. Prentice
Hall (2008). http://www.worldcat.org/isbn/013122798X

18. Kamoda, H., Yamaoka, M., Matsuda, S., Broda, K., Sloman, M.: "Policy Conflict Analysis
Using Free Variable Tableaux for Access Control in Web Services Environments". In: "Pro-
ceedings of the 14th International World Wide Web Conference (WWW)" (2005)

19. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service level agree-
ments for web services. Journal of Network and Systems Management 11(1), 57–81 (2003)

20. Keller, U., Lara, R., Lausen, H., Polleres, A., Fensel, D.: Automatic location of services. In:
The Semantic Web: Research and Applications, Lecture Notes in Computer Science, vol. 3532,
pp. 1–16. Springer Berlin / Heidelberg (2005)

21. Klusch, M., Fries, B., Sycara, K.: Owls-mx: A hybrid semantic web service matchmaker for
owl-s services. Web Semant. 7(2), 121–133 (2009). http://dx.doi.org/10.1016/j.websem.2008.
10.001

22. Kritikos, K., Plexousakis, D.: Semantic qos metric matching. In: Proc. of the European Con-
ference on Web Services (ECOWS), pp. 265–274. IEEE Computer Society, Washington, DC,
USA (2006)

23. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of highly
configurable web services. In: Proc. of the 16th international conference on World Wide Web
(WWW ’07), pp. 1013–1022. ACM, New York, NY, USA (2007). http://doi.acm.org/10.1145/
1242572.1242709

24. Lamparter, S., Luckner, S., Mutschler, S.: Semi-automated management of web service con-
tracts. International Journal of Services Sciences 1(3/4) (2008)

25. Lee, K.H., Lim, J.: Constructing composite web services from natural language requests. Web
Semantics: Science, Services and Agents on the World Wide Web 8(1) (2011)

26. Lewis, L., Ray, P.: Service level management definition, architecture, and research challenges.
In: Global Telecommunications Conference, 1999. GLOBECOM ’99, vol. 3, pp. 1974–1978
vol. 3 (1999). doi:10.1109/GLOCOM.1999.832515

27. Li, P., Comerio, M., Maurino, A., De Paoli, F.: Advanced non-functional property evalua-
tion of web services. In: Proceeding of Seventh IEEE European Conference on Web Services
(ECOWS’09), pp. 27–36. IEEE (2009)

http://dx.doi.org/10.1109/TSC.2011.45
http://www.worldcat.org/isbn/013122798X
http://dx.doi.org/10.1016/j.websem.2008.10.001
http://dx.doi.org/10.1016/j.websem.2008.10.001
http://doi.acm.org/10.1145/1242572.1242709
http://doi.acm.org/10.1145/1242572.1242709
http://dx.doi.org/10.1109/GLOCOM.1999.832515

6 Web Service Contracts 145

28. Liu, Y., Ngu, A., Zeng, L.: Qos computation and policing in dynamic web service selection.
In: Proc. of the 13th international World Wide Web conference on Alternate track papers and
posters (WWW Alt. ’04), pp. 66–73 (2004)

29. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008)

30. Martin, D.: Semantic Markup for Web Services. Formalization available at: http://www.w3.
org/Submission/OWL-S/ (2004)

31. Mokhtar, S., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.: Easy: Efficient semantic
service discovery in pervasive computing environments with qos and context support. Journal
of Systems and Software 81(5), 785–808 (2008)

32. Panziera, L., Comerio, M., Palmonari M. De Paoli, F., Batini, C.: Quality-driven Extraction,
Fusion and Matchmaking of Semantic Web API Descriptions. Journal of Web Engineering
11(3), 247–268 (2012)

33. Panziera, L., Comerio, M., Palmonari, M., De Paoli, F.: Distributed matchmaking and ranking of
web apis exploiting descriptions from web sources. In: Proceedings of the IEEE International
Conference on Service-Oriented Computing and Applications (SOCA 2011). Irvine, USA
(2011)

34. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. “big” web services:
making the right architectural decision. In: Proceedings of the 17th International Conference
on World Wide Web (WWW) 2008, pp. 805–814 (2008)

35. Spillner, J., Winkler, M., Reichert, S., Cardoso, J., Schill, A.: Distributed contracting and mon-
itoring in the internet of services. In: Proc. of the 9th International Conference on Distributed
Applications and Interoperable Systems (DAIS), pp. 129–142. Lisbon, Portugal (2009)

36. Stollberg, M., Keller, U., Lausen, H., Heymans, S.: Two-phase web service discovery based
on rich functional descriptions. In: E. Franconi, M. Kifer, W. May (eds.) The Semantic Web:
Research and Applications, Lecture Notes in Computer Science, vol. 4519, pp. 99–113. Springer
Berlin / Heidelberg (2007)

37. Surya, N., John, Z.: Issues on the compatibility of web service contracts. In: L. Jie-Zhang
(ed.) Innovations, Standards and Practices of Web Services: Emerging Research Topics, pp.
154–188. IGI Global (2012)

38. Toma, I., Foxvog, D., Paoli, F.D., Comerio, M., Palmonari, M., Maurino, A.: Non-functional
properties in web services. wsmo d28.4 v0.2. Tech. rep., http://www.wsmo.org/TR/d28/d28.
4/v0.2/20080416 (2008)

39. Toma, I., Roman, D., Fensel, D.: On describing and ranking services based on non-functional
properties. In: Third International Conference on Next Generation Web Services Practices
(NWESP ’07), pp. 61–66. IEEE Computer Society, Washington, DC, USA (2007)

40. Tosic, V., Patel, K., Pagurek, B.: Wsol - web service offerings language. In: CAiSE ’02/ WES
’02: Revised Papers from the International Workshop on Web Services, E-Business, and the
Semantic Web, pp. 57–67. Springer-Verlag, London, UK (2002)

41. Vu, L., Hauswirth, M., Porto, F., Aberer, K.: A search engine for QoS-enabled discovery of
semantic web services. International Journal of Business Process Integration and Management
1(4), 244–255 (2006)

42. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A qos-aware selection model for semantic web
services. In: Proc. of the 4th Intl Conference on Service-Oriented Computing (ICSOC’06), pp.
390–401. Chicago, IL, USA (2006)

43. WSMO: The Web Service Modeling Ontology (WSMO). Final Draft. Available at: http://www.
wsmo.org/TR/d2/v1.2/20050413/ (2005)

44. Yan, J., Kowalczyk, R., Lin, J., Chhetri, M., Goh, S., Zhang, J.: Autonomous service level
agreement negotiation for service composition provision. Future Generation Computer Systems
23(6), 748–759 (2007)

45. Yu, H.Q., Reiff-Marganiec, S.: A method for automated web service selection. In: proc. of the
Congress on Services (SERVICES), pp. 513–520 (2008)

46. Zaremba, M., Migdal, J., Hauswirth, M.: Discovery of optimized web service configurations
using a hybrid semantic and statistical approach. In: Web Services, 2009. ICWS 2009. IEEE
International Conference on, pp. 149–156. IEEE (2009)

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.wsmo.org/TR/d28/d28.4/v0.2/20080416
http://www.wsmo.org/TR/d28/d28.4/v0.2/20080416
http://www.wsmo.org/TR/d2/v1.2/20050413/
http://www.wsmo.org/TR/d2/v1.2/20050413/

146 M. Comerio et al.

47. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware middle-
ware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004). http://dx.
doi.org/10.1109/TSE.2004.11

48. Zou, J., Wang, Y., Lin, K.J.: A formal service contract model for accountable saas and cloud
services. In: Proc. of IEEE International Conference on Services Computing (SCC 2010), pp.
73–80. Miami, Florida, USA (2010)

http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1109/TSE.2004.11

Chapter 7

A Certification-Aware Service-Oriented
Architecture

Marco Anisetti, Claudio A. Ardagna, Michele Bezzi, Ernesto Damiani,

Samuel Paul Kaluvuri and Antonino Sabetta

Abstract The widespread development of Service-Oriented Architecture (SOA)

and web services is changing the traditional view of information technology. Today,

software applications are increasingly distributed and consumed as a service, and

business processes are implemented by selecting and composing services provided

by different suppliers at run-time and with a minimal human intervention. In this

scenario, where services are usually selected on the basis of clients’ functional pref-

erences, the risk of providing powerful but insecure applications raises, and the prob-

lem of guaranteeing and preserving the security of services and business processes

becomes stringent. To this aim, we put forward the idea that security certification

techniques can be adopted to provide the evidence that a service system has some

security properties and behaves as expected. However, existing security certification

techniques are not well-suited to the service scenario, since they are designed for

static and monolithic software and then cannot support the intrinsic SOA dynamics.

In this chapter, we discuss recent developments in the area of extending security

M. Anisetti (B) · C. A. Ardagna · E. Damiani

Dipartimento di Informatica, Università degli Studi di Milano,

Via Bramante 65, 26013 Crema, Italy

e-mail: marco.anisetti@unimi.it

C. A. Ardagna

e-mail: claudio.ardagna@unimi.it

E. Damiani

e-mail: ernesto.damiani@unimi.it

M. Bezzi · S. P. Kaluvuri · A. Sabetta

SAP Research Sophia-Antipolis, 805, Av. du Docteur Maurice Donat,

06254 Mougins Cedex, France

e-mail: michele.bezzi@sap.com

S. P. Kaluvuri

e-mail: samuel.kaluvuri@sap.com

A. Sabetta

e-mail: antonino.sabetta@sap.com

A. Bouguettaya et al. (eds.), Advanced Web Services, 147

DOI: 10.1007/978-1-4614-7535-4_7,

© Springer Science+Business Media New York 2014

148 M. Anisetti et al.

certifications to web services. In particular, we first review current certification

approaches, and highlight requirements and challenges for applying them to the ser-

vice ecosystem. We then present an advanced methodology for security certification

based on testing, as a crucial part of a novel approach for security certification devel-

oped in the context of the FP7 EU project Advanced Security Service cERTificate for

SOA (Assert4Soa).

7.1 Introduction

Recent enhancements of Internet technologies and the growing success of SOA and

web services are moving current vision of ICT towards the Internet of Services [40].

Today, in fact, many software applications are released as service-based products,

and business processes are implemented by composing loosely-coupled services

provided by different suppliers. SOA and Web service standards provide a powerful

framework to specify distributed applications by defining their messaging (e.g., using

the Web Service Description Language (WSDL) [24]), conversation (e.g., using the

Web Service Conversation Language (WSCL) [2]), and/or coordination (e.g., using

the Business Process Execution Language (BPEL) [1]).

The price we pay for such a convenient way of specifying distributed applications

and developing business processes is an increasing difficulty in the evaluation of their

non-functional properties. This is especially true for security properties, since run-

time selection and composition of services provided by unknown parties can increase

the risk of security issues. As a consequence, the users are much more concerned

about the risk of developing powerful but insecure services. There is therefore the

need of providing new assurance techniques that fit the SOA environment and allow

users to evaluate a service not only using its functional properties but also verifying

non-functional ones. The availability of service-oriented assurance techniques aims

to increase the confidence of the users that a given service is secure and behaves as

expected.

The research community is trying to address the above issues by adapting cur-

rent development, verification, and certification techniques to the SOA environment

(e.g., [7, 9, 14, 19, 20, 22, 30, 45]). These techniques have to manage the intrinsic

dynamics of SOA applications and environments, and must be integrated within the

selection, discovery, and composition processes which are at the basis of the SOA

success. Among the different assurance techniques that can be used to address the

above problems, security certification is increasingly adopted. Originally, security

certification schemes have been defined for traditional static and monolithic software

systems, to the aim of proving some properties that are then used at deployment and

installation time [18]. These solutions cannot be adopted in a SOA scenario as they

are, but they need to be enhanced to meet SOA requirements.

In this chapter, the challenges and issues of security certification schemes for ser-

vices are analyzed from two different perspectives: (i) we analyze how a test-based

security certification scheme can be defined and integrated within SOA to provide

7 A Certification-Aware Service-Oriented Architecture 149

a certification-aware selection process; (ii) we analyze how a suitable framework

for managing the full life-cycle of services with certified security properties can

be provided, including certificate issuing and management, certification-aware ser-

vice discovery, certificate validation, and service consumption. The remaining of

this chapter is organized as follows. First, we analyze requirements on certification

schemes for services (Sect. 7.2) also discussing how they are changing the trust model

underlying the SOA infrastructure (Sect. 7.3). Then, we present a possible specifica-

tion of a test-based security certification scheme for SOA (Sect. 7.4). Moreover, we

illustrate the framework provided by Assert4Soa to support a certification-aware

SOA (Sect. 7.5), giving an overview of the high-level components of the framework

and a certification-aware development environment. Finally, we discuss the next steps

in the certification of evolving and composed services (Sect. 7.6).

7.2 Requirements on Security Certification of Services

Currently available certification schemes aim to provide trustworthy evidence that

a particular software system has some features, conforms to specified requirements,

and behaves as expected [18]. Some of these schemes have focused on security prop-

erties and requirements. The Trusted Computer System Evaluation Criteria (TCSEC)

(commonly referred as Orange Book) [46], provided by the U.S Department of

Defense (DoD) in 1985, has been the first security certification solution. TCSEC

aimed to propose a standard for security certification of software that (i) provides

guidelines to develop products satisfying security requirements, (ii) defines a means

to measure the level of trust provided by the system, and (iii) allows software pur-

chasers to state their requirements on the software. Following the TCSEC effort,

many other solutions have been provided world-wide, as for instance, Information

Technology Security Evaluation Criteria (ITSEC) [26] in 1991, Canadian Trusted

Computer Product Evaluation Criteria (CTCPEC) [18] in 1993. A major drawback

of these solutions is that they implement national certifications that are totally inde-

pendent from each other. As a consequence, the cost of certifying a software system

at an international level has been very high for a long time. The Common Criteria

(ISO 15408) certification scheme [24] has been defined to address this limitation

and provides an international standard for affordable software security certification,

including a general framework to specify, design, and evaluate security properties

of IT products. Common Criteria therefore reduces the costs of certifying a system,

while it maintains high complexity. Recently, some lightweight software certifica-

tion processes have been specified with the goal of reassuring the users without the

complexities of existing processes. As an example, Certificat de Sécurité de Premier

Niveau (CSPN) [3] has been designed as an alternative to Common Criteria and

provides a lightweight security certification infrastructure. If, on one side, CSPN

provides a lower level of security assurance than Common Criteria, on the other

side, it is less complex and allows to achieve security certification in less time.

150 M. Anisetti et al.

Although the many advantages of the above certification schemes, they are not

suitable for a service ecosystem. In fact, they usually consider static and mono-

lithic software, provide certificates including human-readable statements signed by

a trusted third party, and consider system-wide certificates to be used at deployment

and installation time. A promising direction to increase the level of assurance of

existing SOA applications and web services must (i) extend existing schemes to fit

the SOA dynamics and (ii) support the selection and composition of services on

the basis of the evidence that proves a set of security properties for each single ser-

vice. We therefore identify the following requirements that are fundamental for the

definition of a service-oriented certification scheme.

• Machine-readable certificates. A service provider should be able to retrieve a

machine-readable certificate for its services by interacting with a trusted certifi-

cation authority. The certificate proves a set of properties and can be consumed at

run-time by clients searching for a service that provides a set of functionalities with

a given level of assurance. Also, clients should be able to access and analyze (if

needed) the evidence supporting the properties. There exist two classes of evidence

that can be included in the certificate to support the claim that a service holds a

property [18]: (i) test-based evidence providing test-based proofs that a test carried

out on the service has given a certain result, which in turn shows that a given prop-

erty holds for that service; or (ii) model-based evidence providing formal proofs

that a service holds some properties and meets formal specifications in terms of

security requirements. The generation, management, and availability of accurate

evidence are fundamental aspects to integrate the security certification process and

outcomes within the SOA infrastructure. Some approaches for software systems

(e.g., Common Criteria [24]) integrate both test-based and model-based evidence

to provide different levels of assurance on software properties. In this chapter, as

explained in Sect. 7.4, we focus on test-based evidence as the means to provide a

first level of security assurance for services.

• Support for certification-aware service selection and composition. The certifi-

cation scheme should be designed to enhance the run-time service selection and

composition processes, which are at the basis of the SOA paradigm. First, the SOA

infrastructure should be extended to allow clients to select only those services that

address their security preferences. This requirement introduces the need of a solu-

tion that matches clients’ preferences with assurance information (i.e., evidence)

in the certificates. Second, the SOA infrastructure should provide a composition

process that aims to implement a composed service with some security proper-

ties. This process is driven by the properties to be certified on the composition

and selects only those services that have a security certificate compatible with the

target properties.

• Certificate life-cycle management. A service provider should be able to maintain

the freshness of certificates awarded to its services, also upon a new delivery

of the service code. Given the high dynamics of services, a low-cost solution

for incremental certification of evolving services is required to limit the need of

re-certification from scratch. A proper solution should then re-use as much as

7 A Certification-Aware Service-Oriented Architecture 151

possible the evidence and information in certificates awarded to older versions of

the service, to release a certificate for the new version.

• Service-based framework. The certification scheme should be enriched by a

service-based framework that is responsible for all certification activities, including

certificate release/revocation, certificate life-cycle management, and certificate-

based selection and composition of services. The framework should include a

certification-aware service registry and all components needed to manage certi-

fied services.

7.3 A Trust Model for Service Certification

The adoption of security certification techniques for services has a double impact on

the SOA infrastructure. On one side, it changes the traditional trust model underlying

SOA [6, 16], while on the other side, as discussed in Sect. 7.2, it would enhance the

selection and composition processes with requirements on non-functional properties

of services.

In general, when no certification techniques are used, the process of service pur-

chase involves two parties: (i) a service provider implementing and deploying a

service, and (ii) a client (either a human being or another service provider) selecting

and composing services implemented by different service providers to build com-

plex applications. Each service provider makes claims in the form of human-readable

statements on their services’ functionalities, as well as on their non-functional prop-

erties. These claims can be of two types: (i) assertions on functionalities of a service

(e.g., “the service supports functionalities for storing, retrieving, updating, and delet-

ing files”), and assertions linking functionalities and some abstract properties (e.g.,

“a mechanism to encrypt-decrypt messages in transit is implemented and implies

confidentiality of the communications”). In this case, the assertions are usually self-

certified by the service provider and added to the service specifications. The service

provider can optionally provide a set of evidence supporting its assertions, as for

instance, testing results, bug fixing reports, and the like. The client trust in an assertion

k made by a service provider s can be denoted with a variable Tk,s , taking a value on an

ordinal scale or in the interval [0, 1]. This value can be influenced by many factors, as

for instance, the market standing and reputation of the service provider, the evidence

type, the way in which the evidence supporting the assertion has been generated.

The integration of a security certification scheme within the SOA infrastructure

modifies the trust relationship between a client and a service provider. In this new

scenario, a trusted external entity (i.e., a certification authority—CA) is responsible

to collect, validate, and publish security assertions (and related evidence) on services.

The client trust in an (set of) assertion k made by a certification authority CA can be

denoted with a variable Tk,CA, and implicitly represents the level of trust the client

has on a service certifying a set of properties. In particular, assertions produced by

the security certification process are used as follows.

152 M. Anisetti et al.

• Security property definition. Certified assertions are used to define the security

properties supported by a given service. These properties belong to the well-known

confidentiality, integrity, or availability classification [7, 21, 25]. The client trust

in a service will then depend on it having all functionalities required to achieve

some security properties.

• Certification authority. Certified assertions are used to identify who has validated

the security functionalities of the service. The client trust in a service will depend

on the entity (i.e., certification authority) signing the assertions, how the entity

has been accredited, and the adopted collection and validation processes. Usually,

a certification scheme also provides a set of criteria for entities, called security

evaluation facilities, to ensure that these entities are capable and competent of

performing security evaluations under a clearly defined quality system.

• Security functionality validation. Certified assertions are used to specify the nature

of the evidence supporting the validation of a security functionality. The client trust

in a service will depend on the nature of the available evidence. A security func-

tionality can be verified using a test-based approach; alternatively, its properties

can be proven based on a formal model. The focus of the validation can be on

security functionality alone, or the development process may also have been taken

into account. Certification schemes clearly define how evidence has been collected

and stored, and how the product has been validated.

A trust model for service certification involves three main parties: a client that

searches for a certified service, a service provider that communicates with a certi-

fication authority to certify its services, and a certification authority that produces

assertions on service functionalities, provides evidence supporting the assertions,

and specifies properties implied by evidence and assertions for the service under

certification. Upon a request for service certification by a service provider, the certi-

fication authority collects the needed information by the service provider and starts

the evaluation activities. These activities result in the certification of a set of security

properties for the service. The client trust Tk,CA, where k is the set of assertions

supporting a set of properties for the service, depends on the assertions themselves,

the produced evidence, the mechanisms used by the CA to produce the evidence,

and the reputation of the CA. As said, there are cases in which the service provider

itself may provide the set k of assertions on its services, on which the client has a

given level of trust Tk,s . It is important to stress that certifications are often used as

a selling argument, compared to a competitor’s product with no certificate or self-

signed certificate. In general, the service provider assumes that Tk,CA ≥ Tk,s , and the

increase in revenue due to increased trust will be greater than the cost of certification.

This is indeed the case because the credibility and reputation of a service provider

rarely outperform the trust in a certificate signed by a certification authority which

is internationally recognized.

7 A Certification-Aware Service-Oriented Architecture 153

7.4 Machine-Readable Certification of Services

Current certification schemes lack of a machine-readable, semantics-aware format

for expressing security properties, and cannot be used to support and automate run-

time security assessment in a highly-dynamic SOA environment. As a consequence,

existing certification schemes do not support, from a client perspective, a reliable

way to assess the trustworthiness of a web service (composed or not) in the context

where (and at the time when) it will be actually executed. In this section, we present

a service-oriented approach that aims to fill this gap by expressing, assessing, and

certifying security properties of complex service-oriented applications. The proposed

solution, which consists of a test-based security certification scheme, permits to

specify machine-readable certificates (e.g., using an XML-based language) proving

that a service has a security property. Clearly, also the evidence in the certificate

supporting the property is in a machine-readable form, in such a way that it can be

used to query and compare different certificates. In the following of this section, we

present the test-based certification scheme and how it fits the SOA environment.

7.4.1 Test-Based Certification of Services

According to Damiani et al. [18], “test-based certificates are evidence-based proofs

that a test carried out on the software has given a certain result, which in turn

shows (perhaps with a certain level of uncertainty) that a given property holds for

that software. In particular, test-based certification of security-related properties is

a complex process, identifying a set of high-level security properties and linking

them to a suitable set of white- and black-box software tests”. Starting from this

definition, a machine-readable certificate should link a set of security properties with

the evidence supporting them. More in detail, a service-oriented certification scheme

needs to define (i) the set of security properties that can be certified on the services,

(ii) the categories of tests that can be used to provide the evidence supporting a

property, (iii) a model of the services under test that is used to generate the test cases

of a given category, and in turn the test evidence supporting a given property.

Hierarchy of security properties. A security property is defined as a pair p = (p̂,A)

where p̂ is an abstract property (e.g., confidentiality, integrity) and A is the set of class

attributes that refer to a set of threats the service proves to counteract, to a security

function implemented by the service, or to specific characteristics of the implemented

security function [7]. The domain of each attribute a ∈ A is characterized by a

(partial/total) order relationship �a and the value of a is denoted as v(a). Security

properties can be formally organized in a hierarchy defined as a pair (P,�P), where

P is the set of all security properties, and �P is a partial order relationship over

P . Given two properties pi and p j in P , we write that pi �P p j (i.e., pi is an

abstraction of p j), if pi . p̂ = p j . p̂ and ∀k = 1, . . . ,|A|, either vi (ak) is not specified

154 M. Anisetti et al.

(a)

(b)

Fig. 7.1 An example of a hierarchy of security properties (a) and categories of tests (b) [7]

or vi (ak) �ak v j (ak). In general, a service proving property p j always proves pi .

Figure 7.1a shows an example of a hierarchy of security properties.

Categories of tests. Each category T (e.g., functionality) specifies a set of test types

(e.g., random input), which represent the test design technique used to generate the

test cases and the certification evidence. Test types are organized in a hierarchy

(T ,�T), one for each test category T , where T is the set of all test types for the

category T , and �T is a partial order relationship over T . Given two test types ti
and t j in T , ti �T t j if ti is an abstraction of t j . Figure 7.1b shows a first example of

categories of tests, which can be extended to embrace additional testing categories

and types in [47]. We note that each test category has a set TA of test attributes. Each

test attribute ta ∈ TA is characterized by a total order relationship �ta .

Service model. In the literature, different approaches model services as state

automata and transition systems (e.g., [22, 30]). These approaches are mainly aimed

to improve testing performance and test generation, and to evaluate the correctness

of the service under test. Starting from the work in [22], we model a service as a

Symbolic Transition System (STS) [23]; STS, in fact, is a suitable solution to rep-

resent and certify complex Web services involving communications over the Net.

A symbolic transition system is a tuple 〈S ,s0,V ,I ,A ,→〉, where S is a set of

states, s0 ∈ S is the initial state, V is the set of internal variables, I is the set of

interaction variables, A is the set of actions (web service operations), and → is the

transition relation. Each transition relation consists of a set of edges connecting two

states and labeled with an action, a guard (conditions on transition), and an update

mapping (new assignments to variables). Service models can be specified at differ-

ent levels including information coming from different sources as: (i) information

7 A Certification-Aware Service-Oriented Architecture 155

Fig. 7.2 An example of STS-based model

in the WSDL interface only (WSDL-based model), which defines the interface of a

service in terms of operations and messages; (ii) information in the WSDL interface

extended with information about the conversation (communication flow between

clients and services) in the WSCL document (WSCL-based model). WSCL defines

the service interactions as the messages to be exchanged and the expected transitions

based on the results of these interactions; (iii) information in the WSDL interface and

WSCL document extended with details on the implementation of the WSDL opera-

tions (implementation-based model). We note that in case (i) we have an STS-based

model for each WSDL operation, while in cases (ii) and (iii), we have a single STS-

based model involving conversations and operation implementations, respectively.

The service model is used to automatically generate those test cases that will be used

to certify a service and produce the supporting evidence. We note that the generation

of test cases is pretty simple in case we consider basic data types (e.g., integers,

strings), while it is more difficult for complex data types (e.g., XML fragments). In

the latter scenario, the test cases can be manually constructed and then automatically

selected according to the test category. Figure 7.2 shows an example of STS-based

model that presents the flow of communication of a service both at the interface level

(operations in WSDL and conversations in WSCL) and at the implementation level

(operation implementation). Operations in the WSDL interface and functions in the

implementation are denoted as oi (.) and f j (.), respectively. Each transition edge can

be labeled with an input action ?o(.)/?f(.), the corresponding output !o(.)/!f(.), and

conditions (i.e., guards) on transitions presented in square brackets. Each WSDL

operation consists of three states as follows: (i) no input has been received (States 1

156 M. Anisetti et al.

and 4), (ii) the input has been received, no output has been produced (States 2 and 5),

(iii) output has been produced and sent to the client (States 3, 4, and 6). We note that

States 2 and 5 are linked to the real operation implementation (i.e., States 2a,2b,2c,2d,

and States 5a,5b,5c, resp.). We also note that State 4 represents the state at point (iii)

when it refers to the operation in State 2, while it represents the state at point (i)

when the operation at State 5 is considered. The implementation of the first WSDL

operation (State 2) represents an if statement within function f1(.), while the imple-

mentation of the second operation (State 5) represents a simple function call f2(.).

Based on the states, edges, and guards regulating state transitions, we can automat-

ically generate test cases as the set of inputs (and expected outputs) that permit to

cover the proposed STS model [34].

To conclude, a test-based certificate is composed of: (i) a (set of) security property;

(ii) a (set of) evidence signed by a third party proving that the service supports the

property; (iii) a service model used to generate the test cases for service certification.

7.4.2 Certification-Aware Service Selection

The traditional SOA infrastructure permits dynamic and run-time selection and

composition of services based on the clients’ preferences. Current service selec-

tion and discovery approaches (e.g., UDDI business registries and service search

engine) mostly rely on functional matching between services and clients’ preferences

[27, 35, 41] or support non-functional matching based on QoS properties [37, 48].

It is important to note that only few of the selection approaches supporting non-

functional matching consider the mechanisms implemented by the service to achieve

a non-functional property (e.g., [44]), while none of them considers the assurance

level and the certification metadata in the matching process. Furthermore, the selec-

tion of the best service, which is achieved by comparing and ordering (usually in a

ranked list) services satisfying clients’ preferences, is mainly based on the property

strength without considering how the property has been proven.

The certification scheme proposed in this chapter can be integrated within the

existing SOA infrastructure, to enhance service selection and composition processes

with a mechanism where clients define their security preferences in terms of prop-

erties, models, and evidence, and match them against the certificates awarded to the

services. The best service is then retrieved by evaluating information in the certifi-

cates including the mechanisms behind the property, the evidence supporting the

property, and the assurance level. In the following, we define (i) a matching process,

which permits clients to evaluate if the assurance level provided by a service cer-

tificate is compatible with their own preferences; (ii) a comparison process, which

permits clients to identify the best service among the ones identified at point (i).

Matching process. We introduce a triple-matching strategy which involves a check

on security properties (property-match) [31], service model (model-match), and evi-

dence (evidence-match) in the certificate [7]. Let C(p, m, e) be a certificate awarded

7 A Certification-Aware Service-Oriented Architecture 157

to a service, where p = (p̂, A) is a security property, m is a model level (e.g.,

WSDL-, WSCL-, or implementation-based model), and e = (t,TA) is the evidence

including the test type t and related attributes TA. Also let R(p′,m′,e′) be a user

request over security property p′, model m′, and evidence e′. The matching process

compares p and p′ (property-match), m and m′ (model-match), e and e′ (evidence-

match). The matching process is successful if both property-match, model-match,

and evidence-match succeed, and provides an output as follows:

1. match, if and only if: (i) p′�Pp (property-match), (ii) m′ is less detailed than m

(model-match), and (iii) t ′�T t and ∀k = 1 . . . |T A|, either v′(tak) is not specified

or v′(tak) �tak
v(tak) (evidence-match).

2. no match, otherwise.

In the following we discuss the match/no match scenarios by means of two exam-

ples based on the hierarchies in Fig. 7.1.

Example 7.1 (Match) Let us consider a service s that has a certificate C proving

the security property p = (p̂, A) = (Robustness, {Type = Malformed XML Tree})

with service model m = WSCL-based and evidence e = (t, TA) = (Penetration

test using Malformed XML Tree,{card = k}). Suppose now that a client submits a

request R to a registry searching for a service that has a certificate proving a generic

security property p′ = (p̂′, A′) = (Robustness, {Type = Malformed Input}) with

service model m′ = WSDL-based and evidence e′ = (t ′, TA′) = (Penetration

test using Non-Valid XML Tree,{card = m}), with TA.card>TA′.card, where

TA.card and TA′card are the cardinalities of the test sets. The registry searches

among its services and selects those that expose a certificate C(p,m,e) that satisfies

R(p′,m′,e′). Service s is selected since p′�P p based on the hierarchy in Fig. 7.1a, m′

is less detailed than m, and t ′�T t and TA′.card<TA.card based on the hierarchies

in Fig. 7.1b.

Example 7.2 (No Match) Let us consider the same service s in Example 7.1. Suppose

now, that a user is submitting a request R that differs from the one in Example 7.1

because it requires a model m′ = implementation-based. As in Example 7.1, the

matching between C and R provides a successful property- and evidence-match.

However, in this example, there is no model-match because m is less detailed

than m′.

The output of a matching process is a set of services which satisfy the client’s pref-

erences. The client’s preferences can vary from being very specific (e.g., expressing

concrete properties, test-based evidence, and model) to more general (e.g., express-

ing just an abstract property). Although the proposed matching approach allows to

produce a very specific query, we claim that the prototypical client of a SOA platform

will not specify a fine-grained request, but a more general one leaving some details

unspecified. The fact that a client will not specify every possible parameter in the

request, leaves some degree of freedom that the matching process must manage. In

general, the more these degrees of freedom, the bigger the set of services selected as

the output of the matching process. To be the selection process more effective, there is

158 M. Anisetti et al.

the need of an approach that provides an ordering of the services that match the pref-

erences of the client, thus giving to the client a more useful comparative evaluation

of the services. This process is called comparison process and is discussed in the

following of this section.

Comparison process. The comparison process receives as input the set of services

that satisfy the client’s preferences (matching process) and returns as output a ranked

list of these services, that is, a partial order calculated on the basis of information

contained in the service certificates. Several approaches are possible to generate the

ranked list, which can be grouped into two broad categories as follows.

• A cumulative metric computed using quality indexes on the information in the

certificate (i.e., property, model, evidence). This is the simplest approach and

introduces compensation effects between indexes (e.g., using weighted average).

Every information in the certificate is used in the definition of the ranked list and

its importance depends on the weight used for aggregation.

• Rule-based aggregation of metrics, in which the ranked list is computed following

some pre-defined rules. For instance, a simple rule can impose a specific evaluation

order, where properties are evaluated first; if two services cannot be ordered using

their properties, models and evidence are compared.

In both categories, the ranked list is generated comparing services that match the

client’s preferences on the basis of some specific metrics ordering properties, models,

and evidence in their certificates. Based on the certification scheme in this section,

properties in the certificates of two different services can be compared using the

security property hierarchy in Fig. 7.1. Then, models can be compared by evaluating

their level of detail (i.e., WSDL, WSCL, implementation). We note that a set of

indexes (e.g., number of nodes, edges, linearly independent paths) can be defined to

evaluate the quality of the service model, and used to rank and compare services.

Finally, the evidence can be compared using the hierarchies of test types and the

specified test attributes. Also in this case, a set of metrics (e.g., evaluating the test

case coverage on the service model) can be defined to evaluate the certification quality

and used to rank and compare services.

To conclude, we note that different approaches can produce different ranked lists

of services that match the clients’ preferences. Clients’ profiles can then be defined to

make the ranked list closer to their expectations. As an example, if a client expresses

a profile with trust on property definition only, a rule-based aggregation considering

the property first should be used.

7.5 ASSERT4SOA Framework

In this section, we describe the Assert4Soa framework, which implements a

certification-aware service-oriented architecture based on the test-based certifica-

tion scheme described in Sect. 7.4. The framework provides a set of features through

which the full life-cycle of services with certified security properties can be man-

7 A Certification-Aware Service-Oriented Architecture 159

aged, including certificate issuing and management, certification-aware discovery

and matchmaking,1 certificate verification, and service consumption [11].

7.5.1 Functionalities

To address the requirements described in Sect. 7.2, the Assert4Soa implementation

provides the following set of functionalities.

• Certificate model and language. A model (see Sect. 7.4) and an XML-based lan-

guage have been developed to enable the representation of service certificates

(Assert in the following). The model and language allow the specification of the

security properties of a service and the evidence that under-pins them (i.e., test

cases used in the certification process).

• Service discovery. A client can query the framework and retrieve a list of services

with certificates that match its functional and security preferences (i.e., matching

process in Sect. 7.4.2). As an example, a business process modeler or a developer

for a banking application specifies the functional preferences, that is, a service

which provides credit worthiness of a customer, as well as the security preferences,

that is, proper access control restrictions on the service provider side, in the query

that is sent to the discovery framework. Service discovery matches certificates and

the certified properties in the services with the specified preferences to retrieve a set

of compatible services. This is done dynamically without any human intervention

as the framework can receive queries from service-based applications at runtime.

• Certificate comparison. A core function of the framework is to rank services based

on their certificates (see comparison process in Sect. 7.4.2). This is a complex

process that involves ontological reasoning to the aim of comparing functionally-

equivalent services with different certificates. For example, we may need to com-

pare two services with the same security property that has been certified using

different categories and types of tests. This problem becomes even more complex

when two services have been certified using different classes of evidence, such

as for instance, model-based evidence and test-based evidence. In addition, the

reasoning algorithms have to take into account that there exists relations among

security properties specified in ontologies.

• Certificate issuing and management. The framework includes tools and user inter-

faces that allow assert issuers and managers to create certificates and to manage

their life-cycle (i.e., their issuing, update, and revocation).

1 We note that in the Assert4Soa terminology the certification-aware matchmaking process refers
to the matching and comparison processes in Sect. 7.4.2.

160 M. Anisetti et al.

Fig. 7.3 Component overview

7.5.2 High-Level Component Overview

Figure 7.3 presents a high-level overview of the Assert4Soa framework [12]. Here,

we mainly focus on the subsystems that are responsible for the core Assert4Soa

functionalities; other components that are related to somewhat “standard” functions

(e.g., system management, access control, logging) are left out of this description

for the sake of conciseness.

Front-end. This is the common entry-point providing an uniform API through which

clients can consume the functionalities provided by the Assert4Soa framework.

The Front-end protects the framework providing access control functionalities; also,

it represents an important source of security-relevant events, which are captured in a

secure Audit Trail. Clients may want to access the front-end to: (i) use the discovery

and matchmaking capabilities of the framework, and find a list of candidate services

that correspond to the criteria specified in the query (see Sect. 7.4.2), and (ii) manage

the lifecycle of certified services and of the related asserts, including registering,

updating, and verifying them.

Query Engine. This component is connected to the Front-end, the Discovery Engine,

and the Matchmaking. It is in charge of parsing the query coming from the client

and passing it on to the Discovery Engine. Queries contain both a specification of the

functionalities that candidate services must offer as well as a set of conditions on their

non-functional properties. This component decouples the query language used by the

client from the language that is used internally by the Assert4Soa framework. The

queries coming from the client may specify a subscription option; in this case, the

7 A Certification-Aware Service-Oriented Architecture 161

query is periodically evaluated and the client can receive continuous updates as new

matches are found that satisfy the query.

Discovery Engine and Matchmaking. Based on the information in the client

queries, the Discovery Engine coordinates several different subsystems. First, it

accesses the Back-end Registry to retrieve an initial set of candidate services, based on

their functional description. Then, it instantiates a matchmaking strategy. Such a strat-

egy is basically a description of how various types of matchmaking modules should

be coordinated and how their results should be aggregated to determine the final list of

candidate services, ranked according to their degree of fit, to be returned to the client.

The strategy and the initial list of services obtained from the Registry Abstraction Layer

is given as input to the Matchmaking Subsystem (not depicted in Fig. 7.3).

The Matchmaking Subsystem is controlled by the Discovery Manager which acti-

vates it by passing as input (i) an initial set of (functionally matching) candidates,

and (ii) a matchmaking strategy (produced based on the content of the query). As

a result of the matchmaking process, the candidate services are filtered (discarding

those that do not match the non-functional preferences) and ranked according to their

degree of fit. Internally, the Matchmaking Subsystem is organized as a hierarchical,

dynamically configurable architecture. It is hierarchical since a Master Matchmaker

controls a set of Slave Matchmakers and aggregates the results coming from each

slave in a single measure; it is dynamically configurable since the organization of the

slaves is determined and realized at run-time, based on the matchmaking strategy,

which in turn is determined based on the query.

This design allows each slave to be realized as a very targeted, domain-specific

evaluator of a particular property or dimension, whereas the master matchmaker is

only concerned with the coordination of slaves. In this way, additional (or alternative)

slave matchmakers can be plugged into the system, thus supporting the evaluation

of an extensible range of properties. While the focus of Assert4Soa is on security-

related properties, the architecture accommodates a sophisticated coordination of

different pluggable matchmaking components, in such a way that the decision as to

which candidate has to be chosen can be taken on a more comprehensive basis (e.g.,

capturing constraints related to performance, reliability, cost, and so on). Slave match-

makers may be provided by external third-party services, giving an additional level

of dynamism and diversity and possibly enhancing availability and fault-tolerance

(although raising, at the same time, additional security and trust concerns).

Assert Management. This module includes a tool used by assert issuers to express

the results of their assessment in a certificate. The tool provides a graphical user

interface that guides the issuer (typically a certification authority) in the process, and

produces as output an assert that conforms to the assert XML-schema and that is

digitally signed by the issuer. Furthermore, an assert validation component is used

to check the assert validity. This component is used both server-side, before the

results of matchmaking are pushed to the client, and client-side, where clients may

want to check the asserts on their own, before consuming a service. The validation

involves several steps. First, the signature on the assert is checked to ensure it is

authentic. Then, the well-formedness of the assert is verified. Finally, the credentials

162 M. Anisetti et al.

of the assert issuer are checked, based on the preferences of the client. The Assert

Management module includes the functionality to publish certified services in the

Back-end Registry, available through the registry abstraction module, for managing

their life-cycle.

Back-end Registry. While service descriptions may be stored in several (possibly

heterogeneous) back-end repositories, this component provides a uniform access to

such repositories, regardless of the differences in their interfaces and protocols. The

request coming from the Query Engine is split by the Discovery Engine into two parts

that are treated separately: (i) the characterization of security properties required

by the client, and (ii) the description of the interface, functionality, and other non-

security QoS conditions that are expressed as part of service discovery queries. Based

on the latter, the Discovery Engine queries the Back-end Registry to retrieve a set of

candidate services that satisfy the required interface, functional, and non-security

characteristics.

7.5.3 Certification-Aware Development Environment

A typical usage scenario would see a developer of a service-based application (SBA)

who uses the Assert4Soa framework to identify and consume component services.

In addition to the functional requirements for the SBA, the developer has also to take

into account the security requirements for the application. These requirements are

analyzed and translated by the developer into security requirements for the individual

services that have to be composed in the application.

To access the functionalities provided by the Assert4Soa framework through its

API, the developer may use a web-based front-end whereby she can browse and filter

the services available in an Assert4Soa-enabled repository. Alternatively, using a

dedicated extension to her IDE, the developer can access the same functionalities

directly inside the development environment (e.g., through an Assert4Soa plugin)

as depicted in Figs. 7.4 and 7.5. The interactions in the two cases are analogous; here

we concentrate on the latter.

Enhanced Service Browser. The developer uses the service browser to lookup cer-

tified services by functionality, with services organized in categories. The security

properties of the matching services are used as an additional dimension based on

which services can be grouped, ranked, and filtered.

Service Security Properties Inspector. A dedicated view in the IDE is used to

display the certified security properties of a service, as showed in Fig. 7.5. The basic

information on the assert (such as, issuer information, time of issuing, and so on) is

displayed together with a detailed view of the content of the certificate, including the

certified properties, the service model, and the evidence on which the certification is

based.

7 A Certification-Aware Service-Oriented Architecture 163

Fig. 7.4 Proof-of-concept of an Assert-enabled modeling environment

Fig. 7.5 Security property inspector

Assert Validation. The plugin allows the developer to trigger the assert validation

at any time. The validation is automatic when the developer selects a service from a

result set obtained in response to a query or browsing action. The developer may also

choose to (re-)validate services that have already been included in the application

(business process in Fig. 7.4).

164 M. Anisetti et al.

Stored Security Preferences. In addition to application-specific security require-

ments (entered by the developer as part of her browsing actions), there are prefer-

ences that can be stored and reused across development sessions and projects. These

preferences represent, for instance, the constraints imposed by the developer com-

pany on the selection of third-party services, regardless (in addition to) the specific

requirements of the application being developed.

7.6 Next Steps: Security Certification of Evolving and

Composed Services

Two of the most prominent characteristics of SOA applications are their ability to

continuously evolve and support changing environments, and to support composition

scenarios. A certification scheme for SOA has to take into consideration and manage

these aspects and the impact they may have on the certification process. In particular,

there is the need of new approaches limiting the amount of re-certification in case

of evolving services, and providing a solution to infer properties of a composition

given the properties of its basic services.

Service evolution can have a substantial impact on security certifications, since

the release of a new version of a service may invalidate the certificates awarded

to the old version. This scenario is costly and can reduce the increase in revenue

given by the certified service, since a re-certification process from scratch can be

triggered at each service change. A fundamental issue for the certifier then arises:

how to certify evolving services saving costs? The most interesting solution from

a certifier point of view is an approach to incremental certification [8], which aims

to re-use as much as possible the certificates and related evidence available from

older versions of the service, to certify the new version. This solution can reduce

the time and costs needed for the certification of evolving services. For instance,

let us consider a service s.v1.0 and its evolution s.v1.1. Service s.v1.1 is a new

release of s.v1.0 with small variations including some bug fixing. In this case, a

solution allowing to apply incremental certification and to certify only the new parts

of s.v1.1 that have an impact on the security properties in the certificate, gives a

huge advantage in terms of performance and costs. The same approach can also be

adopted in cases of major revisions, although the amount of re-used certification

evidence is reduced and the need of re-certification increases. There are also cases in

which incremental certification is not applicable. For instance, if the change affects

an horizontal functionality (e.g., a mechanism for message signature) that is used by

all service operations, a re-certification from scratch is required.

Our solution, and in particular the test-based certification approach, provides some

interesting functionalities that can be used by the CA to manage the certification of

evolving services. As an example, the service model, that we use in the certification

process to produce the test cases and related evidence, can help to identify which

parts of the service and which subset of test cases are affected by changes among two

7 A Certification-Aware Service-Oriented Architecture 165

different versions. Since the security property is directly associated with its model,

changes in the model require incremental certification. Using this simple analysis,

the CA can evaluate whether service changes have an impact on service certificates,

and in this case can identify which of the existing test cases and evidence are not

valid and need to be substituted/re-executed. If changes have no impact on the model

and certificate, no activities are required. If changes have an impact on the whole

service implementation, a re-certification from scratch is needed.

Let us again consider the two services s.v1.0 and s.v1.1, and suppose that the

differences between them are captured by a service model m. Based on m, it is

possible to produce the additional test evidence required to incrementally certify

s.v1.1. We note that, in some cases, the CA can just adapt the previous certificate

re-using the same evidence (or a subset of it) and signing the (reduced) certificate

for the new service version. This activity can result in a decreasing quality of the

certification process, thus affecting the ranking of the service in the comparison

process.2 In other cases, the CA applies incremental certification, by adding new test

cases or by re-executing existing ones, to test m and generate new evidence for it.

Focusing on composition scenarios, composed services can be implemented by

dynamically using orchestration or choreography approaches. Indeed, the certifica-

tion of service compositions can be realized according to two approaches: (i) certify

the composition as a single service (static composition with static binding), (ii) certify

the composition by using certificates of basic services (dynamic or static composi-

tion with dynamic binding). The first approach recalls the certification of a single

service. In particular, the CA certifies the composition using the complete model

(that includes the model of every basic service and the BPEL of the composition)

and the evidence produced for the entire composition. This approach is possible only

for static compositions with static binding, and considers the composition as a single

service in which basic services are statically integrated. Clearly this approach is not

optimal, although it works correctly for static compositions. The second approach is

based on the idea of re-using certificates of basic services to produce the certificate

of the composed one. This approach assumes the knowledge of the service compo-

sition (i.e., BPEL composition), the property to be certified for the composition, and

aims to reduce the effort required to the CA. A service composition defines how the

basic services interact and exchange requests and responses. Furthermore, a set of

composition patterns define simple rules that permit to derive the security properties

of the composed service starting from the security properties of the basic services

and by looking at their interactions.3

The process of certifying a composition of services based on testing has two fun-

damental steps: (i) select basic services to be composed on the basis of the property

to be certified for the composition, the certified security patterns, the BPEL compo-

2 This could sound contradictory from the software engineering point of view since service s.v1.1
is an updated version of s.v1.0 and thus it should be “better” than the previous version. From the
certification point of view, however, if we do not have the evidence that s.v1.1 is “better” than
s.v1.0, we should not claim it in the certificate.
3 We note that the patterns can be certified themselves increasing the trust in the composition.

166 M. Anisetti et al.

sition, and the security properties of the basic services, (ii) derive the evidence that

supports the certified composition, since no real testing is done on the composition.

The first step is simply obtained by selecting services having certificates that permit

to infer the expected property for the composition, based on certified composition

pattern. Although in some cases this can be considered enough from a CA point of

view, the service provider retrieves a certificate for the composed service with no

evidence that a property holds. In this scenario, the service ranking is usually low

and the service is put at the end of the ranked list. The second step instead aims

to derive a “virtual” set of evidence for the composition using the evidence of each

basic service. The term “virtual” means that the evidence of the composition is not

generated using real testing. This “virtual” evidence is generally a subset of the evi-

dence of the basic services, and is obtained by using composition patterns. At the end

of this process, the composed service has its own certificate supported by a “virtual”

evidence, which can be used to achieve a better ranking in the selection process.

To conclude, the certification scheme proposed in this chapter provides the basis

to support the important characteristics of a SOA environment, and can be extended

to address most of the issues involving incremental certification of evolving services

and most of the challenging tasks in the certification of service compositions.

7.7 Related Work

Traditional approaches for the development, verification, validation, and certifica-

tion of systems have mainly focused on monolithic software, which is evaluated

at design-time before each system is really installed and used by a client. In this

area, the research community has mostly considered software testing to assess and

verify the correct functioning of services [4, 36]. However, some works have also

focused on non-functional verification of software, as for instance, in [49], where the

authors define a model-based approach to automatic testing of attack scenarios, and

in [29], where a systematic specification-based testing of security-critical systems

is proposed based on UMLsec models. Moreover, as discussed in Sect. 7.2, several

approaches have been defined for certifying software systems ranging from national

specifications (e.g., [26, 46]) to international ones (e.g., [24]). Also, given the high

overheads and costs of software certification, lightweight and domain-specific certi-

fication schemes have been recently defined (e.g., [3, 15]).

Today, solutions for service testing have been inspired by existing approaches

for software systems and share a common ground with them. However, even if they

come from the same scientific ground, service testing differs from standard soft-

ware testing practices, because the loosely coupled nature of web services severely

limits the way testers can interact with the services during the testing process. Sim-

ilarly to the case of software testing, the research literature has initially focused on

addressing the problem of testing functional properties of web services, and to auto-

matically generate test cases for service verification [9, 13, 14]. Tsai et al. [45] first

propose the idea of using and extending WSDL standard to cope with web service

7 A Certification-Aware Service-Oriented Architecture 167

testing. They enrich the WSDL interface with input-output dependency, invocation

sequence, hierarchical functional description, and concurrent sequence specification.

Salva and Rabhi [39] provide a solution to evaluate the robustness of services, which

automatically generates test cases from the WSDL. Mao [33] proposes a hierarchi-

cal testing framework, which evaluates services at both unit and system levels. The

unit level considers information in the WSDL interface and applies combinatorial

testing, while the system level uses a state model of the information in the BPEL

process specification to generate test cases. Jokhio et al. [28] apply specification-

based software techniques to semantic web services, and define a solution to test

case generation starting from their goal specification. Test cases are used to test the

correctness of the real implementation.

Other works have proposed model-based solutions for testing web services [10,

20, 22, 30]. These solutions provide a modeling of web services for automatic gen-

eration of test cases, verification of the functional correctness of services, and iden-

tification of faults. Frantzen et al. [22] use symbolic transition systems to model and

test web service coordination. The transition systems are used as a starting point

to automatically generate test cases which fit service composition. Keum et al. [30]

propose a solution using extended finite state machine to automatically generate test

cases. The authors enrich the WSDL interface with information about the dynamic

behaviour of services to improve the testing coverage. Bentakouk et al. [10] propose

a solution based on STS-based testing and STM solver to verify that a service compo-

sition conforms to its specifications and/or user requirements. Endo and Simao [20]

present a solution based on finite state machines and a Java prototype, which aim to

automatically generate test cases for functional verification of services.

A recent and active field of research is focusing on verification and certification

of service non-functional properties. The US-based Software Engineering Institute

(SEI) [42] has published a requirements document on the service certification and

accreditation process for the US Army CIO/G-6. The document describes a process

for certifying services to assure that they are not malicious to the service-oriented

infrastructure they are deployed in or interacting with. Anisetti et al. [7] presents a

test-based certification scheme for services. The proposed solution models services

as symbolic transition systems using information in the WSDL interface and in the

WSCL document, and details about their implementation. Test cases are generated

using the service models. Kourtesis et al. [32] present an approach to conformance

testing managed by the SOA registry to improve the reliability of SOA environments.

In general, if the service is functionally equivalent to its specifications, a certificate is

awarded to it. Serhani et al. [43] focus on Quality of Service (QoS) certification and

propose an architecture relying on a QoS broker for efficient web service selection,

on the basis of clients’ functional and QoS requirements.

To conclude, some works are currently facing the problem of managing service

evolution and their impact on clients and services. These solutions (e.g., [5, 12]) are

mainly aimed to provide an approach that limits the impact that dynamic changes

and variations on services may have on the involved parties, run-time active conver-

sations, and existing business processes.

168 M. Anisetti et al.

7.8 Conclusions

In this chapter we discussed how the advent and success of SOA and web ser-

vices are changing traditional ICT systems and, in particular, we focused on the

problem of providing powerful and secure services that prove support for security

requirements using certification techniques. To this aim, we described challenges

and issues to be considered in developing certification schemes for services and we

also discussed how service security certification changes the trust model underly-

ing SOA. We then presented a certification scheme for services, which relies on

testing to provide the evidence that a security property is supported. In this con-

text, we illustrated an approach to service certification, including a description of

the FP7 EU Project Assert4Soa framework that integrates the service certification

process within the SOA infrastructure. Although security certification schemes have

been provided since long, there is the need to adapt them to SOA and its intrinsic

processes, as for instance, the run-time selection and composition of services and

the management of evolving applications.

Acknowledgments This work was partly supported by the EU-funded project Assert4Soa (grant
no. 257351).

References

1. A. Alves et al.: Web Services Business Process Execution Language Version 2.0. OASIS (2007).
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, Accessed in date September
2012

2. A. Banerji et al.: Web Services Conversation Language (WSCL) version 1.0. World Wide Web
Consortium (W3C) (2002). http://www.w3.org/TR/wscl10/, Accessed in date September 2012

3. Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI): Certificat de Sécurité de

Premier Niveau. http://www.ssi.gouv.fr/fr/certification-qualification/cspn/, Accessed in date

September 2012

4. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press, New

York, NY, USA (2008)

5. Andrikopoulos, V., S., Benbernou, Papazoglou, M.: On the evolution of services. IEEE Trans-

actions on Software Engineering PP(99) (2011)

6. Anisetti, M., Ardagna, C., Damiani, E.: Certifying security and privacy properties in the inter-

net of services. In: L. Salgarelli, G. Bianchi, N. Blefari-Melazzi (eds.) Trustworthy Internet.

Springer (2011)

7. Anisetti, M., Ardagna, C., Damiani, E.: Fine-grained modeling of web services for test-based

security certification. In: Proc. of the 8th International Conference on Service Computing (SCC

2011). Washington, DC, USA (2011)

8. Anisetti, M., Ardagna, C., Damiani, E.: A low-cost security certification scheme for evolving

services. In: Proc. of the 19th IEEE International Conference on Web Services (ICWS 2012).

Honolulu, HI, USA (2012)

9. Baresi, L., Di Nitto, E.: Test and Analysis of Web Services. Springer, New York, USA (2007)

10. Bentakouk, L., Poizat, P., Zaïdi, F.: Checking the behavioral conformance of web services with

symbolic testing and an SMT solver. In: Proc. of the 5th International Conference on Tests &

Proofs (TAP 2011). Zürich, Switzerland (2011)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html,
http://www.w3.org/TR/wscl10/,
http://www.ssi.gouv.fr/fr/certification-qualification/cspn/,

7 A Certification-Aware Service-Oriented Architecture 169

11. Bezzi, M., Kaluvuri, S., Sabetta, A.: Ensuring trust in service consumption through security
certification. In: Proc. of the International Workshop on Quality Assurance for Service-Based
Applications (QASBA 2011). Lugano, Switzerland (2011)

12. Bezzi, M., Sabetta, A., Spanoudakis, G.: An architecture for certification-aware service dis-
covery. In: Proc. of the 1st IEEE International Workshop on Securing Services on the Cloud
(IWSSC 2011). Milan, Italy (2011)

13. Bozkurt, M., Harman, M., Hassoun, Y.: Testing web services: A survey. In: Technical Report
TR-10-01. Department of Computer Science, King’s College London (2010)

14. Canfora, G., di Penta, M.: Service-oriented architectures testing: A survey. Software Engineer-

ing: International Summer Schools, ISSSE 2006–2008 1, 78–105 (2009)

15. CCHIT: Certification Commission for Healthcare Information Technology. http://www.cchit.

org/, Accessed in date September 2012

16. Chang, E., Hussain, F., Dillon, T.: Trust and Reputation for Service-Oriented Environments:

Technologies For Building Business Intelligence And Consumer Confidence. John Wiley &

Sons, Ltd (2006)

17. Chinnici, R., Moreau, J., Ryman, A., Weerawarana, S.: Web Services Description Language

(WSDL) version 2.0. World Wide Web Consortium (W3C) (2007). http://www.w3.org/TR/

wsdl20/, Accessed in date September 2012

18. Damiani, E., Ardagna, C., El Ioini, N.: Open source systems security certification. Springer,

New York, NY, USA (2009)

19. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Securing SOAP

e-services. International Journal of Information Security (IJIS) 1(2), 100–115 (2002)

20. Endo, A., Simao, A.: Model-based testing of service-oriented applications via state models. In:

Proc. of the 8th IEEE International Conference of Service Computing (SCC 2011). Washington,

DC, USA (2011)

21. Focardi, R., Gorrieri, R., Martinelli, F.: Classification of security properties (Part II: Network

security). In: R. Focardi, R. Gorrieri (eds.) Foundations of Security Analysis and Design II -

Tutorial Lectures. Springer Berlin / Heidelberg (2004)

22. Frantzen, L., Tretmans, J., de Vries, R.: Towards model-based testing of web services. In:

Proc. of the International Workshop on Web Services - Modeling and Testing (WS-MaTe

2006). Palermo, Italy (2006)

23. Frantzen, L., Tretmans, J., Willemse, T.: Test generation based on symbolic specifications. In:

Proc. of the 4th International Workshop on Formal Approaches to Software Testing (FATES

2004). Linz, Austria (2004)

24. Herrmann, D.: Using the Common Criteria for IT security evaluation. Auerbach Publications

(2002)

25. Irvine, C., Levin, T.: Toward a taxonomy and costing method for security services. In: Proc.

of the 15th Annual Conference on Computer Security Applications (ACSAC 1999). Phoenix,

AZ, USA (1999)

26. Jahl, C.: The information technology security evaluation criteria. In: Proc. of the 13th Interna-

tional Conference on Software Engineering (ICSE 1991). Austin, TX, USA (1991)

27. Jeong, B., Cho, H., Lee, C.: On the functional quality of service (FQoS) to discover and compose

interoperable web services. Expert Systems with Applications 36(3, Part 1), 5411–5418 (2009)

28. Jokhio, M., Dobbie, G., Sun, J.: Towards specification based testing for semantic web services.

In: Proc. of the 20th Australian Software Engineering Conference (ASWEC 2009). Gold Coast,

Australia (2009)

29. Jürjens, J.: Model-based security testing using UMLsec: A case study. Electronic Notes in

Theoretical Computer Science 220(1), 93–104 (2008)

30. Keum, C., Kang, S., Ko, I.Y., Baik, J., Choi, Y.I.: Generating test cases for web services using

extended finite state machine. In: Proc. of the 18th IFIP International Conference on Testing

Communicating Systems (TestCom 2006). New York, NY, USA (2006)

31. Kim, A., Luo, J., Kang, M.: Security ontology for annotating resources. In: Proc. of the 4th

International Conference on Ontologies, Databases, and Applications of Semantics (ODBASE

2005). Agia Napa, Cyprus (2005)

http://www.cchit.org/,
http://www.cchit.org/,
http://www.w3.org/TR/wsdl20/,
http://www.w3.org/TR/wsdl20/,

170 M. Anisetti et al.

32. Kourtesis, D., Ramollari, E., Dranidis, D., Paraskakis, I.: Increased reliability in SOA envi-
ronments through registry-based conformance testing of web services. Production Planning &
Control 21(2), 130–144 (2010)

33. Mao, C.: Towards a hierarchical testing and evaluation strategy for web services system. In:
Proc. of the 7th ACIS International Conference on Software Engineering Research, Manage-
ment and Applications (SERA 2009). Haikou, China (2009)

34. Myers, G.: The Art of Software Testing, Second Edition. John Wiley & Sons, Inc., Hoboken,
NJ, USA (2004)

35. Paliwal, A., Shafiq, B., Vaidya, J., Xiong, H., Adam, N.: Semantics-based automated service
discovery. IEEE Transactions on Services Computing 5(2), 260–275 (2012)

36. Pezzè, M., Young, M.: Software Testing and Analysis: Process, Principles, and Techniques.
John Wiley & Sons, New York, NY, USA (2008)

37. Rajendran, T., Balasubramanie, P.: An optimal broker-based architecture for web service dis-
covery with QoS characteristics. International Journal of Web Services Practices 5(1), 32–40
(2010)

38. Ryu, S., Casati, F., Skogsrud, H., Betanallah, B., Saint-Paul, R.: Supporting the dynamic evolu-
tion of web service protocols in service-oriented architectures. ACM Transactions on the Web
2(2), 13:1–13:46 (2008)

39. Salva, S., Rabhi, I.: Automatic web service robustness testing from WSDL descriptions. In:
Proc. of the 12th European Workshop on Dependable Computing (EWDC 2009). Toulouse,
France (2009)

40. Schroth, C., Janner, T.: Web 2.0 and SOA: Converging concepts enabling the internet of services.
IT Professional 9(3), 36–41 (2007)

41. seekda! http://webservices.seekda.com/browse, Accessed in date September 2012
42. Securing Web services for army SOA. http://www.sei.cmu.edu/solutions/softwaredev/

securing-web-services.cfm, Accessed in date September 2012
43. Serhani, M., Dssouli, R., Hafid, A., Sahraoui, H.: A QoS broker based architecture for efficient

web services selection. In: Proc. of the IEEE International Conference on Web Services (ICWS
2005). Orlando, FL, USA (2005)

44. Thakar, U., Dagdee, N., Agrawal, A.: A methodology to compose web services using compat-
ible components based on QoS and security requirements of the users. International Journal of
Computer Applications 46(10), 30–37 (2012)

45. Tsai, W., Paul, R., Yamin, W., Chun, F., Dong, W.: Extending WSDL to facilitate web ser-
vices testing. In: Proc. of the 7th IEEE International Symposium on High Assurance Systems
Engineering (HASE 2002). Tokyo, Japan (2002)

46. USA Department of Defence: Department Of Defense Trusted Computer System Evaluation
Criteria (1985)

47. van Veenendaal, E.: Standard glossary of terms used in Software Testing. International Soft-
ware Testing Qualifications Board (ISTQB) (2010). http://www.astqb.org/documents/ISTQB_
Glossary_of_Testing_Terms_2.1.pdf, Accessed in date September 2012

48. Yu, H., Reiff-Marganiec, S.: Non-functional property based service selection: A survey and
classification of approaches. In: Proc. of Non Functional Properties and Service Level Agree-
ments in Service Oriented Computing Workshop (NFPSLAM-SOC) 2008. Dublin, Ireland
(2008)

49. Zulkernine, M., Raihan, M.F., Uddin, M.G.: Towards model-based automatic testing of attack
scenarios. In: Proc. of the 28th International Conference on Computer Safety, Reliability and
Security (SAFECOMP 2009). Hamburg, Germany (2009)

http://webservices.seekda.com/browse,
http://www.sei.cmu.edu/solutions/softwaredev/securing-web-services.cfm,
http://www.sei.cmu.edu/solutions/softwaredev/securing-web-services.cfm,
http://www.astqb.org/documents/ISTQB_Glossary_of_Testing_Terms_2.1.pdf
http://www.astqb.org/documents/ISTQB_Glossary_of_Testing_Terms_2.1.pdf

Chapter 8

A Test Automation Framework
for Collaborative Testing of Web Service
Dynamic Compositions

Hong Zhu and Yufeng Zhang

Abstract The dynamic composition of services owned by different vendors demands

a high degree of test automation, which must be able to cope with the diversity of

service implementation techniques and to meet a wide range of test requirements

on-the-fly. These goals are hard to achieve because of the lack of software artefacts

of the composed services and the lack of the means of control over test executions

and the means of observations on the internal behaviours of composed services. Yet,

such integration testing on-the-fly must be non-intrusive and non-disruptive while the

composed services are in operation. This chapter presents a test automation frame-

work for such on-the-fly testing of service compositions to facilitate the collaboration

between test services through utilisation of Semantic Web Services techniques. In

this framework, an ontology of software testing called STOWS are used for the regis-

tration, discovery and invocation of test services. The composition of test services is

realized by using test brokers, which are also test services but specialized in the coor-

dination of other test services. The ontology can be extended and updated through

an ontology management service so that it can support a wide open range of test

activities, methods, techniques and types of software artefacts. We also demonstrate

the uses of the framework by two running examples.

H. Zhu (B)

Department of Computing and Communication Technologies,
Oxford Brookes University, Oxford OX33 1HX, UK
e-mail: hzhu@brookes.ac.uk

Y. Zhang
National Laboratory for Parallel and distributed Processing School of Computer Science,
The National University of Defense Technology, Changsha, China
e-mail: yufengzhang@nudt.edu.cn

A. Bouguettaya et al. (eds.), Advanced Web Services, 171
DOI: 10.1007/978-1-4614-7535-4_8,
© Springer Science+Business Media New York 2014

172 H. Zhu and Y. Zhang

8.1 Introduction

The past few years have seen a rapid growth in the research on testing Web Services

(WS) [15, 18], which mostly falls into the following categories.

• Generation of test cases. Techniques have been developed to generate test cases

from syntax definitions of WS in WSDL [1, 2, 10, 12, 13, 21, 23, 34, 35, 37, 41,

45, 49], business process and behavioural models in BPEL [4, 5, 22, 31, 33, 36,

39, 40, 53], ontology based descriptions of semantics in OWL-S [3, 28, 48], and

other formal models of WS such as finite state machines and labelled transition

systems [6, 14, 38], grammar graphs [24, 25], and first order logic [46], etc.

• Generation of testbed. A service often relies on other services to perform its

function. However, in service unit testing and also in progressive service integration

testing, the service under test needs to be separated from other services that it

depends on. Techniques have been developed to generate service stubs [8] or

mock services [27] to replace the other services for testing.

• Checking the correctness of test outputs. Research work has been reported in the

literature to check the correctness of service output against formal specifications,

such as using metamorphic relations [19], or a voting mechanism to compare the

output from multiple candidate services [44, 47], etc.

These techniques have addressed various WS specific issues, such as the robust-

ness in dealing with invalid inputs and errors in invocation sequences, fault tolerance

to the failures of other services that it depends on and broken communication con-

nections, and security in the environment that is vulnerable to malicious attacks, and

so on. A number of prototypes and commercial tools have also been developed to

support various activities in testing WS, such as Coyote [45], WS-FIT [37], TAXI

[11], PLASTIC [9], LTSA-WS [38]; just to mention a few.

However, despite the advances made in the past few years, great challenges remain.

In particular, it is still an open question how to cope with the following difficult issues

in WS integration testing [17, 18, 54].

• The lack of software artefacts. A service-oriented application commonly consists

of services owned by many different stakeholders. Thus, typically, developers of

a service have no access to the design document, source code, even the executable

code of the other services. These software artefacts are crucial to perform test

activities efficiently and effectively.

• The lack of control over test executions. A service-oriented application is intrin-

sically distributed, and typically contains components and services running on

hardware owned by other stakeholders. Thus, a tester usually cannot control the

test executions of the other owners’ services.

• The lack of a means of observation of internal behaviour. Another consequence

of distributed ownership of services is that testers often cannot observe the internal

behaviours of the services owned by other vendors.

Moreover, it is widely recognized that an integration testing technology for WS

dynamic composition must meet the following requirements.

8 A Test Automation Framework for Collaborative Testing 173

• Capability of dealing with diversity. The distributed and shared ownership of

services also implies that the parts of a service-oriented application may operate

on a variety of hardware and software platforms with different deployment config-

urations and delivering services of differing quality. Testing has to be performed

in a heterogeneous environment. On the other hand, different service requesters

may well have different test requirements to meet their own business purposes.

Testing must deal with all such varieties and their combinations.

• Capability of testing on-the-fly. A typical scenario of service-oriented computing

is that a service requester searches for a required function in a registry, and then

dynamically links to the service and invokes it. It is widely believed that testing

before the invocation is necessary especially in mission critical applications. Such

testing, called testing on-the-fly, differs from traditional integration testing due

to the fact that the time of testing is just before the invocation while all parts to

be integrated are already in operation. A consequence of testing on-the-fly is that

it eliminates the possibility of manual testing. Thus, all test activities must be

performed automatically.

• Capability of testing non-intrusively and non-disruptively. Another conse-

quence of testing on-the-fly is that, from a service provider’s point of view, the

test invocations of a service must be distinguished from the real ones so that the

normal operation of the service is not interrupted by test activities. On the other

hand, from a client’s point of view, test invocations should also be distinguished

from real ones so that they do not actually receive the real services and do not pay

for such test invocations as real services.

It has been recognized that to address all these issues, testing WS dynamic compo-

sitions should be a collaborative effort contributed to by all stakeholders [11, 44, 54].

In this chapter, we present a test automation framework for collaborative testing of

web services. The framework presented here has its inception in 2006 [54] based

on the author’s previous work on agent-based approach to testing web-based sys-

tems [55, 56]. A preliminary implementation and case study of the framework was

reported in [51]. In [57], the details of test brokers and ontology management were

presented and further experiments with the prototype implementation were reported.

In [52], the test broker were extended to a general service composition mechanism

so that not only test services can be dynamically composed and integrated through

service brokers.

The remainder of the chapter is organised as follows. In Sect. 8.2, the framework

and its prototype implementation are presented. Section 8.3 illustrates its uses with

two running examples in typical scenarios of WS dynamic composition. Section 8.4

discusses its main features and reports the main results of the experiments with the

prototype. Finally, Sect. 8.5 concludes the chapter with a discussion of future work.

174 H. Zhu and Y. Zhang

8.2 The Test Automation Framework

This section elaborates the framework and briefly outlines the prototype implemen-

tation. More details can be found in [57].

8.2.1 The Architecture of the Framework

As shown in Fig. 8.1, the architecture of the test automation framework consists of

• an ontology of software testing for web services called STOWS,

• an ontology manager, which is a web service for the extension and revision of the

ontology STOWS, and

• a number of test services.

These components are based on the Semantics Web Service technology and interact

with the UDDI and Matchmaker facility.

Test Broker 1Tester T1

T-service of A1

F-service of A1

Tester T2

T-service of AK

F-service of AK

T-service of A2

F-service of A2

Ontology

ManagerUDDI Registry Matchmaker

Test Broker 2

Test Broker NTester TM

S
T

O
W

S
 O

n
to

lo
g
y

...

...

Testers Test Brokers

T-services

F-services

Fig. 8.1 Reference architecture of the framework

The following subsections will present these components of the architecture.

8.2.2 Test Services

The key notion of the framework is test services (T-service in short), which are

services designated to perform various test tasks [54].

8 A Test Automation Framework for Collaborative Testing 175

A T-service can be provided by the same organization of the normal service in

order to perform the testing of a normal web service. For the sake of clarity, we use

functional service (or F-service in short) to denote the normal services in the sequel.

A Test service can also be provided by a third party that is independent of the

normal service provider, and specialized in performing certain testing tasks. A special

type of such T-services is test brokers, which coordinate and compose test services

in order to perform complicated test tasks.

8.2.2.1 Service Specific T-services

Ideally, each F-service should be accompanied by a special T-service to support the

testing of the F-service. Such a T-service should provide the following three types

of functions related to testing.

1. Invoking test execution. The T-service accompanying an F-service should enable

test executions of the F-service to be invoked. Thus, the normal operation of

the original F-service is not disturbed by test requests and the cost of testing

is not charged as real invocations of the F-service. The F-service provider can

distinguish real requests from the test requests so that no real world effect is caused

by test requests. A T-service that only provides this test execution function can be

regarded as a mock service [27]. However, T-service can be much more powerful

by providing the following two functions.

2. Providing required documents. A T-service accompanying an F-service should

also provide further support to other test activities. For example, the formal speci-

fication of the semantics of the F-service, the internal design of the F-service such

as UML diagrams, the configuration of the hardware and software platform, the

service policy, even the source code, etc., are of particular importance to testers.

These kinds of information can be released to trusted T-services subject to pre-

serve the intellectual property rights and privacy, but withheld from the general

public.

3. Observing internal behaviour. Many test activities rely on the information of

system’s internal behaviours, such as the measurement of code coverage, the

checking of the internal states of the program during test executions, etc. These

can also be provided by the accompanying T-services.

To ensure that the testing carried out on a T-service faithfully represents the

functional services, the following two principles should be maintained in the design

and implementation of T-services.

• (a) A T-service should act in the same way as its functional service as much as

possible so that the F-service is correct on an input if the T-service passes a test

on the input.

• (b) A T-service should have a ‘firewall’ so that effects on the environment are

stopped and the normal operation of the F-service is not disrupted.

176 H. Zhu and Y. Zhang

An implication of principle (a) is that the business logic that a service implements

may be duplicated by its corresponding T-service in order to test it adequately. On

the other hand, an exact copy of the F-service may not achieve the goal of T-service

according to principle (b). It is worth noting that in certain special cases the T-service

can be absent and all testing are performed on the F-services. For example, if a service

contains no internal state and has no effect on its environment, the T-service can be a

simple duplicate of the F-service, even be the F-service itself. When the development

and maintenance of a T-service is too expensive, or testing the service on-the-fly is

unnecessary, the role of T-service can be performed by the F-service, or an identical

copy of the F-service.

For example, the American’s Insurance Industry Committee on Motor Vehicle

Administration (IICMVA) requires that each insurance company provides a WS for

online verification of car insurances and maintains two identical environments: one

for test and one for production [29].

8.2.2.2 General Purpose Testers

Besides the service specific T-service that accompanies an F-service, a test service

can also be a general purpose test tool that performs various test activities, such

as test planning, test case generation, and test result checking, etc. A general pur-

pose T-service can be specialized in certain testing techniques or methods such as

the generation of test cases from WSDL or BPEL using certain WS testing tech-

niques mentioned in Sect. 8.1. For the sake of convenience, such general purpose T-

services are also called testers in the sequel to distinguish them from service specific

T-services.

It is worth noting that the framework provides a facility for the integration of

testing services rather than any specific testing techniques or tools. Most existing

works on WS testing are complementary to the framework in the sense that their

methods, techniques and tools can be implemented as T-services. The framework

facilitates their integration by providing the interfaces and collaboration mechanisms

and enables test services to provide the software artefacts that testing processes

require. The loosely coupled framework lays a foundation for composing various

T-services by the utilization of Semantic WS technology.

8.2.2.3 Test Brokers

One particular type of general purpose T-services that will greatly improve the col-

laboration between the parties involved in WS testing is test broker. As discussed

in Sect. 8.1, test tasks are usually too complicated to be performed directly by one

T-service. A solution to this problem is to introduce test brokers, which compose and

coordinate other T-services to carry out test tasks. Typically, there are multiple test

brokers; for example, each specializes in one type of testing processes.

8 A Test Automation Framework for Collaborative Testing 177

As a coordinator, a test broker receives test requests, decomposes the task into

subtasks and generates test plans, searches for capable testers for each subtask,

invokes testers and returns test results to users. It controls the process of testing.

A test broker not only bridges the gap between the users and testers, but can also

monitor the dynamic behaviours of T-services and keep a repository of tests per-

formed on each service for future choices of T-services and optimization of test

efforts.

We have developed a prototype test broker. Figure 8.2 shows the architecture of

our prototype test broker. It receives test tasks from service requesters, decomposes

a test task into a sequence of subtasks, sets a test plan, searches for other T-services

capable of performing the subtasks, and then invokes the T-services according to

the plan to carry out the subtasks and passes information between them. Finally,

it assembles the results from the services and reports to the service requester. The

broker is composed of the following four modules.

Communication Module provides an interface to the users. It receives test requests

in the form of test tasks and sends out test results in SOAP format. It transfers test

tasks to Task Analyzer and gets test results from the Task Execution Module. Failures

to fulfil test requests are also reported to the requesters through this module.

Test Broker

Testing

Service

Requester

Tester T1 Tester T2

Matchmaker

Task Analyzer

Ontology

Management

Service

Tester Search

Module

Task Execution

Module

UDDI

Registry

Communication

Module

Knowledge-Base

of Software Testing

Tester Tn

Fig. 8.2 The structure of a test broker

Task Analyzer decomposes a test task into several subtasks and produces test plans

according to codified knowledge of software testing processes. It also keeps the track

of test plan executions for each task so that backtracking can be made when a subtask

fails.

Tester Search Module searches for testers for each subtask in the test plan gener-

ated by the Task Analyzer. A failure to find a suitable tester for a subtask is reported

to the Task Analyzer and an alternative test plan may be generated if any, or the

whole testing process fails.

Task Execution Module executes the test plan by invoking the testers and passing

information between them. A failure to carry out a subtask is reported to the Task

178 H. Zhu and Y. Zhang

Analyzer and an alternative tester will be employed if any, or an alternative test plan

is generated if possible. Otherwise, the whole testing process fails.

The knowledge-base of software testing processes plays a central role in the test

plan generation. It contains codified knowledge on how a task can be fulfilled by a

number of subtasks. Each type of tasks is defined by a set of parameters. There are two

kinds of parameters: descriptive parameters and functional parameters. The former

describes the functionality of the task, such as the activity of the task, the execution

environment of the task, and so on. The latter gives the data to be transformed by the

task, including input and output data. The values of these parameters are concepts

defined in the ontology.

The knowledge is represented in the form of rules:

T (p1, . . . , pn) ⇒ T ′
1(p1,1, . . . , p1,n1); . . . ; T ′

k(pk,1, . . . , pk,nk
)

where T is a task and p1, . . . , pn are its parameters. It means that the task T can be

decomposed into k subtasks T ′
1 · · · T ′

n , where pi,1, ..., pi,ni
(1 ≤ i ≤ k) are parame-

ters.

It is required that a parameter pi, j of subtask T ′
i is constructed from p1, . . . , pn

and the output parameters of its previous subtasks, i.e. {px,y |x < i, y ≤ nx }. This

means that the subtasks can be executed in the order as they occur in the rule. The

value of a parameter will be passed from one to the next according to the parameters

dependency between subtasks.

It is also required that each of the output parameters of task T is constructed from

the set of output parameters of subtasks T ′
i (i = 1, . . . , k). This is to ensure that task

T is realized by the subtasks in the rule.

Therefore, a rule is not only a logic decomposition of a task into several sub-

tasks, but also an expression of the workflow and the collaborations between various

kinds of services to complete a specific kind of task. Moreover, from computational

point of view, these rules also provide heuristic rules for narrowing the search space

for generating service composition plans. In fact, each rule can be considered as a

template of test plans. A test task is then checked against the templates one by one.

When a match is found, a test plan is produced by instantiating the template. Each

rule can also be regarded as a collaboration pattern of T-services with heuristics about

how to compose and coordinate T-services. This significantly reduces the size and

complexity of the space in which T-services are searched for and combined. Thus,

the complexity of T-service composition and collaboration can be reduced.

Our implementation of test brokers enables the user to write their own rules and

instantiate the knowledge-base so that a number of test brokers can be registered and

employed in testing. Figure 8.3 shows the process that the test broker interacts with

Matchmaker and other T-services.

8 A Test Automation Framework for Collaborative Testing 179

8.2.3 Registry and Matchmaker

As discussed above, in our framework, T-services interoperate with each other via

SOAP messages. They need to advertise their service descriptions in a service registry

to be discovered and invoked at runtime to achieve testing on-the-fly with a high

degree of automation. Because of the complexity of the semantics of the service

descriptions, we use Semantic WS registry to register T-services, which is composed

of an UDDI registry and a Matchmaker [30].

Fig. 8.3 Process model of test broker

The OWL-S/UDDI Matchmaker (Matchmaker for short) extends UDDI registry

with a capability based service matching engine [30, 43]. It provides three levels of

matching between capability and search request.

1. Exact matching: the capabilities in the registry and in the request match exactly.

180 H. Zhu and Y. Zhang

2. Plug-in matching: the service provided is more general than the requested.

3. Relaxed matching: the service provided is similar to the requested.

The Matchmaker also provides filters for users to construct more accurate service

discovery: which are namespace filter, domain filter, text filter, I/O type filter and

constraint filter [32]. With these filters, users can construct necessary compound

filters to control the precision of matching. The matching engine returns a numeric

score for each candidate so that the higher the score, the more similar between the

candidate and the request. Therefore, selection from the candidates can be based on

the scores that tagged by the Matchmaker on the candidate services.

We have used Matchmaker to enhance the registration and discovery of T-services

with semantic information. A T-service provider must first register the service with

its profile that defines its capability by using the API provided by the Matchmaker.

A service search request is also submitted to the Matchmaker.

8.2.4 STOWS: Ontology of WS Testing

The semantic information used in the registration, discovery and invocation of

T-services are represented in an ontology called STOWS (Software Testing Ontology

for WS), which proposed in [54] based on the ontology developed in [55, 56]. It was

adapted for WS testing.

Concepts in STOWS are classified into three categories: elementary concepts,

basic testing concepts and compound testing concepts.

The elementary concepts are those general concepts about computer software

and hardware based on which testing concepts are defined. They include the simple

objects involved in software testing, such as the types of hardware and software

artefacts and their formats, etc.

The basic testing concepts include Tester, Artefact, Activity, Context, Method, and

Environment. They are described as follows.

• Tester. A tester refers to a particular party who participates in a test activity. Gen-

erally speaking, testers can be human beings, organizations and software systems.

In the service-oriented framework, T-services perform the test tasks, thus they

are testers, too. It can be an atomic T-service, or a composition of T-services.

One important property of tester is its capability, which reflects the capability to

perform test tasks.

• Activity. There are various test activities including test planning, test case gen-

eration, test execution, result validation, adequacy measurement and test report

generation, etc.

• Artefact. Various kinds of artefacts may be involved in test activities as input/output,

such as test plan, test case, test result, program, specification and so forth. The most

important property of class Artefact is Location, whose value is an URL referring

to the location of the Artefact. Each type of artefacts is a subclass of Artefact, and

8 A Test Automation Framework for Collaborative Testing 181

inherits the properties from Artefact. The subclasses of Artefact can be added into

the ontology using the ontology management services.

• Context. Test activities may occur in different software development stages and

have various test purposes. The concept context defines the contexts of test activ-

ities in testing processes and test methodologies. Typically, the contexts include

unit testing, integration testing, system testing, regression testing, etc.

• Method. For each test activity, there may be multiple applicable test methods.

Method is a part of the capability and also an optional part of test task. Test

methods can be classified in a number of different ways. For example, test methods

can be classified into program-based, specification-based, usage-based, etc. They

can also be classified into structural testing, fault-based testing, error-based testing,

etc. Structural testing methods can be further classified into control-flow testing,

data-flow testing, etc. Therefore, test methods are represented as a hierarchy in the

ontology.

• Environment. It is the hardware and software configuration in which a test activity

is performed.

These basic concepts are combined together to express compound testing con-

cepts, which include Task and Capability.

• Capability. The capability of a T-service represents its capability of performing

test tasks. The class Capability in the ontology defines the aspects that affect the

capability of a service to perform tasks, including the activities that the service can

do, the test methods that the service uses, the artefacts that the service consumes

and produces, the context in which the service performs test activities, and the

environment in which test activities are carried out, etc. Therefore, it is composed

of several basic test concepts. The structure of Capability is shown in the UML

class diagram given in Fig. 8.4.

• Task. Task describes the test task to be carried out. It is used in service invocation.

A test task also has six aspects: the activity to be performed, the context of the

activity, the required test method and test environment, and the input and output

artefacts. The compositions are in the same structure as capability as shown in

Fig. 8.4, but have different semantics.

Capability/Task

Activity Method

Artifact

Capability Data

Context Environment

Fig. 8.4 The structure of capability and task

182 H. Zhu and Y. Zhang

In OWL-S,1 semantic descriptions are represented in the form of service profiles

and used in service registration and discovery. The vocabulary of a subject domain

is defined in a data model as classes with subclass relations.

To implement the ontology STOWS, we represent the concepts, including ele-

mentary, basic and compound concepts, as classes in OWL data model. To use the

ontology for the registration, discovery and invocation of T-services, the compound

concepts capability and task are transformed into service profiles. In OWL-S, a

service profile contains the IOPR (Inputs, Outputs, Preconditions and Results) and

a classification of the service. Figure 8.5 shows how the concept of capability is

represented in service profile.

Capability

Context

Environment

Method

Input Artefact

Output Artefact

Service Profile

Activity

INPUT
Context

Environment

Method

Artefacts

OUTPUT
Artefact

Service Classification

Fig. 8.5 Mapping between capability and service profile

In the service profile of T-service, the test context, the environment and the method

aspects are represented as input parameters Context, Environment and Method. For

example, Fig. 8.6 shows a part of a service profile, whose serviceClassification is

TestCaseGeneration. The hasInput and hasOutput properties indicate that the service

takes a Program as input and produces TestCase as output. By representing capa-

bility and task concepts in profiles, OWL-S/UDDI Matchmaker can be employed to

perform semantic-based search of T-services.

It is worth noting that test tasks and capabilities have the similar structure and the

corresponding semantics so that test requests (i.e. test tasks) can be easily transformed

into search requests (i.e. testers’ capabilities). Similarly, testers’ capabilities can be

transformed into test subtasks according to the test plan and submitted to the testers.

In the implementation of the prototype, we used the Mindswap OWL-S API2 to parse

task and capability profiles and to invoke T-services automatically.

The use of an ontology of software testing provides a standard set of vocabulary for

encoding the semantic information passed between T-services as well as for T-service

registration and discovery. However, it is impossible to build a complete ontology

of software testing given the huge volume of software testing knowledge and the

rapid development of new testing techniques, methods and tools. Instead, we take

the so-called crowd-sourcing approach to the construction of the ontology. It is the

same approach that Wikipedia is developed. We achieve this by regarding STOWS

1 http://www.w3.org/Submission/OWL-S/
2 http://www.mindswap.org/2004/owl-s/api/

http://www.w3.org/Submission/OWL-S/
http://www.mindswap.org/2004/owl-s/api/

8 A Test Automation Framework for Collaborative Testing 183

Fig. 8.6 An example of service profile

as an ontology framework in which new vocabulary can be added and updated, and

make it open to the public for population. This is supported by a facility for dynamic

management of the ontology detailed in the next section.

8.2.5 Ontology Manager

The crowd-sourcing approach to ontology construction is achieved by dynamic

management of the ontology through another special service, i.e. the ontology

management service (OMS). It provides a mechanism to populate and update the

ontology. It is delivered as a WS to facilitate the public access to the mechanism.

The ontology management service is implemented using the Protege-OWL API3,

which is an open source Java library for OWL and RDF. Using the API, OWL data

model stored in OWL files or databases can be loaded, changed and saved, queries be

made, and reasoning performed using a description logic inference engine. Therefore,

the manipulation of the ontology can be implemented as operations on OWL files.

Figure 8.7 shows the structure of OMS.

OMS provides a WS interface to read and update the ontology data model, which

is open to the public. The kernel of OMS is the Manager module. It provides three

services to users: AddClass, DeleteClass and UpdateClass to add new concept, delete

concept and revise concept of the ontology.

3 http://protege.stanford.edu/plugins/owl/api/guide.html

http://protege.stanford.edu/plugins/owl/api/guide.html

184 H. Zhu and Y. Zhang

Ontology Management Service

Ontology

Data Model

Update

Log
Logger

Conflict Checker

Authority Checker

Manager

AddClass

DeleteClass

UpdateClass

Fig. 8.7 The structure of OMS

For example, suppose that a T-service is developed to generate test cases using a

new method not included in the ontology, say data mutation. Then, a new test method

name DataMutation can be added to the ontology as a subclass of TestMethod. If a

new T-service is to be registered that generates test cases from a new formal specifi-

cation language called FSL, then a new type of software artefacts called FSL can be

added to the ontology as a subclass of SoftwareArtefact. The relationship between

classes in Ontology is represented as properties of classes. Adding or removing a

relation can be done by applying operations on the ontology file via OMS. For exam-

ple, if a subsumes relation from branch testing to statement testing is to be added, a

Subsumes property can be added to class BranchTesting with the value that refers to

the class StatementTesting.

However, to prevent misuses of the ontology management service, restrictions on

the manipulation of the data model are imposed through two technical solutions.

First, we classify the classes in the ontology into two types: elementary classes

and extended classes. Elementary classes are those that form the framework of the

ontology STOWS. None of them could be pruned down from the ontology hier-

archy to avoid structural damage to the ontology. The extended classes are those

classes attached to the framework to populate the ontology with concrete concepts

and instances of the concepts. They can be added by the users and deleted from

the hierarchy. We have implemented an Authority Checker, which checks delete

operations to ensure that the class to be deleted is an extended class.

Second, we have also implemented a Conflict Checker, which checks the opera-

tions on the ontology to ensure that the new class to be added does not exist in the

ontology and that the class to be deleted has no subclasses in the hierarchy.

Due to the openness of ontology management, there is a risk of errors caused

by update during task executions. If the update is only to add a new concept to the

ontology, there should be no effect on existing tasks and services, thus no risk of such

errors. However, if the update changes or deletes an existing concept or relation, a

task running at the time of update may be affected if it uses the changed concept or

relation and rely on the ontology to understand the messages. In such cases, errors

may occur due to the updates during execution. How to prevent such errors and reduce

the risk of such errors remains an open question that deserves further research.

8 A Test Automation Framework for Collaborative Testing 185

8.3 Running Examples

We now illustrate how the framework works in WS integration testing using two

running examples of typical scenarios in the dynamic composition of WS.

8.3.1 Example 1: Testing On-The-Fly for WS Dynamic

Composition

Our first example is the integration testing in the dynamic composition of the services

of a car insurance broker with the web services of an insurance company.

8.3.1.1 The Scenario

Suppose that a fictitious car insurance broker CIB operates a web-based system that

provides online services of car insurance. In particular, they provide the following

services to their end users.

The end users submit car insurance requirements to CIB and get quotes from

various insurers that CIB is connected to, and then select one to insure the car. To

do so, CIB takes information of the car, including its usage, and the payment. It uses

the WS of its bank B to check the validity of user’s payment information, passes

the payment to the selected insurer and takes commissions from the insurer and/or

the user. The car insurance broker’s software system has a user interface to enable

interactive uses, and a WS interface to enable other programs to connect as service

requesters. Its binding to the bank’s WS is static. However, since insurance is an active

business domain, new insurance providers may emerge and existing ones may leave

the market from time to time, the broker’s software binds dynamically to multiple

insurance providers to ensure that the business is competitive on the market. The

structure of the system is shown in Fig. 8.8.

CIB Bank B

Insurer A1’s Insurer A2’s Insurer An’s
Services

Services Services

Services Services

GUI Interface CIB’s service
requester

WS
Registry

Fig. 8.8 Structure of car insurance broker services

186 H. Zhu and Y. Zhang

The developer of CIB’s service must test not only its own code, but also its inte-

gration with other WS, i.e. the WS of the insurers and the bank. Here, we focus on the

integration with dynamic binding. Thus, suppose that CIB will dynamically compose

with the WS of the PingAn Insurance Ltd. in China that provides car insurance to

the customers through a web-based application.4 It is a real-world example.

8.3.1.2 Architecture of Test Services

By applying the framework to the scenario, each of the functional WS of the bank

B, CIB and insurer Ai has an accompanying T-service. Thus, we have the following

architecture shown in Fig. 8.9. In particular, the following services are involved in

the testing of the dynamic composition of CIB and the WS of PingAn Insurance.

• CIQS: the WS of the PingAn Insurance. It is the web service to be tested.

• TCE: a service specific T-service that executes the test cases for CIQS.

• TCG: a special purpose WS testing tool that generates test cases.

• CIB: the WS of the car insurance broker CIB. It acts as the testing requester, and

generates and submits test tasks to the test broker to test CIQS.

Test Broker

T-service of CIB

TCG: Tester (Test
Case Generator)

TCE: T-Serv ice of
CIQS

CIQS: PingAn Insur-
ance Quote F-Service

Register/
Matchmaker

F-service of CIBBank B’s
F-service

Bank B’s
T-service

Insurer A1’s
F-service

Insurer A1’s
T-service

Insurer A2’s
F-service

Insurer A2’s
T-serv ice

Insurer An’s
F-service

Insurer An’s
T-serv ice

Fig. 8.9 System architecture of the typical scenario

These T-services are registered to the UDDI registry using the STOWS ontology.

For example, TCG is a WS that takes the WSDL file of a service to be tested as input

4 http://www.pingan.com/campaign/channels/pingan/car-quote/index.jsp

http://www.pingan.com/campaign/channels/pingan/car-quote/index.jsp

8 A Test Automation Framework for Collaborative Testing 187

and generates random test cases as output. These artefacts are stored in files and

referred to through URLs of the file locations. To describe this service, the following

classes were added into the ontology.

• WSDL: a subclass of ServiceDescription, which is in turn the subclass of Artefact.

It stands for the WSDL document of a service.

• ServiceTesting: a subclass of Context that stands for service testing.

• RandomTestingMethod: a subclass of Method that stands for the random testing

method in test case generation.

• CarInsuranceQuoteServiceTestCase: a subclass of TestCase that stands for the test

case file for testing car insurance quote service.

In the service profile that describes the capability of TCG, the serviceClassifi-

cation is TestCaseGeneration. The Input artefact is WSDL. The context of TCG is

ServiceTesting. Its environment is of type Environment, which is the ancestor of

all the classes and stands for test environments. This means it imposes no specific

requirement on the environment. Its method is RandomTestingMethod. The output

artefact is of type CarInsuranceQuoteServiceTestCase.

8.3.1.3 Collaboration Process

Consider the situation that the CIB intends to establish a dynamic composition with

insurer PingAn and to test the service on-the-fly. It delegates the task to a test broker

TB. Figure 8.10 shows a typical example of collaboration processes managed by TB.

CIB
F-service

CIQS: PingAn
Insurance Quote

F-Service

Intended composition

of services

Test Broker
TB

Registry
(UDDI + Matchmaker)

4. Search for testers

3. Request of test
service

10. Test report

TCG:
Tester (Test

Case Generator)

6. Request to
generate test
cases

TCE:
T-Service of

CIGS

7. Test
cases

8.Request
to invoke
test execu-
tions9.Test

results

CIB
T-service

1. Search for testers

2. List of testers

5. Lists of testers

Fig. 8.10 The collaboration process in a typical scenario

188 H. Zhu and Y. Zhang

The process starts with the generation of a test task by CIB’s WS and submission

of a search request for finding a proper tester to the service registry. The search

request message contains a test task, which is matched against the capabilities of the

registered testers. The search result is a list of testers who are capable of performing

the task. From this list, the test broker TB is selected. A test request as shown in

Fig. 8.11 is then sent to TB requesting to test CIQS.

Once the test broker receives the test task, it generates a test plan that consists of

two subtasks:

• Subtask 1: Generating test cases according to a car insurance industry standard.

The input artefact of the task is of type WSDL. The output of this subtask is of

type CarInsuranceQuoteServiceTestCase.

• Subtask 2: Executing test cases and reporting test results. Its input is of type

CarInsuranceQuoteServiceTestCase and its output type is CarInsuranceQuoteSer-

viceTestResult.

Fig. 8.11 An instance of test tasks in the running example

For each subtask in the test plan, the broker translates the subtask into the cor-

responding capability description and constructs a service profile. The test broker

then submits the service profile to the Matchmaker to search for appropriate testers.

In this case, testers TCG and TCE are selected for the subtasks, respectively. The

8 A Test Automation Framework for Collaborative Testing 189

test planning finished with each subtask associated with a tester, and the test plan is

passed to the execution module of the test broker for executing the subtasks.

The task execution module of the test broker calls the testers associated to each

subtask according to the order given in the test plan. Data are passed from one subtask

to another through invocation messages. In particular, the output artefact of the first

subtask is passed to the second subtask. The output of the second subtask is the final

result of the test, which is an OWL object. It is then returned to the client.

8.3.2 Example 2: Wrapping A Testing Tool into a Test Service

In this running example we demonstrate how to wrap an automated testing tool into

a test service and how the tester can be composed together with other T-services to

accomplish complex testing tasks.

8.3.2.1 Wrapping a Testing Tool

The testing tool in this running example is a general purpose testing tool called

CASCAT [50], which generates test cases from algebraic specifications. It is wrapped

into a web service by providing it with a WS interface. The web service version of the

tool is referred to as TCG in the sequel. The following gives some technical details

of the registration, search and invocation of the tester.

In the registration of TCG, the service takes a CASOCC specification file as input

and generates test cases as output. These artefacts are stored in files and referred

to through URLs of the file locations. To describe this service, the following new

classes are added into the ontology.

• CasoccSpecification: a subclass of Specification that stands for algebraic specifi-

cation in CASOCC.

• ComponentTest: a subclass of Context that stands for component testing.

• CASOCCmethod: a subclass of Method that stands for the method of test case

generation from CASOCC.

In its service profile, the serviceClassification is set as TestCaseGeneration. The

Input artefact is specified as the class CasoccSpecification. As described in the pre-

vious section, the service profile has three parameters that represent the aspects of

the service capability. The context of TCG is ComponentTest. Its environment is

Environment and represents no requirement on the test environment. Its method is

CASOCCmethod. The output artefact is TestCase.

190 H. Zhu and Y. Zhang

8.3.2.2 Collaboration Process

Similar to the first running example, suppose that a client wants to test a WS called

NCS, which is a web service that provides numeric calculations of complex numbers.

The client constructs a test task and submits it to the registry to search for a tester.

As a result, a test broker is found to perform the testing.

Figure 8.12 shows the test task that client submitted to the test broker requesting

test NCS against an algebraic specification written in CASOCC. The input artefact

of the task is of type CasoccSpecification, and the output artefact type is TestResult.

Once the test broker receives the test task, it decomposes it into subtasks and

generated a test plan that consisted of the following three subtasks:

• Subtask 1: Generating test cases from the specification. The input artefact of the

task is of type CasoccSpecification. The output of this subtask is of type Casoc-

cTestCase.

• Subtask 2: Transforming the test cases into the format that are executable by

the T-service of NCS. Its input is of type CasoccTestcase and output is of type

CalculatorTestCase.

• Subtask 3: Executing test cases and report test results. Its input is of type Calcula-

torTestCase and its output artefact type is TestResult.

Fig. 8.12 The task to test NCS based on algebraic specification

For each subtask in the test plan, the broker translates it into the corresponding

capability description and constructs a service profile. The test broker then submits

8 A Test Automation Framework for Collaborative Testing 191

the service profile to the Matchmaker to search for appropriate testers. In this case,

testers TCG, TFT and T-NCS are discovered for the subtasks, respectively. The test

planning finishes with each subtask associated with a tester. The test plan is then

passed to the execution module for executing the subtasks.

The task execution module calls the testers associated to each subtask according

to the order given in the test plan. Data are passed from one subtask to another by the

construction of invocation message to the testers. In particular, the output artefact of

a subtask is passed to the next subtask. The output of the third subtask is the final

result of the test, which is again an OWL object. It is returned to the client by the

broker. Figure 8.13 summarises the collaboration process described above.

Test Broker Client

TCG: Test Case
Generator

TFT: Test Case
Format Transformer

T-NCS: Test
Executor for NCS

NCS: Numeric Calculation Web Service

Matchmaker Request
testing NCS

Search
testers

Invoke
tester

Register

Fig. 8.13 The collaboration between the web services in running Example 2

8.4 Discussion: Main Feature of the Framework

The framework implements collaborative testing of WS within the service-oriented

architecture using ontology and also the concept of T-services. In this framework,

various testing functions are provided by T-services, such as generating test plan and

test cases, invoking test executions, collecting test results, checking output correct-

ness, measuring test adequacy and coverage, and so forth. It does not only applicable

to functional testing as demonstrated in the running examples, but also applicable

to non-functional tests, for example, through collaboration with a non-functional

test service. The collaborations between test services are autonomous rather than

enforced. That is, what to test and how to test is the choice of the service requester,

but how to fulfil a client’s test request is the choice of test service provider. A T-

service requester need to search for T-services, negotiate the cost of test, select a

T-service provider and invoke the T-service at runtime. The test activities are then

performed by a T-service provider. Test brokers are also T-services but specialised

in the composition of T-services. Complicated testing processes and interactions

between T-services can be handled by such professionally developed T-services to

simplify the uses of T-services. The approach has the following advantages.

192 H. Zhu and Y. Zhang

A. Scalability

The framework is scalable since T-services are distributed and there is no extra-

burden on UDDI servers. Experiments reported in [52, 57] shows that the average test

service search time increases with the number of testers in the registry, but in almost

a linear manner, as shown in Fig. 8.14. With the size of knowledge base increases, the

time spent by a test broker to generate test service composition plans also increases,

but again in an almost linear rate as shown in Fig. 8.15. With the increase of the

complexity of testing tasks, which is measured by the number of different types of

subtasks to fulfil the task, the time overhead increases in a quadratic polynomial

function as shown in Fig. 8.16. Therefore, the test broker is capable of dealing with

test problems of practical sizes with respect to the number of testers registered, the

size of the knowledge-base, and the complexity of test tasks.

y = 0.0004x 2+ 6.1862x+ 207.16

R²= 0.9948

0

500

1000

1500

2000

2500

3000

3500

0 60 120 180 240 300 360 420 480

T
im

e
 (

m
s
)

The number of services

Search Services Time

Trend

Fig. 8.14 Execution time dependence on the number of testers registered in UDDI

y =4E 05x2+ 0.0609x+20.044

R²= 0.9873

0

50

100

150

200

250

300

350

0 200 400 600 800 10001200140016001800 20002200

T
im

e
 (

m
s
)

The number of task plan templates

AverageTime

Trend

Fig. 8.15 Execution time dependence on the number of plan templates in knowledge-base

8 A Test Automation Framework for Collaborative Testing 193

y = 10.601x2+3168.2x+119.49

R²= 0.9999

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5

T
im

e
 (

s
)

The number of subtasks

Total
Search for Services
Invocation of Subtasks
Task Planning
Trend

Fig. 8.16 Execution time dependence on the number of subtasks

B. Feasibility

The framework is implemented without any change to the existing standards of

Semantic WS [7]. A case study reported in [57] demonstrated that a wide range of

different types of test services can be supported and integrated into the framework.

Table 8.1 summarises the services used in the case study.5

C. Capability of dealing with diversity

The need of dealing with variety is achieved through collaborations among many

T-services and the employment of ontology of software testing to integrate multiple

testing tools. An experiment applying data mutation testing techniques [42] shows

clearly that the framework is capable of dealing with services of subtle differences

so that the best match can be automatically selected to perform testing tasks [57].

D. Fully automated for testing on-the-fly

The automation of test processes for testing on-the-fly, especially the dynamic

composition of T-services, can be also achieved by employing ontology of software

testing and test brokers. Moreover, test executions can be performed by running

a separate T-service, thus they do not interfere with the normal operations of the

services under test.

E. Extendibility

This framework employs an ontology management facility to enhance its extendibil-

ity. With this, the software testing ontology can be extended and maintained through

public services.

5 Java NCSS can be found at URL: http://javancss.codehaus.org/, and PMD can be found at URL:
http://pmd.sourceforge.net/

http://javancss.codehaus.org/
http://pmd.sourceforge.net/

194 H. Zhu and Y. Zhang

Table 8.1 Testers integrated in the framework

Name Description

CASCAT [50] A CASOCC-based test case generation tool

Test case format translator Translates the test case generated by CASCAT into the
format recognizable by calculator test case executor

Test case executor Executes test case for a numeric calculator web service

Klee [16] Generate and execute test cases from C source code by
symbolic execution

Magic [20] Check conformance between component specifications
and their implementations

XML comparator Compare XML files

Java NCSS Measure two standard metrics for Java program

Findbugs [26] Find bugs in Java program by static analysis

PMD A static analysis tool for finding potential bugs and other
problems in Java source code

WSDL-based test generator [2] A WSDL based test case generation tool

Web service test case executor [2] Execute the test case generated by WSDL based test
case generator

8.5 Conclusion and Future work

In this chapter, we presented a service-oriented architecture for testing WS. In this

architecture, various T-services collaborate with each other to complete test tasks.

We employ the ontology of software testing STOWS to describe the capabilities of

T-services and test tasks for the registration, discovery and invocation of T-services.

The knowledge intensive composition of T-services is realized by the development

and employment of test brokers, which are also T-services. We implemented the

architecture in Semantic WS technology. Case studies have demonstrated the fea-

sibility of the architecture and illustrated how to wrap up general purpose testing

tools and turn them into T-services and how to develop service specific T-services to

support the testing of a WS. Experimental evaluation also shows its scalability.

The test broker in the framework plays an important role in automation of testing

processes. Further research on the design and implementation of powerful test bro-

kers will have a significant impact on the usability of the T-services. In particular,

using knowledge of software testing processes to generate test plans seems a promis-

ing topic for further work. Currently, such knowledge of software testing process is

represented in the form of task decomposition rules. A question is whether such

knowledge can be encoded in a process definition language such as BPEL. If yes,

a careful analysis of the benefit and comparison of the two are necessary. Another

direction to enhance the functionality of test brokers is to associate monitoring func-

tions to brokers as Tsai et al. suggested so that the previous performance of T-services

can be taken into consideration in the selection of testers.

An issue that has not been addressed adequately in the prototype is the testing of

long running processes. A simple solution could be to allow testers to distinguish

8 A Test Automation Framework for Collaborative Testing 195

long running processes from short running tasks either in the test request message

(i.e. in the test task description) or in the service description (i.e. in WSDL). An

upper limit to the waiting time for test results should then be set accordingly to avoid

infinite waiting. The broker could also set different running modes for short and long

running tasks.

Moreover, as discussed in Sect. 8.1, a particular difficulty in testing WS is due to

the lack of software artefacts to support test activities. The framework presented in

this chapter offers the opportunity to incorporate a trust mechanism so that design

documents, source code and many other types of internal information of services can

be delivered to trustable T-services. Further research on how such a trust mechanism

to interoperate with the T-services needs to be worked out in detail.

Another hard problem to be solved is associated to the management of ontology.

Consistency problem may occur when the ontology is updated during the execution

of a task. How to prevent such errors and to reduce the risk is still an open question.

Testing is one of the quality assurance activities for the development of services. It

is worth investigating into how to extend and/or adapt the framework for a wider range

of quality assurance activities such as static analysis and verification and dynamic

monitoring of services, etc. This may need to extend the network model of WS to

incorporate the internal structure of services.

Acknowledgments The work reported in this chapter is partly funded by the National Basic
Research Program of China (973) under Grant No. 2011CB302603 and the National Natural Science
Foundation of China under Grant No. 60725206.

References

1. de Almeida, L.F., Vergilio, S.R.: Exploring perturbation based testing for web services. In:
Proc. of ICWS’06, pp. 717–726. IEEE CS (2006)

2. Bai, X., Dong, W., Tsai, W., Chen, Y.: Wsdl-based automatic test case generation for web
services testing. In: Proc. of SOSE’05, pp. 215–220. IEEE CS (2005)

3. Bai, X., Lee, S., Tsai, W.T., Chen, Y.: Ontology-based test modeling and partition testing of
web services. In: Proc. of ICWS’08, pp. 465–472. IEEE CS (2008)

4. Bartolini, C., Bertolino, A., Marchetti, E.: Introducing service-oriented coverage testing. In:
Proc. of ASE’08, pp. 57–64. IEEE CS (2008)

5. Bartolini, C., Bertolino, A., Marchetti, E., Parissis, I.: Data flow-based validation of web ser-
vices compositions: Perspectives and examples. In: R.e.a. Lemos V (ed.) Architecting Depend-
able Systems, LNCS, vol. 5135, pp. 298–325. Springer-Verlag (2008)

6. Belli, F., Linschulte, M.: Event-driven modeling and testing of web services. In: Proc. of
COMPSAC’08, pp. 1168–1173. IEEE CS (2008)

7. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–43
(2001).

8. Bertolino, A., Angelis, G.D., Frantzen, L., Polini, A.: Model-based generation of testbeds for
web services. In: Proc. of TestCom/FATES’08, pp. 266–282 (2008)

9. Bertolino, A., Angelis, G.D., Frantzen, L., Polini, A.: The plastic framework and tools for testing
service-oriented applications. In: Software Engineering: Int’l Summer Schools, (ISSSE’08),
pp. 106–139 (2008)

196 H. Zhu and Y. Zhang

10. Bertolino, A., Gao, J., Marchetti, E.: Xml every-flavor testing. In: Proc. of WEBIST’06, pp.
268–273. INSTICC Press (2006)

11. Bertolino, A., Gao, J., Marchetti, E., A.Polini: Taxi-a tool for xml-based testing. In: Proc. of
ICSE’07 (Companion), pp. 53–54. IEEE CS (2007)

12. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Automatic test data generation for xml schema-
based partition testing. In: Proc. of AST’07, p. 4. IEEE CS (2007)

13. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Systematic generation of xml instances to test
complex software applications. In: N.e.a. Guelfi (ed.) Rapid Integration of Software Engineer-
ing Techniques, LNCS, vol. 4401, pp. 114–129. Springer (2007)

14. Bertolino, A., Polini, A.: The audition framework for testing web services interoperability. In:
Proc. of EUROMICRO’05, pp. 134–142 (2005)

15. Bozkurt, M., Harman, M., Hassoun, Y.: Testing & verification in service-oriented architecture:
A survey. Software Testing, Verification and Reliability (STVR) (To Appear).

16. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. OSDI (2008)

17. Canfora, G., Penta, M.: Testing services and service-centric systems: Challenges and opportu-
nities. IT Professional 8(2), 10–17 (2006)

18. Canfora, G., Penta, M.: Service-oriented architectures testing: A survey. In: A. Lucia, F. Ferrucci
(eds.) Software Engineering: Int’l Summer Schools (ISSSE 2006–2008), Revised Tutorial
Lectures, LNCS, vol. 5413, pp. 78–105. Springer-Verlag (2009)

19. Chan, W.K., Cheung, S.C., Leung, K.R.P.H.: A metamorphic testing approach for online testing
of service-oriented software applications. Int’l Journal of Web Services Research 4(2), 61–81
(2007)

20. Edmund, S.C., Clarke, E., Groce, A., Jha, S., Vienna, T.: Modular verification of software
components in c. IEEE Trans. Softw. Eng. 30, 388–402 (2004)

21. Emer, M.P., Vergilio, S.R., Jino, M.: A testing approach for xml schemas. In: Proc. of
COMPSAC’05, pp. 57–62. IEEE CS (2005)

22. Garcia-Fanjul, J., Tuya, J., de la Riva, C.: Generating test cases specifications for bpel compo-
sitions of web services using spin. In: Proc. of WS-MaTe (2006)

23. Hanna, S., Munro, M.: An approach for wsdl-based automated robustness testing of web ser-
vices. In: C.e.a. Barry (ed.) Information Systems Development: Challenges in Practice, Theory,
and Education, vol. 2, pp. 493–504. Springer (2009)

24. Heckel, R., Lohmann, M.: Towards contract-based testing of web services. Electronic Notes
in Theoretical Computer Science 82(6) (2004)

25. Heckel, R., Mariani, L.: Automatic conformance testing of web services. In: Proc. of FASE’05,
pp. 34–48. Springer (2005)

26. Hovemeyer, D., Pugh, W.: Finding more null pointer bugs, but not too many. In: Proc. of
PASTE’07, pp. 9–14 (2007)

27. Huang, H., Liu, H., Li, Z., Zhu, J.: Surrogate: A simulation apparatus for continuous integration
testing in service oriented architecture. In: Proc. of SCC’08, vol. 2, pp. 223–230. IEEE CS
(2008)

28. Huang, H., Tsai, W., Paul, R., Chen, Y.: Automated model checking and testing for composite
web services. In: Proc. of ISORC’05, pp. 300–307. IEEE CS (2005)

29. IICMVA: Model user guide for implementing online insurance verification, version 4, Insur-
ance Industry Committee on Motor Vehicle Administration, USA. http://www.iicmva.com/
IICMVAPublications.html (2010). (Accessed on 20 Oct. 2010).

30. K. Sycara M. Paolucci, A., Srinivasan, N.: Automated discovery, interaction and composition
of semantic web services. J. Web Semantics 1(1), 27–46 (2003)

31. Kaschner, K., Lohmann, N.: Automatic test case generation for services. In: Proc. of Fourth
Int’l Workshop on Engineering Service-Oriented Applications: Analysis and Design (WESOA
2008), LNCS. Springer-Verlag (2008)

32. Kawamura, T., Blasio, J.A.D., Hasegawa, T., Paolucci, M., Sycara, K.: A preliminary report of
a public experiment of a semantic service matchmaker combined with a uddi business registry.
In: Proc. of ICSOC’03, pp. 208–224. IEEE CS (2003)

http://www.iicmva.com/IICMVAPublications.html
http://www.iicmva.com/IICMVAPublications.html

8 A Test Automation Framework for Collaborative Testing 197

33. Lallali, M., Zaidi, F., Cavalli, A., Hwang, I.: Automatic timed test case generation for web
services composition. In: Proc. of ECOWS’08, pp. 53–62 (2008)

34. Lee, S.C., Offutt, J.: Generating test cases for xml-based web component interactions using
mutation analysis. In: Proc. of ISSRE’01, pp. 200–209. IEEE CS (2001)

35. Li, J.B., Miller, J.: Testing the semantics of w3c xml schema. In: Proc. of COMPSAC’05, pp.
443–448. IEEE CS (2005)

36. Li, Z., Sun, W., Jiang, Z.B., Zhang, X.: Bpel4ws unit testing: Framework and implementation.
In: Proc. of ICWS’05, pp. 103–110. IEEE CS (2005)

37. Looker, N., Munro, M., Xu, J.: Ws-fit: A tool for dependability analysis of web services.
In: Proc. of COMPSAC’04, pp. 120–123. IEEE CS (2004)

38. Magee, J., Kramer, J., Uchitel, S., Foster, H.: Ltsa-ws: a tool for model-based verification of
web service compositions and choreography. In: Proc. of ICSE’06, pp. 771–774. IEEE CS
(2006)

39. Mayer, P.: Design and implementation of a framework for testing bpel compositions. Master’s
thesis, Leibnitz Univ., Germany (2006)

40. Mei, L., Chan, W.K., Tse, T.H.: Data flow testing of service-oriented workflow applications.
In: Proc. of ICSE’08, pp. 371–380. IEEE CS (2008)

41. Offutt, J., Xu, W.: Generating test cases for web services using data perturbation. SIGSOFT
Softw. Eng. Notes 29(5), 1–10 (2004)

42. Shan, L., Zhu, H.: Generating structurally complex test cases by data mutation. The Computer
Journal 52, 571–588 (2009)

43. Srinivasan, N., Paolucci, M., Sycara, K.: Adding owl-s to uddi, implementation and throughput.
In: Proc. of The 1st Int’l Workshop on Semantic Web Services and Web Process Composition,
pp. 169–182 (2004)

44. Tsai, W., Chen, Y., Paul, R., Liao, N., Huang, H.: Cooperative and group testing in verification
of dynamic composite web services. In: Proc. of COMPSAC’04, vol. 2: Workshops and Fast
Abstracts, pp. 170–173. IEEE CS (2004)

45. Tsai, W., Paul, R., Song, W., Cao, Z.: Coyote: An xml-based framework for web services
testing. In: Proc. of HASE’02, pp. 173–174. IEEE CS (2002)

46. Tsai, W., Wei, X., Chen, Y., Paul, R., Bai, X.: Swiss cheese test case generation for web services
testing. IEICE - Trans. Inf. Syst. 88(12), 2691–2698 (2005)

47. Tsai, W., Zhou, X., Chen, Y., Bai, X.: On testing and evaluating service-oriented software.
Computer 41(8), 40–46 (2008)

48. Wang, Y., Bai, X., Li, J., Huang, R.: Ontology-based test case generation for testing web
services. In: Proc. of ISADS’07, pp. 43–50. IEEE CS (2007)

49. Xu, W., Offutt, J., Luo, J.: Testing web services by xml perturbation. In: Proc. of ISSRE’05,
pp. 257–266. IEEE CS (2005)

50. Yu, B., Kong, L., Zhang, Y., Zhu, H.: Testing java components based on algebraic specifications.
In: Proc. of ICST’08, pp. 190–199. IEEE CS (2008)

51. Zhang, Y., Zhu, H.: Ontology for service oriented testing of web services. In: Proc. of SOSE’08.
IEEE CS (2008)

52. Zhang, Y., Zhu, H.: An intelligent broker approach to semantics-based service composition.
In: Proc. of COMPSAC 2011, pp. 20–25. IEEE CS, Munich, Germany (2011)

53. Zheng, Y., Zhou, J., Krause, P.: An automatic test case generation framework for web services.
Journal of Software 2(3), 64–77 (2007)

54. Zhu, H.: A framework for service-oriented testing of web services. In: Proc. of COMPSAC’06,
pp. 679–691. IEEE CS (2006)

55. Zhu, H., Huo, Q.: Developing a software testing ontology in uml for a software growth envi-
ronment of web-based applications. In: e. H. Yang (ed.) Software Evolution with UML and
XML, pp. 263–295. IDEA Group Inc. (2005)

56. Zhu, H., Huo, Q., Greenwood, S.: A multi-agent software environment for testing web-based
applications. In: Proc. of COMPSAC’03, pp. 210–215. IEEE CS (2003)

57. Zhu, H., Zhang, Y.: Collaborative testing of web services. IEEE Transactions on Services
Computing 5(1), 116–130 (2012)

Chapter 9

WSDarwin: Studying the Evolution
of Web Service Systems

Marios Fokaefs and Eleni Stroulia

Abstract The service-oriented architecture paradigm prescribes the development of

systems through the composition of services, i.e., network-accessible components,

specified by (and invoked through) their interface descriptions. Systems thus devel-

oped need to be aware of changes in, and evolve with, their constituent services.

Therefore, the accurate recognition of changes in the specification of a service is

an essential functionality in supporting the software lifecycle of service-oriented

systems. In this chapter, we extend our previous empirical study on the evolution

of web-service interfaces and we classify the identified changes according to their

impact on client applications. To better understand the evolution of web services,

and, more importantly, to facilitate the systematic and automatic maintenance of

web-service systems, we introduce WSDarwin, a specialized differencing method

for web services. Finally, we discuss the application of such a comparison method

on operation- (WSDL) and resource-centric (REST) web services.

9.1 Introduction

Service-system evolution and maintenance is an interesting variant of the general

software-evolution problem. The problem is complex and challenging due to the

fundamentally distributed nature of service-oriented systems, whose constituent parts

may reside on different servers, across organizations and beyond the domain of

any individual entity’s control. At the same time, since the design of a service-

oriented system is expressed in terms of the interface specifications of the underlying

services, the overall system needs and can be aware only of the changes that impact

M. Fokaefs (B) · E. Stroulia
Department of Computing Science,
University of Alberta, Edmonton, AB, Canada
e-mail: fokaefs@ualberta.ca

E. Stroulia
e-mail: stroulia@ualberta.ca

A. Bouguettaya et al. (eds.), Advanced Web Services, 199
DOI: 10.1007/978-1-4614-7535-4_9,
© Springer Science+Business Media New York 2014

200 M. Fokaefs and E. Stroulia

these interface specifications; any changes to the service implementations that do not

impact their interfaces are completely transparent to the overall system. In effect, the

specifications of the system’s constituent services serve as a boundary layer, which

precludes service-implementation changes from impacting the overall system.

The directly affected party in the evolution of service systems is the client, i.e.,

the consuming party. Figure 9.1 shows a typical evolution scenario from the client’s

perspective. Initially, the client invokes the service and a fault may be detected. It is

not usual for the client to have a priori knowledge about any changes on the service,

unless there is frequent and effective communication between the provider and the

client. Once the fault is detected, the client has to compare the old service interface

with the new one from the provider to identify the nature of the changes and possibly

their effect on the application. The next step is to adapt the client application to the

new version of the service. This requires as much information as possible in order

to make the adaptation process systematic and, if possible, fully automatic. Finally,

the client has to test the application to make sure the adaptation worked, since not

all changes are automatically adaptable.

Fig. 9.1 The evolution process from the client’s perspective

This is why recognizing the changes to the specification of a service interface and

their impact on client applications is highly desirable and a necessary prerequisite for

actually adapting the applications to the new version of the service. Further, assuming

that a precise method for service-specification changes existed, it would be extremely

useful if one could (a) characterize the changes in terms of their complexity, and

(b) semi-automatically develop adapters for migrating clients from older interface

versions to newer ones.

In this work, we introduce WSDarwin, a domain-specific differencing method

to compare (a variety of) web-service interfaces. Most frequently, services are devel-

oped following two approaches: operation-centric, whose interfaces are specified as

Web Service Description Language (WSDL)1 files, and data-centric (REST), which

are specified as Web Application Description Language (WADL)2 files. Although

the two approaches are quite different in the syntax they use to specify web ser-

vices and their associated technologies, they share a palette of building elements,

namely functions and data. WSDarwin takes advantage of this fundamental com-

monality to produce accurate comparison results in an efficient and scalable man-

ner for service interfaces regardless of their specification syntax. In this work, we

compare WSDarwin with our old comparison approach VTracker [6] and dis-

cuss their differences with respect to performance and scalability. Finally, we apply

1 http://www.w3.org/TR/wsdl
2 http://www.w3.org/Submission/wadl/

http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/wadl/

9 WSDarwin: Studying the Evolution of Web Service Systems 201

WSDarwin on Unicorn,3 W3C’s unified validator and Amazon Elastic Cloud

Computing (EC2) web service and we present some special cases to demonstrate

how the comparison method is used and how its results are presented.

In addition to comparing pairs of specifications to recognize their differences, we

are also interested in analyzing the long-term evolution of real world services. We

have already presented an empirical study [6], where we analyzed a set of commer-

cial WSDL web services including the Amazon Elastic Cloud Computing (Amazon

EC2),4 the FedEx Package Movement Information and Rate Services,5 the PayPal

SOAP API6 and the Bing search service,7 using VTracker, as a comparison method.

In that work, we studied the evolution of the aforementioned services and reported

our findings on evolution patterns, we identified particular change scenarios and dis-

cussed them with respect to their impact on potential client applications and, finally,

we correlated these changes with business decisions concerning the services in an

effort to reason about the evolution of each service. In this chapter, we extend the find-

ings of this empirical study by providing additional statistics about the changes that

the examined services underwent and, more importantly, we provide a classification

of the service change scenarios according to their impact on client applications.

The rest of the chapter is organized as follows. In Sect. 9.2 we present the extended

results of our empirical study on the evolution of WSDL services and we present

the classification of service changes. In Sect. 9.3, we introduce WSDarwin as a

comparison method for service interfaces and demonstrate its usage on a WSDL

and a WADL service. Section 9.4 provides an overview of the literature related to

our work. Finally, Sect. 9.5 concludes this chapter and discusses some of our future

plans.

9.2 Study of Web Service Evolution

Before developing methods and tools to support the evolution process of web services,

it is important to first study and understand how service interfaces change. This way,

we can identify what is important to pay attention to and what can be simplified

in order to build improved automated processes. In our work, we have studied five

real-world web services offered by companies in the industry of web applications,

whose evolution spans across different time periods and exhibits interesting evolution

patterns.

• Amazon EC2. The Amazon Elastic Compute Cloud is a web service that provides

resizable compute capacity in the cloud. We studied the history of the web service

across 18 versions of its WSDL specification, dating from 6/26/2006 to 8/31/2010.

3 http://code.w3.org/unicorn/
4 http://aws.amazon.com/ec2/
5 http://www.fedex.com/us/developer
6 https://www.paypalobjects.com/en_US/ebook/PP_APIReference/architecture.html
7 http://www.bing.com/developers

http://code.w3.org/unicorn/
http://aws.amazon.com/ec2/
http://www.fedex.com/us/developer
https://www.paypalobjects.com/en_US/ebook/PP_APIReference/architecture.html
http://www.bing.com/developers

202 M. Fokaefs and E. Stroulia

• The FedEx Rate Service operations provide a shipping rate quote for a specific

service combination depending on the origin and destination information supplied

in the request. We studied 9 versions of this service.

• The FedEx Package Movement Information Service operations can be used to

check service availability, route and postal codes between an origin and destination.

We studied 3 versions of this service.

• The PayPal SOAP API Service can be used to make payments, search transactions,

refund payments, view transaction information, and other business functions. We

studied 4 versions of this service.

• The Bing Search service provide programmatic access to Bing content Source-

Types such as Image, InstantAnswer, MobileWeb, News, Phonebook, Related-

Search, Spell, Translation, Video, and Web. We studied 5 versions of this service.

9.2.1 Analyzing the Evolution of the Services

Table 9.1 shows the evolution profile of all the examined services in terms of data

types and operations. Each row corresponds to a service version. Columns 3–8 report

the percentage of types and operations in this version that underwent edits (Changes,

Deletions, Additions) from the previous version. The change columns include two

types of changes: renaming or other changes in the “signature” of the object (type or

operation), i.e., the attributes of the particular XML element and changes that were

propagated from children nodes. For example, if the input or output of an operation

or the contained elements of a type are changed, then these changes are propagated

to the parent element.

Amazon EC2, as it can be seen from the tables, followed a very distinct pattern of

evolution. The developers chose to augment a single service with new operations as

they were being developed. For this reason, we observe many additions and changes

and a complete lack of deletions. Although this policy eventually produced a rather

long WSDL file, it was also prudent in the sense that deleting an operation creates

a non-recoverable situation. In such a case a client application should be changed

and recompiled. Furthermore, we can observe a correlation between adding new

operations and adding new types. This is because in the Amazon services there is a

2-to-1 relationship between types and operations (one input type and one output type

for each operation). The changes in the types are usually because of enhancements

in previous functionality or to accommodate new functionality. In version 6, we can

observe a special case: there are small changes and deletions in types and no other

activity. Upon closer examination, it becomes clear that this change represents, in

fact, a refactoring.

The FedEx services (Rate and Package Movement) do not follow the same evo-

lution pattern. These services have a very small number of operations (1 and 2

respectively), which rarely change. On the other hand, the data types evolve vig-

orously with changes, deletions and additions of new types especially in the Rate

service. An interesting change in the Rate service occurred between versions 3 and 4.

9 WSDarwin: Studying the Evolution of Web Service Systems 203

Table 9.1 The evolution profile of types and operations in the studied services

Service Ver Types Operations

C(%) D(%) A(%) C(%) D(%) A(%)

Amazon EC2 2 5.00 0.00 25.00 0.00 0.00 21.43

Amazon EC2 3 1.33 0.00 8.00 0.00 0.00 11.76

Amazon EC2 4 2.47 0.00 0.00 0.00 0.00 0.00

Amazon EC2 5 7.41 0.00 7.41 0.00 0.00 5.26

Amazon EC2 6 2.30 2.30 0.00 0.00 0.00 0.00

Amazon EC2 7 4.71 0.00 30.59 0.00 0.00 30.00

Amazon EC2 8 0.00 0.00 23.42 0.00 0.00 30.77

Amazon EC2 9 26.28 0.00 10.22 2.94 0.00 8.82

Amazon EC2 10 0.66 0.00 3.97 2.70 0.00 2.70

Amazon EC2 11 0.00 0.00 8.92 0.00 0.00 7.89

Amazon EC2 12 1.17 0.00 4.68 0.00 0.00 4.88

Amazon EC2 13 1.68 0.00 44.69 0.00 0.00 51.16

Amazon EC2 14 1.54 0.00 5.02 0.00 0.00 4.62

Amazon EC2 15 5.88 0.00 8.82 0.00 0.00 8.82

Amazon EC2 16 0.34 0.00 10.14 0.00 0.00 9.46

Amazon EC2 17 1.53 0.00 7.36 0.00 0.00 7.41

Amazon EC2 18 12.00 0.00 4.57 0.00 0.00 4.60

FedEx Rate 2 26.32 1.32 11.84 0.00 0.00 0.00

FedEx Rate 3 14.29 0.00 9.52 0.00 0.00 0.00

FedEx Rate 4 25.00 8.70 47.83 0.00 0.00 100.00

FedEx Rate 5 9.38 0.78 4.69 50.00 50.00 0.00

FedEx Rate 6 10.53 3.01 39.85 0.00 0.00 0.00

FedEx Rate 7 15.38 2.75 15.93 0.00 0.00 0.00

FedEx Rate 8 8.25 0.97 11.17 0.00 0.00 0.00

FedEx Rate 9 18.06 0.44 0.44 0.00 0.00 0.00

Bing 2.1 11.29 0.00 14.81 0.00 0.00 0.00

Bing 2.2 7.35 1.61 11.29 0.00 0.00 0.00

Bing 2.3 2.94 0.00 0.00 0.00 0.00 0.00

Bing 2.4 1.43 0.00 2.94 0.00 0.00 0.00

PayPal 53.0 12.35 0.00 107.69 0.00 0.00 110.53

PayPal 62.0 7.07 0.00 22.22 0.00 0.00 20.00

PayPal 65.1 1.82 0.00 11.11 0.00 0.00 10.42

FedEx Pack. 3 10.00 0.00 0.00 0.00 0.00 0.00

FedEx Pack. 4 5.00 0.00 0.00 0.00 0.00 0.00

Until version 3 the service offered a single operation named getRate. In version 3,

a second operation, named rateAvailableServices, was introduced. In ver-

sion 4, however, the new operation was promptly deleted, getRate was renamed

to getRates, and based on the reorganization of the types, it appears that the

responsibilities of the deleted operation were merged into the original one.

Bing and PayPal have both had a relatively short lifecycle but still exhibit inter-

esting differences between them. Bing’s history has been relatively stable, with few

modifications given also the small number of elements in its WSDL specification

204 M. Fokaefs and E. Stroulia

(1 operation and between 54 and 70 types). PayPal, on the other hand, follows an

expansion pattern similar to the one Amazon follows; it is consistently enhanced

with new operations. The great increase observed in Fig. 9.2a in the number of oper-

ations between the first two examined versions of PayPal is because there are a lot

of intermediate versions for which we have no data.

(a)

(b)

Fig. 9.2 The evolution of the examined services. a Evolution of number of operations. b Evolution
of number of types

Figures 9.2a, b show the evolution of the operations and types of the examined

services. An interesting observation from these figures concerns the Amazon service,

where we can see that the particular service seems to have three distinct phases: the

first is from version 1 to version 6, the second is from 7 to 12 and the third from 13

to 18. These phases are the result of the business decisions that have been described

in [6].

9.2.2 Classification of Service Changes

Based on the discussion about specific changes that happened in the web services we

examined in [6], we propose a classification of these changes based on their impact

on client applications. Because of the distributed nature of service systems, clients

9 WSDarwin: Studying the Evolution of Web Service Systems 205

usually have very little information to understand the changes in web services and

contemplate their impact on their applications. Therefore, accurately recognizing

and characterizing service changes will facilitate clients reason about these changes

and systematically build adapters for their applications. We distinguish three types

of changes with respect to their impact on clients.

1. No-effect changes do not impact the client at all. The client functionality is not

disrupted and neither is the interface, which practically means that the client can

still operate using the old stub. Changes in this category include adding new

types (as long as these types are not used by existing operations) and adding new

operations (assuming that the semantics of the service are preserved and there are

no interdependencies between the new and the old operations).

2. Adaptable changes affect the interface of the client, but the functionality of the

service remains the same. These changes, from the point of view of the provider,

usually correspond to refactorings on the source code of the service. In other

words, they are changes meant to improve the design of the service and leave

the functionality unaffected. They can be easily addressed by generating a new

stub and changing the old stub, still used by the client application, to invoke the

new one and thus the evolved service [7]. This way we avoid changing the client

code by modifying only autogenerated code. Changes in this category include

refactorings, renaming and changing input or output for an operation (assuming

that the new input or output are existing types and not new ones).

3. Non-recoverable changes imply that the functionality of the service is affected, in

a way that the client breaks and we cannot address the issue without changing and

recompiling the client code. In some cases, the change is so subtle as not to affect

the interface of the client. In other words, the client still works but the results

produced are not the desired ones. The problem in this case can be identified

by means of unit and regression testing. Removing elements from the service

interface (without replacing them) is a non-recoverable change.

Even after the identification of detailed changes between versions of the service

interface and the classification of these changes, the adaptation of client applications

may still not be plausible. Even in the first two categories, functionality may be

affected and this impact may seem invisible or easily addressable by examining just

the service interface. For this reason, testing of the adapted client application may

still be needed and additional (manual) effort may be required.

9.2.3 Implications of the Empirical Study

Apart from drawing conclusions for the evolution of web service interfaces, including

evolution patterns, lifecycles, good and bad practices, through the empirical studies

we identified types of simple or more complex, but definitely recurring, changes.

These examples, along with ones drawn from our experience in designing and devel-

oping software systems, have been used to design the comparison component of

206 M. Fokaefs and E. Stroulia

WSDarwin. The study has shown us what kind of changes to expect and the instances

of these changes in commercial web services have helped us to understand how we

can automatically identify such changes.

On the other hand, the classification of service changes primarily contributes to

the adaptation and generally the evolution of client applications. In a recent work

[7], we propose an adaptation algorithm that automatically adapts client applications

to adaptable changes of the service interface. The knowledge of what category the

change belongs to, can help us identify whether automatic adaptation can be applied.

The classification can also improve the comparison method. For instance, in case

of refactorings, these types of changes have very specific mechanics (see the work

by Fowler [8]), which can be translated to comparison rules in WSDarwin, thus

expanding the system’s capabilities to identify a greater variety of changes.

9.3 WSDarwin

In order to be able to systematically adapt client applications to the changes of the

web services on which they rely, we, first, should be able to accurately recognize the

changes a web service undergoes. In developing a web-service differencing algo-

rithm, one should consider two quality properties: (a) the efficiency and scalability

of the algorithmic process, and (b) the understandability of the output it produces.

The process has to be efficient and scalable because service-interface descriptions

can be quite lengthy and complex, as they may contain many and complex types

and numerous operations. On the other hand, as the differencing process is usually

preformed in service of another task, such as adaptation for example, its output has

to be understandable by the developers and it also has to be designed to be easily

consumed by any downstream automated process.

In the WSDarwin comparison method, we ensure efficiency by using a concise,

domain-specific model to represent the relevant information of a service interface.

The model captures the most important information of a service’s elements such as

names, types, their structure and the relationships with each other, thus, providing a

simpler, more lightweight syntactic representation of the service representation than

either WSDL or WADL. In addition, the algorithm employs certain heuristics on

name comparisons to further improve the efficiency. The rationale underlying these

heuristics is that within the same service (even between versions) names are unique

and can therefore be treated as IDs. The use of the same name for different elements

is not likely (and in many cases it is not allowed). For this reason, it only makes

sense to compare strings using exact matching and not partial matching techniques

such string-edit distance. Furthermore, instead of comparing named XML nodes like

VTracker, WSDarwin compares model entities based on their specific type (e.g.

operations with operations, complexTypes with complexTypes etc.). This way it is

not necessary to compare all elements against each other, thus avoiding false results

due to fuzzy mapping and gaining further efficiency improvement over VTracker.

9 WSDarwin: Studying the Evolution of Web Service Systems 207

WSDarwin’s output follows the model shown in Fig. 9.3.8 Figure 9.3a shows

the model used to represent WSDL service interfaces. The operations, which are

the invocation points between the provided service and the client application,

have input and output types. The type hierarchy is in accordance with the XML

Schema specification9: PrimitiveTypes include strings, integers, boolean etc.;

SimpleTypes are based on certain restrictions on their values (e.g. enumerations);

ComplexTypes are composed of other types. The model omits elements that add

no further structural information for the clients, such as messages and high level

elements from the schema, which only serve as references. Therefore, only the

elements to which these references point were eventually included in the model.

Figure 9.3b corresponds to the WADL interface model. The elementresources

contains a set of resource elements, which in turn contain methods and these

have requests and responses. Requests consist of a set of parameters and

the responses, which are usually returned as a file of structured data such as XML or

JSON, refer to elements in an XML schema file. The IType hierarchy is the same as

in the WSDL model.

In both these models, the containment relationships (denoted by the black dia-

monds) indicate parent-child relationships between element types. For example, an

operation in WSDL has two children: an input type and an output type. The children

elements together represent the structure of a WS element. Structural information

can be used to uniquely identify elements. If two elements across two web-service

specifications have the same children, then there is high confidence that they are one

and the same element.

Figures 9.4a, b10 show examples of the instantiation of the WSDL and WADL

models for the Amazon EC2 and the Unicorn validator, respectively. The figures

clearly demonstrate the structure of elements, implemented by the parent-children

relationship between WS elements as defined in the interface models.

Figure 9.3c models the changes. We can have different types of deltas including

changes, additions, deletions, moves and moves and changes. The two hierarchies

are connected through the Bridge design pattern [9] and their relationship is that each

delta has a source WS element and a target WS element.

The interface models define the structure and the vocabulary of the diff scripts

produced by WSDarwin; the Delta model defines the annotations for each mapping

reported in these scripts. Designing WSDarwin in this manner, we have striven for a

balance of specificity to the syntax of the compared specification (WSDL vs. WADL)

and generality in the definition of the changes the interfaces go through. This design,

we believe, makes the output clear to web-service system developers and enables

them to understand and better reason about the changes in the services. Furthermore,

the output is designed with consideration to a downstream automated adaptation

process, since it provides a full mapping between the elements and the type of every

change so that the process can assess its impact on the client application.

8 The diagrams were designed using the Eclipse EMF toolkit.
9 http://www.w3.org/XML/Schema
10 The figures were generated by the Eclipse EMF toolkit.

http://www.w3.org/XML/Schema

208 M. Fokaefs and E. Stroulia

(a)

(b)

(c)

Fig. 9.3 The WSDarwin comparison framework. a The WSDL service interface model. b The
WADL service interface model. c The WSDarwin delta model

9 WSDarwin: Studying the Evolution of Web Service Systems 209

(a) (b)

Fig. 9.4 Snippets of WSDL and WADL instances of the WSDarwininterface models. a Amazon
EC2. b W3C Unicorn CSS validator

Let us now review WSDarwin in some detail. For each version v to be examined,

WSDarwin extracts Ev, the set of elements in the specification of the v version of

the service. This set contains tuples (id, t, a, s) where id is the identifying attribute

of the element (usually the name), t is the type of the element, a is the set of its

attributes and s is the structure of the element.

In the context of the WSDarwin comparison, the ID or the structure can uniquely

identify an element. Therefore, if two elements, belonging in two different versions,

share at least one of these two properties (ID and structure), then WSDarwin con-

siders them to be two versions of the same element. Since web service interfaces are

artifacts generated by source code, they also follow the programming conventions

of the underlying programming language. In principle, two entities in the same file

cannot have the same name, or a compilation error occurs. Therefore, we can safely

assume that the name of an entity is its unique identifier. On the other hand, we

also consider structure to be a unique identifier so as to be able to identify cases

of renaming. In the rare case, where the new version contains two elements, one

with the same name as the old entity and the other with the old entity’s structure but

210 M. Fokaefs and E. Stroulia

different name, WSDarwin might get confused, but the diff script exactly the same

set of edit operation: one addition and one change.

Note that the set Ev contains elements of all types across the WSDL and WADL

specification syntaxes. For every element in a specific version of the web-service

e ∈ Ev, WSDarwin identifies

• Ae: The set of attributes, other than the ID, and

• Se: The structure of the element, if it is a complex element. Note that, as we

mentioned above, the structure refers to the children of complex elements such as

input and output types for operations and elements for complex types.

Finally, for each comparison ∆, between two versions v1, v2 ∈ V , where V is

the set of versions of a web-service specification to be analyzed, we determine the

added and deleted matched elements by using the symbols “+” and “−” respectively.

Therefore, E+
� is the set of elements that were added. We also use the symbol “#” to

denote mapped elements, e.g. E#
�.

WSDarwinrelies on a set of rules to map and differentiate the elements between

different versions of the service interfaces. Table 9.2 summarizes the rules we use to

compare service interfaces.

Table 9.2 The definition of rules used by WSDarwin for the comparison of web service interfaces

Name of comparison rule Rule

1 Exact matching ∀ae1 ∈ Ae1 ,∀ae2 ∈ Ae2 : ae1 .li teral = ae2 .li teral

2 Mapping ∃e1, e2 ∈ E#
� : e1.t = e2.t and (e1.id = e2.id or e1.s = e2.s)

3 Changed ∃(idi , ti , ai , si) ∈ E#
� and ∃(id j , t j , a′

j , s j) ∈ E#
�

4 Propagated change ∃(idi , ti , ai , si) ∈ E#
� and ∃(id j , t j , a j , s′

j) ∈ E#
�

5 Matched ∃(idi , ti , ai , si) ∈ E#
� and ∃(id j , t j , a j , s j) ∈ E#

�

6 Added ∃ev2 /∈ E#
�

7 Deleted ∃ev1 /∈ E#
�

8 Changed (Renamed) ∃(idi , ti , ai , si) ∈ E−
� and ∃(id ′

j , t j , a j , s j) ∈ E+
�

9 Moved ∃(idi , ti , ai , si) ∈ E−
� and ∃(id j , t j , a j , s j) ∈ E+

�

10 Moved and Changed ∃(idi , ti , ai , si) ∈ E−
� and ∃(id ′

j , t j , a′
j , s′

j) ∈ E+
�

1. The first rule is the exact matching rule. In case of simple attributes (such as the

element’s ID and attributes belonging in the Ae set of the element), two attribute

values are the same if and only if they have the same literal. In case of structure

(i.e., the set of children of an element), two elements are considered structurally

equal if and only if all their children are equal. Children equality is determined

in an iterative manner.

2. The second rule states that two elements are “mapped” to each other, i.e., they

are considered the same element across the two interface versions, if their type

and at least one of their identifying properties, i.e., ID and structure, match. It is

important to note that two mapped elements are not necessarily matched. There

can still exist differences in which case a Change Delta is reported. On the other

hand, matched elements are always mapped.

9 WSDarwin: Studying the Evolution of Web Service Systems 211

3. An element is considered “changed” if its ID was found in both versions but

some of the values of its other attributes differ across the two versions.

4. If there is a change in the structure of the element (i.e., its children have changed),

the element itself is considered “changed” even if none of the attributes of the

parent element have changed. This is because the adaptation process starts from

the root element of a service request which is considered to be the operation.

Therefore, if some part of its input or its output is affected the operation is still

considered affected.

5. If two elements are mapped and no differences are identified, they are labeled as

“matched”. The need to retain matched elements in the final comparison script

is because an automated adaptation process needs a full mapping between the

two versions.

6. An “addition” is identified if an element’s name (its ID) that did not exist in the

old version, but it was not found in the new version.

7. Correspondingly, a “deletion” is identified if an element’s name existed in the

old version, but it was not found in the new version.

8. In a second phase, the additions and deletions are reexamined to recognize poten-

tial changes in the element IDs or moves. If an element is identified as deleted

from the old version and another element as added in the new version and the

two elements have identical structure but differ with respect to their IDs then

these elements are labeled as “changed (renamed)”.

9. In a similar scenario, where elements are mapped between the deleted and added

sets, these elements are marked as “moved”. The reason they couldn’t be identi-

fied in the first run of the comparison is because the process follows the structure

of the service interface and elements are compared only in the context of their par-

ents. Legitimate moves in a WSDL interface include primitive types being moved

between complex types. Another also legal, but less probable, move can occur

when two operations exchange their input or output types. In WADL, where the

structure is more complicated, we can have resource elements being moved

betweenresources elements and methods being moved between resource

elements. Moves involving data types are also possible in this syntax.

10. If the moved elements also differ in their structures or their IDs, they are labeled

as “moved and changed”. If they differ with respect to both structure and ID,

then they are considered different elements and are report as an addition and a

deletion.

Based on the model and using the rules, in the first phase, the differencing method

performs pairwise comparisons between the elements of the service interfaces start-

ing from the more complex ones, such as the WSDL or WADL files themselves, and

going down the hierarchy of the service elements as shown by Algorithm 1. First, the

algorithm reports any changes in the attributes of the element (using the 3rd rule) or

in the ID of the element (using the 8th rule) (steps 1–4). Second, the children of the

compared elements are mapped according to the 2nd rule (step 7). Those that were

not mapped are considered added, according to the 6th rule, or deleted, according to

the 7th rule (step 8). If a complex element is added or deleted all of its children are

212 M. Fokaefs and E. Stroulia

Algorithm 1 diff(e1, e2) WSDarwin service interface comparator

1: Compare the attributes of the two elements.
2: if Changes are detected then
3: Set ElementDelta to ChangeDelta(e1, e2)

4: end if
5: for all c1 ∈ Children(e1) do
6: for all c2 ∈ Children(e2) do
7: if ¬Mapped(c1, c2) then
8: Add DeleteDelta(c1) OR AddDelta(c2) to ElementDelta
9: for all cc1 ∈ Children(c1) do
10: Add DeleteDelta(cc1) to DeleteDelta(c1)

11: end for
12: for all cc2 ∈ Children(c2) do
13: Add AddDelta(cc2) to AddDelta(c2)

14: end for
15: else
16: Call diff(c1, c2)

17: Add result to ElementDelta
18: if The result contains only MatchDeltas AND ElementDelta != null then
19: Set ElementDelta to MatchDelta(e1, e2)

20: else
21: //Change propagated.
22: Augment ElementDelta with ChangeDelta(e1, e2)

23: end if
24: end if
25: end for
26: end for

Algorithm 2 findMoveDeltas(Delta)

1: for all AddDelta(e2) AND DeleteDelta(e1) ∈ Delta do
2: if Mapped(e1, e2) then
3: if Changed(e1, e2) then
4: Create MoveAndChangeDelta(e1, e2)

5: Replace DeleteDelta(e1) with MoveAndChangeDelta(e1, e2)

6: else
7: Create MoveDelta(e1, e2)

8: Replace DeleteDelta(e1) with MoveDelta(e1, e2)

9: end if
10: end if
11: end for

also added or deleted to acquire a full mapping between the two versions (steps 9–

14). The elements that were mapped are then compared (step 16). The comparisons

continue this way until they reach simple elements, such as XSD elements or WADL

param elements, which are only compared based on their attributes since they have

no children and the comparison result is returned to the parent. In the final step,

the algorithm checks if the children of the compared elements and the children of

their children are matched according to the 5th rule, then the compared elements are

matched as well (step 19). Otherwise, a change is propagated to the parent according

to the 4th rule (step 22). In a second phase shown by Algorithm 2, WSDarwin tries

to identify moved elements among the added and the deleted ones. In the first phase,

additions and deletions are identified within the scope of an element. In the second

phase, the hierarchy is collapsed and additions and deletions are reexamined to detect

moves based on the 9th and the 10th rule.

9 WSDarwin: Studying the Evolution of Web Service Systems 213

9.3.1 WSDarwin Versus VTracker

VTracker, the first method we used for web-service differencing, is a generic

domain-agnostic differencing algorithm that can be used to compare heteroge-

neous interfaces, i.e., interfaces described in different schemas. In other words,

VTracker can be used to compare any pair of XML documents. For this reason,

this method uses fuzzy mapping and partial matching. For the former option, since

we don’t always know a mapping between the elements of the two interfaces, the

algorithm compares all elements with each other (regardless of their type) and estab-

lishes a mapping based on their structural similarity. As far as the partial matching

is concerned, the algorithm uses the notion of distance to compare elements with

each other. Then, using a stable marriage algorithm it matches the elements with the

lowest edit distance. VTracker can be configured to include information about the

specific XML syntax used by the files to be compared. In our previous study [6],

we configured VTracker to work with WSDL interfaces. In the end, the output

produced by the algorithm is a text-like document containing the appropriate XML

edit operations to go from the first file to the second.

WSDarwin, on the other hand, is a comparison method tailored to the web-

service domain and it is developed from the beginning with knowledge about the

structure of the interfaces, thus improving on quality properties such scalability and

understandability. Fuzzy mapping can cause problems in the case of elements of

different types named in a similar manner if they correspond to the same concept.

In the case of web services, the convention is to name operations and their input

and output types similarly to denote their relationship. Fuzzy mapping and partial

matching also contribute to decreased efficiency and accuracy: when the algorithm

considers a variety of increasingly relaxed methods for establishing correspondence

between two elements, then it has to perform more computations (resulting to ineffi-

ciency) and it risks establishing correspondence on more “risky” grounds (resulting

to inaccuracy). WSDarwin takes advantage of the fact that web services share a com-

mon palette of elements, regardless of their syntax, namely data and functionality. In

other words, this method is domain-specific, but technology-agnostic. Furthermore,

having a priori knowledge, it compares elements according to their types and taking

advantage of naming conventions, it uses exact matching to compare literals. Finally,

the output of WSDarwin is based on the Deltas and follows the structure of the ser-

vice interface, which makes it not only understandable but also easily consumable

by automated adaptation techniques. Table 9.3 summarizes the comparison between

VTracker and WSDarwin.

Figure 9.5 shows the execution time of VTracker and WSDarwin with respect

to the size of the compared service interfaces. Time measurements were performed in

a machine with an Inter Core 2 Duo 1.87 GHz CPU, 3 GB RAM and 64-bit operating

system. This figure clearly demonstrates the scalability of WSDarwin even in the

presence of large services. VTracker approximates an exponential execution time

while WSDarwin’s is linear. Apart from the fuzzy mapping and partial matching,

another factor that contributes to VTracker’s large execution time is the fact that

214 M. Fokaefs and E. Stroulia

Table 9.3 Comparison between VTracker and WSDarwin

VTracker WSDarwin

Domain-agnostic Domain-specific

Technology-specific Technology-agnostic

Heterogeneous comparisons Homogeneous comparisons

– Can be applied on any XML-like file – Can be applied only on the WS domain

Less efficient More efficient

– Fuzzy mapping – Mapping according to type, structure and identifier

– Partial matching – Exact matching (same literal)

Free text output Structured output

– XML edit operations – Deltas

– Directly consumable by CASE tools

when comparing the structure of an element, the method has to resolve and compare

references and this resolution takes place for each reference. WSDarwin, on the

other hand, resolves references only once during the parsing of the service interface

and replaces the references with containment relationship, so the method avoids the

time to seek for the element corresponding to a reference every time it encounters

one.

Fig. 9.5 Comparison between WSDarwin and VTracker in terms of their execution time

9.3.2 Applying WSDarwin on the Comparison of Service

Interfaces

In this section, we demonstrate with examples how the WSDarwin differencing

method can be used to compare different versions of service interfaces. We applied

the method on Amazon EC2, which has a WSDL-based interface, and Unicorn,

which has a WADL-based interface. We chose these examples to show that given

9 WSDarwin: Studying the Evolution of Web Service Systems 215

(a)

(b)

Fig. 9.6 Snippet of the diff script between two versions of the Amazon EC2 service. a Diff script
without the detection of move operations. b Diff script with the detection of move operations

the proper model to represent the service interface, the comparison method, which

is based on the delta model, can be applied to compare the interfaces regardless of

their underlying specification technology.

Figure 9.6 shows a snippet of the output of WSDarwin for the Amazon EC2

service. The diff script follows the hierarchy of the WSDL interface starting with the

operations and then their input and output types. Each line is prefixed with the type of

the edit operation performed for each element. The detection of move operations is

216 M. Fokaefs and E. Stroulia

activated for the script in Fig. 9.6a, and deactivated for the script reported in Fig. 9.6b.

Comparing the two figures, we observe that the move operations are first perceived as

additions and deletions, in the first phase of the comparison algorithm. In the second

phase, the deletions are replaced by move operations but the additions are kept in the

diff script.

In this example, we have a case of an “Inline Type” refactoring as described in our

previous work [6]. As it can be seen from the figure, such a refactoring occurs when

a type (RunInstancesInfoType), which is nested into another complex type

(RunInstancesType, is deleted from the service and its constituent elements

are all added in the parent type. By identifying the edit operations as moves and

not as actual deletions, we can characterize this change as adaptable according to

our classification. This is because the data exists in both versions but is “packaged”

differently.

Also, edit operations of children elements are propagated as changes to the parent

element. This is so that the adaptation process knows as early as possible which are

the operations that are affected, since these are the contact elements between the

service interface and client applications. For example, as it can be seen in the figure,

because of the changes (additions and deletions) in the input of the RunInstances

operation, these changes affect the operation which is marked as changed, despite

not being directly changed.

Fig. 9.7 The diff script between two versions of the WADL-based CSS validator of Unicorn

9 WSDarwin: Studying the Evolution of Web Service Systems 217

Figure 9.7 shows the output of WSDarwin for the CSS validator service of Uni-

corn. The only major difference between the Unicorn and the Amazon diff scripts

is that the former follows the WADL hierarchy. The edit operations are reported in

exactly the same manner based on the delta model. In this case, we also have an

instance of an attribute change (line 13). These changes are reported by identifying

which attribute was changed (in this case attribute “name” of method “CssValida-

tionText”) prefixed by the symbol “@” for attribute, along with its old value and

its new value. An attribute change subsumes a propagated change, since both edit

operations mark the element as affected. For this reason, we do not need an additional

type delta for either edit operation.

As we have already mentioned, while the structure and the vocabulary of the diff

script are dictated by the underlying syntax model, the Deltas are used as annotations.

This demonstrates and emphasizes the fact that WSDarwin is technology-agnostic;

regardless of the syntax model, the Delta language can be applied to provide the

comparison context of the diff script.

9.4 Related Work

Our work relates to differencing, WSDarwin’s contribution, and service evolution,

the substance of our empirical study.

9.4.1 Model- and Tree-Differencing Techniques

Fluri et al. [5] proposed a tree-differencing algorithm for fine-grained source code

change extraction. Their algorithm takes as input two abstract syntax trees and

extracts the changes by finding a match between the nodes of the compared trees.

Moreover, it produces a minimum edit script that can transform one tree into the

other given the computed matching. The proposed algorithm uses the bi-gram string

similarity to match source code statements (such as method invocations, condition

statements, and so forth) and the sub-tree similarity of Chawathe et al. [3] to match

source code structures (such as if statements or loops). The method also uses names

and types as IDs to map elements and can identify primarily changes, additions,

deletions and moves for different types of elements.

Kelter et al. [10] proposed a generic algorithm for computing differences between

UML models encoded as XMI files. The algorithm first tries to detect matches in

a bottom-up phase by initially comparing the leaf elements and subsequently their

parents in a recursive manner until a match is detected at some level. When detecting

such a match, the algorithm switches into a top-down phase that propagates the last

match to all child elements of the matched elements in order to deduce their differ-

ences. The algorithm reports four different types of differences, namely structural

(denoting the insertion or deletion of elements), attribute (denoting elements that

218 M. Fokaefs and E. Stroulia

differ in their attributes’ values), reference (denoting elements whose references are

different in the two models) and move (denoting the move of an element to another

parent element). Although the method does not use IDs to map elements, they are

necessary to identify moves. For this reason, custom ones are constructed using the

name of the element and its path along the XMI tree.

Xing and Stroulia [15] proposed the UMLDiff algorithm for automatically detect-

ing structural changes between the designs of subsequent versions of object-oriented

software. The algorithm produces as output a tree of structural changes that reports

the differences between the two design versions in terms of additions, removals,

moves, renamings of packages, classes, interfaces, fields and methods, changes to

their attributes, and changes of the dependencies among these entities. UMLDiff

employs two heuristics (i.e., name-similarity and structure-similarity) for recogniz-

ing the conceptually same entities in the two compared system versions. These two

heuristics enable UMLDiff to recognize that two entities are the same even after they

have been renamed and/or moved. The UMLDiff algorithm has been employed for

detecting refactorings performed during the evolution of object-oriented software

systems, based on UMLDiff change-facts queries [16].

Recently, Xing [14] proposed a general framework for model comparison, named

GenericDiff. While it is domain independent, it is aware of domain-specific model

properties and syntax by separating the specification of domain-specific inputs from

the generic graph matching process and by making use of two data structures (i.e.,

typed attributed graph and pair-up graph) to encode the domain-specific properties

and syntax so that they can be uniformly exploited in the generic matching process.

Unlike the aforementioned approaches that examine only immediate common neigh-

bors, GenericDiff employs a random walk on the pair-up graph to spread the corre-

spondence value (i.e., a measurement of the quality of the match it represents) in the

graph.

In our previous work [6], we adopted VTracker to recognize the differences

between two versions of a web-service interface. VTracker is designed to compare

and recognize the similarities and differences between XML documents, based on

the Zhang-Shasha tree-edit distance [17] algorithm.

WSDarwin is tailored around a very specific domain, that of web services. There-

fore, a lot of domain-specific information and characteristics are imbued in the com-

parison method. However, we do borrow some fundamental differencing techniques

from the works described in this section. For example, many methods employ the

concept of a model to describe the compared artifacts. In fact, the underlying model

is the one that will determine the accuracy and the efficiency of the comparison

method. Second, the use of identifiers for mapping compared elements is a widely

used technique, also present in the VTracker algorithm. Finally, the propagation of

changes as described in WSDarwin, is a similar technique as the top-down/bottom-

up approach used by Kelter et al.

Table 9.4 positions WSDarwin among the aforementioned works with respect to

whether they are generic or domain-specific, what kind of edit operations they can

identify (Change, Addition, Deletion, Move, compleX changes), if they employ IDs

9 WSDarwin: Studying the Evolution of Web Service Systems 219

Table 9.4 Comparison between differencing techniques

Method Type Edit Operations IDs Exact Matching Model

Kelter generic CAD(M) No(Yes) No UML/XMI

Fluri domain-specific CADM Yes No AST

UMLDiff domain-specific CADMX Yes No Custom/UML

GenericDiff generic CADM Yes No UML

VTracker generic CADM Yes No XML

WSDarwin domain-specific CADM Yes Yes Custom/WS

for the mapping of elements, whether they use exact matching in the comparison and

finally what is the underlying model.

9.4.2 Service-Evolution Analysis

In addition to web-service (and web-service version) comparison, substantial efforts

have been dedicated to the task of web-service evolution analysis. Wang and

Capretz [13] proposed an impact-analysis model as a means to analyze the evo-

lution of dependencies among services. By constructing the intra-service relation

matrix for each service (capturing the relations among the elements of a single ser-

vice) and the inter-service relation matrix for each pair of services (capturing the

relations among the elements of two different services) it is possible to calculate the

impact effect caused by a change in a given service element. A relation exists from

element x to element y if the output elements of x are the input elements of y, or

if there is a semantic mapping or correspondence built between elements of x and

y. Finally, the intra- and inter-service relation matrices can be employed to support

service change operations, such as the addition, deletion, modification, merging and

splitting of elements.

Aversano et al. [2] proposed an approach, based on Formal Concept Analysis, to

understand how relationships between sets of services change across service evolu-

tion. To this end, their approach builds a lattice upon a context obtained from service

description or operation parameters, which helps to understand similarities between

services, inheritance relationships, and to identify common features. As the service

evolves (and thus relationships between services change) its position in the lattice

will change, thus highlighting which are the new service features, and how the rela-

tionships with other services have been changed. This approach is useful to study

the evolution of similar interchangeable services.

Ryu et al. [12] proposed a methodology for addressing the dynamic protocol

evolution problem, which is related with the migration of ongoing instances (conver-

sations) of a service from an older business protocol to a new one. To this end, they

developed a method that performs change impact analysis on ongoing instances,

based on protocol models, and classifies the active instances as migratable or

220 M. Fokaefs and E. Stroulia

non-migratable. This automatic classification plays an important role in support-

ing flexibility in service-oriented architectures, where there are large numbers of

interacting services, and it is required to dynamically adapt to the new requirements

and opportunities proposed over time.

In a similar vein, the WRABBIT project [4] proposed a middleware for wrapping

web services with agents capable of communication and reflective process execution.

Through their reflective process execution, these agents recognize run-time “conver-

sation” errors, i.e., errors that occur due to changes in the rules of how the partner

process should be composed and resolve such conversation failures.

Pasquale et al. [11] propose a configuration management method to control depen-

dencies between and changes of service artifacts including web services, application

servers, file systems and data repositories across different domains. Along with the

service artifacts, Smart Configuration Items (SCIs), which are in XML format, are

also published. The SCIs have special properties for each artifact such as host name,

id etc. Interested parties (like other application servers) can register to the SCIs and

receive notifications for changes to the respective artifact by means of ATOM feeds

and REST calls. Using a discovery mechanism the method is able to identify new,

removed or modified SCIs. If a SCI is identified as modified, then the discovery

mechanism tracks the differences between the two items and adds them as entries in

the new SCI. The changes that can be identified are delete, add, modify a property

or delete, add, modify a dependency.

Andrikopoulos et al. [1] propose a service evolution management framework.

The framework generally aims to support service providers evolve their services.

It contains an abstract technology-agnostic model to describe a service system in

its entirety, specifying all artifacts such as service interfaces, policies, compositions

etc. and divide the artifacts in public and private. This division implies that the

management framework has knowledge about the service’s back-end functionality,

which in turn means that it can be used only by the provider. The authors also propose

a classification for the changes based on the basic operations (additions, deletions

etc.) and guidelines on how to evolve, validate and conform service specifications

to older versions. Although such a management framework may lead to a smooth

evolution process, inconsistencies may still occur between services and their clients.

Therefore, support to clients is equally important.

Table 9.5 summarizes the comparison between WSDarwin and these other

projects along 3 dimensions:

• what kind of dependencies the method examines:

– inter-dependencies, requiring knowledge about different parts of the service

system;

– intra-dependencies, focusing on a particular part;

• whether the method provides any support to consumers of the service.

• what is the architectural level the method uses to study the service systems:

– business protocol level, where the method needs information about various ser-

vices in the system;

9 WSDarwin: Studying the Evolution of Web Service Systems 221

Table 9.5 Comparison between service evolution works

Method Dependencies Client Support Level

Wang Inter Yes Protocol

Aversano Inter No Interface

WRABBIT Inter Yes Protocol

Pasquale Intra Yes Interface

Ryu Inter No Protocol

Andrikopoulos Intra No Source Code

WSDarwin Intra Yes Interface

– interface, where the method only examines boundary artifacts, such as service

interfaces;

– source code, where the method needs back-end information.

9.5 Conclusion and Future Work

In this chapter, we introduced WSDarwin as a comparison algorithm to support of

web-service evolution tasks. Using a set of models to represent the service interfaces

(whether this is WSDL or WADL) and to capture their differences, WSDarwin per-

form efficient, scalable and accurate comparisons. Furthermore, the results of these

comparisons are in a structured format that can potentially be used by other tools

such as automatic client adaptation processes. The comparison method is precisely

defined by a set of rules based on the representation and delta models. The usage of

WSDarwin was demonstrated on a WSDL and a WADL web service.

Using WSDarwin we extended our previous empirical study on the evolution of

several families of quite widely used commercial web services: Amazon EC2, FedEx

Rate, Bing, PayPal and FedEx Package Movement Information. We examined what

types of changes occur in the interfaces of actual, commercial web services and how

these changes affect their client applications. Our main observation was that for the

most part, as expected, web services were expanded rather than being changed or

having their elements removed. This is because the addition of new features does not

impact the behavior of clients that already use the service. Furthermore, changes,

if made in a conservative manner, do not negatively impact clients much. On the

other hand, deletion of elements should be avoided, as it will likely break a client

application.

The most important result of the study was to identify a set of frequently applied

changes and classify them in three categories according to how they can be handled

by the client: no-effect, where changes don’t affect the client at all, non-recoverable,

where changes affect the functionality but cannot be addressed automatically and

222 M. Fokaefs and E. Stroulia

adaptable, where changes affect the interface of the service and the client can be

automatically adapted to these changes.

In the future, we plan to extend our comparison method in two directions. The

first direction involves identifying more complicated edit operation that consist of

the simple ones, change, add, delete and move. This will help us characterize the

changes from version to version according to our classification and easily assess their

impact on client applications. Second, having defined separate models to represent

WSDL and WADL service interfaces, we plan to merge the two into a single web

service meta-model to describe service interfaces regardless of their specification.

Since the rules and the comparison process are independent of the model, a unified

model will allow us to compare any kind of service interface, even heterogeneous

once.

Acknowledgments The authors would like to acknowledge the generous support of NSERC,
iCORE, and IBM.

References

1. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Managing the evolution of service spec-
ifications. In: CAiSE ’08, pp. 359–374. Springer-Verlag, Berlin, Heidelberg (2008)

2. Aversano, L., Bruno, M., Penta, M.D., Falanga, A., Scognamiglio, R.: Visualizing the Evolution
of Web Services using Formal Concept Analysis. 8th International Workshop on Principles of
Software, Evolution pp. 57–60 (2005)

3. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change Detection in Hierarchi-
cally Structured Information. ACM Sigmod Internation Conference on Management of Data
pp. 493–504 (1996)

4. Elio, R., Stroulia, E., Blanchet, W.: Using interaction models to detect and resolve inconsis-
tencies in evolving service compositions. Web Intelli. and Agent Sys. 7(2), 139–160 (2009)

5. Fluri, B., Würsch, M., Pinzger, M., Gall, H.C.: Change Distilling: Tree Differencing for Fine-
Grained Source Code Change Extraction. IEEE Transactions on Software Engineering 33(11),
725–743 (2007)

6. Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., Lau, A.: An empirical study on web
service evolution. In: ICWS 2011, pp. 49–56 (2011)

7. Fokaefs, M., Stroulia, E.: Wsdarwin: Automatic web service client adaptation. In: CASCON
’12 (2012)

8. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring Improving the Design
of Existing Code. Addison Wesley, Boston, MA (1999)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-
Oriented Software, 1 edn. Addison-Wesley Professional (1994)

10. Kelter, U., Wehren, J., Niere, J.: A Generic Difference Algorithm for UML Models. Software
Engineering 2005, Fachtagung des GI-Fachbereichs Softwaretechnik pp. 105–116 (2005)

11. Pasquale, L., Laredo, J., Ludwig, H., Bhattacharya, K., Wassermann, B.: Distributed cross-
domain configuration management. In: Proceedings of the 7th International Joint Conference
on Service-Oriented Computing, ICSOC-ServiceWave ’09, pp. 622–636 (2009)

12. Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R.: Supporting the Dynamic
Evolution of Web Service Protocols in Service-Oriented Architectures. ACM Transactions on
the Web 2(2), 1–46 (2008)

13. Wang, S., Capretz, M.A.M.: A Dependency Impact Analysis Model for Web Services Evolution.
IEEE International Conference on Web Services pp. 359–365 (2009)

9 WSDarwin: Studying the Evolution of Web Service Systems 223

14. Xing, Z.: Model Comparison with GenericDiff. 25th IEEE/ACM International Conference on,
Automated Software Engineering pp. 135–138 (2010)

15. Xing, Z., Stroulia, E.: Analyzing the Evolutionary History of the Logical Design of Object-
Oriented Software. IEEE Transactions on Software Engineering 31(10), 850–868 (2005)

16. Xing, Z., Stroulia, E.: Refactoring Detection based on UMLDiff Change-Facts Queries. 13th
Working Conference on Reverse Engineering pp. 263–274 (2006)

17. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related
problems. SIAM Journal on Computing 18, 1245–1262 (1989)

Chapter 10

SCML: A Change Management Language
for Adaptive Long Term Composed Services

Xumin Liu and Athman Bouguettaya

Abstract We propose a Web Service Change Management Language (SCML) to

manage top-down changes in Long term Composed Services (LCSs). A LCS is a

collaboration between autonomous Web services that collectively provide a value-

added service. Due to the dynamic environment, managing changes is a fundamental

challenge for the successful deployment of a LCS. We first propose a change tax-

onomy that classifies changes into different categories. Based on the taxonomy, we

define a set of change operators that specify different types of changes in a precise

and formal way. The change operators can be mapped to a set of SCML statements,

which are declarative and easy-to-use. We describe a systematic procedure to process

SCML statements. We then propose our prototype implementation for the proposed

SCML.

10.1 Introduction

Web services are gaining momentum as a new computing paradigm for deliver-

ing business functionalities on the Web. They are increasingly regarded as the

most promising backbone technology that enables the modeling and deployment

of the Service-Oriented Architecture (SOA) [11]. Web services are distinguished

from other traditional applications by two major features: global availabilities and

standardization. First, Web services take advantages of the powerful communica-

tion paradigm of the Web to provide global availabilities [15]. Second, Web ser-

vices have enjoyed intensive standardization support. They are built upon XML-

based standards as a vehicle for exchanging messages across heterogeneous Web

applications [4, 7, 12, 17–22]. Typical Web service standards include WSDL for

X. Liu (B)

Department of Computer Science, Rochester Institute of Technology, Rochester, USA
e-mail: xl@cs.rit.edu

A. Bouguettaya
School of Computer Science and Information Technology, RMIT, Melbourne, Australia

A. Bouguettaya et al. (eds.), Advanced Web Services, 225
DOI: 10.1007/978-1-4614-7535-4_10,
© Springer Science+Business Media New York 2014

226 X. Liu and A. Bouguettaya

service description [22], UDDI for service discovery [19], and SOAP for service

invocation [18]. Driven by the advantages offered by SOA, many service providers

expose to move their business functionalities on the Web using Web services.

This, in turn, has opened the opportunities for composing autonomous services

on demand [3]. Thus, SOA has also opened the opportunities for building up

cross-organization collaborations in a distributed, heterogeneous, and dynamic

environment. A composed Web service is therefore an on-demand and dynamic col-

laboration between autonomous Web services that collectively provide a value added

service. Each autonomous service specializes in a core competency, which reduces

cost with increased quality and efficiency for the business entity and its consumers.

A composed Web service can be short term or long term. Comparing with short time

composed services, where the collaboration of services has a very limited time and

will be resolved thereafter, a long term composed service (referred to as a LCS) has

an open-ended lifetime. It usually has a long-run business goal and business com-

mitment to its customers. The partnership among its component services is relatively

stable unless the occurrence of some exceptional event [26]. LCSs have attracted a lot

of attentions since they empower a virtual enterprise, which is a cross-organization

collaboration to offer value-added and customized services [13].

A LCS consists of several outsourced Web services, but acts as a virtually coherent

entity. Each service specializes in a core competency, which promotes cost reduc-

tions and increased quality for the LCS and its consumers. Business entities, in the

form of Web services, are often geographically distributed and organizationally inde-

pendent. LCSs will introduce new business opportunities through dynamic alliances.

First, the provisioning of software services dramatically reduces the capital required

to start a business. A LCS can built upon the legacy systems, which are wrapped as

Web services. The services are readily available for integration and orchestration.

It is superior to build up a complex software application from scratch. Second, as

the number of business increases on the Web, it will be possible to select the “best”

services from a pool of “similar” services [10]. The consumer or end user of the LCS

will benefit from the open competition between businesses. Third, partners of a LCS

can be selected dynamically. Each Web service is described in a standard format,

which allows automatic and dynamic discovery and integration. Thus, business orga-

nizations will be able to form project-driven alliances. Current application domains

of LCSs include the travel industry, computer industry, scientific community, auto-

mobile industry, etc.

One of the most challenging research issues in realizing LCSs is to deal with

changes during the lifetime of a LCS. Because of the dynamic nature of Web service

infrastructure, changes should be considered as the rule and managed in a structured

and systematic way [6, 13, 24]. Changes are usually introduced by the occurrence of

new market interests, business regulation, new technologies, etc. Such changes are

always associated with a requirement on the modification of a LCS with respect to the

functionality it provides, the way it performs, the partners it is composed of, and the

performance it delivers. Once a change occurs, a LCS needs to quickly adjust itself

to fulfill the requirement introduced by the change. The adjustment also needs to be

performed in an automatic manner considering the frequent occurrence of changes.

10 SCML: A Change Management Language 227

By doing this, a LCS can maximize the market interests it attracts, optimize the way

it outsources its functionality, and thus maintain its competitiveness among its peers.

Changes in LCSs can be classified into two categories: top-down changes and bottom-

up changes [25]. In this chapter, we focus on top-down changes. More specifically,

top-down changes refer to the changes initiated by a LCS owner. An example of such

changes is the addition of a local attraction service to a travel agency LCS.

Change management in the context of composed services poses a set of research

issues.Changes need to be first captured and modeled in a formal way so that they can

be understood and processed. The change reaction process then should be designed

and implemented. Finally, the change reaction process needs to be evaluated for

verification and correctness purpose. In this chapter, we address the issue of change

specification. Changes may be specified in a literal way at first place, which is infor-

mal and sometimes vague. Examples of such change specifications include “increase

a LCS’s profit” and “stop outsourcing the service that has a low reliability”. This

type of specification obviously lacks sufficient formalization and semantics to support

change management in a systematic way. Changes need to be machine comprehen-

sible so that they can be automatically and correctly enacted. Therefore, a change

specification should be unambiguous, formal, and disciplined, which are described

as follows.

• Unambiguous: A change is always associated with a specific goal on a LCS. During

the process of change management, the LCS will be modified and the goal will be

reached ultimately. Therefore, a change specification should be unambiguous so

that the goal can be deterministic.

• Formal: To improve the automation of change management, it is important that the

software agents understand what change is intended to make to a LCS. Therefore,

a change specification should contain machine-understandable semantics, such as

pre-defined keywords and logic-base expressions.

• Disciplined: To ensure that a change is feasible, it is important that a change

specification contains all the necessary information. For example, if a change

requires to remove a service that has a low reliability, it needs to specify at what

degree a service’s reliability is considered as low. Therefore, a change specification

should be disciplined. For different types of changes, different types of information

are required to be contained in a change specification.

In this chapter, we present a Web Service Change Management Language (SCML) for

the propose of modeling changes. SCML allows change specifications which achieve

the above characteristics. Besides, it is also complete and declarative. By complete,

it means that all meaningful top-down changes can be specified using SCML. By

declarative, it means that SCML is non-operational. Using SCML, a LCS’s owner

only needs to specify what a change is, instead of specifying how to change. In another

word, the ower does not need to concern the details of implementing a change when

specifying it.

The reminder of this chapter is organized as follows. In Sect. 10.2, we describe

a travel agency LCS, which will be used as a running example in this chapter.

228 X. Liu and A. Bouguettaya

In Sect. 10.3, we propose a supporting infrastructure that enables a LCS. In Sect. 10.4,

we propose a change taxonomy that classify changes into different categories. Based

on the schema and the taxonomy, we propose a set of change operators in Sect. 10.4.

In Sect. 10.5, we propose a change language that provides comprehensive specifi-

cation support for change management. In Sect. 10.6, we propose a procedure that

processes the SCML change specifications. In Sect. 10.7, we describe a prototype

that processes the proposed language. In Sect. 10.8, we discuss several representative

related work and differentiate our work with them. In Sect. 10.9, we conclude our

work.

10.2 Case Study

In this section, we describe a scenario from travel industry to motivate our work. It

will also be used as a running example to illustrate the key idea of this chapter.

Consider a travel agency LCS that aims to provide a comprehensive travel package

that outsources the functionalities from different service providers, including flight,

hotel, taxi, weather, and online payment. Users can thus book airlines, reserve hotels,

reserve taxis, or check weather information by directly accessing this LCS. Suppose

that a recent market survey shows that car rental services have attracted more interests

than taxi services serving as the ground transportation. In this case, the LCS’s owner

may want to replace the taxi service by a car rental service. Moreover, users that

choose car rental service probably also take interest in the local traffic information,

such as the router from the airport to the hotel. In addition, users may tend to include

local activities to their travel packages nowadays. For example, when a user plans

a trip to Orlando, he or she may also want to visit the local activities, such as the

Universal Orlando and the SeaWorld Orlando. In this case, he or she may want to

reserve the tickets for the activities via the travel agency. If the travel agency LCS

does not incorporate the service into the enterprise, it risks becoming obsolete and

loosing business.

10.3 An Infrastructure of Service-Oriented Enterprises

In this section, we present a supporting infrastructure of a LCS. We first give an

overview of a LCS’s architecture, as depicted in Fig. 10.1. It mainly consists of two

key components: LCS schema and LCS instance. It also contains two supporting

components: ontology providers and Web service providers. A LCS schema is the

kernel of a LCS since it defines its high-level business logic. It guides the composition

of outsourced Web services to perform the functionality of the LCS.The change

language is built upon a LCS’s schema.

10 SCML: A Change Management Language 229

...

WS

WS

WS

WS WS

WS

WS

WS

WS

WS

WS

...

LCS Schemas

LCS Instances

Imports

Web
services Providers

imports

s
u
b
s
c
ri
b
e
s

Ontology Providers

in
s
ta

n
ti
a
te

s

in
s
ta

n
ti
a
te

s

provides

provides

Fig. 10.1 The architecture of a LCS

10.3.1 LCS Architecture

A LCS schema consists of a set of abstract services and the relationships among these

services. An abstract service specifies one type of functionality provided by the Web

services. They are not bounded to any concrete services. They are defined in terms of

service concepts in a Web service ontology. A LCS instance is a composition of a set

of concrete services, which instantiates a LCS schema. It actually delivers the func-

tionality and performance of a LCS.The ontology provider manages and maintains

a set of ontologies that describe the semantics of Web services. A LCS outsources

semantics from an ontology provider to build up its schema. Ontology providers also

provide semantics for automating the process of change management [25]. The Web

service providers offer a set of Web services, which can be outsourced to form LCS

instances.

10.3.2 LCS Schema

The different between a LCS and the traditional enterprise is that a LCS outsources

its functionality from individual and autonomous services. Therefore, a LCS’s func-

tionality can be specified as the combination of the functionalities of the services

it outsources and their composition. We use a directed graph to specify a LCS’s

functionality. A LCS’s functionality is typically not defined using the concrete Web

230 X. Liu and A. Bouguettaya

services, but using the service ontology [14, 23], which we refer to as abstract

services. Each abstract service describe one type of functionality, such as airline

services, hotel services, and etc. The composition of different services specifies how

they interact with each other by exchanging messages. It can be defined in terms of

data flow and control flows.

Definition 10.3.1 A LCS schema graph is a directed graph that has two types of

edges, i.e., DG = {N, DE, CE}, where:

• N is a set of nodes, N = {nε, n1, n2, . . . , nn, nω}. nε and nω are two special nodes

that represent the user of the LCS. nε is the starting point of the control flow and

data flow. It has only outgoing edges. nω is the ending point of the control flow and

data flow. It has only incoming edges. ni represents an abstract service (1 ≤ i ≤ n).

• CE is a set of edges, i.e., CE = {ce1, ce2, . . . , cet}, where cei = {nb, na, ci}

represents that na will be invoked immediately after nb is invoked if condition ci

is fulfilled, where nb, na ∈ N . If nb is nε, it means that the invocation of the LCS

starts from invoking na. If na is nω, it means that the invocation of the LCS ends

with invoking nb.

• DE is a set of edges, i.e., DE = {de1, de2, . . . , des}, where dei = {nf , nt, di}

represents that nf sends a message containing data di to nt . Here, di is a subset of

nf ’s output and a subset of nt’s input. nf , nt ∈ N . If nf is nε, it means the data di is

part of the input of an LCS obtained from the users. If nt is nω, it means the data

di is part of the output of a LCS returning to the users.

Figure 10.2 shows the schema of the travel agency LCS in our running example.

Airline Hotel Taxi

User

Legends:
Service Nodes

Data Flow Edge

Control Flow Edge

Payment

User

Weather

Fig. 10.2 The travel agency LCS schema

10.3.3 LCS Quality

The quality of a LCS consists of a set of quality parameters, such as reliability, fee,

invocation duration, reliability, etc. These parameters constitute a quality model that

is used to evaluate how well a LCS performs. The quality model is domain-specific.

10 SCML: A Change Management Language 231

A LCS outsources its functionality from multiple services. Meanwhile, it also

outsources quality models from these services. Therefore, we define a LCS’s quality

model as follows.

Definition 10.3.2 A LCS’s quality model is a set Q = {q1, q2, . . . , qn}, where qi is

a quality parameter. Meanwhile Q ∈ (
⋃

ni∈N ni.Q).

Since a LCS’s quality is actually delivered by the Web services it outsources,

the quality thus can be determined by these services. Since a LCS instance contains

multiple services, the QoWS values of these services will be aggregated as the overall

QoS of the LCS [27].

10.3.4 LCS Context

The context of a LCS consists of a set of context types, such as location, time,

user, travel type, etc. The context carries important information for describing the

interaction between a LCS and its users. Since a LCS outsources its functionality

from multiple services, its context structure can be determined by these services.

Therefore, we define a LCS’s context model as follows.

Data

Transfer

Invocation
OrderChanges

Functional

Non-

functional

Outsourced

Services

Context

Composition

Quality

Cost
Duration
Privacy
Reliability

Security

..
.

Location

Time

..
.

Add

Remove

Replace
User Input

LCS Output

Message Exchange

Sequential

Outsourced

Conditional Selection

Parallel

Fig. 10.3 A taxonomy of top-down changes in a LCS

Definition 10.3.3 A LCS’s context model is a set C = {c1, c2, . . . , cn}, where ci is

a context type. Meanwhile C ∈ (
⋃

ni∈N ni.C).

232 X. Liu and A. Bouguettaya

10.4 Change Taxonomy

The first step of specifying a change of a LCS is to identify a clear classification of

these changes. Thus, different types of changes will be specified in different ways.

As depicted in Fig. 10.3, we use change requirements, which reflects the purpose of

introducing a change, as a dimension, changes can be classified based on the key

features of a LCS. This conforms to the classical change taxonomy approaches from

the fields of software engineering and workflow systems [9, 16]. The features of

a LCS can be classified into functional and non-functional. The functional feature

refers to the functionality of a LCS. The non-functional features include context and

quality. Top-down changes are expected to modify one or more of the features of a

LCS. Therefore, we classify changes based on these features. We elaborate on each

type of changes and define the corresponding change operators in this section.

10.4.1 Functional Changes

Functional changes are those that require to modify the functionality of a LCS.

A LCS’s functionality is specified by two types of information: the abstract services

it outsources and their composition.

Change to Outsourced Services

A LCS may change the type of services it outsources. The change includes adding,

removing, and replacing a functionality. This could happen for the purpose of fulfill-

ing three types of requirements: functional requirements, context type requirements,

and quality model requirements.

Functional Requirements: A LCS’s outsourced services may be changed to

fulfill a functional requirement. It can be adding a service to the business model to

enrich its functionality. For example, a travel agency may need to outsource a Point-

Of-Interest (POI) service to attract more customers. A LCS may also want to remove

a service from its business model. For example, consider that a travel agency LCS

may outsource an airline service, a hotel service, a train service, a taxi service, and

a car rental service. Suppose that the train service does not make satisfactory profit

for the LCS. In this case, it may need to be removed from the LCS. A LCS may also

want to replace a service in its business model. For example, a travel agency LCS

may use an online payment system for reserving a trip. The payment system only

supports online bank wire transfer. Considering that users may prefer to use credit

card for online transactions, a credit card supported payment service will be used to

replace the original one.

As defined in a Web service ontology, the functionality of a Web service has two

facets: operations and data [14, 23]. For the first facet, the intended service should

provide the specified operations. An example of such a change is “adding a service

that provides flight status checking operation”. For the second facet, the intended

service should provide the ability of transducing data. Put differently, it should be

10 SCML: A Change Management Language 233

able to generate the specified output by using the given input. An example of such

a change is “adding a service that can generate the weather information given a

zip code”. More specifically, a functional requirement (f) is a triplet (OP, DI , DO),

where OP is a set of operations that a service should provide, DI and DO are two

sets of data items stating that a service should be able to generate DO by using DI .

Context Type Requirements: A LCS’s outsourced services may be changed due

to a new context type requirement. Each abstract service is associated with a set of

context types, which constitute the environment structure of the service. Suppose that

a LCS is required to support a new context, such as historical data. It then needs to

ensure that each outsourced service is able to embed the historical data information in

the SOAP message during the interactions. This may trigger the change of “removing

the service that does not support a context type of history data”.

Quality Model Requirements: A LCS’s outsourced services may be changed

due to a new quality requirement. Each abstract service is associated with a quality

model, which includes the parameters for service evaluation. For example, a top-down

change may require a new quality parameter to evaluate the outsourced services, such

as privacy. This may trigger the change of “removing the service that does not include

privacy in its quality model”.

We define the change operators for selecting abstract services based on the above

requirements as follows.

• ΠF
op(op, O): It will traverse the service ontology O to find the abstract services

that provide the specified operation op. This operator takes op and O as input and

returns an abstract service.

• ΠF
d
(DI , DO, O): It will traverse the service ontology O to find the abstract services

that can generate the required output of DO by using the given input DI . This

operator takes two sets of data, DI , DO as well as a service ontology O as input

and returns an abstract service.

• ΠC(c, O): It will traverse the service ontology O to find the abstract services that

support a context type c. This operator takes c and O as input and returns a list of

abstract services.

• ΠQ(q, O): It will traverse the service ontology O to find the abstract services that

include a quality parameter q in its quality model. This operator takes s and q as

input and returns a list of abstract services.

For the selected service node, we define two change operators as below.

• △
S (s, M, op): It performs the operation op, by either adding an abstract service

to or removing it from a LCS schema M. This operator takes s, M, and op as input

and returns a new LCS schema as its output.

• △
S↔ (sold, snew, M): It replaces an abstract service sold with another abstract

service snew in a LCS schema M. This operator takes sold , snew, and M as input

and returns a new LCS schema as its output.

Change to Composition

A LCS’s composition defines how it performs its functionality. It specifies the

collaboaration of the outsourced services in a LCS. A LCS’s composition may change

234 X. Liu and A. Bouguettaya

under two situations. First, when a new service is added to a LCS or a service is deleted

from a LCS, a composition change will be introduced. For example, when adding a

payment service to a travel agency LCS, the payment service needs to be combined

with other services. Second, a LCS’s owner may want to change the way that the

component services are combined together for some purpose, such as optimization.

For example, suppose that a hotel service and a car rental service are invoked sequen-

tially. There is no invocation dependency between them since they do not exchange

messages with each other. In this case, the LCS’s owner may want to parallelize their

invocation to decrease the overall duration time. The change to a LCS’s composition

can occur to both data transfer and invocation order.

Data transfer: Change to data transfer among services includes the modifica-

tion of user input, LCS output, adding or deleting a message between two services.

(1) User input: The user input is obtained from the user of a LCS. It contains the

information that is necessary to invoke the services outsourced by the LCS. Once

there is a change on the outsourced services, a change of the user input may be intro-

duced. For example, when adding a car rental service, some information is required

from the user to invoke the service, such as the car type (i.e., full size, compact, mid-

size, economy, etc.). A change of the user input may also be introduced by a LCS’s

owner. For example, a travel agency LCS provides the airline+hotel package. In this

package, the information about location and check in/out time is typically determined

by the result of invoking the airline service. The owner may now want to change it

by letting users provide these information. In this way, users can have more options

when they choose their hotels. (2) LCS output: The LCS output is generated by a LCS

and returned to its users. It is contributed directly or indirectly by the services that the

LCS outsources from. Once there is a change of the outsourced services, a change of

the LCS output may be introduced. For example, when adding a car rental service, the

LCS will generate more information, such as the pick up/drop off location, time, date,

and charges. A change of LCS output may also be introduced by a LCS’s owner. For

example, a travel agency LCS is used to generate the weather information. The owner

may want to stop providing such information in the future. (3) Message exchange:

The message exchange is performed between outsourced services in a LCS. A Web

service is interacted by its users or partners completely by exchanging message. It

is invoked by an input message and reacts to the message with an output message.

More specifically, a message (m) is a tuple {sf , st, D}, where sf is the service that

the data comes from, st is the service that the data goes to, and D is a set of data

items delivered. Once there is a change of the outsourced services, a change of the

message exchange between services may be introduced. For example, when adding

a traffic service to a travel package, the LCS owner may want to add the message

exchanges from the airline service and the hotel service to the traffic service so that it

can generate the corresponding driving direction between the airport to the hotel.We

define the change operators for change of data flow as below.

• △
I (M, D, op): It performs the operation op, by either adding the data items in D

to or removing them from a LCS’s input. This operator takes M, D, and op as its

input and returns a new schema as its output.

10 SCML: A Change Management Language 235

S1 S2

S2S1

S

S1

S2

C1

C2

S1

S2

Cn Sn

Y

Y

Y

(a)

(c)

(b)

(d)

Fig. 10.4 Four types of process constraints. a Sequential constraint, b Parallel constraint,
c Outsourcing constraint, and d Conditional selection constraint

• △
O (M, D, op): It performs the operation op, by either adding the data items in D

to or removing them from a LCS’s output. This operator takes M, D, and op as its

input and returns a new schema as its output.

• △
MX (m, M, op): It performs the operation op, by either adding a data transfer m

to or removing it from a LCS schema M.

Invocation order: The control flow of a LCS specifies the invocation order among

component services. Meanwhile, it also specifies certain process constraint between

two services, as depicted in Fig. 10.4. We define four types of process constraints

below.

• Sequential Constraint: P>>(s1, s2) means that s1 is invoked before the invocation

of s2. It usually exists between the services where one service requires the result

of another service’s invocation.

• Parallel Constraint: P||(s, s1, s2) means that s’s invocation is in parallel with the

invocation block from s1 to s2. It usually exists between two services where there

is no direct or indirect data exchanges between them.

• Outsourcing Constraint: P⊣(s1, s2) means that s1 outsources functionality from

s2. It usually exists between two services where a service’s (i.e., s2’s) invocation

is totally embedded in another service’s (i.e., s1’s) invocation. For the sake of

simplicity and without the loss of generality, we assume that s2 does not have any

interaction with other services in a LCS than s1.

• Conditional Selection Constraint: P?(s, (c1, s1), . . . , (cn, sn)) means that after the

invocation of s, if ci is fulfilled, si will be then invoked, where 1 ≤ i ≤ n. It

always exists among different services which provide the similar functionality in

a coarse granularity. For example, taxi services and car rental services both provide

the ground transportation.

236 X. Liu and A. Bouguettaya

Adding a new service will naturally introduce the changes to the invocation order

among component services in a LCS. The invocation order between the new service

and the other services may be specified by the owner of a LCS. It is worth to note that

some invocation order for new services can also be automatically generated. It will

be determined by the owner of a LCS whether it is necessary to specify the invocation

order for new services or not. For the changes of the invocation order between two

existing services, “adding” actually does a “replacing” work here. More specifically,

when adding a new process constraint on the invocation order between two services,

the previous one will be deleted to avoid the conflicts. For example, if the owner of an

travel agency LCS wants to change the invocation order of the hotel service and the

car rental service from sequential to parallel, he needs to first delete the sequential

constraint between these two services and then add a parallel constraint. We define

the change operators for the change of control flow as below.

• △
>>
P (s1, s2, M): It adds a sequential constraint on the order of invoking s1 and s2

defined in M. The operator takes s1, s2, M, as its input and returns a new schema

as its output.

• △
||
P (s, s1, s2, M): It adds a parallel constraint on the order of invoking s1 and s2

defined in M. The operator takes s, s1, s2, M as its input and returns a new schema

as its output.

• △
⊣
P (s1, s2, M): It adds an outsourcing constraint on the order of invoking s and

the block from s1 to s2 defined in M. The operator takes s1, s2, and M as its input

and returns a new schema as its output.

• △
?
P (s, C, S, M): It will add a conditional selection constraint on the order of

invoking services in S defined in M. The operator takes C, S, M, op as its input

and returns a new schema as its output.

10.4.2 Non-Functional Changes

Non-functional changes are those that require to change the non-functional features

of a LCS, including context and quality changes.

The context of a LCS specifies its environmental information. It can be any meta-

data that is related to the interactions between the LCS and its users, such as location,

time, and payment methods. A top-down change may require to change the context

of its component services. For example, in a travel agency LCS, the taxi service

is located in the US. Suppose users tend to use the taxi service when they travel

in Europe. The LCS owner may want to change the location of the taxi service it

outsources to Europe to better serve user needs. The result of this change may be

a replacement of the concrete taxi service in the LCS. For another example, in the

LCS, the hotel service only accepts credit card payment. Suppose users tend to use

other payment methods, such as paypal. The LCS owner may want to change the

payment method of the hotel service it outsources accordingly. The result of this

10 SCML: A Change Management Language 237

change may be that the LCS owner will find another hotel service which satisfies the

new context requirement to replace the previous one.

The context change operator, △
CM (λ, M), will enforce a context constraint λ on

a LCS with the schema M. λ is a triplet {S, v, e}, where the services in λ.S should

have the value of λ.v for the context λ.e. This operator takes λ and M as its input

and returns a new LCS instance as its output. For example, △
CM ({{taxi}, ‘Europe’,

location}, travel_LCS) means that the change requires the location of the taxi service

in the travel agency LCS is in Europe.

The quality of a LCS refers to its non-functional features, such as its reliability,

fee, invocation duration, and reputation. It evaluates the quality delivered by a LCS.

A top-down change may require to modify the quality that a LCS delivers. For

example, a LCS owner may want to guarantee that the providers of its component

services should have a decent reputation. We define a quality change as follows.

The quality change operator, △QM (δ, M), will enforce a quality constraint δ on a

LCS with the schema M. δ is a triplet {S, r, i}, where the services in δ.S should have the

value of δ.r for the quality parameter δ.i. This operator takes δ and M as its input and

returns a new LCS instance as its output. For example, △
QM ({{car_rental, hotel},

‘high’, reputation}, travel_LCS) means that the change requires that the car rental

service and the hotel service in the travel agency LCS should have a high reputation.

10.5 SCML Language

Based on the proposed change model, we present a Web Service Change Manage-

ment Language (SCML) in this section. Change operators can be used to describe a

change. However, it is not a friendly way for LCS’s owners due to the esoteric and

uncommon notations. SCML paves the way for end users to input a change specifi-

cation in a convenient fashion. SCML is an SQL-like language. It defines five types

of commands: (1) create command for defining a LCS schema; (2) select command

for querying both abstract services and concrete Web services; (3) alter command for

specifying functional changes; (4) update command for specifying non-functional

changes; (5) drop command for deleting a LCS schema. The commands are defined

and elaborated on in this section.

10.5.1 Create Command

The create command is used to specify a new LCS schema. A LCS schema is given

a name using two keywords: CREATE and LCS. For example, by writing

238 X. Liu and A. Bouguettaya

CREATE LCS travel-agency…

A LCS named as travel-agency is created. A LCS is associated with a Web service

ontology from where it outsources semantics. Therefore, the Web service ontology

is specified first. We use a keyword ONTOLOGY to specify the ontology provider

that offers the ontology. For example, by writing

ONTOLOGY o http://wsms-dev.csiro.au:8080/.../OntologyAccessWithConfig

A LCS is associated with an ontology service which provides ontological seman-

tics for the LCS.

After that, the abstract services in a LCS is specified. Each abstract service cor-

responds to a service concept in the Web service ontology. It is then described using

the name of the service concept. We use the keyword, SERVICES, to specify one or

more abstract services. For example, by writing

SERVICES sa airline, st taxi, sh hotel

SERVICES sp payment

we specify four abstract services for the LCS.

We use a keyword, CONTROL FLOWS, to specify one or more control flow edges

in a LCS schema graph. Each edge is given a name and a description. The description

includes the information about the service node that the edge comes from, the service

node the edge goes to, and the condition the edge delivers. For example, by writing

CONTROL FLOWS c1 (sa, sh, true), c2 (sh, st , true)

we specify a control flow edge from the airline service to the hotel service.

We use a keyword, DATA FLOWS, to specify one or more data flow edges in a LCS

schema graph. Each edge is given a name and a description. The description includes

the information about the service node that the edge comes from, the service node

that the edge goes to, and the data item the edge delivers. For example, by writing

DATA FLOWS d1 (sa, sp, ticket_price),

we specify a data flow edge from the airline service to the payment service with

the information of a ticket’s price.

Recall that there are two special service nodes: nω and nε, which refer to the user

of a LCS. We use a keyword, USER, to specify these two service nodes when defining

edges in a LCS schema graph. For example, by writing

DATA FLOWS d2 (USER, s1, user_Id), d3 (s1, USER, flight_schedule)

we specify two data flow edges. In d1, the information is obtained from a LCS’s

users and sent to the airline service. In d2, the data is generated by the airline service

and returned to users.

After specifying a LCS schema graph, we use a keyword, QUALITIES to specify

one or more quality parameters that are used to evaluate a LCS. A quality parameter

is given a name and a description. For example, by writing

QUALITIES q1 availability, q2 cost

we specify two quality parameters.

We use a keyword, CONTEXTS, to specify one or more contexts of a LCS. A con-

text is given a name and a description. For example, by writing

CONTEXTS c1 location, c2 time, c3 currency

we specify three contexts for the LCS.

Therefore, we can define a LCS schema as follows.

http://wsms-dev.csiro.au:8080/.../OntologyAccessWithConfig

10 SCML: A Change Management Language 239

CREATE LCS travel-agency (

ONTOLOGY o http://wsms-dev.csiro.au:8080/.../OntologyAccessWithConfig

SERVICES sa airline, st taxi, sh hotel, sp payment, sw weather...

…

CONTROL FLOWS c1 (sa, sh, true), c2 (sh, st , true)...

…

DATA FLOWS d1 (sa, sp, ticket_price),

…

QUALITIES q1 availability, q2 cost

…

CONTEXTS c1 location, c2 time, c3 currency

…

)

10.5.2 Select Command

The select command is used to specify a query on a Web service ontology. The

corresponding change operators include: ΠF
op(op, O), ΠF

d
(DI , DO, O), ΠF

C (c, O),

and ΠF
Q (q, O). A query can be performed based on the features of a LCS: functional

and non-functional. Similar to a select statement in SQL, a SCML select command

is formed of the three clauses, which start with three keywords: SELECT, FROM, and

WHERE, respectively.

SELECT <abstract service list>
FROM <ontology>

WHERE <condition>

where <abstract service list> is a list of abstract services that are intended to be

retrieved by the query; <ontology> is the Web service ontology that the query

is performed upon; and <condition> is a conditional expression (Boolean) that

identifies the services to be retrieved by the query. In SCML, a conditional expression

has the following format:

<abstract service> <operator> <values>

The operators include hasOperation, hasInput, hasOutput, hasQuality, and

hasContext. They are defined for the four change operators that require a query on

a Web service ontology. For each of these change operators, we give an example of

a SCML query statement.

• ΠF
op(op, O): SELECT s FROM o WHERE s hasOperation (airline_reservation)

• ΠF
d
(DI , DO, O): SELECT s FROM o WHERE s hasInput (location, date) and s hasOutput

(weather_information)

• ΠF
Q (q, O): SELECT s FROM o WHERE s hasQuality (privacy)

• ΠF
C (c, O): SELECT s FROM o WHERE s hasContext (history_data)

http://wsms-dev.csiro.au:8080/.../OntologyAccessWithConfig

240 X. Liu and A. Bouguettaya

10.5.3 Alter Command

The alter command is used to specify functional changes in a LCS. The possible

alter LCS schema actions include (1) adding or deleting user input or LCS out-

put, (2) adding, deleting, or replacing abstract services and/or data flow edges), and

(3) adding a process constraint.

For (1) and (2), the alter command is formed as:

ALTER LCS <LCS name> <action> <element type> <value>

where an action can be ADD, DELETE, or REPLACE. An element type can be INPUT,

OUTPUT, SERVICES, and DATA FLOWS. When the action is REPLACE, the element

type has to be SERVICES. The value type for REPLACE action is a pair. For other

actions, the value contains a service name and the name of its corresponding service

concept in the service ontology. The alter command corresponds to the five functional

change operators. We give an example of a SCML alter command for each of them.

• △
S (s, O, M, op): ALTER LCS travel-agency ADD SERVICES(sf traffic, sl local_

activity, sz address_to_zip);

• △
S↔ (sold, snew, O, M): ALTER LCS travel agency REPLACE SERVICES (st , sc

car_rental);

• △
I (M, D, op): ALTER LCS travel-agency ADD INPUT (car_type)

• △
O (M, D, op): ALTER LCS travel-agency DELETE OUTPUT (taxi_charge, taxi_sche-

dule)

• △
MX (m, M, op): ALTER LCS travel-agency ADD DATA FLOWS (<USER, sc,

car_type>)

When adding a process constraint, the alter command is formed as:

ALTER LCS <LCS name> ADD PROCESS CONSTRAINT <constraint type>

<value>

where <constraint type> can be SEQUENTIAL, PARALLEL, OUTSOURCING, and

CONDITIONAL SELECTION. The four constraint types correspond to the four change

operators. We give an example of a SCML alter command for each of them.

• △
>>
P (s1, s2, M): ALTER LCS travel-agency ADD PROCESS CONSTRAINT SEQUEN-

TIAL (sa, sc);

• △
||

P (s, s1, s2, M): ALTER LCS travel-agency ADD PROCESS CONSTRAINT PARAL-

LEL (sh, sc, sc);

• △
⊣
P (s1, s2, M): ALTER LCS travel-agency ADD PROCESS CONSTRAINT OUT

SOURCING (sw, sz);

• △
?
P (s, C, S, M): ALTER LCS travel-agency ADD PROCESS CONSTRAINT CONDI-

TIONAL SELECTION (sh, <travel_type=“international”, st >,

<travel_type=“domestic”, sc >);

10 SCML: A Change Management Language 241

10.5.4 Update Command

The update command is used to specify non-functional changes. The possible update

LCS actions include: (1) changing a LCS quality, and (2) changing a LCS context.

When changing a LCS quality, a update command is formed as:

UPDATE LCS<LCS name>SET<service list><quality parameter>23<operator>

<value>

When changing a LCS context, a update command is formed as:

UPDATE LCS <LCS name> SET <service list> <context type> <operator>

<value>

The operators can be “=”,“<”,“<=”,“>”, “>=”, and “<>”.

The command corresponds to the two non-functional change operators. We give

an example of a SCML update command for each of them.

• △
QM (δ, M): UPDATE LCS travel-agency SET (sa, sh) q1=“high”

• △
CM (λ, M): UPDATE LCS travel-agency SET (st) c1=“European”

10.5.5 Drop Command

The drop command is used to drop a named LCS schema. We use two keywords:

DROP and LCS to specify a drop command. For example, by writing

DROP LCS travel-agency

we delete the travel agency LCS schema.

10.5.6 Analysis on SCML

SCML needs to achieve the five characteristics to be qualified as a way to model

changes in LCSs, including unambiguous, formal, disciplined, complete, and declar-

ative. We give the analysis on SCML with respect to these five characteristics as

follows.

SCML is built upon the proposed change taxonomy and change operators. Differ-

ent types of change operators can be mapped to ALTER and UPDATE commands in

SCML. For these commands, different keywords are used to specify the types of the

changes and the related parameters. Therefore, a legal SCML statement contains the

sufficient information to specify a change, which ensures the change specification to

be unambiguous and disciplined.

Predefined keywords are used to constitute an SCML statement. The semantic of

these keywords are understandable for machines, such as ALTER, LCS, SELECT,

ADD, etc. The semantic of an SCML statement is understandable and processable

for machines. Therefore, an SCML change specification is formal.

242 X. Liu and A. Bouguettaya

Each top-down change will fall into one or more categories defined in the change

taxonomy. Each change category is mapped to a change operator. Therefore, for a

simple change that falls into one change category, it can be specified in term of the

corresponding change operator and then be mapped to an SCML statement. For a

complex change which falls into more than one change categories, multiple change

operators can be used to specify the change. It then can be specified by multiple

SCML statement. Therefore, SCML can be used to specify all top-down changes. It

is complete.

SCML is SQL-like language. Therefore, it is declarative. For example, if a LCS’s

owner wants to add a POI service to the LCS, he does not need to provide the oper-

ational information, i.e., how to integrate the POI service with other participated

services.

10.6 SCML Processing

In this section, we propose a systematic procedure to process SCML statements.

As showed in Fig. 10.5, there are several components that involve in the proce-

dure, including an SCML parser, Ontology manager, Change analyzer, LCS schema

manager, schema-level processor, and Instance-level processor. We describe these

components as follows.

SCML parser

SOE Schema

Manager
Change Analyzer

Schema-level

Processor

Instance-Level

Processor

Change operators

Functional

operators

Non-functional

operators

SOE Schema

(Updated)

SCML

statements

Create

Drop

Alter Update

Ontology

Manager

Select

Fig. 10.5 SCML processing framework

10 SCML: A Change Management Language 243

10.6.1 SCML Parser

The SCML parser takes the first step of processing an SCML statement, which is

initially expressed in term of strings. During this step, the parser first checks the

syntax of the SCML statement. Besides syntax errors, semantic errors will also be

detected. For example, the parser will check whether the service name appearing

in the statement are names of the services in the ontology, whether the context of a

service is included in the context type defined in the ontology, and so on. For create

and drop SCML statements, the parser forwards them to the LCS schema manager

for the further process. For other types of SCML statements, the parser translates

them in format of change operators and forwards them to different SCML processing

components.

10.6.2 Schema Manager and Ontology Manager

The LCS schema manager maintains two types of information: a set of LCS schema

definitions and a set of Web service ontology definition. It processes two types of

SCML commands: create and drop commands. When processing an SCML create

statement, the LCS schema manager extracts the definition of the schema from the

statement and add it to the schema definition set. It also extracts the ontology infor-

mation from the statement. The ontology information is expressed as the URL of the

service which provides the ontology information. The LCS schema manager stores

the URL and connect it with the related LCS schema.

The ontology manager processes SCML SELECT commands. It retrieves the

required semantics from the ontology service specify in the query. The ontology man-

ager leverages the ontology query infrastructure offered by ontology providers [25].

10.6.3 Change Analyzer

The change analyzer takes a set of change operators translated from ALTER and

UPDATE SCML commands as input. It first determines the feasibility of implement-

ing the change. It then forwards the change operator to the two other components:

schema-level processor and instance-level processor. A change is feasible if there will

be an executable plan for implementing the change. The feasibility of a change will

be checked in different stages: initial stage by the change analyzer, schema-level by

the schema-level processor, and instance-level stage by the instance-level processor.

In the initial stage, the change whose specification shows obvious unfeasibility will

be identified. Such obvious unfeasibility includes (1): the service that is required to

be added has already included in a LCS; (2): the service that is required to be removed

does not participate in the LCS. Moreover, if a change specification consists of a set

244 X. Liu and A. Bouguettaya

of change operators, the change analyzer goes through all the change operators and

checks the conflict among the change operators. For example, adding and removing

an airline service from a travel agency LCS are conflict with each other. For another

example, adding a parallel and sequence order between two services at the same time

are conflict with each other. The unfeasible changes will not be further processed.

The second step of change analysis is to group the change operators and send them

to different components based on their types. The functional change operators will

be sent to the schema-level processor. The non-functional operators will be sent to

the instance-level processor.

10.6.4 Schema-Level Processor

The schema-level processor takes a set of functional change operators as input. It

then updates the schema based on the change operators. It first directly translates a

change operators as the operations on the schema graph. The process is referred to

as change reaction. For example, for a change that requires to add a new service to

a LCS, a new node will be added to the schema graph. For a change that requires to

delete a service from a LCS, the corresponding service node will be removed from

the schema graph. The process is performed fulfill the functional requirement of a

change. However, it may lead the schema graph in inconsistent state, i.e., services

cannot collaborate properly. For example, if a new service is added, it may be an

isolated node in the schema graph. It then cannot be invoked. For another example,

a POI service depends on a hotel service to provide the input information, such as

the location and activity time. If the hotel service is deleted, the POI service cannot

be invoked since it does not have the enough information for the invocation.

The schema-level processor then further modifies the schema graph to maintain

the correctness of the state. The process of referred to as change verification [26].

The schema-level processor first checks whether a service can be invoked based on

the data flow. It checks each service can get enough input to be invoked. If not, it

will make matching between the required input with the output of other services to

create new data flows among them. The process is guided by the dependency between

different services within a domain. A service SA is depend on another service SB if

SA relies on SB to provide its input when they are combined together. An example of

such a dependency is the one between a hotel service and an airline service. A user

can book a airline or a hotel service individually via a travel agency. But when

he wants a flight+hotel package, the information needed by the hotel service, such

as check-in, check-out date, depends on the output of the airline service, i.e., the

flight information. The dependency between different services is defined by domain

experts and included in the Web service ontology definition [25]. The feasibility of

a change will be checked at this step. A change is not feasible if it causes a cycle in

data transfer. An example of a data transfer cycle is: service A waits for service B’s

to provide its input; B waits for service C to provide its input; meanwhile, C waits

for A to provide its input. The unfeasible change will be detected and it will not

10 SCML: A Change Management Language 245

be further processed. The second step of change verification is to check whether a

service can be invoked based on the control flow. For each data flow in the schema

graph, there should be a corresponding execution path ensure the data transfer. The

useless nodes will be detected and removed: isolated nodes and unreachable nodes.

A node is isolate if it does not have incoming and outgoing edges. It is useless since

there are no interaction between these nodes and other nodes in the schema graph.

A node is unreachable if there is no path from the starting node to it. It is useless

since it can not be invoked within the LCS. Any cycle in the control flow will also

be detected and broken.

The output of the schema-level processor is an updated schema graph. The new

graph ensures the functional requirement of the change. It is also in a correct con-

figuration that ensures the proper composition of services.

10.6.5 Instance-Level Processor

The instance-level processor take a set of non-functional operators and the schema

graph as input. If the schema graph has been changed by the schema-level processor,

the instance-level processor will use the updated schema graph as input. the instance-

level processor will perform two steps to generate the new LCS’s instance: service

selection and service integration.

For each newly added service node in the schema graph, the instance-level proces-

sor select the corresponding concrete Web services. The selection is based on the two

criteria: functional and non-functional. Each service node the in the graph refers to

a type of functionality of Web services. The concrete service that provides the func-

tionality will be picked up. If there are non-functional requirements associated on the

new service, the service that fulfills the requirement will be selected. An example of

such a change is that the owner of a travel agency LCS wants to add a new POI ser-

vice with a high reputation to the LCS. If there are new non-functional requirements

associated on the existing services, the current service will be replaced by other ser-

vice that fulfills the requirement. An example of such a change is that the owner of

a travel agency LCS wants to replace the current hotel service with the one that has

the availability higher than 99 %. If there are new non-functional requirements on

the entire LCS, all the available orchestrations of services will be generated and the

one that fulfills the requirement will be picked. An example of such a change is that

the owner of a travel agency LCS wants to decrease the overall duration of the LCS

to 5 s. The change feasibility is checked during this process. If there is no available

services that can fulfill both the functional and the non-functional requirement of a

change, the change is not feasible.

After selecting the services, the instance-level processor integrates these services

together. It generates a BPEL process based on the schema graph [2]. The execution

order among services is defined by the control flow. For the data flows between

two services, a SOAP message is generated to delivered the information exchange

between the services.

246 X. Liu and A. Bouguettaya

10.7 Implementation

In this section, we describe a prototype that implements the proposed SCML

language. The prototype provides a graphic user interface for users to input an SCML

specification and generates the result of language enactment. In this prototype, we

focus on the two key SCML clauses: create command and alter command. We use

a travel agency LCS in our running example as the scenario. For the sake of space,

we only introduce some representative steps of using the system.

Users need to submit a create command to define a LCS schema graph. As depicted

in Fig. 10.6, the information includes the nodes of the graph and the two sets of edges

(i.e., data flow edges and the control flow edges). Each node represents an abstract

Web service and is assigned to an id. An example of such a node id is Airline. Each

node corresponds a concept in a Web Service Modeling Language (WSML) file,

which contains the semantic definition of the abstract service. A data flow edge is

represented as a triplet: the node that the edge comes from, the node that the edge

goes to, and a data set pair delivered by the edge. An example of such a triplet is

{Airline, Hotel, {arrival_date, check_in_date}}, which means that an airline service

sends a message to a hotel service containing the information of the arrival_date,

which can be used as the check_in_date for the hotel service. A control flow edge

is represented as a triplet: the node invoked first, the node invoked afterwards, and

the condition on the invocation of the second node. An example of such a triplet

is {Airline, Hotel, “true”}, which means that a hotel service will be invoked after an

airline service is invoked. After submitting the create command, users can click the

execute button to create the LCS schema graph, which is depicted in Fig. 10.7.

Users need to submit an alter command to specify a change. As depicted in

Fig. 10.8, an alter command contains the information of changes, such as the change

operator (i.e., adding or removing), the type of change objectives (i.e., service, data

flow, or control flow), and the change objectives. After editing the alter command,

users can click the execution button to implement the change, which is depicted in

Fig. 10.9. In the graph, there are three new services added (i.e., carRental, Traffic, and

LocalActivity). The invocation orders and message exchanges among these services

and other services in the LCS are automatically generated.

10.8 Related Work

Change management is an active research topic in database management, knowledge

engineering, and software evolution. Research efforts are also underway to provide

change management in a Web service community and adaptive workflow systems

[1, 5]. There are some change models have been proposed to specify different types of

changes. In this section, we will elaborate some representative works and differentiate

them with our work.

10 SCML: A Change Management Language 247

Fig. 10.6 The input of a create command

In [1], a petri-net based change model is proposed. The change model is used to

specify bottom-up changes in LCSs, which are initiated at the service level and then

propagated to the business level. built upon the differentiation the changes between

two levels: service level and business level. The changes initiated at the service

level is called as triggering changes. The changes initiated at the business level is

called as reactive changes. A set of mapping rules are defined between triggering

changes and reactive changes. These rules are used for propagating changes. The

reactive changes are modeled as Petri-nets. In [1], the work mainly focus on devising

handling mechanisms for exceptional changes. An example of such mechanisms is

that the system will switch to use an alternative service if a sudden failure occurs to

a service. Petri-nets are chosen to provide formal semantics for bottom-up changes.

In this chapter, we focus on modeling the top down changes, which are initiated by a

LCS’s owner in case of the occurrence of new business requirements or new business

regulations.

248 X. Liu and A. Bouguettaya

Fig. 10.7 The control flow and data flow of a LCS

10 SCML: A Change Management Language 249

In [5], the work focuses on modeling dynamic changes within workflow systems.

It introduces a Modeling Language to support Dynamic Evolution within Workflow

System (ML-DEWS). A change is modeled as a process class, which contains the

information of roll-out time, expiration time, change filter, and migration process.

The roll-out time indicates when the change begins. The expiration time indicates

when the change ends. The change filter specifies the old cases that are allowed to

migrate to the new procedure. The migration process specifies how the filtered-in

old cases migrate to the new process. In [5], the language is defined for human

consumption, not for machines. The change specification is not formal enough for

completely understandable and processable by machines. The change management

process based on ML-DEWS is not automated. SCML, in the other hand, is formal.

It can be understandable and processable by machines. Based on the SCML change

specification, the new LCS schema can be automatically generated.

In [8], a framework is presented to detecting and reacting to the exceptional

changes that can be raised inside workflow-driven Web application is proposed. It

Fig. 10.8 The input of a set of alter commands

250 X. Liu and A. Bouguettaya

Fig. 10.9 The control flow and data flow of a LCS before and after change enactment

10 SCML: A Change Management Language 251

first classifies these changes into behavioral (or user-generated), semantic (or appli-

cation), and system exceptions. The behavior exceptions are driven by improper

execution order of process activities. For example, the free user navigation through

Web pages may result in the wrong invocation of the expired link, or double-click the

link when only one click is respected. The semantic exceptions are driven by unsuc-

cessful logical outcome of activities execution. For example, a user does not keep

paying his periodic installments. The system exceptions are driven by the malfunc-

tioning of the workflow-based Web application, such as network failures and system

breakdowns. It then proposes a modeling framework that describes the structure

of activities inside hypertexts of a Web application. The hypertext belonging to an

activity is broken down into pages, where are univocally identified within an activity.

framework to handle these changes. The framework consists of three major compo-

nents: capturing model, notifying model, and handling model. The capturing model

capture events and store the exceptions data in the workflow model. The notifying

model propagate the occurred exceptions to the users. The handling model defines

a set of recovery policy to resolve the exception. For different types of exceptions,

different recovery policies will be used. In this chapter, we focus on different type

of changes. Changes are treated as the “rule”, not the “exception”.

10.9 Conclusion

We propose SCML, a formal language, to specify top-down changes. The SCML

is built upon a LCS schema, which is represented as a directed graph. The SCML

focuses on a proposed change taxonomy, which classifies changes into two cate-

gories: functional and non-functional changes. It is centered around four types of

clauses: definitive, query, change, and drop. The definitive clauses are used to define

a LCS schema. The query clauses are used to specify a query on a Web service

ontology. The change clauses are used to specify top-down changes. A procedure of

processing SCML statements is presented. We also describe a prototype implemented

to show the practicality of the proposed approach.

References

1. M. S. Akram, B. Medjahed, and A. Bouguettaya. Supporting Dynamic Changes in Web Service
Environments. In International Conferences on Service Oriented Computing (ICSOC), Trento,
Italy, 2003.

2. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, S. Weerawarana. Business Process Execution Language for
Web Services Version 1.1. Technical report, BEA Systems and IBM Corporation and Microsoft
Corporation and SAP AG and Siebel Systems, http://www.ibm.com/developerworks/library/
ws-bpel/, May 2003.

http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/library/ws-bpel/

252 X. Liu and A. Bouguettaya

3. Y. Baghdadi. A Web services-based business interactions manager to support electronic com-
merce applications. In ICEC ’05, 2005.

4. BPMI. Business Process Modeling Language (BPML. http://www.bpmi.org/bpml.esp, 2003.
5. Clarence A. Ellis and Karim Keddara. A workflow change is a workflow. In Business Process

Management, Models, Techniques, and Empirical Studies, pages 201–217, London, UK, 2000.
Springer-Verlag.

6. Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and Klaus Pohl.
A journey to highly dynamic, self-adaptive service-based applications. Automated Software

Engineering.
7. R. Khalaf and W. A. Nagy. Business Process with BPEL4WS: Learning BPEL4WS, Part

6. Technical report, IBM, http://www-106.ibm.com/developerworks/webservices/library/ws-
bpelcol6/, 2003.

8. Marco Brambilla, Stefano Ceri, Sara Comai, and Christina Tziviskou. Exception handling
in workflow-driven web applications. In WWW ’05: Proceedings of the 14th international

conference on World Wide Web, pages 170–179, New York, NY, USA, 2005. ACM Press.
9. Nazim H. Madhavji. The prism model of changes. IEEE Trans. Softw. Eng., 18(5), 1992.

10. Qi Yu and Athman Bouguettaya. Framework for web service query algebra and optimization.
ACM Trans. Web, 2(1):1–35, 2008.

11. Qi Yu, Xumin Liu, Athman Bouguettaya, and Brahim Medjahed. Deploying and managing
web services: issues, solutions, and directions. VLDB Journal, 17(3):537–572, 2008.

12. Satish Thatte. XLANG Web Services for Business Process Design. http://www.gotdotnet.com/
team/xml_wsspecs/xlang-c/default.htm, 2001.

13. Setrag Khoshafian. Service oriented enterprises. Auerbach Publications, Boston, MA, USA,
2006.

14. The OWL Services Coalition. Owl-s: Semantic markup for web services. Technical report,
http://www.daml.org/services/owl-s/1.1B/owl-s/owl-s.html, July 2004.

15. A. Tsalgatidou and T. Pilioura. An Overview of Standards and Related Technology in Web
Services. Distributed and Parallel Databases, 12(2):135–162, 2002.

16. W. M. P. van der Aalst and T. Basten. Inheritance of workflows: an approach to tackling
problems related to change. Theoretical Computer Science, 270(1–2):125–203, 2002.

17. W3C. Extensible Markup Language (XML). http://www.w3.org/XML, 2003.
18. W3C. Simple Object Access Protocol (SOAP). http://www.w3.org/TR/SOAP/, 2003.
19. W3C. Universal Description, Discovery, and Integration (UDDI). http://www.uddi.org, 2003.
20. W3C. Web Service Choreography Interface (WSCI). http://www.w3.org/TR/wsci/, 2003.
21. W3C. Web Services Architecture. http://www.w3.org/TR/ws-arch/, 2003.
22. W3C. Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl, 2003.
23. WSMO Working Group. Web Service Modeling Ontology (WSMO). http://www.wsmo.org/,

2004.
24. Xumin Liu and Athman Bouguettaya. Managing top-down changes in service oriented enter-

prises. In IEEE International Conference on Web Services (ICWS), Salt Lake City, Utah, July
2007.

25. Xumin Liu and Athman Bouguettaya. Ontology support for managing top-down changes in
composite services. In CollaborateCom 2008, Orlando, FL, Nov. 2008.

26. Xumin Liu, Athman Bouguettaya, Xiaobing Wu, and Li Zhou. Ev-lcs: A system for the evolu-
tion of long-term composed services. IEEE Transactions on Services Computing, 99(PrePrints),
2012.

27. Xumin Liu, Athman Bouguettaya, Qi Yu, and Zaki Malik. Efficient change management in
long-term composed services. Service Oriented Computing and Applications, 5(2):87–103,
2011.

http://www.bpmi.org/bpml.esp
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol6/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol6/
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.daml.org/services/owl-s/1.1B/owl-s/owl-s.html
http://www.w3.org/XML
http://www.w3.org/TR/SOAP/
http://www.uddi.org
http://www.w3.org/TR/wsci/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl
http://www.wsmo.org/

Chapter 11

A Semantic-Based Approach to Generate
Abstract Services for Service Organization

Xumin Liu and Hua Liu

Abstract Service organization has been considered as the key enabler for efficient

web service management. It gives a high-level and structured view of the important

features of web services, including their functionality and inter-service relation-

ships, which can be leveraged to allow a top-down declarative way of querying and

composing web services. Abstract services that conceptualize the functionality pro-

vided by web services, has been widely adopted as the kernel component of web

service organization. However, how to generate abstract services is non-trivial. Cur-

rent approaches either assume the existence of abstract services or adopt a manual

process that demands intensive human intervention. We propose a novel approach

to fully automate the generation of abstract services. We first explain the process

of generating homogeneous service spaces, i.e., service communities, which consist

of a set of functionally similar services. We then present a process of generating

abstract services within a service community. We leverage semantics to address the

issues raised by syntactical-level service descriptions. An comprehensive experimen-

tal study on real world web service data is conducted to demonstrate the effectiveness

and efficiency of the proposed approach.

11.1 Introduction

Efficient web service management has been an essential and long-lasting challenge

since the introduction of Service-Oriented Computing (SOC). It becomes more crit-

ical when the emergence of Cloud Computing further impels the growth of SOC,

which results in the dramatic increase in the number of web services on the web.

This introduces significant difficulties of accessing to the services in an automatic

X. Liu (B)

Department of Computer Science, Rochester Institute of Technology, Rochester, USA
e-mail: xl@cs.rit.edu

H. Liu
Xerox Research at Webster, Webster, USA

A. Bouguettaya et al. (eds.), Advanced Web Services, 253
DOI: 10.1007/978-1-4614-7535-4_11,
© Springer Science+Business Media New York 2014

254 X. Liu and H. Liu

way, such as locating a desirable services and leveraging existing services to con-

struct business processes. The natural solution to deal with the large number of

web services and allow efficient web service management is to build up a service

organization, where related services are grouped together and their relationships are

clearly specified. Such a service organization gives a high-level and structured view

of the important features of web services, including their functionality and inter-

service relationships. It can be leveraged to allow a top-down and declarative way of

querying and composing Web services [5].

The concept of abstract services has been introduced and widely adopted as the

kernel component of web service organization [10]. The idea is to conceptualize

the functionality provided by Web services in a service space as abstract services

and use them as the basis of efficient service management [15]. Examples of such

functionalities include get_route, get_map, weather_inquiry and so on. An abstract

service is associated with the group of web services providing the defined function-

ality. The relationship between an abstract service and its associated actual services

is anomalous to the one between a class and it objects. Based on the description

of abstract services and their associations with actual services, service manage-

ment tasks, including service description, service discovery, service composition,

and change management, can be designed and performed in a top-down fashion.

That is, they can be carried out first on the “schema-level”, where only abstract

services are involved, and then on “instance-level”, where only the associated web

services are dealt with. More specifically, service discovery can start at identifying

the abstract services that match a query requirement and then search in the web ser-

vices instantiating the abstract services. Hence, both the efficiency and accuracy of

service discovery are expected to be greatly improved through narrowing down the

searching space. Similar to service discovery, service composition can start at design-

ing the composition schema by identifying suitable abstract services and building

up a schema-level workflow. The schema will then be instantiated by finding actual

services for the abstract services and orchestrate them [6, 8]. Following the same

rationale, abstract services also facilitate the process of dealing with the frequent

changes in service oriented enterprises [2, 13, 14].

While the usage of abstract services holds tremendous promise, how to generate

abstract services poses a set of key challenges. Existing approaches usually adopt a

manual process to create abstract services and generate the mapping to the concrete

services. The process starts by designing an abstract service based on the designer’s

view of the service space and user query requirements. To have a complete and

comprehensive view of the service space, the designer needs to manually go through

all service descriptions. Moreover, the designer will also need to manually specify

the mapping between an abstract service and the corresponding concrete services.

This is simply infeasible considering that there are a large number of web services

and the number still keeps increasing. An alternative way is to ask service providers

to link their services to predefined abstract services when publishing their services.

This is, however, impractical considering the autonomous and independent nature of

service providers. An efficient approach for generating abstract services is needed,

where human efforts should be minimized.

11 A Semantic-Based Approach 255

Some recent research efforts have been conducted for bootstrapping homoge-

nous web service spaces, i.e., web service communities, where related services are

grouped together [9, 11, 12, 20–22, 24]. The majority of these approaches lever-

ages information retrieval techniques (e.g. TF/IDF) when computing the similarity

between web service descriptions, where each web service is modeled as a vector of

terms. WSDL documents are dominantly targeted since WSDL is the de facto way

that service providers take to describe their services. It is thus practical to assume

that a service’s WSDL description is accessible. The approaches then apply various

data clustering algorithms to generate service communities from the service similar-

ity matrix. They differ mostly in the constructions of the term vectors, calculations

of the similarity metrics, and clustering algorithms (e.g., QT, k-means, SVD, and

SS-BVD). Inspired by these existing approaches, abstract service generation can be

accomplished by following two steps. First, applying service community learning

approaches to group web services providing similar functionalities together, i.e.,

forming service communities. This process can be fully automated by leveraging the

existing web service community learning approaches. With the adoption of informa-

tion retrieval technique, the process is proved to yield relatively high accuracy. This

is due to the observation that some common naming are usually followed for web

service development, especially for the WSDL documents which are automatically

generated from programming source codes. Second, extracting common features of

services within a service community to define abstract services.

The existing service community learning approaches only generate the mapping

between a service community and its member services. The outcome lacks sufficient

summative description of functionality of the member services, i.e., abstract services.

Simply using cluster centroids or representative terms to label a service community

is far away from being sufficient. First, such labels cannot precisely capture the func-

tionality of all member services. Users still need to go through a service’s description

to determine whether the service provides the desired functionality. Second, it is not

guaranteed that the labels have high coverage of member services’ functionality. To

address these issues, we propose an automatic abstract service generation process to

extract functional features of a service community’s member services. We define an

abstract service in terms of its input and output. All possible definitions of abstract

services can be generated by enumerating the possible combination of input and

output data items. We choose those abstracts services that can be instantiated by

sufficient number of actual services, i.e., having a supporting ratio no less than a

predefined threshold, to ensure the representativeness of the abstract services. To

improve the efficiency of the process, we leverage association rule mining tech-

niques to generate and prune the candidate abstract services. We start with finding

possible output of an abstract service by checking whether there are enough number

of services generating the output. For each output as such, we enumerate all possible

input and check whether there are enough number services from the result of the first

step that consume the given input. The mapping between an abstract service and the

member services are generated during the process. We apply a set of heuristics to

improve the efficiency and scalability of the process.

256 X. Liu and H. Liu

The abstract service generation process could be suffered from the lack of seman-

tical description contained in WSDL descriptions. This is due to the observation

that web services in a service community are usually provided by independent and

autonomous service providers. Various naming conventions and “dialects” are used

to describe services. More specifically, different web service providers might use the

same term to specify different meanings. For example, the term “courses” can be used

to represent classes and also degrees. It is also the case that different web services

use different terms to specify the same meaning. For example, some web service

providers use the term of “geocode” and others use “coordinates”. It is essential to

reconcile the diversities among web service descriptions when generating abstract

services. Furthermore, the ontological relationships between different terms, such as

“graduate students” and “person” should also be considered to precisely define and

compute the supporting ratio of an abstract service . In this chapter, we incorporate

semantics to the process of abstract services generation to improve the accuracy of

the produced outcome.

The remainder of this chapter is organized as follows. In Sect. 11.2, we describe

a process of bootstrapping homogenous web service spaces. In Sect. 11.3, we for-

mally define an abstract service and its support ratio. We then define the abstract

service generation problem that we address. In Sect. 11.4, we propose a process of

generating abstract services from a service community. Possible abstract services are

enumerated in a heuristic way. We use a bitmap to efficiently check each abstract

service’s support ratio. We further improve this process by incorporating semantics

to the process, which is presented in Sect. 11.4. In Sect. 11.5, we present a compre-

hensive experimental study to demonstrate the effectiveness and performance of the

proposed algorithms. In Sect. 11.6, we discuss some representative related works. In

Sect. 11.7, we conclude our chapter and discuss future work.

11.2 Web Service Community Generation

Abstract services are generated from a service community, where each community

groups services that provide a certain type of functionality. As the process of service

community generation is not the focus of this chapter, we present the general idea of

this process. The detailed description of an advanced service community generation

process can be found in [17]. The process takes WSDL documents as input since

WSDL is de facto standard way of describing services. As depicted in Fig. 11.1, the

process consists of several key steps, including extract terms, model services, com-

pute service similarity, and cluster services. We elaborate on these steps as follows.

The first step is to use web service crawlers to retrieve WSDL documents by

crawling the Web and store them in a service repository. Besides traditional web

search engines, e.g., google and bing, existing web service search engines, e.g.,

seekda 1 and programmableWeb,2 can be used as the sources of the service repository.

1 http://webservices.seekda.com/
2 http://www.programmableweb.com

http://webservices.seekda.com/
http://www.programmableweb.com

11 A Semantic-Based Approach 257

Compute service
similiarity

Model servicesExtract Terms

WSDL
Documents

Cluster
services

service similarity matrix Service communityService-term vectorsService description container

Fig. 11.1 The service community learning process

We then parse WSDL documents and store all the detailed description for each

operation, including the operation name and detailed description of input and output

messages. The message description includes the message name and the description

of each part, which consists of the part name and its data type.

We adopt the current information retrieval approaches when comparing two ser-

vices. Generally speaking, two services in the same community should have a higher

similarity than the ones in different domains (e.g., travel, medical, and finance). For

example, flight_reservation and find_hotel are expected to have a higher similarity

thanflight_reservation and get_Medicine_name. Although WSDL mainly describes

a service at the syntactic level, information retrieval techniques can be adopted to

extract semantics from WSDL descriptions. This is due to the observation that some

common naming conventions are usually followed for Web service development,

especially for the WSDL documents which are automatically generated from pro-

gramming source codes. For example, an operation usually has the name of the

original function, such as TemperatureConversion. Based on this observation, we

can analyze the functional features of a service from the terms in its description.

Following these lines, we extract terms from a service description to compute the

service similarity.

It is very common that an element in a WSDL document appears in a com-

posite format. For example, an operation may have a name like get_Map, send

PurchaseRequest, or order1. Thus, tokenization is performed on an operation’s

description to extract simple terms. The tokenization process decomposes a given

expression into simple terms. It consists of case change, suffix numbers elimina-

tion, word stemming, and underscore separator [19]. The output of the tokenization

process is a set of terms that are used to model a service. The terms are stored in a

service description container.

258 X. Liu and H. Liu

Let T be the set of terms extracted from all operation descriptions. It contains k

terms with distinct meanings. Here, we use Wordnet,3 a lexical database, to connect

between synonyms. Let |D| be the number of operation descriptions, d be an oper-

ation’s description. n′
j,i be the times that term tj and all its synonyms appear in ith

operation’s description. We define the representativeness of a term, i.e., the adjusted

TF/IDF, as:

rj,i = tfj,i × idfj =
n′

j,i
∑

k n′
k,i

× log
|D|

|d : tj ∈′ d|
(11.1)

Here tj ∈′ d holds true if term tj or its synonyms appears in the service description.

Based on Eq. 11.1, a service si can be specified as a term vector < r1,i,

r2,i, . . . , rk,i >. The similarity of two services is computed as the cosine similar-

ity between the two vectors.

Sim(si, sj) = cos(vi, vj) = vT
i vj/(||vi||||vj||) (11.2)

From Eq. 11.2, we can generate a service similarity relevance matrix M S , where

mS
s,t = Sim(ops, opt). We then apply data clustering techniques to group related

operations together. The objective here is to classify services into several groups

(each group corresponds to a service community), so that the services assigned to

each group are more similar to each other than the service assigned to different

groups.

K-Means is a widely used centroid-based data clustering algorithm. The basic

idea of applying K-Means is firstly randomly choose k operations as initial centroid.

k is a predefined number that represents the number of resulting clusters. The algo-

rithm then iteratively clusters operations, computes new centroids (ci), re-clusters

operations based on the new centroids, till centroids do not change. The process

of clustering is guided to maximize the cohesion of a cluster, which is defined in

Eq. 11.3. K-Means is efficient with time complexity of O(KIM), where K is the

number of clusters, I is the number of iterations, and M is the size of the matrix.

cohesion =

k
∑

i=1

∑

d∈Ci

cos(d, ci) (11.3)

11.3 Problem Statement of Abstract Service Generation

In this section, we first formally define an abstract service and its support ratio. We

then present the formal definition of abstract service generation problem.

3 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

11 A Semantic-Based Approach 259

11.3.1 Abstract Service and Support Ratio

An abstract service should be describe in terms of the functional capacity of member

services of a service community. A query requirement specified in terms of abstract

services will be mapped to concrete services if there is a match. A query requirement

is usually formatted as looking for a service that takes a given input and generates a

given output. An example would be: find a service that takes an address as input and

returns weather information. Along with this line, we define an abstract service as:

Definition 11.3.1 An abstract service is a binary l = {l.I, l.O}, where l.I =

{i1, i2, . . . , im} is its input, and l.O = {o1, o2, . . . , on} is its output.

Through an abstract service l of a service community c, users can understand

what type of queries can be satisfied by c’s member services. That is, being provided

with the data items in l.I , the instances of l can generate all the data items in l.O.

To measure the portion of services in c that can satisfy the query, we first define the

support of a concrete service as follows.

Definition 11.3.2 A concrete service s is said to support an input I , denoted as

ŝ.I(I), if s.I ⊆ I ; s is said to support an output O , denoted as ŝ.O(O), if s.O ⊇ O;

s is said to support an abstract service l, denoted as ŝ(l), if ŝ.I(l.I) and ŝ.O(l.O).

Based on Definition 11.3.2, we compute the support ratio of an abstract service

as follows. Let S = {s1, s2, . . . , st} be the set of all member services in a service

community. The support ratio σ(l) is calculated as follows:

σ(l) =
|{si|si ∈ S ∧ ŝ(l)}|

|S|
(11.4)

Example 11.3.1 Suppose the weather community contains five services, whose

input and output are listed in Table 11.1. Given an abstract service l1 = {{zipcode},

{weather}}, the services that support l include: s2, s5. Therefore, l’s support ratio

is 0.4. Another abstract service l2 = {{zipcode}, {weather,map_url}} has

a zero support ratio since there is no service supports it.

11.3.2 Abstract Service Generation Problem

A support ratio of an abstract service reflects the portion of the member services

in a service community that have the functional capacity defined by the abstract

Table 11.1 Member services
in weather community

ID Input Output

s1 city, state, country weather, gas_price

s2 zipcode weather, gas_price

s3 city, state, country weather, map_url

s4 geocode map_url, gas_station

s5 zipcode weather

260 X. Liu and H. Liu

service. A higher support ratio that an abstract service has, the more representative

the abstract service is. We use a threshold τ , 0 < τ ≤ 1, as the minimum support

ratio of a representative abstract service.

Definition 11.3.3 An abstract service l is representative for a community c if its

support ratio is no less than the threshold, i.e., σ(L) ≥ τ .

Moreover, based on Definition 11.3.2, if a concrete service s supports an input I ,

it supports all I’s superset. If a service s supports an output O, it supports all O’s

subset. Therefore, for two abstract services, l, l′, if the input of l′ is a superset of the

input of l and the output of l′ is a subset of l’s output, any service that supports l also

supports l′. In this case, l is dominated by l′ with respect to support ratio, denoted

as l′ ≻ l. That is, if l′ ≻ l, σ(l′) ≥ σ(l). If l is representative, l is more preferred

than l′ since it has fewer input and more output, meaning that users are required to

provide fewer input but will gain more output from invoking l’s instances than l′’s

instances. In another word, l defines stronger functional capability. To optimize the

labeling result, we define an optimal abstract service as follows:

Definition 11.3.4 An abstract service l is optimal if it is representative and it does

not dominate any other representative abstract services.

Therefore, the problem of abstract service generation is modeled as: given S , the

set of a service community’s member services, and a support ratio threshold τ , find

a set of abstract services L , where each abstract service l ∈ L is optimal.

11.4 Candidate Abstract Service Generation and Pruning

To produce all candidate abstract services, a brute-force approach is to enumerate

all possible inputs, denoted as I C , enumerate all possible outputs, enumerate all

combinations between I C and OC , denoted as C , and prune those that do not have

enough support ratio. Let S be the set of the service community’s member services.

Let DI be the input data set, i.e., DI = ∪t
i=1si.I , and DO be the output data set,

i.e., DO = ∪t
i=1si.O . We have:

|I C | =

|DI |
∑

i=1

(

|DI |

i

)

= 2|DI |−1

|OC | =

|DO |
∑

i=1

(

|DO |

i

)

= 2|DO |−1

|C | = |I C | × |OC | ≈ 2|DO |+|DO |

The brute-force approach has serious performance issue due to the exponentially

increased computational complexity. To address this issue, we employ the idea of

Apriori principle of frequent itemsets generation to heuristically generate candidate

abstract services. We start with identifying all the possible outputs of an optimal

11 A Semantic-Based Approach 261

abstract service. For each output as such, we then find the matching inputs. The

mapping between the abstract service and the concrete services is also automatically

generated during this process.

11.4.1 Candidate Output Generation

The overall idea of heuristic candidate output generation output is that we use the

relationships between different outputs to filter out those outputs that are impossible

to have a sufficient support ratio. By this, we narrow down the searching space. When

compute the support ratio of an output, we only go through the concrete services that

have the potential of supporting the output. By this, we decrease the number of

comparisons between a candidate output and concrete outputs. We further optimize

this process by using a bitmap structure to achieve O(1) computational complexity.

The whole process is guided by the following theorem.

Theorem 11.4.1 If an output’s support ratio is less than the threshold, i.e., it is not

associated with a representative abstract service, then all its superset must also not

be associated with a representative abstract service. Moreover, if a concrete service

does not support an output, it must also not support all the output’s superset.

The proof of Theorem 11.4.1 directly follows Definition 11.3.2.

gas_price map_url weather

gas_station,

gas_price

gas_station,

map_url

gas_station,

weather

gas_price,

map_url

gas_station

gas_price,

weather

map_url,

weather

gas_station,

gas_price,

map_url

gas_station,

gas_price,

weather

gas_station,

map_url,

weather

gas_price,

map_url,

weather

gas_station,gas_price,map_url,weather

null

Fig. 11.2 A pruned output lattice using Apriori principle (τ = 0.3)

We build a candidate output lattice where a node is a subset of all its child nodes,

as shown in Fig. 11.2. The nodes in the lattice will be generated and evaluated in

a breadth-first way. We use k-output to represent an output consisting of k data

items. As described in Algorithm 3, the process starts with generating and evaluating

candidate 1-output set from DO and filtering out those whose support ratios are less

than the threshold (Line 1). When evaluating the support ratio of a node, we only go

through the services that support the current node’s parent nodes. We further optimize

this process by using a bitmap structure to achieve O(1) computational complexity.

262 X. Liu and H. Liu

An output data item d’s occurrence in service outputs is bit encoded. The support

ratio of an output can be computed by performing an bitwise and operation between

the bit codes of all its data items (Line 5–6). In Example 11.3.1, weather is encoded

as [11101] and map_url is encoded as [00110]. The bit code of the output, {weather,

map_url}, is computed as [00100]. Therefore, the output’s support ratio is 0.2. If an

output node o has a sufficient support ratio, o will be included in the k-output set

(Line 6–7). All the parent nodes of o will then checked whether they have the same

support ratio as o. If there is such a parent, p, it can not be associated with an optimal

abstract service since p and o share the same group of supporting services and p is a

subset of o. All such p will be removed (Line 8–12).

After evaluating all the nodes in Ck , k-output set, Ok is generated and be used to

generate the next candidate output set, Ck+1 (Line 15). This step follows the idea of

apriori-gen method proposed in [1], i.e., merging two k-output nodes if they have

(k − 1) shared items. For example, {a, b, c} will be merged with {a, b, d}, but not

{a, d, e}. We then filter out those nodes that are impossible to be representative, i.e.,

one of its parents is not in Ok . If all its parents are in Ok , a (k +1)-output node will be

generated
(

(k+1)
2

)

times. We then only keep such nodes (Line 15). After removing the

duplicates from Ck+1, the algorithm goes to the next iteration if Ck+1 is not empty.

Let |Omax| is the maximum length of data items in a service’s output, the algorithm

always stops before or on k = |Omax|. The result will be the union of all Ok (Line 18).

Algorithm 3 Candidate Output Generation
Require: a list of service instance S, output set DO , threshold τ

Ensure: a set of output sets OP , such that for o ∈ OP , σ(o) ≥ τ

1: k = 1; Ck ← {d}(d ∈ DO)

2: while Ck is not empty do
3: Ok = φ

4: for all o ∈ Ck do
5: r = &d∈od.bitmap

6: if (σ(o) = r.count
|S|

) > τ then

7: Ok ← o

8: for all p ∈(parent(o) do
9: if σ(o) = σ(p) then
10: remove p from Ok−1
11: end if
12: end for
13: end if
14: end for
15: Ck+1 = apriori’_gen(Ok) {merge any two output with k − 1 shared data items as a (k + 1)-output and keep those

who are generated
((k+1)

2

)

times}

16: k = k + 1
17: end while
18: result=∪Ok

By applying Theorem 11.4.1, the searching space of candidate output set is

significantly pruned. As shown in Fig. 11.2, the process has visited only seven

out of fifteen nodes in the lattice. Four nodes out of them have a sufficient sup-

port ratio, including {gas_price}, {map_url}, {weather}, and {gas_price, weather}.

Since {gas_price} has the same support ratio as its child node, {weather,

gas_price}, it is not optimal. The other three nodes are returned.

11 A Semantic-Based Approach 263

11.4.2 Matching Input Generation

Once the candidate outputs are returned, the next step is to find each candidate output

the matching inputs to construct candidate abstract services. Moreover, if an input i

matches an output o, all its supersets matches o as well. Therefore an input should

minimally match a candidate output so that the constructed abstract service is optimal.

We define an minimal matching input as follows.

Definition 11.4.1 An input i is said to match an output o if the abstract service

constructed from i and o has a support ratio no less than the threshold. i is minimum

if it cannot still match o after removing a data item from it.

To find a matching input for an output o, a brute-force approach is to enumerate

and evaluate all subsets of DI . To improve the performance, we use the relationships

between different input to filter out the ones that are impossible to match o. By this,

we narrow down the searching space. When evaluating an input, we only go through

the concrete services that support o and have the potential of supporting the input. By

this, we decrease the number of comparison between a candidate input and concrete

inputs. The whole process is guided by the following theorem.

Theorem 11.4.2 If an input i does not match an output o, then all of i’s subsets must

also not match o. Moreover, if a concrete service does not support an input, it must

also not support all the input’s subsets.

The proof of Theorem 11.4.2 directly follows Definition 11.3.2.

Algorithm 4 Candidate Input Sets Generation
Require: a list of service instance S, an output o, threshold τ

Ensure: a set of input sets I , such that for i ∈ I , σ(l(i, o)) ≥ τ

1: D ′
I

= ∪s.I(s ∈ o.Ŝ)

2: k = |D ′
I

|;

3: Ck ← node(D ′
I

)

4: while Ck is not empty and k > 1 do
5: Ik = φ

6: for all i ∈ Ck do

7: i.count = 0; i.Ŝ = φ

8: for all s ∈ ∩parent(i).Ŝ do
9: if i ⊇ s.I then
10: i.count++; i.Ŝ ← s

11: end if
12: end for
13: if i.count

|S|
> τ then

14: Ik ← i

15: remove all i’s parents from Ik+1
16: end if
17: end for
18: Ck−1=gen_next_level_input(Ik) {Intersect any two inputs with k − 1 shared data items as a (k − 1)-output and

keep those who are generated
((n−k+1)

2

)

times}

19: k=k-1
20: end while
21: result=∪Ik

264 X. Liu and H. Liu

For each candidate output, we build an input lattice so that a node is a superset

of all its child nodes, as shown in Figs. 11.3 and 11.4. The lattice will be traversed

in a breadth-first way. We use k-input to represent an input consisting of k data

items. As described in Algorithm 4, the process first merges the inputs of all the

services that support o and uses the result, D ′
I

, as the root note of the lattice (Line

1–3). This will greatly decrease the size of the generated lattice without missing a

potential matching input, as shown in Figs. 11.3 and 11.4. The searching process

starts with generating k-input nodes, where k = |D ′
I

|. During each iteration, all

the nodes in the candidate list, Ck , will be examined by counting the number of o’s

supporting services that support the input. Based on Theorem 11.4.2, we only check

those services that support all the parents of the current node (Line 8–12). For the

root node, this step can be skipped since it is supported by all o’s supporting services.

If the current node matches o, the node will be added to k-input set (Line 13–14). All

its parent nodes will be removed from (k + 1)-input set since they are not minimum

(Line 15). For example, in Fig. 11.4, all {d}’s ancestors are removed.

After evaluating all the nodes in Ck , k-input set, Ik is generated and will be used

to generate the next level input set, Ck−1 (Line 18). This step uses the similar idea of

apriori’-gen method in Algorithm 3, i.e., only generating the (k −1)-inputs that have

the potential of matching o. The algorithm then goes to next iteration k = k − 1 if

Ck−1 is not empty. Let |Imin| is the minimum length of a service’s input, the algorithm

always stops before or on k = |Imin|. The result will be the union of all Ik (Line 21).

abcde

bcde abde abce abcdacde

cde bde bce bcd abeade ace abdacd abc

de ce cd ae adbe bd acbc ab

e c b ad

a:city b: state c:country d: zipcode e: geocode

start here

Fig. 11.3 A pruned input lattice using Apriori principle (τ = 0.3, O = {weather, gas_price}), the
minimum matching input is {a, b, c, d}

11 A Semantic-Based Approach 265

abcde

bcde abde abce abcdacde

cde bde bce bcd abeade ace abdacd abc

de ce cd ae adbe bd acbc ab

e c b ad

a:city b:state c:country d:zipcode e:geocode

start here

Fig. 11.4 A pruned input lattice using Apriori principle (τ = 0.3, O = {weather}), the minimum
matching inputs are {a, b, c} and {d}

Table 11.2 Optimal abstract services (τ = 0.4)

ID Input Output Support services

l1 zipcode, city, state, country weather, gas_price s1, s2

l2 zipcode weather s2, s5

l3 city,state,country weather s1, s3

l4 city, state, country, geocode map_url s3, s4

Table 11.2 shows the optimal abstract services generated from Example 11.3.1

with the support ratio threshold τ = 0.3.

11.4.3 Semantic-Based Abstract Service Generation

Till now, we present a complete process of generating abstract services from a ser-

vice community. The process is grounded with WSDL descriptions of web ser-

vices. It could be suffered from the lack of semantics delivered in the syntactic-

level service descriptions. More specifically, WSDL does not capture the relation-

ships between terms so it only supports “keyword-based” scheme. This would lead

to the two major accuracy issues of generating abstract services. First, failing to

identify and handle synonyms, duplicate abstract services may be generated. For

example, {postalcode} → {weather} and {zipcode} → {weather} will be consid-

ered and evaluated as two different abstract services. Second, failing to identify

and handle relationships between two concepts, such as equivalent, subclass-of, and

266 X. Liu and H. Liu

property-of, might lead to incorrectly compute the support ratio of an abstract service.

For example, a service with coordinate as input and weather as output will not

be considered to support the abstract service whose input is geocode and output is

weather. Therefore, it is important to incorporate the relationships between terms

to the process of abstract service generation.

POI

Gas_station restaurant hotel

Pizza house cafeteria buffet Fine dining

hospitcal supermarket

Fig. 11.5 An ontology of concepts in POI domain

Current web technologies, such as OWL, use ontology to describe terms and

their relationships. Figure 11.5 depicts the snippet of a Point of Interests (referred

to as POI) ontology structure. Three types of relationships are defined, including

equivalent, subclass of, and property of, whose semantics are in line with the ones in

RDF and OWL, including owl:sameAs, rdfs:subClassOf, and rdf:Property relations

[3, 7]. A concept c1 is equivalent to another concept c2 iff c1 ⊑ c2 and c1 ⊒

c2. We identify synonyms if they are linked to the same or equivalent concepts.

A concept c1 is a subclass of another concept c2 iff c1 ⊑ c2, such as buffet is a

subclass of restaurant. A concept c1 is a property of another concept c2 if c1 is in c2’s

property list. Description Logic (DL) [4] is used for reasoning concept relationships.

The relationships between terms can be derived from the relationships between the

concepts that they are linked to.

Once mapping the terms in WSDL descriptions to the nodes in an ontology tree,

the following steps will be incorporated to the proposed abstract service generation

process.

11.4.3.1 Replace Synonyms by a Unified Term

This step is to rewrite the web service WSDL descriptions to reconcile the syntactic

difference among synonyms. For each group of synonyms, a unified term will be

chosen and replace all other terms in the group. DI and DO will be regenerated

with a smaller size. We use D ′
I

and D ′
O

to denote the new input data set and output

data set.

11 A Semantic-Based Approach 267

11.4.3.2 Semantic-Based Support Ratio Calculation

We redefine ‘∈’ for ‘⊆’ and ‘⊇’ in Definition 11.3.2 to take into account of relation-

ships between concepts when computing the supporting ratio, as follows.

Definition 11.4.2 A data d is said to semantically be included in a data set D, i.e.,

d ∈’ D, if either d ∈ D, or there is a data d′ ∈ D that d′ is a descendent of d or d is

a property f d′.

For example, a concrete service with the output {pizza house, address} can be

counted as supporting the candidate output {restaurant, address}, which improve

the accuracy of computing support ratio. Furthermore, by adding semantics, we

can explore new representative abstract services. To help understand the idea, we

revise our running example as follows by adding one service, which is depicted in

Table 11.3.

Without incorporating semantics, adding s6 to the list will not change the list

of representative abstract services. When considering term relationships, we find

that gas-station and hotel share a common ascendant, i.e., POI. Therefore,

a new abstract service with the input {geocode} and output {POI} is found to be

representative. It is supported by s4 and s6 so its support ratio is 0.33, which exceeds τ .

Therefore, we change the process of enumerating candidate abstract services based

on the following observation:

if a term t1 is an ascendant of another term t2, its support ratio is always higher

then t′2s.

Therefore, we add these common ascendants to the data sets, D ′
O

, to fully explore

potential candidate output. Two terms may have multiple ascendants. For exam-

ple, pizza house and buffet have two ascendants, restaurant and POI in

Fig. 11.5, we only consider minimal common ascendant (MCA), i.e., restaurant, to

avoid redundancy. That is, for every pair {d1, d2}, where d1, d2 ∈ D ′
O

, add d to D ′
O

if d is their MCA. Following the same line, we identify the largest common descen-

dants (LCD) between two terms and add them to D ′
I

when evaluating matching input

items.

Definition 11.4.3 is also followed when using bitmap structure to encode a candi-

date output. In the example, after adding {POI} to D ′
O

, POI is encoded as [000101]

since it is supported by s4 and s6.

Table 11.3 Revised list of
member services in weather
community

ID Input Output

s1 city, state, country weather, gas_price

s2 zipcode weather, gas_price

s3 city, state, country weather, map_url

s4 geocode map_url, gas_station

s5 zipcode weather

s6 geocode map_url, hotel

268 X. Liu and H. Liu

Table 11.4 Service
communities

Community Number of services

Communication 20

Food 17

Medical 16

Travel 16

Education 32

11.5 Experimental Study

To assess the effectiveness of the proposed abstract service generation algorithms, we

performed a set of experiments on a real-world Web service dataset, whose WSDL

descriptions are obtained from OWLS-TC, a service retrieval test collection [18].

All experiments were carried out on a Mac Pro with 2.66 GHz Quad-Core processor

and 6GB DDR3 memory under Mac OS X operating system. To clearly illuminate

the results, we randomly chose a subset of service descriptions from five different

domains from the service collection. The randomly selected services are from five

different application domains, including medical, communication, food, travel, and

education.

We applied the service community construction algorithm we proposed in [16]

to generate five different service communities. The community construction algo-

rithm groups together services that provide similar functionalities by calculating the

relevance of the operations provided by these services. Table 11.4 shows the service

communities and their corresponding number of services. We applied out abstract

service generation algorithm to these communities to produce the input/output labels

for these services. In what follows, we present the result of output and input label

generation. Limited by space, we choose the Medical service community to explain

the result. Table 11.5 gives the details of all the services, including their inputs and

outputs, in the Medical service community.

11.5.1 Output Label Generation

We applied Algorithm 3 to the Medical service community to generate the output

labels. We set τ , the threshold for the support ratio, as 0.1. Table 11.6 reports the output

labels for the medical services. The support ratio as well as the supporting services

are listed together with each output label. Two labels are generated that include one

output and three labels are generated with two outputs. Since the maximum number

of outputs of all medical services is two, it is impossible to generate labels with more

than two outputs.

The pruning strategy presented in Sect. 11.4 plays a key role to ensure the effi-

ciency of the algorithm. As shown in Table 11.5, all the medical services generated

13 different outputs. Even for a relatively small community as such, a brute-force

11 A Semantic-Based Approach 269

T
a
b

le
1
1
.5

S
er

v
ic

es
in

th
e

m
ed

ic
al

se
rv

ic
e

co
m

m
u

n
it

y

S
ID

S
er

v
ic

e
In

p
u
t

O
u
tp

u
t

0
g
et

_
D

IA
G

N
O

S
T

IC
P

R
O

C
E

S
S

[_
H

O
S

P
IT

A
L

]
[_

D
IA

G
N

O
S

T
IC

P
R

O
C

E
S

S
]

,
[_

T
IM

E
D

U
R

A
T

IO
N

]

1
g
et

_
D

IA
G

N
O

S
T

IC
P

R
O

C
E

S
S

_
T

IM
E

D
U

R
A

T
IO

N
[_

H
O

S
P

IT
A

L
]

[_
D

IA
G

N
O

S
T

IC
P

R
O

C
E

S
S

]

2
g
et

_
D

IA
G

N
O

S
T

IC
P

R
O

C
E

S
S

_
T

IM
E

IN
T

E
R

V
A

L
[_

H
O

S
P

IT
A

L
]

[_
D

IA
G

N
O

S
T

IC
P

R
O

C
E

S
S

]
,
[_

T
IM

E
IN

T
E

R
V

A
L

]

3
g
et

_
D

IA
G

N
O

S
T

IC
P

R
O

C
E

S
S

[_
H

O
S

P
IT

A
L

]
[_

D
IA

G
N

O
S

T
IC

P
R

O
C

E
S

S
]

,

_
T

IM
E

M
E

A
S

U
R

E
[_

T
IM

E
M

E
A

S
U

R
E

]

4
g
et

_
IN

T
E

N
T

IO
N

A
L

P
S

Y
C

H
O

-
L

O
G

IC
A

L
P

R
O

C
E

S
S

_
S

U
M

M
A

R
Y

[_
H

O
S

P
IT

A
L

]
[_

S
U

M
M

A
R

Y
],

[_
IN

T
E

N
T

IO
N

A
L

P
S

Y
C

H
O

L
O

G
IC

A
L

P
R

O
C

E
S

S
]

5
g
et

_
IN

V
E

S
T

IG
A

T
IN

G
[_

H
O

S
P

IT
A

L
]

[_
IN

V
E

S
T

IG
A

T
IN

G
]

6
g
et

_
P

O
S

T
A

L
-

A
D

D
R

E
S

S
_
IN

V
E

S
T

IG
A

T
IN

G
[_

H
O

S
P

IT
A

L
]

[_
P

O
S

T
A

L
-A

D
D

R
E

S
S

]
[_

IN
V

E
S

T
IG

A
T

IN
G

]

7
g
et

_
P

R
E

D
IC

T
IN

G
[_

H
O

S
P

IT
A

L
]

[_
P

R
E

D
IC

T
IN

G
]

8
g
et

_
U

P
D

A
T

E
P

O
R

T
E

N
T

M
E

-
D

IC
A

L
R

E
C

O
R

D
S

_
A

C
K

N
O

W
-

L
E

D
G

E
M

E
N

T
G

E
T

PA
T

IE
N

T
-

M
E

D
IC

A
L

R
E

C
O

R
D

S
_
A

U
T

H
-

O
R

IZ
E

D
M

E
D

IC
A

L
R

E
C

O
R

D
S

[P
A

T
IE

N
T

T
R

A
N

S
P

O
R

T
_
PA

T
IE

N
T

G
P

S
P

O
S

IT
IO

N
]

[U
P

D
A

T
E

PA
T

IE
N

T
M

E
D

IC
A

-
L

R
E

C
O

R
D

S
_

T
R

E
A

T
M

E
N

T
]

[G
E

T
PA

T
IE

N
T

M
E

D
IC

A
L

R
E

-
C

O
R

D
S

_
PA

T
IE

N
T

H
E

A
L

T
H

-
IN

S
U

R
A

N
C

E
N

U
M

B
E

R
]

[G
E

T
PA

T
IE

N
T

M
E

D
IC

A
L

R
E

C
O

R
D

S
_

A
U

T
H

O
R

IZ
A

T
IO

N
E

N
D

T
IM

E
]

[G
E

T
PA

T
IE

N
T

M
E

D
IC

A
L

-
R

E
C

O
R

D
S

_
P

H
Y

S
IC

IA
N

PA
S

S
W

O
R

D
]

[G
E

T
PA

T
IE

N
T

M
E

D
IC

A
L

R
E

-
C

O
R

D
S

_
P

H
Y

S
IC

IA
N

ID
]

[G
E

T
PA

T
IE

N
T

M
E

D
IC

A
L

R
E

-
C

O
R

D
S

_
A

U
T

H
O

R
IZ

E
D

M
E

D
IC

A
L

R
E

C
O

R
D

S
]

[U
D

PA
T

E
PA

T
IE

N
T

M
E

D
IC

A
L

-
R

E
C

O
R

D
S

_
A

C
K

N
O

W
L

E
D

G
E

M
E

N
T

]

(c
o
n
ti

n
u
ed

)

270 X. Liu and H. Liu

T
a
b

le
1
1
.5

(c
o
n
ti

n
u
ed

)

S
ID

S
er

v
ic

e
In

p
u
t

O
u
tp

u
t

9
g
et

IN
F

O
R

M
H

O
S

P
IT

A
L

_
A

C
K

-
N

O
W

L
E

D
G

E
M

E
N

T
R

E
S

P
O

N
S

E
[I

N
F

O
R

M
H

O
S

P
IT

A
L

_
D

IA
G

-
N

O
S

E
D

S
Y

M
P

T
O

M
S

]
[I

N
F

O
R

M
H

O
S

P
IT

A
L

_
S

E
L

E
C

-
T

E
D

H
O

S
P

IT
A

L
]

[I
N

F
O

R
M

H
O

S
P

IT
A

L
_
PA

T
IE

-
N

T
A

R
R

IV
A

L
D

A
T

E
T

IM
E

]

[I
N

F
O

R
M

H
O

S
P

IT
A

L
_
A

K
N

O
-

W
L

E
D

G
E

M
E

N
T

R
E

S
P

O
N

S
E

]

1
0

g
et

_
B

IO
P

S
Y

[_
M

E
D

IC
A

L
C

L
IN

IC
]

[_
B

IO
P

S
Y

]

1
1

g
et

_
D

IA
G

N
O

S
T

IC
P

R
O

C
E

S
S

[_
M

E
D

IC
A

L
C

L
IN

IC
]

[_
D

IA
G

N
O

S
T

IC
P

R
O

C
E

S
S

]

1
2

g
et

_
D

IA
G

N
O

S
T

IC
P

R
O

C
E

S
S

_
T

IM
E

D
U

R
A

T
IO

N
[_

M
E

D
IC

A
L

C
L

IN
IC

]
[_

D
IA

G
N

O
S

T
IC

P
R

O
C

E
S

S
]

[_
T

IM
E

D
U

R
A

T
IO

N
]

1
3

g
et

_
D

IA
G

N
O

S
T

IC
P

R
O

C
E

S
S

_
T

IM
E

IN
T

E
R

V
A

L
[_

M
E

D
IC

A
L

C
L

IN
IC

]
[_

D
IA

G
N

O
S

T
IC

P
R

O
C

E
S

S
]

[_
T

IM
E

IN
T

E
R

V
A

L
]

1
4

g
et

_
D

IA
G

N
O

S
T

IC
P

R
O

C
E

S
S

_
T

IM
E

M
E

A
S

U
R

E
[_

M
E

D
IC

A
L

C
L

IN
IC

]
[_

D
IA

G
N

O
S

T
IC

P
R

O
C

E
S

S
]

[_
T

IM
E

M
E

A
S

U
R

E
]

1
5

g
et

_
IN

V
E

S
T

IG
A

T
IN

G
[_

M
E

D
IC

A
L

C
L

IN
IC

]
[_

IN
V

E
S

T
IG

A
T

IN
G

]

11 A Semantic-Based Approach 271

Table 11.6 Output labels for the medical service community

Output Support SID

One-output Labels

[_DIAGNOSTICPROCESS] 0.5 0, 1, 2, 3, 11, 12, 13, 14

[_INVESTIGATING] 0.1875 5, 6, 15

Two-output Labels

[_DIAGNOSTICPROCESS] [_TIMEINTERVAL] 0.125 2, 13

[_DIAGNOSTICPROCESS] [_TIMEMEASURE] 0.125 3, 14

]_DIAGNOSTICPROCESS] [_TIMEDURATION] 0.125 1, 12

approach requires to generate 213 = 8192 output labels. Algorithm 3 enumerated

much less number of labels due to the proposed pruning strategy. Specifically, it first

generates 13 output labels for the first level of the output lattice. Among these 13

labels, 8 are pruned as their support ratios are less than τ = 0.1. The remaining out-

puts include [_DIAGNOSTICPROCESS], [_TIMEINTERVAL], [_INVESTIGAT-

ING], [_TIMEMEASURE], and [_TIMEDURATION]. Then, only these outputs

will be used to generated labels with two outputs. Hence,
(5

2

)

= 10 labels are gen-

erated, among which only the three as shown in Table 11.6 having a support ratio

no less than τ are kept. Since no medical service has more than two outputs, the

algorithm terminates. Therefore, the algorithm enumerates 10 + 13 = 23 labels,

which is 600 less times than a brute-force approach. This makes Algorithm 3 more

efficient and scalable to very large sized service communities.

It is also worth to note that the three two-output labels have the same support

ratio as their parent output labels [_TIMEINTERVAL], [_TIMEMEASURE], and

[_TIMEDURATION], respectively. Hence, the three parent labels are removed as

being dominated by their child output labels.

11.5.2 Input Label Generation

We applied Algorithm 4 to the generated output labels to identify their inputs.

The result is a set of representative labels (i.e., input and output) for the ser-

vice community. Table 11.7 shows the final representative labels for the medical

services. We have some interesting observations. First, the final result has six

labels whereas the size of the output labels is five. The reason is that the out-

put label [_DIAGNOSTICPROCESS] is separated into two labels in the final

result with different inputs. The supporting services for final abstract service

[output([_DIAGNOSTICPROCESS]), input([_HOSPITAL])] consist of services,

0, 1, 2, and 3. Similarly, the supporting services for final abstract service [out-

put([_DIAGNOSTICPROCESS]), input([_MEDICALCLINIC])] consist of ser-

vices, 11, 12, 13, and 14.

272 X. Liu and H. Liu

Table 11.7 Optimal abstract services for the medical service community

Output Input Support SID

One-output Labels

[_DIAGNOSTICPROCESS] [_HOSPITAL] 0.25 0, 1, 2, 3

[_MEDICALCLINIC] 0.25 11, 12, 13, 14

[_INVESTIGATING] [_HOSPITAL] 0.125 5, 6

Two-output Labels

[_DIAGNOSTICPROCESS]
[_TIMEINTERVAL]

[_HOSPITAL] [_MEDICALCLINIC] 0.125 2, 13

[_DIAGNOSTICPROCESS]
[_TIMEMEASURE]

[_HOSPITAL] [_MEDICALCLINIC] 0.125 3, 14

]_DIAGNOSTICPROCESS]
[_TIMEDURATION]

[_HOSPITAL] [_MEDICALCLINIC] 0.125 1, 12

Another interesting observation is that the support ratio of the final abstract ser-

vice[output ([_INVESTIGATING]), input([_HOSPITAL])] is 0.125, which is lower

than the support ratio of the corresponding output label [_INVESTIGATING]. This is

because two inputs can generate [_INVESTIGATING], which includes [_HOSPIT-

AL] and [_MEDICALCLINIC]. However, only one service (i.e., service 15) support

final abstract service [output([_INVESTIGATING]), input([_MEDICALCLI-

NIC])], which makes its support ratio fall below τ . Hence, this abstract service

is removed. On the other hand, two services (i.e., 5 and 6) support final abstract

service. [output([_INVESTIGATING]), input([_HOSPITAL])], which achieves a

support ratio at 0.125 > τ . Therefore, only this abstract service is kept in the final

result.

The proposed pruning strategy also ensures the efficiency and scalability of the

input label generation algorithm. The analysis is similar to the one in the above

section.

11.6 Related Work

This work is closely related to web service functionality-based labeling and web

service community learning. In this Section, we discuss some representative related

works and differentiate this work from them.

11.6.1 Service Functionality-Based Labeling

In [23], a system, “DeepMiner” is proposed to automatically derive domain ontolo-

gies for semantically marking up Web services. It takes a set of web sites that

11 A Semantic-Based Approach 273

potentially provide Web services in a domain as input and uses machine learning

approaches to incrementally learn domain ontologies. DeepMiner observes the query

interfaces and data pages of the web sites. A base ontology is first generated from the

query interfaces. DeepMiner then grows the ontology by investigating more informa-

tion from the data pages. SLINK algorithm is used to discover distinctive concepts

over multiple interfaces. The work mainly focuses on semantically annotate a web

service’s input and output. Our work mainly focuses on extract common functional

features from a set of web services, forming an abstract service to represent the

concrete services.

In [9], a self-organizing based clustering, “taxonomic clustering”, is proposed to

automatically generate an ontological organization of web services for each of the

four dimensions: input, output, precondition, and effect. A set of web services is ran-

domly selected as the sample space. Taxonomic web service clusters are generated

over the sample space for each dimension independently. Such a cluster has a hier-

archical structure where the relationships of services include ancestor/predecessor,

sibling, or mutually disjoint. A sample web service is positioned by finding for the

most specific parents (MSP) and least specific children (LSC). A service query can be

answered by finding the MSP in the input cluster space and LSC in the output cluster

space. This work clusters web services based on their input, output separately, which

lacks an integrated view. Moreover, this work include all services in the hierarchy

using exact match. Therefore, it is sensitive to outliers, which introduces difficulties

in dealing with the service space with large volume and great diversity. In our work,

we label a service community integrating both input and output of member services.

We only keep the labels that are supported by a sufficient number of services to

ignore outliers.

11.6.2 Web Service Community Learning

In [24], a co-clustering approach is proposed to generate web service communities

based on WSDL descriptions. The approach improves the precision and recall of

community generation by clustering web services and operations together. It builds up

a service matrix and an operation matrix based on their term TF/IDFs. The similarity

between a web service and an operation is computed as a dot product of the service

vector and the operation vector. A co-occurrence matrix of services and operations

is modeled as an undirected bipartite graph which consists a set of service nodes,

a set of operation nodes, and the edges between them. Each edge is weighted as the

similarity between the corresponding service and operation. Based on the bipartite

graph model, the Singular Vector Decomposition (SVD) approach is used to group

related web services and operations into the same communities.

The work proposed in [11] applies a clustering algorithm, Quality Threshold

(QT), to cluster web services into functionally similar service groups. It measures

the similarity between two services by comparing the elements in WSDL documents,

including service names, complex data types, messages, portTypes, as well as terms.

274 X. Liu and H. Liu

In [19], URBE (Uddi Registry By Example) is proposed to intelligently retrieve

Web services based on similarity between Web service interfaces. The similarity

between two WSDL documents is computed based on the elements and the terms

included in the documents. It defines a maximization function to calculate the similar-

ity between the elements in two sets, based on a bipartite graph model. It then uses

the maximization function to compute the similarity between names, operations,

names, and parts. The work also utilizes Wordnet to solve the syntactic conflicts

between synonyms. URBE is then extended to compute similarity between seman-

tically annotated Web service descriptions, i.e., SAWSDL documents.

These approaches proposed in [11, 19, 24] mainly focus on bootstrapping web

service communities. None of them takes a further step on labeling a service commu-

nity by defining abstract services from it. This work is built upon these approaches

and propose a heuristic process of generating abstract services in an automatic way.

11.7 Conclusion

We present an automatic approach to generate abstract services for constructing a

functionality-based service organizaiton. The process starts with bootstrapping ser-

vice communities, where similar services are grouped together. Within a service com-

munity, abstract services are generated in an automatic way. We model the problem

as finding the abstract services whose supporting ratios are no less than a predefined

threshold. The process enumerates all possible candidate abstract services and prune

them using the threshold. The result is further optimized by filtering out those that

can be represented by (i.e., dominate) other candidates. The mapping between an

abstract service and the member services are also generated during the process. We

apply a set of heuristics to improve the efficiency and scalability of the process. We

further improve the accuracy of the generated outcome by incorporating semantics

to the process. In the future work, we plan to apply our approach to large scale data

sets to extensively evaluate the efficiency.

Acknowledgments This work is supported by a Xerox research grant.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases.
In Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94,
pages 487–499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

2. S. Akram, A. Bouguettaya, X. Liu, A. Haller, and F. Rosenberg. A change management frame-
work for service oriented enterprises. IJNGC, 1(1), 2010.

3. Grigoris Antoniou, Grigoris Antoniou, Grigoris Antoniou, Frank Van Harmelen, and Frank Van
Harmelen. Web ontology language: Owl. In Handbook on Ontologies in Information Systems,
pages 67–92. Springer, 2003.

11 A Semantic-Based Approach 275

4. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, Eds.. The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York, NY, USA, 2003.

5. A. Bouguettaya, S. Nepal, W. Sherchan, X. Zhou, J. Wu, S. Chen, D. Liu, L. Li, H. Wang, and
X. Liu. End-to-end service support for mashups. IEEE T. Services Computing, 3(3):250–263,
2010.

6. A. Bouguettaya, S. Nepal, W. Sherchan, X. Zhou, J. Wu, S. Chen, D. Liu, L. Li, H. Wang, and
X. Liu. End-to-end service support for mashups. IEEE Transactions on Services Computing,
3:250–263, 2010.

7. Dan Brickley and R. V. Guha. Resource description framework (RDF) schema specification
1.0, March 2000.

8. G. Canfora, M.o Di Penta, R. Esposito, and M. Villani. An approach for qos-aware service
composition based on genetic algorithms. In Proceedings of the 2005 conference on Genetic

and evolutionary computation, GECCO ’05, pages 1069–1075, 2005.
9. S. Dasgupta, S. Bhat, and Y. Lee. Taxonomic clustering and query matching for efficient service

discovery. In ICWS, pages 363–370, 2011.
10. S. Dustdar and W. Schreiner. A survey on web services composition. International Journal of

Web and Grid Services, 1:1–30, August 2005.
11. K. Elgazzar, A. E. Hassan, and P. Martin. Clustering wsdl documents to bootstrap the discovery

of web services. In ICWS 2010, pages 147–154, 2010.
12. W. Liu and W. Wong. Discovering homogenous service communities through web service

clustering. In Proceedings of the 2008 AAMAS international conference on Service-oriented

computing: agents, semantics, and engineering, SOCASE’08, pages 69–82, Berlin, Heidelberg,
2008. Springer-Verlag.

13. X. Liu and A. Bouguettaya. Managing top-down changes in service oriented enterprises. In
IEEE International Conference on Web Services (ICWS), Salt Lake City, Utah, July 2007.

14. X. Liu, A. Bouguettaya, X. Wu, and L. Zhou. Ev-lcs: A system for the evolution of long-term
composed services. IEEE Transactions on Services Computing, 99(PrePrints), 2012.

15. X. Liu, C. Liu, M. Rege, and A. Bouguettaya. Semantic support for adaptive long term composed
services. In ICWS, pages 267–274, 2010.

16. X. Liu and H. Liu. Constructing operation-level ontologies for web services. In ICWS 2011
(Work-In-Progress), Washington DC, July 2011.

17. X. Liu and H. Liu. An integrated framework for web service ontology development. Interna-

tional Journal of Next Generation Computing (IJNGC), to appear, 2012.
18. OWLS-TC. OWL-S service retrieval test collection. http://projects.semwebcentral.org/

projects/owls-tc, 2005
19. P. Plebani and B. Pernici. URBE: Web service retrieval based on similarity evaluation. IEEE

Transactions on Knowledge and Data Engineering, 21:1629–1642, 2009.
20. A. Salunke, M. Nguyen, X. Liu, and M. Rege. Web service discovery using semi-supervised

block value decomposition. In Proceedings of the IEEE International Conference on Informa-

tion Reuse and Integration (IRI 2011), pages 36–41, 2011.
21. Amit Salunke, Minh Nguyen, Xumin Liu, and Manjeet Rege. Web service discovery using

semi-supervised block value decomposition. In IRI, pages 36–41. IEEE Systems, Man, and
Cybernetics Society, 2011.

22. A. Segev and Q. Z. Sheng. Bootstrapping ontologies for web services. IEEE Transactions on

Services Computing, 5(1):33–44, 2012.
23. W. Wu, A. Doan, C. Yu, and W. Meng. Bootstrapping domain ontology for semantic web

services from source web sites. In In Proceedings of the VLDB-05 Workshop on Technologies

for E-Services, pages 11–22, 2005.
24. Q. Yu and M. Rege. On service community learning: A co-clustering approach. In ICWS 2010,

pages 283–290, 2010.

http://projects.semwebcentral.org/projects/owls-tc
http://projects.semwebcentral.org/projects/owls-tc

Part II

Web Service Applications
and Case Studies

Chapter 12

Exploring Service Networks of Biological
Processes on the Web

George Zheng and Athman Bouguettaya

Abstract We propose a service-oriented framework for exploring networks of

processes modeled as Web services. In particular, we apply this approach to bio-

logical processes that builds upon and extends existing biological representation

methodologies. We present our prototype service exploration tool, named PathEx-

plorer, to discover potentially interesting biological pathways linking service models

of biological processes. We describe an innovative approach used by PathExplorer

to identify useful pathways and its service-based simulation strategy to support pre-

dictive analysis.

12.1 Introduction

Worldwide research projects in genomics, epigenomics and proteomics have con-

tributed to the recent explosion of the amount of data describing biological entities

and processes at various levels. These processes are often manifested through enti-

ties’ interactions with one another and the surrounding environment. The interactions

themselves are the foundations for many of the pathways that are essential to the well

being of our body. A biological pathway is a series of actions among molecules in

a cell that leads to a certain product or a change in a cell [3]. Biological pathways

have traditionally been discovered manually [37] based on experimental data such as

gene expression data from microarrays, protein-protein interaction data from large-

scale screening, and pathway data from previous discoveries. As a whole, biological

G. Zheng (B)

Science Applications International Corporation, McLean, VA, USA

e-mail: george.zheng@saic.com

A. Bouguettaya

School of Computer Science and Information Technology, RMIT University,

Melbourne, Australia

e-mail: athman.bouguettaya@rmit.edu.au

A. Bouguettaya et al. (eds.), Advanced Web Services, 279

DOI: 10.1007/978-1-4614-7535-4_12,

© Springer Science+Business Media New York 2014

280 G. Zheng and A. Bouguettaya

pathways form the bridges that link much of the diverse range of biological data into

a logical picture of why and how human genes and cells function the way they do.

Disturbances and alterations in many of these pathways are expected to be linked to

various diseases. Although research projects have begun answering many questions

regarding how the human biological machinery works, much of the gold mine of bio-

logical information generated from these projects is still unexplored to a large extent:

critical links hidden across various lab results are still waiting to be identified; isolated

segments of potentially more comprehensive pathways are yet to be linked together.

While early exposure of these hidden pathway linkages is expected to deepen our

understanding of how diseases come about and help expedite drug discovery for

treating them, it is now obvious that the complexity and enormity of information

involved in the exposure of such hidden linkages may be too overwhelming for an

unaided human mind to comprehend. As a result, such exposure often requires the

use of mining tools, which can be used to help identify pathways and conduct pre-

dictive pathway analysis, e.g., through simulation. Unfortunately, approaches taken

today for representing biological data focus on either pathway identification or path-

way simulation, but not both. This consequently makes it difficult to devise effective

mining tools.

We propose a service-oriented framework to model and deploy biological entities

and their processes as Web services to bridge the gap between the above two repre-

sentation approaches. Using this strategy, biological processes are modeled as Web

service operations and exposed via standard Web service interfaces. An operation

may consume some input substance meeting a set of preconditions and then produce

some output substance as a result of its invocation. Some of these input and output

substances may themselves trigger processes that are known to us and thus can also

be modeled and deployed as Web services. Domain ontologies containing definition

of various entity types would be used by these Web services when referring to their

operation inputs and outputs. This service oriented process modeling and deployment

strategy opens up new interesting possibilities. First, like existing natural language

processing approaches (e.g., [25, 34, 36, 38]), it allows us to use service mining tools

to proactively and systematically sift through Web service description documents in

the service registry for automatic discovery of previously hidden pathways. Second,

it brings about unprecedented opportunity for validating such pathways right on

the Web through direct invocation of involved services. This second capability also

makes it possible to carry out simulation-based predictive analysis of interactions

involving a large number of entities modeled by these services. When enough details

are captured in the service process models, this in-place invocation capability allows

for inexpensive and accessible simulations, which are expected to provide predictive

results that can be validated in vitro and/or in vivo experiments. In the presence of

a large amount of biological information already made available in many formats

from various sources, the adoption of this approach will undoubtedly incur an initial

cost. However, this cost is only one-time and will be relatively trivial compared to

the on-going development cost of various coupling mechanisms required between

applications hosting biological data and limited potential such coupling mecha-

nisms can offer. To demonstrate the feasibility of our service-oriented modeling and

12 Exploring Service Networks 281

mining approach, we have implemented our service mining tool in a prototype called

PathExplorer, which can be used to discover potentially interesting biological path-

ways linking service models of biological processes. We have also implemented a

service-oriented simulation strategy in PathExplorer for the purpose of predictive

analysis.

We organize the remainder of the paper as follows. Section 12.2 first introduces

the concept of service recognition, which forms the basis of much of our mining

algorithms. Section 12.3 introduces our service-oriented framework. Section 12.4

describes our strategy for modeling biological processes as Web services. Section 12.5

presents the application of our framework to the service models and results obtained

with respect to the discovery and analysis of biological pathways. Section 12.6 dis-

cusses related approaches that are currently used to represent biological entities. We

conclude the paper in Sect. 12.7.

12.2 Web Service Recognition

Much like molecules in the natural world where they can recognize each other and

form bonds in between [19], Web services and operations can also recognize each

other through both syntax and semantics. Consequently, potentially interesting and

useful service compositions may emerge from bottom up through such mechanism.

In the following, we map behaviors/processes manifested by biological substances

as operations. Operations from the same substance are grouped together and encap-

sulated in one service. We identify three relevant types of recognition between Web

services and operations, as shown in Fig. 12.1.

Fig. 12.1 Service/operation recognition mechanisms

282 G. Zheng and A. Bouguettaya

Recognition. A target operation (e.g., opc2) recognizes a source operation (e.g.,

opa1), if the source operation generates some or all input parameters (e.g., p : Ta

and p : Tb) of the target operation.

In the following two patterns, we assume that the availability of a service is directly

proportionate to the quantity of entity instances that provide the service. Thus, the

increase in such quantity tends to promote the service and reduction in such quantity

tends to inhibit the service.

Promotion. When an operation (e.g., opc1 of Sc) produces a substance (e.g., p : Td

as output parameter of opc1), which in turn manifests a set of behaviors/processes

encapsulated in a service (e.g., Sd), we say that the operation promotes the service.

Inhibition. When an operation (e.g., opc2 of Sc) consumes a substance (e.g., p : Tb

as input parameter of opc2), which in turn manifests a set of behaviors/processes

encapsulated in a service (Sb), we say that the operation inhibits the service.

Note that in order for Web services and operations to recognize one another using

these mechanisms, additional pre- and post-conditions may also need to be met.

12.3 Service Oriented Framework

Figure 12.2 shows our pathway exploration framework. It starts with scope specifi-

cation, a manual phase involving a domain expert providing a general goal for the

subsequent search. Different from traditional service composition approaches where

specific search criteria are specified (e.g., compose a travel service that supports flight

booking, car rental and hotel reservation), our search is driven by the desire to iden-

tify any interesting and useful service compositions that may come up in the search

process. For performance reasons, the general goal is provided to scope down the

initial search space to a reasonable size. The goal is expressed using mining context

[44], defined as a set of domains carved out by a set of locale attributes of min-

ing interest. Consequently, the mining context encompasses functional areas (e.g.,

cell enzyme, drug functions) and/or locales (e.g., heart, brain) where these functions

reside. Scope specification is followed by several automatic phases. The first of these

is search space determination, where the mining context is used to define a focused

library of existing service models found on the Web as the initial pool for further

exploration. The next is the screening phase, where Web services in the focused

library would go through filtering algorithms for the purpose of identifying poten-

tially interesting leads of service compositions or pathway segments. These leads are

then semantically verified based on a subset of operation pre- and post-conditions.

Finally, verified leads are linked together using our linking algorithms for establish-

ing more comprehensive pathway network. Discovered pathways from the screening

phase are input to the evaluation phase, which determines whether they are actually

useful. In the following subsections, we describe each of these phases in more details.

12 Exploring Service Networks 283

Fig. 12.2 Service-oriented pathway exploration framework

12.3.1 Scope Specification and Search Space Determination

The scope specification phase of our framework involves the specification of a mining

context that determines a set of ontologies to use for the pathway discovery process

[44]. These ontologies are referenced by Web services for defining the types of their

operation input and output parameters. Consequently, the mining context defines the

coverage of the search space when looking for composable component services for

the purpose of pathway discovery. Usually the more specific a context is, the narrower

a search space would be. Within the next search space determination phase, a focused

library is determined based on the mining context [44]. The focused library consists

of Web services from the service registry that are involved in the mining context. In

other words, Web services contained in the focused library would reference some

ontologies covered by the mining context.

12.3.2 Screening

The screening phase is used to identify composable biological service models and

ultimately pathway networks. This phase contains three steps: filtering, static verifi-

cation, and linking. We describe these in the following subsections.

284 G. Zheng and A. Bouguettaya

12.3.2.1 Filtering

With the focused library as input, our filtering algorithms [44] are used to generate a

collection of lead service compositions or pathway segments. These algorithms rely

on three service/operation recognition mechanisms illustrated in Fig. 12.1 to identify

the composability of services and service operations.

12.3.2.2 Static Verification

The leads identified via filtering are verified using our static verification algorithm

[43], which eliminates false compositions based on checking pre- and post-conditions

involving binary variables (e.g., whether the input to an operation is activated) and

enumerated properties (e.g., whether there is a match between the locale for an input

parameter).

12.3.2.3 Linking

Our linking algorithms [43] are applied to the verified leads to generate more com-

prehensive composition leads. In [43], we represented pathways discovered in the

screening phase using the tree format due to its simplicity in implementation. How-

ever, this representation strategy has the inherent difficulty of merging potentially

duplicate nodes in the pathways. In [45], we extended our rendering algorithms to

represent pathways in GraphML [5], which can then be rendered and automatically

arranged using yEd [16].

12.3.3 Evaluation

The goal of the evaluation is to identify interesting pathways out of those discovered

from the screening phase. Evaluation is carried out in two steps: objective evaluation

and subjective evaluation, as shown in Fig. 12.3.

12.3.3.1 Objective Evaluation

Objective evaluation aims at automatically highlighting interesting pathway sub-

graphs within a pathway network based on limited input from the user [46]. This

is achieved in three substeps: automatic identification of interesting edges within a

pathway network, user selecting interesting nodes for further pursuit based on such

identification, and automatic establishment of a connected subgraph within the iden-

tified pathway network. The connected subgraph highlights interesting composition

flows based on the heuristics that such flows would link user selected nodes with as

many interesting edges as possible.

12 Exploring Service Networks 285

Fig. 12.3 Evaluation of pathway networks

12.3.3.2 Subjective Evaluation

Subjective evaluation aims at identifying useful pathways out of discovered pathway

networks. Subjective evaluation contains two distinctive steps, namely hypothesis

formulation and simulation. When presented with a pathway showing highlighted

interesting composition flow, the user may attempt to formulate hypothesis based on

the indirect relationships that are derived from the way the pathway network is laid

out. Such hypothesis can then be tested out using simulation.

We will illustrate the above steps using real examples after we present how we

model biological processes as Web services.

12.4 Service Model Development

Our service oriented framework for pathway discovery assumes that biological

processes are modeled using Web services. We expect that these models will initially

have minimal details about known attributes and processes based on lab discoveries.

As our knowledge increases and the modeling techniques continue to mature, the

fidelity and completeness of these models will also be increased accordingly. One

of the most challenging issues in modeling biological entities is how to approximate

the richness of their processes and contextual uncertainties (e.g., varying temperature

and fluidity of the surrounding environment) in a way that the models themselves

286 G. Zheng and A. Bouguettaya

would yield similar responses to the same stimuli or changes in the environment.

Instead of trying to solve the issues of model accuracy and completeness, which by

themselves are active research topics [33, 42], we focus on how Web services can be

used as a vehicle to describe aspects of biological entities that we already know how

to model. For this purpose, we compiled a list of process models based on [2, 8, 18,

26, 32, 41]. In addition to describing process models, these sources also reveal some

simple relevant pathways that can be manually put together. We show examples of

process models and corresponding simple pathways in Fig. 12.4.

(a)

(e)

(f)

(g)

(h)

(b)

(c)

(d)

Fig. 12.4 Examples of conceptual process model and simple pathway

12 Exploring Service Networks 287

Multiple examples of recognition, promotion and inhibition can be found in these

models. For example, Fig. 12.4a shows that an enzyme called 15 LO provides an

operation called produce LXA4, which promotes the service of a lipoxin called LXA4.

Figure 12.4c shows that upon injury, LTB4 recruits Neutrophil, promoting its service

and hence its operation of producing COX2. Figure 12.4e shows that the service of

an enzyme called PLA2 can liberate Arachidonic Acid, which can in turn be used

as input to the produce PGG2 operation of COX1’s service or the produce PGE2

operation of the COX2 service. Figure 12.4f shows that Gastric Juice’s service can

inhibit the services of both Stomach Cell and Mucus. Examples of pre- and post-

conditions can be found in Fig. 12.4h, which shows that when not phosphorylated,

a protein called NF-κB/Rel can translocate from cytoplasm to cell nucleus, where

it can stimulate proinflammatory gene transcription. NF-κB/Rel’s service, however,

may be inhibited by the service of another protein called IκB through IκB’s bind

NF-κB/Rel operation. We use process models such as those in Fig. 12.4 as references

when developing WSDL and WSML Web services in Sects. 12.4.1 and 12.4.2. We

Fig. 12.5 Service model development

288 G. Zheng and A. Bouguettaya

also use simple pathways manually constructed as references when we check the

correctness of pathways automatically discovered using our mining algorithms.

To model biological processes as real Web services, we first capture the actual

process details for each type of biological entity as a WSDL [13] service and deploy

these services using a Jetty Web server [7], as shown in the upper left corner of

Fig. 12.5. We then expose the semantic interface (i.e., ontological types of opera-

tion input and output, pre- and post-conditions) of each WSDL service using Web

Service Modeling Language (WSML) [10] as a Semantic Web service. Web Ser-

vice Modeling Toolkit (WSMT) [12] can be used to define both the ontologies and

Semantic Web Services (SWS) in the registry. These can be either cold deployed to

the Web Services Modeling eXecution environment (WSMX) [14] during WSMX

startup or hot deployed by the WSMT at WSMX runtime. WSML service can be

finally invoked during runtime with the help of lowering and lifting adapters. We

discuss details involved in these steps in the following subsections.

12.4.1 WSDL Service Modeling of Biological Processes

We first define an XML schema (Fig. 12.6) containing generic types such as Input-

Substance, OutputSubstance and BooleanResponse. These types are intended to be

used by biological process models in our experiment to represent their input and

output substances. For example, type OutputSubstance contains information about

an output substance type, location, amount and a generic boolean flag that can be

used for passing additional information (e.g., the output of liberate ArachidonicAcid

in Fig. 12.4e would have this flag set to true for being liberated). In some cases,

an operation may simply return a boolean response indicating whether the corre-

sponding process represented by the operation has been invoked successfully. The

XML schema is then run through an xjc [6] compiler to generate corresponding bean

classes. We define each process model with a Java class based on these bean classes.

Using Axis2 [1] running inside a Jetty Web server [7], these Java classes are then

exposed as WSDL Web services at runtime.

We show an example WSDL service for COX1 in Fig. 12.7 and list in Table 12.1

all WSDL services and their operations that are used in our experiment. For each

WSDL service operation, we include in Table 12.1 its corresponding input and output

parameters, and a simple description of logic used in the corresponding Java class.

The Java class takes as its input the object of type InputSubstance that is contained in

the operation input SOAP message, and returns an object of type OutputSubstance

or BooleanResponse. The returned object is then used to populate the output SOAP

message of the operation. We use default to denote default operation logic that can

be derived using the following rules:

12 Exploring Service Networks 289

• If the returned object is of type OutputSubstance, then the default logic is to set

the location and amount attributes to be equal to those used in the input object.

• If the return object is of type BooleanResponse, then the default logic is to check

whether the type attribute of the input object is the same as expected. If so, set the

result attribute of BooleanResponse to true. Otherwise, set it to false.

We list for each operation in the third column of Table 12.1 the expected value for

the type attribute.

Fig. 12.6 Schema for WSDL services

290 G. Zheng and A. Bouguettaya

Fig. 12.7 WSDL description of COX1 service

12.4.2 WSML Service Wrapping of WSDL Service

Although the internal details of biological processes can be modeled as WSDL Web

services, WSDL itself does not provide elaborate mechanism for expressing the pre-

and post-conditions of service operations. WSDL also lacks the semantics needed to

unambiguously describe data types used by operation input and output messages. We

choose WSML [10] among others (e.g., OWL-S [17], WSDL-S [15]) to fill this gap

due to the availability of WSMX, which supports the deployment of ontologies and

Web services described in WSML. Based on the conceptual service models captured

in Fig. 12.4, we categorize biological entities into several ontologies as shown in

Fig. 12.8. These include DrugOntology, ProteinOntology, NervousSystemOntology,

FattyAcidOntology and CellOntology. They would all refer to a CommonOntology

containing generic entity types such as Substance, the root concept of all entity types.

We use UnknownSubstance as a placeholder for process inputs that are not fully

described in the literature. We also create a MiscOntology capturing definitions of

12 Exploring Service Networks 291

T
a
b

le
1
2
.1

D
es

cr
ip

ti
o
n
s

o
f

W
S

D
L

se
rv

ic
es

S
er

v
ic

e
O

p
er

at
io

n
s

In
p
u
tS

u
b
st

an
ce

O
u
tp

u
tS

u
b
st

an
ce

O
p
er

at
io

n
lo

g
ic

at
tr

ib
u

te
ty

p
e

at
tr

ib
u

te
ty

p
e

o
r

B
o
o
le

an
R

es
p
o
n
se

_
1
5
_
L

O
p
ro

d
u
ce

L
A

X
4

U
n
k
n
o
w

n
S

tu
ff

L
X

A
4

S
et

o
u
tp

u
t

lo
ca

ti
o
n

to
in

fl
am

m
at

io
n

A
sp

ir
in

a
ce

ty
la

te
C

O
X

1
C

O
X

1
B

o
o

le
an

R
es

p
o

n
se

D
ef

au
lt

a
ce

ty
la

te
C

O
X

2
C

O
X

2
B

o
o

le
an

R
es

p
o

n
se

D
ef

au
lt

b
in

d
IK

K
_

b
et

a
IK

K
B

et
a

B
o

o
le

an
R

es
p

o
n

se
D

ef
au

lt

B
lo

o
d

ci
rc

u
la

te
P

G
H

2
P

ro
st

ag
la

n
d
in

H
2

P
ro

st
ag

la
n
d
in

H
2

S
et

o
u
tp

u
t

lo
ca

ti
o
n

to
en

d
o
th

el
iu

m

B
ra

in
p
ro

ce
ss

P
a
in

P
ai

n
R

el
ie

f
S

et
o

u
tp

u
t

lo
ca

ti
o

n
to

b
ra

in

C
O

X
1

p
ro

d
u
ce

P
G

G
2

A
ra

ch
id

o
n

ic
A

ci
d

P
ro

st
ag

la
n

d
in

G
2

S
et

o
u

tp
u

t
lo

ca
ti

o
n

to
p
la

te
le

t

C
O

X
2

p
ro

d
u
ce

P
G

E
2

A
ra

ch
id

o
n

ic
A

ci
d

P
ro

st
ag

la
n

d
in

E
2

D
ef

au
lt

G
as

tr
ic

Ju
ic

e
er

o
d
eS

to
m

a
ch

C
el

l
S

to
m

ac
h

C
el

l
S

to
m

ac
h

C
el

l
If

in
p

u
t

is
co

v
er

ed
b
y

m
u

cu
s,

fl
ag

o
u

tp
u

t
as

n
o
t

co
v
er

ed
.

O
th

er
w

is
e,

se
t

th
e

am
o
u
n
t

o
f

o
u
tp

u
t

to
0

d
ep

le
te

M
u

cu
s

M
u
cu

s
B

o
o
le

an
R

es
p
o
n
se

D
ef

au
lt

Ik
ap

p
aB

b
in

d
N

F
ka

p
p
a
B

R
el

N
F

k
ap

p
aB

R
el

B
o

o
le

an
R

es
p

o
n

se
D

ef
au

lt

IK
K

_
b
et

a
p
h
o
sp

h
o
ry

la
te

Ik
a
p
p
a
B

Ik
ap

p
aB

B
o
o
le

an
R

es
p
o
n
se

D
ef

au
lt

L
P

S
a

ct
iv

a
te

IK
K

B
et

a
IK

K
B

et
a

IK
K

B
et

a
S

et
o

u
tp

u
t

as
ac

ti
v
at

ed

L
T

B
4

re
cr

u
it

N
eu

tr
o

p
h

il
N

eu
tr

o
p
h
il

N
eu

tr
o
p
h
il

F
la

g
lo

ca
le

o
f

o
u
tp

u
t

as
in

ju
re

d

in
ci

te
In

fl
a
m

m
a
ti

o
n

U
n
k
n
o
w

n
S

tu
ff

B
o
o
le

an
R

es
p
o
n
se

D
ef

au
lt

L
X

A
4

su
p
p
re

ss
In

fl
a
m

m
a
ti

o
n

U
n
k
n
o
w

n
S

tu
ff

B
o
o
le

an
R

es
p
o
n
se

D
ef

au
lt

M
u
cu

s
co

ve
rS

to
m

a
ch

W
a
ll

S
to

m
ac

h
C

el
l

S
to

m
ac

h
C

el
l

F
la

g
o

u
tp

u
t

as
co

v
er

ed

N
eu

tr
o
p
h
il

p
ro

d
u
ce

L
T

B
4

A
2
3
1
8
7

L
T

B
4

D
ef

au
lt

p
ro

d
u
ce

C
O

X
2

U
n
k
n
o
w

n
S

tu
ff

C
O

X
2

F
la

g
o
u
tp

u
t

as
n
o
t

ac
et

y
la

te
d

N
F

k
ap

p
aB

R
el

tr
a

n
sl

o
ca

te
N

F
k
ap

p
aB

R
el

N
F

k
ap

p
aB

R
el

S
et

o
u
tp

u
t

lo
ca

ti
o
n

to
n
u
cl

eu
s

st
im

u
la

te
P

G
T

ra
n

sc
ri

p
ti

o
n

N
F

k
ap

p
aB

R
el

B
o

o
le

an
R

es
p

o
n

se
D

ef
au

lt

N
o

ci
ce

p
to

r
se

n
se

P
a

in
N

o
ci

ce
p

to
r

P
ai

n
S

et
o

u
tp

u
t

lo
ca

ti
o

n
to

in
fl

am
m

at
io

n

tr
a

n
sm

it
P

a
in

P
ai

n
P

ai
n

S
et

o
u

tp
u

t
lo

ca
ti

o
n

to
sp

in
al

co
rd

se
n

se
R

el
ie

f
R

el
ie

f
B

o
o

le
an

R
es

p
o

n
se

D
ef

au
lt

(C
o
n
ti

n
u
ed

)

292 G. Zheng and A. Bouguettaya

T
a
b

le
1
2
.1

(C
o
n
ti

n
u
ed

)

S
er

v
ic

e
O

p
er

at
io

n
s

In
p
u
tS

u
b
st

an
ce

O
u
tp

u
tS

u
b
st

an
ce

O
p
er

at
io

n
lo

g
ic

at
tr

ib
u

te
ty

p
e

at
tr

ib
u

te
ty

p
e

o
r

B
o
o
le

an
R

es
p
o
n
se

P
er

o
x
id

as
e

p
ro

d
u
ce

P
G

H
2

P
ro

st
ag

la
n
d
in

G
2

P
ro

st
ag

la
n
d
in

H
2

D
ef

au
lt

P
G

E
2

in
d
u
ce

1
5
L

O
U

n
k
n
o
w

n
S

tu
ff

_
1
5
_
L

O
se

t
th

e
am

o
u
n
t

o
f

o
u
tp

u
t

to
1
0

%
o
f

th
at

o
f

in
p
u
t

b
in

d
N

o
ci

ce
p
to

r
N

o
ci

ce
p
to

r
N

o
ci

ce
p
to

r
F

la
g

o
u
tp

u
t

as
b
o
u
n
d

P
G

I2
su

p
p

re
ss

P
la

te
le

tA
g
g
re

g
a

ti
o

n
U

n
k
n
o
w

n
S

tu
ff

B
o
o
le

an
R

es
p
o
n
se

D
ef

au
lt

P
G

I2
S

y
n
th

as
e

p
ro

d
u
ce

P
G

I2
P

ro
st

ag
la

n
d
in

H
2

P
ro

st
ag

la
n
d
in

I2
D

ef
au

lt

P
L

A
2

li
b

er
a
te

A
ra

ch
id

o
n

ic
A

ci
d

A
A

A
A

F
la

g
o

u
tp

u
t

as
li

b
er

at
ed

S
p
in

al
C

o
rd

tr
a

n
sm

it
P

a
in

P
ai

n
P

ai
n

S
et

o
u

tp
u

t
lo

ca
ti

o
n

to
b
ra

in

tr
a

n
sm

it
P

a
in

R
el

ie
f

R
el

ie
f

R
el

ie
f

S
et

o
u

tp
u

t
lo

ca
ti

o
n

to
sp

in
al

co
rd

S
to

m
ac

h
C

el
l

p
ro

d
u
ce

M
u
cu

s
P

ro
st

ag
la

n
d
in

I2
M

u
cu

s
D

ef
au

lt

T
B

X
A

S
1

p
ro

d
u
ce

T
xA

2
P

ro
st

ag
la

n
d
in

H
2

T
x
A

2
D

ef
au

lt

T
x
A

2
va

so
co

n
st

ri
ct

io
n

U
n
k
n
o
w

n
S

tu
ff

B
o
o
le

an
R

es
p
o
n
se

D
ef

au
lt

12 Exploring Service Networks 293

entity types found in the literature that don’t seem to belong to any domain. Table 12.2

shows ontological concepts that have attributes not depicted in Fig. 12.8. Since many

of the ontological concepts are subConceptOf Substance in CommonOntology, they

all inherit the locale and quantity attributes from Substance.

(b) (a)

(c)

(d)

(e)

(f)

(g)

Fig. 12.8 Example ontologies

Using these ontologies, we then wrap the semantic interfaces of existing WSDL

services as WSML services. Figure 12.9 gives an example of WSML service named

NF_kappaB_Rel_1_Service. Note WSML uses the capability section to represent

service operation. In addition, preconditions and postconditions are expressed in

WSMO axiom logical expressions [11]. For the given example of operation translo-

cate, the capability section states for the precondition that the input entity instance

named nfkbr should be of type NF_kappaB_Rel, which is defined in ProteinOn-

tology. In addition, nfkbr’s attribute locale should be equal to cytoplasm and its

attribute phosphorylated should be equal to false. Similarly, the postcondition of

the same operation states that the locale attribute has been changed to nucleus. The

interface section states that input entity NF_kappaB_Rel has grounding with the

input parameter of operation translocate of the corresponding WSDL service. The

output from the WSDL service operation should be mapped to NF_kappaB_Rel as

defined in the protein ontology.

In the non functional properties (nfp) section (towards the top of Fig. 12.9) of each

WSML service, we add a provider property to indicate the corresponding ontological

type of an entity that can provide the service. We use this information in our mining

algorithms later to establish the relationship between a service providing entity and

the service it provides. Second, we add a modelSource property in the nfp section

294 G. Zheng and A. Bouguettaya

Table 12.2 Attributes of ontological concepts

Ontology Concept Attribute Attribute type

CommonOntology Substance locale _string

quantity _decimal

UnknownSubstance localeInjured _boolean

Bool result _boolean

Signal locale _string

ProteinOntology NF_kappaB_Rel phosphorylated _boolean

I_kappaB phosphorylated _boolean

COX acetylated _boolean

IKK_beta activated _boolean

NervousSystemOntology Nociceptor isBound _boolean

FattyAcidOntology Arachidonic_Acid liberated _boolean

localeInjured _boolean

MiscOntology A23187 localeInjured _boolean

to indicate the source information that the model is based on. This information

allows our algorithms to automatically identify interesting pathway segments within

a discovered pathway network. Third, we add a providerConsumable property in

the nfp section to indicate whether the service providing entity should be consumed

along the invocation of its operation. For example, in order for mucus (Fig. 12.4f) to

cover the wall of the stomach, the mucus itself will have to be consumed. Finally,

one of the limitations of WSML is that it allows for the specification of pre- and post-

conditions for only an entire service, but not its individual operations. Since different

service operations in practice may have different pre- and post-conditions, we have

to split services that each originally has multiple operations into several services

(e.g., NF_kappaB_Rel_1_Service and NF_kappaB_Rel_2_Service) so that each new

service would contain only one operation. This change allows us to specify different

conditions individually for these operations. We use the name of these services to

keep track of their relationship and use that information to merge these services

towards the end of the screening phase.

Table 12.3 lists the preconditions and postconditions for some of the other WSML

services that are used in our experiment. We use default listed for some of the pre- and

post-conditions to indicate that the corresponding condition simply checks whether

the parameter used during invocation is of the prescribed type.

12.4.3 WSML Service Invocation

The WSML service invocation module (top right of Fig. 12.5) is used in two cases.

In the first case, after each pair of WSDL and WSML are developed and deployed,

we need to verify that the services are themselves free of programming errors. In

12 Exploring Service Networks 295

Fig. 12.9 Semantic interface description in WSML

the second case, we need to simulate the interactions among biological entities and

their processes that are involved in a pathway network that has been discovered using

our mining algorithms. The invocation of WSML services is realized with the help

of both lowering and lifting adapters. For illustration purposes, we show both the

input SOAP message packaged by a lowering adapter and output SOAP message

consumed by a lifting adapter in Fig. 12.10 for operation producePGG2.

When a WSML service is to be invoked, the lowering adapter is used to parse out

attribute values of the input entity and package them into an input SOAP message

(Fig. 12.10a) to be used to invoke the corresponding WSDL service. Note in addition

to the translation from ontological type Arachidonic_Acid to ArachidonicAcid for

the type attribute, the following translations have also taken place in the lowering

296 G. Zheng and A. Bouguettaya

T
a
b

le
1
2
.3

P
re

co
n
d
it

io
n
s

an
d

p
o
st

co
n
d
it

io
n
s

o
f

W
S

M
L

se
rv

ic
es

S
er

v
ic

e
C

ap
ab

il
it

y
P

re
co

n
d

it
io

n
P

o
st

co
n

d
it

io
n

A
sp

ir
in

_
1
_
S

er
v
ic

e
a

ce
ty

la
te

C
O

X
1

?c
o

x
1

m
em

b
er

O
f

C
O

X
1

[a
ce

ty
la

te
d

h
as

V
al

u
e

?a
]

an
d

(?
a

=
fa

ls
e)

D
ef

au
lt

A
sp

ir
in

_
2
_
S

er
v
ic

e
a

ce
ty

la
te

C
O

X
2

?c
o

x
2

m
em

b
er

O
f

C
O

X
2

[a
ce

ty
la

te
d

h
as

V
al

u
e

?a
]

an
d

(?
a

=
fa

ls
e)

D
ef

au
lt

A
sp

ir
in

_
3
_
S

er
v
ic

e
b

in
d

IK
K

_
b

et
a

D
ef

au
lt

D
ef

au
lt

B
ra

in
S

er
v

ic
e

p
ro

ce
ss

P
a
in

?p
s

m
em

b
er

O
f

P
ai

n
S

ig
n

al
[l

o
ca

le
h
as

V
al

u
e

?l
]

an
d

(?
l

=
“b

ra
in

”)
?r

s
m

em
b

er
O

f
R

el
ie

fS
ig

n
al

[l
o

ca
le

h
as

V
al

u
e

?l
]

an
d

(?
l

=
“b

ra
in

”)

C
O

X
1

S
er

v
ic

e
p
ro

d
u
ce

P
G

G
2

?a
a

m
em

b
er

O
f

A
ra

ch
id

o
n

ic
_

A
ci

d
[l

ib
er

at
ed

h
as

V
al

u
e

?l
]

an
d

(?
l

=
tr

u
e)

D
ef

au
lt

C
O

X
2

S
er

v
ic

e
p
ro

d
u
ce

P
G

E
2

?a
a

m
em

b
er

O
f

A
ra

ch
id

o
n

ic
r_

A
ci

d
[l

ib
er

at
ed

h
as

V
al

u
e

?l
]

an
d

(?
l

=
tr

u
e)

D
ef

au
lt

I_
k
ap

p
aB

S
er

v
ic

e
b
in

d
N

F
_
ka

p
p
a
B

R
el

?n
fk

b
m

em
b
er

O
f

N
F

_
k
ap

p
aB

_
R

el
[p

h
o
sp

h
o
ry

la
te

d
h
as

V
al

u
e

?p
]

an
d

(?
p

=
fa

ls
e)

D
ef

au
lt

IK
K

_
b
et

aS
er

v
ic

e
p
h
o
sp

h
o
ry

la
te

I_
ka

p
p
a
B

?i
k
b

m
em

b
er

O
f

I_
k
ap

p
aB

[p
h
o
sp

h
o
ry

la
te

d
h
as

V
al

u
e

?p
]

an
d

(?
p

=
fa

ls
e)

D
ef

au
lt

L
P

S
S

er
v
ic

e
a

ct
iv

a
te

IK
K

_
B

et
a

?i
k

k
b

et
a

m
em

b
er

O
f

IK
K

_
b

et
a[

ac
ti

v
at

ed
h

as
V

al
u

e
?a

]
an

d
(?

a
=

fa
ls

e)
?i

k
k

b
et

a
m

em
b

er
O

f
IK

K
_

b
et

a
[a

ct
iv

at
ed

h
as

V
al

u
e

?a
]

an
d

(?
a

=
tr

u
e)

L
T

B
4
_
1
_
S

er
v
ic

e
re

cr
u

it
N

eu
tr

o
p

h
il

?n
eu

tr
o
p
h
il

m
em

b
er

O
f

N
eu

tr
o
p
h
il

[l
o
ca

le
In

ju
re

d
h

as
V

al
u

e
?l

]
an

d
(?

l
=

fa
ls

e)
?n

eu
tr

o
p
h
il

m
em

b
er

O
f

N
eu

tr
o
p
h
il

[l
o
ca

le
In

ju
re

d
h
as

V
al

u
e

?l
]

an
d

(?
l

=
tr

u
e)

L
T

B
4
_
2
_
S

er
v
ic

e
in

ci
te

_
in

fl
a
m

m
a
ti

o
n

D
ef

au
lt

D
ef

au
lt

L
X

A
4
S

er
v
ic

e
su

p
p
re

ss
In

fl
a
m

m
a
ti

o
n

?u
s

m
em

b
er

O
f

U
n
k
n
o
w

n
S

u
b
st

an
ce

[l
o
ca

le
h

as
V

al
u

e
?l

]
an

d
(?

l
=

“i
n

fl
am

m
at

io
n

”)
D

ef
au

lt

M
u
cu

sS
er

v
ic

e
co

ve
rS

to
m

a
ch

W
a
ll

?s
c

m
em

b
er

O
f

S
to

m
ac

h
_
C

el
l[

co
v
er

ed
B

y
M

u
cu

s
h

as
V

al
u

e
?c

]
an

d
(?

c
=

fa
ls

e)
?s

c
m

em
b

er
O

f
S

to
m

ac
h

_
C

el
l[

co
v
er

ed
B

y
M

u
cu

s
h
as

V
al

u
e

?c
]

an
d

(?
c

=
tr

u
e)

N
eu

tr
o
p
h
il

_
1
_
S

er
v
ic

e
p
ro

d
u
ce

L
T

B
4

?n
eu

tr
o
p
h
il

m
em

b
er

O
f

N
eu

tr
o
p
h
il

[l
o
ca

le
In

ju
re

d
h
as

V
al

u
e

?l
]

an
d

(?
l

=
tr

u
e)

D
ef

au
lt

(C
o
n
ti

n
u
ed

)

12 Exploring Service Networks 297

T
a
b

le
1
2
.3

(C
o
n
ti

n
u
ed

)

S
er

v
ic

e
C

ap
ab

il
it

y
P

re
co

n
d

it
io

n
P

o
st

co
n

d
it

io
n

N
eu

tr
o
p
h
il

_
2
_
S

er
v
ic

e
p
ro

d
u
ce

C
O

X
2

?u
k
s

m
em

b
er

O
f

U
n
k
n
o
w

n
S

u
b
st

an
ce

[l
o
ca

le
In

ju
re

d
h
as

V
al

u
e

?l
]

an
d

(?
l

=
tr

u
e)

D
ef

au
lt

N
F

_
k
ap

p
aB

_
R

el
_
2
_
S

er
v
ic

e
st

im
u
la

te
P

ro
in

fl
a
m

m
a
to

ry

G
en

eT
ra

n
sc

ri
p
ti

o
n

?n
fk

b
r

m
em

b
er

O
f

N
F

_
k
ap

p
aB

_
R

el
[l

o
ca

le
h

as
V

al
u

e
?l

]
an

d
(?

l
=

“n
u

cl
eu

s”
)

D
ef

au
lt

N
o
ci

ce
p
to

r_
1
_
S

er
v
ic

e
se

n
se

P
a

in
?n

cc
p
t

m
em

b
er

O
f

N
o
ci

ce
p
to

r[
is

B
o
u
n
d

h
as

V
al

u
e

?b
]

an
d

(?
b

=
tr

u
e)

D
ef

au
lt

N
o
ci

ce
p
to

r_
2
_
S

er
v
ic

e
tr

a
n

sm
it

P
a

in
?p

s
m

em
b

er
O

f
P

ai
n

S
ig

n
al

[l
o

ca
le

h
as

V
al

u
e

?l
]

an
d

(?
l

=
“i

n
fl

am
m

at
io

n
”)

?p
s

m
em

b
er

O
f

P
ai

n
S

ig
n

al
[l

o
ca

le
h
as

V
al

u
e

?l
]

an
d

(?
l

=
“s

p
in

al
co

rd
”)

N
o
ci

ce
p
to

r_
3
_
S

er
v
ic

e
se

n
se

R
el

ie
f

?p
s

m
em

b
er

O
f

R
el

ie
fS

ig
n

al
[l

o
ca

le
h
as

V
al

u
e

?l
]

an
d

(?
l

=
“s

p
in

al
co

rd
”)

D
ef

au
lt

P
G

E
2
_
1
_
S

er
v
ic

e
in

d
u
ce

_
1
5
_
L

O
D

ef
au

lt
D

ef
au

lt

P
G

E
2
_
2
_
S

er
v
ic

e
b

in
d

N
o

ci
ce

p
to

r
?n

cc
p
t

m
em

b
er

O
f

N
o
ci

ce
p
to

r[
is

B
o
u
n
d

h
as

V
al

u
e

?b
]

an
d

(?
b

=
fa

ls
e)

?n
cc

p
t

m
em

b
er

O
f

N
o
ci

ce
p
to

r[
is

B
o
u
n
d

h
as

V
al

u
e

?b
]

an
d

(?
b

=
tr

u
e)

P
G

I2
S

y
n
th

as
eS

er
v
ic

e
p
ro

d
u
ce

P
G

I2
?p

g
h
2

m
em

b
er

O
f

P
G

H
2
[l

o
ca

le
h
as

V
al

u
e

?l
]

an
d

(?
l

=
“e

n
d

o
th

el
iu

m
”)

D
ef

au
lt

P
L

A
2
S

er
v
ic

e
li

b
er

a
te

A
ra

ch
id

o
n

ic
A

ci
d

?a
a

m
em

b
er

O
f

A
ra

ch
id

o
n

ic
_

A
ci

d
[l

ib
er

at
ed

h
as

V
al

u
e

?l
i,

lo
ca

le
h
as

V
al

u
e

?l
o

]
an

d
(?

li
=

fa
ls

e)
an

d
(?

lo
=

“e
n

d
o

p
la

sm
ic

_
re

ti
cu

lu
m

”)

?a
a

m
em

b
er

O
f

A
ra

ch
id

o
n
ic

_
A

ci
d

[l
ib

er
at

ed
h

as
V

al
u

e
?l

]
an

d
(?

l
=

tr
u

e)

S
p
in

al
C

o
rd

_
1
_
S

er
v
ic

e
tr

a
n

sm
it

P
a

in
?p

s
m

em
b

er
O

f
P

ai
n

S
ig

n
al

[l
o

ca
le

h
as

V
al

u
e

?l
]

an
d

(?
l

=
“s

p
in

al
co

rd
”)

?p
s

m
em

b
er

O
f

P
ai

n
S

ig
n

al
[l

o
ca

le
h
as

V
al

u
e

?l
]

an
d

(?
l

=
“b

ra
in

”)

S
p
in

al
C

o
rd

_
2
_

S
er

v
ic

e
tr

a
n

sm
it

P
a

in
R

el
ie

f
?r

s
m

em
b

er
O

f
R

el
ie

fS
ig

n
al

[l
o

ca
le

h
as

V
al

u
e

?l
]

an
d

(?
l

=
“b

ra
in

”)
?r

s
m

em
b

er
O

f
R

el
ie

fS
ig

n
al

[l
o

ca
le

h
as

V
al

u
e

?l
]

an
d

(?
l

=
“s

p
in

al
co

rd
”)

T
B

X
A

S
1
S

er
v
ic

e
p
ro

d
u
ce

T
xA

2
?p

g
h
2

m
em

b
er

O
f

P
G

H
2
[l

o
ca

le
h
as

V
al

u
e

?l
]

an
d

(?
l

=
“p

la
te

le
t”

)
D

ef
au

lt

298 G. Zheng and A. Bouguettaya

(a)

(b)

Fig. 12.10 SOAP messages of COX1 WSDL service operation producePGG2: a input, b output

adapter: locale to location, quantity to amount, and liberated to flag. For simplicity,

the lowering adapter expects only one extra attribute of _boolean type and converts

it to a generic boolean flag.

After the WSDL service is invoked, the lifting adapter is used to parse out attribute

values from the corresponding output SOAP message (Fig. 12.10b). These values are

subsequently used to create an instance of an ontological entity type as specified in

an adapter ontology (shown in Fig. 12.11) containing mappings for such conver-

sion. According to this adapter ontology, ProstaglandinG2 field in the output SOAP

message is mapped to concept PGG2 of FattyAcidOntology, location is mapped to

locale, and amount is mapped to quantity (bottom of Fig. 12.11).

12 Exploring Service Networks 299

Fig. 12.11 Adapter ontology for lifting adapter

300 G. Zheng and A. Bouguettaya

12.5 Experiment

We have implemented our pathway exploration framework in PathExplorer, which

is used in our experiment to discover pathways linking service models of biological

processes. We included in the mining context all seven ontologies shown in Fig. 12.8.

No locale (e.g., heart, brain) is explicitly specified. Thus, all locales are considered.

During the search space determination phase (lower right of Fig. 12.5) in our experi-

ment, PathExplorer is used to interrogate APIs of the WSMX runtime library to find

WSML services that refer to each of the seven ontologies. These services are then

collected as part of the focused library for later processing.

In Fig. 12.12a, we show pathways discovered using our screening algorithms and

then represented in the graph format. For brevity, we display only shortened names

for nodes in the graph. We keep the full name containing either the ontological path

for entity nodes or the WSML service path for both service and operation nodes

in a separate description field, which is not shown in Fig. 12.12a. In addition, for

better diagram readability we omit pre- and post-condition details of operation link-

ing edges such as the two forming a loop between operation coverStomachWall

and entity Stomach_Cell.1 However, we keep track of the pre- and post-conditions in

PathExplorer as such information along with the ontological entity paths and WSML

service paths are needed when we try to invoke these services during simulation. To

ensure the correctness of our algorithms, we compared segments within the auto-

matically discovered pathway network with those constructed manually in Fig. 12.4

and found them to be consistent in all cases. For example, if we follow the path start-

ing with COX2Service at the bottom left of Fig. 12.12a, we see that COX2 Service

has an operation called produce PGE2, which generates PGE2. This is consistent

with Fig. 12.4e. Furthermore, PGE2’s corresponding service called PGE2 Service

contains two operations: bind Nociceptor and induce 15-LO. This is consistent with

Fig. 12.4b.

Identification of Interesting Edges—Interesting segments (or edges) of a lead com-

position network (highlighted in Fig. 12.12a) can be identified based on the outcome

of comparing the source indicator of linkages in the pathway graph representing three

types of service/operation recognitions as described in Sect. 12.3.2.1. These inter-

esting edges highlight previously hidden linkages between individual services and

operations. For example, Fig. 12.12a shows that connections from produce PGE2 to

PGE2 and from PGE2 to PGE2 Service are not only included as integral parts of the

pathway network, but are highlighted as interesting edges as well. Such information

is not obviously apparent if we examine a large number of simple pathways that

are individually and independently put together in a manual fashion, such as those

shown in Fig. 12.4.

Selection of Interesting Nodes—In this step, the user would use interesting edges

highlighted in the previous step as visual clues to select nodes of interest to pursue

further. For illustration purposes, we assume that the user has selected five such nodes

1 The precondition along the upper edge states that Stomach_Cell is not covered by Mucus and the

postcondition along the lower edge states that Stomach_Cell is covered by Mucus.

12 Exploring Service Networks 301

(b)

(a)

Fig. 12.12 Discovered pathways: a interesting pathway segments highlighted, b connected pathway
subgraph highlighted

as shown in Fig. 12.12b. These are: service node AspirinService, parameter node

Mucus, service providing entity node Stomach_Cell, parameter node PainSignal,

and parameter node ReliefSignal.

Graph Expansion—Our graph expansion strategy [46] is applied next to link user

identified interesting nodes with as many interesting edges as possible into a con-

nected graph as highlighted in Fig. 12.12b. Using the same process, unrelated inter-

esting pathway segments are excluded and no longer highlighted.

302 G. Zheng and A. Bouguettaya

Hypothesis Formulation—When presented with a pathway showing highlighted

interesting composition flow as in Fig. 12.12b, the user may attempt to formulate

hypothesis based on indirect relationships that are derived from the way the pathway

network is laid out. For example, one such hypothesis may state that an increase in

the dosage amount of Aspirin will lead to the relief of pain, but may increase the risk

of ulcer in the stomach.

Simulation of Pathways—Hypotheses such as the one introduced above can be

tested out using simulation strategies outlined in Algorithm 5. When an operation is

to be invoked, the algorithm checks two factors. First, it examines whether all the

pre-conditions of the operation are met. An operation that does not have available

input entities meeting its preconditions should simply not be invoked. Second, the

algorithm determines how many instances are available for providing the correspond-

ing service. This factor is needed because each biological entities of the same type

has a discrete service process that deals with input and output of a finite proportion.

The available instances of a particular service providing entity will drive the amount

of various other entities they may consume and/or produce. For this reason, the algo-

rithm treats each entity node in a pathway network such as one shown in Fig. 12.12b

as a container of entity instances of the noted ontology type. In some cases, the

service provider is also used as an input parameter. For example, the sensePain oper-

ation from the NociceptorService in Fig. 12.4d has a precondition stating that the

Nociceptor itself should be bound in order to provide this service. In order to express

this precondition, we decided to include the service providing entity also as an input

parameter. In such a case, the number of service providing instances will be deter-

mined by checking further whether each of the service providing entity instances

also meets the precondition of the corresponding operation.

In Algorithm 5, an initial number of instances for each entity type et are first

generated based on function f (et) (lines 01–03). It is conceivable that an expert

may want to create different number of instances at the beginning for different entity

types. Next, we conduct I iterations of operation invocations (lines 05–31). We take a

snapshot of the quantities at the end of each iteration and before the very first iteration

(lines 30 and 04). We determine the number of times the corresponding operation

should be invoked based on the quantity of the corresponding service providing

entity (lines 7–15). To make sure that an operation from a service providing entity

of a small quantity also gets the chance to be invoked, a random number generator

is used (line 15). Upon invocation of the operation, we remove the corresponding

entity instances consumed in the invocation (lines 19–24). Finally, we add the output

parameter instance to the corresponding entity container (lines 25 and 26).

We start by simulating how the quantity of Aspirin affects the erosion of stomach

and sensation of pain. The simulation results obtained from each run of PathExplorer

are compiled into an Excel spreadsheet, which is then used to generate plots such as

those in Figs. 12.13 and 12.14, where the horizontal axis represents the iterations of

operation invocation and vertical axis represents the quantity of various substance

involved. Figure 12.13a–c shows that given a fixed initial quantity of 60 for COX1,

the increase in the dosage amount of Aspirin has a negative effect on the stomach, i.e.,

as the quantity of Aspirin continues to increase from (a) to (c), the severity of stomach

12 Exploring Service Networks 303

Algorithm 5 Simulation Algorithm
Input: Pathway Network P N , function f () determining initial number of instances for an entity type, total number of
iterations I , upper bound S for random number generator random with uniform distribution
Output: Statistics Stats

Variables: entity type et , entity instance container Container(et) of type et , operation op, input entity opin , output entity
opout and precondition oppre

1: for all et ∈ P N do
2: Container(et) ← create f (et) instances;
3: end for
4: Stats ← Tally entity quantities in each container;
5: for i = 0 to I do
6: for all op ∈ P N do
7: s ← op.get Provider Servce();
8: etparameter ← op.get I nput Parameter().get Enti t yT ype();
9: etprovider ← s.get Provider Enti t yT ype();

10: if etparameter = etprovider then

11: n ← number of entities of type etprovider that match oppre

12: else
13: n ← number of entities of type etparameter

14: end if
15: n ← n/S + ((random.next I nt (S) < (n modulo S))?1 : 0);
16: for j = 0 to n do
17: if ∃opin ∈ Container(etparameter) : opin matches oppre then
18: opout ← invoke(op) wi th opin ;
19: if etparameter �= etprovider ∧ provider is consumable then

20: Container(etprovider).remove(0);

21: end if
22: if etparameter �= etprovider ∨ provider is consumable then

23: Container(etparameter).remove(opin);
24: end if
25: etparameter ← opout .get Enti t yT ype();
26: Container(etparameter).add(opout);
27: end if
28: end for
29: end for
30: Stats ← Tally entity quantities in each container;
31: end for

erosion also increases. For example, when the quantity of Aspirin is 10, there is no

sign of stomach erosion. When the quantity of Aspirin increases to 100, the quantity

of stomach cell, after 150 iterations of operation invocation, drops to 20, which is

one third of the initial quantity. This confirms the user hypothesis that Aspirin has a

side effect on the stomach. In addition, we also noticed that given a fixed quantity of

Aspirin, the reduction of the initial quantity of COX1 also has a negative effect on the

stomach (Fig. 12.13d–f). When the initial quantity of COX1 is high, it takes longer for

all the COX1 to get acetylated by Aspirin. As a result, enough PGG2 and consequently

PGH2 and PGI2 will be built up to feed into the produceMucus operation of the

StomachCellService. As the initial quantity of COX1 becomes smaller and while

the depletion rate of Mucus by GastricJuiceService remains the same, less Mucus is

being produced by the StomachCellService as less PGI2 becomes available.

While Fig. 12.13 clearly illustrates the relationships between Aspirin and Stom-

ach_Cell, the relationship between the dosage amount of Aspirin and the sensation

of pain is less obvious in the same figure. Except for Fig. 12.13a, which shows some

accumulation of PainSignal when the quantity of Aspirin is 10, the rest of plots

304 G. Zheng and A. Bouguettaya

(a)

(b)

(c) (f)

(e)

(d)

Fig. 12.13 Simulation results with original configurations

show no pattern of such accumulation or the variation thereof. A closer look at

the highlighted pathway in Fig. 12.12b reveals that this is actually consistent with

the way the simulation is set up. Since PainSignal is created and then converted

by the Brain to ReliefSignal, which disappears after it is sensed by Nociceptor, this

whole path at the bottom actually acts as a ‘leaky bucket’. To examine exactly what is

going on along that path, we decided to make two changes in the simulation setting.

First, we reduced the maximum frequency of invoking the Brain service to half that

12 Exploring Service Networks 305

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 12.14 Simulation results with modified configurations

of Nociceptor. This creates a potential imbalance between the production rate of

PainSignal and ReliefSignal since the processPain operation from the BrainService

will be consequently invoked less frequently than the sensePain operation from the

NociceptorService. Second, we disabled the senseRelief operation of the Nocicep-

torService. This essentially stops the leaking of the ReliefSignal that are generated

as a result of the PainSignal. When we apply only the first change to the simulation,

306 G. Zheng and A. Bouguettaya

the imbalance of the processing rates for PainSignal and ReliefSignal results in a

net accumulation of PainSignal when the quantity of Aspirin is 10 (Fig. 12.14a).

When the quantity is increased to 40 (Fig. 12.14b), we see there are some occasional

and temporary accumulation of PainSignal. As the quantity of Aspirin continues to

increase (Fig. 12.14c), we see no detectable accumulation of PainSignal. Finally, we

apply the second change along with the first one. Consequently, we notice that while

the pattern of PainSignal’s accumulation hasn’t changed much, there is a consistent

accumulation of ReliefSignal. Since each PainSignal is eventually converted to a

ReliefSignal by the Brain according to the highlighted pathway in Fig. 12.12b, the

rate of ReliefSignal’s accumulation actually provides a much better picture on how

fast PainSignal has been generated. We see that as the dosage amount of Aspirin

increases, less ReliefSignal is generated, an indication that less PainSignal has been

generated. Thus it is obvious that the increase of the dosage amount of Aspirin has

a positive effect on the suppression of PainSignal’s generation. This confirms the

other half of user’s original hypothesis.

Simulation results such as these presented in Figs. 12.13 and 12.14 provide infor-

mation to a pathway analyst who would otherwise get such information from in vitro

and/or in vivo exploratory mechanisms.

12.6 Related Work

There are currently two major approaches used to represent biological entities: free

text based description and computer models.

Free text based approaches are mostly targeted at human comprehension. They use

free text annotations and narratives [21, 23] to describe attributes and processes of

biological entities and store them in various databases (e.g., GenBank [35], DIP [40],

KEGG [29, 31], Swiss-Prot [9], and COPE [28]). A major disadvantage with these

annotations and narratives is their lack of structure and interfaces. These are required

for a computer application to “understand” the various concepts and often complex

relationships among these concepts. Although several Natural Language Processing

(NLP) approaches (e.g., [25, 34, 36, 38]) have been devised for the purpose of

pathway discovery, these approaches focus on the identification of pathways and

offer no support for ‘what-if’ analyses on identified pathways using computer-based

simulation.

A computer model of a biological entity can be created based on lab discoveries

and hypotheses. Such models can be both expressive (for human comprehension)

and structured (for computer consumption) and thus provide a better alternative to

free-text annotations. They can be understood by a human through their visual repre-

sentations and by a computer through their constituent constructs. A major advantage

of computer models is their readiness for execution with their inherent processes. By

executing processes of computer models in a simulation, we expect to verify the valid-

ity of previously identified pathways linking real biological entities as represented

by these models. When their processes are expressed as a function of surrounding

12 Exploring Service Networks 307

conditions (e.g., availability of nutrients and energy), computer models would also

have the inherent capability of responding to perturbations in these conditions, mak-

ing it possible to study the effects of the perturbations on the pathways to the extent

allowed by these models. Computer models have been pursued in [4, 20, 22, 24,

27, 30, 39]. Unfortunately, these models are often constructed to simulate entities

in an isolated local environment (as compared to the Web environment), limited to

the study of known pathways (e.g., cell death, growth factor activated kinase in BPS

[4]), and lack the ability to facilitate the discovery of new pathways linking models

that are independently developed. The service-oriented modeling and exploration

approach presented in this paper bridges the gap between the above two representa-

tion approaches. It not only allows for the automatic discovery of previously hidden

pathways, but more importantly brings about unprecedented opportunity for validat-

ing such pathways right on the Web through direct invocation of involved services,

making it possible to carry out simulation-based predictive analysis on the Web of

interactions involving a large number of entities modeled by these services. Although

we have chosen to model biological processes in this paper, we believe our approach

is generic enough to be applicable to many other processes in life. These include,

among others, knowledge production processes, which can be represented and mined

in a similar fashion.

12.7 Conclusion

We described a service-oriented framework for modeling biological processes as

Web services. We presented PathExplorer as a tool to discover pathways linking

these process models. We also described the simulation-based approach used by

PathExplorer to support predictive analysis of discovered pathways. Our framework

allows for the interrelationships among various entities involved in pathway networks

to be exposed in a more holistic fashion than traditional text-based pathway discovery

mechanisms, which inherently lack the simulation capability. In addition, the frame-

work allows such exposure to be achieved via the Web, consequently enabling better

sharing of models and simulation results than traditional modeling and simulation

approaches.

References

1. Apache axis2/java - next generation web services. http://ws.apache.org/axis2/.
2. Aspirin. http://www3.interscience.wiley.com:8100/legacy/college/boyer/0471661791/

cutting_edge/aspirin/aspirin.htm
3. Biological pathways. http://www.genome.gov/27530687.
4. Bps: Biochemical pathway simulator. http://www.brc.dcs.gla.ac.uk/projects/bps/.
5. The graphml file format. http://graphml.graphdrawing.org/.

http://ws.apache.org/axis2/
http://www3.interscience.wiley.com:8100/legacy/college/boyer/0471661791/cutting_edge/aspirin/aspirin.htm
http://www3.interscience.wiley.com:8100/legacy/college/boyer/0471661791/cutting_edge/aspirin/aspirin.htm
http://www.genome.gov/27530687
http://www.brc.dcs.gla.ac.uk/projects/bps/
http://graphml.graphdrawing.org/

308 G. Zheng and A. Bouguettaya

6. Java architecture for xml binding, binding compiler (xjc). http://java.sun.com/webservices/
docs/1.6/jaxb/xjc.html.

7. Jetty. http://www.mortbay.org/.
8. Nf-kappab pathway. http://www.cellsignal.com/reference/pathway/NF_kappaB.html.
9. Uniprotkb/swiss-prot. http://www.ebi.ac.uk/swissprot/.

10. The web service modeling language wsml. http://www.wsmo.org/wsml/wsml-syntax.
11. Web service modeling ontology. http://www.wsmo.org/.
12. The web service modeling toolkit (wsmt). http://sourceforge.net/projects/wsmt.
13. Web services description language (wsdl) 1.1. http://www.w3.org/TR/wsdl.
14. Web services execution environment. http://sourceforge.net/projects/wsmx.
15. Web services semantics - wsdl-s. http://www.w3.org/Submission/WSDL-S/.
16. yed - java graph editor. http://www.yworks.com/en/index.html.
17. Owl-s: Semantic markup for web services. November 2004. http://www.w3.org/Submission/

OWL-S/.
18. Sunny Y. Auyang. From experience to design - the science behind aspirin. http://www.

creatingtechnology.org/biomed/aspirin.htm.
19. Philip Ball. Designing the Molecular World - Chemistry at the Frontier. Princeton University

Press, Princeton, New Jersey, 1994.
20. Upinder S. Bhalla and Ravi Iyengar. Emergent properties of networks of biological signaling

pathways. Science, 283:381 – 387, 1999.
21. Roger Brent and Jehoshua Bruck. Can computers help to explain biology? Nature, 440(23):416

– 417, March 2006.
22. Luca Cardelli. Abstract machines of, systems biology. pp. 145–168, 2005.
23. Jacques Cohen. Bioinformatics: An introduction for computer scientists. ACM Computing

Surveys, 36(2):122 – 158, 2004.
24. H. de Jong and M. Page. Qualitative simulation of large and complex genetic regulatory systems.

In Proceedings of the 14th European Conference on Artificial Intelligence, ECAI, pages 141–
145, Amsterdam, 2000.

25. Daming Yao et al. Pathwayfinder: Paving the way toward automatic pathway extraction. 29:52
– 62, 2004.

26. Craig Freudenrich. How pain works. http://health.howstuffworks.com/pain.htm.
27. Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jrgen Pahle, Natalia Simus, Mudita

Singhal, Liang Xu, Pedro Mendes, and Ursula Kummer. Copasi - a complex pathway simulator.
Bioinformatics, 22:3067 – 3074, September 2006.

28. Horst Ibelgaufts. Cope - cytokines online pathfinder encyclopaedia. http://www.
copewithcytokines.de/.

29. M. Kanehisa, S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima, T. Katayama,
M. arki, and M. Hirakawa. From genomics to chemical genomics: new developments in kegg.
Nucleic Acids Research, 34:354 – 357, January 2006.

30. Peter D. Karp, Suzanne Paley, and Pedro Romero. The pathway tools software. Bioinformatics,
18:S1 – S8, 2002.

31. Kanehisa Laboratories. Kegg: Kyoto encyclopedia of genes and genomes. http://www.genome.
jp/kegg/.

32. Misia Landau. Inflammatory villain turns do-gooder. http://focus.hms.harvard.edu/2001/
Aug10_2001/immunology.html.

33. Ben Lehner and Andrew G. Fraser. A first-draft human protein-interaction. Genome Biology,
5(9):R63, August 2004.

34. Daniel M. McDonald, Hsinchun Chen, Hua Su, and Byron B. Marshall. Extracting gene path-
way relations using a hybrid grammar: the arizona relation parser. Bioinformatics, 20(18):3370
– 3378, July 2004.

35. NCBI. Genbank. http://www.ncbi.nlm.nih.gov/Genbank/.
36. See-Kiong Ng and Marie Wong. Toward routine automatic pathway discovery from on-line

scientific text abstracts. volume 10, pages 104–112, 1999.

http://java.sun.com/webservices/docs/1.6/jaxb/xjc.html
http://java.sun.com/webservices/docs/1.6/jaxb/xjc.html
http://www.mortbay.org/
http://www.cellsignal.com/reference/pathway/NF_kappaB.html
http://www.ebi.ac.uk/swissprot/
http://www.wsmo.org/wsml/wsml-syntax
http://www.wsmo.org/
http://sourceforge.net/projects/wsmt
http://www.w3.org/TR/wsdl
http://sourceforge.net/projects/wsmx
http://www.w3.org/Submission/WSDL-S/
http://www.yworks.com/en/index.html
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.creatingtechnology.org/biomed/aspirin.htm
http://www.creatingtechnology.org/biomed/aspirin.htm
http://health.howstuffworks.com/pain.htm
http://www.copewithcytokines.de/
http://www.copewithcytokines.de/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://focus.hms.harvard.edu/2001/Aug10_2001/immunology.html
http://focus.hms.harvard.edu/2001/Aug10_2001/immunology.html
http://www.ncbi.nlm.nih.gov/Genbank/

12 Exploring Service Networks 309

37. Reactome. Reactome - a curated knowledgebase of biological pathways. http://www.reactome.
org/.

38. Carlos Santos, Daniela Eggle, and David J. States. Wnt pathway curation using automated
natural language processing: combining statistical methods with partial and full parse for
knowledge extraction. Bioinformatics, 21(8):1653 – 1658, November 2005.

39. Masaru Tomita, Kenta Hashimoto, Koichi Takahashi, Thomas Simon Shimizu, Yuri Matsuzaki,
Fumihiko Miyoshi, K. Saito, S. Tanida, Katsuyuki Yugi, J. C. Venter, and C. A. Hutchison III.
E-cell: software environment for whole-cell simulation. Bioinformatics, 15(1):72 – 84, 1999.

40. UCLA. Database of interacting proteins. http://dip.doe-mbi.ucla.edu/.
41. Min-Jean Yin, Yumi Yamamto, and Richard B. Gaynor. The anti-inflammatory agents aspirin

and salicylate inhibit the activity of IκB kinase-β . Nature, 369:77 – 80, November 1998.
42. Jing Yu, V. Anne Smith, Paul P. Wang, Alexander J. Hartemink, and Erich D. Jarvis. Advances

to bayesian network inference for generating causal networks from observational biological
data. Bioinformatics, 20(18):3594 – 3603, 2004.

43. George Zheng and Athman Bouguettaya. Mining web services for pathway discovery. 2007

VLDB Workshop on Data Mining in, Bioinformatics, September 2007.
44. George Zheng and Athman Bouguettaya. A web service mining framework. In 2007 IEEE

International Conference on Web Services (ICWS), Salt Lake City, Utah, July 2007.
45. George Zheng and Athman Bouguettaya. Discovering pathways of service oriented biological

processes. The Ninth International Conference on Web information Systems Engineering (WISE

2008), September 2008.
46. George Zheng and Athman Bouguettaya. Service-based analysis of biological pathways. BMC

Bioinformatics, October 2009.

http://www.reactome.org/
http://www.reactome.org/
http://dip.doe-mbi.ucla.edu/

Chapter 13

Automating Tendering Processes with Web
Services: A Case Study on Building
Construction Tendering in Hong Kong

Dickson K. W. Chiu, Nick L. L. NG, Sau Chan Lai, Matthias Farwick

and Patrick C. K. Hung

Abstract With the recent advancements and adoption of Web Service technolo-

gies, improvements can be made for tendering processes to solve B2B interoper-

ability and integration problems. In this paper, we detail our Tendering Process

Meta-model (TPM) to improve inefficient manual or semi-automated tendering

process. We further demonstrate our approach in a case study of the building and

construction industries, where contracting authority invite tenderers to submit an

estimate of prices, detailing the costs associated with completing a building. In this

way, the contracting authority can base their decision on the tender submissions to

select the most suitable contractor. Currently in Hong Kong, many of such tendering

processes are still mainly manual and paper based. The tenderers need to collect the

An extended abstract of this paper was presented at the 2007 GDN meeting [9].

D. K. W. Chiu (B)

Dickson Computer Systems, 117 Argyle Street, Kowloon, Hong Kong
e-mail: dicksonchiu@ieee.org

D. K. W. Chiu
Department of Computer Science and Engineering, Hong Kong University of Science
and Technology, Kowloon, Hong Kong

N. L. L. NG ·S. C. Lai
Computer Science and Engineering, Hong Kong University of Science and Technology,
Kowloon, Hong Kong
e-mail: nickng@ust.hk

S. C. Lai
e-mail: chanlaze@ust.hk

M. Farwick
Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
e-mail: csae8781@uibk.ac.at

P. C. K. Hung
Faculty of Business and Information Technology, University of Ontario Institute
of Technology, Oshawa, Canada
e-mail: patrick.hung@uoit.ca

A. Bouguettaya et al. (eds.), Advanced Web Services, 311
DOI: 10.1007/978-1-4614-7535-4_13,
© Springer Science+Business Media New York 2014

312 D. K. W. Chiu et al.

tender’s booklet, price it, and bring it back to the contracting authority’s office before

the deadline. In this paper, we present a design and implementation of an e-tendering

system (ETS) based on our TPM by using Web services for the automation of such

tendering processes. We also show how e-tendering reduces the problems that occur

in the manual process and helps decision making.

13.1 Introduction

Nowadays, technology plays an important role in many businesses, especially in

roles such as automating many business processes and facilitating better decisions.

Over the past several years, Web services have been expanded to become more

and more popular for application development, mainly due to its competitiveness in

applications integration [13]. Web services technology offers a unified platform for

both business-to-business (B2B) and business-to-customer (B2C) communications.

The goal of the Web service paradigm is to overcome some of the main drawbacks of

traditional business-to-business applications that, in most cases, result in complex,

custom, one-off solutions, that are not scalable, and costly and time consuming in

the creation.

Unlike traditional client-server models, such as a Web server or webpage sys-

tem, Web services do not provide the user with a Graphic User Interface (GUI) [4].

Instead, Web services share business logics, data, and processes through a standard-

ized programmatic interface across a network. The applications interface with each

other, but not with the users. Application developers can then add the Web service

to a GUI (such as a Web page or an executable program) to offer specific function-

alities to users. Besides, Web services realize a distributed computing model via

application-to-application communication over the Internet. For example, a tender-

ing application could reorder needed items via the Web service interface of a remote

inventory application.

Tendering processes are complex. A typical one involves lots of business proce-

dures such as tender specification preparation, tender advertisement, tender

aggregation, tender evaluation, tender awarding, contract monitoring, etc. Besides,

a tendering system often needs to communicate with other systems such as sup-

ply, order, purchase, procurement, and even account to complete its procedures. The

total number of stakeholders involved can be numerous, and it is crucial for them

to interoperate smoothly with one another through a programmatic interface written

in a common language. Ideally, a well-suited tendering process model should be

designed making use of this language to provide a framework for all stakeholders to

follow strictly, so that application-to-application communication over the Internet in

an organized manner becomes possible.

In particular, for the case that we study, the tendering process is a key business

process in the construction industry. Many information exchanges occur between

the contracting authorities and the contractors. Traditionally in Hong Kong, the ten-

dering process is paper based and involves much manual work, this can cause many

13 Automating Tendering Processes with Web Services 313

problems. Sometimes contractors even have to use handwritten submission, because

some contract authorities still require them to fill in their own pre-printed tender

booklets. Not only are such processes tedious however, handwriting is also extremely

error-prone and sometimes difficult to read. In addition, traffic jams and accidents

could cause submission deadlines to be missed.

Based on our earlier experience in developing e-Negotiation support with a

meta-modeling approach with Web services [8], we apply and extend it for ten-

dering processes. For the implementation, we are introducing an e-Tendering system

(ETS). By using electronic forms as the means of tendering, companies are able

to make split second decisions and last minute changes over the Internet. This is

desirable because of the rapid changes in the material price (e.g., price of steel, see:

http://hypertextbook.com/facts/2005/AlexGizersky.shtml) and labor cost (see: nom-

inal Wage Index by Industry Sector, http://www.info.gov.hk/censtatd/eng/hkstat/fas/

wages/w_nom_index.html). Further with the help of Web services, contractors can

provide cost estimates automatically. The pricing of each item can automatically be

calculated by using information from their corporate databases as well as immediate

estimates from subcontractors. In addition, since all the information provided by

the contractors is in a digital format, it is very easy for the contracting authority to

generate tender evaluation reports in any format. Since different contractors have

different systems and databases, a standard platform is required for the information

exchange. Web services are therefore suitable because they use standardized XML,

and are not tied to any particular operating system or programming language [4].

The rest of this paper is organized as follows. Section 13.2 introduces the back-

ground of tendering. Section 13.3 reviews related work. Section 13.4 describes the

architecture and implementation for our ETS. Section 13.5 summarizes the paper

with the advantage of our approach and our future work direction.

13.2 Tendering and Case Background

In general, no matter paper-based or computerized tendering process, both of them

begin with a needs analysis, followed by supplier selection, tender invitation and

ending with contract awarding and contract monitoring.

Need Analysis—Before a tender is issued, the responsible Contracting Authority

(CA) ensures that it researches the needs of end-users to make sure that the tender

specification meets these needs.

Supplier Selection—CA carries out their own supplier search for smaller con-

tracts, or use pre-negotiated contracts of buying groups without tendering. Suppliers

may even approach these buying groups separately to enquire about opportunities to

supply.

Tender documents—usually called an Invitation to Tender (ITT), which contains

the following sections:

a. Introduction—Background information of the tender

b. Tender Conditions—Legal parameters surrounding the tender

http://hypertextbook.com/facts/2005/AlexGizersky.shtml
http://www.info.gov.hk/censtatd/eng/hkstat/fas/wages/w_nom_index.html
http://www.info.gov.hk/censtatd/eng/hkstat/fas/wages/w_nom_index.html

314 D. K. W. Chiu et al.

c. Specification—Description of the supplies, service or works to be provided

d. Instructions for Tender Submission—Instructions for the bidders

e. Qualitative Tender Response—Qualitative questions designed for bidder

f. Pricing and Delivery Schedule—Quantitative questions designed for bidder

g. Form of Tender—Declaration to be signed by the bidder

h. Certificate of Non-Collusion—Declaration that the bidder has not colluded with

any other bidder on the tender

i. Draft of Proposed Contract—A draft of the contract that will be signed by the

successful bidder

Tendering Procedures—Tenders are classified as ‘Restricted’, ‘Open,’ and

‘Negotiated’ tenders.

Restricted Tender follows a two-stage process. All suppliers that have expressed

an interest are sent a pre-qualifying questionnaire (PQQ). The PQQ is split into a num-

ber of sections, such as General Company Details, Technical Resources, Financial

Information, and References. Suppliers are short-listed based on the above infor-

mation, and the ITT are sent to appropriate ones. Normally, suppliers have certain

period of time to respond to PQQ and ITT.

Open Tender allows any supplier that expresses an interest in tendering to be

sent the ITT documents. The supplier simply sends a letter referring to the contract,

expressing an interest, and enclosing the relevant contact details. Normally, suppliers

have a certain period of time to respond to the ITT.

Negotiated Tender is carried out only under special circumstances, such as when

a project needs to be completed within a short period of time, or there is only one

supplier or contractor who has the necessary supplies or expertise, where the technical

and other parameters may not be capable of precise definition and where security

projects of national importance are involved.

Award of Contract—Most contracts are awarded on a most economically advan-

tageous tender basis. Therefore, the evaluation may not be restricted to just the cost.

A contract is awarded after evaluating a range of criteria, which are usually weighted

by importance [18]. Criteria other than cost may include quality, experience, pro-

posed payment processes, and timetable for implementation.

Contract Award—The CA signs a contract with the selected supplier based on

the “Draft of Proposed Contract” included in the tender documents once the contract

has been awarded.

Contract Monitoring—The CA expects to meet with the selected supplier on a

regular basis to review its performance and discuss any related issues.

In the Hong Kong construction industry, contracting authorities usually use ten-

dering to find the most suitable contractors to construct buildings or perform building

expiations and renovations [14]. A contract between a contracting authority and a

contractor is formed when an express or implied offer is made by one party and

is accepted without qualification or amendment by the other. The party making

the offer is commonly referred to as the offerer and the party accepting is known

as the offeree. The tender is an offer. The contracting authority invites tenderers

(here, contractors) to submit the details of prices at which goods or services may be

13 Automating Tendering Processes with Web Services 315

bought [3]. The contracting authority then selects one of the tenderers and makes a

contract between them. A standard construction project tender should include at a

minimum the following information:

•Form of Tender is used to ensure that all tenders are received on the same basis

and should be simple to compare.

•Condition of Contract sets out the rights, responsibilities, and duties of the con-

tractor in the form of numbered clauses.

•Contract Drawings are the graphic presentation, and details of works. It normally

includes drawings showing the site location(s), the position of the building(s) on

the site, floor plans, elevation and sections, as well as details of the components.

•Specifications are used to describe the nature, quality and class of materials and

workmanship required, and any constraints to the methods of construction. So,

the types of specifications used in the construction industry include design spec-

ifications, technical specifications, product specifications, and the performance

specification.

•Bill of Quantities is a schedule of all the items of workers required to complete the

project. It is in the form of a systematic and recognized list of items and represents

the breakdown of all materials, together with laborers and plans required for the

completion of the project. A bill of quantities is essential for contractors to price

the work on the same basis in tendering for a construction project so that their total

prices are directly comparable.

A tender also contains a Form of Tender to ensure that all tenders are received on

the same basis and should be simple to compare. There are several types of tendering

procedures commonly used in Hong Kong: open competitive tendering, selective

competitive tendering, and negotiated tendering are all common forms [14].

•Open competitive tendering is a traditional approach in selecting a contractor.

Competitive tendering is normally restricted to just price comparison. Any tenderer

having interest in the project also can participate in the tendering process.

•Selective competitive tendering is almost the same as the open competitive ten-

dering. The main difference between these two tendering methods is that selective

tendering involves just a list of potential tenderers to be invited. They normally

have good reputation, and the contracting authority has strong confidence in these

choices.

•Negotiated tendering is different from open and selective competitive tendering.

Negotiation is a process of conferring with the intent of finding terms of agreement.

In this paper, we use three typical types of the contracts typically used in Hong

Kong construction projects to illustrate the applicability of our approach: Lump sum

contracts are based on bill of quantities, Design and build without quantity, and Term

contract based on the schedule of rates.

•Lump sum contract is a type of contract that is commonly used for building con-

struction projects. The bill of quantities is provided to the tenderers. The tenderers

only need to provide the cost data in the tender. With the quantities of the works

316 D. K. W. Chiu et al.

Fig. 13.1 Overview of a typical tendering process for building construction

and the cost data, a lump sum is produced and bound to the contract. The advantage

of this type of contract is that the contracting authority can have easy control of

the cost.

•Design and build without quantity is usually used for building services works or

projects that need the contractor to design. The tenderers need to provide both the

quantities and the price of the works with their design.

•Term contract based on schedule of rates is usually used in projects with an unclear

scope, such as maintenance projects. For example, as we do not know how often

and how many doors need repair, we need a schedule of rates for such costs.

The tenderers also need to provide a trade discount for competition with others

contenders.

In a construction project, there are several parties involved in the tendering

process: contracting authority, professional teams (like architects, quantity survey-

ors), contractors, suppliers, sub-contractors. Architects are professional individuals

who design the buildings. Quantity surveyors prepare the tender document. The con-

tractors, suppliers, sub-contractors are the parties who actually construct the building.

In this paper, the ETS automates some of the tendering process. So we introduce some

details of these processes as depicted in Fig. 13.1.

• Tender-out process—In this process, based on the architect’s design, the quantity

surveyor prepares the tender document for the potential tenderers (traditionally

the tender booklets and drawings).

•Pricing process—According to the information of the tender document (like bill

of quantity), tenderers may make a request for further information or price them

based on their own suppliers cost data or sub-contractor quotations in accordance

with their profit. Tenderers usually have a database to store some frequently used

materials cost data such as concrete and reinforcement.

•Tender-in process—After pricing a tender, the tenderer needs to submit it to the

contracting authority, traditionally in a tender box at the contracting authority’s

location. Prior to the tender closing time, no one can gain access to the tender

13 Automating Tendering Processes with Web Services 317

Fig. 13.2 Tradional e-tendering system

box to read the submitted tenders. After the tender closing time, the contracting

authority’s quantity surveyor will make the tender report of the submitted tenders.

Currently, This simple technical solution based on secure e-mail and electronic

document management, involving uploading tender documents on to a secure Website

with secure login, authentication, and viewing rules. So, the e-tendering approach is

just an electronic paperless one, which is inadequate to solve the problem. Figure 13.2

describes a typical e-tendering System involving the following steps:

1. CA staff creates the electronic ITT document online.

2. ITT document is sent to all the parties involved in the approval process such as

finance and legal departments.

3. ITT is published via the e-tendering system and is available online for interested

suppliers to look into details.

4. Suppliers access the e-tendering system to view the ITT via the CA’s website.

5. Suppliers plan and prepare their bids through their own systems and / or by manual

calculations.

6. Suppliers respond to ITT by sending their bids using secure e-mail to the

e-tendering system. Security features prohibit access to any of the tender responses

until a specified deadline.

318 D. K. W. Chiu et al.

7. Once the tender deadline has been reached, the CA users of the system can view

the tenders and collaborate on-line to perform evaluation analysis of the submitted

bids, either manually or semi-automatically by bid evaluation tools.

8. The supplier of the winning bid is notified of the award via the e-tendering system.

Tools available in the current market offer various levels of sophistication.

A simple e-tendering solution may be just a simple application on a Web server,

where electronic documents are posted with basic viewing rules. This type of solu-

tion is unlikely to provide automated evaluation tools. Users need to download ten-

ders to spreadsheets and compare them manually. Such solutions can only reduce

the turn-around time of paper-based tendering slightly.

More sophisticated e-tendering systems may include more complex collabora-

tion functionality, allowing users in different locations to view and edit electronic

documents. They may also include e-mail trigger process control to alert users, for

instance, when a staff has made changes to a collaborative ITT, or a supplier has

posted a tender.

For all the above situations, manual procedure is necessary for the execution of

the tendering process. The interoperability between stakeholders is weak because of

lacking in a standardized language for interfacing, and the tendering workflow seems

to be unstructured.

Web services can be used to overcome these problems and realize an efficient

tendering process, reducing the time and cost significantly. Our approach automates

most of the tendering process’s procedures from preparing the tender specification,

tender advertising, tender aggregation, to the evaluation and placing of the contract,

under a structured model that has taken all business requirements into account after

detailed analysis. Early adopters of Web services include several industries such

as logistics businesses that may involve a set of diverse trading partners working

closely together on Internet [13]. In summary, the properties of Web services can be

summarized as follows:

•Loosely-coupled. Web services can run independently of each other on entirely

different implementation platforms and run-time environments.

•Encapsulated. The only visible part of a Web service is the public interface.

•Standard Protocols and Data Formats. The interfaces are based on a set of XML

standards.

• Invoked Over Intranet or Internet. Web services can be executed within or outside

the firewall.

•Components. The composition of Web services can enable business-to-business

transactions or connect the internal systems of separate companies, such as work-

flow.

•Ontology. Everyone must understand the functionality behind how data values are

computed.

•Business Oriented. Web services are not end-user software.

As a result, a pool of Web services can provide an easier integration environment

to achieve interoperability, reusability and robustness. Initial Web services-based

13 Automating Tendering Processes with Web Services 319

applications are usually within businesses (behind the firewall or Intranet) in order

to gain trust.

The overhead of streamlining the tendering process from start to finish requires

more specific tender requirements for automatic evaluation of strict tender criteria

and request responses from stakeholders to be in a particular format.

13.3 Related Work

Negotiation is a decision process in which two or more parties make individual

decisions and interact with each other for mutual gain [27]. In the USA [24], the

federal government spends about USD$200 billion annually buying goods and ser-

vices from over 300,000 vendors. A typical supermarket chain requires negotiating

of over 50,000 product items annually.

In tradition, negotiation is usually associated with contracts as an outcome [23].

A contract is a binding agreement between two or more parties, defining the set of

obligations and rewards in a business process. This reduces uncertainty associated

with the interactions between the parties. Therefore, contracts are important for

attaining interoperability of business processes and enforcing their proper enactment.

Negotiation of contracts also involves two or more parties multilaterally bargaining

for mutual gain in order to achieve a mutual beneficial agreement, but each of them

may have conflicting interests [5]. In many cases, the parties are searching for an

integrative agreement. In particular, integrative agreements are likely to contribute to

business effectiveness [21]. During negotiation, proposals are sent to the other parties,

and a new proposal may be generated after receiving a counter proposal. The process

continues until an agreement or a deadlock is reached, or even one or more party quits.

During the process, each party needs to determine reactions of the other parties and

obtain their responses, while estimating the outcomes that counter-parties would like

to achieve. Whereas each party has its own utility function, they tend to be ignorant

of the others’ values and strategies, especially in a non-cooperative environment.

As a result, negotiations may involve high transaction costs and therefore has to be

streamlined, especially in high volume e-commerce environments.

The Internet has recently become a global communication platform and allows

organizations as well as individuals to communicate among each other, to carry

out various commercial activities, and to provide value-added services. Many busi-

ness activities become automated as electronic transactions, causing both transaction

costs and time to be greatly reduced. However, negotiation of contracts is often still

performed manually unsupported by computer systems or just by email. The main

problem of this is its slowness, which is further complicated by issues of culture,

ego, and pride [27].

In general, negotiation processes can be classified into bidding and bargaining.

An extended form of negotiation is to have a prelude phase of requirement and

candidate identification in processes of request for proposals (RFP) [19]. Bidding

is a multilateral distributive negotiation and it is a formal, competitive procurement

320 D. K. W. Chiu et al.

procedure. Bidding offers to supply goods, works, or services, which are solicited,

received, and evaluated. Bidding ends with a contract awarded to the bidder whose

offer is the best in terms of price and other factors that should be taken into account

in the evaluation of bids. A bargaining process involves two parties. Each party has a

single but opposing objective such as paying less or being paid more. This is called

divergence of interest between two parties. It means that the parties have incompatible

preferences among a set of available options. Both parties have opposing preferences

and the parties differ in their utility ordering for at least some of the options under

consideration [22]. The difficulty of the bargaining process lies in learning the best

value, which the opponent still would accept and in obtaining this value. In general,

the degree of divergence of interest is a joint function of the parties’ needs and the

alternatives under consideration. However, it is usual for the parties to discover new

alternatives that reduce or even eliminate a prior divergence of interest [21].

When the supplier has limited amount of goods, the supplier will sell to those

to maximize the profit. Auction is an economic mechanism for determining the

price of an item and hence the ownership of the item. Auction provides an effective,

alternative means of price discovery, especially when sellers do not know the buyers’

valuations [2]. This process is usually initiated by the supplier, and may be carried out

through its own portal or an external e-Marketplace. Many (potential) buyers will bid

at a time. Rothkopf and Park [25] provided an excellent review of different types of

auctions (such as English and Dutch auctions) and related issues. On the other hand,

tendering can be considered as a reversed situation, where the buyer wants to buy a

limited number of items (or services) and the supplier with the lowest bid will win.

When buyers want to buy an item, they have some requirements about the item

in mind. Given that, many issues in the requirements could still be left open. In this

case, the item cannot be concretely identified. The buyer (usually big companies or

government) may then advertise an RFP, aiming to attract suppliers to reply with the

details of their solutions, i.e., providing concrete information and properties of the

requested item. Upon receiving the proposals, the buyer evaluates them according to

the criteria previously defined. The buyer may need to further interact with the candi-

dates for clarifications and extra supporting information. The buyer may shortlist or

rank candidates, or the buyer may also directly select a successful candidate. By this

time, the buyer will have much more understanding on the details of product/service

requirements, their issues, and thus also in the potential contract. Then, the buyer can

negotiate further issues and criteria with the candidate(s), or initiate another tender-

ing process. The tendering process is particularly suitable if the contract is complex,

with many different issues [17].

Most studies on negotiation focus on interactive bargaining but not on B2B nego-

tiation processes. In order to address this problem, we have conducted a preliminary

study on the different requirements for different modes of negotiation [8]. We have

been focused on more repeatable and structure negotiation processes in e-commerce

(as opposed to political and governmental negotiations). In the paper, based on our

experience on RFP, we extend our application to e-Tendering, which usually also

involves more complex contracts than auctions [17].

13 Automating Tendering Processes with Web Services 321

However, manual tendering process is time-consuming and cumbersome, often

taking months of turn-around time and numerous manual procedures, which is costly

for the stakeholders involved. There are several approaches existing in the market-

place, most of which have been implemented for governmental tendering use. None

of the found approaches offer a sophisticated infrastructure of public interfaces like

in our approach.

E-NRTY is one of the most well-known approach [10]. It attempts to solve the

problem by replacing paper-based tendering processes with electronically facilitated

processes based on tendering practices to save turn-around time. However, this solu-

tion is incomplete, since the interoperability between stakeholders remains weak,

i.e., the ability for two or more systems (or components) to exchange information

and to use the information that has been exchanged is still lacking. For instance, the

tendering process may not be efficient enough if buyers need to manage the tenders

coming in by first storing them in one place, cut and paste data from the electronic

tender documents for comparison in a spreadsheet, or make use of semi-automated

evaluation tools to carry out the supplier selection process, and then reply selection

result. The labor cost is further expensive if 7x24 operation is in need.

ETHICS [20] is a Danish e-tendering system, jointly developed by the Danish

National Procurement Agency (SKI), International Business Machinery (IBM), and

the software company [inno:vasion] (http://www.innovasion.dk/). The product is

operational since 2003 and adheres to the European Union (EU) directives on dig-

ital certificates. Its initial development started in 1995. In contrast to our solution,

ETHICS relies on the centralized IBM server product Domino/Lotus instead of an

open Service-oriented Architecture (SOA). Although the implementers state that they

are positioned for the use of SOA, considering the fact that the product was not built

with SOA in mind, it means that a large amount of rebuilding would be required to

decentralize it for SOA. Additionally the current product does not provide interfaces

through which tenderers can use to integrate with their own computing environment.

Homann et al. [16] describe the technological and legal issues concerning secu-

rity and trust in e-tendering systems. The technical report focuses on the EU public

sector and especially on the qualified signatures prescribed by EU law for such trans-

actions. This report gives an extensive comparison of existing e-tendering solutions

in the public sector of which no system offers public interfaces like in our proposed

solution. Specifically the article states: “If buyers and suppliers use or want to use

e-Procurement solutions integrated within their (complete) work processes, e.g., at

a hospital, it is clear that such a solution is very individual and depends on local

circumstances. Therefore, the market of products for (public) e-Procurement solu-

tions includes services for building up individual but completely new and needed

e-Procurement solutions with integrated support for public e-Bidding as well as

extending existing solutions for public e-Bidding support” [16]. This underlines the

need for flexible SOA B2B implementations like our proposed architecture. The

technical report expands on the German governmental e-tendering system eVer-

gabe (see: http://www.evergabe-online.de/?selectedLanguage=en), which makes use

of dedicated card readers to enable qualified signatures. Also due to legislation,

the 4-eyes principle is enforced to open a tender process and to open the tender

http://www.innovasion.dk/
http://www.evergabe-online.de/?selectedLanguage=en

322 D. K. W. Chiu et al.

documents. In eVergabe the institution and the supplier are both clients to the Inter-

net based bidding platform. Each role in the process runs different client software

provided by eVergabe.

A similar study carried out by Betts et al. [1] outlines the security requirements of

e-tendering systems. The authors also propose a distributed key and timestamp archi-

tecture, which allows suppliers and tenderers to receive keys and timestamps from

trusted third parties. Although the article refers to the key and timestamp distribu-

tion mechanism as “services,” the actual technology in favor has not been discussed,

leaving it open whether a Web Service based SOA could be used.

As already mentioned, most implementations and publications focus on the public

sector. One exception is the work of Singh and Thomson [26], who describe different

e-Procurement models for business to business integration in the Australian context.

These models are the buyer model which applies when there exist few buyers and

many sellers, the marketplace model which applies when there are many buyers

and many sellers, the long term relationship model which is relevant when there

is a high degree of planning in the transaction involved, and the seller model that

should be implemented when there are few sellers and many buyers. Again, all these

approaches foresee a centralized platform to perform the integration without any

public interfaces exposed for the integration with the internal information systems

of each party.

13.4 Tendering Process Model

In this section, we introduce a model to cover different tendering procedures (open,

restricted, negotiated), its architecture, model, and implementation with Web ser-

vices. We illustrate our TPM with four typical kinds of tendering processes: Request

To Participate (RTP), Invitation To Tender (ITT), Tender Submission, and Tender

Award Notification. The tendering process can be classified into business procedures

as shown in Fig. 13.3.

The tendering phase covers the preparation of an offer by a supplier in response to a

call for competition, as well as its submission to and receipt by the CA. The awarding

phase begins with the opening of tenders. After evaluating the tenders, a winning

tender is selected and an award notice is published through the appropriate services.

Suppliers are informed of the result of the selection. This model describes three of

the award procedures: open, restricted, and competitive dialogue. The highlighted

ones in the diagram are described with UML sequence diagrams afterwards.

Four typical tendering procedure meta-models are presented in the Unified Mod-

eling Language (UML), which is a modeling language for visualizing, specify-

ing, constructing, and documenting the artifacts of a software-intensive systems.

UML offers a standard way to write a system’s blueprints, including conceptual

things such as business processes and system functions, as well as concrete things

such as programming language statements, database schemas, and reusable software

components. Note that UML standardizes only the notation, leaving software engi-

neers the freedom to adopt their own software development process.

13 Automating Tendering Processes with Web Services 323

Fig. 13.3 Tendering business processes

13.4.1 Request To Participate

Figuer 13.4 presents a meta-model of RTP in UML. In response to the correspond-

ing contract notice, suppliers (or bidders) may request to participate by sending

the required information (legal, economic, financial, and technical information) to

the CA. The request is duly signed and sent to the CA. The RTP is received by

the tendering platform or directly by the CA, which time-stamps it, and checks the

reception date against the deadline defined in the contract notice. The supplier is

notified whether its RTP is accepted.

To illustrate the implementation, the following XML business documents (SOAP

messages) are designed for the RTP Web service:

Message Description

Request to participate Sent by a supplier to the CA to request participation. Contains all
required information

RTP response Sent by the CA to a supplier in response to a previous request to
participate to acknowledge receipt of RTP

324 D. K. W. Chiu et al.

Fig. 13.4 Request to Participate

Fig. 13.5 Invitation to tender

13.4.2 Invitation To Tender

Figure 13.5 presents a meta-model of ITT in UML. The CA invites some or all

pre-selected suppliers to tender. This applies also in the case of a reopening of

competition between several suppliers. When using a tendering platform, the CA

uploads the contract documents and makes them available to the suppliers it has

invited to participate or tender. The following XML business documents (SOAP

messages) are designed for the ITT Web service:

13 Automating Tendering Processes with Web Services 325

Message Description

Short-listing result Notification of rejected suppliers by the CA of the result of the short-
listing process

Invitation to tender Sent by the CA to a supplier in order to invite it to submit a tender,
after a previous request to participate

Fig. 13.6 Tender submission
13.4.3 Tender Submission

Figure 13.6 presents a meta-model of Tender Submission (TS) in UML. To sub-

mit the tender electronically, the supplier prepares its tender and then sends it to

the tendering platform. The supplier may sign and encrypt it before uploading it.

However, verification and evaluation of safety requirements (i.e., time stamping,

signature features, etc.) constitute a separate process. Its sequencing depends on the

type of security technology used (such as the Public Key Infrastructure). Moreover,

time stamping and use of the digital signature may involve interactions with third

parties. These are mainly exchanged at the software or hardware level and are not

considered in our model and therefore, do not appear in the schema below. The sub-

mission date of the tender may be checked against the deadline defined in the contract

notice. The tendering platform stores all submitted tenders in a secure vault. It issues

a reception response to acknowledge receipt of the submitted tender. The following

XML business documents (SOAP messages) are designed for the TS Web service:

326 D. K. W. Chiu et al.

Message Description

Tender Offer sent by the supplier to the CA. A tender may take the form of
an electronic catalogue

Reception response Sent by the CA to a supplier in response to a tender submitted. It
acknowledges the receipt of the tender submitted

13.4.4 Tender Award Notification

Figure 13.7 presents a meta-model of Tender Award Notification (TAN) in UML.

The CA must inform all participants of the result of the tender award as soon as

possible, no matter the selected or eliminated suppliers. Besides, an award notice

is sent out as well to publish the tender award result. The following XML business

documents (SOAP messages) are designed for the TAN Web service:

Message Description

Award notice Sent by the CA for official publication using the corresponding stan-
dard form

Award result Notification of the tenders by the CA of the result of the awarding
process

Contracting Authority Selected Tenderer Rejected Tenderer(s)

Complete
Tender
Award
Notice

Inform Selected
Tenderers

Infomed
Rejected

Tenderers

Deliver Tender
Award Notice

Receive
Response

Receive
Response

Receive
Response

Comission

Fig. 13.7 Tender award notification

13.5 Implementation

In this section, we first introduce our overall architecture design for e-Tendering

process integration. Then we detail some of the key Web service interfaces to illus-

13 Automating Tendering Processes with Web Services 327

trate how our approach works. We also highlight some technologies for tackling

security issues.

13.5.1 Service-Oriented Architecture

The Web service SOAP messaging architecture described in Fig. 13.8 has been used

to improve the integration and interoperability of the tendering process. The CA

provides the tendering Web services for suppliers. The Web Services Description

Language (WSDL) document has described the Web service technical details and

Web service interface such as what operations it supports, what protocols are adopted,

and how the data exchange should be organized [11, 15]. It is considered as a contract

between the Web services requester and the provider.

First of all, the CA publishes the WSDL document to Universal Description, Dis-

covery and Integration (UDDI) registries, which serve as “yellow pages” of WSDL

documents that provide a standard means for describing organizations and their ser-

vices thereby allowing online service discovery [11]. Then service requesters, such

as suppliers, act as a requester entity that expects to make use of the tendering Web

services for achieving its business requirements by using UDDI registries. UDDI

provides the information for the matchmaking between the Web service provider

Fig. 13.8 Implementation architecture overview

328 D. K. W. Chiu et al.

and requester. UDDI works as a discovery agency, like a Web search engine such as

Google.

Once suppliers find the tendering Web service at the UDDI registries, the suppliers

gets the correspondent WSDL document and binds with the Web service via a SOAP

message [11]. SOAP is an XML-based messaging protocol that is independent of

the underlying transport protocol (e.g., HTTP, SMTP, and FTP). SOAP messages are

used both by the suppliers to invoke tendering Web service, and by the tendering Web

services to answer to their requests. Therefore, the tendering Web services provider

(i.e., CA) receives the input SOAP message from and generates an output SOAP

message to the suppliers. In the next subsection, we detail how Web services can

facilitate the implementation of our TPM.

There are two main subsystems in the ETS: the Client tendering system (CTS) and

the Tenderer Pricing System (TPS). In the CTS, there are two subsystems: the tender-

out system and the tender-in system. In the TPS, the pricing elements are fundamental.

These two main systems communicate by using Web services through the Internet for

tender information exchange. We now detail some Web services implementations of

each subsystem. We then show how tenderers can integrate those services into their

environment and highlight some security issues and how the system handles some

of the exceptions.

13.5.2 Web Services of the Tender-Out System

As we have discussed before, there are three types of contracts commonly used in

Hong Kong. However, even though most parts of these contracts are similar, there is

the exception of the bill of quantity. We first demonstrate the common Web services

and then the specific ones for each type of contract. According to the requirements

discussed in the previous sections, the following common Web services are necessary.

Note that the separation of clauses, items, and drawings are necessary because of

their large size.

Service Name: getConditionofContractID

Input: TenderID

Response: List of Contract Clause ID

Service Name: getConditionofContract

Input: Contract Clause ID

Response: Contract Clause ID, Contract Clause

Service Name: getSpecificationID

Input: Trade

Response: List of Contract Clause ID

Service Name: getSpecification

Input: Specification ID

Response: Specification ID, Trade, Specification Clause

Service Name: getDrawingID

Input: TenderID

13 Automating Tendering Processes with Web Services 329

Response: List of Drawing ID, List of Drawing Title

Service Name: getDrawing

Input: Drawing ID

Response: Drawing ID with the attachment of that drawing

Lump sum contract based on bill of quantities—In this type of contract, the

contracting authority needs to provide all the data, and the tenderer only needs to

return the price of the items. So the following Web services are provided.

Service Name: getItemID

Input: TenderID

Response: List of Item ID, Item trade, Item description

Service Name: getItemDetail

Input: Item ID

Response: Item ID, Item trade, Item description, Unit, Quantity

Design and build without quantity—In this type of contract, the tenderer should

price the item and the quantity of the items. So, the parameters returned are slightly

different.

Service Name: getItemID

Input: TenderID

Response: List of Item ID, Item trade, Item description

Service Name: getItemDetail

Input: Item ID

Response: Item ID, Item trade, Item description, Unit

Term contract base on the schedule of rates —In this type of contract, since the
work details are still not specified, the price should be based on a schedule of rates.
The tenderers also provide an overall trade discount. So, the following Web services
are provided.
Service Name: getScheduleofRateID

Input: Trade

Response: List of Schedule of Rate ID, Item description

Service Name: getSchedulefRate

Input: Schedule of Rate ID

Response: Schedule of Rate ID, Trade, Item description, Rate

13.5.3 Web Services of the Tender-in System

Corresponding to the different types of contracts as discussed, the tender-in system

provides the following Web services to support the reply from the TPS of tenderers.

Note that not all the functions are used in a tender submission because of the different

requirement in the submission (e.g., lump sum contract base on bill of quantities do

not require the reply of quantities).

Service Name: priceItem

Input: Item ID, price

Response: Confirmation

330 D. K. W. Chiu et al.

Service Name: quantityItem

Input: Item ID, quantity

Response: Confirmation

Service Name: discountTrade

Input: Trade, Trade discount

Response: Confirmation

Service Name: commitTender

Input: Signed XML Format of Tender

Response: Confirmation

13.5.4 Web Services for Exception Handling

In a tendering process, some exceptions may occur. For example, a tenderer has

not replied all the pricing information or the contracting authority wants to amend

the tender. We demonstrate how some of these exceptions are supported with Web

services.

Addendum—In the tendering period, sometimes although the tender has already

been passed to the tenderer, the contracting authority may still want to amend some

details. In this case, the system enters an addendum sub-process. Usually, there are

three types of amendments: addition, modify, and deletion, as shown in Table 13.1.

The CTS needs to notify the TPS about which statements or items are being amended.

Once the TPS knows that an addendum will be issued. The TPS will request those

amended items or clauses to be updated. So the tender-out system needs to provide

the following Web service.

Service Name: getAddendumList

Input: Null

Response: List of amended clauses and items with the status of each item (addition, modify, deletion)

Consistency of the tender document—Since the whole tenderer document is

downloaded by the TPS actively, we need to ensure that each tenderer has the identical

tender document. So we need to know that the TPS gets all the clauses, items, and

drawings from the CTS. The CTS has to monitor the download status of each tenderer.

Once it finds that a tenderer has not downloaded all the details within a specific period,

it will alert the TPS to immediately retrieve the needed details. Also, the tender-in

system needs to monitor that all items have been priced. It will alert a TPS if it still

has not committed the tender near to tender-in deadline. Once the CTS find that the

Table 13.1 Three types of
action of the addendum

Action Description

Addition New clauses or items added

Modify Clauses or items changed

Deletion Clauses or items removed

13 Automating Tendering Processes with Web Services 331

tender is not completed after the deadline, the submission is disqualified; this is then

marked in the tender report.

Bulk discount—In some cases, the tenderer may want to win the tender by offer-

ing a final bulk discount to the whole tender. Usually, this is in a discount rate format.

For example, the final tender sum is $500,000,000.00 and the tenderer makes a bulk

discount of 0.5 % off. So, the final tender sum becomes $487,500,000.00. In the CTS,

it should be able to handle this kind of discount. So it will provide a service for the

TPS to submit their discount.

Service Name: setBulkDiscount

Input: Input: Discount rate

Response: Confirmation

Additional information provided by tenderer—Sometimes the tenderer may

submit additional information to the tender. For example, the tenderer may submit

some detail designs or cost break downs of the works. This information sometimes

facilitates it for the contracting authority to make better decisions. So, we need to

provide a service for the TPS to submit any additional information. As the information

may be in multimedia formats, the SOAP attachment format is used. After the CTS

obtains the additional information, it makes notes on the tender report about this for

the contracting authority’s evaluation.

Service Name: submitAdditionInfo

Input: Tender ID, Information in attachment format

Response: Confirmation

Withdraw of tender—In some cases, the tenderer may want to withdraw the
tender during the tendering process. Since this is a critical action, we need to have a
further confirmation.
Service Name: withdrawTender

Input: Tender ID

Response: Confirmation Number

Service Name: confirmWithdrawal

Input: Tender ID, Confirmation Number

Response: Confirmation

13.5.5 Integration into the Tenderer’s IT-Environment

The provision of the public web service interfaces by the tender-in and tender-out

system allow suppliers for seamless integration of tendering processes into their e-

business solutions. Since Web services do not provide graphical user interfaces, the

tenderers can design their own, and integrate it into their existing environment. Also

tenderers can make use of their own backend system to calculate the prices for their

bid and to implement the TPS.

For instance, a construction company wants to take part in an e-tendering process

for a large construction project, and also wants to integrate its system into the e-

tendering infrastructure for the future. To accomplish this, the IT-department must

332 D. K. W. Chiu et al.

create the necessary graphical (web-) interfaces to create the input for the tendering

web services. Also, and very importantly, the IT department can make use of existing

databases and services in the infrastructure of the enterprise to facilitate the price

calculation and the compilation of the bid. These can, for example, be databases

for the inventory, human resources and supply chain. Preexisting services that, i.e.

calculate the parts of the cost can be reused.

Figure 13.9 shows such a scenario. A company has several existing databases and

existing services access and process the data. The New Pricing Services are those

services that need to be created if price calculation for bids has not been implemented.

The New Bidding Services are those services that handle the communication with the

remote Contracting Authority. Lastly the Integrated User Interface is the extended

user interface that provides the bidding functionalities to the tenderer.

13.5.6 Security

Security is a very important issue in the ETS. Since all the data transfer between

two parties involves trade secret, the data should be encrypted during transfer via the

Internet. Since SOAP applications can run on top of HTTP, the message can passed

via the Secure Sockets Layer (SSL) protocol, which is a proven technology and

widely deployed. In addition, we can use the W3C XML Encryption Standard (see:

http://www.w3.org/Encryption/2001/), which provides a framework for encrypting

and decrypting XML documents.

Fig. 13.9 The tenderer’s e-business environment implementing the Tenderer Pricing System

http://www.w3.org/Encryption/2001/

13 Automating Tendering Processes with Web Services 333

Besides the confidentiality problem, we also need an authentication system to

authenticate the tenderers. When a TPS first accesses the tender-out system, it will

be directed to the single sign on system with the assignment of an identity key for

subsequent log-on to the CPS. As discussed, there are several types of tendering

processes, such as open competitive tendering and selective competitive tendering.

For open competitive tendering, we have to allow all tenderers to access to the tender

details. For selective competitive tendering, since only the selected tenderers can

obtain the tender document, the TPS has to check the access against its shortlist of

potential tenderers. For convenience, we can employ the technology of Single Sign-

On (http://www.opengroup.org/security/sso/). Once a TPS logs on to the CTS, the

CTS gives it a security token.

Also, we need to ensure that all the data transferred among the parties is indeed

performed by the designated parties. The ETS (both the CPS and TPS) has to use dig-

ital signatures for identification. The SOAP technology provides a security extension

SOAP-DSIG (http://www.w3.org/TR/SOAP-dsig/), which enables the validation of

identities.

In cases where an extraordinary level of trust is needed, and where contract are

digitally approved, the technique of qualified certificates can be employed to make

the authentication procedure even more secure. This method involved smart cards

that contain a private key of the signer, combined with card readers that can only

retrieve the private key when a valid password is entered into the keypad of the card

reader. This ensures that the private key (the smart card) has to be physically stolen

from the owner, in order to impersonate the owner of the key. It also allows for

the implementation of the four-eyes-principle that ensures the two persons with the

correct authorization are physically present when a certain transaction is committed.

This is especially important when contracts need to be digitally signed. The method of

qualified signatures his currently required by law in all legal government transactions

in the EU [12].

13.6 Facilitation of Decision Support with ETS

In this section, we provide an illustrative scenario how the contracting authority

makes use of the TPM as discussed in the previous section to facilitate its decision

making. It is a norm for the contracting authorities to look for the best tenderer’s

quotation meeting tender requirements. The degree of fitness may depend on their

self-defined criteria such as cost, quality, experience, service level, past performance,

scheduling, payment, etc. These criteria are considered as metrics for non-equally

weighted average score calculation to find out the best tenderer [18], which should

archive the highest score among all participated competitors. We highlight the imple-

mentation procedures as follows:

Initialization—During the invitation to tender (ITT) and tender submission pro-

cedures, stakeholders communicate with one another via an agreed schema to gather

the relevant metrics-related information. The scale can be large, say, if the TPS needs

http://www.opengroup.org/security/sso/
http://www.w3.org/TR/SOAP-dsig/

334 D. K. W. Chiu et al.

to send out hundreds of RTP for each tender, and a significant proportion of bids are

returned. All information for the current metrics is stored within their own database

management systems (DBMS).

Fig. 13.10 Evaluation

Score Ranking—Non-equally weighted average score is calculated for all ten-

derers (S1, . . . , SN) based on metrics criteria, and sorted with most ideal supplier

Sideal owns the greatest weighted average score ranked first on the list.

13 Automating Tendering Processes with Web Services 335

Ideal Tenderer(s) Identification—Normally, only one winner is chosen, while

sometimes more than one tenderers can be awarded. Besides the normal procedure

of awarding the tender to the highest scorer(s), the score ranking report provided by

the TPS may be reviewed manually for the final decision, especially when the score

difference is less than a certain threshold. In addition, sometimes when the overall

score is too low, or when all the bids violate some constraints (especially price), the

contract authority may award no tender at all.

Figure 13.10 shows an illustrative evaluation scenario. Suppose a contracting

authority considers 3 different metrics Mi for tenderer selection Sideal from its point

of view, i.e., M1: Cost, M2: Location, and M3: Scale. Besides, the metrics impor-

tance in supplier selection is M1 > M3 > M2. With appropriate weighting assigned

for different metrics, the following tables are obtained, which select S2, S1, S4

accordingly.

13.7 Discussion and Conclusion

In this paper, we have presented a Tendering Process Meta-model based on UML

for four typical business procedures: Request To Participate (RTP), Invitation To

Tender (ITT), Tender Submission (TS), and Tender Award Notification (TAN). It is

the responsibility for different types of enterprises to implement their own Tender-

ing Process Model (TPM) that suits their own business requirements. They should

also provide reliable tendering Web services so that interoperability and integra-

tion becomes possible for B2B application-to-application communication over the

Internet, which is independent of platform, technology, and tools.

Based on this approach, we have presented our implementation of an e-Tendering

system (ETS) based on a case study of the construction in Hong Kong with some

details in the Web-service design specification. The ETS provides the tender docu-

ment details for the tenderers, and the tenderers submit their tender price via Web

services. In addition, we have also presented some of the exceptions that the system

can handle, such as withdrawal of the tender, bulk discount, etc. Other elements

discussed include some issues regarding security. We have two main stakeholders in

the ETS, namely the contracting authority and the tenderers. We discuss our findings

about their advantages as follows.

For the contracting authority, they have benefits in streamlining their work through

the digitalization of the tender document. As previously mentioned, most of the

information for the tender documents are currently prepared with a computer. They

can easily be transferred to the CTS. So, the contracting authority can save the effort in

printing them out and checking the tender booklet. Also, the electronically collected

pricing information from the tenderers can be easily used for generating the tender

report.

For the tenderers, the TPS can help them retrieve relevant rates from their cost

database. So, the tendering pricing time can be shortened, and in this way the price

is more up to date. The tenderer can make their final decisions right up until almost

336 D. K. W. Chiu et al.

the last minute. There is also no need to worry about the delivery problems faced

with physical tender documents.

The key advantage of applying Web services is to establish cross-organizational

collaboration via existing Internet standards, supporting both human Web-based and

application programmatic interactions. When both partners support Web services,

a more efficient and preferred way for event passing with the publish-and-subscribe

paradigm can be employed [7]. In addition, smaller business partners with varied

degree of automation can still participate in these business processes manually or

semi-automatically. Because of the process complexity, Web services based interac-

tions also facilitate exception handling [6], which typically require human attention

and decision.

Moreover, Web services enable external integration with e-marketplaces and bro-

kers, expanding the opportunities of TSC and therefore businesses. Internally, Web

services enable the integration of tendering processes with enterprise resource plan-

ning (ERP) and other enterprise information systems to facilitate decision support.

These are on our future research agenda.

Lastly the Web service approach prescribes all participating parties precise rules

on how to comply with the security policies that for example describe which kinds

of certificates have to be used. Without complying with these Web service policies,

a party cannot take part in the process. This is a major advantage over other business

to business integration approaches, which often implement ad hoc security solutions.

For other continuing research, we are working on extending the ETS to sub-

contractors, who may further sub-contract their works. One problem for this in Hong

Kong is the small sizes of many sub-contractors, who cannot be easily automated

to such an extent. We are also working on other exception handling mechanisms.

Another future work direction is to support e-negotiation on the price with the ten-

derers after the tendering process has finished. That is, we shall study the integration

of the e-Tendering system with an e-Negotiation system [8] together for a more

complete solution.

We are also looking into the integration with other logistics systems like delivery,

order, purchase, and procurement. We can further customize the use of Web services

as the communication channel between various logistics systems. Although the focus

in this paper is on tendering processes, similar integration work can be done for

other related processes involved in logistics to make scale-up feasible for proposed

solution. The steps are similar, first of all, understand the business requirements

to streamline the business procedures, design the message exchange specifications,

and then set up the architecture for application-to-application communication over

the Internet. The implementation approach for integration is similar to the one in

this paper even though the business requirements are not exactly the same. We can

foresee that the possible benefits for logistics industry are great. For this reason, we

will also look into some ideas for developing such a methodology for Tendering

Process Model (TPM).

13 Automating Tendering Processes with Web Services 337

References

1. Betts, M., Black, P., Christensen, S., et al. (2006). Towards secure and legal E-tendering. Journal

of Information Technology in Construction, 11, 89–102.
2. Bichler, M. (2000). A Roadmap to Auction-based Negotiation Protocols for Electronic Com-

merce. Proceedings of the 33th Hawaii International Conference on System Sciences. Hawaii:
IEEE Computer Society Press.

3. Brook, M. (2004). Estimating and Tendering for Construction Work (2nd ed.). Oxford: Elsevier.
4. Cerami, E. (2002). Web Services Essentials. Sebastopol, CA: O’Reilly.
5. Cheung, S. C., Hung, P. C. K., Chiu, D. K. W. (2003). On e-Negotiation of Unmatched

Logrolling Views. Proceedings of the 36th Hawaii International Conference on System Sci-

ences. Big Island, Hawaii: IEEE Computer Society Press.
6. Chiu, D. K. W., Cheung, S. C., Karlapalem, K., Li, Q., Till, S., Kafeza, E. (2004). Workflow

View Driven Cross-Organizational Interoperability in a Web Service Environment. Information

Technology and Management, 5(3/4), 221–250.
7. Chiu, D. K. W., Cheung, S. C., Till, S. (2003) An Architecture for E-Contract Enforcement

in an E-service Environment. Proceedings of the Hawaii International Conference on System

Sciences 2003. Big Island, Hawaii: IEEE Computer Society Press.
8. Chiu, D. K. W., Cheung, S. C., Hung, P. C. K., Chiu, S. Y. Y., Chung, A. K. K. (2005). Developing

e-Negotiation support with a meta-modeling approach in a Web services environment. Decision

Support Systems, 40(1), 51–69.
9. Chiu, D. K. W., Ng, N. L. L., Lai, S.C., Hung, P. C. K. (2007). Automating Tendering Processes

with Web Services: A Case Study on Building Construction Tendering in Hong Kong. Group

Decision and Negotiation Meeting (GDN 2007), Mt. Tremblant (Montreal).
10. Coscia, E., Nicolodi, S., Doyle, R., Slade, A., Ginty, K., Shamsi, T.A. et al. (2000). The E-NTRY

Web-based E-commerce Platform: an advanced infrastructure supporting Tendering. Bidding
and Contract Negotiation. Proceedings from E-Business and E-Work 2000 conference. Madrid:
IOS Press.

11. Erl, T. (2006). Service-Oriented Architecture: Concepts, Technology, and Design. Englewood
Cliffs, NJ: Prentice-Hall.

12. EU Directive 1999/93/EC (1999). On a Community framework for electronic signatures.
13. Gortmaker, J., Janssen, M., Wagenaar, R. W. (2004). The Advantages of Web Service Orches-

tration in Perspective. Proceedings from 6th international Conference on Electronic Commerce,
506–515. Delft, Netherlands: ACM.

14. Hills, M. J. (1995). Building Contract Procedures in Hong Kong. Hong Kong: Longman.
15. Hull, R., Benedikt, M., Christophides, V., Su. J. (2003). E-services: a look behind the Curtain.

Proceedings of the Interna-tional Symposium on Principles of Database Systems (PODS). San
Diego, CA: ACM.

16. Homann, F., Karabulut, Y., Voss, M., Fraikin, F. (2005). Security and Trust in public ePro-

curement (Technical Report No. TUD-CS-2005-4), Darmstadt University of Technology / SAP
Research Karlsruhe.

17. Lai, S. C., Chiu, D. K. W., Hung, P. C. K. (2007). e-Tendering with Web Services: A Case Study
on the Tendering Process of Building Construction. 2007 IEEE International Conference on

Services Computing (SCC 2007), Salt Lake City, Utah, 582–588.
18. Lau, G. K. T., Chiu, D. K. W., Hung, P. C. K. (2006). Web-service Based Information Inte-

gration for Decision Support: A Case Study on e-Mortgage Contract Matchmaking Service.
Proceedings of the Hawaii International Conference on System Science 2006. Hilo, Hawaii:
IEEE press.

19. Lomuscio, A. R., Wooldridge, M., Jennings, N. R. (2000). A Classification Scheme for Negotia-
tion in Electronic Com-merce. Agent-Mediated Electronic Commerce: A European Perspective,
Springer Verlag, 19–33.

20. Ostergaard, S., Mora-Jensen C. (2003). ETHICS - Best-of-Breed European e-Tendering Solu-
tion, Global Purchasing & Supply Chain Strategies 2004. London: Touch Briefings.

338 D. K. W. Chiu et al.

21. Pruitt, D. G. (1981). Negotiation Behavior. London: Academic Press.
22. Pruitt, D. G. and P. J. Carnevale. (1993). Negotiation in Social Conflict. Philadelphia: Open

University Press.
23. Raiffa, H. (1982). The Art and Science of Negotiation. Cambridge, MA: Harvard University

Press.
24. Robinson, W. N. (1997). Electronic Brokering for Assisted Contracting of Software Applets,

Proceedings of the 30th Hawaii International Conference on System Sciences, 4,449–458.
25. Rothkopf, M. H. and S. Park. (2001). An Elementary Introduction to Auctions, Interface, 31(6),

83–97.
26. Singh, M., Thomson D. (2002). eProcurement Model for B2B Exchanges: An Australian Exam-

ple. 15th Bled Electronic Commerce Conference eReality: Constructing the eEconomy, 15,
293–307.

27. Thompson, L. (1998). The Mind and Heart of the Negotiator. Englewood Cliffs, NJ: Prentice-
Hall.

Chapter 14

Service Trust Management for E-Government
Applications

Surya Nepal, Wanita Sherchan and Athman Bouguettaya

Abstract Many services and service providers compete with each other to provide

similar services in the service-oriented Web (also known as Service Web). Selection

of the best services or service providers is an important and challenging problem.

Trust plays an important role in identifying the best service provider for a customer,

where trust information is computed from customer feedback ratings for the services.

Such rating provides a measure of previous consumers’ satisfaction with the services.

The satisfaction value indicates the trustworthiness of a service provider in delivering

the services as promised (also known as service trust). This situation exists in many

E-Government applications where a large number of services are outsourced to the

third party service providers and there is a need to select the best services for cus-

tomers based on their current needs. In this chapter, we propose a community based

approach of managing service trust for E-Government applications with the focus

on a human services delivery system. We describe the architecture, implementation

and a case study of the proposed service trust management framework in the context

of delivering human services.

S. Nepal (B)

CSIRO ICT Centre, Marsfield, Australia

e-mail: Surya.Nepal@csiro.au

W. Sherchan

IBM Research, Melbourne, Australia

e-mail: wanitash@au.ibm.com

A. Bouguettaya

RMIT University, Melbourne, Australia

e-mail: AthmanBouguettaya@rmit.edu.au

A. Bouguettaya et al. (eds.), Advanced Web Services, 339

DOI: 10.1007/978-1-4614-7535-4_14,

© Springer Science+Business Media New York 2014

340 S. Nepal et al.

14.1 Introduction

Services computing is poised to transition computing to a new era where data is to

take the back seat and services will take the driver seat—enabling, supporting and

delivering tremendous benefits to new applications such as human services delivery.

Central to service computing is the concept of Web services and Service Oriented

Architectures (SOA). The fast increase in the number of deployed Web services is

transforming the enterprises from a data-oriented system to a service-oriented sys-

tem with a large repository of Web services. Therefore, there is a need to go beyond

and above the basic building blocks of SOA to provide novel service management

frameworks that deal with the whole life-cycle of services from inception to disband-

ment. Towards addressing this need, we have built a prototype end-to-end service

management system called Web Service Management System (WSMS). This system

has been used in applications ranging from bioinformatics [11] to human services

[9]. This chapter describes the basic concepts behind WSMS and its application in

human services delivery, with a focus on the service trust management framework,

a significant component of WSMS.

The goal of every human services department is to design and deliver products and

services efficiently and effectively to satisfy their stakeholders including individual

citizens, residents, and other government agencies. The current human service deliv-

ery systems are typically under stress due to various reasons. These include unsustain-

able cost structures, requirement to deliver more services with limited resources and

inability to deliver better-suited services because of changing demographics and an

ageing population. It has been identified that new solutions are needed that require

whole-of-government interoperability and strategic partnerships between govern-

ment agencies and the private sector (e.g., enterprises and non-government agen-

cies). To this end, we devise a novel Human Services Delivery System (HSDS)

architecture that aims to address these major emerging challenges. Our architecture

aims to assist human services departments in enhancing their capabilities of pro-

visioning more services with lower cost (i.e., to “do more with less”). In addition,

another important goal is to raise the quality of service delivered to achieve higher

customer satisfaction. We have designed and developed a prototype human services

delivery system using WSMS. The core components of HSDS include service query

and composition, service selection and optimization, service organization, service

change management and service trust management. In this book chapter, we present

a case study of developing such a system with a particular focus on the service trust

management component, we present a case study of developing such a system with

a particular focus on the service trust management component.

The rest of the chapter is structured as follows. We next present the Human

Services Delivery System architecture and describe each of the components in brief.

We then describe the service trust management component of HSDS. This is followed

by the implementation architecture and models for human services trust computation.

Finally, we present a case study for service trust management framework within the

human service delivery system.

14 Service Trust Management for E-Government Applications 341

14.2 Human Services Delivery System

Figure 14.1 shows the implementation architecture of the Human Services Delivery

System (HSDS). This architecture aims to provide an end-to-end support for human

services delivery. It leverages and manages the various required resources for deliv-

ering human services in an automated and coherent framework. When customers

have new requirements or become eligible for new welfare services, their requests

are described as a service query and forwarded to the service management frame-

work. Then a series of activities such as service selection, service composition and

service optimization create an integrated workflow that delivers the best set of ser-

vices to meet the customers’ requirements. When changes occur, either triggered by

the customer or government legislation for example, the service change management

module will automatically handle these changes in the form of a new workflow of

services. The architecture is composed of seven modules that reflect the core com-

ponents of the service management framework. In what follows, we provide a brief

introduction of these modules.

Service & Process Repository (S &P Repository): The S &P Repository catalogues

services, resources and business processes related to human services and relevant

context information so that they can be uniquely identified and managed within their

life-cycle. Whenever new services, resources and processes become available, they

must be registered in the repository to be utilized in human service delivery. The

repository utilizes a set of ontologies to enable fast retrieval of services and semantic

interoperability for supporting automatic service composition.

Service Query & Composer: This component takes a user request and generates a

composite service. The component provides support for the underlying query model

and composition algorithms. The HSDS query model consists of a query interface, a

query language, and a query engine. The interface allows users to specify what they

want (goals) at semantic level and leave composite service generation to HSDS. The

query interface is handled by the user interface component, which is discussed in

Fig. 14.1 Human services delivery system architecture

342 S. Nepal et al.

detail in [9]. The underlying query language is Service Query Language, an XML

service query language we developed as an interface to HSDS query engine. Based

on how services are composed to create composite services, HSDS allows three types

of composition: horizontal, vertical, and hybrid [1]. Services in HSDS are organized

using a semantic model in service organization. Upon receiving a user’s query, HSDS

will first identify relevant services and perform logical reasoning to generate a com-

posite service at the semantic level. HSDS uses a matchmaking algorithm proposed

in [4–10] and context-aware service weaving algorithm proposed in [2] to generate

composite services.

Service Optimizer: The result of Service Query Processor and Composer may con-

sist of several candidate services that fulfil the requirements of the customer. The

Service Optimizer is responsible for evaluating the alternatives and generating the

optimal integrated workflow expected to deliver the best possible user-centered qual-

ity of service to the customers. The service optimization aims to select the services

that a user would prefer the most based on the available context information. The

proposed techniques for service optimization are based on Quality of Service (QoS)

parameters. These techniques aim to identify a service with the best quality based

on context information. To conduct effective service optimization, HSDS adopts

schemes aiming to handle both quantitative and qualitative properties of services.

We propose some such techniques in [6].

Service Change Manager: The service change management is an important aspect

of human services delivery as the services in a composition may need to be changed

based on the contextual information. A service may go through frequent changes. The

triggers for these changes could come from different sources. Changes in the services

include changes in the functionality they provide, the way they work, the component

services they are composed of and the quality of service they offer. The service change

management component is designed to manage such changes all services. HSDS uses

a number of approaches to deal with the changes in user and service contexts (refer

to [7] for details). It provides a scheme for managing the life-cycle of a workflow to

reflect and react to changes occurring within the human services department or its

customers’ life situation. The Service Change Manager will interact with the Service

Query Processor and Composer to reconfigure the customer’s delivered service as

and when required.

Service Trust Manager: The service organization may contain several services

that provide similar functionality. Service composition prefers that all the services

selected during composition are the best services for the given context compared to

other similar services [3]. However, selection of the best services becomes difficult

because services may commit to provide a certain level of Quality of Service (QoS)

but may fail to deliver. Therefore, trust acts as contextual information for service

selection. A major challenge in HSDS includes providing a trust framework for

enabling the selection of services based on trust information. The trust framework

assists the Service Optimizer in identifying reliable and reputable services. Based on

the statistics of service delivery and customers’ feedback, the Service Trust Manager

14 Service Trust Management for E-Government Applications 343

evaluates the trustworthiness of individual services and records the trust information

in the S&P Repository. This the main focus of this chapter.

Service Orchestrator: The integrated optimal workflow created by the Service Opti-

mizer is executed by the Service Orchestrator. The system guides the customer to

consume the services step by step. It also helps coordinate the work of human ser-

vices department staff delivering internal and external services to accomplish the

tasks in the workflow. It is an important module of the implementation architecture

that enables concrete delivery of human services.

14.3 Service Trust Management Framework

Human services departments, being the service delivery arm of the government,

become the first point of contact and act as a coordinator to connect customers to the

appropriate services which could be internal our outsourced. An important aspect

of these outsourced services is that there may be more than one service provider

providing similar types of services. Trust plays an important role in identifying

the best service provider for a customer. Such trust information can be computed

from customer feedback ratings for the services. Such rating provides a measure of

previous consumers’ satisfaction with the services. The satisfaction value indicates

the trustworthiness of a service provider in delivering the services as promised (also

known as service trust). We propose a community based approach of managing

service trust in the human services delivery system. Our approach to the management

of trust is based on the notion of community derived from social networks. Figure 14.2

depicts the basic elements of our framework and interactions among them. In the

following, we explain them briefly using an example of Australian employment

services model.

Community provider: A community provider is the entity that defines the service

community. A community provider may be a government agency, a business coun-

cil, an academic institution, etc. A provider may provide one or more communities,

but each community has only one provider. Providers have publicly known iden-

tities. For example, Department of Employment Services is a community provider

in the context of employment services. It defines the communities of employment

service providers. In Australia, examples of employment service provider commu-

nity include communities of Job Service Providers, Disability Employment Service

Providers, and National Green Jobs Corps.

Service Community: A service community is a “container” that groups services

related to a specific area (for example, employment service providers or social

workers). We can use ontologies as templates for describing communities and their

services. For example, in the context of Australian employment services model,

Disability Employment Services are the members of the Employment Services

Community and provide employment services to disabled job seekers.

344 S. Nepal et al.

Web Services: A Web service is a software application identified by a URI (Uniform

Resource Identifier), whose interface and binding are defined, described and discov-

ered by XML artefacts, and supports direct interaction with other software applica-

tions using XML messages via Internet-based protocols. Conceptually, a Web service

may be viewed as a set of operations, where each operation is a “processing unit”

that consumes input values (called its parameters) and generates output values called

the result of that operation’s invocation. In the context of human services, a Web

service may include an operation service as defined above as well as human-assisted

services. The human-assisted services are services that involve human beings. An

example of a human service is a Job Capacity Assessment service provided by a job

capacity assessor such as a medical doctor. We assume that there are corresponding

Web services in the human services management framework to reflect the human

activity.

Service provider: The service provider is the entity that provides the service and

makes it available to consumers. A service provider may be a business, a government

Fig. 14.2 A community based approach of managing trust

14 Service Trust Management for E-Government Applications 345

agency, or an academic institution. Providers have publicly known identities. A

service provider registers with the community to offer one or more services. Each

service is owned and offered by a single provider but may or may not be actually

managed by the provider. For example, the provider of a service may outsource the

task of actually operating the service to a third party. Service consumers may or may

not be able to determine all the parties involved in delivering a given service. In our

model, we do not make a distinction between the service provider and the provided

service.

Service Community ontology: The service community ontology comprises of a

hierarchical description of important concepts and their properties in a domain (for

example, employment services domain). It also includes the ontological relationships

between the concepts such as member of, subclass of or superclass of. In the context

of employment services, we define an employment services community ontology.

This ontology defines different types of employment service providers and their prop-

erties, the services they provide and the properties of these services and instances

of the services and providers. For example, DisabilityEmploymentService is a sub-

class of concept EmploymentService. Similarly, AuswideEnterprise is an instance of

DisabilityEmploymentService.

Service consumer: A service consumer is any entity that invokes a service, e.g.,

an intelligent agent, a Web application, or another Web service. A human user may

also invoke a Web service, but we assume that each user is represented by a software

component (defined proxy) in the system, similar to the human-assisted services

represented by Web-based services. For example, a job seeker is a consumer of an

employment service provided by employment service providers. Similarly, a Web

service in the employment service provider’ system is a consumer of Department of

Employment Services’ assessment service.

Service registry: A service registry is a searchable directory that contains a collection

of descriptions of Web services and their communities. A service registry has two

components: a repository of service descriptions and a registry engine that answers

the requests sent to the registry by service providers and service consumers. A service

registry may be private or public. Any provider may advertise its capabilities by

publishing the Web service in a public registry. A private registry may be used only

by a limited, known set of providers to publish services. In our framework, service

registries are only used to locate prospective service providers, and the registries do

not store any reputation related information.

Service trust ontology: The service trust ontology aims to improve knowledge

reusability and semantic interoperability of trust services regardless of trust algo-

rithms/mechanisms used by the services [8]. It provides a common framework to

capture the relationships between various trust concepts and their relationships rel-

evant to semantic service-oriented environments. In this ontology, we consider not

only services trust but also trust as a service. Our service trust ontology captures the

whole life cycle of services trust—from initialization of trust with trust bootstrapping

to various phases specific to services trust, such as composition and propagation of

346 S. Nepal et al.

trust in composite services. Each node of the ontology, representing a stage in trust

life cycle, is mapped to the service providing this functionality. This enables easy

representation of the whole life cycle of services trust. Separating trust algorithms

from trust concepts enables us to model a large number of trust algorithms provided

by different service providers.

Service trust manager: The trust manager is an entity that is responsible for com-

puting trust values of the service providers. Some of the key tasks of the service

trust manager include monitoring the quality of human services, providing mecha-

nisms to collect and process customer feedback, and providing algorithms/protocols

for collecting, evaluating and disseminating trust information. We describe them in

detail in the following sections.

14.4 Service Trust Management Implementation

In this section, we first describe the architecture of the service trust management

framework discussed earlier. This is followed by a discussion on Quality of Human

Service (QoHS) parameters used to compute service trust. We then discuss the imple-

mentation of specific service ontology and trust ontology. This is followed by a dis-

cussion of various trust models for reputation information collection, bootstrapping,

evaluation and dissemination.

14.4.1 Implementation Architecture

Figure 14.3 shows the service trust management implementation architecture along

with key elements and interfaces. We describe them briefly below.

The service ontology manager includes an ontology base and an ontology query

interface. The ontology base consists of two types of ontologies—a service commu-

nity ontology and a service trust ontology. The service community ontology stores

the ontology definitions of services within a specific domain. The service trust ontol-

ogy stores the ontology definitions of services trust and trust services and models

the relationships between different types of trust and the dependencies between dif-

ferent trust functionalities. A node in the service trust ontology defines a type of

functionality offered by a service. Some examples of such nodes are TrustBootstrap-

ping, TrustPropagation and TrustEvaluation (described in later subsections). Each

node in the ontology is associated with a list of services that provide the defined

functionality. This association enables functionality-based service discovery by first

locating the corresponding node in the ontology, then locating the Web services that

subscribe to the node.

The ontology query interface supports two types of queries in the ontology base:

functionality query and Web service query. The functionality query is to locate a

14 Service Trust Management for E-Government Applications 347

Fig. 14.3 A service trust management system architecture

node in the ontology and retrieve related information such as its relationship with

other nodes. The Web service query is to find a list of Web services that provide a

specific functionality, identified by a certain node in the ontology. The corresponding

concrete Web services can be retrieved by checking whether they subscribe to a

node. The community manager uses service community ontology to organise services

into different types of communities. Services providing a similar type of service

belong to the same community. The community manager also maintains raters and

ratings. The raters are the consumers who are willing to share their experiences with

others, and the ratings are the feedback given by the consumers against a service’s

quality parameters. We describe the quality parameters for human services, referred

to as QoHS, in the following section. The community manager provides appropriate

interfaces to communicate with other components of the Service Trust Management

system.

The trust manager includes a trust query interface and a trust query processor. The

trust query interface provides a query interface to the users of the trust management

service. The current implementation supports two types of interfaces: Web service

and Web portal. The Web service interface is used by other Web services to query

trust of a service (or services). For example, a query optimizer in HSDS may invoke

the trust service to inquire the trust value of a particular service using the Web

service interface. The Web portal interface is designed to be used by an end user

(or consumer). This enables the trust service to be used independently and directly

by the consumer. The trust query processor interacts with the ontology manager to

process a given trust query.

348 S. Nepal et al.

Quality of Human Services: The term Quality of Service (QoS) has been widely used

in networking technologies for managing network traffic with an aim of enhancing

user experiences. This is also applicable to Web services over the Internet. QoS

refers to the non-functional properties of Web services such as performance, relia-

bility, availability, accessibility, integrity and security. These aspects of quality are

applicable to management of human services delivery. The human services not only

represent the traditional Web services, but also services provided by humans. We

refer to the quality aspects of human services in HSDS as Quality of Human Ser-

vice (QoHS). Evaluating an experience of a human service is complex as it involves

many uncertainties. Different people can have different views about the same expe-

rience. The properties used for measuring user experiences on human services may

vary from scenario to scenario. In our case of employment services provided by third

party employment service providers, QoHS parameters include courteousness, effec-

tiveness, efficiency, convenience, responsiveness, reliability and breadth of choice.

It is important to note that the list is neither complete nor exhaustive.

1. Courteousness: The courteousness of human services refers to the manner with

which the provider provided the service to the consumers.

2. Effectiveness: Effectiveness refers to the degree to which stated objectives are

achieved.

3. Efficiency: Efficiency refers to the ability to accomplish a job within minimum

time.

4. Convenience: Convenience refers to the service providers being convenient to

their consumers.

5. Responsiveness: Responsiveness refers to the service providers being quick to

respond to their consumers’ request.

6. Reliability: Reliability refers to degree of service providers being capable of

maintaining the service and service quality.

7. Breadth of choice: Breadth of choice refers to the options provided by service

providers to their consumers.

Service Community Ontology: As mentioned earlier, our approach to manage-

ment of trust uses the concept of community. A variety of communities within the

Department of Human Services come together to offer human services. For exam-

ple, communities of employment service providers, financial advisors, job capacity

assessors, and social workers. In order to manage these different communities, we

introduce a concept of service community ontology. It typically comprises a hierar-

chical description of important concepts in a domain and describes their properties.

The trust management framework provides trust service for each of these communi-

ties. We describe the main concepts below.

Community provider: This concept represents an entity that defines the communities.

In our example, Department of Education is a community provider that defines the

employment services communities. The WSML (Web Services Modelling Language)

representation of the concept and its instance is shown below.

14 Service Trust Management for E-Government Applications 349

concept CommunityProvider

hasName ofType _string

hasCommunityProviderID ofType _string

isCommunityProviderOf inverseOf(hasCommunityProvider)

ofType Community

instance Department_of_Education memberOf CommunityProvider

Community: This concept represents a group of providers providing similar services.

In our example, job providers are the members of the Job community that belongs to

the employment services community. The concept and its instance are shown below.

concept Community

hasName ofType _string

hasCommunityID ofType _string

hasCommunityProvider ofType CommunityProvider

isCommunityOf inverseOf(hasCommunity) ofType

ServiceProvider

concept EmploymentServiceCommunity subConceptOf Community

instance JobCommunity memberOf EmploymentServiceCommunity

hasCommunityID hasValue "JobCommunity"

hasCommunityProvider hasValue DEEWR

Service provider: The service provider is the entity that provides the service and

makes it available to consumers. A service provider may be a business, a government

agency, an academic institution, etc. A service provider registers with the community.

For example, AuswideEnterprises is an employment service provider that is registered

with the Job community.

concept ServiceProvider

hasName ofType _string

hasProviderID ofType _string

hasCommunity ofType Community

concept EmploymentServiceProvider subConceptOf ServiceProvider

hasService ofType ThirdPartyEmploymentService

hasQoHSParameter ofType SetOfQoHSParameters

hasCommunity ofType EmploymentServiceCommunity

hasTrustValue ofType _string

concept JobProvider subConceptOf EmploymentServiceProvider

instance AuswideEnterprises memberOf JobProvider

hasName hasValue "AuswideEnterprises"

hasProviderID hasValue "AuswideEnterprises"

hasCommmunity hasValue JobCommunity

hasService hasValue AuswideEmploymentService

hasQoHSParameter hasValue JobProviderQoHSParameters

hasTrustValue hasValue "5.0"

350 S. Nepal et al.

QoHS: The QoHS parameters are used to record the past experience of service con-

sumers on a particular service. For example, courteousness, effectiveness, efficiency,

convenience, responsiveness, reliability and breadth of choice are QoHS parameters

for Job providers. The QoS parameters for Web Services are also defined in the

similar way.

concept SetOfQoHSParameters

hasQoHSParameter ofType QoHSParameter

concept QoHSParameter

hasQoHSValue ofType _integer

instance Courteousness memberOf QoHSParameter

instance Effectiveness memberOf QoHSParameter

instance Efficiency memberOf QoHSParameter

instance Convenience memberOf QoHSParameter

instance Responsiveness memberOf QoHSParameter

instance Reliability memberOf QoHSParameter

instance BreadthOfChoice memberOf QoHSParameter

Service consumer: A service consumer is any entity that consumes a service provided

by service providers. Consumers are called raters if they are willing to share their

experience with others. For example, a job seeker is a consumer of services provided

by Job providers.

concept Consumer subConceptOf CSO#Customer

concept Rater subConceptOf Consumer

instance AliceSmithCCN20453 memberOf Rater

Service Trust Ontology: The service trust ontology defines trust concepts and their

relationships specific to human services delivery system. In this ontology, we con-

sider not only services trust but also trust as a service. Our service trust ontology

captures the whole life cycle of services trust—from initialization of trust with trust

bootstrapping to various phases specific to services trust, such as composition and

propagation of trust in composite services. This is a major departure from the current

approaches that focus on trust evaluation and trust decision making. We describe the

main concepts below (see Fig. 14.4). The concept of Trust is defined as:

concept Trust

hasTrustee ofType Trustee

hasTimeStamp ofType _dateTime

hasTrustValue ofType _string

hasEvaluationCriteria ofType ESPO#SetOfQoHSParameters

hasConfidence ofType _string

isBasedOnEvaluationPeriod ofType _duration

isBasedOnNumOfInteractions ofType _string

14 Service Trust Management for E-Government Applications 351

Fig. 14.4 Service trust ontology for employment service providers

where Trustee is a service/provider to which the Trust refers. Trustor is the entity

whose level of trust on the trustee is captured by the Trust. TimeStamp is the time

when the trust value was generated. TrustValue is the actual trust value such as “7”

(numerical) or “very trustworthy” (fuzzy). EvaluationCriteria is the criteria based on

which trust is evaluated (i.e., the QoHS parameters for trust evaluation). Confidence

is the level of confidence on the trust evaluation. EvaluationPeriod is the duration

of history considered in the trust evaluation. NumOfInteractions specifies the size

of history (i.e., the number of past interactions) considered in the trust evaluation.

Inclusion of information such as TimeStamp, EvaluationCriteria, NumOfInterac-

tions, and EvaluationPeriod provides context to Trust such that two Trust instances

for the same service/provider may be compared directly based on these properties.

For example, two instances of Trust referring to the same service AuswideCaloolaEn-

terprisesBelconnen may have different TimeStamp values. This implies that one of

the instances is more recent than the other and therefore more indicative of the current

trustworthiness of that service.

Trust Service: A TrustService is a Web service that provides various trust functional-

ities such as trust bootstrapping, trust evaluation and trust propagation. TrustService

can be of several types based on the type of functionality provided by the service.

Each of these is defined as a subconcept of TrustService. At the abstract level, a

TrustService is defined as:

352 S. Nepal et al.

concept TrustService

hasServiceID ofType string

hasServiceProvider ofType ServiceProvider

hasQoHSParameterTuple ofType QoHSParameterTuple

hasInput ofType Data

hasOperation ofType Operation

hasOutput ofType Data

ServiceProvider is the provider of the TrustService. QoHSParameterTuple defines

a list of QoHS parameter tuples consisting of pairs of QoHS parameter and adver-

tised QoHS value for that parameter. Input is the input to the TrustService. Operation

defines the operations/functionalities provided by the TrustService. Output defines

the output of the TrustService. Specific types of TrustServices have specific defini-

tions for the Input, Operation and Output attributes. All other attributes remain the

same.

Operation: An Operation specifies the particular location and functionality of a

service. A service may have one or more operations. An Operation is defined as:

concept Operation

hasOperationName ofType _string

hasSoapLocation ofType _string

hasSoapAction ofType _string

isOperationOf inverseOf(hasOperation) ofType SO#Service

We have identified several types of services trust based on the purpose of trust

evaluation (see Sect. 14.5). All of these trust types are sub-concepts of Trust.

BootstrappedTrust: A new service/provider in a community needs to be assigned a

nominal trust value to ensure that newcomers are not unfairly disadvantaged. We

define such initial trust as BootstrappedTrust. For example, a new employment

service CampbellPageEmploymentService is registered in the JSA community.

Since this service is new, its trust cannot be calculated from interaction his-

tory. Therefore, this service will be assigned a nominal BootstrappedTrust. As

Fig. 14.5 Types of service trust

14 Service Trust Management for E-Government Applications 353

CampbellPageEmploymentService gets used and evaluated by job seekers, its

BootstrappedTrust will be updated to reflect its trustworthiness. BootstrappedTrust

is defined as:

concept TrustBootStrap subConceptOf TrustService

hasInputData ofType TrustBootstrapInputData

hasOperation ofType {TrustBootstrapping, TrustEndorsement}

hasOutputData ofType BootstrappedTrust

Global Trust: In our community based environment, when trust evaluation is based

on the collective perception of the whole community, such trust is termed as Glob-

alTrust. Everyone in the community has the same level of trust for a particular

trustee (service/provider). The concept of community based trust (i.e., GlobalTrust)

is defined as:

concept GlobalTrust subConceptOf Trust

hasTrustor ofType ESPO#Community

isBasedOnNumOfInteractions ofType _integer

Trustor is the community within which GlobalTrust is evaluated. In the

employment service scenario, as CampbellPageEmploymentService gets invoked and

evaluated by its consumers, its BootstrappedTrust will be updated and becomes its

GlobalTrust. All feedback received by CampbellPageEmploymentService will be

incorporated to obtain its GlobalTrust.

Personalised Trust: When trust evaluation incorporates the trustor’s preferences with

respect to various quality parameters, such trust is termed as PersonalisedTrust.

When trust is personalised, the trust evaluation for the same trustee may be different

depending on who the trustor is. Furthermore, trustor identification may be used

to weigh the personalised trust values supplied by the trustor. PersonalisedTrust is

defined as follows:

concept PersonalisedTrust subConceptOf Trust

hasTrustor ofType ESPO#Consumer

isBasedOnNumOfInteractions ofType _integer

isBasedOnQoHSPreferences ofType QoHSPrefTuple

Trustor is the consumer whose preferences have been considered in the person-

alised trust evaluation. QoHSPreferences defines the preferences of the trustor with

value pairs of QoHSParameter and corresponding importance of that parameter to

the user specified by Weight. In our example, for employment services, Alice consid-

ers the courteousness more important than effectiveness whereas John prefers effi-

ciency over courteousness. Given these differences, for the same employment service

354 S. Nepal et al.

CampbellPageEmploymentService, Alice’s PersonalisedTrust would be different

from John’s.

Direct Trust: The concept of trust based on direct past interactions between the trustor

and trustee is defined as DirectTrust. Direct trust is a type of PersonalisedTrust. The

concept of DirectTrust is defined as follows:

concept DirectTrust subConceptOf PersonalisedTrust

hasTrustor ofType ESPO#Consumer

isBasedOnNumOfDirectInteractions ofType _integer

For DirectTrust, trustor preferences for various QoHS parameters do not need to be

specified. Trust evaluation is based on direct past evaluations, and therefore, trustor

preferences are implicit in the evaluations. In our employment services example,

Alice’s DirectTrust on CampbellPageEmploymentService is computed based only

on her past evaluations of CampbellPageEmploymentService.

Composite Trust: The concept of trust for a composite service, i.e., CompositeTrust,

is based on the trust for the component services. This also includes the BootstrapTrust

for composite services. Various algorithms may be used to determine the composite

trust value from the atomic trust values of the component services. The concept of

composite trust is defined as follows:

concept CompositeTrust

hasTrustee ofType CSO#CompositeService

hasTimeStamp ofType TimeStamp

hasCompositeTrustValue ofType _string

CompositeTrust is typically used to facilitate selection among different service

compositions providing the same functionality. Therefore, typically, CompositeTrust

would be single use, i.e., used for comparisons and then discarded. For composite

services that are likely to be used/invoked by many consumers, CompositeTrust is

stored and will be regarded as the GlobalTrust for the composite service. In this

respect, CompositeTrust can be considered as BootstrappedTrust for composite ser-

vices. In our scenario, consider a new composite employment service combining

different activities within EPP. When Alice is considering EPP activity options, the

system will compute the CompositeTrust for EPP based on the trust for services

providing different activities. If the EPP with same composition is needed for many

job seekers, its CompositeTrust will be considered to be its BootstrappedTrust and

stored. From this point onwards, JSA providers may evaluate the composite service

just like an atomic service for different activities. Ratings provided for EPP will be

used to update its GlobalTrust.

Propagated Trust: The concept of trust for the component services propagated from

the trust score assigned to the composite service is termed as PropagatedTrust. The

concept of PropagatedTrust is defined as follows:

14 Service Trust Management for E-Government Applications 355

concept PropagatedTrust

hasTrustee ofType CSO#CompositeService

hasTimeStamp ofType TimeStamp

hasCompositeTrustValue ofType _string

TypeOfPropagation specifies whether the propagation is vertical, horizontal or

hybrid, consistent with the type of service composition. In the above example, ratings

assigned to the composite service EPP are propagated to the component activity

services to obtain their PropagatedTrust. The PropagatedTrust for each component

service is then used to update the corresponding GlobalTrust.

14.4.2 Trust Models

Reputation Information Collection Model: One of the important steps in the

reputation-based trust management systems is to collect information that is neces-

sary to evaluate the reputation of services. In our proposed trust management frame-

work for human services, in particular employment services, we have proposed a

community-based reputation information collection model. Figure 14.6 shows the

interactions among different entities in our proposed model. We explain these inter-

actions further below.

1. The first step is to register all service providers in the service registries. This

step is a prerequisite for the community-based reputation information collection

model. All service providers must be registered in the service registries so that

they can be searched. For example, all JSA providers must be registered in an

employment services registry.

2. The next step is registering service consumers to the community. The community

provides a platform for a consumer to act as a rater and share its past experi-

ence with service providers. For example, a job seeker registers with the JSA

community as a rater.

3. In this step, consumers search for providers in the service registries. It is important

to note that other agents/services may request and search for the required services

on behalf of consumers. For example, a human service related to a business

process “looking for work” may search for all job providers meeting the job

seeker’s requirements.

4. The consumer selects a service and interacts with it. In our example, a job seeker

selects one of the job providers and interacts with it. The interaction involves

activities like creating employment plan, attending training, applying for jobs,

preparing curriculum vitae, etc.

5. The next step is assessing the reputation of the service. The reputation assess-

ment process involves getting feedback from the consumer on Quality of Human

356 S. Nepal et al.

Fig. 14.6 Community based reputation information collection model

Service (QoHS) parameters and evaluating a reputation value (following the

algorithm described in later).

6. The last step is to disseminate the evaluated reputation value to the community.

The dissemination may include the final evaluated trust value or feedback values

on each QoHS parameters or both. It depends on the underlying trust manage-

ment service. In our implementation, a job seeker’s feedback values on QoHS

parameters are disseminated to the job provider community.

Reputation Evaluation Model: Once the trust related information is collected as

described above, the trust management system must support a mechanism of evaluat-

ing trust value for each service provider. What do we understand by trust? We define

trust as the belief that a service consumer has about the intention and the ability of a

service provider to act as expected. How do we measure/establish a belief? The repu-

tation is one of the mechanisms of establishing the belief about the provider’s ability

to deliver the service as expected by consumers. This is established through con-

sumers’ past behavior. Consumers past behavior is established through a collective

perception of the consumers that have interacted with the service provider in the past.

In this section, we first define the reputation based trust, and then propose a method of

evaluating reputation considering a number of factors. We use the trust model based

on the concept of community, where the reputation represents a collective perception

of the users in the community regarding a service provider. The reputation of a given

service is a collective perception of the consumers that have interacted with or used

it in the past. The perception of each consumer about services they have invoked

14 Service Trust Management for E-Government Applications 357

is called Personal Evaluation (PerEval). The personal evaluation could be a single

value representing an overall perception or a vector representing a value for each

Quality of Human Services (QoHS) attributes such as convenience, reliability and

availability. For each service sj that it has invoked, a service consumer ci provides a

k-element vector PerEvalij representing ci’s perception of sj’s behaviour. Then, the

reputation of sj, as perceived by a consumer ci is defined as:

Reputation(sj, ci) =
∧

k∈K

(PerEval
ij

k
) (14.1)

where
∧

represents the aggregation function. Equation 14.1 provides a first approxi-

mation of how the assessed reputation may be calculated for a service sj. The service

sj could be a simple service or a composite service. In the case of a simple service,

the reputation value calculated by the Eq. 14.1 is directly assigned to the service sj.

However, this gets complicated if the service sj is a composite service. The reputation

value received by sj from the consumer ci needs to be propagated to sj’s component

services. We describe a method of propagating reputation value to component ser-

vices later. Equation 14.1 shows a simple method of evaluating reputation value of a

service provider based on a single consumer’s feedback on QoHS parameters. Let us

assume there are N number of consumers in a community who have interacted with

the service sj in the past. The reputation of the service in the community is calculated

as:

Reputation(sj) =
∧

k∈K,x∈N

(PerEval
xij

k
) (14.2)

There are a number of additional factors that influence the overall reputation value

of a service such as credibility of the raters, preference of the consumer request-

ing the reputation value, and temporal sensitiveness of the feedback values. In our

current model, we consider the consumer preference and temporal sensitivity in our

calculation as follows.

Service consumers may have different preferences on QoHS parameters. This may

result in different reputation values. For example, a job seeker may give higher prefer-

ence to convenience over effectiveness, whereas another job seeker may give higher

preference on courteousness than responsiveness. We allow the service consumers to

calculate the reputation value of the service providers according to their own personal

preference. Each service consumer defines a personal preference through a weight

vector (w). Since service consumers can change their preferences from one request to

another, the W is submitted with each reputation request submission. In this manner,

the consumers have the ability to weigh the different QoHS parameters according to

their own preferences. Let w(k) denote the preference assigned to QoHS parameter k

by the service consumer ci. The reputation value in Eq. 14.2 is then represented as:

Reputation(sj) =
∧

k∈K,x∈N

w(k) × (PerEval
xij

k
) (14.3)

358 S. Nepal et al.

Service consumers expect service providers to behave in a fair and consistent manner.

Reputation values are directly affected by the consistency of offered services. How-

ever, there are situations where all the past data is of little or no importance. For

instance, a service’s performance may degrade over time. It may be the case that

considering all historical data may provide an incorrect reputation value. In order

to counter such discrepancies, we incorporate temporal sensitivity in our evaluation

model. The rating submissions are time-stamped to assign more weight to recent

observations and less to older ones for calculating the reputation value. This is termed

as reputation fading where older perceptions gradually fade and fresh ones take their

place. We adjust the value of the reputation as:

Reputation(sj) =
∧

k∈K,x∈N

w(k) × (PerEval
xij

k
) × fd (14.4)

where fd is the reputation fader. In our model, the most recent perception has the

fader value 1 while older observations are decremented at equal intervals for each

time instance passed. When fd = 0, the perception is not included as it is considered

to be outdated.

Reputation Bootstrapping Model: The reputation-based trust models rely on the

feedback received from past interactions. How to deal with the newcomers with no

past interactions? This means sometimes the reputation of a service has to be started

on the basis of (a) no past experience of direct interactions, (b) a lack of experience

in any meaningful role, (c) no witness reports, and (d) no evidence-based third party

references. We refer to this issue as bootstrapping problem.

Bootstrapping is a major issue in human services because historical information

may not be available regarding new services. For example, a new JSA provider is

licensed to operate in a regional area to meet a growing demand in the region. When

a new service is introduced, it is necessary to bootstrap its trust by assigning an initial

reputation value. If the new service is assigned the lowest default reputation value,

it may be overlooked over other existing services and treated unfairly in terms of

competitive advantages. If the newcomer is assigned a high initial reputation value,

then existing services are penalised. This may give a motivation to discard their

identities and start fresh if their trust level falls below a certain threshold. Therefore,

the trust bootstrapping mechanism should not only promote new services, but also

encourage existing services to keep their reputation profiles. Here, the concept of

trust bootstrapping refers to the process initialization of trust for a new service.

We have proposed a community-based reputation bootstrapping approach for

human services. Figure 14.7 shows the interactions among different entities in the

community-based reputation bootstrapping model. We describe these interactions in

brief below.

1. The service consumer asks the reputation of a new service provider by submitting

a query to the service trust manager. For example, a Centrelink service, on behalf

of a job seeker, asks the reputation of a JSA provider by submitting a query to

the service trust manager.

14 Service Trust Management for E-Government Applications 359

Fig. 14.7 Community based reputation bootstrapping model

2. The service trust manager does not have any reputation information. The reputation

information belongs to the community manager. The service trust manager

requests the reputation information from the community. In our example, the

service trust manager requests the information from the job seeker’s community

(i.e., JSA community). It is important to mention that the service trust manager

may reside within Centrelink or may be provided by a trusted third party.

3. Since the service provider is new, the community manager informs the service

trust manager that there are no past usage information available for the given

service. This requires the initiation of bootstrapping process. In our example, this

means the JSA community does not have any feedback information associated

with a particular JSA provider.

4. The trust manager requests the bootstrapping process. The process involves the

execution of a bootstrapping algorithm and assigning the reputation value to the

new service provider. The bootstrapping algorithm could be executed in either

trust manager or community manager. The place of execution depends on how

the algorithm is implemented. In our initial implementation, the bootstrapping

algorithm simply assigns an average trust value (i.e., average of all ratings) of

all members in the community to the newcomer. Therefore, the execution of

bootstrapping algorithm takes place at the community manager.

5. The trust manager returns the reputation value to the consumer. The execution of

the bootstrapping algorithm is transparent to the consumers.

Reputation Propagation Model: The reputation value received from the consumer

for a composite service needs to be propagated to its component services. We propose

a contribution-based distribution of reputation method for propagating reputation

to component services. Each component service receives the reputation based on

360 S. Nepal et al.

their contribution towards the reputation of the composite service. The consumer

of the composite service assigns a reputation value to it based on its perception.

The composition is opaque to the consumer and appears as a single service, i.e.,

the consumers are not aware of the component services. The role and importance of

each component service may be different in different compositions. Therefore, it is

difficult to estimate the contribution of the component services to the perception of

the composite service’s consumers. A contribution from a component service to the

overall perception is based on its past ratings. A component service that has higher

reputation is likely to have a higher contribution towards the overall reputation of

the composite service as perceived by the service consumer than those with lower

reputation. This is based on the assumption that a component service with higher

reputation gives a better service to the consumers of composite service than the ones

with lower reputation values. We propose a method of propagating reputation to the

component services in [5].

14.5 Case Study

We illustrate how our trust management framework helps Alice (a citizen in need

of help) to select the best service provider in assisting her to get employed. Alice is

looking to re-enter employment after a gap of many years. Alice reports a new life

event looking for work to the Human Services Department. The service selector maps

a service request to the resources, processes and services registered in the Service

Repository.. The Service Composer creates an integrated workflow by combining eli-

gible employment services, processes and resources returned by the Service Selector.

The composer generates an abstract composite service which includes a number of

employment related services such as job capacity assessor and Employment Pathway

Plan. The service selector selects the appropriate third party services and executes it.

Once the registration process is completed, Alice has to answer a number of questions

to classify her level of difficulties in finding job.

We assume that Alice has some difficulties and needs to have her job capacity

assessed. This triggers the job capacity assessment service as well as job service

provider services. This composite service is then passed on to the Service Opti-

miser. In our framework, we measure the quality of human services using some

non-functional properties such as reputation-based trust computed on a defined set

of QoHS parameters. The Service Optimiser is responsible for ensuring that these

non-functional properties of the final integrated workflow presented to the customer

are optimal within the resource and technology boundaries of the human services

department. In the following, we explain how our trust management framework helps

the service optimiser to produce the optimal solution for the customer. We explain

it using an example of job service providers. However, the example scenario below

is applicable to all component services in the abstract composite service if there are

more than one corresponding concrete services.

14 Service Trust Management for E-Government Applications 361

The Department of Employment is registered in the CommunityManagementSer-

vice as a community provider. The Australian government has contracted a wide

range of organizations to provide employment services to its citizens. These orga-

nizations include small, medium and large enterprises operating in both profit and

non-profit modes. These organizations are called job service providers and they are

expected to deliver high quality services to the citizens. This means Department

of Employment defines a community called Job Community using the Communi-

tyManagementService. Within Job community, there are many employment service

providers. Job providers are the members of the Job community that provides employ-

ment services. These concepts about community are stored in the ontology and are

accessed using OntologyAccessService.

Alice lives in a small town. There are many Job Providers in her neighbourhood

such as X, Y and Z (real names are removed). These providers offer employment

services to customers under the contract with Department of Employment. Each

of these service providers may have been used by a large number of customers.

Their feedback is collected and managed by the CommunityManagementService.

The optimizer invokes GetTopK method of the TrustManagementService to retrieve

best Job providers for Alice. The TrustManagementService retrieves the history of

all Job providers that meet Alice’s requirements in terms of locality and the types

of services provided. It then evaluates their trust and creates a ranked list of Job

providers. The top K providers from the ranked list are returned to the optimizer

along with their trust values. The optimizer/Alice may select one of the recommended

service providers depending on the situation.

14.6 Conclusions

This chapter described a community based trust management framework for human

services. Our approach is based on the consumers’ experience on provider’s past

behaviour. We described the proposed approach, system architecture, algorithms and

protocols using the motivation from the employment services model. We reported an

initial implementation of the Service Trust Management System within the proposed

holistic Human Services Delivery System. We then discussed the proposed model

with a case study of a citizen looking for work. The initial implementation was

demonstrated in the context of employment service.

References

1. Bouguettaya, A., Nepal, S., Sherchan, W., Zhou, X., Wu, J., Chen, S., Liu, D., Li, L., Wang,

H., Liu, X. 2010. End-to-end service support for mashups. IEEE Transactions on Services

Computing 3, 3, 250–263.

362 S. Nepal et al.

2. Li, L., Liu, D., Bouguettaya, A. 2009. Semantic weaving for context-aware web service com-
position. In International Conference on Web Information System, Engineering. 101–114.

3. Maximilien, E.M. and Singh, M.P. 2004. Toward autonomic web services trust and selection. In
Proceedings of the 2nd international conference on Service oriented computing (ICSOC ’04).

ACM, New York, NY, USA, 212–221.

4. Medjahed, B., Atif, Y. 2007. Context-based matching for web service composition. Distributed

and Parallel Databases 21, 1, 5–37.

5. Nepal, S., Malik, Z., Bouguettaya, A. 2009. Reputation Propagation in Composite Services.

International Conference on Web Services, 295–302.

6. Ouzzani, M., Bouguettaya, A. 2004. Efficient access to web services. IEEE Internet Computing

8, 2, 34–44.

7. Ryu, S. H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R. 2008. Supporting the dynamic

evolution of web service protocols in service-oriented architectures. ACM Transactions on the

Web 2, 2, 1–46.

8. Sherchan, W., Nepal, S., Hunklinger, J., Bouguettaya, A. 2010. “A Trust Ontology for Semantic

Services,” Services Computing, IEEE International Conference on, IEEE International Confer-

ence on Services Computing, pp. 313–320.

9. Sherchan, W., Nepal, S., Bouguettaya, A., Chen, S. 2012. Context-sensitive user interfaces for

semantic services. ACM Transactions on Internet Technologies, 11, 3.

10. Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A. 2010. Adaptive service compo-

sition based on reinforcement learning. In Proceedings of International Conference on Service

Oriented, Computing (ICSOC). 92–107.

11. Zhou, X., Chen, S., Bouguettaya, A., Kai, X. 2009. Supporting Bioinformatic Experiments

with a Service Query Engine. In Proceedings of the 2009 Congress on Services - I (SERVICES

’09). 717–723.

Chapter 15

Trust-Oriented Service Provider Selection
in Complex Online Social Networks

Guanfeng Liu and Yan Wang

Abstract In recent years, Online Social Networks (OSNs) with numerous partici-

pants have been used as the means for rich activities. For example, employers could

use OSNs to investigate potential employees, and participants could use OSNs to look

for movie recommendations. In these activities, trust is one of the most important

indication of participants decision making, greatly demanding the evaluation of the

trustworthiness of a service provider along certain social trust paths from a service

consumer. In this chapter, we first analyze the characteristics of the current gener-

ation of functional websites and the current generation of online social networks

based on their functionality and sociality, and present the properties of the new gen-

eration of social network based web applications. Then we present a new selection

model considering both adjacent and end-to-end constraints, based on a novel con-

cept Quality of Trust and a novel complex social network structure. Moreover, in

order to select the optimal one from a lot of social trust paths yielding the most

trustworthy trust evaluation result, this chapter presents an effective and efficient

heuristic algorithm for optimal social trust path selection with constraints, which is

actually an NP-Complete problem. Experimental results illustrate that our proposed

method outperforms existing models in both efficiency and the quality of delivered

solutions. This work provides key techniques to potentially lots of service-oriented

applications with social networks as the backbone.

G. Liu (B) · Y. Wang
Department of Computing, Macquarie University, Sydney, Australia
e-mail: guanfeng.liu@mq.edu.au

Y. Wang
e-mail: yan.wang@mq.edu.au

A. Bouguettaya et al. (eds.), Advanced Web Services, 363
DOI: 10.1007/978-1-4614-7535-4_15,
© Springer Science+Business Media New York 2014

364 G. Liu and Y. Wang

15.1 Introduction

Online Social Networks (OSNs) (e.g. Facebook1 and MySpace2) have become

increasingly popular recently and are being used as the means for a variety of rich

activities. In service-oriented environment, OSNs can provide the infrastructure for

the recommendation of service providers or services. According to a survey on 2600

hiring managers (i.e., service consumers) in 2008 by Career Builder3 (a popular job

hunting website), 22 % of them used social networking sites to investigate potential

employees (i.e., service providers). The ratio increased to 45 % in June 2009, and

72 % in January 2010. In addition, participants (i.e., service consumers) could look

for the service of movie recommendation at FilmTrust,4 a movie recommendation

OSN. In recent years, the new generation of social network based web application

systems has drawn the attention from both academia and industry. The study in [1] has

pointed out that it is a trend to build up social network based web applications (e.g.,

e-commerce or online recruitment systems). In October 2011, eBay5 announced their

strategic plan to deepen the relationship with Facebook1 for creating a new crop of

e-commerce applications with social networking features, integrating both their e-

commerce platform and social networking platform seamlessly.6 In such a situation,

trust is one of the most important indications for service consumers decision making,

greatly demanding approaches and mechanisms for evaluating the trustworthiness

between a service consumer and a service provider who don’t know each other.

Fig. 15.1 social network structure

1 http://www.facebook.com/
2 http://www.myspace.com/
3 http://www.careerbuilder.com/
4 http://trust.mindswap.org/FilmTrust/
5 http://www.ebay.com/
6 refer to the Reuters news “eBay and Facebook unveil e-commerce partnership” at http://www.
reuters.com/article/2011/10/12/ebay-facebook-idUSN1E79B22Y20111012

http://www.facebook.com/
http://www.myspace.com/
http://www.careerbuilder.com/
http://trust.mindswap.org/FilmTrust/
http://www.ebay.com/
http://www.reuters.com/article/2011/10/12/ebay-facebook-idUSN1E79B22Y20111012
http://www.reuters.com/article/2011/10/12/ebay-facebook-idUSN1E79B22Y20111012

15 Trust-Oriented Service Provider Selection in Complex Online Social Networks 365

In OSNs, one participant can give a trust value to another based on their past

interactions (e.g., TAB in Fig. 15.1). If there exist a trust path (e.g, A → B →

E → M in Fig. 15.1) linking two nonadjacent participants (there is no direct link

between them), the source participant (i.e., the service consumer) can evaluate the

trustworthiness of the target participant (i.e., the service provider) based on the trust

information between the intermediate participants along the path. The path with trust

information linking the source participant and the target participant is called a social

trust path [2, 3].

In the literature, several methods have been proposed for trust evaluation in OSNs

[2–5]. But these models have three main drawbacks: (1) As illustrated in social psy-

chology [6, 7], the social relationships between participants (e.g., the one between

an employer and an employee) and the recommendation roles of participants (e.g., a

supervisor as a referee in his postgraduate’s job application) have significant influ-

ence on trust and thus should be considered in the trust evaluation of participants.

However, they are not considered by existing methods. (2) As there are usually many

social trust paths between participants, existing methods evaluate the trustworthi-

ness of a participant based on all social paths incurring huge computation time [2,

3]. Although a few methods [4, 5] have been proposed to address the path selection

problem, they yet neglect the influence of social information on path selection. (3)

In OSNs, a source participant may have different purposes in evaluating the trust-

worthiness of a target participant, such as hiring employees or introducing products.

Therefore, a source participant should be able to set certain constraints on the trust,

social relationship and recommendation role in trust path selection. However, exist-

ing methods do not support these selection criteria.

15.2 Related Work

The studies of social network properties can be traced back to 1960s when the small-

world characteristic in social networks was validated by Milgram [8] (i.e., the average

path length between two Americans was found to be about 6.6 hops). In recent years,

sociologists and computer scientists investigated the characteristics of popular online

social networks (OSNs) [9] (e.g., Facebook1, MySpace2 and Flickr7), and validated

the small-world and power-law characteristics (i.e., the probability that a node has a

degree k is proportional to k−r , r > 1).

In the literature, the issue of trust becomes increasingly important in social net-

works. we review the existing approaches for evaluating the trustworthiness of par-

ticipants in OSNs.

7 http://flickr.com

http://flickr.com

366 G. Liu and Y. Wang

15.2.1 Trust Network Discovery

As indicated in the disciplines of Social Psychology [10, 11] and Computer Science

[2, 12], a trust network from a source to a target can provide the basis for evaluating

the trustworthiness of the target as it contains some important intermediate par-

ticipants, the trust relations between them and the social context under which their

interactions happened, all of which have an important influence on trust relationships

and trust evaluation. Extracting such a contextual trust network is an essential step

before performing any trust evaluation between two participants in social networks.

In addition, the results of trust network discovery can affect the trustworthiness of

the trust evaluation [2, 13, 14]. To address the NP-Complete trust network discov-

ery problem [15], in our previous work [16, 17], we have proposed a new social

context-aware trust network discovery model which considers the influence of social

context in trust network discovery. Furthermore, we have proposed two efficient and

effective algorithms, i.e., an approximation algorithm, called SCAN, and a heuristic

algorithm, called H-SCAN, to discover trust networks.

15.2.2 Trust Evaluation Based on Ratings Only

In this type of trust evaluation models, only ratings given to a target participant are

considered. For example, at eBay5, after each transaction, a buyer can give feedback

with a rating of “positive”, “neutral” or “negative” to the seller according to the

seller’s service quality. The overall positive feedback rate of the seller is calculated

to reveal his/her trustworthiness, which is valuable to buyer. However, this type of

trust evaluation model neglects the implicit social relationships between buyers and

sellers that actually have significant influence on trust evaluation.

15.2.3 Trust Evaluation Based on All Social Trust Paths

In some other trust evaluation models, the trustworthiness of a target participant is

evaluated based on all social trust paths between a source participant and the target

participant. For example, in [2], the trust value of a target participant is computed by

averaging all trust values along all social trust paths. In [5], Walter et al. propose a

trust-based recommendation system. In their model, all social trust paths between a

buyer and a seller selling the products preferred by the buyer are taken into account

to evaluate the trustworthiness of the seller.

This type of trust evaluation methods neglects the social information with signif-

icant influence on trust evaluation. In addition, evaluating the trustworthiness of a

target participant based on all social trust paths is very time consuming and thus they

can not be applied in large-scale social networks.

15 Trust-Oriented Service Provider Selection in Complex Online Social Networks 367

15.2.4 Trust Evaluation Based on Selected Social Trust Path

In the literature, there are only a few works addressing the social path selection prob-

lem. In SmallBlue [4], an online social network constructed for IBM staff, between

a source participant and a target participant, up to 16 social paths with no more than

6 hops are selected and the shortest one is taken as the optimal one that delivers

the most trustworthy trust evaluation result. But this method neglects trust infor-

mation, recommendation roles and social relationships between participants. In [3],

the social trust path with the maximum of propagated trust value is selected as the

most trustworthy one. Their model neglects recommendation roles and social rela-

tionships. In addition, none of these models considers different preferences of source

participants.

15.2.5 Social Trust Influence on Service Selection

As indicated in Social Psychology [18, 19], in the reality of our society, a person

prefers the recommendation from his/her trusted friends over those from others. In

addition, in the discipline of Computer Science, based on statistics, Bedi et al., [20]

has demonstrated that, given a choice between recommendations from trusted friends

and those from recommender systems, trusted friends’ recommendations are more

preferred in terms of quality and usefulness. Furthermore, in several recent studies,

some researchers [21, 22] have investigated how and to what extent a participant’s

service selection behavior (e.g., installing a specific application software) impacts on

his/her friends’ decision-making in service selection. These studies have indicated

that the recommendations from trusted friends have significant influence on service

or target selection, not only in the society in the real world, but also in OSNs.

Although a complete social network based trust-oriented service recommendation

system does not yet exists, it has become an important research topic in recent

years. Some researchers [23, 24] have proposed several models to provide more

accurate recommendations of products and/or services by taking some social context

information into consideration. In these studies, social trust path selection is a critical

problem.

15.3 A New Categorization of OSNs

Golbeck et al. [25] propose the criteria of OSNs as follows. (1) OSNs could be

accessible over the web with a web browser; (2) Users of OSNs must explicitly

state their relationships with other people; (3) The web-based online social network

system has explicit built-in support for users to make social connections, and (4)

Each relationship is visible and browseable to users. Boyd et al. [26] propose the

definition of social networking sites as Web-based services that allow individuals to

368 G. Liu and Y. Wang

(1) construct public or semi-public profiles within a bounded system; (2) articulate a

list of other users with whom they share connections; and (3) view and traverse their

list of connections and those made by others with the system. Obviously, Facebook1

and MySpace2 are in accordance with these definitions.

However, many other Websites, like YouTube,8 eBay5, Blogs and online forums,

where people can share their experience and carry out business. But relationships

between participants on this type of Websites are implicit. Thus, it is still a puzzling

problem whether these Websites belong to the scope of OSNs. In the following con-

text, we first analyze the characteristics of these websites based on their functionality

and sociality and present the properties of the new generation of OSNs [1].

15.3.1 The Current Generation of Functional Websites

The current generation of functional websites, like eBay5, support rich functionality

but do not contain explicit social relationships. For example, eBay5 supports e-

commerce activities and buying-selling relations. But it does not consider social

relationships like a supervisor and his/her students, and a father and his son among

the set of buyers and sellers. We summarize the characteristics of these functional

websites as below.

1. They have weak sociality where the relationships between participants are

implicit; and participants do not keep their friendship lists and thus they can

not make new friends with friends of friends.

2. Then have rich functionality, such as email, Blogs, e-commerce, and video and

photo sharing, etc.

15.3.2 The Current Generation of OSNs

As the sociality of the above websites is too weak for people to make rich social

interactions, the current generation of OSNs, such as MySpace2 and Facebook1

emerged in 2003 and 2005 respectively. They can explicitly express simple social

relations, but the functionality is limited to a very small scope, like information

sharing. We summarize the characteristics of the current generation of OSNs as below.

1. They have medium sociality where the social relationships between participants

are explicit and binary (friendship or non-friendship) which can be specified by

participants; and participants can make new friends with a friend’s friends, which

is stronger than that of current functional website.

8 http://www.youtube.com

http://www.youtube.com

15 Trust-Oriented Service Provider Selection in Complex Online Social Networks 369

2. They provide a platform where participants can make new friends and conduct

some simple activities (e.g., sharing photos and videos) which are not as rich as

those in current functional website.

15.3.3 The New Generation of OSNs

Technically, we can envisage that in the near future social networks can become the

backbone to extend a number of traditional systems. For example, the traditional

e-commerce system can have a social network of its buyers, and the friends’ friends

of buyers. Likewise, the traditional CRM (Customer Relation Management) systems

can be extended to be supported by a social network of customers and other people

with relations to these customers. Thus, the new generation of social network systems

can be expected to support both rich social relations and rich functionality. In these

systems, it would be easier to introduce products (e.g., by a retailer) or good sellers

(e.g., by a buyer) to buyers, and the friends’ friends of buyers. We summarize the

characteristics of the new generation OSNs as below.

1. They have strong sociality where the social relationships are explicit and complex

rather than the binary (friendship or non-friendship) in current generation OSNs.

2. They provide a platform where participants can conduct rich activities, such as,

e-commerce, CRM system, recommendation systems.

15.4 Complex Social Networks

As the current functional website and OSNs can hardly illustrate real-world complex

social information of social networks in real world scenarios [27], we present a

complex social network structure, as depicted in Fig. 15.2, modeling well the social

networks in real life. It contains the attributes of three impact factors, i.e., trust, social

intimacy degree and role impact factor. Then have influence on trust evaluation and

hence the decision making of participants.

15.4.1 A Complex Social Network Structure

15.4.2 Trust

In human societies, trust is a complex topic subject to a lot of factors, such as previous

experience, and other people’s recommendations [2]. Many different trust definitions

have been proposed addressing different aspects. Alunkal et al. [28] define that “trust

is the value attributed to a specific entity, including an agent, a service, or a person,

370 G. Liu and Y. Wang

Fig. 15.2 Complex social network

based on the behaviors exhibited by the entity in the past”. Golbeck et al. [2] define

that “trust in a person is a commitment to an action based on a belief that the future

action of that person will lead to a good outcome”.

In the context of this paper, trust between participants in social networks can be

defined as follows.

Definition 15.1 Trust is the belief of one participant in another, based on their inter-

actions, in the extent to which the future action to be performed by the latter will

lead to an expected outcome.

Let TAB ∈ [0, 1] denote the trust value that participant A assigns to participant

B. If TAB =0, it indicates that A completely distrusts B while TAB =1 indicates A

completely believes B’s future action can lead to the expected outcome.

15.4.3 Social Intimacy Degree

As illustrated in social psychology [29], a participant can trust the participants with

whom he/she has more intimate social relationships more than those with whom

he/she has less intimate social relationships. Therefore, we introduce the social inti-

macy degree between participants into complex social networks structure, and give

its definition as follows.

Definition 15.2 rAB ∈ [0, 1] is the Social Intimacy Degree between any given par-

ticipants A and B in online social networks. rAB = 0 indicates that A and B have

no social relationship while rAB = 1 indicates they have the most intimate social

relationship.

15 Trust-Oriented Service Provider Selection in Complex Online Social Networks 371

15.4.4 Role Impact Factor

Rich activities of participants in social networks can be categorized into different

domains (e.g., hiring employees or product sale) based on their characteristics [30].

As illustrated in social psychology [6], in a certain domain, the recommendation from

a person who has expertise in the domain is more credible than the recommendation

from a person who has no knowledge in that domain. Therefore, we introduce the

role impact factor of a participant into the complex social network structure, and give

its definition as follows.

Definition 15.3 ρA ∈ [0, 1] is the value of the Role Impact Factor, illustrating the

impact of participant A’s recommendation role on trust propagation. ρA =1 indicates

that A is a domain expert while ρA = 0 indicates that A has no knowledge in the

domain.

Though it is difficult to construct social relationships and comprehensive role

hierarchies in all domains for the whole society, and obtain their global values, it is

feasible to build them up in a specific social community.

For example, in the work by Mccallum et al. [31], through mining the subjects

and contents of emails in Enron Corporation,9 the social relationship between each

email sender and receiver can be discovered and their roles can be known. Then the

corresponding social intimacy degree and role impact factor values can be estimated

based on probabilistic models. In addition, in academic social networks formed

by large databases of Computer Science literature (e.g, DBLP10 or ACM Digital

Library11), the social relationships between two scholars (e.g., co-authors, a super-

visor and his/her students) and the role of scholars (e.g., a professor in the field of

data mining) can be mined from publications or their homepages. The social intimacy

degree and role impact factor values can be calculated as an example by applying

the PageRank model [32]. Furthermore, in addition to mine these values, the social

position of a participant can be specified directly [33]. If the participant becomes

a recommender, this social position information could illustrate his/her role impact

factor in the recommendation of a specific domain.

Based on the above discussion, in addition to participants and the links between

them, we propose a new structure for complex social networks that models trust,

social intimacy degree and role impact factors, as depicted in Fig. 15.2.

15.5 Multiple QoT Constrained Social Trust Path Selection

To satisfy the different preferences of a source participant in social trust path selec-

tion, in this section, we introduce a novel concept Quality of Trust (QoT) and present

a multiple QoT constrained social trust path selection model.

9 http://www.cs.cmu.edu/~enron/
10 http://www.informatik.uni-trier.de/~ley/db/
11 http://portal.acm.org/

http://www.cs.cmu.edu/~enron/
http://www.informatik.uni-trier.de/~ley/db/
http://portal.acm.org/

372 G. Liu and Y. Wang

15.5.1 Quality of Trust (QoT)

Similar to the Quality of Service (QoS) in service-oriented computing, we present a

new concept, Quality of Trust in social trust path selection.

Quality of Trust (QoT) is the ability to guarantee a certain level of trustworthiness

in trust evaluation along a social trust path, taking trust (T), social intimacy degree

(r), and role impact factor (ρ), as attributes.

15.5.2 QoT Constraint

To be adaptive to the rich activities in OSNs, a source participant should be able to set

certain constraints of QoT attributes in selecting the optimal social trust path. They

include two types: Adjacent QoT Constraint (AQC) and End-to-End QoT Constraint

(EEQC).

15.5.2.1 Adjacent QoT Constraint (AQC)

Fig. 15.3 Adjacent QoT constraints

An Adjacent QoT Constraint (AQC) is the constraint of a QoT attribute (i.e., T ,

r or ρ) between any two adjacent participants in a social trust path. In the complex

social network depicted in Fig. 15.2, let Q
µ(AQC)
AM (µ ∈ {T, r, ρ}) denote the AQC

for the path between source participant A and target participant M . Q
µ(AQC)
AM > λµ

(0 < λµ < 1) means that the value of QoT attribute µ between any two adjacent

participants in a selected social trust path should be larger than λµ. For example, if

the AQCs specified by A can be satisfied at A → D, and D → M , then social trust

path A → D → M satisfies the AQCs. In our model, a source participant can specify

different AQCs. E.g., in hiring employees, A, a retailer manager specifies AQCs as

Q
T (AQC)
AM > 0.3, Q

r(AQC)
AM > 0.3 and Q

ρ(AQC)
AM > 0.8. But when looking for new

customers for selling products, A can specify Q
r(AQC)
AM > 0.8, if he/she believes the

social relationships between participants are more important (Fig. 15.3).

15 Trust-Oriented Service Provider Selection in Complex Online Social Networks 373

15.5.2.2 End-to-End QoT Constraint (EEQC)

Fig. 15.4 End-to-End QoT constraints

An End-to-End QoT Constraint (EEQT) is the constraint of an aggregated QoT

attribute value (i.e., T , r or ρ) between a source and a target in a social trust path.

In Fig. 15.2, let Q
µ(E E QC)
AM (µ ∈ {T, r, ρ}) denote the EEQC between source

participant A and target participant M . Q
µ(E E QC)
AM > λµ (0 < λµ < 1) means

the aggregated value of QoT attribute µ in a social trust path between A and M

should be larger than λ. In addition to AQC, a source participant can also specify

different EEQCs. E.g., in hiring employees, A can set EEQCs as Q
T (E E QC)
AM > 0.3,

Q
r(E E QC)
AM > 0.3 and Q

ρ(E E QC)
AM > 0.8. But when looking for new customers

for selling products, A can specify Q
r(E E QC)
AM > 0.8, if he/she believes the social

relationships between participants are more important (Fig. 15.4).

15.5.3 Utility Function

Based on our proposed QoT attribute aggregation method [27], we define the utility

(denoted as F) in path p(a1, ..., an) as Eq. (15.1), which is the measurement of the

trustworthiness of p(a1, ..., an) in trust evaluation.

Fp(a1,...,an) = ωT ∗ Tp(a1,...,an) + ωr ∗ rp(a1,...,an) + ωρ ∗ρp(a1,...,an) (15.1)

where Tp(a1,...,an), rp(a1,...,an) and ρp(a1,...,an) are the aggregated value of trust, social

intimacy degree and role impact factor of path p(a1, ..., an) respectively, ωT , ωr and

ωρ are the weights of T , r and ρ respectively; 0 < ωT , ωr , ωρ < 1 and ωT + ωr +

ωρ = 1.

374 G. Liu and Y. Wang

15.6 A Heuristic Algorithm for the MQCSTP Selection Problem

In optimal social trust path selection, if we consider trust values only, Dijkstra’s

shortest path algorithm [34] works well. However, if multiple AQCs and EEQCs can

be specified and should be considered, this problem becomes the classical Multi-

Constrained Optimal Path (MCOP) selection problem, which is NP-Complete [35].

Therefore, we propose an effective and efficient heuristic algorithm H_MQCSTP.

This algorithm first investigates whether there exists a potential solution, which

satisfies the EEQCs and may or may not satisfy AQCs. If yes, it investigates whether

a feasible solution exist, which satisfies both AQCs and EEQCs.

In order to investigate whether a path is a potential solution, we propose an objec-

tive function in Eq. (15.2). From Eq. (15.2), we can see that if and only if each

aggregated QoT attribute of a social trust path p satisfies the corresponding EEQC,

δ(p) ≤ 1; otherwise δ(p) > 1.

δ(p) � max

{(

1 − Tp

1 − Q
T (E E QC)
p

)

,

(

1 − rp

1 − Q
r(E E QC)
p

)

,

(

1 − ρp

1 − Q
ρ(E E QC)
p

)}

(15.2)

In addition, we adopt Dijkstra’s shortest path algorithm [34] twice in both back-

ward and forward search, together with our proposed novel heuristic search strategies

to select the optimal social trust path.

Backward_Search: In the backward search, H_MQCSTP aims to identify the

path ps from the target vt to the source vs with the minimal δ based on Dijkstra’s

shortest path algorithm [34]. In this searching process, at each node vk (vk �= vt),

the path from vt to vk with the minimal δ (denoted as pk) is identified. Meanwhile

Tpk
, rpk

and ρpk
are aggregated and recorded.

The Backward_Search procedure can always identify the path with the minimal

δ. If δmin > 1, it indicates that there is no potential solution in the sub-network. If

δmin ≤ 1, it indicates that there exists at least one potential solution and the identified

path is a potential one.

Forward_Search: If there exists one potential solution in the sub-network, a

heuristic forward search is executed from vs to vt . This process adopts the information

provided by the above Backward_Search to investigate whether there is a feasible

solution pt . In this procedure, H_MQCSTP first searches the path with the maximal

utility from vs . Assume node vm ∈ {neighboring nodes of vs} is selected based

on Dijkstra’s shortest path algorithm [35] as the utility of the path from vs to vm

(denoted as path p
(f)
vs→vm) is the maximal. Let p

(b)
vm→vt denote the path from vm to vt

identified in the Backward_Search procedure. Then a foreseen path from vs to vt via

vm (denoted as f pvs→vm→vt = p
(f)
vs→vm + p

(b)
vm→vt) is identified. According to whether

f pvs→vm→vt is feasible, H_MQCSTP adopts the following searching strategies.

Situation 1: If f pvs→vm→vt is a feasible solution, then H_MQCSTP chooses

the next node from vm with the maximal utility following Dijkstra’s shortest path

algorithm.

15 Trust-Oriented Service Provider Selection in Complex Online Social Networks 375

Situation 2: If f pvs→vm→vt is not a feasible solution, then H_MQCSTP does

not search any path from vm and link vs → vm is deleted from the sub-network.

Subsequently, H_MQCSTP performs the Forward_Search procedure to search other

path from vs in the sub-network.

Since H_MQCSTP adopts twice Dijkstra’s shortest path algorithm, they have

the same time complexity of O(N 2) when implementing the priority queue with a

disordered array, which can be optimized to O(NlogN + E) by adopting a Fibonacci

heap to store the priority queue [34] (N is the number of nodes and E is the number

of links in the sub-network). H_MCOP [35] which is the most promising algorithm

for the NP-Complete MCOP selection problem, has the same time complexity as

H_MQCSTP. But our proposed heuristic algorithm adopts a better objective function

and better searching strategies and thus can significantly outperform H_MCOP in

both efficiency and the quality of selected social trust paths

15.7 Experiments

15.7.1 Experiment Settings

In order to validate our proposed algorithm, we need a dataset which contains social

network structures. The Enron email dataset9 has been proved to possess the small-

world and power-law characteristics of social networks, it has been widely used in

the studies of social networks [12–14, 31, 36]. Thus, we select Enron email dataset9,

containing 87,474 nodes (participants) and 30,0511 links (formed by sending and

receiving emails) for our experiments. From this dataset, social intimate degree and

role impact factor can be mined from the subjects and contents of emails [31], fitting

our proposed complex social network structure well.

H_MCOP is the most promising algorithm for MCOP selection [35]. Based on

it, several approximation algorithms [37, 38] have been proposed for quality-driven

service selection. But as pointed in [27], they can not be applied in large-scale

complex social networks. Thus, to study the performance of our proposed heuristic

algorithm H_MQCSTP, we have a comparison with H_MCOP [35] in both execution

time and the utilities of identified social trust paths. In our experiments, the T , r

and ρ values are randomly generated. The EEQCs specified are set as Q(E E QC) =

{QT (E E QC) > 0.05, Qr(E E QC) > 0.001, Qρ(E E QC) > 0.3} and the adjacent QoT

constraints are set as Q(AQC) = {QT (AQC) > 0.1, Qr(AQC) > 0.05, Qρ(AQC) >

0.1}. The weights of attributes in the utility function are set as ωt = 0.25, ωr = 0.25

and ωρ = 0.5.

Each of H_MQCSTP and H_MCOP is implemented using Matlab R2008a running

on an Lenovo ThinkPad SL500 laptop with an Intel Core 2 Duo T5870 2.00GHz

CPU, 3GB RAM, Windows XP SP3 operating system and MySql 5.1.35 relational

database. The results are plotted in Fig. 15.5, where the execution time and the utilities

of the extracted trust network for each of the algorithms are averaged based on 5

independent runs.

376 G. Liu and Y. Wang

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ID of sub−network with 4 hops

U
ti
lit

y
H_MQCSTP

H_MCOP

S1: Same

S2: Better

S3: Feasible

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ID of sub−network with 5 hops

U
ti
lit

y

H_MQCSTP

H_MCOP

S1: Same S2: Better

S3: Feasible

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ID of sub−network with 6 hops

U
ti
lit

y

H_MQCSTP

H_MCOP

S1: Same

S2: Better

S3: Feasible

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ID of the sub−network with 7 hops

U
ti
lit

y

H_MQCSTP

H_MCOP

S1: Same

S2: Better

S3: Feasible

Fig. 15.5 Path utility of sub-networks

15.7.2 Performance in Social Trust Path Selection

In this experiment, we first randomly select 100 pairs of source and target participants

from the Enron email dataset9. We then extract 100 corresponding sub-networks

between them by using the exhaustive searching method, among which the maximal

length of a social trust path varies from 4 to 7 hops following the small-world char-

acteristic (i.e., the average path length between two nodes is about 6 hops in a social

network [38]). The smallest case sub-network has 33 nodes and 56 links (4 hops),

while the most complex sub-network has 1695 nodes and 11175 links (7 hops).

Figure 15.5 plots the utilities of the social trust paths identified by H_MQCSTP

and H_MCOP respectively, ordered by the number of hops. From Fig. 15.5, we can

observe that in any case, our H_MQCSTP does not yield any utility worse than

that of H_MCOP (see case S1 in Fig. 15.5) while in most sub-networks (61 % of

all sub-networks), the utilities of social trust paths identified by H_MQCSTP are

better than those of H_MCOP (see case S2 in Fig. 15.5). In addition, H_MCOP

sometimes returns an infeasible solution even when a feasible solution exists. In

contrast, H_MQCSTP can identify a feasible solution if it exists, (see case S3 in

Fig. 15.5). As illustrated in Table 15.1, the utility summarization of all social trust

paths identified by our H_MQCSTP algorithms is greater than that of H_MCOP in

15 Trust-Oriented Service Provider Selection in Complex Online Social Networks 377

Table 15.1 The comparison in utility and execution time

Algorithm Sum of utility Sum of execution time (s)

4 hops 5 hops 6 hops 7 hops 4 hops 5 hops 6 hops 7 hops

H_MQCSTP 11.2014 9.7113 9.9469 10.1747 245.8564 871.8128 1.9528e + 003 4.3005e + 003

H_MCOP 10.3047 6.5274 6.6006 6.1979 340.4162 1.3571e + 003 3.0024e + 003 6.6996e + 003

difference 10.87 % 14.88 % 18.87 % 16.42 % 27.78 % 35.76 % 34.96 % 35.81 %

more more more more less less less less

all 4 groups. This is because when a social trust path with the maximal utility is a

feasible solution in a sub-network, both H_MCOP and H_MQCSTP can identify it

as the optimal solution; however, when the social trust path with the maximal utility

is not a feasible solution, since the objective function is not well defined, H_MCOP

can hardly find a solution that is as good as that from H_MQCSTP and may even

return an infeasible one even when a feasible solution exists.

Figure 15.6 plots the execution time of both H_MQCSTP and H_MCOP, each

of which is average of 5 independent executions. From Table 15.1, we can see that

our proposed heuristic algorithm is much faster than H_MCOP in all 4 groups. This

is because that in the searching process of H_MQCSTP, the node leading to an

infeasible solution is not regarded as a candidate to be selected for the next searching

step, which can reduce much search space and thus significantly save execution time.

Through the above experiments, we can see that H_MQCSTP is much superior

to H_MCOP in both efficiency and the quality of delivered solutions

15.8 Application Scenarios

Our proposed model and algorithm can provide key techniques to potential lots of

applications with social networks as the backbone.

1. A New Generation of CRM System. Our proposed method can be applied into a

new generation CRM (Customer Relation Management) system, which maintains

a complex social network containing the social relationship between customers,

and the recommendation roles of these customers. With this information, the

new CRM system can help a retailer identify new trustworthy customers and

introduce products to them, which can bring enormous commercial opportunities

to retailers.

2. A New Generation Employment System. Our methods can also be applied in a

new generation employment system which maintains a complex social network

containing employees, their recommendation roles (e.g., a professor in computer

science), and the social relationship between them (e.g., the relationship between

a supervisor and his/her student). In such an application our methods can help a

hiring manager evaluate the trustworthiness of all potential employees and find

trustworthy persons to be employed, which in turn can bring great benefits for

the employment of companies.

378 G. Liu and Y. Wang

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

ID of sub−network with 4 hops

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

H_MQCSTP

H_MCOP

0 5 10 15 20 25
0

50

100

150

200

250

300

350

ID of the sub−network with 5 hops

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

H_MQCSTP

H_MCOP

0 5 10 15 20 25
0

200

400

600

800

1000

1200

ID of sub−network with 6 hops

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

H_MQCSTP

H_MCOP

0 5 10 15 20 25
0

500

1000

1500

2000

2500

ID of sub−network of 7 hops

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

H_MQCSTP

H_MCOP

Fig. 15.6 Execution time of sub-networks

3. A New Generation Recommendation System. Our proposed method can be used

in a new generation recommendation system, which maintains a social network of

buyers, sellers and the complex social information, including social relationships

and recommendation roles. In this system, our proposed method can be applied

to help a buyer identify the most trustworthy seller from all those sellers selling

the product preferred by the buyer.

15.9 Conclusions

In this chapter, we have analyzed the characteristic of current functional website and

OSNs, and presented the properties in the new generation of OSNs. Our proposed

new complex social network takes trust, social relationships and recommendation

roles into account, and can reflect the real-world situations better. In addition, our

proposed heuristic algorithm H_MQCSTP can solve the optimal social trust path

selection problem with multiple both adjacent and end-to-end QoT constraints. The

results of experiments conducted on a real dataset of social networks demonstrate

that H_MQCSTP significantly outperforms existing methods in both efficiency and

the quality of delivered solutions.

15 Trust-Oriented Service Provider Selection in Complex Online Social Networks 379

References

1. G. Liu, Y. Wang, and L. Li. Trust management in three generations of web-based social net-
works. In Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, pages
446–451, 2009.

2. J. Golbeck and J. Hendler. Inferring trust relationships in web-based social networks. ACM

Transactions on Internet Technology, 6(4):497–529, 2006.
3. C. Hang, Y. Wang, and M. Singh. Operators for propagating trust and their evaluation in social

networks. In AAMAS’09, pages 1025–1032, 2009.
4. C. Lin, N. Cao, S. Liu, S. Papadimitriou, J. Sun, and X. Yan. Smallblue: Social network analysis

for expertise search and collective intelligence. In ICDE’09, pages 1483–1486, 2009.
5. F. Walter, S. Battiston, and F. Schweitzer. A model of a trust-based recommendation system

on a social network. AAMAS Journal, 16(1):57–74, February 2008.
6. P. S. Adler. Market, hierarchy, and trust: The knowledge economy and the future of capitalism.

Organization Science, 12(12):215–234, 2001.
7. R. Miller, D. Perlman, and S. Brehm. Intimate Relationships. McGraw-Hill College, 4th edition,

2007.
8. S. Milgram. The small world problem. Psychology Today, 2(60), 1967.
9. A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement and

analysis of online social networks. In ACM IMC’07, pages 29–42, 2007.
10. B. Christianson and W. S. Harbison. Why isn’t trust transitivie? In International Workshop on

Security Protocols, pages 171–176, 1996.
11. R. Mansell and B. Collins. Trust and crime in information societies. Edward Elgar Publishing,

2005.
12. G. Liu, Y. Wang, M.A. Orgun, and E-P. Lim. A heuristic algorithm for trust-oriented service

provider selection in complex social networks. In SCC, pages 130–137, 2010.
13. G. Liu, Y. Wang, and Mehmet A. Orgun. Finding k optimal social trust paths for the selection

of trustworthy service providers in complex social networks. In ICWS’11, pages 41–48, 2011.
14. G. Liu, Y. Wang, and Mehmet A. Orgun. Trust transitivity in complex social networks. In

AAAI’11, pages 1222–1229, 2011.
15. Sara Baase and Allen Gelder. Computer Algorithms Introduction to Design and Analysis.

Addision Wesley, 2000.
16. G. Liu, Y. Wang, and Mehmet A. Orgun. Social context-aware trust network discovery in

complex contextual social networks. In AAAI’12, pages 101–107, 2012.
17. G. Liu, Y. Wang, Mehmet A. Orgun, and H. Liu. Discovering trust networks for the selection

of trustworthy service providers in complex contextual social networks. In ICWS’12, pages
384–391, 2012.

18. E. Berscheid and H. T. Reis. Attraction and close relationships, volume 2 of The Handbook of

Social Psychology. Oxford University Press, 4th edition, 1998.
19. S. Fiske. Social Beings: Core Motives in Social Psychology. John Wiley and Sons, 2009.
20. P. Bedi, H. Kaur, and S. Marwaha. Trust based recommender system for semantic web. In

IJCAI, pages 2677–2682, 2007.
21. Y. Cho, G. Steeg, and A. Galstyan. Co-evolution of selection and influence in social networks.

In AAAI, pages 779–784, 2011.
22. P. Cui and F. Wang. Item-level social influence prediction with probabilistic hybrid factor

matrix factorization. In AAAI, pages 331–336, 2011.
23. S. Guo, M. Wang, and J. Leskovec. The role of social networks in online shopping information

passing, price of trust, and consumer choice. In EC’11, pages 130–137, 2011.
24. H. Ma, T. Zhou, M. Lyu, and I. King. Improving recommender systems by incorporating social

contextual informaiton. ACM Transactions on Information Systems, 29(2), 2011.
25. J. Golbeck. The dynamics of web-based social networks: Membership, relationships, and

change. First Monday, 12:11, 2007.
26. D. Boyd and N. Ellison. Social network sites: Definition, history and scholarship. Journal of

Computer-Mediated Communication, 13:1, 2007.

380 G. Liu and Y. Wang

27. G. Liu, Y. Wang, and Mehmet A. Orgun. Optimal social trust path selection in complex social
networks. In AAAI’10, pages 1397–1398, 2010.

28. B. Alunkal, I. Valjkovic, and G. Laszewski. Reputation-based grid resource selection. In Pro-

ceedings of the Workshop on Adaptive Grid Middleware, USA, September 2003.
29. R. Ashri, S. Ramchurn, J. Sabater, M. Luck, and N. Jennings. Trust evaluation through rela-

tionship analysis. In AAMAS, pages 1005–1011, 2005.
30. Y. Wang and V. Varadharajan. Role-based recommendation and trust evaluation. In IEEE

EEE’07, pages 278–295, 2007.
31. A. Mccallum, X. Wang, and A. Corrada-Emmanuel. Topic and role discovery in social networks

with experiments on Enron and academic email. Journal of Artificial Intelligence Research,
30(1):249–272, 2007.

32. J. Tang, J. Zhang, L. Yan, J. Li, L. Zhang, and Z. Su. Arnetminer: Extraction and mining of
academic social networks. In KDD’08, pages 990–998, 2008.

33. J. Zhang S. Yang and I. Chen. Web 2.0 services for identifying communities of practice. In
SCC’07, pages 130–137.

34. E. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, pages
269–271, 1959.

35. T. Korkmaz and M. Krunz. Multi-constrained optimal path selection. In INFOCOM’01, pages
834–843.

36. F. Lin S. Yoo, Y. Yang and I. Moon. Mining social networks for personalized email prioritization.
In KDD’09, pages 967–976, 2009.

37. L. Li, Y. Wang, and E. Lim. Trust-oriented composite services selection and discovery. In
ICSOC’09, pages 50–67, 2009.

38. T. Yu, Y. Zhang, and K. Lin. Efficient algorithms for web services selection with end-to-end
qos constraints. ACM Transactions on the Web, 1(1), 2007.

Chapter 16

Analyzing Web Services Networks:
Theory and Practice

Peep Küngas, Marlon Dumas, Shahab Mokarizadeh and Mihhail Matskin

Abstract This paper addresses the problem of applying the general network theory

for analyzing qualitatively Web services networks. The paper reviews current

approaches to analyzing Web services networks, generalizes the published approaches

into a formal framework for analyzing Web services networks and demonstrates its

applicability in practice. More specifically, two case studies are described where

the presented framework has been applied. The first one considers identification of

redundant data in large-scale service-oriented information systems, while the second

one measures information diffusion between individual information systems.

16.1 Introduction

Network analysis has recently gained momentum in various areas, such as social

networks, politics and media, just to mention a few. Network theory in these cases

provides effective means to understand the dynamics within increasingly complex

domains. Furthermore, it has been increasingly often recognized that analysing inter-

actions between related domains will reveal more adequate insight into domain-

specific phenomena compared to purely intra-domain studies.

P. Küngas (B) · M. Dumas
University of Tartu, Tartu, Estonia
e-mail: peep.kungas@ut.ee

M. Dumas
e-mail: marlon.dumas@ut.ee

S. Mokarizadeh · M. Matskin
Royal Institute of Technology, Stockholm, Sweden
e-mail: shahabm@kth.se

M. Matskin
e-mail: misha@kth.se

A. Bouguettaya et al. (eds.), Advanced Web Services, 381
DOI: 10.1007/978-1-4614-7535-4_16,
© Springer Science+Business Media New York 2014

382 P. Küngas et al.

For instance, network theory has been used for studying information diffusion

between microblogs and weblogs [20], where it has revealed how rumors spread in

the Web. The latter serves as a valuable input to online campaign planning. Addition-

ally, application of network theory to computer science citation networks [17] has

identified information diffusion patterns between computer science subdisciplines.

For instance, it was showed that research results in algorithmics are applied in data

mining and information retrieval. Finally, network theoretical metrics have been

proposed to quantify information fluidity and to analyze the growth of the Semantic

Web [5].

Network structures are present in the field of Web services as well making it

possible to apply network theoretical approaches to study specific phenomena in

the field. In the latter case links could be drawn between Web services, service

providers, classes of Web services, compositions of Web services, data structures of

Web services, just to mention a few cases. Based on particular topologies specific

research problems can be studied.

In recent years several experiments have been made to construct a variety of Web

services networks and to analyse them by first computing network metrics and then

interpreting results. For instance, structural properties of a Web service networks

have been studied [7] and resilience metrics have been identified for service-oriented

networks based on the underlying network topology and distribution of services [15].

Also network theoretical analysis approaches have been adopted for service discovery

and composition [3, 10] such that the link structure and density of underlying service

network is considered. Additionally, service composition methods have been fine-

tuned by taking into account characteristics of Web services networks [14]. Finally,

information flow between categories of Web services has been analyzed for ensuring

secure information flow in multi-domain systems [16] plus interaction and potential

synergy between governmental and commercial Web services has been studied [9].

Despite the mentioned approaches Web services network analysis is still an iso-

lated topic, which has not been thoroughly studied. Partly this is due to the lack of

standardized datasets to validate the results. But also lack of a systematic framework

for studying the problems has definitely affected the situation. Therefore one of the

aims of the paper is to promote the topic by outlining potential network topologies,

which could be studied together with interpretation of main metrics from network

theory for these topologies. We also present two case studies, where network analysis

has been applied for analysing Web services networks. The first study shows how

to use simple network metrics, indegree and outdegree, for analysing redundancy

in information systems exposing Web services, while the second study reveals how

to analyse information diffusion between the same information systems with more

complex metrics.

The rest of the paper is structured as follows. In Sect. 16.2 we define basic

concepts and outline Web services network topologies. Section 16.3 presents two

case studies—redundancy and information diffusion. In Sect. 16.4 related work is

reviewed and, finally, Sect. 16.5 concludes the paper.

16 Analyzing Web Services Networks: Theory and Practice 383

16.2 Fundamentals

16.2.1 Web Services Networks

The input for construction of Web services networks, as considered in this paper, is a

collection of semantically annotated service interfaces. More specifically, we assume

that we are given a collection of Web service interfaces described using WSDL and

XML Schema, and a collection of semantic annotations on these interfaces. Semantic

annotations are encoded as SA-WSDL model references. A model reference is an

URI that refers to a concept in a semantic model. For example, a model reference

may refer to a class or a property in an OWL ontology, but equally well it may refer

to a class or attribute in an UML class diagram. In this paper, we do not deal with

the issue of obtaining the semantic annotations. In the presented case studies we

relied on a method for semi-automated annotation of Web services presented in our

previous work [8, 11], but other annotation methods could be employed instead.

If multiple elements in an XML Schema are annotated with the same model

references, these elements are deemed to encode the same datum. For example, if

two XML Schema elements “client_address” and “customer_address” refer to the

same class or property in an OWL ontology, they are considered to represent the

same datum.1

In this paper we consider entity attributes the smallest pieces of Web services

descriptions, which can be used to build Web services networks. By entity attribute we

mean an atomic unit of information about an entity, like for example the address of a

supplier or the salary of an employee. In the context of a service-oriented information

system, an entity attribute corresponds to an XML element with no child elements

or an XML attribute that appears in the schema of one of the messages produced

or consumed by a Web service. We abstract away from the choice of granularity of

an attribute. For example, one could either take “supplier address” to be an entity

attribute, or “supplier address’ street name” to be an entity attribute.

We define a (service-oriented) information system as a collection of service oper-

ations. A service operation takes as input a set of entity attributes and produces as

output another set of entity attributes. As an alternative, we could have defined an

information system as a set of services, each one providing a set of service opera-

tions, but the intermediate level of grouping (the “service”) turns out not to be needed

in our proposal. Anyway, it is possible to apply the same concepts and techniques

presented in this chapter in order to analyze the network of relations between services

and data types. This analysis at a higher level of granularity could be a direction for

future work.

1 Other notions of semantic equivalence between elements could be employed. For example, we
could consider that two elements are equivalent if these elements are annotated with concepts that
subsume one another according to a given ontology. For practical purposes, the notion of equivalence
used to compare model references is orthogonal to the techniques proposed in this paper.

384 P. Küngas et al.

We write input(so) and output(so) to denote the set of inputs and the set of outputs

of service operation so. Analogously we write input(IS) and output(IS) to denote the

set of inputs and the set of outputs of all service operations of information system IS.

For a given information system IS, we define the set of attributes of IS as:

atts(IS) = {d∈A | ∃so∈IS, d∈input(so) ∪ output(so)}, where A is the set of

all possible attributes. In other words, the set of attributes of an information system

IS is composed of all attributes that appear at least once as input or output of an

operation in IS.

A federated (service-oriented) information system is a set of information systems

whose schema are semantically annotated using a common vocabulary (either in

OWL, UML or any other modelling language) or a reference system. Given a feder-

ated information system FIS, the set of attributes of a federated information system

FIS is the union of the set of attributes of its contained information systems, i.e.

atts(FIS) = ∪IS∈FISatts(IS).

An attribute d may appear in multiple information systems within a federated

information system. For a given FIS and a given attribute d, we define occurs(FIS, d)

as the number of information systems in which d appears, i.e. occurs(FIS, d) =

|{IS ∈ FIS | d ∈ atts(I S)}|.

In order to derive the metric used for methods applied in the presented case

studies, we start by abstracting a federated information system as a network. The

network is modelled as a graph where each node represents either a service operation

or a data attribute and the edges represent information flow. Each edge connects a

service operation node and a data attribute node. An edge cannot connect two service

operation nodes nor two data attribute nodes. Hence, the graph is bipartite. More

specifically, the network is constructed by introducing an edge between each service

operation and its inputs and outputs. An edge exists from an attribute to an operation

if the attribute appears in the inputs of the operation, and an edge exists from an

operation to an attribute if the attribute in question appears in the outputs of the

operation. It is important to note that in the context of service networks, if we talk

about inputs and outputs we mean conceptual representations of inputs and outputs.

Formally:

Definition 16.1 (Web services network). A Web services network N is a bipartite

graph {N , E}, where E and N represent respectively a set of edges and a set of nodes

in the graph. Set N consists of service operation nodes Nso and entity attribute nodes

Nd . Set E is defined as:

E =
⋃

I S∈F I S

({(d, so) | so ∈ IS ∧ d ∈ inputs(so)}

∪ {(so, d) | so ∈ I S ∧ d ∈ outputs(so)})

For analyzing Web services networks in more elaborated settings, such as for

information diffusion as demonstrated in Sect. 16.3.3, the service network model

given in Definition 16.1 has to be enriched with set of labels (e.g. category of an

information system, quality of a service, popularity of a service, ...) depending on

16 Analyzing Web Services Networks: Theory and Practice 385

the requirements of a particular problem. This leads us to the definition of a labeled

Web service network:

Definition 16.2 (Labeled Web services network). A labeled Web services network

Nl = {N ,L } is a Web service network, where each node has been assigned a set

of labels. L is a label system consisting of a set of pairs (n, l) where l ∈ L is a label,

L is a set of all labels and n ∈ N is a node of the Web services network N .

The set of all labels of node n is denoted by label(n) and is defined as a set

{l | l ∈ L ∧ (n, l) ∈ L }. The set of all labels of information system IS is denoted

with label(IS) and defined as: label(IS) =
⋃

n∈N ({label(n) | n ∈ atts(I S)}).

The label system provides an effective mechanism for assigning specific attribute

values (e.g. tags, information system classification, etc.) to Web services networks.

Although the label system leverages a way to attach discrete attribute values to

network nodes, for continuous values we take advantage of the concept of weights.

We demonstrate here this case with a network, where weights are aggregated while

contracting the network.

Definition 16.3 (Weighted labeled Web services network). A weighted labeled
Web services network is an attribute-centric projection of a labeled Web service
network model into classic (1-mode) loop-free directed graph {Nd , Ed}, where Ed

is defined as:

Ed =
⋃

d∈atts(FIS)

({(di , d j) | ∃I S ∈ F I S, ∃so ∈ I S, ∃di , d j ∈ atts(F I S), di ∈ input (so)

∧ d j ∈ output (so)})

Each node n ∈ Nd is associated with a weight vector
−→
Q = {q1, . . . , qu}, where every

item qi , i = 1..u represents the weight of node n with respect to label li ∈ L .

The effectiveness of the weighted network model in capturing and preserving the

structural properties of underlying Web services network is already studied in [7, 12].

The following definition defines how a weighted Web services network is transformed

into a weighted label network. If a label identifies an information systems, as in one

of our case studies, we end up with an information system network where weights

identify relative attraction between information systems.

Definition 16.4 (Weighted label network). Weighted label network is a directed
graph {Nl , El}, where each node in set Nl represents a label while edges in set El ,
represent inter-label relationships as constructed as follows:

El =
⋃

l∈L

({(li , l j) | ∃I Si , I S j ∈ F I S, ∃di , d j ∈ atts(F I S), di ∈ input (I Si)∧

d j ∈ output (I S j) ∧ li = label(I Si) ∧ l j = label(I S j)})

386 P. Küngas et al.

Each edge (li , l j) is labeled with weight Wi j expressing the weight of which label li
is attracted to label l j . Unlike the previous models, loops are permitted in this model.

In the rest of the paper, we use also the following definitions for basic network

theoretical metrics.

Definition 16.5 (Degree). The degree deg(d) of an attribute node d in a service

network N =(N , E) is the number of edges incident to that node (counting both

incoming and outgoing edges), i.e. deg(d) = |{so | so ∈ N ∧[(d, so)∈E ∨(so, d) ∈

E]}|. Meanwhile, the degree of an attribute node in an information system IS is the

number of edges incident to d whose source or target is an operation in I S, i.e.

deg(d, I S) = |{so | so ∈ I S ∧ [(d, so) ∈ E ∨ (so, d) ∈ E]}|.

Definition 16.6 (Indegree). The indegree deg−(d) of an attribute node is the number

of edges targeting d, i.e. deg−(d) = |{so | so ∈ N ∧ (so, d) ∈ E}|. Meanwhile,

the indegree of an attribute node in an information system IS is the number of

edges targeting d whose source is an operation in IS, i.e. deg−(d, I S)=|{so | so ∈

IS ∧ (so, d) ∈ E}|.

Definition 16.7 (Outdegree). The outdegree deg+(d) of an attribute node is the

number of edges emanating from d, i.e. deg+(d) = |{so | so ∈ N ∧ (d, so) ∈

E}|. Meanwhile, the outdegree of an attribute node in an information system I S

is the number of edges emanating from d whose target is an operation in IS, i.e.

deg+(d, I S) = |{so | so ∈ IS ∧ (d, so) ∈ E}|.

16.2.2 Web Services Network Formation

As an example of Web services network construction, let us consider three informa-

tion systems of the Estonian federated governmental information system: the Tax

and Customs Board service, the Business Registry service and the Register of Eco-

nomic Activities. Figures16.2, 16.3, 16.4 and 16.5 show message schema fragments

for each of these services.

For the sake of understandability, element names have been translated to English

and some irrelevant fragments have been deleted. The Business Registry service pro-

vides information about companies—their registration numbers (details_company/

businessregistrycode in Fig. 16.4 and detailedQuery/businessregistrycode in

Fig. 16.3)2, names (details_business_name/content in Fig. 16.4 and detailedQuery/

businessname in Fig. 16.3), and contact details (details_contact_medium/content in

Fig. 16.4 and detailedQuery/address in Fig. 16.3). At the same time the Register of

Economic Activities provides also business registration number (generalinfoBase-

Type/code in Fig. 16.5), name (generalinfoBaseType/name in Fig. 16.5) and contact

details (generalinfoBaseType/{tel,fax,email,web} in Fig. 16.5). Furthermore, the Tax

2 We use XPath-style references to refer to specific fragments of schema.

16 Analyzing Web Services Networks: Theory and Practice 387

Fig. 16.1 Service network constructed from service interface fragments in Figs. 16.2, 16.3, 16.4
and 16.5

and Customs Board service also provides business registration numbers (employer-

TaxQueryAnswer/businessregistrycode in Fig. 16.2) and business names (employer-

TaxQueryAnswer/employername in Fig. 16.2).

Fig. 16.2 A Tax and Customs Board service—output message content fragment

Based on SA-WSDL references in Figs. 16.2–16.5 we can construct a service

network as seen in Fig. 16.1. Rectangular nodes in the figure represent service oper-

ations whose interface fragments were annotated with SA-WSDL references, while

ellipsoidal nodes represent data attributes, which were annotated.

388 P. Küngas et al.

Fig. 16.3 A Business Registry service—input message content fragment

Fig. 16.4 A Business Registry service—output message content fragment

Fig. 16.5 A service of the Register of Economic Activities—output message content fragment

16 Analyzing Web Services Networks: Theory and Practice 389

16.3 Applications

In this section we present two applications of Web services network analysis. The first

application is redundancy detection in service-oriented systems. Network analysis

in this case provides suggestions for redesigning services’ interfaces to increase

their reusability. The second application is analysis of information diffusion between

large amounts of Web services. This application has practical impact for instance in

“reverse-engineering” the initially intended usage of services and reducing the search

space for service matching.

16.3.1 Dataset

As a dataset for both case studies we use Web services descriptions of the Estonian

state information system [6], which is a federation of ca 200 information systems

and is collectively called here as X-Road Web services. X-Road is a middle-tier data

exchange layer enabling governmental databases to communicate with their clients.

The system allows officials, as well as legal and natural persons, to search data from

national databases over the Internet within the limits of their authority. An example

Table 16.1 Examined registries in X-Road dataset

Registry name Registry name

1-Environment registry 23-Pension registry

2-Interpol personal registry 24-Messaging calendar

3-Communicable diseases registry 25-Central schengen information system

4-Health information database 26-Treasury ownership service

5-Alcohol movement database 27- Land information system

6-Customer support information system 28-TTY authorization system

7-Economic activity registry 29-Tallinn support activity system

8-Mobile infrastructure registry 30-Land registry

9-Citizens liable to military service registry 31-New business registry

10-CMB database 32-Mandatory funded pension registry

11-Visa registry 33-X-Road user rights management system

12-Agricultural support registry 34-National examination system

13-E-Mail service registry 35-Traffic registry

14-Police procedure information system 36-Messaging calendar registry

15-Registry of professions 37-PV system consulting interface

16-Unemployment insurance database 38-Tartu university user information system

17-Workplace database 39-Tax and custom database

18-Address database 40-Education information system

19-E-Notary database 41-Tallinn university user information system

20-Work planning information system 42-Estonia schengen information system

21-Police information system 43-Notification service

22-Criminal court registry 44-Research information system

390 P. Küngas et al.

of such national registries are Land Information System, Pension Information System

and Crime Court Information System, just few to name. The system ensures sufficient

security for the treatment of inquiries made to databases and responses received. Our

dataset contains interfaces of 44 information systems exposing around 1000 Web

service operations. The names of examined registries, translated to English, of the

X-Road dataset are summarized in Table 16.1.

In previous work [8] we introduced a method to semantically annotate WSDL

interfaces and we applied it to the above governmental information system. Alto-

gether, there were 7757 leaf elements in the XML schemas in the repository from

which we managed to annotate 5555 leaf elements. The remaining elements were

too specialized to be annotated meaningfully, but since they each only occurred in

one information system, they do not constitute a source of potential redundancy. The

semantic annotations that we constructed refer to classes in an ontology that we built

incrementally during the semantic annotation process.

From the semantically annotated Web service interfaces, we constructed a service

network consisting of 928 service operation nodes (annotated WSDL operations),

466 entity attribute nodes (forming a unified data model used for covering about 72 %

of XML Schema leaf node elements across all WSDL interfaces of the federated IS)

and 17006 edges.

The ontology used to annotate the WSDL interfaces had taxonomic relations

between classes. However, in order to reduce effects arising from semantic annota-

tions with different granularity (such as “general identifier” vs. “person’s national

identifier code” vs. “child’s national identifier code”) we discarded annotations in

the top-level of the taxonomy. In other words, we gave preference to more specific

semantic annotations over more general ones. The rationale for this choice is the fol-

lowing: If we compared annotations at a higher level, we would immediately obtain

a large number of false positives for the redundancy classifier. For example, every

time we find an attribute containing an address we would say that this attribute is

redundant. Yet, it is normal that a federated information system contains multiple

address types (e.g. personal address versus work address, billing address versus ship-

ping address). Thus, even though all these elements would have been annotated with

the concept “address”, this annotation was deleted during the pre-processing phase.

Without this filtering step, the accuracy results of the statistical classifiers became

meaningless.

16.3.2 Redundancy Detection

A major issue in large-scale information systems management is that of avoiding

data redundancy, that is, ensuring that each fact is stored in a single location [19].

Data redundancy does not originate exclusively from duplicated records within a

database [2], but perhaps more frequently, from a common practice to store partially

overlapping entries in multiple databases or information (sub-)systems. For instance,

it often happens that supplier contact addresses are stored in the procurement, billing,

16 Analyzing Web Services Networks: Theory and Practice 391

logistics and technical support subsystems, as opposed to storing this address at one

subsystem and having the other subsystems retrieve it from this primary location.

The reasons for such redundancy may range from performance, reliability or security

concerns, to miscommunication between system architects, lack of documentation

of existing systems, or lack of cooperation between independent business units. In

some cases, data redundancy is deliberate and controlled, while in others it is highly

problematic and may lead to inconsistency and poor data quality.

The practical relevance of data redundancy management has been highlighted in

several previous works. Moody and Shanks [13] report on a technical review of a

repository of data models of a large information system. This technical review sur-

faced a high degree of overlap between different application data models. Closer

inspection showed that different project teams had independently decided to repre-

sent the same data in different ways, resulting in data redundancy and duplicated

development effort. In a similar vein, Ventrone and Heiler [18] point to several cases

where data model overlap in large federated information systems was up to 80 %.

Our own previous research [8] identified a similar tendency in a governmental infor-

mation system.

Ideally, each entity attribute is maintained in one information system and retrieved

from other information systems if and when required. The information system in

which an informed system architect would most likely place an attribute is called

the primary location of the attribute. In some cases, replicas of the attribute exist in

other information systems. Information systems where replicas of an attribute exist

are called secondary locations of the attribute in question. The concept of primary

location is purposefully left subjective since it is largely application-dependent. For

example, an attribute businessAddress elaborated in Sect. 16.2.2 appears in two infor-

mation systems: the Business Registry and the Tax and Customs Information System.

Intuitively, this attribute belongs primarily in the business registry. We know this

because we have some understanding of the functional scope of these two informa-

tion systems.

Some attributes are used to link entities across multiple information systems. For

example, a customer identifier can be used in one information system in order to refer

to a customer entity in another information system. Such an attribute is called in this

paper a reference attribute. The concept of reference attribute is akin to the concept

of “key” in the database world. A reference attribute is a “(primary) key” from the

perspective of the information system that is the primary location of the attribute,

and a “foreign key” from the perspective of other information systems. However, it

should be noted that reference and identifier attributes are different sets, although

every reference attribute is related to an identifier attribute.

The key intuition of our redundancy detection method is the following: If an

attribute appears in multiple information systems and it is not a reference attribute,

then this attribute is redundant in some information systems. Reference attributes

link different entities together so it is normal that they appear in multiple information

systems. Since the definition of redundancy is based on two subjective definitions,

it is itself subjective. It is also up the analysts and architects of a system to judge

whether a given occurrence of an attribute in multiple information systems constitutes

392 P. Küngas et al.

a redundancy or not. Our redundancy detection criterion is meant to approximate this

subjective judgement.

In order to detect potential redundancy, we are looking for answers to the following

questions:

1. Given a federated information system FIS, can we find a classification function

C(IS, d) that takes as input an information system IS ∈ FIS and an attribute

d ∈ atts(F I S), and returns T (true) if IS is the primary location of d, and F

(false) otherwise?

2. Given a federated information system FIS, can we find a classification function

C ′(d) that takes as input an attribute d ∈ atts(FIS) and returns T if d is a reference

attribute in FIS, and F otherwise?

As an example, let us consider three information systems of the Estonian federated

governmental information system from Sect. 16.2.2. In this example, it is clear that

the business registry number is a reference attribute. Business names and business

contact details fit most naturally in the Business Registry (i.e. this is their primary

location). Therefore, elements referring to company names and contact details at

the Register of Economic Activities and at the Tax and Customs Board service are

redundant. However, the business registration number, which is stored in all three

information systems, is not redundant since it is required in order to link company

data stored across these information systems.

16.3.2.1 Redundancy Detection Method

In order to detect redundancy we start by constructing clusters representing entity

attributes in different information systems (IS). Each cluster represents entity

attributes within an information system, whereas entity attributes are collected from

service descriptions of particular IS according to definitions in Sect. 16.2. An example

of clusters and their overlappings is visualized in Fig. 16.6. The figure uses cluster

map technology to represent overlappings of entity attribute clusters. The highlighted

central area represents entity attributes that are potentially redundant, since they

appear in multiple clusters at the same time.

Fig. 16.6 A cluster map of data entities in different information systems

16 Analyzing Web Services Networks: Theory and Practice 393

After clusters have been formed, we analyze in how many clusters an entity

attribute occurs in. If an entity attribute occurs only in a single cluster, it is clearly

not redundant. For instance, in Fig. 16.2 socialtax (paid social taxes) and incometax

(paid income tax) are in this respect not redundant.

In the case of attributes occurring in multiple information systems, we start by

determining the primary location. Primary location of an entity attribute is determined

by measuring its degree in the constructed service network. An IS for which the entity

attribute degree is highest, is most probably the attribute’s primary location. The

justification is based on the tendency that the majority of data processing services

are normally provided at the same information system where the data originates

from. Accordingly, the primary location classifier C(I S, d) for information system

IS and entity attribute d is defined as follows:

C(I S, d) =

{

T, if Sr (I S, d) − Sm(d) ≥ ρ

F, otherwise
,

where relative score Sr (I S, d) = deg(d, IS)/deg(d), average score Sm(d) equals to

1/occurs(FIS, d) and ρ ∈ [0, 1] is a threshold that can be used to tune the classifier.

We can interpret deg(d, IS)/deg(d) as a metric indicating the “relative attachment”

of attribute d to IS. A relative attachment of 1 means that the attribute exclusively

belongs in that information system, an attachment of 0 means that the attribute does

not appear at all in IS. The higher the attachment of an attribute to an IS, the higher

the chances that this is the primary location of the attribute. If an attribute appears

in multiple information systems (say n), and the attribute appears an equal amount

of times in each system, then its relative attachment to each system is 1/n. Thus a

relative attachment above 1/n shows that an attribute is proportionally more strongly

than average linked to an IS. In this light Sm(d) can be interpreted as the “average

attachment” of d to the information systems in which it is used.

When an attribute appears more times in one information system than in others,

then the difference between relative attachment Sr (I S, d) and 1/n becomes higher.

For example, if an attribute d appears in two information systems X and Y and it is

used 10 times in X and 5 times in Y , then the attachment of this attribute to X will be

10/15 = 0.66 and Sr (X, d) − 1/n = 0.16. We can then say with some confidence

that X is likely to be the primary location of d. Note that for a given attribute d,

classifier C(I S, d) might return true for multiple information systems. This may

happen for example when the relative attachment of an attribute d is the same in all

information systems in which this attribute appears—i.e. Sr (IS, d) = Sm(d) for all

IS such that d ∈ atts(IS). In this case, the classifier is unable to assign attribute d to

a single primary location.

To illustrate the primary location classifier, let us consider a selection of entity

attributes (business registry code, business name, paid social tax, paid income tax,

business contact phone number) from information system descriptions presented

earlier. In Table 16.2 we summarize degrees of these entity attributes in considered

information systems (Tax and Customs Board services (TCB), The Register of Eco-

nomic Activities (REA), Business Registry (BR)). According to the classifier, the

394 P. Küngas et al.

primary location of business registry code and business name is the Business Reg-

istry, while the primary location of “paid social tax” and “paid income tax” is the

Tax and Customs Board services and the primary location of “business contact phone

number” is the Register of Economic Activities.

Table 16.2 Example of entity attribute primary location detection with ρ = 0

Entity attribute d Location is deg(d, is) C(is, d)

Business registry code TCB 10 F

Business name TCB 3 F

Paid social tax amount TCB 1 T

Paid income tax amount TCB 6 T

Business registry code REA 6 F

Business name REA 7 F

Business contact phone number REA 5 T

Business registry code BR 15 T

Business name BR 13 T

Business contact phone number BR 1 F

If an entity attribute appears in multiple information systems, it may be redundant,

but only, if it is not a reference attribute. Symmetrically, an entity attribute occurring

in more than one information system, is a potential reference attribute. In order to

detect such reference attributes we use the following classifier:

C ′(d) =

{

T, if ∃IS : C(IS, d) ∧
deg+(d,IS)

deg−(d,IS)
−

deg+(d)

deg−(d)
≤ ρ′

F, otherwise

where ρ′ ∈ [−∞,+∞] is a threshold.

The hypothesis underpinning this definition is that the ratio between the number

of times a reference attribute is used as input and the number of times it is produced

as output can be used to characterize whether an attribute is a reference attribute.

Especially in the attribute’s primary location, we would expect that the reference

attribute is used many times since such attributes are used to retrieve data about an

entity and these data are normally located in the primary location. To illustrate the

reference attribute detection classifier, let us elaborate further on the primary location

suggestion results in Table 16.2. In Table 16.3 we list additional characteristics for

Table 16.3 Example of reference detection for attributes in Table 16.2 with ρ′ = 1

Entity attribute d Location IS deg−(d, I S) deg+(d, I S) deg−(d) deg+(d) C’(d)

Paid social tax TCB 0 1 0 3 F

Paid income tax TCB 0 6 0 6 F

Business contact phone REA 0 5 35 73 F

Business registry code BR 7 8 38 52 T

Business name BR 6 7 16 33 T

16 Analyzing Web Services Networks: Theory and Practice 395

entity attributes whose primary location was proposed. According to Table 16.3 we

see that both business registry code and business name serve as reference attributes,

which would be used to link company records over multiple informations systems

within a federated IS. One may argue that business name is not a reference attribute.

If we adopt this view, we have here an example where the findings of the classifier

do not always agree with the subjective judgement of informed users.

Given the above two classifiers, we define a third classifier, namely R(IS, d),

which determines whether or not an attribute d is redundant in an information sys-

tem IS:

R(I S, d) =

{

T, if occurs(d) > 1 ∧ C(IS, d) ∧ C ′(d)

F, otherwise

In other words, an attribute d is redundant in an information IS if it appears in

multiple information systems, IS is not its primary location and d is not a reference

attribute.

16.3.2.2 Evaluation Methodology

For evaluation purposes we use the dataset described in Sect. 16.3.1 and the classi-

cal notions of precision and recall defined for statistical classifiers. In a statistical

classification task, the precision of a classifier for a given class is the number of

true positives divided by the sum of true positives and false positives. Meanwhile,

the recall of a classifier for a given task is defined as the number of true positives

divided by the sum of true positives and false negatives.A precision score of 1.0 for

a class c means that every item labeled by the classifier as belonging to class c does

indeed belong to this class, whereas a recall of 1.0 means that every item of class c

was labeled by the classifier as belonging to c. Finally, the evaluation also relies on

the concept of F-score, which is defined as the harmonic mean of the precision and

recall.

To evaluate the performance of the classifiers defined in Sect. 16.3.2.1, we man-

ually inspected each entity attribute and we determined its primary location and

whether it is a reference attribute or not. This manual judgement was made by the

first author of the paper who is familiar with the overall information system, from

involvements in previous projects. Based on these manual judgements, we computed

redundancy as defined in Sect. 16.3.2.1 and we compared the resulting judgement to

the one obtained with the automated redundancy classifier.

When evaluating the redundancy classifier, we discarded all entity attributes that

occurred in a single information system, since these attributes are trivially non-

redundant and including them in the evaluation of the redundancy classifier would

have led to biased results (i.e. all these attributes would have been correctly classified,

in a trivial manner).

396 P. Küngas et al.

16.3.2.3 Results and Discussion

We calculated precision, recall and F-score for every possible setting of parameters

ρ and ρ′, with ρ ranging from 0 to 1 in steps of 0.1 and ρ′ ranging from −25 to 25

in steps of 5. The resulting F-scores for each setting are shown in Table 16.4, while

precision and recall are summarized respectively in Table 16.5 and in Table 16.6.

Table 16.4 F-scores for redundancy detection with ρ = [0.0, 1.0] and ρ′ = [−25, 25]

r�r’ −25 −20 −15 −10 −5 0 5 10 15 20 25 min max

0.0 0.765 0.766 0.766 0.766 0.752 0.746 0.664 0.665 0.665 0.665 0.666 0.664 0.766

0.1 0.849 0.849 0.849 0.849 0.838 0.830 0.765 0.765 0.765 0.765 0.767 0.765 0.849

0.2 0.882 0.883 0.883 0.883 0.872 0.869 0.813 0.813 0.813 0.813 0.815 0.813 0.883

0.3 0.885 0.885 0.885 0.885 0.876 0.875 0.823 0.823 0.823 0.823 0.825 0.823 0.885

0.4 0.885 0.887 0.887 0.887 0.877 0.878 0.828 0.829 0.829 0.829 0.830 0.828 0.887

0.5 0.886 0.888 0.888 0.888 0.878 0.880 0.833 0.834 0.834 0.834 0.836 0.833 0.888

0.6 0.890 0.891 0.891 0.891 0.882 0.883 0.837 0.838 0.838 0.838 0.840 0.837 0.891

0.7 0.890 0.891 0.891 0.891 0.881 0.883 0.838 0.840 0.840 0.840 0.842 0.838 0.891

0.8 0.887 0.888 0.888 0.888 0.878 0.881 0.836 0.837 0.837 0.837 0.840 0.836 0.888

0.9 0.887 0.888 0.888 0.888 0.878 0.881 0.836 0.837 0.837 0.837 0.840 0.836 0.888

1.0 0.887 0.888 0.888 0.888 0.878 0.881 0.836 0.837 0.837 0.837 0.840 0.836 0.888

min 0.765 0.766 0.766 0.766 0.752 0.746 0.664 0.665 0.665 0.665 0.666 0.664

max 0.890 0.891 0.891 0.891 0.882 0.883 0.837 0.838 0.838 0.838 0.840 0.891

Table 16.5 Precision for redundancy detection with ρ = [0.0, 1.0] and ρ′ = [−25, 25]

r�r’ −25 −20 −15 −10 −5 0 5 10 15 20 25 min max

0.0 0.852 0.853 0.853 0.853 0.851 0.873 0.917 0.919 0.919 0.919 0.925 0.851 0.925

0.1 0.850 0.852 0.852 0.852 0.851 0.872 0.926 0.928 0.928 0.928 0.932 0.850 0.932

0.2 0.839 0.841 0.841 0.841 0.840 0.869 0.922 0.924 0.924 0.924 0.928 0.839 0.928

0.3 0.822 0.823 0.823 0.823 0.823 0.854 0.904 0.906 0.906 0.906 0.909 0.822 0.909

0.4 0.810 0.812 0.812 0.812 0.811 0.842 0.893 0.894 0.894 0.894 0.898 0.810 0.898

0.5 0.804 0.806 0.806 0.806 0.806 0.837 0.889 0.892 0.892 0.892 0.896 0.804 0.896

0.6 0.804 0.806 0.806 0.806 0.806 0.837 0.889 0.892 0.892 0.892 0.897 0.804 0.897

0.7 0.801 0.803 0.803 0.803 0.802 0.834 0.888 0,891 0.891 0.891 0.895 0.801 0.895

0.8 0.797 0.799 0.799 0.799 0.798 0.829 0.883 0.886 0.886 0.886 0.891 0.797 0.891

0.9 0.797 0.799 0.799 0.799 0,798 0.829 0.883 0.886 0.886 0.886 0.891 0.797 0.891

1.0 0.797 0.799 0.799 0.799 0.798 0.829 0.883 0.886 0.886 0.886 0.891 0.797 0.891

min 0.797 0.799 0.799 0.799 0.798 0.829 0.883 0.886 0.886 0.886 0.891 0.797 0.891

max 0.852 0.853 0.853 0.853 0.851 0.873 0.926 0.928 0.928 0.928 0.932 0.932

We can note that the F-score is consistently high when ρ > 0.2. With lower

value of ρ the F-score drops dramatically. Parameter ρ′ has less influence on the

F-score, although there is a trend that the F-score is better for negative values of ρ′.

By inspecting the results closer, we noted that the problem when ρ′ is positive is that

16 Analyzing Web Services Networks: Theory and Practice 397

Table 16.6 Recall for redundancy detection with ρ = [0.0, 1.0] and ρ′ = [−25, 25]

r�r’ −25 −20 −15 −10 −5 0 5 10 15 20 25 min max

0.0 0.695 0.695 0.695 0.695 0.673 0.651 0.520 0.520 0.520 0.520 0.520 0.520 0.695

0.1 0.847 0.847 0.847 0.847 0.825 0.792 0.651 0.651 0.651 0.651 0.651 0.651 0.847

0.2 0.929 0.929 0.929 0.929 0.907 0.869 0.726 0.726 0.726 0.726 0.726 0.726 0.929

0.3 0.958 0.958 0.958 0.958 0.936 0.875 0.898 0,755 0.755 0.755 0.755 0.755 0.958

0.4 0.976 0.976 0.976 0.976 0.954 0.917 0.772 0.772 0.772 0.772 0.772 0.772 0.976

0.5 0.987 0.987 0.987 0.987 0.965 0.928 0.783 0.783 0.783 0.783 0.783 0.783 0.987

0.6 0.995 0..995 0.995 0.995 0.973 0.936 0.791 0.791 0.791 0.791 0.791 0.791 0.995

0.7 1.000 1.000 1.000 1.000 0.976 0.939 0.794 0.794 0.794 0.794 0.794 0.794 1.000

0.8 1.000 1.000 1.000 1.000 0.976 0.939 0.794 0.794 0.794 0.794 0.794 0.794 1.000

0.9 1.000 1.000 1.000 1.000 0.976 0.939 0.794 0.794 0.794 0.794 0.794 0.794 1.000

1.0 1.000 1.000 1.000 1.000 0.976 0.939 0.794 0.794 0.794 0.794 0.794 0.794 1.000

min 0.695 0.695 0.695 0.695 0.673 0.651 0.520 0.520 0.520 0.520 0.520 0.520

max 1.000 1.000 1.000 1.000 0.976 0.939 0.794 0.794 0.794 0.794 0.794 1.000

the recall drops significantly, meaning that we start getting many false negatives.

These false negatives probably stem from the fact that for ρ′ ≥ 0, the method

starts misclassifying some attributes as reference attributes and these misclassified

attributes are not classified as redundant. After closer inspection of the method for

values of ρ′ < 10 we observed that the main reason why precision is negatively

affected is because the method is unable to properly identify reference attributes

and it reports majority of reference attributes as redundant. Anyway, it appears that

a value of ρ′ between −10 and 0 addresses this issue without overly affecting the

precision. We therefore conclude that good settings can be obtained by simply setting

ρ and ρ′ to the middle of their ranges, i.e. ρ = 0.5 and ρ′ = 0, although further

work on other datasets would be needed to confirm this hypothesis.

The maximum F-score (0.89) was achieved with ρ = 0.6 and ρ′ ∈ (−20,−10).

More detailed results for ρ = 0.6 are plotted in Fig. 16.7. We can observe from this

figure the tradeoff that occurs between precision and recall when ρ′ moves from

negative to positive territory. Essentially, when ρ′ ∈ (−20,−10), the recall of the

classifier is around 99 %. In other words, if an attribute could reasonably qualify as

redundant, the classifier will find it. At around 80 %, the precision is not optimal, but

arguably still acceptable. One could argue that higher precision (at close to 100 %

recall) would be difficult to attain, given the subjectivity underpinning the notion of

redundancy.

If an entity attribute does not satisfy this condition, we can assert almost for sure

that considered entity attribute at a particular information system is not redundant.

So the combined heuristic can correctly classify almost all entity attributes at given

information systems that are not redundant and therefore it finds almost all entity

attributes that are redundant at a given location (recall is close to 1). Precision is

slightly worse compared to recall, but is still acceptable in certain applications by

considering that 4 out 5 entity attributes classified as redundant are in fact redundant.

398 P. Küngas et al.

Fig. 16.7 Redundancy detection results for ρ = 0.6

Based on manually classified redundant data items, we analyzed also what

percentage of data items occurring at multiple locations are redundant. It turned

out that 79 % of such data items are redundant, which is consistent with findings of

Ventrone and Heiler [18] who point to several cases where data model overlap in

large federated information systems was up to 80 %.

The following threats to validity apply to our results:

• The evaluation of the classifiers proposed in the paper was made against our own

judgement of the primary location of each attribute and its likelihood of it being

a reference attribute. Some may argue that these judgements are subjective and

possibly biased. To minimize the risk of bias, we made the manual classification

of attributes before defining and evaluating the classifiers.

• The redundancy detection technique depends on the quality of the semantic anno-

tations, so the conclusions we made might not be applicable if the quality of the

semantic annotations is significantly lower (or higher), or if some semantic anno-

tations are missing.

• There were large amounts of data redundancy in the federated information system

considered in this study.

It is worth noting in this respect that although the level of data redundancy found is

high, a large part of this redundancy is likely to be deliberate. Due to privacy concerns

and IT governance decisions, information exchange between different information

systems in the government sector is sometimes deliberately restricted. For example,

the fact that a citizen can give multiple contact details for different engagements with

government agencies is considered to be possible in certain scenarios and government

agencies are sometimes restricted in their possibilities of exchanging these details.

16 Analyzing Web Services Networks: Theory and Practice 399

16.3.3 Information Diffusion

Information diffusion is defined as the communication of knowledge over time among

members of a social system [17]. This phenomenon has been studied between and

within biosphere, microblogs [20], social networks [1] and other domains [17], where

the network structure is present. These studies have turned to be useful for revealing

intrinsic properties of particular real world phenomena. For instance, analysis of

microblogs and blogosphere has provided an understanding on how rumours spread

in the Web and valuable input to planning online campaigns.

Information diffusion has great potential in the context of Web services as well. For

instance, the results of information diffusion patterns in the Web services networks

can be exploited for identifying adaptation spots. Namely, substantial information

flow between two Web service categories indicates a possibility for the potential

applications interacting with the first category to adjust their interfaces in order to

communicate with services of the second category. Also security analysis of informa-

tion flows can be realized through analysis of information flows between categories of

Web services similarly to the work done in security-aware service composition [16].

Finally, introduction of new value-added services can be leveraged by identifying

isolated categories of Web services from the perspective of information diffusion.

In this case study we exploit the network structure of a set of Web services for

discovering information diffusion patterns within a federated information system.

Given a set of Web services’ interfaces a category network, a specific case of weighted

label network (Definition 16.4), is generated, which is then used to compute a diffu-

sion matrix. The diffusion matrix captures the volume of potential information flow

between groups of Web services, which in this case represent individual information

systems within the federated information system.

The category network is constructed from the category projection of counterpart

weighted labeled Web service network (Definition 16.4). Hence, first we describe the

process of weighted labeled Web services network formation and then construction

of the corresponding weighted label network is explained. As an illustrative example,

we consider a fragment of the original Web service network of which categorized

fragment is shown in Fig. 16.8.

16.3.3.1 Weighted Labeled Web Services Network Formation

In the Web service network, nodes are distinguished into attribute and operation

sets and edges only occur between these two sets. To derive a monopartite pro-

jection with respect to attribute nodes, the vertices belonging to attribute set are

connected by a directed edge if they are connected to at least one vertex of operation

set. The direction of new edge is from attributes representing inputs of the opera-

tion toward those attributes modeling output of the operation. Next, self-loops are

removed and redundant edges are eliminated such that there will be (maximum) only

one edge connecting two nodes. We acknowledge that both the adopted monopartite

projection of the network and the redundant edge removal are not without information

400 P. Küngas et al.

loss. However, this reduction is performed to keep the computation model simple

and traceable. Figure 16.9a illustrates the result of projection of the fragment of the

example Web service network, Fig. 16.8, into weighted labeled network model. For

the purpose of this case-study, the examined information systems are labeled with

their associated categories. A category describes a general kind of a service that

is provided [4], for example Banking Information System and Health Information

System. Category of an information system is formally defined in the current case as

category(IS) = label(IS) ∩ C , where C ⊂ L is a set of category labels.

Next, the associated categories of information systems in the Web services net-

work are propagated to corresponding attribute nodes. Therefore it is possible that

a node in this network model to be associated with several labels (categories in this

case). We model the affiliated categories of a node du as a normalized category vector
−→
Qu = {qu,1, . . . , qu,n}, where every item qu,k represents the weight of attribute du

in the category lk ∈ C . The node weights are calculated as follows:

qu,k =
frequency of du in lk

∑n
i=1 frequency of du in li

(16.1)

where n refers to the size of category set C . Returning back to the network

presented in Fig. 16.9b, the normalized category vector for businessContactPho-

neNumber according to (16.1) is {0.5, 0.5}, for organizationName is {0, 1} and for

organizationBusinessRegistryCode is {0.33, 0.66}.

Fig. 16.8 Categorized fragment of a Web service network

16.3.3.2 Weighted Label Network Formation

The transformation mechanism as this step takes as an input a weighted labeled Web

services network and generates a weighted labeled network where the labels denote

the categories and weights refer to volume of data dependency between categories.

The transformation starts with replacing attribute nodes with their affiliated cate-

gory label nodes. Then category weights are propagated from attribute nodes to the

corresponding edges in the category network. The category propagation mechanism

16 Analyzing Web Services Networks: Theory and Practice 401

works as follows. Let us assume that there exists a directed edge (du, dv) in the

weighted labeled Web services network such that node du is affiliated with category

li with weight qu,i and similarly, dv is affiliated with category l j with weight qv, j . By

replacing the attribute nodes with respective categories, we obtain partial category

weight for directed edge (li , l j) as follows:

wu,v(li ,l j) = qu,i .qv, j (16.2)

We refer to wu,v(li ,l j) as partial weight since the graph transformation step may

result in multiple edges between the same pair of category nodes. Thus we need to

merge identical nodes (the nodes with the same labels) and aggregate their category

weights. In other words, for every directed edge (li , l j) in the category network, the

actual weight is computed as follows:

W(li ,l j) =
∑

∀ edge (du ,dv) in network

wu,v(li ,l j) (16.3)

To illustrate application of the preceding, let us consider the previously con-

structed network in Fig. 16.9a. As result of the first step of transformation the attribute

nodes organizationName, businessContactPhoneNumber and organizationBusiness-

RegistryCode are replaced with their affiliated category labels Economic Activity

Category and Business Registry Category (abbreviated as EAC and BRC). As the

category weights of attribute nodes are already computed in the previous exam-

ple, we apply (16.3), which results in the following weights: W(E AC,E AC) = 1
6 ,

W(E AC,B RC) = 1
2 , W(B RC,E AC) = 7

6 and W(B RC,B RC) = 13
6 . Next, by unifying the

identical edges and augmenting the category weights, the category network presented

in Fig. 16.9b is constructed.

Fig. 16.9 Transformation of a weighted labeled Web services network (left) to a weighted label
network structure (right)

16.3.3.3 Measuring Information Flow Between Web Service Categories

In order to measure density of information flow between different Web service cat-

egories, we adopt the approach exploited by Shi et al. [17], originally studied in

the context of analyzing information diffusion in citation networks, to the category

402 P. Küngas et al.

network structure. We regard category weights, associated to the edges of category

network, as diffused information volume from source toward target category nodes.

In order to make the information flow between different categories comparable, we

normalize the weights and demonstrate the results as entries of a matrix. To this

end, we compute the sum of all weights for all outgoing edges from each category

in the network and populate information diffusion matrix A with these values. We

then normalize (i.e. divide) the volume (i.e. sum) of weighted edges between any

pair of nodes by the rate we would expect if the volume of weights of incoming and

outgoing edges were the same.

Let us assume that W(li ,l j) is the actual weight of edge (li , l j) obtained by uti-

lization of (16.3), Wi∗ =
∑

j W(li ,l j) is the sum of all weights of all links from

category i and W∗ j =
∑

i W(li ,l j) is the sum of all weights of all links to category

j and W =
∑

i, j W(li ,l j) is the sum of all weights of all links in matrix A. Then the

expected volume of weights, assuming indifference to ones in their own category

and others, from category i to category j is E[Wi j] = Wi∗ × W∗ j/W .

We define the category weight as a Z-score that measures standard deviations with

respect to expected Wi j . Here we have learned that W ≫ Wi∗ and W ≫ W∗ j , hence

we approximate the standard deviation by
√

E[Wi j]. In this way, for every entry in

matrix A, we obtain a normalized value, which we refer to as diffusion weight (φ):

φi j = (Wi j −
Wi∗ × W∗ j

W
)
/

√

Wi∗ × W∗ j

W
(16.4)

High proximity between categories i and j reveals a strong tendency for data

associated with category i to be resulted from invocation of Web service operations

which consume data associated with category j meaning that information flow from

Web services of category j to Web services of category i is higher than average.

16.3.3.4 Results and Discussion

In this experiment, we aligned the notion of category with the notion of information

system thus each category will present a specific X-Road registry. The identification

numbers of examined registries in X-Road dataset are presented in Table 16.1 and

will correspond to the ones in Fig. 16.10. The accumulated density in diagonal of the

X-Road matrix, visualized at Fig. 16.10, reveals that X-Road information systems

mainly provide output for their own services and consume mostly the information

provided by the same information system. Closer inspection of the corresponding

labeled Web service network reveals that services in these registries exploit frequently

domain-specific concepts as input and output parameters (e.g. “engine type”, “vehicle

category” and “car model” in case of Traffic Registry information system). Moreover,

since similar domain-specific concepts are mainly provided or consumed by services

of the same information system, these information systems can be regarded as self-

contained systems. We refer to this behavioral model as self-referential pattern. The

following communities are identified to remarkably follow this pattern (i.e. those

16 Analyzing Web Services Networks: Theory and Practice 403

information systems where at least 50 % of their diffusion weight is accumulated

on the main diagonal of the matrix): E-Mail Service Registry, Estonian Research

Information Systems, Criminal Court Registry, Traffic Registry, Estonian Business

Registry, State Registry of Construction Works, Land Information System, Police

Procedure Information System, Visa Registry and Pension Registry.

On the other hand, there are some strongly connected pairs of information systems

that can be identified outside of the main diagonal of matrix. For example pairs of:

(Tartu University User Information System and Workplace Information Registry) and

(Tallinn University User Information System and Workplace Information registry). A

strong tie here means that there is a remarkable mutual information flow (at least 50 %

of their average flow) between two parties. Emergence of this pattern is due to the

fact these information systems feature symmetric set of services. This indicates that

Fig. 16.10 Visualization of information flow among X-Road registries. Each entry is shaded accord-
ing to a normalized Z-score representing whether the density of information flow is higher or less
than expected at random. Darker shading indicates higher Z-scores. The diagonal represents infor-
mation flow within same category

404 P. Küngas et al.

(1) these information systems expose similar functionality (2) the services exposed

by these information systems have designed such that information, which can be

inserted, can also be queried through public interfaces, which is not very common in

practice. In addition, it can be concluded that these information systems are designed

to interact with each other.

Finally, it appears to be considerable information flow from Tallinn Sporting Activ-

ities Registry to Environmental Registry, from Estonian Citizens Liable to Military

Service Registry to Support Register Information System, and finally from Address

Database to Land Information System, just few to name. One can also observe a

noticeable information flow between Tallinn Sporting Activities Registry and a num-

ber of other X-Road registries. This is a quite expectable observation with respect to

the need to collect information from surrounding organizations related to Tallinn’s

development activities.

16.4 Related Work

The role of network structures in information diffusion has been widely studied in dif-

ferent domains such as on-line social networks [1], blogs [20] and computer science

citation networks [17]. In general, these works formulate information propagation

in triangle of user, content and rating sweetened with timing traces.

In the light of Web service network analysis, Kil et al. [7] studied structural

properties of a Web service network constructed based on small subset of public Web

services. The authors concluded that regardless of the utilized Web services matching

scheme and examined network types, all Web service networks show small world

properties and power-law distribution on node degrees. Additionally, Rosenkrantz

et al. [15] identified resilience metrics for service-oriented networks based on the

underlying network topology and distribution of services.

Oh et al. [14] developed an AI planning-based heuristic Web service composition

algorithm taking advantage of determined characteristics of Web service networks.

Following the composition thread Gekas and Fasli [3] argued that performance of

service discovery and composition is affected by the link structure and density of

underlying service network. They proposed a social network based analysis approach

to support their argument and evaluated their method on a set of simulated (artificial)

service network. Additionally, Liu et al. [10] relied on associated semantic link

network presentation of services for rapid discovery of composable services.

Küngas and Matskin [9] investigated interaction and potential synergy between a

subset of governmental registers and commercial Web services. They formalized the

interaction between these two domains in terms of overlapping concepts used in anno-

tation of input and output parameter of relevant Web services. Finally, Mokarizadeh

et al. [12] suggested a method for analyzing information diffusion between categories

of data-centric Web services. The method operates on a Web services network con-

structed by linking interface descriptions of categorized Web services. The proposed

method is evaluated on a case study of global Web services.

16 Analyzing Web Services Networks: Theory and Practice 405

The analogy between semantic Web services and semantic networks opens poten-

tially another gate for Web service network analysis. In this light, Jiang et al. [5]

proposed metrics to measure information fluidity and suggested an analytical model

based on small-world network theory. The emphasis of this work is to analyze inter-

operability in large-scale and their findings mainly concern the optimum quantity

of required domain ontologies for annotating certain quantity of information system

elements. Finally, research in security-aware service composition has addressing

some issues in securing information flow in multi-domain systems [16].

16.5 Conclusion

In this paper we presented a basic formalism for modelling Web services networks

and then extended it with a weighted label system. We presented specific schemes for

computing the weights and transforming the network in the context of information

diffusion. While the label system allows attaching arbitrary labels to nodes of Web

services networks, the concept of weights facilitates assignment of specific values

to the labels. The described weighted label network topology allows analysis of

aggregated Web services networks with respect to specific phenomena. In this paper

we used this network topology to measure information diffusion between information

systems.

We also used the formalism for developing metrics for enabling discovery of data

redundancy from WSDL descriptions of information system interfaces and evaluated

them on a federated governmental information system. The results of the evaluation

are encouraging, since consistently high precision and recall were achieved, both for

identifying redundant attributes and for identifying the primary location of redundant

attributes. Moreover, the evaluation unveiled that, although individual information

systems might not have a lot of data redundancy, there can be considerable redun-

dancy in federated information systems.

As a future work we plan to generalize the formalism to a wider range of Web

services network topologies. More specifically, we are interested in analysing Web

services networks from services provisioning perspective.

References

1. M. Cha, A. Mislove, and K. P. Gummadi. A measurement-driven analysis of information
propagation in the flickr social network. In Proc. of the 18th International Conference on

World Wide Web, WWW ’09, pages 721–730, Madrid, Spain, 2009. ACM.
2. A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A survey.

IEEE Transactions on Knowledge and Data Engineering, 19(1):1–16, 2007.
3. J. Gekas and M. Fasli. Employing graph network analysis for web service composition. Inter-

national Journal of Information Technology and Web Engineering, 2:21–40, 2007.
4. A. Heß and N. Kushmerick. Learning to attach semantic metadata to web services. In Proc. of

2nd International Semantic Web Conference (ISWC2003), pages 258–273. Springer, 2003.

406 P. Küngas et al.

5. G. Jiang, G. Cybenko, and J. A. Hendler. Semantic interoperability and information fluidity.
Int. J. Cooperative Inf. Syst., 15(1):1–22, 2006.

6. A. Kalja, A. Reitsakas, and N. Saard. eGovernment in Estonia: Best practices. In Technology

Management: A Unifying Discipline for Melting the Boundaries, pages 500–506. IEEE Press,
2005.

7. H. Kil, S.-C. Oh, E. Elmacioglu, W. Nam, and D. Lee. Graph theoretic topological analysis of
web service networks. World Wide Web, 12:321–343, 2009.

8. P. Küngas and M. Dumas. Cost-effective semantic annotation of XML schemas and web service
interfaces. In Proc. of IEEE 2009 International Conference on Services Computing, pages 372–
379. IEEE Computer Society Press, 2009.

9. P. Küngas and M. Matskin. Interaction and potential synergy between commercial and gov-
ernmental web services - a case study. In Procedings of 2007 IEEE International Conference

on Services Computing - Workshops (SCW 2007), 9–13 July 2007, Salt Lake City, Utah, USA,
pages 1–8. IEEE Computer Society, 2007.

10. F. Liu, Y. Shi, X. Luo, G. Liang, and Z. Xu. Discovery of semantic web service flow based
on computation. In Proceedings of the 2009 IEEE International Conference on Web Services,
ICWS ’09, pages 319–326, Washington, DC, USA, 2009. IEEE Computer Society.

11. S. Mokarizadeh, P. Küngas, and M. Matskin. Ontology learning for cost-effective large-scale
semantic annotation of web service interfaces. In Proceedings of EKAW 2010, pages 401–410.
Springer, 2010.

12. S. Mokarizadeh, P. Küngas, and M. Matskin. Evaluation of a semi-automated semantic anno-
tation approach for bootstrapping the analysis of large-scale web service networks. In Pro-

ceedings of the 2011 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2011,

Lyon, France, August 22–27, 2011, pages 388–395. IEEE Computer Society, 2011.
13. D. L. Moody and G. G. Shanks. Improving the quality of data models: empirical validation of

a quality management framework. Information Systems, 28(6):619–650, 2003.
14. S.-C. Oh, D. Lee, and S. Kumara. Effective web service composition in diverse and large-scale

service networks. IEEE Transactions on Services Computing, 1(1):15–32, 2008.
15. D. J. Rosenkrantz, S. Goel, S. S. Ravi, and J. Gangolly. Resilience metrics for service-oriented

networks: A service allocation approach. IEEE Trans. Serv. Comput., 2:183–196, July 2009.
16. W. She, I.-L. Yen, B. Thuraisingham, and E. Bertino. Policy-driven service composition with

information flow control. In The 8th International Conference on Web Services, ICWS 2010,

Miami, Florida, USA, July 5–10, 2010, pages 50–57. IEEE Computer Society, 2010.
17. X. Shi, B. L. Tseng, and L. A. Adamic. Information diffusion in computer science citation

networks. CoRR, abs/0905.2636, 2009.
18. V. Ventrone and S. Heiler. Some practical advice for dealing with semantic heterogeneity in

federated database systems. In Proceedings of the Database Colloquium, San Diego, August

1994, Armed Forces Communications and Electronics Assc. (AFCEA), 1994.
19. G. C. Witt and G. C. Simsion. Data Modeling Essentials: Analysis, Design, and Innovation.

The Coriolis, Group, 2000.
20. J. Yang and S. Counts. Comparing information diffusion structure in weblogs and microblogs.

In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media,

ICWSM 2010, Washington, DC, USA, May 23–26, 2010, pages 351–354. The AAAI Press,
2010.

Part III

Novel Perspectives and Future Directions

Chapter 17

Work as a Service

Daniel V. Oppenheim, Lav R. Varshney and Yi-Min Chee

Abstract Improving work within and among enterprises is of pressing importance.

In this chapter we take a services-oriented view of both the doing and the coordinating

of work by treating work as a service. We discuss how large work engagements can

be decomposed into a set of smaller interconnected service requests and conversely

how they can be built up. Encapsulation of work into a service request enables its

assignment to any qualified work organization. As such, the encapsulation naturally

lends itself to ongoing optimization of the overall engagement. A service request con-

tains two distinct parts: coordination information for coordinating work and payload

information for doing work. Coordination information deals with business concerns

such as risk, cost, schedule, and value co-creation. Contrarily, payload information

defines the deliverables and provides what is needed to do the work, such as designs or

use-cases. This general two-part decomposition leads to a paradigm of work as a two-

way information flow between service systems, rather than as a business process to

be implemented. Treating work as information flow allows us to leverage extant web

services technology using mainstream service-oriented architectures (SOA). Mile-

stone structures may be used to formalize coordination and establish measurable

outcomes. Benefits from the work-as-a-service approach include agility, visibility,

responsiveness, and ongoing optimization.

Daniel V. Oppenheim · Lav R. Varshney (B) · Yi-Min Chee
IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, USA
e-mail: music@us.ibm.com

Lav R. Varshney
e-mail: lrvarshn@us.ibm.com

Yi-Min Chee
e-mail: ymchee@us.ibm.com

A. Bouguettaya et al. (eds.), Advanced Web Services, 409
DOI: 10.1007/978-1-4614-7535-4_17,
© Springer Science+Business Media New York 2014

410 D. V. Oppenheim et al.

17.1 Introduction

The differences among labor pools globally and the rapid proliferation of capacious

information technology infrastructures has disrupted the nature of work in many

institutions, causing increased decentralization of workforces and increased leverage

of communities, networks, and ecosystems of people and of firms to do work. These

business, technological, and social trends have intensified interest in developing

general ways of structuring the coordination and doing of work.

The fundamental problem of doing work is to transform inputs into outputs to

meet specified requirements by leveraging resources. For human-based work, work

systems can be individuals or groups of individuals that may be distributed within or

between organizations. But most work required for businesses to reach their goals is

complex. The fundamental problem then becomes how to translate a business need,

perhaps expressed as a service request, into an optimal decomposition of units of

required work and how to optimally coordinate the execution of all ongoing work.

The latter is a problem of coordination.

The fundamental problem of coordinating work is to decompose a service request

into units of work that can each be assigned to a work system, and then provide

the necessary inputs and requirements to a set of work systems and to aggregate

their outputs, while continuously responding to changing conditions. Often there

are dependencies among work assigned to the several work systems. Different work

systems may have local objectives beyond just meeting global requirements and

moreover may perform work with differing costs, schedules, and reliabilities. Opti-

mal coordination must take these factors into account.

In this chapter we treat work as a service (WaaS). That is, the doing of work

is encapsulated as a service request and the coordination of work involves routing

service requests to work systems. Within the WaaS paradigm, large work engage-

ments can be decomposed into a set of smaller interconnected service requests and

conversely larger work engagements can be built up from small service requests.

An encapsulated service request contains two distinct parts: coordination informa-

tion for coordinating work and payload information for doing work. Coordination

information deals with business concerns such as risk, cost, schedule, and value.

Payload information defines the deliverables and provides what is needed to do the

work, such as designs or use-cases. This general two-part decomposition leads to

a paradigm of work as a two-way information flow between work systems, rather

than as a business process that needs to be implemented or integrated between two

organizations.

Encapsulation collects all necessary inputs in one place and explicitly specifies the

requirements and format for outputs; this eliminates inefficiencies for work systems

in searching for information or requirements. More importantly, however, encapsula-

tion enables the assignment of a work request to any qualified work system, leading

naturally to ongoing optimization of the overall work engagement in response to

unpredictable system dynamics. Coordinating work becomes a problem of dynam-

ically routing information flow. It is possible to use milestone-based structures to

17 Work as a Service 411

monitor progress and define measurables in the interaction between a service provider

and a service requester.

By treating work as an information flow, several patterns of and organizational

structures for doing work can be treated in a common framework. These include

tearing work into smaller pieces for delegation, combining overlapping work to be

done together, pausing and resuming to shift work in time, and reassignment to shift

work to other providers when overloaded.

Since the need for work is encapsulated as service requests, mainstream service-

oriented architectures (SOA) can be used to provide information technology support

such as messaging infrastructures and client software.

As demonstrated in the sequel, significant benefits from this approach include

agility in setting up large engagements to be carried out by distributed work systems,

visibility into operations without violating providers’ privacy or requiring changes

to internal processes, responsiveness to unpredictability and change, and ongoing

optimizations over competing system-level business objectives.

17.2 The Changing Nature of Work and Workforce

With the proliferation of information technologies that provide large-capacity

communication at lightning speed, decentralized and globally distributed workforces

are increasingly common. Moreover there are cultural changes afoot that are changing

the nature of work and workforce; the millennial generation is project-based rather

than jobs-based, and so there is a need to orchestrate work talent in an environment

of churn [6].

The combined force of these technological and social trends has been the emer-

gence of new models of work including: globally dispersed teams within the firm

[27], outsourcing, crowdsourcing [29], informational work factories [8], virtual enter-

prises [21], cross-enterprise collaborations [25, 36], open source development, social

production [5], and asset reuse in place of new creation [2]. There is a need for a

common framework that can holistically operate with these several models.

With these new models of work, there is greater division of labor and therefore

specialization of workforce [12, 20], but traditional coordination mechanisms such

as mutual adjustment through informal communication [22] are no longer effective

[14]. The work that is to be done must be defined with some specificity. It is well-

known in economic theory that there is a tradeoff between the benefits provided by

specialization and the costs of coordinating dispersed labor [4]. Formal mechanisms

may be able to reduce coordination costs without reducing the benefits provided by

specialization. The goal of the WaaS paradigm is precisely this.

As will become evident, encapsulation of work makes it procedurally equivalent

to plug in any work system, whether it is a crowd or a partner organization or some

combination of several work systems. Different work architectures can be constructed

[11]. This is in contrast to business process management (BPM) approaches, where

recombining the doing of work requires a new business process to connect the two

412 D. V. Oppenheim et al.

pieces together, a provably complex undertaking [23]. Further, as detailed by Vergidis

et al., BPM models do not lend themselves to too many optimizations [37]. Within

the information flow paradigm herein, optimization is readily possible.

Notwithstanding, the doing of work by a work system may be carried out using

a BPM approach for a single encapsulated work request; in particular an approach

based on milestones may be appropriate [32]. Further, it is possible to use the ful-

fillment of encapsulated work requests as a signal to transition between states in

business process models [18].

17.3 Application: Global Service Delivery

The WaaS encapsulation that will be described in the sequel arose from our experi-

ence in designing and implementing a new information technology framework for

global service delivery: IBM’s Application Assembly Automation (AAO). 1 Begun

in 2006 and still ongoing, AAO has become a key component of IBM’s Globally

Integrated Capabilities [16]. Large software development projects that were once car-

ried out by large colocated teams—often on the client’s site—are now broken into

pieces and executed in isolation by an interchangeable Technology Assembly Center

(TAC). Different TACs specialize in different aspects of software development, such

as design, packaged application implementation enhancements, SOA development,

or testing, and are strategically located globally. Each piece of work is routed to a

TAC through a construct called a work-packet, and the overall deliverables are inte-

grated for delivery. A TAC is thus a virtual resource with a well-defined business

capability and a work-packet a wrapper containing all information required for a TAC

to produce its deliverable in relative isolation. Our framework enabled a high degree

of automation and resulted in significant improvements in productivity, throughput,

quality, and time-to-value.

17.3.1 Approach

Software development is considered most effective when carried out by a small

team that works together in the same location. The dominant root cause for fail-

ure when breaking up complex projects across geographical boundaries has been

unpredictability—both within a project and in its external environment. No mat-

ter how well planned a project, uncertainties arise that require ongoing adaptation

[13]. In our view, managing uncertainty requires identification, coordination, and

response; most projects that get into to trouble do poorly in at least one of the three.

1 http://www.ibm.com/services/us/gbs/bus/html/gbs-application-assembly-optimization.html

http://www.ibm.com/services/us/gbs/bus/html/gbs-application-assembly-optimization.html

17 Work as a Service 413

1. Identification. It is desirable to detect problems early, or even better, to predict

before symptoms become observable. Identification requires deep visibility into

all aspects project internals and external environment, and can be achieved through

the specification and collection of metrics. Since collecting extra metrics intro-

duces a considerable overhead, we built a flexible metrics framework that not only

automates collection but also allows dynamic adjustment of what is measured as

the situation changes [26].

2. Coordination. When an issue is detected, a response must be taken. Since global

delivery is a complex system with many interdependent stakeholders having pos-

sibly conflicting business objectives, a response must be coordinated between

all stakeholders. The final decision will be some tradeoff between competing

business concerns. The client, for example, may care about quality and cost; the

delivery executive about schedule and service level agreement compliance; and

the project manager about doing minimal work to meet the specified require-

ment. Our framework supports decision making by providing each stakeholder

with all relevant data. This approach can support human decision making [24],

computational tradeoffs [3, 18, 32] or any combination thereof.

3. Response. Effective response requires the ability to quickly change any aspect of

ongoing and future work. In labor-intensive work this is difficult due to a sizable

overhead in communication, coordination, and reallocation of human resources.

However, if work can be encapsulated into atomic units, then a response can be

fully automated and enacted in almost real-time: this is the core idea behind the

work-packet as a container of information. Work-packets are used to assign work

to a TAC as well as to manage the flow and coordination of work between TACs. To

a TAC team, a work-packet is a one-stop source for all the information necessary

for them to deliver the desired capability. This may include requirements, design,

examples, normative guidance, and a clear definition of the desired output—the

deliverable. To the team that governs the overall project, the work-packet is used

to define and collect metrics that will be used to provide real-time visibility into

any aspect of the ongoing work. As work-packets wrap work and coordination

information, it is easy to enact an agile response.

With these insights, three key principles guided our work: enable work to be

factored into atomic units that can be carried out in relative isolation; minimize the

need for coordination, but maximize the ability to coordinate well when needed; and

separate the doing of work from the coordination of work.

17.4 Work as a Service (WaaS) Encapsulation

In this section, we describe the essential aspects of the WaaS encapsulation for work

requests and the information flow paradigm that it leads to.

As depicted schematically in Fig. 17.1, a work engagement consists of essentially

three parts:

414 D. V. Oppenheim et al.

Fig. 17.1 Work as an encapsulated service request, where R represents the requestor and P repre-
sents the provider

Fig. 17.2 The basic operation of a work request: engagement, operation, and delivery

1. A requestor, which is a service system that requests work to be done, provides

inputs, and specifies the requirements.

2. A provider, which is a service system charged with fulfilling the work request to

meet requirements.

3. An encapsulated service request, which captures the interaction between the

requestor and provider, the two-way information flow among them.

As depicted in Fig. 17.2, there are three aspects of a work task that must be

established between the requestor and the provider. First, a so-called service level

agreement (SLA) must be reached. The SLA specifies the business-level properties

of the work request, such as cost and schedule. Second, as the work is ongoing,

there may be some monitoring by the requestor of partial results produced by and

checkpoints achieved by the provider, so as to have appropriate visibility. Third, at

the conclusion of a work engagement, the provider sends deliverables to the requestor

and the provider either confirms or rejects the efficacy of the delivered work. Note

that all three of these involve two-way flows of information.

These two-way communications that arise in work should all be captured in the

encapsulated work request. In formalizing and encapsulating, a general two-part

decomposition of work into business concerns and domain concerns can be defined.

These two parts are called coordination information and payload information, respec-

tively, and are depicted schematically in Fig. 17.3. Coordination mechanisms can

then restrict attention to coordination information whereas work systems can restrict

attention to payload information.

In detailing the contents of coordination and payload information, it is easiest to

first consider an atomic service request: an encapsulation of a unit of work so small

that it cannot be broken into pieces. We will later see how to combine and recombine

atomic service requests into molecular service requests.

17 Work as a Service 415

Fig. 17.3 The encapsulated
work request partitioned into
coordination information and
payload information

17.4.1 Coordination Information

What information about an atomic service request is needed for coordination? To

answer this question, we must enumerate several possible business concerns that

arise in work. This is because the goal of coordination is to satisfy the business

concerns faced by both requestors and providers, as well as perhaps larger systematic

concerns. Negotiation among these different perspectives is possible through the

coordination information. Note that coordination may be carried out by the requestors

and providers themselves or by an external coordinating agent, and that concerns from

the different perspectives of requestors and providers may conflict.

A first possible consideration is schedule: how long will it take for an atomic

piece of work to be done. Since this varies across different work systems and is

also potentially stochastic, there is a mapping from the Cartesian product of the

possible set of work systems S and the possible set of work tasks W to the space

of positive-valued random variables that represent time T :

S × W �→ T .

The encapsulated service request carries the schedule probability distribution for each

potential work system for the given work task, including the provider that is actually

chosen. As milestones are reached and partial results are achieved, the schedule

probability distributions can be updated with new information that is furnished by

the provider. Exogenous perturbations to the system such as natural disasters might

also change schedule distributions. These distributions can change not only based

on intermediate results and exogenous effects, but also by changes in requirements

imposed by the requestor.

A second possible consideration is cost: how much money will the provider charge

the requestor to do work and whether there are bonuses or penalties associated with

speed or quality [3]. Although the encapsulation formalism is eminently amenable

to outcomes-based pricing [10, 30] rather than effort-based pricing, the cost may

still have some variability. Hence, there is a mapping from the Cartesian product of

the possible set of work systems and the possible set of work tasks to the space of

random variables C (negative values might arise if the provider actually pays to do

work):

S × W �→ C .

416 D. V. Oppenheim et al.

The sequence of cost probability distributions is included in the encapsulated work

request. As before, these can change as the service request lifecycle progresses.

A third possible consideration is quality: how good with the deliverable be with

respect to the requirements. One way to certify the quality of a work system is

through the use of CMMI level—higher levels imply more stringent process and

quality control. Again, there is a mapping from the Cartesian product of the set of

work systems and the set of work tasks to the space of random variables Q:

S × W �→ Q.

The evolving probability distributions are included in the encapsulated work request.

Additional business concerns may be similarly added to the coordination infor-

mation to extend its range beyond T × C × Q.

As presented so far, factors such as schedule, cost, and quality are independent, but

in actuality they are very much intertwined. For example, loosening schedules may

reduce costs or requiring higher quality may incur higher costs. These competing

business concerns can be balanced through the notion of value. The overall value is

what should be optimized. As we will see in the next section, the value-dominant

logic of Vargo and Lusch brings this point out even further [33]. In terms of the

encapsulated work request, joint probability distributions for business concerns such

as schedule/cost/quality in the space T ×C ×Q should be stored rather than marginal

probability distributions.

In discussing atomic service requests, we did not need to worry about the pos-

sibility of decomposition into smaller work requests. When considering molecular

service requests, coordination information needs to also contain the interdependen-

cies among its atomic constituents. Dependencies include not only things like the

fact that one piece of work needs to be done before another, but also inertia effects on

the doing of work, and other coordination-relevant factors, cf. [39]. In fact, operating

on these dependencies will be crucial for defining valid ways of decomposing and

recomposing work packets [32].

17.4.2 Payload Information

Switching gears to payload information, we now ask what information is needed by

a work system to do work. In broad strokes, payload information should include the

inputs that are to be transformed into outputs and the requirements that specify what

is to be done. This should be the minimal sufficient information for doing work;

if there is too much irrelevant information then it can cause information overload

whereas if there is too little, then time and energy is wasted in acquisition.

Going into more specificity, however, requires specifying the kind of work itself.

For global software development, it may include APIs, architectural diagrams, and

requirements documents; for car engine design, it may include specifications of

mechanical, hydraulic, and electrical interfaces, as well as performance requirements

17 Work as a Service 417

and CAD language specification. However, the WaaS encapsulation is designed to

be general so it can support the needs of any specific domain.

The payload information of a molecular work request may have a natural con-

struction from atomic payloads that reflects the architecture of the physical thing

itself. For example in component-based software engineering, the atomic units of

work may be the design of the atomic software components.

As the lifecycle of the work request proceeds, the payload information is updated

based on partial results and milestones to its current state. If there are, say, tech-

nological developments that impact the doing of work, or if there are changes in

requirements due to changing market conditions, these would also cause the payload

information to evolve. If errors are made in the execution of work, fixes may also be

incorporated into the payload information.

17.4.3 Information Flow

The WaaS paradigm may be interpreted as an information flow description. One can

think of the encapsulated service request as a multidimensional variable that captures

the current state of things, including the value being generated. As things happen,

information flows to the service request for it to be updated. Updates to both pay-

load and coordination information happen continuously: coordination information

captures business concerns, whereas payload information captures domain concerns.

Coordination mechanisms can also be thought of in informational terms and in

particular as routing. Essentially, coordination involves connecting the appropriate

requestor and provider together to interact through an encapsulated service request.

Moreover, as shown in Sect. 17.7, by appropriately routing several service requests

within a work ecosystem, large work engagements can be constructed. Coordination,

however must also consider issues of governance such as accountability, responsi-

bility, and decision-making rights. Moreover, there may be different organizational

structures for coordination. We discuss these in Sect. 17.8.

17.5 Value Co-Creation

In the service-dominant logic that has become a cornerstone of service science, value

creation moves from the provider to a collaborative process between the requestor

and provider. The value derived from this interaction is called value co-creation [34].

In further studying value, one can consider notions such as value-in-exchange,

value-in-use, and value-in-context, depicted in Fig. 17.4. Value-in-exchange is the

traditional goods-dominant view that one-time transfer from provider to requestor is

all that provides value. Contrarily value-in-use and value-in-context—its enhance-

ment to consider not just the value accrued by the requestor and provider but also the

entire service ecosystem—specify that value is created by the interaction between the

418 D. V. Oppenheim et al.

Fig. 17.4 The notion of value in services, redrawn following [34]

two parties [34]. In our view, depicted in Fig. 17.5, the encapsulated service request

is the seat of value co-creation. It holds the current state of work as measurable

milestones and also the various business concerns that determine value for either the

requestor or the provider. Indeed value itself V ∈ V can be thought of as determined

by business concerns such as schedule/cost/quality:

T × C × Q �→ V .

Further, the encapsulated work request provides the requestor with full visibility

into the ongoing work and the mechanism for communication, collaboration, and

negotiation that lead to value co-creation.

17.6 A Formal Milestone Mechanism

One way of defining coordination information for a given encapsulated service

request is to include a formal coordination lifecycle using milestones [32] built from

the guard-stage-milestone approach for specifying business entity lifecycles [15].

Here we briefly discuss the nature of this formalism.

A coordination lifecycle consists of stages, and composite stages may be built up

from atomic ones. Atomic stages correspond to various tasks such as assignment,

service invocation, human tasks, etc. Each stage has one or more milestones and

one or more guards. A milestone represents a named business-relevant operational

objective and is represented with a boolean attribute indicating if the milestone has

been achieved or not. Similarly for a guard. Stages get activated by means of their

guards and closed when certain milestones are achieved.

Fig. 17.5 The encapsulated
service request is the seat of
value co-creation

17 Work as a Service 419

Triggering events for milestones and guards might originate from the external

world such as from a human actor or an incoming service call, or from the internal

processing of the lifecycle.

Milestones serve as a primary high-level coordination mechanism and may pro-

vide enough information for requesters and providers to assess/report the progress

of a particular WaaS instance. When more detail is needed for coordination between

the requestor and the provider, a set of domain-specific coordination information

attributes may be defined to provide mechanisms for information exchange between

service requestor and provider. Indeed, delivery of information attributes may be tied

to milestone achievement and vice versa, achievement of milestones may depend on

values of information attributes.

For instance, consider the case of a WaaS instance where the provider is per-

forming test case execution for software components under development. In order

to coordinate work appropriately, the requester wants to know when the work has

progressed through several stages, corresponding to the setup of the test environment

and actual testing of each component. The requestor defines milestones marking the

completion of each stage, and uses business entities to capture the relevant lifecycle

information for each the components being tested. As the provider completes its

testing, it updates individual information attributes, such as the number of test cases

executed, and the counts of successful and failed test cases. Milestones marking

the completion of testing for each component are tied to the submission of these

information attributes.

It should be emphasized that stages need not precisely represent how the provider

will perform work. Typically, stages will only provide a high-level, loosely-defined

specification of the basic WaaS breakdown structure according to which the provider

should report progress to the requestor. Various combinations of milestones, coordi-

nation information attributes, and stage-based breakdown structures may be employed

to faithfully model service agreements between requestors and providers to provide

appropriate levels of visibility, coordination, and control.

17.7 Patterns and Structures

In this section, we discuss the structural building blocks that enable decomposition

of large work engagements into several smaller encapsulated service requests and

conversely building up small encapsulated service requests into larger work engage-

ments. To do this, one can think of encapsulated service requests as service blocks.

Several canonical patterns such as delegation, tearing, and merging emerge and they

are tied to various organizational structures that arise in businesses; cf. Malone’s

notions of flow, sharing, and fit [19, p. 140]. See also related work in systems the-

ory [38]. This section demonstrates that the WaaS paradigm applies to the problem

space it is meant to address: possibly complicated work within or among multifarious

organizations.

420 D. V. Oppenheim et al.

17.7.1 Emergence of Patterns

Consider work engagements in collaborative enterprise environments [36]. Due to

the rapid pace in the modern business environment, there is a need for agile recon-

stitution of work to address new opportunities or disruptions and capture emerging

efficiencies. In the context of WaaS, adaptation can take the form of modifications

to both the structural and temporal characteristics of service requests that constitute

the larger engagement.

Suppose that a project is initially parceled into encapsulated work requests and

assigned to different providers for completion. Ideally, work will flow between the

units as described by the initial project plan, and coordination will consist merely of

ensuring that deliverables are made available and status is updated accordingly. How-

ever, experienced project managers understand that the ideal case is rarely encoun-

tered in practice [35]. One common issue that can arise during collaborative work

is that one unit falls behind in the work that was assigned to it. Although there

may be several underlying reasons, this situation needs to become visible through

coordination information that flows through the encapsulated work request.

Coordination response can take one of many flavors. One possible response is

simply to accept the delay and shift the scheduled end date further into the future,

thereby impacting the start of other service requests depending on the delayed deliv-

erables. Additionally, if the work must be combined with perishable outputs that

are being produced by another provider, it may be necessary to pause other ongo-

ing service requests and resume them later to ensure that they complete at the same

time as the new scheduled end date of the tardy request. These temporal operations

(pause and resume) allow shifting of work in time in order to accommodate schedule

impacts on dependent work.

Another possible response to late work is to re-scope work that is to be done by

the lagging provider. This can be accomplished by tearing the WaaS request into

smaller pieces, and re-assigning some of the pieces to different providers. In this

way, work can be done in parallel, resulting in schedule compression.

On the flip side, suppose a provider is operating extremely efficiently and is

completing its assigned work faster than scheduled. This presents an opportunity for

work to be delivered sooner than planned. To do this, some work may need to be

shifted earlier (modeled as negative pause/resume).

In addition, it may be desirable to give the well-performing provider additional

work. This can result in the merging of service requests that were originally assigned

to this provider with requests that were assigned to other providers. Such merging

can be particularly beneficial if it eliminates dependencies that existed between the

original requests, or if it eliminates activities or milestones which are no longer

needed after the merge.

The above issues and opportunities view coordination response from the perspec-

tive of managing work schedule. Issues and opportunities also arise from additional

dimensions of value co-creation like quality or cost. For example, if a provider con-

sistently produces defective deliverables, it may be desirable to re-scope or reassign

17 Work as a Service 421

work by tearing and merging, as described above, or it may simply be necessary

to inject additional coordination information into the encapsulated work requests

assigned to that provider.

Given this set of structural and temporal operations, we can then define the problem

of coordination as one of determining when it is best to tear, merge, pause, or resume

work in order to achieve certain value objectives. Next we delve deeper into the

structures of these operations.

17.7.2 Structures

First consider delegating work from one work system to another, as in Fig. 17.6. This

may be done, e.g. if the original provider is unexpectedly overloaded. In this case

the original provider becomes a requestor for the downstream provider, and may be

called a delegator. The service request is re-routed. The payload information and

the interdependency portion of the coordination information are copied essentially

unchanged to the newly instantiated encapsulated service request, perhaps adding

some additional information useful to the new provider or specifying things further.

The remaining coordination information, however, is written anew to capture the

business concerns of the intermediate node and also to hide the business concerns

of the original requestor, since they are not of direct relevance to the new provider

and may be private. The delegator remains both accountable and responsible to the

original requestor. The new provider, however, is only responsible and accountable to

the delegator. Note that the originating requestor may specify that when is delegated

some coordination information must also flow down to the sub-providers.

Another possible pattern of work is to tear a molecular encapsulated service

request into pieces so as to assign it to several producers (Fig. 17.7). Tearing work

into pieces involves both coordination and payload. The payload information is parti-

tioned into (possibly overlapping) pieces that have the minimal sufficient information

required for doing the newly reconstituted work. The interdependency portion of the

coordination information is also partitioned. The remaining coordination information

is written anew. After breaking up, re-routing is identical to delegating. Recursive

hierarchical tearing can also be done.

Fig. 17.6 Delegation of work by re-routing an encapsulated service request. The original provider
becomes a requestor for the downstream provider

422 D. V. Oppenheim et al.

Fig. 17.7 Tearing work and delegating it by re-routing encapsulated service requests. The original
provider becomes aggregates requests and becomes a requestor for the downstream provider

Tearing should be done when there are specialization gains to be had, in which case

the new providers may each yield different outputs, or if there are underutilized work

systems that can be brought into production, in which case each provider will yield a

similar output that varies in quantity. For example, if a general service provider has

several sourcing channels such as a crowd, a specialized work center, and a factory,

different pieces might be routed to different places.

Note that decomposing a service request of the overall work into different aspects

requires PR to monitor and eventually integrate or aggregate the completed work so

as to be able to respond to R.

A third pattern is to merge several service requests (from a single requestor or from

several requestors) into a single service request. Merging also involves both payload

and coordination information. The payload information of the merged service request

is simply the union of the payloads of the service requests being merged. The inter-

dependencies must be combined while also including all new interdependencies that

arise. The remaining coordination information is written afresh, but must typically

meet the minimum specifications of the service requests being merged. Merging can

also proceed hierarchically (Fig. 17.8).

Economies of scale are a prime motivator for merging. As an example, consider

service requests from several requestors to perform environmental testing for elec-

tronics where a single cold room could be used simultaneously. Since all of the

requested tasks are nearly identical and can be done all together, there would typi-

cally be efficiencies from doing things together.

Another kind of re-routing that might arise in work is to withdraw a service

request from one provider and assign it to another, as in Fig. 17.9. This might happen

when changing conditions prevent the original provider from reasonably completing

the service request. As depicted, this pattern brings pluggability to the fore. Such

17 Work as a Service 423

Fig. 17.8 Merging work and delegating it by re-routing encapsulated service requests. The original
provider becomes a requestor for the downstream provider

Fig. 17.9 Reassigning work
to another provider. The old
provider (with dashed gray

line) is replaced by a new
provider

reassignment can be thought of as two complementary operations: pause and resume.

The work is paused by one provider and resumed by another. Formally, the resuming

provider can be the same as the pausing provider, thereby providing a way to shift

work in time.

The basic operations that have been discussed so far can be used in combination

to generate other structures. As an example, consider a coordination hub [24], a

centralized authority that is charges with coordinating the work in a large organiza-

tion to derive maximal value, by taking in work from several requesters, tearing and

merging, and then delegating to several providers, while also responding to changing

conditions. As depicted in Fig. 17.10, a hub can be thought of as a kind of interme-

diate delegator. Note that cross-enterprise collaboration, when several organizations

partner to do work, may take the form of a hub [3]. Robust supply chain collaboration

may also take the same basic form [28].

Although this can be formally proven algebraically, it should be clear that arbitrary

topologies of work can be constructed using the basic building block and the several

operations that we have defined. In particular, it is possible to formalize what happens

to coordination lifecycles under the various operations [32].

424 D. V. Oppenheim et al.

Fig. 17.10 A coordination hub is a delegator that matches work from several requestors to several
other providers

17.8 Coordination and Governance

We have discussed how service requests can be combined and recombined in various

patterns, but it is still not clear how to determine the plan for doing so initially or in

response to change. That is the purpose of a coordination mechanism.

Initial coordination involves organizing the plan of work by appropriately tearing

and merging, and then determining a route for work to be assigned to a provider that

has sufficient capabilities; unlike communication networks the source and destination

are not pre-specified. Negotiation between various parties on value may also be

required.

As time goes on and more information becomes available, the initial work plan

may need to be modified and service requests re-routed. As noted, there are three

main interacting causes for change: updates in the work lifecycle itself; updates in

interdependent tasks and systems; and environmental events.

There are several ways of implementing a coordination mechanism such as an

automatic program in SOA built on a protocol like WS-coordination, a human pro-

gram manager or program executive, or a governance council in cross-enterprise

collaboration.

Any of these mechanisms, however, require access to the coordination informa-

tion in the encapsulated work requests. Access control, as well as the ability to make

re-routing decisions, is a matter of governance and organization. By requiring coor-

dination information within each encapsulated service request to be freshly written,

the WaaS paradigm naturally limits information to the two systems involved, which

clearly must have it. Although the information flow is structured to limit visibility

to its two endpoints, governance policies may provide a window to other systems

upstream, downstream, or elsewhere.

17 Work as a Service 425

In order to explicitly account for the coordination mechanism and its place in

WaaS, we now introduce a coordinator role. The coordinator, as shown in Fig. 17.11,

is an entity that has visibility to monitor a given WaaS information flow and power

to make changes such as using the tear/merge/delay operations described above or

changing the internals of the WaaS work flow.

Given this extended visual notation, we can illustrate several possible visibility and

action governance policies, Fig. 17.12. If there is a centralized hub that is responsible

for global coordination, with complete visibility, responsibility, and decision-making

authority [25], a coordination scheme derived from global optimization can be used

[3]. If there is hierarchical authority, visibility and decision-making authority is

restricted to one level of depth in the tree and coordination mechanisms must respect

this. In a fully decentralized governance structure, each pair of service systems is

responsible for their own local coordination. Note that the coordination structure is

orthogonal to the organizational structure of the work itself.

Due to these differences in visibility and authority for re-routing, the various forms

of coordination have different abilities to react when conditions change.

Governance policies are intimately tied to observability of information and con-

trollability through coordination actions. It should be noted however that WaaS

readily leads to a metrics framework with measurables supporting any policy [26].

Indeed it is possible to utilize measureables at any level of work granularity.

17.8.1 WaaS and Web Services

Before moving on, let us further explicate how WaaS may be implemented using

web services. WaaS requestors and providers naturally map to the service requestor

and provider roles in web services enabled SOA. A WaaS encapsulated service

request can be represented by a web service invocation, with the interface between the

requestor and provider defined using WSDL. Operation input and output parameters

provide the means to specify payload information.

Because of the long-running nature of human tasks, an asynchronous method

of invocation is preferable, such as callbacks. Furthermore, the flow of information

Fig. 17.11 An encapsulated service request with a coordinator role (C) that has visibility and
control authority

426 D. V. Oppenheim et al.

(a) (b) (c)

Fig. 17.12 WaaS can support various patterns of coordination; solid coordination lines depict
full visibility/control flow whereas dashed coordination lines depict potentially limited flow. Note
that the encapsulated work requests could have requester/provider relationships that are omitted.
a Central coordinator with full visibility and authority into all encapsulated service requests. b

Hierarchical visibility and authority. c Decentralized organization with localized visibility and
authority

required by the coordination aspect of a WaaS request may additionally require a

conversational or stateful approach to web services.

Extending beyond the interaction between a single requester and provider, coor-

dination mechanisms can leverage enterprise service bus-like functionality in terms

of handling mediation, transformation, routing, and other aspects of integration.

17.9 Benefits of WaaS: Agility, Visibility, Optimization,

and Innovation

Having discussed the doing of work and the coordination of work within the WaaS

framework, we discuss some beneficial attributes of this paradigm.

Due to the block-building nature of WaaS, to capture emerging opportunities, there

is agility in setting up possibly large engagements to be carried out by work systems

that may be globally distributed within an enterprise or across several. Since service

requests are encapsulated and contain sufficient information for work, any admissible

work system of any kind, whether a crowd or a virtual enterprise, can be plugged in as

a provider with little explicit infrastructure development. Due to encapsulation, how

work is done matters little; only what work is done and the collaboration between

the requestor and provider that is induced. As such, business processes need not be

integrated and internal processes need not be changed. Moreover, the agility extends

to response to change; reconfiguration through re-routing is as easy as initial setup.

17 Work as a Service 427

The recombinant nature of the encapsulated service requests further means that if

there are n possible atomic service requests,

n
∑

k=1

(

n

k

)

= 2n

possible molecular service requests that can be created, providing exponential flexi-

bility.

A second thing to note about the WaaS paradigm is that visibility is provided into

operations without violating providers’ privacy. Since the payload information in the

encapsulated service request is the minimal sufficient information needed to do work,

it is a minimal sufficient statistic and therefore by the data processing inequality in

information theory [9], it minimizes information leakage. When service requests are

delegated, the coordination information is not passed on to the new provider, again

preserving privacy.

Within the WaaS paradigm, optimizing value becomes a partitioning and routing

optimization question, but with destination also subject to choice. In particular, figur-

ing out how to restructure service requests and then to determine which requestors to

connect with which providers is rather similar to the routing problem faced by packet-

switched communication networks like the internet. Centralized optimizations, e.g.

as possible by a coordination hub, are essentially equivalent to nonlinear multicom-

modity flow problems, with a further optimization for balancing destinations, cf. [3].

Optimal nonlinear multicommodity flows can be found in polynomial time [7]. When

performing distributed coordination, as in Fig. 17.12c, efficient routing algorithms

developed for internet protocols can be adapted.

When BPM approaches are used, optimal coordination becomes a scheduling

problem rather than a routing problem; optimal scheduling problems are often NP-

hard [31]. Although routing and scheduling are rather similar, the computational

complexity of finding an optimal solution can be different.

In construct to tightly designed business processes [37] but much like other mod-

ularized forms, the service request encapsulation and formalism may also lead to

increased ease of innovation. When design complexity is low, e.g. as achieved through

small loosely coupled service requests, then innovation has been found to be easier,

since there are more opportunities to experiment [1].

Many of these benefits of the WaaS paradigm and several others have been seen

in IBM’s Application Assembly Optimization system [17], including accelerated

response to changing business needs; improved visibility into all aspects of ongoing

work; improved identification of issues and reduced response time to address them;

reduction of time-to-value and time-to-market; improved productivity; improved

quality; and ability to implement global governance with a transparent performance

management system.

428 D. V. Oppenheim et al.

17.10 Concluding Remarks

We presented a new way for describing work as an information flow and then defined

the underlying formalisms that enable the decomposition of requests into fine-grained

units that can be coordinated and optimized over competing business, customer,

provider, and resource objectives. We further demonstrated how this model general-

izes over disparate models of work and can be utilized to support different patterns

of organization, business, and governance.

In the context of IBM’s Application Assembly Optimization, this has led to several

paradigm shifts in global delivery [16]:

• Workflow: from location based delivery to virtual capabilities delivered by multiple

centers and geographical locations;

• Control: from direct line of management to a more centralized pool of shared

resources;

• Metrics: from utilization and productivity measures to performance-based value

measures; and

• Cost: from an hourly, rate-based model to an outcome-based model.

Our approach in this chapter has been to describe the basic structural elements

and decompositions in the WaaS paradigm. Moving forward, it is necessary to study

in more detail the optimal coordination mechanisms that really make WaaS go. It

may make sense to bring the role of uncertainty to greater prominence [35]. After

all, “Uncertainty is what typifies projects. It’s the nature of the beast” [13].

One of the biggest revolutions in the evolution of multi-cellular organisms

occurred when neurons emerged. Before neurons, cells had to be very close to each

other to coordinate their functions. After neurons, cells could communicate from a

distance and ongoing two-way flow of information became central to complex life.

This allowed cells to be rearranged and assigned different functions in a wide variety

of life forms. The information flow paradigm for work developed herein may sim-

ilarly allow an expansion in the variety of economic and organizational forms that

are then able to efficiently fill a wide variety of niches.

References

1. Auerswald, P., Kauffman, S., Lobo, J., Shell, K.: The production recipes approach to modeling
technological innovation: An application to learning by doing. Journal of Economic Dynamics
and Control 24(3), 389–450 (Mar 2000)

2. Bacon, D.F., Bokelberg, E., Chen, Y., Kash, I.A., Parkes, D.C., Rao, M., Sridharan, M.: Software
economies. In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research (FoSER 2010). pp. 7–12 (Nov 2010)

3. Bagheri, S., Oppenheim, D.V.: Optimizing cross enterprise collaboration using a coordination
hub. In: Proceedings of the SRII Global Conference 2011. pp. 565–571 (Mar 2011)

4. Becker, G.S., Murphy, K.M.: The division of labor, coordination costs, and knowledge. The
Quarterly Journal of Economics 107(4), 1137–1160 (Nov 1992)

17 Work as a Service 429

5. Benkler, Y.: The Wealth of Networks: How Social Production Transforms Markets and Free-
dom. Yale University Press, New Haven, CT (2006)

6. Bollier, D.: The Future of Work: What It Means for Individuals, Businesses, Markets and
Governments. The Aspen Institute, Washington, DC (2011)

7. Cantor, D.G., Gerla, M.: Optimal routing in a packet-switched computer network. IEEE Trans-
actions on Computers C-23(10), 1062–1069 (Oct 1974)

8. Chaar, J.K., Hamid, A.A., Harishankar, R., Huchel, J.P., Jobson, Jr., T.A., Oppenheim, D.V.,
Ratakonda, K.: Work packet delegation in a software factory (Feb 2010) This is United States
Patent Application Publication 2010/0031226

9. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, New York
(1991)

10. Dixit, A.: Incentives and organizations in the public sector: An interpretative review. The
Journal of Human Resources 37(4), 696–727 (Autumn 2002)

11. Dorn, C., Taylor, R.N., Dustdar, S.: Flexible social workflows: Collaborations as human archi-
tecture. IEEE Internet Computing 16(2), 72–77 (March-April 2012)

12. Ehret, M., Wirtz, J.: Division of labor between firms: Business services, non-ownership-value
and the rise of the service economy. Service Science 2(3), 136–145 (Fall 2010)

13. Goldratt, E.M.: Critical Chain. North River Press (1997)
14. Gumm, D.C.: Distribution dimensions in software development projects: A taxonomy. IEEE

Software 23(5), 45–51 (September-October 2006)
15. Hull, R., Damaggio, E., Fournier, F., Gupta, M., III, Fenno, T.H., Hobson, S., Linehan, M.,

Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing the guard-stage-milestone
approach for specifying business entity lifecycles. In: Bravetti, M., Bultan, T. (eds.) Web Ser-
vices and Formal Methods, Lecture Notes in Computer Science, vol. 6551, pp. 1–24. Springer,
Berlin (2011)

16. IBM Global Business Services: Application assembly optimization: A new approach to global
delivery (Aug 2009)

17. IBM Global Business Services: Application assembly optimization: A distinct approach to
global delivery (Mar 2010)

18. Limonad, L., Varshney, L.R., Oppenheim, D.V., Fein, E., Soffer, P., Wand, Y., Gavish, M.,
Anaby-Tavor, A.: The WaaSaBE model: Marrying WaaS and business-entities to support cross-
organization collaboration. In: Proceedings of the SRII Global Conference 2012. pp. 303–312
(Jul 2012)

19. Malone, T.W.: The Future of Work. Harvard Business School Press (2004)
20. Malone, T.W., Laubacher, R.J., Johns, T.: The age of hyperspecialization. Harvard Business

Review 89(7/8), 56–65 (July-August 2011)
21. Mehandjiev, N., Grefen, P.: Dynamic Business Process Formation for Instant Virtual Enter-

prises. Springer, London (2010)
22. Mintzberg, H.: Mintzberg on Management. Free Press, New York (1989)
23. Norta, A.H.: Exploring Dynamic Inter-Organizational Business Process Collaboration. Ph.D.

thesis, TU-Eindhoven (2007)
24. Oppenheim, D., Bagheri, S., Ratakonda, K., Chee, Y.M.: Coordinating distributed operations.

In: Maximilien, E.M., Rossi, G., Yuan, S.T., Ludwig, H., Fantinato, M. (eds.) Service-Oriented
Computing, Lecture Notes in Computer Science, vol. 6568, pp. 213–224. Springer, Berlin
(2011)

25. Oppenheim, D.V., Bagheri, S., Ratakonda, K., Chee, Y.M.: Agility of enterprise operations
across distributed organizations: A model of cross enterprise collaboration. In: Proceedings of
the SRII Global Conference 2011. pp. 154–162 (Mar 2011)

26. Oppenheim, D.V., Chee, Y.M., Varshney, L.R.: Allegro: A metrics framework for globally
distributed service delivery. In: Proceedings of the SRII Global Conference 2012. pp. 461–469
(Jul 2012)

27. Palmisano, S.J.: The globally integrated enterprise. Foreign Affairs 85(3), 127–136 (May-June
2006)

430 D. V. Oppenheim et al.

28. Tang, C.S.: Robust strategies for mitigating supply chain disruptions. International Journal of
Logistics: Research and Applications 9(1), 33–45 (Mar 2006)

29. Tapscott, D., Williams, A.D.: Wikinomics: How Mass Collaboration Changes Everything.
Portfolio Penguin, New York, expanded edn. (2006)

30. Tiwana, A.: Does technological modularity substitute for control? A study of alliance perfor-
mance in software outsourcing. Strategic Management Journal 29(7), 769–780 (Jul 2008)

31. Ullman, J.D.: NP-complete scheduling problems. Journal of Computer and System Sciences
10(3), 384–393 (Jun 1975)

32. Vaculin, R., Chee, Y.M., Oppenheim, D.V., Varshney, L.R.: Work as a service meta-model and
protocol for adjustable visibility, coordination, and control. In: Proceedings of the SRII Global
Conference 2012. pp. 90–99 (Jul 2012)

33. Vargo, S.L., Lusch, R.F.: Evolving to a new dominant logic for marketing. Journal of Marketing
68(1), 1–17 (Jan 2004)

34. Vargo, S.L., Maglio, P.P., Akaka, M.A.: On value and value co-creation: A service systems and
service logic perspective. European Management Journal 26(3), 145–152 (Jun 2008)

35. Varshney, L.R., Oppenheim, D.V.: Coordinating global service delivery in the presence of
uncertainty. In: Proceedings of the 12th International Research Symposium on Service Excel-
lence in Management (QUIS12). pp. 1004–1014 (Jun 2011)

36. Varshney, L.R., Oppenheim, D.V.: On cross-enterprise collaboration. In: Rinderle-Ma, S.,
Toumani, F., Wolf, K. (eds.) Business Process Management, Lecture Notes in Computer Sci-
ence, vol. 6896, pp. 29–37. Springer, Berlin (2011)

37. Vergidis, K., Tiwari, A., Majeed, B.: Business process analysis and optimization: Beyond
reengineering. IEEE Transactions on Systems, Man, and Cybernetics–Part C: Applications
and Reviews 38(1), 69–82 (Jan 2008)

38. Willems, J.C.: The behavioral approach to open and interconnected systems. IEEE Control
Systems Magazine 27(6), 46–99 (Dec 2007)

39. Wiredu, G.O.: A framework for the analysis of coordination in global software development.
In: Proceedings of the 2006 International Workshop on Global Software Development for, the
Practitioner. pp. 38–44 (May 2006)

Chapter 18

Virtualizing Software and Human
for Elastic Hybrid Services

Muhammad Z. C. Candra, Rostyslav Zabolotnyi, Hong-Linh Truong

and Schahram Dustdar

Abstract Human capabilities have been incorporated into IT systems for solving

complex problems since several years. Still, it is very challenging to program human

capabilities due to the lack of techniques and tools. In this paper, we will discuss

techniques and frameworks for conceptualizing and virtualizing human capabilities

under programmable units and for provisioning them using cloud service models.

We will discuss how elastic composite applications can be built by combining pro-

grammable units of software-based and human-based services in the Vienna Elastic

Computing Model.

18.1 Introduction

Utilization of human computation capabilities allows us to solve complex compu-

tational problems. This approach has been practiced at least since the middle of

80s, when Richard Dawkins presented an interactive evolution application in which

preferences of user were used to lead evolution process [1]. To improve the quality

and throughput of such human-enriched systems, in later approaches [2] this con-

cept was extended by joining efforts from many people. However, the term “Human

computation” in the modern meaning is believed to be coined out in 2005 [3].

M. Z. C. Candra (B) ·R. Zabolotnyi ·H.-L. Truong ·S. Dustdar
Distributed Systems Group, Vienna University of Technology,
Argentinierstrasse 8/184-1, 1040 Vienna, Austria
e-mail: m.candra@dsg.tuwien.ac.at

R. Zabolotnyi
e-mail: rstzab@dsg.tuwien.ac.at

H.-L. Truong
e-mail: truong@dsg.tuwien.ac.at

S. Dustdar
e-mail: dustdar@dsg.tuwien.ac.at

A. Bouguettaya et al. (eds.), Advanced Web Services, 431
DOI: 10.1007/978-1-4614-7535-4_18,
© Springer Science+Business Media New York 2014

432 M. Z. C. Candra et al.

Recently, with the broad availability of Internet and the emergence of Internet-

based technologies, techniques for human-based computation have been investigated

intensively and developed rapidly. At the time of writing, a large number of people

who are interested in contributing to complex problem solving can be found almost

effortlessly [4]. This leads to the ever growing existence of the so-called collective

intelligence which allows massive online human-based problem solving, such as wiki

websites [5] and reCAPTCHA [6, 7]. This online human-based problem solving

approach is usually associated with the term “crowdsourcing” [8]. On the other

hand, professionals are also employed, as part of e-science and business workflows,

for solving human-related tasks. They are utilized together with software in several

complex workflows [9], using different technologies, such as BPEL4People [10] and

WS-HumanTask [11].

While both crowdsourcing and workflows enable us to utilize human computing

capabilities, they do not view human capabilities as a programmable unit that can

be acquired, utilized and released in an elastic manner. Unlike software-based com-

pute units (e.g., virtual machines and software services) that can be scaled in/out

easily with today’s cloud computing technologies, human efforts cannot be easily

programmed in the way that they can be added, removed and interacted dynamically

in parallel with quality, cost, and benefit control. In most cases, either workers are

statically assigned to tasks based on their roles [10] or workers bid for suitable tasks

that they can work on [12]. When workers bid on suitable tasks, elasticity of human

computation capabilities is hindered as there is an uncertainty of whether someone

will select a task or not. If the task has demanding requirements (e.g., workers with

more than 10 years of image recognition experience), appropriate worker may not

be available even in a large crowd of people [13]. Services where workers bid on

suitable tasks make integration between humans and software in some composite

applications more complicated because sometimes it is preferable to actively select

a worker or to identify that such type of worker is not available, rather than to wait

for the worker’s initiative. To allow seamless integration of human into computation

systems, it should be possible to use humans as programmable compute units, which

are similar to other types of compute units [14], that can be scaled in/out based on

quality, cost, and other benefits constraints.

Our aim in this chapter is to examine current techniques in virtualizing and pro-

gramming human efforts in crowdsourcing and people-centric business processes

in order to develop a novel way to program human capabilities for solving complex

problems. In our view, human capabilities can be abstracted into programmable units

and then can be provisioned under the service model, which can be easily specified

and invoked in programs. To this end, we discuss challenges in supporting program-

ming human capabilities and virtualizing human capabilities under human-based

services. We will also present our approach in designing, deploying and executing

human-based services.

The rest of this paper is organized as follows. Section 18.2 gives an overview

of human computation approaches. Section 18.3 describes challenges and concepts

for virtualizing human capabilities under programmable units. Section 18.4 studies

existing techniques for realizing human capabilities as programmable units for elastic

18 Virtualizing Software and Human for Elastic Hybrid Services 433

composite applications. Section 18.5 describes our solutions developed in the Vienna

Elastic Computing Model. We conclude the paper and outline our future work in

Sect. 18.6.

18.2 Overview of Human Computation Approaches

18.2.1 Crowdsourcing Platforms and Techniques

Several efforts have been done for mapping and building taxonomies from existing

public crowdsourcing market [3, 15, 16]. According to [15], existing crowdsourcing

scenarios can be categorized into three types:

•The first type is “contest crowdsourcing” where a contest is performed to obtain

the best available solution for a certain problem, such as in 99designs [17] and

Threadless [18].

•The second type is “task marketplace crowdsourcing” in which typically simple

and unrelated tasks are posted by clients, while registered workers will choose and

solve the tasks. Amazon Mechanical Turk [19] and CloudCrowd [20] are some

examples of this type.

•Finally, the third type is “bid crowdsourcing” where complex problems submitted

by clients and the best bid from professionals will be chosen to solve the problems.

Platforms such as InnoCentive [12] and TopCoder [21] support this model.

Several works focus on the enterprise crowdsourcing. Some elaborated lists of

research agendas for enterprise crowdsourcing are presented in [22] and [23]. The

distinction between public and enterprise crowdsourcing is discussed in [24], espe-

cially what factors affect the sustainability of the project’s community. A sample

crowdsourcing scenario in software development domain is discussed in [16]. An

enterprise crowdsourcing solution is also provided by CrowdEngineering [25]. Using

a proprietary crowdsourcing tools and infrastructure, it provides out-of-the-box ver-

tical applications in the domain of customer care, sales, and survey.

Another interesting crowdsourcing approach that is actively developing nowadays

are the human-based computation games [26] that present computation challenges

to humans in an entertaining way. This approach presents great answers to human-

based computation problems as game participants are motivated and interested in

the task solving process because of game’s entertainment. Also they try to get the

highest score, which commonly represents the best solution of the stated problem.

Foldit [27], a set of online challenges GWAP [28], and Phylo [29] belong to this

category.

434 M. Z. C. Candra et al.

18.2.2 People-Centric Business Processes

With the growing popularity of Service-Oriented Computing (SOC), building of

distributed systems by the means of service composition becomes more and more

popular. We have been seeing many efforts done to integrate humans into business

processes built atop Web services. In workflow-based systems, the Workflow Man-

agement Systems (WfMSs) manage the assignments and executions of tasks, which

can be either software-based or human-based tasks. In the case of human-based tasks,

each instance of the task is placed in the work-list of all eligible workers. The assign-

ment of the task can be enforced by the WfMS, or the workers may be allowed to

voluntarily select the task from the work-list [30]. In particular, BPEL4People [10]

can be used as an extension for Web Services Business Process Execution Language

(WS-BPEL) [31] to enable human interaction in business process.

However, these human-based task modeling approaches have several limitations.

For seamless integration of human-based services into a Service-Oriented Architec-

ture, we need a way to define, discover, and invoke human-based services in similar

manner as we define, discover, and invoke Web services. Therefore, human tasks

execution is no longer limited to a single organizational boundary.

18.2.3 Humans as Programmable Units

Conceptually, in crowdsourcing and people-centric business processes, human efforts

can be considered as program elements, e.g., objects and statements in programs

executing some instructions. However, the current way of programming human-

related tasks is very different from that for software-related tasks. Very often, we

have different design phases and techniques for specifying human-related tasks,

using different tools [10, 32].

Consider, for example, a Web-service-based people-centric business process. Typ-

ically software-related tasks are programmed using a Web service composition tech-

nique [33]. It allows service providers to define interfaces to their services which

the composed business process connects to [33]. Even though human-related tasks

are also programmed and composed using service interfaces, the current techniques

do not allow humans as service providers to define their own services. Also, the

lack of capabilities for human-based service publication and discovery hinders some

advance techniques such as automatic and adaptive service composition. Further-

more, in the approaches described above, humans as compute units have to adapt to

the system and actively search for the tasks to solve [19]. Little effort has been spent

for techniques to program applications to actively consider possibilities of human

capabilities to decide how to use human computation.

AutoMan [34] is an example of the computation platform that allows integration

of humans and software. AutoMan allows to specify a set of tasks to the workers in

the form of function calls in a platform-independent manner. Additionally, AutoMan

18 Virtualizing Software and Human for Elastic Hybrid Services 435

provides ability to specify required quality, time and price. However, AutoMan has

some limitations that can be critical for some applications or might be limiting

for others. For example, it defines only a limited list of task types and constrains

specification allows to specify only upper limit. Also it forces application developers

to specify human tasks in common crowdsourcing models.

Another platform worth mentioning is Jabberwocky [35]. Jabberwocky declares

that humans and software have the same rights and programming possibilities. Jab-

berwocky provides a high level domain-specific language for task declaring, which

is translated to the map-reduce pattern [36], what may be limiting or redundant for

some applications.

Both AutoMan and Jabberwocky focus on the customer side, e.g., defining tasks

utilizing human capabilities via crowd platforms, but they do not concentrate on

developing techniques at the service provider side, e.g., developing human-based

service provisioning models. Recently, techniques from SOC and cloud computing

have been investigated for abstracting and provisioning human capabilities. One of

the first approaches is to allow human capabilities to be described and published

via Web services [37]. Furthermore, teams of people could be also established and

provisioned under the service model, called Social Compute Unit (SCU) [38]. Over-

all, in this approach human capabilities can be categorized into Individual Compute

Unit (ICU) and Social Compute Unit (SCU) and realized by service technologies.

They can therefore be considered as programmable compute units [14] and belong

to the so-called Human-based Service (HBS) built atop human-based computing

elements, an analogy to software-based services (SBS), which is built atop machine-

based computing elements [39]. This enables, for example, the possibility to unify

HBS and SBS with the introduction of the virtualization layer [39] allows to sim-

plify software development with HBS and SBS integration into scalable cloud-based

service-oriented computing systems [3].

18.3 Incorporating Humans into Program Paradigms

18.3.1 Challenges

Thanks to the spread of the Internet, it becomes much easier and faster to find appro-

priate humans to perform the requested task. However, due to complexity and dynam-

icity of human possibilities and relations, it is still a huge challenge to proactively

utilize human computation capabilities. In contemporary crowdsourcing platforms,

it is common to put the tasks in a form of open call [8], but this approach assumes

that appropriate workers will find the task and solve it within time constraints, what

might be a challenge for a new and not popular type of tasks. Even more, people

participating in a specific project are often homogeneous and, despite the size, the

required person for a rare and unusual task might be missing. This problem can be

solved either by popularization of the project or by active searching of an expert

436 M. Z. C. Candra et al.

for a specific task, which goes beyond existing crowdsourcing models and requires

additional efforts from the project’s developers or supporters.

An active expert search approach, similar to the SBS invocation behavior, is that

the worker plays only a passive role by presenting her possibilities and capabilities

and waiting for incoming tasks. Active service search techniques are widely used for

SOA-based systems [10, 40], but for HBS selection they have some major drawbacks

that will be discussed in the following.

� First of all, this approach usually assumes that characteristics of the provided

service are either static or changing only occasionally. It contradicts with the fact

that human abilities can be very dynamic and even change during the day.

� Also, even when human worker is rated with respect to quality of the results, usual

active service selection ignores the fact that selected human workers may consult

with other experts for challenging tasks or even use solution of others. Currently it

is also complicated (if it is possible at all) for a selected worker to redirect the task

to another expert or worker who might be more experienced or has better chances

to solve the specified task.

� Furthermore, for conceptual business tasks, problem description can be very com-

plicated and challenging. Worker may have difficulties understanding the task,

require some additional clarification, or perform the task incorrectly.

Another issue in programming human capabilities is that the task might be given

not to a single person, but to a closely-connected group or a team of people. Such

a group or team can be modeled as SCU and it cannot be referenced in the same

way for separate workers, as abilities and characteristics of such a group/team are

completely different from that of the separate worker. Nowadays the target worker

type is selected at the stage of task generation, but there might be situations when it

is impossible to do so. Required worker type may depend on the content of the task,

quality, or cost constraints, which are known only in runtime. In such cases we must

be able to develop abstract compute units and select appropriate humans for tasks

right before the task assignment.

Summarizing what have been said above, integration of human worker into SOA-

based system faces challenges such as the following:

1. the dynamic nature of non-functional properties of HBS

2. the need to consult with others or to redirect tasks to expert in the field

3. the need to support clarifying the task or receiving additional information inter-

actively at runtime

4. the need to support different task structure depending on whether tasks will be

processed by a single person or teams

We will discuss these challenges and present our approach to handle these chal-

lenges. We will focus on the first and the last one. Additionally, we will provide

appropriate infrastructure that will allow solving other challenges on the level of the

communication protocol.

18 Virtualizing Software and Human for Elastic Hybrid Services 437

18.3.2 Virtualizing Humans as Programmable Compute Units

Nowadays, the SOC model has been flourishing and widely used to model the hard-

ware and software functionalities of machine-based computing elements (MCEs).

Through standardized service interfaces, these functionalities can be accessed and

composed for solving particular problems. However, for complex computational

problems, we need to include human-based computing elements (HCEs) into the

ecosystem for solving particular steps of the complex problem. Therefore, it is of

paramount importance to have conceptual frameworks and tools for integrating HCE

into service-based systems. If the HCE will be accessible in the same way as MCE, it

will allow selecting the actual processing unit dynamically, depending on the current

preferences in processing duration, cost, or results quality. To allow this, actual work-

ers should be hidden behind another abstract layer, which would allow unification

of task assignment information provision about the processing unit.

Fig. 18.1 Virtualizing and provisioning humans using SOC

One way to do this is to virtualize and unify HCE and MCE functionality to access

them through a well-defined service interface just like it is traditionally done in SOC.

Under the service model, everything is a service. Therefore, a distributed applica-

438 M. Z. C. Candra et al.

tion may invoke available distributed services regardless of the underlying service

type (MCE or HCE). Virtualizing HCEs under the same service model as MCEs

also allows service providers (e.g., human workers) to offer their services through a

standardized/common service description. This way, HBS discovery and negotiation

become easier. This virtualization layer can also solve some of the aforementioned

problems: it will provide unified interface that allows processing units to provide

feedback to the system, calculate worker’s qualities and preferences in run-time, or

provide additional task context on request.

Furthermore, as with MCEs, application developers should be able to compose

services involving HCEs. Through this virtualized services, application developers

can compose mixed SBS and HBS either statistically during design-time or dynami-

cally during run-time. Figure 18.1 depicts this concept of mixed service compositions

using virtualized HBS and SBS. Since the virtualization and provisioning of SBS

are known, we discuss possible approaches for virtualizing HBS:

� Communication: well-known techniques for communicating humans input/output

have been developed. Such techniques will allow highly flexible and unrestricted

types of communication between humans and HBS virtualization layer. All imple-

mentation details of communication will be hidden from applications, communica-

tion can be based on any technology, as long as it can be represented in the form of

function invocation. This allows us to use well-known SOAP-based web-services

along with RESTful services, FTP file transfer or e-mail/IM for task assignment

to human worker. Note that human-related challenges mentioned above (e.g., task

redirection, clarification request) can be solved in the protocol-specific way or

even with ability to employ human consultant in exceptional situations. Of course,

reliability and speed of such communication techniques are hardly comparable,

therefore this also has to be taken into account during statistics calculation and

SLA enforcement algorithms. Additionally, in some cases, the communication

layer may require asynchronous service invocation, which also should be stated

in service description and considered by the consumer.

� Task Assignment: as the main role of the HBS virtualization layer is to forward

invocation requests and to provide responses, Task Assignment will handle all

HBS service invocations. The main role of Task Assignment is to present virtu-

alized HBS as a part of the system and allow seamless invocations and response

retrieving. When Task Assignment receives a request, it converts this request into

the representation that can be handled by the virtualized HBS. For example, it

can prepare task in a human-understandable form (e.g., e-mail or IM message).

When a response arrives, a timeout occurs or a call is canceled, Task Management

converts available response into system model entities and returns back to the

component that requested HBS. One important feature of Task Assignment is that

it should allow composite applications to acquire, invoke and release HBS in an

elastic manner, based on their specific constraints.

� Service Description: we need to develop models for describing HBS to allow HBS

consumers to select appropriate HBS in runtime. Service Description provides

existing services descriptions and functionality in a unified format. This component

18 Virtualizing Software and Human for Elastic Hybrid Services 439

allows getting all static service information, which includes also invocation cost,

SLA agreement and allowed input data. All this information can be used to select

the set of services that can handle requests.

� Monitoring: as discussed, human capabilities are very dynamic and cannot be

described statically. For these needs, Monitoring is responsible for gathering and

providing such dynamic information as average invocation duration, invocation

jitter, communication problems and results quality/completeness. These proper-

ties can be used to validate SLA restrictions, rank available alternative services or

balance request load, if one of the services is overloaded or has too long response

time. Additionally, Monitoring manages list of assigned tasks and allows calcu-

lating current service load or billing information.

� Registry: we also need the Registry for storing, searching, filtering and providing

the set of available HBS that can be searched based on the specified restrictions.

The Registry would support Service Description models for HBS and SBS.

Finally, all features of the virtualization layer can be exposed via a set of APIs,

designed in a similar fashion to APIs for contemporary cloud systems, to allow differ-

ent applications to select and invoke HBS on-demand based on elasticity constraints.

18.4 State of the Art

In this section we discuss the state of the art of the technologies, which can be used to

implement virtualization of SBS and HBS. To make discussion clear, we center the

discussion around an example scenario to show how a composite application utilizes

HBS and SBS. The scenario shown in Fig. 18.2 represents an application system

used for mitigating and handling natural disasters. This application system mainly

consists of 3 components: the data analysis workflow, the decision support system,

and the disaster response workflow.

Fig. 18.2 Natural disaster management application

The data analysis workflow received data from sensors which capture nature

activities such as earth vibration, rain and snow precipitation, wind speed, and so on.

440 M. Z. C. Candra et al.

Upon analyzing the data the workflow will generate signals to indicate whether

certain activities may lead to a disaster and require further investigation. This

workflow utilizes a Data-as-a-Service (DaaS) for storing and retrieving historical

data through a defined SBS. A data analysis algorithm software running on a PaaS

also provides services for analysis tasks. Furthermore, depending on the nature of the

sensor data, the workflow may also invoke an HBS for manual data analysis provided

by professional analysts.

Analysis results sent to the decision support system (DSS) will be used by the

decision maker to decide whether a disaster warning should be declared. In situation

where further consultation is required, the DSS may invoke an HBS to start expert’s

consultation service. When a disaster warning is declared, the disaster response

workflow is initiated.

The disaster response workflow provides control over the disaster response and

recovery activities. An SCU consisting of emergency response teams automatically

assembled when necessary. The workflow may also invoke external workflows which

control external team such as civil forces. Furthermore, the workflow may also initiate

tasks to crowdsourcing platforms for obtaining pictures of the disaster location.

18.4.1 Composition Techniques

18.4.1.1 Syntax and Semantic for HBS

In SOA, applications are built by the means of composition of distributed services.

Each application component is a service providing a particular set of functionalities.

For example, on the aforementioned Natural Disaster Management application, the

Data Analyzers component can be realized as external service which provides capa-

bility to analyze streams of sensor data for monitoring nature activities. Furthermore,

we can also wrap the functionalities of human analysts and experts as services. Once

we compose this various services properly, we obtain a composite application for

Natural Disaster Management.

Service composition relies on the service description with respect to its functional

and non-functional properties. Functional properties of a service describe its inputs,

behavior, and outputs. These properties may be the data manipulation processing,

the calculations, or other particular functionality which defines how the service is

supposed to behave. On the other hand, non-functional properties (NFPs) describe the

quality dimensions on which the user of the service could rely. The de-facto standards

for describing the functional capabilities of a service is Web Service Description

Language (WSDL) [41]. A WSDL description of a service provides a machine-

readable definition so that users know how the service should be called. By evaluating

a WSDL description of a service, users can decide whether the service matches

with the functional requirements of the application. The quality descriptions of the

services, also known as Quality of Services (QoS), are normally defined in Service

Level Agreement (SLA) document. SLA provides formal definition of quality level

18 Virtualizing Software and Human for Elastic Hybrid Services 441

in the form of a contract on which the user and provider of a service agree. Several

standards for defining SLA are widely used. Some of the standards are Web Services

Agreement (WS-Agreement) [42], Web Service Level Agreement (WSLA) [40], and

Web Services Policy (WS-Policy) [43].

Syntax used in the aforementioned specification languages for defining functional

and non-functional properties of services may be applicable for both SBS and HBS.

A work was done to allow the usage of WSDL as HBS description language [44].

This allows us to describe the interface to services provided by human. For example,

on our example scenario, the Data Analyzer service (an SBS) and Analyst service

(an HBS) may offer similar service, i.e., analyzing sensor data. However, different

interfaces can be defined for both type of services; the Analyst HBS may have a

human collaborative platform such as Dropbox as interface.

While defining syntax for describing HBS may be straightforward, defining

semantic of HBS description can be much more challenging compared to SBS

description semantic. Human services functionality contains intangible aspects

which are hard to define formally. HBS and SBS have different NFPs and the seman-

tics of their similar NFPs can be different (Fig. 18.3 lists some examples of NFPs for

HBS and SBS). For example, the SBS Data Analyzer service may be described to

have 99 % availability. The interpretation of this value is widely understood. How-

ever, how would we define an HBS Analysis service that has 99 % availability?

What does 100 % availability of human services entitle? This aspect HBS properties

interpretation currently remains as an interesting research challenge in the service

engineering area.

Fig. 18.3 Example of metrics for HBS and SBS

The SLA standards used above, for example WSLA, are designed to deal with

virtually any types of QoS metrics. Therefore, theoretically it should be possible to

use such standards to define SLA of HBS. However, there are two most important

challenges that we should deal with: the definition and the measurement of the HBS

metrics. For example, how can we model the expertise metric and how do we measure

it. The quality of SBS, such as computing power, response time, and so on, can be

defined and measured easier. But that is not the case for HBS. In most cases, the

definition and measurement of HBS metrics is domain specific. Therefore, once we

442 M. Z. C. Candra et al.

could address these two important challenges, at least for a particular domain we are

interested in, we could use similar methodology for defining SLA mentioned above.

18.4.1.2 Design-Time and Run-Time Composition

Once we have a formal description of services, the composition of those services

becomes possible. There are various service composition tools available [33]. In the

business domain, some of the prominent examples are Business Process Execution

Language for Web Services (BPEL) [31] and Business Process Modeling Notation

(BPMN) [52]. Petri-Net is also a common tool used for composing services [53].

These composition tools are used during design-time by developers to compose

workflow-based applications containing various invocations of services.

Many attempts have been undertaken to address run-time flexible composition

issues in workflow systems and Process-Aware Information System (PAIS) in gen-

eral. Organizations may need to refine their processes to adapt to changing envi-

ronments due to new requirements, competitions, and laws. Papers, such as [54]

and [55], propose methodologies to deal with flexibility issues in workflows, espe-

cially to manage running instances while evolving the workflow to a new schema.

Those techniques discussed above traditionally deal only with SBS. There are some

efforts to allow integration of human in service composition. BPEL4People [10] and

WS-HumanTask [11] are some prominent examples. However, these approaches do

not see human task in term of human as a service provider. Hence, it cannot utilize

human capabilities when they are described as services such as discovering services

just like we normally do in SBS.

The aforementioned service composition techniques deal with the functional

requirement of the application. Other techniques are introduced to obtain a QoS-

aware service composition. Consider we have a workflow as described in our Natural

Disaster Management application. Each component, either human-based or software-

based, is described as a service. Functional properties of those services are defined in

a Web service description document, such as using WSDL, and the NFPs are defined

in SLA specification, such as in WSLA. The service functionalities are orchestrated

using BPMN tool. Furthermore, there are some service providers offering same ser-

vice for each functionalities with different QoS. The SBS Data Analyzers service

is provided by some SaaS providers. The HBS Analysis service is provided by a

pool of human analysts, and so on. The next question is, how would we select which

particular service providers to use in the application? This QoS-aware composition

problem is an optimization problem; i.e., which service providers should be invoked

so that we get an optimized (or satisfied) solution without violating the constraints.

Finding an optimized QoS-aware composition of services is known as NP-hard

problem [56]. Some approaches based on integer programming [57], heuristics [58],

and genetic algorithm [59, 60] have been proposed. These approaches can be applied

during design-time, to help the developer choosing appropriate services for the appli-

cation. They can also be used during run-time to allow late-binding of services.

Optimizing service composition during run-time is more challenging. It requires an

acceptable performance so that the optimization can be done in real-time. It should

18 Virtualizing Software and Human for Elastic Hybrid Services 443

also consider interdependencies between services and how changes on one service

may affect others or even stop the entire process instance. These approaches are cur-

rently available only for SBS. Addressing this composition service issues for HBS

presents interesting open challenges for the service computing community.

Furthermore, some works have been done for more advance composition tools.

Approaches to compose services in non-procedural ways are introduced in SELF-

SERV [45] and SWORD [46]. Several tools such as CPM [47], Mentor [48], SELF-

SERV [45], and OSIRIS [49] provide distributed workflow engine which allow web

services to be composed and executed in distributed or peer-to-peer environment. To

obtain an autonomic service composition, JOpera [50] provides an advance tool for

composing services and a run-time environment with self-configuring, self-healing,

and self-tuning capabilities. MarcoFlow [51] goes beyond the orchestration of human

actors into a service composition by allowing distributed orchestration of user inter-

faces the users need to participate in the process. However, mostly, these tools focus

on software-based services; and further works are required to integrate human-based

services to the systems.

18.4.1.3 Services Matching and Discovery

On the famed SOA triangle, a service-based system not only consists of service

providers and service clients, but also service discovery agents. Theoretically, the

discovery agent functions as a bridge so that providers may publish their offered

services and clients may find suitable services. Service discovery is done through a

matching algorithm to find services with appropriate functional and non-functional

properties.

The simplest service matching algorithm is keyword based searching. Other

advance matching approaches were also proposed. Semantic, ontology, and simi-

larity based matching have been employed to enhance the service matching [61–63].

Those matching algorithms focus on service functionality matching. To take NFPs

into account, many works have been done for obtaining QoS-aware service discov-

ery [64–66]. The aforementioned techniques for service discovery are designed for

SBS. Service discovery for HBS is a new and challenging area for research. Human

factors, such as skills, expertise, and reputations should be taken into account for

effective discovery of HBSs. Several works, such as [67] and [68], have been done to

address those issues. Trust network such as friend-of-a-friend (FOAF) network also

provides important information about the HBS providers. In [69], a Broker Query

and Discovery Language (BQDL) is proposed to discover suitable brokers who con-

nect independent subgroups in professional virtual communities, such as normally

found in social networks.

Although some standards for service registry exists, many providers prefer to use

ad-hoc mechanisms for informing clients about their services. The situation is similar

in the case of HBS. Currently there are no formal registries used for HBS discovery.

We can consider task-based crowdsourcing marketplaces such as Amazon Mechan-

ical Turk [19] as ad-hoc HBS registries. These crowdsourcing marketplaces have

been flourishing dramatically in the recent years. However, the lack of formal ser-

444 M. Z. C. Candra et al.

vice publications in these registries has been hindering automatic services matching

and discovery for HBS.

18.4.2 Virtualization Techniques

18.4.2.1 Communication Interface to HCEs

The communication layer is responsible for delivering tasks and retrieving results

from external service and handling other types of communication in a transparent

way for the rest of the system. This part is already well-known for SBS, but for

HBS it is only developing. For example, Amazon Mechanical Turk [19] provides a

web-site with available jobs for a registered workers where they can select jobs they

like from the set of available tasks (named HIT, Human Intelligence Task). But the

set of operations available to the workers is limited: they are only allowed to select

HITs and submit results, which often satisfies neither workers nor the creators of

the task. To solve these problems, different companies present their own solutions

that extend Amazon Mechanical Turk functionality and provide additional features

required by participants. For example, Scalable Workforce [32] allows workers to

subscribe on some subset of the HITs, extend worker’s profile and allows workers to

deliver feedback or clarification requests [70]. But the web-site is not the best way

to communicate with the human workers. For example, Aardvark [67] tries to use

existing human communication channels like Instant Messaging (IM), e-mail, SMS,

Twitter, or others. Furthermore, this allows the worker to ask additional questions or

to forward request to another person in case the worker cannot solve the task.

18.4.2.2 Task Assignment

Several systems provide SOAP or RESTful APIs for task assignment. For example,

Amazon Mechanical Turk provides a SOAP or RESTful web-service, what makes

it easy to integrate in the system that needs some work to be performed by the

human. Furthermore, to simplify understanding and interaction with corresponding

web-service, Amazon also provides set of API libraries for popular programming

languages. Similar APIs are provided by other platforms, such as CrowdFlower [71]

or CloudCrowd. However, Web service interface is not the only interface for creating

and assigning a task. Some systems have provided few different interfaces to interact

with different customers. For example, search engine and question answering service

ChaCha [72] additionally provides ability to state tasks for a people through web-

site, SMS, or phone applications. In most systems, it is the worker who selects tasks:

if the required parameters are met, the worker is allowed to take any task, assuming

that the worker takes only interesting and feasible tasks. However, this approach

oversimplifies task assignment. It introduces situations when some tasks are not

handled by anyone or handled with a huge delay. Instead, to guarantee fast and still

18 Virtualizing Software and Human for Elastic Hybrid Services 445

correct response, some systems (e.g., Aardvark) tries to assign tasks themselves.

With this way, systems have to know workers’ profiles, current load, and availability.

Besides the capabilities of APIs, by relying on specific APIs of particular crowd-

sourcing platforms, such as Amazon Mechanical Turk or CrowdFlower, for utilizing

human capabilities, we cannot easily program and scale in/out human capabilities

from different platforms, as the API provided by different platforms is usually com-

pletely incompatible and often crowd workers do not know anything about the task

source company. Therefore, the standardization and unification of the APIs for acquir-

ing and invoking human capabilities is important, which would allow customers to

select crowdsourcing platforms without carrying about future changes or even to use

more than one platform to diverse risks and improve results speed and quality.

18.4.2.3 Service Description

Service description models, which allows collecting, generation and representation

of available information about the underlying service, are not well studied for HBS.

Amazon Mechanical Turk stores information about worker’s qualifications and result

acceptance rate. Scalable Workforce proposes to create full worker profile with photo,

areas of expertise, interests and last activity and efficiency [70]. Such description

system is usually good enough, but it hardly allows comparing different human-

based services to detect who could do the specific task better. To allow this, service

description models should analyze which similar tasks were already assigned to

workers and how they managed to solve these tasks. Also it might be good to know

the current load, non-functional properties of the workers, and current interests in

this type of tasks, as these factors can influence results quality and service selection

strategy.

18.4.2.4 Registry

Registry systems for SBS have been well developed. For example, Amazon AWS

Marketplace1 allows to find different virtual machines and software, while Microsoft

Azure Marketplace2 enables the search for data assets. For HBS, Registry is usually

implemented by the database of registered users and their last activity information. In

the systems where tasks are selected by workers, the role of the Registry is not large:

usually it is just statistical information. Aardvark used to store and regularly verify

a lot of additional information about users (e.g., last activities, last response time,

and current task load). To allow fast service searching and query processing, access

to such registry has to be optimized and important fields have to be indexed. Addi-

tionally, such systems require more information from users during the registration

1 https://aws.amazon.com/marketplace/
2 https://datamarket.azure.com/

https://aws.amazon.com/marketplace/
https://datamarket.azure.com/

446 M. Z. C. Candra et al.

and often might have difficulties in assigning tasks to the new human-based ser-

vices, as information about them is not known yet and they are least preferable than

older ones. This issue can be partially solved with the help of qualification tests or

assigning previously solved tasks, but still this is an open challenge.

18.4.2.5 Monitoring

Monitoring service is responsible for gathering statistical information and verifica-

tion of the task solution. As the tasks for human-based services are challenging, often

it is hard to validate results’ quality and speed. For example, Amazon Mechanical

Turk leaves this to the requesting companies, which usually try to either estimate

efforts or compare results to another worker. To introduce more intellectuality to this

process, some companies invented algorithms that could be used to validate how fast

and carefully workers were performing the task. For instance, CrowdControl pro-

posed few interesting techniques that dramatically raise the quality of results [73]:

it proposed more than 15000 rules to determine whether the solution is correct and

worker performed job carefully and whether it is better to check solution again. Based

on task validation results, CrowdControl changes the rating of the workers, what also

influences on how much they will be paid now and how often validated in the future.

In Yahoo! Answers tasks and solutions are usually unstructured, but readers rate

the answers and select the best result. Another approach to solve the tasks with the

appropriate quality of results is that tasks are usually split on the small slices that are

sent to the few people to compare their results to each other [73]. But this approach

also does not work well due to the fact that there are quite a few tasks that can be

divided and results merged automatically. Correct results for several types of tasks,

such as translation, pattern recognition or content generation, often are impossible

without knowledge of the whole goal.

18.5 Programming Elastic Composite Applications

in the Vienna Elastic Computing Model

The complexity of executing and managing elastic applications becomes even higher

when we have to deal with clouds containing SBS and HBS. In this section, we out-

line steps in designing, deploying and executing composite applications consisting of

HBS and SBS in our Vienna Elastic Computing Model (VieCOM), which offers tech-

niques and frameworks to support multi-dimensional elastic processes of hybrid ser-

vices represented under programmable units. Our approach addresses issues related

during design, deployment, and runtime stage of composite applications. Figure 18.4

depicts the overall flow of our steps.

18 Virtualizing Software and Human for Elastic Hybrid Services 447

Fig. 18.4 Steps in programming and executing hybrid services in VieCOM

18.5.1 Multi-Dimensional Elastic Application

An elastic application should be able to address issues from two standpoints: it should

consider resource provisioning constraints from its resource providers, and it must

satisfy its own customers’ demand at the same time. Therefore, it is important for an

application designer to consider not only the resources but also the trade-off between

cost and quality. Consider, for example, a Software as a Service (SaaS) which consists

of many application components; each component with its own quality metrics such

as performance, availability, throughput, and so on. These quality metrics may be

dynamically specified by the customers and affect the SaaS provider’s decision to

scale-up or down resources. These changes will eventually affect cost needed for

resource provisioning and cost charged to customers.

Traditionally, we have seen this elastic computing model being applied to cloud of

SBS. However, the concept of elasticity can also be applied to hybrid cloud consist-

ing of SBS and HBS. The principles of elastic processes [74] define various facets

of elasticity that capture process dynamics. The elastic properties of applications

are multi-dimensional. Figure 18.5 depicts our concept of multi-dimensional elastic-

ity, classified into resource, quality, and cost and benefits. In these classes, several

subclasses exist. During run-time, these elastic metrics are measured. The measured

metrics can then be used to reason about adaptive actions needed to achieve a cer-

tain degree of required elasticity. A typical example for scaling Infrastructure-as-a-

Service (IaaS) can be used to explain this reasoning process: when average utilization

of running machines exceeds certain threshold, then start another machine.

448 M. Z. C. Candra et al.

Fig. 18.5 Multi-dimensional elasticity

18.5.2 Modeling Process Elasticity

In our framework, elasticity is modeled by the notion of Elasticity Profiles which

can be attached to workflows or distributed applications. An elasticity profile contain

constructs to define elastic objects, metrics, and rules. The objective of modeling

elastic processes is essentially to define the behavior of the process in response to

the changing properties of the process’ objects.

In an elastic process, we deal with objects and manipulation of the objects. These

elastic objects are tasks (such as in workflows/processes), or software components

(such as in distributed applications) that can be elastic by utilizing software-based or

human-based cloud resources. Elastic objects of processes can be either individual

tasks or process fragments. In order to make process’ objects become elastic objects,

two steps are needed: first, elastic properties must be associated with the objects

during the modeling phase; and second, at runtime, the elastic reasoning engine

decides elastic strategies for these objects based on their properties and runtime

information.

Our framework uses a collection of rules describing the elastic aspects of the

system. A process designer specifies these rules to model the dynamic changes of

18 Virtualizing Software and Human for Elastic Hybrid Services 449

resources, quality, and cost of the system. Below are some examples of rules for

expressing dynamic behavior of resources:

� When the average utilization of the human workers on the active pool is above 8

hours per day then add additional workers to the pool.

� A human-task requester wants to pay a cheaper price if the worker takes more than

1 hour to finish the task.

An elasticity profile will be deployed to our Elastic Reasoning Engine (ERE) and

the application deployed to an execution engine. The elasticity profiles deployed to

the ERE contain all definitions required to achieve the desired elasticity. The ERE

is a production rule system which consists primarily of a set of rules about elastic

behavior. The core element of this engine is a forward-chaining inference engine

used to reason about adaptability actions required to achieve the desired elasticity.

The Elastic Runtime Platform (ERP) manages resources required for process exe-

cutions. This underlying runtime layer provides the execution platform and resource

management for elastic processes. This platform can be in the form of a cloud

infrastructure, a scientific or business workflow engine, or it can also be a crowd-

sourcing platform as a human task execution environment. The monitor component

of the ERP is responsible for capturing events of elastic objects and monitors their

data. When a task is created, its corresponding elastic object is asserted to the ERE.

Using the deployed set of rules, ERE decides which actions are necessary to obtain

the desired behavior.

18.5.3 Executing Hybrid Services on the Cloud

Existing approaches exploiting human capabilities via crowds do not support well

on-demand, proactive, team-based human computation. In VieCOM, we have pro-

posed a novel method for invoking HBS in a similar manner as invoking SBS [75].

In our model, we present common APIs, similar to APIs for software services, to

access individual and team-based compute units in clouds of human-based services.

For example, Table 18.1 presents some APIs for provisioning HBS. Such APIs are

provided at the cloud service level by HBS cloud providers. Therefore, they can

be utilized by workflow engines and any application. The key idea is that based on

elastic profiles, the ERE can utilize the APIs to find suitable HBS and depending on

the elasticity constraints/rules, the ERE can invoke suitable HBS using these APIs.

Furthermore, the ERE can use similar APIs for SBS, e.g., based on JCloud,3 to invoke

corresponding SBS.

3 http://www.jclouds.org/

http://www.jclouds.org/

450 M. Z. C. Candra et al.

18.6 Conclusions and Future Work

In this paper, we discussed the challenges of programming human capabilities as

programmable compute units. We have studied techniques for virtualizing human

capabilities and how to incorporate humans into program paradigms. As we show

in the paper, several techniques developed for crowdsourcing platforms and people

workflows are not flexible enough to support the concept of program “humans”

in complex, elastic applications. We have discussed our approach in virtualizing

human capabilities as programmable compute units, realized and provisioned under

the service model, to allow seamless integration between humans and software.

We have presented steps in designing, deploying and executing elastic composite

applications in our Vienna Elastic Computing Model. We are currently prototyping

an integrated development environment to support these steps, thus we will concen-

trate on integration aspects of HBS modeling, reasoning and execution by exploiting

proposed APIs for clouds of HBS. Furthermore, our future work will focus on intel-

ligent task assignment based on elasticity trade-offs in hybrid systems of software

and humans.

Table 18.1 Main APIs for provisioning HBS [75]

APIs Description

listSkills ();listSkillLevels() list all pre-defined skills and skill levels of clouds

listICU();listSCU() list all ICU and SCU instances that can be used.

negotiateHBS() negotiate service contract with an HBS

startHBS() start an HBS

suspendHBS () suspend the operation of an HBS

resumeHBS () resume the work of an HBS

stopHBS() stop the operation of an HBS

reduceHBS() reduce the capabilities of HBS

expandHBS() expand the capabilities of HBS

runRequestOnHBS() execute a request on an HBS

receiveResultFromHBS() receive the result from an HBS

sendMessageToHBS() send (support) messages to HBS

receiveMessageFromHBS() receive messages from HBS

References

1. The blind watchmaker. Website http://en.wikipedia.org/wiki/The_Blind_Watchmaker.
2. Johnston, V., Caldwell, C.: Tracking a criminal suspect through face space with a genetic

algorithm. Handbook of, Evolutionary Computation (1997) G8
3. Quinn, A., Bederson, B.: Human computation: a survey and taxonomy of a growing field. In:

Proceedings of the 2011 annual conference on Human factors in computing systems, ACM
(2011) 1403–1412

4. Howe, J.: The rise of crowdsourcing. Wired magazine 14(6) (2006) 1–4

http://en.wikipedia.org/wiki/The_Blind_Watchmaker

18 Virtualizing Software and Human for Elastic Hybrid Services 451

5. Leuf, B., Cunningham, W.: The wiki way: quick collaboration on the web. (2001)
6. recaptcha: Stop spam, read books. Website (2012) http://recaptcha.net/.
7. Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: recaptcha: Human-based

character recognition via web security measures. Science 321(5895) (2008) 1465–1468
8. Howe, J.: The rise of crowdsourcing. Website http://crowdsourcing.typepad.com/cs/2006/06/

crowdsourcing_a.html.
9. Reiter, M., Breitenbücher, U., Dustdar, S., Karastoyanova, D., Leymann, F., Truong, H.L.: A

novel framework for monitoring and analyzing quality of data in simulation workflows. In:
eScience, IEEE Computer Society (2011) 105–112

10. Kloppmann, M., et al.: WS-BPEL extension for people-bpel4people. Joint white paper, IBM
and SAP (2005)

11. Agrawal, A., et al.: Web Services Human Task (WS-HumanTask), version 1.0. (2007)
12. Home — innocentive. Website (2012) http://www.innocentive.com/.
13. Amatriain, X., Lathia, N., Pujol, J., Kwak, H., Oliver, N.: The wisdom of the few: a collabo-

rative filtering approach based on expert opinions from the web. In: Proceedings of the 32nd
international ACM SIGIR conference on Research and development in information retrieval,
ACM (2009) 532–539

14. Tai, S., Leitner, P., Dustdar, S.: Design by units - abstractions for human and compute resources
for elastic systems. IEEE Internet Computing (2012)

15. La Vecchia, G., Cisternino, A.: Collaborative workforce, business process crowdsourcing as
an alternative of bpo. Current Trends in Web, Engineering (2010) 425–430

16. Vukovic, M.: Crowdsourcing for enterprises. In: Services-I, 2009 World Conference on, Ieee
(2009) 686–692

17. Logo design, web design and more. design done differently — 99designs. Website (2012)
http://www.99designs.com/.

18. Threadless graphic t-shirt designs: cool funny t-shirts weekly! tees designed by the community.
Website (2012) http://www.threadless.com/.

19. Amazon mechanical turk. Website (2012) http://www.mturk.com/.
20. Work from home — cloudcrowd - we’re working on it. lots of us. Website (2012) http://www.

cloudcrowd.com/.
21. Topcoder, inc. — home of the world’s largest development community. Website (2012) http://

www.topcoder.com.
22. Brabham, D.: Crowdsourcing as a model for problem solving. Convergence: The International

Journal of Research into New Media Technologies 14(1) (2008) 75
23. Vukovic, M., Bartolini, C.: Towards a research agenda for enterprise crowdsourcing. Leveraging

Applications of Formal Methods, Verification, and Validation (2010) 425–434
24. Stewart, O., Huerta, J., Sader, M.: Designing crowdsourcing community for the enterprise. In:

Proceedings of the ACM SIGKDD Workshop on Human Computation, ACM (2009) 50–53
25. Crowdengineering - crowdsourcing customer service. Website (2012) http://www.

crowdengineering.com/.
26. von Ahn, L.: Games with a purpose. Computer 39(6) (june 2006) 92–94
27. Solve puzzles for science — foldit. Website (2012) http://fold.it/.
28. gwap.com - home. Website (2012) http://www.gwap.com.
29. Phylo. Website (2012) http://phylo.cs.mcgill.ca.
30. Salimifard, K., Wright, M.: Petri net-based modelling of workflow systems: An overview.

European journal of operational research 134(3) (2001) 664–676
31. Jordan, D., et al.: Web Services business Process Execution Language (WS-BPEL) 2.0. OASIS

Standard 11 (2007)
32. Scalable workforce - mechanical turk software. Website (2012) http://www.scalableworkforce.

com/.
33. Milanovic, N., Malek, M.: Current solutions for web service composition. Internet Computing,

IEEE 8(6) (2004) 51–59
34. Barowy, D., Berger, E., McGregor, A.: Automan: A platform for integrating human-based and

digital computation. Technical report, Technical report, University of Massachusetts, Amherst

(2012)

http://recaptcha.net/
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
http://www.innocentive.com/
http://www.99designs.com/
http://www.threadless.com/
http://www.mturk.com/
http://www.cloudcrowd.com/
http://www.cloudcrowd.com/
http://www.topcoder.com
http://www.topcoder.com
http://www.crowdengineering.com/
http://www.crowdengineering.com/
http://fold.it/
http://www.gwap.com
http://phylo.cs.mcgill.ca
http://www.scalableworkforce.com/
http://www.scalableworkforce.com/

452 M. Z. C. Candra et al.

35. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming environment
for structured social computing. In: Proceedings of the 24th annual ACM symposium on User
interface software and technology, ACM (2011) 53–64

36. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Communi-
cations of the ACM 51(1) (2008) 107–113

37. Schall, D., Truong, H.L., Dustdar, S.: Unifying human and software services in web-scale
collaborations. IEEE Internet Computing 12(3) (2008) 62–68

38. Dustdar, S., Bhattacharya, K.: The social compute unit. Internet Computing, IEEE 15(3) (2011)
64–69

39. Dustdar, S., Truong, H.L.: Virtualizing software and humans for elastic processes in multiple
clouds-a service management perspective. International Journal of Next-Generation Computing
(IJNGC) (2012)

40. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service level agree-
ments for web services. Journal of Network and Systems Management 11(1) (2003) 57–81

41. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., et al.: Web Services Description
Language (wsdl) 1.1 (2001)

42. Andrieux, A., et al.: Web Services Agreement specification (WS-Agreement). In: Global Grid
Forum. Number GFD. 107 (2004) 1–47

43. Vedamuthu, A.S., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T., Yalçınalp, U.:
Web Services Policy framework 1.5. W3C Recommendation (September 2007)

44. Schall, D., Truong, H., Dustdar, S.: The human-provided services framework. In: 10th IEEE
Conference on E-Commerce Technology, IEEE (2008) 149–156

45. Benatallah, B., Sheng, Q., Dumas, M.: The self-serv environment for web services composition.
Internet Computing, IEEE 7(1) (2003) 40–48

46. Ponnekanti, S., Fox, A.: Sword: A developer toolkit for web service composition. In: Proc. of
the Eleventh International World Wide Web Conference, Honolulu, HI. (2002)

47. Chen, Q., Hsu, M.: Inter-enterprise collaborative business process management. In: Data Engi-
neering, 2001. Proceedings. 17th International Conference on, IEEE (2001) 253–260

48. Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A., Weikum, G.: From centralized workflow
specification to distributed workflow execution. Journal of Intelligent Information Systems
10(2) (1998) 159–184

49. Schuler, C., Weber, R., Schuldt, H., Schek, H.: Peer-to-peer process execution with osiris.
Service-Oriented Computing-ICSOC 2003 (2003) 483–498

50. Heinis, T., Pautasso, C., Alonso, G.: Design and evaluation of an autonomic workflow engine.
In: Autonomic Computing, 2005. ICAC 2005. Proceedings. Second International Conference
on, IEEE (2005) 27–38

51. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: From people to services to ui:
distributed orchestration of user interfaces. Business Process Management (2010) 310–326

52. White, S.: Introduction to BPMN. (2004)
53. Hamadi, R., Benatallah, B.: A petri net-based model for web service composition. In: Proceed-

ings of the 14th Australasian database conference-Volume 17, Australian Computer Society,
Inc. (2003) 191–200

54. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data & Knowledge Engineering
24(3) (1998) 211–238

55. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems.
Transactions on Petri Nets and Other Models of Concurrency II (2009) 115–135

56. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for qos-aware service com-
position based on genetic algorithms. In: Proceedings of the 2005 conference on Genetic and
evolutionary computation, ACM (2005) 1069–1075

57. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware middle-
ware for web services composition. Software Engineering, IEEE Transactions on 30(5) (2004)
311–327

58. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for qos-aware web
service composition. In: Web Services, 2006. ICWS’06. International Conference on, IEEE

(2006) 72–82

18 Virtualizing Software and Human for Elastic Hybrid Services 453

59. Wada, H., Champrasert, P., Suzuki, J., Oba, K.: Multiobjective optimization of sla-aware service
composition. In: Services-Part I, 2008. IEEE Congress on, Ieee (2008) 368–375

60. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: A lightweight approach for qos-aware
service composition. In: Proceedings of 2nd international conference on service oriented, com-
puting (ICSOC04). (2004)

61. Benatallah, B., Hacid, M., Leger, A., Rey, C., Toumani, F.: On automating web services dis-
covery. The VLDB Journal 14(1) (2005) 84–96

62. Wu, J., Wu, Z., Li, Y., Deng, S.: Web service discovery based on ontology and similarity of
words. Jisuanji Xuebao(Chin. J. Comput.) 28(4) (2005) 595–602

63. Pathak, J., Koul, N., Caragea, D., Honavar, V.: A framework for semantic web services discov-
ery. In: Proceedings of the 7th annual ACM international workshop on Web information and
data management, ACM (2005) 45–50

64. Ran, S.: A model for web services discovery with qos. ACM Sigecom exchanges 4(1) (2003)
1–10

65. Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-enhanced qos-based web services
discovery. In: Web Services, 2007. ICWS 2007. IEEE International Conference on, Ieee (2007)
249–256

66. Ali, R., Rana, O., Walker, D., Jha, S., Sohail, S.: G-qosm: Grid service discovery using qos
properties. Computing and Informatics 21(4) (2012) 363–382

67. Horowitz, D., Kamvar, S.: Searching the village: models and methods for social search. Com-
munications of the ACM 55(4) (2012) 111–118

68. Schall, D., Skopik, F., Dustdar, S.: Expert discovery and interactions in mixed service-oriented
systems. Services Computing, IEEE Transactions on (99) (2011) 1–1

69. Schall, D., Skopik, F., Psaier, H., Dustdar, S.: Bridging socially-enhanced virtual communities.
In: Proceedings of the 2011 ACM Symposium on Applied Computing, ACM (2011) 792–799

70. Turker communication. Website (2012) http://www.scalableworkforce.com/software-features-
and-benefits/turker-communication/.

71. Crowdsourcing, labor on demand - crowdflower. Website (2012) http://crowdflower.com/.
72. Questions and answers chacha. Website (2012) http://www.chacha.com/.
73. Harris, D.: Exclusive: Crowdcontrol launches, brings ai to crowdsourcing. Website (2011)

http://gigaom.com/cloud/exclusive-crowdcontrol-launches-brings-ai-to-crowdsourcing/.
74. Dustdar, S., Guo, Y., Satzger, B., Truong, H.: Principles of elastic processes. Internet Comput-

ing, IEEE 15(5) (2011) 66–71
75. Truong, H., Dustdar, S., Bhattacharya, K.: Programming hybrid services in the cloud. In: 10th

International Conference on Service-oriented Computing (ICSOC 2012), Shanghai, China
(Nov 12–16 2012)

http://www.scalableworkforce.com/software-features-and-benefits/turker-communication/
http://www.scalableworkforce.com/software-features-and-benefits/turker-communication/
http://crowdflower.com/
http://www.chacha.com/
http://gigaom.com/cloud/exclusive-crowdcontrol-launches-brings-ai-to-crowdsourcing/

Chapter 19

Realizing a Social Ecosystem of Web Services

Zakaria Maamar, Youakim Badr, Noura Faci and Quan Z. Sheng

Abstract The success in Web services goes well beyond the building of

loosely-coupled, interoperable software components. Nowadays, large-scale collab-

oration through social media (e.g., social networks) and new generation of service-

oriented software have spurred the growth of Web service ecosystems. This chapter

discusses how a social ecosystem of Web services can be realized by defining first,

the necessary actors that take part in this ecosystem formation and second, the inter-

actions that occur between these actors during this ecosystem management. Such

ecosystem permits to track who does what and where and when it is done. Compared

to (regular) Web services, Web services in a social ecosystem take different actions

that allow them, for instance to establish and maintain networks of contacts with other

peers and to form with some peers strong and long lasting collaborative groups. The

actors in the ecosystem are referred to as providers of Web services, providers of

social networks of Web services, consumers of Web services, and providers of social

networks of consumers. They all engage in different types of interactions like mak-

ing Web services sign up in social networks of Web services, supporting users seek

advices from existing members in a social network of consumers, and combining

social networks of consumers and of Web services to achieve users’ requests. Existing

Z. Maamar (B)

Zayed University, Dubai, U.A.E
e-mail: zakaria.maamar@zu.ac.ae

Y. Badr
INSA de Lyon, Villeurbanne 69621, France
e-mail: youakim.badr@insa-lyon.fr

N. Faci
Claude Bernard Lyon 1 University, Lyon, France
e-mail: noura.faci@univ-lyon1.fr

Q. Z. Sheng
The University of Adelaide, Adelaide, Australia
e-mail: qsheng@cs.adelaide.edu.au

A. Bouguettaya et al. (eds.), Advanced Web Services, 455
DOI: 10.1007/978-1-4614-7535-4_19,
© Springer Science+Business Media New York 2014

456 Z. Maamar et al.

research initiatives on social Web services as well as open issues in the development

of a social ecosystem of (social) Web services are also discussed in this chapter.

19.1 Introduction

The IT community regularly hails Web services for their capacity of implementing

loosely-coupled, cross-organization business applications. This is primarily due to

the properties that characterize Web services [2]: (i) independent as much as possible

from specific platforms and computing paradigms; (ii) primarily developed for inter-

organization situations; and (iii) easy to integrate into existing applications so that

developing complex adapters for composition needs is not required. Composition is

one of Web services’ attractive features. It allows to put several Web services together

in response to complex users’ requests.

In previous work (e.g., [12] and [13]) we designed and developed social Web

services in response to certain limitations that undermine (regular) Web services

efficient operation. Among these limitations we cite the following: (i) Web services

know about themselves only, not about their users or peers; (ii) Web services cannot

reconcile ontologies among each other or with their users; and (iii) Web services can-

not delegate their invocation requests to other peers. Contrarily social Web services

can establish and maintain networks of contacts; count on their (privileged) contacts

when needed; form with other peers strong and long lasting collaborative groups; and

know with whom to partner so that effort reconciliation due to disparities like seman-

tics is minimized. Web services operation illustrates perfectly how people behave

when it comes to offering services that somebody else may need and requiring ser-

vices that somebody else may offer. Service offering and requiring permit to connect

Web services together (this connection leads into labeling Web services as social),

and hence to enrich them with social elements like collaboration and coordination.

Social Web services’ operations (e.g., count on their contacts when needed) are

made possible because of various details (e.g., collaboration level between peers)

that are extracted from the social networks that have these social Web services as

members. Networks (e.g., competition, collaboration, and substitution) are devel-

oped in order to support social Web services operation. For instance, a social Web

service maintains its own network of collaborators, so that it decides if working with

certain peers is rewarding based on previous experiences. A social Web service can,

also, recommend peers to join its underdeveloped compositions so that additional

details are returned to users. Last but not least, a social Web service learns about its

competitors, so that it can attempt to improve its non-functional properties.

In this chapter, we identify the necessary actors related to social Web services

management in terms of description, announcement, discovery, and connection. We

expect that all these actors will form a social digital ecosystem. In this ecosystem

the social Web services will be described, discovered, offer services (a.k.a func-

tionalities) to users and other peers, tested prior to their use, held accountable for

their actions, to cite just a few. A general definition of ecosystem states that “it is a

19 Realizing an Ecosystem of Social Web Services 457

natural system consisting of all plants, animals and microorganisms (biotic factors)

in an area functioning together with all the non-living physical (abiotic) factors of

the environment” [3]. Our work on social Web services does not include a complete

compilation of all these actors and thus, questions like who are these actors, what

are their roles, and how do they interact need to be addressed.

The main contributions of this chapter are manifold: (i) a definition of what a

social ecosystem of (social) Web services is; (ii) a list of all actors contributing

to the management of this ecosystem along with their specific roles; (iii) a list of

existing research initiatives that study social Web services; and (iv) a list of open

issues that need to be addressed in order to make this ecosystem operational. The

rest of this chapter is organized as follows. Section 19.2 discusses the blend of

social computing with service computing and provides a literature review of the

Web services ecosystems field. Section 19.3 presents an ecosystem of social Web

services in terms of architecture, actors in this ecosystem, interactions between these

actors, and finally open issues. Conclusions are drawn in Sect. 19.4.

19.2 Background

This section discusses how social computing meets service computing and then,

provides an overview of some initiatives on Web services ecosystems.

19.2.1 When Social Computing Meets Service Computing

Current research on blending social computing (Web 2.0) with service computing

(Web services) sheds the light on two categories of social networks: those connecting

users and those connecting Web services.

On the one hand, social networks of users record users’ experiences interacting

with Web services over time so that these experiences are captured and shared later

with other members of these networks. Assuming that users’ feedbacks on these

interactions are fair (i.e., unbiased), it becomes possible to advise users on where to

look for Web services, how to select Web services, and what to expect out of Web

services. A good number of approaches that study Web services-based social net-

works of users are reported in the literature. Xie et al. propose a composition frame-

work that relies on social based recommendations of semantic Web services [33].

Wu et al. rank Web services using run-time non-functional properties and invoca-

tion requests [32]. Ranking takes into account the popularity of a Web service is

the social element analyzed by users. Al-Sharawneh and Williams mix semantic

Web, social networks, and recommender systems technologies to help users select

Web services with respect to their functional and non-functional requirements [1].

Besides the market-leader concept that refers to the best Web service, Al-Sharawneh

and Williams use two ontologies that are (i) follow-leader ontology to classify users

and (ii) preference ontology to specify users’ preferences. Maaradji et al. propose an

458 Z. Maamar et al.

event-driven social composer to assist users take actions in response to events such as

selecting a given Web service [22]. Finally, Nam Ko et al. discuss the way the social

Web (exemplified by well-known networking sites such as Facebook) contributes to

create social applications without having to build social networks [25].

On the other hand, social networks of Web services record the situations that

Web services come across at run time [18]. These situations known as collaboration,

competition, and substitution permit to tell users which Web service peers can or

like to collaborate with a Web service, which Web service peers compete in case of

selection, and which Web service peers can replace a failing Web service. Different

approaches that study social networks of Web services are reported in the literature.

In [14] Maamar et al. introduce a method for engineering social Web services. This

engineering requires identifying relationships between Web services, mapping these

relationships onto social networks, building social networks of social Web services,

and setting the social behaviors of social Web services. In [20] the same authors inject

social networks’ elements into Web services discovery process. Indeed Web services

are not “isolated” components that respond to user queries, only. They compete

and collaborate permanently during selection and composition, respectively. In [21]

Maamar et al. also discuss the different social networks in which Web services

can sign up, for instance supervision, competition, substitution, collaboration, and

recommendation. The mining of these networks results in identifying social qualities

like selfishness, fairness, and unpredictability that Web services exhibit at run time.

Finally, in [7] and [15], Maamar et al. propose a set of quality criteria that help Web

services assess the pros and cons of signing-up in these networks. This set includes,

but is not limited to, privacy, trust, fairness, and traceability. Policies for managing

the sign up are also provided in this paper. The adoption and efficiency of these

policies are monitored and assessed with respect to the values that these criteria take.

19.2.2 Literature Review

A search of the Web services ecosystems field identifies an exhaustive list of research

initiatives [6, 11, 26–28, 31]. In the following we summarize some and discuss how

and why they fall short of meeting the intrinsic characteristics of social Web services.

In [11] Li and Chen consider that the overlap between social computing, Internet of

things, service computing, and cloud computing disciplines result in a new discipline

that is social services computing. This overlap means that the respective constituents

in these disciplines interact with each other to form social networks. Social services

computing needs to carefully look into service management in terms of classification,

clustering, migration, recommendation, composition, discovery, and publication all

from a social perspective. The social services ecosystem of Li and Chen consists

of service computing infrastructure, social consumers, social providers, and social

networks. In this ecosystem services can be shared, partially shared, leased, or sold.

In [26] Riedl et al. propose a framework to analyze service ecosystem capabilities.

This ecosystem includes repositories of services that can be re-used, re-combined,

19 Realizing an Ecosystem of Social Web Services 459

and re-purposed to create new, innovative services. The actors populating this

ecosystem are: providers, users/customers, brokers that bring service providers and

consumers together, mediators that offer translation between different service for-

mats and other routine functions and support brokers in their operation, and specialist

intermediaries that offer service delivery components used by others.

In [27] Scheithauer et al. propose a set of necessary properties to describe services

in service ecosystems. These latter are electronic marketplaces where services can

be traded over the Internet. Two obstacles impede this type of trade: lack of adequate

properties for service description and lack, also, of a clear classification for service

description notations. Scheithauer et al.’s proposed properties and classifications

are as follows: functionality properties namely capability and classification, finan-

cial properties namely price, payment, and discount, legal properties namely rights,

obligations, and penalty, marketing properties namely certification, expert test rat-

ing, and benefit, and finally quality of service properties namely latency, throughput,

availability, and reliability.

In [31] Wu and Chang discuss the limitations of the centralized Web services

client/service architecture in terms of performance, bottleneck, and scalability and

propose DWSASE, standing for Distributed Web Services Architecture for Service

Ecosystem, to address these limitations. The components upon which DWSASE is

built upon are service peer, domain peer, alliance peer, super peer, domain broker,

domain UDDI, global broker, and global UDDI. For instance a service peer is an

ordinary service provider and/or service consumer available in an area that does not

belong to any domain known as global space. In addition, a super peer initiates the

formation of a particular dynamic alliance by sending invitation messages to selected

partner peers. The DWSASE components interact according to different protocols

that are Web service community protocol, broker protocol, alliance P2P protocol,

super-peer protocol, WS business protocol, and domain protocol.

The aforementioned paragraphs offer a glimpse of existing ecosystems for

managing Web services. However social Web services’ intrinsic features raise other

challenges that these ecosystems do not consider for instance, what types of networks

social Web services can sign up in, how social Web services get to know about avail-

able networks, what billing means can networks adopt for the resource offered to

social Web services, how to assist social Web services select the best networks, and

how to assess the quality of services that networks offer. The next section proposes

a dedicated ecosystem for social Web services.

19.3 Social Web Services Ecosystem

This section begins by proposing a set of components (called actors later) upon which

a dedicated social ecosystem of (social) Web services is built. Afterwards it discusses

the interactions that occur between these components as well as the existing research

initiatives that look into these interactions.

460 Z. Maamar et al.

19.3.1 Architecture of the Ecosystem

Figure 19.1 illustrates an architecture for an ecosystem of social Web services. Four

different clusters hosting each similar actors populate this ecosystem. These clus-

ters are Providers of Web Services (Pws), Providers of Social Networks of social

Web services (PSNsws), Consumers of Web Services (Cws), and Providers of Social

Networks of consumers (PSNc). Consumers and providers refer here to both per-

sons and organizations. Web services turn out social when they sign up in at least

a PSNsws’s social network. In the same figure discontinued lines represent cross-

cluster interactions that are detailed in Sect. 19.3.3. In this ecosystem there is no cen-

tral authority in charge of managing the social networks of social Web services or of

consumers. Therefore mechanisms that allow to identify who does what are critical

and constitutes an open issue to address in the ecosystem. The different networks are

completely independent from each other, though bridges connecting social networks

of users (i.e., consumers) may exist like discussed in [4].

The actors populating the four clusters are briefly discussed below:

� Pws cluster identifies all providers who develop and make Web services avail-

able for invocation. The providers rely on regular means like service registries

(e.g., UDDI) or PSNsws to announce their Web services to potential consumers.

Registries are excluded from the architecture since the ecosystem relies on social

networks to expose Web services to the external world.

� Cws cluster identifies all consumers who invoked Web services and recorded

their experiences of using these Web services. Records concern for instance, the

quality of response and reliability level (aka QoS). The consumers consult service

registries or rely on the PSNc to identify the Web services that they will invoke.

Registries are, also, excluded from the architecture.

� PSNsws cluster hosts different types of social networks of social Web services

that independent providers set up. The value added of these networks to users

varies depending on the nature of needs to satisfy such as building a new composite

Web service, replacing a failing Web service, etc. Collaboration and competition

are examples of social networks of social Web services [13].

� PSNc cluster hosts different types of social networks connecting consumers

together. Facebook, LinkedIn, or any other private social network are examples

of social networks of consumers that independent providers set up so that con-

sumers sign up in to report their feedbacks and seek feedbacks on the Web services

invoked/to invoke.

The four clusters engage in different interactions that are briefly discussed below.

Some interactions are already part of the ecosystem (plain lines in Fig. 19.1) while the

rest are recommended for inclusion in the ecosystem (discontinued lines in Fig. 19.1):

� Interaction 1 (Pws:PSNsws) corresponds to the chronology of operations that

allows Web services to be members of social networks of social Web services.

� Interaction 2 (Cws:PSNc) corresponds to the chronology of operations that allows

consumers to be members of social networks of consumers.

19 Realizing an Ecosystem of Social Web Services 461

Fig. 19.1 Proposed architecture for a social Web services ecosystem

� Interaction 3 (PSNc:PSNsws) corresponds to the collaborative actions between

the social networks of social Web services and of consumers to help consumers

identify the Web services to invoke.

� Interaction 4 (Pws:PSNc) corresponds to the actions that providers take to expose

their Web services to future consumers by relying on social networks of consumers.

This interaction is detailed in Sect. 19.3.4.

� Interaction 5 (Cws:PSNsws) corresponds to the actions that consumers take to

look for the Web services they need by screening social networks of social Web

services. This interaction is detailed in Sect. 19.3.4.

19.3.2 Actors in the Ecosystem

Three types of providers and one type of consumers operate in the ecosystem of

social Web services. They perform multiple operations according to their roles, needs,

interests, and objectives.

Consumers of Web services correspond to persons or organizations who require

Web services to satisfy their requests. Requests vary from basic like currency con-

version to complex like travel planning. Consumers can sign up in different PSNc as

per interaction 2. It is assumed the existence of mechanisms (e.g., search engines)

permitting consumers to locate the relevant PSNc. Being a member of PSNcs gives

consumers the opportunity of sharing their experiences of using Web services with

other members as well as seeking these members’ recommendations on potential

Web services to use. Consumers have to comply with the PSNcs’ regulations when

462 Z. Maamar et al.

they sign up, sign off, seek advices, share feedbacks, post comments, etc. This com-

pliance can be based on how users’ rights and responsibilities are defined in some

online social applications like Facebook and LinkedIn.

Providers of Web services correspond to persons or organizations who offer Web

services to other persons and organizations. Web services can be put together to

develop composite Web services in response to users’ needs complexity. Providers

make their Web services join different PSNsws as per interaction 1. Like with con-

sumers appropriate mechanisms allow providers to locate the relevant PSNsws. Web

services have to comply with the PSNswss’ regulations (i.e., policies) when they

sign up, sign off, select a certain social network, etc. These regulations are explained

in Sect. 19.3.3.

Providers of social networks of social Web services correspond to persons or

organizations who offer means permitting to connect Web services together according

to specific schemas. Three out of several connection schemas are studied in [13] and

summarized below:

� Collaboration schema (Fig. 19.2): by combining their respective functionalities,

social Web services have the capacity to work together on complex user requests.

Consequently, a social Web service has its own network of collaborators, so that it

decides if it likes collaborating with peers based on previous experiences. A social

Web service can, also, recommend peers to join underdeveloped compositions.

Fig. 19.2 Example of a
collaboration social network
connecting Web services

� Substitution schema: although social Web services compete against each other,

they can still help each other when they fail as long as they offer similar

functionalities. Consequently, a social Web service manages its own networks of

substitutes, so that it can meet its Service Level Agreements (SLA) when it encoun-

ters a potential failure. It can then identify its own best substitutes in response to

users’ non-functional requirements.

� Competition schema: social Web services compete against each other when they

offer similar functionalities. Their non-functional properties differentiate them

when users non-functional requirements must be satisfied. Consequently, a social

19 Realizing an Ecosystem of Social Web Services 463

Web service learns about its own network of competitors, so that it can attempt to

improve its non-functional properties with respect to other peers.

Providers of social networks of consumers correspond to persons or organizations

who offer means permitting to connect consumers of Web services together according

to specific schemas. Recommendation is possibly the most appropriate connection

schema between consumers allowing consumers to indicate potential Web services

to other peers.

19.3.3 Interactions in the Ecosystem

19.3.3.1 Web Services/Social Networks Interactions (1)

In [16] we study the interactions that take place between Web services and PSNsws

and adopt commitments to guarantee the compliance of the future social Web services

(that act on behalf of Web services) with the regulations of these PSNsws in terms

of privacy, content sharing, payment, pricing, etc. Singh et al. seem to be the first

who advocate for examining service-oriented architecture principles from a com-

mitment perspective [30]. The traditional service-oriented architecture is built upon

low-level abstractions that are inappropriate for capturing the intrinsic characteris-

tics of business services such as autonomy, complexity, and adaptability. Contrarily

a commitment-based service-oriented architecture allows to judge the correctness of

a service enactment as long as commitments are not violated and to support business

compliance without dictating specific operationalization.

When Web services join a SNsws (led by an authority component (snauth) and

illustrated with Fig. 19.3) the social Web services perform actions whose outcomes

might “harm” peers in the same network (e.g., revealing their private details), or even

slowdown the operation of the network (e.g., broadcasting irrelevant details). Thus

the social Web services are responsible for these actions’ outcomes. A Responsibil-

ity (Resp) is structured as a triple: either an obligation or a permission, actions to

perform, and possible conditions that authorize the execution of actions. Below is an

example of responsibility.

� Resp1. Collecting any detail (d) in a social network would require indicating the

purpose (p) of this collection to this detail’s owner (o).

Representation: Permission(Collect(d, o, valid(p))).

Collect is the action; d, for instance is a non-functional property like response

time and is either public (made available to all members of a social network),

protected (made available to the social network’s authority component, only), or

private (not available); o is the owner of d for instance social Web service; p is

the rationale of collecting d; and valid is a function that checks p. Two purposes

exist: collaboration (col) to support the development of composite Web services

and substitution (sub) to support the execution continuity of Web service-based

business processes in case of failure.

464 Z. Maamar et al.

Fig. 19.3 HotelWS administration module

Representation: Obligation(Post(d, true)).

Post is the action and true is the veracity of d.

Representation: Obligation(not-Tamper(d, o, collection(d))).

not-Tamper is the action and collection is a function that checks if collecting d

is approved in compliance with Resp1.

Afterwards the responsibilities are mapped onto commitments. The formalism of

Fornara and Colombetti is adopted to structure the commitments [8]:

CRespi
(debtor, creditor, content[|condition]) where swsi is a social Web service,

CRespi
is a commitment associated with Respi , and []means optional.

� CResp1
(swsi , sws j , Collect(d, sws j)|valid(pd)) is a conditional commitment by

swsi to sws j , that if valid(pd) holds then Collect(d, sws j) will be satisfied.

When a social Web service violates commitments for reasons like being malicious

or temporary shortage of computation resources this requires continuous monitoring

so that corrective actions are taken [24]. Besides commitment violation, it may hap-

pen that social Web services carry out actions that are prohibited calling for setting

sanctions like decrementing reputation level and revoking some access privileges.

•CResp1
: violation arises when collection occurs over a non-public detail. And pro-

hibition arises when the purpose of a detail collection is neither composition nor

substitution.

– Violation monitoring requires that sws j reports to snauth recurrent, tentative

accesses to its non-public details from swsi . If these tentatives are confirmed

using logs for example, this will be a violation to accessing non-public details

of sws j . Sanctions consist of reviewing the trust/reputation levels of swsi if first

19 Realizing an Ecosystem of Social Web Services 465

time. Otherwise, eject swsi from the social network if these levels go below a

threshold.

– Prohibition monitoring requires that snauth checks if sws j was really used either

as a component in an underdeveloped composition or as a substitute in an under-

execution composition for the purpose that swsi mentioned to snauth so that

it collects details on sws j . If sws j was not used as expected, this would be

a prohibition to collecting details on sws j . Compensations include informing

sws j of what happened as well as giving it more access privileges like tracking

all the peers that request its details.

19.3.3.2 Consumers/Social Networks Interactions (2)

The ecosystem of social Web services treats consumers as not mere end-users but

active and trusted co-creators of new composite services. Grouping persons or orga-

nizations together into specific social networks may have an important effect on

the overall ecosystem. Consumers build trust in their social networks and develop

friendships, professional alliances or even cooperate to achieve business-to-business

activities. Social networks are, also, important incentive factors for many consumers

to organize themselves into communities, assign different roles, and share common

interests. This social environment requires basic mechanisms to support consumer-

driven activities and enable them to co-operate as well as re-use, combine, and share

their Web services. The mechanisms (or services) that facilitate interactions between

consumers and social networks of consumers are follows:

� Profile mechanism consists of creating a profile (including private and public data)

for each consumer and allowing peers to discover it. Any consumer can belong

to one or several social networks. Each network may have at least one or more

membership groups (e.g., owners, mediators, and casual members).

� Search mechanism allows members to search social networks based on criteria like

names, business domains, and location, and pro-actively recommend interesting

Web services to peers to enrich their businesses.

� Contact mechanism provides basic mechanisms to maintain personal contact list,

tag members and manages granting access control to profiles maintained by each

member.

19.3.3.3 Social Networks Interactions (3)

The interactions between PSNsws and PSNc permit to compose, execute, and monitor

Web services while taking into account both consumers’ experiences in using Web

services and social Web services’ connections to other peers. SNc and SNsws inter-

leave during composition, execution, and monitoring requires developing a social

composer, a social executor, and a social monitor, respectively (Fig. 19.4, [17]).

466 Z. Maamar et al.

Fig. 19.4 Composer, executor, and monitor social components in action

The social composer relies on SNc and SNsws to advise users on how to build

compositions (or composite Web services). These advices concern (i) which Web

services to include in these compositions [22], (ii) which Web services to check

in case the contacted ones decline to participate in these compositions [19], and

(iii) which Web services to select to ensure a better compatibility level of these

compositions [29].

The social executor assesses the impact of the social composer’s advices (when

these advices are considered) on composition execution progress. The social

executor feeds the social composer with details so that the social composer updates

the necessary social networks. These details include (i) how the Web services that

were suggested through SNc and SNsws performed and (ii) which Web services

that were also suggested did not join the compositions.

The social monitor relies on SNsws to advise users on which Web services to check

in case those that are already taking part in their respective ongoing compositions

fail. The social monitor feeds the social executor with details so that this latter

updates the SNsws for the benefit of the social composer. These details include

(i) which Web services failed, (ii) which Web services replaced them, (iii) how the

replacing Web services performed, and (iv) how the Web services that are already

in compositions reacted to the replacing Web services. Out of these details, the

social monitor does more than a simple monitoring but puts forward different

solutions for the social composer like assessing Web services performance.

The aforementioned social components are supported by four types social net-

works: recommendation [22], collaboration, competition, and substitution [13]. The

former network (SNc) is developed to support consumers develop composite Web

services. This network suggests Web services according to the current status of the

composition process. The Recommendation Confidence (RC) as discussed in [22]

is defined in Eq. 19.1.

RC(wsk, wsl) =

n
∑

j= 1

NCv j
(wsk, wsl) ×Fi t (v j , wsl) ×SP(vi , v j) (19.1)

19 Realizing an Ecosystem of Social Web Services 467

where NCv j (wsk, wsl) represents how many times a user v j used Web service wsl

following the use of Web service wsk in compositions, Fi t (v j , sl) quantifies the

expertise of user v j in using service wsl , and SP(vi , v j) defines vi ’s social proximity

to v j in the recommendation network.

The collaboration, competition, and substitution social networks (SNsws) are built

to support the development of composite Web services. They are established based

on the functionality that Web services offer to the external community. Different

techniques permit assessing either the similarity or the complementarity of Web

services’ functionalities, but this is outside this chapter’s scope. Interested readers

are referred to [5, 23]. For illustration purposes the competition social network SNsws

is analyzed. Since this network involves social Web services that act on behalf of Web

services with similar functionalities, they are all in competition against each other and

hence, all connected to each other through bidirectional edges. To evaluate the weight

of a competition edge, which we refer to as Competition Level (LComp, Eq. 19.2)

between two social Web services (swsi , sws j), we use the Functionality Similarity

Level (LFS) to compare the functionalities of their respective Web services (wsi , ws j)

and Non-Functionality Similarity Level (LNFS) to compare the wsi ’s and ws j ’s non-

functional properties (e.g., reliability level and response time). We assume that the

non-functional properties of Web services are defined with the same taxonomy.

LComp(swsi , sws j) = LFS(wsi , ws j) × (1 − LNFS(wsi , ws j)) (19.2)

where

• LFS(wsi , ws j) corresponds to the similarity level between the respective function-

alities of wsi and ws j .

• LNFS(wsi , ws j) = ω1×(|P(wsi,1)−P(ws j,1)|)+· · ·+ωn×(|P(wsi,n)−P(ws j,n)|)

with P(wsi,k) is the value of the kth non-functional property of the i th Web ser-

vice (assumed to be between 0 and 1), ωk is a weighting factor representing the

importance of a non-functional property, and
∑n

k=1 ωk = 1.

As per Eq. 19.2 the more the competition level is close to one, the closer swsi is

to sws j . As a result, wsi threatens the competitiveness capacity of ws j . Only one

Web service can be selected at a time to complete a task in a composition.

To illustrate how the composer, executor, and monitor components operate so

that the interleaving of social networks of consumers and of Web services hap-

pens (Fig. 19.5), we suggest the following scenario. A business woman who has

a stop over in a city on her way back from a business trip, decides to visit some

museums among other sightseeing activities. She logs into a Web site and invokes

museumVisitWS submitting the museums that she is interested in and her budget.

Different cases are listed hereafter to illustrate the role of the composer, executor,

and monitor components.

1. Prior to executing museumVisitWS, the social composer consults the business-

man’s social networks of consumers. It finds out that some colleagues at work

visited the same city in the past and recommend riding taxis during this time of

the year due to heavy rains falling sometimes unexpectedly.

468 Z. Maamar et al.

Fig. 19.5 The system frontend

2. To identify a Web service for taxi booking, the social composer consults

museumVisitWS’s social networks of social Web services to find out that

museumVisitWS has frequently and successfully collaborated with

taxiBookingWS, which is subsequently selected to arrange taxi booking.

Another Web service called translatorServiceWS is also advised by the

social composer as reported in the social networks of museumVisitWS, but this

time the businessman declines the advice since she is familiar with the language

spoken in the city.

3. When the selection of taxiBookingWS and museumVisitWS is complete,

the social executor invokes both while keeping an eye on all the Web services

that were added to the composition through the social networks of consumers and

of social Web services. The objective is to reflect the performance of these Web

services on the different networks.

The aforementioned cases offer a glimpse of the advantages of each type of social

networks brought to the cycle of Web services composition, execution, and monitor-

ing. It is for sure that some of these cases can be handled by screening registries, but

Web services’ previous experiences and users’ advices are not captured and hence,

overlooked during this screening.

19 Realizing an Ecosystem of Social Web Services 469

19.3.4 Open Issues

19.3.4.1 Interactions (4) and (5)

Providers of and consumers of Web services should be given the opportunity of

interacting directly with the providers of consumers and of social Web services,

respectively. Providers of Web services could develop and offer new Web services

based on consumers’ needs and feedbacks on existing Web services. These details

can be made available through the social networks of consumers subject to guar-

anteeing consumers’ privacy. The same applies to consumers who could express

their requirements and expectations in advance to providers of social networks of

social Web services so these latter offer better services like showing the collaborat-

ing Web services using graphs, for example. The questions that interaction (4) raise

include the following: do providers of Web services have to sign up in social net-

works of consumers, how is consumers’ privacy maintained, how are these providers

held accountable for their actions, and how are consumers notified about providers’

requests? Interaction (5) raises almost the same set of questions.

19.3.4.2 Payment and Pricing

To create a sustainable social Web services ecosystem, all actors should interact,

reuse Web services, and make them available for others. In addition to these basic

actions, the ecosystem should provide incentives like financial for providers to offer

a large spectrum of Web services for a variety of domains (e.g., business, education,

and entertainment). Accessing SNsws requires mechanisms for electronic payments

and online transactions.

Some factors that help encourage or discourage demands of Web services and

regulate their usage are pricing strategies and pricing models. This regulation involves

to collect and analyze “service” metrics for purposes such as billing and auditing. It

requires that “service” consumption be measured and the charging information be

communicated between appropriate actors. To obtain viable business models, non-

standard pricing mechanisms have to be taken into consideration. Most common

pricing models are based on fixed prices. For example, Günther et al. discuss the

challenges associated with pricing Web services [10]. They argue that the usage-

based pricing model, combined with an option to switch to a flat subscription, is a

suitable strategy to penetrate the market of Web services. Bitran et al. advocate that

dynamic price models are particularly useful for short selling horizons and demands

that are both stochastic and price sensitive [9]. Airline companies and hotels are

good examples where dynamic pricing strategies are key drivers for increasing their

revenues.

In recent years, a good number payment systems are available for online trans-

actions, such as the traditional credit card but, also, new payment systems such as

Google Checkout and Paypal Check-out, which are mainly geared toward selling

470 Z. Maamar et al.

goods. These systems can be easily adapted to support selling Web services online.

Companies that enable financial transactions, a.k.a Payment Service Providers (PSP),

are viewed as important actors in the social Web services ecosystem. They do not

only allow customers of Web services to transfer funds from their traditional bank

accounts into providers’ accounts but they establish trust relationships among all

actors to collaborate within the social Web services ecosystem.

Interactions among consumers, social networks, Web services and providers, and

how they are related to payment mechanisms have the following characteristics.

	 Applying payment mechanisms, pricing models and strategies to social Web ser-

vice ecosystems is particularly interesting since it becomes possible to collect

valuable information about Web services, social networks, and actors and process

them in real time. As a result, providers can act and react dynamically to changes

by adjusting any variable under control, specifically prices.

	 Incorporating consumers in the social Web services ecosystem offers them the

ability to inquiry prices and keep track of the evolution of the selling process.

	 Supporting different payment service providers and pricing models need to be

reflected on the infrastructure. Existing service registries needs for example to be

extended to support the social Web services ecosystem by including more complex

transactions such as negotiations and auctioning.

Emerging potential applications for pricing and payment can be useful for the

social Web service ecosystem. Although different in many respects, these appli-

cations have to support all actors and deal with the complexity that comes from

perishability of Web services and social networks, short selling horizons, and price

sensitivity and unpredictable demand of consuming Web services.

19.4 Conclusion

The social Web services ecosystem initiative as a novel approach for fostering devel-

opment, discovery and, usage of Web services provides a sustainable environment

by which all actors share and recommend trustworthy Web services. This chapter

discussed the realization of an ecosystem of social Web services. This realization

identified the necessary actors upon which this ecosystem is built namely providers

of Web services who correspond to persons or organizations offering Web services

to other persons and organizations, consumers of Web services who correspond to

persons or organizations requiring Web services to satisfy their requests, providers

of social networks of social Web services who offer means that permit to connect

Web services together according to specific schemas like collaboration and substi-

tution, and last but not least providers of social networks of consumers who offer

means permitting to connect consumers of Web services together according to spe-

cific schemas like recommendation. Different types of interactions occurred between

all these actors such as making Web services sign up in a social network of social

Web services, supporting users seek advices from other members in a social network

19 Realizing an Ecosystem of Social Web Services 471

of consumers, and combining social networks of consumers and of Web services to

achieve users’ requests. Some interactions between these actors are already investi-

gated from different perspectives for instance making Web services sign up in a social

network of social Web services requires the compliance of these Web services with

this social network’s internal regulations to avoid privacy issues. This compliance

is being handled through commitments. The rest of interactions that correspond to

providers of and consumers of Web services interacting directly with the providers

of social networks of social Web services and of consumers are still pending and

hence, further investigation is required.

Acknowledgments The authors acknowledge the contributions of Khouloud Boukadi (Sfax Uni-
versity, Tunisia), Salahdine Hachimi (Claude Bernard Lyon 1 University, France), and Lina Yao
(The University of Adelaide, Adelaide, Australia) to the social Web services research initiative.

References

1. J. Al-Sharawneh and M.-A. Williams. A Social Network Approach in Semantic Web Services
Selection using Follow the Leader Behavior. In Proceedings of the 13th Enterprise Distributed

Object Computing Conference Workshops (EDOCW’2009), Auckland, New Zealand, 2009.
2. B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv Environment for Web Services

Composition. IEEE Internet Computing, 7(1), January/February 2003.
3. R. W. Christopherson. Elemental Geosystems. Prentice Hall, 1997.
4. D. Dasgupta and R. Dasgupta. Social Networks using Web 2.0, Part 2: Social Network as a Ser-

vice (SNaaS). Technical report, IBM, developerWorks, http://www.ibm.com/developerworks/
webservices/library/ws-socialpart2/index.html?ca=drs, 2010.

5. B. Di Martino. Semantic Web Services Discovery based on Structural Ontology Matching.
International Journal of Web and Grid Services, 5(1), 2009.

6. H. Dong, F. K. Hussain, and E. Chang. A Human-Centered Semantic Service Platform for the
Digital Ecosystems Environment. World Wide Web, 13(1-2), 2010.

7. N. Faci, Z. Maamar, and P. Ghodous. Which Social Networks Should Web Services Sign-
Up In? In AAAI Spring Symposium on Intelligent Web Services Meet Social Computing

(IWEBSS’2012), Palo Alto, USA, 2012.
8. N. Fornara and M. Colombetti. Operational Specification of a Commitment-based Agent

Communication Language. In Proceedings of the First International Joint Conference on

Autonomous Agents & Multiagent Systems (AAMAS’2002), Bologna, Italy, 2002.
9. Bitran G. and R. Caldentey. An Overview of Pricing Models for Revenue Management. Tech-

nical report, MIT Sloan Working Paper No. 4433-03, December 2002.
10. O. Günther, G. Tamm, and F. Leymann. Pricing Web Services. International Journal of Business

Process Integration and Management, 2(2), 2007.
11. S. Li and Z. Chen. Social Services Computing: Concepts, Research Challenges, and Directions.

In Proceedings of the 2010 IEEE/ACM International Conference on Green Computing and

Communications (GreenCom’2010) & 2010 IEEE/ACM International Conference on Cyber,

Physical, and Social Computing (CPSCom’2010), Hangzhou, China, 2010.
12. Z. Maamar, F. Faci, L. Krug Wives, P. Bispo dos Santos, Y. Badr, and J. Palazzo Moreira de

Oliveira. Using Social Networks for Web Services Discovery. IEEE Internet Computing, 15(4),
2011.

13. Z. Maamar, N. Faci, Y. Badr, L. Krug Wives, P. Bispo dos Santos, D. Benslimane, and J. Palazzo
Moreira de Oliveira. Towards a Framework for Weaving Social Networks Principles into Web
Services Discovery. In Proceedings of the International Conference on Web Intelligence, Min-

ing, and Seantics (WIMS’2011), Sogndal, Norway, 2011.

http://www.ibm.com/developerworks/webservices/library/ws-socialpart2/index.html?ca=drs
http://www.ibm.com/developerworks/webservices/library/ws-socialpart2/index.html?ca=drs

472 Z. Maamar et al.

14. Z. Maamar, N. Faci, L. Krug Wives, H. Yahyaoui, and H. Hacid. Towards a Method for Engi-
neering Social Web Services. In Proceedings of the IFIP WG8.1 Working Conference on Method

Engineering (ME’2011), Paris, France, 2011.
15. Z. Maamar, N. Faci, A. Loo, and P. Ghodous. Towards a Quality of Social Network (QoSN)

Model in the Context of Social Web Services. In Proceedings of the 3rd International Confer-

ence on Exploring Services Science (IESS’2012), Geneva, Switzerland, 2012.
16. Z. Maamar, N. Faci, M. Luck, and S. Hachimi. Specifying and Implementing Social Web

Services Operation using Commitments. In Proceedings of the 27th Annual ACM Symposium

on Applied Computing (SAC’2012), Riva del Garda, Trento, Italy, 2012.
17. Z. Maamar, N. Faci, Q. Z. Sheng, and L. Yao. Towards a User-Centric Social Approach to

Web Services Composition, Execution, and Monitoring. Technical report, Zayed University
Working Paper, January 2012.

18. Z. Maamar, H. Hacid, and M. N. Huhns. Why Web Services Need Social Networks. IEEE

Internet Computing, 15(2), March/April 2011.
19. Z. Maamar, S. Kouadri Mostéfaoui, and H. Yahyaoui. Towards an Agent-based and Context-

oriented Approach for Web Services Composition. IEEE Transactions on Knowledge and Data

Engineering, 17(5), May 2005.
20. Z. Maamar, L. Krug Wives, Y. Badr, S. Elnaffar, K. Boukadi, and N. Faci.LinkedWS: A Novel

Web Services Discovery Model Based on the Metaphor of “Social Networks”. Simulation

Modelling Practice and Theory, Elsevier Science Publisher, 19(10), 2011.
21. Z. Maamar, H. Yahyaoui, E. Lim, and P. Thiran. Social Engineering of Communities of Web

Services. In Proceedings of the 11th Annual International Symposium on Applications and the

Internet (SAINT’2011), Munich, Germany, 2011.
22. A. Maaradji, H. Hacid, J. Daigremont, N. Crespi. Towards a Social Network Based Approach

for Services Composition. In Proceedings of the 2010 IEEE International Conference on Com-

munications (ICC’2010), 2010.
23. L. Min, S. Weiming, H. Qi, and Y. Junwei. A Weighted Ontology-based Semantic Similarity

Algorithm for Web Services. Expert Systems with Applications, 36(10), December 2009.
24. S. Modgil, N. Faci, F. Rech Meneguzzi, N. Oren, S. Miles, and M. Luck. A Framework for

Monitoring Agent-based Normative Systems. In Proceedings of the 8th International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS’2009), Budapest, Hungary,
2009.

25. M. Nam Ko, G. P. Cheek, M. Shehab, and R. Sandhu. Social-Networks Connect Services. IEEE

Computer, 43(8), August 2010.
26. C. Riedl, T. Böhmann, J. M. Leimeister, and H. Krcmar. A Framework for Analysing Ser-

vice Ecosystem Capabilities to Innovate. In Proceedings of the 17th European Conference on

Information Systems (ECIS’2009), Verona, Italy, 2009.
27. G. Scheithauer, S. Augustin, and G. Wirtz. Describing Services for Service Ecosystems. In

Proceedings of the ICSOC 2008 Workshops held in conjunction with the 6th International

Conference on Service Oriented Computing (ICSOC’2008), Sydney, Australia, 2009.
28. J. Schulz-Hofen. Web Service Middleware - An Infrastructure For Near Future Real Life Web

Service Ecosystems. In Proceedings of the IEEE International Conference on Service-Oriented

Computing and Applications (SOCA’2007), Newport Beach, California, USA, 2007.
29. Q. Z. Sheng, J. Yu, Z. Maamar, W. Jiang, and X. Li. Compatibility Checking of Heterogeneous

Web Service Policies Using VDM++. In Proceedings of the IEEE Workshop on Software and

Services Maintenance and Management (SSMM’2009) held in conjunction the 2009 IEEE

Congress on Services, Part I (SERVICES I’2009), 2009.
30. M. P. Singh, A. K. Chopra, and N. Desai. Commitment-Based Service-Oriented Architecture.

Computer, 42(11), November 2009.
31. C. Wu and E. Chang. A Conceptual Architecture of Distributed Web Services for Service

Ecosystems. In Proceedings of the 18th International Conference on Computer Applications

in Industry and Engineering (CAINE’2005), Hawaii, USA, 2005.
32. Q. Wu, A. Iyengar, R. Subramanian, I. Rouvellou, I. Silva-Lepe, and T. Mikalsen. Combining

Quality of Service and Social Information for Ranking Services. In Proceedings of ServiceWave

19 Realizing an Ecosystem of Social Web Services 473

2009 Workshops held in conjunction with the 7th International Conference on Service Service-

Oriented Computing (ICSOC’2009), Stockholm, Sweden, 2009.
33. X. Xie, B. Du, and Z. Zhang. Semantic Service Composition based on Social Network. In

Proceedings of the 17th International World Wide Web Conference (WWW’2008), Beijing,
China, 2008.

Chapter 20

ubiREST: A RESTful Service-Oriented
Middleware for Ubiquitous Networking

Mauro Caporuscio, Marco Funaro, Carlo Ghezzi and Valérie Issarny

Abstract The computing and networking capabilities of today’s wireless mobile

devices allow for seamlessly-networked, ubiquitous services, which may be dynam-

ically composed at run-time to accomplish complex tasks. This vision, however,

remains challenged by the inherent mobility of such devices, which makes services

highly volatile. These issues call for a service-oriented middleware that should (i) deal

with the run-time growth of the application in terms of involved services (flexibility),

(ii) accommodate heterogeneous and unforeseen services into the running application

(genericity), and (iii) discover new services at run time and rearrange the application

accordingly (dynamism). This chapter discusses the design and implementation of

ubiREST, a service-oriented middleware that leverages REST principles to effec-

tively enable the ubiquitous networking of Services. ubiREST specifically defines a

layered communication middleware supporting RESTful Services while exploiting

nowadays ubiquitous connectivity.

M. Caporuscio (B) · M. Funaro · C. Ghezzi

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza L. da Vinci 32,

20133 Milan, Italy

e-mail: mauro.caporuscio@polimi.it

M. Funaro

e-mail: funaro@elet.polimi.it

C. Ghezzi

e-mail: carlo.ghezzi@polimi.it

V. Issarny

INRIA Paris-Rocquencourt, Domaine de Voluceau, Le Chesnay 78153, France

e-mail: valerie.issarny@inria.fr

A. Bouguettaya et al. (eds.), Advanced Web Services, 475

DOI: 10.1007/978-1-4614-7535-4_20,

© Springer Science+Business Media New York 2014

476 M. Caporuscio et al.

20.1 Introduction

With network connectivity being embedded in most computing devices, any device

may seamlessly consume, but also provide, software applications over the network.

Service-Oriented Computing (SOC) is a natural design abstraction to deal with ubiq-

uitous networking environments [3]. Applications may conveniently be abstracted as

autonomous loosely-coupled services, which may be composed to accomplish com-

plex tasks. A service composition forms into a network-based application, which

relies on the explicit distribution of services interacting by means of message pass-

ing. Network-based applications differ from distributed applications because the

involved networked resources are independent and autonomous, rather than viewed

as integral part of a conceptually monolithic system [47].

Issues related to the design/development of network-based systems have been

largely discussed in literature, and several middleware solutions, providing different

types of resource’s abstraction (e.g., remote procedure, object, component, service),

have been proposed to deal with them. However, such middleware solutions rely on

the assumption that the underlying network is stable. Whereas, concerning ubiqui-

tous networking, such assumption is no longer valid due to the intrinsic dynamism

and resource mobility (both physical and logical) [42]. Indeed, ubiquitous applica-

tions emerge from the spontaneous aggregation of the resources available (within the

environment) at a given time, and thus are characterized by a highly dynamic soft-

ware architecture where both the resources that are part of the architecture and their

interconnections may change dynamically, while applications are running. In these

settings, two main problems must be faced: (i) achieving the ubiquitous networking

environment on top of heterogeneous communication media, and (ii) providing a

flexible architectural style, which allows for designing and developing applications

resilient to such an extreme variability.

In ubiquitous networking environments applications run on devices (e.g., tablets

and smartphones), which are usually interconnected through one or more heteroge-

neous wireless links, which are characterized by lower bandwidth, higher error rates,

and frequent disconnections. Hence, key feature of ubiquitous networking environ-

ments is the diversity of radio links available on portable devices, which may be

exploited towards ubiquitous connectivity. While computationally suitable for ubiq-

uitous applications, such devices usually have serious issues with battery life when the

computational burden grows. Thus, the middleware should be able to energetically

optimize the communication through scheduling and handover across different radio

links [41, 44]. This requires services to be network-agnostic [45], while the underly-

ing middleware is in charge of exchanging messages over the network links that best

matches Quality of Service (QoS) requirements [10], and further ensuring service

continuity through vertical handover (handover between different protocols) [21].

In this setting, a primary requirement for supporting service-oriented middleware is

to provide a comprehensive networking abstraction that allows applications to be

unaware of the actual underlying networks while exploiting their diversities in terms

of both functional and extra-functional properties.

20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking 477

As for the architectural layer, applications should support adaptive and evolutionary

situation-aware behaviors. Adaptation refers to the ability to react to environmental

changes to keep satisfying the requirements, whereas evolution refers to the ability

of satisfying new or different requirements [6]. In order to be self-adaptable and

easily evolvable, applications should exploit design models able to: (i) deal with the

run-time growth of the application in terms of involved resources (flexibility), (ii)

accommodate heterogeneous and unforeseen functionalities into the running appli-

cation (genericity), and (iii) discover new functionalities at run time and rearrange

the application accordingly (dynamism).

This chapter presents the ubiREST middleware, which enhances the ubiSOAP

approach [9] by providing RESTful access to services. Specifically, ubiREST adopts

the P-REST architectural style [7], a refinement of the REST style [14] that we have

introduced to fulfill the aforementioned requirements, namely flexibility, genericity,

and dynamism.

The chapter is organized as follows: Sect. 20.2 summarizes related work.

Section 20.3 discusses the design rationale for ubiREST, whereas Sects. 20.4, 20.5,

and 20.6 detail the core functionalities of ubiREST, namely network-agnostic con-

nectivity, ubiREST communication, and ubiREST programming model, respectively.

Section 20.7 presents an example showing how to develop a simple RESTfull ubiq-

uitous application. Finally, Sect. 20.8 concludes the chapter, and sketches our per-

spectives for future work.

20.2 Related Work

Work related to ubiREST ranges different research areas from multi-radio networks

integration to ubiquitous computing and service technologies.

ubiREST aims at providing a communication layer enabling RESTful services

within ubiquitous networking environments. To effectively enable mobile RESTful

services, ubiREST comprehensively exploits the ubiquitous networking environ-

ment by dealing with multi-radio networking on the mobile device. Concerning this

issue, the Third Generation Partnership Project (3GPP) defines a standard layered

architectures (decomposing into the network, control and service layers) enabling

service-oriented applications in the B3G network [2]. In that direction, recent pro-

posal that aims at interconnecting various networks at once, has been published by

the ITU under the name of IMT-Advanced (also known as 4G) [22]. Main goal

of IMT-Advanced is to achieve “Always Best Connected” property by embedding

broadband in all types of consumer devices. Interactions among networks include

horizontal (intra network) and vertical (inter network) handover for service con-

tinuity, and encompass complex functions such as billing and QoS. This de-facto

eliminates the need for the user to know anything about the network (e.g., topology,

radio). However, both systems require the network operator to deploy new entities

within the network that allow the native infrastructures to work together. Contrary

to this closed, network-controlled approach, ubiREST provides a set of abstractions

478 M. Caporuscio et al.

enabling clients to autonomously adapt to the available networks, and to benefit from

networks characteristics. This requires neither to modify the network infrastructure

nor to establish contracts with a predetermined network operator.

Concerning ubiquitous computing at large, the literature proposes different mid-

dleware classes, each addressing a specific issue: (i) Context-aware middleware [13]

deal with leveraging context information to provide user-centric computation, (ii)

Mobile computing middleware [34] aim at providing communication and coordina-

tion of distributed mobile-components, (iii) Adaptive middleware [35] enable soft-

ware to adapt its structure and behavior dynamically in response to changes in its

execution environment. However, each middleware provides an ad hoc approach,

whereas standards-compliant solutions are still missing.

Moreover, many middleware proposals aim at supporting the development of ubiq-

uitous applications through the provision of different abstractions—e.g., objects,

components, and services. The Obje framework [12] is an object-oriented frame-

work where networked devices appear to applications as objects that implement spe-

cific “meta-interfaces”. Such “meta-interfaces” are further used by applications to

exchange the behaviors needed to achieve compatibility at run time. The methods of

such interfaces make use and return objects that themselves implement well-known

interfaces. Hence, the loading of objects is made transparent to user applications,

which simply see them as new implementations of already-known interfaces. The

framework described in [20], addresses the distribution and deployment of com-

ponents throughout the ubiquitous networking environment. It provides develop-

ers with an architecture description language to specify constrains on components,

which can be considered at deploy time to find a distribution scheme satisfying

all constraints. Service-Oriented Computing (SOC) provides natural design abstrac-

tions to deal with ubiquitous environments. Networked applications are abstracted

as autonomous loosely-coupled services, which may be dynamically combined to

accomplish complex tasks [3]. ReMMoC [15] and ubiSOAP [9] provide middleware

functionalities supporting service provision over ubiquitous networks.

In particular, focusing on Service-Oriented Computing, the widespread adoption

of WS technologies combined with mobile networking has led to investigating the

definition of architectures dedicated to mobile Web services [19, 23]. Overall, exist-

ing efforts towards enabling mobile Web services platforms address the development

of service-oriented applications on mobile, wireless devices that act mostly as Web

service clients. However, todays device technologies enable mobile devices to act as

Web services providers. To this extent, many optimizations for SOAP have been pro-

posed to improve memory and CPU usage [49], as well as to improve the bandwidth

requirement of SOAP communication [43, 51, 52].

The idea of exploiting RESTful principles beyond the Wed is not new, and some

research projects have been investigating how to apply the REST architectural style to

different fields—e.g., ubiquitous computing and web of things. For example, [26, 33]

leverage RESTfulness in the context of Ambient Computing, whereas [16, 18] exploit

REST principles to achieve the Internet of Things. However, these approaches rely

on Web standards to achieve interoperation, and therefore they suffer from the

Web’s limitations, e.g., lack of mobility management, point-to-point communica-

20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking 479

tion, and client-server interaction style. To this end, the XWeb [37] project presents

a web-oriented architecture relying on a new transport protocol, called XTP, which

provides mechanisms for finding, browsing, and modifying information.

Furthermore, in [4] RESTfulness has been exploited to achieve scalability, by

means of replication of resources, in the context of Web Services. In particular, the

REactor (RESTful Actor) framework provides a RESTful Web service interface and

a composable architecture which is capable of delivering scalability and high per-

formance independently from the underlying deployment infrastructure. Moreover,

due to its scalability and the flexibility, REST architectural style has been employed

also for monitoring and controlling data- and computationally-intensive tasks, such

as in the context of Grid [30].

However, even thought REST has been gaining wide popularity as well suited

solution for a large class of problems, to the best of our knowledge, ubiREST is the

first attempt to design and develop a resource-oriented middleware, which specifi-

cally supports the development of ubiquitous RESTful services by addressing all the

above aspects together.

20.3 ubiREST Design Rationale

ubiREST has been conceived and designed to provide RESTful access to services

over ubiquitous-networking environments. To this extent, ubiREST aims at effec-

tively exploiting all the diverse network technologies at once to create an integrated

multi-radio networking environment, hence offering network-agnostic connectiv-

ity to services. On the other hand, ubiREST aims to provide proper programming

abstractions enabling service-oriented applications to adapt and evolve at run time.

Achieving the network-agnostic connectivity requires addressing a number of crit-

ical issues such as network availability, user and application QoS requirements and

vertical handover. Vertical handover [50] is particularly important with respect to the

service continuity requirement. Indeed, when a host changes its point of attachment

(vertical handover between two networks), the IP address is modified accordingly in

order to route packets to the new network. Hence, since the IP address is the base

of any Internet transmission [36], all the ongoing connections break. Moreover, as

devices can bind various networks at the same time, two interacting parties might

communicate through multiple paths. Hence, choosing the best connection to serve

a given interaction is a key issue to deal with in ubiquitous networks, as this signif-

icantly affects the QoS at large (e.g., availability, performance with respect to both

resource consumption and response time, security) [5].

Pervasive applications are composed as composition of (heterogeneous) inde-

pendent services, forming into a network-based application. Since mobility makes

services available/unavailable suddenly, ubiquitous applications emerge de-facto

from the spontaneous aggregation of the services available (within the environment)

at a given time. As result, ubiquitous applications are characterized by a highly

dynamic software architecture where both the services that are part of the archi-

480 M. Caporuscio et al.

tecture and their interconnections may change dynamically, while applications are

running.

Lookup
DNS

Lookup
DNS

Lookup
DNS

point-to-point

3

Resource2

2

Resource3

3

observe

Resource1

1

point-to-multipoint a

obse
rv

e

a

notify

b

c

Fig. 20.1 P-REST architectural style

Issues related to the design/development of ubiquitous systems have been

largely discussed in literature, and many middleware, providing different types of

abstraction—e.g., objects [12], components [20], and services [9]—have been pro-

posed to deal with them. Departing from these approaches, ubiREST tackles the

problem by adhering to REST principles [14]: addressability, statelessness, con-

nectedness, and uniformity. However, due to the inherent complexity of ubiquitous

environments, the REST architectural style cannot be directly applied to them. Hence,

we enhanced it by creating the P-REST (Pervasive REST) architectural style, which

refines REST to specifically address ubiquitous networking environments, while

keeping REST principles unaltered.

P-REST (see Fig. 20.1) promotes the use of Resource as first-class object that plays

the role of “prosumer” [40], i.e., fulfilling both roles of producer and consumer. To

support coordination among resources, P-REST extends REST with a set of new

facilities: (i) a Lookup service enabling the run-time discovery of new resources, (ii)

a distributed Domain Name System (DNS) service mapping resource URIs to actual

location in case of mobility, and (iii) a coordination model based on the Observer

pattern [25] allowing a resource to express its interest in a given resource and to be

notified whenever changes occur in it.

Following the P-REST style, resources interact with each other by exchanging

their representations. Referring to Fig. 20.1, both Resource1 and Resource2 observe

Resource3 (messages 1). When a change occurs in Resource3, it notifies (message 2)

the observer resources. Upon receipt of such notification, Resource1 issues a request

for the Resource3 and obtains as a result the representation ρ3 (message 3). Note

that, while observe/notify interactions take place through the point-to-multipoint

connector (represented as a cube), REST operations exploit point-to-point connector

(represented as a cylinder). All the resources exploit both the lookup operation to

20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking 481

discover the needed resources, and the DNS service to translate URIs into physical

addresses.

P-RESTful applications are built following the P-REST conceptual model [7],

which defines: (1) a environment as a resource container providing infrastructural

facilities (i.e., lookup and observe/notify); (2) a resource as a first-class object that,

according to the REST uniformity [14], implements a fixed set of well-defined oper-

ations (i.e., PUT, DELETE, POST, GET, and INSPECT); (3) a semantics-aware

description specifying both functional and non-functional properties of resources

with respect to given ontologies.

Communication

Layer

Programming

Model

Bluetooth UMTS WLAN LAN

 Container

Move/Create Observe/Notify Lookup

Resource

Application

Access

Multi-radio networking

ubiREST Point-to-Point transport

Multi-network overlay

ubiREST Group transport

Network-agnostic

connectivity

Fig. 20.2 ubiREST software architecture

Resources interact with each other by exchanging their representations, which

capture the current state of a resource. Furthermore, every Resource is bound to at

least one concrete URI (cURI). P-REST enhances the concept of URI by introducing

abstract URIs (aURI). An aURI is a URI identifying a group of resources. Indeed, a

cURI allows for point-to-point communication, whereas an aURI allows for group

communication. Resources can be used as building-blocks for composing complex

functionalities. A composition is a resource that can, in turn, be used as a building-

block by another composition. Resources involved in a composition are handled by

means of a composition logic.

20.3.1 Run-Time Support

The ubiREST middleware provides the run-time support for the development of

P-RESTful service-oriented applications by realizing P-REST at the infrastructure

level, and providing developers with effective P-RESTful abstractions. Note that

ubiREST cannot enforce REST principles at the application level, which is totally

entrusted to the designer.

482 M. Caporuscio et al.

Referring to Fig. 20.2, the ubiREST architecture exploits a three-layer design

where each layer deals with a specific issue.

Network-agnostic connectivity—Providing network-agnostic connectivity within

ubiquitous networks relates to abstracting the rich and heterogeneous networking

environment for reasoning about the networks characteristics and seamlessly manage

them. To this extent, ubiREST goal is to support: (i) network abstractions to provide

connectivity regardless of the actual underlying network technology, (ii) the selection

of the best possible network matching the QoS needs expressed by the end user,

and (iii) the unique identification and addressing of users applications within the

networking environment irrespectively of their physical location.

Communication layer—To deal with the inherent instability of ubiquitous network-

ing environments, ubiREST arranges devices in an Multi-network overlay built on

top of Network-agnostic connectivity layer. Such an overlay is then exploited to pro-

vide two basic communication facilities, namely point-to-point and group transport.

Point-to-point transport grants a given node direct access to a remote node, whereas

group transport allows a given node to interact with many different nodes at the

same time. Furthermore, the ubiREST communication layer provides facilities for

managing code mobility [42].

Programming model—ubiREST provides the programming abstractions to imple-

ment P-RESTful applications by leveraging the functional programming features of

the Scala language [48] and the Actor Model [1]. In particular, ubiREST defines

two main abstractions and a set of operations to be performed on them. Resource

represents the computation unit, whereas Container handles both the life-cycle and

the provision of resources. The set of operations allowed on resources defines the

message-based ubiREST interaction protocol and includes: (i) Access, which gathers

the set of messages to access and manipulate resources, (ii) Observe/Notify, which

allows resources to declare interest in a given resource and to be notified when-

ever changes occur, (iii) Create, which provides the mechanism for creating a new

resource at a given location, and Move, which provides the mechanism to relocate an

existing resource to a new location, and (iv) Lookup, which allows for discovering

new resources on the basis of a given semantics-aware description.

ubiREST fulfills the set of requirements introduced above. Flexibility is achieved

by exploiting the Actor Model, which in turn relies on the ubiREST communication to

provide message-passing interaction among actors. Genericity arises from the unifor-

mity principle exploited in conjunction with both code mobility and functional pro-

gramming capabilities (e.g., high-order functions). Dynamism is provided by means

of semantic lookup, uniformity and resource composition. The following sections

clarify these aspects, and detail network-agnostic connectivity (Sect. 20.4), ubiREST

communication (Sect. 20.5), and ubiREST programming model (Sect. 20.6), respec-

tively.

20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking 483

20.4 Network-Agnostic Connectivity

In this section, for the sake of self-containment, we report an excerpt of the network-

agnostic connectivity layer implementation [9].

The network-agnostic connectivity layer offers the core functionalities to effec-

tively manage the underlying multi-radio environment through: (i) a network-

agnostic addressing scheme together with (ii) QoS-aware network link selection

and (iii) base unicast and multicast communication schemes.

Such Multi-Radio Networking (MRN) functionality are provided by means of two

modules (see Fig. 20.3): (i) a Multi-Radio Networking Daemon (MRN-Daemon) that

implements the provided features, and (ii) a Multi-Radio Networking API (MRN-

Api) that allows for an easy and transparent access to the functionalities offered by

MRN-Daemon. Furthermore, a ubiLET is any entity (e.g., application) that exploits

the network-agnostic connectivity layer by accessing the functionalities provided by

MRN-Daemon through MRN-Api.

Bluetooth UMTS GPRS WLAN LAN

Network-agnostic

connectivity

ubiLET

MRN-Api

MRN-Daemon

Multi-radio networking

Fig. 20.3 Network-agnostic connectivity layer software architecture

In particular, MRN-Daemon is in charge of managing the entire communication

between two devices through the underlying radio networks. It runs on each device

and is accessible by many applications at the same time. It is also in charge of

managing the ubiREST addressing scheme as well as its mapping to the actual

set of IP addresses. On the other hand, MRN-Api is a component, embedded in

the application, used to interact with the MRN-Daemon. It offers a set of high-

level API allowing for an easy and transparent access to the services offered by he

MRN-Daemon. Indeed, in order to communicate with each other, services deployed

on ubiREST-enabled devices must use the functionalities provided by the MRN-

Daemon through the MRN-Api.

Since ubiREST aims at running on resources-scarce platforms (e.g., PDA and

mobile phones), which have limited CPU power, memory, and battery life, to best fit

the resources available on the hosting device, ubiREST provides two different (but

equivalent and fully compatible) implementations of the network-agnostic connec-

tivity layer, namely shared and embedded.

A shared network-agnostic connectivity layer is implemented as a “shared”

instance of MRN-Daemon, which is simultaneously accessed by multiple ubiLETs

484 M. Caporuscio et al.

(through the API provided by MRN-Api). Since all the ubiLETs access the same

instance, possible conflicts can be solved in an automated way (i.e., two ubiLETs

expressing conflictual QoS requirements over the interface activation).

On the other hand, an embedded network-agnostic connectivity layer is imple-

mented by “embedding” the MRN-Daemon into the MRN-Api. In this case, each

ubiLET accesses a different, and standalone, instance of MRN-Daemon. This solu-

tion is lighter than the shared one, and is obviously appropriate when there exists only

one ubiLET per device. In fact, the shared MRN-Daemon interacts with MRN-Api

by means of a TCP socket bound to the loopback interface. This requires for hav-

ing a synchronized thread-pool managing the incoming concurrent requests. It thus

implies both larger memory footprint and computational needs. However, embedded

MRN-Daemons cannot communicate with each other and then, they cannot synchro-

nize to solve possible conflicts.

Network-agnostic addressing—Devices embedding multiple network interfaces

(e.g., WLAN and Bluetooth) may have multiple IP addresses, at least one for each

active interface. Thus, in order to identify uniquely a given ubiLET in the network

we associate it with a Multi-Radio Networking Address (MRN@). The MRN@ of

a ubiLET instance is specifically the application’s Unique ID, which maps into the

actual set of IP addresses (precisely, network_ID⊕ IP addresses) bound to the device

(at a given time) that runs the given instance. Referring to Fig. 20.4, the MRN@

associated to the ubiLET j running on Alice’s device is:

Fig. 20.4 Network-agnostic addressing over Multi-network overlay

MRN@ubiLET j
�→ { neta ⊕ IPa1 , neti ⊕ IPi1 , netn ⊕ IPn1 }

where ∀ j ∈ { 1, 2} , MRN@ubiLET j
is the ID of ubiLET j and, { neta ⊕ IPa1 , neti ⊕

IPi1 , netn ⊕ IPn1 } is the set of network_ID⊕ IP addresses denoting the actual location

20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking 485

of the device.1 Then, upper layers shall use MRN@ as part of their addressing

scheme (e.g., through WS-addressing in the case of Web services), which replaces

the traditional IP-based addressing scheme. MRN@s are automatically generated and

managed by multi-radio networking. Furthermore, multi-radio networking allows for

performing a lookup operation that, starting from an MRN@, returns the set of IP

addresses actually bound to it. The basic operations provided by network-agnostic

connectivity are as follows. First, Registration allows the ubiLET to register within

the network-agnostic connectivity layer and generates the MRN@ that uniquely

identifies it. In particular, the ubiLET (i.e., user application) provides as input an

identifier (locally unique), which is used to generate the MRN@ to be returned.

Then, Lookup allows user applications to retrieve the actual set of IP addresses

related to a given MRN@. If the resolution of MRN@ is not cached or needs to be

updated, a request is multicasted to all the networks currently accessible and, if the

device related to such MRN@ is reached, it will directly reply to the requester by

supplying the actual set of IP addresses.

QoS-aware network link selection—Next to MRN@ addressing, it is crucial to acti-

vate and select the best possible networks (among those available) with respect to

required QoS, which is defined as a set of pairs < QoSattr, QoSvalue >. Attributes are

grouped in two subsets: (i) quantitative attributes that describe the performance pro-

vided by the networks—e.g., bitrate, packet loss transfer delay and signal strength—

and allows for networks ranking, and (ii) qualitative attributes that describe those

characteristics of the network that do not affect the network performance but should

be considered—e.g., power consumption, price, coverage area. Departing from WS-

oriented approaches (e.g., WS-Policy) that are “asymmetric” and they do not allow

service consumers to specify their requirements, ubiREST strives to enable net-

work QoS negotiation by trying to meet both provider and consumer requirements

(expressed in terms of network QoS). To this extent, ubiREST provides two func-

tionality, namely interface activation and network selection. Interface activation

allows the user application to activate the best possible interfaces (among those avail-

able) with respect to the required QoS. In particular, the application submits its QoS

requirement (a set of pairs < QoSattribute, QoSvalue >) to multi-radio networking,

which in turn compares it with the QoS of each available interface (Network-side

QoS and Context). In this case, since the interface is switched off, QoS refers

to the theoretic values of a network interface declared by the manufacturer (e.g.,

GPRS maximum bitrate = 171.2 Kb/s). If the interface satisfies the requirement

posed by the application, within a given approximation expressed in percentage, it

is activated. It is also possible to define priorities upon the various quantitative para-

meters, in order to specify if a given parameter is more important than the others.

On the other hand, network selection is performed during the establishment of the

communication and takes into account the QoS attributes required by the client appli-

cation that is initiating the connection, as well as the networks active on the server

listening for incoming connections, as given by the servers MRN@. If the client and

1 For the sake of simplicity we refer to IP address, but it is actually implemented as IP address and
port number, e.g., 128.131.10.1:90.

486 M. Caporuscio et al.

the server share only one network that satisfies the requirements, it is used to carry

on the interaction. On the other hand, when the two parties share more than one

network, the selection algorithm selects the one that best meets the required QoS.

Multi-radio unicast and multicast—Once defined the MRN@ addressing scheme

and the operations enabling the network link selection, the network-agnostic con-

nectivity layer provides two base communication facilities: synchronous unicast

and asynchronous multicast.2 ubiREST synchronous unicast allows for messaging

communication between two ubiLETs sharing at least one network. Specifically, it

is provided by means of a logical stream channel that is used by the ubiLETs to

read/write the packets belonging to the ongoing communication. Whereas, ubiREST

asynchronous multicast allows for multicast messaging communication within a

group of ubiLETs sharing at least one network. Specifically, it is provided by means

of multicast packets that are sent to all members of a given group.

20.5 ubiREST Communication Layer

Providing communication within ubiquitous networks relates to comprehensively

exploiting the rich, heterogeneous networking environment for message handling.

In particular, ubiREST goal is to support: (1) Mobility so that active connections are

maintained transparently to the application layer despite the mobility of nodes, as long

as a network path exists, (2) efficient messages routing in multi-paths configurations

(i.e., when multiple network paths exist between the consumer and the provider),

(3) both point-to-point and group communications using the same abstractions (i.e.,

MRN@), and (4) multi-network routing so that access to resources in distant networks

is enabled as long as there exists a path bridging the heterogeneous networks between

the consumer and target resource provider.

To meet the above, ubiREST arranges devices in a multi-network overlay, a vir-

tual network of nodes and logical links built on top of existing actual networks [11]

and meant to augment the native network with new services. The ubiREST over-

lay network manages the logical links between nodes (i.e., resources) and enables

message exchange. In particular, ubiREST embeds (i) the protocols that keep the

overlay network connected when the topology of the underlying native network

changes (e.g., as a consequence of mobility), and (ii) the routing algorithms that reg-

ulate the message flow between nodes according to the specific coordination model

used, namely point-to-point communication and group communication. In pervasive

environments, a key requirement for the overlay is the ability to self-organize itself

into a flexible topology, as well as to maintain it. To this extent, ubiREST defines

a custom transport layer that leverages network-agnostic connectivity and provides:

(i) the multi-network overlay in charge of forwarding messages across independent

networks, and (ii) two transports for point-to-point and group communication in

ubiquitous networking.

2 The interested reader is referred to [9] for further details.

20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking 487

Multi-network overlay—Thanks to the ubiREST network-agnostic connectivity

layer, communication among nodes exploits the various network links that the nodes

have in common by selecting the links that provide the required QoS. However, in

some cases, it might also be desirable for nodes to be able to access resources that

are hosted in distant networks to which the requesting node is not directly connected

to (e.g., to provide continuity of service despite node mobility). For example, in

Fig. 20.4, the device of Alice is connected to networks a, i, and n, through its

various network interfaces. Clearly, the device can trivially access resources hosted

in these networks. However, it cannot access resources hosted by Bob’s device that is

located in the distant networks x, y, and z. In fact, the network-agnostic connectivity

layer does not provide neither an overlay IP network nor multi-network routing.

However, relying on the MRN@, together with both unicast and multicast commu-

nication schemes, ubiREST introduces an overlay network that is able to bridge het-

erogeneous networks, thus enhancing overall connectivity. In particular: (i) MRN@

addressing provides a two-layer identification scheme (i.e., network_ID⊕ IP) allow-

ing for uniquely identifying a device irrespectively of the network it belongs to,

and (ii) unicast and multicast communication support allows for MRN@ manage-

ment across the networks. Specifically, nodes that are connected to two (or more)

different networks through their network interfaces can assume the role of bridge

nodes. Bridge nodes quite literally “bridge” between two separate networks, relaying

ubiREST point-to-point and group messages across those networks. Still, we assume

that nodes will not access resources that would require the consecutive traversal of

more than five wireless networks (see [17, 31] for a detailed analysis on wireless

communication) in order to access them. Hence, still referring to Fig. 20.4, Alice

has to route its request through an appropriate bridge node (i.e., bridges A, B and C,

noting that each bridge node is displayed in each network it is part of).

Specifically, bridges are in charge of routing messages within the multi-network

overlay by determining the best route to reach a distant network. To achieve these

tasks, bridges nodes run an instance of OLSR [24] among each other, and exchange

routing messages using the specific asynchronous multicast transport provided by the

network-agnostic connectivity layer. Instead of concrete node addresses, however,

bridges store as destinations the identifiers of the various present networks (i.e.,

network_ID) and as next hop the bridge that needs to be contacted next to eventually

reach the target network. The, whenever a non-bridge node wants to access a resource

outside one of the networks it is itself connected to, it simply routes the request to

any bridge of choice that will then forward the request accordingly.

Point-to-point transport—The ubiREST point-to-point transport is a connection-

oriented transport for supporting resource access. The ubiREST point-to-point

transport: (i) leverages the network-agnostic connectivity layer to send and receive

messages relying on the MRN@ addressing scheme, and (ii) delivers the message

to the appropriate resource. When the cURI of the destination resource is speci-

fied (e.g., mrna://dd3ef7e3-5f50-3800-982d-62095c6e8075/cart), ubiREST selects

point-to-point as transport layer and extracts the MRN@ from the cURI. Note that,

when both the consumer and the provider simultaneously change the complete set

488 M. Caporuscio et al.

of IP addresses associated to their MRN@ (and no direct link exists) the session

will break and the consumer needs to perform a resource discovery to find the same

resource again and reestablish the communication.

Group transport—In ubiquitous networking environments, it is crucial to support

point-to-multipoint interactions since it is central to advanced middleware services

like dynamic discovery [53]. We thus introduce the ubiREST group transport over

multi-network overlay, building upon the asynchronous multicast facilities provided

by network-agnostic connectivity layer. Specifically, the ubiREST group transport

is a connectionless transport for one-way communication between multiple peers

in multi-network configurations. The ubiREST group transport interacts with the

network-agnostic connectivity layer to send multicast messages based on an MRN@

identifying the group (i.e., aURI), and to deliver messages to the registered resources.

20.5.1 Code Mobility

Concerning the genericity requirement, ubiREST is able to accommodate hetero-

geneous and unforeseen functionalities into the running application. Unknown Java

classes can be dynamically deployed in the overlay by leveraging code mobility [42].

ubiREST code mobility mechanism directly relies on the ubiREST communication

facilities, then different coordination mechanisms impose different code mobility

approaches. For point-to-point communication, ubiREST implements an end-to-end

strategy that enables two ubiREST nodes to exchange executable code, whereas for

group communication, ubiREST adopts a hop-by-hop strategy that, starting from the

origin node, spreads the executable code towards multiple destinations.

Fig. 20.5 Sequence diagram for point-to-point code mobility

Independently of the specific strategy, ubiREST implements an ad-hoc classloader

hierarchy to cope with the “missing class” problem. In fact, when sending a message

containing a Java object, such an object is serialized into a byte array and delivered

towards the destination, which in turn deserializes the object before using it. However,

if the object is unknown to the destination (i.e., the destination node does not hold

the class bytecode for the received object), the object cannot be deserialized. To this

extent, ubiREST implements a custom classloader, which is in charge of retrieving

20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking 489

the bytecode for the missing classes, and loading them at run time in the local JVM

to allow for a correct deserialization. The JVM specification [32] allows for creating

a tree-like hierarchy of classloaders to load classes from different sources. When a

classloader in the hierarchy is asked to load a class, it asks its parent classloader to

load it. If the parent classloader cannot find the class, the child classloader then tries

to load it itself. If also the child classloader fails, an exception is thrown. ubiREST

exploits such a feature by defining a custom ubiREST classloader as child of the

standard Java Bootstrap classloader. When loading classes, the ubiREST classloader

delegates its parent classloader (i.e., Bootstrap). If the Bootstrap classloader fails,

then the bytecode is not available within the node and should be retrieved remotely.

Thus, the ubiREST classloader contacts the origin ubiREST node asking for the

missing bytecode. The origin side retrieves the bytecode from its classpath and sends

it back to the requesting node. At this point, the ubiREST classloader holds the

needed bytecode and can load the class and deserialize the incoming object. If other

classes are missing, then such a procedure is iterated until the entire class closure is

retrieved.

ubiREST implements an end-to-end strategy to achieve point-to-point code mobil-

ity among nodes. Referring to Fig. 20.5, let A be an ubiLET sending a message to an

ubiLET B, and let CLa , CLb be the classloader of A and B, respectively. Whenever

B receives a message containing an object of an unknown type from A, an Exception

is thrown, and the control is passed to CLb, which in turn asks for the missing class to

CLa . CLa processes the request, encapsulates the needed bytecode into a message,

and sends it back to B. Once the bytecode is available at CLb, it can be loaded into

the JVM. The whole procedure is recursively applied until the whole closure of the

original class is available on B. The retrieved bytecode is now stored on B and made

available for further instantiations.

As for the group communication, this solution is not applicable. In fact, ubiREST

group communication relies on the underlying Multi-radio multicast where message

sender and receiver are completely decoupled, and do not have any knowledge about

each other. Moreover, applying the end-to-end strategy to group communication

would flood the overlay network with requests for bytecode retrieval towards the

origin node, which become overloaded. To prevent this problems, ubiREST com-

munication adopts a hop-by-hop strategy, which spreads the bytecode across the

Multi-network overlay towards all the destinations: ubiREST applies the end-to-end

strategy at each bridge along the path between the origin node and each recipient.

20.6 The ubiREST Programming Model

As already introduced, P-REST defines systems that comply with the “network-

based” paradigm, which rely on the explicit distribution of resources interacting

by means of (asynchronous) message passing. Network-based applications can be

easily modeled and developed as a set of interacting actors [29], a computational

resource reacting to external stimuli (e.g., messages) by either (i) sending messages

490 M. Caporuscio et al.

to other actors, or (ii) creating new actors, or (iii) designating the behavior for the

next stimulus.

The ubiREST programming model exploits the Scala [48] programming lan-

guage, which (i) natively provides the Actor system, (ii) provides functional fea-

tures (e.g., high-order functions), and (iii) is a JVM language, then allowing for Java

libraries reuse (e.g., Multi-radio Networking), and for benefiting from JVM facilities

(e.g., security manager for sandboxing). According to both the P-REST model and

the ubiREST software architecture (Sect. 20.3), the ubiREST programming model

revolves around the resource and container abstractions. A resource represents the

computational unit, whereas container handles both the life-cycle and the provision

of resources. The ubiREST programming model exploits the Scala Actor System [1]

by benefiting from its intrinsic qualities: i.e., functional programming paradigm,

event-based computation and shared-nothing concurrency, as well as Java interoper-

ability. Hence, the set of ubiREST’s abstractions is fully implemented in Scala and

exploits the actor model.

Resource—The resource abstraction is directly mapped to a Scala actor.

A Resource actor is defined as a Scala abstract class, which is further extended

by any resource to be deployed within ubiREST. When extended and instantiated,

a Resource object is initialized by specifying: (i) the cURI address, (ii) the set

of operations available for the specific resource, and (iii) the resource’s Description

specifying the actual semantic concept implemented by a resource, defined as aURI.

According to the Scala Actor Model,Resource implements theact()method,

which defines the resource’s passive behavior, i.e., how the resource responds to

external stimuli encoded as received messages. act() removes messages from its

mailbox and, processes them accordingly. To prevent overriding, and then enforcing

resources to conform to the REST uniformity principle, act() is defined as final,

and accepts only messages defined by the P-REST uniform interface. Moreover, PUT,

DELETE, and GET methods are declared as final and implement the well known

semantics defined by HTTP. Further, ubiREST defines a new method INSPECT,

which allows for retrieving meta-information about the resource (e.g., Description).

Rather, the POST method is declared asabstract to allow developers to implement

their own semantics. Furthermore, according to the Observer pattern defined by P-

REST, a resource notifies the observers whenever its internal state changes. That is,

when executing either a PUT, a DELETE or a POST operation, the resource actor

exploits the underlying ubiREST communication to send a group message notifying

the occurred changes.

According to P-REST, a resource plays a prosumer role, i.e., it is able to ful-

fill both roles of producer and consumer. In order to access external resources and

consume their artifacts, a given resource sends request messages to the resources

of interest and receives response messages. To this extent, ubiREST defines a

workflowEngine function to be instantiated with the desired behavior by any

Resource that wants to consume external resources. Indeed, the active behavior is

specified by a workflow implementing the composition logic defined by P-REST.

Specifically, ubiREST defines workflowEngine as a Scala higher-order function,

20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking 491

which takes a workflow as input and executes it:

workflowEngine : (workflow : Unit ⇒ Unit) ⇒ Unit

The definition of workflowEngine as a higher-order function provides ubiREST

with the ability of accomplishing hot deployment of new active behaviors at run time.

This feature, in turn, supports dynamic situation-aware evolution.

Furthermore, also ubiREST provides developers with a high-level domain spe-

cific data-flow language for coordinating resources, namely the PaCE (ubiREST

Coordination languagE) [8]. Specifically, PaCE (i) allows developers to specify the

active behavior (composition logic) of a composite resource in terms of the set of

operations defined by the ubiREST programming model, and (ii) achieves both adap-

tation and evolution of compositions in terms of resource addition, resource removal,

resource substitution, and resource rewiring [38].

Representation—Resources interact with each other by exchanging their repre-

sentations. ubiREST provides a resource representation by serializing the resource

instance into a byte array. All the fields specifying the internal state of a resource are

serialized into the array. However, since a ubiREST resource is implemented as a

actor, it is not directly serializable. In fact, actors inherit from threads, which are not

serializable as well. To cope with this issue ubiREST exploits the trait mechanism

provided by the Scala language. In Scala, traits are used to define object types by

specifying the signature of the supported methods, similarly to interfaces in Java.

However, unlike Java interfaces, traits can be partially implemented, i.e., it is pos-

sible to define default implementations for some methods. Thus, ubiREST defines

a special Scala trait, which implements custom serialization/deserialization mech-

anisms through two methods, namely writeExternal and readExternal.

Both methods are automatically invoked by the JVM when the object is serialized

and deserialized, respectively.

The writeExternalmethod makes use of the Java reflection mechanism to (i)

discover the names and the values of the attributes of a class extending Resource,

(ii) filter out the attributes inherited by Actor,3 and (iii) serialize the remaining

attributes using standard serialization. On the other hand, when the JVM deserial-

izes a Resource, it instantiates an empty object and invokes the readExternal

method, which in turn reads serialized attributes from the input stream, and makes

use of the reflection mechanism to properly assign values to resource’s attributes.

This mechanism allows for the automatic generation of resource representations.

Representation stores the byte array generated by the writeExternal

method.

It is important to note that, designers are entrusted with preserving information

hiding in Representation, i.e., avoiding the serialization of internal state infor-

mation. For example, given a resource abstracting an algorithm, it should not return

3 Scala Actors are not serializable and do not contain information regarding the resource internal

state.

492 M. Caporuscio et al.

the representation of the algorithm. Rather, it should return the representation of the

resource abstracting the results computed by the algorithm.

Description—As introduced in Sect. 20.3, resource descriptions are semantics-aware

and play a key role in ubiREST. In fact, since all resources implement the same inter-

face, descriptions result to be the only discriminant. To this extent, ubiREST pro-

vides developers with a Resource Description Language (RDL) defined by means

of a XML Schema (see Figs. 20.6, 20.7). In particular, a Description is composed of

two entities: (i) the functional description, which describes the functionalities pro-

vided by the given resource, and (ii) the sURI and cURI attributes, which define the

semantic concept implemented by the given resource and its concrete identifier (i.e.,

the actual resource URI), respectively. The functional description aims at specifying

“what” capabilities are actually provided through the uniform interface. To this end,

it describes, for each implemented operation, the semantic concept it refers to (i.e.,

semanticRef), the data expected as output, and the input parameters if required (e.g.,

POST and PUT operations require for an input parameter, whereas the others do

not).

Container—ubiREST handles resources’ life-cycle and provisioning through the

Container actor, which is implemented as an ubiLET. Indeed, the Container

stores references to the hosted resources into a resource repository built as a mapping

Fig. 20.6 Resource Description Language

20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking 493

from resources cURI to the respective Resource instance. Since a container is an

active party in ubiREST, it also holds a cURI address, which is used to access a

container’s services. Hence, the container is in charge of handling three classes of

incoming messages: (i) messages addressed to a specific resource hosted by the

container, (ii) messages directly addressed to the container itself, and (iii) broadcast

messages. In the first case, the container simply forwards the message payload to

the right Resource actor. Messages addressed to the container are directly handled

and processed. Finally, broadcast messages are received by the ubiREST node either

as result of an active subscription within the Group-based communication submitted

by a local resource (see Sect. 20.5), or as a lookup request. Notifications are delivered

to subscribed resources, whereas lookup messages are processed by the container

itself.

Concerning the outgoing messages issued by hosted resources, the container is in

charge of forwarding such messages towards their destination by means of the proper

communication protocol. Lookup messages are broadcast throughout the overlay;

Notify messages are multicasted by means of the Group-based communication;

Observe messages are encoded as subscriptions to a specific Group; the other

messages are simply forwarded towards the final destination by exploiting the point-

to-point communication facility.

As already pointed out, the container is in charge of managing resources’ life-

cycles and provision. In particular, a container creates and moves resources, provides

support for resource lookup, as well as grants for resource access. While resource

access is managed by the resource itself through its interface, creation, relocation

and lookup operations are managed by containers.

<?xml version="1.0" encoding="UTF-8"?>

<rdl:description aURI="presenter"

cURI="dd3ef7e3-5f50-3800-982d-62095c6e8075/Projector">

<functional>

<put semanticRef="display">

<output xsi:type="rdl:simpleData"

name="ack" type="bool" semanticRef="response"/>

<input xsi:type="rdl:simpleData"

name="PNG" type="bin" semanticRef="slide"/>

</put>

</functional>

</rdl:description>

Fig. 20.7 A resource description example using RDL

To create a resource, the container must be provided with information concerning

(i) the Representation of the resource to be created, and (ii) an optional cURI

to be assigned to the resource. When creating a new resource, the container checks

whether the cURI has been specified or not (if not a cURI is automatically generated),

and extracts the Resource instance from the provided Representation. The

newly created Resource is then deployed within the container and a new entry

494 M. Caporuscio et al.

is added to the resource repository. Finally, the new Resource is initialized and

started.

When moving a resource r from a container CA to a container CB , ubiREST needs

to coordinate the two containers in order to guarantee both the correct deployment

of r within the container CB , and the delivery of messages to the r ’s new location (to

avoid packet loss). Specifically, CA buffers all the incoming messages addressed to r .

ubiREST performs the move operation in three steps: (i) CA waits until r consumes

all the messages already in its mailbox and reaches a quiescent state [28]; (ii) CA

generates a representation ρ for r ; (iii) CA invokes a Create operation on CB by

passing both ρ and the cURI of r ; r is then created in CB and kept quiescent. Once

these steps are successfully accomplished, ubiREST updates the naming system

with the new location of r , and activates it. Finally, CA removes r from its resource

repository, and forwards all the buffered messages towards CB , where r is now able

to consume old messages, as well as the new ones that are directly delivered to the

new location.

Finally, a lookup operation is used to query the ubiREST overlay for resources

of interest on the basis of their descriptions. In particular, lookup takes advantage of

Scala functional features by allowing developers to specify their own lookup strategy

as a filter function, which is used to filter out results to be returned to requesters:

lookup : (filter : RDL ⇒ Boolean,d : RDL) ⇒ cURI[]

Lookup is a high-order function that evaluates the functionfilterwith all the RDL

descriptions stored by the resource repository, and returns the list of cURI identi-

fying those resources evaluated true. ubiREST provides a default implementation

for filter, which exploits well known signature matching algorithm [39, 46].

Indeed, the lookup function matches a requested aURI, against the set of aURI

implemented by the resources stored within the resource repository. Then, filter

checks if provided and required aURIs, specified by means of ontology concepts,

satisfy one of the following subsumption relationships: (i) the concepts are equiva-

lent (exact matching), (ii) the provided concept subsumes the required one (plugin

matching), (iii) the required concept subsumes the provided one (subsume match-

ing), and (iv) there does not exist any subsumption relation between the two concepts

(fail). If the result is not fail, then cURI of the matching resource(s) is returned to

the requesting node.

20.7 ubiREST in Action: An Example

This section shows how ubiREST abstractions can be easily and intuitively exploited

to develop a ubiquitous application, namely Ubiquitous Slide Show (USS).

To this extent, we introduce a simple scenario describing a USS use case: Carl, a

university professor, is going to give a talk at the conference room, and carries his

laptop storing both the slides and related handouts. The conference room provides

20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking 495

speakers with a smart-screen available on the local wireless network, whereas the

audience is supposed to be equipped with devices (e.g., laptop, smartphone, tablet),

which can be used for displaying either the slide currently projected on the screen or

the related handouts. The audience and the speaker always refer to the same slide,

and to the same page of the handouts. All the devices are supposed to have a ubiREST

instance running on them.

USS conforms to the P-REST conceptual-model and specifies the following

resources: CurrentSlide and CurrentPage represent the slide currently pro-

jected, and the corresponding handout page, respectively; Remote models the

remote controller used by Carl to browse the slide show represented as an ordered list

of slides; PresReader and HoReader visualize the slide show and the handout

on the audience’s devices, respectively; Projector handles the smart-screen of

the conference room. TheProjector resource is deployed within the smart-screen

ubiREST container. CurrentSlide, CurrentPage, Remote, PresReader

and HoReader are initially deployed on Carl’s container, and made available to the

devices in the audience which join the slide show.

Figure 20.8 shows a sequence diagram defining how such resources interact with

each other to implement USS. Remote broadcasts a Lookup messages searching

PresReaderBobPresReaderSpRemote CurrSlide Projector Audience

Lookup

ProjectorUri

GET

OBSERVE

GET

currentSl

Speaker

Next

PUT(newSl)
Notify

GET

PUT(firstSl)

readerRep

PUT(newSl)

currentSl

Show

Notify

GET

Show

Carl Projector Bob

CREATE(firstSl)

CurrentSl

CREATE(CurrSl)

Fig. 20.8 Behavioral specification of the USS application

496 M. Caporuscio et al.

for a resource that implements the presenter concept, as defined by the Projector

RDL description (see Fig. 20.7). As a result, it obtains the projector cURI that,

in our example, matches the lookup request. Once the projector cURI’s has been

retrieved, Carl starts the slide show: Remote sends a PUT message, containing the

representation of the first slide, to the projector, and then creates theCurrentSlide

resource also initialized with the representation of the first slide.

On the other side, when a participant (say, Bob) enters the conference room, he uses

the ubiREST resource finder built-in tool, which lists all the resources available within

the overlay, to explore the environment and find the PresReader resource. Hence,

selecting PresReader from the list, the ubiREST node issues a GET operation

to retrieve a representation of PresReader, which, in turn, is used to create the

PresReaderBob resource. Once this resource is created, it performs two actions:

(1) it gets the state of CurrentSlide to initialize itself, and (2) it declares interest

on observing the CurrentSlide resource (i.e., OBSERVE message).

When Carl needs to show the next slide of his presentation, he generates a

next event that is handled by the Remote’s workflowEngine by perform-

ing a PUT operation on both Projector and CurrSlide. Modifying the

Projector resource causes the projected slide to change, whereas modifying

CurrSlide generates notifications towards all the resources that are observing

CurrSlide. Then, PresReaderBob receives such a notification and retrieves

the new CurrentSlide representation, which is then visualized on his devices.

This case study demonstrates that Resource is a natural abstraction for designing

and implementing ubiquitous applications. Besides, they are simple and intuitive,

as proven by the fact that USS consist of only 13 classes, among which the largest

one required about 150 lines of code. However, evaluating the ubiREST against

competitors is a hard task because of the lack of common test-beds. Hence, we are

currently involving students in a Beta-Test phase, where a set of case studies will be

developed by means of different middlewares.

20.8 Conclusion

Service-oriented computing appears as a promising paradigm for ubiquitous comput-

ing systems that shall seamlessly integrate the functionalities offered by networked

resources, both mobile and stationary, both resource-rich and resource-constrained.

In particular, the loose coupling of services makes the paradigm much appropri-

ate for wireless, mobile environments that are highly dynamic. However, enabling

service-oriented computing in ubiquitous networking environments raises two key

challenges: (i) achieving the ubiquitous networking environment on top of multi-

radio connectivity, and (ii) providing a flexible architectural style, which allows for

designing and developing applications resilient to the extreme instability inherent to

ubiquitous networking environments.

Exploiting multi-radio connectivity has led to the definition of various algorithms

for optimizing the scheduling of communications over multiple radio interfaces,

20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking 497

e.g., [10, 27, 41]. Building on this effort, this paper has introduced a network-

agnostic connectivity layer, which leverages multi-radio networking by means of

a special addressing scheme for networked services, namely MRN@, a QoS-aware

network selection mechanism and both unicast and multicast communication facil-

ities. In particular, this layer is in charge of managing the low-level heterogeneity

inherent to multi-radio networking environments, by allowing for the exploitation of

different application-level communication protocols. Building upon these functional-

ities, the ubiREST communication layer implements two different transports, namely

ubiREST point-to-point and ubiREST group, which leverage network-agnostic con-

nectivity to enable the ubiquitous networking of RESTful services deployed on var-

ious devices—e.g., Tablets and smartphones—embedding multiple radio interfaces.

On the other hand, ubiREST strives to satisfies the flexibility, genericity and

dynamism requirements by adhering to the P-REST principles and exploiting both

functional programming and code mobility. Specifically, (i) ubiREST achieves flex-

ibility by exploiting the Actor Model and relying on the ubiREST overlay network

to provide message-passing interaction, (ii) ubiREST provides genericity through

the exploitation of a uniform interface in conjunction with both code mobility and

functional programming capabilities (i.e., high-order functions), and (iii) ubiREST

provides dynamism by allowing resource composition.

Ongoing and future work is manyfold and proceed towards different lines of

research. First of all, we are currently defining an high-level composition language

allowing developers to specify their own resource compositions in an agile and asyn-

chronous way. Further evolution of ubiREST is towards the satisfaction of extra-

functional requirements. In particular, we want extend the Resource Description

Language, and the lookup service as well, to consider extra-functional concerns

(e.g., quality of service, security), and contextual information (e.g., physical loca-

tion) while specifying and search for resources of interest, as well as when composing

them. Concurrently, we aim at improving ubiREST performances in terms of net-

work load by investigating different types of overlay networks (e.g., peer-to-peer and

hybrid).

Acknowledgments This research has been partially funded by the European Commission, Pro-
gramme IDEAS-ERC, Project 227077-SMScom (http://www.erc-smscom.org), and by European
Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement number

257178 project CHOReOS—Large Scale Choreographies for the Future Internet—http://www.

choreos.eu.

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT Press,

Cambridge, MA, USA (1986)

2. Asprino, P., Fresa, A., Gaito, N., Longo, M.: A layered architecture to manage complex mul-

timedia services. In: Proc. of 15th International Conference on Software Engineering and

Knowledge Engineering (2003)

http://www.erc-smscom.org
http://www.choreos.eu
http://www.choreos.eu

498 M. Caporuscio et al.

3. Bellur, U., Narendra, N.C.: Towards service orientation in pervasive computing systems. In:
Proc. of the International Conference on Information Technology: Coding and Computing
(2005)

4. Bonetta, D., Pautasso, C.: An architectural style for liquid web services. In: Proceedings of
the Ninth Working IEEE/IFIP Conference on Software Architecture. Washington, DC, USA
(2011)

5. Caporuscio, M., Charlet, D., Issarny, V., Navarra, A.: Energetic performance of service-oriented
multi-radio networks: issues and perspectives. In: Proc. of the 6th international workshop on
software and performance (2007)

6. Caporuscio, M., Funaro, M., Ghezzi, C.: Architectural issues of adaptive pervasive systems.
In: G. Engels, C. Lewerentz, W. Schfer, A. Schrr, B. Westfechtel (eds.) Graph Transformations
and Model-Driven Engineering, Lecture Notes in Computer Science, vol. 5765, pp. 492–511.
Springer Berlin/Heidelberg (2010)

7. Caporuscio, M., Funaro, M., Ghezzi, C.: RESTful service architectures for pervasive network-
ing environments. In: E. Wilde, C. Pautasso (eds.) REST: From Research to Practice, pp.
401–422. Springer New York (2011)

8. Caporuscio, M., Funaro, M., Ghezzi, C.: PaCE: A Data-Flow Coordination Language for Asyn-
chronous Network-Based Applications. In: T. Gschwind, F. Paoli, V. Gruhn, M. Book (eds.)
Software Composition, Lecture Notes in Computer Science, vol. 7306, pp. 51–67. Springer
Berlin Heidelberg (2012)

9. Caporuscio, M., Raverdy, P.G., Issarny, V.: ubiSOAP: A service-oriented middleware for ubiq-
uitous networking. IEEE Transactions on Services Computing 5(1), 86–98 (2012)

10. Charlet, D., Issarny, V., Chibout, R.: Energy-efficient middleware-layer multi-radio networking:
an assessment in the area of service discovery. Comput. Netw. 52(1) (2008)

11. Doval, D., O’Mahony, D.: Overlay networks: A scalable alternative for P2P. IEEE Internet

Computing 7(4), 79–82 (2003)

12. Edwards, W.K., Newman, M.W., Sedivy, J.Z., Smith, T.F.: Experiences with recombinant com-

puting: Exploring ad hoc interoperability in evolving digital networks. ACM Trans. Comput.-

Hum. Interact. 16, 3:1–3:44 (2009)

13. Ellebaek, K.K.: A survey of context-aware middleware. In: Proc. of the 25th conference on

IASTED International Multi-Conference (2007)

14. Fielding, R.T.: REST: Architectural styles and the design of network-based software architec-

tures. Ph.D. thesis, University of California, Irvine (2000)

15. Grace, P., Blair, G.S., Samuel, S.: A reflective framework for discovery and interaction in

heterogeneous mobile environments. SIGMOBILE Mob. Comput. Commun. Rev. 9, 2–14

(2005)

16. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the Web of Things. In:

Proceedings of Internet of Things (IOT). Japan (2010)

17. Gupta, P., Kumar, P.: The capacity of wireless networks. IEEE Transactions on information

theory 46(2) (2000)

18. Gupta, V., Goldman, R., Udupi, P.: A network architecture for the web of things. In: Proceedings

of the Second International Workshop on Web of Things. New York, NY, USA (2011)

19. Hirsch, F., kemp, J., Ilkka, J.: Mobile Web Services: Architecture and Implementation. John

Wiley & Sons (2006)

20. Hoareau, D., Mahéo, Y.: Middleware support for the deployment of ubiquitous software com-

ponents. Personal Ubiquitous Comput. 12, 167–178 (2008)

21. Huang, H., Cai, J.: Improving TCP performance during soft vertical handoff. In: Proc. of the

19th international conference on advanced information networking and applications (2005)

22. International Telecommunication Union (ITU): Global standard for International Mobile

Telecommunications - IMT-Advanced. http://www.itu.int/

23. Issarny, V., Sacchetti, D., Tartanoglu, F., Sailhan, F., Chibout, R., Levy, N., Talamona, A.: Devel-

oping ambient intelligence systems: A solution based on web services. Automated Software

Engg. 12(1), 101–137 (2005)

http://www.itu.int/

20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking 499

24. Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., Viennot, L.: Optimized link
state routing protocol for ad hoc networks. In: Proc. of the IEEE international multi topic
conference: technology for the 21st century (2001)

25. Khare, R., Taylor, R.N.: Extending the representational state transfer (rest) architectural style
for decentralized systems. In: Proceedings of the 26th International Conference on Software
Engineering, pp. 428–437. Edinburg, UK (2004)

26. Kindberg, T., Barton, J.: A web-based nomadic computing system. Computer Networks 35(4),
443–456 (2001)

27. Klasing, R., Kosowski, A., Navarra, A.: Cost minimisation in wireless networks with bounded
and unbounded number of interfaces. Networks 53(3), 266–275 (2009)

28. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change management.
IEEE Tran. Soft. Eng. 16(11), 1293–1306 (1990)

29. Kuuskeri, J., Turto, T.: On actors and the rest. In: Web Engineering, Lecture Notes in Computer

Science, vol. 6189, pp. 144–157. Springer Berlin/Heidelberg (2010)
30. Lelli, F., Pautasso, C.: Controlling and monitoring devices with REST. In: Proceedings of the

4th International Workshop on Distributed Cooperative Laboratories: “Instrumenting” the Grid
(INGRID 2009). Italy (2009)

31. Li, J., Blake, C., De Couto, D.S.J., Lee, H.I., Morris, R.: Capacity of ad hoc wireless networks.
In: Proc. of the 7th ACM international conference on mobile computing and networking (2001)

32. Lindholm, T., Yellin, F.: Java virtual machine specification. Addison-Wesley Longman Pub-
lishing Co., Inc. (1999)

33. Mancinelli, F.: Leveraging the web platform for ambient computing: An experience. IJACI
2(4), 33–43 (2010)

34. Mascolo, C., Capra, L., Emmerich, W.: Middleware for mobile computing (a survey). In:
Networking 2002 Tutorial Papers (2002)

35. McKinley, P., Sadjadi, S., Kasten, E., Cheng, B.: Composing adaptive software. Computer
37(7), 56–64 (2004)

36. Network Working Group: RFC675 - Specification of Internet Transmission Control Program.
http://www.ietf.org/rfc/rfc0675.txt (1974)

37. Olsen Jr., D.R., Jefferies, S., Nielsen, T., Moyes, W., Fredrickson, P.: Cross-modal interaction
using XWeb. In: 13th annual ACM symposium on User interface software and technology,
UIST ’00, pp. 191–200 (2000)

38. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In:

Proceedings of the 20th international conference on Software engineering, pp. 177–186. IEEE

Computer Society, Washington, DC, USA (1998)

39. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services capa-

bilities. In: First International Semantic Web Conference (2002)

40. Papadimitriou, D.: Future Internet - the Cross-ETP Vision Document. http://www.future-

internet.eu/news/view/article/the-cross-etp-vision-document.html (2009). Ver. 1.0

41. Qureshi, A., Guttag, J.: Horde: separating network striping policy from mechanism. In: Proc.

of the 3rd international conference on mobile systems, applications, and services (2005)

42. Roman, G.C., Picco, G.P., Murphy, A.L.: Software engineering for mobility: a roadmap. In:

FOSE ’00, pp. 241–258. ACM, New York, NY, USA (2000)

43. Sakr, S.: Xml compression techniques: A survey and comparison. J. Comput. Syst. Sci. 75(5),

303–322 (2009)

44. Sorber, J., Banerjee, N., Corner, M.D., Rollins, S.: Turducken: hierarchical power management

for mobile devices. In: Proc. of the 3rd international conference on mobile systems, applications,

and services (2005)

45. Su, J., Scott, J., Hui, P., Crowcroft, J., de Lara, E., Diot, C., Goel, A., Lim, M., Upton, E.: Haggle:

seamless networking for mobile applications. In: Proc. of the 9th international conference on

ubiquitous computing (2007)

46. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction and

composition of semantic web services. Journal of Web Semantics 1(1), 27–46 (2003)

http://www.ietf.org/rfc/rfc0675.txt
http://www.future-internet.eu/news/view/article/the-cross-etp-vision-document.html
http://www.future-internet.eu/news/view/article/the-cross-etp-vision-document.html

500 M. Caporuscio et al.

47. Tanenbaum, A.S., Van Renesse, R.: Distributed operating systems. ACM Comput. Surv. 17,
419–470 (1985)

48. The Scala language. http://www.scala-lang.org/
49. van Engelen, R.A., Gallivan, K.: The gSOAP toolkit for web services and peer-to-peer com-

puting networks. In: Proc. of the 2nd International Symposium on Cluster Computing and the
Grid (2002)

50. Wang, H.J., Katz, R.H., Giese, J.: Policy-enabled handoffs across heterogeneous wireless net-
works. In: Proc. of the 2nd IEEE workshop on mobile computer systems and applications
(1999)

51. Wolff, A., Michaelis, S., Schmutzler, J., Wietfeld, C.: Network-centric middleware for service
oriented architectures across heterogeneous embedded systems. In: Proc. of the 11th Interna-
tional EDOC Conference Workshop (2007)

52. XML Protocol Working Group: SOAP message transmission optimization mechanism. http://
www.w3.org/TR/soap12-mtom/

53. Zhu, F., Mutka, M.W., Ni, L.M.: Service discovery in pervasive computing environments. IEEE
pervasive computing 4(4) (2005)

http://www.scala-lang.org/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-mtom/

Chapter 21

Mobile Web and Cloud Services

Satish Narayana Srirama

Abstract The developments in the web services domain, the improved device capa-

bilities of the smart phones, the increased transmission rates of the cellular networks

and the ubiquity of the wifi networks have lead to the mobile web services (MWS).

In MWS domain, the resource constrained smart phones can act as both web service

clients and providers (Mobile Host), thus forming a Mobile Enterprise. Simulta-

neously, with the advent of cloud computing, mobiles tried to utilize cloud services

which, most often, provide web service interfaces. The benefits of offloading tasks to

the cloud include extended battery lifetime, improved storage capacity and increased

processing power, for the mobile devices. This paper summarizes the research asso-

ciated with mobile web and cloud services. The QoS aspects of the Mobile Host, like

providing proper security and scalability, the discovery of the provided services, the

integrational aspects of the different technological solutions and their migration to

the cloud are thoroughly discussed. The paper also discusses Mobile Cloud Middle-

ware (MCM), which eases the invocation of multiple cloud services from mobiles.

MCM raises the necessity for an asynchronous notification mechanism and with the

Mobile Host feature; this is as simple as providing one more service from the device.

21.1 Introduction

Mobile data services in tandem with web services [21] are seemingly the path

breaking domain in current information systems research. In mobile web ser-

vices domain, the resource constrained smart phones are used as both web service

clients and providers (Mobile Host). Mobile terminals accessing the web services

cater for anytime and anywhere access to services. Some interesting mobile web

S. N. Srirama (B)

Mobile Cloud Lab, Institute of Computer Science, University of Tartu,
J Liivi 2, Tartu 50409, Estonia
e-mail: srirama@ut.ee

A. Bouguettaya et al. (eds.), Advanced Web Services, 501
DOI: 10.1007/978-1-4614-7535-4_21,
© Springer Science+Business Media New York 2014

502 S. N. Srirama

service applications are the provisioning of services like information search, lan-

guage translation, company news etc. for employees who travel regularly. There are

also many public web services like the weather forecast, stock quotes etc. accessible

from smart phones. Mobile web service clients are also significant in the geospatial

and location based services [9].

Similarly, with the advent of cloud computing, the mobile applications also started

using cloud services, which most often have web service interfaces. Mobile comput-

ing and cloud computing [6] domains are converging as the prominent technologies

that enable developing the next generation of ubiquitous services based on data-

intensive processing. Cloud computing is a style of computing in which, typically,

resources scalable on demand are provided “as a service (aaS)” over the Internet

to users who need not have knowledge of, expertise in, or control over the cloud

infrastructure that supports them. The provisioning of cloud services can occur at

the Infrastructural level (IaaS) or Platform level (PaaS) or Software level (SaaS).

Cloud computing mainly forwards the utility computing model, where consumers

pay on the basis of their usage. Mobile technologies are drawing the attention to the

clouds due to the demand of the applications, for processing power, storage space

and energy saving. This has lead to the Mobile Cloud Computing (MCC) domain.

While mobile web service clients are common, the scope of mobile web service

provisioning (MWSP) was studied at RWTH Aachen University since 2003 [50],

where Mobile Hosts were developed, capable of providing basic web services from

smart phones. Mobile web service clients and the Mobile Hosts in a cellular network,

together form a Mobile Enterprise.

Mobile Hosts enable seamless integration of user-specific services to the enter-

prise, by following standard web service interfaces and standards also on the radio

link. Moreover, services provided by the Mobile Host can be integrated with larger

enterprise services bringing added value to these services. For example, services can

be provided to the mobile user based on his up-to-date user context. Context details

like device and network capabilities, location details etc. can be obtained from the

mobile at runtime and can be used in providing most relevant services like maps

specific to devices and location information. Besides, Mobile Hosts can collabo-

rate among themselves in scenarios like Collaborative Journalism and Mobile Host

Co-learn System and bring value to the enterprise [43, 46].

Once the Mobile Host was developed, an extensive performance analysis was con-

ducted to prove its technical feasibility [44, 50]. While service delivery and manage-

ment from Mobile Host were thus shown technically feasible, the ability to provide

proper quality of service (QoS), especially in terms of security and reasonable scala-

bility, for the Mobile Host is observed to be very critical. Similarly, huge number of

web services possible, with each Mobile Host providing some services in the wire-

less network, makes the discovery of these services quite complex. Proper QoS and

discovery mechanisms are required for successful adoption of mobile web services

into commercial environments. Moreover, the QoS and discovery analysis of mobile

web services [46] has raised the necessity for intermediary nodes helping in the inte-

gration of Mobile Hosts with the enterprise. Based on these requirements a Mobile

Web Services Mediation Framework (MWSMF) [51] is designed as an intermediary

21 Mobile Web and Cloud Services 503

between the web service clients and the Mobile Hosts within the Mobile Enterprise,

using the Enterprise Service Bus (ESB) technology.

While MWSMF is shown to scale well, we could achieve much better horizon-

tal scalability and elasticity, by moving some of the components of the mediation

framework to the cloud. We also have observed that load balancing is another key

factor in successful deployment of Mobile Enterprise in commercial environments.

So, we established the mediation framework on a public cloud infrastructure so that

the framework can adapt itself to the loads of the mobile operator proprietary net-

works, thus mainly helping in horizontal scaling and load balancing the MWSMF

and its components and consequently the Mobile Enterprise.

Cloud computing not only helps in scaling the components of Mobile Enterprise

and MWSMF, it also helps in increasing the scope of mobile applications. How-

ever, accessing cloud services from mobiles poses several challenges like platform

restrictions and interoperability across multiple clouds. To address these challenges,

Mobile Cloud Middleware (MCM) is introduced as an intermediary between the

mobile phones and the cloud. MCM hides the complexity of dealing with multiple

cloud providers and enables the development of customized services based on service

composition. The remaining sections of the paper are ordered as follows.

Section 21.2 discusses the mobile web services in detail. Section 21.3 discusses

the cloud computing and mobile cloud services in general. Section 21.4 discusses

the mobile web service provisioning and Sect. 21.5 address the challenges associated

with establishing the Mobile Enterprise. Section 21.6 later discusses the MWSMF

and Sect. 21.7 addresses the benefits with migrating MWSMF and its components

to the public cloud. Section 21.8 discusses the Mobile Cloud Middleware designed

and developed to ease the invocation of mobile cloud services from smart phones.

Section 21.9 discusses the related work and Sect. 21.10 provides a conclusion for the

discussion.

21.2 Mobile Web Services

Service Oriented Architecture (SOA) is a component model that delivers application

functionality as services to end-user applications and other services, bringing the

benefits of loose coupling and encapsulation to the enterprise application integra-

tion. Services encapsulate reusable business function and are defined by explicit,

implementation-independent interfaces. SOA is not a new notion and many tech-

nologies like CORBA (Common Object Request Broker Architecture) and DCOM

(Distributed Component Object Model) at least partly represent this idea. Web ser-

vices are recent of these developments and by far the best means of achieving SOA.

Using web services for SOA provides certain advantages over the other technologies

like CORBA, Jini etc. Specifically, web services are based on a set of still evolving,

though well-defined W3C standards that allow much more than just defining inter-

faces. Web services have wide range of applications and range from simple stock

quotes to pervasive applications using context-awareness like weather forecasts, map

504 S. N. Srirama

services etc. The biggest advantage of web service technology lies in its simplicity

in expression, communication and servicing.

Concurrent to the SOA developments, the capabilities of today’s smart phones

have increased significantly. In terms of hardware, now they have embedded sen-

sors, better memory and power consumption, touchscreen, better ergonomic design,

etc. In terms of software, more and sophisticated applications are possible with the

release of iPhone and Android platforms. The data transmission rates also have

increased significantly with 3G and 4G technologies and ubiquity of Wifi networks.

These developments have contributed towards having higher mobile penetration and

better services provided to the customers. Moreover, smart phones are becoming per-

vasive and are being used in wide range of applications like location based services,

mobile banking services, ubiquitous computing, community and social networking

etc. The main driving force for the rapid acceptance of such small mobile devices

is the capability to get services and run applications at any time and at any place,

especially while on the move. The experience from Japanese market shows that the

most important factor in this development is that the terminals are permanently car-

ried around, and thus people can use so-called “niche-time” to use the devices for

various things [23].

These developments have brought out a large scope and demand for software

applications for smart phones in high-end wireless networks. Many software markets

have evolved like NTT DoCoMo [23] capturing this demand of this large mobile user

base. Many nomadic services were provided to the mobile phone users. For Example,

DoCoMo provides phone, video phone, i-mode (internet), and mail (i-mode mail,

Short Mail, and SMS) services. i-mode is NTT DoCoMo’s proprietary mobile internet

platform. With i-mode, mobile phone users can get easy access to thousands of

Internet sites, as well as specialized services such as e-mail, online shopping, mobile

banking, ticket reservations, and restaurant reviews [41]. Similarly, a free mapping,

search and navigation application for mobile phones is being provided by LocatioNet

Systems. The company’s free service called Amaze looks like a hybrid between the

popular TomTom GPS (Global Positioning System) system and Google Maps. Apart

from these services many location based services (LBS) have been developed in

improving the general tourism experience.

These nomadic services bring benefits to all the participants of the mobile web.

The mobile users benefit from these mobile services and the mobile phone becomes

the network computer and wallet PC (Personal Computer) for him. The enterprises

can benefit as they can support technologies and services that allow for anywhere and

anytime connectivity of the office information sources. The mobile operator networks

can increase their revenues with “open” models. For example NTT DoCoMo with

its i-mode portal has proved this success, where the operator provides a framework

and environment in which third party content developers can deploy their services.

The content providers can in turn get incentives from these open models.

From the analysis of most of these nomadic mobile services; each operator pro-

vided some set of services, applicable to specific group, over specific platforms.

But most of these approaches were proprietary and followed specific protocols. For

example if we consider a company trying to advertise itself, it can use the mobile

21 Mobile Web and Cloud Services 505

push services that are run over the GSM (Global System for Mobile communica-

tions) network. Then the advertisement has to be shaped in such a way that it fits

the terminals and platforms by the mobile operators and vendors. This makes the

services un-interoperable and the integration of services becomes highly impossible.

In order to overcome the interoperability issues and to reap the benefits of the fast

developing web services domain and standards, mobile web services domain came

to the picture. In the mobile web services domain, the resource constrained mobile

devices are used as both web service clients and providers, still preserving the basic

web services architecture in the wireless environments.

Mobile terminals accessing the web services are common these days [9] and

mobile web service clients cater for anytime and anywhere access to services. Some

interesting mobile web service applications are the provisioning of services like

e-mail, information search, language translation, company news etc., for employ-

ees who travel regularly. There are also many public web services accessible from

smart phones like the weather forecast, stock quotes etc. They are also significant

in geospatial and location based service applications. Moreover, there exists sig-

nificant support for mobile web service clients, from several organizations such as

Open Mobile Alliance (OMA), Liberty Alliance (LA) on the specifications front;

and SUN, IBM toolkits on the development front. In parallel, with the advent of

cloud computing, the mobile applications also started using cloud services, which

most often have web service interfaces.

21.3 Mobile Cloud Services

In the emerging world of mobile computing, a rich mobile application is one, in

which through a real-time interactivity, huge amounts of information is processed

and presented to the user as a single result. Performing such tasks in a mobile phone

is difficult due to the limitations in energy and storage. Thus, computation offloading

is needed for extending the capabilities of the mobile applications in order to cover

high user demands in functionality. Latest developments in cloud computing offer

an appealing platform for pushing these process intensive tasks to the cloud.

Mobile cloud services use the shared pool of computing resources provided by

the clouds to get the process and storage intensive tasks done. Some of the well

known mobile cloud services are the services provided by the social network sites

like the facebook mobile, twitter mobile etc. facebook claims to have 350 million

users accessing their services from mobile devices every month. It provides SDKs for

iOS and Android and a REST API/Dialogs for accessing the facebook Open Graph,

the mechanism for accessing user’s profile.

More examples of SaaS are those that help in building collaboration and data

sharing applications such as Google Docs and Zoho suite. These services provide

suits of applications for collaboration (chat, docs, wiki etc.), business (CRM, reports,

market places etc.), and productivity (calendars, planners etc.). Other SaaS, such as

Picasa and flickr, offer services for storing and tagging media files (pictures/videos).

506 S. N. Srirama

All these services are accessible from mobile devices through applications usually

owned by the service providers. Similarly, Google Analytics services are accessible

through GAnalyticz for Android and iSpy Analytics for iPhone.

Another prominent domain with lot of mobile cloud services being developed is

the Mobile sync. Mobile sync refers to the synchronization of data in the handset, like

contacts, calendar, email, photos and media files, with that of the cloud, dynamically.

Services such as Google sync, Microsoft MyPhone and Apple MobileMe are few

examples that provide such functionality. The applications, most of them based on

SyncML protocol, connect to a storage server within the cloud and a portal also

located in the cloud that helps in managing the data. Alternatively, Funambol [34]

is an enterprise solution for data synchronization that has released an open source

version of its synchronization server. This server can be deployed within any cloud

provider and consists of a synchronization engine, a server administration GUI and

a Web interface for managing basic synchronization data. Funambol allows handsets

to consume cloud services from any vendor, using the Funambol client application

developed for each mobile platform.

At the core level (IaaS), the main services provided by cloud infrastructure are,

generally, the storage service and the processing service. These services are basic in

the creation of composite services which are delivered as SaaS. In addition, access-

ing these basic services from different cloud providers implies new types of applica-

tions, in which data saved on one storage service can be processed using a different

cloud processing service, given as a result, a truly mashup application. Some of

the popular IaaS providers are Amazon Elastic Compute Cloud (Amazon EC2) [3]

and Rackspace [40]. There are also numerous private clouds based on free imple-

mentations of cloud infrastructure like Eucalyptus [17], which are compatible with

Amazon EC2. Applications can access these IaaS using APIs provided by the cloud

vendors directly or by the open source community. However, most of the APIs are

not suitable for directly deploying them into a mobile phone. The integration issues

with the compiler or other libraries which are required by the cloud API, may not be

compatible for mobiles. For example in jclouds [24] API when some dependencies

are included within Android, various runtime issues emerge (with the Dalvik Virtual

Machine) which are not supported by the platform compiler.

The problem intensifies further as cloud vendors are generally observed to be

slow in providing APIs for multiple mobile platforms, since it is not in their main

agenda. Even if they do, they provide proprietary APIs and routines to consume the

cloud services. Therefore, cloud interoperability is not possible and when a lighter

mobile application is to be created, it has to be developed for a specific cloud provider

and specific mobile platform. Moreover, for developing mashup applications using

hybrid cloud services, the device must store all the different APIs. Subsequently,

the mobile applications become heavy and inefficient. To address most of these

problems, a Mobile Cloud Middleware (MCM) is proposed, which is discussed in

Sect. 21.8.

21 Mobile Web and Cloud Services 507

21.4 Mobile Web Service Provisioning

While mobile web service clients are common these days, and many software tools

already exist in the market, easing their development and adoption, the research with

providing web services from smart phones is still sparse. A mobile device in the

role of a service provider enables, amongst others, entirely new scenarios and end-

user services. Moreover, the paradigm shift of smart phones from the role of service

consumer to the service provider is a step towards practical realization of various

computing paradigms such as pervasive computing, ubiquitous computing, ambient

computing and context-aware computing. For example, the applications hosted on a

mobile device provide information about the associated user (e.g. location, agenda)

as well as the surrounding environment (e.g. signal strength, bandwidth). Mobile

devices also support multiple integrated devices (e.g. camera) and auxiliary devices

(e.g. Global Positioning Systems (GPS) receivers, printers). For the hosted services,

they provide a gateway to make available their functionality to the outside world (e.g.

providing paramedics assistance). In the absence of such provisioning functionality

the mobile user has to regularly update the contents to a standard server, with each

update of the device’s state.

The scope of mobile web service provisioning was studied by two projects at

RWTH Aachen University since 2003 [19, 46, 50], where Mobile Hosts were devel-

oped, capable of providing basic web services from smart phones. Figure 21.1 shows

the basic mobile web services framework with web services being provided from the

Mobile Host. Mobile Host is a light weight web service provider built for resource

constrained devices like cellular phones. It has been developed as a web service

handler built on top of a normal Web server. Mobile web service messages can be

exchanged using the SOAP over different transportation protocols like HTTP, BEEP

(Block Extensible Exchange Protocol), UDP (User Datagram Protocol), and WAP

(Wireless Application Protocol) etc. In the Mobile Host’s implementation, the SOAP

based web service requests sent by HTTP tunneling are diverted and handled by the

web service handler component. The Mobile Host was developed in PersonalJava on

a SonyEricsson P800 smart phone. The footprint of the fully functional prototype is

only 130 KB.

Open source kSOAP2 [27] was used for creating and handling the SOAP

messages. kSOAP2 is thin enough to be used for resource-constrained devices and

provides a SOAP parser with special type mapping and marshalling mechanisms.

Considering the low-resource constraints of smart phones, no deployment environ-

ment can be easily provided. Hence, all services have to be deployed at the instal-

lation of the Mobile Host. Alternatively, the Mobile Host can be configured to look

for services at other locations apart from the main JAR location, where the services

could then be deployed at runtime. There is also support for Over the Air (OTA) and

dynamic deployment of new services to the Mobile Host. Along with these basic

features, a light weight Graphic User Interface (GUI) was provided to activate and

deactivate the deployed services as and when necessary, so as to control the load on

the Mobile Host. The GUI also has support for providing memory usage details of

508 S. N. Srirama

Fig. 21.1 Basic mobile web
services framework with the
Mobile Host

the smart phone and the basic server operations like start, stop and exit, thus helping

in evaluating the performance analysis of the Mobile Host.

The key challenges addressed in Mobile Host’s development are threefold: to

keep the Mobile Host fully compatible with the usual web service interfaces such

that clients will not notice the difference; to design the Mobile Host with a very small

footprint that is acceptable in the smart phone world; and to limit the performance

overhead of the web service functionality such that neither the services themselves

nor the normal functioning of the smart phone for the user is seriously impeded.

Even though the web service provider is implemented on the smart phone, the stan-

dard WSDL can be used to describe the services, and the standard UDDI (Universal

Description, Discovery and Integration) registry [8] can be used for publishing and

un-publishing the services. Figure 21.1 basically illustrates this idea of advertising

mobile web services to a UDDI registry. An alternative for the UDDI-based discov-

ery [53] is also studied, where the study tried to realize Mobile Host in a Peer to

Peer (P2P) network [32], there by leveraging the advertising and searching of WSDL

documents to the P2P network. The approach is addressed in detail in Sect. 21.5.3,

while discussing the discovery issues of mobile web services.

The detailed performance evaluation of this Mobile Host clearly showed that ser-

vice delivery as well as service administration can be done with reasonable ergonomic

quality by normal mobile phone users. As the most important result, it turns out that

the total web service processing time at the Mobile Host is only a small fraction of

the total request-response time (<10 %) and rest all being transmission delay. This

makes the performance of the Mobile Host directly proportional to achievable higher

data transmission rates. Further, the regression analysis of the Mobile Host showed

that the Mobile Host can handle up to 8 concurrent requests for reasonable services

of message sizes approximately 2 Kb. Mobile Host is also possible with other Java

variants like Java 2 Micro Edition (J2ME) [55], for smart phones. We also have

developed a J2ME based Mobile Host and its performance was observed to be not

so significantly different from that of the PersonalJava version.

21 Mobile Web and Cloud Services 509

21.4.1 Alternatives for Nomadic Mobile Service Provisioning

Nevertheless, web services are not the only studied means of providing services

from devices like smart phones and PDAs. The provisioning can also be based on

any distributed communication technology like Java Remote Method Invocation

(RMI) or Jini, if the device supports the respective platform. Van Halteren et al have

addressed nomadic mobile service provisioning, based on Jini technology [61]. The

approach proposes the Mobile Service Platform (MSP) as a supporting infrastructure,

which extends the SOA paradigm to the mobile device. The MSP design is based on

the Jini Surrogate Architecture Specification which enables a device which can not

directly participate in a Jini Network to join a Jini network with the aid of a third

party. Using this architecture a service provided from the device is composed of two

components: (1) A service running on the mobile device (referred to as a device

service (DS)); and (2) A surrogate service (SS), which is the representation of the

device service in the fixed network. The surrogate functions as a proxy for the device

service and is responsible for providing the service to the clients. The MSP supports

the communication between the device service and the surrogate service. Thus using

mobile service platform, a service hosted on a mobile device, can participate as a

Jini service in the Jini network.

However, splitting a service into a device service and surrogate introduces a state

synchronization problem. The surrogate must be aware of the change in the state

of a device service. Most serious limitation of this approach is that, it is based

on a proprietary protocol. The technology (Jini) is also fixed. So the client should

be aware of Jini technology. Moreover the services are to be developed both for

the surrogate and the device, and changes are not propagated. The approach thus

tightly fixes the service provided by the mobile device to platform (Java), protocol

(HTTPInterconnect), technology (Jini) and surrogate host, thus seriously affecting

the interoperability of the provided services. The main benefit with our developed

Mobile Host is the achieved integration and interoperability for the mobile devices. It

allows applications written in different languages and deployed on different platforms

to communicate with Mobile Hosts over the cellular network, of course the benefits

it acquired from the web services domain in general [46].

21.4.2 Mobile Host in Current Generation Technologies

In the meanwhile, the shift in web services has moved from SOAP to REST. More-

over, as the popularity of Android rose and with the upcoming of standards like Open

Services Gateway initiative (OSGi) framework [1], we have upgraded the research

to the current generation mobile devices and technologies. The OSGi framework is a

module system and service platform for the Java programming language. With OSGi,

applications or components can be remotely installed, started, stopped, updated and

uninstalled without requiring a reboot. Application life cycle management (start,

510 S. N. Srirama

stop, install, etc.) is done via APIs that allow for remote downloading of manage-

ment policies. Mobile Host for Android is realized using Apache Felix, an OSGI

implementation for Android. The services run as bundles within Felix and the invo-

cation of the services is through REST protocol. So the services are considered as

resources that can be accessed via HTTP requests. Android SDK provides a mecha-

nism to establish Server Sockets communication between the device and the clients;

consequently, the HTTP request can be handled from the device.

Mobile Host exposes itself and its services to external devices through

ZeroConf [22]. It consists of a set of techniques for automatic configuration and

creation of a usable local Internet protocol network. ZeroConf dynamically config-

ures the host in the network assigning them an IP address and also a domain name.

Furthermore, ZeroConf provides a mechanism for service discovery and domain res-

olution. Mobile Host uses JmDNS, a service discovery protocol which is an imple-

mentation of ZeroConf. JmDNS assigns a local domain name to Mobile Host which

can be used by other devices to access the services exposed by the host. JmDNS is

also totally compatible with other implementations of ZeroConf for other platforms

such as Bonjour for Apple. In addition, Mobile Host also includes Wide Area Bon-

jour support based on DNS Service Discovery. The DNS Service Discovery enables

the service discovery via DNS records in the wide area network and also the self-

configuration of devices in order to be accessible from other devices. The mobile

device updates its IP in the DNS Service Discovery records every time it moves from

one wireless network to another. When a request comes the DNS routes it to the

most recent address updated by the mobile device. This way, the dynamic nature of

the devices is addressed and the services can be invoked from other devices in the

network.

Mobile Host opens up a new set of applications and it finds its use in several

domains like mobile community support, collaborative learning, social systems etc.

Primarily, the smart phone can act as a multi-user device without additional man-

ual effort on part of the mobile carrier. Several applications were developed and

demonstrated with the Mobile Host, for example in a remote patient tele-monitoring

scenario, the Mobile Host can collect remote patient’s vital signs like blood pressure,

heart rate, temperature etc. from different sensors and provide them to the doctors

in real time. In the absence of such Mobile Host the details are to be regularly

updated to a server, where from the doctor can access the details. The latter scenario

causes problems with stale details and increased network loads. A second example

is that in case of a distress call; the mobile terminal can provide a geographical

description of its location (as pictures) along with location details. Another interest-

ing application scenario involves the smooth co-ordination between journalists and

their respective organizations while covering events like Olympics. Besides, Mobile

Hosts can collaborate among themselves in scenarios like Collaborative Journalism

and MobileHost CoLearn System and bring value to the enterprise [43, 46].

21 Mobile Web and Cloud Services 511

Fig. 21.2 Mobile Enterprise and the critical challenges posed to the mobile phone users and the
operator

21.5 Mobile Enterprise

A Mobile Enterprise [43, 49] can be established in a cellular network by participating

Mobile Hosts and their clients, where the hosts provide user-specific services to the

clients as per the WS* standards. However, such a Mobile Enterprise established,

poses many technical challenges, both to the service providers and to the mobile

operator. Some of the critical challenges and associated research are addressed in

this section.

21.5.1 Challenges for Establishing Mobile Enterprise

Figure 21.2 shows the Mobile Enterprise and hints the critical challenges posed to

the mobile phone users and the operators. As the Mobile Host provides services

to the Internet, devices should be safe from malicious attacks. For this, the Mobile

Host has to provide only secure and reliable communication in the vulnerable and

volatile mobile ad-hoc topologies. In terms of scalability, the Mobile Host has to

process reasonable number of clients, over long durations, without failure and without

seriously impeding normal functioning of the smart phone for the user.

Similarly, huge number of available web services, with each Mobile Host provid-

ing some services in the wireless network, makes the discovery of the most relevant

512 S. N. Srirama

services quite complex. Proper discovery mechanisms are required for successful

adoption of Mobile Enterprise. The discovery, moreover, poses some critical ques-

tions like: where to publish the services provided by the Mobile Hosts? Should they

be published with the centralized Universal Description, Discovery, and Integration

(UDDI) registries available in the Internet or the operator is going to offer some

help? This also raises questions like whether centralized nodes can withstand such

high loads or some alternatives are to be looked at?

From the mobile operator’s perspective the Mobile Enterprise poses questions

like: what are the services expected by the mobile users from the operator? Can the

operator monitor the communication and have a bird view of the complete network, so

that business scenarios can be drawn out of it? Do operators have such infrastructure

that can scale and adapt to such huge oscillating requirements? What about the

scalability of such infrastructure?

Our research in this domain focused at addressing most of these issues [43] and

the remaining parts of this paper summarize the research and results.

21.5.2 QoS Aspects of the Mobile Host

Providing proper QoS, especially, appropriate security and reasonable scalability,

for mobile web service provisioning domain was observed to be very critical. The

security analysis of the Mobile Host studied the adaptability of WS-Security spec-

ification to the MWSP domain and concludes that not all of the specification can

be applied to the Mobile Host, mainly because of resource limitations. The results

of our analysis suggest that the mobile web service messages of reasonable size,

approximately 2–5 kb, can be secured with web service security standard specifica-

tions. The security delays caused are approximately 3–5 s. We could also conclude

from the analysis that the best way of securing messages in a Mobile Enterprise is to

use AES (Advanced Encryption Standard) symmetric encryption with 256 bit key,

and to exchange the keys with RSA 1024 bit asymmetric key exchange mechanism

and signing the messages with RSAwithSHA1. But there are still high performance

penalties when messages are both encrypted and signed. So we suggest encrypting

only the parts of the message, which are critical in terms of security and signing the

message. The signing on top of the encryption can completely be avoided in specific

applications with lower security requirements [45].

In terms of scalability, the layered model of web service communication, intro-

duces a lot of message overhead to the exchanged verbose XML based SOAP mes-

sages. This consumes a lot of resources, since all this additional information has to

be exchanged over the radio link. Thus for improving scalability the messages are

to be compressed without effecting the interoperability of the mobile web services.

Message compression also improves the energy efficiency of the devices as there

will be less data to transmit.

In the scalability analysis of the Most Host [52], we have adapted BinXML [16]

for compressing the mobile web service messages. BinXML is a light-weight XML

21 Mobile Web and Cloud Services 513

compression mechanism, which replaces each XML tag and attribute with a unique

byte value and replaces each end tag with 0xFF. By using a state machine and 6 special

byte values including 0xFF, any XML data with circa 245 tags can be represented in

this format. The approach is specifically designed to target SOAP messages across

radio links. So the mobile web service messages are exchanged in the BinXML

format, and this has reduced the message of some of the services by 30 %, drastically

reducing the transmission delays of mobile web service invocation. The BinXML

compression ratio is very significant where the SOAP message has repeated tags and

deep structure. The binary encoding is also significant for the security analysis as

there was a linear increase in the size of the message with the security incorporation.

The variation in the WS-Security encrypted message size for a typical 5 Kb message

is approximately 50 % [46].

21.5.3 Discovery Aspects of the Mobile Enterprise

In a commercial Mobile Enterprise with Mobile Hosts, and with each Mobile Host

providing some services for the Internet, expected number of services to be published

could be quite high. Generally web services are published by advertising WSDL

(Web Services Description Language) descriptions in a UDDI registry. But with huge

number of services possible with Mobile Hosts, a centralized solution is not the best

idea, as they can have bottlenecks and can introduce single points of failure. Besides,

mobile networks are quite dynamic due to the node movement. Devices can join or

leave network at any time and can switch from one operator to another operator. This

makes the binding information in the WSDL documents, inappropriate. Hence the

services are to be republished every time the Mobile Host changes the network.

Dynamic service discovery is one of the most extensively explored research top-

ics in the recent times. Most of these service discovery protocols are based on the

announce-listen model like in Jini. In this model periodic multicast mechanism is

used for service announcement and discovery. But these mechanisms assume a ser-

vice proxy object that acts as the registry and it is always available. For dynamic ad

hoc networks, assuming the existence of devices that are stable and powerful enough

to play the role of the central service registries is inappropriate. Hence services dis-

tributed in the ad-hoc networks must be discovered without a centralized registry

and should be able to support spontaneous peer to peer (P2P) connectivity [15] pro-

poses a distributed peer to peer Web service registry solution based on lightweight

Web service profiles. They have developed VISR (View based Integration of Web

Service Registries) as a peer to peer architecture for distributed Web service registry.

Similarly Konark service discovery protocol [28] was designed for discovery and

delivery of device independent services in ad hoc networks.

Considering these developments and our need for distributed registry and dynamic

discovery, we have studied alternative means of mobile web service discovery and

realized a discovery mechanism in the P2P network [42]. In this solution, the virtual

P2P network also called the mobile P2P network is established in the mobile operator

514 S. N. Srirama

network with one of the nodes in operator proprietary network, acting as a JXTA

super peer. JXTA (Juxtapose) is an open source P2P protocol specification. Once the

virtual P2P network is established, the services deployed on Mobile Host in the JXME

virtual P2P network are to be published as JXTA advertisements, so that they can be

sensed as JXTA services among other peers. JXTA specifies Modules as a generic

abstraction that allows peers to describe and instantiate any type of implementation

of behavior representing any piece of “code” in the JXTA world. So the mobile web

services are published as JXTA modules in the virtual P2P network. Once published to

the mobile P2P network, the services can later be discovered by using the keyword

based search provided by JXTA. This approach also considered categorizing the

services and the advanced features like context aware service discovery. We address

the discovery solution as mobile P2P discovery mechanism. The evaluation of the

discovery approach suggested that the smart phones are successful in identifying the

services in the P2P network, with reasonable performance penalties for the Mobile

Host [53].

Recently we have extended the mobile web service discovery mechanism to also

include a Semantic Mobile Web Services Discovery over JXTA networks for the dis-

covery but also over ZeroConf networks for the local discovery and global addressing.

The current discovery mechanism considers challenges such as the mobility of the

networks and the size of the networks. The mechanism addresses these issues by

supporting the service discovery in small and medium size networks with low and

medium mobility, with the aid of ZeroConf and by supporting the service discovery in

large networks such as the wide area network with high mobility of devices, with the

aid of JXTA and ZeroConf technologies. So the Mobile Host supports two discovery

mechanisms: a directory-based with overlay support discovery mechanism for large

networks with high mobility; and a directory-less with overlay support discovery

mechanism for small networks with low mobility [35].

Apart from these discovery mechanisms, we also have looked at the context-aware

proactive mobile service discovery, within our Mobile Social Network in Proximity

(MSNP) [10]. MSNP represents a new form of social network in which users are

capable of interacting with their surroundings via their mobile devices in public

mobile peer-to-peer (MP2P) environments. MSNP brings opportunity to people to

meet new friends, share device content, and perform various social activities. The

concept of Mobile Host makes such resource-aware social networks feasible.

21.6 Mobile Web Services Mediation Framework

Mobile Hosts with proper QoS and discovery mechanisms, enable seamless integra-

tion of user-specific services to the Mobile Enterprise. Moreover services provided

by the Mobile Host can be integrated with larger enterprise services bringing added

value to these services. However, enterprise networks deploy disparate applications,

platforms, and business processes that need to communicate or exchange data with

each other or in this specific scenario addressed by the paper, with the Mobile Hosts.

21 Mobile Web and Cloud Services 515

The applications, platforms and processes of enterprise networks generally have non-

compatible data formats and non-compatible communications protocols. Besides,

within the domain of our research, the QoS and discovery study of the Mobile Host

offered solutions in disparate technologies like JXTA. This leads to serious integra-

tion problems within the networks. The integration problem extends further if two or

more of such enterprise networks have to communicate among themselves. We gen-

erally address this research scope and domain, as the Enterprise Service Integration.

The mobile web services mediation framework (MWSMF) [51] is established as

an intermediary between the web service clients and the Mobile Hosts in mobile

enterprise. ESB is used as the background technology in realizing the mediation

framework. Similar mediation mechanisms for mobile web services are addressed

in [26]. Especially, [26] describes the status of research with provisioning services

from resource constrained devices. When considering mediation within semantic web

services, Web Service Modeling Ontology (WSMO) has significant contributions

[33]. However, we went with the ESB approach, due to the availability of several

open source implementations.

Figure 21.3 shows the Mobile Enterprise and the basic components of the medi-

ation framework. For realizing the mediation framework we relied on ServiceMix

[4], an open source implementation of ESB, based on the JBI specification [58].

JBI architecture supports two types of components Service Engines and Binding

Components. Service engines are components responsible for implementing busi-

ness logic and they can be service providers/consumers. Service engine components

support content-based routing, orchestration, rules, data transformations etc. Service

engines communicate with the system by exchanging normalized messages across

the normalized message router (NMR). The normalized messaging model is based

on WSDL specification. The service engine components are shown as straight lined

rectangles in the figure. Binding components are used to send and receive messages

across specific protocols and transports. The binding components marshal and unmar-

shal messages to and from protocol-specific data formats to normalized messages.

The binding components are shown as dashed rectangles in the Fig. 21.3.

The HttpReceiver component shown in Fig. 21.3 receives the web service requests

(SOAP over HTTP) over a specific port and forward them to the Broker component

via NMR. The main integration logic of the mediation framework is maintained

at the Broker component. For example, in case of the scalability maintenance, the

messages received by Broker are verified for mobile web service messages. If the

messages are normal Http requests, they are handled by the HttpInvoker binding

component. If they comprise mobile web service messages, the Broker component

further ensures the QoS of the mobile web service messages and transforms them

as and when necessary, using the QoSVerifier service engine component, and routes

the messages, based on their content, to the respective Mobile Hosts. The framework

also ensures that once the mobile P2P network is established, the web service clients

can discover the services using mobile P2P discovery mechanism and can access

deployed services across MWSMF and JXTA network [46].

Apart from security and improvements to the scalability, QoS provisioning fea-

tures of the MWSMF also include message persistence, guaranteed delivery, failure

516 S. N. Srirama

Fig. 21.3 Mobile Enterprise setup with Mobile Hosts, MWS clients and MWSMF

handling and transaction support. External web service clients, that do not partici-

pate in the mobile P2P network, can also directly access the services deployed on

the Mobile Hosts via MWSMF, as long as the web services are published with any

public UDDI registry or the registry deployed at the mediation framework and the

Mobile Hosts are provided with public IPs. This approach evades the JXME network

completely. Thus the mediation framework acts as an external gateway from Internet

to the Mobile Hosts and mobile P2P network. The framework also provides a bird

view of the mobile enterprise to the cellular operator, so that business scenarios can

be drawn out of it. Preliminary analysis of the mediation framework is available at

[43].

21.7 MWSMF on the Cloud

While the MWSMF was successful in achieving the integrational requirements of

the Mobile Host and the Mobile Enterprise, a standalone framework again faces the

troubles with heavy loads. The problems with scalability are quite relevant in such

scenarios and the system should scale on demand. For example number of Mobile

Hosts providing the services and the number of services provided by the Mobile Hosts

can explode while some events are underway; like Olympics or national elections

etc. Some of these application scenarios are addressed in [43]. This increases the

number of MWS clients the framework has to support. Elasticity of the framework

can be defined as its ability to adjust according to the varying number of requests,

it has to support. As the study targets the scales of mobile operator proprietary

networks, to achieve elasticity, horizontal scaling (scaling by adding more nodes to

the cluster, rather than increasing performance of a single node) and load balancing

21 Mobile Web and Cloud Services 517

for the MWSMF, the mediation framework was installed on the Amazon EC2 cloud.

Once the Amazon Machine Images (AMI) are configured, stateless nature of the

MWSMF allows, fairly easy horizontal scaling by adding more MWSMF nodes and

distributing the load among them with the load balancer.

There are several load balancing techniques that can be used in this scenario. One

approach is to use DNS based load balancing, where each call to the DNS server will

result in different IP address. This means that each MWSMF node will be accessed

by certain subset of clients directly, without an intermediary load balancing proxy

as discussed below. This approach is not fault tolerant in case the framework node

would crash but its IP would be cached on the client’s DNS cache. However, this

approach is inevitable, if loads on the single proxy based load balancer will grow to a

level that a single load balancer itself will become a bottleneck. Another approach is

to use load balancing proxy server in front of MWSMF nodes. Among other options,

Apache HTTPD server with mod_proxy and mod_load_balancer is probably most

commonly used configuration. It has one major drawback in elastic environment,

as it doesn’t allow dynamic reconfiguration of worker nodes. If we add or remove

some MWSMF nodes we are required to restart load balancer as well, which is not

convenient and potentially introduces some failed requests during restart. Alternative

http proxy load balancer HAProxy [57] allows such dynamic behavior.

In the load test of the MWSMF, we measured how success rate of the requests

depends on a number of worker nodes depending on a number of concurrent requests.

Success means that a request will get a response before connection or response time-

out occurs and success rate shows how many requests from all performed requests

succeeded. The results of the experiment are shown in Fig. 21.4. From the diagram it

can be clearly seen that the percentage of succeeded requests grows logarithmically

with the number of nodes and degrades exponentially as load grows. Each node is an

Amazon small instance that has 1.7 GB of memory, CPU power of 1 EC2 Compute

unit, which is equivalent to CPU capacity of a 1.0–1.2 GHz 2007 Opteron or 2007

Xeon processor as of 07.12.2009 (CPU capacity of an EC2 compute unit do change

in time). Performance of a single node drops rapidly already after 300 concurrent

requests and even with 300 concurrent requests success rate is only 77 %, however

3 nodes can handle this load with 100 % success rate. It can be also seen, that with

current setup adding more nodes does not show any visible effect after 6 nodes

and performance is improved by an insignificant fraction in contrast to difference

between 1, 2 and 3 nodes.

In summary we observed that, with current MWSMF implementation one single

node can handle around 100–130 concurrent MWS requests with 100 % success rate.

Adding an additional node adds roughly 100 new concurrent requests to the total

capability until the load grows up to 800 concurrent requests, when load balancer

itself becomes a bottleneck and adding any additional nodes do not give desired effect.

This analysis showed mediation framework to be horizontally scalable. However,

certain loads demand more advanced load balancing techniques. The elastic cloud

environment helps to achieve this required setup very quickly [47].

518 S. N. Srirama

Fig. 21.4 Success rate of concurrent requests over multiple server nodes

21.8 MCM Architecture and Realization

Cloud computing not only helps in scaling the components of MWSMF, it also helps

in increasing the scope of mobile applications, as discussed in Sect. 21.3. How-

ever, as already mentioned, accessing cloud services from mobiles poses several

challenges. To address these challenges, Mobile Cloud Middleware (MCM) [18] is

introduced as an intermediary between the mobile phones and the cloud. MCM

hides the complexity of dealing with multiple cloud providers and enables the

development of customized services based on service composition. The architec-

ture is shown in Fig. 21.5. When an application tries to connect to a basic cloud

service, it sends a request to the TP-Handler component of the middleware. The

request is immediately followed by an acknowledgement from MCM, freeing the

mobile. The request consists of a URL with the name of the server and the service

being requested. For example, http://ec2-107-22-125-227.compute-1.amazonaws.

com:8080/MessageServer/VideoProcessor represents a video processing service on

an Amazon cloud instance. The request can be sent based on several protocols like

the Hypertext Transfer Protocol (HTTP) or the Extensible Messaging and Presence

Protocol (XMPP).

When the request is forwarded to the MCM-Manager, it first creates a session

assigning a unique identifier for saving the system configuration of the handset

(OS, clouds’ credentials, etc.) and the service configuration (list of services, cloud

providers, types of transactions, etc.) requested. The identifier is used for handling

different requests from multiple mobile devices and for sending the notification back

when the process running in the cloud is finished. Later, the Interoperability-API-

Engine verifies the service configuration for selecting the suitable API, depending on

the cloud vendor. A transactional space is also created for exchanging data between

the clouds, so as to avoid offloading the same information from the mobile, again

and again.

http://ec2-107-22-125-227.compute-1.amazonaws.com:8080/MessageServer/VideoProcessor
http://ec2-107-22-125-227.compute-1.amazonaws.com:8080/MessageServer/VideoProcessor

21 Mobile Web and Cloud Services 519

Fig. 21.5 Architecture of the Mobile Cloud Middleware

The selection of the API is based on querying a list that contains the specifications

of each API (previously registered) and matching that information with the existent

routines (classes) of the Adapter-Servlets component. Once the Interoperability-API-

Engine decides which API set it is going to use, the MCM-Manager requests for the

specific routines from the Adapter-Servlets. The servlets contain the set of functions

for the consumption of the cloud services. Finally, MCM-Manager encapsulates the

API and the routine in an adapter for performing the transactions and accessing

the SaaS. The result of each cloud transaction is sent back to the handset in a JSON

(JavaScript Object Notation) format, based on the application design. If the request is

for a composite service, the Composition-Engine interprets the service schema and

acquires the adapters needed for executing the services from the Interoperability-

API-Engine. Each adapter keeps the connection alive between MCM and the cloud

and monitors the status of each task running within the cloud.

When all the cloud services are completed, MCM-Manager uses the asynchronous

notification feature to push the response back to the handset. Asynchronicity is added

to the MCM by implementing the Android Cloud to Device Messaging Framework

(AC2DM) [20] and the Apple Push Notification Services (APNS) [5] protocols for

Android and iOS respectively. APNS messages are sent through binary interface that

uses streaming TCP socket design. Forwarding messages to device happens through

constantly open IP connection. Similarly, AC2DM is a lightweight mechanism which

lets to push a message into a queue of a third party notification service, which is later

sent to the device. Once the message is received, the system wakes up the application

via Intent Broadcast, passing the raw message data received straight to the application.

Alternatively, MCM also has support for the Mobile Host concept. With Mobile Host

the device acts as a Web service provider. So the mobile cloud service response can

directly be sent to the device. Currently we have Mobile Host implementations for

PersonalJava, J2ME and Android platforms.

MCM is implemented in Java as a portable module based on Servlets 3.0 technol-

ogy, which can easily be deployed on a Tomcat Server or any other application server

such as Jetty or GlassFish. Hybrid cloud services from Amazon EC2, S3, Google and

520 S. N. Srirama

Eucalyptus based private cloud are considered. jets3t API [25] enables the access

to the storage service of Amazon and Google from MCM. jets3t is an open source

API that handles the maintenance for buckets and objects (creation, deletion, modi-

fication). A modified version of the API was implemented for handling the storage

service of Eucalyptus, Walrus. Latest version of jets3t also handles synchronization

of objects and folders from the cloud. typica [60] API and the Amazon API are

used to manage (turn on/off, attach volumes) the instances from Eucalyptus and EC2

respectively. MCM also has support for SaaS from facebook, Google and face.com.

MCM and the resource intensive tasks can easily be envisioned in multiple sce-

narios. Several applications [14] have been developed demonstrating its feasibility

and applicability. CroudSTag [54] is one such application which helps in forming

a social group with people identified in a set of media files, using face recognition

cloud services. Zompopo [48] is another application which processes the accelerom-

eter sensor data for creating an intelligent calendar. With MCM we can also think

of applications which can help in managing the cloud resources themselves, like our

Bakabs [36] application.

21.9 Related Work

Web services are not the only means of providing services from smart phones.

van Halteran and Pawar [61] proposed a proxy based middleware using Jini sur-

rogate architecture, which is discussed in Sect. 21.4.1 [37] gives a comparison of

the nomadic mobile service provisioning technologies at the time. Similarly, Kim

and Lee [26] mention several mobile web service provisioning approaches, along

with our Mobile Host [50]. Subsequently, with the advent of Android and Apple iOS

phones, the technologies are ripe and the devices are capable enough to envision

Mobile Hosts in better application scenarios, and several publications [2, 30] have

dealt with the issues recently. While most of the approaches have targeted at partic-

ular issues of providing services from smart phones, our research focused at service

provisioning, Mobile Host access in different environments, QoS (Security, Scala-

bility, battery life etc.) issues, mobile web service discovery and enterprise service

integration issues for the mobile web services provisioning domain [46].

Regarding QoS analysis of the mobile web services is concerned; performance

evaluation of WS-Security for network computers is provided at [29, 56]. Following

these studies, we tried to adapt the WS-Security for mobile web service provisioning

domain [45]. Asif et al. later proposed a lightweight toolkit for providing services

from smart phones along with a security subsystem for mobile web services [7].

Regarding, XML compression technologies for smart phones, Tian et al. have pro-

posed an end-to-end compression mechanism for mobile web services with detailed

analysis [59]. Ericsson and Levenshteyn also have done a detailed study of the com-

pression technologies available at the time [16]. From this analysis, we identified

BinXML to be very efficient for SOAP messages, and adapted BinXML for the

mobile web service provisioning domain.

21 Mobile Web and Cloud Services 521

To come up with the mobile web service discovery mechanism, we have studied

several approaches like Konark service discovery protocol [28], VISR (View based

Integration of Web Service Registries) [15] etc. Similarly, Qu and Nejdl [39] with

their Edutella product, discuss exposing existing JXTA services as web services; and

also integrating web service enabled content providers into JXTA, using the proxy

model. We have studied all these works and tried to adapt the best practices to the

mobile web services domain.

Regarding integration of the different subsystems is concerned, MWSMF [51] is

the first study which proposed a middleware framework in the mobile web services

domain [26]. We have observed several other studies like [13], continuing the work in

this domain. Chang et al. [10] is studying the scope of implementing ESB on mobile

devices. Meads et al. [31] employs the middleware technique to provide a com-

munication interface for ubiquitous devices to communicate with mobile providers

in heterogeneous networks. Similarly, IST EU project PLASTIC [38] designed a

service-oriented middleware supporting service deployment on mobile multi-radio

devices and multi-network environments.

Regarding mobile cloud domain, [14] provides a survey of mobile cloud comput-

ing and applications. Multiple approaches [11, 12] have focused on offloading code

components from the mobile to nearby server as processing is needed [12] proposes

MUAI, a framework that enables offloading mobile code of game applications to the

cloud, based on the energy requirements of the code components. Similarly, Chun

et al. [11] introduces CloneCloud that enables execution of the mobile platform on

a virtual machine (VM) on the cloud. The VM handles the resource intensive tasks,

once a real handset is synchronized with it. However, these approaches do not con-

sider that a mobile application can benefit from multi-cloud operations, which was

the main target of the MCM.

21.10 Conclusions

The developments in the web services domain, the improved device capabilities of the

smart phones and the improved transmission capabilities of the cellular networks have

lead to the mobile web services domain. In mobile web services domain, the resource

constrained smart phones are used as both web service clients and providers (Mobile

Host). Mobile terminals accessing the web services cater for anytime and anywhere

access to services. With the advent of cloud computing, the mobile applications also

started using cloud services, which most often have web service interfaces, leading

to new domain of applications, Mobile Cloud. Mobile technologies are drawing their

attention to the clouds due to the demand of the applications, for processing power,

storage space and energy saving.

While mobile web service clients are common, this paper also addressed mobile

web service provisioning and summarized the challenges and research associated in

this domain. Mobile Hosts enable seamless integration of user-specific services to

the enterprise, by following standard web service interfaces and standards also on the

522 S. N. Srirama

radio link. Moreover, services provided by the Mobile Host can be integrated with

larger enterprise services bringing added value to these services. The QoS aspects

of the developed Mobile Host, like providing proper security and scalability, and

the discovery of the provided services are addressed briefly. Further, the QoS and

discovery analyses of the Mobile Host have raised the necessity for a middleware

framework and the features and realization details of the MWSMF in establishing

the Mobile Enterprise are discussed.

While the MWSMF was successful in achieving the integrational requirements of

the Mobile Host and the Mobile Enterprise, a standalone framework again faces the

troubles with heavy loads. Hence, to scale the Mobile Enterprise to the loads possible

in mobile networks, we shifted some of its components to the cloud computing par-

adigm. The mediation framework was established on the Amazon cloud infrastruc-

ture thus mainly helping in horizontal scaling and load balancing the MWSMF and

its components and consequently the Mobile Enterprise. The study showed that

MWSMF is horizontally scalable, thus allowing to utilize cloud’s elasticity to meet

load requirements in an easy and quick manner.

Cloud computing not only helps in scaling the components of Mobile Enterprise

and MWSMF, it also helps in increasing the scope of mobile applications. How-

ever, accessing cloud services from mobiles poses several challenges like platform

restrictions and interoperability across multiple clouds. To address these challenges,

Mobile Cloud Middleware (MCM) is introduced as an intermediary between the

mobile phones and the cloud. MCM hides the complexity of dealing with multiple

cloud providers and enables the development of customized services based on service

composition. The architecture and realization details of the MCM are mentioned in

detail. MCM and the resource intensive tasks can easily be envisioned in multiple

scenarios. However, most of the tasks deleted to the cloud from the mobiles will be

time consuming. So MCM needs to send the response asynchronously to the device.

With the mobile device acting as a Mobile Host, this is as easy as providing one more

service from the mobile, the push notification service. The response from the cloud

can be sent to the mobile, via MCM, by just invoking the push notification service

on the device.

Acknowledgments The research is supported by the European Social Fund through Mobilitas
program, the European Regional Development Fund through the Estonian Centre of Excellence in
Computer Science and Estonian Science Foundation grant ETF9287. Special thanks go to Prof.
Matthias Jarke of RWTH Aachen University, under whose valuable guidance, most of the research
addressed in this paper is performed.

References

1. Alliance, O.S.G.: Osgi service platform, release 3. IOS Press, Inc. (2003)
2. AlShahwan, F., Moessner, K.: Providing soap web services and restful web services from

mobile hosts. In: 2010 Fifth International Conference on Internet and Web Applications and
Services, pp. 174–179. IEEE (2010)

21 Mobile Web and Cloud Services 523

3. Amazon Inc.: Amazon elastic compute cloud (amazon ec2) (2012). URL http://aws.amazon.
com/ec2/. Accessed 12 Sep 2012

4. Apache Software Foundation: Apache ServiceMix (2007). URL http://incubator.apache.org/
servicemix/home.html. Accessed 12 Sep 2012

5. Apple, Inc: APNS. URL http://developer.apple.com/library/ios/. Accessed 12 Sep 2012
6. Armbrust, M., Fox, A., Griffith, R., et al.: Above the clouds: A Berkeley view of cloud com-

puting. EECS Department, University of California, Berkeley, Tech. (2009)
7. Asif, M., Majumdar, S., Dragnea, R.: Hosting web services on resource constrained devices.

In: Web Services, 2007. ICWS 2007. IEEE International Conference on, pp. 583–590. IEEE
(2007)

8. Bellwood, T.: UDDI Version 2.04 API Specification. Tech. rep., UDDI Committee Specification
(2002). URL http://uddi.org/pubs/ProgrammersAPI_v2.htm. Accessed 12 Sep 2012

9. Benatallah, B., Maamar, Z.: Introduction to the special issue on m-services. IEEE transactions
on systems, man, and cybernetics - part a: systems and humans 33(6), 665–666 (2003)

10. Chang, C., Srirama, S.N., Ling, S.: An adaptive mediation framework for mobile p2p social
content sharing. In: 10th International Conference on Service Oriented Computing (ICSOC
2012). Springer (2012)

11. Chun, B., Maniatis, P.: Augmented smartphone applications through clone cloud execution. In:
Proceedings of the 12th conference on Hot topics in operating systems, pp. 8–8. USENIX Asso-
ciation (2009) URL http://www.usenix.org/event/hotos09/tech/full_papers/chun/chun_html/

12. Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R., Bahl, P.: Maui:
making smartphones last longer with code offload. In: Proceedings of the 8th international
conference on Mobile systems, applications, and services, pp. 49–62. ACM (2010)

13. de Spindler, A., Grossniklaus, M., Lins, C., Norrie, M.: Information Sharing Modalities for
Mobile Ad-Hoc Networks. On the Move to Meaningful Internet Systems: OTM 2009, pp.
322–339 (2009)

14. Dinh, H., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture,
applications, and approaches. Wireless Communications and Mobile Computing (2011)

15. Dustdar, S., Treiber, M.: Integration of transient web services into a virtual peer to peer web
service registry. Distributed and Parallel Databases 20, 91–115 (2006)

16. Ericsson, M., Levenshteyn, R.: On optimization of XML-based messaging. In: Second Nordic
Conference on Web Services (NCWS 2003), pp. 167–179 (2003)

17. Eucalyptus Systems Inc.: Eucalyptus. Online. URL http://www.eucalyptus.com. Accessed 12
Sep 2012

18. Flores, H., Srirama, S., Paniagua, C.: A Generic Middleware Framework for Handling Process
Intensive Hybrid Cloud Services from Mobiles. In: The 9th International Conference on
Advances in Mobile Computing & Multimedia (MoMM-2011), pp. 87–95. ACM (2011)

19. Gehlen, G.: Mobile web services - concepts, prototype, and traffic performance analysis. Ph.D.
thesis, RWTH Aachen University (2007)

20. Google Inc.: Google code labs - Android Cloud to Device Messaging Framework. URL http://
code.google.com/intl/es-ES/android/c2dm/index.html. Accessed 12 Sep 2012

21. Gottschalk, K., Graham, S., Kreger, H., Snell, J.: Introduction to web services architecture.
IBM Systems Journal: New Developments in Web Services and E-commerce 41(2), 178–198
(2002). URL http://researchweb.watson.ibm.com/journal/sj/412/gottschalk.html

22. Günes, M., Reibel, J.: An IP address configuration algorithm for zeroconf. Mobile multi-hop
ad-hoc networks. In: Proceedings of the International Workshop on Broadband Wireless Ad-
Hoc Networks and Services. Citeseer (2002)

23. Ichikawa, K.: The View of NTT DoCoMo on the Further development of Wireless Internet. In:
Tokyo Mobile Round Table Conference (2002)

24. jclouds: jclouds - multi cloud library. URL http://code.google.com/p/jclouds/. Accessed 12
Sep 2012

25. jets3t: jetS3t - An open source Java toolkit for Amazon S3 and CloudFront. URL http://jets3t.
s3.amazonaws.com/toolkit/guide.html. Accessed 12 Sep 2012

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://incubator.apache.org/servicemix/home.html
http://incubator.apache.org/servicemix/home.html
http://developer.apple.com/library/ios/
http://uddi.org/pubs/ProgrammersAPI_v2.htm
http://www.usenix.org/event/hotos09/tech/full_papers/chun/chun_html/
http://www.eucalyptus.com
http://code.google.com/intl/es-ES/android/c2dm/index.html
http://code.google.com/intl/es-ES/android/c2dm/index.html
http://researchweb.watson.ibm.com/journal/sj/412/gottschalk.html
http://code.google.com/p/jclouds/
http://jets3t.s3.amazonaws.com/toolkit/guide.html
http://jets3t.s3.amazonaws.com/toolkit/guide.html

524 S. N. Srirama

26. Kim, Y., Lee, K.: A lightweight framework for mobile web services. Journal on Computer
Science - Research and Development 24(4), 199–209 (2009)

27. kSOAP2: kSOAP2 - An efficient, lean, Java SOAP library for constrained devices. Source-
Forge.net (2012). URL http://sourceforge.net/projects/ksoap2. Accessed 12 Sep 2012

28. Lee, C., Helal, A., Desai, N., Verma, V., Arslan, B.: Konark: A system and protocols for device
independent, peer-to-peer discovery and delivery of mobile services. IEEE transactions on
systems, man, and cybernetics - part a: systems and humans 33(6), 682–696 (2003)

29. Liu, H., Pallikara, S., Fox, G.: Performance of web service security. In: Proceedings of 13th
Annual Mardi Gras Conference (2005)

30. Lomotey, R., Deters, R.: Using a cloud-centric middleware to enable mobile hosting of web
services. Procedia Computer Science 10, 634–641 (2012)

31. Meads, A., Roughton, A., Warren, I., Weerasinghe, T.: Mobile service provisioning middleware
for multihomed devices. In: Wireless and Mobile Computing, Networking and Communica-
tions, 2009. WIMOB 2009. IEEE International Conference on, pp. 67–72. IEEE (2009)

32. Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S.,
Xu, Z.: Peer-to-peer computing. Tech. rep., HP Laboratories Palo Alto (2003). URL http://
www.hpl.hp.com/techreports/2002/HPL-2002-57R1.pdf. Accessed 12 Sep 2012

33. Mocan, A., Cimpian, E., Stollberg, M., Scharffe, F., Scicluna, J.: WSMO mediators. Online
(2005). URL http://www.wsmo.org/TR/d29/. Accessed 12 Sep 2012

34. Onetti, A., Capobianco, F.: Open source and business model innovation. The funambol case.
In: International Conference on OS Systems Genova, 11th-15th July, pp. 224–227 (2005)

35. Paniagua, C.: Discovery and push notification mechanisms for mobile cloud services. Master’s
thesis, University of Tartu (2012)

36. Paniagua, C., Srirama, S.N., Flores, H.: Bakabs: Managing Load of Cloud-based Web Appli-
cations from Mobiles. In: The 13th International Conference on Information Integration and
Web-based Applications & Services (iiWAS-2011), pp. 489–495. ACM (2011)

37. Pawar, P., Srirama, S., van Beijnum, B., van Halteren, A.: A comparative study of nomadic
mobile service provisioning approaches. In: Next Generation Mobile Applications, Services
and Technologies, 2007. NGMAST’07. The 2007 International Conference on, pp. 277–286.
IEEE (2007)

38. PLASTIC Consortium: A B3G Service Platform: The IST PLASTIC Project (2012). URL
http://plastic.paris-rocquencourt.inria.fr/plasticwhitepaper.pdf. Accessed 12 Sep 2012

39. Qu, C., Nejdl, W.: Interacting the Edutella/JXTA peer-to-peer network with web services. In:
Proceedings of the 2004 International Symposium on Applications and the Internet (SAINT’04)
(2004)

40. Rackspace Inc.: The rackspace open source cloud (2012). URL http://www.rackspace.com/.
Accessed 12 Sep 2012

41. Ratliff, J.: NTT Docomo and its i-mode success: origins and implications. California Manage-
ment Review 44(3) (2002)

42. Srirama, S.: Publishing and discovery of mobile web services in peer to peer networks. In: Pro-
ceedings of First International Workshop on Mobile Services and Personalized Environments
(MSPE’06), vol. P-102, pp. 15–28. Lecture Notes in Informatics, GI (2006)

43. Srirama, S., Jarke, M.: Mobile hosts in enterprise service integration. International Journal of
Web Engineering and Technology (IJWET) 5(2), 187–213 (2009)

44. Srirama, S., Jarke, M., Prinz, W.: Mobile Host: A feasibility analysis of mobile Web Service
provisioning. In: 4th International Workshop on Ubiquitous Mobile Information and Collabo-
ration Systems, UMICS 2006, a CAiSE’06 workshop (2006)

45. Srirama, S., Jarke, M., Prinz, W.: Security analysis of mobile web service provisioning. Inter-
national Journal of Internet Technology and Secured Transactions (IJITST) 1(1/2), 151–171
(2007)

46. Srirama, S.N.: Mobile hosts in enterprise service integration. Ph.D. thesis, RWTH Aachen
University (2008)

47. Srirama, S.N.: MWSMF: A Mediation Framework for Mobile Hosts and Enterprise on Cloud.
International Journal of Pervasive Computing and Communications 7(4), 316–338 (2011)

http://sourceforge.net/projects/ksoap2
http://www.hpl.hp.com/techreports/2002/HPL-2002-57R1.pdf
http://www.hpl.hp.com/techreports/2002/HPL-2002-57R1.pdf
http://www.wsmo.org/TR/d29/
http://plastic.paris-rocquencourt.inria.fr/plasticwhitepaper.pdf
http://www.rackspace.com/

21 Mobile Web and Cloud Services 525

48. Srirama, S.N., Flores, H., Paniagua, C.: Zompopo: Mobile Calendar Prediction based on Human
Activities Recognition using the Accelerometer and Cloud Services. In: 5th Int. Conf. On Next
Generation Mobile Applications, Services and Technologies (NGMAST), pp. 63–69. IEEE CS
(2011)

49. Srirama, S.N., Jarke, M.: Mobile enterprise - a case study of enterprise service integration. In:
3rd International Conference and Exhibition on Next Generation Mobile Applications, Services
and Technologies (NGMAST 2009), pp. 101–107. IEEE Computer Society (2009)

50. Srirama, S.N., Jarke, M., Prinz, W.: Mobile web service provisioning. In: AICT-ICIW ’06:
Advanced Int. Conf. on Telecommunications and Int. Conf. on Internet and Web Applications
and Services, p. 120. IEEE Computer Society (2006)

51. Srirama, S.N., Jarke, M., Prinz, W.: Mobile web services mediation framework. In: Middleware
for Service Oriented Computing (MW4SOC) Workshop @ 8th Int. Middleware Conf. 2007.
ACM Press (2007)

52. Srirama, S.N., Jarke, M., Prinz, W.: MWSMF: A mediation framework realizing scalable mobile
web service provisioning. In: International Conference on MOBILe Wireless MiddleWARE,
Operating Systems, and Applications (Mobilware 2008). ACM Press (2008)

53. Srirama, S.N., Jarke, M., Prinz, W., Zhu, H.: Scalable mobile web service discovery in peer to
peer networks. In: IEEE Third International Conference on Internet and Web Applications and
Services (ICIW 2008), pp. 668–674. IEEE Computer Society (2008)

54. Srirama, S.N., Paniagua, C., Flores, H.: CroudSTag: Social Group Formation with Facial Recog-
nition and Mobile Cloud Services. Procedia Computer Science 5, 633–640 (2011)

55. Sun Microsystems: JavaT M 2 Platform, Micro Edition (J2MET M) Web Services Specification
- Datasheet. Tech. rep., Sun Microsystems, Inc. (2007)

56. Tang, K., Chen, S., Levy, D., Zic, J., Yan, B.: A performance evaluation of web services security.
In: 10th IEEE International Enterprise Distributed Object Computing Conference (EDOC’06),
pp. 67–74 (2006)

57. Tarreau, W.: Haproxy architecture guide, version 1.1.34. Online (2006). URL http://haproxy.
1wt.eu/download/1.3/doc/architecture.txt. Accessed 12 Sep 2012

58. Ten-Hove, R., Walker, P.: JavaT M Business Integration (JBI) 1.0 -JSR 208 Final Release. Tech.
rep., Sun Microsystems, Inc. (2005)

59. Tian, M., Voigt, T., Naumowicz, T., Ritter, H., Schiller, J.: Performance considerations for
mobile web services. Computer communications 27(11), 1097–1105 (2004)

60. typica: typica - A Java client library for a variety of Amazon Web Services. URL http://code.
google.com/p/typica/. Accessed 12 Sep 2012

61. van Halteren, A., Pawar, P.: Mobile Service Platform: A Middleware for Nomadic Mobile Ser-
vice Provisioning. In: 2nd IEEE International Conference On Wireless and Mobile Computing,
Networking and Communications (WiMob 2006) pp. 292–299 (2006)

http://haproxy.1wt.eu/download/1.3/doc/architecture.txt
http://haproxy.1wt.eu/download/1.3/doc/architecture.txt
http://code.google.com/p/typica/
http://code.google.com/p/typica/

Chapter 22

TOSCA: Portable Automated Deployment
and Management of Cloud Applications

Tobias Binz, Uwe Breitenbücher, Oliver Kopp and Frank Leymann

Abstract Portability and automated management of composite applications are

major concerns of today’s enterprise IT. These applications typically consist of

heterogeneous distributed components combined to provide the application’s func-

tionality. This architectural style challenges the operation and management of the

application as a whole and requires new concepts for deployment, configuration,

operation, and termination. The upcoming OASIS Topology and Orchestration Spec-

ification for Cloud Applications (TOSCA) standard provides new ways to enable

portable automated deployment and management of composite applications. TOSCA

describes the structure of composite applications as topologies containing their

components and their relationships. Plans capture management tasks by orchestrat-

ing management operations exposed by the components.This chapter provides an

overview on the concepts and usage of TOSCA.

22.1 Introduction

The increasing use of IT in almost any part of today’s enterprises leads to a steadily

increasing management effort, a challenge for enterprises as each new system or tech-

nology increases the degree of complexity [11]. This can be tackled by automation of

T. Binz (B) ·U. Breitenbücher ·O. Kopp ·F. Leymann

University of Stuttgart, IAAS,

Universitätsstr. 38, 70569 Stuttgart, Germany

e-mail: binz@iaas.uni-stuttgart.de

U. Breitenbücher

e-mail: breitenbuecher@iaas.uni-stuttgart.de

O. Kopp

e-mail: kopp@iaas.uni-stuttgart.de

F. Leymann

e-mail: leymann@iaas.uni-stuttgart.de

A. Bouguettaya et al. (eds.), Advanced Web Services, 527

DOI: 10.1007/978-1-4614-7535-4_22,

© Springer Science+Business Media New York 2014

528 T. Binz et al.

IT management or by outsourcing to external providers [18], which are both enabled

and supported by cloud computing.

In recent years, cloud computing introduced a new way of using and offering IT

software, platforms, and infrastructure services [21]. The “utility-like” offering of

these services and flexible “pay-per-use” pricing are similar to how resources such as

electricity and water are offered today [18]: Applications and other IT resources such

as compute and storage must not be bought upfront and managed by the enterprise

on its own, but can be simply requested when the respective functionality is actu-

ally needed—without dealing with the complexity of management, configuration,

and maintenance. Therefore, enterprises move from a model of capital expenditure

(CAPEX) to operational expenditure (OPEX) [1]. These approaches are expected to

change the way how enterprises use and think about IT and may even relieve them

from owning their own IT environment, which could be seen as the “next revolu-

tion in IT” [17]. Not only Gartner considers the efficient use of cloud computing as

one of the key success factors for enterprises [12]. From a provider’s perspective,

automating the management of the offered services is of vital importance, because

management and operation of IT is one of the biggest cost factors today—in terms

of money and time. The ability to offer services which are elastic, self-serviced,

rapidly provisioned, and priced based on actual consuption (pay-as-you-go) depends

on the degree of automation of management. Thus, the management has to be orga-

nized in an industrial manner, i.e., shared throughout a number of customers and

tenants [18].

Enterprise applications are typically complex composite applications, which con-

sist of multiple individual components, each providing a clearly distinguishable piece

of functionality. The functionality of the involved components is aggregated and

orchestrated into a composite application providing a higher-level of functionality.

Components typically have relationships to other components. For instance, a Web

server component runs on an operating system component or an application con-

nects to a database and external services. These composite enterprise applications

typically rely on modular, component based architectures, which benefit from cloud

technologies and properties such as elasticity, flexibility, scalability, and high avail-

ability [1, 5, 33, 34]. The different components involved need to be managed in

terms of deployment, configuration, quality of service, and their communication to

other components. The management becomes time-consuming and error-prone if

the application structure, i.e., its components and relations, are not documented in

a well-defined, machine-readable format. The management is often done manually

by executing scripts or even completely manual work, which hinders automation,

repeatability, and self-service.

To enable the creation of portable cloud applications and the automation of their

deployment and management, the application’s components, their relations, and man-

agement must be modeled in a portable, standardized, machine-readable format. This

is where TOSCA—the Topology and Orchestration Specification for Cloud Appli-

cations [24]—proposes an XML-based modeling language tackling these issues by

formalizing the application’s structure as typed topology graph and capturing the

management tasks in plans. In the scope of IT service management in general

22 TOSCA: Portable Automated Deployment 529

and cloud computing in particular, three problems are addressed by TOSCA: (1)

automated application deployment and management, (2) portability of applications

and their management, and (3) interoperability and reuseability of components. An

overview on TOSCA and how TOSCA addresses these challenges is provided in

Sect. 22.2. After presenting the details of TOSCA in Sect. 22.3, we describe the

supporting ecosystem in Sect. 22.4. In Sect. 22.5, we discuss how TOSCA achieves

portability of composite cloud applications and what to do to improve portability of

a TOSCA application. Finally, we close with our conclusions in Sect. 22.6.

22.2 Overview on TOSCA

TOSCA is an upcoming OASIS standard to describe composite (cloud) applica-

tions and their management. It provides a standardized, well-defined, portable, and

modular exchange format for the structure of the application’s components, the rela-

tionships among them, and their corresponding management functionalities. In this

section, we provide a brief overview on the main concepts (Sect. 22.2.1) and which

challenges in the are of cloud computing are addressed by TOSCA (Sect. 22.2.2).

22.2.1 Main Concepts of TOSCA

TOSCA enables full automated deployment, termination, and further management

functionalities, such as scaling or backing up applications through the combination

of the two TOSCA main concepts: (1) Application topologies and (2) management

plans. Application topologies provide a structural description of the application, the

components it consists of and the relationships among them. Each node is accompa-

nied with a list of operations it offers to manage itself. Thus, the topology is not only

a description of the application’s components and their relations, but also an explicit

Node

Application Topology

calls

Node

Management Plans

Relationship

Management
Operation

TOSCA-based Application Description

X

Fig. 22.1 Relation of TOSCA concepts

530 T. Binz et al.

declaration of its management capabilities. Management plans combine these man-

agement capabilities to create higher-level management tasks, which can then be

executed fully automated to deploy, configure, manage, and operate the application.

Figure 22.1 presents an abstract TOSCA-based application description, showing the

two TOSCA main concepts and their relation: The application topology contains

nodes, which are connected by relationships. Management plan are started by an

external message and call management operations of the nodes in the topology.

22.2.2 Challenges Addressed by TOSCA

In the area of cloud computing, there is a number of research challenges (cf. [9, 14]).

This section discusses three major challenges and how TOSCA addresses them,

namely ensure the portability of applications (Sect. 22.2.2.1), enable the auto-

mated management of applications (Sect. 22.2.2.2), and allow interoperability and

re-usability of application components (Sect. 22.2.2.3).

22.2.2.1 Automated Management

The management of applications plays an important role in enterprise IT (see

Sect. 22.1). Especially external solutions impose the problem that the respective man-

agement knowledge must be acquired by each user, which usually results in slow and

error prone manual management. TOSCA aims to formally capture the knowledge

of the creator of the IT solution, who has all the knowledge of the solution’s internals

and proven best practices, in management plans [2]. These plans make the manage-

ment of complex enterprise applications automated, repeatable, traceable, and less

error prone. Users can easily fulfil management tasks without deep knowledge on

how to manage the IT solution.

Management plans are portable between various environments and can be exe-

cuted fully automated to support self-service management and rapid elasticity, both

major requirements in cloud computing today. TOSCA enables these capabilities

by using workflows to define management plans: Workflows provide the properties

portability and fully automated execution [20].

22.2.2.2 Portability of Applications

Current technologies and cloud providers usually define proprietary APIs to man-

age their services. Thus, moving an application based on these technologies to

another provider requires rebuilding management functionalities and often even re-

implementing parts of the application, if they use proprietary APIs offered only by

the former provider. This is called vendor lock-in, which is the fact that the invest-

ment to switch from one provider to another provider is too expensive for a customer

to be done economically. There is current research on technologies abstracting from

22 TOSCA: Portable Automated Deployment 531

concrete APIs towards a unified interface for different APIs in order to reduce the

problem of vendor lock-in, for example the work by Petcu et al. [29]. This may

prevent vendor lock-in on the lower level but the user is then locked into this unified

API, if, for instance, the unified API does not support certain providers. Research on

this issue has already proposed solutions for supporting movability and migration

of applications on a functional level, but especially application portability in terms

their (automated) management is still a big problem [3, 19, 30]. TOSCA achieves

portability by fomalizing the application topology as well as its management in a

self-contained way. Each component defines and implements its management func-

tionality in a portable way. How TOSCA achieves portability is discussed in detail

in Sect. 22.5.

22.2.2.3 Interoperability and Reusability of Application Components

TOSCA aims to enable the interoperability and reusability of application components

such as Web servers, operating systems, virtual machines, and databases. These com-

ponents are defined in a reusable manner by the developers, providers, or third parties

together with their executables. Components of different providers do not stand on

their own, as TOSCA enables combining them into new composite applications.

Thus, TOSCA enables defining, building, and packaging the building blocks of an

application in a completely self-contained manner. This allows a standardized way

to reuse them in different applications.

22.3 TOSCA in Detail

TOSCA conceptually consists of two different parts: (1) The structural descrip-

tion of the application, called topology, and (2) the standardized description of the

application’s management by plans. These concepts are explained in Sects. 22.3.1

and 22.3.2 in detail. Instantiating the topology requires software files such as instal-

lables. In TOSCA, required software files, the topology and the management plans

are packaged into one TOSCA archive. Section 22.3.3 describes this packaging.

Section 22.3.4 describes an application topology example with a respective man-

agement plan for deploying the exemplary application.

22.3.1 TOSCA Application Topologies

In TOSCA, the structure of a composite application is explicitly modeled by a col-

ored graph called “application topology”. Vertices represent the components of a

composite application, edges represent different kinds of relations between these

components. Relations may be, for example, one component is hosted on, depends

532 T. Binz et al.

Web Shop

(PHP Application)

PHP Container

(Apache PHP Module)

Web Server

(Apache)

Operating System

(Windows 2003 Server)

Server

(IBM Z Series)

deployedOn

installedOn

installedOn

hostedOn

Fig. 22.2 Conceptual layers of TOSCA-based applications

on, or communicates with another component. Figure 22.2 shows a PHP example

topology delivering a PHP Web shop: A Windows 2003 Server operating system is

hosted on an IBM server. Thereon, an Apache Web server is installed together with

the PHP module on which the PHP application is deployed.

Vertices and edges in the topology may define additional properties, the man-

agement operations they offer, the artifacts required to run the component, or non-

functional requirements. It is important to note that TOSCA does not only define the

functional aspects of vertices and edges, i.e., providing a certain business functional-

ity such as a Web service implementation, but in addition defines their management

operations, for example, how to setup the component, establish a relation, deploy

artifacts, scale-up, or backup. These management functionalities are reflected in the

topology model and are the basis for the automated management concept of TOSCA,

which is described in Sect. 22.3.2.

Figure 22.3 presents the structural elements of a Service Template: The Topol-

ogy Template, Node Templates, Relationship Templates, and their types. The term

template is used to indicate that it may be instantiated more than once and does not

22 TOSCA: Portable Automated Deployment 533

Node

Template

P
ro

p
e
rt

ie
s In

te
rfa

c
e
s

Topology Template

type

NodeType

Relationship

Template

Service Template

type

P
ro

p
e
rt

ie
s Relationship Type

Node

Template

Node

Template

Management Plan

X

Fig. 22.3 General structure of TOSCA service template (adapted from [24])

reflect the existing infrastructure. Each template is associated with a type, which

defines the semantics of the template.

The layers of the topology are discussed in detail in Sect. 22.3.1.1. Section 22.3.1.2

details Node Types and Relationship Types. Node Templates and Relationship Tem-

plates are detailed in Sect. 22.3.1.3.

22.3.1.1 Conceptual Layers of TOSCA

To enable a clear understanding of TOSCA it is important to distinguish three con-

ceptual layers as shown in Fig. 22.4: TOSCA defines a metamodel and exchange

format for (1) types and (2) templates, which results in a third layer, the (3) instance

layer, which depends on the TOSCA runtime (discussed in Sect. 22.4.2).

The metamodel layer defines Node Templates, which represent components, and

Relationship Templates, representing the relations among the components, e.g., a

hosted on relationship is used to define that a Web server component is hosted on

an operating system component. These templates are typed with reusable types, i.e.,

Node Type for Node Templates and Relationship Type for Relationship Templates,

respectively. These types are conceptually comparable to abstract classes in Java,

whereas the templates are comparable to concrete classes extending these abstract

classes.

The instance-layer represents the real instances of the components and relation-

ships defined by templates. Thus, an instance of a Web server Node Template is a

534 T. Binz et al.

Node Type Relationship Type

Node Template Relationship Template

Node Instance Relationship Instance

Types

Templates

Instances

TOSCA

Metamodel
template Of Type template Of Type

instance Of Template instance Of Template

Fig. 22.4 Conceptual layers of TOSCA-based applications

real existing instantiated Web server node, i.e., several instances may be created in

“the real world”.

22.3.1.2 Node Types and Relationship Types

This section describes the information TOSCA offers to specify at Node Types and

Relationship Types.

Properties of Node Instances. A node instance may have properties. Therefore,

the respective Node Type references an XSD element (or type, [35]) declaring the

schema for the actual property document. Properties are runtime information such

as IP address, username, configuration, ports, and all other information required

for deployment and management of the application. XSD supports lists and other

complex structures, which basically allows to store all kind of information. In addi-

tion, XSD defines a strict schema for the resulting properties which can be used for

validation. Templates are capable to define property defaults used at instantiation,

for instance, the default port or username of the administrative interface. Support

for reading and writing the properties is offered by a TOSCA container, which is

explained in Sect. 22.4.2.

Deployment Artifacts. Deployment Artifacts specify the actual implementation

of a Node Type. For example, an operating system type may have an image as Deploy-

ment Artifact and a Web server Node Type a Tomcat servlet container installable.

During deployment of the application, the Deployment Artifacts are put onto the

respective node. The concrete deployment procedure is not defined in the TOSCA

topology. It is up to the management plans and management operations of the nodes.

Lifecycle Definition. Relationship instances and node instances may be in dif-

ferent states which aggregate the complex internal state of the instance. Example

states are starting, running, stopping, and error. During runtime, each instance is in

one of these states. The transition between the states is not described in a TOSCA

model itself: The management plans and management operations trigger transitions

22 TOSCA: Portable Automated Deployment 535

between the states. A TOSCA model defines, however, which states are possible in

general: The possible states are defined as URIs in the respective types.

Management and Implementation Artifacts. Each hardware and software com-

ponent offers explicit and implicit management capabilities. Explicit capabilities are

startup parameters, configuration files, management interfaces, hardware buttons

and so on. Implicit capabilities are descriptions of how to backup the application by

copying a certain file, for instance. Offered operations include deployment opera-

tions, which are the deployment of an application on an application server or instan-

tiating a new virtual machine, for instance. Further operations are offered for the

management of an application, for example, upgrade, backup, scale up, and config-

ure. A new concept introduced by TOSCA is that management capabilities of Node

Types and Relationship Types are explicitly defined as REST-Service [10], WSDL-

service [6], or scripts [26]. However, not all management capabilities of nodes are

accessible that way. This is either because of technical reasons, such as incompatible

protocols, or due to logical reasons, such as the operation being part of a composed

operation. Management plans require standardized interface descriptions to be able to

access management operations (see Sect. 22.3.2). Offering management capabilities

not directly accessible by TOSCA plans is done by Implementation Artifacts. They are

basically small management applications delivered together with the TOSCA appli-

cation (cf. Sect. 22.3.3). Implementation Artifacts expose management capabilities

of a Node Type via REST, WSDL, or script interfaces. Internally, they can do any-

thing required to provide this functionality, including the invokation of management

capabilities not compatible with TOSCA before. This ensures that all management

operations are either offered by the node itself, an external service, a script, or an

Implementation Artifact. Therefore, each Node Type or Relationship Type is self-

contained with respect to its management. These basic management operations are

then orchestrated by management plans into higher level management functionality

spanning the whole application and, therefore, making the application self-contained

with respect to its management.

Policies. TOSCA provides a generic container for attaching policies, for exam-

ple, using WS-Policy [36] or the Rei Ontology [13], to nodes and relationships. The

TOSCA specification does not state how and when policies are evaluated; it is only

expected that a TOSCA-compliant environment respects these policies. Two exam-

ples for using policies are a connection (represented by a Relationship Template)

with a policy that this connection must be encrypted and a server (represented by a

Node Template) with a policy that a certain power consumption must not be exceeded

during operation.

Standardized and Derivation Types. Node Types and Relationship Types can be

refined through derivation [24, Sect. 4.3]. For instance, the Node Type Tomcatmay

be derived from Node Type JavaApplicationServer and the Relationship

Type JDBCConnection may be derived from Relationship Type connectsTo.

Each type may be derived from exactly one or no other type, which structures the

types as trees.

Derivation enables groups of subject matter experts to standardize selected Node

Types and Relationship Types. For instance, a generic virtual machine with its prop-

536 T. Binz et al.

erties and operations may be offered as standardized Node Type. Vendors extend

these standardized Node Types to offer their specific implementations. Besides offer-

ing standardized functionality, they might add proprietary functionality representing

their competitive advantage. Offering different solutions under a common interface

simplifies the creation of applications suitable for multiple environments and fosters

portability.

From the ecosystem perspective (cf. Sect. 22.4), cloud and application providers

may create and distribute libraries containing the Node Types and Relationship Types

for their services and products to enable frictionless usage of them when building

new applications.

22.3.1.3 Node Templates and Relationship Templates

Node Templates and Relationship Templates, which are typed with exactly one

Node Type or Relationship Type respectively, are composed to create the Topology

Template of a TOSCA application. Templates define how the respective type is

instantiated for use in the application. Templates allow defining the start values of

the properties by specifying defaults for the properties. Deployment Artifacts, Imple-

mentation Artifacts, and policies may be overwritten and extended to adjust the types

for the usage in the respective application, for example, an Web Shop Application

Node Template of Node Type PHP Application defines a Deployment Artifact, which

contains the respective PHP application files. Additionally, constraints may be put

on properties to ensure that the properties fit to the overall application. For instance,

the IP range of an application might be restricted to internal IPs of the company.

A Node Template may be instantiated multiple times. For instance, this is the case

when there are multiple cluster nodes of an application or database cluster. Instead of

requiring to put multiple Node Templates into the Topology Template, the properties

minInstances and maxInstances are offered to set the range of the number

of instances. This concept also supports Node Templates having a variable number

of instances during runtime. For instance, the number of cluster nodes may be scaled

up and down between 2 and 10. During runtime, for each instance of a Topology

Template, each Node Template instance has its own identity and properties. This is

obviously required, for example, to have multiple cluster nodes being equal besides

the properties IP address and average load.

Grouping subgraphs of the Topology Template is possible by using Group Tem-

plates, which can be nested, but not overlapping. Group Templates can be used to

separate nodes technically. For instance, a database cluster may be scaled indepen-

dently of the other parts of the application. Either physically, e.g., by hosting all nodes

of the database cluster in one dedicated data center, or logically, e.g., by assigning

all database cluster nodes to a certain operations department.

22 TOSCA: Portable Automated Deployment 537

22.3.2 TOSCA Management Plans

Section 22.3.1.2 showed how nodes and relationships offer their management capa-

bilities. Based on the brief introduction to the concepts of management plans in

Sect. 22.2, this section discusses details of the management plan concept. Manage-

ment plans are not restricted to management operations of one node or relationship,

but can also invoke a series of operations from different nodes, relationships, and

also external services, including a human task interface [23]. Therefore, they are able

to cover all kind of management tasks required by a TOSCA application.

Without TOSCA, the deployment and management of composite applications

requires extensive, mostly manual, effort by the administrator, e.g., installing soft-

ware on servers by using installation software provided on a DVD, logging onto

servers updating applications, or creating backups. Each user has to learn on its

own how to manage and operate the application, most of them making the same

experiences and encounter the same difficulties, acquire management knowledge,

and sometimes automate some management aspects through scripts. This is even

more complicated for complex composite applications involving a large number of

components by different vendors, which are combined to provide a certain business

functionality. It requires significant knowledge and effort to provision, deploy, con-

figure, manage, and, finally, terminate the components and their relationships [31].

TOSCA tackles these issues by enabling application developers and operators to

capture reoccurring management tasks as management plans, which can be executed

fully automated and thus decrease manual effort for application management and

operation. Plans formalize the management knowledge and best practices implicitly

for everyone to reuse. The management cost of applications described using TOSCA,

including management plans, is significantly lower, especially because enterprises

executing these management plans must not know all the details behind the man-

agement best practices. Figure 22.5 presents a simplified management plan used to

deploy a PHP-based application: The plan installs an Apache Web server on a Win-

dows operating system, installs the PHP module on that Web server, and finally

deploys the PHP application thereon.

Automation of application management is a prerequisite to realize key cloud

properties. Most important are self-service and rapid elasticity. Self-service means

that a customer can instantiate and manage his application instance himself, e.g.,

add a new email account. Rapid elasticity enables on demand growing and shrinking

of resources depending on the user needs, e.g., extending the storage of an email

account. When going beyond cloud computing, automation has always been a key

goal in IT service and application management. We want to stress that, despite its

name, TOSCA is by no means restricted to cloud applications.

TOSCA does not introduce a new language for modeling and executing plans.

Instead, TOSCA includes plans by using existing workflow languages such as the

Business Process Model and Notation (BPMN, [25]) or the Business Process Exe-

cution Language (BPEL, [22]). By using workflow technology to automate man-

agement tasks, TOSCA benefits from all the capabilities and properties of workflow

languages and workflow execution environments. These properties include parallel

538 T. Binz et al.

Install Windows

on Server

Install Apache

WebServer on

Windows

Install PHP

Module on

WebServer

Deploy PHP

Application on

PHP Container

Fig. 22.5 Example management plan for deploying a PHP-based application

execution, monitoring, compensation, recovery, auditing, and tracing functionalities

[20]. In addition, established workflow languages and environments also support

human tasks to include manual work into the management plans. A typical example

for a manual task, which cannot be executed automatically without human interven-

tion, is installing physical infrastructure such as servers, network components, or

storage as basis for virtualized environments. Using workflow technology moves the

low level management tasks onto business processes level and makes them accessible

to people or software not aware of the technical management details.

To ensure portability of management plans, TOSCA relies on the portability of

standardized workflow languages such as BPEL and BPMN. The recommended

workflow language for TOSCA management plans is BPMN. However, TOSCA

allows plans to be defined in any workflow language providing clear execution seman-

tics required for automated execution. Unfortunately, not all existing languages are

suitable as many process modeling languages focus either on modeling or on execu-

tion [16, 28, 32].

22.3.2.1 Scripts and Plans

Today, many tasks in systems and operations management of applications are already

automated by using scripts. These scripts are typically—often manually—copied to

the target system on which they are executed. In comparison to plans, these scripts can

be seen as microflows: small isolated pieces of work which can be executed fast and

do not require transactional support, called micro script stream without transactions

by Leymann and Roller [20]. In TOSCA, scripts are used for small management

tasks such as setting up databases on a single component, whereas plans are used for

large management tasks typically involving multiple components such as deploying

a Tomcat servlet container on a Linux operating system followed by the configuration

of both components. Of course, both concepts can be combined to provide the ability

of specifying management operations on different layers of granularity. Then, plans

represent workflows orchestrating several microflows represented by scripts.

A main benefit of this separation of concerns is provided by the combination of

both concepts: Plans can use scripts to do more fine grained work directly on the

target components while all problems of script handling such as data passing from

and to other tasks, error handling, compensation, and recovery can be done by the

workflow technology, which is on a much more coarse grained layer. Thus, wrapping

script handling through workflow technology increases the level of abstraction for

the operators as they do not have to deal with the deep technical details of script

22 TOSCA: Portable Automated Deployment 539

handling [15]. This is in line with the programming-in-the-large idea by DeRemer

and Kron [8], which is applied by the workflow technology, too [20].

22.3.2.2 Plan Usage of the Application Topology Model

Management plans may inspect the application topology to retrieve nodes and rela-

tionships in order to manage them. This may be necessary for flexible plans not

developed for one specific application topology to manage, but for multiple different

topologies consisting of similar structures, or at least similar components. Thus, the

plan needs information about the concrete structure of the considered topology to find

the respective components and relationships therein the plan is supposed to manage.

One example is a large topology consisting of multiple software stacks and a plan

which updates the operating system components of each stack.

Management plans are executed on external workflow engines and may do various

kinds of manipulations on the node and relationship instances. During operation, the

state of node and relationship instances may change. For instance, the patch level of

an operating system changes after installing a patch on an operating system node.

To transfer this state information between different management plans, they need to

store this information externally of the workflow context to make them accessible

by various stakeholders. Therefore, the possible properties of nodes are explicitly

defined by a schema to standardize accessing them. This information is included in

the application topology model (see Sect. 22.3.1.2) and plans may read and write

these service instance state information [2].

22.3.3 Packaging

A TOSCA Service Template defines application topologies and corresponding man-

agement plans. The physical associated files such as Implementation Artifacts and

Deployment Artifacts, scripts, or XML schema files are packaged together with

the actual Service Template into a TOSCA archive, called “Cloud Service Archive

(CSAR)” [24, Sect. 3.3]. This standardized archive format provides a way to pack-

age applications fully self-contained, with all required management functionali-

ties into one single file used for installing the application. Thus, the archive can

be seen as single installable for complex composite applications including their

management. A TOSCA archive can be deployed on a TOSCA runtime environ-

ment (see Sect. 22.4.2) which is responsible for installing the application package,

i.e., processing the archive. TOSCA archives follow a standardized format ensur-

ing portability between different TOSCA runtime environments and thus provide an

exchange format for complex composite applications including their management

functionalities. Figure 22.6 shows the conceptual structure of a TOSCA archive.

540 T. Binz et al.

TOSCA Service Template

TOSCA Archive

Files

/DeploymentArtifacts

/ImplementationArtifacts

/Schemas

/Plans

/Scripts

/TOSCA-Metadata

/…

Node

Template

P
ro

p
e

rt
ie

s In
te

rfa
c
e
s

Topology Template

type

NodeType

Relationship

Template

type

P
ro

p
e

rt
ie

s RelationshipType

Node

Template

Node

Template

Management Plan

X

Fig. 22.6 Conceptual structure of TOSCA archives

22.3.4 TOSCA-Based Example Application

In this section we describe a TOSCA application example and a corresponding build

plan, which deploys and instantiates the application. The example implements an

online Web shop which consists of two functionally different software stacks: The

first stack provides a Web-based GUI for the Web shop application, the second stack

provides product information data stored in a MySQL database accessible through

a REST API which is called by the Web-based GUI.

The complete application topology is presented in Fig. 22.7. The stack providing

the GUI is presented on the left side of the figure. The infrastructure layer of this

stack consists of a Server Node Template of Node Type IBM Z Series. This represents

a physical server node. Thereon runs a Windows operating system represented by

an Operating System Node Template of Node Type Windows 2003 Server. On this

OS, a Web server Node Template of Node Type Apache runs with an installed PHP

Module, which in turn is represented as a PHP Container Node Template of Node

Type Apache PHP Module. This container is able to run PHP-based applications.

The Web Shop Node Template of Node Type PHP Application implements the GUI

of the Web shop software and is hosted on the PHP Container.

The infrastructure layer of the second topology stack providing product data for

the Web-based GUI consists of a Virtual Server Node Template of Node Type AWS

EC2 Server. This is an Infrastructure-as-a-Service (IaaS, [21]) offering provided

by Amazon.1 On this virtualized infrastructure an operating system of Node Type

Windows 7 runs in a VM which is represented by an Operating System VM Node

Template. On this operating system, there are two components hosted on: A Servlet

Container Node Template of Node Type Tomcat and the Product Database Node

1 http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/

22 TOSCA: Portable Automated Deployment 541

Product REST API

(WAR)

Operating System VM

(Windows 7)

Virtual Server

(AWS EC2 Server)

Servlet Container

(Tomcat)
Product Database

(MySQL Database)

(hostedOn)

Connection

(JDBC Connection)
Web Shop

(PHP Application)

PHP Container

(Apache PHP Module)

Web Server

(Apache)

Operating System

(Windows 2003 Server)

Server

(IBM Z Series)

Call

(HTTP Call)

Fig. 22.7 Example TOSCA application topology

Template of Node Type MySQL Database, which represents the database in which

the product data are stored. On the servlet container, there is a REST API providing

access to the product data stored in the database. The API is implemented as Java

application, which is deployed as Web Archive (WAR) file. This Java application is

hosted on the Tomcat servlet container and is represented as Product REST API Node

Template of Node Type WAR hosted on the servlet container node. For simplification

reasons, we modeled all runsIn, deployedOn, and installedIn relations as hostedOn

relation, which is the parent Relationship Type for all these Relationship Types.

The Build Plan shown in Fig. 22.8 is responsible for deploying both software

stacks. We simplified the plan in some points to reduce the degree of complexity. For

instance, handling of security issues (e.g., password generation and storage) are hid-

den. BPMN supports parallel execution of tasks. Therefore, the two software stacks

are deployed in parallel. First, the deployment of the Web-based GUI is described.

The first activity installs the Windows 2003 Server operating system on a physical

server whose IP-address is given by the input message of the Build Plan. Thus, for

executing the plan, the IP-address of the server has to be known by the operator

and written into the input message. After the OS is installed, the subsequent activ-

ity configures the operating system such as setting the correct firewall rules. After

that, the Apache Web server is installed on the Windows 2003 operating system,

the PHP Module is installed on the Apache Web server and the PHP Application

is deployed into the PHP Container. The second software stack is deployed in the

542 T. Binz et al.

parallel branch. First, an activity acquires a Windows 7 VM on Amazon EC2. The

required credentials are contained in the input message of the plan, i.e., the operator

has to know the credentials and put them into the input message for executing the

plan. After the operating system VM is provisioned, installing the Tomcat servlet

container followed by the deployment of the WAR file on it are done in parallel with

installing the MySQL database server. The REST API Java application has to know

the endpoint of the database. The last activity in this parallel branch sets this endpoint

to the Java application. After both application stacks are deployed, the Web-based

GUI needs to know the endpoint of the REST API. This is done by the last activity

of the workflow which sets this endpoint to the PHP application.

22.4 Supporting Ecosystem

TOSCA specifies an exchange format for application topologies and their manage-

ment plans. The TOSCA standard does not live on its own, but requires a supporting

ecosystem to exploit its full potential. This section presents three key parts which

are important for a viable TOSCA ecosystem: (1) Topologies and their management

plans have to be modeled properly (Sect. 22.4.1). (2) After a TOSCA model is created,

it has to be interpreted by a TOSCA-compliant runtime environment to enable auto-

matic deployment and management (Sect. 22.4.2). (3) Finally, Sect. 22.4.3 presents

how an application marketplace could benefit from the new possibilities enabled by

TOSCA.

Install

Windows on

Server

Install Apache

Web Server

on Windows

Configure

Windows

Install PHP

Module on

Apache Web

Server

Deploy PHP

Application on

PHP Container

Set REST API

Endpoint

Acquire

Windows VM

on EC2

Install

Tomcat Servlet

Container on

Windows VM

Install MySQL

Database on

Windows VM

Deploy WAR on

Tomcat Servlet

Container

Set Database

Endpoint

Fig. 22.8 Build plan for the example application

22.4.1 Modeling Tool Support

As TOSCA’s representation format is XML, modeling TOSCA-based applications

and their management plans, typically also having a textual XML representation,

may be time-consuming when using text editors only. XML editors may be helpful

22 TOSCA: Portable Automated Deployment 543

as TOSCA defines a schema which can be used by the editor to provide features such

as auto-completion and tag-proposals. These tools might help avoiding syntactic

errors and improve the speed of creating models compared to pure text editors. Nev-

ertheless, they are still uncomfortable as manual typing is error prone and semantical

dependencies are hard to recognize textually by the user or the tool.

Therefore, graphical modeling tools tailored towards TOSCA could reduce the

effort significantly as topologies as well as plans can be represented visually easily.

For example, modeling topologies can be enriched with graphical details, such as

icons for nodes, which supports a faster recognition of the semantics. Thus, semantic

errors, such as wrong hostedOn-relationships, can be recognized faster by the user.

In addition, the speed of modeling increases noticeably as a lot of unnecessary typing

is spared. As modeling of topologies as well as modeling of plans can be done graph-

ically, some modeling tools combine both activities. This is an important advantage

as bringing together modeling of topologies and corresponding management plans

might be cumbersome—especially for annoying frequently reoccurring tasks such

as copying IDs, creating boilerplate code, and so on. Enhancing a BPMN model-

ing tool to provide a tight integration with TOSCA has been presented by Kopp et

al. [15]. TOSCA-tailored graphical modeling tools also may support reusability of

Node Types by providing existing Node Types in a palette for dragging them into the

topology, for example. Automated management of a variety of artifacts and export-

ing them into a TOSCA archive as described in Sect. 22.3.3 additionally reduces the

complexity and assists the user.

Fig. 22.9 Screenshot of Valesca

544 T. Binz et al.

One open source implementation of a TOSCA-tailored graphical tool com-

bining the modeling of TOSCA application topologies and associated manage-

ment plans is “Valesca”.2 It implements “Vino4TOSCA” [4], a visual notation for

TOSCA topologies. Valesca uses the Signavio Core Components,3 which are the

commercially-supported enhancements of Oryx [7]. Figure 22.9 shows a screenshot.

Valesca supports all the advantages mentioned above and is provided under the

Apache 2.0 license.

22.4.2 TOSCA Container

To use all the features of TOSCA—especially automation of application manage-

ment—a TOSCA-compliant runtime is required. Without such a container, TOSCA

could be used as pure exchange format and manually operated according to the defi-

nitions in the Service Template. However, a bare-minimum TOSCA container stores

and serves the files contained in the TOSCA archive, installs and operates Imple-

mentation Artifacts and Management Plans, and manages the instance data of the

application: The container is the glue between these functionalities. During modeling

the management plans are written without knowing the exact location of the Imple-

mentation Artifacts, only referencing the abstract service description (port type and

operation in case of WSDL services). Implementation Artifacts are deployed by the

TOSCA container to the respective runtime, for example, Java Web services to an

Apache Tomcat known and managed by the TOSCA container. Knowing the runtime

and the location of the deployed Implementation Artifact, the TOSCA container is

able to set the location information when deploying the Management Plans onto

a workflow engine. The container is also responsible for managing the properties

assigned to node and relationship instances. Therefore, the container offers a stan-

dardized API which may be used by Implementation Artifacts and the workflow

engine to work on the properties.

To increase convenience, other functionalities, such as a user interface for starting

the management plans, identity management, integrated monitoring and auditing, can

be supported by the container, which exceeds the scope of this chapter.

22.4.3 Marketplace and Catalog

TOSCA enables new business models in terms of application exchange, offering,

and trading. Due to the fact that TOSCA applications are portable between different

TOSCA-compliant providers, moving application flexibly between providers avoids

vendor lock-in: Customers have the ability to choose applications independent from

2 http://www.cloudcycle.org/valesca/
3 http://code.google.com/p/signavio-core-components/

http://www.cloudcycle.org/valesca/
http://code.google.com/p/signavio-core-components/

22 TOSCA: Portable Automated Deployment 545

the cloud provider which hosts the application later on. This enables a new kind of

marketplaces for trading manageable and portable applications which can be hosted

by any TOSCA-compliant provider, as shown in Fig. 22.10. Inside enterprises, the

TOSCA ecosystem enables offering self-service catalogs which allow flexible and

rapid deployment of business applications.

Cloud Provider A

TOSCA Application Marketplace

TOSCA Container

Cloud Provider B

TOSCA Container

Cloud Provider C

TOSCA Container

TOSCA

App

Fig. 22.10 Sketch of an TOSCA application marketplace

22.5 Portability

As portability is a central goal of TOSCA, this section discusses in detail how TOSCA

supports portability (Sects. 22.5.1 and 22.5.2) and propose how modelers can increase

the portability of their TOSCA applications (Sect. 22.5.3).

22.5.1 Portability of Applications

TOSCA addresses the portability of application descriptions and their management,

not the portability of the application components themselves. That means, TOSCA

does not make Deployment Artifacts portable, e.g., to run a .net application on Apache

Tomcat or to migrate one flavor of relational database system to another.

The application topology may have some prerequisites concerning the environ-

ment it is deployed on. For instance, it might require an external service such as

Amazon EC2 or inhouse infrastructure such as VMware. However, there are ways to

abstract from concrete providers and increase portability between different environ-

ments, for example, by using software such as Deltacloud,4 which unifies the APIs of

4 http://deltacloud.apache.org/

http://deltacloud.apache.org/

546 T. Binz et al.

different cloud infrastructure providers into a common interface or by using a generic

and standardized virtual machine Node Type as described in Sect. 22.3.1.2, which

can be bound to different implementations. The remaining parts of the application

topology are built on top of these lower-level infrastructure and, therefore, are basi-

cally self-contained inside this application topology. Thus, they only depend on the

lower-level infrastructure components. If these are portable, the whole application

is portable. The application topology’s main purpose is to be an information source

and description of the component’s management aspects for the management plans.

By concerning the existence of standardized Node Types as lower-level components

and that higher-level components can depend on these lower-level ones, we conclude

that the application topology can be modeled in a portable way. Based on this we

must have a look on the portability of management plans.

22.5.2 Portability of Management

Management plans are written in certain workflow languages and it is the TOSCA

container’s responsibility to execute them on a compatible workflow engine. There-

fore, TOSCA container support for the workflow language is the first precondition

for TOSCA portability, which is, however, softened to some extend by the fact that

BPMN is the recommended workflow language in TOSCA. Management plans are

orchestrations of three types of services: (1) External services, which are portable,

because services are, by definition, accessible from everywhere [6], (2) manage-

ment operations offered by Node Types and Relationship Types, and (3) APIs of

the TOSCA container, for example, to access the instance data of the application

instance. As discussed in Sect. 22.3.1.2, the management operations can be provided

as Implementation Artifacts, whose execution is also the TOSCA container’s respon-

sibility. The API of the TOSCA container will be standardized. Therefore, support for

the language of the Implementation Artifact by the TOSCA container is the second

precondition for TOSCA portability.

Consequently, the portability of TOSCA applications only fails if the type of

management plan or Implementation Artifact is not known and supported by the

TOSCA container. We want to highlight that both of them, management plans and

Implementation Artifacts, represent the management part of TOSCA and are not the

actual application. Moreover, we expect most TOSCA containers to provide some

kind of extensibility mechanism to add plugins supporting additional plan types

and additional Implementation Artifact types. A couple of basic types will then

be offered by most of the TOSCA containers, which will provide a solid basis for

portable TOSCA applications.

22 TOSCA: Portable Automated Deployment 547

22.5.3 Improving Portability of TOSCA Applications

The conclusions of the previous two sections lead to the following recommendations

on how to increase the portability of a TOSCA application: For Implementation

Artifacts, the goal is to provide them in programming languages, which are widely

supported by TOSCA containers. Due to the fact that Implementation Artifacts are

bound to Node Types and Relationship Types, they are widely reused so it may be

worth the effort to do multiple implementations. Management plans are tied to the

actual application and, therefore, their level of reusability is lower than reusability

for Implementation Artifacts. Providing them in multiple workflow languages would

also increase their portability, but doing this manually might not be worth the effort.

Fortunately, there are existing approaches to transform workflow languages [32], for

example, transforming BPMN to BPEL by using the approach by Ouyang et al. [27].

In addition, due to the fact that BPMN is the recommended workflow language for

management plans, a wide variety of TOSCA containers will presumably support

BPMN.

22.6 Conclusions

This chapter presented the upcoming OASIS standard Topology and Orchestration

Specification for Cloud Applications (TOSCA). We highlighted that TOSCA distin-

guishes between the application topology and management plans. The application

topology declares the components of the application and their relationships as a graph.

We discussed that each vertex in the graph represents a Node Template, which has

a Node Type and is instantiated as node instance. The management plans invoke

management operations on these node instances.

TOSCA is a standard not providing any software and, therefore, requires an

ecosystem. We gave a short overview on possible modeling tool support and run-

time support. TOSCA packages may be distributed directly by a software vendor or

available through dedicated marketplaces.

At the point of writing this chapter, the TOSCA specification was not finally

released. However, we expect no fundamental changes going beyond what we

described. One can follow the current development of the TOSCA specification

on the OASIS TC website5 and the development of the OpenTOSCA ecosystem of

the University of Stuttgart on the OpenTOSCA website6.

Acknowledgments This work was partially funded by the BMWi project CloudCycle (project
01MD11023).

5 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
6 http://www.opentosca.org

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://www.opentosca.org

548 T. Binz et al.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D.,
Rabkin, A., Stoica, I., et al.: Above the Clouds: A Berkeley View of Cloud Computing. Tech.
Rep. UCB/EECS-2009-28, EECS Department, University of California, Berkeley (2009)

2. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using TOSCA. IEEE
Internet Computing 16(03), 80–85 (2012). doi:10.1109/MIC.2012.43

3. Binz, T., Leymann, F., Schumm, D.: CMotion: A Framework for Migration of Applications into
and between Clouds. In: Proceedings of the 2011 IEEE International Conference on Service-
Oriented Computing and Applications (SOCA). IEEE Computer Society Conference Publish-
ing Services (2011). doi:10.1109/SOCA.2011.6166250

4. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA: A Visual
Notation for Application Topologies based on TOSCA. In: Proceedings of the 20th International
Conference on Cooperative Information Systems (CoopIS 2012), Lecture Notes in Computer
Science. Springer-Verlag (2012) doi:10.1007/978-3-642-33606-5_25

5. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerg-
ing it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future
Generation Computer Systems 25(6), 599–616 (2009). doi:10.1016/j.future.2008.12.001

6. Curbera, F., Leymann, F., Storey, T., Ferguson, D., Weerawarana, S.: Web Services Platform
Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging
and More. Prentice Hall PTR (2005).

7. Decker, G., Overdick, H., Weske, M.: Oryx - An Open Modeling Platform for the BPM Com-
munity. In: Proceedings of the 6th International Conference on Business Process Management
(2008). doi:10.1007/978-3-540-85758-7_29

8. DeRemer, F., Kron, H.: Programming-in-the-Large Versus Programming-in-the-Small. Soft-
ware Engineering, IEEE Transactions on SE-2(2), 80–86 (1976). doi:10.1109/TSE.1976.
233534

9. Dillon, T., Wu, C., Chang, E.: Cloud Computing: Issues and Challenges. In: Advanced Infor-
mation Networking and Applications (AINA), 2010 24th IEEE International Conference on,
pp. 27–33 (2010). doi:10.1109/AINA.2010.187

10. Fielding, R.: Architectural styles and the design of network-based software architectures. Ph.D.
thesis, University of California (2000)

11. Garbani, J., Mendel, T., Radcliffe, E.: The Writing on ITs Complexity Wall (2010). Forrester
Research

12. Gartner: Gartner Identifies the Top 10 Strategic Technologies for 2011 (2010). Press Release
13. Kagal, L.: Rei Ontology Specifications, Ver 2.0 (2012). http://www.csee.umbc.edu/~lkagal1/

rei/
14. Khajeh-Hosseini, A., Sommerville, I., I, S.: Research Challenges for Enterprise Cloud Com-

puting. Tech. rep., LSCITS (2010)
15. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: A Domain-Specific Lan-

guage to Model Management Plans for Composite Applications. In: 4th International Workshop
on the Business Process Model and Notation. Springer (2012) doi:10.1007/978-3-642-33155-
8_4

16. Kopp, O., Martin, D., Wutke, D., Leymann, F.: The Difference Between Graph-Based and
Block-Structured Business Process Modelling Languages. Enterprise Modelling and Informa-
tion Systems 4(1), 3–13 (2009)

17. Leymann, F.: Cloud Computing: The Next Revolution in IT. In: Proc. 52th Photogrammetric
Week, pp. 3–12. Wichmann Verlag (2009)

18. Leymann, F.: Cloud Computing. it - Information Technology 53(4) (2011) doi:10.1524/itit.
2011.9070

19. Leymann, F., Fehling, C., Mietzner, R., Nowak, A., Dustdar, S.: Moving Applications to the
Cloud: An Approach based on Application Model Enrichment. International Journal of Cooper-
ative Information Systems (IJCIS) 20(3), 307–356 (2011). doi:10.1142/S0218843011002250

http://dx.doi.org/10.1109/MIC.2012.43
http://dx.doi.org/10.1109/SOCA.2011.6166250
http://dx.doi.org/10.1007/978-3-642-33606-5_25
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1007/978-3-540-85758-7_29
http://dx.doi.org/10.1109/TSE.1976.233534
http://dx.doi.org/10.1109/TSE.1976.233534
http://dx.doi.org/10.1109/AINA.2010.187
http://www.csee.umbc.edu/~lkagal1/rei/
http://www.csee.umbc.edu/~lkagal1/rei/
http://dx.doi.org/10.1007/978-3-642-33155-8_4
http://dx.doi.org/10.1007/978-3-642-33155-8_4
http://dx.doi.org/10.1524/itit.2011.9070
http://dx.doi.org/10.1524/itit.2011.9070
http://dx.doi.org/10.1142/S0218843011002250

22 TOSCA: Portable Automated Deployment 549

20. Leymann, F., Roller, D.: Production Workflow - Concepts and Techniques. Prentice Hall PTR
(2000)

21. Mell, P., Grance, T.: Cloud Computing Definition. National Institute of Standards and Tech-
nology (2009)

22. OASIS: Web Services Business Process Execution Language Version 2.0 - OASIS Standard
(2007). https://www.oasis-open.org/committees/wsbpel/

23. OASIS: WS-BPEL Extension for People (BPEL4People) Specification Version 1.1 (2010).
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html

24. OASIS: Topology and Orchestration Specification for Cloud Applications Version 1.0 Com-
mittee Specification Draft 03 (2012). http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd03/
TOSCA-v1.0-csd03.html

25. OMG: Business Process Model and Notation (BPMN) Version 2.0 (2011). http://www.omg.
org/spec/BPMN/2.0/. OMG Document Number: formal/2011-01-03

26. Ousterhout, J.: Scripting: Higher level programming for the 21st century. Computer 31(3),
23–30 (1998)

27. Ouyang, C., Dumas, M., ter Hofstede, A., van der Aalst, W.: Pattern-based Translation of
BPMN Process Models to BPEL Services. International Journal of Web Services Research
5(1), Idea Group Publishing (2008)

28. Palmer, N.: Understanding the BPMN-XPDL-BPEL Value Chain. Business Integration Journal
November/December, 54–55 (2006)

29. Petcu, D., Craciun, C., Rak, M.: Towards a Cross Platform Cloud API - Components for Cloud
Federation. In: CLOSER. SciTePress (2011)

30. Petcu, D., Macariu, G., Panica, S., Crciun, C.: Portable Cloud applications–From theory to
practice. Future Generation Computer Systems (2012). doi:10.1016/j.future.2012.01.009

31. Rus, I., Lindvall, M.: Knowledge management in software engineering. Software, IEEE 19(3),
26–38 (2002)

32. Stein, S., Kühne, S., Ivanov, K.: Business to IT Transformations Revisited. In: 1st International
Workshop on Model-Driven Engineering for Business Process Management (2008). doi:10.
1007/978-3-642-00328-8_18

33. Varia, J.: Architecting for the Cloud: Best Practices. Tech. rep., Amazon (2010). http://media.
amazonwebservice.com/AWS_Cloud_Best_Practices.pdf

34. Varia, J.: Cloud Architectures. Tech. rep., Amazon (2010). http://jineshvaria.s3.amazonaws.
com/public/cloudarchitectures-varia.pdf

35. W3C: XML Schema Part 1: Structures Second Edition (2004). http://www.w3.org/TR/
xmlschema-1/

36. W3C: Web Services Policy 1.5 - Framework (2007). http://www.w3.org/TR/ws-policy/

https://www.oasis-open.org/committees/wsbpel/
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd03/TOSCA-v1.0-csd03.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd03/TOSCA-v1.0-csd03.html
http://www.omg.org/spec/BPMN/2.0/.
http://www.omg.org/spec/BPMN/2.0/.
http://dx.doi.org/10.1016/j.future.2012.01.009
http://dx.doi.org/10.1007/978-3-642-00328-8_18
http://dx.doi.org/10.1007/978-3-642-00328-8_18
http://media.amazonwebservice.com/AWS_Cloud_Best_Practices.pdf
http://media.amazonwebservice.com/AWS_Cloud_Best_Practices.pdf
http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf
http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/ws-policy/

Chapter 23

A V-Model Approach for Business Process
Requirements Elicitation in Cloud Design

Nuno Ferreira, Nuno Santos, Ricardo J. Machado, José Eduardo Fernandes

and Dragan Gasević

Abstract The benefits of cloud computing approaches are well known but designing

logical architectures for that context can be difficult. When there are insufficient

inputs for a typical (product) approach to requirements elicitation, a process-level

perspective is an alternative way for achieving the intended logical design. We present

a V-Model based approach to derive logical architectural models to execute in the

different cloud layers from a process-level perspective, instead of the traditional

product-level perspective. This V-Model approach encompasses the initial definition

of the project goals and the process-level perspective of the systems intended logical

architecture. The approach application results in the creation of a validated process-

level structure and behavior architectural models that create a context for eliciting

requirements for a cloud product. Throughout this process, we assess our decisions

N. Ferreira (B)

I2S Informática, Sistemas e Serviços S.A., Porto, Portugal
e-mail: nuno.ferreira@i2s.pt

N. Santos
CCG—Centro de Computaao Gráfica,
Campus de Azurm, Guimaraes, Portugal
e-mail: nuno.santos@ccg.pt

R. J. Machado
Centro ALGORITMI, Escola de Engenharia,
Universidade do Minho, Guimaraes, Portugal
e-mail: rmac@dsi.uminho.pt

J. E. Fernandes
Bragança Polytechnic Institute, Bragança, Portugal
e-mail: jef@ipb.pt

D. Gasević
School of Computing and Information Systems,
Athabasca University, Alberta, Canada
e-mail: dgasevic@acm.org

A. Bouguettaya et al. (eds.), Advanced Web Services, 551
DOI: 10.1007/978-1-4614-7535-4_23,
© Springer Science+Business Media New York 2014

552 N. Ferreira et al.

based on the ARID method to identify process vulnerabilities and evaluate the quality

of the derived logical architecture. We introduce a case study where our approach

was applied and the resulting logical architectural model is presented.

23.1 Introduction

One of the top concerns of Information Technology (IT) managers for almost thirty

years relates to IT and business alignment [27]. The importance of aligning IT with

business needs for the purpose of attaining synergies and improvements in all the

organization is a long-running problem with no visible or deterministic solution.

There are many questions concerning this subject, going from how to align sev-

eral strategic components of an organization with the necessary maturity or how

business and IT are aligned with each other. Designing software architectures for a

system to be executed in a cloud environment that ensures a proper alignment with

the business needs and the possible IT solution is a difficult task. Typical software

design approaches are based on a product-level perspective, that is, are based on the

intended final product design characteristics. These approaches are not always fea-

sible, namely when there is not enough information for eliciting the product require-

ments. Our proposed solution is based on a process-level perspective for designing

a cloud computing architecture, with the purpose of contributing to a more accurate

definition of product requirements and understanding of the development project

scope.

We chose to represent an IT solution by its logical architecture in order to achieve

a structured view of the system functionalities, resulting from a process of trans-

forming business-level and technological-level decisions and requirements into a

representation (model). This representation is fundamental to analyze and validate a

system but is not enough for achieving a full transformation of the requirements into a

model able to implement business stakeholders decisions. Therefore, to achieve such

representativeness, we add artifacts that represent requirements at different levels of

abstraction and promote an alignment between them and with the logical architec-

ture. Those artifacts are, for instance, organizational configurations, processes or

behavior representations.

Our approach requires the definition of information regarding the business context

domain of an organization. This information concerns people, namely stakeholders,

and also the processes they are involved in. Stakeholders are responsible for the

decision making processes that influence the organizations strategy at any given

level under analysis [10]. At the same time, the organization’s software architecture

and systems are also influenced by the decisions of the stakeholders regarding their

own technical and business background.

We propose in this chapter a “Vee” Model-based adaptation (V-Model) [20], which

suggests a roadmap for product design based on business needs. The model requires

the identification of business needs and then, by successive artifact derivation it is

possible to transit from a business-level perspective to an IT-level perspective and at

23 A V-Model Approach for Business Process Requirements Elicitation 553

the same time, assure the alignment of the requirements with the derived IT artifacts.

This chapter also describes the extensions introduced into the Four-Step-Rule-Set

(4SRS) method to be adopted at the process-level perspective in large-scale projects.

The 4SRS method was first defined and detailed in [29]. The described extensions

are focused on a process-level perspective to deliver a logical architectural model.

This logical architectural model contributes to support the creation of context for the

elicitation of requirements of the product to be developed. This chapter additionally

illustrates a case study to present the applicability of the proposed approach in a

real industrial project: ISOFIN—Interoperability in Financial Software, architecture

capable to be implemented in the three typical cloud-layers: Infrastructure-as-a-

Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS), as

defined in [32]. The transformation of such context into product-level requirements

does not belong to the scope of the present work.

This chapter is structured as follows: in Sect. 23.2 we present the core topics con-

cerning business process requirements modeling through multiple views; Sect. 23.3

contains our V-Model representations (pictographic and SPEM) that is the basis of

our work for business requirements, along with the derived artifacts and the alignment

between them; Sect. 23.4 details the artifacts regarding organizational configurations

and interactions; Sect. 23.5 describes the rationale for executing the 4SRS method

in the process-level perspective rather than the traditional product-level perspective;

Sect. 23.6 details the derivation of logical architectures as context for elicitation in

cloud design and the assessment of the V-Model approach through ARID; and in

Sect. 23.7 we present our work conclusions.

23.1.1 The ISOFIN Project

We assess the applicability of the proposed approach using a case study which results

from the process-level requirements elicitation in a real project: the ISOFIN project

[21]. This project aimed to deliver a set of coordinating services in a centralized

infrastructure, enacting the coordination of independent services relying on sepa-

rate infrastructures. The resulting ISOFIN platform contributes for the semantic and

application interoperability between enrolled financial institutions (Banks, Insurance

Companies and others), as depicted in Fig. 23.1. The global ISOFIN architecture

relies on two main service types: Interconnected Business Service (IBS) and Sup-

plier Business Service (SBS). IBSs concern a set of functionalities that are exposed

from the ISOFIN core platform to ISOFIN Customers. An IBS interconnects one

or more SBSs and/or IBSs exposing functionalities that relate directly to business

needs. SBSs are a set of functionalities that are exposed from the ISOFIN Suppliers

production infrastructure. Figure 23.1 encompasses the primary constructors (IBS,

SBS and the ISOFIN Platform) available in the logical representations of the system:

in the bottom layer there are SBSs that connect to IBSs in the ISOFIN Platform layer

and the later are connected to ISOFIN Customers.

554 N. Ferreira et al.

23.1.2 Roadmap from Process- to Product-Level Requirements

Elicitation

Our proposed approach intended usage is for cases with insufficient inputs for the tra-

ditional product-level requirements elicitation. We propose an approach that begins

with eliciting process-level requirements and later evolving to properly aligned

product-level requirements. Our proposal, a V + V process, is based on the execution

of two V-Model based approaches, one executed in a process-level perspective and

the other executed in a product-level perspective. In this chapter we only present the

process-level V-Model execution, which will allow for creating context for executing

the product-level V-Model.

The process-level V-Model need is based on the premise that there is no clearly

defined context for eliciting product requirements. As an example for a situation

where there is no clearly defined context, we use the case study presented in the

previous section, the ISOFIN project. This project is executed in a consortium com-

prising eight entities (private companies, public research centers and universities),

making the requirements elicitation and the definition of a development roadmap dif-

ficult to agree. The initial request for the project requirements resulted in mixed and

confusing sets of misaligned information. Our proposal of adopting a process-level

perspective was agreed on and, based on the knowledge that each consortium mem-

ber had of the intended project results, the major processes were elicited and a first

approach to a logical (process-level) architecture was made. After execution of the

process-level perspective, it was possible to gather a set of information that the con-

sortium is sustainably used to evolve to the traditional (product-level) development

scenario. Elicited requirements in a process level perspective describe the processes

in a higher level of abstraction, making them understandable by the consortium key

decision-taking members (business stakeholders).

Due to the lack of consensus in the requirements elicitation in this “newfound”

paradigm of IT solutions (Cloud Computing), our approach changed the traditional

Fig. 23.1 Interoperability in ISOFIN

23 A V-Model Approach for Business Process Requirements Elicitation 555

product-level perspective to the described process-level perspective. This new per-

spective allows the proper elicitation of requirements in Cloud Computing projects.

The rationale for the design of the models proposed in the approach (to be presented

in Sect. 23.3), in the case of this project, was based on specifying processes that intent

to execute in a cloud-based software solution. Also, the execution of non-automatic

micro-steps of the 4SRS method relate to cloud-issues. However, our approach is

generic enough to be independently used from the type of solution decided from by

the project consortium.

The intended cloud solution is able to be deployed in an IaaS layer. That layer

supports the execution of a set of services that will allow suppliers to specify the

behaviour of the services they intend on supplying, in a PaaS layer. This will allow

customers, or third-parties, to use the platform’s services, in a SaaS layer and be

billed accordingly.

23.2 Multiple View Requirements Modeling

It is acknowledged in software engineering that a complete system architecture can-

not be represented using a single perspective [25, 38]. Using multiple viewpoints,

like logical diagrams, sequence diagrams or other artifacts, contributes to a better

representation of the system and, as a consequence, to a better understanding of the

system. Krutchen’s work [25] refers that the description of the architecture can be

represented into four views: logical, development, process and physical. The fifth

view is represented by selected use cases or scenarios. Zou and Pavlovski [41] add

an extra view, the control case view, that complements the use case view to complete

requirements across the collective system lifecycle views.

Our method is executed in a process-level perspective, but how the term process is

applied in this approach can lead to inappropriate interpretations. For scope definition

of our work, we characterize the process-level perspective by: (1) being related to real

world activities, including business; and (2) when related to software those activities

encompass the typical software development lifecycle. Activities and their interface

in a process can be structured or arranged in a process architecture [9].

We typically characterize product-level approaches with functional decomposi-

tion of systems models. The process architecture represents a fundamental organiza-

tion of service development, service creation, and service distribution in the relevant

enterprise context [40]. In this context, we believe that the process-level 4SRS method

can be used when there is no agreed on or defined context for requirements elicita-

tion. Requirements elicitation is concerned with where software requirements come

from and how they are collected [1] within the Requirements Engineering area. The

objective of a requirements elicitation task is to communicate the needs of users and

project sponsors to system developers [42]. A proper requirements elicitation task

must encompass an understanding of the organizational environment, through their

business processes [11]. An accurate requirements elicitation can be assured through

the use of requirements elicitation methodologies, methods or techniques. The Work

556 N. Ferreira et al.

System Method [2] presents a combined static view of the current (or proposed)

system and a dynamic view of the system evolution over time. The Soft Systems

Methodology (SSM) [14] is a domain-independent analysis methodology designed

for tackling problematic situations where there is neither clear problem definition

nor solution.

Overall, our approach suggests the derivation of a process-level logical architecture

for creating context for cloud design. There are several approaches, in a product-level

perspective, to support the design of software architectures, like RSEB [22], FAST

[39], FORM [23], KobrA [6] and QADA [30]. The product-level perspective of the

4SRS [29] method also promotes functional decomposition of software systems.

Tropos [12] and 4SRS (in [18]) are process-level requirement modeling methods.

Regarding Tropos, it uses notions of actor, goal and (actor) dependency as a foun-

dation to model early and late requirements, architectural and detailed design. The

4SRS method is usually applied in a product-level perspective. According to [19],

and in a business context, a process is executed to achieve a given business goal

and where business processes, human resources, raw material, and internal proce-

dures are combined and synchronized towards a common objective. Our processes

represent the real-world activities of a software production process, like in [16].

A system logical architecture can be viewed as a constructed set of the system’s

design decisions. By constructed we mean that the architecture is built using a con-

struction method that assures its correctness. Design decisions, at this level, can be

analyzed by looking at the non-functional requirement that the system is intended to

comply. For instance, if we intend our system to be secure, the architect should pay

attention to the communication between architectural elements represented in the

logical architecture diagram and also to the data flows between them or to the exis-

tence of special encryption or authentication elements. If the system is required to

be redundant, the architect should care about redundant sub-systems or architectural

elements.

The result of the application of the 4SRS method is a logical architecture. A logical

architecture can be considered a view of a system composed of a set of problem-

specific abstractions supporting functional requirements [4]. The logical architecture

acts as a common abstraction of the system providing a representation of the sys-

tem able to be understood by all the stakeholders regardless of their background.

The process architecture represents the fundamental organization of service devel-

opment, service creation, and service distribution in the relevant enterprise context

[40]. A process architecture can also be defined as an arrangement of the activities

and their interfaces in a process [9], takes into account some non-functional require-

ments, such as performance and availability [25], and can be represented with com-

ponents, connectors, systems/configurations of components and connectors, ports,

roles, representations and rep-maps [31], as well as by architectural elements’ static

and temporal features [24].

The defined and derived artifacts suggested by our approach, used alone and

unaligned with each other, are of a lesser use to organizations and stakeholders. Our

approach begins in a business-level perspective, by defining the organizational con-

figurations and ends with a technological view of the system. From one perspective

23 A V-Model Approach for Business Process Requirements Elicitation 557

to the other, alignment must be assured. The alignment we refer to relates to business

and IT alignment [13] and, in our case, where the business needs must be instantiated

into the creation of context for proper product design.

23.3 V-Model Approach

Traditional development processes can be referenced using the Royce’s waterfall

model [37] that includes five typical phases in its lifetime: Analysis, Design, Imple-

mentation, Test and Deployment. Defining a simplified macro-process for supporting

the requirement elicitation in a process-level approach must take into account the

waterfall model lifecycle for a project. We frame our proposed V-Model approach

in the Analysis phase of the lifecycle model, as depicted in Fig. 23.2. This simplified

development macro-process based on the waterfall model uses the V-Model gener-

ated artifacts for eliciting requirements that, in a process-level approach, are used as

input for the traditional 4SRS usage (product-level) [29]. The product-level 4SRS

promotes the transition from the Analysis to the Design phase.

23.3.1 The V-Model Representation

In this section, we present our approach, based on successive and specific artifacts

generation. We use Organizational Configurations (OC) [17], A-type and B-type

sequence diagrams [28], use case models and a process-level logical architecture

diagram. All these artifacts are properly described later in the chapter. The generated

artifacts and the alignment between the business needs and the context for product

design can be represented by a V-Model (Fig. 23.5).

The original V-Model is a variation of the Royce’s waterfall model [37], in a

V shape folded in half and having in the vertex the lowest level of decomposition.

Fig. 23.2 Framing the V-Model representation in the development macro-process

558 N. Ferreira et al.

The V-Model left side represents the decreasing abstraction from user requirements

into components by a process of decomposition and definition. The right side of the

V-Model represents the integration and verification of the previous components into

greater levels of implementation and assembly, by realizing them and thus decreasing

the abstraction level. The V-Model representation [20] provides a balanced process

representation and, simultaneously, ensures that each step is verified before moving

to the next.

In our proposed V-Model, the artifacts are generated based on the rationale and

in the information existing in previously defined artifacts, i.e., A-type sequence dia-

grams are based on OCs, use case model is based on A-type sequence diagrams, the

logical architecture is based on the use case model, and B-type sequence diagrams

comply with the logical architecture.

The OC model is a high-level representation of the activities (interactions) that

exist between the business-level entities of a given domain. Fig. 23.3 shows an exam-

ple of an OC, with two activity types, each with a role and two interactions. Each

OC must contain information on the performed activities, the participating profes-

sional profiles, and the exchange of information or artifacts. The set of interactions

are based on business requirements and, in conjunction with the entities and the

stakeholders, are represented with the intention of describing a feasible scenario that

fulfills a business vision.

Our approach uses a UML stereotyped sequence diagram representation to

describe interactions in early analysis phase of system development. These diagrams

are presented in this chapter as A-type sequence diagrams. Another stereotyped

sequence diagram, called B-type sequence diagrams, allows for deriving process

sequences represented by the sequence flows between the architectural elements

(AEs) depicted in the logical architecture. An AE is a representation of the pieces

from which the final logical architecture can be built. This term is used to distinguish

those artifacts from the components, objects or modules used in other contexts, like

in the UML structure diagrams. One must assure that a process’ sequences modeled

in B-type sequence diagrams depict the same flows as the ones modeled in A-type

sequence diagrams, as well as being in conformity with the interactions between AEs

depicted in the logical architecture associations. An example of A-type and B-type

sequence diagrams can be found in Fig. 23.4.

The generated models and the alignment between the domain specific needs and

the context for product design can be represented by a V-Model as seen on Fig. 23.5.

The V-Model representation [20] provides a balanced process representation and,

simultaneously, ensures that each step is verified before moving to the next. In this

V-Model, the models that assemble it are generated based on the rationale and in the

Fig. 23.3 Organizational configuration example

23 A V-Model Approach for Business Process Requirements Elicitation 559

information existing in previously defined models, i.e., A-type diagrams are based

on OCs, use cases are based on A-type diagrams, the logical architecture is based on

the use case model, and B-type diagrams comply with the logical architecture.

A-type Sequence Diagrams can be gathered and afterwards used as an elicitation

technique for modeling the use cases. It can be counterintuitive to consider that use

case diagrams can be refinements of sequence diagrams. It is possible if we take into

consideration that the scenarios expressed in the A-type sequence diagrams are built

using the use-case candidates in the form of activities that will be executed and must

be computationally supported by the system to be implemented. These activities in

form of use cases are placed in the A-type sequence diagram and associated with the

corresponding actors and other used cases. These use cases are later arranged in use

case diagrams after redundancy is eliminated and proper naming is given. The flow

expressed by the sequences creates the rationale for discovering the necessary use

cases to complete the process.

Fig. 23.4 A- and B-type sequence diagrams examples

Fig. 23.5 V-Model adaption for business and IT-alignment

560 N. Ferreira et al.

As suggested by the V-Model represented in Fig. 23.5, the artifacts placed on the

left hand side of the path representation are properly aligned with the artifacts placed

on the right side, i.e., B-type sequence diagrams are aligned with A-type sequence

diagrams, and the logical architecture is aligned with the use case model. Alignment

between the use case model and the logical architecture is assured by the correct

application of the 4SRS method. The resulting sets of transformations along our V-

Model path provide artifacts properly aligned with the organization’s business needs

(which are formalized through Organization Configurations).

A notation commonly associated with business process is BPMN [33]. BPMN

is a graphical notation that depicts the steps in a business process by coordinating

sequence of processes and the messages they exchange in a defined scenario. We have

adopted UML instead of BPMN because UML takes an object-oriented approach to

design of applications, focusing on software. BPMN takes that approach to modeling

of systems, focusing on business process. The two are complementary views on

systems. BPMN process definitions are intended to be implemented as an automated

business process in a process execution language. Our usage of sequence and use case

diagrams does not have such intention. Nevertheless, it is possible to map between

BPMN constructs and UML use case and sequence diagram constructs. The 4SRS

method takes as input use case models that capture the intended system requirements,

making their adoption mandatory in our specifications.

23.3.2 A V-Model SPEM Representation

The development of software systems encompasses the application of several good

practices and diversified knowledge as well as, eventually, the introduction of new

ideas or strategies. This results on the possibility of existence of several distinct

approaches or ways for the development of a software system. In order to be able to

express, establish, or organize the structure of activities inherent to a software devel-

opment approach, it is convenient a standard way for expressing the process structure.

In this context, Software and Systems Process Engineering Meta-Model 2.0 (SPEM

2.0), standardized by the Object Management Group (OMG), is a process engineering

meta-model that provides to process engineers a conceptual framework for “model-

ing, documenting, presenting, managing, interchanging, and enacting development

methods and processes” [34]. In its current version, version 2.0, SPEM is defined

as a meta-model as well as a UML 2 Profile (concepts are defined as meta-model

classes as well as UML stereotypes) which provides an alternative representation to

the SPEM 2.0 meta-model. Attending to the usefulness of the SPEM specification,

we use it to describe our approach. As such, attending to the work performed and

products produced, Fig. 23.6 presents a SPEM perspective of the V-Model based

process used to derive the product-level requirements elicitation context. For this

purpose, we use the typical SPEM representations for presenting the approach, i.e.,

activities (e.g., Use Case Modeling), artifacts (e.g., Use Case Model), deliverables

23 A V-Model Approach for Business Process Requirements Elicitation 561

(Product-level Requirements Elicitation Context) and associations (input, output,

predecessor and composition).

As depicted by Fig. 23.6, the V-Model representation has the purpose of providing

the deliverable Product-Level Requirement Elicitation Context. The main activities

that make up the process are Definition of Organizational Configurations, Descrip-

tion of interactions, Use Case Modeling, 4SRS Transformation, Architecture Tra-

versing, and Collection of Artifacts (as indicated by the composition associations).

These activities are sequentially performed in a way that an activity starts only when

its predecessor activity has finished (as indicated by the predecessor dependencies).

The activities use and produce (as indicated by input and output associations) arti-

facts, namely Organizational Configurations, A-Type Sequence Diagrams, Use Case

Model, Process-Level Logical Architecture Diagram, B-type Sequence Diagrams,

and Product-Level Requirement Elicitation Context.

23.4 Business Requirements

The V-Model representation promotes the alignment between the artifacts on the

problem domain and the artifacts on the solution domain. The presented artifacts

are created in succession, by manipulating the information that results from one

to make decisions on how to create the other. To assess this approach, we present a

Fig. 23.6 SPEM diagram of ISOFIN V-model based process

562 N. Ferreira et al.

process regarding our real case study, the ISOFIN project, as an example. The process

under analysis, called “Create IBS”, deals with the creation of a new Interconnected

Business Service (IBS). The inter-organizational relations required to create a new

IBS are described under a new OC. The definition of activities and actors required to

create a new IBS are described in an A-type sequence diagram. A B-type sequence

diagram allows for validation of the logical architecture required to create an IBS

and also validates the requirement expressed in the corresponding A-type sequence

diagram. After the generation of these artifacts, we assure that the “Create IBS”

process is aligned with the stakeholder’s needs.

In a process-level approach, in opposition to the product-level approach, the char-

acterization of the intended system gives a different perspective on the organizational

relations and interactions. When defining a business context, we consider that inter-

actions between actors and processes constitute an important issue to be dealt. This

section focuses on characterizing those interactions by using three different levels of

abstraction, as depicted in Fig. 23.7: the first level is represented by OCs; the other

two are represented by different types of Stereotyped UML sequence diagrams, pre-

sented as A-type and B-type sequence diagrams (later described in this section).

23.4.1 Organizational Configurations

Today’s business is based on inter-organizational relations [17], having an impact

on an organization’s business and IT strategy [5]. We model a set of OCs to describe

inter-organizational relations as a starting point to the definition of the business

context. We present an example of an OC, for the purpose of assessing our approach,

which has been characterized and applied in our case study. Firstly, it is necessary

to define the types of activities performed in the business context. By analyzing the

Fig. 23.7 Organizational configurations and interactions alignment

23 A V-Model Approach for Business Process Requirements Elicitation 563

types of activities, the execution of an IBS within a business activity regards #A

activities, while the creation of a new IBS regards #B activities:

(1) #A Activities—Financial Domain Business Activities: these are the delivered

domain business activities regarding the financial institutions.

(2) #B Activities—ISOFIN Platform Services Integration: these are the activities

that relate to the integration of supplier services.

In order to characterize an organization, it is required to relate a set of roles to the

performed activity type. Finally, the interactions between organizations are specified.

In Fig. 23.8, it is possible to depict the required relations between organizations in

order to create an IBS and providing it to ISOFIN Customers. The description of the

professional profiles and the exchange of information between organizations are not

relevant in this chapter.

23.4.2 Stereotyped Sequence Diagrams

In an early analysis phase, we need to define the relations between activities and

actors, defined through interactions in our approach. Interactions are used during the

more detailed design phase where the precise inter-process communication must be

set up according to formal protocols [35]. An interaction can be displayed in a UML

sequence diagram.

Traditional sequence diagrams involve system objects in the interaction. Since

modeling structural elements of the system is beyond the scope of the user require-

ments, Machado et al. propose the usage of a stereotyped version of UML sequence

diagrams that only includes actors and use cases to validate the elicited requirements

at the analysis phase of system development [28]. We also use such diagrams in our

work and define them as A-type sequence diagrams, as shown in Fig. 23.9. In this

example, we depict sequential information flows of process-level use cases that refer

to the required activities for creating an IBS. These activities are executed within #B

activities, after receiving business requirements from ISOFIN Customers and before

delivering IBS (interactions depicted in the OC of Fig. 23.8).

The usage of A-type sequence diagrams is required to gather and formalize the

main stakeholder’s intentions, which provide an orchestration and a sequence of some

proposed activities. A-type sequence diagrams relate the roles presented within an

OC and instantiates their relations with activities. A-type sequence diagrams allow a

pure functional representation of behavioral interaction with the environment and are

Fig. 23.8 Organizational configuration

564 N. Ferreira et al.

appropriate to illustrate workflow user requirements [28]. They also provide infor-

mation for defining and modeling use cases at a process-level perspective and frame

the activities execution in time. Modeled diagrams must encompass all processes

and actors.

One of the purposes of creating a software logical architecture is to support the

system’s functional requirements [25]. It must be assured that the derived logical

architecture is aligned with the business needs. On the one hand, the execution of a

software architecture design method (e.g., 4SRS) provides an alignment of the logical

architecture with user requirements (presented in Sect. 6.1). On the other hand, it

is necessary to validate if the behavior of the logical architecture is as expected.

So, in a later stage, after deriving a logical architecture, to analyze the sequential

process flow of architectural elements (as shown in Fig. 23.10), we adopt different

stereotype of UML sequence diagrams, where architectural elements (presented in

the logical architecture), actors and packages (if justifiable) interactions are modeled.

Architectural elements refer to the pieces from which the final logical architecture can

be built. In Fig. 23.10, we present the same activities concerning creating an IBS but in

a lower level of abstraction, closer to product design. B-type sequence diagrams differ

from the traditional ones, since they model the exchange of information between

actors and logical architectural elements, thus they are still modeled at the system

level.

23.4.3 An UML Metamodel Extension for A-type and B-type

Sequence Diagrams

The usage of A-type and B-type sequence diagrams in our approach is perfectly har-

monized with UML sequence diagram’s original semantics, as described in the UML

Superstructure [35]. We present in the left side of Fig. 23.11 some of the classes of

Fig. 23.9 A-type sequence diagram

http://dx.doi.org/10.1007/978-1-4614-7535-4_6

23 A V-Model Approach for Business Process Requirements Elicitation 565

the UML metamodel regarding sequence diagrams (in the Interactions context of

the UML Superstructure). As A-type and B-type sequence diagrams differ from typ-

ical sequence diagrams in the participants of the interactions, the usage of these

diagrams regards the Lifeline class. A lifeline represents an individual participant

in the Interaction. The Lifeline notation description presented in the UML Super-

structure details that the lifeline is described by its <connectable-element-name>

and <class_name>, where <class_name> is the type referenced by the represented

ConnectableElement, and its symbol consists in a “head” followed by a vertical line

(straight or dashed). A ConnectableElement (from InternalStructures) is an abstract

metaclass representing a set of instances that play roles of a classifier. The Life-

line “head” has a shape that is based on the classifier for the part that this lifeline

represents.

We propose in this section, as depicted in the highlighted class in the right side

of Fig. 23.11, a stereotype class to extend the UML Metamodel, so it can support

AEs. The participants in the interactions in A-type sequence diagrams are use cases

and in B-type sequence diagrams are AEs. Regarding A-type sequence diagrams, the

UML Superstructure clearly defines a class for use cases. However, regarding B-

type sequence diagrams, AEs are not considered in any class of the UML metamodel

and, despite some similarities in semantics, are different from UML components. The

added value of our metamodel relates to situations like these, leading to the necessity

of defining a stereotype Architectural Element for the NamedElement class (depicted

in the right side of Fig. 23.11). AEs refer to the pieces from which the final logical

architecture can be built and currently relate to generated artifacts and not to their

connections or containers. The nature of AEs varies according to the type of system

under study and the context where it is applied. Like the ConnectableElement class,

UseCase class is also generalized by NamedElement class. The information regarding

abstract syntax, concrete syntax, well-formedness and semantics [3] of UseCase class

Fig. 23.10 B-type sequence diagram

566 N. Ferreira et al.

and the context in which we defined the stereotype Architecture Element does not

express any condition that restricts them of being able to act as a ConnectableElement.

23.5 Transition from Business to IT

The 4SRS method allows for the transformation of user requirements into an architec-

tural model representation and is traditionally applied in a product-level perspective

[29] including variability and recursive mechanisms [4, 29].

This chapter presents an extension of the traditional (product-level perspective)

usage of the 4SRS method to allow its application in a process-level perspective sup-

porting the creation of context for the product-level requirements elicitation. This

application differs from the traditional by defining a set or rules that must be observed

when reasoning about the execution of the method steps. Our extension of the method

also defines additional micro-steps to the existing ones. Alongside the method presen-

tation there will be presented some examples created during the method application

to derive a logical architecture that acts as a basis for the requirements elicitation of

a cloud SaaS solution, in this case, a subset of the ISOFIN project.

The 4SRS method takes as input a set of use cases describing the requirements

for the cloud-specific processes that tackle the initial problem. These use cases are

refined trough successive 4SRS iterations, representing the intended cloud concerns

of the involved business and technological stakeholders. Neither KobrA, RSEB or

TROPOS make use of techniques for refining use cases like the 4SRS method does.

Application of the 4SRS method requires the creation of “architectural elements”

(AEs). The nature of AEs varies according to the type of system under study and also

with the context where it is applied. In the specific context of logical architectures, the

term architectural element refers to the pieces from which the final logical architecture

Fig. 23.11 The proposed extension to the UML metamodel for representing A-type and B-type

sequence diagrams [35]

23 A V-Model Approach for Business Process Requirements Elicitation 567

can be built. We deliberately use this term to distinguish those artifacts from the

components, objects or modules used in other well established contexts, like in

the UML structure diagrams. This process-level approach can be executed in several

contexts. In our case for cloud design, cloud-related issues are dealt in non-automatic

micro-steps in step 2 (only micro-steps 2ii and 2vi are automatic). The rest of the

steps described in this section are independent of the execution context.

The execution of the 4SRS transformation steps can be supported in tabular rep-

resentations as detailed in [29]. Moreover, the usage of tables permits a set of tools

to be devised and built, so that the transformations can be partially automated. These

tabular representations constitute the main mechanism to automate a set of decision-

assisted model transformation steps. Tabular transformations are supported in a table

where the cells are filled with the set of decisions that were taken and made possi-

ble the derivation of a logical architecture for the cloud design. An example of the

4SRS method execution table is represented in Fig. 23.12. Each column of the table

concerns a step/micro-step of the method execution.

23.5.1 Step 1: Architectural Element Creation

This step regards the creation of AEs. The product-level 4SRS [29] rule of transform-

ing each use case into three AEs is still valid in the process-level 4SRS. According

to the MVC-like pattern applied in the product-level 4SRS, an interface, data and

control AEs are created for each use case. i-type, d-type, or c-type stereotypes respec-

tively are added to each AE and their names are prefixed with “AE” (the stereotypes

definition will be detailed in micro-step 2i). No particular rationale or decision is

required at this step since it concerns mainly the transformation of one use case into

three specific AEs.

Fig. 23.12 Tabular transformation of the 4SRS method

568 N. Ferreira et al.

An addition to this step is the identification of glue elements resulting from the

textual descriptions associated with the use case under analysis. If the use case depicts

pre- or post-conditions in the form of validations, those can be expressed in this step

as a Glue AE. These AEs have the c-type stereotypes since they require decisions to

be made with computational support, that is, they must be supported by the system

architecture to be represented. A sequential number is added to each Glue AE. Those

elements will be used as generic process interfaces between generated AEs and act as

pre- or post-condition process validations. Other AEs are expressed as Generated AE.

23.5.2 Step 2: Architectural Element Elimination

In this step, AEs are submitted to elimination tasks according to pre-defined rules.

At this moment, the system architect decides which of the original three AEs (i, c,

d) plus any glue element are maintained or eliminated taking into account the entire

system.

The original step 2 of 4SRS is divided into seven micro-steps. We added a new

micro-step, 2viii: Architectural Element Extended Description.

Micro-step 2i: Use Case Classification. In this step, each use case is classified

ac-cording to the nature of its AEs, previously created in step 1. The nature of an

AE is defined according to the suffix the AE was tagged with. In the process-level

perspective more than one of each AE type can be generated according to the textual

description and in the model of the use case. Each AE type must be interpreted as

follows:

 i-type—refer to interface. These represent process’ interfaces with users, software

or other processes. An AE belonging to or being classified in this category is due

to its ability interact with other AEs external to itself;

 c-type—refer to control. These represent a process focusing on decision mak-

ing and such decision must have a computational support given from the overall

intended system;

 d-type—refer to generic decision repositories (data), not computationally sup-

ported from the overall intended system. This repository stores information for a

given period of time, comprising decisions based on physical repositories (like doc-

uments or databases) or verbal decisions taken and transmitted between humans.

In the process-level perspective, c-type and d-type AEs are related to decision-

making processes. The difference resides on the computational support of the AE by

then under design overall intended system (in hypotheses).

Micro-step 2ii: Local Elimination. This micro-step refers to determining which

AEs must be eliminated in the context of a use case, guaranteeing its full representa-

tion. This is required since micro-step 2i disregards any representativeness concerns.

There are cases when there is an explicit place for a d-type AE and it is admittedly

eliminated. Reasons for this are due to the process-level perspective: there is no need

23 A V-Model Approach for Business Process Requirements Elicitation 569

for certain types of decision repositories that only regard information for the final

product and not the process.

Micro-step 2iii: Architectural Element Naming. In this micro-step, AEs that

survived the previous micro-step are given a name. The name must reflect the role

of the AE within the entire use case, in order to semantically give hints on what

it represents and not just copy the original use case name. Usually, the AE name

reflects also the use case from which the AE was originated.

Micro-step 2iv: Architectural Element Description. The resulting AEs that

were named in the previous micro-step must be described and the requirements that

they represent must be addressed in the process-level perspective. This micro-step

is where the transition is made from the problem domain to the solution domain, so

the descriptions must detail, in process terms, how, why, when by whom that AE is

going to be executed. This micro-step must explicitly describe the expected behavior

of the AE execution, including which decisions will be made and how will they be

supported.

Micro-step 2v: Architectural Element Representation. The purpose of this

micro-step is to eliminate AE redundancy in the global process. In this micro-step,

all AEs are considered and compared in order to identify if one AE is represented by

any other one. The identification of AE representation is the most critical task in the

4SRS method application, because the elimination of redundancy assures a semantic

coherence of the logical architecture and discovers anomalies in the use case model.

Since the architecture being described concerns the process-level, the identification

of AE redundancy takes in consideration facts like the execution context, actors

involved, used artifacts, activities and tasks, among others. If all of these factors are

similar, though the AEs are originated by different use cases, the given AE can be

considered to represent another. Other cases when an AE is considered to represent

another:

� In similar activities, if the same actor has the same role in the both AEs, despite

different execution contexts (e.g., {AE2.4.1.i} Perform ISOFIN Supplier Request

Evaluation is considered to be represented by {AE2.4.2.i} Perform ISOFIN Cus-

tomer Request Evaluation, the IBS Business Analyst triggers both AEs—the first

AE represents the second AE, because the actor interacts with the same type of

information);

� In similar activities, different actors participate in the AE, but the execution context

is the same (e.g., {AE2.1.c} Access Remote Catalogs and {AE1.11.i} Browse

ISOFIN Catalogs, the involved actors are different, but the execution platform is

the same—both of them execute in the ISOFIN Platform, in the SaaS layer).

These cases are only applicable for i-type and c-type AEs. This set of rules cannot

be applied to d-type AEs since they represent the decisions that need to be taken

and whose computational support is not assured by the scope of the project under

analysis. Also, d-type AEs are usually input for other decision processes (c-type AEs)

requiring computational support.

Despite the decision making process may be similar, d-type AEs differ in the

decision making purpose. This difference is required to assure the process variability,

570 N. Ferreira et al.

when the execution contexts are similar but the involved actors and activities are

different.

The column “represented by” stores the reference of the AE that will represent

the AE being analyzed. If the analyzed AE is going to be represented by itself, the

corresponding “represented by” column must refer to itself. The column “represents”

stores the references of the objects that the analyzed AE will represent.

Micro-step 2vi: Global Elimination. This micro-step refers to determining

which AEs must be eliminated in the context of the global model, similar to micro-

step 2ii, since its execution is automatic.

The AE that is represented by itself or represents other AEs is maintained. The

rest (i.e., AEs that are represented by other AEs) are eliminated. This is a fully

“automatic” micro-step, since it is based on the results of the previous one.

Micro-step 2vii: Architectural Element Renaming. In this micro-step, AEs that

have not been eliminated in micro-step 2vi are renamed. In cases where the AE under

analysis results of the representation of more than one AE, the new name must reflect

the global execution of the AE in the project context.

Micro-step 2viii: Architectural Element Specification. This micro-step has

never been considered in previous versions of the traditional 4SRS method. Though it

is similar to micro-step 2iv, this micro step intends to describe AEs that, in micro-step

2v, are considered to represent other AEs. The decision of creating this micro-step

arises from the need to clearly define the proper behavior of the “new” AE in a

way that is clear to system architects. The specification must also include execu-

tion sequence references of the AEs. The specification information is required in

the transformation from the process-level approach to the product-level approach, to

infer the necessary requirements of a given product based on the processes of which

the product is composed.

23.5.3 Step 3: Packaging and Aggregation

Like in the traditional 4SRS method, in this step, the remaining AEs (those that

were maintained after executing step 2), for which there is an advantage in being

treated in a unified process, should give the origin to aggregations or packages of

semantically consistent AEs. This step supports the construction of a truly coherent

process-level model.

23.5.4 Step 4: Architectural Element Association

Decisions on the identification of associations between AEs can be based in infor-

mation contained in the use case model and in micro-step 2i. Thus, as an addition to

the original 4SRS, step 4 was divided in micro-step 4i: Direct Associations and 4ii:

Use Case Associations, with the purpose of identifying unnecessary direct associa-

23 A V-Model Approach for Business Process Requirements Elicitation 571

tions and to help reflecting the model changes made in the previous steps. It must be

also noted that any textual references to eliminated AEs in micro-step 2vi, must be

included in micro-step 2viii, making it another source of information for step 4.

Micro-step 4i: Direct Associations. Direct associations are the ones that derive

from AEs originated by the same use case. These associations are depicted from the

classification given in the method micro-step 2i.

Micro-step 4ii: Use Case Model Associations. Use Case Model Associations

are the ones that can be inferred from the textual descriptions of use cases, that is,

when a use case description refers, implicitly or explicitly to another use case, the

associations inferred imply that the use cases are connected.

23.6 Business Context for Cloud Design

In this section, we present the process-level logical architecture derived using the

4SRS method. The method takes use cases as input, since they reflect elicited require-

ments and functionalities. Use cases are derived from A-type sequence diagrams and

from the OCs (presented in Sect. 23.4). The 4SRS method, in the examples to follow,

is treated like a black box in the V-Model description (Fig. 23.13).

Fig. 23.13 Derivation of process-oriented logical architectures

23.6.1 Derivation of Process-Oriented Logical

Architectures

Gathering A-type sequence diagrams (presented in 4.2) can be used as an elicitation

technique for modeling the use cases. All use cases defined in the A-type sequence

diagrams must be modeled and textually described in the Use Case artifact.

572 N. Ferreira et al.

The use case model specifies the required usages of the ISOFIN Platform. In

Fig. 23.14, we present a subset of such usages, regarding the development of func-

tionalities to be accessed by ISOFIN Customers. Use cases, in the process-level

perspective, portray the activities (processes) executed by persons or machines in

the scope of the system, instead of the characteristics (requirements) of the intended

products to be developed. It is essential for use case modeling to include textual

descriptions that contain information regarding the process execution, preconditions

and actions, as well as their relations and dependencies.

The turning point for eliciting requirements was the usage of the 4SRS method in

the process-level perspective, which allowed for the transformation of process-level

requirements into the logical diagram, presented in Fig. 23.15, which represents the

logical architecture for creating IBSs. The architecture is composed by the architec-

tural elements that derive from the use case model. The resulting subset of the logical

architecture shows how activities are arranged so an IBS is generated and available

to ISOFIN Customers within the intended IT solution. The architecture is composed

by the AEs that survived after the execution of step 2. The packaging executed in

step 3 allows the identification of major processes. The associations identified in step

4 are represented in the diagram by the connections between the AEs (for readability

purposes, the “direct associations” were represented in dashed lines, and the “use

case model associations” in straight lines).

Fig. 23.14 Subset of the use case model from the ISOFIN project

23.6.2 Process Assessment Through ARID

Having a structured method makes the analysis repeatable and at the same time helps

ensuring that the same set of validation questions are placed in early development

stages. By this we mean that in the elicitation and elaboration phases [26] any iden-

23 A V-Model Approach for Business Process Requirements Elicitation 573

tified problem can be mitigated at a lesser cost than if that problem was identified in

the construction or transition phases.

With the purpose of assuring the attained logical architecture representation is

tenable, we chose to validate it using the Active Reviews for Intermediate Designs

(ARID) method [15]. Our concerns relate to discovering errors as soon as possi-

ble, inconsistencies in the logical architecture or even inadequacies with the elicited

requirements. The ARID method is a combination of Architecture Tradeoff Analy-

sis Method (ATAM) with Active Design Review (ADR). ATAM is a refined and

improved version of Software Architecture Analysis Method (SAAM) that helps

reviewing architectural decisions having the focus on the quality attributes require-

ments and their alignment and satisfaction degree of specific quality goals. The ADR

method targets incomplete (under development) architectures, performing evalua-

tions on sections of the global architecture. Those features made ARID our method

of choice regarding the evaluation of the in-progress ISOFIN logical architecture.

Figure 23.16 shows the coverage of each ARID step with respect to the V-Model

artifacts. There are also represented ARID specific artifacts like Project Charter,

Materials and Issues. ARID requires that a project context is defined, containing

information regarding the identification of the design reviewers. We have represented

such information in our diagram using the Project Charter box as used in project

management [36] terminology. The Materials box represents the supporting docu-

mentation, like presentation that needs to be made to stakeholders, seed scenarios

and meeting agenda. Issues relates to a check-list that includes but is not limited to:

notes concerning the presentation, the presented logical architecture, newly created

scenarios and validation scenarios.

Fig. 23.15 Subset of the ISOFIN process-level logical architecture

574 N. Ferreira et al.

The ARID method is divided in two phases: Rehearsal and Review. The Rehearsal

phase was adapted to the ISOFIN project context as follows:

� ARID Step 1. Identify the Reviewers: We chose 10 reviewers from the ISOFIN

project design team. We chose 2 stakeholders from each of the 5 entities that were

involved directly or indirectly with the design decisions.

� ARID Step 2. Prepare the design briefing: For the purpose of demonstrating the

design we prepared a presentation showing the logical architecture diagram as a

background and the OCs, A-type sequence diagrams and use cases that were used

to derive each part of the logical architecture.

� ARID Step 3. Prepare the seed scenarios: Associated with each OC and A-type

sequence diagram set there was defined a feasible scenario in a total of 10 scenarios,

included in the presentation with the purpose of rising questions regarding the

presented logical architecture.

� ARID Step 4. Prepare the materials: We scheduled a meeting with all the stake-

holders (reviewers), and distributed to them the presentation and the meeting

agenda.

The second ARID phase, Review, was adapted to the ISOFIN context as follows:

� ARID Step 5. Present ARID: We have presented the steps of ARID to the stake-

holders in order to create a context for the method execution.

� ARID Step 6. Present the design: Prepared materials, scenarios and logical archi-

tecture were presented. The reviewers followed the rule of not questioning the

presentation contents or making any improvement comment. Only clarification

questions were allowed for the sake of better understanding the materials. One

of the design team members was assigned to take notes of any occurrence of ref-

erences to deliverables that were not yet available. These notes helped to show

potential issues in the logical architecture diagram that needed to be taken care of

in a next iteration.

Fig. 23.16 ARID steps in the V-model

23 A V-Model Approach for Business Process Requirements Elicitation 575

 ARID Step 7. Brainstorm and prioritize scenarios: Reviewers presented the new

scenarios that solved problems they were dealing. Those scenarios where put in

the pool with the seed scenarios. We analyzed that pool to exclude duplicates and

overlaps. At this moment we had 16 feasible scenarios and formalized the A-type

sequence diagrams as seen on Fig. 23.9. Each reviewer was allowed a vote equaling

30 % the number of scenarios. That vote could be allocated on any scenario or

scenarios they wanted to be discussed.

 ARID Step 8. Apply the scenarios: Scenarios that won were used to test the logical

architecture diagram for suitability. We began with the scenario that gathered

the most votes. The reviewers, working as one and having that scenario in mind

designed the B-type sequence diagrams (as seen in Fig. 23.10) that corresponded

to the scenario under analysis. These diagrams were used to see if the logical

architecture diagram solves the problem raised by the scenario. The team member

allocated to taking notes recorded the B-type sequence diagrams. At any time the

design team responsible for the logical architecture intervened to help. We have

established a four-hour window to execute this step and in that time we managed

to create just as many B-type sequence diagrams as A-type sequence diagrams.

This is considered the necessary condition for the architecture validation.

 ARID Step 9. Summarize: As a last step we reviewed the notes and inquired the

participants concerning the exercise. All this feedback helped improve the logical

architecture diagram and define a check-list of subjects that required attention and

needed to be attended before moving on to design or implementation.

In Fig. 23.16 issues discovered in step 8 and summarized in step 9 may promote a

new iteration of the 4SRS method. This is done when there are detected severe flaws

in the logical architecture diagram by not managing to create correct or the necessary

B-type sequence diagrams to traverse all the AEs in the logical architecture diagram

or to comply with all the defined A-type sequence diagrams. We required 4 iterations

in the 4SRS method before the logical architecture passed the ARID assessment.

23.7 Conclusion

In this chapter, we have presented a process-level approach to creating context for

product design based on successive derivation of artifact models in a V-Model rep-

resentation. We use A-type sequence diagrams as a bridge from business needs to

the first system requirements representation, B-type sequence diagrams are used as

validation for A-type sequence diagrams and the logical architecture diagram. The

used artifacts represent the system in its behavior, structure and expected function-

alities. This chapter also presents the extensions to the traditional application of the

4SRS method, for creating context for requirements elicitation and later derivation

of logical architectural diagrams from use cases in a process-level perspective. The

approach process assessment presented in the chapter is compliant with the ARID

method.

576 N. Ferreira et al.

For creating a context for IT product design, the V-Model presented in this chapter

encompasses a set of artifacts through successive derivation. Our approach is different

from existing ones [6, 23, 39], since we use a process-level perspective. Not only do

we manage to create the context for product design, but we also manage to align it

with the elicited business needs.

Our stereotyped usage of sequence diagrams adds more representativeness value

to the specific model than, for instance, the presented in Krutchen’s 4 + 1 perspective

[25]. This kind of representation also enables testing sequences of system actions that

are meaningful at the software architecture level [7]. Additionally, the use of this kind

of stereotyped sequence diagrams at the first stage of analysis phase (user require-

ments modeling and validation) provides a friendlier perspective to most stakehold-

ers, easing them to establish a direct correspondence between what they initially

stated as functional requirements and what the model already describes.

The approach assures that validation tasks are performed continuously along the

modeling process. It allows for validating: (1) the final IT solution according to

the initial expressed requirements; (2) the B-type sequence diagrams according to A-

type sequence diagrams; (3) the logical diagram by traversing it with B-type sequence

diagrams according to ARID specifications; (4) multiple refinements of the logical

architecture trough iterations of the 4SRS method, promoted by issues raised during

ARID application. We also believe that our V-Model approach enables the derivation

of software architectures with attributes in which [8] considers to be revealing as good

software: (1) Architectures are constructed in well-defined layers of abstraction.

Each layer is built upon lower levels of abstraction, is isolated and represents a

coherent abstraction by itself, with an established and controlled interface; (2) Each

layer isolates the interface from the implementation, allowing to make change in

one without disrupting the other; (3) Architectures are simple, built using common

abstractions and mechanisms. Our context for product requirements elicitation is

based on such architecture.

The V-Model representation regards multiple levels of abstraction (for instance,

B-type sequence diagrams and the logical architecture itself), AEs that constitute the

logical architecture are isolated and built using as basis the MVC pattern and all

the modeling is done using common notation with only simple extensions, like the

presented UML metamodel extension.

References

1. Abran, A., Moore, J., Dupuis, R., Dupuis, R., Tripp, L.: Guide to the software engineering
body of knowledge (swebok). 2004 ed P Bourque R Dupuis A Abran and JW Moore Eds IEEE
Press (2001)

2. Alter, S.: The work system method for understanding information systems and information
systems research. Communications of the Association for Information Systems 9(1), 6 (2002)

3. Atkinson, C., Kuhne, T.: Model-driven development: A metamodeling foundation. IEEE Softw.
20(5), 36–41 (2003)

23 A V-Model Approach for Business Process Requirements Elicitation 577

4. Azevedo, S., Machado, R.J., Muthig, D., Ribeiro, H.: Refinement of software product line
architectures through recursive modeling techniques (2009)

5. Barrett, S., Konsynski, B.: Inter-organization information sharing systems. MIS Quarterly
6(Special Issue: [1982 Research Program of the Society for Management, Information Sys-
tems]), 93–105 (Dec., 1982)

6. Bayer, J., Muthig, D., Gpfert, B.: The library system product line. a kobra case study. Fraunhofer
IESE (2001)

7. Bertolino, A., Inverardi, P., Muccini, H.: An explorative journey from architectural tests defi-
nition down to code tests execution (2001)

8. Booch, G., Maksimchuk, R., Engle, M., Young, B., Conallen, J., Houston, K.: Object-oriented
analysis and design with applications. Addison-Wesley Professional (2007)

9. Browning, T.R., Eppinger, S.D.: Modeling impacts of process architecture on cost and schedule
risk in product development. Engineering Management, IEEE Transactions on 49(4), 428–442
(2002)

10. Campbell, B., Kay, R., Avison, D.: Strategic alignment: a practitioner’s perspective. Journal of
Enterprise Information Management 18(6), 653–664 (2005)

11. Cardoso, E.C.S., Almeida, J.P.A., Guizzardi, G.: Requirements engineering based on business
process models: A case study (2009)

12. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems engi-
neering: the tropos project. Information Systems (2002)

13. Chan, Y., Reich, B.: It alignment: what have we learned? Journal of Information Technology
22(4), 297–315 (2007)

14. Checkland, P.: Soft systems methodology: a thirty year retrospective. Systems Research 17,
S11–S58 (2000)

15. Clements, P.C.: Active reviews for intermediate designs. Tech. rep., Technical Note CMU/SEI-
2000-TN-009. (2000)

16. Conradi, R., Jaccheri, M.: Process modelling languages (1999)
17. Evan, W.: Toward a theory of inter-organizational relations. Management Science pp. 217–230

(1965)
18. Ferreira, N., Santos, N., Machado, R.J., Gaevic, D.: Derivation of process-oriented logical

architectures: An elicitation approach for cloud design. International Conference on Product
Focused Software Development and Process Improvement PROFES2012 7343, 45–58 (2012)

19. Hammer, M.: Beyond reengineering: How the process-centered organization is changing our
work and our lives. Harper Paperbacks (1997)

20. Haskins, C., Forsberg, K.: Systems engineering handbook: A guide for system life cycle
processes and activities; incose-tp-2003-002-03.2. 1 (2011)

21. ISOFIN: Isofin research project. http://isofincloud.i2s.pt/ (2010)
22. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and Organization

for Business Success. Addison Wesley Longman (1997)
23. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented reuse

method with domain-specific reference architectures. Annals of Sw, Engineering (1998)
24. Kazman, R.: Tool support for architecture analysis and design (1996)
25. Kruchten, P.: The 4+1 view model of architecture. IEEE Softw. 12(6), 42–50 (1995)
26. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley (2003)
27. Luftman, J., Ben-Zvi, T.: Key issues for it executives 2010: judicious it investments continue

post-recession. MIS Quarterly Executive 9(4), 263–273 (2010)
28. Machado, R., Lassen, K., Oliveira, S., Couto, M., Pinto, P.: Requirements validation: Execution

of uml models with cpn tools. International Journal on Software Tools for Technology Transfer
(STTT) 9(3), 353–369 (2007)

29. Machado, R.J., Fernandes, J., Monteiro, P., Rodrigues, H.: Refinement of software architectures
by recursive model transformations. International Conference on Product Focused Software
Development and Process Improvement PROFES2006 4034, 422–428 (2006)

30. Matinlassi, M., Niemel, E., Dobrica, L.: Quality-driven architecture design and quality analysis
method, a revolutionary initiation approach to a product line architecture. Tech. rep., VTT Tech.
Research Centre of Finland (2002)

http://isofincloud.i2s.pt/

578 N. Ferreira et al.

31. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software architec-
ture description languages. Software Engineering, IEEE Transactions on 26(1), 70–93 (2000)

32. NIST: National institute of standards and technology - the nist definition of cloud computing
(2009)

33. OMG: Business process model and notation (bpmn) v2.0
34. OMG: Software and systems process engineering meta-model (spem)
35. OMG: Unified modeling language (uml) superstructure version 2.4.1 (2011)
36. PMI: A Guide to the Project Management Body of Knowledge (PMBOK Guide), 4th edn.

(2008)
37. Ruparelia, N.B.: Software development lifecycle models. SIGSOFT Softw. Eng. Notes 35(3),

8–13 (2010)
38. Sungwon, K., Yoonseok, C.: Designing logical architectures of software systems (2005)
39. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based Software

Development Process. Addison-Wesley Professional (1999)
40. Winter, R., Fischer, R.: Essential layers, artifacts, and dependencies of enterprise, architecture

(2006)
41. Zou, J., Pavlovski, C.J.: Modeling architectural non functional requirements: From use case to

control case (2006)
42. Zowghi, D., Coulin, C.: Requirements elicitation: A survey of techniques, approaches, and

tools. Engineering and managing software requirements, Springer, Heidelberg pp. 19–46 (2005)

Chapter 24

Cloud-Based Systems Need Multi-Level
Management

Luciano Baresi, Domenico Bianculli and Sam Guinea

Abstract Cloud-based systems are built and delivered using multi-level architec-

tures, which may compose third-party services at the application level as well as at

lower levels, such as the platform and the infrastructure ones. With this architec-

tural style, the ability to automatically perform management operations, possibly in

a cross-level way, is becoming more and more important as the technology matures,

and its adoption increases. We argue that the multi-level management of cloud-based

systems should be established at design time, and the service life cycles of the differ-

ent services (and levels) should be managed accordingly. In this chapter, we present

a conceptual model for manageable cloud-based systems, and a reference framework

for implementing the foreseen management solutions.

24.1 Introduction

Cloud computing [2] is imposing a significant shift in the way many modern software

applications are conceived. While usually computational capabilities were constant,

and the design had to take them into account, cloud computing offers a wider and

more flexible design space. The attention is not only at the application level anymore,

L. Baresi (B) ·S. Guinea
Deep-SE Group, Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Piazza L. da Vinci, 32, I-20133 Milano, MI, Italy
e-mail: luciano.baresi@polimi.it

S. Guinea
e-mail: sam.guinea@polimi.it

D. Bianculli
University of Luxembourg, SnT Centre, 4 rue Alphonse Weicker,
L-2721 Luxembourg, Luxembourg
e-mail: domenico.bianculli@uni.lu

A. Bouguettaya et al. (eds.), Advanced Web Services, 579
DOI: 10.1007/978-1-4614-7535-4_24,
© Springer Science+Business Media New York 2014

580 L. Baresi et al.

but one can (easily) control and manage all the resources down to the physical

infrastructure.

The service abstraction is the key enabler of this change. Initially, services were

used as a means to provide coarse-grained self-describing software components over

a network infrastructure. Web and REST services [32, 33] indeed became consol-

idated technologies, and many composition solutions were devised, such as BPEL

(Business Process Execution Language) [28], ESB (Enterprise Service Bus) [12],

and SCA (Service Component Architecture) [29].

Nowadays, services are also used to abstract the infrastructure on which applica-

tions are executed, and the platforms that supply the key elements needed to create

and deploy the applications. Execution and storage services (like the ones offered by

Amazon [1]) as well as platform services (like Microsoft Azure [24], Google App

Engine [19], and Heroku [21]) are becoming widely used solutions to create, deploy,

and run many different applications. The same applies to OpenStack [30], which

offers a complete set of open-source elements for creating a complete, private cloud

infrastructure.

All these solutions provide users—and their applications—with the resources

they need, but they also foster a more global approach towards the development and

management of applications. There is no need to overestimate required resources at

design time anymore, but they can be efficiently acquired and released on demand.

From a management perspective, these resources must be properly probed, planned,

and provisioned. For example, in the old days, the addition of a new server, because

of a sudden increase in the number of users, would have been considered a major,

significant change, taking a significant amount of time and money. Now, we can buy

the computing power on the cloud as soon as we need it, for the time we need it, and

put it in operation in minutes.

Besides offering new opportunities, the abstraction/virtualization of resources

opens the whole development/deployment/execution stack and enables quite sophis-

ticated management. Besides the “usual” monitoring of the behavior of the different

software components and of the operation of the computing infrastructure, the cloud

allows one to change the allocation of components and vary computational resources.

Problems at one level, say pure performance of the application, may require multi-

level solutions: e.g., the provision of a new virtual machine and the selection of

faster services. More sophistication also calls for more advanced monitoring and

adaptation capabilities. All the different constituents of the system, that is, the dif-

ferent application, platform, and infrastructure services must be probed efficiently

and effectively. Retrieved data must be integrated, correlated, and analyzed. Finally,

identified solutions must be communicated to all interested parties.

Achieving these goals calls for two key elements: the identification of a compre-

hensive conceptual model, able to accommodate all the concepts that characterize the

three typical layers of cloud-based applications, and a suitable run-time framework

supporting the management.

This chapter moves a significant step in this direction. It organizes the concepts

and solutions that belong to today cloud initiatives. It motivates, proposes, and dis-

cusses C2 M (Comprehensive Cloud Model), which aims to accommodate all the

24 Cloud-Based Systems Need Multi-Level Management 581

typical concepts of a layered cloud-based application. It also draws the high-level

architecture of a run-time infrastructure to support both C2 M and the multi-layered

approach to the management of cloud-based applications. This architecture can also

be seen as an attempt to organize and summarize the work done by the authors in

the context of monitoring, managing, and adapting services and service-centered

solutions at the different levels.

The rest of this chapter is organized as follows. Section 24.2 presents and dis-

cusses the nature of cloud-based systems. Section 24.3 presents C2 M , and discusses

the abstractions needed to accommodate software, platform, and infrastructure ser-

vices, as well as the main management concepts that need to be taken into account

to build a manageable cloud-based system. Section 24.4 presents a reference frame-

work for the holistic, multi-level management of cloud-based systems. Section 24.5

exemplifies the concepts on two different designs of a “LATEX in the Cloud” applica-

tion. Section 24.6 discusses related work in the area of run-time service management,

including the authors’ previous contributions in the field. Section 24.7 concludes the

paper by presenting our agenda for future work.

24.2 Cloud-Based Systems

Services are coarse-grained software components that are wrapped in standard pro-

tocols and delivered through the Internet. They represent the basic building blocks of

service-oriented architectures. In this architectural style, loosely-coupled services,

which tackle separate concerns, are composed to build easily evolvable distributed

systems. This allows them to respond to sudden changes in the execution environment

or in their requirements in a smoother manner.

The service abstraction has become the cornerstone of the development of cloud

computing. No longer do we solely speak of Software-as-a-Service (SaaS). Instead

we now commonly apply the abstraction to software platforms (Platform-as-a-

Service, PaaS), to infrastructures (Infrastructure-as-a-Service, IaaS), and to a growing

number of other elements (Everything-as-a-Service, XaaS).

Cloud computing has mainly become associated with the delivery of three kinds

of system components: software, platform, and infrastructure. Figure 24.1 shows the

three layers commonly seen in a modern multi-layered cloud-based application.

In the Software-as-a-Service layer the main stakeholder is the application devel-

oper. Her goal is to build a software application that is delivered on demand over

the Internet. Typical examples are Google Docs, which provides office utilities as a

service; Dropbox, which provides file storage as a service; Blitline, which provides

image processing as a service, and so on. The SaaS level is typically realized by

composing software services (possibly from third parties) that expose well-defined

WSDL or REST interfaces. One way to compose them is to adopt a standard service

composition language, such as BPEL, but the composition may be achieved through

a regular programming language.

582 L. Baresi et al.

Virtualization

Layer

OS

HW

Virtualization

Layer

Virtualization

Layer

Infrastructure Management

Composite

Application

SaaS

PaaS

IaaS

deployed to

Social

Networking

as a Service

Twitter

Image Processing

as a Service

Blitline

Storage

as a Service

Amazon RDS

OS

HW

OS

HW

Development and Deployment Environment

Language
Core Support

Blitline
Integration

Amazon RDS
ApiGee

for Twitter
Platform
Storage

Fig. 24.1 The three classic layers of a cloud-based system

In the Platform-as-a-Service layer the main stakeholder is the platform provider.

Her goal is to build a software platform within which developers can implement

and deploy their applications. Typical examples are Google App Engine, Microsoft

Azure, Heroku, and so on. Providing a PaaS means providing a development and

deployment environment that can be easily custom-tailored for a given application.

This involves provisioning a core development framework, as well as allowing the

developer to extend it with additional first- or third-party libraries and tools. The

extension mechanism is an important part of the platform offering, since it ensures

that the library integration is achieved seamlessly. In Fig. 24.1, which depicts the three

classic layers of a cloud-based system, we notice that the platform layer offers a Plat-

form Storage service, which is implemented in the platform’s underlying infrastruc-

ture. The platform layer also integrates various third-party libraries that allow the

application to more easily interact with software services such as Blitline, Ama-

zon RDS, and Twitter. These libraries can be either simple programmatic gateways

towards these services, or they can provide additional functionality. For example,

24 Cloud-Based Systems Need Multi-Level Management 583

developers that access Twitter through the ApiGee service get a higher limit for the

number of Twitter API requests per hour.

In the Infrastructure-as-a-Service layer the main stakeholder is the infrastructure

provider. Her goal is to provide scalable on-demand provisioning of infrastructural

resources, usually in terms of computing resources or virtual machines. Typical

examples are Amazon EC2 (Elastic Compute Cloud), Rackspace, GoGrid, and so

on. IaaS providers exploit economies of scale to provide computational resources

hosted in big data centers across the globe. The computational resources can be

virtual machines, block storage, firewalls, load balancers or networking I/O, and

their costs are typically calculated on a usage basis.

A developer that wants to implement and deploy a cloud-based application has

many options. She can decide to rely on a PaaS, on an IaaS, or on neither. This

decision defines the number of technical aspects that she will have to explicitly

take into account and manage. If the application is deployed within a PaaS, the

developer will only need to manage the application. Other aspects such as the run-

time environment, the servers, the virtualization, the hardware, and the networking

will be managed for her by the provider. If the application is deployed within a IaaS,

the developer will once again be responsible for the application. This time, however,

she will also need to explicitly manage the run-time environment and the servers.

The virtualization, the hardware, and the networking will continue to be managed for

her by the provider. Finally, if the application is deployed neither on a PaaS nor on

a IaaS, then the developer will need to explicitly take all these aspects into account

and manage them by herself.

24.3 C2 M: A Comprehensive Conceptual Model for Multi-Level

Management of Cloud-Based Systems

In this section we illustrate C2 M , the comprehensive conceptual model we developed

to support the holistic management of cloud-based applications. At a bird’s view,

C2 M is composed of two parts:

� the concepts related to service abstraction, and to the different service composition

mechanisms that are available at the software, platform, and infrastructure levels;

� the concepts related to service management.

In the following, we detail the two parts and highlight the associations that connect

them to each other.

24.3.1 Service Abstraction

As depicted in Fig. 24.2, the cornerstone of C2 M is the concept of Service; this

concept captures the different levels we have mentioned in Sect. 24.2, i.e., SaaS,

584 L. Baresi et al.

PaaS, and IaaS. Although it is possible to consider other levels underneath IaaS

(e.g., Hardware-as-a-Service), in C2 M we consider IaaS to be the lowest visible

(and manageable) level of our applications.

For each Service there can be different Service Instances, each of them deliv-

ering its functionality to one or more customers. Each Service Instance is an

independent entity with respect to the other instances; hence, it can be managed

autonomously. Anyway, some management decisions can be made in terms of a

Service and then applied to all instances of that service. To enable management at

these different levels, Service and Service Instances are subclasses of Manage-

able Entity, which is described later in Sect. 24.3.2.

C2 M defines two possible kinds of associations between services: the “uses”

association and the “composes” association. The “uses” association identifies the

fact that a service provided at one layer uses or depends on a service provided at a

lower layer. The “composes” association identifies a stronger relationship. It means

that an added-value service can be built by composing other services that exist in the

same layer. The “uses” association is therefore an inter-level association, while the

“composes” association is an intra-level association.

The inter-level nature of the “uses” association can lead to various combinations:

a SaaS service can use a PaaS or an IaaS service, while a PaaS service can only use

an IaaS service. The “uses” association defined between SaaS Service and PaaS

Service characterizes the fact that an application at the SaaS level can be built on

top of a platform service, relying on the functionality provided by the platform (e.g.,

authentication, queues). This is the case for applications developed for Google App

Engine. Similarly, the “uses” association between SaaS Service and IaaS Service

represents the case in which a SaaS application is built directly on the virtualized

machine abstraction provided by the infrastructure level, e.g., by configuring the

operating system, the middleware components, the business logic, and the storage

access. For example, this is the case of applications that are deployed on Amazon

EC2 by configuring a custom virtual machine image. Note that a SaaS application

might use, at the same time, services provided by different vendors at the platform

and infrastructure level. A platform service can be realized on top of an existing

infrastructure, as modeled by the “uses” association between PaaS Service and

IaaS Service. This is the case of Heroku, a well known PaaS solution supporting

various language environments, such as Ruby, Java, Python, and PHP. Heroku’s

deployment environments are built on top of the infrastructural services provided by

Amazon. On the one hand, this allows Heroku not to invest in proprietary server-

farms; on the other, this means that Heroku’s services depend on Amazon successfully

providing the infrastructure. For example, when on June 29, 2012, Amazon’s EC2

suffered a widespread and hours-long outage in its North Virginia facilities, systems

built on Heroku were also made unavailable.1

1 More details can be found at http://venturebeat.com/2012/06/29/amazon-outage-netflix-
instagram-pinterest/.

http://venturebeat.com/2012/06/29/amazon-outage-netflix-instagram-pinterest/
http://venturebeat.com/2012/06/29/amazon-outage-netflix-instagram-pinterest/

24 Cloud-Based Systems Need Multi-Level Management 585

Note that a PaaS Service can be implemented by directly accessing and con-

figuring in-house hardware, which—as said above—is not included2 in C2 M . This

is the case of Google App Engine, which uses its own server facilities to provide its

PaaS solution. Similarly, a SaaS Service can also be implemented directly on top

of in-house hardware, and have no “use” associations.

SaaS Service

Service

PaaS Service IaaS Service

Service
Instance

usesuses

uses

SaaS
Composition

PaaS
Composition

IaaS
Composition

Service
Composition

Manageable
Entity

Language-

Module

Platform
Module

1 0..*

Computational
Unit

Load Balancer

...

1..*

0..1

balances

Statement

Interaction
Statement

Data
Manipulation

Statement

Control
Statement

composes composes composes

Fig. 24.2 Service abstraction concepts

The way service composition is realized is different for each level in which it is

enacted. At the SaaS level, developers implement composite services using the fea-

tures provided by the programming language they adopt. The concept represented by

a Statement in the adopted programming language plays a fundamental role in this

sense. An Interaction Statement represents an interaction with a partner service,

which can happen synchronously or asynchronously. Typical examples of this class

of statements are invoke or receive activities in BPEL, or a (remote) procedure

call in a common programming language like Java or C. A Control Statement cor-

responds to the usual control structures of programming languages (selection, loops,

exception handling) as well as to constructs that are specific to service interactions

(e.g., the pick and the wait activities, popular in BPEL). Control Statements

are used to define the control flow of a composition. Finally, a Data Manipulation

Statement is used to set the fields of the messages exchanged with or the variables

passed to a partner service. For example, it may correspond to an assign activity

in BPEL. This kind of statement is very important for dealing with the heterogeneity

2 This is also why we never define “uses” associations for IaaS Services.

586 L. Baresi et al.

of data representations used by the different partner services participating in a ser-

vice composition. While a service composition is realized programmatically at the

SaaS level, at the other two levels of our model, i.e., PaaS and IaaS, service compo-

sition is realized as aggregation of “modules”. For example, a platform composite

service could be realized by integrating Language-Specific Modules on the basis

of the programming languages that the platform wants to support, like the Java and

Python versions of Google App Engine. Moreover, a platform may also integrate

added-value services (e.g., support for a specific kind of database or a sharing ser-

vice) represented by Platform Modules, like Heroku’s “add-ons”. Keep in mind

that a platform module may be integrated and made available to the platform itself,

even if it is used to access a software service remotely provided by a third party,

such as Twitter. Finally, examples of modules that can be integrated at the IaaS level

are Computational Units or specific components like a Load Balancer (e.g., the

Amazon Elastic Load Balancing service).

24.3.2 Service Management

This part of our C2 M , depicted in Fig. 24.3, includes all the concepts related to the

management of cloud-based applications. The cornerstone concept is the Manage-

able Entity, which is our abstraction for an entity that can be managed. In our model,

Service and Service Instance are subclasses of this class.

A Manageable Entity is composed of three main parts, which are exposed to

clients:

Probes. A probe of a Manageable Entity allows its clients to profile/inspect some

facets of its status. For example, a client might want to profile a service’s average

response time or its throughput. Other probes might be specific to the level to which

the “probed” service belongs. In the case of an infrastructure service, interesting

probes could be CPU, memory, network or disk usage of a virtual machine. For a

platform service, users might want to check the version of a certain programming

library made available on the platform, or the space occupied by the database. At

SaaS level, probes are application-specific. Keep in mind that, although a probe

conceptually belongs to a manageable entity, it can be installed on the client’s

side of an interaction to make up for the fact that the service may be hosted by a

third-party.

Specifications. A service specification provides different types of information

about the service itself. One kind of information is represented by Features,

related to the functionality offered by the service. For example, they include the

type of authentication supported by the application exposed as a SaaS, the pro-

gramming languages supported by a platform, the memory configuration available

at the IaaS level. The other type of Specification provided by a service is repre-

sented by the concept of Property, which groups specifications in the form of pre-

24 Cloud-Based Systems Need Multi-Level Management 587

/post-conditions, invariants, behavioral protocols, quality-of-service attributes, at

various level of formality.

Management Operations. This concept represents the operation that can be per-

formed on a Manageable Entity, e.g., a service, by a management framework.

There is a group of operations that can be performed at any level; they are called

Lifecycle Operations and control the execution of a service, by starting, stopping,

or pausing it. Other operations are specific to each level of our model. For example,

at the SaaS level, management can be enacted with a Change Statement opera-

tion, such as changing the partner service of an Interaction Statement, to support

dynamic binding. At the PaaS and IaaS levels, Management Operations manip-

ulate the modules that compose the platform or the infrastructure; for examples,

modules can be added, removed, or updated.

Note that the concepts related to service management included in our model are

transparent to the concept of Service Composition. Since a Service Composition

is an aggregation of Services, which are Manageable Entities, a service compo-

sition is itself a Manageable Entity. On the other hand, C2 M prescribes that the

composition mechanisms used to realize a composition be management-aware. This

is a crucial requirement that determines that a composition mechanism has:

� to expose Management Operations, Probes, and Specifications that are

related to the composite service as a whole;

� to intercept invocations of a Management Operation, or readings of Probes

and Specifications, by passing the invocation or reading requests to the proper

component services, as well as correlating and aggregating the data coming from

the component services.

Furthermore, since a service at the SaaS or PaaS level may “use” the services

provided by the lower level(s), invoking a Management Operation or reading a

Probe/Specification at the (higher) service level, should be properly translated into

invocations of Management Operations and Probe/Specification readings of the

services used at the lower levels. This has a strong impact in terms of multi-level

manageability.

24.4 A Reference Framework for Multi-Level Management

Management of multi-level cloud-based systems needs to be holistic. We need to

understand that the single parts of a system are intimately interconnected and explica-

ble only by reference to the whole. This helps us to not confuse symptoms with causes.

A functional problem (e.g., the violation of a run-time assertion) or a non-functional

one (e.g., an unacceptably long response time) that is witnessed at one particular

level, for example at the SaaS level, may be caused by malfunctions in one of the

system lower levels, for example at the PaaS or IaaS level. For each problem we

need to find the most effective, and time-and cost-efficient solution; this may require

coordinated adaptations at multiple layers.

588 L. Baresi et al.

Service

Service
Instance

Manageable
Entity

Probes

Property

Feature

1

1..*

1..*

0..*

Management
Operation

Lifecycle
Operation

Start

Stop

Pause ...

SaaS
Operation

Change
Statement...

Change
Interaction
Statement

Dynamic
Binding

PaaS
Operation

IaaS
Operation

Add Module Remove
Module

Update
Module

...

Add
Computational

Unit

Add Load
Balancer

...

1..*

Fig. 24.3 Service management concepts

In literature there are many management approaches that concentrate on a sin-

gle level, and treat it in isolation from the rest of the system [3, 7, 23]. Many of

these approaches adopt some form of MAPE (Monitoring, Analysis, Planning, and

Execution) control loop [22]. A MAPE control loop is built and run in parallel with

respect to the system. It monitors the system behavior, analyzes it to discover func-

tional and/or non-functional problems, plans possible solutions, and then attempts

to dynamically adapt the system accordingly.

Guinea et al. have advocated that the traditional control loop could continue to be

used if it were extended to support multi-level systems [20]. Figure 24.4 shows a slight

variation of the reference multi-level control loop described therein. The loop is made

up of four steps: Multi-level Monitoring, Multi-level Analysis of Adaptation Needs,

Multi-level Adaptation Planning, and Coordinated Adaptation. The approach builds

upon the fact that the levels adopt a common service abstraction, and are therefore

made up of manageable entities, as defined in C2 M .

The Multi-level Monitoring step is responsible for capturing the run-time data

needed to reason about the system functional and non-functional behavior. These

data are the static and dynamic properties exposed by the manageable entities, as

defined in C2 M . This is achieved by deploying appropriate software probes to the

three levels. Probes are shown in Fig. 24.4 as small boxes labeled with the letter “P”.

The amount of data that can be produced by a cloud-based system, if we take into

account all three levels, can be overwhelming. This is the reason for which this step

also needs to perform an initial assessment of the data. Data from different levels are

24 Cloud-Based Systems Need Multi-Level Management 589

S
o
ft
w

a
re

 a
s
 a

 S
e
rv

ic
e

P
la

tf
o
rm

 a
s
 a

 S
e
rv

ic
e

In
fr

a
s
tr

u
c
tu

re
 a

s
 a

 S
e
rv

ic
e

P P P P P P

A A A A A A

Multi-level
Monitoring

Coordinated
Adaptation

Multi-level
Analysis of
Adaptation

Needs

Multi-level
Adaptation
Planning

Fig. 24.4 The multi-level management reference framework

filtered, correlated, aggregated, and manipulated to produce higher-level information

under the form of general or domain-specific metrics. This exercise is what makes

the holistic analysis of the system’s behavior possible. Run-time data can also be

temporarily (or permanently) stored to optimize the correlation, and to allow for

offline drill-down analyses.

The Multi-level Analysis of Adaptation Needs step is responsible for taking the

correlated data and using them to identify anomalies within the system. This step

can be performed automatically, through the evaluation of cross-level properties

expressed over current and historical correlated data, or manually by a human expert.

In the latter case the expert needs to be assisted by a multi-level monitoring dashboard

in which the correlated data can be analyzed both as a live feed and through drill-down

analysis.

The Multi-level Adaptation Planning step is aware of the adaptation capabilities

that are available in the system, and is responsible for planning a coordinated multi-

level adaptation strategy. The strategy defines what actions need to be taken, at what

level and in what order, and the data that they need to exchange to accomplish their

goals. The planning should take into account the dependencies that exist between the

various manageable entities, and be aware of the positive or negative impact that an

590 L. Baresi et al.

adaptation action can have on the other entities in the system. Once again, this step

may be performed automatically or may require the intervention of a domain expert.

The Coordinated Adaptation step is responsible for orchestrating the multiple

adaptation actions that need to be performed at the various levels, and is done accord-

ing to the multi-level strategy defined in the previous step. This is achieved by engag-

ing the software actuators that provide the management operations specified in C2 M .

Actuators are shown in Fig. 24.4 as small boxes labeled with the letter “A”.

24.5 LATEX in the Cloud

Dr. Dek, a researcher and a young entrepreneur, wants to build an application that

allows users to write, compile, and manage LATEX documents in the cloud. The

application should support the following features:

� online editing of files, with integrated version control;

� files and projects (i.e., “papers”) management, with the possibility of uploading

and exporting files through the web interface;

� remote compilation of LATEX documents, with online preview;

� multiple users per project;

� customizable notifications via email and Twitter after completion of a compilation

job.

The architecture designed by Dr. Dek for this application is sketched in Fig. 24.5.

The Frontend module contains the web forms for editing, uploading, and exporting

files, organizing projects, and browsing file revisions. The Application Logic module

contains the business logic that authenticates users, compiles documents, manages

Frontend

Blob

NoSQL

Data Storage

Application Logic

Mailer

Twitter

OAuth Module

Twitter

Service

CLSI

Service

OpenID

Service

Fig. 24.5 Architectural sketch of the “LATEX in the Cloud” application

24 Cloud-Based Systems Need Multi-Level Management 591

files revisions, and controls notifications. Application users are authenticated through

the OpenID standard using a third-party OpenID service. Users’ settings and metadata

(e.g., list of the files belonging to a project, access lists for a project, compilation flags)

are stored in a NoSQL key-value store. LATEX source files, their revisions, and the

output of a compilation (log and PDF files) are stored in a datastore optimized for blob

objects. Remote compilation is supported using a third-party service that implements

the CLSI-Common LATEX Service Interface. The Notification module is responsible

for sending out email and Twitter notifications to all the project participants, to

signal that a new version of the document has been released. An email contains the

notification itself, the LATEX compilation logs, and the resulting PDF file (or a link

for its download). A tweet, on the other hand, contains only the notification and a

link to get the newly compiled PDF. The Twitter and CLSI services are accessed

using the OAuth authentication protocol through a dedicated module.

Dr. Dek considers two possible solutions to develop and deploy this application.

The first one relies on Amazon technologies and consists of a mix of infrastructure

services (e.g., computational units like Amazon EC2) that will serve to users the

dynamic web pages of the application and execute the business logic of the appli-

cation, and storage services3 (e.g., Amazon SimpleDB or DynamoDB as NoSQL

databases and Amazon S3 as a blob data store). Note that this solution requires that

Dr. Dek personally configure all the required servers and middleware, and develop

the full code base of the application, including the business logic, the interaction with

the OpenID, the CLSI and the Twitter services, as well as auxiliary components, such

as the Notification (including the Mailer sub-component) and the OAuth module.

In the second solution, Dr. Dek wants to leverage the services provided by a

PaaS, to reduce the amount of code to write, and to simplify the management of the

underlying infrastructure. He picks Google App Engine, since it provides important

services used in the application, such the App Engine Datastore as a NoSQL database,

Google Cloud Storage as blob datastore, the Mail API for email functionality, and the

Users API with support for OpenID identifiers. It also offers additional functionality,

which Dr. Dek is considering to support in the next major revision of the application,

such as the possibility to convert documents file type (e.g., from PDF to HTML)

through the Conversion API, and images manipulation through the Images API. Note

that this solution also reduces dependencies on third-party services, since accessing

the OpenID service or third-party storage services is no longer required because this

functionality is provided by the platform.

24.5.1 Managing the “LATEX in the Cloud” Application

Here we analyze how the two solutions described above can be managed with respect

to the concepts defined in C2 M . We describe suitable probes and management oper-

3 We consider storage services at the same level as SaaS; see also Fig. 24.1.

592 L. Baresi et al.

ations, and discuss three different multi-layer management scenarios. We identify

the following groups of Manageable Entities:

� Manageable Entities that are shared by both solutions. Both solutions rely on

the Twitter, CLSI, and OpenID services. These services do not expose any probe;

probes have to be installed on the client’s side, to monitor attributes such as the

average response time, the throughput, and the invocation rate. These services also

do not expose management operations to third-party users.

� Manageable Entities used in the Amazon-based solution. In this solution we

use Amazon SimpleDB, Amazon S3, Amazon DynamoDB, and Amazon EC2.

The first two services provide probes for attributes through dedicated APIs. For

example, they can provide the amount of used storage using DomainMetadata

and get_bucket_filesize, respectively. The other services expose probes

through Amazon’s own monitoring solution, called Amazon CloudWatch.

For DynamoDB Amazon exposes probes such as SuccessfulRequest

Latency, UserErrors, SystemErrors, ThrottledRequests,

ConsumedReadCapacityUnits, ConsumedWriteCapacityUnits,

and ReturnedItemCount. For Amazon EC2, Amazon exposes probes for

CPUUtilization, DiskReadOps, DiskWriteOps, DiskReadBy-

tes, DiskWriteBytes, NetworkIn, NetworkOut. When in-house

software modules—such as the Frontend and the Application Logic modules—are

executed on Amazon EC2, we may also want to define application-specific probes

like statistics on the generation of dynamic web pages. This can be done using

the standard probing capabilities that are included with the operating system, e.g.,

used memory or swap memory size. Moreover, these extra probes can register with

CloudWatch if they want to make their data available through its standard channels.

Amazon EC2 is the only service, among the ones we decided to use, to provide

some form of management operations. Among others there are operations to man-

age virtual machines images (e.g., CreateImage, RegisterImage), to man-

age storage volumes (e.g., AttachVolume), to control a machine instance (e.g.,

StartInstance, RunInstance, StopInstance, ModifyInstance

Attribute), and to enable load balancing (e.g., CreateLoadBalancer,

RegisterInstances WithLoadBalancer).

� Manageable Entities used in the Google App Engine based solution. In this

solution we use the App Engine DataStore, Google Cloud Storage, and the Mail

API. The App Engine Datastore provides probes for capturing the response times

of the RPC calls that are made to the datastore, statistics counts, usage levels by

property and entity type, write operation counts, etc. The Google Cloud Storage

provides probes for capturing the total storage size, entry counts, and the size of

built-in and composite indexes. The Mail API provides probes for monitoring the

response times of the RPC calls that are made to the mailer. When we run the Fron-

tend and Application Logic on Google App Engine we can also receive reports

on their average queries per second over the last minute, their average latency

over the last minute, the number of requests they received in the last minute, how

long they have been running, their current memory usage, and their availability. In

24 Cloud-Based Systems Need Multi-Level Management 593

terms of manageability, Google App Engine allows service providers to choose the

processing capacity of the instances running the application, as well as to configure

the scheduler, by setting the number of idle instances it should take into consid-

eration and the pending latency. The lifecycle of default (“frontend”) instances

is automatically managed by App Engine, while “backend” can be managed by

developers. The DataStore supports data backup and restore, as well as copy and

delete operations. No management operations are available for the Cloud Storage

service and Mail APIs.

In addition to the probes and the managing operations described above, we assume

that it is also possible to define more application-specific probes for the composite

application. We also assume that other level-specific operations are available, such

as code changes or datastore migration.

24.5.2 Management Scenarios

We now review three possible management scenarios that may occur while running

“LATEX in the Cloud”. Each scenario begins with a description of how it plays out in

the Amazon-based implementation, and then discusses the differences that arise in

the Google-based implementation.

Scenario 1

In this scenario, the application-specific probe corresponding to the time perceived

by the user for compiling a LATEX project reads a value that is higher than expected.

Note that this value, reported at the SaaS level, is the aggregation (e.g., the sum) of

the response time of many service invocations:

� the NoSQL database queried to retrieve which files belong to the project;

� the Application Logic that determines which files have already been cached by the

CLSI service and therefore do not need to be uploaded again;

� the blob datastore used to retrieve the raw artifacts to compile;

� the CLSI service that performs the actual compilation.

Although the symptom is initially seen at the SaaS level, Dr. Dek decides to look at

probes at various layers, and to perform a holistic analysis. Dr. Dek notices that there

are no anomalies in the execution of the CLSI, NoSQL, and S3 services; the culprit is

then at the IaaS level, because the computational unit is inadequate to properly execute

the application logic. Dr. Dek has two possible solutions. The first possibility is to per-

form the EC2 IaaS operationModifyInstanceAttribute to modify the type of

instance being used with one with greater resources. The second possibility is to cre-

ate a new EC2 instance with the CreateInstancemanagement operation, deploy

the application to the new node, and then introduce load balancing with the operations

594 L. Baresi et al.

CreateLoadBalancer and RegisterInstancesWithLoadBalancer.

Since the application was designed with advanced management features in mind,

Dr. Dek can easily create a new virtual machine in parallel and perform a failover to

the new instance.

In the Google-based implementation the scenario plays out in a similar fashion.

The analysis of the data collected through the probes is mostly the same. The adap-

tation however is slightly different. First of all, Google does not provide fine-grained

management operations for its instances; instead Dr. Dek’s instances are managed for

him by the platform. When the instances are no longer adequate, Google App Engine

will automatically create new instances of the Application Logic and load balance

them with respect to incoming requests. Dr. Dek has limited control over how this is

performed. He can only use the management operations that allow him to specify the

minimum and maximum number of idle instances that should remain available at all

times to manage usage peaks, and the minimum and maximum latency for requests

that are temporarily stored when all available instances are fully occupied. These

parameters define how aggressive Google App Engine is in dynamically adding

and removing instances. A second solution for Dr. Dek is to configure Google App

Engine to be less aggressive and to migrate the application to an instance with more

resources.

Scenario 2

In this case, the probe corresponding to the time for generating the dynamic page

that displays a specific file’s version history is higher than expected. In this case the

components that are involved in providing the page are:

� the NoSQL database queried to retrieve the file’s version history;

� the Application Logic;

� the Frontend.

Once again the symptom is seen at the SaaS level. Nevertheless Dr. Dek performs

a holistic analysis that takes into account data from probes at multiple layers. This

analysis determines that the virtual machines running the Frontend and the Appli-

cation Logic execute as expected; moreover, the probes for the Frontend report a

reasonable response time for the invocation of the Application Logic component.

The problem lies in the NoSQL database. Indeed, its DomainMetadata probe

tells him that the storage is approaching the maximum size permitted, and therefore

cannot scale any further. Dr. Dek decides to change this component by upgrading to

Amazon DynamoDB, a more performant and scalable NoSQL database. This deci-

sion would typically require Dr. Dek to perform a data migration from SimpleDB to

DynamoDB, and to change the application code. These actions require also to stop

the application, redeploy it, and (re)start it. However, Dr. Dek designed the applica-

tion with a persistence layer that allows him to dynamically modify the binding to the

NoSQL database. This allows him to avoid modifying the application code; however,

24 Cloud-Based Systems Need Multi-Level Management 595

the data migration must still be performed manually. This step can be achieved when

the system is still running to avoid any down-time.

In the Google-based implementation the scenario does not occur. The reason for

this is that the NoSQL datastore is provided directly within the PaaS. Amazon Sim-

pleDB is offered as SaaS, and has finite quotas, while Google provides no maximum

limit for billed data storage. The same is true for blob storage.

Scenario 3

In this scenario, the operating system of the virtual machine on which the application

logic is being run reports a high-usage of the swap file as well as minimal residual

amount of free memory. Here the culprit can only be the application logic, which,

by the way, shows a normal invocation rate. These data drive Dr. Dek to setup profil-

ing tools, such as DTrace, to investigate the memory leak. This is easily done since

Dr. Dek has full access to the virtual machine. A bug fix is then required, and this

implies that the application will need to be stopped (operation StopInstance),

manually fixed, redeployed and restarted (operation StartInstance). More elab-

orate solutions are also possible. For example, Dr. Dek could leave the application

running, produce the bug fix, create a new virtual machine instance to which to deploy

it (operation CreateImage), and then swap the old instance with the new one

(operations StopInstance and StartInstance). In both cases, the symptom

is seen at the IaaS level, while the adaptation occurs at the SaaS level (e.g., bug fix),

possibly involving other levels as well (e.g., swapping of virtual machine instances).

In the Google-based implementation the scenario plays out in a slightly different

manner. When deploying to the PaaS, Dr. Dek no longer has direct access to the

instance’s operating system. This means he can no longer provide custom infrastruc-

ture probes, and must rely solely on the information that Google provides. In this

particular case, Google only provides a periodic snapshot of the instance’s memory

usage. This is enough for Dr. Dek to understand that there is a problem, but his

limited view of the system makes the application profiling and the bug hunting more

difficult. His only solution is to undeploy the application, instrument the source code

with statement-level probes, and redeploy it to Google App Engine. The probes col-

lect more data than before, and these are saved in the PaaS to logs, which are then

downloaded to Dr. Dek’s own computer and used to profile the application through

DTrace. When the bug is found and fixed, the application can finally be stopped,

redeployed, and restarted.

24.6 Related Work

Here we present and briefly discuss some of the most interesting works on the run-

time management of service-based systems. We start by presenting approaches that

propose models for manageability, and then concentrate on isolated service monitor-

596 L. Baresi et al.

ing and adaptation approaches that focus on multi-level systems. We conclude this

section with an overview of some of the work that we have achieved in the area of

run-time service management.

24.6.1 Models for Manageability

Manageability has been a hot topic for standardization by part of different consor-

tiums. Oasis has proposed the Web Services Distributed Management (WSDM) [27],

a protocol for the interoperability of management information and features. It focuses

on two main aspects: how to use Web services technologies as the foundation of a

resource management framework, and how these notions can be adapted to Web

services themselves. An alternative standard, called WS-Management [15], has been

proposed by the Distributed Management Task Force (DMTF). Its goal is similar to

WSDM’s one, as it provides support for generic resource management using Web

service standards. It also proposes a special binding for managing resources that are

defined using their Common Information Model (CIM).

Different MDE methodologies for managing extra-functional properties of ser-

vice compositions have been proposed, although they focus on a single level in the

system. Chowdhary et al. [13] address the specification of business-level perfor-

mance indicators and their direct transformation to platform specific models, Debus-

mann et al. [14] define SLA (Service Level Agreement) parameters together with

the specific indicators needed within the SLA itself, and Chan et al. [11] address the

automatic generation of component-based instrumentations for monitoring specific

quality-of-service concerns.

Momm et al. [25] provide a model-based technique for defining the monitoring

and control capabilities of a manageable software service. In their work, they model

how a service Key Performance Indicator is obtained through low-level processing

operations (e.g., addition, subtraction, etc.). They then discuss various instrumenta-

tion alternatives that can be used to derive a service’s manageability interface, and

provide a manageability infrastructure capable of dealing with basic elementary data,

and with their correlation and aggregation.

24.6.2 Multi-Level Monitoring and Adaptation

Multi-level control loops are still in their infancy. One of the authors participated

in a preliminary study in which there was a first attempt to create an integrated

multi-level control loop for service-based systems [20]. In particular, in this work

the authors developed a control loop for managing BPEL processes on top of virtu-

alized resources; there was no concrete corollary contribution for software deployed

in the context of a PaaS. C2 M was designed to overcome this limitation, by provid-

24 Cloud-Based Systems Need Multi-Level Management 597

ing the foundational models required to generalize the control loop for multi-level

applications.

There have also been some initial research contributions that concentrate either on

multi-level monitoring or on multi-level adaptation. For example, Foster et al. [18]

have proposed an extensible framework for monitoring business, software, and

infrastructure services. The framework allows different kinds of reasoners, tailored to

different kinds of services, to be integrated and to collaborate to monitor decompos-

able SLA terms and expressions. The framework automatically assigns the decom-

posed atomic terms to specific reasoners, yet the approach does not support the

correlation of terms monitored at different layers. Mos et al. [26] propose a multi-

layered monitoring approach that considers service and infrastructure level events

produced by services deployed to a distributed enterprise service bus. Basic com-

putations can be performed on the events to produce aggregate information (e.g.,

averages) or complex event processing can be used for more complex correlations

and verifications. The resulting data are analyzed by comparing them to thresholds,

and the knowledge collected at the various levels are presented through appropriately

differentiated user interfaces and visualization techniques. The approach does not

correlate knowledge collected at the different levels.

Regarding multi-level adaptation, Efstratiou et al. [16] present an approach for

adapting multiple applications that share common resources. These applications are

not composed, but rather single entities affected by the same contextual attributes.

Since these applications live in the same space they need to coordinate how they

manage the shared resources to avoid conflicts. However, they expect the users to

perceive and model the conflicts manually. Finally, Popescu et al. [31] propose a

framework for multi-layer adaptation of service-based systems comprised of organi-

zation, coordination and service layers. In this approach a designer needs to prepare

a taxonomy of the adaptation mismatches, and then a set of adaptation templates,

known as patterns, that define generic solutions for these mismatches.

True multi-level monitoring and adaptation techniques need to be able to plan

multi-layered adaptation strategies. To this end Zengin et al. [34] have developed

a cross-layer adaptation manager called CLAM. The approach takes as input (a) a

model of the service-based system in which the designer highlights the cross-layer

relationships that exist between the services, and (b) a set of predefined domain-

specific rules that can be used to establish the integration of different adaptation

actuators at different levels. The authors have published preliminary results based

on an initial implementation of CLAM.

24.6.3 Our Contributions to the Area

In the last few years we have provided numerous contributions to the concepts pre-

sented in C2 M , both in terms of property specification languages, and in terms of

run-time management machinery. This work was mainly focused on the SaaS layer,

and in particular on BPEL compositions.

598 L. Baresi et al.

24.6.3.1 WSCoL, WSReL, and Dynamo

In [7] we presented WSCoL (Web Service Constraint Language), an assertion lan-

guage for specifying the functional and non-functional properties of the interactions

between a BPEL process and its third-party services. A WSCoL assertion is always

associated with a BPEL interaction statement. When we reach this statement in the

process execution, we gather the required run-time data and attempt to verify the

assertion. WSCoL allows three different kinds of probes: internal probes, to gather

information from the process internal execution state, external probes, to gather con-

text and situational information, and historical probes, to gather information about

previous process invocations.

We also presented WSReL (Web Service Recovery Language), a language for

defining complex recovery strategies that can be enacted when an anomaly is dis-

covered. It provides both local and backward recovery. The former attempts to fix a

problem in the current state of error (i.e., compensation), while the latter attempts

to fix the problem by restoring the process to a previously known correct state (i.e.,

rollback). WSReL adopts a combination of ECA (Event–Condition–Action) rules

that allows designers to mix and match atomic actions, such as ignore, notify, rebind,

callback, and restore, to build a complex recovery strategy.

For WSCoL and WSReL we developed Dynamo, a process execution environment

that provides WSCoL-compliant probes and analyzers, and WSReL-compliant actu-

ators. Dynamo uses Aspect-oriented Programming to extend ActiveBPEL, an open-

source BPEL execution environment. Probing, analysis, and recovery are treated as

cross-cutting concerns that are activated every time the process needs to interact with

a third-party service.

24.6.3.2 ALBERT

WSCoL has been the basis for the definition of a new language, ALBERT (Asser-

tion Language for BPEL Process Interactions) [4]. ALBERT supports an assume/

guarantee specification and verification pattern. In ALBERT, we specify the func-

tional and the non-functional properties that the partner services are required to

guarantee in terms of logical formulae, called assumed assertions (AAs). Based on

these AAs the composition may offer a service whose properties can also be speci-

fied via ALBERT formulae, called guaranteed assertions (GAs). At design time, a

formal verification tool can then be used to check that a composite service delivers

on its GAs, under the assumption that the external services deliver on their AAs.

Since design-time verification is not enough for evolving systems like the ones built

out of dynamic services, verification must be extended to run time, where ALBERT

properties become run-time assertions monitored during the execution of the com-

posite service. Run-time monitoring of ALBERT assertions has been integrated into

Dynamo; the implementation has then been optimized for efficiency [5] by defining

the semantics of ALBERT through an extension of alternating automata.

24 Cloud-Based Systems Need Multi-Level Management 599

ALBERT was the key element around which we developed SAVVY-WS (Ser-

vice Analysis, Verification, and Validation methodologY for Web Services) [9], a

methodology that provides a holistic approach to support the lifelong verification

of Web service compositions. An outlook on the adoption of this methodology in

the context of generic, non Web services-based, service compositions has also been

proposed in [8].

WSCoL and ALBERT, WSReL, and Dynamo contribute to three out of four of the

steps of the control loop presented in Sect. 24.4, that is the (Multi-level) Monitoring,

(Multi-level) Analysis of Adaptation Needs, and the Coordinated Adaptation steps.

(Multi-level) Adaptation Planning is achieved using a human expert that must be

knowledgable of the intricacies of the process design. However, they only concentrate

on the SaaS level, without taking into account any other layers.

24.6.3.3 Model-Driven Management

In [6] we furthered our studies on service management and proposed a model-

driven approach to the automatic synthesis of probes, data correlators, and analyzers

for BPEL processes called MDMS (Model-Driven Management of Services). This

model-driven approach advocates that designers need to consider management as an

integral part of a system development, from requirements elicitation to implemen-

tation. MDMS uses BPMN and natural language to define the system architecture

and management needs at the CIM (Computation Independent Model) level. It uses

SCA, along with a data model and a model of key performance indicators, to provide

the management needs at the PIM (Platform Independent Model) level. Finally, it

uses BPEL and complex event processing (CEP) techniques to provide management

at the PSM (Platform Specific Model) level.

MDMS is supported by an execution environment called EcoWare (Event Cor-

relation Middleware). Any service-based execution environment that has suitable

probes can be used in conjunction with EcoWare. We implemented a tool capa-

ble of automatically generating probes for BPEL processes that are deployed to

Dynamo. The probes are configured to send the data they collect to a Siena [10]

publish/subscribe event notification service. Based on the models we then generate

a pipe-and-filter composition of Esper-based [17] event processing components to

provide the required event filtering, correlation, and aggregation.

EcoWare provided the genesis of the work presented in this chapter. While working

on EcoWare we only focused on the SaaS layer, yet it was that work that pushed us

to focus on the main concepts needed to build a manageable service-based system.

Moreover, it also allowed us to more deeply consider the role that complex event

processing techniques could play in the bigger picture of multi-level management.

600 L. Baresi et al.

24.7 Conclusions and Future Work

This chapter discussed how cloud-based applications can exploit the service abstrac-

tion to govern and maintain their effective operation. The complete availability of

the infrastructure and platform on which applications are deployed offers unique

means to tune the operation of its constituting services at run time. Besides the

“usual” activities at application level, like for example monitoring the response time

of a partner service or selecting a faster counterpart, probing and adaptation can

also address the platform and infrastructure exploited by the application. Moreover,

information that comes from the same infrastructure, but belongs to different applica-

tions, can be shared and used to improve the interdependent operation of the different

applications.

As said, all these opportunities call for a unified model to accommodate all the

different concepts, and to be able to exploit them in a single, integrated approach.

A dedicated run-time framework must provide users with the means to properly probe

deployed applications at all levels, retrieve and correlate information, decide on the

corrective actions, and apply them. The chapter thoroughly discussed C2 M , which is

our proposal for a conceptual model for the multi-layer management and operation

of cloud-based applications. It also proposes a high-level reference framework for

implementing multi-level management.

24.7.1 Outlook

This chapter moved the first steps towards the integrated and multi-level manage-

ment and operation of cloud-based applications. The availability of development and

deployment platforms and of run-time infrastructures is both an opportunity and a

challenge. It is an opportunity since the availability of many existing solutions allows

the user to design, deploy, and operate applications in more sophisticated, perfor-

mant, and cheap ways. It is a challenge since some (many) issues are still waiting to

be solved. This holistic approach impacts all levels of the usual cloud stack, and we

think it calls for significant advances in the following directions:

� Abstractions. More is needed in terms of the abstractions that one can use to

reason on and design these applications. We need a better agreement on the key

concepts behind these applications, and cloud solutions in general, but also a neat

and clear identification of the building blocks and primitives the different solutions

can offer to their customers.

� Design and specification techniques. Since current design and specification tech-

niques are used to reason at a single level, the interactions and interferences among

levels must be properly identified and specified: this means that suitable techniques

must let one think of the different layers as a single integrated solution where they

exist both in isolation and as parts of a whole.

24 Cloud-Based Systems Need Multi-Level Management 601

� Standardization of run-time components. Currently, each cloud infrastructure

provides its own components, and each attempt to reason on the integrated manage-

ment of cloud-based applications remains isolated. Similarly to other approaches,

for example WSDM in the domain of Web service management, this new world

calls for standardized APIs that one can exploit to both conceive an application

and think of its integrated management.

� Management capabilities. The general concepts presented in this chapter must be

grounded in concrete cases and needs. Real experiences are supposed to privilege

some management capabilities with respect to others, and thus they should help

us better tune the reasoning capabilities needed in this context.

� Validation and verification. This comprehensive solution opens new challenges

to the verification and validation of these applications. Again, the problem is

not to study one layer in isolation, but validation and verification activities must

try to address applications as complete systems composed of elements (services)

at different levels.

� Thorough assessment. The solution presented here comes more from the tech-

nologies available today and the work done by the authors in these years. Now,

the model must be confronted with more concrete needs and specific requirements

from the different domains that are already exploiting the cloud and will further

exploit it in the future.

Advances in all these directions are key to have better means for the development

of quality cloud-based applications, for their operation, and also for their effective

management.

Acknowledgments This research has been funded by the European Commission, Programme
IDEAS-ERC, Project 227077-SMScom (http://www.erc-smscom.org), and FP7 STREP project
257483-Indenica (http://www.indenica.eu); by the National Research Fund, Luxembourg
(FNR/P10/03).

References

1. Amazon: Amazon Web Services. http://aws.amazon.com/ (2012)
2. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D.,

Rabkin, A., Stoica, I., et al.: A view of cloud computing. Comm. ACM 53(4), 50–58 (2010)
3. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of Instances and

Classes of Web Service Compositions. In: ICWS ’06: Proceedings of the 2006 IEEE Interna-
tional Conference on Web Services, pp. 63–71. IEEE Computer Society (2006)

4. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web service com-
positions. IET Software 1(6), 219–232 (2007)

5. Baresi, L., Bianculli, D., Guinea, S., Spoletini, P.: Keep it small, keep it real: Efficient run-time
verification of web service compositions. In: FMOODS/FORTE 2009: Proceedings of IFIP
international conference on Formal Techniques for Distributed Systems, LNCS, vol. 5522, pp.
26–40. Springer (2009)

6. Baresi, L., Caporuscio, M., Ghezzi, C., Guinea, S.: Model-Driven Management of Services. In:
ECOWS 2010: Proceedings of the 8th European Conference on Web Services, pp. 147–154.
IEEE Computer Society (2010)

http://www.erc-smscom.org
http://www.indenica.eu
http://aws.amazon.com/

602 L. Baresi et al.

7. Baresi, L., Guinea, S.: Self-supervising bpel processes. IEEE Trans. Software Eng. 37(2),
247–263 (2011)

8. Bianculli, D., Ghezzi, C.: Towards a methodology for lifelong validation of service composi-
tions. In: SDSOA 2008: Proceedings of the 2nd International Workshop on Systems Develop-
ment in SOA Environments, pp. 7–12. ACM (2008)

9. Bianculli, D., Ghezzi, C., Spoletini, P., Baresi, L., Guinea, S.: A guided tour through SAVVY-
WS: a methodology for specifying and validating web service compositions. In: E. Börger, A.
Cisternino (eds.) Advances in Software Engineering, LNCS, vol. 5316, pp. 131–160. Springer
(2008)

10. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area event
notification service. ACM Trans. Comput. Syst. 19(3), 332–383 (2001)

11. Chan, K., Poernomo, I.: QoS-aware model driven architecture through the UML and CIM.
Information Systems Frontiers 9(2–3), 209–224 (2007)

12. Chappell, D.: Enterprise service bus. O’Reilly, Media (2004)
13. Chowdhary, P., Bhaskaran, K., Caswell, N.S., Chang, H., Chao, T., Chen, S.K., Dikun, M.,

Lei, H., Jeng, J.J., Kapoor, S., Lang, C.A., Mihaila, G., Stanoi, I., Zeng, L.: Model driven
development for business performance management. IBM Syst. J. 45(3), 587–605 (2006)

14. Debusmann, M., Kroger, R., Geihs, K.: Unifying service level management using an MDA-
based approach. In: NOMS 2004: Proceedings of the Network Operations and Management
Symposium, pp. 801–814. IEEE (2004)

15. Distributed Management Task Force: Web Services for Management. http://www.dmtf.org/
standards/wsman/ (2010)

16. Efstratiou, C., Cheverst, K., Davies, N., Friday, A.: An architecture for the effective support of
adaptive context-aware applications. In: MDM 2001: Proceedings of the Second International
Conference on Mobile Data Management, pp. 15–26. Springer (2001)

17. EsperTech: Complex event processing. http://esper.codehaus.org (2010)
18. Foster, H., Spanoudakis, G.: SMaRT: a Workbench for Reporting the Monitorability of Services

from SLAs. In: PESOS 2011: Proceedings of the 3rd International Workshop on Principles of
Engineering Service-oriented Systems, pp. 36–42. ACM (2011)

19. Google: Google App Engine. https://developers.google.com/appengine/ (2012)
20. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered monitoring and adapta-

tion. In: ICSOC 2011: Proceedings of the 2011 International Conference on Service Oriented,
Computing, pp. 359–373 (2011)

21. Heroku: Heroku Cloud Application Platform. http://www.heroku.com/ (2012)
22. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information Technology.

IBM TJ Watson Labs. (2001)
23. Mahbub, K., Spanoudakis, G.: A Framework for Requirements Monitoring of Service based

Systems. In: ICSOC ’04: Proceedings of the 2nd International Conference on Service Oriented
Computing, pp. 84–93. ACM (2004)

24. Microsoft: Windows Azure. http://www.windowsazure.com/en-us/ (2012)
25. Momm, C., Gebhart, M., Abeck, S.: A model-driven approach for monitoring business perfor-

mance in web service compositions. In: ICIW ’09: Proceedings of the 2009 Fourth International
Conference on Internet and Web Applications and Services, pp. 343–350 (2009)

26. Mos, A., Pedrinaci, C., Rey, G.A., Gomez, J.M., Liu, D., Vaudaux-Ruth, G., Quaireau,
S.: Multi-level Monitoring and Analysis of Web-Scale Service based Applications. In:
ICSOC/ServiceWave Workshops, pp. 269–282 (2009)

27. OASIS: Web Services Distributed Management (WSDM). http://www.oasis-open.org/specs/
(2006)

28. OASIS: Web Services Business Process Execution Language Version 2.0. http://www.oasis-
open.org/specs/ (2007)

29. OpenSOA: Service component architecture specifications. http://www.osoa.org (2007)
30. Openstack: Openstack Cloud Software. http://openstack.org/ (2012)
31. Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., Clarke, S.: Taxonomy-Driven Adaptation of

Multi-layer Applications Using Templates. In: SASO 2010: Proceedings of the Fourth IEEE
International Conference on Self-Adaptive and Self-Organizing Systems, pp. 213–222 (2010)

http://www.dmtf.org/standards/wsman/
http://www.dmtf.org/standards/wsman/
http://esper.codehaus.org
https://developers.google.com/appengine/
http://www.heroku.com/
http://www.windowsazure.com/en-us/
http://www.oasis-open.org/specs/
http://www.oasis-open.org/specs/
http://www.oasis-open.org/specs/
http://www.osoa.org
http://openstack.org/

24 Cloud-Based Systems Need Multi-Level Management 603

32. Richardson, L., Ruby, S.: RESTful web services. O’Reilly, Media (2007)
33. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Services Platform

Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging
and More. Prentice Hall (2005)

34. Zengin, A., Marconi, A., Baresi, L., Pistore, M.: CLAM: Managing Cross-layer Adaptation in
Service-based Systems. In: SOCA 2011: Proceedings of the 2011 IEEE International Confer-
ence on Service-Oriented Computing and Applications, pp. 1–8. IEEE (2011)

Chapter 25

Web Services for Things

Guangyan Huang, Jing He and Yanchun Zhang

Abstract In this chapter, we introduce an interesting type of Web services for

“things”. Existing Web services are applications across the Web that perform func-

tions mainly to satisfy users’ social needs “from simple requests to complicated

business processes”. Throughout history, humans have accumulated lots of knowl-

edge about diverse things in the physical world. However, human knowledge about

the world has not been fully used on the current Web which focuses on social com-

munication; the prospect of interacting with things other than people on the future

Web is very exciting. The purpose of Web services for “things” is to provide a tunnel

for people to interact with things in the physical world from anywhere through the

Internet. Extending the service targets from people to anything challenges the exist-

ing techniques of Web services from three aspects: first, an unified interface should

be provided for people to describe the needs of things; then basic components should

be designed in a Web service for things; finally, implementation of a Web service for

things should be optimized when mashing up multiple sub Web services.

We tackle the challenges faced by a Web service for things and make the best

use of human knowledge from the following aspects. We first define a context of

things as an unified interface. The users’ description (semantic context) and sensors

(sensing context) are two channels for acquiring the context of things. Then, we define

three basic modules for a Web service for things: ontology Web services to unify

the context of things, machine readable domain knowledge Web services and event

report Web services (such as weather report services and sensor event report services).

Meanwhile, we develop a Thing-REST framework to optimally mashup structures

G. Huang (B) · J. He · Y. Zhang
Victoria University, Melbourne, Australia
e-mail: guangyan.huang@vu.edu.au

J. He
e-mail: jing.he@vu.edu.au

Y. Zhang
e-mail: yanchun.zhang@vu.edu.au

A. Bouguettaya et al. (eds.), Advanced Web Services, 605
DOI: 10.1007/978-1-4614-7535-4_25,
© Springer Science+Business Media New York 2014

606 G. Huang et al.

to loosely couple the three basic modules. We employ a smart plant watering service

application to demonstrate all the techniques we have developed.

25.1 Introduction

25.1.1 A Scenario of Web Services for Things

Things in the real world can communicate their physical situation (e.g., location,

temperature etc.) to people through sensors, and people can control things by them-

selves or use actuators. In this chapter, we describe the development of Web services

for things that allows machines to understand things: the major aim is to build a new

bridge between humans and things through machines (e.g., computers, sensors, other

devices). Since advanced technology has already built an interface between human

and machines, defining an interface between machines and things enables human

to interact with things. We design an interesting application in Fig. 25.1, expected

to be understandable by average people, to demonstrate the techniques of applying

human knowledge/resources through the Web and sensors to provide a Web service

for things [20].

4. Smart Plant

Watering

Service

3. Weather Report

Service

1.2 Plant

Ontology Service

1.1 User

Configuration

Sensor
2.1. Dynamical

Humidity Report

5. Digital

Watering

Mashup several heterogeneous Web services

1.3 Plant Cultivation

Domain Knowledge

Service

2.2. Sensor Event

Detection Service

Actuator

Fig. 25.1 A smart plant watering service

The object served in Fig. 25.1 is an outdoor potted plant; when it dries out, it

will generate an event notifying its owner or an actuator to water it with a suitable

dose. A sensor is used to monitor the humidity and temperature of the soil in the

25 Web Services for Things 607

pot and an actuator is set up to execute the watering command. Different plants

have different preferences (watering dose and frequency). To add human intelligence

into this application, basically two inputs (e.g. context of things) are required: user

configuration with the plant’s name, location and life stage, and a dynamical humidity

report of the soil around the plant from the sensors; then we can make the best use

of human knowledge and resources (such as weather report services) on the Web to

provide a service to the plant, which we call a smart plant watering service. This

smart plant watering service mashups four heterogenous Web services to implement

its goal. A weather report service combines with a dynamical humidity report that

is analyzed by a sensor event detection service to dynamically determine whether

watering is needed. A plant cultivation domain knowledge service allows calculation

of the amount of water the plant requires by understanding the plant’s context (plant

name and life stage, provided in the user configuration phase). Actually, the user’s

configuration is unified by a plant ontology service, since users may call their plants

in different aliases or in different languages. Then, the output of the plant ontology

service is chained to the input of the plant cultivation domain knowledge service.

Finally, a message specifying the dose of water will be produced to trigger the actuator

when the humidity value is smaller than a threshold and no rain is forecast.

Could an equivalent service be achieved by replacing the smart plant watering

service with an embedded computing unit? We can imagine a smart device including

a sensor, an actuator and a computing unit, as well as some storage or memory.

To provide the same smart service to the plant, the device needs to pre-store plant

cultivation domain knowledge and have the capability to predict the weather. This

is impractical for two reasons. First, meteorological services need supercomputers

to predict weather precisely; such capacity cannot be included in a device of a size

suitable for the proposed task. Second, storing knowledge of all possible plant species

and individually designing embedded devices for each plant would drive costs very

high.

Compared to using an embedded computing unit, the advantages of Web services

for things will make them popular with the general public:

• Low cost. Computing services can be used in a pay-as-you-go model, thus saving

the cost of buying expensive devices;

• Quality. The ability to make use of professional services via the Web means the

best available information can be utilized;

• Convenience. The required service can be implemented automatically according

to the contexts of things;

• Flexibility. The same sensor and actuator can be used for different plants.

608 G. Huang et al.

25.1.2 Challenges and Solutions for Implementing

Web Services for Things

Comparing the context of things (e.g., name, location, sensing report of things)

with the people-centric context raises the following challenges for the design of

context-aware Web services for things (termed smart Web services in this chapter).

First, it is difficult to unify the context of things. We can analyze people’s behaviors

or operations on the Web to identify their preferences. But for things, we can only

obtain their preferences through their classes (e.g., names). Thus, ontologies and

domain knowledge are needed to unify and understand the context of things. That

is, we deduce their preferences (e.g., habits or characteristics or properties) from

their classes based on domain knowledge accumulated throughout human history.

Also, it is difficult to implement a flexible smart Web service based on the context

of things. People express their needs easily, but the time when the needs of a target

thing generate can be detected only by analyzing sensor data. Also, we must explore

experts’ domain knowledge to provide professional services for things.

This chapter aims to make things, as physical entities in the real world, understood

by machines and thus, provide smart Web services to things [20]. We first define a

context of things as an unified interface. We extend the traditional context for QoS-

aware Web services to the context for smart Web services (e.g., both the context of

things and the user context). The users’ description (semantic context) and sensors

(sensing context) are two channels for acquiring the context of things. Then, we

define three basic modules for a Web service for things: ontology Web services

to unify the context of things, machine readable domain knowledge Web services

and event report Web services (such as weather report services and sensor event

report services). Meanwhile, we develop a Thing-REST framework to optimally

mashup structures to loosely couple the three basic modules. We tackle the problem

of mashuping heterogenous Web services based on Representational State Transfer

(REST) for mashups. The Thing-REST framework is used to manage the context of

things as well as user context in order to efficiently and easily implement smart Web

services.

25.1.3 Extensive Applications

“Twenty-first century computers are profound technological devices that have woven

themselves into the fabric of everyday life” [29]. Smart plant watering service is

just one of the simple and typical applications of Web services for things; we can

use general humidity and temperature sensors, or special sensors for smart plant

care1 to implement it. However, for scalable applications, we adopt general sensors

1 http://www.koubachi.org

http://www.koubachi.org

25 Web Services for Things 609

to describe the mechanism of smart Web services for things in Sect. 25.6. Other

applications include,

• smart homes [9, 19, 32] that improve living conditions for the aged and the disabled

[23],

• SmartAgriFood that addresses farming, agri-logistics and food awareness as an

extreme use case for the Future Internet [35],

• smart offices for working in a convenient modern way, and

• smart hospitals [16] that can monitor and serve individual patients.

The Semantic Web provides the specialists’ field knowledge and the Ubiquitous Web

acts as the eyes and arms of the objects to help satisfy human goals, building a bridge

between the virtual world and real world.

The rest of this chapter is organized as follows. We present State-of-the-Art Web

technology for things in Sect. 25.2. We define the context of things in Sect. 25.3. We

then provide a smart Web service for things in Sect. 25.4. In Sect. 25.5, we introduce a

Thing-REST style for implementing the smart Web service. In Sect. 25.6, we present

an implementation of the application in Fig. 25.1. Finally, Sect. 25.7 concludes this

chapter.

25.2 State-of-the-Art Web Technology for Things

25.2.1 Semantic Web for Machine Readable Knowledge Reuse

Although Web 2.0 provides a set of tools to support interactive and collaborative

knowledge creation, sharing and dissemination, including blogs and wikis, podcasts,

webcasts, webinars, social bookmarking and social networking sites such as Face-

book, Web 2.0 technologies lack support for semantics to automatically share and

reuse knowledge [22]. In contrast, the future Web 3.0 will integrate the social Web

and the Semantic Web, enabling people to create data stores on the Web, build vocab-

ularies and write rules for handling knowledge, thus lowering the cost of data and

knowledge creation by using volunteers and collective human intelligence [22].

Throughout history, humans have accumulated lots of knowledge about the phys-

ical world. We have studied and classified many of the things in the world, including

natural things such as plants, animals, insects, mountains, seas and lakes, and man-

made things such as buildings and consumer products, and we have collected infor-

mation about how to create, cultivate and utilize all these things. However, human

knowledge about the world has not been fully used on the current Web which focuses

on social communication; the prospect of interacting with things other than people

on the future Semantic Web is very exciting.

610 G. Huang et al.

25.2.2 Ubiquitous Web for Sensing Physical World

Meanwhile, Web 3.0 merges Ubiquitous Web technology. Sensors and actuators

are already interconnected through the Internet [8, 12, 18, 42], representing the

beginning of the Internet of Things that helps computers monitor, react to and affect

the changing status of the physical world. Sensors are the nerve cells of the system,

operating as data publishers [18]; this means the Web is becoming a computing

center like a brain, which is able to respond to every nerve cell in different ways,

based on the contexts of things. The mechanism is the static context (e.g. name,

location, preference of things) that determines how to respond and the dynamic

context (sensing report of things’ situation) that determines when to respond. In a

Ubiquitous Web, any knowledge can be shared to serve any thing, forming a bridge

between the virtual world and the real world. Thus, as Conrad Wolfram said, Web

3.0 is where the computer is generating new information, rather than humans.2

Thus, the two purposes of Web 3.0 are: to link data by the Semantic Web that

makes online information machine-readable, and to facilitate a Ubiquitous Web that

can be accessed by anything, anywhere, anytime, using a variety of devices.

25.2.3 Context of Things

By managing the context of things, the goal is to automatically reuse knowledge (e.g.,

domain knowledge and specialists’ experiences) as a format of Web services on the

Internet to create smart Web services which are easily reused. “Context of things” is a

concept which enables people to understand things and translate their understanding

into machine languages in order to provide services for things automatically. Context

is vital in Web services. Already known contexts [1, 5, 7, 10, 11, 33, 41] are generally

used for the Web of people, for instance, to improve the QoS of Web services; they do

not include the context of things to enable a smart Web service for things. A widely

used definition of context was proposed by Dey and Abowd [10]: “Context is any

information that can be used to characterize the situation of a thing. An entity is

a person, place, or object that is considered relevant to the interaction between a

user and an application, including the user and applications themselves.” However,

it lacks an explicit definition of the context of things. In this chapter, we define the

context of things as a supplement, since the already known context for Web services

is not enough to be employed by smart Web services, like the application shown in

Fig. 25.1.

For a Web of People [39], context is defined as any information that can be used

to characterize the interaction of a user with a software system (and vice-versa), as

well as the environment where such interaction occurs [5]. Here a user is gener-

ally a person, so we call this people-centric context; typical examples are people’s

locations, personal preferences and the characteristics of their Web access devices.

2 http://webuser.hs-furtwangen.de/heindl/ebte-08ss-web-20-uphakorntanakit.pdf

http://webuser.hs-furtwangen.de/heindl/ebte-08ss-web-20-uphakorntanakit.pdf

25 Web Services for Things 611

Thus, existing context-aware Web services [1, 5, 10, 11, 33, 41], mainly focus on

improving the Quality of Services (QoS) based on the contexts of users; and gener-

ally programs in Web services enumerate different implementations corresponding

to different attribute values of the context. But, for a Web of things based on Web 3.0,

the contexts of things in the physical world are extremely diverse, which poses new

problems for implementing context-aware Web services. For example, on a Web of

things, the service target is a plant and the service content is to water the plant; we

cannot enumerate all the cases to implement this Web service, since a huge number

of different classes of plants exist with different preferences for watering doses and

frequency. A thing can be biotic (e.g., plants and animals) or abiotic (buildings and

commodities). A thing may be a person; typical target examples are aged people,

small children, disabled people, patients and any other special group of people.

25.2.4 Web Services for Things

25.2.4.1 Web Services

Web services are vital to transform the Web from a collection of information into a

distributed computational device [14]. By using context, Web services can become

smarter—that is, aware of the target things’ or the applications’ physical environment

or situations and respond proactively and intelligently [41]. Thus, such a context-

aware (smart) Web service can understand situational context and share that context

with other services and produce dynamic results based on who, what, when, where,

and why it was called [28]. According to IBM’s Web service tutorial [14], “Web ser-

vices are a new breed of Web applications. They are self-contained, self-describing,

modular applications that can be published, located, and invoked across the Web.

Web services perform functions, which can be anything from simple requests to

complicated business processes”.

25.2.4.2 REST

In REST [15, 27, 43], any resource is addressed by a unique identifier of standard

format via Uniform Resource Locators (URL) using the Hypertext Transfer Protocol

(HTTP) and its methods (e.g. GET3, POST4, PUT5 and DELETE6) to access them.

The state of a resource, e.g. a sensor node, can be get or set by the GET or POST HTTP

methods, respectively. The REST style is suitable for loosely coupling distributed

3 GET returns a representation of the requested resource.
4 By using POST, it is possible to update a resource with new information.
5 PUT is used to create a new resource with a name that is specified by the client.
6 If a resource is no longer required, the DELETE method removes the URI from the accessible
resources of a server.

612 G. Huang et al.

networked applications that are independent and self-organized. Summarizing the

work in [4, 30, 40], the main advantages of REST include:

(1) operations are defined in the message [Muehlen];

(2) there is a unique address for every process instance [Muehlen];

(3) late binding is possible [Castellani] [Muehlen];

(4) process instances are created explicitly [Muehlen];

(5) zero-knowledge network probing on client sides [Castellani] [Muehlen];

(6) no client’s session state is maintained on server sides [Wilde];

(7) it allows multiple applications to interact with the same resources [Wilde].

These advantages make REST suitable for developing smart Web services. First,

sensors/actuators can be assigned a global Uniform Resource Identifier (URI), for

example, “http://vcrab.com/SmartWebService/Joey/Rose_Humidity_Sensor” on the

Web and its states can be accessed from anywhere on the Internet. Second, a loose

coupling style can support mashing heterogeneous Web services up well. For exam-

ple, a TinyREST architecture [27] is used to obtain/change the state of the sen-

sors/actuators through an addressing mechanism where all requests, e.g. POST, GET,

can be forwarded by the gateway to one (or a group) of specific sensor(s)/actuator(s).

The TinyREST is demonstrated to be a very efficient way to access sensor nodes or

sensor networks from any Internet clients and any Internet-based applications. The

loose coupling style in REST makes run-time linking practical by easily typing in

the URL [37].

The Thing-REST extends the TinyREST in two aspects: first, Thing-REST not

only unifies the sensing context of things provided by sensors but also unifies the

semantic context of things in the natural language provided by people; second, Thing-

REST also defines the user’s context in an explicit way by using URIs. In summary,

Thing-REST can describe all the context resources in a smart Web service for things.

25.2.4.3 REST-Based Mashup

Mashup is an approach that allows users to aggregate multiple services, each serv-

ing its own purpose, to create a service that serves a new purpose and mashup

can compose heterogeneous resources [25]. Mashup tools, such as Yahoo’s pipes,

IBM’s QEDwiki and Google’s Mashup Editor often require little or no programming

knowledge to create a mashup; they chain the Web resources together by piping one

service’s output into the next service’s input while filtering content or making slight

format changes [34]. Thus, the REST style is used to achieve machine-readable

features. For example, an hREST (HTML for RESTful Services) [24] is provided

for machine-readable descriptions of Web APIs for mashup automation in order

to replace manual Web service composition (or mashup) due to plain unstructured

HTML documents, or human-readable descriptions, for Web APIs. Also, in [13],

a pREST (REST-based protocol for pervasive systems) aims to provide additional

information about resources by supporting a loose typing system via an HTTP header.

In [18], a structured XML document or a JavaScript Object Notation (JSON) object

http://vcrab.com/SmartWebService/Joey/Rose_Humidity_Sensor

25 Web Services for Things 613

that are both machine-readable and human-readable are adopted for services of smart

things (e.g., sensors, actuator networks).

In addition to the machine-readable interfaces the same as in hREST and pREST,

the Thing-REST provides three mashup structures (e.g., chain, select and merge) to

implement efficient smart Web services.

25.3 Context for Smart Web Services

In this section, we first provide a whole graph of context for smart Web services and

then define a new concept: the context of things.

25.3.1 Context Lattice

We classify contexts into four typical classes: user’s Web-access devices, user’s

preferences, user’s physical situations and user’s things, and then we plot them into

a context lattice as shown in Fig. 25.2. Already known contexts for Web services

describe the user’s physical situation (e.g., common context, such as weather, time

and location), the user preferences and the user’s Web-access devices (e.g., computing

context7 and communication context).8 But these contexts are generally used for the

Web of people, for instance, to improve the QoS of Web services; they are not enough

to enable a smart Web service. Thus, we will define a new concept of “context of

things” (e.g. semantic context and sensing context) that is orthogonal with the context

for QoS-aware Web services.

The context of things is more critical than other contexts for a smart Web service,

thus, this chapter focuses more on using the context of things, as well as related

common contexts to implement a smart Web service.

25.3.2 Context of a Thing

We formally define the context of a thing as follows:

Definition 25.1 (A Thing). A Thing is an entity (e.g., a pot plant, a cow, a person,

a building etc.) or a group of entities that have close relations (e.g., a house filled

with consumer electronics, a cornfield containing thousands of corn plants, etc.). A

thing can be atomic or composite.

7 Computing context is hardware and software for running the application of a Web service, such
as computing ability and throughputs.
8 Communication context includes physical environments and situations on communication hard-
ware platforms, including users’ devices, sensors, actuators, base station and server computers.

614 G. Huang et al.

Location

User

Preference

User’s Web-Access

Devices

Computing
Context

Communication
Context

Context for QoS-Aware Web Service

User’s Things

Semantic
Context

Sensing
Context

Context of Things Common Context

Weather Time

User’s Physical

Situation

Context for Smart Web service

Fig. 25.2 Context lattice

Definition 25.2 (Context of a Thing). The context of a thing includes knowledge

about both the situation around the thing and the thing itself.

The situation around the thing may change dynamically, which can be monitored

by sensors. The knowledge representation of the thing itself can be found in the

domain ontology database. We separate the thing from its situation, since its context

may be static or predictable and the context related to the environment around the

thing may be dynamic. For example, a person’s name, life stage and preferences

are static information that may not change for a long period of time, but a person’s

location and accessing device may change in a day. Another example is a pot plant:

the plant’s name (type), life stage and living habits are static information, but the

soil around the plant may change from healthy to unhealthy due to lack of water or

nutrients, and diseases or pests may threaten its life. We can also state that the static

context of the thing can be predicted while the dynamic context of the thing may not.

However, to distinguish between the situation and the thing itself, we prefer to use

sensing context and semantic context, since we want to handle the whole process of

managing the thing automatically. Thus, we formally define them as follows.

Definition 25.3 (The Semantic Context of a Thing). The Semantic Context of a

Thing is knowledge accumulated by humans about the thing itself (e.g., name, class

name etc.), and is static and predictable.

Definition 25.4 (The Sensing Context of a Thing). The Sensing Context of a Thing

is dynamically changeable and unpredictable knowledge about the situations of the

thing, generally sensed using sensors/actuators.

25 Web Services for Things 615

Typical semantic context includes Basic Information of the Thing (BIT) described

by name, location and life stage, which are originally described in natural languages

and are expected to be unified by ontology services on the Semantic Web. Typical

sensing context are Sensing Reports that are dynamic states of the situation around

things monitored by sensors/actuators and may be analyzed further by sensor event

detection services on the future Web. Basic Information of the Thing (BIT) and

Sensing Reports are two sources of information about the target thing.

25.4 A Smart Web Service for Things

25.4.1 Overview of a Smart Web Service for Things

We have illustrated a smart Web service by using a simple application: the smart

watering plant Web service in Fig. 25.1. We now formally define a smart Web service

based on the concept of task ontology.

Definition 25.5 (A Task Ontology). A task ontology provides a systematic vocab-

ulary of the terms used to solve problems [26]. Information about Generic Tasks [6]

includes:

(1) a task specification in the form of generic types of input and output information;

(2) specific forms in which the basic pieces of domain knowledge are needed for

the task and specific organizations of this knowledge particular to the task; and

(3) a family of control regimes appropriate for the task.

Definition 25.6 (A Smart Web Service for Things). A smart Web service for things

is defined as a general framework to integrate all the functions on a task ontology

in which one or multiple Web services are explored automatically to satisfy specific

needs of a thing (e.g., a plant, a building, a special people group).

According to the definition of the task ontology, we plot a framework of a general

smart Web service in Fig. 25.3, which includes six basic components: Input (e.g.,

the context of things and the user context), Output (e.g., actions towards Things),

Ontology Services, Domain Knowledge Services, Event Detection Services and an

application logic module. For the purpose of serving things, the input is the context

of things and the output is the action towards things. The component of ontology

services is needed as an interface between human users and machine automation. We

also take domain knowledge services as a vital component that can explore human-

accumulated knowledge related to the target thing. Another important component is

event detection services, since the time when the needs of the target thing generated

are always recognized through analyzing the readings of sensors/actuators around the

thing. If the sensing context of things is complex, sensor event detection services may

need the assistance of domain knowledge services. The application logic module is

actually the user interface for applications, where simple programming or application

616 G. Huang et al.

logic is designed here to loosely couple available Web services in order to satisfy

the application goal while the user context may determine the QoS of executing the

mashup.

User

Configuration

Application Logic

Programming

Input

Output

Send Message

User
Input

Thing

Action

Sensing

Report

BIT

Context of
Things

People

Actuators

Weather
Report

Sensor Event
Detection

3. Event Detection

Service

……

Other Web Services

Sensors

Sensing Data

1.Ontology

Service

2.Domain

Knowledge

Service

User

Context

Fig. 25.3 A framework of a smart web service

We have defined a context for smart Web services (e.g., the context of things and

the user context) in Sect. 25.3. We present three types of Web services and the output

in the smart Web service in this section and introduce the Thing-REST-based mashup

in Sect. 25.5.

25.4.2 Ontology Services and Domain Knowledge Services

The semantic context of a thing is created by people and is generally unified by

ontology services on the Semantic Web. The main goal of using ontology ID to

unify a semantic context of a thing is to promote machine automation, that is, inter-

action between different Web service applications without human intervention. On

the Semantic Web, XML (eXtensible Markup Language) structures the users’ docu-

ments, while RDF (Resource Description Framework) expresses the meaning of the

content. XML specifies a syntactic encoding of documents allowing their exchange

25 Web Services for Things 617

between applications [38]. In RDF, a triple being rather like the subject, verb and

object of an elementary sentence is used to make assertions that particular things

have properties with certain values. Subject and object are each identified by a Uni-

form Resource Identifier (URI). The triples of RDF form webs of information about

related things, and the URIs ensure that concepts are not just words in a document

but are tied to a unique definition that everyone can find on the Web. However, two

databases may use different identifiers for what is, in fact, the same concept; thus,

ontology is a solution to this problem.

Definition 25.7 (An Ontology or Domain Ontology [17]). An ontology is an

explicit specification of a conceptualization for a systematic account of existence.

In an ontology, the set of objects to represent a domain is called the universe of

discourse and definitions associate the names of entities in the universe of discourse

(e.g., classes, relations, functions or other objects) with human-readable text describ-

ing what the names mean, and formal axioms that constrain the interpretation and

use of these terms.

Ontologies are reusable in a given domain and provide vocabularies about the

concepts within a domain and their relationships [26].

Ontologies are models that represent an abstraction of a domain in a formal way,

such that several parties are able to agree on the abstraction and reuse the model

in their own (Web) applications [38]. According to above definition, an ontology is

suitable to unify semantic context, since it provides a unified form of knowledge on

the Web for reuse and automation.

To help understand the importance of ontology ID for a semantic context of a

thing, we define two terms as follows:

A Human Dictionary is a dictionary containing words in natural language that is

understandable by people. We use � to denote a human dictionary.

A Machine Dictionary is a dictionary for terms in ontologies with URIs that have

explicit meaning used by machines. We use � to denote a machine dictionary.

The user uses words in the human dictionary to write a BIT, then the system will

translate the type of the thing in the BIT into a unified ID. We assume the system of

ontologies will be mature enough on the future Semantic Web such that every word

in the human dictionary reflects one term in the machine dictionary and n words may

reflect one term. That is

Fact 1: ∀a ∈ Σ ⇒ ∃b ∈ Ω ∩ a = b

Since different users may employ different vocabularies for the target thing, an

ontology is needed to unify them. Taking the application in Fig. 25.1 as an example,

panicle, ear and tassel are all words used to describe an inflorescence [2]. Many

ontologies are now available, such as the Open Biological and Biomedical Ontologies

[3] and the Ontology Lookup Service (OLS) [31]. Thus, two application descriptions

by different users that may use different words to denote the same type of thing can

be translated into the same unified ID.

Although answering queries in an ontology is analogous to theorem proving

and thus building and maintaining a very large ontology is time-consuming and

618 G. Huang et al.

costly [21], many Web Ontology Languages (OWLs) are now available on the Web

on the way to build a good ontology system. In this chapter, we build the plant

ontology by refering to ontologies of plant environment conditions, plant growth

and developmental stages and plant structure [2] in the plant watering application,

as shown in Fig. 25.1. For example, the developmental (or life) stage is defined by

characteristic morphological or physiological landmarks in a plant’s life cycle, such

as germination, seeding, flowering, and ripening, rather than a specific temporal

framework [2].

Domain Knowledge is accumulated knowledge and experience of specialists in

a domain that can be explored to understand and interact with the things. Ontology

IDs are standard input for a domain knowledge service.

25.4.3 Event Detection Services

25.4.3.1 Sensor Event Detection Services

Sensing contexts are generated by sensors or sensor networks automatically and

dynamically. A sensor context is generally denoted by a 2-tuple (physical parameter,

value). The characteristic of a sensing context is that its data format is simple and

only physical parameters need to be interpreted by an ontology. Also, for complex

sensing report data, we translate the Sensing Context into Sensing Event by using a

sensor event detection service.

Sensing reports are critical for a smart Web service as they provide information

about dynamic states of the thing; however, raw sensor data may not be useful. Some

patterns from continuous sensor data and the report events can be recognized as out-

put; more often, an event detection service may need domain knowledge services to

analyze the raw sensor data. Thus, the input and output interfaces of sensors/actuators

are important. Although there are many types of sensors/actuators, the basic abstract

of a single sensor is a 2-tuple (physical parameter, value). Also, an event may be

detected through the cooperation of all the sensors in the network; we only provide

one URI for a sensor network. In order to reduce communication costs between sen-

sors and the remote server, there are two methods to report sensing events: Local

Event Detection for simple events and Remote Event Detection for complex events.

Local Event Detection. For some applications in which sensor data comprise very

simple information (e.g., physical parameters such as temperature and humidity),

the analysis of sensing data is also very simple.

Remote Event Detection. There are some complex applications. For example,

a series of images of the target thing captured by a camera sensor needs pattern

recognition to detect events. Since recognizing patterns from an image is challenging,

high-quality domain knowledge Web services involving intensive computing are

needed. In such cases, raw sensing data must be sent to the remote server for the

analysis of events. The communication cost is great since the image size is very

large compared to simple physical parameter values, so it is important to reduce

25 Web Services for Things 619

the frequency of sending data. For example, data can be sent periodically in over a

long interval or useless raw sensing data can be roughly filtered locally and only key

frames sent to the server.

25.4.3.2 Weather Report Services

Weather can be regarded as a special event detection service, since it is usually ana-

lyzed by online meteorological services which employ complex systems including

sensors (e.g., satellite cameras). A weather report service builds a simple weather

context by analyzing patterns from a huge volume of complex data sensed from the

physical world.

25.4.4 Actions Towards Things

People Actions: People have many ways to receive messages instantly, such as

mobile phones, MSN, emails etc., and message format can be defined by the user

(for example, we can send a message in the user’s native language). In this case, we

may analyze user context. Not all users are experts at interacting with the target thing,

thus the message generated by the smart Web service is also important to the user,

as it not only notifies when to act but also reminds the user to act and communicates

effective actions and methods to guide behavior towards the target thing.

Actuator Actions: When the actuator receives the messages, it will interpret the

message into the control command to operate the actuator. The message can be an

instant message to require actuators to act at once or a message that only gives a

deadline for the action. Also, messages may provide other necessary information,

for example, about quantitative control over the watering dose.

25.5 REpresentational State Transfer for Things (Thing-REST)

In this section, we present a Thing-REST style, which is a Resource-Oriented Archi-

tecture (ROA) and includes two parts: resource management and mashup structures.

The aim of Thing-REST is to describe the resources of a Thing (e.g., a sensor, a per-

son, a plant) objectively by using a set of standard interfaces and then to let Web

service applications use these resources automatically.

620 G. Huang et al.

25.5.1 Context Management in Thing-REST

According to two classes of the context of things: the semantic context and the sensing

context, we define two types of URIs: concept URI (c-URI) and entity URI (e-URI)

respectively in Thing-REST to manage them. In the same way, we use c-URIs and

e-URIs to manage the user context. For example, c-URIs are used to manage semantic

context and sensing context related e-URI addresses, and e-URIs are used to manage

sensing context.

Definition 25.8 (Concept URI (c-URI)). Concept URI is a URI for an abstract

thing (a concept).

Definition 25.9 (Entity URI (e-URI)). Entity URI is a URI for a concrete thing, an

entity that exists in the physical world.

Both c-URI and e-URI have addresses that can be located on the Web. For every

e-URI, there is a respective physical entity. Sommer et al. [36] described Internet-

based access from and to services in an embedded network and built a Web service

bridge between an IP-network and a sensor network. For example, ‘http://193.150.15.

14/light/turnon’ is translated into ‘Node: 193.150.15.14, Service: 5, Port: 1’ through

a mapping table: ‘light → 5, turnOn → 1’. To provide a simple and effective

interface between people and things, as well as between things, we propose a com-

munication mechanism for smart Web services. Sensors/actuators can be connected

to the Web through PCs or base stations. Every thing must have a URI on the Web,

then we define a uniform interface to send messages to and from a URI. We can

provide the type of a URI (e.g., c-URI or e-URI) in HTTP headers just like those

in [13, 43].

In the Thing-REST, we define a URI namespace for both machine-readable and

human-readable purposes. An open problem in REST is that it is difficult to manage

the URI namespace due to a large number of objects. In the Thing-REST, we provide

an object-oriented URI namespace and organize URIs in flat structures. We actually

split the definition of the resources and the citation in the applications. Examples of

c-URI and e-URI as well as the flat structure to manage them are shown in Fig. 25.4.

We set two reserved words: “self” and “has” in the URI namespace. Suppose the

name of the thing is a flower plant, “Rose”, then we PUT a URI (e.g., “Rose/self”)

for the semantic context of “Rose” and PUT a URI (e.g., “Rose/has”) to list the

e-URIs for all sensor/actuator of “Rose”; an example is shown in Fig. 25.5. GET and

POST are used frequently while PUT and DELETE are only used in the beginning

configuration phase and the URI canceling phase, respectively.

We also explicitly describe the context of the owner (e.g., user context for QoS-

aware Web services) by using URIs in the Thing-REST. In the example shown in

Fig. 1.1, suppose the owner is “Joey”, then we PUT a URI (e.g., “Joey/self”) for

the user context and PUT a URI (e.g., “Joey/has”) to list all his contact methods;

an example is shown in Fig. 25.6. We do not discuss context for QoS-aware Web

services in this chapter, since much related work has already been done. We will

http://193.150.15.14/light/turnon
http://193.150.15.14/light/turnon
http://dx.doi.org/10.1007/978-1-4614-7535-4_1

25 Web Services for Things 621

c-URI

e-URI

Fig. 25.4 Flat structure for management of URIs

The content in http://vcrab.com/SmartWebService/Joey/Rose:

Rose/self

Rose/has

Fig. 25.5 An example XML for context of a thing

show in Sect. 25.6 that it is easy to enable user contexts to be aware for QoS purposes

in an explicit way in the Thing-REST.

We allocate a URL to every target thing, including things’ owners. These URLs

are open to the public through an authorized user name and password. Thus, every

thing, including humans, has a URI on the Web for use by smart Web services. For

a thing such as a plant or a house which may explore a set of sensors/actuators, we

allocate URIs to all the resources; an example is shown in Fig. 25.5, where local

addresses of sensors/actuators are bound to URIs and the sensor report data can be

achieved through the GET operation on the URIs. We authorize different operations

(e.g., POST and GET) to access URIs.

622 G. Huang et al.

The content in http://vcrab.com/SmartWebService/Joey:

Joey/self

Joey/has

Fig. 25.6 An example XML for describing owner of a thing

25.5.2 Mashup Structures in THING-REST

In this subsection, we develop a mashup style which is built on three mashup

structures in Thing-REST; that is, three basic structures (chain, select and merge) for

mashups are implemented by using REST techniques (e.g., HTTP and URIs).

25.5.2.1 Chain Structures in Thing-REST

In a chain structure, a sequence of Web services is chained together, where the

output of a Web service is the input of another Web service. Figure 25.7 shows the

mechanism of a chain implemented in the Thing-REST. We use a ChainNode to

store the mid-term results between Web services. According to REST techniques, no

client’s session state is maintained on server sides (see Sect. 25.2.2); this reduces the

burden on server sides. Thus, a client optionally chooses to store mid-term results.

We provide a ChainNode.xml to store the mid-term results on the current director.

In the Thing-REST, input “http://globalhost0/SWS1/WS1” will execute “GET URI

of Web service 1” and store mid-term results in “http://globalhost0/SWS1/WS1/

ChainNode.xml” in Fig. 25.7. So the chain of three Web services coupled for a new

composite Web service can be denoted by “http://globalhost0/SWS1/WS1/WS2/

WS3” and the mid-term results can be found in different directors by the same name

“ChainNode.xml”.

The ChainNodes are designed for efficiency purposes, just like CPU fetches

instructions from a high speed cache instead of from the main memory. The advan-

tage of ChainNodes is to ensure efficiency when break point happens in a chain; that

is, if some Web service fails in a chain, the tasks that have been done are recorded in

a series of ChainNodes and the chain of tasks can be restored from the broken point

instead of from the beginning.

http://globalhost0/SWS1/WS1
http://globalhost0/SWS1/WS1/ChainNode.xml
http://globalhost0/SWS1/WS1/ChainNode.xml
http://globalhost0/SWS1/WS1/WS2/WS3
http://globalhost0/SWS1/WS1/WS2/WS3

25 Web Services for Things 623

http://globalhost0/SWS1/WS1

(GET URI of Web service 1 on globalhost 1)

http://globalhost0/SWS1/WS1/ChainNode.xml

http://globalhost0/SWS1/WS1/WS2

(GET URI of Web service 2 on globalhost 2)

http://globalhost0/SWS1/WS1/WS2/ChainNode.xml

http://globalhost0/SWS1/WS1/WS2/WS3

(GET URI of Web service 3 on globalhost 3)

http://globalhost0/SWS1/WS1/WS2/WS3/ChainNode.xml

Web Service 1
ChainNode1

ChainNode2

ChainNode3

Web Service 2

Web Service 3

…

A new composite Web service on globalhost0

globalhost0

globalhost0

globalhost0

(globalhost1)

(globalhost2)

(globalhost3)

Fig. 25.7 A chain structure

25.5.2.2 Select Structures in Thing-REST

In a select structure, we select one or several URIs from a group of URIs. Figure 25.8

shows that according to the user’s QoS-aware context or application aim, we gener-

ally select some URIs of Web services from a group of URIs. These URIs of Web

services in a group may provide the same service with various QoS. We can see

from Fig. 25.8 that there are n Web services: “WS1, WS2, . . . , WSn” in the directory:

“http://globalhost/SWS1/Group”. The final results of selection: “WS p” and “WSq”,

are put in the file “http://globalhost/SWS1/Group/SelectNode.xml”. Note that multi-

ple Web services for the same function also improve the reliability of the mashup. The

SelectNode is also designed for efficiency purpose. In the same way as in chain struc-

ture, if the input of the selection structure is equal to the historical input recorded in

SelectNode.XML, then the output is GET directly from “SelectNode.XML” to avoid

executing selection structure again.

25.5.2.3 Merge Structures in Thing-REST

In the merge structure shown in Fig. 25.9, we couple multiple Web services to create

a new Web service. Different from Fig. 25.7, both WS1 and WS2 are called by WS3

directly. We use the same ChainNode mechanism as in the chain structures to store

mid-term results.

http://globalhost/SWS1/Group
http://globalhost/SWS1/Group/SelectNode.xml

624 G. Huang et al.

Web Service 1

Select Node
Web Service 2

Web Service n

……

Web Service p

Web Service q

……

User’s

QoS-aware

Context or

Application

Aim

Select

Output http://globalhost/SWS1/Group

http://globalhost/SWS1/Group/WS1

http://globalhost/SWS1/Group/WS2

……

http://globalhost/SWS1/Group/WSn

http://.../SWS1/Group/SelectNode.xml

Group

http://globalhost/SWS1/Group/WSp

http://globalhost/SWS1/Group/WSq

globalhost

Fig. 25.8 A select structure

http://globalhost0/WS3/WS1

http://globalhost1/WS3/WS1/ChainNode.xml

http://globalhost0/WS3/WS2

http://globalhost0/WS3/WS2/ChainNode.xml

http://globalhost0/WS3

http://globalhost0/WS3/ChainNode.xml

Web Service 1
ChainNode

ChainNode

ChainNode

Web Service 2

Web Service 3

……

A new composite Web service on globalhost0

globalhost0

globalhost0

globalhost0

(globalhost1)

(globalhost2)

(globalhost3)

Fig. 25.9 A merge structure

25.6 A Smart Plant Watering Web Service Application

In this section, we design and implement the smart plant watering Web service in

order to demonstrate the effectiveness of the Thing-REST-based smart Web service

for the Web of things. We have implemented the smart plant watering Web service

on the website (http://vcrab.com/SmartWebService).

http://vcrab.com/SmartWebService

25 Web Services for Things 625

25.6.1 The User Interface and Application Logic Design

We present a design of the smart plant watering Web service (shown in Fig. 25.1) by

using the Thing-REST style. Figure 25.3 provides a general framework of a smart

Web service, where there are four inputs of the application logic programming com-

ponent: user context, sensor event, weather report and domain knowledge.

We implement this application in “http://vcrab.com/plantWatering” to mashup

four Web services we introduced; and we provide the main part of its PHP code

as shown in Fig. 25.10 to introduce how to use the four Web services. Suppose

sensors’ data have been updated online in their e-URIs. We first achieve a thing

name, “Rose”, from “http://vcrab.com/SmartWebService/Joey/index.XML” (shown

in Fig. 25.6) and then we look for the thing’s location and lifestage from “http://vcrab.

com/SmartWebService/Joey/Rose/index.XML” (shown in Fig. 25.5). We use “http://

vcrab.com/eventDetection?thingID=FL:0001017” (at line 2) to detect events, such as

“Lack Water”, where the ontology ID (e.g. “FL:0001017”) of the thing will be found

through “http://vcrab.com/Ontology?thing=Rose” (at line 1). We use “http://vcrab.

com/weatherReport?location=Melbourne,Australia” (at line 5) to achieve the local

weather conditions for the thing. Finally, if “Lack Water” event happens and weather

condition is not “Rain” (at line 9), then we use “http://vcrab.com/plantCultivation?

thing=FL:0001017,3” (at line 10) to compute the dose, based on the plant cultivation

domain knowledge database, and action will be triggered to water the Rose plant.

1

//Find Ontology ID

$myOntologyID=file_get_contents("http://vcrab.com/Ontology?thing=".$thingclass);

2

//Call Event Detection Service

$myevent0=file_get_contents("http://vcrab.com/eventDetection?thingID=".$myOntologyID);

3 $myevent1=explode(".",$myevent0);

4 $myevent=$myevent1[0];

5

//Call Weather Report Service

$myweather=file_get_contents("http://vcrab.com/weatherReport?location=".$location);

6 $mytemp=explode(",",$myweather);

7 $mycon=explode(":",$mytemp[1]);

8 $myconditions=$mycon[1];

9

//Application Logic

if (strcmp($myevent,"Lack Water")==0 && strcmp($myconditions,"Rain")!=0)

{//Call Plant Cultivation Service

10 $mydose=file_get_contents("http://vcrab.com/plantCultivation?thing=".$myOntologyID.",".$lifestage);

11 echo "Please Watering".$thing."with dose=".$mydose;}

12 else echo "No action!";

Fig. 25.10 Application PHP code

From this application, we can see that the Thing-REST makes the design of a

smart Web service simple. In addition, Thing-REST has all of the seven advantages

presented in Sect. 25.2.2.

http://vcrab.com/plantWatering
http://vcrab.com/SmartWebService/Joey/index.XML
http://vcrab.com/SmartWebService/Joey/Rose/index.XML
http://vcrab.com/SmartWebService/Joey/Rose/index.XML
http://vcrab.com/eventDetection?thingID=FL:0001017
http://vcrab.com/eventDetection?thingID=FL:0001017
http://vcrab.com/Ontology?thing=Rose
http://vcrab.com/weatherReport?location=Melbourne,Australia
http://vcrab.com/weatherReport?location=Melbourne,Australia
http://vcrab.com/plantCultivation?thing=FL:0001017,3
http://vcrab.com/plantCultivation?thing=FL:0001017,3

626 G. Huang et al.

25.6.2 The Server and Client Control Panels

We now briefly introduce the configuration system that supports the application of

Sect. 25.6.1, which includes a configuration control panel for smart Web services on

the Web server and a sensor control panel that is on the client.

25.6.2.1 User Configuration on the Web Server

The user configuration interface includes three parts: context of things, user context

and Web service setting.

We first input the context of things, such as the semantic context that describes

the target thing itself: the name, location and the life stage of the thing and the

sensing context that describes all the sensors/actuators for the target thing. Users can

set the sensor data update frequency and sensor URI. For example, two sensor URI

addresses in Fig. 25.5 are used to publish sensor data.

Then we input the user context, for this application, including user name and

a list of contact contexts, such as E-mail addresses, mobile phone numbers and MSN

etc. Particularly, every contact method is available in a special state of the user. For

instance, Joey may use E-mail in his office, use MSN at home, use a mobile phone

outdoors and assign his representative to receive messages when he is out of the

city. We actually also generate Thing-REST URIs for all of his contact methods. We

suppose Joey’s state can be dynamically achieved through his location information.

Finally, the default Web services are

• a plant ontology service (http://vcrab.com/Ontology),

• a plant cultivation domain knowledge service (http://vcrab.com/plantCultivation),

• an event detection service (http://vcrab.com/eventDetection), and

• a weather report service (http://vcrab.com/weatherReport).

They also can be replaced by other similar Web services. The plant ontology ser-

vice will retrieve a standard ID in the machine dictionary of the thing, based on the

input thing’s name described by the word in the human dictionary (see Sect. 25.4.2).

The plant cultivation domain knowledge service will consider the preferences of

the thing to the soil water and the thing’s lifestage to compute the water dose. The

weather report service can return the current temperature and conditions of a par-

ticular city, and we implemented it based on the weather forecast services provided

by, for example,“www.weatherforecast.com”. The event detection service will fetch

sensor data from user defined URIs and look for the things’ preferences to humidity

and temperature in the plant cultivation domain knowledge database.

25.6.2.2 Client Sensor Control Panel

A sensor is connected to the computer as the base station shown in Fig. 25.11. The

sensors and actuators that monitor the plants send a sensing report to the base station

http://vcrab.com/Ontology
http://vcrab.com/plantCultivation
http://vcrab.com/eventDetection
http://vcrab.com/weatherReport
www.weatherforecast.com

25 Web Services for Things 627

through wireless sensor networks. Then the sensing data can be POST to the URIs

while a message for actuators can be GET from URIs by the sensor control panel.

We can set the frequency (five hours once) for updating data on the URIs.

Fig. 25.11 Base station of sensors and client sensor control panel

In summary, the Thing-REST style is especially suitable for a smart Web ser-

vice. The basic reason is that static semantic context and dynamical sensing context

are two aspects to describe the needs of a thing. First, we can use URIs to manage

these contexts and thus provide a standard interface of input and output for Web

services. Then, the mashup style where chain, select, merge structures are imple-

mented through building the relationship between URIs make automation available

while providing a simple and friendly user interface. Particularly, special chain nodes

in the mashup style are useful to implement an efficient smart Web service, where

ontology service and domain knowledge service may only need to be executed once

and their results are used repeatedly.

25.7 Conclusions

This chapter presents a RESTful smart Web service for the Web of things. A frame-

work of a smart Web service is developed that is built on the following types of Web

services: ontology service, domain knowledge service, and event detection service

(e.g., weather report service and sensor event detection service) on the future Web.

The first two types of Web services are reasonable on the Semantic Web, while the

event detection service will become popular on the Ubiquitous Web. Particularly,

a concept of the context of things is introduced explicitly for the smart Web service.

Then a Thing-REST style is adopted to efficiently implement a smart Web service.

628 G. Huang et al.

Finally, a smart plant watering service application is presented in detail for explaining

the effectiveness of the Thing-REST-based smart Web service.

References

1. Abowd, G. D. et al.: The computer for the 21st century. IEEE Pervasive Computing 1(3) (2002)
22–23.

2. Avraham, S. et al.: The plant ontology database: a community resource for plant structure and
developmental stages controlled vocabulary and annotations. Nucleic Acids Res. 36 (2008)
449–454.

3. Bio-ontoloty. Open biological and biomedical ontologies. http://www.obofoundry.org/, (2011).
4. Castellani, A. P., Bui, N., Casari, P., Rossi, M., Shelby, Z., and Zorzi, M.: Architecture and

protocols for the internet of things: A case study. In Proc. 1st IEEE Int’l. Wksp. Web of Things

(WoT’10) at IEEE PERCOM (2010).
5. Ceri, S., Daniel, F., Facca, F. M., and Matera, M.: Model-driven engineering of active context-

awareness. World Wide Web 10 (2007) 387–413.
6. Chandrasekaran, B.: Generic tasks in knowledge-based reasoning: high level building blocks

for expert system design. IEEE Expert 1(3) (1986) 23–30.
7. Chen, G. and Kotz, D.: A survey of context aware mobile computing research. Tech. Rep.

Dartmouth Computer Science Technical, Report TR2000381 (2000).
8. de Souza, L. M. S., Spiess, P., and Guinard, D.: Socrades: A web service based shop floor

integration infrastructure. In Proceedings of the 1st international conference on The internet

of things. Springer, Switzerland, (2008) 50–67.
9. Dengler, S., Awad, A., and Dressler, F.: Sensor/actuator networks in smart homes for support-

ing elderly and handicapped people. In Proceedings of the 21st International Conference on

Advanced Information Networking and Applications Workshops (AINAW’07). Niagara Falls,
(2007) 863–868.

10. Dey, A. K. and Abowd, G. D.: Towards a better understanding of context and context-awareness.
Tech. Rep. Technical Report GIT-GVU-99-22, GVU Center, Georgia Institute of Technology
(1999).

11. Dey, A. K. and Mankoff, J.: Designing mediation for context-aware applications. ACM Trans-

actionsion Computer-Human Interaction 12(1) (2005) 53–80.
12. Dickerson, R., Lu, J. K., and Whitehouse, K.: Stream feeds an abstraction for the world wide

sensor web. In Proceedings of the 1st international conference on The internet of things, (2008)
360–375.

13. Drytkiewicz, W., Radusch, I., Arbanowski, S., and Popescu-Zeletin, R.: prest: A rest-based
protocol for pervasive systems. In The proc. of MASS (2005).

14. Fensel, D. and Bussler, C.: The web service modeling framework wsmf. Electronic Commerce

Research Journal 1(2) (2002) 113–137.
15. Fielding, R. T.: Architectural style and the designs of network-based software architectures.

Ph.D. thesis, University of California, Irvine, USA (2000).
16. Fuhrer, P., Guinard, D.: Building a Smart Hospital using RFID Technologies. In ECEH (2006),

pp. 131–142.
17. Gruber, T.: Toward principles for the design of ontologies used for knowledge sharing. Inter-

national Journal Human-Computer Studies 43(5-6), (1995) 907–928.
18. Guinard, D., Trifa, V., Pham, T., and Liechti, O.: Towards physical mashups in the web of

things. In The proceedings of Sixth International Conference on Networked Sensing Systems

(INSS). Pittsburgh, USA, (2009) 1–4.
19. Haryanto, R.: Context-awareness in smart homes to support independent living. M.S. thesis,

University of Technology, Sydney (2005).

http://www.obofoundry.org/

25 Web Services for Things 629

20. He, J., Zhang, Y., Huang, G., and Cao, J.: A Smart Web Service based on the Context of Things.
ACM Transactions on Internet Technology, 11(3), (2012).

21. Horrocks, I.: Ontologies and the semantic web. Communications of the ACM 51(12) (2008)
58–67.

22. Ivanova, M. and Ivanova, T.: Web 2.0 and web 3.0 environments: Possibilities for authoring
and knowledge representation. Revista de Informatica Sociala 12 (2009) 7–21.

23. Kim, Y. B., and Kim, D.: Healthcare service with ubiquitous sensor networks for the disabled
and elderly people. In ICCHP 2006, LNCS 4061, (2006) 716–723.

24. Kopecky, J., Gomadam, K., and T., V.: hrest: an html microformat for describing restful web
services. In 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent

Agent Technology (2008).
25. Lorenzo, G. D., Hacid, H., and Paik, H.: Data integration in mashups. SIGMOD Record 38(1)

(2009).
26. Lu, R. and Jin, Z.: Formal ontology: Foundation of domain knowledge sharing and reusing.

Journal of Computer Science and Technology 17(5) (2002) 535–548.
27. Luckenbach, T., Gober, P., Arbanowski, S., Kotsopoulos, A., and Kim, K.: Tinyrest- a protocol

for integrating sensor networks into the internet. In REALWSN (2005).
28. Manes: Enabling open, interoperable, and smart web services. http://www.w3.org/2001/03/

WSWS-popa/paper29. (2001).
29. Mark, W.: The computer for the 21st century. Scientific American 265 (1991) 94–104.
30. Muehlen, M. Z., Nickerson, J. V., and Swenson, K. D.: Developing web services choreography

standards - the case of rest vs. soap. Decision Support Systems 40 (2005) 9–29.
31. Ontology lookup service. http://www.ebi.ac.uk/ontology-lookup/, (2011).
32. Rasch, K., Li, F., Sehic, S., Ayani, R., and Dustdar, S.: Context-driven personalized service

discovery in pervasive environments. World Wide Web 14 (2011) 295–319.
33. Sheng, Q. Z., Pohlenz, S., Yu, J., Wong, H. S., Ngu, A. H. H., and Maamar, Z.: Contextserv:

A platform for rapid and flexible development of context-aware web services. In The pro-

ceedings of the 31st International Conference on Software Engineering (ICSE’09). Canada
(2009).

34. Sheth, A. P., Gomadam, K., and Lathem, J.: Sa-rest: Semantically interoperable and easier-to-
use services and mashups. IEEE Internet Computing 11(6) (2007) 91–94.

35. Inventory of Future Capabilities of Internet to Meet Future Long and Short Term Needs
of the Food Sector. http://www.smartagrifood.eu/sites/default/files/content-files/downloads/
SAF_D700-2_V011_Final_0.pdf. (2012).

36. Sommer, S., Scholz, A., Buckl, C., Kemper, A., Knoll, A., Heuer, J., and Schmitt, A.: Towards
the internet of things: Integration of web services and field level devices. In International

Workshop on the Future Internet of Things and Services - Embedded Web Services for Pervasive

Devices (at FITS 2009) (2009).
37. Swenson, K. D.: Workflow and web service standards. Business Process Management Journal

11(3) (2005) 218–223.
38. Volz, R.: Web ontology reasoning with logic databases. Ph.D. thesis, Institute AIFB, University

of Karlsruhe (2004).
39. Wayne: Tim berners-lee’s web of people, the online journalism review, 4th december 2007.

http://www.ojr.org/ojr/stories/071204wayne/ (2007).
40. Wilde, E.: Putting things to rest. Tech. Rep. UCB iSchool Report 2007-015, UC Berkeley, USA

(2007).
41. Yu, J., Sheng, Q. Z., Liao, K., and Wong, H. S.: Model-driven development of context-aware web

services. In Enabling Context-Aware Web Services: Methods, Architectures, and Technologies

(2009).
42. Zeeb, E., Bobek, A., Bohn, H., Priiter, S., Pohl, A., Krumm, H., Luck, I., Golatowski, F.,

and Timmermann, D.: Ws4d: Soa-toolkits making embedded systems ready for web services.
The proc. of Open Source Software and Productlines (OSSPL07). Ireland (2007).

43. Zhao, H. and Doshi, P.: Towards automated restful web service composition. In 2009 IEEE

International Conference on Web Services (2009).

http://www.w3.org/2001/03/WSWS-popa/paper29
http://www.w3.org/2001/03/WSWS-popa/paper29
http://www.ebi.ac.uk/ontology-lookup/
http://www.smartagrifood.eu/sites/default/files/content-files/downloads/SAF_D700-2_V011_Final_0.pdf
http://www.smartagrifood.eu/sites/default/files/content-files/downloads/SAF_D700-2_V011_Final_0.pdf
http://www.ojr.org/ojr/stories/071204wayne/

Index

A

Abstract services, 254, 258

Semantics-based generation, 265

ACID properties, 4, 30

B

Biological processes, 279, 288

Business Transaction Protocol (BTP), 30

C

Certification, 147

ASSERT4SOA framework, 158

CTCPEC, 149

ITSEC, 149

machine-readable certification, 153

requirements, 149

TCSEC, 149

trust model, 151

Certification-aware service selection, 156

Change management, 225

bottom-up changes, 227

change taxonomy, 232

functional changes, 232

non-functional changes, 236

SCML, 237

top-down changes, 227

Change management language, 225

Cloud applications, 527

Cloud-based systems, 579, 581

multi-level management, 583

service abstraction, 583

service management, 586

Cloud services

deployment, 105

models, 103

Common Criteria (ISO 15408), 149

Complex social networks, 369

Contracts, 121–123

contractual term, 123

matchmaking, 128

Crowdsourcing, 433

E

Elastic applications, 446

Elastic hybrid services, 431

Evolution, 199, 201

service changes, 204

F

Feature model, 7

capabilities, 10

requirements, 11

restrictions, 11

G

Global service delivery, 412

H

Human-based service, 435

composition, 440

discovery, 443

matching, 443

virtualization, 437

Human computation, 433

Humans a programmable units, 434

Human services delivery system, 341

A. Bouguettaya et al. (eds.), Advanced Web Services,

DOI: 10.1007/978-1-4614-7535-4,

� Springer Science+Business Media New York 2013

631

I

Identity management, 51

delegation, 57

signature, 60

universal solution, 58

Information diffusion, 399

Infrastructure as a service (IaaS), 104, 583

ISOFIN project, 553

L

License, 123

Long term composed service, 226

architecture, 229

context, 231

quality, 230

schema, 229

M

Mashups of things, 622

Mobile cloud services, 501, 505

Mobile enterprise, 511

Mobile web services, 501, 503

mediation framework, 514

provisioning, 507

Multi-level management, 579

reference framework, 587

N

Non-functional properties, 122, 130

P

People-centric business processes, 434

Platform as a service (PaaS), 104, 582

Policy, 123, 130

Policy Matchmaker and Ranker (PoliMaR),

139

Portability, 527

Privacy, 52

Process assessment, 572

Process elasticity, 448

Process-oriented logical architectures, 571

Provider selection, 364

Q

Quality of trust, 372

R

Reputation

bootstrapping, 358

evaluation model, 356

propagation, 359

Requirements elicitation, 552

Requirements modeling, 555

V-Model, 557

S

SCML, 225

Security Certification, see Certification

Service level agreement (SLA), 123

Service networks, 279

Service organization, 253

Service selection

certification-aware selection, 156

Short term composed service, 226

Social computing, 457

Social intimacy, 370

Social networks, 364

Social Web services ecosystem, 456, 459

actors, 461

architecture, 460

interactions, 463

payment, 469

Software as a service (SaaS), 104, 581

Software Testing Ontology for WS (STOWS),

180

T

Tendering processes, 313

model, 322

Test automation, 171

Testing, 171

STOWS, 180

test automation framework, 174

test brokers, 176

Things, 606

context, 610, 613

mashups, 622

sensing, 610

smart web services, 615

thing-REST, 619

web services for, 611

Topology and Orchestration Specification for

Cloud Applications (TOSCA), 527, 529

Transactions, 4, 31

backward recovery, 4

compensation, 4, 7

compensation protocol, 21

compensation rules, 14

coordination, 18

forward recovery, 5

632 Index

model, 33

rollback, 4

testing, 29, 38

Trust, 75, 77

a priori generalized, 78

basic, 78

context-specific, 79

credibility model, 111

establishment, 80

evaluation, 366

evaluation taxonomy, 92

in the cloud, 101

in the SOA, 88

in Web applications, 84

inner dialogicality, 79

management service, 108

network discovery, 366

service trust management framework, 343

service trust ontology, 350

trust models, 355

U

Ubiquitous networking, 475

ubiREST, 475, 479

code mobility, 488

communication layer, 486

programming model, 489

V

Vienna Elastic Computing Model, 446

Virtualization, 431

V-Model approach, 557

W

Web Service Change Management Language

SCML, 237

Web service communities, 256

Web service community learning, 273

Web service contracts, see Contracts

Web service management, 253

Web service networks, 383

formation, 386

redundancy, 390

weighted labeled web service networks,

399

Web service recognition, 281

inhibition, 282

promotion, 282

recognition, 282

Web Services Business Activity (WS-BA), 30

Web Services Business Transaction Manage-

ment (WS-TXM), 30

Web services for things, see Things

Work as a service (WaaS), 409

coordination, 415

encapsulation, 413

governance, 424

patterns and structures, 419

value co-creation, 417

web services, 425

WSDarwin, 199, 206

WS-Federation, 53

WS-Trust, 53

Index 633

	Foreword
	Preface
	Contents
	Contributors
	Part IAdvanced Services Engineering and Management
	1 Design and Management of Web Service Transactions with Forward Recovery
	1.1 Introduction
	1.2 Compensations Design
	1.2.1 Conceptual Model
	1.2.2 Compensation Feature Model
	1.2.3 Capability Feature Model
	1.2.4 Requirement Feature Model
	1.2.5 Restriction Feature Model
	1.2.6 Model Comparison Algorithm
	1.2.7 Example

	1.3 Compensation Rules
	1.3.1 Basic Compensation Activities
	1.3.2 Compensation Types
	1.3.3 Example of a Compensation Rule

	1.4 Web Service Environment with Transaction Coordination
	1.4.1 Abstract Service
	1.4.2 Adapter
	1.4.3 Compensation Protocol
	1.4.4 Application on the Client and Provider Side
	1.4.5 Client Contracts
	1.4.6 Transaction Environment Adaptation
	1.4.7 Middleware Prototype

	1.5 Discussion
	References

	2 A Generic Framework for Testing the Web Services Transactions
	2.1 Introduction
	2.2 WS Transactions
	2.3 The Generic Framework
	2.3.1 The Transaction Model
	2.3.2 Representation of WS Transaction Models and Standards

	2.4 Implementation and Evaluation of the Proposed Framework
	2.4.1 Testing Process
	2.4.2 Prototype System
	2.4.3 Evaluation

	2.5 Discussion
	2.6 Conclusion
	References

	3 Universal Identity Management Based on Delegation in SOA
	3.1 Introduction
	3.1.1 Motivation
	3.1.2 Related Work
	3.1.3 Contributions
	3.1.4 Organization of the Paper

	3.2 Preliminaries
	3.3 Delegation Model for Universal Identity Management
	3.4 Universal Identity Management Solution
	3.5 Delegation Construction
	3.5.1 Pseudonym-Based Signature Scheme Πsig
	3.5.2 Proxy Signature Scheme Πpsig
	3.5.3 Pseudonym-Controlled Variation of Πsig

	3.6 Deployment Framework for Delegation Model
	3.7 Conclusions
	References

	4 The Roadmap of Trust and Trust Evaluation in Web Applications and Web Services
	4.1 Introduction
	4.2 General Structure of Trust
	4.2.1 Basic Trust
	4.2.2 A Priori Generalized Trust
	4.2.3 Context-Specific Trust
	4.2.4 Inner Dialogicality

	4.3 Bases of Trust
	4.3.1 Dispositional Trust Establishment
	4.3.2 History-Based Trust Establishment
	4.3.3 Third Parties as Conduits of Trust
	4.3.4 Category-Based Trust Establishment
	4.3.5 Role-Based Trust Establishment
	4.3.6 Rule-Based Trust Establishment

	4.4 Concept of Trust in Multiple Disciplines
	4.5 Trust Evaluation in Web Applications
	4.5.1 Trust Evaluation in E-Commerce Environments
	4.5.2 Trust Evaluation in P2P Information Sharing Networks
	4.5.3 Trust Evaluation in Multi-Agent Systems
	4.5.4 Trust-Aware Recommendation Systems
	4.5.5 Trust Evaluation in Social Networks

	4.6 Trust Evaluation in Service-Oriented Environments
	4.6.1 Trust Vector and Its Evaluation
	4.6.2 Trust Evaluation in Composite Services
	4.6.3 Subjective Trust Evaluation

	4.7 Trust Evaluation Taxonomy
	4.7.1 Trust Evaluation Technique Based Taxonomy
	4.7.2 Trust Structure Based Taxonomy
	4.7.3 Trust Bases Based Taxonomy

	4.8 Conclusions
	References

	5 Web Service-Based Trust Management in Cloud Environments
	5.1 Introduction
	5.2 Background
	5.2.1 Cloud Service Models
	5.2.2 Cloud Service Deployment Models

	5.3 The Framework
	5.4 Trust Management Service
	5.4.1 Trust Feedback Collection and Assessment
	5.4.2 Availability of Trust Management Service

	5.5 Credibility Model
	5.5.1 Cloud Service Consumer's Capability
	5.5.2 Majority Consensus

	5.6 Implementation and Experimental Evaluation
	5.7 Related Work
	5.8 Conclusions and Future Work
	References

	6 Web Service Contracts: Specification and Matchmaking
	6.1 Introduction
	6.2 Motivation and State of the Art
	6.2.1 Issues on Web Service Contract Specification
	6.2.2 Issues on Web Service Contract Matchmaking

	6.3 Towards Web Service Contract Specification
	6.3.1 The Policy Centered Meta-Model
	6.3.2 Semantic Representation of the PCM
	6.3.3 Web Service Contract Extraction from Heterogeneous Sources

	6.4 Towards Web Service Contract Matchmaking
	6.4.1 An Hybrid Approach to Web Service Contract Matchmaking and Ranking
	6.4.2 The PoliMaR Framework

	6.5 Concluding Remarks
	References

	7 A Certification-Aware Service-Oriented Architecture
	7.1 Introduction
	7.2 Requirements on Security Certification of Services
	7.3 A Trust Model for Service Certification
	7.4 Machine-Readable Certification of Services
	7.4.1 Test-Based Certification of Services
	7.4.2 Certification-Aware Service Selection

	7.5 Assert4Soa Framework
	7.5.1 Functionalities
	7.5.2 High-Level Component Overview
	7.5.3 Certification-Aware Development Environment

	7.6 Next Steps: Security Certification of Evolving and Composed Services
	7.7 Related Work
	7.8 Conclusions
	References

	8 A Test Automation Framework for Collaborative Testing of Web Service Dynamic Compositions
	8.1 Introduction
	8.2 The Test Automation Framework
	8.2.1 The Architecture of the Framework
	8.2.2 Test Services
	8.2.3 Registry and Matchmaker
	8.2.4 STOWS: Ontology of WS Testing
	8.2.5 Ontology Manager

	8.3 Running Examples
	8.3.1 Example 1: Testing On-The-Fly for WS Dynamic Composition
	8.3.2 Example 2: Wrapping A Testing Tool into a Test Service

	8.4 Discussion: Main Feature of the Framework
	8.5 Conclusion and Future work
	References

	9 WSDarwin: Studying the Evolution of Web Service Systems
	9.1 Introduction
	9.2 Study of Web Service Evolution
	9.2.1 Analyzing the Evolution of the Services
	9.2.2 Classification of Service Changes
	9.2.3 Implications of the Empirical Study

	9.3 WSDarwin
	9.3.1 WSDarwin Versus VTracker
	9.3.2 Applying WSDarwin on the Comparison of Service Interfaces

	9.4 Related Work
	9.4.1 Model- and Tree-Differencing Techniques
	9.4.2 Service-Evolution Analysis

	9.5 Conclusion and Future Work
	References

	10 SCML: A Change Management Language for Adaptive Long Term Composed Services
	10.1 Introduction
	10.2 Case Study
	10.3 An Infrastructure of Service-Oriented Enterprises
	10.3.1 LCS Architecture
	10.3.2 LCS Schema
	10.3.3 LCS Quality
	10.3.4 LCS Context

	10.4 Change Taxonomy
	10.4.1 Functional Changes
	10.4.2 Non-Functional Changes

	10.5 SCML Language
	10.5.1 Create Command
	10.5.2 Select Command
	10.5.3 Alter Command
	10.5.4 Update Command
	10.5.5 Drop Command
	10.5.6 Analysis on SCML

	10.6 SCML Processing
	10.6.1 SCML Parser
	10.6.2 Schema Manager and Ontology Manager
	10.6.3 Change Analyzer
	10.6.4 Schema-Level Processor
	10.6.5 Instance-Level Processor

	10.7 Implementation
	10.8 Related Work
	10.9 Conclusion
	References

	11 A Semantic-Based Approach to Generate Abstract Services for Service Organization
	11.1 Introduction
	11.2 Web Service Community Generation
	11.3 Problem Statement of Abstract Service Generation
	11.3.1 Abstract Service and Support Ratio
	11.3.2 Abstract Service Generation Problem

	11.4 Candidate Abstract Service Generation and Pruning
	11.4.1 Candidate Output Generation
	11.4.2 Matching Input Generation
	11.4.3 Semantic-Based Abstract Service Generation

	11.5 Experimental Study
	11.5.1 Output Label Generation
	11.5.2 Input Label Generation

	11.6 Related Work
	11.6.1 Service Functionality-Based Labeling
	11.6.2 Web Service Community Learning

	11.7 Conclusion
	References

	Part IIWeb Service Applications and Case Studies
	12 Exploring Service Networks of Biological Processes on the Web
	12.1 Introduction
	12.2 Web Service Recognition
	12.3 Service Oriented Framework
	12.3.1 Scope Specification and Search Space Determination
	12.3.2 Screening
	12.3.3 Evaluation

	12.4 Service Model Development
	12.4.1 WSDL Service Modeling of Biological Processes
	12.4.2 WSML Service Wrapping of WSDL Service
	12.4.3 WSML Service Invocation

	12.5 Experiment
	12.6 Related Work
	12.7 Conclusion
	References

	13 Automating Tendering Processes with Web Services: A Case Study on Building Construction Tendering in Hong Kong
	13.1 Introduction
	13.2 Tendering and Case Background
	13.3 Related Work
	13.4 Tendering Process Model
	13.4.1 Request To Participate
	13.4.2 Invitation To Tender
	13.4.3 Tender Submission
	13.4.4 Tender Award Notification

	13.5 Implementation
	13.5.1 Service-Oriented Architecture
	13.5.2 Web Services of the Tender-Out System
	13.5.3 Web Services of the Tender-in System
	13.5.4 Web Services for Exception Handling
	13.5.5 Integration into the Tenderer's IT-Environment
	13.5.6 Security

	13.6 Facilitation of Decision Support with ETS
	13.7 Discussion and Conclusion
	References

	14 Service Trust Management for E-Government Applications
	14.1 Introduction
	14.2 Human Services Delivery System
	14.3 Service Trust Management Framework
	14.4 Service Trust Management Implementation
	14.4.1 Implementation Architecture
	14.4.2 Trust Models

	14.5 Case Study
	14.6 Conclusions
	References

	15 Trust-Oriented Service Provider Selection in Complex Online Social Networks
	15.1 Introduction
	15.2 Related Work
	15.2.1 Trust Network Discovery
	15.2.2 Trust Evaluation Based on Ratings Only
	15.2.3 Trust Evaluation Based on All Social Trust Paths
	15.2.4 Trust Evaluation Based on Selected Social Trust Path
	15.2.5 Social Trust Influence on Service Selection

	15.3 A New Categorization of OSNs
	15.3.1 The Current Generation of Functional Websites
	15.3.2 The Current Generation of OSNs
	15.3.3 The New Generation of OSNs

	15.4 Complex Social Networks
	15.4.1 A Complex Social Network Structure
	15.4.2 Trust
	15.4.3 Social Intimacy Degree
	15.4.4 Role Impact Factor

	15.5 Multiple QoT Constrained Social Trust Path Selection
	15.5.1 Quality of Trust (QoT)
	15.5.2 QoT Constraint
	15.5.3 Utility Function

	15.6 A Heuristic Algorithm for the MQCSTP Selection Problem
	15.7 Experiments
	15.7.1 Experiment Settings
	15.7.2 Performance in Social Trust Path Selection

	15.8 Application Scenarios
	15.9 Conclusions
	References

	16 Analyzing Web Services Networks: Theory and Practice
	16.1 Introduction
	16.2 Fundamentals
	16.2.1 Web Services Networks
	16.2.2 Web Services Network Formation

	16.3 Applications
	16.3.1 Dataset
	16.3.2 Redundancy Detection
	16.3.3 Information Diffusion

	16.4 Related Work
	16.5 Conclusion
	References

	Part IIINovel Perspectives and Future Directions
	17 Work as a Service
	17.1 Introduction
	17.2 The Changing Nature of Work and Workforce
	17.3 Application: Global Service Delivery
	17.3.1 Approach

	17.4 Work as a Service (WaaS) Encapsulation
	17.4.1 Coordination Information
	17.4.2 Payload Information
	17.4.3 Information Flow

	17.5 Value Co-Creation
	17.6 A Formal Milestone Mechanism
	17.7 Patterns and Structures
	17.7.1 Emergence of Patterns
	17.7.2 Structures

	17.8 Coordination and Governance
	17.8.1 WaaS and Web Services

	17.9 Benefits of WaaS: Agility, Visibility, Optimization, and Innovation
	17.10 Concluding Remarks
	References

	18 Virtualizing Software and Human for Elastic Hybrid Services
	18.1 Introduction
	18.2 Overview of Human Computation Approaches
	18.2.1 Crowdsourcing Platforms and Techniques
	18.2.2 People-Centric Business Processes
	18.2.3 Humans as Programmable Units

	18.3 Incorporating Humans into Program Paradigms
	18.3.1 Challenges
	18.3.2 Virtualizing Humans as Programmable Compute Units

	18.4 State of the Art
	18.4.1 Composition Techniques
	18.4.2 Virtualization Techniques

	18.5 Programming Elastic Composite Applications in the Vienna Elastic Computing Model
	18.5.1 Multi-Dimensional Elastic Application
	18.5.2 Modeling Process Elasticity
	18.5.3 Executing Hybrid Services on the Cloud

	18.6 Conclusions and Future Work
	References

	19 Realizing a Social Ecosystem of Web Services
	19.1 Introduction
	19.2 Background
	19.2.1 When Social Computing Meets Service Computing
	19.2.2 Literature Review

	19.3 Social Web Services Ecosystem
	19.3.1 Architecture of the Ecosystem
	19.3.2 Actors in the Ecosystem
	19.3.3 Interactions in the Ecosystem
	19.3.4 Open Issues

	19.4 Conclusion
	References

	20 ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking
	20.1 Introduction
	20.2 Related Work
	20.3 ubiREST Design Rationale
	20.3.1 Run-Time Support

	20.4 Network-Agnostic Connectivity
	20.5 ubiREST Communication Layer
	20.5.1 Code Mobility

	20.6 The ubiREST Programming Model
	20.7 ubiREST in Action: An Example
	20.8 Conclusion
	References

	21 Mobile Web and Cloud Services
	21.1 Introduction
	21.2 Mobile Web Services
	21.3 Mobile Cloud Services
	21.4 Mobile Web Service Provisioning
	21.4.1 Alternatives for Nomadic Mobile Service Provisioning
	21.4.2 Mobile Host in Current Generation Technologies

	21.5 Mobile Enterprise
	21.5.1 Challenges for Establishing Mobile Enterprise
	21.5.2 QoS Aspects of the Mobile Host
	21.5.3 Discovery Aspects of the Mobile Enterprise

	21.6 Mobile Web Services Mediation Framework
	21.7 MWSMF on the Cloud
	21.8 MCM Architecture and Realization
	21.9 Related Work
	21.10 Conclusions
	References

	22 TOSCA: Portable Automated Deployment and Management of Cloud Applications
	22.1 Introduction
	22.2 Overview on TOSCA
	22.2.1 Main Concepts of TOSCA
	22.2.2 Challenges Addressed by TOSCA

	22.3 TOSCA in Detail
	22.3.1 TOSCA Application Topologies
	22.3.2 TOSCA Management Plans
	22.3.3 Packaging
	22.3.4 TOSCA-Based Example Application

	22.4 Supporting Ecosystem
	22.4.1 Modeling Tool Support
	22.4.2 TOSCA Container
	22.4.3 Marketplace and Catalog

	22.5 Portability
	22.5.1 Portability of Applications
	22.5.2 Portability of Management
	22.5.3 Improving Portability of TOSCA Applications

	22.6 Conclusions
	References

	23 A V-Model Approach for Business Process Requirements Elicitation in Cloud Design
	23.1 Introduction
	23.1.1 The ISOFIN Project
	23.1.2 Roadmap from Process- to Product-Level Requirements Elicitation

	23.2 Multiple View Requirements Modeling
	23.3 V-Model Approach
	23.3.1 The V-Model Representation
	23.3.2 A V-Model SPEM Representation

	23.4 Business Requirements
	23.4.1 Organizational Configurations
	23.4.2 Stereotyped Sequence Diagrams
	23.4.3 An UML Metamodel Extension for A-type and B-type Sequence Diagrams

	23.5 Transition from Business to IT
	23.5.1 Step 1: Architectural Element Creation
	23.5.2 Step 2: Architectural Element Elimination
	23.5.3 Step 3: Packaging and Aggregation
	23.5.4 Step 4: Architectural Element Association

	23.6 Business Context for Cloud Design
	23.6.1 Derivation of Process-Oriented Logical Architectures
	23.6.2 Process Assessment Through ARID

	23.7 Conclusion
	References

	24 Cloud-Based Systems Need Multi-Level Management
	24.1 Introduction
	24.2 Cloud-Based Systems
	24.3 C2M: A Comprehensive Conceptual Model for Multi-Level Management of Cloud-Based Systems
	24.3.1 Service Abstraction
	24.3.2 Service Management

	24.4 A Reference Framework for Multi-Level Management
	24.5 LaTeX in the Cloud
	24.5.1 Managing the ``LaTeX in the Cloud'' Application
	24.5.2 Management Scenarios

	24.6 Related Work
	24.6.1 Models for Manageability
	24.6.2 Multi-Level Monitoring and Adaptation
	24.6.3 Our Contributions to the Area

	24.7 Conclusions and Future Work
	24.7.1 Outlook

	References

	25 Web Services for Things
	25.1 Introduction
	25.1.1 A Scenario of Web Services for Things
	25.1.2 Challenges and Solutions for Implementing Web Services for Things
	25.1.3 Extensive Applications

	25.2 State-of-the-Art Web Technology for Things
	25.2.1 Semantic Web for Machine Readable Knowledge Reuse
	25.2.2 Ubiquitous Web for Sensing Physical World
	25.2.3 Context of Things
	25.2.4 Web Services for Things

	25.3 Context for Smart Web Services
	25.3.1 Context Lattice
	25.3.2 Context of a Thing

	25.4 A Smart Web Service for Things
	25.4.1 Overview of a Smart Web Service for Things
	25.4.2 Ontology Services and Domain Knowledge Services
	25.4.3 Event Detection Services
	25.4.4 Actions Towards Things

	25.5 REpresentational State Transfer for Things (Thing-REST)
	25.5.1 Context Management in Thing-REST
	25.5.2 Mashup Structures in THING-REST

	25.6 A Smart Plant Watering Web Service Application
	25.6.1 The User Interface and Application Logic Design
	25.6.2 The Server and Client Control Panels

	25.7 Conclusions
	References

	Index

